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Preface

The structural and architectural potential of shell structures is used in various fields
of civil, architectural, mechanical, aeronautical, and marine engineering. The
strength of a (doubly) curved structure is efficiently and economically used, for
example, to cover large areas without supporting columns. In addition to the
mechanical advantages, the use of shell structures leads to esthetic architectural
appearance. Examples of shells used in civil and architectural engineering include
shell roofs, liquid storage tanks, silos, cooling towers, containment shells of
nuclear power plants, and arch dams. Piping systems, curved panels, pressure
vessels, bottles, buckets, and parts of cars, are examples of shells used in
mechanical engineering. In aeronautical and marine engineering, shells are used in
aircraft, spacecraft, missiles, ships, and submarines.

Similar to plate structures, one dimension of shell structures is small compared
to the others. However, because of their spatial shape, the behavior of shells is
different from that of plates. In flat plates, external loads are carried either by
membrane response or bending response. In shells, the loads are carried by both.
Similarly, both extensions and changes of curvature occur. As a result a mathe-
matical description of the properties of a shell is much more elaborate than for
beam and plate structures. Therefore many engineers and architects are unac-
quainted with aspects of shell behavior and design.

It took tens of years in the twentieth century to achieve sufficiently reliable shell
theories for the different shell types that occur. Some of the most famous names in
this respect are Love, Reissner, Wlassow, Morley, Fliigge, Novoshilov, Koiter,
Donnell, and Niordson. Well-known textbooks on the subject have also been
published by Pliiger, Riidiger, Timoshenko, and Wolmir. Rather than contributing
to theory development, this book is a university textbook, with a focus on archi-
tectural and civil engineering schools. Of course, practising professionals will
profit from it as well. In writing this book we had three aims: (i) providing insight
into the behavior of shell structures, (ii) explaining applied shell theories, and (iii)
applying numerical programs for design purposes.

The book deals only with thin elastic shells, in particular with cylindrical,
conical and spherical shells, and elliptic and hyperbolic paraboloids. The focus is
on roofs, chimneys, pressure vessels, and storage tanks. The reader is supposed to
be acquainted with the theory of flat plates loaded in-plane (shear walls, etc.) and
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loaded laterally (slabs, etc.). Material nonlinearity is not considered, and the
deformation due to transverse shear is not taken into account. Geometric nonlin-
earity is considered only in an introductory chapter on buckling of thin shells.
A substantial part of the book is derived from research efforts in the middle of the
twentieth century at the Civil Engineering Department of Delft University of
Technology by Bouma, Loof, and Van Koten. As such, we offer an addition to the
archive of literature dealing with developments in shell research that are of
continuing importance. Newer parts of the book come from doctoral thesis work of
Hoefakker under supervision of Blaauwendraad [18].

The triple aim of the book is realized in the following way. We explain the
theory of shells for a number of shell types. We show structural designers how to
perform a manual calculation of the main force flow in a shell structure. We teach
them how to estimate the stresses and the deformations. Special attention is paid to
the characterization of edge bending effects. This is of prominent importance for
mesh design in edge zones in case the structural designer performs a Finite Ele-
ment Analysis.



Acknowledgments

Donnell’s theory of shallow shells was the basis of extensive shell research in The
Netherlands in the fifties and sixties of the 20th century. A team of people in the
Civil Engineering Faculty of Delft University and the TNO research organisation
for Building Research elaborated the theory, including work of Von Kdrmén and
Jenkins. We acknowledge Professor A.L. Bouma, the late Associate Professor
H.W. Loof and Mr. H. van Koten for their intensive academic effort to make the
theory accessible for design purposes. A large part of the book has been adapted
from their lecture notes on shell analysis in past decades, particularly the chapters
on roof structures. We are indebted to Professor L.J. Sluys, editor-in-chief of
HERON, joint publication of TNO, Delft University of Technology and Eindhoven
University of Technology in The Netherlands. He permitted copying of tables and
figures from bygone volumes. The extension on chimneys and tanks, on the basis
of the Morley-Koiter theory, is more recent work of the authors, reflecting lectures
on shell theory and doctoral thesis work. The persevering support of software
virtuoso and structural engineer M.J. de Rijke in performing complex FEanalyses
is highly rewarded. We warmly thank Springer ladies Nathalie Jacobs and Cynthia
Feenstra for dedicated promotion and assistance respectively.

vii



Contents

Introduction to Shells. . . .

1.1
1.2

1.3

Shell Theories . . . .

Classification of Shells . .. ........................
1.2.1  Gaussian Curvature of a Surface. . .. ...........
1.2.2  Developed and Undeveloped Surfaces. . .........
1.2.3  Generated Surfaces. . ......................
1.24 Combined Surfaces. .. .....................
125 FoldedPlates............................
Analytical Description of the Shell Surface . . ...........
131 Circular Plan . . . ........ ... ... ... ... ....
1.3.2 Rectangular Plan. . . . ....... ... ... ... ....

Part I Membrane Theory and Edge Disturbances

2

Membrane Theory for Shells with Principal Curvatures . . ... ..

2.1
22
23

Kinematic Relation .
Constitutive Relation
Equilibrium Relation

Membrane Theory for Thin Shells of Arbitrary Curvatures. . . . .

3.1
32
33

Kinematic Relations

Constitutive Equation . .. .......... ... ... ... .....

Equilibrium Equation

3.3.1 Effect of Curvatures . .. ....................
332 Effectof Twist. ... ..... ... ... ..

Application of Membrane Theory to Circular
Cylindrical Shells. . . . . ..

4.1
4.2
4.3
44

Description of the Circular Cylindrical Surface ..........

Kinematic Relation .
Constitutive Relation
Equilibrium Relation

O I I NN W W= =

13
15
16
17

21
21
25
25
25
27

29
29
30
31
31

ix


http://dx.doi.org/10.1007/978-94-007-6701-0_1
http://dx.doi.org/10.1007/978-94-007-6701-0_1
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_1#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_2
http://dx.doi.org/10.1007/978-94-007-6701-0_2
http://dx.doi.org/10.1007/978-94-007-6701-0_2#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_2#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_2#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_2#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_2#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_2#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_3
http://dx.doi.org/10.1007/978-94-007-6701-0_3
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_3#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_4
http://dx.doi.org/10.1007/978-94-007-6701-0_4
http://dx.doi.org/10.1007/978-94-007-6701-0_4
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec4

4.5
4.6

4.7

4.8
4.9

4.10

General Solution. . .. ....... ... .. .. . ...
Applications of Circular Cylindrical Shells as Beam. . . . .
4.6.1  Simply Supported Tube Beam with Diaphragms. . . .
4.6.2  Circular Shell as a Cantilever Beam . . ........
Circular Beam Under a Transverse Load. . ...........
4.7.1  Solution in Beam Theory. .................

4.7.2  Comparison of Beam Solution with Shell

Membrane Solution. . . ........ .. .. .. ...,
In-Extensional Deformation of a Circular Storage Tank . . . .
Circular Shell Under an Axisymmetric Load . .........
49.1  Application to Water Tank. . . .. ............
Concluding Remarks. . . ......... .. ... .. .. ....

Edge Disturbance in Circular Cylindrical Shells Under

Axisymmetric Load

5.1 Problem Assignment. ............. ... ... ... ....
5.2 Derivation of a Differential Equation . ..............
53 Application to a Water Tank . . .. ....... ... ... ...
5.4 Solution for a Long Shell Subject to Edge Loads. . .. ...
54.1 EdgeForce ........... ... ... ... ... ...
542 EdgeTorque ............ ...,
5.4.3 Edge Force and Torque . . .................
5.5 Reconsidering the Water Tank by Force Method . . . . . ..
5.6 Four Elementary Cases . . .......................
5.6.1 Elementary Case A......................
5.6.2 ElementaryCase B......................
5.63 ElementaryCase C......................
5.64 Elementary Case D......................
5.7 Concluding Remarks. . . ........ ... ... ... ... ...
Reference . . .. ... .. .. . .

Part II Roof Structures

6

Donnell Bending Theory for Shallow Shells
Introduction . . .. ... .. ... ..
Kinematic Relation. . . ....... ... ... ... ... ... ...
Constitutive Relation. . .. ........ .. ... ... .. ....
Equilibrium Relation. . .. ...... .. ... ... .. .. .. ..
Differential Equation for One Displacement. . .. ... .. ..
6.5.1 In-Plane State. . ........... ... ... ... ....
6.5.2 Out-of-Plane State . .....................
6.53 Coupled States . . . ...... ... ... ... ... ...
Boundary Conditions. . .. ........ ... ... ... ......
Reference

6.1
6.2
6.3
6.4
6.5

6.6

Contents

.. 31
..o 32

35

.. 39
.. 40
.. 40

.. 43

46

.. 48
.. 49
.. 50

.. 51
.. 51
.. 52
.. 55
... 5
.. 60
.. 6l
.. 062
.. 63
.. 64
.. 64
.. 66
.. 069
.. 69
.. 69
... 170

.. 1713
.. 1713
.. 15
.. 176
.. T
..o T
.. 18
.19
.. 80
.. 81
.. 82


http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec15
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec15
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec16
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec16
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec17
http://dx.doi.org/10.1007/978-94-007-6701-0_4#Sec17
http://dx.doi.org/10.1007/978-94-007-6701-0_5
http://dx.doi.org/10.1007/978-94-007-6701-0_5
http://dx.doi.org/10.1007/978-94-007-6701-0_5
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_5#Bib1
http://dx.doi.org/10.1007/978-94-007-6701-0_6
http://dx.doi.org/10.1007/978-94-007-6701-0_6
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_6#Bib1

Contents

7

xi
Circular Cylindrical Roof . . . .. ... .. ... ... ... ... ...... 83
7.1 Introduction . . .. ... ... ... 83
7.2 Differential Equation for Circular Cylinder .. ........... 84
7.3 Boundary Conditions at a Straight Edge . .............. 85
7.4 Expressions for Shell Forces and Displacements. . . . ... ... 86
7.5 Homogeneous Solution for a Straight Edge . . ........... 87
75.1 ExactSolution ........................... 87
7.5.2  Approximate Solution . .. ........ ... ... ... .. 90
7.6 Displacements and Shell Forces of the Homogeneous
Solution. . . . ... . 91
7.7 Application to a Shell Roof Under its Own Weight . ... ... 93
77.1  Uniform Load ........................... 96
7772 Vertical Load. .. ...... ... ... .. ... .. .... 98
7.7.3  Comparison of Solutions for a Concrete Roof . . . .. 101
7.8 Circular Shell Roof Compared with Beam Theory . ....... 103
References . ....... ... ... ... . . . . 106
Hyperbolic- and Elliptic-Paraboloid Roofs. . . . ... ... ........ 107
8.1 Geometry of the Hyppar Surface with Straight Edges . . . . . . 107
8.2 Set of Relations for Hyppar with Straight Edges . ........ 109
8.2.1 Kinematic Relation. . ...................... 109
8.2.2  Constitutive Relation. . .. ................ ... 110
8.2.3  Equilibrium Relation. . .. ..... ... ... ... .. ... 110
8.3 Membrane Solution for a Uniform Load on Hyppar
with Straight Edges. . . .. ... ... ... .. .. .. . ... 111
8.3.1  Concluding Remarks About the Membrane
Solution. . . ... ... . ... L 112
8.4 Bending of Hyppar with Straight Edges. . ... ........... 113
8.4.1 Differential Equation. . .. ................... 113
8.4.2  Approximate Bending Solution for Hyppar
with Straight Edges. . .. ..... ... ... ... ... ... 114
8.4.3  Edge Disturbances for Uniform Load ........... 116
8.5 Hyppar Roof Examples . . .. .......... ... ... ...... 118
8.5.1  Single Hyppar on Two Supports. . .. ........... 118
8.5.2  Composed Hyppar Roofs. . .. ................ 121
8.6 Elpars and Hyppars with Curved Edges. . ... ........... 125
8.6.1  Doubly Curved Shells Supported on Two
Opposite Edges. . .. ...... ... .. .. .. ... .... 126
8.6.2  Doubly Curved Shells Supported Along
AllEdges. . . ... 128

References . .. ... .. . . . . e 128


http://dx.doi.org/10.1007/978-94-007-6701-0_7
http://dx.doi.org/10.1007/978-94-007-6701-0_7
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec15
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Sec15
http://dx.doi.org/10.1007/978-94-007-6701-0_7#Bib1
http://dx.doi.org/10.1007/978-94-007-6701-0_8
http://dx.doi.org/10.1007/978-94-007-6701-0_8
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec19
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec19
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec25
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec25
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec26
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec26
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec26
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_8#Bib1

Xii

Contents

Part III Chimneys and Storage Tanks

9

10

Morley Bending Theory for Circular Cylindrical Shells. . . . . . ..
9.1 Introduction . . . . ... ... ... ..
9.1.1 Leading Term in Differential Equations. . . . ... ...
9.1.2  Geometrical Considerations . . ... .............
9.1.3 Load Considerations . . . ....................
9.1.4  Three Load-Deformation Behaviours. . . .........
9.2 Sets of Equations . . .......... ... . ... . ...
9.2.1 Kinematical Relation. . . ....................
9.2.2  Constitutive Relation. . . ....................
9.2.3  Equilibrium Relation. . . . ........ ... ... ... ...
9.24 Boundary Conditions. . .. ...................
9.3 Differential Equations for Load p, ... ................
9.3.1 Differential Equations for Displacements. . ... .. ..
9.3.2  Single Differential Equation. . ... .............
9.4 Homogeneous Solution of the Differential Equation
foraCurved Edge . ........... ... ... ... ... .....
94.1 ExactSolution ............. ... ... ........
9.4.2  Approximate Solution . . . ...................
9.5 Influence Length. . . . ... ... ... ... ... .. .. .. ...
9.5.1 Axisymmetric Mode . ......................
952 BeamMode............. ... .. ... . ...
9.53 Self-Balancing Modes . . . ...................
9.6 Displacements and Shell Forces of the Homogeneous
Solution for Self-Balancing Modes . . . ................
9.6.1 Comparison with Donnell Solution.............
9.7 Inhomogeneous Solution for Self-Balancing Modes . .. . ...
9.8 Complete Solution for Self-Balancing Modes. ... ........
9.9 Complete Solution for the Axisymmetric Load
and Beam Load . ........... ... ... ... ... ... .....
9.9.1 Axisymmetric Mode . . .......... ... ... ... ...
992 BeamMode............. . ... ... . .. ...
References . .. .. ... ..

Semi-Membrane Concept Theory for Circular

Cylindrical Shells. . . .. ...... ... .. .. .. .. .. .. ... ... .......

10.1  Introduction . ............ ... ...

10.2  Setsof Equations . .. ......... ... . i

10.3  Differential Equations for Load p, ... ................
10.3.1 The Differential Equations for Displacements . . . . .
10.3.2 The Single Differential Equation . .............

10.4  Homogeneous Solution of the Differential Equation
foraCurved Edge ....... .. .. .. .. .. .. .. ... . . .. ..


http://dx.doi.org/10.1007/978-94-007-6701-0_9
http://dx.doi.org/10.1007/978-94-007-6701-0_9
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec15
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec15
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec16
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec16
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec17
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec17
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec17
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec18
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec18
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec19
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec19
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec20
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec20
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec21
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec21
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec22
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec22
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec23
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec23
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec24
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec24
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec24
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec25
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec25
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec26
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec26
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec28
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec28
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec28
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec29
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec29
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec30
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Sec30
http://dx.doi.org/10.1007/978-94-007-6701-0_9#Bib1
http://dx.doi.org/10.1007/978-94-007-6701-0_10
http://dx.doi.org/10.1007/978-94-007-6701-0_10
http://dx.doi.org/10.1007/978-94-007-6701-0_10
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec6

Contents

11

12

10.5 Influence Length. . .. ..... ... .. .. .. ... ... ... ....
10.6  Displacements and Shell Forces of the Homogeneous
Solution for the Self-Balancing Modes ... .............
10.7  Inhomogeneous Solution . . . .......... ... ... .......
10.8  Complete Solution . . ......... ... ... ...
10.9  Remark Considering Accuracy . .. ... ................
Reference . . ... ... ... .. . . ...

Analysis by Circular Cylindrical Super Elements . ...........

11.1  Introduction of Super Element Analysis ...............
11.2  Outline of Super Element Analysis. . .................
11.2.1 Consideration of Super Element Level ..........
11.2.2 Load on Circular Node . .. ..................
11.2.3 Assembling and Solving Procedure. . ...........
11.3  Calculation Scheme. . .. ....... ... ... ... ... ... ....
11.4  Features of the Program CShell ... ..................
11.4.1 Structure, Supports and Loading. . .............
11.42  Shell Theory to be Chosen. . . ................
1143 Ring Elements . .. .......... ... ... ........
11.4.4 Verification . . . ......... ... ... ... ... ...
1145 Output. . ... e
11.5 Overview of the Analysed Structures . ................
Chimneys. . . .. ... ..
121 Wind Load. . .. ... ... ..
122 FixedBase: Free End .. ... ... ... ... ... ... ... ....
12.2.1 Closed-Form Solution . . . ...................
12.2.2  Applicability Range of Formulas . .............
123 SMC Approximation. . . .. ............ ...
12.4  Effect of Ring Stiffeners . . . .. ... ... ... ... ... ....
12.4.1 Closed-Form Solution (SMC). ... .............
12.4.2  Applicability Range of Formulas . .............
12.5  Effect of Elastic Supports ... ......................
12.5.1 Derivation of Formulas . . ... ................
12.5.2 Applicability Range of Formulas . .............
12.6  Summary of Chimney Design Formulas . ..............

12.6.1 Design Formula for Chimneys with Rigid Base . . . .
12.6.2 Design Formula for Chimney

with Stiffening Rings . . ........ ... ... ... ...
12.6.3 Design Formula for Chimneys

with Elastic Supports .. ....................


http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_10#Bib1
http://dx.doi.org/10.1007/978-94-007-6701-0_11
http://dx.doi.org/10.1007/978-94-007-6701-0_11
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_11#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec14
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec17
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec17
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec18
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec18
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec22
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec22
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec25
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec25
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec26
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec26
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec27
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec28
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec28
http://dx.doi.org/10.1007/978-94-007-6701-0_12#Sec28

Xiv Contents

13 Storage Tanks .. ......... .. .. .. .. . . . . .. 211
13.1 Problem Statement . .. ................. ... .. ..... 211

13.2  Load-Deformation Conditions and Analysed Cases. . ...... 212

13.3  Stresses Due to Content. . . . ....................... 213
1331 Concrete Tank . . ......................... 213

1332 Steel Tank. ... ....... ... .. .. ... 213

134  Stresses Dueto Wind Load . .. ..................... 215
1341 Concrete Tank . . ......................... 215

1342 Steel Tank . ... ....... ... .. .. ... ... ...... 217

13.5  Settlement Induced Stresses . . . ... .................. 219

Part IV Cones and Spheres

14 Membrane Behaviour of Shells of Revolution Under

Axisymmetric Loading . . ... ....... ... ... ... .. .. .. .. ... 225
14.1  Description of the Surface . . .. ... ... ... ... ... .... 225
14.2  Kinematic Relation. . ... ...... ... .. .. .. ... .. .... 227
14.3  Constitutive Relation. . . . ...................... ... 228
144 Equilibrium Relation. . . . ......... ... ... ... ... ... 229
14.5 Membrane Forces and Displacements . .. .............. 231
14.5.1 Membrane Forces......................... 231
1452 Displacements . ............... ... ........ 233
14.6  Geometry of Conventional Shells of Revolution. . ........ 234
14.7  Application to a Spherical Shell Under its Own Weight . ... 235
14.7.1 Comparison with Famous Domes . . ............ 238
1472 Approximation as Short Beam . ... ............ 238
14.8  Application to a Conical Shell Subject to its Own Weight. . . 239
14.8.1 Alternate Derivation of Membrane Forces . . . . . ... 242

15 Edge Disturbance in Shell of Revolution Due

to Axisymmetric Loading . . . .. ........ ... .. .. .. .. .. ... 243
15.1  Problem Statement . .. ........... ... ... ... ... .... 243
15.2  Recall of Solution for Circular Cylinder . .............. 244
153  ExtensiontoCones. .............. ..., 246

15.3.1 Computational Verification .................. 251
154  Application to Clamped Sphere Cap . . .. .............. 252

15.4.1 Membrane Solution. . . ..................... 253

15.4.2 Bending Solution . .............. ... .. .... 254
15.5  Application to a Pressured Hemispherical Boiler Cap . . . . . . 257
15.6  Application to a Pressured Shallow Spherical Boiler Cap ... 264

References . .. ... . . . 267


http://dx.doi.org/10.1007/978-94-007-6701-0_13
http://dx.doi.org/10.1007/978-94-007-6701-0_13
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_13#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_14
http://dx.doi.org/10.1007/978-94-007-6701-0_14
http://dx.doi.org/10.1007/978-94-007-6701-0_14
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec11
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec12
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_14#Sec13
http://dx.doi.org/10.1007/978-94-007-6701-0_15
http://dx.doi.org/10.1007/978-94-007-6701-0_15
http://dx.doi.org/10.1007/978-94-007-6701-0_15
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_15#Bib1

Contents XV

Part V Capita Selecta

16 Introduction to Buckling. . ... .......................... 271
16.1  Problem Statement . .............. ... ... .. ... ... 271
16.2  Beam-Column Buckling . ......... ... ... ... ... .... 271
16.3  Shell Buckling Study on the Basis of Donnell Equation . ... 273
16.4  Buckling Check for Beam-Column . ... ............... 274
16.5 Check for FlatPlate . ... ...... ... .. .. ... ... .... 274
166 ArchBuckling .. ......... ... ... ... ... ... ... ..., 275
16.7  Buckling of a Curved Plate and Cylinder Under Lateral
Pressure. . . ... ... ... 276
16.8  Buckling of Axially-Pressed Cylinder . .. .............. 278
16.9  Buckling of Spheres, Hyppars and Elpars Subject
to Lateral Pressure . ... ..... ... .. .. .. .. ... .. .. .. 279
16.10 Reducing Effect of Imperfections . . ... ............... 280
Reference . . ... ... . ... . .. 282
17 FEA for Shells of Irregular Shape. . . .. ................... 283
17.1  Finite Element Analysis. . . . .......... ... ... ....... 283
17.1.1 Method 1. . ... ... . .. . . 284
1712 Method 2. ... ... . ... 286
17.2  Example of Irregular Shell. . . .. ..... ... ... ... ... ... 286
17.2.1 Geometry and Mesh . .. .................... 286
17.2.2 Computational Results. . . ................... 288
17.3  Check of FEA-Results by Theory of Cones . . .. ......... 291
17.3.1 Membrane Solution. . . ..................... 293
17.3.2 Bending Moment Due to Edge Disturbance . . . . . .. 293
References . ... ... ... .. ... . 295


http://dx.doi.org/10.1007/978-94-007-6701-0_16
http://dx.doi.org/10.1007/978-94-007-6701-0_16
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Sec10
http://dx.doi.org/10.1007/978-94-007-6701-0_16#Bib1
http://dx.doi.org/10.1007/978-94-007-6701-0_17
http://dx.doi.org/10.1007/978-94-007-6701-0_17
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec1
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec2
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec3
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec4
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec5
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec6
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec7
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec8
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec9
http://dx.doi.org/10.1007/978-94-007-6701-0_17#Sec9

Chapter 1
Introduction to Shells

This book is concerned with thin elastic shells. A thin shell has a very small
thickness-to-minimal-radius ratio, often smaller than 1/50. As with plates, an
applied load that acts out-of-plane leads to larger displacements than those gen-
erated by a load acting in-plane with the same intensity. Due to its initial curvature,
a shell is able to transfer an applied load by in-plane as well as out-of-plane
actions. A thin shell subjected to an applied load therefore produces mainly
in-plane actions, which are called membrane forces. These membrane forces are
actually resultants of normal stresses and in-plane shear stresses that are uniformly
distributed across the thickness.

1.1 Shell Theories

A shell is a generalization of an isotropic homogeneous plate. Plates are flat
structures of which the dimensions in two in-plane directions are large compared
to the third direction perpendicular to the plate. The span in two directions is much
larger than the thickness. Plates are defined by their middle plane, thickness and
material properties. The displacements of the middle plane play the role of
degrees of freedom in structural modelling. In-plane loads of plates generate
in-plane membrane forces, and out-of-plane loads generate moments and trans-
verse shear forces.

Shells are also defined by their middle plane, thickness and material properties.
The difference with plates is that the middle plane of plates is flat, and that it is
curved in shells. As a consequence, shells can carry out-of-plane loads by in-plane
membrane forces, which is not possible for plates. In fact, this is the major reason
why shells are such strong and economic structures.

The theory of this membrane behaviour is called membrane theory. However,
membrane theory does not satisfy all equilibrium and/or displacement requirements
of all cases. For example (Fig. 1.1):
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membrane membrane local edge
compatible incompatible effect
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Fig. 1.1 Membrane and bending conditions

e Boundary conditions and deformation constraints that are incompatible with the
requirements of a pure membrane field;

e Concentrated loads;

e Changes in geometry.

In the regions where the membrane theory will not hold, some (or all) of the
bending field components are produced to compensate the shortcomings of the
membrane field in the disturbed zone. These disturbances have to be described by
a more complete analysis, which will lead to a bending theory of thin elastic shells.

If the bending components occur, they often have a local range of influence.
Theoretical calculations and experiments show that the required bending compo-
nents attenuate and often bending is confined to boundaries where a pure mem-
brane solution does not exist. Therefore, in many cases the bending behaviour is
restricted to an edge disturbance. The undisturbed and major part of the shell
behaves like a true membrane. This unique property of shells is a result of the
curvature of the spatial structure. Efficient structural performance is responsible for
the widespread appearance of shells in nature. The continuous progress of
numerical methods for computational mechanics, combined with an efficient
structural performance and a pleasing shape, makes the application of shell
structures more and more possible and favourable. However, for the use of
numerical programs, some basic knowledge of the underlying theories and the
mechanical behaviour of the structure is needed.
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Many theories have been developed to analyse the mechanical behaviour of
shell structures. To overcome the complexity of an exact theory, assumptions are
made to produce simpler theories of which membrane theory is the most
appealing. Because of its simplicity, membrane theory gives a direct insight into
the structural behaviour and the order of magnitude of the expected response
without elaborate computations. Membrane theory is thus very useful for initial
design and analysis. Armed with a basic knowledge of the shell’s more complex
behaviour, we can take a first step towards a rational mechanical design. This book
has been written to help readers develop insight into the design of shell structures.

1.2 Classification of Shells
1.2.1 Gaussian Curvature of a Surface

The geometry of a shell is completely described by the curved shape of the middle
surface and the thickness distribution of the shell. At any point A on a smooth
surface, there is a tangent plane. The normal to the surface at that point is defined
to be the normal to the tangent plane, as shown in Fig. 1.2. A plane through point
A that contains the normal is said to be normal to the middle surface at A. We call
the intersections of the normal planes and the middle surface normal sections of
the surface at A. Each of these curves has a local curvature k and a corresponding
radius of curvature r. If the origin of the radius is at the positive side of the normal
to the surface, the relation between the radius and the curvature is r = k. If the
origin is at the negative side of the normal, the relation is r = —k.

Plane_
containing
normal

Normal
sections

Fig. 1.2 Intersections of a plane with a surface
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(b)

Fig. 1.3 Types of Gaussian curvature. a Positive Gaussian curvature. b Zero Gaussian curvature.
¢ Negative Gaussian curvature

One of the infinitely many plane curves at point A has a minimum curvature,
and another has a maximum curvature. These two plane curves are called the
principal sections, and their curvatures, denoted by k; and k,, are called the
principal curvatures of the surface at A. By differential geometry, it can be proved
that these two intersecting principal sections are orthogonal to each other. Because
of this, it is convenient to take two axes of a local co-ordinate system on the
surface along these principal sections. Taking a third axis normal to the surface at
that point yields an orthogonal three-dimensional co-ordinate system.

The product of the two principal curvatures, k, = k; - ko, is called the Gaussian
curvature of the surface at A. The Gaussian curvature can be positive, negative, or
zero. If it is positive, so that k; and k, have the same sign, the surface is said to be
synclastic at that point. If it is negative, so that k; and k, have opposite signs, it is
said to be anticlastic. If it is zero, one or both of k; and k, are zero. The surface is
said to have a single curvature. The three types of surface are shown in Fig. 1.3.

1.2.2 Developed and Undeveloped Surfaces

A surface is said to be developable if it can be deformed into plane form without
cutting or stretching its middle surface. A surface that can not be deformed into
plane form in this way is said to be undevelopable. Both cases are shown in
Fig. 1.4. Surfaces with double curvature cannot be developed, while those with
single curvature can be developed. In other words, surfaces with positive or
negative Gaussian curvature (i.e. synclastic and anticlastic surfaces) cannot be
developed, while those with zero Gaussian curvature can be developed. Develo-
pability and undevelopability are geometrical properties of a surface, but they have
structural significance. Shells that cannot be developed require more external
energy to be deformed (i.e. to be stretched out, to be bent, to be destructed) than
developable shells. Shells that cannot be developed are, in general, stronger and
more stable than shells that can be developed having the same overall dimensions.
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(a) (b)

Fig. 1.4 Examples of a surface that can be developed (a), and a surface that cannot be
developed (b)

1.2.3 Generated Surfaces

Surfaces of Revolution

Surfaces of revolution are generated by the revolution of a plane curve, called the
meridional curve, about an axis, called the axis of revolution. In the special case of
cylindrical and conical surfaces, the meridional curve consists of a line segment.
Examples of surfaces of revolution are shown in Fig. 1.5.

Surfaces of Translation

Surfaces of translation are generated by sliding a plane curve along another plane
curve, while keeping the orientation of the sliding curve constant. The curve on
which the original curve slides, is called the generator of the surface. In the special
case in which the generator is a straight line, the resulting surface is called a
cylindrical surface. Examples of surfaces of translation are shown in Fig. 1.6.

Fig. 1.5 Examples of surface of revolution
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elliptic cylindrical hyperbolic
paraboloid shell paraboloid

Fig. 1.6 Examples of surfaces of translation with rectangular plan
Ruled Surfaces

Ruled surfaces are generated by sliding each end of a straight line on its own
generator curve, while the straight line remains parallel to a prescribed plane. The
sliding straight line is not necessarily at right angles to the planes containing the
generator curves. From a practical point of view, moulding of on-site cast concrete
shells having a ruled surface can be more easily and economically made by a
rectilinear forming process. Examples of ruled surfaces are shown in Fig. 1.7.

1.2.4 Combined Surfaces

Combined surfaces can be partly synclastic and partly anticlastic, and can be
composed of simpler shell forms. Combined surfaces can have discontinuous
curvature. Examples of combined surfaces are shown in Fig. 1.8.

1.2.5 Folded Plates

A folded plate is a structure made up of two or more plates, as shown in Fig. 1.9.
Strictly speaking, a folded plate is not a curved surface. Folded plates can be used
to form very stiff three-dimensional structures. Several folded plate structures have

oI

hyperbolic paraboloid conoid

Fig. 1.7 Examples of ruled surfaces
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cylindrical shell

Fig. 1.9 Examples of folded plates

been made of rectangular, triangular or trapezium shaped plates. These structures
can be analyzed only by numerical methods. Because of the high stiffness, large
deformations are often prevented; the calculation can sometimes be made on the
basis of a simple beam theory. Calculation methods for folded plate structures will
not be treated in this book.

1.3 Analytical Description of the Shell Surface

1.3.1 Circular Plan

Shells with a circular plan include the cylinder, the cooling tower, the sphere and
the ellipsoid. Analytical expressions for such shell shapes are presented in
Fig. 1.10.
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Cylinder X ryl=r

Cooling tower rrr =1 y

2 2 2
X’ z
Sphere $ =1
e
2 2
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Ellipsoid SRR
a” b

Fig. 1.10 Analytical expressions for shell geometries

X
Parabolic o,
. z=—Y
cylinder 2r
1, 1
Elpar 7z =—x +— y
2r, 2r,
1, 1 .,
Hyppar z=—x - —)
27, 2r, _—
1
Hyppar z=—uxy
r

Fig. 1.11 Analytical expressions for shallow shell of rectangular plan
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1.3.2 Rectangular Plan

In Fig. 1.11 examples are shown for shallow shells with a rectangular plan. In
many cases a simple analytical expression of the form z = f (x,y) can be used. In
Fig. 1.11 this is done for a parabolic cylinder (as an approximation for the upper
part of a cylindrical roof), an elliptic paraboloid (elpar), and two different
descriptions of a hyperbolic paraboloid (hyppar).
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Chapter 2
Membrane Theory for Shells
with Principal Curvatures

The basic assumption of membrane theory is that a thin shell produces a pure
membrane stress field, and that no bending stresses occur. This assumption is
applicable if certain boundary and loading conditions, exemplified in Chap. 1, are
met. In this pure membrane stress field, only normal and in-plane shear stresses are
produced. They are due to stretching and shearing of the middle plane of the shell.
Bending, torsion and transverse shear stresses are not accounted for.

We consider shells of arbitrary curvature and choose a set of axes x and y in the
middle surface in the direction of the principal curvatures, see Fig. 2.1. The radius
of curvature in x-direction is r; and the radius of curvature in y-direction is r,. The
z-axis is perpendicular to the middle surface. As drawn in this figure, the curva-
tures are negative, because the origin of the radius is at the negative normal side.
The load may consist of three components: the in-plane components p, and p,, and
the out-of-plane component p_, in the directions x, y and z respectively. We define
displacements u,, u,, and u, of the middle surface, which correspond with the
loads. Like in flat plates, normal stresses o, and o,,, and a shear stress a,, occur.
These are uniformly distributed through the thickness and integrate to n,,, n,,, and
Ny, Tespectively. The shear membrane force n,, is equal to n,, because of the
moment equilibrium condition with respect to the normal axis z.

Notation and Sign Convention

The notation for stresses and forces in the membrane state may require
clarification. For each stress or force we use two indices. The first indicates
the face on which the stress or force acts. It is the direction of the normal of
the face. The second index is the direction in which the stress is acting. For
instance, the membrane force n,, acts on a face with normal in the
x-direction and is directed in the y-direction. The sign convention is as
follows. A stress or force is positive if it acts in the positive coordinate
direction on a plane with the normal vector in the positive coordinate
direction. Correspondingly, a stress or force is positive if it acts in the

J. Blaauwendraad and J. H. Hoefakker, Structural Shell Analysis, 13
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negative coordinate direction on a plane with its normal in the negative
coordinate direction. As drawn in Fig. 2.1, the membrane forces are all
positive.

The membrane forces, also called stress resultants, generate corresponding
Strains &y, &yy, and yy,. Of these, the first two are normal strains, and the latter is a
shear angle. It is convenient to define four vectors

u= [ux,uy,uz]T (2.1)
p= [pepyp] (2.2)
e= [ew: &g (23)
S = [y ] (2.4)

The four vectors are related to each other by three basic relationships: kinematic
relation, constitutive relation and equilibrium relation. The kinematic relations
relate strains to displacements, the constitutive relations relate membrane forces to
strains, and equilibrium relations relate membrane forces to load components. The
scheme of relationships is shown in Fig. 2.2.

Fig. 2.1 Definition of displacements, loading and membrane forces. Sign convention
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Ex R, p
u
X X
€y My
u, . p,
’)/xy Xy
Displacements Strains Membrane forces Loads
Kinematic Constitutive Equilibrium
relation relation relation

Fig. 2.2 Scheme of relationships in membrane theory

2.1 Kinematic Relation

Recall that the displacements u, and u, are displacements tangential to the middle
surface in the direction of the principal curvatures k, and k, respectively, and the
displacement u, is the displacement normal to the middle surface, in the direction of
the z-axis. The description of the strain vector e due to the tangential displacements
u, and u, is the same as the description for a plate loaded in its plane, which is:

8 e %
XX ax
Ou,
€y = a—y’ (2.3)
Ou, Ou,
yxy == .
dy Ox

The third displacement, the normal displacement u,, also contributes to the
kinematic relations. The contribution of a constant normal displacement to the
elongation in x-direction is shown in Fig. 2.3. The arc length of this strip is

Fig. 2.3 Elongation due to the normal displacement u,
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dx = ridd. As shown in the figure, the constant normal displacement produces an
elongation of the middle fibre. The strain in the x-direction can be described by

dx —dx  (rFu)dd —ridd  u

= 2.
b dx ridd 1 (2:6)

The strain in the x-direction of the middle surface (with negative curvature) is
thus equal to
u

Exx = “= —kluz (27)
r

The same reasoning holds for the y-direction yielding the additional strain:

gy = = = —kou, (2.8)
L)
The normal displacement does not alter the shear strain y,, because the
co-ordinate system is placed in the direction of the principal curvatures.
Incorporating the additional normal strains of Egs. (2.7) and (2.8) into Eq. (2.5)
yields the complete kinematic relation for the membrane strains:

g 0 —Kk
Exx ax a Uy
:ﬁyy =0 oy —ky Uy (2.9)
Vxy 0 d u;

o o 0

Symbolically, this kinematic relation can be written as:
e =Bu (2.10)

The vectors e and u are defined by Eqgs. (2.3) and (2.1) respectively, and the
differential operator matrix B is thus defined as:

0

R g —k

B=|0 o —k (2.11)
9 2 o
ay ox

2.2 Constitutive Relation

By assumption, the shell material is linearly-elastic, and obeys Hooke’s law. The
stress strain relationship is described by:
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Oxx E 1 v 0 Exx
ool == |v L 0| | (2.12)
Oxy 0 0 & Vi

The elasticity and the lateral contraction of the material are herein expressed by
Young’s modulus E and Poisson’s ratio v respectively. Equation (2.12) yields the
constitutive relation between the membrane forces (stress resultants) and the
strains:

n 1 v O €
XX Et XX
my|=1— v 1 0| ey (2.13)
My oo B |y

Symbolically, this stiffness relation can be written as
s=De (2.14)
where D is the rigidity matrix. This matrix is

Et

== 2.1
T (2.15)

O = =
O ==
Too

2.3 Equilibrium Relation

From the scheme in Fig. 2.2 we know that three equilibrium equations must be
derived, because we have three degrees of freedom with three external load
components. The two equilibrium equations for the load components p, and p,
tangential to the middle surface are the same as for a flat plate loaded in-plane:

Ony  Onyy
=0
ox Oy TP
(2.16)
Oy O
ox Oy Py =

To obtain the third equilibrium equation for the load component p, normal to
the middle surface, the curvature of the middle surface needs to be investigated.
Recall that the co-ordinate system is placed according to the principal curvatures,
which are denoted by k; and k,, and the curvatures are the reciprocals of the radii
of curvature, which are r; and r, in the principal directions respectively. Fur-
thermore, the curvature is positive or negative according to whether the corre-
sponding centre of curvature lies on the positive or the negative side of the normal
of the middle surface. The normal load component in the z-direction on a strip in
the x-direction is shown in Fig. 2.4. This strip has a unit width and an arc length



18 2 Membrane Theory for Shells with Principal Curvatures

xx

Fig. 2.4 Membrane force n,, and normal load p,

dx = ridd, in which d¢ is the infinitesimal opening angle in the x-direction. The
total load on the strip under consideration is thus equal to p, - ridd. The stress
resultants n,, at both ends of the strip are on an infinitesimal angle d¢ to each other
and their resultant in the negative z-direction is therefore equal to n,,d¢ as shown
in the right-hand part of Fig. 2.4. Hence, the equilibrium condition for this strip
yields the equation: —n,, - d + p, - ridd = 0. If we divide by dx = ridd and use
the relationship k; = —1/r;, we obtain kyn,, + p, = 0. A similar reasoning can be
applied to a strip of unit width in the y-direction, leading to a positive contribution
of kony, in the z-direction.

We now consider an elementary element as shown in Fig. 2.5. The length in
x-direction is dx and in the y-direction dy, where dx = ridd and dy = rydo.
The load acts on the area r1d® - r,d0, the membrane force n,, acts on a face with
arc length r,d0, and the stress resultant n,, acts on a face with arc length r;d¢. The
equilibrium equation in the z-direction is therefore

—Nyt2d0 - d — nyyr1dd - dO + p, - ridd - 1d6 =0 (2.17)

We divide by the area r;d - r,d0 obtaining the third equilibrium equation for
the membrane behaviour of a shell element with arbitrary curvature:

king + anyy +p.=0 (2'18)

All the equilibrium equations of the membrane theory for thin shells are now
known. Eqgs. (2.16) and (2.18) describe the equilibrium between the three load
terms py, py, p. and the three membrane forces ny, nyy, Ny

ONyy  Ony,

Ox Oy =0
Ony,  Onyy B (2.19)
Ox oy Try=0

klnxx + kzl’lyy —|—p; =0
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Fig. 2.5 Elementary shell part

This equilibrium relation is presented symbolically as
B's=p

The differential operator matrix B* is

0 0
B = 0 0
0o - _=
Oy Ox
-k —k 0

(2.20)

(2.21)

B* is the adjoint of the differential operator matrix B of Eq. (2.11) which
appeared in the kinematic relations. B* is mirrored with respect to the main

diagonal of B, and the derivatives have changed sign.



Chapter 3
Membrane Theory for Thin Shells
of Arbitrary Curvatures

The three sets of equations of Chap. 2 derived for the membrane behaviour of thin
shells relate to a co-ordinate system placed according to the principal curvatures.
In practice it may be useful to choose the co-ordinate system in such a way that a
co-ordinate axis is placed along an edge of the shell, which does not necessarily
coincide with a principal curvature. This is the subject of this chapter. Different
from the approach of Chap. 2, we now choose a reference system of axes in the
tangent plane of a point O at the middle surface of the shell. The x-axis and y-axis
are in the tangent plane, and the z-axis is normal to the plane. Instead of the
principal curvatures k; and k,, we now work with curvatures &, and k,. On top of
that, it will appear to be convenient to define a twist k,,. The expressions for the
curvatures k, and k, are in fact the same as in Chap. 2, but we will derive them
again in an alternate way, such that it is easy to extrapolate to the derivation of the
twist k.

3.1 Kinematic Relations

The description of the strain vector e due to the tangential displacements u, and u, is
again the same as the description for a plate loaded in its plane, similar to Chap. 2:

Sxx:%a 8)’)':%7 ny:%"_% (31)
X Oy Jy Ox

For the effect of the normal displacement u,, we consider the intersection line of
the normal plane through the x-axis and the shell. In Fig. 3.1 we show an infini-
tesimal shell element of unit width and length 2dx. The x-axis is in the tangent
plane at O. After displacement over the distance u, in the positive z-direction, the
length dx increases to dx + de,. We define the inclination ¢, = —0z/0x, which is
zero in the origin at O. The minus sign is introduced because in Fig. 3.1 the
coordinate z decreases with increasing x. As a consequence, the incremental
change of the inclination over the distance dx is
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Fig. 3.1 Effect of displacement u, in curved shell surface
0%z

The change of length is de, = u d@, from which we derive

2

07z
de, = —@dx ‘U (3.3)

The second derivative in Fig. 3.1 is negative, so a positive elongation de,
occurs. The strain in the middle surface is

de, 0’z
SXXZE: —@ u; (34)
which we write as
e = —ky U (3.5)
where the curvature k, is
0%z

We obtained Eq. (3.5) earlier as Eq. (2.7), and we now learn that the curvature
is equal to the second derivative of the middle surface, expressed in the coordi-
nates of the tangent plane. Without further proof, we state that it holds similarly for
the y-direction

ey = —ky u (3.7)
where
0%z
and
0%z

Next we study the infinitesimal twisted shell part as drawn in Fig. 3.2. The
dotted lines represent the tangent plane and the full lines are the shell of twisted
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(atx >0) B (aty >0)

Fig. 3.2 Effect of displacement u, in twisted shell surface

shape. We introduce inclinations ¢, = —0z/0x and ¢, = —0z/0y. The incremental
changes do, in y-direction and d@, in x-direction are

o’z o’z
do, = ——=dy, do, =
P Oy0x

=>4 1
y, do, oy (3.10)

For a continuous surface such as we are studying, the two mixed second
derivatives in this equation are equal to each other. In the bottom part of Fig. 3.2
we show the displacement of an edge of the shell part over a distance u, in
z-direction. Both ends of the edge displace over the distance de, in the negative
x-direction. At the opposite edge displacements de, will occur in the positive
direction. Similarly, displacements de, occur along the other two edges. Figure 3.3
shows the displacements of all four corners of the element. Note that the rectan-
gular middle surface has deformed into a rhombus, so a twist in the middle surface
generates a shear strain 7y, in case of a normal displacement u,. The size of the
shear strain is derived as follows. From Fig. 3.2 we derive

dey = do, u;, de, = do, u; (3.11)
and from Fig. 3.3,

de, de,
By = B = d_; (3.12)

We obtain the expression for the strain y,, = & + &,. Accounting for
Egs. (3.10), (3.11) and (3.12) we find that €, and &, are equal and obtain

Py = —2ky (3.13)
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de, |(—){
dy | dy |

dx
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de,

dy o dy |

i
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Fig. 3.3 Shear deformation of a twisted middle surface due to a normal displacement u,

where k., is defined by the mixed second curvature of the middle surface

oz

Equations (3.1), (3.5), (3.7) and (3.13) jointly yield the kinematic relation:

0
— 0  —k
. Ox Uy
gy | = 0 @ _ky Uy (3 . 15)
ny 0 0 Uz
=~ = —2ky
Oy Ox
symbolically presented as e = Bu. The differential operator matrix B is
0
— 0  —k
Ox
B=|0 Q —k (3.16)
= % v )
0
2
a—y a _kay

and the three curvatures are defined by
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2 2 2
07z 0z _ 07z (3.17)

ke ===,k =55, k P
a2’ 0y’ Y oxdy

In case the x- and y-axis are chosen in the direction of the principal curvatures,
the twist k,, will be zero and Eq. (3.15) is equal to Eq. (2.9).

3.2 Constitutive Equation

Equations (2.13), (2.14) and (2.15) remain unchanged for arbitrary curvatures.
They are reproduced here:

Ny 1 v 0 Exx

Et
my | =7 L0 | fey (3.18)
Ny 0 0 % Vxy

Symbolically, we write again this stiffness relation as

s=De (3.19)
where D is the rigidity matrix:
I v O
Et
D=——|[v 1 O (3.20)
1-— Vz 1—y
00 3

3.3 Equilibrium Equation

Compared to Sect. 2.3 the in-plane equilibrium equations in the now considered
co-ordinate system do not change:

Ony  Ony B
o Ty TP
(3.21)
Oy Oy 0
ox Jy Py =

The out-of-plane equilibrium equation is derived in two steps. First the con-
sequence of the two curvatures k, and k, is derived, next the effect of the twist k.

