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Foreword

Th is book is well-written. Th e theories, concepts and their explanations have been presented in a simple and 
lucid style by the author, based on his vast experience of teaching physics to engineering students. Th e book’s 
layout, as well as the quality of its production, is excellent. In each chapter, the author has included review 
questions, solved problems, and ample multiple-choice questions to assist students in facing internal assess-
ments and term-end examinations.

Th is book will be immensely useful to all fi rst year B.Tech. students of the Jawaharlal Nehru Technologi-
cal  University ( JNTU) and its affi  liated colleges. Th e topics are dealt with in such a way as to enhance the 
student’s understanding of the subject. 

I whole-heartedly recommend this book for the study of topics covered under Applied Physics syl-
labus prescribed by JNTU for fi rst year engineering students.

Dr M. Krishnaiah
Professor of Physics

S.V. University 
Tirupati
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Preface

Th e contents of Applied Physics have been designed to cater to the needs of B.Tech. students at the freshman 
level in colleges affi  liated to the Jawaharlal Nehru Technological University ( JNTU), Hyderabad. Th e book 
follows a simple narrative style with emphasis on clarity. Th e concepts are treated rigorously to help students 
gain a deep-seated understanding of the key elements intrinsic to the subject. To this end, a list of important 
formulae, solved problems, multiple-choice questions and review questions have been included at the end of 
each chapter. Th ese pedagogical elements would prepare the student-reader to face both internal tests and 
term-end examinations with ease. Further, a glossary of useful terms and a collection of previous years’ uni-
versity question papers are included to enhance the book’s value as an undergraduate text.

Applied physics deals with the physics of substances that are of practical utility. Th is book focuses on 
the changes in properties of materials arising from the distribution of electrons in metals, semiconductors 
and insulators. It also covers topics on crystallography, free electron theory of metals, principles of quantum 
mechanics, superconductivity, properties of dielectric and magnetic materials, lasers, fi bre optics, holography 
and nanotechnology.

I hope this book will be benefi cial to both students and teachers of physics at various engineering colleges 
under JNTU, as well as other engineering colleges. Comments, feedback and suggestions for the improve-
ment of this book are welcome. Any error that may have crept into the book inadvertently may kindly be 
brought to my notice, or to that of the publisher.

Mani Naidu
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Bonding in Solids

1.1 Different types of bonding in solids
A crystal consists of atoms or molecules bound by interatomic forces or bonds. Th e interatomic forces are 
basically electrostatic in nature. Th ese forces consist of both attractive and repulsive forces. Attractive forces 
are between negatively and positively charged particles and repulsive forces are between same kinds of par-
ticles. Th e diff erent types of bonds are due to the diff erences in electronic structure of the atoms. Depend-
ing on strength and directionality, bonds are divided into two types: (1) primary and (2) secondary bonds. 
 Primary bonds are interatomic in nature whereas secondary bonds are intermolecular in nature. Primary bond 
is a direct consequence of the transfer or sharing of valence electrons so as to obtain eight [or two] electrons 
in the outermost orbit for stability. Th e primary bonds are ionic, covalent and metallic bonds. In a solid 
crystal, atoms are bound together with certain amount of energy called bonding energy or cohesive energy. 
It is defi ned as the amount of energy required to separate atoms to infi nite distance or the amount of energy 
evolved when a bond is formed. Th e bond strength generally depends on its melting and boiling points. Now, 
we will study the various types of bonds, as described below.

(i) Interatomic bonds: Th ey are as follows:

(a) Ionic bond: A bond formed by transfer of electron [or electrons] from one atom to another atom is called 
an ionic bond. Ionic bonding occurs between electropositive atoms [elements on the left side of the periodic 
table] and electronegative atoms [elements on the right side of the periodic table]. Examples for ionic sub-
stances are NaCl, KBr, Mg O, etc. In the formation of NaCl crystal, each Na atom readily gives its valence 
electron [due to low ionization energy] to Cl atom and the Cl atom takes electron [due to high electron affi  nity] 
from Na atom. As a result, Na+ and Cl− ions are formed because of opposite charge; these ions attract strongly 
and form a bond called an ionic bond. During this process, energy is released. Th is reaction is represented as:

 Na + Cl → Na+ + Cl− → NaCl

Since chlorine exists as molecules, the chemical reaction is represented as:

 2Na + Cl
2
 → 2Na+ + 2Cl− → 2NaCl

C H A P T E R 1
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1-2 Applied Physics

Similarly, ionic bonding in other substances can be represented as:

 2Mg + O
2
 → 2Mg++ + 2O−− → 2MgO

 and  2Cs + Cl
2
 → 2Cs+ + 2Cl− → 2CsCl

Some other examples are: KI, K
2
O, LiH, etc.

Properties of ionic solids:

 (i) Ionic crystals are rigid, so they possess high melting and boiling points.
 (ii)  Pure and dry ionic compounds are insulators, whereas in solution they conduct electricity due to the 

moment of charged ions.
 (iii)  Th ey are easily soluble in polar solvents like water [because of high dielectric constant] and insoluble in 

non-polar solvents like benzene [C
6
H

6
], carbon tetrachloride [CCl

4
], etc. [because of very low dielectric 

constant].
 (iv) When subjected to stresses, they cleave (break) along certain planes of crystal.

(b) Covalent Bonds: Covalent bonds are formed by sharing pairs of electrons among atoms. Th e covalent 
bond formation in hydrogen molecule can be explained in the following way: when two isolated H atoms 
approach each other, then their 1s orbits begin to overlap and the 1s electrons are attracted by the other 
nucleus and the overlap increases [provided the spin of the electrons is opposite]. Th e atomic orbits merge 
to form a single molecular orbit. In the molecular orbit, the two electrons are attracted by both the nuclei. 
Th e overlapping of atomic orbits will be stopped if the repulsive forces between the nuclei is balanced by the 
attractive force between electrons and opposite atom nucleus and a molecule is formed at a separation of 
0.074 nm. Th e stability of the molecule is greater than that of the two isolated atoms.

Isolated
H – atoms

Atomic orbit

Overlap

Molecular
orbit

In the molecular orbit, the two electrons are equally shared between the nuclei and hence electron density 
is large between the nuclei. If N electrons are present in the valence shell of an atom, then it makes (8 – N ) 
covalent bonds with the surrounding atoms to obtain an octant. A covalent bond is represented by putting 
two electrons between the symbols of atoms. For hydrogen, it is represented as H:H to make clear that an 
electron belongs to a particular atom; it can be represented as H H×

• , so that the dot electron belongs to left 
H – atom and × electron belongs to the right H – atom. Th e actual bond is represented as H – H. Th us:

 H H H H H H H H or H
2

• •
•
•+ → → → −×

•

In case of chlorine, each atom has seven electrons in the outermost shell. When two chlorine atoms combine 
to form chlorine molecule, one electron from each atom is shared with the other.

+Cl Cl Cl  –  Cl        (or)        Cl
2

Cl Cl Cl Cl×
× ×

× ×
×
×
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Bonding in Solids 1-3

Other examples are:

Properties of covalent compounds:

 (i)  Covalent compounds are mostly gases and liquids. Covalent crystals are hard and brittle and incapable 
of an appreciable bending since the bonds are directional.

 (ii)  Most of the covalent substances are insulators because of the non-availability of free electrons and ions.
 (iii)  Th ey are insoluble in polar solvents like H

2
O and soluble in non-polar solvents like benzene, carbon 

disulphide, etc.

(c) Metallic bond: A collective bond formed between the positive ions and free electrons of a metal is called 
metallic bond. In metallic bonding, each atom of a metal gives one or two valence electrons to the  crystal, 
which hold the atoms together and are not bound to individual atoms but move freely throughout the whole 
metal. In metals, the ionization energies are low so that metallic atoms give their valence electrons to the crys-
tal. Th ese valence electrons will form an electron cloud or electron gas (say), that occupy throughout the metal 
space. Th e positive ions are held together by the electrostatic forces due to free electrons. Th e electrostatic 
interaction between the positive ions and the electron gas hold the metal together.

Properties of metallic substances:

 (i)  Th e free electrons in metals can easily migrate through large distances in crystal so that metals have high 
electrical and thermal conductivities.

 (ii) Metals may deform without fracture.
 (iii) Metals are opaque to light, since light energy is absorbed by free electrons.
 (iv) Th eir melting points range from moderate to high. Examples are Cu, Na, Ag, Al, etc.

(ii) Intermolecular bonds: Th e bonds formed with intermolecular forces are known as Vander Waals bonds. 
Th ese forces unite the molecules in a solid. Th e secondary bonds are formed as a result of dipole attractions. 
Th e dipoles are formed due to uneven distribution of electrons in symmetric molecules. Th ere are three types 
of intermolecular bonds. Th ey are: (a) dispersion bonds, (b) dipole bonds and (c) hydrogen bonds.

(a) Dispersion bonds: Th ese bonds are formed due to the variation of centres of positive and negative charges 
in a molecule. Th is has been explained in the hydrogen molecule. As shown in Fig. 1.1, the H

2
 molecule is 

×

N  +  N   

N N N N      (or)      N2

×
×
×

×
×

C  +  2H2 CH4 H
H

H
H

×
×

×
C H

H

H

HC (or) CH4

O2O  +  O
× ×

×
×

×
×O O O  =  O      (or)      O2

N2
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1-4 Applied Physics

instantaneously charged negatively on the right end and positively on the left end because the revolving elec-
trons around the nuclei tend to keep in phase. Th is fl uctuating charge on one molecule tends to interact with the 
fl uctuating charge on a neighbouring molecule. Th is results in a net attraction. Th e strength of the bond depends 
on the extent to which one atom can infl uence the other. Inert gases atoms are also held together by dispersion 
forces when the gases are solidifi ed. Th e weak interatomic attractive forces are known as Vander Waals forces.

(b) Dipole bond: Dipole bonds are formed due to the variation in electron-sharing strengths of bonded 
atoms in a molecule. For example in HCl gas molecules, covalent bonds exist. Chlorine atoms share bond-
ing electrons and are slightly larger than H atoms, as a result, chlorine atom acquires slightly negative charge 
and H – atom acquires slightly positive charge. Because of these charges, a dipole exists in HCl molecule. 
So, adjacent HCl molecules attract each other by means of the electrostatic attraction between their oppo-
sitely charged ends. Th e dipole bonds are considerably stronger than dispersion bonds. Examples for dipole 
bonds are HBr, SO

2
 and HCN.