3.3.1 Effect of Curvatures

For the first step we consider Fig. 3.4 with a shell strip of unit width and length dx.
The shell part covers an angle d¢,. The downward resultant of the membrane
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do.
‘\\\ d P, / n . d ¢x My

n XX

Fig. 3.4 Downward resultant of membrane force n,, over length dx

forces ny, on the left-hand and right-hand ends is n,,d@,, and the total upward
distributed load over this shell strip is p,dx. This leads to the equilibrium equation
per unit width

pzdx — nyde, =0 (3.22)
Accounting for Egs. (3.2) and (3.6) we obtain
ki +p, =0 (3.23)

Similarly we may consider a shell strip in y-direction, which has unit width and
length dy. Now the downward resultant of ny, is nydo,, and the equilibrium
equation becomes

p.dy — nyyd(Py =0 (3.24)

which leads to
kynyy, +p. =0 (3.25)

We combine Egs. (3.23) and (3.25) by considering a shell part with sizes dx in
x-direction and dy in y-direction, respectively. The downward resultant n,,d@, acts
over the width dy, the downward resultant n,,d¢, over the width dx, and the load
p over the area dxdy. Hence, equilibrium requires

pzdxdy — n,de,dy — ny,de,dx =0 (3.26)
Accounting for Egs. (3.2), (3.6), (3.8) and (3.9), we obtain
ket + kynyy +p, =0 (3.27)

which is comparable with Eq. (2.18) in Chap. 2.
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Fig. 3.5 Contribution of the shear membrane forces to equilibrium in z-direction

3.3.2 Effect of Twist

Now we execute the second step, the derivation of the contribution of the twist ,y,
for which we refer the reader to Fig. 3.5. The shear membrane force n,, acts in the
horizontal edge x = 0 and the inclined edge at a distance dx. These two forces
produce a vertical downward resultant n,d¢,, which acts over a width dx. Sim-
ilarly a vertical downward resultant n,.d¢, occurs over a width dy. The equilib-
rium equation in z-direction is

p.dxdy — (nxyd(py)dx — (nyxd(px)dy =0 (3.28)

Substituting Eq. (3.10) and accounting for Eq. (3.14), this equation becomes
(dividing by dxdy)

2kynyy +p. =0 (3.29)

We obtain the final equilibrium relation by assembling the Egs. (3.21), (3.27)
and (3.29):

0 0
Y 0 _Z
Oox Oy Nxx Px
0o - 0 _0 | ny|=]|pP (3.30)
ay Ox Ny Pz

Symbolically we write again
s=B"p (3.31)

where the differential operator matrix B* is



28 3 Membrane Theory for Thin Shells of Arbitrary Curvatures

0 0
~ % 0 _a_y

B=| , _0 _32 (3.32)
Jy Ox

—ke —k, —2kyy

Matrix B* is the adjoint of B in Eq. (3.16) and is equal to Eq. (2.23) if the twist
kyy is zero.
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Chapter 4
Application of Membrane Theory
to Circular Cylindrical Shells

4.1 Description of the Circular Cylindrical Surface

For a circular cylindrical shell, it is convenient to apply a polar co-ordinate system
to the cross-sectional profile as illustrated in Fig. 4.1. The axes are chosen in the
longitudinal, circumferential and transverse directions. For the circumferential
ordinate y on the middle surface the equality y = a6 holds, in which the constant
radius of the circular cylinder is denoted by a. Instead of k,, p, and u,, we will
write kg, pg and uy, and we replace n,, and n,, by ngy and n,. An infinitesimal
element has thus sides with length, measured on the middle surface, dx in the
longitudinal and dy = ad0 in the circumferential direction. The thickness of the
element is denoted by . The three positive directions of the displacements
(uy, up, u;) are taken correspondingly to the three positive directions of the
co-ordinates (x, 0, z). The straight generatrix in x-direction has a curvature k, = 0
and therefore a radius of curvature r, = co. The radius of curvature in the cir-
cumferential direction is ry = a = constant. The corresponding curvature is
ko = —1/a. Since the co-ordinate axes are placed according to the principal cur-
vatures, the twist kg is zero. Hereafter we will refer to the membrane theory of
Chap. 3. The following vectors are used:

T
u=[u, uy u;]
e=[ex & Yxe]T
T (4.1)
s = [nxx Nngo nxe]
T
= [px Po pz]
The relation between these vectors is presented in Fig. 4.2.
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4.2 Kinematic Relation

For the circular cylindrical shell the kinematic relation (3.15) becomes

% 0 0
Exx 10 1 Uy
€00 a0 al |
Vx0 o g 0 u;
a0 Ox
which is symbolically presented as e = Bu. The matrix B is
0
=5
o T
-2 0 9
a 00 ox

'
'
'

1
'
1

v

Fig. 4.1 Co-ordinate system and corresponding displacements of the middle surface

u, £ n. P,
Uy 890 Mgo Po
u z }/x 6 n x6 P :
Displacements Strains Membrane forces Loads
Kinematic Constitutive Equilibrium
relation relation relation

Fig. 4.2 Scheme of relationships

(4.3)
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4.3 Constitutive Relation

The constitutive equation (3.18) is rewritten as

n 1 v 0 £
XX Et XX
ngo | = I 5|V 1 0 €06 (4.4)
Nyp -V 00 % Yx0
which is symbolically presented as
s=De (4.5)
The rigidity matrix D is defined by
1 v 0
Et
-1 v 1 0 (4.6)
Vo o Ly
4.4 Equilibrium Relation
The equilibrium equation (3.30) is rewritten as
0 10
ax age nxx px
Ta0 g ||| =P (4.7)
1 ”xe pZ’
0 - 0
a

which is symbolically presented as B*s = p. The matrix B* is

0 19
Ox a 00
10 0
B = - = 4.8
0 a 00 Ox (4.8)
1
0 - 0
a

4.5 General Solution

The set of three equilibrium Eq. (4.7) with three unknowns is statically deter-
mined. Moreover, since the membrane force in circumferential direction ngg is
directly known from the third equation for the equilibrium in normal direction, the
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equations can be consecutively solved by a separate equilibrium equation. The
general solution for the membrane forces thus becomes

Ngp = ap;

o 161’!99
nyg = / (PG +a o0 ) dx (49)

lanxe
nxx——/ (pX+E ae)dx

The integrations yield two unknown functions. These functions contain two
constants that are computed by the boundary conditions under consideration.
However, the membrane force ngyg depends only on the local intensity of the
normal load p, and cannot be influenced by boundary conditions. This feature of
the membrane theory is not of great importance for shells whose cross-sectional
profiles are closed curves and which have only two cross-sectional profiles as
boundaries. Hereby, the constants must be determined from two boundary con-
ditions, which must be of a kind that on a profile x = constant (one end of the shell
or a plane of symmetry) one of the membrane forces n,g or n,, is given as an
arbitrary function of the ordinate 9.

Once the vector n of membrane forces is known, the constitutive Eq. (4.4) are

inverted to arrive at an expression for the deformation vector e = D~ !s:

Exx 1 1 -V 0 Nyx
€ | = E —V 1 0 neo | - (4.10)
Vx0 0 0 2(1 + V) nyo

Having obtained the strains, we compute the displacements from Eq. (4.2):

Uy = /sxxdx
1 Ou,
Ug = / ('Yxe —aae) dx (411)

These integrations also yield two auxiliary constants, but as will be shown in
Sect. 4.6, these cannot always be included correctly. This is a result of the
assumptions and approximations confined to the membrane theory, and thus it
exhibits a limitation of this theory.

4.6 Applications of Circular Cylindrical Shells as Beam

In some simple and important cases, it is possible to introduce the boundary
conditions into Eq. (4.9) and to determine the constants before making any
decision regarding the particular kind of loading. All these cases have in common
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that p, = 0 and that the other two load components, pg and p,, are independent of
the ordinate x. The load p, is set equal to zero because the response can often be
computed separately from the other responses. Only load cases that lead to the
deflection of the circular cylindrical shell as a whole are taken into consideration.
This is done because of the shortcomings of the membrane theory. If, for example,
a certain type of load produces a significant ovalisation of the cross-sectional
profile, the membrane theory cannot be valid and a bending theory must be used.
For the described load, Eq. (4.9) yields the expressions:

nep = ap;

Ny = — pe+@ x+£1(0)

! do (4.12)
1 (dpe  d’p.\ , 1dfi(0)

M = 5 <d9 + T X 20 x+£>(0)

As mentioned in Sect. 4.5, we will deal only with boundary conditions along an
edge x = constant; note that the unknown functions are independent of the
co-ordinate x. If the load components are described more explicitly, we can
determine the constants. For a full circular cylinder, the load must be described by
a symmetric function of the ordinate 6. Here we investigate load components
described by a single sine or cosine in circumferential direction. If the load is a
symmetric function, the stress resultants must also be symmetric and therefore,
according to the expressions (4.12), the load components pg and p, cannot be
described by the same trigonometric function. The load components are thus
described by the amplitudes pg and p, times the corresponding trigonometric
function. By choosing the load direction in the same plane as 6 = 0, they become

px=0,
po = pesinb, (4.13)
P, = p;cos B

Substituting this description of the load components into Eq. (4.12) yields the
general solution for the membrane forces in a closed circular cylindrical shell. By
rewriting the general solution, we find two constants of integration, and the
solution is:

nep = ap, cos
Ny = [(ﬁz —ﬁe)x + C]] sin 0
11

Hyx = _5 5(137 —ﬁO)X2+C1x+C2 cos 0

(4.14)

Note that the functions f;(0) and f>(0) in Eq. (4.12) have been chosen con-
sistently with Eq. (4.13):
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f] (9) = C] sin O

£(0) = Cycos 0 (4.15)

The displacement components can be expressed in terms of these membrane
forces by substituting the constitutive relation (4.10) into the expressions for the
displacement components (4.11); this yields

Etu, = /nmdx—v/needx
anxv
Etug = —— dxdx + —dd +2( 1+V) nxpdx

Etuzza//aagydd —7//6 "0 dxdx — 2(1+ v) agéodx—vanu—kanee

(4.16)

On the basis of the general solution in Eq. (4.14) for the membrane forces it can
be shown that the underlined terms are of the same order with respect to the axial
co-ordinate x. Substitution of the general solution in these expressions for the
displacements finally leads to

1
Etux———{ (p; — i)e)x3—|—§C1x2+C2x+C3} cos 0
— valpx + Cy]cos 0

1(1,, . 1 1 .
Et ug == {ﬁ(pz—pe)x4+—C1x3+§C2x2+C3x+C4] sin 0

6
+(2+v) B (ﬁz - % pe)xz 4O+ Cz} §in 0 (4.17)

111 . R 1 1
Etu, =2 {ﬂ (p: — po)x* +€CIX3 +§C2x2 + Gx + C4] cos 6

ST PR R

These expressions appear to be rather obscure. If Poisson’s ratio is chosen equal
to zero (v = 0), these expressions allow more insight.

1[1 1
Etu, = —— [6(';71 —[79))63 —|—§C1x2 + Cox + C3] cos 0

a

rrr ., 1 s 1 ., .
Elue:—; ﬂ(pz—pe)x +8C1x‘ +§C2x 4+ C3x+ C4| sin 6

1
2 [5 (p. — po)x®> + Cix + CZ] sin 0
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111 1 1
Etu, = ) [ﬁ (p, —]30))64 +6C1X3 —|—§C2x2 4+ C3x+ C4| cos B
1
—Z[E(ﬁz—ﬁe)xz—i-clx—i-@ cos 0 + a*p, cos 0 (4.18)

Hereafter we will discuss examples on the basis of these equations.

4.6.1 Simply Supported Tube Beam with Diaphragms

Consider the circular cylinder of span [ in Fig. 4.3. This tube-shaped girder is
supported by diaphragms at both ends. We consider the diaphragm infinitely rigid
in its plane and perfectly flexible for deformation out-of-plane. The in-plane
rigidity implies that the displacements u, and u, are zero at the shell ends, and the
extreme out-of-plane flexibility implies that the membrane force n,, is zero at the
ends of the shell. We count the co-ordinate x from the profile halfway between its
ends. Because of symmetry considerations, and because of the linearity of n,9 with
respect to the co-ordinate x, n,¢y must be equal to zero halfway along the cylinder.
Because of the parabolic distribution of n,, and the incapability of transmitting
forces in the x-direction of the diaphragms, the lengthwise distribution of n,, is
also fixed as shown in Fig. 4.3. The boundary conditions for the stress resultants in
this shell on two diaphragms are thus described by:

nx9:0 at x=0

4.19
Ny =0 at x==l/2 ( )

The use of the membrane theory can be exemplified by introducing the own
weight of the cylinder. This uniform load p is statically equivalent to surface load

for @ =constant

Fig. 4.3 Circular cylindrical shell supported by two end diaphragms
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Fig. 4.4 Surface loads due to own weight

components py and p,, which are lengthwise uniformly distributed, as indicated in
Fig. 4.4. These load components are thus expressed as:

po = psind = pg=p

g (4.20)
p. = —pcosh = p,=—p

We can evaluate the expressions in Eq. (4.14) for the membrane forces after
introduction of the boundary conditions. At the ends of the girder the normal
membrane force n,, = 0, and at mid span the shear membrane force n.,y = 0.
From this we find the constants of integration

1 1

=0 G= —glz(ﬁz —Po) = ZPlz (4.21)

The expressions for the stress resultants are

ngg = —ap cosd

Ny = —2pxsind

2 2
— f% [1 — <2—lx) ]cos@
These expressions show (see also Fig. 4.3) that the lengthwise distribution of
the longitudinal shearing stress resultant n,q is the same as that of the transverse
shear force of a simple beam of span [/ carrying a uniformly distributed load.
Correspondingly, the normal stress resultant n,, is distributed in the x-direction in
the same way as the bending moment of such a beam. We conclude that a

cylindrical shell under a distributed load, really acts like a simple beam loaded by
a transverse load if the boundary conditions are compatible with the membrane

(4.22)
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Fig. 4.5 Distribution of the membrane forces over the cross-section

assumptions, and if the profile of the shell is not distorted too much. Two inter-
esting values of the membrane forces are:

ng = —plsin® atx=1/2
2 (4.23)
nxx:—licose atx=0
da

Figure 4.5 shows the distribution of the membrane forces of Eq. (4.23) over the
cross-section.

The reader who will check these membrane forces, may consider the shell as a
tube-shaped simply-supported girder, apply the classical Euler-Bernoulli beam
theory, and will obtain the same solution. The normal stresses g, vary linearly
over the cross-section height, and the shear stresses o,y parabolically.

Now we can calculate the displacements. The boundary conditions in this shell
are u, = 0 at x = 0 as this is a plane of symmetry, and ug = 0 at x = /2 due to the
diaphragm. We use Eq. (4.18) for the displacements with v = 0 and account for
these boundary conditions. Then the constants C; and C,4 can be calculated:

5
—0- — 4 - __—
C;=0; C4= 3841 (p; — Do) 192pl. (4.24)

The expressions for the displacements u, and ug are:
2
pP? 2x
Etu, — 13— = 0
. 24a(1>[ <1)]C°S
pl* 20\? /2x\*] .
Etug=——15—-6(— — 0 4.25
" 192a2[ <z>+ 1) (4.25)
20\ 2
1 - <1x> ]sinG

1
Zpl2
+2p
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The expression for the displacement u, is:

pl* 20\% /2x\*
Etu, =— -6 — —
tu, P [5 6( l) + ] cosf

| o2 (4.26)
——pP|1— (=) |cos® — a*pcosd
2 [
Two interesting values of the displacements are
12
Etux:—%cosﬁ at x=1/2
2 (4.27)
Et PEyS + ! (a)Z sinf t 0
U=~ |—+=|(- at x =
T @ 19272\
The value of the displacement u, at the same profiles is
plr([5 1 (a)Z (a)4
Etu,= ——< |—=+= (- - s ar x=0
u; p {[192—1-2 7 + ] cosb ar x (4.28)

Etu, = —a’pcosh at x=1/2

The displacement uy in a cross-section is maximal at § = 7/2 (at the horizontal
line through the circle centre), and the displacement u_ at @ = 0 (at the vertical line
through the circle centre). It is obvious that for a slender beam with a length much
larger than the depth (/ > 2a) the difference between the displacement ug and u, in
the middle of the span (x = 0) is of the order (a/l)* and therefore negligible. So
they are equal for a slender beam of circular cross-section. This means that no
ovalisation occurs for this load. The reader who will check the deflection w of the
beam by the classical bending Euler-Bernoulli theory for beams, will obtain
Etw = 5pl*/(192a?) at the middle of the span. In Eqgs. (4.27) and (4.28) the factor
5/192 has become 5/192 + (a/l)*/2. The difference is due to shear deformation.
The contribution to the deflection due to shear deformation is related to the
bending deformation as (a//)* to unity. For slender beams a// is small, and the shear
contribution is negligible.

The displacement u, normal to the surface is uniformly distributed over the
cross-section at the ends of the beam. This is in conflict with the assumption that
the diaphragms at the supports are perfectly rigid for in-plane deformation. In the
next chapter we will learn that additional bending stresses occur in an edge zone,
and that these are negligible compared to the stresses due to the membrane action
of the shell.

The influence of the lateral contraction v is also negligible for the beam of this
example provided that [ > 2a. Without going into details we find that for a non-
zero Poisson’s ratio the constants derived by the boundary conditions for the
displacements are:

5 1 ra\2
=0, Cy= <—@+v§(7) )pl4 (4.29)
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On basis of this solution we conclude that the influence of the lateral con-
traction is approximately of the order (a//)> compared to unity, which is negligible
for slender beams.

4.6.2 Circular Shell as a Cantilever Beam

We consider a cantilever beam with a circular cross-section and analyze it as a
shell. The shell in Fig. 4.6 is completely built in at x = . The support is able to
resist not only the shear membrane force n,g but also the normal membrane force
n,, and therefore represents another case of boundary conditions than in
Sect. 4.6.1. At this clamped edge the displacements u, and ug are zero, and at the
free edge there are no membrane forces. Hence, the boundary conditions are:

nog=0 at x=0

ne =0 at x=0
(4.30)
u, =0 at x=1

ug=0 at x=1

By evaluating Eq. (4.14) for the membrane forces after introduction of the first
two boundary conditions, we find that the constants of integration C, and C, are
zero and hence the expressions for the stress resultants are

ngy = ap, coso

Ny = (p: — po)xsinb (4.31)
.
M = =5 (- — Po)x* cos®
Supported as a cantilever beam, the lengthwise distributions of z and &, in this

shell are those of the shear force and the bending moment of the beam analogy.

for @ = constant

Fig. 4.6 Circular cylindrical shell as cantilever beam
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Fig. 4.7 Simple representation of wind load. Pressure /eft, suction right

In this example we choose a load such that u, and pg are equal to zero. The load
p is a uniformly distributed load p; in the A-direction and is distributed in cir-
cumferential direction as a cosine function:

p. = —pcosO = p,=—p (4.32)

For a vertical cylinder this load can be considered as a simple representation of
a wind load. The pressure on the front side and the suction on the back side are
equal, see Fig. 4.7.

In Sect. 10.1 we will work with a more sophisticated representation of the wind
pressure distribution around a cylinder. Substitution of Eq. (4.32) in Eq. (4.31)
yields the solution

Ny = —pxsin®; nxx = Zﬁx2 cosf. (4.33)
a

4.7 Circular Beam Under a Transverse Load

As shown in Sect. 4.6 an analogy exists between the presented membrane solution
and the behaviour of a transversely loaded beam. The objective of this paragraph is
to show the differences and the similarities between the membrane solution and the
beam solution for a circular cylindrical beam and the load’s own weight. The
expressions for the shell load in Eq. (4.20) apply. In Sect. 4.7.1 we will first
discuss the problem in beam theory, accounting for both flexural deformation and
shear deformation. Then we demonstrate the similarity between beam solution and
shell membrane solution in Sect. 4.7.2. Because the effect of Poisson’s ratio is not
consistently accounted for in beam theory, the comparison will be done for v = 0.
At the end of the section we will return to this choice.

4.7.1 Solution in Beam Theory

Consider a beam in the x—z plane. It is loaded by a distributed load g(x) perpen-
dicular to its middle axis and a distributed moment m(x) as shown in Fig. 4.8 for
an elementary beam part of length dx. The stress resultants in a section are the
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Shear deformation Bending deformation

Fig. 4.8 Definitions for beam element with flexural and shear deformation

bending moment M and the transverse shear force V. The lateral displacement

nj = [ 6;(z)dz is the displacement of the middle axis of the cross-section in the
t
z-direction and ¢ is the rotation of the cross-section. The equilibrium equations for

the infinitesimal element are

av

E‘FC]ZO

M (4.34)
——=V+m=0

dx

For a beam having resistance to bending as well as shearing, the moment is
related to the curvature x and the transverse shear is related to the shear angle Je”.
The elastic constants are respectively the flexural rigidity EI and the shear rigidity
GA;,. For a thin circular beam the moment of inertia u is equal to half of the polar
moment of inertia and the effective shear cross-section A is related to the cross-
section BTs = p by A, = nA. For a ring-shaped cross-section it holds that = 2.
The constitutive equations are thus described by:

M = Elx

4.35
V = GA; ( )

The shear angle vy is described by the turning over dw/dx of the middle line of
the beam due to the displacement w and the rotation B of the cross-section. The
kinematic equations are thus described by:
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_dw+
y_dx ¢
_do
T odx

Substituting Eq. (4.36) into Eq. (4.35) relates the transverse shear and the
bending moment to the degrees of freedom by

d
V =GA, <W 4 (p)
dx
do
M = EI—
dx
For the cases we analysed with the membrane theory of Sect. 4.6, it holds that
m(x) = 0 and that g(x) = constant. For these cases, the solution to the equilibrium

equations of Eq. (4.34) becomes

dM
V= / qdx
/ / qdxdx

Naturally the lengthwise distribution of the transverse shear is linear and the
distribution of the bending moment is parabolic with respect to the axial
co-ordinate x. By comparing the membrane solution of Eq. (4.31) with this
solution, the beam analogy is already distinguished.

The solution for the rotation is found by substituting solution Eq. (4.38) into
Eq. (4.37) for the bending moment. It is, for a constant EI,

—%///qudxdx (4.39)

The solution for the displacement is found as follows. We eliminate V from the
first equation of (4.37) and the first equation of (4.38). The newly found equation is
integrated with respect to x:

(4.36)

(4.37)

(4.38)

1
dxdy. 4.40
G | [ 14xdy (4.40)
The final result is
dM
/qu— [gx + c1]
//qudx—— —gx® + c1x + ¢
| (4.41)
Q=— EI[6qx —|—2c1x + c2x + ¢3)
1[1 +1 +1++]1[1++]
EI 246])6 6c1x 2C2)C c3X C4 GA qx c1X (&)
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4.7.2 Comparison of Beam Solution with Shell
Membrane Solution

The result in Eq. (4.41) is compared with the general solution for the membrane
forces and the displacements in the membrane theory of a circular cylindrical shell
as shown in Egs. (4.14) and (4.18). Noticing the distribution as function of x,
it appears that the quantities of the beam theory are related to the quantities of the
membrane theory as follows:

V & ny O < Uy
M — nyy W > Uy

(4.42)

Firstly we will derive the stresses in a thin circular cross-section due to n,, and
vy, and, secondly, we will express the beam displacements v, and w in terms of
displacements at the middle surface of the circular cylinder.

Moment and Shear Force

To calculate stress distribution due to surface loads by means of the theory of
beams, the load distribution around the circumference must be integrated. The
shell loads and the beam load are shown in their co-ordinate systems in Fig. 4.9.
The expression for the equivalent transverse load m,, becomes

T
q= 2/ (posin® — p,cos0)add (4.43)
0
Because py = pgsin 6 and p, = p, cos 6§ we obtain

qg="2 / (Posin®0 — p,cos0)ado (4.44)
0

Pa

Fig. 4.9 Shell loads in polar and beam load in Cartesian co-ordinate system
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T K
Substitution of the well-known equality [ sin*0d0 = [ cos?0d0 = 1 r yields
0 0

q = (po — p;)an (4.45)

Substitution of the load expressions of Eq. (4.13) yields a value g = 2nap for
its own weight per unit length of the cylinder. We could have made a short cut by
multiplying the circumference of the cylinder 2na by its own weight p per unit
area of the cylinder.

The stresses due to the transverse shear and the bending moment can be cal-
culated with the aid of the simple beam formulas:

%
ST (4.46)
M-z
Oy = ——
1

In these formulas 7 is the moment of inertia, Sgs) and b are the first moment of
area and the width of the shearing section respectively and z is the vertical
co-ordinate. For a ring, the moment of inertia is half the polar moment of inertia
and the width of the shearing section is twice the thickness. Another important
property of the cross-section is the cross-sectional area A. The cross-sectional
quantities are thus

b =21
2
A:/de:Znat
0
; . (4.47)
S§S> = —2/acos9 -tad® = —2a”tsin®
0
21
I 1I 1 2. tad® 3¢
= S lpolar = 7 ' =T
5 ot 5 a -ta a
0

To obtain useful expressions for comparing the beam solution with the mem-
brane solution, the relation between the angular co-ordinate ds, and the vertical
beam co-ordinate ds, is set up. According to Fig. 4.9 this relation is

z= —acosh (4.48)

From Egs. (4.46), (4.47) and (4.48), we find the stresses in beam theory.
Multiplied by thickness the membrane forces are
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V..

Ny = Orpt = —sinb

o (4.49)

Ny = Oyl = —20059

Ta

This solution of beam theory differs with membrane theory only in a multi-

plication factor. The distribution in x-direction is the same. Therefore, the

expressions found from the beam theory are identical to the general solution to the
membrane theory.

Displacements
From Fig. 4.10 we see that the beam displacements ¢ and w can be expressed in

terms of shell displacements at the middle surface: u,, n,, and v,,. Using Eq. (4.48)
for z, we find the expressions

O — Uy Uy =@ -z = —agpcosd

ug ug = wsin0 (4.50)
w —

u, u, = —wcosb

We substitute the general solution Eq. (4.41) into these expressions and find

I 5 1 5
Elu, =a gqx —&—Ec]x + ¢2x + ¢35 | cosO

24 6 2
EIl
GA,

1 1 1
Elug = [ qx4 + —c1x3 + fczxz +c3x + 04] sin®

1
{E gx* + cix + cz} sin6 (4.51)

Elu, = — | =g + 21 + 20 + eax + 0
= COS
u; oy qx 601x 2C2X Cc3X Cyq

EI [1 , 0
+—|zgx" + + ¢y | cos
y FaX Faxto

Fig. 4.10 Beam and shell displacements
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The constants ¢y, ¢;. ¢3 and ¢4 must follow from the support conditions at both
ends of the cylinder. Noticing that I = na®t and ¢ = (py — p.)an, this beam theory
result is completely equal to the expressions which we have obtained in Eq. (4.18)
on the basis of shell membrane theory. In comparison with membrane theory, beam
theory is not able to predict the magnitude and distribution of the stress resultant
Oy, in the circumferential direction and does not take into account the cross-
sectional deformation due to the lateral contraction z. As shown in Sect. 4.6.1 these
differences are of no importance if the circular beam is slender (I > 2a). For such a
beam the membrane forces my, and (r, + z)/r, are the important stress resultants.
For stocky cylinders, the membrane theory has to be used to find appropriate
solutions for the stresses and the cross-sectional deformation.

4.8 In-Extensional Deformation of a Circular
Storage Tank

Storage tanks will be the extensive subject of Chap. 13, where both membrane and
bending forces will be included. Here we restrict the discussion to a special case of
pure membrane action. We consider a circular cylindrical tank with a base plate
and a floating-cover-system. The base plate can be considered inextensible in
comparison with the deformable shell. For such tanks, a non-uniform settlement of
the foundation often results in jamming of the cover. It turns out that at some
height of the cylinder the shape of the cross-section becomes elliptic, see Fig. 4.11,
which is at first sight an unlikely consequence of the vertical displacements of the
base. It can happen because of in-extensional deformations: the shell is deformed
while the strains of the middle surface remain zero. A shell, as a thin-walled

Fig. 4.11 In-extensional deformation of a circular cylindrical shell
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structure, which is much stiffer in-plane than perpendicular to its plane, has a
strong preference for such deformations. The in-extensional deformation of the
cylinder is described by a relatively simple formulation. The strains of the middle
surface are expressed in terms of the displacements and the kinematical relation
Eq. (4.2):

g, =
T x
1 (Oug
Epp = 2 (E —+ Mz) (452)
_ 10u,  Oug
=030 T ox

Observing the deformed shape of the shell in Fig. 4.11, we see that the base
plane and the top plane of the shell are warped. Displacements in the vertical
direction seem independent of the coordinate x, but highly dependent on 6. Over
the full circumference the vertical displacement is two times positive and two
times negative. This indicates two waves, so n = 2. For the displacement u,, we
choose the shape u,(0) = Cyacos26, where C, is a dimensionless constant. So, the
vertical displacement is independent of the x-coordinate. Figure 4.11 shows that
the normal displacement u,at the top plane of the shell becomes two times positive
and two times negative, with maxima in the points P and P’. The function cos20
applies again for the circumferential direction, however, this displacement is not
constant over the height; it varies from zero at the base (due to the inextensible
base plate) to a nonzero value at the top. We choose a linear variation over the
height, so the function is u,(x,0) = C,x cos26. Similar arguments hold for the
circumferential displacement ug, with the difference that it is zero at P and P’ and
maximal at Q and Q'. Therefore we change cosine to sine: up(x, 0) = Cyxsin20. If
the three constants are Cy, Cy and C, are chosen in proportion 1 to 2 to —4, we
arrive at a special set:

uy(x,0) = Cacos(20)
up(x,0) = 2Cxsin(20) (4.53)
uy(x,0) = —4Cxcos(20)

For this combination of displacements all three strains in Eq. (4.52) become
zero:

ex =0, €p=0, 7,=0. (4.54)

The displacement field of Eq. (4.53) fully describes the in-extensional phe-
nomenon which is shown in Fig. 4.11. Note that the normal displacement u, at the
top is as large as four times the vertical settlement of the base Aj. A limited
unevenness at the base leads to a substantial unroundness at the top, which easily
hinders the floating roof cover to move vertically.
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4.9 Circular Shell Under an Axisymmetric Load

A circular cylindrical shell is often used as a tank for storing liquid or gas. In these
cases the shell is subject to an axisymmetric load, meaning that the normal load
component p,, for x = constant, is uniform and that the circumferential load
component A is zero. Since the intensity of the normal load component depends
only on the ordinate x, the normal displacement ¢, is also uniform along the
circumference. Furthermore, all the derivatives with respect to the circumferential
co-ordinate 0 are zero. The circumferential displacement uy and the longitudinal
shearing membrane force n.9 are also zero, because of symmetry considerations.
Setting the load component A equal to zero for convenience and inspecting the
rewritten equilibrium equations (4.7) shows that the normal membrane force Ay is
also zero.
For an axisymmetric load p,(x, 0) = p,(x) the membrane forces are

ngy = p-(x)a
ne =0 (4.55)
Ny =0

Substitution of this result in the constitutive relations of Eq. (4.10) yields

1

Exx = EI (nxx - Wlee) - _V]%
1 Xx)a

Egp = E (_anx + I’lee) = pzét) (4'56)
2(1+v)

Yo = T”xe =0

Successive substitution of this result in the rewritten kinematic relations of
Eq. (4.11) yields

U, = /sxxdx = —v%/pz(x)dx—f—A

1 Ou,
ug = / (Yxe - 5@) dx =B (4.57)

B 1 Oug B p.(x)a?
”Z“<8"" aae) T b

The constant of integration A can be evaluated with the aid of the boundary
conditions, and the second constant of integration B must be zero, because uy is
zero for axisymmetric loads. This membrane analysis of the axisymmetric case is
applicable only if the displacement u, is fixed at one end of the shell, and if the
increase of the radius to a + u, is not prevented.
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4.9.1 Application to Water Tank

The circular cylindrical tank of Fig. 4.12 is completely filled with water with
density v, and is supported by roller supports. Since the upper edge is free and the
lower edge does not withstand an increase of the radius as well, displacements can
freely develop and do not impose boundary conditions. Therefore, the membrane
theory is applicable. The shell is subjected to a normal load:

p. =i~ x) (4.58)

The stress resultant ngy in the circumferential direction is the only membrane
response to this axisymmetric load and is determined by Eq. (4.14):

Negp = ya(l — )C) (4.59)
The resulting strains are computed by Eq. (4.10), yielding

a a

gpp(xx) = —v% (I—x);  epplxx) = % (I—x) (4.60)

Before deriving the displacement with the aid of Eq. (4.11), we set up the

boundary condition for the displacement at the edge x = 0. The displacement u,

should be zero along this edge since a vertical displacement is prohibited here.

When this boundary condition is taken into account, all integration constants

become zero, and the expressions for the longitudinal and the normal displacement
are

(4.61)

p.(x) 5 e p.(x)

Fig. 4.12 Circular cylindrical tank loaded by water pressure
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4.10 Concluding Remarks

Membrane theory is a straightforward and useful tool for analysing the stress
distribution in circular cylindrical shells under surface loading. Since the stress
resultants can be computed directly by the equilibrium equations, it is not nec-
essary to take into account the deformation of the structure.

In this chapter, we have shown that the membrane theory is applicable to closed
circular cylindrical shells whose cross-sectional profiles are closed curves and
which have only two cross-sectional profiles as boundaries. Not all types of surface
loading can be considered since membrane theory cannot accommodate consid-
erable bending of the shell surface in either the axial or the tangential direction.

Two load types of closed circular cylinders were analysed:

1. The lateral load expressed by pg(x,0) = pesind, p,(x,0) = p,cosb;
2. The axisymmetric load expressed by p,(x,0) = p,.

The distribution of the stress under lateral loading is analogous to the load
carrying mechanism of a simple beam. Of course this is true only if it is not
necessary to take into account the cross-sectional deformation, because then a
bending theory must be applied. The advantage of membrane theory over beam
theory is that an analysis with the membrane theory directly produces the stress
distribution over the cross-sectional area. Furthermore, beam theory is not able to
predict the magnitude and distribution of the circumferential stress resultant and
does not take into account the influence of the lateral contraction v.

Membrane theory is applicable only to axisymmetric loading if the boundary
conditions are such that the membrane displacements are not constrained. If an
edge does prevent membrane displacements, a bending analysis must be applied to
solve the problem. This will be the subject of the next chapter.



Chapter 5
Edge Disturbance in Circular Cylindrical
Shells Under Axisymmetric Load

5.1 Problem Assignment

As stated in Sect. 4.9, the axisymmetry of the load for a circular cylindrical shell
means that the axial load component p, and normal load component p, are uni-
formly distributed along the circumference, and the circumferential load component
po is zero. This chapter deals with the analysis of circular cylindrical shells with
edges for x = constant under axisymmetric loading. We put p, to zero, so consider
only a normal load p,. In Sect. 4.9 we showed that the water tank must be able to
perform a normal displacement due to the loading to make the membrane
assumptions applicable. In reality we will have a hinged support or a clamped edge,
and this prevents the normal displacement at the base of the shell. The membrane
solution will be disturbed, and bending actions will have to provide the continuity of
displacements. The disturbance zone will appear to be of limited size close to the
edge. We show this in Fig. 5.1 for a clamped tank wall. The final result is a
superposition of the membrane solution and bending solution. Apart from mem-
brane forces, also bending moments occur. The membrane solution accounts for the
distributed load p, on the shell, and the bending solution accounts for edge loads at
the base of the shell in order to satisfy the boundary constraints. Because of the
simplicity of the loading and the single curvature of the cylindrical shell, the
bending theory for the edge disturbance remains simple. We will derive more
general shell theories, including bending, in Chaps. 6 and 9. We consider the cir-
cular cylindrical shell of Fig. 5.2, which is loaded in an axisymmetric way at edge
x = 0 by edge effects. These are required to compensate a membrane incompatible
displacement u,. We choose the origin of the x-axis at the edge of the shell. Because
of symmetry considerations, all derivatives with respect to ordinate 0 are zero. For
the same reason, the circumferential displacement ug, the shear strain 7,4, the shear
membrane force n,¢ and the twisting moment m,g are all zero. The normal mem-
brane force n,, can be taken as zero because the opposite edge is unconstrained.
The change of curvature k., will not be zero, which has to vary with respect to
the ordinate x in order to overcome any discrepancies between the boundary
conditions at the base and the membrane displacements of the shell, see Fig. 5.1.
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This means that the bending moment m,, and the transverse shearing stress
resultant v, vary with respect to the ordinate x. Accordingly, the circumferential
normal membrane force ngyp and bending moment mgq are also activated; they are
constant in circumferential direction because of the axisymmetry. The bending
moment mgy can only develop due to the effect of Poisson’s ratio. The curvature
Kog 1S zero, therefore mgg = vm,,. For zero Poisson’s ratio, no moment mgg occurs.

5.2 Derivation of a Differential Equation

Accounting for all these expectations, we consider a circular cylindrical shell in
axisymmetric bending as a barrel consisting of vertical staves and horizontal ring belts,
see Fig. 5.3. The staves are straight and have unit width, and classical Euler—Bernoulli
beam theory applies. The normal displacement u,, the bending moment m,, and
transverse shear force v, are functions of the coordinate x only. If the staves tend to

— 1

displacement u, moment 7,

Fig. 5.1 Edge disturbance at the base of a tank

ab

Fig. 5.2 Axisymmetric shell. Sign convention
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rings staves load on staves load onrings

Fig. 5.3 Rings and staves in a circular cylindrical shell

displace outward, the rings will be strained. A uniformly distributed interaction force
q. acts outward on each ring and inward on the staves. The force g, is proportional to
the displacement u,. The differential equation for the stave without rings is

d*u,
e =Pz (5'1 )
Here D is the flexural rigidity
EP
D=—— 5.2
12(1 — v?) (52)

The factor 1 — v? is due to the fact that no change of curvature can occur in a
circumferential direction. Hereafter we will put p, to zero, because we consider
only bending that occurs due to loads at the base of the shell.

We now consider the rings of unit width. Due to the normal displacement u, the
radius of the rings will increase. Load g, acts on the rings in positive z-direction
and an equal load on the staves in negative direction. Beam Eq. (5.1) changes into

4
D[i,x’zz =P: 4z (53)

We calculate load g, as follows. The circumferential strain is &gy = u;/a.
Because no load p, is present, and the top edge of the tank is free, the membrane
force n,, will be zero. Therefore, the rings are in a uniaxial state of stress, and the
relation between the strain gg¢ and the circumferential membrane force ngy is
ngg = Et gg9. Note that the vertical strain ¢, will be v &gy, and the vertical dis-
placement is not zero. The load on the rings is g, = ngg/a. Combining the three
expressions for &gy, ngo and g,, we obtain

Et

; U; = ¢, (54)

We substitute Eq. (5.4) in Eq. (5.3) and obtain the differential equation that
governs the edge disturbance.
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d*u, Et
dx{"‘guz:pz (5'5)

The differential equation is fully similar to the equation for a beam on an elastic
foundation. The term Et/a® is the spring stiffness. We now put p, =0 and
introduce the parameter f3:

D

Et  3(1-1?)
4
= = . 5-6
B 4Da? (CZ t)2 ( )
The homogeneous equation becomes

d*u; 4

e +4Bu, =0 (5.7)

The solution of this fourth-order differential equation is u, = Ce™. Substitution
in Eq. (5.7) leads to an equation for the roots 7:

4t =0 (5.8)
The four roots are
r==x(1£i)p (5.9)

The solution consists of two pairs of conjugate complex functions. The sum and
the difference of the functions of each pair are purely real and purely imaginary
and constitute another set of four independent homogenous solutions:

u.(x) = e P[C} cos Px + C, sin Bx] + eP[C; cos Px + C4 sin Px] (5.10)

In this expression, the terms with C; and C, are oscillating functions of x that
decrease exponentially with increasing x. The other two terms are also attenuating
oscillations but these increase exponentially with increasing x; we can also say that
they decrease with decreasing x. Without loss of generality the solution of
Eq. (5.10) can be written as

u-(x) = e P[A| cos Bx + Ay sin Bx] + e PU9[B cos Px + Bysinpx]  (5.11)

Now the first term is an attenuating disturbance, starting from the edge x = 0
and the second term is another one from the opposite edge x = /. As shown in
Fig. 5.4, we in fact have introduced a new coordinate x’ that starts at the edge x =/
and increases in the direction of the edge x = 0. We introduce the characteristic
length ..

== (5.12)
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Fig. 5.4 Axial ordinates x and x’

The argument of the exponential function is x/I.. The exponential function e/l
is 1 at x = 0 and has reduced to about 0.05 when x/I. = n. We call this value of
x the influence length of the edge disturbance. This influence length /; is thus:

s
i=nl,=—Vat 5.13
V31— V) 5-13)

To exemplify the influence of an edge disturbance, we compare the influence
length with the radius of the cylinder. This influence-length-to-radius ratio reads:

L ml i \/?
a a /3(1-v?)Va

Since the thickness-to-radius ratio of a thin shell is of the order 1/100, the
influence length /; of the edge disturbance is about four times shorter than the
radius of the cylinder. Storage tanks have heights [/ that are of the order of
the diameter 2a. So, the influence length is about one-eighth of the height. Indeed,
the membrane solution is disturbed only in an edge zone at the base of the shell.

If the shell has no constraints at the top, the membrane solution is not disturbed
there, and the coefficients B; and B, will be zero.

(5.14)

5.3 Application to a Water Tank

We return to the water tank of Sect. 4.9. There the tank was placed on rollers at the
base, which permitted a pure membrane displacement field and associated solu-
tion. We repeat here the equations for the load, the circumferential membrane
force and the normal displacement:

pe=1(1—) (5.15)
ngo = ya(l — x) (5.16)


http://dx.doi.org/10.1007/978-94-007-6701-0_4
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56 5 Edge Disturbance in Circular Cylindrical Shells Under Axisymmetric Load

a*(l—x)

= (5.17)

U, =79
In fact, Eqgs. (5.16-5.17) are an inhomogeneous solution of the differential
Eq. (5.5). In contrast to Sect. 4.9, the circular cylindrical water tank cannot deform
at the lower edge since the tank wall is connected to a thick flat plate, which is
assumed to be infinitely rigid in-plane and out-of-plane, see Fig. 5.5. We will
determine the bending moment m,, in the disturbed edge zone. For convenience,
we introduce the rotation ¢, as the first derivative of u, with negative sign:
@, = —du,/dx. The boundary conditions for the clamped edge at x = 0 are

u, =0, ¢,=0 (5.18)

It means that the displacement and rotation of the membrane solution must be
compensated by an opposite displacement and rotation due to an edge moment and
transverse edge force. Assuming that the length of the cylinder is larger than the
influence length /;, only the first two terms of the solution in Eq. (5.10) are used.
Further we find the bending moment m,, from the second derivative of u, with a
minus sign, multiplied by the flexural rigidity D, and the transverse shear force v,
by differentiation of the bending moment. The result is

u. = e M[Cy cos Px + C, sin Bx]
¢, = Be P(C1 — C2) cos Bx + (C1 + C) sin p]
1
ngy = Et—e‘B"[Cl cos PBx + C, sin B] (5.19)
a

my, = 2D B*eP[C; cos Bx — C sin ]
vy = —2D BPe P¥[(C) + C3) cos Px — (C) — C3) sin B

Fig. 5.5 Circular cylindrical tank connected to a thick flat plate
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The complete expressions for the displacement and the rotation are

2
u, = y%(l —x) 4 ¢ P¥[C) cos Bx + C; sin P

, (5.20)

Py = —Y% — Be P[(C) — C3) cos Px + (€} + C3) sin B

For the lower edge at x = O these displacements must be identically equal to
zero and therefore the boundary conditions are

a’l
Uz(x=0) = YE +C =0
2

a
(Px(x:o) = _YE - B(Cl - CZ) =0

(5.21)

The solution for the constants is

a?l
C] = —'YE

a2l 1
= -V — 1 —_—
C= g ( Bl>

Combining the membrane solution and the edge disturbance, we obtain the
circumferential membrane force ngg and the bending moment m,.,:

o = yal{ (1 . ilc) e {cos Bx + (1 - $l> sin Bx] }

l 1
— —Px :
My = —Y—5€ 1 —— ] cos Bx — sin Bx
T K Bl> g B]

These quantities and the approximate values at characteristic points are shown

in Fig. 5.6 for a cylindrical shell. The lateral contraction of the material is not
accounted for, as we have chosen Poisson’s ratio zero. We take the density of

(5.22)

(5.23)

water vy = 10 kN/m> and choose the dimensions as @ =3m, t=0.3m and
I =4m. The straight line in the diagram of ngg represents the inhomogeneous
solution and thus also represents the membrane response. The plot of ngy has the
same course as the plot of the normal displacement u,. The thickness-to-radius
ratio, which is equal to r/a = 1/10, is deliberately chosen large to show that, even
for this thick shell, the influence length of the edge disturbance for the axisym-
metric behaviour is actually very short. Equation (5.14) yields an influence length
of about 0.8 a = 2.4 m, which is smaller than the height of the tank (/ = 4 m).
This means that in almost every case the influence of one edge on the other will be
negligible. Furthermore, it means that the inhomogeneous solution describes the
global behaviour of the shell and that a bending field disturbs this global behaviour
of the shell only over a relatively short section of the shell. As stated before, the
inhomogeneous solution is equal to the membrane solution. To illustrate the fact
that the edge disturbance is indeed very short for a thin shell under axisymmetric
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loading, we repeat the calculation for a tank with the same length and radius, but
with a thickness ¢ = 0.03 m, see Fig. 5.7. So the thickness-to-radius ratio is equal
to the value t/a = 1/100 and the disturbance therefore influences a much shorter
length of the shell (the influence length is 0.25 a = 1 m). This results in a higher
peak of the circumferential membrane force nyy, but greatly reduces the peak value
of the bending moment m,,.

5.4 Solution for a Long Shell Subject to Edge Loads

In the water tank example of the previous section, we have implicitly seen that a
transverse edge load and edge moment was applied at the base of the tank in order
to compensate membrane displacements. In the present section, we will elaborate
on the relationship between these edge loads and the corresponding edge dis-
placements. We do this for shells that are longer than the influence length, and we
consider the edge x = 0 and start from the solution as given in Eq. (5.11). Only the
first term of the solution is needed:

u.(x) = e P[A; cos Bx + A, sin Bx] (5.24)
It is convenient to reshape the solution in Eq. (5.24):
u,(x) = Ce P sin(Bx + ) (5.25)

Without loss of generality we have replaced the two constants A; and A, by two
new constants C and the phase angle . The reader may prove this by substitution of
C? = A7 + A} and tanyy = A; /A,. This presentation of the solution Eq. (5.24) is
convenient for simple cases for which the phase angle can be determined imme-
diately from the boundary conditions and Eq. (5.25) has a pleasant differentiation
property. If we differentiate the function, the argument of the sine decreases by 7 /4
and the function gets multiplied by —+/2p. This is the case again for the second
derivative, again for the third, and again for the fourth. After four differentiations
the sine argument has increased by m, which means that the original sine has

changed sign, and the multiplication factor has become (—\/5[3)4: 4B, Substi-
tution of the starting function Ce P sin(Px + ) of u, and the fourth derivative
—4B*Ce P sin(Bx + 1) in the differential equation (5.7) shows that this equation is
perfectly satisfied. The expressions for the rotation (¢, = —dw/dx), the bending
moment (m,, = —D d*w/dx?), the transverse shear force (v, = —Dj, d*w/dx*) and
the membrane force (ngg = Et u/ a?) become
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xx

Fig. 5.8 Positive direction of the quantities of interest on a shell wall

u.(x) = Ce P sin(Px + )
¢, (x) = V2BCe P sin(Px + ¢ — /4)
My = —D(ZBZCe’BX sin(Bx + ¥ — m/2))

(5.26)
Vy = —D(—Z\/§B3Ce_ﬁx sin(Bx + ¢ — 37r/4))

Et
ngo = ;Ce_ﬁx sin(Px + )

Figure 5.8 shows a shell wall of length /. The positive directions of the dis-
placement, rotation, forces and moments are shown. The direction of the edge
loads, the distributed edge load f, and the distributed edge torque t,, correspond
with the displacement and rotation, respectively. In the shell wall, bending
moments m,, and shear forces v, occur. Note that different sign conventions apply
for the external edge loads and the internal bending moment and shear force. The
external loads f; and ¢, have signs as the displacement u, and rotation ¢,.

The semi-infinite cylinder is able to withstand two axisymmetric edge loads at
x = 0. These cases are shown in Fig. 5.9 and will be considered separately.

5.4.1 Edge Force

We find the boundary condition by considering a small beam part at each end of
the shell. For the case in Fig. 5.9a the homogeneous boundary condition is

Vx(x=0) = —f Myx(x=0) = 0 (527)
We derive directly the phase angle from the expression for m,, in (5.27),

yielding

sin(y—2) =0 = = (5.28)
2

ST
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Fig. 5.9 Semi-infinite cylinder with an edge load f, in (a) and an edge torque ¢, in (b)

The expression for the constant C is derived by the expression for v, in (5.26)
for the boundary condition (5.27) with the phase angle (5.28); this leads to

(T [
W pcsn(-5) =-f = =L 5.29
V2 B°C sin 1 £ DF ( )
The displacements of the edge due to the edge force f, thus become:
f, . =m 1 7
U, (x=0) = ——=Sin- = ——=
=0 T oppET 2 pps
f . | (5.30)
o) = PV2—Esins = ——
Px (x=0) B 2D B3 4 2D Bzfz
5.4.2 Edge Torque
For the case in Fig. 5.9b the homogeneous boundary condition is
Vy(x=0) = 0; Myx(x=0) = —Ix (531)

Directly from the expression for v, in Eq. (5.26), the phase angle is derived,
yielding

sin(x//—%):O = x//:%Tn (5.32)

The expression for the constant C in Eq. (5.26) is derived by the expression for
my, for the boundary condition in Eq. (5.31) with the phase angle of Eq. (5.32),
which results in

Ix

= ibF (5.33)

—2DB2Csin<§> =—t, =
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The displacements of the edge due to the edge torque ¢, thus become

. sin:"—n——l t
\@DBZ 4 2DB”

=BV2——

| (5.34)
vor P""2 " bp"

5.4.3 Edge Force and Torque

We use the general solution of Eq. (5.26) to determine the flexibility matrix that
relates the displacement u, and rotation ¢, with the edge load f, and edge torque .
The superposition of Egs. (5.30) and (5.34), gives the combined action of the edge
loads as shown in Fig. 5.10. Presented symbolically as Ff = u, this is

1 1

1 ﬁ 2_[32 fol | u

5|5 M_[%] (5.35)
282 B

Matrix F is the flexibility matrix. This holds for an edge at the base of the shell
(x = 0). For the edge at the top of the shell (x = /), see Fig. 5.11, the flexibility
matrix is

1 1

Ll 2B 2B | [A] _ [w

5| 0 H_M (5.36)
28> B

In accordance with Maxwell’s reciprocal theorem, the matrix F is symmetrical
and positive definite in both cases.