(c) Hydrogen bonds: Th is bond is similar to the dipole bond, but it is considerably stronger. Hydrogen 
bonds occur in those substances in which hydrogen atom is covalently bonded to a relatively larger atom 
such as nitrogen, oxygen, fl uorine, etc. In these molecules, permanent dipoles exist because electron cloud is 
pulled more towards the heavier atom of molecule so that hydrogen atom gets more positive charge. A bond 
may exist between hydrogen of one molecule and a heavy atom of another molecule. Hydrogen bond in H

2
O 

molecules is shown in Fig. 1.2.

Figure 1.2 Hydrogen bond between two water molecules

O−
O−

105°

H+

H+

H+

H+

H – bond

Figure 1.1 Dispersion effect in a H2 molecule

1.2  Cohesive energy and estimation of cohesive 
energy of ionic solids

Cohesive energy: Th e amount of energy evolved when a crystalline solid is formed from infi nitely separated 
atoms or the amount of energy required to separate atoms in a crystalline solid to infi nite distance is known 
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Bonding in Solids 1-5

as cohesive or binding energy of the crystal. Th e interatomic forces which hold the atoms together in a solid 
are responsible for crystal formation. So, the energy of the crystal is lower than that of the free atoms by an 
amount equal to the energy required to pull the atoms to an infi nite distance. Th is energy is called the binding 
energy of the crystal.

Force between atoms: When atoms are at infi nite separation, then there is no interaction between them. As 
we bring the atoms from infi nite separation to close proximity to form a solid, there exist two types of forces 
between the atoms. (i) attractive forces and (ii) repulsive forces. When two atoms are present at a separation 
‘r’ then: 

 Th e attractive force F
r

A M
( ) α

1

 =
A

r M
___________ (1.1)

where ‘A ’ is proportionality constant and M is usually 2 as per Coulomb’s law.

 Th e repulsive force F
r

R N
( ) α

1

 =
B

r N
___________ (1.2)

where B is proportionality constant and N is usually in between 7 and 10.
When the atoms are present in equilibrium with equilibrium separation ‘r

0
’, then the magnitudes of F

A
 

and F
R
 are equal and opposite. So, the resultant force between the atoms is zero. If the distance between the 

atoms is less than r
0
, then repulsive force dominates and if the distance between atoms is larger than r

0
 then 

attractive force dominates. Th e sum of attractive and repulsive forces, F (r) at a separation ‘r’ is:

 F r
A

r

B

r
( ) = −

M N
___________ (1.3)

Th e second term is negative because of the repulsive force.
Th e variation of F

A
, F

R
 and F (r) with respect to the separation between atoms ‘r’ is represented in 

Fig. 1.3.

Fmax

r0

Attractive force (FA) = A/rM

Repulsive force (FR) = B/rN

Resultant force [F(r)] =
A

rM

B

rN
−

r

F(r)

O

Figure 1.3 Variation of force with distance between atoms
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1-6 Applied Physics

At equilibrium separation ‘r
0
’:

i.e. r = r
0
, F (r) = 0

From Equation (1.3), we have: 

 0 = =
A

r

B

r
0

M

0

N
  or

 =
A

r

B

r0

M

0

M
  or  

0
=−

r
B

A

N M

 

1

=
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
r

B

A
0

N M

Calculation of Cohesive energy of Ionic Crystals:

Th e potential energy between the atoms U(r) can be obtained by integrating Equation (1.3) w.r.t. ‘r’. 
Th us:

 

U r F r r
A

r

B

r
r

Ar Br r

Ar

( ) = ( ) = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −⎡
⎣
⎢

⎤
⎦
⎥

=
−

∫∫

∫ − −

−

d d

d

M N

M N

M1

1 MM N

N

−
−

+
−

Br
c

1

1

where ‘c’ is the constant of integration

 
= −

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−

A

r

B

rM NM N1

1

1

1
1 −−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ +

1
c

Let  
A

a
B

b m
M N

M
−

=
−

= − =
1 1

1; ;   and  N n− =1

then  U r
a

r

b

r
c

m n
( ) =

−
+ + ___________ (1.5)

where a and b are attractive and repulsive force constants respectively, and m and n are positive integers.
Th e value of ‘c’ can be obtained by applying boundary conditions on Equation (1.5).

When r = ∞, U(r) = 0 and c = 0

 so,  U r
a

r

b

rm n
( ) =

−
+ ___________ (1.6)

In Equation (1.6), the quantity 
−a

r m
 represents attractive potential energy and 

b

r n
 represents repulsive 

potential energy. Th e variation of potential energy U(r) with ‘r’ is shown in Fig. 1.4.
Th e potential energy is minimum [U

min
] for a separation of r

0
. Th is spacing r

0
 is called equilibrium spacing 

of atoms. At r = r
0
, potential energy is negative, hence a positive amount of energy U

min
 is needed to  separate 

___________ (1.4)
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Bonding in Solids 1-7

the atoms. When the atoms are at equilibrium, then the potential energy between the atoms is minimum 
[U

min
] and it is represented as U(r

0
).

So  U r U
a

r

b

rm n0

0 0

( )= =
−

+
min

___________ (1.7)

where r
0
 is the equilibrium separation between the atoms. Th is energy (U

min
) is called bonding energy or 

cohesive energy or dissociation energy of the atoms because this is the energy with which the two atoms bond 
together and that amount of energy required to separate them. U(r

0
) is calculated by the following way.

Diff erentiating Equation (1.6) with respect to ‘r’ gives:

 
d

d

U

r

am

r

bn

rm n
= −

+ +1 1
___________ (1.8)

At equilibrium separation, Equation (1.8) becomes:

 d

d

U

r

am

r

bn

rr r
m n

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = − =

=
+ +

0 0
1

0
1

0

 or  
am

r

bn

rm n

0
1

0
1+ +=

 or  r r
b

a

n

m

n m

0 0=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ___________ (1.9)

Substituting Equation (1.9) in (1.7), we get:

 

U
a

r

b

r

a

b

m

n

a

r

a

r

m

nm m m mmin
=

−
+

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

−
+

⎛

⎝
⎜⎜

0 0 0 0
⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

a

r

m

nm

0

1

Th is is the expression for cohesive energy of a molecule containing two atoms in a molecule.

Figure 1.4 Variation of potential energy with distance between atoms

r0

Umin

U(r)

0 r

Repulsive energy = b/rn

Resultant potential energy

Attractive energy = −a/rm

___________ (1.10)
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1-8 Applied Physics

1.3.  Estimation of cohesive energy of NaCl
molecule in a solid

It is defi ned as the amount of energy released when a NaCl molecule is formed from isolated Na and Cl 
atoms. Th e cohesive energy of NaCl molecule is calculated as follows. Th e ionization energy or the amount of 
energy needed to remove the outermost valence electron from Na atom is 5.1 eV. Th at is:

 Na + 5.1 eV → Na+ + e− ___________ (1.11)

Th e electron affi  nity of Cl atom is 3.6 eV; i.e., the amount of energy released when an electron is added 
to Cl atom is 3.6 eV.

 so  Cl + e− → Cl− + 3.6 eV ___________ (1.12)

Th e net amount of energy required to form Na+ and Cl− ions at infi nite separation is [5.1 eV – 3.6 eV] = 
1.5 eV.

 Th us  Na + Cl + 1.5 eV → Na+ + Cl− ___________ (1.13)

As the ions possess opposite charge, so there exists an electrostatic attractive force between them, and 
this brings atoms to the equilibrium distance. At equilibrium distance, the potential energy is minimum. Th is 
indicates that energy is released in the formation of NaCl molecule. Th is energy is equal to the cohesive or 
bonding energy of NaCl molecule. Th e potential energy (V ) at equilibrium is:

 V
e

r
( ) =

− 2

0 04πε

Th e equilibrium spacing (r
0
) in NaCl molecule is 0.24 nm. So,

 

V( ) =
− ×

× × × × ×

−

− −

[ . ]

. .

1 6 10

4
22

7
8 85 10 2 4 10

19 2

12 10

JJ

=
− ×

× × × × × ×

−

− −

[ . ]

. .

1 6 10

4
22

7
8 85 10 2 4 10

19 2

12 10 11 6 10
6

19. ×
≅ −

−
eV eV

Th e energy released in the formation of NaCl molecule from atoms at infi nite separation is equal to 
5.1 eV − 3.6 eV − 6 eV = −4.5 eV. Th is is equal to cohesive or bond energy of NaCl molecule.

Th e Coulomb potential energy of an ion in a molecule is diff erent as in case of a crystalline solid. In a 
crystalline solid, each ion is surrounded by oppositely charged ions, further surrounded by the same kind of 

ions and so on. In such cases, the Coulomb potential energy is V
e

r

M=
−α

πε

2

0 0
4

, where α
M

 is called Madelung 
constant. 

Following Born the lattice energy for the univalent alkali metal halides is given by U
e N

r

n

nr

M

0

A=
− −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

α
π

2

0 0
4

1

∈

Hence the cohesive energy of a molecule is

U

N

e

r

n

n

r M0

2

0 0
4

1

A

=
− −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

α
π∈

.
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Bonding in Solids 1-9

Figure 1.5 Ionic crystal [NaCl]

1.4 Madelung constant
In ionic crystals, the eff ect of interaction of all the ions on an ion has been represented by Madelung constant, 
α

M
. In ionic crystals, individual atoms do not exist. Every ion is surrounded by some number of opposite ions, 

i.e., an anion is surrounded by certain number of cations and vice versa. Th e Madelung constant has been 
explained by considering one of the ionic crystals [say NaCl]. As shown in Fig. 1.5, let u

ij
 is the interaction 

energy between a particular ion ‘i’ and another ion ‘j ’ [ j is a variable], so that the separation between these 
ions is r

ij
 . Th e i th ion makes an interaction with a number of surrounding ions in pair-wise. Th e net interaction 

energy u
i
 is the sum of all pair-wise interaction energies with the i th ion so that:

 u u i ji ij

j

= ≠∑

Th e interaction energy does not depend on the position of the reference ion in the crystal and 
irrespective of whether it is positive or negative. Usually, the interaction energy u

ij
 is of coulombic in 

nature, given as:

 u
z z e

rij

i j

ij

=
− 2

0
4π∈

where Z
i
 and Z

j
 are the charges on i th and j th ions and one of these two ions is negative.