Fig. 5.10 Semi-infinite cylinder with an edge load f; and torque ¢,
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Fig. 5.11 Semi-infinite cylinder with an edge load f; and an edge torque f,

5.5 Reconsidering the Water Tank by Force Method

This example is actually the same as in Sect. 5.3 but now we will use the force
method to compute the bending action at the edge; the formulation (5.35) is used.
We need the membrane solution due to the axisymmetric water for the displace-
ment u, and the rotation ¢, = —du,/dx:

2
Uzm = V%(l - x)
a (5.37)
@x,m - YE

The total displacements u; of an edge is the sum of the membrane displace-
ments u, and the bending displacements uy,. Therefore continuity of displace-
ments demands

U = Up+uy (5.38)

For the lower edge at x = 0, which is clamped, this yields

HEHEREH 530

The bending action is represented by the relation (5.35):

1 1 b
— — | [f u;

1 |2p° 2p°

511 | = (5.40)
W B |Ln 0

By putting together the membrane action for x = 0 and the bending action, the
following set of two equations with two unknown edge loads is obtained:
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a
"{E +B L l = (5.41)
1 2B2 B tx 0

The solution of these two equations is

__4Dp’a% A 1
r=r g (1) = ()

_ Rt N ]
T E (‘@—Bﬁ(wﬁ

To obtain this result we accounted for Eq. (5.6).

(5.42)

5.6 Four Elementary Cases

With the flexibility relation (5.35) between the edge load vector f and the edge
displacement vector u, we can analyse four elementary cases [1]. These are shown
in Fig. 5.12. To exemplify the method, the solution for one elementary case (case A)
is shown. The other elementary cases can be derived similarly. For these cases we
give only the boundary conditions and leave it up to the reader to verify the ana-
Iytical expressions and relevant values. The course of the quantities of interest
is shown in Figs. 5.12 and 5.13, and the analytical expressions are tabulated in
Table 5.1.

5.6.1 Elementary Case A

A cylinder of infinite length in both directions is loaded by a distributed line load
2fo, uniformly distributed in the circumferential direction, see Fig. 5.12. Because
of symmetry considerations, this case is equal to a cylinder which starts at x = 0,
is of infinite length in one direction, is loaded by a uniformly distributed line load
fo, and has zero rotation at that end x = 0. The boundary conditions at the end
x =0 are

<duz)
o=~ =0
dx /(o) (5.43)

fo= “Va(x=0) = —fo
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By substituting these conditions into the relation (5.35), it becomes
1 1
1|28 2p*| |- u,
L1267 280 ol (5.44)
D 1 1 ty 0
28° B
The unknown edge torque #, and the edge displacement u, can be obtained
subsequently and become

_ _Jo
Ly = =My (x=0) = 2_
5.45
_  fo  foBd? (5.45)
Uz = Uz(x=0) = _4[3—3D =TT E

For this elementary case, the constant C and the phase angle s can be directly
determined with the aid of (5.26). For x = 0 and the boundary conditions, these
expressions read

Pr(x=0) = BV2C sin (1// - g) -0

i 3 (5.46)
Vi(x=0) = 2\/§DB Csin (tﬁ — 4> =fo
The expressions for the two unknowns hereby become
T
V=1
R (S _foBa*V2 (5:47)
2V2Dp? Et

The expressions (5.26) yield the expressions for all the quantities of interest.
The course of the quantities of interest is shown in Fig. 5.12, and the analytical
expressions and relevant values are tabulated in Table 5.1.

5.6.2 Elementary Case B

The cylinder is of infinite length in one direction, and is loaded at the end by a
uniformly distributed line load fp in circumferential direction. The boundary
conditions at the end x = 0 are

(5.48)

The course of the quantities of interest is shown in Fig. 5.12, and the analytical
expressions and relevant values are tabulated in Table 5.1.
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5.6.3 Elementary Case C

The cylinder is of infinite length in one direction and is loaded at the end by a
uniformly distributed torque mg. The boundary conditions at the end (x = 0) are

Iy = —Myx(x=0) = Mo

5.49
.f;:_vx(x:()):() ( )

The course of the quantities of interest is shown in Fig. 5.13, and the analytical
expressions and relevant values are tabulated in Table 5.1.

5.6.4 Elementary Case D

The cylinder is of infinite length in both directions and is locally loaded by a
torque 2my. Because of symmetry considerations we can consider an infinitely
long cylinder in one direction, which is pin-supported and loaded by a torque my.
The boundary conditions at the end x = 0 are:

uz:uz(x:o)zo (550)
Iy = —Myx(x = 0) = Mo

The course of the quantities of interest is shown in Fig. 5.13, and the analytical
expressions and relevant values are tabulated in Table 5.1.

5.7 Concluding Remarks

It is shown in this chapter that the description of the combined stretching and
bending behaviour of a thin shell under axisymmetric loading is adequately
achieved by combining the membrane behaviour of the shell with the bending
behaviour of a flat plate. The bending theory leads to a single differential equation
of the fourth order for the normal displacement.

In fact the membrane solution is the inhomogeneous solution of the differential
equation. If the membrane displacements at the boundaries are not consistent with
the actual boundary conditions, the solution to the homogeneous bending equation
can be used as an edge disturbance to the membrane behaviour. We have shown
that, for the axisymmetric case, the influence of this edge disturbance is local and
that the influence length is often much smaller than the length of the shell struc-
ture. To simplify the calculation procedure the deformation of an edge of a circular
cylindrical shell due to axisymmetric edge loads is derived.
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Roof Structures



Chapter 6

Donnell Bending Theory for Shallow
Shells

In this chapter we will extend the membrane theory for shells of arbitrary
curvatures, as presented in Chap. 3, to a theory in which we account for both
membrane and bending action. This theory, developed by Donnell [1], is appli-
cable to shallow shells like roof shells. The Donnell theory is not sufficiently
accurate for circular cylindrical shells like chimneys and storage tanks. These
structures are deep shells instead of shallow ones. Hereafter, in Chap. 9, we will
present a more rigorous theory for this type of shell.

6.1 Introduction

Chapter 3 deals with the membrane theory for shells of arbitrary curvature. The
purpose of this chapter is to derive an appropriate bending theory for such shells.
In the bending theory, a coupling occurs between the membrane action and the
bending action. Different from the edge disturbance theory in Chap. 5, bending
moments may occur now over the total area of the shell surface. In the present
chapter we derive the differential equation for shallow shells, which is applicable
to shell roof structures, see Fig. 6.1. In this theory, the expressions for the change
of curvature due to bending moments are borrowed from the theory of flat plates.
Moreover, the difference between the global axes x, y, z to describe the geometry
of the shell and the local axes x, y, z in the shell surface with z normal to the
surface is neglected. This is permitted if the slope of the roof is sufficiently small.
As done in the previous chapter for edge disturbance problems, the deformation
due to transverse shear forces is neglected in this theory. Summing up, membrane
forces nyy, nyy, Ny, and bending/twisting moments miyy, m,y, M., play a role in the
derivation of the differential equation.
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< =7

Fig. 6.1 Shallow roof shells

Notation and Sign Convention

The notation and sign convention for stresses and membrane forces of
Chap. 2 applies again. A similar notation with two indices is used for the
bending moments m,, and m,, and the twisting moment m,,. The sign
convention is as follows. A bending moment is positive if the bending stress
at the positive z-side of the middle plane is positive. The twisting moment is
positive if the shear stress at the positive z-side of the middle plane is
positive. Transverse shear forces are written as v, and vy, respectively. The
subscript indicates the normal to the face on which the shear force occurs.
The force is positive if acting in the positive z-direction on a face with
positive normal. Figure 6.2 shows positive moments and shear forces.

The displacements can vary in all directions. As a consequence, the displacement
ug, which is zero in case of axisymmetric behaviour of circular cylindrical shells,
will be unequal to zero. Therefore, all strains &,., &, and ., play a role. The shell is
bent in x- and y-direction. So, in general change of curvatures x,, and x,, will occur.
Subsequently, the surface is also twisted and the analysis will also involve the
torsion deformation, which we denote by p,,. The strains and curvatures correlate
with membrane forces n,,, n,, n,, and bending/twisting moments m1,,, m,,, m,,. We
use the following vectors

membrane forces moments and shear forces

Fig. 6.2 Forces and moments on a shell element of arbitrary curvature
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€ n,,
E\.\ n
Uy Y n,, D
u, K, m p.
p m
Degrees of freedom Deformations Shell forces External loads

Kinematic Constitutive Equilibrium

Fig. 6.3 Scheme of relationships for a shell

T (6.1)
Mo My My Mg My My ]

Hereafter we call u the displacement vector, e the deformation vector, s the
vector of shell forces (membrane forces and bending/twisting moments) and p the
load vector. The scheme of relationships of Fig. 6.3 applies.

6.2 Kinematic Relation

For the membrane strains the relation (3.14) of the membrane behaviour is used:

Exx = o — kit

Ou

8},}, = a—yy — kyuz (62)
Ou, Ou,

Yoy = By + a_x‘ = 2kyyu,

The rotations of the bending behaviour of a flat plate applied to a thin shell of
arbitrary curvature with the infinitesimal length of arcs dx and dy are

Ou,
%= %k
Ou,
D=7
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Hereby, the bending deformations become

00, %u,
e a@x N azxz
0} Ou,
Ky = 67; == 3y? (6.4)
o0, 0@, o’u,
Py = —-="2
) R o Ox0y

Consequently, the kinematic relation, symbolically presented as e = Bu, reads:

-5 -
— 0 —k
Ox N *
0 — —k,
Exr dy ’
0 0
Eyy — = 2k
Yy Jy Ox Y Ux
i = 62 Uy (6 5 )
Ko 0 0 —— "
Kyy ox? :
62
Py 0 0 ——
0y?
62
0O 0 —2—
L 0xQy |

6.3 Constitutive Relation

Symbolically presented as s = D e, this constitutive relation between the shell
forces vector and the deformation vector become

7. D,, vD, 0 0 0 0 Exx
Ty vD,, D, 0 0 0 0 Eyy
Moy | _ 0 0 D, (%) 0 0 0 Vay (6.6)
Myx 0 0 0 Db VDb 0 Kyx
My, 0 0 0 vD, Dy 0 Kyy
My, 0 0 0 0 0 Dy (%) Py

D is the rigidity matrix. The membrane rigidity D,, and the flexural rigidity D, are

Et EP

Dp=——1 ) Dy=—— .
(1= P71 -w)

(6.7)
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6.4 Equilibrium Relation

Corresponding to the analysis of Chap. 4, the equilibrium of forces in the tan-
gential directions is fully governed by the membrane behaviour. In the normal
direction, not only the membrane behaviour, but also the bending behaviour is
taken into account. The transverse shear forces do contribute to the out-of-plane
equilibrium, but the in-plane equilibrium is solely described by the membrane
forces. By adding the contribution of the transverse shear forces to the normal
equilibrium of the membrane relation Eqgs. (3.27) and (3.29) we find

=0

o + 3 +p

anyy anxy

Onyy o 6.8
5 + o + py ( )

v, Ov,

" a_; T kit + gty + 2kyay + pe = 0

According to the bending action of a flat plate, the equilibrium of moments with
respect to the y-direction and to the x-direction yields the following equations for
the transverse shear forces:

amxx amxv
Vy = -

Ox dy
_ Omy,  Omy, (6.9)
YTy T

By substitution of these shear forces, Eq. (6.8) becomes the equilibrium relation:

I Mxx
_e S 0 0
Ox dy Tyy
a a nxv px
62 az 62 N pZ
ke o~k 2k —x5 —as 2aa ||
I Ox Oy ox0y | | My |

Symbolically presented as B*s = p, the differential operator matrix B* is the
adjoint of the differential operator matrix B in Eq. (6.5) for the kinematic relation.

6.5 Differential Equation for One Displacement

In classical plate theories, a different approach is often followed for plates loaded
in-plane (membrane forces) and plates loaded out-of-plane (moments and trans-
verse shear forces). In the first category the force method is followed, and in the
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second the stiffness method. In the force method, we first solve the equilibrium
equations by introduction of the Airy stress function @ and end with the kinematic
equation, from which a compatibility condition is derived. This condition leads to
a biharmonic differential equation for the stress function. In the second category,
the stiffness method, the derivation starts with the kinematic equations and pro-
ceeds to the equilibrium equations, ending up again with a biharmonic equation,
now for the normal displacement u,. In the shallow shell, the two plate actions,
membrane and bending, are coupled. Yet it is convenient to work along similar
lines as for plates. We will use the force method for the membrane action and the
stiffness method procedure for the bending action. We end up with two-fourth-
order partial differential equations with two unknowns, the stress function @ and
the normal displacement u,. From these two-fourth-order equations, one eight-
order partial differential equation in the normal displacement can be derived.

In the remainder of the section, we will exclude the contributions of the loads p,,
py and p.. The response to the loads will often not be evaluated via the differential
equation, but most likely be obtained from the membrane solution or equilibrium
equations. Then, the differential equation is just needed to satisfy the boundary
conditions in case of membrane incompatible edges. Therefore, the load to be
considered for the differential equation consists of edge forces and moments. Dis-
tributed loads do not play any role. From here on we put p, = 0, p, = Oand p, = 0.

6.5.1 In-Plane State

For the in-plane state we apply the force method, and start with solving the first
two equations in Eq. (6.10). We introduce the Airy stress function @, so that

K R R

n”_aiyz’n-"-":@’nxy:_% (611)

By this definition, the two equations are identically satisfied for zero loads
px =0 and p, = 0. The second step in the procedure concerns the constitutive
relations. In the force method these are used in the inverse way:

1

Exx = m (”xx - V”y.v)
1
oy = D) et ) (612
2(1+v)

Ty T v

In the third step, we operate on the kinematic relation for the membrane state.
We eliminate the in-plane displacements u, and u, from the first three equations of
kinematic relation (6.5). From these equations we derive
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Fen 0%y  Ouy  Ouy o'u,  Ou,

02 | oxr  dx0y? | oxdy oy Y ox?

2y ’; x3y oy , 4 o (6.13)
0y _ Ouy, 0’u, 0u,

Oxdy  Ox0y? + a2y Y oxdy
Taking the difference of these expressions eliminates the displacements u, and u,:

2 2 2
Ou, O“u, 0“u,

a2sxx azyxy azgvv
W g o) e Ry e
+ Ky oxdy 7 ox2

- -— 6.14
0y?  Ox0y  Ox2 T 0y? (6.14)

This differential equation is not only a transitional product of our manipulation,
but also has a physical meaning. By using the kinematic relation for the changes of
curvature in Eq. (6.5), the result is rewritten as

06 B Py ey
0y?  0x0y  Ox?

= kylye — kyylony + kikyy (6.15)

This equation is the compatibility condition. Strains and curvatures can not
change freely; they must change so that Eq. (6.15) is satisfied. The three
Egs. (6.12), (6.14) and (6.15) are the basis for the in-plane differential equation.
We substitute Eq. (6.12) into (6.14), and the new Eq. (6.14) into (6.15). This leads
to the fourth-order differential equation

o'o oo o'e o, Qu o%u o%u
o, %, °° ) (S g, T T — o (61
ox* + 28x26y2 + oyt +Dm(1 Y )< 0y2 Y OxQy T @x2> 0 (6.16)

For zero ki, k, and k,,, the differential equation reduces to the well-known
biharmonic differential equation of Airy.

6.5.2 Out-of-Plane State

For the out-of-plane state we start with the kinematic relation. We substitute the
last three kinematic equations for k., Ky, and p,, of Eq. (6.5) into the constitutive
relation Eq. (6.6) for the moments m,,, my, and m,,, obtaining

%u %u
My, = =Dy, (sz +v ayZZ)
u, u,
Qu.
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We now proceed to the third equilibrium equation of Eq. (6.10). By substitution
of Eq. (6.17), accounting for Eq. (6.11), we obtain a second fourth-order differ-
ential equation:

—k

oo R 62cD+D o*u. o*u.  o'u
xay2 b

2kyy —— — ky— —+2—5+—=—]=0 6.18
+ Ko o ooy | 6y4> (6.18)
For zero k,, k, and k,

oxdy 7 ox?
y, the differential equation reduces to the well-known
biharmonic differential equation of the Kirchhoff plate theory for zero load p..

6.5.3 Coupled States

The differential equations (6.16) and (6.18) are coupled equations for the two
unknowns @ and u,. In this subsection we will replace them by a single differential
equation for u,. For that purpose, it is convenient to rearrange the equations, for
which we introduce the differential operator I and the Laplacian A:

GR Gh GR R

=k 2k,

L I N 1
T 0y2 ’6x6y+ky6x2’ 6x2+6y2 (6.19)

By using the definitions in Eq. (6.19), we can rewrite Egs. (6.16) and (6.18) in
the form

—T'd+D,A, =0

AA® + Dpy(1 — v)Tu, = 0 (6.20)

We consider shells of constant curvatures k,, k, and k,,. Then, the operators I
and A commute, and thus AT = I" A. This allows us to obtain the wanted single
differential equation for the displacement u,. The first equation in (6.20), the
‘equilibrium differential equation’, is multiplied by AA, and the second equation,
the ‘kinematic differential equation’, is multiplied by I'. By subsequently elimi-
nating the stress function we find the single differential equation

DyAAAAu, + D, (1 — v)T?u, = 0 (6.21)

This elegant eight-order partial differential equation will be the starting point
for the analysis of roof shells in the Chaps. 7 and 8. If the homogeneous solution to
the differential equation is determined, the stress function @ can be computed by
Eq. (6.20) and thereupon the other quantities can be determined.

At the start of Sect. 6.5 we put p,, p, and p, to zero. If not all distributed loads
are put to zero, but we would consider nonzero loads p, normal to the surface, the
differential equation would become
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DyAAAAu, + D, (1 — V)T Pu, = AAp.. (6.22)

Now both a homogenous and inhomogeneous solution must be obtained. In
general, the inhomogeneous solution is equal to the membrane solution. As stated
before, in this book we will make use of this knowledge, and apply the homo-
geneous solution of Eq. (6.21) to match the boundary conditions.

In the limit case that the shell degenerates to a flat plate, the curvatures k,, k,
and k,, are zero. Then, according to Eq. (6.17), the operator I" is zero as well. Now
differential equation (6.22) reduces to the well-known biharmonic equation for
plate bending,

DpAAu, = p, (6.23)

6.6 Boundary Conditions

Solving the eight-order differential equation presupposes that we apply 16
boundary conditions, four at both straight edges and four at both curved edges of
the cylindrical shell. Two conditions occur at each edge for the membrane state
and two for the bending state. Boundaries can be put either for displacements or
for stress resultants.

For the boundary conditions corresponding with bending, we refer to Kirchhoff
theory for thin plate bending, expecting that the reader is familiar with it. In this
theory the normal edge displacement may be specified, or alternatively, the
Kirchhoff shear force. The Kirchhoff shear forces *v, and *v, are a combination of
the real shear force and the twisting moment.

n amgx
Vy = Vx + 20
a (6.24)
« amxo
Vg = vy +
Ox

Straight edges
At straight edges we may specify

— either uy or ny

(6.25)

— either ug or ngy (6.26)
— either u, or *vy ( )
(6.28)

— either ¢, or my
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Curved edges
At curved edges we may specify

— either uy, or nyy (6.29)
— either up or nyg (6.30)
— either u, or "vy (6.31)
— either @, or myy (6.32)

Reference

1. Donnell LH (1933) Stability of thin-walled tubes under torsion. NACA Report No. 479



Chapter 7
Circular Cylindrical Roof

In this chapter, we study the bending behaviour of a circular cylindrical roof shell
under asymmetric loading. The shell is part of a full circular cylinder, and is
supported at the curved edges by a diaphragm (tympan) which is infinitely rigid in
its plane and perfectly flexible out-of-plane. The shell is pin-connected to the
diaphragm. The roof structure can be considered as a shallow shell, so the Donnell
theory [1] of Chap. 6 is applicable. The theory presented here was worked out by
Bouma et al. Bouma was the leader of a project team in The Netherlands, in which
also Loof and Van Koten contributed, making the demanding theory accessible to
practitioners [2, 3]. Von Karman et al. extended Donnell’s theory to the study of
buckling [4] and Jenkins [5] was the first to apply it to circular cylindrical roofs
(applying matrix analysis). Because of the respective contributions of Donnell,
Karman and Jenkins, the Dutch team used to refer to the theory as the DKJ-method.

7.1 Introduction

Different from the water tank problem in Chap. 5, where the disturbance was at the
base circular edge, we now have a disturbance starting from the straight edges (see
Fig. 7.1), and boundary conditions must be specified along those edges. Shells for
which boundary conditions must be specified along full circular edges are not
investigated in the present chapter; that will be done in Chap. 12 on chimneys and
Chap. 13 on storage tanks. As announced in Chap. 6, for that type of problems, we
first have to upgrade the shell theory in Chap. 9. For circular cylindrical roof
problems, the less involved theory of Chap. 6 is sufficiently accurate.

It is convenient to introduce a polar co-ordinate system to the cross-sectional
profile. The shell is symmetric with respect to the lines 6 = 0 and x = 0. Once
again, for the circumferential ordinate y, the equality y = a0 holds, in which the
constant radius of the circular cylinder is denoted by a, and the constant curvature
is equal to k, = —1/a. Using this description of the middle surface, we can use the
bending theory of Chap. 6 to analyse the bending behaviour of the circular

J. Blaauwendraad and J. H. Hoefakker, Structural Shell Analysis, 83
Solid Mechanics and Its Applications 200, DOI: 10.1007/978-94-007-6701-0_7,
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Fig. 7.1 Edge disturbance due to edge load

membrane forces moments and shear forces

Fig. 7.2 Forces and moments on a cylindrical shell element

cylindrical shell. We review the relations derived in Chap. 6 with respect to the
change to the polar co-ordinate system. Figure 7.2 shows the membrane forces,
moments and shear forces which play a role in a cylindrical shell. The following
vectors are used:

[

[ Exx €00 Yyo Kux Koo Pxo ]T
S = [nxx ngp Nxp Myx Moy MNixp ]T

[

T
Px Do pz]

(7.1)

7.2 Differential Equation for Circular Cylinder

In Chap. 6, we introduced in Eq. (6.19) the shell differential operator I and the
Laplacian A. For a circular cylindrical shell with the co-ordinate system placed on
the middle surface, as shown in Fig. 7.2, the centre of curvature lies on the
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negative part of the normal to the middle surface. With k, =0, k, = —1/a and
ke, = 0 the operators I" and A become
19
F = — —ﬁ
aox
7.2
A A (712)
w2 a2oe?

Using the operators Eq. (7.2) in Eq. (6.22) of the bending theory, the differential
equation for the normal displacement u,, with only the normal load p,, becomes

2 1 o 10%, 218\

The solution of this differential equation consists of two parts: the inhomoge-
neous and the homogenous solution. For the inhomogeneous solution we can use
the membrane solution. In general, this solution will not satisfy the boundary
conditions along the straight edges. Therefore, the homogeneous solution must be
added, such that the boundary conditions are satisfied. It means, that we must

investigate the solution of the homogenous differential equation for loads at the
edge.

7.3 Boundary Conditions at a Straight Edge

Equation (7.3) is a linear differential equation of the eighth order; therefore the
homogeneous solution of this equation will be a linear combination of eight
functions. The constants in the combination have to be determined by the boundary
conditions along the straight edge 0 = constant. Four boundary conditions have to
be set up per edge. These boundary conditions can involve four displacements
uy, uy, Uz, ¢, and four shell forces ny,, ngy, v’g,, mgp. The rotation @y is defined by

_ Ou.
P =" 30

The transverse shear force *vg is the Kirchhoff shear force. As is known from
thin plate bending theory, Kirchhoff showed that we obtain the correct number of
boundary conditions only if we combine the transverse shear force v, and the
twisting moment m,_ to one quantity at the edge:

(7.4)

6mex
Ox

Using these expressions, we can satisfy four boundary conditions per edge and
therefore can find four unknown constants.

*vg = vg + (7.5)
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7.4 Expressions for Shell Forces and Displacements

Setting all load components equal to zero, we find that the homogeneous differ-
ential equation (7.3) is

2 1\ D1 —1?)d,
Db(a?z*@@) et g 5@ 0 (7.6)

After we have solved this differential equation, we can determine the shell
forces and other displacements from the obtained solution for the displacement
u;(x,0). The bending curvatures and the torsional deformation are directly
determined by using the kinematic relation (6.5). Substituting these results into the
constitutive relation (6.6) for the bending and twisting moments, we find

Pu, v u,
My = —Dy

o2 a? 00*
u. 1 %u,
Mg — —Db (VW + ;W) (77)
B (I —v) a%tz
mo = ~Db 550

By substituting these expressions into the equilibrium equations (6.8) we obtain
the expressions for the transverse shear forces:

_ Omyyg n 10mgy 1 Ou, n 1 Ou,
T Tae T T\ aox200 ' B o0® 8)
_ Omyy lamxe 6314Z 1 63uz '

Ve = ox a 00 Do (6—x3 + ;6)6692)

Substitution of the expression for v§ into the Kirchhoff shear force (7.5) yields

Omyg _ b 2—v) u, 1%
Ox b 0200 ' @ o

(7.9)

*Ve = vy +

Substitution of Eq. (7.8) into Eq. (6.8) for the normal equilibrium yields the
stress resultant ngg in the circumferential direction. Of course, the load component
P is set to zero and therefore the substitution yields

Ov,  Ovg o*u. 2 ou 1 0*u.
a4+ = _pDgl—24+ 2 = 4 7.10
T ”a(ax“ T ov0r 7 oot (7.10)
Using the Laplacian in Eq. (7.2), this relation is rewritten as
ov, O
ngy = ax 2 —DpaAAu, (7.11)

ox 00
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Substituting this expression in the other two equilibrium equations (6.8), we
find the shear membrane force n,9 and the normal membrane force n,,:

0 YT o0

B Lony aZAAuZ 5
Thor = / 200 BT Dy / / d

Rewriting the constitutive relation (6.12) for the normal strains, we find

1
Exx = m (nxx - Vnee)
1
800 = ————~
T Da(1—12)

(7.12)

(7.13)
(_anx + nee)

Substituting this constitutive relation for the normal strains in the kinematic
relation (4.2), we can determine the displacements u, and ug:

1
Uy = /Sxxdx = m/ (nxx - Vnee)dx

o = / (agop — u,)dO = / (ﬁ (oo — Vi) — uz) d0

Since the normal displacement u, is known, the displacements are determined
by substituting the homogeneous solution for the in-plane stress resultants (7.11)
and (7.12) in these expressions:

2 1 *AA
ux:—tiz(—///a 2M1d3—va/AAuzdx>
2(1—v 00
0AAu, 22
u97712( )( /AAuzde // > /uzde

(7.14)

(7.15)

7.5 Homogeneous Solution for a Straight Edge
7.5.1 Exact Solution

When all the load components are zero, the differential Eq. (7.3) is

P2 12\ D1 -,
D - R - @t = 1
b(axz +a2 an) u; + 7 o 0 (7.16)
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For the straight edge, we will consider loads or displacements that are devel-
oped in series of the type

flx) = Zf,, cos(nn)—lc) (7.17)

where the origin of the x-axis is at mid-span. The number n can be 1, 3, 5, etc.
Then, transverse edge forces and edge torques are maximum at mid-span and zero
at the ends (diaphragms). It is useful to introduce the parameters  and o,,:

B = D”Qf,l)b;zvz) = 3%;)! g, (7.18)
The reduced equation becomes
2 2\ 4 4
(aaxﬁ;;y) u, + 4p* %;Z =0 (7.19)
Hereafter we refer to it as Donnell equation. The trial solution for u, is
u;(x,0) = ZAne"9 cos(oy,x) (7.20)

This solution satisfies the boundary condition at the ends of the shell (dia-
phragm) that u, = 0. On the basis of Eq. (7.7) also the bending moment m,, is
zero, which is expected in a pin-connection. Substitution of Eq. (7.20) in

Eq. (7.19) yields
2 4
<(f) - uﬁ) +aptat =0 (7.21)
a

The following parameters are introduced:

ol nm at

B B I
= Ban = /AT (7.22)

at

)

r

P:a

Note that y is a dimensionless parameter, in which we recognize the length /at
which we already saw playing a role in the edge disturbance at the circular end of
the shell. The parameter y relates the length \/at to the span [ of the shell roof. In
practice it always holds that y < 1. The reciprocal of parameter A is a characteristic
length /. in which the length Vatl? occurs. It will appear that, like v/ar in axial
direction, Vatl? is important for disturbances in circumferential direction.
Accounting for the new parameters, the characteristic equation and its roots become
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((;}3)2‘;)4 ~4 e (pP-y)'=—4 (7.23)

Roots : p> =y =+ (1+i)

The following parameters are introduced:

VI+H+9)°+(1+7)
g1 =
2
(7.24a)
I+ (=)= (1-7)
Oy =
: 2
The inverse relations between vy, g and g, are
) 1
(1 + Y) = 01 — m
11 (7.24b)
—(1=v)=¢g2 — —
( ’Y) 02 40_%
The solution of the characteristic equation (7.21) becomes
1 1\*
2 2 .
pl :O'lil—@: (01i12—m>
| N2 (7.25)
2 2 _ .
p2—0'2:tl—4—ag— <02:|:l2—0_2)
The characteristic equation has eight roots:
=+ +i 1
P1234 = 01 1201
(7.26)

1
=4 +i—
Ps6,7.8 (‘72 1202>

These eight roots describe four pairs of conjugate complex functions. The sum
and the difference of the functions of each pair are purely real or purely imaginary
and constitute another set of eight independent homogeneous solutions. The
solution of the reduced differential equation can thus be written as
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A A
uy(x,0) = {e Ao1ad {B” cos <—201 ab | + By sin %0, ab
+ 9% B 5 cos La@ + B4 sin iae
20‘1 20’]
(7.27)
—Ao2a0 A s
+ e "% By cos| =—ab | + By sin| —ab
202 20’2

+ "% By; cos La@ + By sin iae cos(0,x)
20, 20,

This solution for the displacement u,(x,0) describes the disturbance for the
straight edge of a circular cylindrical shell under loads or displacements having a
cosine distribution in the axial direction. It is important to note that, like the
parameters A and o, the constants By; up to and including B,4 depend on the
number of circumferential whole waves n.

7.5.2 Approximate Solution

The parameter vy is defined in Eq. (7.22). For the static behaviour of thin shells
under the usual loading cases, only the first few values of the wave number n are
important; this means that this parameter remains small compared to unity since
the thickness-to-radius ratio is small for thin shells. Thus for the static behaviour,
rewriting Eq. (7.22), the following inequality holds:

nm a t
y:ml\/aa (7.28)

The parameters o1 and o, that are defined by (7.24a) can be approximated. The
roots are expanded according to the Taylor series: (1 +x)=1+ax+
lha(a —1)x* + O(x*). By stopping after the second term, since y*> < 1, we find

that the parameters are
2+1
o]~ \/_ * (1 + Y \/5)
2 4
(7.29)

71
7 fz (H%ﬁ)

In solution (7.27) two different powers are used:

k1 == 7»0'1619, kz = 7\0’2616 (730)
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The terms multiplied by ¢** have an influence length [;; (note that y<1)

i b 1 2 1
i =— =~ Vatl? =~ 1,41 —Vatl® 7.31
T e B0 -y Var V2 + 1 vn (730)

Or, written alternatively,

a 4|t (1 2
l[,1%1,417ﬁ ; (—1 (732)

The terms multiplied by e*** have an influence length /; ,:

T T

1 2
2 B0 - w)var\ V2 -1

li, =

1
Vatl? ~ 3.39 T Varl? (7.33)
n

a 4/t (1 2

For the usual cylindrical roof, the thickness-to-radius ratio ¢/a varies between
1/100~1/200 and the length-to-radius ratio //a is about 1. Then the latter
influence length, which is more than two times larger than the other, is approxi-
mately /;» & a/+/n. This means that, if the distance between the straight edges of a
circular cylindrical shell is larger than approximately the radius of the cylinder, the
edge disturbance starting at one edge is not influenced by the edge disturbance
starting at the other edge.

7.6 Displacements and Shell Forces of the Homogeneous
Solution

The solution (7.27) for the normal displacement u,(x, 0) can be differentiated and
integrated. To obtain the shell forces and other displacements, the expressions
(7.7)—(7.15) are used and the results are tabulated for v = 0 in Table 7.1. To
simplify the formulations, the following expressions have been used:

=g — L =g 1
Pl —161 26]4’101 P2—T2+202+462
=1 1y 1 —lg 1L 1
Q1_20_1+O'|+80'? Q2_20_2 0’2+80‘%

ki = Ao1ab ky = harab (7.35)

¢; =cos (2—7(;1 a@) ¢y = COS (2—2;2 a@)

— qin (A — qin (A
K3 —sm(%l a@) sz—sm(zgzae)

To help designers, Table 7.1 has been used to analyze the shell roof for two
different edge loads. The first case is a cosine load ngg, and the second is a sine
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Table 7.1 The expressions for the quantities of the homogeneous solution for the straight edge

—ky

—ky

ki

ki

Multiplicator  ¢7%1 . ¢ e g e ¢ et sy
u,  cos(o,x) Bi B, Bis By
O, hcos(o,x) 01811 — 5B B+ 01B12 —01B13 —3-Bia ;-Bi3 —01Bu
Uy " sin(0,x) =B —(1+7)Bia (1+7v)Bu—Biz —Bis+(1+7)Biu —(1+7v)Bis —Bus
al
up ZI}LCO?(%X) 01B11 — Pi1B2 PiBy + Q1812 —01Bi3 —PiBiy  P\Biz— Q1B
a
mog DyA2 cos(a,x) —(1+7v)Bi+ Bz —Bi— (1+7)Bia —(1+7v)Bi3 — B Biz — (14 7v)Bu
vl DyA’cos(oux) —PiBii—QiBia  Qi1Bii — PiBia Pi1Bi3 — Q1B1s 01B13 + P1Biy
Ty o2 =Bi—(1+7)Biz (1+7)Bii =Bz —Biz+(1+7)Biy —(1+7)Biz —Bus
e cos(0,x)
169 o B —Bn —Bus B3
Y " cos(ox)
) o) =B + 01812 —a1B11 + 5B —2B13 +01B1a —01B13 — 5-Bus
Y % sin(oL,x)
Multiplicator ¢ . ¢, ek g, ek ey ek sy
u,  cos(o,x) B By By By
@, Acos(a,x) 62831 — 5-Bn 2:B21 + 0282 —02By3 —5-Bos 55Boz — 0284
U 5 sin(0,.x) By —(1-=7)Bn (1-7)B+Bn  Bn+(1—-7)Bu —(1—7)Bxs+Bxu
a
up » 1 kcos(u,,x) —By + P2Bn —P2By — 0B 02Baz + PoBos —P2By3 + Q2B
mog DyA? cos(o,x) (1 =7)Bai +Bn  —Ba+ (1 —v)Bx (1 -v)Biz—Bu Bis+(1-7)Bu
vk DyA3cos(a,x) —PaBai — QaBn 02By — PaBn PyBy3 — 0B 02823 + P2By
My 2 By —(1—7v)Bn (1-v)Bia+Bxn  By+(1-y)Bu —(1—7)Bxs+Bu
Y cos(a,x)
ngp M —B» By B —Ba3
Y cos(o,x)
T4 3 —2;B21 —02Byn 02B21 —55B» 3:B23 — 02B2s +02B23 + 5By
Y sin(oy,x)

load ng,. Tables 7.2 and 7.3 contain the results of the analyses. The two cases are
useful, because the membrane solution leaves the straight edges with non-zero
forces ngop and ng,, so a designer can add the solutions of the tables to make the
edges stress-free. The following conditions are used:

Casel :
Case? :

ngy 7 0;
Nyo 7é 07

The results for ngg # 0 are tabulated in Table 7.2 and the results for n,9 % 0 are

nyxg = Mgy

Ngo = Moo

RR“@R“

0
0

(7.36)

tabulated in Table 7.3. These tables are derived for two edge loads, which are fjy
and f, respectively, that are described by half the wavelength of the trigonometric
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functions. This means that the wave number n is equal to 1 and o,x = 7x/I. In the
tables, the edge loads have a top value along the edge that is equal to the value of
the multiplier. The tables represent the edge disturbance starting at the straight
edge at y = a0 = 0 for simple edge conditions that respectively are equal to:

Et jo,4
Table72: fy—— (O‘—) (2.34 + 8.497) cos(0,x)

2 O% . (7.37)
Table73: fi=— (T) (2.34 + 8.49y) sin (o)

Using the tables, we can calculate the stresses and displacements due to an edge
disturbance starting at straight edge (6 = 0). This is exemplified in Sect. 7.7.

7.7 Application to a Shell Roof Under its Own Weight

The geometry of the circular cylindrical shell roof shown in Fig. 7.3 is defined by
the radius a, the thickness ¢ and the length of the straight edge /. At the curved
edges, the shell is supported by diaphragms. This means that these edges are hinge
supported and that the straight edges are free. Figure 7.3 depicts two co-ordinate
systems that are indicated with the superscript m for the membrane analysis and b
for the bending analysis. This is done because the determination of the response of
the shell roof to its own weight is performed in two consecutive steps. The first
step is the determination of the membrane response by using boundary conditions
for the curved edges. This will yield non-zero stress resultants at the free edge,
which must be counteracted by bending stress resultants. For the second step,
Tables 7.2 and 7.3 are used to determine the shell forces due to the bending
behaviour. For the membrane analysis, it is convenient to use a co-ordinate system
that is placed at the crown of the roof. On the other hand, for the bending analysis,
it is necessary to use a co-ordinate system that is placed at the edges, from which
the edge disturbance originates.

The own weight of this circular roof can be modelled in two ways; perpen-
dicular to the curved surface and as a vertical load. A simplified analysis is
performed by assuming that the load is acting perpendicular to the curved surface,
which is in fact an axisymmetric load or uniform load. In this case, it is assumed
that it is not necessary to include the boundary conditions at the curved edges.
Under this assumption, only one membrane stress resultant is activated: the stress
resultant ngg in circumferential direction. This simplification is allowed if the shell
is shallow. For a less shallow shell, the vertical load has to be rewritten as is
depicted in Fig. 4.4. Corresponding to the membrane analysis of closed circular
cylindrical shells, this description of the load yields a solution for all membrane
stress resultants (ngy, ny, Ny ). In Sects. 7.7.1, 7.7.2, the response of a very
shallow circular shell roof to a uniform load and the response of a more curved
circular shell roof to a vertical load will be determined respectively.
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\

Fig. 7.3 Circular cylindrical shell roof with co-ordinate system(x™, y™, z") for the membrane
analysis and (x?, y?, z%) for the bending analysis

7.7.1 Uniform Load

The load components are
px=0, pp=0, p,=-p (7.38)
From Eq. (4.8) we find

100 = Ape = AP (7.39)
Nxg = Nyx = 0 .

Since the membrane solution for n,g is zero, we only need to use Table 7.2. The
table has been derived for an edge load described by a trigonometric function of
the form fy(x) = fe cos(a,x). To make Table 7.2 applicable to the problem of the
constant membrane edge load under consideration, this constant load is developed
into a Fourier series. Using Fourier analysis, we find that a uniform load p over a
length [ is equivalently described by the series

4p X< 1 nmx
=N Ceos™ 7.40
p(x) " cos ] ( )

n=135...

a|&~

" - X~

i p ~ 4

Fig. 7.4 The first, third and fifth harmonic of the series for a uniform load p and their sum
(dashed line)
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The first, third and fifth harmonic of this series are depicted in Fig. 7.4 and it
can be shown that the stress resultants and displacements resulting from the series
solution converge rapidly and that the first term gives a satisfactory accuracy. The
force ngg,, of Eq. (7.39) is thus developed in a series

4 <1
negm = _pd Z —cos@ at® =20, (7.41)
' T =135 !

Table 7.2 is derived by taking into account only the first harmonic, thus n = 1
and o, = 7. This means that ngg,, at the edge is approximately described by
4pa  mx

o= = P2 s ™ 7.42
Ngp, —C0s ( )

At the free edge with an opening angle 6 = 0,, the boundary conditions are

Moo(0=0,) = N00.m + Mopp = 0 (7.43)

Nx9(6=6,) = Mx0,m + nxep = 0

Thus the forces generated by the bending disturbance, which have to counteract
the value of the forces of the membrane solution at the straight edge, must have the
following value at the edge:

4pa  mx
n = —n = —COS—
00,0 00,m p i (744>
Nxgp = —Nxom = 0 at @ = eo

Table 7.2 thus represents the edge disturbance starting at the straight edge for a
simple edge condition fy(x) = fy cos(a,x):

o}

) =i Cos%; o = 2% (%)4(2.34 +8.49y) (7.45)

To obtain the shell forces generated by the bending disturbance, Table 7.2 has to
be multiplied by a multiplier M, which is found by using the relation M - fe = 7igo,m
between the top values of the edge load and the required bending shell forces at the

edge. In this case, the top value 4pa/n from Eq. (7.44) is divided by fo from
Eq. (7.45) to find that the multiplier M is equal to

- ! ﬁ:ﬂ'_a<_> 524 L R A0 (7.46)
B (2)%(2344849y) ® 7 Et \o,) 2.34+849y
For example, the expressions for the force n,, have to be multiplied by
. 4pa2a (A \* 1 Et /0,2
M-nxx7b :—E (x_ mﬁ(f)
T L) 2. .
! (7.47)

Cdpa (M1 43 1 l\/&
T \o,) 2341849y 2 23448497\
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At the straight edge, the expression for ., from Table 7.2 with y* = a 6° = 0 is

4\75 1 a X
Mech(h=0) =3 5 34 1 8.49ypl\/;[(1 1.31 + 8.49y) + 8.49y] cos —

43113141698y  fJa nx
= ply/—cos—
n?  2.34 + 8.49y t

(7.48)

S
l
This is the total ny, since the membrane analysis had ny,,, = 0. The total stress

0y, at this edge is thus described by

L — 1, ,=1131+1698y [ Ja X
g = R R il A i 7.49
Py =0) P 243 234+ 849y P\ 1T (7.49)

7.7.2 Vertical Load

As shown in Fig. 4.4, it is possible to replace the vertical load by surface load
components. These load components are expressed by:
po =psin

7.50
p. = —pcos ( )

Using the Fourier series of Eq. (7.40) for only the first harmonic as performed
in Sect. 7.7.1, we find that the loads are

4p X
Po :—smecosT
T (7.51)

4
p; = ~ P cosBeos
n l

The boundary conditions for the roof are

neg=0 a x=0
I (7.52)

w=0 at x==£—
n at x >

The equilibrium equations in Eq. (4.7) for the membrane behaviour and the
boundary conditions subsequently yield the solution for the forces ngg, n,9 and n,,:
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4pa X
ngy = ap, = ———cos 0 cos—
m [
Onyg Ongy 8p . X
_— = — - = - 0 i
Ox PO 00 m Sucos [
8pl X
0 = ——sin O sin— 7.53
o 2 Sin9sin— (7.53)
Onyy Ong 8pl 0si X
—— = —py— = ——cos 0sin—
P40 na I
12
Ny = —pTcos@cosE
na l

Since the membrane solution for n, is not zero, Table 7.3 is also needed to find
the shell forces generated by the edge disturbance. For the force n,,, there is no
boundary condition at the free edge, and therefore this force does not activate an
edge disturbance. At the free edge with an opening angle 6 = 0,, the boundary
conditions are

ngo(0=6,) = N60.m + Moo = 0 (7.54)

Nx9(0=6,) = Nx0.m + nxegp = 0

This implies that the forces generated by the bending disturbance, which have
to counteract the membrane forces at the straight edge, must have edge values

4
ngop = —Noom = ﬂcos 0, cos?
" (7.55)

8pl . . X
nxO,b = _nxeﬂfn == ?SIH e(, SlnT at e = e()

Table 7.2 thus represents the edge disturbance starting at the straight edge for a
simple edge condition fy(x) = fy cos(at,x):

o

o) = cos%; o = 2% ( - )4(2.34 +8.49y) (7.56)

To obtain the forces generated by the bending disturbance, Table 7.2 has to be
multiplied by a multiplier M(ngg), which is found by using the relation M(ngg) x
fe = g, between the top values of the edge load and the required bending stress
resultant at the edge. In this case, the top value 4%005 0, from Eq. (7.55) is divided
by fo from Eq. (7.56) to find that the multiplier M (ngq) is

dpa 2a (A 4 1
M(ngo) = 2220 (2) —— cos6, 7.57
(o) = == <a) 234 +8.497 (7.57)
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For example, the expressions for n,, in Table 7.2 have to be multiplied by

dapa [\ 4 1 Et
M : Axx il Bl e T W e() ( )
(noo) - e = ==, (a) 234 +8.497 7 2a

4\/_ ! cose
o2 234+849

At the straight edge, the expression for 7, from Table 7.2 with y* = a8® = 0
becomes

(n00) 43 1 X
nxx?Z(y”zO) =2 23T 8.49ypl cose [(11.31 + 8.49y) + 8.49y] cos —-

_ 4v/311.31 4 16.98y l\/acose cos™
T2 2341849y l

(7.58)

(7.59)

Table 7.3 thus represents the edge disturbance starting at the straight edge for a
simple edge condition f;(x) = f, sin(o,x):

A . TIX

Solx) =f sin—-;

To obtain the shell forces generated by the bending disturbance, Table 7.3 has

to be multiplied by a multiplier M(n,), which is found by using the relation

7= (x) (2.34 + 8.497) (7.60)

M(ny) ¥ fo = fiyp(0—0,) between the top values of the edge load and the required
bending forces at the edge. In this case, the top value 8” lsin §, from Eq. (7.55) is
divided by f, from Eq. (7.60) to find that the multipher M(n,p) is equal to

I 2a (2\° 1
Mng) = 2L24 (RN 1 G, (7.61)
n2 Et\o,) 2.34 +8.49y

For example, the expressions for n,, from Table 7.3 have to be multiplied by

8pl 2a (A’ 1 , Et /0,
M) - it = o oo () sin, - ()
(m0) - foxs = 27 (a) 234+ 84970 2a\%

*@ & 71 sin 0,
- n2 \o,/ 2.34 4 8.49y ¢

At the straight edge, the expression for 7., from Table 7.3 with y* = at® =0is

(7.62)

(n0) _8pl (X 1 . X
Mechyv=0) = 72 (— msm 0, - [(—6.22 — 12.05y) + (—1.07 — 6.59y)] cos -

8729+ 18.64y l(x

———————pl|— | sin6, cosE
7 2341849y 7 0 €08

Oy

(7.63)
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From the membrane solution (7.53) for 8" = 6,,, it is found that ny,, is

Spl X
o = — —— 0, — 7.64
My, . cos 0, cos 7 ( )

The total stress oy, at this edge is thus described by

L
O rx(y0=0) = : [I’l( “02 o) + n( m)( s—o) + nxx.m:| (7_65)

The stress due to the bending disturbances is

Lol 11.31 4 16.98y
Cruplyi=0) = 3P ;€0 [M —% cos 0,

2.34 +8.49 (7.66)
8729—#1864«/ A sin6,
2.34 + 8.49y
The stress due to the membrane response is
1 I mx| 81
Crem(yp=0) = 5P €08~ {— ——cos 90} (7.67)

7.7.3 Comparison of Solutions for a Concrete Roof

We will compare the solution for the three different load cases for the concrete
roof shell. The vertical load p due to its own weight, with specific mass
p = 2400 kg/m’, thickness t = 0.07 m and gravitational acceleration g = 10 m/s’
and roofing is

p = pgt + roofing = 1900 N/m> (7.68)

The geometry of the shell is defined by the length of the straight edge [, the
radius a and the thickness 7. The length [, is identical to the length / used in
the previous subsections, but the subscript is introduced to distinguish it from the
distance between the straight edges [, (see Fig. 7.5). For the following geometry,
the parameter 7 is, accounting for /, = 18 m, a = 11.6 m and = 0.07 m

n at
\/_ Ly
For the chord /,, the opening angle 0, can be determined and subsequently the

height / between the crown and centre of the chord. The height / is determined as
follows

=0.120 (7.69)
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Fig. 7.5 Circumferential cross-section of the shell roof

I
,=130m = sinf, == =0.560
’ 2a

= 0, =0.595rad = 0.189 - 7 rad(~ 34°)

o (7.70)

= cos B, =0.828 =

= h=(1-cos0,)a=0.172-a =2.00 m

The arc of the circle between the straight edges is s, = 20, - a = 1.19 - a. The
largest influence length of Eq. (7.34) with n =1 and v =0 is

4t (I 2
lip~339 a4/-|=) =118-a=13.6m (7.71)
a\a

The length of the shell in circumferential direction (s, = 1.19 a) is, practically
spoken, equal to the influence length of the edge disturbance in that direction
(I;; = 1.18 a). We conclude that the disturbance initiated at one straight edge does
not influence the stress state at the opposite edge. Tables 7.2 and 7.3 can thus be
used to derive the response of this shell.