Suppose r
ij
 = α

ij
 r

0
, where r

0
 is the shortest distance between unlike ions in the crystal. Th en the total 

electrostatic energy between the i th ion and other ions in the crystal is:

 

u
z z e

r

z z
i

i j

ij ijj

i=
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= − ×∑∑

2

0j 4

1

0
π∈ α α

jj

i j M

e

r

z z e

r

2

2

4

4

0
π∈

α

π∈

0

0

=
−

0

where α
αM

= ∑ 1

ijj

. Th e constant α
M

 is called Madelung constant.

As shown in Fig. 1.5, if we consider the ions on either side of the reference ion ‘i ’ in a row, then the 
interaction energies are:

 
u

e

r
u

e

r
i i+ −= − = −

1

2

0

1

2

0 0
4 4π π∈ ∈0

and

− + − + − + −
+ +− + −i + −
− + − + − + −

−

+ +
+

− + − + −

CI− ion

Na+ ion
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1-10 Applied Physics

so that the net energy is 
−2

4

2

0

e

rπ∈ 0

Th e interaction energy on the ith ion due to the next two ions on either side is 2

4 2

2

0 0

e

rπ∈
.

Again the interaction energy on the ith ion due to the next two ions on either side is 
−2

4 3

2

0 0

e

rπ∈
.

Th is process can be extended up to the end of the row.

Th en  
α

M

r r r r r
0 0 0 0 0

2
1 1

2

1

3

1

4
= − + − +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥....

Th e multiplier 2 in the above equation is due to the two ions; one present on the left side and the other present 
on the right side at equal distances from the i th ion.

Hence,  αM = − + − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=2 1

1

2

1

3

1

4
2 2.... ln

Th is is the Madelung constant for a row of atoms. Th is concept can be extended to the three-dimensional 
space. For NaCl crystal, each Na+ ion is surrounded by 6 Cl− ions at equilibrium separation r

0
 and is sur-

rounded by 12 same kind of ions (Na+) at a distance of 2
0

r ; also 8 Cl− ions at a distance of 3
0

r  and 6 Na+ 
ions at a distance of 4 r

0
 and so on. Hence, the Madelung constant for NaCl crystal is:

 α
M

= − + − +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

6

1

12

2

8

3

6

4
....

Th e Madelung constant for NaCl is 1.75 and for CsCl is 1.76.

 Formulae

1. F r
A

r

B

r
( ) = −

N M
 2. r

B

A
0

1

=
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−N M

3. U r r r
A

r

B

r
r( )= ( ) = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫ ∫F d d

M N
 4. U r

a

r

b

rm n( )=
−

+

5. U
a

r

m

nmmin =
−

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

0

1  6. V
e

r
=

− 2

0 04πε

7. 
U

N

e

r

n

n

r M0

2

0 0
4

1

A

=
− −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

α
π∈
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Bonding in Solids 1-11

 Solved Problems

1.  Estimate the bond energy for the NaCl molecule as formed from sodium and chlorine atoms. Th e interionic equilibrium 

 distance is 236 pm. Born constant is 8. Th e ionization energy of sodium is 5.14 eV and electron affi  nity of chlorine is 

3.65 eV.

 (Set-2–May 2004), (Set-4–Nov. 2004), (Set-2–May 2003)

Sol: Th e equilibrium separation of the ions (r
0
) = 236 pm = 236 × 10–12 m

 Th e potential energy at this separation is:

 

V
e

r
=

−
=

− ×⎡
⎣⎢

⎤
⎦⎥

× × ×

−

−

2

0 0

19 2

4

1 6 10

4
22

7
8 85 10πε

.

. 112 12

14

236 10

1 6 1 6 10

88

7
8 85 236

× ×

=
− × ×

× ×
=

−

−

−. .

.

J
11 6 1 6 10

88

7
8 85

14. .

.

× ×

×

−

 = −6.094 eV [energy released during the formation of molecule from ions]

 Ionization energy of Na = 5.14 eV [energy supplied to remove an electron]

 Electron affi  nity of chlorine = –3.65 eV

 [energy released when an electron is added to chlorine atom]

 ∴ Bonding energy of NaCl molecule = 5.14 eV − 3.65 eV − 6.09 eV

 = −4.6 eV

2.  Th e Madelung constant of KCl is 1.75. Its neighbour separation is 0.314 nm. Find the cohesive energy per atom. [Given 

that the Repulsive exponent value = 5.77; Ionization energy of potassium = 4.1 eV; Electron affi  nity of chlorine = 3.6 eV]

 (Set-3, Set-4–May 2008)

Sol: Th e madelung constant of KCl, A = 1.75

 Separation between ion pair, r
0 
= 0.314 nm

 Repulsive exponent value, n = 5.77

 Ionization energy of potassium = 4.1 eV

 Electron affi  nity of chlorine = 3.6 eV

 Potential energy or cohesive energy per molecule of KCl =
−

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Ae

r n

2

0 0
4

1
1

π∈
 

                          =
− × ×

× × × ×

−

−

1 75 1 602 10

4
22

7
8 85 10 0 314

19 2

12

. ( . )

. . ××
× −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟−10

1
1

5 779 .
J

                          =
− × × ×

× × × × ×
×

−

− −

1 75 1 602 10 7

4 22 8 85 10 0 314 10
0 82669

19

12 9

. .