Circular Shell Roof Under Uniform Load

In this case, treated in Sect. 7.7.1, the stress oy, is fully determined by the edge
disturbance. For the edge y* = 0, the expression Eq. (7.49) for o, is derived and,
substituting the load and the geometry given by Egs. (7.68) and (7.69) respec-
tively, the value of oy, at the middle of the free edge (x* = 0) becomes
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18 11.31 +16.98-0.120 [11.6
. 1900 0s0 -4 Vo
Taxls*=0) = 0.07 V3 234 +8.49-0.120 V 0.07 (7.72)

= 13.3~106N/m = 13.3 N/mm?

Circular Shell Roof Under Vertical Load

In this case, treated in Sect. 7.7.2, the stress oy, is determined by both the mem-
brane solution (oy.,,) and the edge disturbance (g,ys). This edge disturbance is
built up from two edge loads, one for ngg and one for n,q. For the edge y? =0, the
expression Eq. (7.66) for g, is derived and, with the load and the geometry given
by Eqgs. (7.68) and (7.69) respectively, the value of o, (at x? = 0) becomes

18 11.31 +16.98-0.120 [11.6
1 4 2
Teclyi=0) =75 1900 57 cos 0[ V3 849 0.120 00 0828
g 729418640120 /007, (7.73)
2.34+8.49-0.120 V 11.6
_1 18
—51900- == - (223 — 3.54) = 10.86 - 10° N/m? = 10.86 N/m?

For the edge y” = 0, the expression Eq. (7.67) for o, , is derived and, with
Eq. (7.68) and (7.69) respectively, the value of for oy, ,, (at x? = 0) becomes

o 1900£C sO —§£0 828
xem(y?=0) = 0.07 n11.6 (7.74)
= —0.162 - 10°N/m? = —0.162 N/m?
The total value of g, at the middle of the free edge (x” =0) thus is
Oxx(yv=0) = Oxx,p(y»=0) T Oxxm(yp=0) = 10.70 N/m? (7.75)

The stress found under the assumption that the load can be taken into account as
a uniform load, since the shell is shallow, is about 25 % higher than the stress
found with the load acting in the vertical direction. The vertical load is more
realistic, so replacing by a uniform is safe, but uneconomic. The calculation is
easier, but we pay a price.

7.8 Circular Shell Roof Compared with Beam Theory

Figure 7.6 shows the stresses and the normal displacement (in this figure denoted
by w) for the shell roof with the geometry of Eq. (7.69) under its own weight of
Eq. (7.68). The left column represents the shell supported on two diaphragms with
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straight edges that are free, and the right column represents the same shell but now
with edge beams. Because of the edge beams, the membrane stress resultant n,g
can be present at the edge because n,g is supported by the beam. The stresses that
are obtained by using an elementary beam theory are also shown in the figure (the
dotted lines). The distribution over the cross-section of a beam is linear, but the
distribution over the height of the cylindrical roof is not linear. By taking into
account the influence of the edge disturbances, we are better able to describe the
stress distribution and the deformation in circumferential direction.

Figure 7.7 shows the stresses and the normal displacement for the same cross-
sectional geometry and loading, but now for a shell with straight edges with a
length of [ = 36 m instead of / = 18 m. The difference between the stresses in this
cylindrical roof derived with Tables 7.2 and 7.3 and the stresses obtained with
beam theory are smaller because of the larger span between the diaphragms: the
longer shell acts more like a simply supported beam.
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Chapter 8
Hyperbolic- and Elliptic-Paraboloid Roofs

In the previous chapters, we have discussed cylindrical shells, which are special
cases of doubly curved shells. We now proceed to more general cases of such
shells, the elliptic paraboloid shell and the hyperbolic paraboloid shell. Structural
engineers refer to the first category as elpar and to the second one as hyppar. If
built, elpars have a rectangular plan with curved edges (left shell in Fig. 8.1).
Hyppars also have rectangular plans, but may have either curved edges (middle
shell in Fig. 8.1) or straight edges (right shell in Fig. 8.1). Because hyppars on
straight edges are applied most, we will pay most attention to this type, and start
with them. At the end of the chapter, the elpar and hyppar with curved edges are
addressed only briefly.

The hyppar, a shell with negative Gaussian curvature, is mainly applied for
roofs. We will discuss both the membrane state and bending disturbances in edge
zones. We restrict the theory to shallow hyppars, so we fall back on the membrane
theory of Chap. 3 and the bending theory of Chap. 6.

8.1 Geometry of the Hyppar Surface with Straight Edges

Consider the hyppar of Fig. 8.2. At the centre point of the shell surface, the tangent
plane is shown with dotted lines. We choose the set of axes x and y in this plane.
The shell surface has zero curvatures in the x- and y-directions, k, and k,
respectively. The twist k,, is nonzero. In directions 45° with the axes x and y, we
observe curvatures; they are equal but have opposite signs. In the one vertical
plane over the diagonal the hyppar is concave and in the other convex. In this
chapter, we restrict ourselves to the description of the behaviour in the coordinate
system of Fig. 8.2. The geometry of the shell surface is defined by

7 = kyyxy (8.1)
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VAV
elpar hyppar hyppar

Fig. 8.1 Doubly curved shells of rectangular plan

Fig. 8.2 Hyperbolic paraboloid

If we had chosen a description in the set of axes x and y with an angle of 45°
with the axes x and y, as shown in Fig. 8.1, the geometry equation would be

z= %k(}?z —y?) (8.2)

The two curvatures ky and &y in this coordinate system have values k and —k,
respectively. We conclude that k is equal to the reciprocal of the radius of the
curved diagonals in Fig. 8.1. If we introduce the symbol a for this radius, we can
write k = 1/a. At a closer look, the twist k,, is equal to the (absolute) value of the
curvatures in the lines.

The borders of the surface are of straight lines, but also each intersection of the
surface with planes x = constant and planes y = constant. The shell is an example
of a ruled surface as discussed in Chap. 1. It is a special example, in which two
pairs of straight lines slide over straight generator curves, see Fig. 8.3. The twist
kyy 1s easily found from the geometry of the shell surface. Accounting for Eq. (8.1),
and defining the lengths /; and /, and the elevation f in Fig. 8.4, it holds that

f=kylly (8.3)
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Fig. 8.4 Twisted rectangle with lengths /. and /, and elevation f

from which k,, is calculated. The reciprocal value of k,, is called a, which is
identified as the radius of curvature over the diagonals of the shell plan. In the
chosen co-ordinate system, the hyppar is thus referred to by its generators and can
be interpreted as a twisted rectangle.

8.2 Set of Relations for Hyppar with Straight Edges
8.2.1 Kinematic Relation

For the hyppar, it holds that k, =0, k; =0 and k,, # 0. Then, the kinematic
relation of Eq. (3.15) becomes

0

— 0 0
£ ox - ity
&y | = 0 a 0 Uy (84)
'yxy E g ok u;

Jy Ox e
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Symbolically presented as e = Bu, the matrix B is

0
e 0 0
B=|0 ° 0 8.5
-0 5 (55
0 0
- 2k
Jy Ox ko

8.2.2 Constitutive Relation

The constitutive relation in Eq. (3.30) does not change:

Ny 1 v 0 Exx
Hy | =Dy |V 1 l(_) €y (8.6)
00 (5] [

The membrane rigidity D,, is again defined by

Et

D, = m (8.7)

8.2.3 Equilibrium Relation

The equilibrium relation of Eq. (3.27) changes to

0 0
ox B @ Nxx Px
0 0= |p (8.8)
6y Ox Nyy Pz
0 0 —2k,,

Symbolically presented as B*n= p, the matrix B*, the adjoint of B, is thus
equal to

0 )
~ 0 %

B = 0 R (8.9)
Qy Ox
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8.3 Membrane Solution for a Uniform Load on Hyppar
with Straight Edges

For a uniform normal load p., we set p, = p, = 0; the equilibrium Eq. (8.8)
become

Onye  Onyy
=0
Ox Oy
% Onyy _0 (8.10)
Oy ox
- 2kxynxy =Dz

These equations imply that a uniform normal load yields a constant membrane
force nyy, and therefore the other membrane forces are constant also. We assume
boundaries of the hyppar that are not able to support normal forces; at the bound-
aries only shear membrane forces can be resisted. Because of these conditions, we
choose ny, = ny,, = 0 and Eq. (8.10) yields, accounting from here for a = kx’yl,

Ny =1y, =0
1 (8.11)

Ny = — Eapz

Using the constitutive relation (8.6) in combination with solution (8.11), we can
determine the normal strains and the shear strain:

£ +VEy =0

Veu + 8y, =0 (8.12)
1—v

Dy, T?xy = Ny

The normal strains are zero and the shear strain is constant. The strains are thus
expressed by

Exy = & =0
1 (8.13)

Yoy = — mapz

Using the kinematic relations (8.4), we can determine the displacements:

Ouy

X0

Ox

Ou,

a_; =0 (8.14)
Ouy % 2 1

y x at T D v
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Fig. 8.5 Hyppar with edge beams and two supports

The first two equations show that the tangential displacements u, and u,, must be
constant. For a hyppar supported at the angular points, it follows that these dis-
placements must be zero; the third equation gives

u, =u, =0

1 2
=—qa
2D,(1 —v)* P*

(8.15)

u;

Summing up, the solution for a hyppar subjected to a normal load p, is

1
R 8.16

. (8.16)
oD, -l

The normal membrane forces n,, and n,, are zero. Therefore, only a shear force
occurs in the hyppar. It means that principal membrane forces will occur under
angles of 45°, a tensile membrane force n in the one direction and a compression
membrane force —n in the other. The value of 7 is equal to the absolute value of n,.
At the boundaries, the shear membrane force must be supported, for example, by
edge members of the shell. Figure 8.5 shows a hyppar on two supports with four
edge members. Each member has a free end and a supported end. The members are
supposed to be infinitely rigid in axial direction and have no bending or torsion
stiffness. Each edge member is loaded by the shell with a uniform shear membrane
force, so a normal force will occur in the member, linearly increasing from zero at
the free end of the member to a maximum at the supported member end.

Often the edge members cannot displace in vertical direction because of facades
of the building. In that case, the normal displacement u, of Eq. (8.16) is prevented.
As a consequence, an edge disturbance will occur with bending moments and
transverse shear forces. This is the subject of Sect. 8.4.

8.3.1 Concluding Remarks About the Membrane Solution

We have derived the membrane solution for the hyperbolic paraboloid shell under
a uniform normal load on the basis of three simplifications. The first one regards
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the shallowness of the shell and states that the elevation is small compared to the
span (f < I). Then, its own weight can be supposed to act normal to the surface.
The principal radii of curvature are in the diagonal direction of the hyppar and
have the value a, where twist a = 1/k,.

The second simplification—closely related to the first—involves the loading,
which is taken in such a way that the in-plane loads are zero and the normal load is
uniformly distributed over the shell surface.

The third simplification involves the boundary conditions, which represent a
hyppar that is supported at angular points, and has edge beams with infinite
extensional rigidity and zero flexural and torsion rigidities.

For these simplifications the response of the shallow hyppar is rather simple
since the membrane solution contains only a constant shear membrane force n,, in
the shell and a linearly varying normal force in the edge members. There is only a
constant shear strain in the shell and only a constant normal displacement u, of the
middle surface. Principal membrane forces are in the diagonal direction and have
the size of the shear force.

8.4 Bending of Hyppar with Straight Edges

8.4.1 Differential Equation

The objective of this chapter is to derive a bending solution for the edge distur-
bance under the normal load of the hyppar. For this purpose, we can use the
differential equation for bending of shallow shells, derived in Chap. 6. As we did
for the circular cylindrical shell, we use the membrane solution as the inhomo-
geneous solution to the differential equation. The homogeneous solution describes
the edge disturbance needed to compensate the shortcomings of the membrane
response at the boundaries. For this solution, we set the distributed loads on the
shell surface zero. In Eq. (6.20) we introduced the shell differential operator I" and
the Laplacian A. The curvatures of a hyppar are k, =0, k, = 0, k,, = 1/a, and
therefore these operators are

2

_Eaxay
o @
2 oy

(8.17)

Because the membrane solution accounts for the inhomogeneous solution to the
differential equation, the load terms are set equal to zero. For p, = 0, the homo-
geneous differential equation of Eq. (6.22) becomes

DyAAAAu, + Dy (1 — V)TPu, =0 (8.18)
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After substitution of the operators in Eq. (8.17), this differential equation is

2 2\’ 4 o',
Dy — +— Dp(l = V) ——2 =0 8.1
h(axz + 6y2> z + Dy (1= v )a2 ox20y? (8.19)

8.4.2 Approximate Bending Solution for Hyppar
with Straight Edges

The exact homogeneous solution to the differential equation (8.18) is rather difficult
to derive and therefore it is improbable that it can be made suitable for application
in structural design. The objective of this section is to obtain an approximate
solution that describes the edge disturbance starting at a straight edge. The
approximation is justified by two considerations. Firstly, we assume that an edge
load or edge displacement, which is necessary to compensate the shortcomings of
the membrane solution, is probably described by a smooth function in the direction
of the straight edge. Secondly, we assume that for such an edge load the stress
resultants and the displacements vary rapidly in the direction normal to the straight
edge. Hence, for an edge normal to the x-direction with length [, the derivatives
with respect to y are negligibly small compared to those with respect to x and only
the highest derivative with respect to x in Eq. (8.18) has to be retained. This implies
that all the lower derivatives with respect to x can be neglected in the differential
operator AAAA (which is multiplied by the flexural rigidity D;). Therefore we
replace AAAA by o /ox® .The term with the operator I'> (multiplied by the
membrane rigidity D,,) represents the membrane action of the shell, which is
considered to be of the same order of magnitude as the bending action. So, this term
should not be neglected or adapted. The result is that Eq. (8.19) becomes

®u, 4D, (1 —v?) du,

Dy — = 2
gt + a? 0x20y? 0 (8.20)

Integrating this equation twice with respect to x and dividing by D, we obtain

u, 4D, (1 — v?) 3%u,

—_— =0 8.21
ox¢ Dya? 0y? (8:21)
It is useful to introduce the parameters A and o,:
4D, (1 —v?)  48(1 — v?
== V) 48 ZV)- o, =8 (8.22)
Dya? (at) l
The reduced equation becomes
o° o u
Byl (8.23)

axt " g2
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For an edge with x = constant the trial solution is
u;(x,y) = Ae"™ cos(ay) (8.24)

where o = 7/l, r are the roots to be determined, and A is a constant. In the
direction y along the edge, we assume a single cosine wave, because higher wave
numbers do not match with the assumption of a smooth function in the direction of
the edge. Substitution of this solution in the reduced Eq. (8.21) yields

=2 =0 (8.25)

The additional parameter f3 is introduced as

B= /it = W (8.26)

With this parameter, the reduced equation is

o =p°. (8.27)
This equation has six roots:
ra4 = iB
rs = i%B(l + i\@) (8.28)

r36 = i%ﬁ(—l +i\/§)

As was the case for a circular cylindrical roof, the function of u, will have a part
that decays for an x-coordinate that starts at the edge, and a part that increases.
This is equivalent to a solution part that decays from the considered edge, and a
solution part that decays from the opposite edge. We suppose that edges are
sufficiently far apart, so both decaying parts have sufficiently vanished at their
opposite edge; then only the negative roots are of interest:

ry = —B
1 /3
r = 75[3(1 +1 3) (829)
1
= Lp(1 i)
2
u, = {A1e75" + e (Aze%i‘/g" + A3e*%iﬁ‘/§)‘) } cos(oy) (8.30)
The sum and difference of the second and the third root are purely real or purely

imaginary and constitute another set of three independent homogeneous solutions.
Without loss of generality, we can reshape Eq. (8.30) to
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", = {Aleﬁ" + e (Az cos G \/§x> + As sin (% \/§x>) } cos(ay)  (8.31)

The power in the first term is twice the power in the second term; its influence
length is thus half that for the second term; therefore we focus on the second term.
The terms multiplied by e to the power —fx/2 have an influence length

I = %” ~ 2.25+/(atl) (8.32)

i =22511 (%) 22 (8.33)

For the usual hyppar roof, the thickness-to-radius ratio #/a varies between 1/100
and 1/200 and the radius-to-length ratio a/l varies between 4 and 10. Then the
influence length roughly varies between [/ and 2/. The outcome / is in accordance
with the assumption that the decaying function has vanished at the opposite edge,
but the outcome 2! is not. Then, at the opposite edge, the decaying function will
still be about 20 %, so the solution may be less accurate. However, there will be a
reflection of this 20 %, which will become practically zero at the starting edge. We
conclude that the derived formulas can be used without concern.

We may write this as

8.4.3 Edge Disturbances for Uniform Load

Loof [1] has developed simplified formulas for the bending disturbance starting at
the edges of a hyppar roof under uniform normal load p, on the basis of the
approximate solution (8.31). This has been done for two different boundary con-
ditions, one time for a clamped and one time for a hinged supported edge. We skip
the derivations here and limit ourselves to presenting the results. For the clamped
edge, we show the distribution of m,, in Fig. 8.6 and for the hinged supported edge
in Fig. 8.7. The bending moment on the vertical axis is expressed in terms of the
uniform load p, the length of the edge [ and the characteristic length I. = {/(atl).

The distance on the horizontal axis is non-dimensionalized with+/(a#l). Of special
interest is the value of the bending moment m,, and the transverse shear force vy at
the edge. This edge, for example, can be connected to a solid wall or an edge
beam. For convenience, we introduce

I =/ (atl), &=1.I (8.34)
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For the clamped edge (Fig. 8.6), we have the following results:

x=0 my = 0.511 E*p2
ve = 1.732 Epl
x=0.851 my =—0.167 E*pP2

For the hinged supported edge (Fig. 8.7), we have

x=0.55  lmy = —0.149 E*pP?
x = 0; vy = 0.577 Epl

117

(8.35)

(8.36)

Both for the clamped edge and the hinged edge, the shear force is maximal at the
edge (x = 0). At a clamped edge, the maximum bending moment occurs at the edge
(x = 0) with tensile stresses at the top face of the roof shell. A smaller extreme bending
moment of opposite sign occurs at a distance x = 0.85 [. of the edge. Atahinged edge
the maximum bending moment occurs inward on the shell at a distance x = 0.55 I,
from the edge, and raises tensile stresses at the bottom face of the roof shell.



118 8 Hyperbolic- and Elliptic-Paraboloid Roofs

8.5 Hyppar Roof Examples

We will apply the theory of the previous sections to two roof structures. First we
consider a single hyppar on two supports as shown in Fig. 8.5. Next we calculate
in Sect. 8.5.2 the stress state in a roof that is composed of four hyppars.

8.5.1 Single Hyppar on Two Supports

Consider the structure of reinforced concrete of Fig. 8.8 with a square plan. We
bring in edge members along all four edges. The shell has two supporting blocks at
the ends of a diagonal of the plan. The centre of the block coincides with the
intersection of two edge members. A tension tie connects the two blocks. The
figure shows an exploded view of the shell in which the edge members are sep-
arated from the shell. It is shown which shear force n,, (in the figure denoted by n)
is acting on the members and which one on the shell. The normal force in the
member increases linearly from zero to the maximum value N. All member forces
are compression forces.

We choose the length a = 24 m, the height f = 4 m and the shell thickness
t = 0.1 m. The cross-section of the edge members is 0.15 m”. The axes x and y to
define the geometry are chosen in the centre of the base plan. The z-axis is upward.
The geometry of the shell is defined by

Fig. 8.8 Roof of a single hyppar on two supports
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2(x,y) = (1+4ﬂ)f (8.37)

We calculate the shell for a combination of its own weight and a layer of snow,
for which we take p = 5000 N/m”. This number includes roof covering, finish,
snow and partial load factors. The shell is shallow, so we consider the load p to act
normal to the shell surface. Its own weight of the edge members is not considered.
We choose the following material properties. Young’s modulus of concrete is
E =2 x 10* N/mm?. Poisson’s ratio is taken to be zero.

Calculation of Stresses and Moments

From Eq. (8.37), we calculate

- z  2f 2x4 1,
yy — T = T = 5 = = — m .
Y a oxdy PP 242 72

The membrane force is

1 1
My = 5P =7 x 5000 x 72 = 180,000 N/m = 180 N/mm.

The shear stress is

ny 180

=TT 100

= 1.80 N/mm?.

Bending Moments

The characteristic parameter is

l.=vVatl =v72 x 0.1 x24=55Tm

and the dimensionless parameter & is

I 557 .
g=T="7=0232  £'=000292

Close to the blocks, the edge may behave as a clamped edge. Then the bending
moment at the edge (x = 0) is

Mg = 0.511 E*pl? = 0.511 x 0.00292 x 5000 x 24> = 4297 Nm/m

which needs top reinforcement in the shell.

Halfway along the edge member, the state is to be compared with a hinged
edge. There the bending moment is

My = —0.149 £4pI2 = —0.149 x 0.00292 x 5000 x 242 = —1253 Nm/m
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at a distance x = 0.55/, = 0.55 x 5.57 = 3.1 m. This moment requires bottom
reinforcement.

Stress in Edge Members

The maximum value of the normal force N in the edge members is
N =nyl*, I =1/coso.

Herein [* is the length of the edge member and « is the angle between the edge
member and the projection of the member on the x, y-plane. The angle is calculated

from tano=f/l. Then [I*=/I>+f2. For our structure, we obtain

I* = /242 + 4% = 24.3 m. Then N becomes N = 180,000 x 24.3 = 4.37 x 10° N.
With A = 0.15 m2, we obtain

437 x10°

_ 2T X Y 90 2,
7= 015 x 106~ 202 N/mm

Force in Tension Tie

The decomposition of the member normal force leads to a vertical component
N, = Nsino and horizontal component, which is equal to n,l. Therefore,
Nj, = nyl = 180,000 x 24 = 4.32 x 10° N. The tensile force T in the cable

between the blocks is v/2 times larger,

T=+v2x432x10°=6.11 x 10° N.

Overall Checks

The first check is that the sum of the vertical components of the four edge member
forces N must be equal to the total load p. The sum V of the vertical components is
V =4N, =4Nsino. We know N =nyl*, sine=f/I*, ny, =pa/2 and
ky =1/a=2f/ 2. Therefore, V = pl?, which indeed is the load on the shell.

The second check regards moments, for which we consider Fig. 8.9. We cal-
culate the external moment M due to the distributed load on the triangular half
shell, and the internal global moment M;, due to the principal membrane force
n and the member forces N.

The load on the top half triangular shell part left of the diagonal raises a
moment M., about the diagonal (left part of Fig. 8.9) which must be in equilib-
rium with the moment M;,, of the membrane tension forces » in the shell section
over the diagonal (right part of Fig. 8.9).
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Fig. 8.9 Global equilibrium check

The moment M.y, = Pe;, where P = p12 /2 is the load on the triangle shell part,
and the eccentricity e; = (I/ /2) defines the position of the centre of gravity of

the triangle. So,
1 11 V2
My, = [=pP)|=— | =~=pP.
=) G) -

Homogenous tensile membrane forces n occur in the parabolic shell section,
where n = n,,. Because of the shallowness of the shell, the developed length of the
parabola can be put equal to the length [v/2 of the diagonal. Therefore, the
resultant of the tensile forces is N = nlv/2. This resultant is at a distance e, from
the bottom plane, which is two-thirds of the depth f/2 of the parabola. So, e, = f/3.
The resultant N of the forces n is balanced by compression forces 2N in the two
blocks. The tensile force N and the two compression forces 2N are at a distance e,
so they yield a moment Mj,, = Ne,. Accounting for N = nxyl\/i, Ny = % pa, a =

k’y1 = % and e, = f/3, we obtain

e () £) 0 ()

We conclude that the moments My and M, are equal, so global equilibrium is
satisfied.

8.5.2 Composed Hyppar Roofs

Consider the two structures of reinforced concrete of Fig. 8.10 with a rectangular
plan, a building roof and a pavilion roof. The lengths in the plan are 2/, and 2/,.
Each roof is composed of four hyppars. Edge members occur along all outer edges
and in the interface of hyppars. The building roof is supported at the four corners,
the pavilion roof shell. Tension ties are needed in the building roof, see the dotted
lines. They do not occur in the pavilion roof. The figure shows an expanded view
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pavilion roof

Fig. 8.10 Roofs composed of four hyppars

of one hyppar of each structure, the one with drawn generators. In the figure, the
membrane shear force is indicated by n as done before in Fig. 8.8. The normal
force in the member increases linearly from zero to the maximum value. In the
building roof all members are in compression; then we call the maximum member
forces N7 and N;. In the pavilion roof, both tension and compression forces
occur, with maxima N|, N3, Nyand N5 .

We choose lengths /; = 16 m and I, = 24 m, height f = 4 m and the shell
thickness # = 0.1 m. The cross-section of the outer edge members is 0.125 m? and
of the inner members is 0.25 m”. We calculate the shell for a combination of its
own weight and a layer of snow, for which we take p = 4400 N/m?. This number
includes roof covering, finish, snow and partial load factors. The shell is shallow,
so we consider the load p to act normal to the shell surface. Their own weight of
the edge members is not considered. We choose the following material properties.
Young’s modulus of concrete is E = 2 x 10* N/mm?. Poisson’s ratio is taken to be
zero. After the extensive treatment of the example in the previous section, we only
briefly reproduce the figures.

Calculation of Stresses and Moments

f 4 [

1
Sf_ 4 1 - —96m.
L, 16x24 96 ™ 7 ¢ m

Xy

ko =
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The membrane force is

1 1
Ty zipa =3 x 4,400 x 96 = 211,200 N/m = 211.2 N/mm.

The shear stress is

ny 211
Oy = TV =15 =21 N/mm’.

Bending Moment

The characteristic parameter is I. = v/atl, where [ is the length of the considered
edge. The larger the length /, the larger the edge moment is. Therefore we use edge
length /5:

I, =Vatly = V72 x 0.1 x 24 =5.57Tm

and the dimensionless parameter § is

. 5.57 .
—e_221_ 00232 = 0.00290.
T 32,  &'=0.00290

At point A of the shells, the bending moment is (bottom reinforcement)
my = —0.149 &“pl2 = —0.149 x 0.00290 x 4400 x 24> = —1095 Nm/m.

At point B of the shells, the bending moment is (top reinforcement)

My = 0.511E*p2 = 0.511 x 0.0029 x 4400 x 242 = 3756 Nm/m.

The reinforcement for this moment is needed over a length of 3/, = 16.7 m,
which is two-thirds of the shell length. Furthermore, this bottom reinforcement is
needed from two opposite edges, so, in fact over the full shell area.

Stress in Edge Members

The largest force will occur in members with length /5. The maximum value of the
normal force N, in the edge members is

N, =nyl;, I =10/cosa.

Herein /5 is the length of the edge member and o is the angle between the edge
member and the projection of the member on the x, y-plane. The angle is calculated
from tano =f/l,. Then 5= \/l% +f2. For our structure, we obtain
I =v242+ 42 =24331 m. Then N, becomes N, =211.200 x 24.331 =
5.139 x 10° N. With A = 0.125 m?, we obtain
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VaF

F 1
building roof i pavilion roof

Fig. 8.11 Global equilibrium check

1 6
0275 39 <10 = 41.1 N/mm?.
0.125 x 106

Force in Tension Tie

For the tie with length /;, it holds that
Ny = nylyp = 211.200 x 16 = 3.379 x 10° N.
For the tie with length /,, it holds that

Nop = nyylp = 211.200 x 24 = 5.069 x 10° N.

Overall Check

We will check the overall equilibrium of roof halves, for which we consider
Fig. 8.11. We call the global moment due to the internal forces M;, and to the
external load M., The total load P on the roof half is P =p(2[;), =2p [ L,.
The lever arm e of this load is e = I,/2. Therefore the global moment due to the
distributed load p is

Moy = Pe = (2pli1p)(L/2) = pli 5.

The internal global moment is due to the forces F and 2F in the edge members.
The force F is the horizontal component Ny, in [,-direction:

F = N2h = nxylz.

The global moment is

My = (2F)f = (2nxy12)f = <2 (;pa> 12>f :pabf

Accounting for a = Iy I, /f, the global moment is Mi, = pl; l%. We conclude
that the moments Mj, and M.y are equal, so global equilibrium is satisfied.
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8.6 Elpars and Hyppars with Curved Edges

Shortly, we will address the item of elpars and hyppars of a rectangular plan with
curved edges. We will not derive here a full membrane and bending solution;
instead it will suffice to state the governing differential equation and present some
characteristic results from Bouma [2]. Consider the roof shells of Fig. 8.12.
The two left shells are elpars and the two right ones hyppars. The transitions in
between are cylinders. Of these six shells, the three top ones are supported in two
opposite edges. The supporting walls are supposed to be infinitely rigid in-plane
and very flexible for displacements and rotations out-of-plane. The shell is fixed
shear-stiff to the wall. The two longest edges of these shells are free. Therefore,
edge moments in the three shells are zero at all edges. The shells behave as
‘beams’ in x-direction. We will address the left shells as ‘elpar beam’, the middle
shells as ‘cylinder beam’, and the right shells as ‘hyppar beam’.

The three shells in the bottom part of the figure are shear-stiff supported along
all four edges. This raises expectations of much more reduced displacements,
membrane forces and moments. Again, edge moments in these shells are zero at all
edges.

A set of axes is chosen such that the x-axis is in the direction of the longest
edge, the y-direction in the shortest direction and the z-axis downward. All six
shells have the same rectangular plan (¢ = 18 m and b = 13 m) and the same
radius of curvature in y-direction (r, = 11.56 m). The radius of curvature in
x-direction varies, because different values of the elevation (or sag) h are con-
sidered, 200 cm, 0 cm, —50 cm and —200 cm, respectively. In all six shells
ke # 0, ky # 0 and k,, = 0. Differential equation (6.22) applies again,

DyAAAAu, + D, (1 — v*)Tu, = AAp, (8.38)

Fig. 8.12 Six doubly curved shells of different shape and way of support
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Fig. 8.13 Results for doubly curved shells on two edge supports

where now

o o o
a—y2+ky A=—+— (8.39)

F=k 2’ oxz  0y?

8.6.1 Doubly Curved Shells Supported on Two
Opposite Edges

Figure 8.13 shows results for the ‘beam type’ shells, which we extract from [2].
We only changed notation and transformed to modern units. The plot shows
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deflections u;, the membrane force n,, and the moment m,, in the middle section
of the shell at x = 0. Notice that the ‘hyppar beam’ with 47 = —50 cm is very stiff
(very small u.), has a negligible bending moment m,,, and a distribution of 7,
over the shell section which is equal to beam theory. This doubly curved shell
behaves exactly as a beam. The maximum membrane force n,, in the ‘cylinder
beam’ (h = 50 cm) is more than three times larger. In the ‘elpar beam’ with
h = 200 cm the difference is about eight times. Now the behaviour is far from
beam theory. The ‘hyppar beam’ with 2 = —200 cm has a maximum membrane
force which is less than two times the force of ideal beam theory.

We conclude that the ‘elpar beam’ and ‘hyppar beam’ (each with 200 cm)
result in very different values of the membrane force n,,. This is not true for the
bending moment m,,. Then values of the same order of magnitude occur, be it of
different sign.

On the basis of this comparison it appears that ‘beam type’ doubly curved shells
have very reduced stiffness for increasing elevation and sag. For the considered
shells it is recommended to restrict to —50 < & < 50 cm.

-2

9| *006cm |

+4—

+6—

+8r

u, (cm)
‘Zﬂg—-:ﬂ,a' =] =636 ——=in.y lk/““\/ goo
+200 | +18,8 + 200
$i0—————— +400
+50q—__ +600
n, (N/mm) n, (N/mm)
" M9 =896 ———~200

0
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+800 | +719————1+800
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Fig. 8.14 Results for doubly curved shells on four edge supports
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8.6.2 Doubly Curved Shells Supported Along All Edges

Figure 8.14 depicts the results of the doubly curved shells, which are supported
along the four edges. The plots speak for themselves if they are compared with the
plots of the previous figure. Now the shell becomes stiffer the larger the elevation
his. For h > —50 cm always very stiff behaviour is found, both for small and large
h. Strongly reduced values of the membrane force and bending moment occur,
compared to the shells on two edge supports. While the elpar with # = 200 cm on
two edge supports was the worst case in Fig. 8.13, it is the best one in Fig. 8.14.
For four edge supports, the state of stress becomes rapidly unpleasantly large for
h< — 50 cm, and the deflection increases dramatically.
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Chapter 9

Morley Bending Theory for Circular
Cylindrical Shells

The Donnell theory of shallow shells does not accurately apply to fully-closed
circular cylindrical shells like chimneys and storage tanks. The main reason is the
simplifying assumption that we can use the formulas of the flat plate theory for the
change of curvatures in the shell. In full circular cylindrical shells, this is not
sufficiently accurate, because then rigid body motions would lead to non-zero
changes of curvatures. Especially for structures like long industrial chimneys,
storage tanks and pipelines, the imperfections are undesirable and result in sub-
stantial errors.

It is generally agreed that a complete and adequate set of equations for the
theory of thin shells was developed by Love [1]. Koiter, one time, paraphrased a
popular Beatles song: ‘All you need is Love, Love is all you need’. More or less
equally complicated sets of equations were published later on by, among others,
Fliigge [2], Wlassow [3], Novoshilov [4], Niordson [8] and Reissner [5]. It appears
that just one rigorous theory does not exist. For the special case of circular
cylindrical shells, Morley has published an elegant theory [6], which is equally as
accurate as Fliigge’s much more complicated equations. He has suggested his
equation on reasoning and judgement, and Koiter (and others after him) have
derived it more explicitly. In the present chapter, we will describe this Morley
theory. The application to chimneys in Chap. 12 and storage tanks in Chap. 13 is
taken from Hoefakker [7].

9.1 Introduction

We restrict the applications in the present chapter to cases in which only loading
occurs normal to the shell surface for convenience and without degenerating the
generality of the approach. Therefore we put p, = 0 and pg = 0. Furthermore, the
nonzero load p, is symmetric with respect to the axis 0 = 0, and we will restrict
ourselves to a load which is constant or linear in axial direction. We consider full
circular cylindrical shells, for which the boundary conditions are specified at
circular edges.

J. Blaauwendraad and J. H. Hoefakker, Structural Shell Analysis, 131
Solid Mechanics and Its Applications 200, DOI: 10.1007/978-94-007-6701-0_9,
© Springer Science+Business Media Dordrecht 2014
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9.1.1 Leading Term in Differential Equations

The changes to the Donnell bending theory of Chap. 7, as required to arrive at the
Morley bending theory, are introduced without elaboration. In the next chapters,
we will provide and discuss a comparison between results obtained with the
Morley bending theory and those obtained with the Donnell bending theory. The
eighth-order Donnell equation for circular cylindrical shells reads:

AAAAu, + 4p°* Cus _ L \» (9.1)
u = —_— . .
¢ ot D, e
in which A is the Laplacian:
* 1
A=—+——. .
ax2 + a2 602 (9 2)

The definition of the parameter P is

3(1 —v?)
(at)®

pt= (9.3)

It can be concluded that, since ¢ <a for any circular cylinder, the dimensionless
parameter Pa > 1. Therefore, in case that derivatives of the fourth order with
respect to x of the function u, exist, the one that is multiplied with the parameter
(Ba)4 will be a leading term since (Ba)4>> 1. In the Morley theory profit is taken
from this information.

9.1.2 Geometrical Considerations

The geometry and coordinate system for the circular cylindrical shell are intro-
duced in Sect. 7.1. It holds that

ke=0; k,=—1/a; ky=0. (9.4)

Again, we adopt the vectors in Eq. (7.1) to describe the kinematical, consti-
tutive and equilibrium relations (for loads p, only):

T
uy up u]

u=|
T
e=[8xx €00 Vxo Kxx Koo Pw] (9.5)
s=[nu np ng My meg Myl
p=[0 0 p]

The scheme of relationships of Fig. 9.1 applies.
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Fig. 9.1 Scheme of relationships for a circular cylindrical shell

9.1.3 Load Considerations

Because of symmetry of the load p, in circumferential direction with respect to the
axis 0 = 0, the load is an even periodic function with period 27 with respect to the
line of symmetry. The Fourier series of any even function consists only of the even
trigonometric functions cosnf, and a constant term:

po(x,0) = szn(x) cos nd, (9.6)
n=0

where n is the circumferential mode number representing the number of whole
waves in circumferential direction. The reader can easily extend the application to an
asymmetric load by describing combinations of sine and cosine series per load term.

9.1.4 Three Load-Deformation Behaviours

The behaviour of circular cylindrical shells under the above-defined load is
excellently described by Morley’s equation, where all quantities can be expressed
as functions of the type

d(x,0) = i ¢, (x) cosnb (9.7)
n=0
and
b(x, 0) = i ¢, (x) sinnb (9.8)

n=0
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QOO0

n=3

Fig. 9.2 Four load terms and deformation modes for a ring

depending on the axis of symmetry of the quantity under consideration. Never-
theless, we can subdivide the response of a cylinder to all possible loads indicated
by a different mode number n into three different load-deformation behaviours.
Consider a (long) circular cylinder without restricting boundary conditions and
subject to a constant load in x-direction. The response of such a cylinder is equal to
the response of a ring to that load. In Fig. 9.2 the load and the corresponding
deformation for four terms is displayed for a circular ring.

Axisymmetric Mode

The mode indicated by n = 0 (left in Fig. 9.2) is generally known as the axi-
symmetric mode and describes a constant behaviour in circumferential direction.
Such a load leads, in principle, to a change in the radius of the cylinder with
circular edges. Any quantity ¢ must be constant in circumferential direction; in
other words, the substitution 0¢/06 = 0 is to be made in the governing equations.
All displacements, rotations, membrane forces, moments and shear forces are zero,
except u,, ngy, My, and v,. In case of nonzero lateral contraction, also a nonzero
bending moment mgg occurs equal to v times m,,. In Sect. 9.9, we will make an
assessment of the relation of the results for the Morley equation to the results as
obtained in Chap. 5, which in fact can be considered as results of the Donnell
equation.

Beam Mode

The mode indicated by n = 1 (second left in Fig. 9.2) is generally known as the
beam mode and describes the response of the circular cylinder that is obtained if
we treat it as a beam with a circular cross-section. In other words, the deflection of
the circular cylinder is caused by the resultant of the load term. We must be aware
that using the expressions derived for three independent shell displacements (u,., 1y
and u;) accounts for both flexural and shear rigidity. Moreover, we obtain a
solution that takes care of nonconforming deformation states at the circular
boundary. This is due to the fact that the governing equation is an eighth-order
differential equation and not only the fourth-order polynomial solution repre-
senting the response of Euler beam theory. We conclude that this part of the
solution describes an edge disturbance that mainly originates from constrained
cross-sectional deformation. Morley’s equation excellently fits this behaviour.
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For n = 1, all quantities can be expressed as functions of the type
(x,0) =1 (x)cos® (9.9)
and

d(x,0) = d;(x)sin0 (9.10)

depending on the axis of symmetry of the quantity under consideration. In
Sect. 9.9 we will make the relation of the Morley results to the results as obtained
in Chap. 4 for the membrane theory only.

Self-Balancing Modes

The modes indicated by n = 2,3,4,... (n =2 and n = 3 are depicted at the right-
hand side in Fig. 9.2) are generally known as the self-balancing modes. The load
has as many symmetry axes as the mode number n. These axes cross each other at
the middle point of the circle, which also holds for n anti-symmetry axes. The
response of a ring to such a load is fully described by a deformation of the circular
shape without displacing the middle point of that circle since the resultant of the
load is equal to zero.

The response of a full cylinder without restriction to the deformation at its
circular boundaries will be equal to the response of a ring with the circular profile.
Only the membrane force, bending moment and transverse shear force in cir-
cumferential direction will occur. However, if this response behaviour is restrained
at any circular edge, also bending and membrane straining in axial direction is
provoked. Morley’s equation excellently describes this behaviour. For mode
numbers n > 1, all quantities can be expressed as functions of the type

O(x,0) = 200: $u(x) cosnbd (9.11)
and
o(x,0) = i $n(x) sinnd (9.12)
n=2

depending on the axis of symmetry of the quantity under consideration.

9.2 Sets of Equations
9.2.1 Kinematical Relation

With reference to [8], we introduce the improved expressions for the changes of
curvatures xgg and pp:
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1 %u. .

i Sy R
@ o a (9.13)

20up 2 0°u,

Px0 = 8~ aoxo0

which are zero for rigid body motions. Therefore, we upgrade the kinematical
relation e =Bu of Eq. (6.5) to

)
& 0 0
- 19 1
Exx a 00 a
: 1
€00 _% ai 0 "
1 a
Vo | _ x 2 up |- (9.14)
Foe 0 0 -— "
Koo Ox z
- a2 602 a2
0 20 29
L aOx aoxo0

9.2.2 Constitutive Relation

The constitutive relation of Eq. (6.6) is still valid:

Nyx D,, vD, 0 0 0 0 Exx
ngg vD,, D, 0 0 0 0 €00
n | 0 0 Dy % 0 0 0 Y40
My - 0 0 0 Db UDb 0 Kyx ' (915)
myg 0 0 0 vD, D, 0 Koo
My 0 0 0 0 0 D, % 00

The membrane rigidity D,, and flexural rigidity D, are the same as in the
Donnell theory:

Et EP

Dp=—; Dy=———.
1— 12 PT(1 =)

(9.16)
The constitutive relation is based on a linear description of the stress distri-

bution across the thickness. We obtain the respective normal stresses and shear

stress conveniently from relations, which are equal to those for a thin plate:
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Ny 12my,
Oxx = —
t B
ngg  12mgy
nxo 12mx9

Ox) =—+2
* t

9.2.3 Equilibrium Relation

To arrive at the equilibrium relation B*s = p, we make use of the fact that the
differential operator matrix B* is the adjoint of the differential operator matrix B in
the kinematical relation Eq. (9.14). The equilibrium relation (6.10) is then
upgraded to

0 10

- 0 - 0 0 0
Ox a o0
10 0 20
0 —_— - 0 0 -
a0l Ox alx
0 1 0 o2 1 1 2 0
a ox? a2o0* a? a 0x00
B (9.18)
ngoa 0
nya
“1=1o0
My
p-a
mppa
L My |

The transverse shear forces, described by Eq. (6.9), do not change:

o amxx + lamxo . - lamoo + amxo
STy "0 Y Tae0

(9.19)

9.2.4 Boundary Conditions

The boundary conditions for the Donnell theory are specified in Sect. 6.6. The way
in which we must enhance them follows best from an application of the principle
of virtual work. Without providing further elaboration, we advance the boundary
conditions here. Figure 9.3 depicts those quantities that may play a role. We again
apply the Kirchhoff shear force

(9.20)
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P

Fig. 9.3 Quantities that occur in boundary conditions

but in the Morley theory also a generalized membrane shear force *n,y appears:

2
Ny =N+ UL (9.21)

Finally, for full cylindrical shells with a circular edge, we need a definition of
the rotation in axial direction:

Ou,
=——. 9.22
0= =5, (9:22)
On the basis of the above definitions, we are able to specify the boundary

conditions at the curved edges:

— either u, or n,,

— either ugy or *n
, 0 (9.23)
— either u; or *v,

— either @, or myy

9.3 Differential Equations for Load p,
9.3.1 Differential Equations for Displacements

Up to this point, we have introduced no simplifications or assumptions, apart from
first-order approximations, choice of load cases and symmetry. To obtain conve-
nient differential equations for displacements, we assume that the parameters
describing the material properties and the cross-sectional geometry, i.e., E, v, and
a, t respectively, are constant for the whole circular cylindrical shell.

Substitution of the kinematical relation (9.14) into the constitutive relation
(9.15) results in what is sometimes referred to as the “elastic law”:
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0 a 00
B Ou, 10up u,
ngg = Dy, (V a + ;@ + E) (9.248.)
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Substitution of this elastic law into Eq. (9.18) yields the following three dif-
ferential equations for the displacements:

2 2 2
_%u 1-v10wu 14+v18wy 10w (9.25a)
ox? 2 a2 op? 2 adx00 aOx
14+v10%u, 1—vd*uy 1% 1 Ou,

2 adxd0 2 o2 a’d®® a0l

b . b e (9.25b)
b ug b U,
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D,,a? ( V) ox? +Dma2 (=) Ox200
10u, 10 1 D o
Jowe  Noup 1 Dy ) O
adx a2d0 a2 D,,a? 0x200 (9.25¢)
D, (o*u, 2 o*u. 1%, 2vo*u. 2%, u D '
+— — +o—=tS5 t+to— 1t =+—-
D, \ 0x*  a20x200®> a*00* a® 0x?  a* 39> ot D,
The three differential equations are symbolically described by
Ly Lo Liz| | ux 110
Ly Ly Lo | |up| = Do 0]. (9.26)
Lyt Lz Ly [u " Lp:

The operators L; up to and including L33 form a differential operator matrix, in
which the operators are
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14+v1 &
Ln=-A+——Gp
1+v & o?
Ly =-A k(1 — V)
2 * 2 0x? (1=v) ox2 (9.27a)

1 5 1\ ., 0
L33=;+ka (A+a2> —2ka (I—V)@

L 1+vl &
2 2 aoxo0
10
L13 = —L31 = —V—= (9271))
adx
1 3
L23 = —L32 = —a—z@—FZk(l — V)m

Here the Laplacian A is defined by Eq. (9.2) and the dimensionless parameter k
is introduced, which is defined by
D, 2
k=—2 = _— 9.28
D, a2 1242 ( )
For a thin shell where ¢ <a, the parameter k is negligibly small in comparison to
unity (k < 1).

9.3.2 Single Differential Equation

By eliminating u, from the first and second equation, we obtain the differential
equation describing the relation between uy and u,. Equivalently, we eliminate ug
from the first and second equation to obtain a relation between u, and u,. The
resulting equations symbolically read

(Li1Loy — Loy Lin)ug + (Li1 Loz — LoiLyz)u; = 0

9.29)
(LynoLiy — LisLoy Juy + (LooLiz — LizLoz)u, = 0. (

By substituting these two relations into the third equation, the single differential
equation for the displacement u, is obtained, which symbolically reads

(L31(LioLos — LooLi3) + Laa(LaiLiz — LitLos) + La3(LaaLiy — LioLoy)]u,
1
= — (LnLi — LiaLo1)p:. (9.30)
Dy,
In working out the multiplication of derivatives, we neglect terms with the
square of the parameter k in comparison to unity and we account for the
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dominance of terms that are multiplied by the parameter af3. In this way, we can
set up a simplified and, from a mathematical point of view considerably more
elegant, differential equation, practically without loss of accuracy. For the other
two equations relating u, and uy to u,, a similar observation leads again to the
neglect of small terms. In this way, we end up with three differential equations of
much simpler appearance:

1 du, 1 Ou,

1%, 1 du
AA e 9.31
MX+va ox®  a® ox00? 0 53D)
1\? tu, 1
AA(A+a2> u, +4p* o —D—bAApZ

The last one is the Morley equation. The parameter f§ is defined by Eq. (9.3),
viz. the same as in the Donnell theory. In comparison with the Donnell equation in
Eq. (9.1), the change looks minor. Hereafter, in Chaps. 12 and 13, we will see that
the impact is major.