. .
. eV

                             = −6.6342 eV

Chapter 01.indd   11Chapter 01.indd   11 9/25/2009   4:48:24 PM9/25/2009   4:48:24 PM
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 Cohesive energy per atom = −
= −

6 6342

2
3 3171

.
. eV

 But the energy needed to form ion pair from atoms is equal to 

 = Ionizational energy of K − electron affi  nity of Cl

 = 4.1 eV − 3.6 eV = 0.5 eV

 ∴  Contribution to cohesive energy per atom = 
0 5

2

. eV

        = 0.25 eV

 ∴  Total cohesive energy per atom = −3.3171 eV + 0.25 eV = −3.0671 eV

3. Calculate the cohesive energy of NaCl from the following data:

 Equilibrium separation between the ion pair = 0.281 nm

 Ionization energy of Na = 5.14 eV

 Electron affi  nity of Cl = 3.61 eV

 Born repulsive exponent = 9

 Madelung constant = 1.748

 (Set-4–June 2005)

Sol: Th e given data are

 r
0
 = 0.281 nm = 0.281 × 10−9 m

 n = 9

 α
M

 = 1.748

 Cohesive energy per molecule of NaCl = 
−

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

α
π

M
e

r n

2

0 0
4

1
1

∈

          
=

− × × ×

× × × × ×

−

− −

1 748 1 602 10 8 9

4
22

7
8 85 10 0 281 10

19 2

12 9

. ( . )

. .

/

       = −0.12755 × 10−17 J

          =
− ×

×

−

−

0 12755 10

1 602 10

17

19

.

.
eV

       = −7.96 eV

4. Calculate the potential energy of the system of Na+ and Cl− ions when they are 0.25 nm apart.

 (Set-4–Sept. 2007)

Sol: Separation between Na+ and Cl− ions r
0
 = 0.25 nm

       = 2.5 × 10−10 m
 Th e expression for P.E. is 

 P.E. =
−e

r

2

0 0
4π∈
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 c = 1.6 × 10−19 C

 ∈
0
 = 8.85 × 10−12 F/m

 
∴ =

− ×

× × × × ×

−

− −
P.E. Joules

( . )

. .

1 6 10

4
22

7
8 85 10 2 5 10

19 2

12 10

      
=

− ×

× × × × × ×

−

− −

( . )

. . .

1 6 10

4
22

7
8 85 10 2 5 10 1

19 2

12 10 66 10 9× −
eV

       = 5.75 eV

5.  Calculate the cohesive energy of NaCl from the given data: Th e equilibrium separation of Na+ and Cl  − ions = 0.281 nm, 

a = 1.748 × 10−28 J-m2, n = 9, m = 1.

Sol: Cohesive energy U
a

r

m

n
r m0

0

1( )=
−

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 Given data are: r
0
 = 0.281 nm = 0.281 × 10−9 m

 a = 1.748 × 10−28 J-m2

 n = 9, m = 1

   

∴ U r0
J=

− ×
×

+ −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

−

1 748 10

0 281 10
1

1

9

28

19

.

.

==
− ×

×
+

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

×

−

−

1 748 10

0 281 10

1
1

9

1 6

28

9

.

. . 110
3 46

9− = −eV eV.

6.  Calculate the cohesive energy of NaCl, when the equilibrium separation between Na+ and Cl − ions is 0.281 nm. 

Th e  ionization energy of Na atom is 5.14 eV and electron affi  nity of Cl atom is 3.61 eV.

Sol: Equilibrium separation (r
0
) = 0.281 nm = 0.281 × 10−9 m

 Ionization energy of Na = 5.14 eV

 Electron affi  nity of Cl = −3.61 eV

 Potential energy at equilibrium separation V
e

r
( )=

− 2

0 04πε

   

=
−− × −

× × × × × ×− −

( . )

. .

1 6 10 19

4
22

7
8 85 10 0 281 10 1

2

12 9 ..6 10 19× −
eV

.

. .

1 6 10 7

88 8 85 0 281 10

19

21
= − × ×

× × ×

−

− eeV eV= −5 12.

=
− × −

× × × × ×− −

( . )

. .

1 6 10 19

4
22

7
8 85 10 0 281 10

2

12 9

J

 Cohesive energy = [5.14 − 3.61 − 5.12] eV = −3.59 eV
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 Multiple Choice Questions

 1. Basically, interatomic forces are:  ( )

(a) electrostatic in nature (b) gravitational forces
(c) magnetic forces  (d) short-range forces

 2. Primary bonds are ___________ in nature  ( )

(a) intermolecular  (b) interatomic
(c) Vanderwaals forces  (d) none

 3. Primary bonds are:  ( )

(a) ionic bonds (b) covalent bonds (c) metallic bonds  (d) all

 4. Bonding or cohesive energy is defi ned as: ( )

(a) the amount of energy required to separate atoms to an infi nite distance
(b) the amount of energy evolved when a bond is formed
(c) a and b
(d) none

 5. Examples for ionic crystals are: ( )

(a) NaCl and KBr  (b) MgO and KI
(c) K

2
O and LiH  (d) all

 6. Ionic crystals ( )

(a) are rigid and possess high melting and boiling points
(b) in solution conduct electricity
(c) are easily soluble in polar solvents like water
(d) all