9.4 Homogeneous Solution of the Differential Equation
for a Curved Edge

9.4.1 Exact Solution

As stated in Sect. 9.1.4, all quantities for the three load-deformation behaviours
can be described by functions of the type of Egs. (9.7) and (9.8) depending on the
axis of symmetry of the quantity under consideration. Hence, we can make the
following substitutions for the load and displacements:

Px(x,0) = 0; Uy (x, 0) = Uy, (x) cosnd
po(x,0) =0; ug(x,0) = ug,(x) sinnd  (9.32)
P2(x,0) = pay(x) cos nb; Uz (x, 0) = uz (x) cos n.

For derivates with respect to the circumferential coordinate 6 and consequently
for the Laplacian A, we can make substitutions of the form
o(x,0) 0, 0 .
(gz) ) _ (x)aCOOS n _ _nn(x) sinnd
> n?
A(.X, 6) = (E — ;) n(x) cos nb.

(9.33)


http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_13
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Similarly we can do the same for quantities generally described by Eq. (9.8).
By substitution of the load and displacement functions given above, the third
differential equation in Eq. (9.31) becomes an ordinary differential equation and
by omitting the cosine function for the circumferential distribution, the governing
differential equation is reduced to

& A\ (dE -1 L d
l(E—E) (ﬁ a—> +4/3 uzn(x)

e e (9.34)
= D_b (E - a—z) P (x)
The homogeneous equation is given by
& o\ -1 d4

The periodic trial function for u,(x, 0) is u;(x, 0) = F,(x) cos nf. This function
satisfies the continuity and symmetry conditions for a closed circular cylindrical
shell. We obtain the solution to the homogeneous equation by similar steps as in
Sect. 7.5:

U (x) = e P [C} cos(b}px) + C; sin (b, x) ]
+ e[l cos (b! x) + Cl sin(b) )]
+ b [C2 cos (b2Bx) + C¢ sin(b;Bx) ]
+ b [C) cos (bzﬁx) + Cg sin (b2[)’x)]

(9.36)

where the dimensionless roots a! a b1 and b2 are defined by

n’

1 \/ (1)1—1 1 wl—l
a,=—=\[01 +7+ 1:\/51—V—
n 2 ? n

V2 V2 (9.37)

ai:\/lz\/fizﬂ-)’— wlz—l’ b, \/—\/52 wl_l
in which
01 :\/V+%(w1+w2)+1+"/\/2((01 — 1)+ V20 + 1), or =ty =i
522\/“/+%(w1+wz)+1—%/2(w1 — 1) = V2 + 1), @ =0=7 41

(9.38)


http://dx.doi.org/10.1007/978-94-007-6701-0_7
http://dx.doi.org/10.1007/978-94-007-6701-0_7
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and

0 =142 + 1) + (7 = 1p)?
1= (= 3) @B, 0= Vi)

The roots in Eq. (9.37) are surplus to requirements and therefore, in the next
section, we can make approximations for several load-deformation regimes. The
presented solution is a unification of former results by other authors [2, 8].

Itdeserves attention that the solution for the axisymmetric mode (n = 0) and beam
mode (n = 1) is retained. For these two values of n, the parameter # of Eq. (9.39) is
equal to zero and the eight roots are calculated with the reduced parameters

(9.39)

1
2

0;11:0.1 = \/(1 +Vﬁ:0,1) =01 0:21:0,1 =0
1

2
bi:o.l = \/(1 +V3:0A1> ~Vn=0,1 bﬁ:o,l =0.

Because a2 _ ), and b2 _,, are zero for the cases n = 0 and n = 1, the last two

lines of the expression in Eq. (9.36) reduces to the constant C§ + C7, which has to
be put at zero.

(9.40)

9.4.2 Approximate Solution

To express the dimensionless roots of Eq. (9.37), we have introduced the
parameters 7 and 7 of Eq. (9.39). By definition of Eq. (9.3) the parameter(af}) s
a small value for the usual thickness-over-radius-ratio ¢/a. For the static behaviour
of thin shells under the usual loading cases, only the first and lower values of the
mode number n are important (say n = 1,...,5) and, therefore, y and # remain
small in comparison to unity. This enables a tremendous reduction of the
expressions for the eight roots by expanding these into a series development and
then breaking them down after the second term since y* ~ n> < 1.

For the two lowest modes with n = 0 and n = 1, parameter # is zero, and we
obtain the following approximate expressions:

1 1
n=0: ayj=1———, bi=1+—s
4(ap)’ 4(ap)? (9.41)
1 1 '
n=1: a=14+—, b=1-—
4(ap) 4(ap)
agzb%:O
a; =bj = 0.

The subscripts denote the mode number .
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For n > 1, we obtain the following approximate expressions:
1 1 1
0111:1+§ynv aiinn<1+§’yn>

1 1 1
1 2
b =1 1 b = 1
n 2))n7 n 21711( 2yn>7

from which the solution for » = 0 and n = 1 is still traceable. The parameters 7y,
and 7, are identical to the parameters y and # in Eq. (9.39), but the subscript n is
adopted hereafter to indicate the mode numbers n > 1. For n > 1 and larger values
of 7, and 7,, we may use both the Morley solution and the solution to Donnell’s
equation. In this domain the differences are minor.

(9.42)

9.5 Influence Length
9.5.1 Axisymmetric Mode

For the axisymmetric mode, we just need to consider in Eq. (9.36) the terms
multiplied with C; up to and including C,. The other part of the solution is zero.
The terms multiplied with C; and C; are oscillating functions of the ordinate x that
decrease exponentially with increasing x. The terms multiplied with C3 and C4 are
also damped oscillations but these decrease exponentially with decreasing x. Now
the characteristic length /. and influence length /; are

I =l (9.43)

By using the approximate value for ay of Eq. (9.41) the characteristic length
can be approximated by

o= YA (9.44)

v/3(1 —12)

in which also (atﬂ)f2 has been neglected in comparison to unity. This is the same
formula that we obtained in Chap. 5 for edge disturbances in axially symmetric
shells. The same holds for the influence length:

i =mnl. ~24/at. (9.45)


http://dx.doi.org/10.1007/978-94-007-6701-0_5
http://dx.doi.org/10.1007/978-94-007-6701-0_5
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9.5.2 Beam Mode

For the beam mode we again need to consider in Eq. (9.36) only the terms mul-
tiplied with C; up to and including C,. The terms multiplied with C; and C,, are
oscillating functions of the ordinate x that decrease exponentially with increasing
x. The terms multiplied with C; and C4 are also damped oscillations but these
decrease exponentially with decreasing x. The characteristic and influence lengths
for this part of the solution are

le=—:: ;= 7. (9.46)

By using the approximate value for a; of Eq. (9.41) and neglecting (aff) > in
comparison to unity, the characteristic length and influence length become

I, ~ L; I =l. ~ 2.4Vat. (9.47)
v/3(1 —v?)

These are equal to the characteristic and influence length for axisymmetric
behaviour.

9.5.3 Self-Balancing Modes

For the self-balancing modes, all eight terms in Eq. (9.36) must be considered. The
terms multiplied with the constants C}, C5, C; and Cj represent the part of the
solution describing an edge disturbance with a short influence length, which is
further referred to as the short-wave solution. Similarly, the terms multiplied with
the constants C%, Cg, C; and Cg represent the part of the solution describing an
edge disturbance with a long influence length, which is further referred to as the
long-wave solution. The terms multiplied withC}, C3, C5 and Cy, are oscillating
functions of the ordinate x that decrease exponentially with increasing x. The terms
multiplied with C%, C}, C% and Cg are also damped oscillations but these decrease
exponentially with decreasing x. The characteristic and influence lengths for the
short-wave solution appear to be equal to the characteristic and influence lengths
for the axisymmetric load. We calculate them by

1
le :alTﬁ;

By using the approximate value for a! of Eq. (9.42) and neglecting (ap)~* in
comparison to unity, this short characteristic and influence length become

li,l = TElC’l. (948)
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Vat
lc,l ~ m, l,"l — lq] ~ 24\/&, (949)
indeed equal to the axisymmetric mode. The characteristic and influence lengths
for the long-wave solution are

1
lep = @; lip = mlcp. (9.50)
By using the approximate value for aﬁ of Eq. (9.42) and neglecting (a,[?)*2 in
comparison to unity, these lengths become

2 2:/3(1 — v 8.1
Iy~ —— = LAVl Ly WS 1| Sy (9.51)
n.B nvn?—-1 1t T onvn? -1t

These lengths depend on the mode number n. The long influence length
describes a far-reaching influence, in the order of a/t times the short influence
length /; ;. This influence length decreases rapidly with increasing n.

In Chap. 7, the Donnell theory for shallow shells with straight edges, we
obtained earlier two different influence lengths. There, the difference was on the
order of a factor 2, and the largest one was about equal to the radius a. For
disturbances starting from circular edges in the Morley theory, the two influence
lengths are far more different. For the lowest self-balancing mode (n = 2) the
largest length is about 2.3(a/t)+/at, which we also may write as 2.3a\/a/t. The
value a/tis of the order 100. Then, the longest influence length is more than 20
times the radius a.

9.6 Displacements and Shell Forces of the Homogeneous
Solution for Self-Balancing Modes

Now that we have a homogeneous solution for the displacement u,, it is necessary
to express the other displacements, membrane forces, moments and transverse
shear forces as functions of u,. We can do so for the displacements u,and uy by
solving the first two equations of Eq. (9.31):

1 o%u. 1 0u.
2200 a* op®
10°u, 1 du,

add @t

AAug = —(2+v) o5
9.52

AAu, = —v


http://dx.doi.org/10.1007/978-94-007-6701-0_7
http://dx.doi.org/10.1007/978-94-007-6701-0_7
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Furthermore, we write the third equation of Eq. (9.31) as

_% (;3)4 / / / / AA <A + alz)zuzdxdxdxdx. (9.53)

By substituting this equation into Eq. (9.52), and omitting two Laplace oper-
ators, we obtain the following equations:

ugi(;>4[(z+ O ax;ae ;486;] / / / / <A+ ) udndxdvdx
ux:i<%>4[véaa—; ala 6x604////<A+ )uzdxdxdxdx.

By substitution of the displacement functions given above, these become
ordinary differential equations, in which we omit the sine function (for uy) and the
cosine function (for u,).

The rotation @, is

(9.54)

0= - (9.55)

The membrane forces are described by Eq. (9.24a). Upon substitution of
Eq. (9.54) the expressions read

F(A+L
= —Dba// 2 dxdx
a?ob

1
ngg = —Dpa (A + —2> U, (9.56)
a
(A +5)u,
Nyp = Dha/de.

The moments are also described by Eq. (9.24b). The moments m,, and myy are
already expressions of u,. Upon substitution of the expression for ug above, this
becomes also the case for moment m,g:

My = l—vL4
SRR T

(z+v)/a(Ag—0 _///ag (A+a dxdxdx] (9.57)

1 %u,
aoxo0’

—Dp(1—v)
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The transverse shear forces are described by Eq. (9.19). They become

L
4(ap)*

2+v) / % 1 / / / o A@} dxdxdx] (9.58a)

vy = Dp(1 —v)

a
vo=Dp(1 —v
0 b( ) (dﬁ4
oA+ u, 1 (A + 1),
(2+v)%+;//%dxdx (9.58b)
ipplf B 10w 10w
"a\ 200 4?00 o 00

The Kirchhoff shear force *v, of Eq. (9.20) becomes

o
2(ap)’

24 v) / az(AaJ;z 1 / / / o Aa;“ dxdxdx} (9.59)

V.= Dy(1 —v)

Finally, the generalized membrane shear force of Eq. (9.21) becomes

1 Zu
n;GDb<1+(lv)(2+v)2(;ﬁ)4>/a<A—|a—6a_z) 2 iy

o’ (A
+Dy(1—v) / / / + % dxdvdx (9.60)
2a%( aﬁ

1 %u,
adxd0’

By working out the derivatives and integrals, we obtain all displacements and
shell forces as functions of the coordinates x and 0 multiplied by eight constants of
the homogeneous solution. The resulting expressions are presented in Table 9.1.

= Dyp(1 —v)~
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9.6.1 Comparison with Donnell Solution

For purposes of comparison in Chap. 12 on chimneys, we want to know the
differences with the Donnell solution. For the Donnell equation in Eq. (9.1) and by
adopting the expressions for shell forces and displacements given in Sect. 7.4,
those resulting expressions can be similarly obtained. The main change is that the
operator A + 1/a? is replaced by A only. The result is Table 9.2. If we apply the
same approximation as done in Sect. 9.4.2 for Morley, the table changes into
Table 9.3. As stated at the end of Sect. 9.3, the change in differential equation
looks minor, but substantial differences occur between Table 9.1 for the Morley
equation and Table 9.3 for the Donnell equation.

9.7 Inhomogeneous Solution for Self-Balancing Modes

Restricting us to constant or linear loads p,, we can reduce the inhomogeneous
equation of Eq. (9.34) to

nt (n?—1 2 1 n*
P (7) Mzn(x) = D_;,Epm(x)' (9-61)

The inhomogeneous solution is

) =

By substituting this result into the first two expressions of Eq. (9.31), we can
obtain the inhomogeneous solution for the circumferential displacement uy and the
axial displacement u,. If we omit the second and higher derivatives with respect to
x, these differential equations become

a2 2

1 o'y 10,
A0 Do
1%, 1 du,
A0 doaxo?
We can rewrite these equations by substituting the displacement and load
functions given above. If we omit the cosine and sine terms, the equations become

(9.63)

MHH(X) = *%Mzn(x) (9 64)
Uxn ()C) = _%dui;;fx)

into which the solution of Eq. (9.62) can be substituted.


http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_7
http://dx.doi.org/10.1007/978-94-007-6701-0_7
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By substitution of the expressions for the displacement u, into the relevant
expressions, we obtain the inhomogeneous solution for all nontrivial quantities.

9.8 Complete Solution for Self-Balancing Modes

Describing a linear load p, by the form
Palx) =P T4+ P, (9.65)
the complete solution for displacement u, reads
u,(x,0) = cos n@{ e P [t cos (b x) + C sin(b) )]
+ e@P¥[C cos (b} px) + Cisin (b} px)]
+ e~ P [l cos (b2 fx) + Cp sin(b2x)]
+ el [C;’ cos (biﬁx) + Cg sin (biﬁxﬂ }

1 @\’ 0 X |
)

We obtain similar expressions for the independent displacements uy and u,, and
all other quantities of interest, by the appropriate substitutions.

(9.66)

9.9 Complete Solution for the Axisymmetric Load
and Beam Load

9.9.1 Axisymmetric Mode
For n = 0, Eq. (9.34) reduces to

&£ 1\,
B — 4
(dx2 + a2> +4p

The complete solution is introduced without elaboration and reads

1

Uzn (x) = D_hpzn(x>~ (9~67)

u.(x) = e P [Cy cos(bofx) + Cysin(bofix)]
+ eao/ﬁx[C3 cos(bgfix) + Cysin(bgfx)] (9.68)

1 2) X
+ I [a2 (pio)i + p;?) + va(px + CS)}
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in which the loads p, and p, are described by the forms

Px0 ()C) = Px0 (9 69)
X .
pao(x) = ply) 7t Py

and [ represents the length of the circular cylinder.

The inhomogeneous solution is identical to Eq. (4.57) for the membrane
behaviour and, as shown by roots of the homogeneous solution in Eq. (9.41) and
the influence length of Eq. (9.45), the homogeneous solution is equivalent to the
bending behaviour as obtained in Chap. 5.

9.9.2 Beam Mode

For n = 1, Eq. (9.34) reduces to

a 1
[(@ 7)o

The complete solution is introduced without elaboration and read

d4 1/ 1\’
uzy, (x) = D, <E — E) Dan(X). (9.70)

*.0) cos 0{e M[Cy cos(by) + Cy sin(by fx)]
uy(x,0) =
) +e“PX[C5 cos (b, fx) + Cy sin(b )}

(9.71)
in which the loads py, py and p, are described by the forms
Pai(x) = pa
por(x) = pfy %C +pyy (9.72)

X
pa(x) =p) 5+
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and [ represents the length of the circular cylinder. The inhomogeneous solution is
identical to Eq. (4.17) for the membrane behaviour. As shown by roots of the
homogeneous solution in Eq. (9.41) and the influence length of Eq. (9.45), the
homogeneous solution describes a bending behaviour that describes a short edge
disturbance. For long circular cylindrical shells under beam load, we have
described in Sect. 4.6 that the incompatibility of the membrane solution at the
edges need to be compensated by bending acting. We conclude that these bending
moments only exert influence within a short distance from the edge and that these
moments have a negligible effect on the total stress within this area. This obser-
vation is strengthened by the calculations as detailed in Chap. 12, where long
chimneys are treated, in which the range of application of the above is assessed. In
Chap. 13, where storage tanks are treated, it is shown that for such short circular
cylindrical shells under beam load, the edge disturbances cannot be neglected.

References

1. Love AEH (1927) The mathematical theory of elasticity, 4th edn. Cambridge University Press,
Cambridge

2. Fliigge W (1960) Stresses in shells. Springer, Berlin (corrected reprint 1962)

3. Wlassow WS (1958) Algemeine Schalentheorie und ihere Anwendung in der Technik.
Akademie Verlag, Berlin

4. Novoshilov VV (1959) The theory of thin shells. Translated from the Russian (1951), ed by PG
Lowe, Groningen, Noordhoff

5. Reissner E (1966) On the derivation of the theory of elastic shells. In: Proceedings 11th
international congress of applied mechanics, Munich 1964. Springer, Berlin, pp 20-20

6. Morley LSD (1959) An improvement on Donnell’s approximation for thin-walled circular
cylinders. Q J Mech Appl Mech 12:88-99

7. Hoefakker JH (2010) Theory review for cylindrical shells and parametric study of chimneys
and tanks. Doctoral thesis, Delft University of Technology. Eburon Academic Publishers,
Delft

8. Niordson FI (1985) Shell theory. North-Holland series in applied mechanics and mechanics.
Elsevier Science, New York


http://dx.doi.org/10.1007/978-94-007-6701-0_4
http://dx.doi.org/10.1007/978-94-007-6701-0_4
http://dx.doi.org/10.1007/978-94-007-6701-0_4
http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_13
http://dx.doi.org/10.1007/978-94-007-6701-0_13

Chapter 10
Semi-Membrane Concept Theory
for Circular Cylindrical Shells

In the previous chapter, we learned about short and long influence lengths for full
circular cylindrical shells. For axisymmetric loading and beam-type loading, only
the short influence length plays a role, and the edge disturbance is governed by a
fourth-order differential equation. For the self-balancing modes, both the short and
long influence lengths play a role, and the more complex eighth-order differential
equation of the Morley theory is needed. It is possible for this loading type to
reduce also to a fourth-order differential equation, an approximation in which only
the long influence length will play a role. This so-called semi-membrane concept
(SMC), introduced by Pircher et al. [1], is the subject of the present chapter.

10.1 Introduction

For convenience and without degenerating the generality of the approach, we restrict
the applications in the present chapter to the same cases as treated in Chap. 9. We
consider full circular cylindrical shells subject only to loading normal to its surface,
which is symmetric with respect to the axis 6 = 0, constant or linear in axial
direction, and with boundary conditions that are specified at the circular edges.
The semi-membrane concept assumes that, to simplify the initial kinematical
equations, the circumferential strain ggg is equal to zero and that, to simplify the
initial equilibrium equations, the axial bending moment m,, and the twisting
moment m,q are zero, and hence the transverse shear force v,. The zero strain €gq is
accompanied by a negligible membrane force ngg and the zero moments m,, and
myp by negligible curvatures Ky, and p,qo. The resulting equation exactly describes
the ring-bending behaviour of self-balancing modes. We can apply this concept to,
e.g., a radial wind load, an axial elastic support at the circular edge and an axial
support displacement. As we did in the previous chapter, we assume that the
parameters describing the material properties and the cross-sectional geometry,
i.e., E, v and a, t respectively, are constant for the whole circular cylindrical shell.

J. Blaauwendraad and J. H. Hoefakker, Structural Shell Analysis, 161
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10.2 Sets of Equations

For the semi-membrane concept, we apply the same polar coordinate system and
choose the axes in the same direction as adopted for the Morley theory in Sect. 9.1.
It holds again that k, = 0,k, = —1/a and k,, = 0. The sets of equations formu-
lated for the circular cylindrical shell are tremendously simplified by the above-
mentioned assumptions of the semi-membrane concept. It should be noted that
aggg = Oup/00 + u, = 0 and hence

_ Oug
00

This means that either u, or ugy is no longer an independent variable. Here we
choose the displacement ug as independent. Hence, we must derive differential
equations for the two displacements u, and ug. Therefore, we have to transform the
load p, to a load pg, which is statically equivalent. If we substitute —Ougy/00 for
displacement u,, we must replace load p, by a load in ug-direction of the size

po = 0p./00 (10.2)

(10.1)

u, =

which can be shown on the basis of virtual work considerations. As a result, the
scheme of relations of Fig. 10.1 applies.

We obtain the kinematical equation by rewriting Eq. (9.14) in two steps. First
we skip the rows that correspond with the zero strain g9 and negligible curvatures
Kx and Pxo*

0
— 0 0
£ Ox u
e | = |12 9 0 o (10.3)
Koo a0 Ox u
1* 1 ¢
0 0 —————
a2 662 aZ
Next, we make use of the introduced relation u, = —0ug/00, and rewrite
Eq. (10.3) to
8)()( nxx O
u)f
{u } V.o Ny apz
. _ e
Koo Myg 20
Kinematic Constitutive Equilibrium
relation relation relation

Fig. 10.1 Scheme of relationships in SMC-theory


http://dx.doi.org/10.1007/978-94-007-6701-0_9
http://dx.doi.org/10.1007/978-94-007-6701-0_9
http://dx.doi.org/10.1007/978-94-007-6701-0_9

10.2  Sets of Equations 163

o 0
e Ox
Lot o the 10.4
vl G o g (104)
Keo 19 12

0

@08 @0
in which only the two independent displacements are employed.

The constitutive relation (9.15), rewritten for the assumptions introduced above,
transforms into

M D,(1=v?) 0 0 |/[é&x
nxo = 0 Ds 0 Vx0 (105)
Mgo 0 0 Dy | %oo

where the quantities D,,, Ds; and D, are the membrane rigidity, the shear rigidity
and the flexural rigidity, respectively, which are given by

Et Et EP

_ D, =
"T2(1 =)

Dy =-—=7 Ds=57"77
1—v2 2(14v)

(10.6)

In order to obtain the equilibrium relation (9.18), we made use of the fact that
the differential operator is the adjoint of the differential operator in the kinematic
relation. Applying this again to Eq. (10.4), the equilibrium equation now becomes

0 10

- ——= 0 Ny 0

0x adl 3 nea | = op; (10.7)
0 _ g _ ii — ii Mood a%
ox a?00® 4200 00
The transverse shear force, described by Eq. (9.19), becomes
1 amee
=—— 10.8

Y0 =00 (108)

The boundary conditions (9.23) are rewritten on the basis of application of the
principle of virtual work to the kinematical relation (10.4). Without providing
further elaboration, we obtain for curved edges

— either u, or n,,
10.9
— either ug or n,g ( )
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10.3 Differential Equations for Load p,
10.3.1 The Differential Equations for Displacements

Substitution of the kinematical relation (10.4) into the constitutive relation (10.5)
results in what is sometimes referred to as the “elastic law”:

Ou
_ N
Ny = Dy (1 = V?) =
10u, Oug
nyy = Dy (a % +a) (10.10)
_Dn 1 a3u9+ 1 Ouy
oo = v g2 00° 4% 00

Substitution of this elastic law into Eq. (10.7) yields the following two differ-
ential equations for the displacements

2 2 2
_(1_02)6’“_& 1 0%u, 10 _
ox2 D, \a® 00> a0x00
, (10.11)
_& laZux_i'_azﬂ _&ia_z a_2+ —L%
D, \aoxd0 " o2 ) D, d* 00? \o¢? "=, 00

Symbolically, we describe them by
Ly L || u 110
=—— o 10.12
|:L21 Lzz} {Me} D,, [%Le ( )

The operators L up to and including L, form a differential operator matrix, in
which the operators are

? 1-vl1 &
_ N A T
Lll - (1 v )ax2 + 2 a2 662
1—vl &
L, =1Ly = T3 2500 (10.13)
L, L@ ke
2772 o 200 \oe?

Here the dimensionless parameter k is identical to the parameter defined by
Eq. (9.28):
D, 1>
k=——5=—5 10.14
D,a? 1242 ( )
For a thin shell where ¢ <a, the parameter k is negligibly small in comparison to
unity (k < 1).
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10.3.2 The Single Differential Equation

By eliminating u, from the two equations, we obtain the single differential
equation for the displacement ug, which symbolically reads

(L1l — Lo1Lin)ug = —g—z% (10.15)
We then obtain the single differential equation
o* k AR
@—Fiaz(l—vz) (2(1+V)@+a_2@>@(@+1) U
| 2 1o, (10.16)
= NS (2(1 + V)a_)@+a_2@) 0

To facilitate comparison between the solutions presented herein, we prefer to
solve the homogeneous equation for the displacement i, as then all quantities for
the semi-membrane concept can be described similar to those resulting from the
solution to the Morley equation. This can be easily accomplished by noting that
the relation u, = —Oug/00 holds. Hence, by taking the derivative of Eq. (10.16)
with respect to 0 and by rearranging the resulting SMC-equation, the single dif-
ferential equation for u, becomes

ot 1 o P\ o /o
4 -~ - 2 - I I
[4'3 oot E (2(1 FVaaat aez) 002 (692 - 1)

1 1 o 1 o

D, @ o0x2007 | d* 00"

2
u;

(10.17)

Here the parameter B is identical to the parameter defined by Eq. (9.3):

3(1 —v?)
(ar)?

Bt = (10.18)

In comparison with Morley’s equation in Eq. (9.31), the change seems
dramatic. Hereafter, in the present chapter, we will see that the impact of this
tremendous reduction is minor on the overall response of full circular cylindrical
shells subject to loads associated with the self-balancing modes.

10.4 Homogeneous Solution of the Differential Equation
for a Curved Edge

As stated in Sect. 10.1, the semi-membrane concept exactly describes the ring-
bending behavior and can only be applied to self-balancing modes. The modes
indicated by n = 2,3,4, ... are generally known as these self-balancing modes.
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For these mode numbers n > 1, all quantities can be expressed as functions of
the type as adopted in Sect. 9.4.1. Hence, we can make the following substitutions
for the loads and displacements associated with self-balancing modes

Px(x,0) =05 Uy (x,0) = uy,(x) cosnd
po(x,0) =0; up(x,0) = ugy(x) sinnd (10.19)
P2(x,0) = py(x)cosnB;  uy(x,0) = uy(x) cosnd

while for the derivatives with respect to the circumferential coordinate 6 we can
make substitutions of the form

a¢gg b _ (bn(x)acg;ne “né, (x) sinnd (10.20)

for quantities generally described by ¢(x,0) = ¢,,(x) cosn6 and similarly for the
quantities generally described by ¢(x,0) = ¢,(x) sinnf.

By substitution of the load and displacement functions given above, the SMC-
equation (10.17) becomes an ordinary differential equation and by omitting the
cosine function for the circumferential distribution, the governing differential
equation is reduced to

4 2 22\ /2 2
[434"——; (20495:-%) (") ]umu)

| P (10.21)
:D_b -2(1 V)azﬁ P Pan(X)
The homogeneous equation is given by
AR N iV PR ST P4
2 @ (aB)* d?  a* 4(ap)? B '

Identical to the substitution in Sect. 9.4.1, the periodic trial function for u,(x, 0)
is u,(x,0) = F,(x) cosnf. We obtain the solution:

g (x) = e~ B [C} cos (b3MCBx) + C; sin (b5 Bx) |

SMC M M (10.23)
+ e Py cos (SMCBx) + Cf sin (b3MCPx) |
where the dimensionless roots @M€ and b€ are defined by
aiMC 2 nn 1 + ’))SMC bSMC 2 nn 1- ))SMC (1024)

in which

pC =21+ (P 1) /@B, m, =n(w* —1)' /(ap)’ (10.25)
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Note that only four integration constants C; occur, where in the solution of
Morley’s equation in Eq. (9.36) eight constants appear.

Similar to the approximation in Sect. 9.4.2, we obtain the approximate
expressions

1 1 1
smc _ 1 1 SMC SMC _ L. smc 10.2
a, 5 M ( +5 7 , b, Znn > (10.26)

which are in full correspondence with the roots as defined by Eq. (9.42) that have
been associated with the long-wave solution in Sect. 9.5.3.

10.5 Influence Length

Identical to the determination of the influence length in Sect. 9.5.3, the charac-
teristic and influence lengths for the long-wave solution are approximated by

2 2\/ 3(1 —v?) 8.1
lep = ¥) \/‘ L~ —— 2 /ar (10.27)
B avei—1 TV -1t

This long influence length describes a far-reaching influence, which decreases
rapidly with increasing n.

In the next sections, we will observe that the solutions for the displacements and
shell forces are almost identical to those of the long-wave solution obtained from
Morley’s equation.

10.6 Displacements and Shell Forces of the Homogeneous
Solution for the Self-Balancing Modes

Now that we have a homogeneous solution for the displacement u,, it is necessary
to express the other displacements, membrane forces, moments and transverse
shear forces as functions of u,. We can do so for the displacement ug by solving the
relation u, = —0up/00, which leads to

up = —/uzde (10.28)

We obtain the solution for the displacement u, by solving the second equation
of the set (10.11):

2

10%, Quy 1+v 18 (&
! 1O (% ) w=o 102
000 " 02 | 2(ap) a2 0B <ae2+ ) " (10:29)
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By working out integrations with respect to x and 6, we rewrite this equation to

2

dug I+v 1 o [
e =— | —add — —— —[—=+1 d. 10.30
" ‘YT a(aB)4/ 20 (an+ > e (10:30)

Upon substitution of Eq. (10.28) for the displacement ug, this expression reads

2 2
Uy = //a”’ adode + V1 /(62+1> ydx (10.31)
2 a(ap)* 00

By substitution of the displacement functions given above, this becomes an
ordinary differential equation in which we omit the sine function (for up) and the
cosine function (for u,).

The membrane forces and the moment are described by Eq. (10.10):

Ouy
o = Dy 1 -
n (1=v) 5
=D laux 4 %
nyg = Us 2 00 x (1032)

1 63u9 1 aue
= D _—— —_—
Mg b<a2 00 +a2 3
Upon substitution of the expressions for the displacements above, these
expressions read

2, l+v 1 [ ?
b, (/ [ Staatan L (B )

1 1 o[\
Ny = Dy v / < 5+ 1> u,dx (10.33)
2 2 (aB)* 00
%u,
mep = —D s +u,
The transverse shear force is described by Eq. (10.8) and becomes
1 amee
10.34
a0 (10.34)
Upon substitution of the expression for the moment above, this expression reads
1 (P, du
=Dy~ | —+ == 10.35
Vo ba3 <ae3+ae> ( )

By working out the derivatives and integrals, we obtain all displacements and
shell forces as functions of the coordinates x and 6 multiplied by the four constants
of the homogeneous solution. The resulting expressions are presented in
Table 10.1.
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10.6 Displacements and Shell Forces of the Homogeneous Solution
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10.7 Inhomogeneous Solution

Restricting ourselves to constant or linear loads p,, we can reduce the solution to
the inhomogeneous equation of Eq. (10.21) to

a2

nt =1\’ 1 n*
a_4 (—) Uz (x) = D—ba—4pz,,(x) (10.36)

which is identical to the inhomogeneous equation of Eq. (9.61) for the Morley
bending theory.
The inhomogeneous solution is

1 a2\’
a(X)=—|5— n 10.37
o) = 5 (27 ) Pl (1037

Similar to the homogeneous solution, the inhomogeneous solution for the
displacement ug can be obtained by solving Eq. (10.28). The inhomogeneous
solution for the displacement u, can be obtained by solving the first expression of
Eq. (10.11).

There is a good argument to omit the second derivative with respect to x in this
expression. In the SMC-theory, the gradient in x-direction is an order of magnitude
smaller than in 6-direction. Doing so, the latter differential equation becomes

1 d%u, 1 0%uy
o 10.38
a? 9> a 0x00 ( )
We can rewrite this equation by substituting the displacement and load func-
tions given above. If we omit the cosine and sine terms, the equations for uy and u,

become

1
ugy(x) = — ;un(x)
(x) = aduo,(x)  a dug,(x) (10.39)
olX) =0 a2 dx

into which the solution of Eq. (10.37) can be substituted.
By substitution of the expressions for the displacements into the expressions of
Eq. (10.10), we obtain the inhomogeneous solution for all nontrivial quantities.

10.8 Complete Solution
Describing a linear load p, by the form

X
parlx) =p5) 5+ P (10.40)

n n
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the complete solution for displacement u, reads
u:(x,0) = e{e—agMng [C} cos (b€ Bx) + C5 sin (b Bx) |

1 @\’ X
B 2 (1)
D (n2 - 1) cos 0 (7 [P )

We obtain similar expressions for the independent displacements ug and u,, and
all other quantities of interest, by the appropriate substitutions.

e B oos () + Cysin(61BY)] | (10.41)

10.9 Remark Considering Accuracy

As stated in Sect. 10.1, the SMC-equation can be applied to radial wind load, axial
elastic supports and axial support displacements. Clearly, not all load cases or
support conditions can be described. Moreover, the semi-membrane concept is
only applicable to certain load-deformation behaviors of cylindrical shell struc-
tures. The simplifications presuppose that the influence of the part of the solution
described by the short influence length can be neglected. This is the case, if the
cylinder is sufficiently long compared with its radius, and if the boundary effects
mainly influence the more distant material.

Consequently, the small terms of the dimensionless parameters aﬁMc and bﬁMc
as presented by Eq. (10.26) are identified as superfluous and may be discarded so
as to avoid suggesting an accuracy that is not described.

If we retain only the leading terms, by neglecting (aB)72 in comparison to
unity, the dimensionless parameters @3¢ and b€ become equal to M, /2. The
complete solution is then described by

| 1 1
Uz (x) = 7P {C’l’ cos <§ nan> + CJ sin (5 n,ﬁx)]

1 1
+ U {Cg‘ cos <§ n,ﬁx) + Cj sin (E M, Bx)} (10.42)

1 a \’
+ Dy (m) Pan(%)

and similarly the same approximation can be adopted for all other quantities.
Hence, it is readily verified that this approximated solution would be the exact
solution to the following differential equation

Eta® d*u,(x 2 — 1\
: d;4( ) +Dh< a2 ) Mz,l(_x) :pzn(x) (1043)

n

which is the corresponding approximation of differential equation (10.21).
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The above differential equation is similar to the one for a beam on an elastic

foundation if the modulus of subgrade is taken as Dy((n*> —1)/a?)” and the
flexural rigidity of the beam is described by Eta®/n*. Hence, it is observed that the
full circular cylinder under non-axisymmetric loading behaves as a curved
membrane that is elastically supported by the so-called ring bending action.

Reference

1. Pircher M, Guggenberger W, Greiner R (2001) Stresses in elastically supported cylindrical
shells under wind load and foundation settlement. Adv Struct Eng 4(3):159-167



Chapter 11
Analysis by Circular Cylindrical Super
Elements

By nature, an analysis based on the theories in Chaps. 9 and 10 is very cumber-
some. Therefore, we made a special computer program CShell available for cir-
cular cylindrical shells, in which we implemented the Donnell theory and Morley
theory. This chapter is added for completeness. For readers who are interested only
in the scope and options of the program, it is sufficient to read Sect. 11.1. They
then may proceed to the next chapter without loss of essential information.

11.1 Introduction of Super Element Analysis

The program CShell is based on the stiffness method as applied in standard Finite
Element Analysis software. We assume that the reader is familiar with the general
set-up of such programs. The shell structure is divided into a number of elements,
which are connected in nodes. Displacements in the nodes play the role of fun-
damental unknowns. Distributed loads can be applied over the area of the elements
and lumped loads can be applied in the nodes. Standard commercially available
software presupposes division of the surface of the cylindrical shell in elements in
both circumferential direction and longitudinal direction. In general, the elements
are small and the number of elements is large. For the special program, discussed
in this chapter, we need not divide the shell in circumferential direction. Division
in elements is done in longitudinal direction only. As a consequence, an element is
a full circular cylindrical shell part, and the circular interface between two such
parts is a circular node. We call a shell part a super element. The shell thickness
is constant within a super element. At the nodes, we may add ring elements
(stiffeners). Figure 11.1 clarifies the composition of a shell from circular cylinders,
circular nodes and circular rings. Loading may exist of their own weight, wind,
and so on. The program is able to process loads p, in longitudinal direction, p, in
radial direction and py in circumferential direction. Per super element, the load is
constant or linear in longitudinal direction. In circumferential direction, the only
requirement is that the load is symmetric with respect to a chosen generating curve
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Solid Mechanics and Its Applications 200, DOI: 10.1007/978-94-007-6701-0_11,
© Springer Science+Business Media Dordrecht 2014


http://dx.doi.org/10.1007/978-94-007-6701-0_9
http://dx.doi.org/10.1007/978-94-007-6701-0_9
http://dx.doi.org/10.1007/978-94-007-6701-0_10

174 11  Analysis by Circular Cylindrical Super Elements

cylinder super element

ring ——=——=—  circular node

O ring pe—— circular node
-
k—/‘

cylinder : super element
( Y ring L1 circular node

cylinder super element

- ring circular node

»
!

Fig. 11.1 Example of a shell structure modelled by super elements

(meridian). A super element edge will start or end at (i) a support or free edge, (ii)
a change of shell thickness, (iii) a stiffening ring, (iv) a change of the intensity of
the surface load, or (v) a circumferential line load. In case of a shell with a
constant geometry and material properties, which is subject to linearly distributed
surface loads and nodal line loads and/or point loads at the edge circles, only one
super element is needed.

11.2 Outline of Super Element Analysis

We base the working out of the super element on the general solution for circular
cylindrical shells in Chap. 7 for the Donnell theory (worked out in Table 9.2) and
in Chap. 9 for the Morley theory (Table 9.1). We apply the same coordinate
system x, 0, z, and use the same displacements u,, ugy, u, and associated loads p,,
Do, p;- The same holds for the strain and stress quantities. Also the sign conven-
tions are the same. As said, we restrict the working out to symmetric loads.

11.2.1 Consideration of Super Element Level

We define the line of symmetry at 8 = 0, and observe that the loads p, and p, are
even periodic functions with period 2nt/n with respect to that line of symmetry,
and that the load py is an odd periodic function, where n is the mode number and
represents the number of whole waves in circumferential direction. The Fourier
series of any even or odd function consists only of the even trigonometric func-
tions cosnB or odd trigonometric functions sinn0, respectively, and a constant
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term. Therefore, the three load components can be described by a Fourier trigo-
nometric series expressed by

px(0) = me cosnf
n=0

Po(8) = pon sinnf (11.1)
n=0

p.(0) = sz,, cosnb
n=0

In keeping with the trigonometric series load, a trial homogeneous solution u"

to the reduced differential equation will be of the trigonometric series form.
Similarly, also the inhomogeneous solution ' will have the same circumferential
distribution. So, in correspondence with the distribution of the load components,
the general solution for the displacements is of the congruent form

ue(x,0) =) [Cpudl (x) + u'.(x)] cos n

up(x,0) = [Chug(x) + uy(x)] sin n6 (11.2)

1My 1M

u,(x,0) = i [Chul (x) + ul(x)] cos nd

n=0

where Cj, represents the eight arbitrary constants per circumferential mode num-
ber. The degrees of freedom in circular nodes are u,, ug, u, and @,, where @, is the
rotation in x-direction of the circular edge of the super element. The rotation is
positive if it raises a positive displacement u, at the shell surface with a positive
z-coordinate. The associated generalized edge forces are f,, fo f. and t,, where #, is
a moment per unit length. Also here, even quantities have a cosine series devel-
opment and odd ones a sine series development. On the basis of the same con-
sideration, we conclude that strain and stress quantities in the super element are
described by functions of either the form cosn6 or sin nf.

An important conclusion is that the relation between quantities in the super
element and associated quantities at the edge of the element only depend on the
axial distribution. In other words, a stiffness relation for the super element depends
on the amplitude of the circumferential distribution (which depends on the cir-
cumferential mode number n) but the trigonometric distribution needs not to be
taken into account. Hence, for every possible mode number n the general solution
for the degrees of freedom can be represented by
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lztx(x) A“(x) e AIS(x) C:l 1:4}()6)
Zegg =l o “98 (11.3)
GNEY) An() o Aw@ ]| o o (x)
or briefly as
8(0)'= A()e + 8 (x) (1.4

where A(x)“ is a rectangular matrix of size 4 x 8, of which the coefficients depend
on the element geometry, the material properties and the mode number n. The hat
notation refers to amplitude and the superscript ¢ represents that the matrix
equation refers to continuous quantities.

With the objective of formulating expressions for the edge forces in mind, the
internal stress quantities have to be transformed into suitable quantities according
to the boundary conditions formulated in Sect. 6.6 for the Donnell theory and
Sect. 9.2.4 for the Morley theory. Performing the above-mentioned substitutions
and transformation, we obtain the general solution for the internal stress quantities,
which can be represented by

:Xx(x) B”(x) e B]g(x) Cl ’il;cx(‘x)
”)*ce(x) — . . . + n;é(x) (1]5)
A; (x) . . . : "};t (x)
Fity () Bu(x) -+ Ba(x) ¢ i (x)
or briefly as
f(x)°= B(x)‘c + i’ (x)° (11.6)

where the matrix B(x) is also a rectangular matrix of size 4 x 8 of which the

coefficients depend on the element geometry, the material properties and the mode
number 7.

We can easily transform the general solutions of Egs. (11.3) and (11.5) in
expressions for the edge displacements and edge forces of the element by
substituting the nodal coordinates of the parallel edge lines. While formulating
expressions for the edge forces, it is necessary to take into account that internal
stress quantities on the negative side of the element act in negative coordinate
direction and thus in opposite direction to the positive direction of the edge forces.
Identifying one edge with x = a and the other with x = b, the expressions for the
element displacements read
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and the element forces read
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J: : . : ; Filb
Li(b) ] LBu(b) -+ Bus(b) 1LCs]  |7(p)]
Briefly, these two equations become
0 =A% +a" (11.9)
and
= Bct+ " (11.10)

where A® and B° are square matrices of size 8 x 8, of which the coefficients
depend on the element geometry, the material properties and the mode number 7.
The hat notation refers to amplitude and the superscript e represents that the matrix
equation refers to element quantities. The element stiffness matrix relates the
element displacements in Eq. (11.9) to the element forces in Eq. (11.10). There-
fore, the constants should be eliminated, which is done by first rearranging

Eq. (11.9) to
c=A" —0%) (11.11)
and by substituting this expression into Eq. (11.10) resulting in
£ = BA (0 — @) + 1. (11.12)
Case 1 We now consider two cases. In the first case, no distributed load is acting

on the super element. Then 4" = % = 0. Then Eq. (11.12) reduces to

= K“a (11.13)
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where the stiffness matrix K¢, a square matrix of size 8 x 8, is
K¢ = B°A 1 (11.14)

Case 2 In the second case, the super element is loaded by a distributed load, while
all edge displacements 0’ are zero. In this case, we call the element forces d ”me;e,

and from Eq. (11.12) we derive
P pea-te gie 4 §° (11.15)

The vector £ comprises edge loads that are in equilibrium with their
distributed load on the super element. In reverse, the load by the super element on

. . aprime;e
the circular node is — f .

11.2.2 Load on Circular Node

Aext; . .
At anode, an external force f” can be applied, where the superscript n refers to a
nodal quantity. If more elements occur, two elements share one common node.

The total load vector at a node " is given by the external load and the primary
load vector of the adjacent super elements:

fmt;n _ fext:,n _ Z fprim;ff:ﬂ (11_16)
e

11.2.3 Assembling and Solving Procedure

The process of the assembly resulting in the global matrix equation, the incor-
poration of the prescribed displacements and the solution of the resulting reduced
global matrix equation are to be done according to the common procedure of the
stiffness method. Consequently, we can easily take care of, for example, an elastic
support and stiffening ring elements or assembly of different geometries.

The solution of the resulting global matrix equation yields the magnitude of the
nodal displacements and since these are equal to the element displacements °,
the constants ¢ per element can be computed by Eq. (11.11). Having obtained the
constants, we can compute the continuous distribution of the displacements and
stress quantities within the element by the expressions of Eq. (11.3) and
Eq. (11.5), respectively. Finally, element forces and support forces can be deter-
mined from these solutions.
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11.3 Calculation Scheme

We thus perform the following steps by a finite element program that is suited for
super elements:

Read number of elements and nodes;

Read geometry and material properties of each element and nodal coordinates;
Read initial displacements;

Read distributed forces on the element and external forces on the nodes;
Compute matrices A° and B¢;

Generate the element stiffness matrix K¢ according to Eq. (11.14);
Assemble the global stiffness matrix K via a location procedure;

Compute the primary load vector £ per element according to Eq. (11.15);

Generate the load vector at a node " according to Eq. (11.16);

. Assemble the global load vector ' via a location procedure;

. Compose the system of equations and incorporate the prescribed

displacements;

12. Solve the system of equations to obtain the nodal displacements;

13. Compute per element the constants ¢ according to Eq. (11.11);

14. Obtain the continuous distribution of the displacements and stress quantities of
each element according to expressions similar to Egs. (11.3) and (11.5),
respectively;

15. Solve element and support forces.

S e RS o e

—_

A flow chart of such a program is given in Fig. 11.2.

11.4 Features of the Program CShell

In general, the program CShell facilitates analysis of structures as shown in
Fig. 11.1, which consists of a number of cylindrical super elements, ring elements,
circular nodes and supports. As explained before, if the shell to be analyzed has a
constant geometry and material properties, and the load is distributed constantly or
linearly over the height and/or consists of loads in the circular nodes, we need only
one super element.

11.4.1 Structure, Supports and Loading

The program CShell can be applied to calculate the response of thin shell struc-
tures, that:
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e Consist of circular cylindrical elements and ring stiffening elements, see
Fig. 11.1; extension and bending of the stiffener is taken into account while
torsion is neglected;

e Are subject to static distributed surface loads, circumferential line loads and
point loads; these loads are symmetric with respect to the axis 6 =0 and
developed in trigonometric series in circumferential direction (in 6-direction,
e.g., modes p, cos(nB) forn =0, 1, 2,...); results of the calculation appear as
one or all terms of the trigonometric series;

e Have constant linear elastic material properties per element;

e Have constant geometrical properties per element; and

e Are supported by fixed and/or elastic supports.

11.4.2 Shell Theory to be Chosen

Two theories for thin shells have been implemented, the theory of Morley and the
theory of Donnell. The theory of Morley is considered to be the most exact one
because it uses more appropriate kinematical relations for the changes of curva-
ture. The Donnell theory is less accurate for lower modes and clearly fails for
mode n = 2. On the other hand, to obtain the solution to the Morley theory an
approximation was introduced which limits its applicability for higher modes.
Therefore, Morley is used for lower modes and is compulsory for mode n = 2. For
higher modes, Donnell gives more reliable results. The user indicates at which
mode the switch between Morley and Donnell should be made. In case of default,
Donnell is adopted for n = 6 and higher.

For the formulations resulting from the Morley equation that we implemented
in the program CShell we refer to derivations in previous chapters. The stiffness
matrix is based on the approximate expressions for the homogeneous solution
presented in Sect. 9.4.2. We have used the inhomogeneous solutions to derive the
load vectors. These are presented for mode number n = 0 in Chap. 5, forn = 1 in
Chap. 4 as indicated in Sect. 9.9, and for n > 2 in Sect. 9.7.

The formulations resulting from the Donnell equation that we implemented in
the program CShell are provided in Table 9.2.

11.4.3 Ring Elements

The ring analysis is largely based on the same set of relations as for a circular
cylindrical shell on the basis of the Morley theory, with all quantities in axial
direction being omitted. The result is thus a stiffness relation between the dis-
placements of the ring element and the associated generalized line forces.
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11.4.4 Verification

In verifying CShell by Finite Element Analysis, we obtained an excellent agree-
ment with respect to displacement and deformed shape of the models. The axial
stress and shear stress are accurately predicted with respect to magnitude and
shape. The circumferential stresses (mainly the membrane component of those
stresses) are less accurate, which is closely related to the simplifications introduced
to arrive at the Morley equation (refer to Sect. 9.3.2). Only negligible numerical
differences could be detected between the respective results. Based on these
observations, the numerical capability of the developed program and the tre-
mendous benefit of the super element approach for rational first-estimate design
are conclusively demonstrated.