 7. Covalent bond is formed by: ( )

(a) sharing of pair of electrons between atoms
(b) transfer of electrons from one atom to another
(c) evaporation of electrons from atoms
(d) none

 8. Covalent compounds are: ( )

(a) hard and brittle 
(b) most of them are insulators
(c) they are insoluble in polar solvents like H

2
O

(d) all

 9. Metals ( )

(a) possess high electrical and thermal conductivities
(b) may deform without fracture
(c) are opaque to light
(d) all

10. Intermolecular bonds are: ( )

(a) dispersion bonds  (b) dipole bonds
(c) hydrogen bonds  (d) all
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11.  When the atoms are present in equilibrium with equilibrium separation r
0
, then the resultant force between the 

atoms is:  ( )

(a) zero (b) positive (c) negative (d) very large

12.  Th e amount of energy with two atoms bond together and the same amount of energy required to separate them is 
called ___________ of atoms. ( )

(a) bonding energy   (b) cohesive energy
(c) dissociation energy   (d) all

13. Th e cohesive or bond energy of NaCl molecule is:  ( )

(a) 3.6 eV (b) 6 eV (c) 4.5 eV (d) 5.1 eV

14. In a crystal, atoms or molecules are bonded by ___________ forces. ( )

(a) interatomic (b) Vanderwaals (c) adhesive (d) cohesive

15. Secondary bonds are ___________ in nature. ( )

(a) interatomic (b) intermolecular (c) adhesive (d) none

16. Ionic bond occurs between ___________ atoms and ___________ atoms. ( )

(a) electropositive, electronegative (b) electropositive, electropositive
(c) electronegative, electronegative (d) none

17.  If N electrons are present in the valence shell of an atom, then it makes ___________ covalent bonds. ( )

(a) N (b) 8 − N (c) N − 8 (d) none

18. Covalent compounds are soluble in non-polar solvents like ( )

(a) benzene  (b) carbon disulphide
(c) both a and b  (d) none

19. Each atom of a metal gives one or two ___________ to the crystal. ( )

(a) valence electrons  (b) bounded electrons
(c) both a and b  (d) none

20. Dispersion bonds are formed due to ___________ of positive and negative charges in a molecule. ( )

(a) centres  (b) variation of centres
(c) both a and b  (d) none

21.  ___________ bonds are formed due to the variation in electron-sharing strengths of bonded atoms in a 
molecule. ( )

(a) covalent (b) ionic (c) hydrogen (d) dipole

22. ___________ bond is similar to dipole bond but considerably stronger than it ( )

(a) hydrogen (b) covalent (c) ionic (d) none

23. Th e energy of the crystal is lower than that of the free atoms by an amount called ( ) 

(a) interatomic energy  (b) intermolecular energy
(c) cohesive energy  (d) none

24. When the atoms are at equilibrium, then the potential energy between the atoms is:  ( )

(a) maximum (b) minimum (c) both a and b (d) none
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1-16 Applied Physics

25. Th e ionization energy of sodium atom is:  ( )

(a) 5.1 eV (b) 3.6 eV (c) 1.5 eV (d) 6 eV

26. Th e electron affi  nity of chlorine atom is: ( )

(a) 1.5 eV (b) 3.6 eV (c) 5.1 eV (d) 6 eV

 Answers

 1. a  2. b  3. d  4. c  5. d  6. d  7. a  8. d  9. d 10. d 11. a
12. d 13. c 14. a 15. b 16. a 17. b 18. c 19. a 20. b 21. d 22. a
23. c 24. b 25. a 26. b

 Review Questions

 1.  What are ionic crystals? Explain the formation of an ionic crystal and obtain an expression for its cohesive energy.
 (Set-4–June 2005)

 2. Explain the forces between two interacting atoms when they are brought nearer to form a molecule.
 (Set-1–May 2008), (Set-2–May 2006), (Set-1–May 2004),
 (Set-2–Nov. 2004), (Set-1–May 2003)

 3.  Derive an expression for the equilibrium spacing of two atoms for which the potential energy is minimum and 
hence obtain the dissociation energy.

 (Set-1–May 2008), (Set-2–May 2006), (Set-1–May 2004),
 (Set-2–Nov. 2004), (Set-1–May 2003)

 4.  Plot and explain the variation of: (i) attractive potential energy (ii) repulsive potential energy and (iii) resultant 
potential energy with interatomic distance, when two atoms are brought nearer.

 (Set-3–May 2008), (Set-2–May 2004), (Set-4–Nov. 2004), (Set-2–May 2003)

 5. Explain various types of bondings in solids with suitable examples. (Set-4–May 2008)

 6. Explain the bonding in NaCl  (Set-4–Sept. 2007)

 7. Calculate the bond energy for NaCl molecule (Set-4–Sept. 2007)

 8. Explain the formation of an ionic crystal, with suitable example. (Set-2–Sept. 2008)

 9. Derive an expression for the cohesive energy of an ionic crystal. (Set-2–Sept. 2008)

10. Explain with suitable examples the ionic, covalent, metallic and molecular type of bonds in solids.

11.  What is cohesive energy? Assuming a suitable model for interatomic forces, derive an expression for the cohesive 
energy.