11.4.5 Output

The following automated output is available:

e Line plots in axial as well as circumferential direction.
e The deformation of a circular profile as well as the whole structure.
e A data file to select the quantities of interest and their respective location.

11.5 Overview of the Analysed Structures

In this book, the following structures are studied with the aid of the developed
program:

e Chimneys, which are supported at the bottom, with or without stiffening rings
and elastic supports (Chap. 12); and

e Tanks, which are supported at the bottom, with or without a roof or stiffening
ring at the top and under full circumferential settlement (Chap. 13).

The chimneys are all loaded by a wind load. As described in Sect. 12.1, this
wind load is developed into a quasi-static load series. The advantage is that each
possible load-deformation behaviour (as described in Sect. 9.1.4) is present.
Hence, the different response for the same geometry enables the interpretation and
enlarges the understanding of the phenomena that occur per mode number.

The tanks are loaded by a content or wind load or subject to a full circum-
ferential settlement. These cases represent the three main load-deformation con-
ditions that can be identified for the overall response of the tank wall.
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Chapter 12
Chimneys

In this chapter, we obtain closed-form solutions by adopting the formulations
derived in Chaps. 9 and 10 for stiffened and non-stiffened long circular cylindrical
shell structures and for various support conditions and loading terms. We will
present design formulas including the range of application for chimneys upon
comparison with solutions obtained by the computer program CShell of Chap. 11.

12.1 Wind Load

The distribution of the wind load around a circular cylindrical chimney has a
maximal value at the windward meridian (denoted by 6 = 0) equal to the stag-
nation pressure p,, and a small pressure at the leeward meridian. The sides in
between are subjected to suction, which in absolute value is even larger than the
stagnation pressure (see Fig. 12.1 for a typical distribution at the left).

Because of the choice of the coordinate system and the symmetry of the load,
we can develop the wind load (constant in axial direction) in a Fourier cosine
series for the circumferential direction. By sign convention, we take the positive
direction of the load in the positive direction of the coordinate z, which is from
inside to outside of the circular profile. For a quasi-static load series, only the
lower mode numbers have to be taken into account to accurately describe the wind
load. For instance, the distribution exemplified in Fig. 12.1 may be defined by:

p2(x,0) = py[og + oy cos O + o, 0820 + 03 cos 30 + oy cos 40 + o5 cos 50]
(12.1)

in which oy = 0.823; o; = —0.448; o, = —1.115; oz = —0.400; oy = 0.113;
s = 0.027; where p,, is set equal to 1 kN/mm?, which value is a good reference
value for the wind stagnation pressure in north-western Europe. The shape of the
circumferential distribution of the wind load depends roughly on the geometry of
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the chimney and varies from code to code but has the common characteristic that
only a part of the circumference, the so-called stagnation zone, is under circum-
ferential compression, while the remainder is under suction. The values presented
above are representative for a long vertical cylinder and for short cylinders
different values should be considered depending on the Reynolds number corre-
sponding to the geometry of the cylinder.

12.2 Fixed Base: Free End
12.2.1 Closed-Form Solution

The circumferential distribution of the axial membrane stress resultant n,, at the
clamped base of a long circular cylinder (for example an industrial, steel chimney)
under the wind load described in Sect. 12.2 has been subject to various studies. So
far, we obtained closed-form solutions mainly with the aid of the Donnell equa-
tion, while this section presents the closed-form solution to the Morley equation.
The axial stress distribution at the base of such a long chimney is mainly described
by the beam action. As a result, Gpeqn, as depicted at the right in Fig. 12.1 occurs.
However, the large suction at the sides of the chimney leads to an additional out of
roundness of the cross-section, e.g., for n = 2 the circular cross-section deforms to
an oval shape. To withstand this out-of-roundness at the base, additional axial
stresses are generated. The stress increases to Gy, in Fig. 12.1. This is due to
restrained warping. The chimney wants to ovalize, but can not at the base (denoted
by x = 0). Then the cross-section will warp, however, at the base the warping is
restricted, There the cross-section must remain plane, which causes additional
membrane stresses in axial direction.

Fig. 12.1 Typical distribution of the wind load (left) and axial stress at the base (right)
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At the base the chimney is typically clamped and at the top (denoted by x = [)
the chimney often has a free edge. Over the distance / between these two edges, the
geometrical and material properties are assumed to be constant. This means that
the response to the wind load can be calculated by the solution to the differential
equation (9.31). We must complement this solution by the appropriate boundary
conditions:

x=0; clamped: u,=0; wup=0; u,=0; ¢,=0 (12.2)
x=1 free: Ne=0; ng=0; vVi=0; my= '

Response to Axisymmetric Load Term (n = 0)

The first term (n = 0) of the series development for the wind load in Eq. (12.1) is
constant in circumferential direction and represents axisymmetric loading. It leads
to a small circumferential tension in the chimney and due to the clamped edge to a
short edge disturbance. However, the resulting stresses and displacements are
known to be negligible in comparison with the response to the other terms of the
wind load.

Response to Membrane Load Term (n = 1)

The second term (n = 1) describes a varying load that has a negative peak value at
the windward meridian and a positive peak value at the leeward meridian. This is
the only load term that is not self-balancing: i.e. it has a resultant in the wind
direction. If the chimney is long, the stresses and deformations due to this load
may be calculated by the membrane theory. However, not all boundary conditions
of Eq. (12.2) can be fulfilled since there are more conditions than quantities, but
the necessary edge disturbance will be represented by a small influence over a
short length. The same result can be obtained by elementary beam theory if the
shear deformation is accounted for. In fact, the solution to this term is well known
and by solving the boundary conditions for the membrane stress resultants at x =/
the following expression for the axial membrane stress resultant 7, is obtained,
which is quadratic with respect to the axial coordinate

e (x,0) = — 2% (1~ 2cos 6. (12.3)
2a

However, if the more complete solution of Eq. (9.71) as described in Sect. 9.9.2
is employed, it is shown that the common assumption that the membrane solution
is accurate is slightly in error if the lateral contraction is accounted for. Due to the
then arising incompatibility at the clamped edge, a small but evident edge dis-
turbance is produced and the resulting bending stress couple m,, does contribute to
a certain extent to the axial stress at the base. First solving the boundary conditions

for the stress resultants at the free edge (x = [), we obtain four constants:
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pala . _ 1p, 12
_ © Co=~
Et 2 Et

in which p;; = p,,0;. We now solve the boundary conditions for the clamped edge
(x = 0), which for a long chimney (//a > 5) results in

C3:0; C4:0; C5:

(12.4)

vpal® vpal® pala 24 vpal
—3E =3B o =vES =R
2 Et 2 Et Et 2 Et
The solution for n,, and m,, is obtained by back substitution and by introducing
p:1 = pwoi for the wind load. The solution at x = O reads

Ci = (12.5)

wol 2 wol 12
_bwen cos 0; mxx(O,O):vaBC;(l2

a

1 (0,0) = cos 6 (12.6)
Hence, the effect of the bending stress couple is mainly limited to the short
influence length, but is certainly not negligible at the base of the chimney. The

corresponding axial stress at the base x = 0 due to the “beam term”, as obtained
by Eq. (9.17), is

- n 2z6m o2 2 v

c"=10,0,7) = % + TZI—;X = —pwzalt (1 +7Z\/§ﬁ) cos® (12.7)

Note that the load factor o is negative for the current wind load. Hence, the
axial stress is positive (tension) at the windward meridian (6 = 0) and negative
(compression) at the leeward meridian (6 = x). The additional bending stress is
only present over a short influence length, however, the contribution can be quite
substantial. For the outer or inner surface (z = +¢/2) of, e.g., steel with v = 0.3,
the term between the brackets becomes 1+ 0.5. Hence, a prediction by the
membrane stress resultants only, might be in a rather large error for such a material
(in this case an error of 50 %).

Response to Self-balancing Load Terms (z = 2 and Larger)

The third term (n = 2) describes a double symmetric and hence self-balancing
term with two waves about the circumference, which results in a pressure at the
windward and the leeward meridian and a suction at the sides. We calculate the
response to this load by using the homogeneous solution as presented in Table 9.1,
which is complemented by the boundary conditions at hand.

The higher-order terms of the series development n > 2 are also self-balancing
and therefore analysed with the same solution procedure as for n = 2, however,
with their respective value of the circumferential wave number.

As shown in Sect. 9.7, we can obtain the inhomogeneous solution omitting all
derivatives with respect to the axial coordinate x. For the present load

pz(xv 6) = szn cos n0 (128)
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an inhomogeneous solution for (n > 2)reads

1 & 4
uz(x,0) = uy, cosnb = Dy HZ; (nzci 5 Pen €OS 1O
1
up(x,0) = ug, sinnb = ——u, sinnb
n
%0 2
mag(x, 0) = mgp, cosnd = nz:;—nz — lpzn cosnf (12.9)

My (x, 0) = myy, cos n® = vmgg, cos nd
X na
vo(x,0) = vg, sinnh = — E Z—IPZ" sinn0
2 _
n=2

where the other stress quantities are equal to zero. Apparently, the inhomogeneous
solution for n > 2 is the ring-bending solution. It shows that the displacements u,
and ug are not equal to zero. The boundary conditions at the clamped edge (x = 0)
are therefore not fulfilled and an edge disturbance that originates from this edge is
necessary. The resulting edge disturbance has a far-reaching influence; the long
influence length plays a role. The boundary condition for m,, at x = [ is also not
fulfilled but only due to a non-zero change of curvature in circumferential direc-
tion that is multiplied by Poisson’s ratio v. We conclude that this fact alone leads
to a short edge disturbance that originates from this free edge with a mainly local
effect and a small influence on the response of the cylinder.

From the above mentioned arguments, it can be concluded that for a chimney
with a length larger than the long influence length only the boundary conditions at
the base are necessary to describe the overall response to the wind load. Hence, the
constants in the homogeneous solution of the edge disturbance that originates from
the free edge can safely be equated to zero. The expressions for the four quantities,
which have to be described at the clamped edge, are listed in Table 9.1. We can
now formulate the boundary conditions for this edge by adding the inhomogeneous
solution to the expressions for the homogeneous solution at x = 0, which gives
four equations with four unknown constants. Making use of the fact that terms
multiplied by (aB)74 are negligibly small in comparison to unity (for the lower

values of n under consideration), we obtain the solution to these equations for
v=20

2_3
Cr=0;, Cl=0; C!=-—il"; cg=—<1—” 22>u (12.10)
(aB)

where @] is equal to u,, as presented in the inhomogeneous solution above. For the
case that Poisson’s ratio is not zero, the solution is
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vn? —1 vn? —1
Cn:Cn:___An, Cn:_ 1 ~N
T T 2 (apy )"

cg:_[l_(nz_g)@_v[;z_g_mm}ﬁag

The constants C} and Cj represent the short-wave solution; they are zero for
zero Poisson’s ratio. Additionally, it can be verified that the long-wave solution
(represented by the constants C5 and Cf) is mainly described by membrane stress
resultants in the axial direction while the loading leads to bending stress resultants
in circumferential direction.

For the free edge at x = [, we can apply a similar procedure to obtain the other
four constants. As described, the boundary conditions at this edge are only not met
by a bending stress couple, which occurs if the lateral contraction, described by
Poisson’s ratio v, is taken into account. For convenience, the solution is obtained at
an edge x =0 to cancel out the length in the expressions. Solving the four
equations for the boundary conditions, we find the four constants

(12.11)

n Vnz_lAn ol an_lAn n von’ ~n ! von’ ~n
=g il Ci= o il =g il Cg= g il
2 (ap)® ~ 2 (ap)® ~ 2 (ap)’® 2(ap)*
(12.12)

which indeed shows that the long-wave solution is hardly activated since these
constants are of the order O(V(aB)_Z). The fact that the inhomogeneous solution

is incompatible with the boundary conditions for the free edge is compensated by
an edge disturbance that is described by a small short-wave and equally small
long-wave solution.

On basis of these observations, it is obvious that the influence of the incom-
patibility at the free edge is negligible when calculating any quantity at the base of a
sufficiently long cylinder. Additionally, the influence of the moment m,, at the base
on the axial stress distribution at the base is not negligible if the lateral contraction
is accounted for. However, similar to the stress distribution for the “beam action”,
the contribution can be added to the membrane force n,,. Moreover, the addition of
the effects gives an identical ratio of the bending stress to the membrane stress. The
expressions for the membrane force n,, and the moment m,, are found by back
substitution of the homogeneous solution. Substitution of the constants and addition
of the inhomogeneous solution results in the expressions of Eq. (12.13) in which the

small terms of the order 0(((1[3)_2) are neglected compared to unity.
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2
1y (0, 0) Z 24/3 pzn COS nb

(12.13)

My (0, 0) z:va2 Pon 1cosne

Hence, we finally obtain the expression for the axial stress o,(x,0,z) at the
base x = 0 due to the terms (n>2) by addition of the membrane and bending
stress:

) < Ny | 226my,
0,0 —
62,="=°(0,0,2) = P

pzn 27 v
=Y 2/3( 1+2V3— 0
Z < + ; V3 T v2> cosn

(12.14)

We can derive a similar expression for the stress distribution at the base and at
the middle surface (z = 0) on the basis of the Donnell equation:

625" <5(0,0,0) 22\/ - J@cosn (12.15)

The difference with the Morley solution is in the inhomogeneous part that
describes the ring-bending action. It is well known that the Morley equation more
accurately describes this part of the solution (especially for the case n = 2). The
ratio of the solutions is equal to

ci%(0,6,0) n?
c2(0,6.0) 2 —1

(for 2<n<5). (12.16)

Stress Distribution at the Base

Having found the response of the long chimney to the separate terms of the wind
load, we can derive a useful design formula for the stress distribution at the base.
For a chimney longer than the long influence length, it is readily verified that the
only non-balancing term (n = 1) is the leading term of the full response and
conveniently, we can most easily find its response by a membrane solution or
beam analysis. The other contributing terms are the self-balancing terms
(n=2,...,5). The response of Eq. (12.14) to these load terms requires a more
laborious solution and therefore it is convenient to express their influence by their
ratio to the response to the ‘beam term’, as done in Eq. (12.7). This results in an
expression for the axial stress at the base x = O:
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262<n<5(0 ez)
00,72 3(0,0,2) = o1 (0,0,2) [ 14122

XX

& =1(0,0,2) (12.17)

Since the ratio of the bending-to-membrane stress for the non-balancing terms
and the “beam term” are multiplied by the same factor, we can further simplify the
formula to

5
> 03°"53(0,0,0)
6%5"=3(0,0, +1/2) = 6"='(0,0,0) | 1 + =2

c"=1(0,0,0)

v
1+ \/§7> 12.18
(12v5 2 (12.18)
The maximal tensile stress at 6 = 0 (the windward meridian) is
GUSnS3(z=1/2) = —p by 1—|—4\/ 3(1 —0? ( ) Z L o
wxt v - nz—1 ol
+V3—— ) 12.19
( - (12.19)

We obtain the formula for the maximal tensile stress at the clamped edge at the
location of the windward meridian (6 = 0) by substituting in this expression the
wind load of Eq. (12.1):

2 2
ol (2 =1/2) = 0.224—p, [1 +639V1 — 12 (‘;) ﬂ
a

v (12.20)
( + V33—

The part of the expression in front of the straight brackets is the beam solution.
The term between the straight brackets is the multiplier due to restrained warping
of the cross-section at the base. The formula for the compressive stress at the
middle surface (z = 0) and the leeward meridian (6 = =) reads

0

GXX

rul/\

P 2
"5 3(2=0) = -0224=p, {1 —4.88V1— 2 (?) %] (12.21)

which does not necessarily indicate the maximal compressive stress. The location
of this maximum depends on the dimensions of the cylindrical shell and on the
constants in the wind load.

Between the straight brackets of Eq. (12.20) for the tensile stress we recognize
the inverse dimensionless parameters //a and t/a. Note that, to obtain the stress on
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the outer or inner surface, the term between the round brackets has additionally to
be taken into account. The practical range for long chimneys extends up to a value
of around //a = 60, which further depends on the thickness of the cylinder that
may range up to a value of around a/t = 400.

The term between the round brackets depends only on the value of Poisson’s
ratio. The term between the straight brackets consists of the dimensionless
parameters //a and t/a which are multiplied by a factor. This factor depends on the
constants in the series development of the wind load and is given by 6.39 if v = 0.
The similar formula based on the solution to the Donnell yields 4.87 for that factor
with v = 0. It shows that the Morley equation gives a tremendous improvement
over the Donnell equation. Finite element analyses with nonzero Poisson’s ratio
support the high accuracy of the Morley solution.

We can present Eq. (12.20) in an alternative way. For this purpose, we intro-
duce the characteristic lengths /,; and /.,:

lcl = \/(E
X (12.22)
lo = atl?

Now we rewrite the formula for the maximal tensile stress at the clamped edge:

1\? '
G075 (2 = 1/2) = 0.224p,, (T) 1 +6.39vV1 — 12 (ﬁ) ]
) 2
. (1 . \/§¢1v—z> (12.23)
—V

Note that the beam solution in front of the straight brackets depends on the
characteristic length /.1, and the multiplier term due to restrained warping between
the straight brackets is dependent on the characteristic length /,. The multiplier
term is plotted in Fig. 12.2 against the dimensionless parameter [, /a. For the
practical range, the dimensionless ratios in Eq. (12.20) are 10<//a<60 and
50<a/t<400, i.e. 0.7<l,/a<3 and 70<1/l,; <1200 in Eq. (12.23). Note that
the largest value for /., /a is obtained for the thickest and longest chimneys, i.e.
smallest a/t in combination with largest //a. Figure 12.2 shows that only for a
considerable value of /;/a is the stress at the base of the chimney dominated by
the beam behaviour. For shorter chimneys, the stress at the base varies not merely
quadratically with the length as we might expect on the basis of beam theory, but
is largely dominated by the non-balancing terms.

Hinged Versus Clamped Support

Until now we have obtained the solutions for a fully rigid support at the base of the
chimney, i.e. a clamped edge. If the support of the chimney allows free rotation,
the moment should be zero at the base. The solution for such a “hinged-wall” edge
(uy = up = u, = 0, my, = 0) is almost equal to the solution for the clamped edge.
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Fig. 12.2 Multiplier to beam solution

It is left to the reader to demonstrate that the change in the long edge disturbance is
negligible, but the short edge disturbance is somewhat different. However, this
difference is not of any importance with respect to the global solution for the
stresses at the edge.

The tensile membrane stress at the base of a long chimney having either a
clamped edge or a “hinged-wall” edge can thus be obtained by equating the
product of the ‘beam theory stress” with the multiplier for this ‘beam theory stress’
presented within the straight brackets of Egs. (12.20) and (12.23). To obtain the
maximum tensile stress for the clamped edged, we must additionally take into
account the term between the round brackets of Eqs. (12.20) and (12.23), which
only depends on the value of Poisson’s ratio as shown in Fig. 12.2.

Lessons Learned

In this subsection, the solution to the Morley equation is used to obtain a suitable
formula for the stress distribution at the fixed base of a long chimney under wind
loading. Mainly because the inhomogeneous solution for the self-balancing terms
(n>2) accurately describes the ring-bending action of the cylinder, the result is a
substantial refinement of the formula on the basis of the Donnell equation and
shows better agreement with finite element results.

The ratio of the total membrane stress to the ‘beam theory stress’ depends
completely on the geometry of the chimney, the circumferential distribution of the
wind load and to a lesser extent on the lateral contraction of the material. The
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influence of the additional stress, due to the higher-order terms of the wind loads,
manifests itself in a long-wave solution. The shell behaviour in the part of the
cylinder where the long-wave solution does not exert influence is in accordance
with the ring-bending action. The long-wave solution represents the additional
membrane action of the shell to meet the boundary conditions.

For the bending stress at the base of the circular cylinder, we have shown that a
considerable contribution must be incorporated in the maximal tensile and com-
pressive stress at the base. For steel with Poisson’s ratio equal to v = 0.3, the
bending stress is approximately 50 % of the membrane stress. This rather large
increase is subdivided into two approximately equal parts: a part that produces the
short edge disturbance and a part that produces a long edge disturbance.

It is noted that the result is obtained under the assumption that the length of the
chimney is at least larger than the long influence length. For shorter cylinders, the
solution cannot be obtained solely on the boundary conditions at the clamped base,
since the long edge disturbance will produce stresses that are incompatible with
the boundary conditions at the free end. Hence, a compensating long edge dis-
turbance will originate from the free edge that might be of influence to the axial
stress distribution. The range of application of the derived formula is the subject of
the next subsection.

12.2.2 Applicability Range of Formulas

The formulas in Eqgs. (12.20) and (12.23) predict the tensile axial stress at the base
and the windward side of a long clamped chimney subject to wind load and only
differ in the different dimensionless parameters that are adopted. The formulas
describe the stresses at the middle surface and at the outer surface, respectively.

The range of application of these formulas can be investigated by comparison
with results by the program CShell, which applies for both short and long cylin-
drical shells. For chimneys much longer than the influence length, we will obtain
identical results. For chimneys shorter than the influence length, the program is
more accurate since the formulas do not include the effect of the edge disturbance
that originates at the free edge.

As an example, the multiplication factor for the outer fibre stress is plotted for
the formula and for the CShell program in Fig. 12.3. The factor in this figure is
thus based on all terms of Eq. (12.23). The agreement between the plots by the
formula and the program is extremely good if the dimensionless parameter /., /a is
larger than or equal to unity.

To interpret the dependency on this parameter, it is recalled that, besides the
dependency on the wind load factors, the increase of the beam stress is attributed
to the long-wave solution of the self-balancing terms of the wind load (n>2).
Alternatively, we may state that the range of application of Egs. (12.20) and
(12.23) is correct for a length larger than the half influence length for n = 2 (the
mode number that has the longest influence length and dominates that difference
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Fig. 12.3  Stress ratio for v = 0.3 at the outer fibre obtained by Eq. (12.23) and the program

between the beam stress and the total stress). For the cylinder equal to the half
influence length, the edge disturbance starting from the base is reduced by a factor
of the order ¢ ™? at the free edge. ‘Reflection’ from the free edge to the base
yields this reduction factor again, so the disturbance is reduced to a value in the
order of ¢™™ = 0.043. For a cylinder shorter than the half influence length, the
resting value after reflection exponentially increases, which conclusively explains
the difference between the two graphs in Fig. 12.3.

12.3 SMC Approximation

Similar to Sect. 12.2.1, we can derive a useful design formula for the stress dis-
tribution at the base of the long chimney by calculating the response to the wind
load while adopting the SMC approximation as detailed in Chap. 10. Fully in line
with the approach for the long chimney without stiffening rings, we can express
the contribution of the self-balancing terms (n =2,...,5) by their ratio to the
response to the “beam term” in Eq. (12.7). In order to obtain this ratio, we need
first to solve the appropriate boundary conditions for the self-balancing terms as
described in the SMC solution per Eq. (10.9). These are
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x=0; clamped: u,=0; ug=0
(12.24)
x=1; free: ny=0; ng=0

If the chimney is long enough that the edge disturbance originating from the

free edge does not influence the disturbance at the clamped edge, the solution for
the constants becomes

. 3 A
Cp = il c;=—(1—5<1+v>—”(am2)uz; C=Ci=0  (1225)

where for the sake of comparison, the contributions of the order (aB)*2 are
retained.

Substitution of the constants into the expression for the membrane force n,, as
presented in Table 10.1, results in the expression for n,, at the clamped edge

2
1(0, 0) Z 2‘/7 Pw —cos nb. (12.26)

n=2

In this expression terms O [(aB)z} are neglected compared to unity. The result is

identical to the expression in Eq. (12.13) on the basis of the Morley equation.
Having found the response for these self-balancing terms (n =2, ...,5), we can
derive the design formula for the stress distribution at the base:

Gﬁf" =3(0,6, Z)}

12.27
o1=1(0,0,2) (12.27)

0<n<5s =1
c.,="=7(0,0,z) = oy~ (0,6, )[
We can assume that the ratio of the bending-to-membrane stress for the non-
balancing terms is not altered, although not described by the SMC solution, and
remains identical to ratio as obtained for the “beam term”. Hence, we tentatively
propose to further simplify the formula for the stress distribution at the base to

6251<5(0, 6, 0)}

0<n<5 n=1
o (0,6,+1/2) = ol (OGO)[I—F =710, 0,0)

(12.28)
1£V3 )
( V1—v?
The formula for the maximal tensile stress at the clamped edge at the windward
meridian (6 = 0) for the long chimney based on the Morley equation is presented
in Eq. (12.20) and this formula is obtained by substituting the wind load of
Eq. (12.1). Performing the same substitutions for the SMC solution, the maximal
tensile stress becomes
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P ’
GOSnSS(Z = t/2) = 0.2247[)»1/ |:1 + 639@(%) Ctl:|
a

e

which is identical to Eq. (12.20). This comparison with the Morley solution shows
that a solution based on the SMC-equation is as accurate for the response of the
long chimney to the self-balancing terms (n =2,...,5).

(12.29)

12.4 Effect of Ring Stiffeners

This section describes the influence of stiffening rings on the behaviour of the long
chimney under wind load on basis of closed-form solutions and their range of
application.

In Sects. 12.2 and 12.3, we have shown that the stress at the fixed base of a long
cylinder under wind load can be conveniently related to the beam mode (n = 1).
The deformation and stress for the axisymmetric mode (n = 0) are of no impor-
tance for the overall behaviour. Only the response to the higher modes (n>2)
is markedly altered by the presence of stiffening rings in comparison with
the response of a cylinder without rings. For these higher modes, the membrane
force n,, at the fixed base is directly related to the induced out-of-roundness
(ovalisation) of the cylinder, which cannot occur at the base. As stated before, the
cross-section tends to warp at the base. The normal stresses are needed to with-
stand this warping, in other words: to keep this section plane. As the presence of
stiffening rings will reduce the ovalisation and hence the warping, n,, is reduced
accordingly, which is exactly what the SMC as presented in Sect. 12.4 describes.

12.4.1 Closed-Form Solution (SMC)

The semi-membrane concept (SMC), as presented in Chap. 10, is applicable to
non-axisymmetric load cases of circular cylindrical shells provided that the
cylinder is sufficiently long in comparison to its radius and that the boundary
effects mainly influence the more distant material.

In the SMC approach, the bending stiffness of the shell is adopted only for the
circumferential moment. As the ring behaviour can be adequately described by the
bending action of the ring only, it is proposed to “smear out” the bending stiffness
of the rings along the bending stiffness of the cylinder. This results in the following
modified bending stiffness

El,

Db,mod = Db + l_ (1230)
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where [, denotes the spacing between the rings and I, represents the bending
stiffness of the ring. Hence, the difference between the solution for a long cylinder
with multiple equidistant stiffening rings and the solution for a long cylinder
without these rings can be captured by a modified parameter B4 only. The
definition of B in Eq. (7.18) changes into

Dn(1 —v?)

12.31
l)h,moda2 ( )

4
Bmod =

It is convenient to define a dimensionless parameter A, as the ratio of the shell
bending stiffness without and with stiffeners:

Dy,

e =
Db,mod

(12.32)

This facilitates to express B4 into P:

Brod = B VA (12.33)

For the special case of rectangular stiffening rings with width b and height A
located at the middle surface of the circular cylindrical shell, the stiffness ratio A,
becomes

A — 1.3
" LB+ bR (1 —2)

(12.34)

Identical to Sect. 12.3, a useful design formula can be derived for the stress
distribution at the base of the long chimney stiffened by equidistant rings by
calculating the response to the wind load. With the same boundary conditions of
Eq. (12.24), the solution for the constants becomes

n ~n n 3 n2_1 an n n
Cl=-i; C=—(1-z(1+v)——|ia; C;=C,=0 (12.35)
v 2 (aBmOd)

where for the sake of comparison, the contributions of the order (a[_’)m(,d)*2 are
retained.
Substitution of these constants into the expression for the membrane force n,,

as presented in Table 10.1, replacing B by B,,,4 and neglecting terms of O [(aB)z}

to unity, results in the expression for n,, at the clamped edge

5 2
na(0,0) = =32 3(1—v2)a7 x pmlcosne (12.36)

T2
n=2 n

The resulting formula for the maximal tensile stress at the clamped edge at the
windward meridian (6 = 0) for the long chimney becomes
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Fig. 12.4 Definition of eccentric ring

12 2
OU5" SN2 =1/2) = 0224 p, {1 +630VT=2V/0, (9) %]

xx,t
v
<1+\/§m> (12.37)
in which the only change compared with Eq. (12.20) is the addition of the factor
V/A, within the straight brackets.

The above solution has been derived for stiffening rings with their centre
of gravity located at the middle surface of the cylinder, i.e. symmetric rings.
For eccentric rings, the flexural rigidity of the combined ring and a certain
effective length of cylinder should be adopted, which is to be evaluated with
respect of the centre of gravity of this combined ring as depicted in Fig. 12.4. For
engineering purposes, it is sufficient to determine the flexural rigidity as we do for
a straight bar (i.e. neglecting the influence of the curvature).

The effective length is known to be a function of the shell radius, thickness
wave number of the loading, the stiffener spacing and the ring dimensions and
eccentricity. A proposal for the appropriate effective length to be accounted for
within the present approach is provided in Sect. 12.5.2.
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12.4.2 Applicability Range of Formulas

Similar to Sects. 12.2 and 12.3, the Eq. (12.37) predicts the tensile axial stress at
the base and the windward side of a long clamped chimney subject to wind load.
However, the influence of distributed stiffening rings is incorporated into the
formula.

We have investigated the range of application of this formula by comparison
with results obtained by the developed program, which applies for short and long
cylindrical shells and allows accurate modelling of stiffening rings. For a chimney
with closely spaced stiffening rings, the formula predicts an accurate value of the
stress at the base, as this program is based on the closed-form solution and
the formula is obtained by “smearing out” the bending stiffness of the rings.
For chimneys shorter than, say, the influence length and/or for chimneys with a
more uneven distribution of the ring stiffness, the program is more accurate than
the formula since the formula does not include the effect of the edge disturbance
that originates at the free edge and as the formula is based on a constant distri-
bution of the ring stiffness along the length of the chimney.

Calculations have been performed for both stiffening rings with their centre of
gravity located at the middle surface of the cylinder and for eccentric stiffening
rings, of which the approach and results are discussed below.

Stiffening Rings. Centre of Gravity at the Middle Surface
of the Cylinder

For stiffening rings with their centre of gravity located at the middle surface of the
cylinder, the design formula has been verified with the developed program.
Calculations have been made for a radius-to-thickness-ratio of 100, with length-
to-radius-ratios of 10, 20 and 30 and with 2, 3, 4 and 5 equally spaced symmetric
stiffening rings per length-to radius ratio. The stress ratio between the stress due to
the mode numbers n = 1 and n = 2 and the stress due to the “beam term” has been
obtained by the program. The calculated stress ratio is fairly in line with the stress
ratio predicted by formula (12.37) unless the spacing between the stiffening rings
is chosen too large. For stiffening rings with a spacing roundabout equal to and
larger than half of the long influence length, the difference between the program
results and the values predicted by the formula increase with increasing ring
stiffness, i.e. decreasing stiffness ratio A,. The difference between the values
predicted by the formula and the values obtained by the program is small for the
cases with closely spaced stiffening rings, i.e. with a spacing shorter than half of
the long influence length.
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For eccentric stiffening rings, the envisaged necessity to account for a certain
effective shell length to determine the equivalent ring stiffness within the SMC
approach has been confirmed by the reported program results. Calculations have
been made for a radius-to-thickness-ratio of 100 and 200 and with 3 and 5 equally
spaced stiffening rings per length-to-radius-ratio. For the radius-to-thickness-ratio
of 100, the length-to-radius-ratios of 10, 20 and 30 have been considered and for
the radius-to-thickness-ratio of 200, the length-to-radius-ratios of 15, 30 and
45 have been considered. For both radius-to-thickness-ratios, these respective
length-to-radius-ratios approximately match with a 0.5, 1 and 1.5 times the
influence length of the long-wave solution. Based on these program results, it has
been shown that the determined effective lengths are (much) shorter than the
existing formulation for the effective shell length, i.e. 1.56+/at. Furthermore, it has
been shown that the effective shell length to be accounted for also depends on the
stiffener spacing, ring dimensions and eccentricity.

To match with the results of the program, a preliminary proposal for the
effective length has been provided based on the observations above. As a con-
clusive result could not be obtained, it is proposed to conservatively take the
effective shell length equal to half of the existing formulation. Considering the
applicability of the design formula, a marked improvement is already achieved by
inclusion of a certain effective length and the need for more improvement within
the practical ranges is considered to be unnecessary for rational first-estimate
design of ring-stiffened circular cylindrical shells.

12.5 Effect of Elastic Supports

This section describes the influence of elastic supports on the behaviour of the long
chimney under wind load. The influence is calculated on the basis of the Morley
equation.

We will demonstrate that only the response to the higher modes (n>2) is
markedly altered by the presence of an elastic support in comparison with a
cylinder with a clamped or hinged support.

For these higher modes, the membrane force n,, at the elastically supported
base is directly related to the induced out-of-roundness (“ovalisation”) of the
cylinder, which is partly withstood at the base by the planar (circumferential and
radial) elastic supports. As said before, the cross-section tends to warp at the base,
which in turn is partly withstood by the axial elastic support and results in the
normal stresses at the base. Elastic axial supports reduce warping less than rigid
supports, n,, remains smaller accordingly.
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12.5.1 Derivation of Formulas

For a completely elastic supported edge, the following system of equations for the
boundary conditions at the base (x = 0) is obtained for the modes n > 2.

kx ", x=0 . x=0

koug | ke

e | = | (12.38)
k(P (Px —Myxx

in which the spring stiffnesses k, (axial), kg (circumferential), k. (radial) and k,
(rotational) are introduced.

To solve this system, with the objective to obtain a formula for the stress at the
base of the chimney, terms multiplied by (aB)72 are neglected in comparison to
unity. We investigate some particular cases. As a reference, the results of
Sect. 12.2 are recalled. The solution for a clamped base is thus obtained by
equating each spring stiffness to infinity (kx =ko =k, =ky= oo) and the solu-
tion for the “hinged-wall” edge (1, = up = u; = 0, m,, = 0) is thus obtained by
equating each extensional spring stiffness to infinity and the rotational spring
stiffness to zero (ky = ko = k. = 00, ko = 0).

We consider the following elastic support conditions:
. Axial elastic support only,

. Combination of axial and rotational elastic supports, and
3. Combination of circumferential and radial elastic supports.

N =

Identical to Sect. 12.2.1, we derive a design formula for the stress distribution
at the base of the long chimney with elastic support by calculating the response to
the wind load.

Axial Elastic Support

We assume that an axial elastic support k, is present and that the wall of the
cylinder is free to rotate. The displacements in the circular plane (0z-plane) are
supposed to be fixed. We introduce the dimensionless parameter m,, which is
defined as

q = Kea  ab
Y Etpn2—1

This parameter is mainly described by the geometrical properties of the cylinder
and the ratio of the axial elastic support to the modulus of elasticity of the cylinder.

(12.39)
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Now, the solution for this elastic supported edge (kyuy = —nyy, up = u; =0,
my, = 0) reads

2

va-—1 n
Cl=—= i C5=0;
2@t (12.40)
Ci=—it; Cj=- Tl

By back substitution, we obtain the membrane force n,, and the moment m,,:

S <53 06~722\/ ; cosnb

=2 nz— 1n 1 (12.41)
m:="=3(0, 0) =0

Finally the axial stress distribution at the base becomes

Gﬁf”g (0,0,2) = ZZ\/-M

n=2

" n2 T + 1 cosnf (12.42)

Now we introduce the normalised stress ratio A,,, which relates the stresses due
to the higher modes to the same stresses that would occur for a rigid base

o) 5
D S D z(“ﬂ x)

N nggngs(nx)_cy)cx _ n=2
xn_GOinSS(nx:OO)_GnZI_ S 2<n<5 B >
(12.43)

Then, we can write the formula for the maximal tensile stress at the middle
surface

12 2
Vs (z=0)= 0.224—py |1+ 6.39V1 — V2L, (‘—;) ﬂ (12.44)
a

Axial and Rotational Elastic Support

We assume that, next to the axial elastic support k,, a rotational elastic support k,
is present. The displacements in the circular plane (6z-plane) are supposed to be
fixed, which is equal to the previous case.
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We introduce the dimensionless parameters m, and n,, as

ka —aB koa,_ -
; =—-2 12.45
[l e s 2B ( )
Then, the solution for this elastic supported edge (kyuy = —nyy, up = u, =0,

ko®, = —my) reads

2
:_Xn —1 Ny i

b2 (@B e+
21 1nvn? -1
cr— o |21 O L (1_nnx )

~N

= - u
2 Ne+1|2@p’n+1 2 (ap)? N = (12.46)
ci =i
n n ~Nn
ot

By back substitution, we obtain the membrane force n,, and the moment m,,:
5

2
S n<s . ) Pn N
(0,0) ~ ;2 3(1 v)tn2_1n+lcosn9

m2="<3(0,0) ~ Z P LS " <1— L >]cosn6
—1n¢+1 nx+1 nvn? —1 N, + 1

=2 X
(12.47)

If the parameter 1, is large and thus the factor n,/(n, + 1) close to unity, the
stress distribution at the base can be obtained by

. Ny 276my,
62 ="=5(0,0,2) = <tz

pn Ny 2z v n(P
,ZZ\/ 17\;2 t2n2 . <1+t\/§mn¢+l>cosn6
(12.48)

If the parameter m, is not large, the parameter m, is probably small in the

practical cases and hence the moment m,, is almost zero.
The stress at the middle surface is for all cases described by

625" <5(0,0,0) Z 21/3( p” + “cosnd  (12.49)

20
— tn

Based on the closed-form solution and practical considerations, we assess that
the additional influence of the rotational support will be limited, as the rotational
spring stiffness k, will decrease rapidly with decreasing axial spring stiffness k.
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We assume that both a circumferential elastic support kg and a radial elastic
support k, are present. The displacement in axial direction is supposed to be fixed,
while the wall of the cylinder is free to rotate.

The solution for this elastic supported edge (uy = O0,koug = —nly, kou, =

—vE, my = 0) reads
_ No. N
c"mc"zo(a 2); Clm O —— 02 12.50
1 2 (aB) 5 6 Mo + 17 ( )
We now introduce the dimensionless parameter ng,:
n’k, +koal aP 3
B Rethic: o= 12.51
e =2 () (12.51)

Again, this parameter is mainly described by the geometrical properties of the
cylinder and the ratio of the combined elastic support to the modulus of elasticity
of the cylinder. The approximate solution above is accurate if the parameter g, is
not small, since then the moment m,, is almost zero and does not exert influence
on the stress distribution at the base. By back substitution, we obtain the membrane
force n,, and the moment m,,:

2
n2="=0,0) Z 2/3( pz" Mo o5 16

n=2 t n2 Mo +1 (1252)

m2="<3(0,0) ~
Finally, the axial stress distribution at the base becomes

5 2
251 55(0,0,) = - Y 2\AI - Lo D _one (12,53
Z

X
n=2

Introducing the normalised parameter Ag,,,

00 5
B G2<n<5(q (un Tlez)
zn T

A=) —olT T anes S (o
7 Pxx o \n?—1

Q

(12.54)

we obtain the formula for the maximal tensile stress at the middle surface:

ZZ 2
o "= (2 =10)=0224—p, |1 +6.39V1 =12 dyyy (?) %] (12.55)
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12.5.2 Applicability Range of Formulas

Similar to Sect. 12.2, Egs. (12.49) and (12.53) predict the tensile axial stress at the
base and the windward side of a long chimney subject to wind load. However, the
influence of elastic supports is incorporated into the formulas.

We have investigated the range of application of these formulas by comparison
with results obtained by the developed program, which applies for short and long
cylindrical shells and allows accurate modelling of elastic supports. As this pro-
gram is based on the closed-form solution, an identical result is obtained for
chimneys much longer than the influence length. For chimneys shorter than the
influence length, the program is more accurate since the formulas do not include
the effect of the edge disturbance that originates at the free edge.

We have performed calculations for both axial elastic supported cylinders and
cylinders with both a circumferential elastic support and a radial elastic support.
The approach and results are discussed below.

Axial Elastic Support

For the axial elastic support (described by n,), calculations have been made for a
constant radius-to-thickness-ratio equal to 100 and length-to-radius-ratios of 5, 10,
20 and 40. This range has been chosen based on the dominating long influence
length (n =2) for the radius-to-thickness-ratio equal to 100, which is approxi-
mately equal to 20 times the radius. The parameter m, has been varied from
practically infinity to zero in combination with a “hinged wall”, i.e., k, equal to
zero and the total-stress-to-beam-stress-ratio has been investigated. The total-
to-beam-stress-ratio for the elastically supported condition is normalised to the
“hinged-wall” solution. Obviously, if the parameter m, is large, this “hinged-
wall” solution is obtained and, if the parameter n, approaches zero, the total-
stress-to-beam-stress-ratio is equal to unity.

The agreement between the theoretical factor and the factors calculated by the
developed program is very good and excellent for the higher length-to-radius
ratios. Based on these results, it has been demonstrated that the closed-form
solution is thus applicable for any value of the parameter n,, which expresses the
stiffness of the axial elastic support, and if the length of the chimney is longer than
half of the influence length for mode number n = 2, which coincides with the
range of application of Egs. (12.20) and (12.23) for a fixed base. In other words,
Eq. (12.49) that additionally accounts for the presence of an axial elastic support
has the same range of application as the formula without this additional term.
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Circumferential and Radial Elastic Support

For the circumferential and radial axial elastic support (described by myg,), it has
been assumed that the circumferential spring stiffness kg is equal to the radial spring
stiffness &, and, as such, a planar elastic support is provided. Calculations have been
made for a radius-to-thickness-ratio of 100 in combination with length-to-radius-
ratios of 2.5, 5, 10 and 20, respectively. This range has been chosen based on the
influence length for the radius-to-thickness-ratio equal to 100, which is approxi-
mately equal to 20 times the radius. Longer chimneys are not considered since,
from the previous results for the axial elastic support described with the parameter
7,, it can be concluded that the formula is valid for chimneys longer than the
influence length. The parameter 1, has been varied from practically infinity to zero
in combination with a “hinged wall”, i.e.kg and k, equal to zero and the total-stress-
to-beam-stress-ratio has been investigated. The total-to-beam-stress-ratio for the
elastically supported condition is normalised to the “hinged-wall” solution.
Obviously, if the parameter 1, is large, this “hinged-wall” solution is obtained
and, if the parameter ng, approaches zero, the total-stress-to-beam-stress-ratio is
equal to unity.

In comparison with the influence of an axial elastic support, it has been
observed that the agreement between the theoretical factor and the factors cal-
culated by the developed program is even better than for the variation of the
parameter 1. The agreement is even quite good for a length-to-radius-ratio of 2.5,

which is much less than half of the influence length (here l:-’,zz / 2a ~ 10 for

a/t = 100).

Since the formula for the stress at the base of a chimney is not accurate for a
length smaller than the half influence length, it is remarkable that the closed form
solution for the influence of an elastic supported edge is even more accurate.
Additionally, smaller values than 2.5 for the length over the radius are not practical
from an engineering point of view. However, the range of application for the total
stress at the elastic supported base of a chimney loaded by the wind load is
governed by the limitations of the formula for the clamped or hinged supported
base.

In Fig. 12.5, the normalized curves for the theoretical factor obtained with
Egs. (12.49) and (12.53) are shown. On the horizontal axis, the modified param-
eters My moq and Mg, mog have been adopted. The parameter m, .4 i in fact a
reduction of the parameter mn, according to

nvn? —1 kea Ja
S S S S 12.56
nx,mod Ny 4 3(1 7‘)2) Et \/; ( )

This modified parameter is thus independent of the mode number n, while the
dependency on the radius-to-thickness-ratio and the elastic properties of the
chimney is preserved.
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Fig. 12.5 Theoretical factor for axial elastic support and planar elastic support

The parameter Mg, 04 iS @ modification of the parameter ng, in Eq. (12.51)
according to

1 n*—1 ko;a Ja
nQZ,mod - nez 2(7’!2 + 1) Ny 4 3(1 — vz) == E? \/; (1257)

in which kg, = kg = k;. The parameter ng, is thus modified corresponding to the
modification of the parameter 1, to show the relative influence of the parameters.

Based on Fig. 12.5, it is concluded that in case of an elastic support to a long
circular cylinder, only the axial spring stiffness has to be taken into account as the
influence of the planar spring stiffness is only markedly observed for very low
stiffness ratios in comparison to the axial stiffness ratio.

12.6 Summary of Chimney Design Formulas

In this chapter, we have presented the design formulas that are based on the
Morley equation and an equation on the basis of the semi-membrane concept.
We also indicated the respective ranges of application. The main objective of the
chapter was the design of chimneys, but the derived formulas are meaningful for
any slender circular cylindrical shell structure.
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12.6.1 Design Formula for Chimneys with Rigid Base

The design formula for the maximal tensile stress at the outer surface at the fixed
base of long cylindrical shells without stiffening rings subject to wind load is

o<n<s(z_t/2)—0224lpw[1+639m() } < +fm>

(12.58)

The coefficients 0.224 and 6.39 hold true for the chosen wind distribution. By

introduction of the characteristic lengths /.1 = +/at and [, = Vatl?, we can write
this formula alternatively as

[
005" (z =1/2) = 0.224p,, <l )
: cl

-<1+\/§

1+639m<(2>]

\
\/l’jv‘i) (12.59)

The term within the round brackets describes the effect of a full rotational
constraint and is omitted in case the shell wall is free to rotate at the base.

The formula is applicable to cylinders longer than half of the long influence
length. Alternatively, one can state that the formula is applicable to cylinders with
a characteristic length /., longer than the radius a.

12.6.2 Design Formula for Chimney with Stiffening Rings
The design formula for the maximal tensile stress reads

oVSn<S(z=1/2) = 02241 P [1 +639ﬂ\/7( ) ]

XX[

A1+V3 > 12.60
( i (12.60)
or alternatively
1\? a\’
oV51=5(z = 1/2) = 0.224p, (T) 1+6.39V1 — vz\/f,(l—> ]
' cl c2

: (1 +V3 (12.61)

v
V1-— vz)
in which the stiffness ratio A, represents the ratio of the bending stiffness of the
circular cylindrical shell only to the modified bending stiffness of the shell
(including the ‘smeared’ contribution of the ring stiffness).
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The design formula is applicable for closely spaced stiffening rings, i.e. with a
spacing shorter than half of the long influence length.

As a rule, ring stiffeners are connected eccentrically. An effective width of the
shell must be taken into account for calculating the flexural stiffness of the
stiffeners.

12.6.3 Design Formula for Chimneys with Elastic Supports

The design formula for the maximal tensile stress at the middle surface at the fixed
base of long chimneys with axial elastic support subject to wind load is

0<n<5 I a\2a
ol " “3(a=0) = 0.224—p, |1 4+6.39V1 =L, (7) . (12.62)
’ a

l 2
o) Sm=3(z=0) =0.224p, <Z_>
' cl

1+ 639V1 — vy, (iﬂ (12.63)

ZCZ

in which the normalised stress ratio A,, is introduced, defined in Eq. (12.43).
Similarly, the design formula for the maximal tensile stress at the middle
surface in case of combined circumferential and radial elastic support is

IN

0
Oxr

n<s & VT e (2)4
52 =0) = 0.224—p, [1+639V1 =gy, (7) . (12.64)

or alternatively

l 2
oy "= 7(z=10)=0.224p, <l>

’ cl

4
1+ 6.39V1 — g (“) 1 (12.65)

lc2

in which the normalised stress ratio Ag,, is introduced, defined in Eq. (12.54). The
formulas are applicable to cylinders for which the characteristic length /., is larger
or equal to its radius a. In case of an elastic support to a long circular cylinder, we
must take into account only the axial spring stiffness and the formula is applicable
for any value of the parameter m, and cylinders longer than half of the long
influence length.



Chapter 13
Storage Tanks

To demonstrate the capability of the developed program CShell, we have
performed a numerical study of tanks under the main load-deformation conditions.
This chapter focuses on the shell of the tank while considering the various con-
nections of the shell to the top and bottom, i.e., the influence of type of roof and
floor on the behavior of the tank wall.

13.1 Problem Statement

Circular cylindrical tanks are used for storing liquids, gases, solids and mixtures
thereof. Tanks for storing solids are more usually referred to as silos. Tanks
forming a closed container designed to hold gases or liquids at a pressure sub-
stantially different from the ambient pressure are referred to as pressure vessels.
Silos and pressure vessels are not considered in this chapter.

Liquid storage tanks for storing water, oil, fuel, chemicals and other fluids are
usually vertical in shape. A typical large, thin-walled liquid storage tank is
obviously much shorter than the long chimney such that the diameter is of the
same order in comparison with the length as opposed to the chimney. The
geometry of such stocky cylinders is typically such that the diameter is at least
equal to the length or that the length can even be much smaller than the radius, viz.
a ratio between radius and length between 0.5 and 3.

For such short lengths between the circular boundaries, the short influence
length has a more marked contribution to the load-deformation behavior of the
cylinder and the long influence length is much longer than the height of the shell.
This feature prevents us from readily obtaining a closed-form solution to non-
axisymmetric loads similar to those obtained for the long chimneys in Chap. 12.

Concrete tanks typically might have a relatively large ratio between radius and
thickness of about 30-80, but especially large steel storage tanks are thin-walled

J. Blaauwendraad and J. H. Hoefakker, Structural Shell Analysis, 211
Solid Mechanics and Its Applications 200, DOI: 10.1007/978-94-007-6701-0_13,
© Springer Science+Business Media Dordrecht 2014


http://dx.doi.org/10.1007/978-94-007-6701-0_12
http://dx.doi.org/10.1007/978-94-007-6701-0_12

212 13 Storage Tanks

such that the ratio between radius and thickness might even be between 500 and
2,000.

In this chapter, we intend primarily to demonstrate the capability of the pro-
gram developed to model the shell of large vertical liquid storage tanks. Addi-
tionally, we provide tentative insight into the static response of such tank shells to
the relevant load and/or deformation conditions. This is obtained by several cal-
culations with the program CShell and comparison with the insight as obtained for
the behavior of the long cylinder.

This chapter further focuses primarily on large, single wall, concrete or steel,
vertical tanks, which are either closed or open at the top, for the storage of liquids
at low or ambient temperatures and with a design pressure near ambient pressure.
The design of such tanks can be divided into three major areas: (1) the shell,
(2) the bottom, and (3) the roof. The bottom and roof layout of the tank typically
vary with the operational conditions, preferences and safety requirements. In any
case, these provide a rigid support, no support, or an elastic (intermediate) support
to the tank shell. In view of the capability of the developed program, the next
sections focus on the shell of the tank while considering the various connections of
the shell to the top and bottom.

13.2 Load-Deformation Conditions and Analysed Cases

We can identify three main load-deformation conditions for the overall response of
the tank wall:

e Content load (especially when being filled to maximum capacity),
e Wind load (especially for the open top tank and external floating roof tank),
e Settlement induced load and/or deformation.

The response to the content load has been described in Chap. 5 and the possible
effects of non-uniform settlement of the foundation on the deformation of the tank
wall have been treated in Sect. 4.8.

As described in Sect. 12.1, the shape of the circumferential distribution of the
wind load is such that only a part of the circumference, the so-called stagnation
zone, is under circumferential compression, while the remainder is under suction.
It is noted for short cylinders that we should consider different values depending
on the Reynolds number corresponding to the geometry of the cylinder. Here we
adopt for convenience the wind load distribution as described by Eq. (12.1).

Due to the wind load, the cross-section of the tank tends to distort into an oval
shape. At the shell-to-bottom junction, the full circular restraint of the tank wall in
combination with an axial restraint in case of anchorage, induces axial bending
stresses along the long influence length that result from the withstood out-
of-roundness as similarly observed for the chimney under wind load.

In case of closed and fixed roof tanks, the roof provides an adequate restraint to
maintain the roundness of the tank. The wind load is then mainly carried by axial
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tensile stresses at the windward side and compressive stresses at the leeward side,
i.e., mainly by beam action of the shell. For open top and external floating roof
tanks, circumferential primary wind girders are normally externally provided at or
near the tank top to maintain the roundness and stability of the tank under wind
load (especially while emptying the tank). Especially for tall tanks, secondary
wind girders at intervals in the height of the tank might be required to prevent local
buckling.

Based on the above main load-deformation conditions for the tank, the fol-
lowing relevant cases have been identified for the shell of the tank:

e Content load of a fully filled tank,
e Wind load on the tank with various top restraints, and
e Circumferential settlement of the foundation with various top restraints.

For the hydrostatic load and the wind load, both steel tanks and concrete tanks
have been analyzed, while only steel shells have been considered for the settlement
analyses.

13.3 Stresses Due to Content

13.3.1 Concrete Tank

For the hydrostatic load on a tank wall with uniform thickness, we can obtain the
solution by elementary analysis as performed in Sect. 5.3 in which the response of
a concrete tank is treated.

13.3.2 Steel Tank

For practical reasons, steel tanks are built up from fairly small rectangular pieces
of carbon steel plate, which are curved in a cylindrical shape and joined by butt-
welding. The shell is thus built up in rings (also referred to as courses) and
typically the thickness of the plates varies with the internal pressure, i.e., thicker
plates are applied in the lower courses and thinner plates in the upper courses.

A steel tank (material properties taken as E = 210 x 10kN / m? and v = 0.3)
with radius a = 10 m, height / = 20 m and varying wall thickness is modeled as
completely filled with water (density taken as y,, = 10 kN/m?). The bottom edge
(x = 0) is fully fixed and the top (x = I) is free. The thickness of the shell courses
has been applied as follows from the bottom to the top (% indicates height of the
respective courses or courses with the same thickness):
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Fig. 13.1 Steel tank with content load, stress resultants ngg and m,, along the height
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The relevant displacements and stresses are shown in Figs. 13.1 and 13.2. The
membrane force ngg in Fig. 13.1 varies rather linearly with the content level up to the
region near the bottom where the radial displacement is a fully restraint. The small
disturbances coincide with the transitions in course thickness. The axial stress
associated with the moment m,, in Fig. 13.1 is quite considerable, but in fact a fully
fixed tank is modeled. If the tank is not fully fixed, an elastic rotational support is
present that allows some rotation of the shell-to-floor junction, which effectively

Length of courses [mm]

% [mm]

Length of courses [mm])

20000 —

8000 —{

Ogo [N/mm?]

Fig. 13.2 Steel tank with content load, displacement u, and hoop stress Ggg along the height
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reduces the bending stresses at the bottom. The distribution of the hoop stress Gg9 and
the displacement u, in Fig. 13.2 are identical, as expected. The shape of the hoop
stress diagram is reduced by the increased thickness of the courses toward the bottom
of the tank. The smooth changes are clarified by the stiffening effect of the thicker
plate to the thinner plate above, which can be considered as a partial restraint at the
bottom edge of the thinner plate.

13.4 Stresses Due to Wind Load
13.4.1 Concrete Tank

In this subsection, we present the response of two different concrete storage tanks
under the wind load of Eq. (12.1). The two cases are:

1. A storage tank, which is clamped at the base, with a free edge at the top; and
2. The same storage tank, but with a fully rigid roof at the top.

The rigid roof is modeled as a ring with a very high modulus of elasticity so that
the ring is non-deformable by in-plane actions and thus provides a circular restraint
to the top. At the bottom, we consider a full axial and rotational restraint to the
shell wall (i.e., clamped condition). The geometrical properties of both concrete
shells are the same (I =30 m, @ =25 m, t = 0.3 m) and for the material prop-
erties we use E = 35 x 10°kN/m? and v = 0.2.

From Fig. 13.3 we observe that, in view of the magnification factors, the
deformation is drastically reduced by the rigid roof. Figure 13.4 reveals that the

Fig. 13.3 Cross sectional deformation of the clamped tank with a free edge (leff) at the top
(x 3,000) and of the clamped tank with a rigid roof (right) at half the length of the cylinder
(x 18,000)
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Fig. 13.4 Clamped tank with a free edge (leff) and with a rigid roof (right), n,, at 6 =0

axial membrane forces n,, for n = 1 and n > 1 are distributed like a clamped-free
beam. In case of a rigid roof, this again applies for n = 1, but not anymore for
n > 1. Then the stress is distributed like a clamped-hinged beam. At the base of
the shell with the rigid roof, the membrane force n,, is much smaller than at the
base with the free edge. The distribution of this membrane force along the base
circle is shown in Fig. 13.5. Finally, the membrane force n,, at the base of the shell
with the free edge is about 120 N/mm under the applied wind load. This value is
even less than the axial stress at the base under the dead weight of the concrete
shell only. Adopting a typical density of 2400 kg / m? for concrete, the dead weight
membrane force at the base becomes pglt ~ 210N /mm. In this particular case, it
can thus be concluded that the dead weight virtually provides a full axial restraint
at the bottom of the shell.

d
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Fig. 13.5 Clamped tank with a free edge (leff) and with a rigid roof (right), ny, at x =0
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Fig. 13.6 Clamped tank with a free edge (leff) and with a rigid roof (right), m,, at 6 =0

For reasons of comparison we analyzed the same tank on the basis of the Donnell
equation. The magnitude of the stress resultants and cross-sectional deformation is
much smaller in the Morley theory. The membrane force n,, is reduced by about
20 % at the base of the tank with the free edge and, in case of a rigid roof, the
maximum along the tank height is reduced by about 33 %. Moreover, the moment
my, at the base is reduced by 50 %. For this particular case, a large reduction in
the outer fiber stress at the base is thus observed. The quantities and the shape of the
diagrams are properly described by the Donnell equation, but to predict the
magnitude of these quantities, we should consider the Morley equation.

The bending moment m,, is shown in Fig. 13.6. This moment only occurs in the
base zone and top zone due to short edge disturbances. Over a large part of
the shell the moment is practically equal to zero. Due to the deformed shape in the
horizontal plane, see Fig. 13.3, the bending moment m, will be nonzero and will
be substantial for a free edge.

13.4.2 Steel Tank

In this subsection, the response of two different steel storage tanks (material
properties taken as E =210 x 10°kN/m? and v = 0.3) under the wind load of
Eq. (12.1) is presented. The two cases are:

1. A storage tank, which is clamped at the base, with a free edge at the top; and.
2. The same storage tank, but with a (steel) wind girder at the top.

In line with the observations of the previous subsection, the connection at the
base is modeled as a full axial and rotational restraint to the shell wall. These cases
are considered to show the impact of the wind girder on the stress distribution and
the deformation of the tank.
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A typical geometry for a steel storage tank with a wind girder is a/t = 1000,
l/a =1 and A, = 20 where the ratio A, represents the bending rigidity of the wind
girder itself to the tank wall. Hence, a tank with / = a = 10 m is considered that is
built up from various courses with varying plate thickness as exemplified in
Sect. 13.3.2 while maintaining roughly the typical ratio of a/fr = 1,000. The
thickness of the shell courses has been applied as follows from the bottom to the

top (h indicates height of the respective courses or courses with the same
thickness):

Frrrrrrrr TT T T 710717

Fig. 13.7 Cross-sectional deformation at the top of a steel tank with a free edge (left) (x 2,000)
and with a wind girder (right) (x 2,000)
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Fig. 13.8 Steel tank with a free edge (leff) and with a wind girder (right), u, at 6 =0
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The corresponding tank wall bending stiffness (viz. shell bending rigidity times

the tank height) is thus equal to.
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Dyl = 30 th (13.3)

For the present purpose, the wind girder is conveniently modeled as an
eccentric annular plate with width A, = 250 mm and thickness #, = 12.5 mm
resulting in a circumferential bending rigidity of the wind girder EI, = Ehg,tg /12
with respect to its centre of gravity.

From Figs. 13.7 up to 13.9 and including Fig. 13.10, we observe that the
influence of the modeled ring is confined to a limited length from the top, viz. only
affects the shell behavior within the short influence length and does not markedly
influence the overall behavior. Note in Fig. 13.7 that the radial displacement u,
does not differ much between shells with or without a wind girder. The positive
effect of a wind girder in carrying the wind load is very small (Figs. 13.11-13.13).

13.5 Settlement Induced Stresses

In this section, we present the response of the steel tank with the wind girder of the
previous subsection (case 2) under a non-planar settlement. For the present pur-
pose, we conveniently introduce a full circumferential settlement with mode
number n = 2 as done in Sect. 4.8, which is described by

Uy (0) = —tts yax 08 20 (13.4)

in which ug,,, is the maximum settlement along the circumference. Here the value
U max = 25 mm is chosen as typical value. The geometry and material properties
are taken identical to those of the previous subsection, but at the bottom we model
the tank as freely supported in axial and rotational direction. In other words, at the
bottom of the tank a prescribed axial displacement without rotational constraint is
modeled.

In Sect. 4.8, an assessment based on in-extensional behavior of a cylinder with
height equal to its radius a, subject to a general sagging of the tank (n = 2), is
performed. From Eq. (4.53), we find that the radial displacement u, at the top of
such a cylinder is equal to four times the axial displacement u, of the settlement
and two times the circumferential displacement uy along the shell height.

From the Figs. 13.11-13.13, we observe that the circumferential settlement
indeed mainly induces an in-extensional deformation and corresponding stresses.
Furthermore, we observe that the influence of the modeled ring is confined to a
limited length from the top, viz. only affects the shell behavior within the short
influence length and does not markedly influence the overall behavior. Hence, the
ring at the top only influences the hoop stress and the axial stress and hardly affects
the deformation. The ring just follows the in-extensional behavior and the bending
moment is fully deformation-imposed.
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Chapter 14

Membrane Behaviour of Shells

of Revolution Under Axisymmetric
Loading

For roof shells with a rectangular plan it is convenient to apply a general co-
ordinate system (x, y, z). This description is useful for a shallow shell: in other
words for a shell with a span much larger than the elevation. For deep shells this
description is not accurate. For manual calculation of the special group of non-
shallow shells of revolution, we would do well to apply another description. This
chapter deals with the membrane behaviour of these shells under axisymmetric
loading.

14.1 Description of the Surface

Figure 14.1 shows a shell of revolution with a vertical axis of revolution. A point P
on the surface of the shell lies on a meridian and a parallel or latitude circle. The
meridian is the intersection line of the shell and the vertical plane through the axis
of revolution and Point P. The latitude circle is the intersection line of the shell and
the horizontal plane through P. The normal to the shell surface in point P intersects
the axis of revolution at point Q. In Fig. 14.1a, we have drawn a set of axes x, y, z
in point P. The x-axis is along the meridian, which is in fact the longitudinal
direction. The y-axis is along the latitude circle and the z-axis along the normal.
It is convenient to replace the set of axes by an alternative set of polar coordinates
as shown in Fig. 14.1b. In the vertical plane, the angle ¢ between the normal
and axis of rotation takes the place of x, and the angle 0 in the horizontal plane
replaces y. The z-axis remains unchanged in the normal direction.

Shells of revolution have principal curvatures in the direction of the meridians
and latitude circles. The origins of the two radii of curvature are on the normal, but
need not be at the same place. The principal radius »; corresponds to the curvature
in the vertical plane, see Fig. 14.1c. The principal radius of curvature r, in the
other direction is shown in Fig. 14.1d. This radius starts at point Q on the axis of
revolution; the origin of radius r is not restricted to point Q. That is only the case
for spheres. Positive directions of the displacements of a point P on a meridian are
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Fig. 14.1 Coordinates in two systems, (a) and (b). Principal radii, (c) and (d)

shown in Fig. 14.2. Left shows the displacements as defined in the direction of the
coordinates ¢ and z; right shows the displacement in the direction of the horizontal
radius r. Because of axisymmetry, the load py, the displacement uy and all
derivatives with respect to 8 are zero. Since the edges of a shell of revolution are
often situated in the Or-plane, it is useful to introduce the alternative displacement
u, as shown in Fig. 14.2. For membrane states, the following vectors are relevant:

Fig. 14.2 Displacements in
the vertical plane
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Fig. 14.3 Scheme of relationships
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The relation between these vectors is presented in Fig. 14.3.

14.2 Kinematic Relation

In Chap. 2, we found for the strain g,, in the system of axes (X, y, z)

 Ouy u;

= — 14.1
B = (14.1)

r

Comparing the coordinate system (¢,0,z) of Fig. 14.1b with the (x,y,z)
co-ordinate system of Fig. 14.1a, we observe that an infinitesimal increase d¢ of
coordinate ¢ causes an increase dx of coordinate x, so dx = rid¢. Therefore,
Eq. (14.1) is in the coordinate system (¢, 0,z):

Ouy  u;
Epp = —=
¢¢ r1d¢+r1

(14.2)

For the strain €, in y-direction (here strain £gg), we found in Chap. 2 a con-
tribution to the displacement u, in normal direction of the size u,/r,. Note that the
displacement u, and radius r, are in the same direction. The contribution to the
strain ggg is due to the fact that radius r; increases to r, + u,. In the present chapter,
the strain ggg also increases due to the displacement ug in the direction of the
meridian. If a latitude circle displaces over the distance u¢, along the tangent to the
meridian, the additional circumferential strain in the latitude circle is ug /1, where
ry is defined in Fig. 14.4. It is the distance from point P to the axis of rotation,
measured along the tangent line to the shell. The proof is straightforward. The
circumference of the latitude circle without the displacement is ugcos
2nr = 2n(r,cos ). With the displacement the circumference increases to
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Fig. 14.4 Definition of tangential radius r,

Zn((r, + ug) cos (])) The difference is 2n(u¢ cos cl)) If we divide by the initial
circumference 2n(r; cos ¢), we obtain uy/r;, q.e.d. The final result for ggg is

oo =—+—. (143)

Equations (14.2) and (14.3) can symbolically be presented as the kinematic
relation e = Bu:

. 1d 17
00 —— = 0
d
= | N ¢ " (14.4)
€00 — —_ U;
Iy I

14.3 Constitutive Relation

The constitutive relation is written as:

Moy | _ Et 1 v Eod 145

{nee} 1—v2 v 1] [e&p (14:3)

If the vector s of shell forces is directly known, the strains can be computed
from the inverse relation for the deformation vector e = D~!s, which reads:
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oo | _ LI 1 =V [neg (14.6)
€00 Et|—vV 1 Nop

14.4 Equilibrium Relation

Consider an infinitesimal shell element of size r;d¢ in meridian direction and rd0
in circumferential direction as shown in Fig. 14.5. We derive two equilibrium
equations, one for the meridional and one for the normal direction. As shown in
Fig. 14.5, two membrane forces play a role and two load components are applied;
the system is statically determinate. The edge of the small shell element with size
r1d¢ is loaded by the membrane force ngy - ridd, and the edge with size rd0 with
the force ngg - rd0. The latter force increases in ¢-direction, and the increase
points in the ¢-direction, see Fig. 14.6. Furthermore, the membrane forces
nge - rdO include a small angle d¢ and have a resultant force ngg - 7d0 - dé in
normal direction, pointing in the opposite direction of the load p, - rd0 - rid¢d on
the small shell element. The two circumferential forces ngg - r1d¢ include a small
angle d0, and have a resultant ngy - r|dd - dO - cos ¢ parallel to the tangent to the
meridian and pointing in the direction of decreasing ¢ (see Fig. 14.7). The forces
ngy - ridd have another resultant ngg - r1dd - d0 - sin d normal to the meridian,

Fig. 14.5 Load components and stress resultants on an infinitesimal element
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Fig. 14.6 Contribution of the meridional stress resultant to the equilibrium

Fig. 14.7 Contribution of the circumferential stress resultant to the equilibrium

pointing in the opposite direction of p, - rd8 - ridd. The equilibrium equations for
the membrane forces become
d(n¢¢ . rde)
dd
—ngo - r1dd - dO - sind — ngg - rd0 - dd +p, - rd0 - ridd = 0.

dd —ngg - r1dd - dO - cos G+ py - rd0 - ridd =0 (147)

By dividing these equations by the product rd¢ - dB, we obtain two equilib-
rium equations
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d
M—neecosd)—i—pq,rzo
",lqd¢r (14.8)
fﬂfneesinc])erzr:O.
r

Since r = r; sin ¢ = r;, cos ¢, the equilibrium equations can be rewritten as

1d(npor)  neor

+per=0
" n dﬂ) n rrt Cb (14.9)
—ﬂ—i+pzr20.
gl )

Symbolically presented as B*(sr)= pr, this equilibrium relation is

1 d l n r Pol
T o ¢
d
ndé - (14.10)
— — nepr pr
r rn

The last equation in Eq. (14.10) can be rewritten as

_oe _ oo
noon

+p.=0 (14.11)

According to the definition in Egs. (2.7) and (2.8) we can express the curvature
of the shell with the geometry of Fig. 14.5 by

1 1
by == ko = —— (14.12)

Using these expressions, we rewrite the equilibrium equation:
k¢l’l¢¢ + kongy +p;, =0 (14.13)

This equation is similar to the last equilibrium equation in Eq. (2.19) in Chap. 2.

14.5 Membrane Forces and Displacements

14.5.1 Membrane Forces

Because the system of equilibrium equations is statically determinate, the mem-
brane forces can be obtained directly from the equilibrium equations. The cir-
cumferential membrane force ngg is eliminated from the equilibrium relation
(14.10) by multiplying the first equation with sin ¢ and the second with cos ¢:
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rng,Sing rn

Fig. 14.8 Vertical equilibrium of a shell ring

d(nger)
rdd

The left-hand member of this equation can be written as d (nger sin ¢) /r1dd, so
the equation is also given by:

d (n¢¢ rsin d))

rid¢
This new equilibrium condition has a physical meaning. It describes the vertical
equilibrium of a shell ring between two adjacent parallel circles with radius r at

distance d¢ from each other, see Fig. 14.8. Equilibrium of the shell ring in the
direction of the axis of rotation requires

d (n¢¢r sin (1))
dd
In this equation, we have included the forces which act on a ring part over an

angle 0 of one radial. If we divide by r| dd, we obtain Eq. (14.15). Integration of
this equation gives the meridional membrane force

sind)—i—wcosd):—(pzcosd)—pq)sind))r (14.14)
3l

= —(p.cosd — pysind)r (14.15)

dd + (p.cos ¢ — pg sind)r ridd =0 (14.16)

1 .
Nog = m/ (p-cos & — pgy sin o) rrid¢. (14.17)

Substituting this result in the second equilibrium equation of Eq. (14.10) leads to

1
negry sin ¢ = prr; — m/ (p-cos & — py sin @) rrid¢. (14.18a)
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Dividing by ry sin ¢, and accounting for r, = r/ sin ¢, we rewrite the equation:
1 .
neg = p.ra — 72/ (pZ cos ¢ — pg sin ¢)rr1dd>. (14.18b)
ry sin” ¢

We end up with the membrane solution:

1

noy = rsin¢F(¢)
T rw) (14.19)
00 = PzI2 Sn2d

The term F(¢) in Eq. (14.19) is the expression for the integrated load terms:

F(¢) = /f(d))dd) = / (p:cos  — pg sin ) rridé. (14.20)

14.5.2 Displacements

The shells of revolution, considered in this chapter, are loaded by axisymmetric
loads. The only place where displacements are of true interest is at the base of the
shell. There, dependent on the type of support, disturbance of the displacement
field may occur, and bending moments may come into being in an edge zone. This
will be the subject of the next chapter. Then it is necessary to know the dis-
placements at the base due to the membrane forces. These are the radial dis-
placement u, in the horizontal plane and the rotation @, defined in Fig. 14.9. We
find displacements by integrating strains, and the strains are obtained by the
constitutive relations (14.6):
1

Eo0 = oo <”¢¢ - V”99)

(14.21)

€og = —Vnge + nee)

7

Fig. 14.9 Definition of displacement and rotation at the base
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/i (b)

(a)

Fig. 14.10 Rotation of the tangent to the meridian: a due to ug, b due to u,

The radial displacement is easily calculated from the circumferential strain at
the base:

Uy = €007 base- (14.22)

A rotation @ is due to both the displacement ug and the displacement u., as
illustrated in Fig. 14.10. The meridional displacement uy causes a change of angle
of the tangent line at point P of the size u4/ri. Due to the normal displacement u,,
the tangent line rotates over an angle —du,/(r;dd). The two contributions together
lead to the equation for the rotation @:

1 du

At the base of the shell of revolution, the meridional displacement ug will be
zero. Then the equation simplifies to

L du,
(P¢_ Vldd)-

(14.24)

14.6 Geometry of Conventional Shells of Revolution

Often applied shells of revolution are the cylinder, the cone and the sphere.
Fig. 14.11 shows the geometry of those surfaces and the usual co-ordinate sys-
tems. The circular cylinder is a special case, in fact a degeneration, of a shell of
revolution. Now the radius r; is infinitely large and radius r, is constant. The
coordinate ¢ is not useful anymore, and instead, the coordinate x is used. The
membrane theory of shells of revolution now converts to the membrane theory for
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Cylinder: 7, =0
n=a

r=a

¢:

S

Cone: 1 =00
r=r,sin ¢
r=xsina+r,

V1

¢=5— a

Sphere:  1r,=r,=a

r=asin ¢

Fig. 14.11 Geometry and co-ordinate system of shells of revolution

circular cylinders as discussed in Chap. 4. For an application we refer to the water
tank example of Sect. 4.9.

14.7 Application to a Spherical Shell Under
its Own Weight

Consider a spherical shell subject to its own weight p, supported by rollers at the
base, see Fig. 14.11. The membrane response of the shell leads to a meridional
membrane force ng¢ and a circumferential membrane force ngg. A pure membrane
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Fig. 14.12 Geometry and load of a roller supported sphere

solution is applicable since the supports are compatible with membrane forces and
they allow deformation in the circumferential direction. For a sphere with the
geometry of Fig. 14.12, the meridian describes an arc of a circle. The vertical’s
own weight can thus be rewritten to surface load components as shown in Sect. 5.6
and Fig. 5.3. These load components and the geometry are thus expressed by

Py =p sind rn=rn=a

. (14.25)
p,=—p cosd r=a sin

The membrane solution in Eq. (14.19) is

1
N :mF(¢)
1

asin® ¢

(14.26)

F(¢)

Ry = p:d —
The expression Eq. (14.20) for the load terms becomes

F(d) = / (=pcos® ¢ — psin® ¢)a’ sin pdp = —pa’ / sind do
= pa*(cos ¢ + C) = pa*(cos d + C).

(14.27)

The membrane forces are consequently

cosdp+C
nee = pal ———
o =P sin ¢

(14.28)
ngy = —pa <cos b+

cosd + C)
sin® ¢
We must determine the constant C, but we know neither n¢y nor ngg. We can
get round this obstacle by rewriting the expression for ngg in Eq. (14.28):

Nye Sin* ¢ = pa(cos ¢ + C) (14.29)
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b=0 — —%Pa
>~ ¢ =52
pa * -
=2
Pog
Fig. 14.13 Distribution of the stress resultants over the sphere
If we now substitute ¢ = 0, we obtain constant C:
0=pa(l+C) = C=-1. (14.30)

We could have determined C also in an alternate way by considering the stress
state at the top (apex) of the sphere. There, the membrane forces ny¢ and ngg are
equal, because each meridian crosses another meridian perpendicularly. If we
substitute n¢yy =ngp and r; =r, =a into equilibrium Eq. (14.10), we find
nge = ngp = —pa/2. From this solution, we can solve the constant by substituting
¢ = 0 in Eq. (14.28). This also yields C = —1.

Substituting the constant into the expressions for the membrane stress resultants
and rewriting this result by using the relation sin®> ¢ = 1 — cos? ¢ gives:

1
oo = TPay +cos ¢

: 6
= ——— —cos
00 = pa 1+ cosd ©

Their own weight leads to a compressive meridional membrane force for every
point of the shell. The circumferential membrane force however is partly com-
pressive and partly tensile depending on the position of the parallel circle, denoted
by the angular co-ordinate ¢. The course and value of the membrane forces are
shown in Fig. 14.13 between the top (¢ = 0) and the edge (¢ = m/2) of the
sphere. Of interest to the designer is the position for which the circumferential
stress resultant is equal to zero. If we substitute for reasons of ease cos ¢ = x, we
must solve

(14.31)

1
1+x

The solution is x = 0.618, therefore ¢ = 0.905 rad, about 52°. In Fig. 14.13,
the solution has been done also in a graphical way by intersecting the functions

—x=0 — l—-x—x*=0. (14.32)
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cos¢ and (1 + cos (I))fl. If the sphere is made of concrete, the lower region
52° < ¢ <90° has to be reinforced in circumferential direction.

14.7.1 Comparison with Famous Domes

It is interesting to confront the obtained solution with the 35 m diameter dome of
the Aya Sophia in former Constantinople. It dates from the fourteenth century and
is the final result after several preceding collapses. The thickness is constant in the
top part of the sphere, and starts to increase at an angle ¢ very close to 52°. Did the
rebuilders understand that tensile stresses occur in the bottom part of the sphere
and that the tensile stress of brick material is less than compressive strength? And
were they able to make an estimate on the size of the tensile stress and the zone in
which it occurs? A similar interesting observation can be made regarding the Saint
Peter dome in Rome. Also here the thickness is constant in the top part and
increases in the direction of the base in the bottom part.

14.7.2 Approximation as Short Beam

We can make the result of the membrane theory accessible by considering the
equilibrium of a half sphere as shown in Fig. 14.14 and calculating the bending
moment in the plane of symmetry. In fact we consider the doem as a shot beam. In
a standard mathematical exercise we can calculate that the centre of gravity of the
half sphere is at a distance 4a/m* from the plane of symmetry. The total weight
F of the half sphere is 2pa”. The vertical support reaction is uniformly distributed
over the half base circle, and the resulting support reaction F is at a distance 2a/n
to the plane of symmetry. The bending moment in this plane is M = eF, or

Side view Base circle

Fig. 14.14 Rough check on the sphere membrane solution
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M = 2pa*(2a/m — 4a/n?), or M = (4/n — 8/n?) pa’. Worked out, the moment is
M = 0.463 pa’®. We can make a first guess of the order of magnitude of the tensile
membrane force ngg if we assume a linear distribution over the cross-section of the
sphere in the plane of symmetry. This cross-section is a half circle, the horizontal
neutral line is at a distance 2a/n from the base, and the moment of resistance to
calculate the tensile membrane force at the base from the bending moment is
W = (n?/4 — 2)a?, which worked out is W = 0.467a%. Then the membrane force
at the base is ngg = M /W, or ngg = 0.463/0.467 pa. We find ngg =~ pa which is in
amazing agreement with the exact value in Fig. 14.13.

14.8 Application to a Conical Shell Subject
to its Own Weight

Consider a conical shell subject to its own weight p (see Fig. 14.15). This conical
shell is supported by a single column at the top. The membrane response of the
shell leads to a meridional membrane fore ng¢ and a circumferential membrane
force ngyg. The determination of these membrane forces will give a broad insight
into the response of the conical shell. The geometry is shown in Fig. 14.15; the
meridian is a straight line. The vertical’s own weight can thus be reduced to
surface load components, as shown in Fig. 14.12. The angle ¢ is constant and
therefore the load components are also constant. The load components are

Py =psind
p: = —pcos ¢

(14.33)

Fig. 14.15 Meridional geometry and load of conical shell on single column
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Since the angle ¢ is constant, it is no longer a co-ordinate and the corre-
sponding radius of curvature r; is infinite. Therefore the co-ordinate x is intro-
duced, which is measured from the top along the meridian. To make the membrane
solution applicable to a conical shell, the following observations are made for the
meridional direction and the radius of the parallel circle:

ry = o0
}’ld(i) =dx
b = constant (14.34)
x/rn=tand = r) = xcotd '
r = xcos ¢.
r/rp=singp = r=rysin¢
The membrane solution of Eq. (14.19) is
1
XX — —F
" xcos ¢ sin () (14.35)
Ngp = Pz
Equation (14.20) for the load terms becomes:
F(x) = / [(=pcos® ¢ — psin® ¢)xcos d|dx
0 (14.36)
1
= —pcos - Exz +C
At the free edge, the meridional membrane force must be zero:
1
x=16 ny,=0 = Fl)=0 = C:Epﬂcosq). (14.37)
The membrane forces are consequently
Hyy = ﬁ . Ep(l2 — x2) cos ¢
xcos ¢ sin
N (14.38)
ngg = pzn = —PCOSd)'m-
We rearrange these equations:
pl (12 - xz) pl (l x)
nxx = < = " _— =
2 l 2 l
sin ¢ \ X sin  \x (14.39)
cos® ¢
Ngp — —pX .
00 PX i 0}

Their own weight obviously leads to a compressive circumferential membrane
force ngg for every point of the shell except for x = 0 for which the stress is equal
to zero. This membrane force increases linearly from top to bottom. The
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7

bottom

(a) (b)

Fig. 14.17 a Decomposition of own weight p. b Equilibrium in x-direction

meridional membrane force ny¢ becomes infinite at the top and is tensile for every
point except for the free edge where the stress is equal to zero. A representation of
this membrane force is shown in Fig. 14.16, where the course of the force is
presented graphically by the shaded area.
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14.8.1 Alternate Derivation of Membrane Forces

The Eq. (14.39) for the cone shell can also be derived in an alternative, easier way.
Decompose their in the own weight p in a horizontal component py and a com-
ponent p, along the shell as shown in Fig. 14.17a:

p
tan

px= ﬁ; po = (14.40)

Component p, causes tensile membrane forces n,, and component py causes
compressive membrane forces ngg. Figure 14.17b shows a shell part enclosed by
meridians in vertical planes with an angle d0. It starts at a distance x from the top
and continues to the bottom edge of the shell. This shell part is a symmetric
trapezium. The horizontal top side has a width wy,, = r1,,d0 and the bottom edge
has a width Wpoom = Tbortomd©:

Wiop = X €08 G dO; Whorom = 1 cos ¢ dO. (14.41)

The length of the shell part is / — x. The area A of the trapezium is

A= %(l—x)(l—&-x) cos ¢ do. (14.42)

Equilibrium in x-direction requires n.w;,, = p,A. Substitution of Eqs. (14.41)
and (14.42) in this expression yields

_ b 2 2
nyxcos b di = >sin (> —x*) cos ¢ dO (14.43)
from which we obtain
pl I x
o = — -—=. 14.44
" 2 sin ¢ (x l) ( )

This is the same result as the first expression in Eq. 14.39. The calculation of
ngp is simpler. The equilibrium equation of a horizontal shell ring of unit length is

ngg = —per, where the radius is r = x cos ¢. Accounting for Eq. (14.40) we obtain
cos® ¢
=— . 14.45
oo px sin & ( )

which is the second expression in Eq. (14.39).



Chapter 15
Edge Disturbance in Shell of Revolution
Due to Axisymmetric Loading

Tens of years ago, theories were proposed for the edge disturbance problem in
shells of revolution. Because a rigorous bending theory is complicated, attempts
were made for reliable approximations. A well-known one was published by
Geckeler [1, 2], who obtained his approximation by simplifying mathematical
considerations to the exact equations. We adopt in the present chapter the
approximation of Geckeler, but will arrive at it in an alternative, simpler way,
which is inspired by the stave-ring model for edge disturbances in circular
cylindrical shells in Chap. 5.

15.1 Problem Statement

The membrane solution will be used as an inhomogeneous solution, so we only
have to find a homogeneous solution for the edge disturbance. We focus on the
four different shell geometries shown in Fig. 15.1: the circular cylindrical, the
conical and two spherical shells; one sphere has a cylinder as envelope and one a
cone. The envelope is the tangent plane at the base circle. In Chap. 5, we learned
that the influence length of the edge disturbance in the cylindrical shell is about
one quarter of the radius of the cylinder. The disturbance really occurs in a small
edge zone. This means that we can use the solution of the cylinder (a) in Fig. 15.1
also for the sphere (c); at the edge, the cylinder is the tangent plane of the sphere,
and the difference between the edge zone of sphere and cylinder is negligible. For
the cone (b) we will have another solution than for the cylinder, but again we
expect a disturbance that is limited to an edge zone. If we have solved the cone
problem, we can also use this solution for the sphere (d). Therefore, we will focus
in the present chapter on the cone problem.
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(a) (b)

Fig. 15.1 Four examples of shell of revolution

15.2 Recall of Solution for Circular Cylinder

We recall the main findings from Chap. 5, where we solved the problem as
depicted in the top half of Fig. 15.2. This solution is also applicable to the system
depicted in the bottom half of the figure.

(a) (b)
u, f
f e
@1,
o e e A e .__)x el o e e e o N
P, L
|'! Q::Z‘kl{
J.r:‘? g

X <_ _______________ — X <_ _______________ —
1 rllu t*‘-) P
Z
. r
AN
e o U — H") ________ 5,
ma VYo,

Fig. 15.2 Definition of edge displacements and forces, and shell forces
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We considered the circular cylinder as a barrel of staves and rings, where the
rings behave as elastic supports to the staves. In Fig. 15.2, we show the sign
convention for the bending moment m,, and transverse shear force v, in the staves.
We derived the differential equation

d*u
D W: + kzlxlz = O, kz
where D is the flexural rigidity of the staves, including the effect of Poisson’s ratio,
and k, the spring stiffness of the rings. We introduced the parameter f:

Et

== (15.1)

Et  3(1—1?)
4
= = 15.2
[3 4Da? (Cl I)Z ( )
and obtained the differential equation

d*u, 4

o4 TAPu: =0 (15.3)

For shells longer than the influence length, an edge disturbance has attenuated
before it reaches the opposite edge. Therefore we used the solution

u,(x) = Ce P sin(Bx + ) (15.4)

This leads to bending moments and transverse shear forces in the staves and
circumferential membrane forces in the rings given by:

Mg = —D(2P*Ce P sin(Bx + s — m/2))
v, = _D(_z\/zBSCe_BX sin(Bx + | — 3n/4)) (15.5)
Et
ngy = — Ce P sin(Px + )
a
The displacement and rotation at the shell end x = 0 are
u, = C sin\y
o, = \/E B C sin(\|!— TE/4)

On the basis of this theory, we have derived the four elementary cases of
Figs. 5.12 and 5.13 and Table 5.1. We also derived the flexibility matrix equation
for forces and displacements shown in Fig. 15.2:

(15.6)

1 1
1 3 3| | f U,
R - (15.7)
D, | L 1 "
ZBZ B X Oy

and a formula for the characteristic length /. and the influence length /;
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t
Z:L; l; = ml. ~ 2.5Vat (15.8)

VAT

15.3 Extension to Cones

Consider the cone of Fig. 15.3a with base circle of radius a. We choose an
x-ordinate along the straight meridian, starting at the cone top. We will use the
concept of a barrel with staves and rings again. The staves are shown in Fig.15.3b
and the rings in Fig.15.3c. There are a number of differences with the application
to circular cylinders:

. The staves are not prismatic but tapered.

. The radius of the rings is not constant.

. In cylinders the membrane force n,, in axial direction is zero, but not in cones.

. The displacement u; is in the direction of the ring radius for cylinders, but not
for cones.

RIS S

The items 1 and 2 are not a real hindrance. The disturbance remains limited to a
narrow zone near the edge, therefore the effect of tapering will be very small, and
the change of radius can be neglected. We can assume prismatic staves, and rings
of equal length. For rings we use the radius a of the base. Item 3, the existence of
nonzero membrane forces in x-direction, implies strains &, and therefore nonzero
displacements ug, in x-direction

Consider a horizontal ring load in radial direction at the base of the cone, see
the left part of Fig. 15.4; it will cause both axial membrane deformation and lateral
bending deformation, which is expected to occur in a zone with a certain influence
length. We do not yet know this influence length /;, but we expect it to be related to
Vat, therefore short. The axial membrane deformation is of the order J; /Et, and the
bending deformation is of the order I} /Ef. The ratio is > /7, which is more or less
the ratio of uy and u,. Because /; is related to \/E, the ratio is #/a; therefore we

(a) (b) _ ()

' '
' '
' '

cone staves rings

Fig. 15.3 a Chosen x-axis in cone, b staves, and ¢ rings
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o s

f

| 2

<
<

Fig. 15.4 Cones with horizontal ring force

Fig. 15.5 Ring quantities u, and g,

conclude that the displacement uy is an order of magnitude smaller than the
normal displacements u;, and we set ug, equal to zero.

Consider the cone of Fig. 15.5. As we did in Chap. 5, we introduce the angle ¢
and the interaction force g, between the staves and the rings. In Chap. 5, we called
the force ¢, because it is directed in the normal direction z; now it does not.
Consider a point P at a distance x from the edge. At this position we call the radius
of the cone in the horizontal plane r. The radial force g, acts in positive r-direction
on the rings and in negative r-direction on the stave. The displacement of P
consists of a normal displacement u, only. The new position of the point is P’. The
increase u, of the radius r due to the normal displacement is

Uy = u sin o (15.9)

The force g, to produce this displacement is, equivalent to Eq. (5.4),
Qr:ﬁur (1510)

This force acts on the stave under an angle ¢. We must decompose it in two
components, one normal to the stave (g,) in negative z-direction and one in its
positive x-direction (g,). The latter equilibrates the support reaction, and the first
provides the elastic support of the stave. It holds that
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q: = qrsind (15.11)

We substitute Eq. (15.10) in Eq. (15.11), accounting for Eq. (15.9) and noticing
r=a,

g. =ku;; k.= %t sin’ ¢ (15.12)
a

The behaviour of the stave remains unchanged compared to the circular cyl-
inder. We conclude that the parallelism with the ‘beam on elastic foundation’
remains valid; the only difference with the circular cylinder is the calculation of
the spring constant k.. Now the additional factor sin® ¢ comes in, which is unity for
& = m/2, the value for a circular cylinder. The ‘elastic foundation’ of cones is less
stiff than of circular cylinders. In fact, the message of Eq. (15.12) is that we must
replace radius a by the principal radius r,. From Fig. 15.6, we obtain a = r; sin ¢,

which changes Eq. (15.12) into

q; =kyu; k;=— (1513)

If we replace B of Eq. (15.2) by

3(1 —v?)
(ra1)?

then the characteristic length and influence length are

Bt = (15.14)

VIt
lo=———=; lLi=nl.=25nt 15.15
YA - ») ? (15.15)
and we can still use Egs. (15.4) up to (15.6) for circular cylinders. Said in other
words, we can replace the cone with base radius a by a circular cylinder with base
radius r, to obtain the correct differential equation. We show this in two ways in

Fig. 15.6 Relation between a and r,
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Fig. 15.7 Replacing circular cylinder

Fig. 15.7. In the best way, we use the replacing cylinder in the right part of the
figure, which touches the cone such that the walls of the cylinder and cone
coincide. For values between 20° and 30°, the result starts to go wrong [3].

As said before, Geckeler arrived at the same result by mathematical consid-
erations. First he derived correct constitutive and equilibrium equations for the
rotationally symmetric shell without approximations. After that he introduced
mathematical simplifications. Each time when derivatives of a function of different
orders appeared, he just kept the highest order derivative and neglected all lower
ones. This is permitted if the function varies rapidly, which is the case for edge
disturbances. One might say that the derivation, chosen in the present chapter,
illustrates the physical background of Geckeler’s mathematical approximation.

The last step is to convert Eq. (15.7) to the coordinate system in which the load
of Fig. 15.4 fits. For that purpose we refer to Fig. 15.8. Apart from the directions
x and z we also define the directions a and r. Ordinate a is in the direction of the
axis of revolution, and r is in the direction of the horizontal radius. Decomposition
of the force f, yields f, of the size

f.=fsind (15.16)

A
f,:\\/\

x

Fig. 15.8 Rotation of axes
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Similarly the radial displacement u, receives a contribution of the normal
displacement u,

U, = u; sin ¢ (15.17)

The rotation ¢, needs no change. As a result we have two transformations:

-1

15.18
MRS o
o) L0 1]le,
If we apply these transformations to Eq. (15.7) according to
. 1 1 .
sing 0 1287 2 sing 0 f u,
ol 1 | = (15.19)
o 117 = = 0 1l s
28 B
we obtain
sin ¢ sin¢
1| 287 28 || ty
— b P = (15.20)
Dy | sind 1 / ©
2p° B

We conclude that the term sin ¢ must be applied two times. It plays a role in the
determination of B, and it appears in the flexibility matrix if Eq. (15.20). This latter
equation is the flexibility matrix equation for the cone (a) in Fig. 15.9. If the
rotations are defined in the opposite direction as shown in (b) of Fig. 15.9, then the
matrix equation is

sin” ¢ sin ¢
1| 2 2 || y
— B P = (15.21)
Dy, sin 1 /
— — x Py
2p% §

In accordance with Maxwell’s reciprocal theorem, the flexibility matrix is for
both cases symmetrical and positive definite. For similar couples of degrees of
freedom at the upper edge of a cone the parts (c) and (d) of Fig. 15.9 apply.



15.3 Extension to Cones 251

() A
2 * sin’p  sing .
i 2B} 2B2 |:f’ :|: |:u’ :|
D,| sind 1
f Sz R L D
u=G ¢ =l 25 i
N ¢,
(b) A
) si'g sing
i 2[3} ZBZ {f’ :|: |:M’ :|
D,| sind 1
0 - - t ¢
u= Q -u, @ p I
7 %
(0

()

sin’¢ _ sing f "
ZB’K 2[32 { | ]z { | ]
_sing 1

P B L P

Fig. 15.9 Cone with four different cases of degrees of freedom on edges
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15.3.1 Computational Verification

We have checked the accuracy of Geckeler’s approximation on the basis of a cone
analysis. For this purpose, we have chosen the cone and loading of the left part of
Fig. 15.4. We apply Geckeler’s theory, and perform a Finite Element analysis. The
following data apply: base radius 1000 mm, height of the cone 1000 mm, angle of
wall with base plane 60°, shell thickness 10 mm, Young’s modulus 2.1 x 10°
MPa, Poisson’s ratio 0.3, and load at the base 100 N/mm. As for the boundary
conditions, the top edge is free; the base edge is free to roll outward horizontally,
but cannot rotate. In the FE analysis, we have applied 40 elements over the height
of the cone.
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Table 15.1 Results for

A . Theory FE analysis
circular cylinder
u 0.61 mm 0.61 mm
ngo 1287 N/mm 1288 N/mm
/. 0.0 N/mm 2 N/mm
Mo 1167 N 1170 N
My 3890 N 3890 N
Table 15.2 Results for a Theory FE analysis
cone
u 0.57 mm 0.57 mm
nog 1197 N/mm 1189 N/mm
/. 50 N/mm 47 N/mm
Moo 1089 N 1080 N
My 3620 N 3630 N

In order to guarantee that the FE software is reliable, we first performed the
analysis for a circular cylindrical shell with the same data, except of course, the
angle between the shell wall and the base plane, which now is 90°. The results of
the theory and the FE analysis at the location of the base are shown in Table 15.1.
We can firmly conclude that the software is accurate. Differences between theory
and FE analysis are on the order of one or some tenths of percent, where we note
that the difference in the values of n,, should be compared with the differences in
the value of n,,. The results of the cone analysis are collected in Table 15.2. The
maximum difference is less than one percent for the dominant forces and moments,
ngg and my,, respectively. The moment myy in circumferential direction is exactly
0.3, Poisson’s ratio, times the moment m,, in axial direction The result is very
convincing for an approximating theory.

15.4 Application to Clamped Sphere Cap

Consider a spherical shell with clamped edges subject to a uniform normal load
p: = p, see Fig. 15.10a. The angle ¢, defines the tangent plane at the base circle.
In a sphere we use coordinates ¢ and 0. The membrane response of the shell leads
to a meridional stress resultant n¢ and a circumferential stress resultant ngg. This
membrane solution would be correct if the clamped edges were roller supports.
Since the shell cannot deform at the edge circle, a force f, and torque #, must work
on the edge to satisfy the boundary conditions. This additional bending action
decreases along the meridian and evidently represents the edge disturbance. The
magnitude of the edge loads is calculated with the aid of Eq. (15.20) between the
edge loads and the edge displacements.
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Fig. 15.10 Uniform load (a), membrane response (b), bending deformation in edge zone (c),
edge loads (d)

15.4.1 Membrane Solution

The membrane solution is given in Eq. (14.19):
1
asin® ¢
1

asin® ¢

Noo = F(d)

(15.22)

ngp = pa — F(d)

Accounting for Eq. (14.20), the load term is

o} Lo
- / [(pcos d)a’ sin |dd = pa® / sin ¢ d(sin )
) ) (15.23)

1 1
= Epa2 [sin’ d)}g) +C= Epa2 sin> ¢ + C

The membrane forces are

1
oo =5 P4 * asin® ¢
1 C

ngy = 5 pd — ———>5—
2 asin® ¢

(15.24)

There are two considerations to choose the integration constant C zero. First,
the term with the constant becomes infinite for ¢ = 0 if the constant C is nonzero.
Secondly, each meridian crosses another meridian perpendicularly at the apex and
since the parallel circles are perpendicular to the meridians, the meridional
membrane force and the circumferential membrane force must be the same. The
membrane forces are equal to each other for every point of the shell:


http://dx.doi.org/10.1007/978-94-007-6701-0_14
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Nep = Neo :%pa (15.25)
The uniform normal load in the positive direction leads to tensile membrane
forces, of which ng¢ works on the clamped edges, see Fig. 15.10b. We could have
made a short cut for the computation of the membrane forces. The sphere cap can be
considered as a part of a complete sphere with an internal overpressure p. This makes
clear that ny¢ and ngy are equal. From the equilibrium Eq. (14.13) we had imme-
diately obtained the result of Eq. (15.25). It also makes clear that the displacement
uy is zero all over the sphere, and that u, is nonzero and equal at all positions on the
sphere surface. The value is easily obtained from the relation u, = egor, where
r = a. The constitutive relations in Eq. (14.21) yields the strain &gq:

(I—=v) pa(l —v)

00 E 2Et ( )
The normal displacement becomes
(I—v) pa*(1 —v)

= = = 15.27
u; Eppd Er ngpa 2Et ( )

The rotation @y, is calculated with Eq. (14.23):

1 du,

=— ——1=0 15.28
(pd),m r (u dd)) ( )

This is an evident result since the sphere cap is a part of the full sphere under
overpressure. Finally, the horizontal displacement u, of the edge, due to the
membrane action, becomes with Eq. (15.17)

_par(1-v)

Uy = U SIN ¢, = Tsin b, (15.29)

15.4.2 Bending Solution

The rotation of Eq. (15.28) and displacement of Eq. (15.29) of the membrane
solution do not satisfy the boundary condition at the clamped edge, so an edge load
f» and an edge torque ¢, are needed, which cause rotation and displacement equal
to the membrane solution, however with opposite sign. The deformed shape of the
sphere cap is as depicted in Fig. 15.10c. We assume positive directions as shown
in Fig. 15.10d. This corresponds with the cone of Fig. 15.9b, therefore Eq. (15.21)
applies:
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sin® ¢, sin ¢,
v 2R T [ [ ]
—| = (15.30)
Dy | sin b, 1 ; o
2B2 B X X

We must note that the ¢pOz-coordinate system is adopted for the membrane
analysis, and the xyz-system for bending. Therefore, an index x has the same
meaning as an index ¢); they both refer to the meridional direction, and accordingly
the indices 0 and y both refer to the circumferential direction. The total defor-
mation at the clamped edge must be zero, thus:

Ur(§=¢,) = Urm T Urp =0

(15.31)
Poo=6,) = Pom + Prp =0
Hence, accounting for the Eqs. (15.29) and (15.28),
2
_ oy PV
Urp = —Urm = 2Ft Sin (1)0 (1532)

(Px,b = _(pd),m =0

If we introduce these values in Eq. (15.30), we can solve the edge force and
torque:

I—-v
fr=—sp—p
2B sin ¢
o I —v (15.33)
x — 4B2 p

The negative signs indicate that both the force and the torque work in the
opposite directions to the start directions in Fig. 15.10d. In order to calculate the
forces and moments in the shell we must know the constant C and the phase angle
 in Egs. (15.5) and (15.6). For that purpose we must calculate f, from f,, see
Fig. 15.8 and Eq. (15.17).

1—v

2B

fz :ﬁ'Sind)o =

1—v
Iy =— 4—[3217
Now we are able to calculate the constant C and the phase angle \y. We know
the value of two quantities, the rotation and the transverse shear force. On the basis
of Eq. (15.6) the zero rotation yields \y = m/4. The shear force v, at the edge
equals the edge force f;; for x = 0 and = /4 we obtain from Egs. (15.5) and
(15.34) the condition

p
(15.34)
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1 —
- 2BVp = D 2V2p°C. (15.35)
The constant C is
1—v 1 —vpa®
C = = — 15.36
'l T A E ( )
Equation (15.5) become
1—-vp By s
My = ———=——=e¢ > sin(Bx — n/4
XX 2\/5 Bz (B / )
1—
vy = Tv%e’ﬁx sin(Bx — /2) (15.37)
1—v

pa e P sin(Bx + m/4)

Nop =
00 \/E

For the complete solution we must add the membrane solution. This leads to

l1—vp Br o
My = ———=—=e¢ > sin(Px — /4
e Msin(fr = /4
17
by = TV%e*BX sin(Bx — 1/2) (15.38)

ngy = pa (% + 1—\/; e P sin(Bx + Tc/4))

For a sphere with a thickness to radius ratio of #/a = 1/30 and an opening angle
¢, = 35°, the meridional bending moment m,, and the circumferential membrane
force ngy are calculated with the aid of Eq. (15.38). The ratio of Poisson is
assumed to be v = 1/6 for these calculations. Figures 15.11 and 15.12 show the
result; the meridional bending moment in Fig. 15.11, and the membrane circum-
ferential force (membrane hoop force) and circumferential force due to bending
(denoted by hoop force due to bending) in Fig. 15.12. The membrane circum-
ferential force is displayed with a negative sign, thus the actual circumferential
force is the difference of the two lines. In the figures, the exact solution and the
approximated solution by the edge disturbance bending theory are displayed. The
exact solution is borrowed from Timoshenko’s book “Theory of plates and shells”
[4], and was obtained by not simplifying the equation for the homogeneous
solution. The approximation is the solution of Eq. (15.38).

Since the thickness to radius ratio is large and the opening angle is compara-
tively small it can be concluded that the first approximation is accurate enough for
most cases of structural interest. Also, the edge disturbance has practically van-
ished for this rather small value of B in the centre of this sphere cap. In a shell of
revolution this is the opposite edge. This means that the edge disturbances starting
at the edges do not influence each other in a considerable way and that the
simplifications that are made to obtain the approximation are legitimate.
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Fig. 15.11 Comparison of meridional bending moment of edge disturbance theory with exact
solution
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Fig. 15.12 Comparison of circumferential force of edge disturbance theory with exact bending
solution

15.5 Application to a Pressured Hemispherical Boiler Cap

Consider a cylindrical boiler closed by a hemispherical end, and subject to an
internal pressure p (Fig. 15.13). The shells have the same radius of curvature and it
is assumed that the thicknesses of the shells are the same. We borrow this example
from Fliigge [5], and calculate it with the theory of this book. We choose an x,-axis
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Fig. 15.13 Hemispherical boiler end. Axial and cross section (a). Cylinder and hemisphere cut
apart to show relevant shell forces (b)

along the sphere and an x.-axis along the cylinder, both starting at the junction, for
the description of the bending edge disturbance. The membrane response of both
shells leads to a normal displacement u, of the shells at the junction, but these
displacements do not have the same magnitude in the cylinder and the sphere.
Since the edges have to fit together at the junction (¢ = ¢,; x;, = x. = 0), addi-
tional bending shell forces have to be applied to the edge. For the sphere, the
membrane solution is the solution from the previous example with ¢, = 7/2:

1
oo =Moo =5 pa

Ppm =0 (15.39)

pa*(1—v)
Urm = ("5,
’ 2Et

For a cylinder, the circumferential membrane force is
ngp = pam (15.40)

Though there is no axial load p,, there is still a constant axial membrane force
ny,. Consider a cross-section over the cylinder perpendicular to its axis of revo-
lution. The total force in the direction of this axis must be zero, because there is no
external loading in this direction. The internal pressure delivers a resultant in this
direction p - ma®> on the hemispherical end. Therefore, an equal tensile force is
present in the cylindrical shell. This yields a membrane force
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p-na> 1

e = =_ 15.41
" 2na 2pa ( )
The constitutive relation yields the circumferential strain &gg:
1 _ pa(l —v/2)
€00 _E(_anx+nee) —T (1542)

The displacement u, in radial direction of the edge (x = 0), due to membrane
action, is

pa*(1 —v/2)

& (15.43)

Urm = €pod =

Because of the constant load p and radius of the cylinder, the rotation ¢, of the
cylinder at the junction is zero,

Qym=0 (15.44)

For the cylinder, the membrane solution is

1
Nyx = 517‘1; ngy = pa
15.45)
2(1—v/2 (
Oxm = 07 Urm :pa ( V/ )
oy 9 Et

By comparing the membrane solution Eq. (15.39) for the sphere with the
membrane solution Eq. (15.45) for the cylinder, we see that the meridional
membrane force and the rotation of the sphere and the cylinder appear to be equal
to each other but the circumferential membrane forces are not. Consequently, the
horizontal displacements are unequal. To obtain equal displacements and rotations
at the junction, an edge force and torque are needed. These edge loads, which are
shown in Fig. 15.13b denoted by f and ¢, can be interpreted as statically inde-
terminate loads. To obtain equilibrium, they are taken in the positive direction
(see Fig. 15.13b) of their corresponding shell forces v, and m,,. The expressions
for the radial displacement and the rotation of the sphere, due to the additional
bending actions, are based on Eq. (15.21). With the angle ¢, = 1t/2 we obtain for
the edge of the sphere (subscript s)

1 1

1|28 2| |/ trp
ol _ (15.46)

2 B

For the cylinder, the expressions for these displacements are based on
Eq. (15.7), taking into account that f, = —f and that #, = —¢ (subscript ¢),
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1 1
1| 287 287 || Urb
- = . (15.47)
Dy| 1 1 ., 0.,
287 B. e

The shells have the same radius of curvature, a and r, respectively, and the

same thickness r. Because of this, B, and B, are equal:

Et
4B = —
Dery = 5.48
4 Et = Bs - Bc (1 . )
4 —
BC Dba2
We skip the subscripts ¢ and s in B and obtain
(LI I
1 2[33 2B2 _ ur,b
Dy 1 1 = (15.49)
- 2_[32 E L7 | L Pxp 1
roo1 1 7 Ta _ _
1| T2 " ap? Urp
—~» —a |Lt] L P |
L 28" B ¢
The deformation of the sphere and cylinder must be equal:
Upm + Uy, = \Urm + u,, c

((P(bm + (Px,h)s = ((px.m + (Px‘h)c
With Egs. (15.39) and (15.49) for the sphere and Eqgs. (15.45) and (15.50) for

the cylinder, these two equations become

1 1
pa(1 - ) Ll ||
2N D,| 1 1
b)Y (15.52)
1 L1y,
pa*(1 —v/2) 1 28 2p?
- Et Dy 1 1 t

ol Tl h
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Rewriting these equations leads to

21-v) 1 (1 Cp(l-v/2) 1 (1
2B 2D,p (Ef _t) T m 2D, (Bf “)

(15.53)
Dyp \2p D, 2B
And by rearranging we obtain
pa 1
= —1t=0 15.54
Db[33f 2Et’ DyB ( )
The two edge loads are
D;,B3a2 1

f =35 P =" (15.55)

The positive sign of the radial load indicates that this load works in the
direction of the (positive) direction that is shown in Fig. 15.13. This is to be
expected since the membrane displacement of the cylinder is larger than the
membrane displacement of the sphere. Furthermore, neither shell undergoes any
rotation due to the membrane action. The bending moment at the junction is zero
because the horizontal loads close the ‘membrane gap’ and lead to equal rotation
of the sphere and the cylinder, in other words to the same slope of the meridians.
This feature occurs because of the fact that the shells have the same radius of
curvature and thickness.

For the meridional bending moment m,, and the transverse shear force v, of the
sphere, Eq. (15.37) is used. With x;, =0 at the junction, these expressions,
accounting for Eq. (15.55), yield respectively

t=my = —2Db[3 C, sm(\Ll ) 0

(15.56)
f=v :—2\[Db[3C31n< )
The phase angle s, and the constant C are
2
n p pa
_ = C, = = 15.57
=3 C=fam=TE (15:57)

With this solution, the radial displacement u, and the rotation ¢, at the edge of
the sphere are derived with Eq. (15.6):

pa’

4Et

2
9, = —BV2Cysin (Y, — ) = _prf

u, = u, = Cssin\y, = ( )
15.58
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Fig. 15.14 Bending moments m,, and membrane force ngy at the junction

For the meridional bending moment m,, and the transverse shear force v, of the
cylinder, Eq. (15.5) is used. With x, =0 at the junction, the expressions,
accounting for Eq. (15.55), yield respectively:

t = my = —2D,BC. sin(\jjc - g) —0

f = v =2V2D,C. sin(% AT o

4

The phase angle . and the constant C, are thus equal to:

T P pa2

= — CC:_—:__ 1560
. o =~ iE (15.60)

27

With this solution, the radial displacement u, and the rotation ¢, at the edge of
the sphere are derived with Eq. (15.6):

2
u, = Cesin, = —Zi
Et " (15.61)
. v a
Py = B\/ECC Sln(\ljc - Z) = _p4EI

By using membrane solutions Egs. (15.39) and (15.45) and solution
Egs. (15.57) and (15.60) for the constants of the edge disturbance, we can derive
the meridional bending moment and the circumferential membrane force in the
sphere and in the cylinder. For the sphere, we obtain

11 4
ngg = pa §+ZE s cos Px;
(15.62)

P _ .
Myy = _8_[326 B sin B
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For the cylinder, we obtain

1
ngy = pa (1 — ZEB"’ cos Bxc>
(15.63)

My = ~Px gin B,

Lo
8p*

These shell forces are shown in Fig. 15.14 for Poisson’s ratio v=1/3 and
t/a = 1/100. The membrane theory yields a discontinuity in the ngg-diagram (the
broken line). The bending action of the shells removes this discontinuity and leads
to a continuous transition. The edge load f, needed to close the ‘membrane gap’,
leads to bending moments in the shells. The bending moment is zero at the
boundary between the cylinder and the sphere. At a closer look, the considered
problem is an elementary case b of Fig. 5.12. There we see that the maximum
bending moment occurs at a distance x = nt/(4p), and the maximum value is,
accounting for Eq. (15.55),

My max = 0.322f /P = 0.0403p/B? (15.64)
At the same place the value of the membrane force due to bending is calculated:
ngo = 0.0285 pa. (15.65)

The maximum stress in the shell becomes (we take v = 0.3)
ey . OMepy ap p

=—— 4+ —S"=05—+6x0.0403 =—

Te0 ="t p ; Tox B2
(15.66)

6 x 0.0403

05+ 22222 VP _ 051 0.1463) P = 0.646 L

3(1—v2)) t t t

The stress due to the bending stress is 29 % of the membrane stress 0.500 pa/t
outside the bending edge zone. For the cylinder we obtain

tangent \:,'_1 pa_ o _ fita f
cone &/TLOW"_(] I, ~
& P | BY; — D ,(
l g ) ! i | t
J= /g/¢ . I 'z |
:1 >l AN ! . : . . .
LS |
I NV I :
—_— —— ———
"% D
(a) (b) ; (c) '

Fig. 15.15 Shallow spherical boiler end, axial section (a), the membrane forces in the principal
system (b) and edge loads of the additional bending action (c)
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=

Fig. 15.16 Shell forces myq (1) and ngg at the junction

n 6m a
Opo =20+ Tt = 7”+6 x o.o4o3ﬁ

15.67
( 6 x 0.0403 (15.67)

ap ap ap
P _1+0.146) L = 1.1462
3(1 —v2)> t ( ) t t

This value is 15 % higher than the membrane stress outside the bending edge
zone.

15.6 Application to a Pressured Shallow Spherical
Boiler Cap

Consider a cylindrical boiler closed by a shallow spherical end, subject to an
internal pressure p (Fig. 15.15). The opening angle of the cap is ¢,. The spherical
cap meets the cylinder under an angle. In Fig. 15.16 the conical shell, which is the
tangent plane at the junction, is shown with dashed lines. The thickness of the
cylindrical shell is equal to the thickness of the spherical shell. The radius of
curvature of the cylinder is a, and the radius of curvature of the shallow spherical
cap is b. The relation between the two radii is

b=a/sind, (15.68)

A pure membrane state in the cylinder leads to only an axial membrane force
ny, = pa/2 at the junction. A pure membrane state in the spherical cap leads to a
normal membrane force ng¢ at the junction in the direction of the conical tangent
plane. If we decompose this membrane force in a horizontal and vertical com-
ponent, the horizontal component can equilibrate the membrane force in the cyl-
inder, but the vertical component cannot equilibrate. Equilibrium presupposes that
a load ¢ is applied at the junction in the positive z-direction. The size of this force
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is ¢ = (pa/2) cot ¢,. In reality this force is not there, so we must correct the load
state a load ¢ in the negative direction:

q= —l;cotd)o (15.69)

We choose to apply this load to the edge of the cylinder (refer to Fig. 15.15¢). It

causes a radial displacement u,, and a rotation ¢, , of the cylinder edge. To

calculate these values, we use the second row of elementary case b of Table 5.1:

L {_1/B}q: [”‘1} (15.70)
2DhB -1 (Px,q
The membrane response of both shells, in combination with the applied load ¢,
leads to a horizontal displacement of the shells at the junction, but these dis-
placements do not have the same magnitude. Since the edges have to fit together at
the junction (¢ = ¢,; x = 0), additional bending stress resultants have to be
applied to the edge.
The membrane solution for a sphere (with radius of curvature b) submitted to an
internal pressure is the membrane solution from Sect. 15.5 and it reads:

1
Mgy = Moy = 5pb
Popm =0 (15.71)
201 —
o _pb (I—v)
’ 2Et

The membrane solution for a cylinder (with radius of curvature a) subject to an
internal pressure is the membrane solution from Sect. 4.9:

sin ¢,

Ny =z pa, negg = pa

2
_pa*(1—v/2)
o Et

(15.72)
Pym = 0, Uy m
The load ¢ that is applied to the edge of the cylinder to procure the equilibrium

leads to a horizontal displacement and a rotation of the edge of the cylinder of
Eq. (15.70):

1
1 —= urq}

= | 1573

2D, B _f 1 pr,q . (13.73)

To obtain equal displacement and rotation of the edges of the sphere and
cylinder, an edge load f and torque ¢ are needed. These are chosen as shown in
Fig. 15.15c¢, corresponding with the shell forces v, and m,,. These forces lead to
edge displacements and rotations in the shell cap and the cylinder. In the shell cap
we obtain
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., I .
| 2_l3§ sin“ ¢, — 2_[5% sin ¢, f s
Dy : i = (15.74)
——sin¢, — t Pup |
2p; By
At the edge of the cylinder we obtain
1 1
1280 2B || Urp
Dyl 1 ] = (15.75)
2 — —t (px,b c
28; B
We can calculate f and ¢ by the following condition:
Urm + Ur, s— Urm + u,, C+ Urg).
(4 ) = i+ 1:0) + (1) 1576

((Pd),m + (Px,b)X: ((px,m + (px,b)(-_‘_((l)x,q)c

If we substitute the Egs. (15.71) up to and including (15.75), we obtain two
equations with the values f and ¢:

1 pa
( sin ¢, )
sin ¢, pa

R TP < PTIL

To obtain this solution, a small term has been neglected, which limits the
solution to opening angles (m/8) <, <(3n/8). The negative sign of the edge
force and torque indicates that these shell forces work in the opposite directions of
the (positive) directions that are shown in Fig. 15.15c. The transverse shear force
v, and the bending moment m,, at the junction become

f= cotc])

(15.77)

sind, pa
(1+ 4/sin d)o)
_osingy

(x=0) = I = —
Myx(x=0) ( + /*”"Smd)o)4le

In Fig. 15.16 the meridional bending moment is shown for Poisson’s ratio
v =1/3 and a thickness to radius ratio 1/100 (as used in the previous example).
For the opening angle of the sphere cap, we have taken ¢, = n/4. The ngo-
diagram shows that in the zone of the edge disturbance high compressive stresses
are developed on both sides of the edge. Compared to the previous example, the
distribution of the bending stress resultants is also entirely different. The bending
moment is not zero at the junction between the shells, but has a sharp peak there
and the scale of this figure is therefore not the same as the scale of the previous

Vx(x=0) = ¢ +f = - cot ¢0

(15.78)
PE ot bo
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example. Compared to the previous example, the bending stresses are far more
important now. The ratio between the bending moments is

Mmax(shallow sphere)

~ 36. (15.79)

Mmax (hemisphere)

It is clearly not advisable to have a sharp edge between the boiler end and the
boiler drum. An almost sharp edge in the meridian, rounded by an arc of great
curvature, has little advantage. To reduce the bending stresses in the shell, a
stiffening ring must at least be provided at the edge.
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Chapter 16
Introduction to Buckling

16.1 Problem Statement

The investigation of stability of shell structures is a specialty which in its own right
deserves a complete separate book. Here just some main aspects are explained, and
the correspondence and difference with beam-column buckling is touched. We will
successively discuss buckling of uni-axially loaded plates as a limit case of shells,
arched beams, arched circular roofs, axially-pressed shells of rotation and domes.

16.2 Beam-Column Buckling

In order to quickly understand how the Donnell equation for shells must be
adapted, we call to memory how the differential equation for beam-columns is
obtained. Consider the elementary beam-column element of length dx shown in
Fig. 16.1. It is loaded by a lateral distributed load ¢ and normal compressive forces
N at each end of the element, and we neglect shear deformation. The differential
equation of the beam-column is

d*u, _

it =4q—gn
Herein EI is the bending rigidity, u, the lateral displacement and gy the effect of

the normal force N. If the normal force is zero, gy vanishes. For a nonzero normal

force and positive second derivative of the deflection line, gy is positive. The value

of gy follows from the fact that the normal forces N at the ends of the element

make different angles with the beam-column axis in the unloaded state. This
results in a distributed load per unit length of the size, see Fig. 16.1,

El (16.1)
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N% du_ d’
. Ayl
N di \ dx  dx’ o
dx N
N ﬂ+d~“;dx 1
! dx  dx
: dx

Fig. 16.1 A negative distributed load N d’u,/dx” results at a positive curvature

Fig. 16.2 Buckled simply-supported beam-column

d*u
=N— 16.2
qn dx2 ( )
Substitution of Eq. (16.2) into Eq. (14.1) and reordering yields
4 2
pr g (16.3)

g PR

For a simply-supported beam-column of span [/ and the origin of the x-axis at
the middle of the span, shown in Fig. 16.2, we adopt the deflection shape

u, =i, cos == (16.4)

Substitution of this deflection in Eq. (16.3) yields for zero distributed load g the
eigenvalue problem

mt n?
<Ell—4—Nl—2>uZ:0 (16.5)
from which we obtain the well-known critical Euler buckling load

T El
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16.3 Shell Buckling Study on the Basis of Donnell Equation

We derived the Donnell equation for shallow shells in Chap. 6. In Eq. (6.20) we
ended up with two coupled differential equations, which are for zero distributed
loads p, and p,

—T® + DyA*A%u, = p, (16.7)
A*N°® + D,y (1 — v*)Tu, =0 (16.8)
where
0? o2 0?
F:kxa—yz—ana 5 +hzs
R (16.9)
? 9
A=+
0xz  0y?

Equation (16.7) describes the equilibrium in the direction normal to the shell
surface. For zero shell curvatures k,, k, and k,, the operator I' vanishes, and the
equation reduces to the biharmonic equation of thin flexural plates. To study
stability we add contributions due to the membrane forces ny, ny, and n,, to
Eq. (16.7), comparable to what we did in Eq. (16.3) for beam-columns. At the
same time we put g zero. We obtain

u, ’u *u
a ) + anv < + vv ayzz

As we did in Sect. 6.5.3, we eliminate ® from Eqgs. (16.8) and (16.10):

u, +on 62uz 62141) _o

—T® + DA’ A%u, + ny— =0 (16.10)

EP
ﬁAzAzAzAzuz + Et quz + A2A2 (nXXW Ny a a +n Tyy ) 2

(16.11)

In this equation, we substituted values D;, and D;, for zero Poisson’s ratio. More
refinement is not needed for the purpose of this chapter, considering other
assumptions in the derivation. Equation (16.11) is the starting point of our stability
investigations. The forces n,,, n,, and n,, can be calculated with the linear theory.
It holds in general that the buckled area in shells often is not close to the edges; it
is small compared with the dimensions of the total shell.

Furthermore it is observed that the direction of the axes of the buckled area is in
the direction of the axes of the stresses and that no big error is made if we neglect
the shear force n,y.

For the calculation of the buckling load, we introduce an area with length a and
width b. We choose the origin of the x- and y-axis in the centre of the area. We
introduce the buckled deflection shape
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™o Ty
= —COS— 16.12
u, = ii; cos L cos ( )

Herein a is the wavelength in x-direction and b in y-direction. Substitution of
this shape in Eq. (16.11) yields an eigenvalue problem from which we obtain,
accounting for k, = r;' and ky, = r, !,

w2 2 72 72 Et 72 4 72 th 2
(;4-?) (a Ny + b2 ) 12( b2) +Et( b2 ) (16.13)

Herein we introduced the radii r, and r, which are the reciprocals of k, and k.

Equation (16.13) will be our basis for the calculation of the critical buckling load.
From this we can derive some simple cases by reduction.

16.4 Buckling Check for Beam-Column

Consider again the simply-supported beam-column of span / in Fig. 16.2. We can
simulate the buckling of this structure by making r,, r, and the span b in

y-direction infinitely large:

re=00; ry=00; b=o0; El=—7; a=1 (16.14)

This reduces Eq. (16.13) to

2N\ 2 /-2 3 72\ 4
Et

Y (B, ) =22 (2 (16.15)

a? a? 12 \a?
from which we obtain, replacing n,, by N,
2 El

2
We conclude that Eq. (16.13) reduces correctly to the Euler buckling load for

beam-columns.

N, = (16.16)

16.5 Check for Flat Plate

Consider the long plate width span / shown in Fig. 16.3 which is simply-supported
along two parallel edges and axially loaded by a membrane force n,,. For this case
it holds that

Ny =0; ro=r,=0 (16.17)
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Yy —> | —
nXX_> i nX,X
Fig. 16.3 Axially-pressed flat plate
which reduces Eq. (14.15) to
n : n? Ef (n* 4
o= Ny | =— = +— 16.18
(a2 + b2> <a2 ! ) 12 (a2 * b2> ( )
and we obtain
2143 2
nEr (b a
xx,er — 3~ \ T L 16.19
Mever = 2 (a +b> (16.19)

We recall that a is the wavelength in axial direction and b the wavelength in
span direction. We want to know for which ratio b/a the critical buckling load is
minimal. An expression x + x~! has a minimum value 2 for x = 1. So we obtain
the minimum for the ratio a/b = 1:

T2EPR

Hyx,cr = W ( 1620)

The lowest value of this expression is reached when the wavelength b is equal
to the span [ in the direction of b. Supposing that an equal wavelength a can
develop in the other direction, the result is:

2Et3
Nxxcr = TES 2 (1621)

16.6 Arch Buckling

Consider the circular arch shown in Fig. 16.4 which is pin-connected to fixed
supports. The x-axis is chosen along the arch. The radius is r, and the opening
angle ¢,. A constant membrane force n, is present in the arch. We feed
Eq. (16.13) with
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Fig. 16.4 Buckling mode of arch

ry=00; b=o00; ny=0 (16.22)

2\ * (2 EA (n\*

T2ER

which reduces it to

We obtain

(16.24)

The last step is to find the minimal possible value of a. The arch will not buckle
over its full length, because this requires elongation of the arch, which is prevented
by the large extensional rigidity. Buckling in two waves as shown in Fig. 16.4 is
possible without elongation of the arch. Therefore we obtain a = ¢, r,. Further we
introduce EI = Ef3 /12, so the critical buckling load of the arch becomes, replacing
Ny by N,

n2Er

__mE 16.25
12 (¢ )’ o2

cr

16.7 Buckling of a Curved Plate and Cylinder Under
Lateral Pressure

Consider the cylindrically curved plate loaded perpendicular to its surface by a
homogenous pressure p shown in Fig. 16.5. The x-axis is chosen in the curved
direction. The radius is r. Due to the load p, a membrane force n,, = r,p will
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Fig. 16.5 Buckling of curved plate and cylinder under pressure

occur. We expect a buckling mode in which both a and b have finite values. We
feed Eq. (16.13) with

Fy="F, Ty=00; Ny =0 (16.26)
which changes it into
2w\ [/n Ef /2 m\* 2\’
— 4+ —= —Hy | =— | —=+—= Et| — 16.27
<a2 +b2> <a2” ) 12 <a2+h2) + (b2r> (16.27)
The critical pressure is p., = ny,/r. From Eq. (16.27) we obtain

Neor EP @2 (M2 w2 2 2 (\ (2 m\ °
e (EC @ (M TN g @ () (BT 16.28
Pe r 12 rm? (a2 + b2) + r 2 <b2r) (a2 + b2) ( )

We rewrite this expression into

b? EF
oy =————(A+ A" 16.29
Per= o ATAT) (16.29)

where

2 2
A= (9+f) (16.30)
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The minimum of A + A~ is 2, which simplifies Eq. (16.29) to

b? Ef?

or == 16.31
P =25 5 (16.31)
In experiments, it is seen that a ~ b. This further simplifies the expression to
1 _/n\? 12
o =—=E(1) ~ 06E(%) 16.32
per = . (16.32)

We can modify Eq. (16.32) to a critical value for the stress o, in the curved
plate. Because of o, = n,,/t and ny, = pr, it holds that c,, = p(r/t). Therefore
we obtain

Geer = —E ~ 06E" (16.33)
xx,cr — \/§ r ~ . r .

It is possible to calculate the size of the wavelength on the basis of Eq. (16.30).

The minimum value of A is 1. So, for a =~ b Eq. (16.30) becomes

2 m?rt
=1 16.34
TS (16.34)
from which we obtain
b~ 3.4Vrt (16.35)

16.8 Buckling of Axially-Pressed Cylinder

Finally we consider the buckling of an axially pressed circular cylinder as shown
in Fig. 16.6. We choose the y-axis in axial direction. The load results in a
membrane force n,,. We feed Eq. (16.13) with

JIPEiig

FFFFTTTT

Fig. 16.6 Buckling of axially pressed cylinder
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Ty =00; Iy=1; Ny =0 (16.36)
which changes it into

n m2\’/n? Ef (n2 m2\* n\°
4= — Ny | =— = += Et| — 16.37
<a2+b2> <a2” ) 12 (a2+b2> v <b2r> (16.37)

We solve ny,:

Efa (mr m2\° & (m\'(n® w2\
= (LT g (2 (BT 16.38
T <a2+b2> TS <b2r> <a2+b2> (16.38)

This is the same expression as we have seen before in Eq. (16.28). There we
have found the solution

t
Cuser = 0.6E (16.39)

16.9 Buckling of Spheres, Hyppars and Elpars Subject
to Lateral Pressure

Zoelly [1] has shown in 1915 that Eq. (16.39) applies also for spheres under a
pressure normal to the shell surface, see Fig. 16.7. The same formula even appears
to apply to hyperbolic paraboloids (hyppars) and elliptic paraboloids (elpars).

Fig. 16.7 Buckling of spherical shell
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= No imperfections

_>q

With imperfections

—> U

Fig. 16.8 Post-buckling behaviour of shell and effect of imperfection

16.10 Reducing Effect of Imperfections

Equation (16.39) can be considered as a general expression for the instability of
shells, which even applies for double curved shells. We must stress an important
point. There is a big difference with beam-column buckling in the post buckling
behaviour. After a beam-column buckles, the critical buckling load stays sustained
for substantial lateral buckling deflections. This is in general not the case for
shells. Most shells show behaviour as depicted in Fig. 16.8 where the membrane
stress is shown as a characteristic displacement, for instance the shortening of an
axially pressed cylinder. After the critical stress is reached a sudden snap-back
takes place and the post-buckling load carrying capacity collapses drastically to a
much lower level. As a consequence, shells are very sensitive to imperfections.
Only hyppars are a fortunate exception. The dotted line in Fig. 16.8 shows the real
response of most shells in case of imperfections. The factor 0.6 may reduce to low
values in the order of 0.1. Figure 16.9 shows experimental evidence of Zoelly [1],
supporting the statement. Therefore, the factor 0.6 in the theoretical expression is
better decreased to 0.1:

t
Cuer=0.1 E- (16.40)
: r

In codes of practice, the factor may be made dependent on the shell type and the
size of the inward imperfections. Inspection of the imperfections requires insight
in the expected buckling waves. In Eq. (16.35) we have learned that the size of the
wavelength is between 3 and 4 times /7 ¢. This is useful information. Imperfec-
tions in cylinders must be measured with a straight rod or circularly curved
template of specified length. The rod applies for meridians and the template for
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Fig. 16.9 Experimental evidence of effect of imperfection according to [1]. Notation and
language adapted

parallel circles. Figure 16.10 shows an example as given in the European Rec-
ommendation for Steel Structures. The prescribed rod length is 4+/rt. Stress
reduction factors may be limited depending on the ratio of the largest measured
inward amplitude # and I,.
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Fig. 16.10 Measurement of imperfections
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Chapter 17
FEA for Shells of Irregular Shape

In the preceding chapters we have discussed analytical methods that can be used
for shells with a shape that can be described by simple geometrical functions:
spheres, cones, hyperbolic-paraboloids, cylinders, etc. Architects, however, do not
feel restricted to these mathematical expressions. Modern shell shapes are freely
chosen and may be more complicated. Figure 17.1 is an example, which shows a
shell out of a row of shells. The shell has a rectangular ground plan and is simply
supported along two sides. The other two sides are lines of symmetry in which the
shell runs on continuously to its neighbouring shells. There, no supports occur. The
circular top edge of the shell is a clamped support. For a shell of this complicated
shape, a Finite Element Analysis (FEA) is the only way to compute the stress
distribution. In Sect. 17.1 we will briefly discuss the principles of the Finite
Element Method for a linear-elastic shell, and after that, demonstrate in Sect. 17.2
the calculation of the irregular shell in Fig. 17.1.

17.1 Finite Element Analysis

In a Finite Element Analysis we need not make distinctions between membrane
solutions and bending solutions. The method always accounts for combined
membrane and bending deformation and even may take account of transverse
shear deformation. Shell finite elements do in general not distinguish between thin
and thick elements, and the application is not restricted to shallow shell types. We
will not discuss here the very internals of FEA, but restrict ourselves to main lines.
The shell surface is discretized into a big number of finite elements. In general,
elements are doubly curved and have triangular or quadrilateral shape as shown in
Fig. 17.2. Nodes may occur in the corners and mid-side of the edges. Shells of any
irregular shape can be modelled with aid of these elements. In this book, we
consider static loads only. Loads may consist of distributed loads over the element
area, line loads along element edges and point loads in nodes.

Finite Element Analysis is an approximation, with higher accuracy for larger
numbers of elements. Tractions on the element edges are lumped to element forces
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Fig. 17.1 Part out of a row of shells. The short edges are supported, the long edges are
unsupported lines of symmetry

Fig. 17.2 Quadrilateral and triangular shell element

in the nodes. Distributed loading over the element area and line loads along
element edges are lumped to nodal loads. In general nodes are connected to one or
more adjacent elements. It holds, that the sum of the element forces of all elements
meeting in a node and the applied load at that node are in equilibrium. On the
interface of adjacent elements, full continuity of displacements occurs. The
kinematic equations and the constitutive laws are always fully satisfied within
elements, but the equilibrium equations, in general, are not. Element equilibrium is
satisfied only in a weak way, such that the virtual work of the stresses within the
element equalizes the virtual work of the element forces in the nodes. As a con-
sequence, stresses on boundaries of adjacent elements are only equal in an
approximate way. The used kinematic equations and constitutive laws normally
apply for both thin and thick shells. For thin cylindrical shells the exactness is
comparable to the Morley theory of Chap. 9. The solution converges to the exact
solution for increasing fineness of the element mesh. Elements are developed in a
number of ways. Two approaches are mentioned here.

17.1.1 Method 1

For the first method we refer to shell elements as shown in Fig. 17.2. The element
is defined by the shape of the mid plane of the element, the number and position of
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nodes, the thickness and material properties. We choose a set of local element axes
x, ¥, z. The axes x and y are in the middle plane of the shell surface, the z-axis
normal to it. We define in each node degrees of freedom. They are three dis-
placements u,, u,, u, and two rotations ¢, ¢@,. A displacement distribution within
the element is chosen for the three displacements uy, u,, u, and the two rotations
@y, @,. This displacement field is an interpolation on the basis of the degrees of
freedom in the element nodes, such that continuity across element interfaces is
guaranteed. From the displacement field we derive strains and curvatures by
application of the kinematic relations. Denote the shell forces (membrane forces,
moments and shear forces) by s°, the membrane strains, curvatures and shear
angles by e, the vector of element forces in the element nodes by f°, and the
vector of degrees of freedom in the element nodes by u®. Then, we may write the
kinematic relation and constitutive relation as

e =Bu° (17.1)
s =De° (17.2)

respectively. We further may define the relation between u® and f° with the aid of
the element stiffness matrix K

Keu® = f* (17.3)

Equalizing the virtual work done by shell forces s and by element forces £, we
obtain

K= // B'DB dA (17.4)
A

where A is the area of the element. The next step is to assemble the element
stiffness matrices to a global stiffness matrix K and to produce the global load
vector f on the basis of the element load vectors. Taking account of the kinematic
boundary conditions, we can compute the displacement vector u of the shell by
solving the matrix equation

Ku=f. (17.5)

Next, we may return to each separate element and compute its vector of element
forces from Eq. (17.3) and the element shell forces from Egs. (17.1) and (17.2):

¢ = DB u®. (17.6)

The computation of the element stiffness matrix K¢ in Eq. (17.3) requires
integration over the area A of the element. This may sometimes raise difficulties
because of shear locking. It is beyond the scope of this chapter to discuss this
problem in detail.
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Fig. 17.3 Degenerated volume elements with 20 and 15 nodes respectively

17.1.2 Method 2

The second method is equivalent to the first one as for the strategy. Equations
(17.1) to (17.6) apply again. The difference is in choosing the element displace-
ment field. One starts from the brick-shaped volume element with 20 nodes for a
quadrilateral shell element and from the prismatic volume element with 15 nodes
for the triangular shell element. These volume elements are degenerated such that
the size in one direction is made small compared to the size in the two other
directions as shown in Fig. 17.3. As a rule, volume elements have curved edges.
Each node has three degrees of freedom, the displacements u,, u, u., so on each
short edge, nine degrees of freedom occur. The constraint is introduced that the
three nodes on the shortened edges must be on a straight line, and the constitutive
equations are slightly adapted. This facilitates reduction of the nine degrees of
freedom in three nodes to one five degrees of freedom in one node, the same as in
Method 1. Similarly, the nine element forces in the straight line are restyled by
summing up to five generalized forces and moments as applicable in Method 1.

17.2 Example of Irregular Shell
17.2.1 Geometry and Mesh

We will demonstrate the use of FEA for the irregular shell of Fig. 17.1. The shell
is one out of a row in a circus roof at the beach resort Zandvoort, The Netherlands,
and has been designed by Soeters Van Eldonk architects. A global set of axes x, ,
z is needed to define the geometry of the shell. For this we refer to the contour plot
of the shell geometry in Fig. 17.4. The vertical axis z is upwards. The contour plot
reveals that the shell is practically axisymmetric at the top and gradually develops
into a rectangular ground plan at lower levels. We will need a local set of axes x;
¥, z; in the mid plane of the shell for the shell forces. That set is different from the
set of global axes; the x; -axis is in the direction of the meridian and the y;-axis in
circumferential direction. The applied program Scia Engineer chooses the local
x-axis in circumferential direction and the y-axis meridian, but we changed that in
order to harmonize with Chap. 15. The short edge of the shell is 10.700 m and the
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13.7m

Fig. 17.4 Contour lines of shell surface. Supports at short edges (dashed lines)

long one 13.700 m. The thickness is 0.100 m. The radius of the upper opening is
1.500 m. The height is 5270 m. We wused the material properties
E = 20.000 Nmm? and v = 0.2. Its own weight is 2.5 kN/m”.

The shell is clamped at the circular opening at the top. Two lower edges are lines
of symmetry, and two simply-supported. In the nodes at the top, all six degrees of
freedom (three translations and three rotations) are put to zero. The supported
bottom nodes are on the short edges parallel to the x-axis. Here only the vertical
translation is put to zero. All other degrees of freedom are free along this edge.
At the two bottom edges parallel to the y-axis, we specify that the displacement in
x-direction normal to the edge and the rotations about the y- and z-axis are zero. The
analysis is done for the load case own weight.

Modern software packages will use mesh generators. As a rule, the user can
specify wishes about the average element size and/or indicate zones where
refinement is wanted. The choice of the mesh fineness requires some thought about
the expected edge disturbance. If we want to properly account for the disturbance
at the top, sufficient elements must be chosen over the influence length. The top
half of the shells has a shape that is close to a cone. That means that the influence
length can be computed with aid of the expression
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I, = 2.5/t (17.7)
where
a
p— 17-8
2 sin ¢ ( )

and a is the radius in the horizontal plane at the top and ¢ the angle between the
meridian and the horizontal axis. It holds that a = 1.667 m and ¢ = 60°. There-
fore we obtain the influence length /; = 1.38 m. If we want about 10 elements over
this length, the average length should not be larger than 0.138 m. We specified an
average mesh size of 0.10 m. This results in about 32.000 elements for a complete
shell, implying on the order of 200.000 equations. Because the shell has two
vertical planes of symmetry, an analysis with about 8.000 elements might do, but
we did not profit from this in order to have a check on the modelling.

To generate the total mesh, we started with a quarter of the shell and divided it in
four parts. We call lines between the parts boundaries. In Fig. 17.1 the lines are
visible. We produced separately the mesh for each part. After the mesh for the
quarter was complete, we obtained the mesh for the complete shell by copying,
pasting and rotating the quarter. Although we did our utmost best to model the shell
properly, we did not succeed in making the shell surface continuous at the bound-
aries as for the tangent plane. There are geometrical imperfections in the model.

17.2.2 Computational Results

The first result we show in Fig. 17.5 is the distribution of the vertical support
reactions at the top of the shell. Remember that the lower edge is supported at the
two edges parallel to the x-axis. From Fig. 17.5 we notice that the support reaction
at the top is not homogeneously distributed over the nodes at the circumference.
The highest value occurs at the meridians which run to the supported bottom
edges, and the lowest value at the meridians to the not supported bottom edges.
The distribution is not fluent, which is due to an inhomogeneous distribution of the
nodes over the upper circle. The maximum value is 5.61 kN and the lowest 3.38
kN. The total weight of the shell is 427 kN, of which (rounded off) 360 kN is
carried at the top and 67 kN at the two bottom supports. Not less than 84 % of the
load is transferred through the upper support.

Figure 17.6 presents a contour plot of the displacement in the z-direction of the
global set of axes. The red colour part of the shell close to the upper support is
practically not displaced. On the contrary, the dark blue shell parts have maximum
displacement. In these regions, the curvatures of the shell are minor and the shell is
rather flat. In the top part of the structure shell membrane action is dominant, and
the lower part seems to behave like a plate.

Figure 17.7 depicts the distribution of the membrane force n,, along two
meridians, ending in the middle of the short supported edge and in the middle of
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Fig. 17.5 Support reactions at the top of the shell

Fig. 17.6 Vertical displacement u,
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Fig. 17.7 Membrane force n,, (supported edges in global x-direction)

the long edge of symmetry, respectively. Note that the orientation of the shell
differs from the previous figure and that the local axis y, is in the direction of the
meridian. The distribution is not homogeneous in circumferential direction, the
highest tensile value 65.12 kN/m occurring in the meridian to the supported edge.
The membrane force remains tensile over a big part of the shell. Only close to the
lower edge, it turns into compression, which becomes zero at the supported edge in
correspondence with the boundary condition. The membrane force of 65.12 N/mm
occurs over a thickness of 100 mm, so the tensile stress is 0.65 N/mm?.

Figure 17.8 shows the membrane force n,, in circumferential direction in the
same meridians as chosen in the previous figure. The distribution is less plausible
than for n,,. Anyhow, the values are an order of magnitude smaller.

Figure 17.9 depicts the bending moment m,, in the two meridians. The
meridian which ends at the supported edge shows a significant peak moment at
the clamped upper edge of the shell due to the edge disturbance. A zero moment

Fig. 17.8 Membrane force n,, (supported edges in global x-direction)
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Fig. 17.9 Bending moment m,, (supported edge in global x-direction)

m,, occurs at the supported edge. The distribution of m,, in the other meridian,
which ends at the edge of symmetry, shows peak moments at both the top and the
bottom. The top peak is due to the edge disturbance. The peak moment at the
bottom is not expected. It may be due to the geometric imperfection of the element
model.

In Fig. 17.10 we present a full contour plot of the bending moment m,, over a
quarter of the shell. In this plot the meridian results of Fig. 17.9 are included.
Clearly, the highest values occur in the region that is crossed by the meridian
running to the corner of the rectangular ground plan.

17.3 Check of FEA-Results by Theory of Cones

We are able to check the order of magnitude of the analysis results in the top region
of the shell. There the shell shape is very close to a cone, and we may calculate an
axisymmetric solution as an average of the solution of the real shell. For axisym-
metric membrane solutions we use the expressions in Eq. (14.39) and for the
bending moment in the disturbed edge zone the flexibility relations of Fig. 15.9. We
replace the real shell by a tangent cone, fitting the real shell at the top. The cone is
clamped at the top and free at the bottom. The cone’s own weight is p = 2.5 kN/m?,
equal to the real shell’s own weight. The length of the replacing cone is chosen such
that the weight of the cone yields the same total support reaction at the top as for the
real shell, which is 360 kN. Figure 17.11 shows the result for the geometry of
the replacing tangent cone. The height is 6.093 m, the top radius ¢, = 1.500 m and
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Fig. 17.10 Contour plot of bending moment m,, (supported edges in global x-direction)
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Fig. 17.11 Checking analysis by replacing cone
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the bottom radius a, = 5.018 m. The length of the meridian from the apex of the
cone to the bottom circle is / = 10.036 m, and the angle is ¢ = 60°. We will first
derive the membrane solution and after that the bending moment due to the edge
disturbance caused by the stiff ring beam at the top.

17.3.1 Membrane Solution

The solutions of the membrane state are listed in Eq. (14.39):

pl [ x 2.5 x 10.036 /10.036 X
Nyx = . -7 = -
2sind \x !/ 2 x 0.866 X 10.036

10.036 X

(0.500)?

cos® ¢ B
0.866

ngy = —pxX— =-2.5x = —0.722 x N/m. (17.9b)
sin ¢

The upper edge of the cone is at x = 3.000 m. There we find an axial mem-
brane force n,, = 44.1 kN/m, less than the maximum value 65.1 kN/m in the real
shell and more than the minimum value 28.87 kN/m. The circumferential mem-
brane force becomes ny, = 2.17 kN/m. This compressive membrane force is
small compared to the membrane force n,, but is not yet the complete solution.
The edge disturbance has still to be added.

We also can check the membrane force ngy in circumferential direction. The
horizontal displacement at the top circle is zero, hence €ggp = 0. As a consequence
we find ngg = vn,, at the top. Comparison of Figs. 17.7 and 17.8 confirms this.
The maximum value is 65.1 kN/m for n,, and 13.0 kN/m (not written in the figure)
for Ngg.

17.3.2 Bending Moment Due to Edge Disturbance

We can calculate the membrane strain in circumferential direction by

1 |
- (= — . (02x40,58—2.17
&= g (5Va tno0) = 50— 05 700 (02 X 40, )

=-5.143x10°° (17.10)

The inward horizontal radial displacement of the shell edge is the product of
this strain and the radius (1.500 m), so u, = 5.143 x 1076 x 1.500 = 7.715 x
10~® m. We neglect the small rotation in the membrane state. The displacement ,
must be eliminated by a horizontal force f, while restricting rotation ¢, of the edge.
With reference to case d in Fig. 15.9 we must solve
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sin” ¢ sin ¢

1| 2p 282 | [f] _[7.715 x 106

Dy sing 1 o= 0 (17.11)
247 P

Herein
EP . 31—

D = =
P12 P

_ 17.12
L ( )
where r, = a,/sind. With these values we find: r, = 1.5/0.866 = 1.732,
B=3.130 m~!, D, = 1.736 x 10> kNm. Then Eq. (17.11) becomes

1223 —44.191[f 1 [13.393 x 1073
—44.19 3195 | |6 |

0
from which we derive

(17.13)

£, =2.19 kN/m
(17.14)
t, = 0.30 kNm/m

Because t, = —myy, we find m,, = —0.30 kN. In Fig. 17.9 we see that the max-
imum value in the real shell is —0.48 kN and the minimum value about —0.17 kN.

The axisymmetric cone value —0.30 kN is nicely between these values.
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