12. Explain the formation of an ionic bond. Calculate the cohesive energy of NaCl molecule.

13. Explain the diff erent types of bondings in solids with suitable examples. Compare their bond energies.

14.  Illustrate graphically the variation of: (i) interatomic forces and (ii) potential energy with the spacing between two 
atoms.

15. Write short notes on binding energy of NaCl molecule.

Chapter 01.indd   16Chapter 01.indd   16 9/25/2009   4:48:24 PM9/25/2009   4:48:24 PM



Bonding in Solids 1-17

16.  Defi ne cohesive energy of a molecule and derive an expression for it as a function of equilibrium atomic separation 
and attractional or repulsive interaction exponents.

17. Prove that the value of Madelung constant for an FCC crystal is 1.75.

18.  Draw a diagram that depicts the variation of interatomic force as a function of spacing in terms of its attractional 
and repulsive components. Derive an expression for equilibrium spacing.

19.  Derive an expression for the lattice energy in ionic crystals and prove that the Madelung constant for molecule in 
NaCl like ionic crystal is 2 ln2.
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Crystal Structures

2.1 Introduction
Matter exists in three diff erent states; they are gaseous, liquid and solid states. In gaseous and liquid states, 
the atoms or molecules of the substance move from one place to other, and there is no fi xed position of atoms 
in the substance. In solids, the positions of the atoms or molecules are fi xed and may or may not be present 
 periodically at regular intervals of distance. If the atoms or molecules in a solid are periodical at regular intervals 
of distances in three-dimensional space, then that solid is known as crystalline solid. If the atoms or molecules 
do not have such a periodicity in a solid, then that solid is known as amorphous solid. When the periodicity 
of atoms or molecules is extended throughout the solid, then the solid is known as single crystalline solid. 
If the periodicity of atoms or molecules is extended up to small regions called grains and if these grains are 
very large in number, and are of diff erent sizes in the solid, such a material is known as polycrystalline solid. 
Th e study of geometric form and other physical properties of crystalline solids by using X-rays, electron 
beams and neutron beams constitute the science of crystallography.

Distinction between crystalline and amorphous solids

Crystalline Solids Amorphous Solids

1.  The atoms or molecules of the crystalline solids are 
periodic in space.

1.  The atoms or molecules of the amorphous solids are 
not periodic in space.

2.  Some crystalline solids are anisotropic i.e., the 
magnitude of physical properties [such as refractive 
index, electrical conductivity, thermal conductivity, etc.,] 
are different along different directions of the crystal.

2.  Amorphous solids are isotropic i.e., the magnitude of 
the physical properties are same along all directions 
of the solid.

3. Crystalline solids have sharp melting points. 3.  Amorphous solids do not posses sharp melting 
points.

C H A P T E R 2
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2-2 Applied Physics

4.  Breaks are observed in the cooling curve of a 
crystalline solid.

4. Breaks are not observed in the cooling curve.

5. A crystal breaks along certain crystallographic planes. 5.  When an amorphous solid breaks, the broken 
surface is irregular because it has no crystal 
planes.

2.2 Space lattice (or) crystal lattice
In a solid crystalline material, the atoms or molecules are arranged regularly and periodically in three dimen-
sions. To explain crystal symmetries easily, it is convenient to represent an atom or a group of atoms that 
repeats in three dimensions in the crystal as a unit. If each such unit of atoms or atom in a crystal is replaced 
by a point in space, then the resultant points in space are called space lattice. Each point in space is called a 
 lattice point and each unit of atoms or atom is called basis or pattern. A space lattice represents the  geometrical 
pattern of crystal in which the surroundings of each lattice point is the same.

If the surroundings of each lattice point is same or if the atom or all the atoms at lattice points are identi-
cal, then such a lattice is called Bravais lattice. On the other hand, if the atom or the atoms at  lattice points 
are not same, then it is said to be a non-Bravais lattice. Figure 2.1 shows a two-dimensional  lattice.

Figure 2.1 Two-dimensional lattice

B

b

2aO A

Y

X

To represent translational vectors or basis vectors, consider a co-ordinate system with its origin at the lattice 

point ‘O’. Let OA
� ��� �

= 2a  and AB
� ��� �

= b , such that OB
� ��� � �

= +2a b. where 
�
a  and 

�
b  are called translational 

or basis vectors along X and Y directions. Th e position vector 
�
R  of any lattice point can be represented as � � �

R = +n a n b1 2 . where n
1
 and n

2
 are integers, their values depend on the position of the lattice point under 

consideration with respect to the origin. In three dimensions, the position vector of a point can be expressed 

as 
� � � �
R = + +n a n b n c1 2 3 , where 

�
a , 

�
b and 

�
c  are the translational or basis vectors along X, Y and Z directions, 

respectively. Th ey are also called translational primitives.
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Crystal Structures 2-3

2.3 The basis and crystal structure
Th e crystal structure is formed by associating every lattice point with an assembly of atoms or molecules 
or ions, which are identical in composition, arrangement and orientation, is called as the basis. Th e atomic 
arrangement in a crystal is called crystal structure. If the basis is substituted for the lattice points, then the 
resulting structure is called crystal structure as shown in Fig. 2.2. Th us lattice + basis = crystal structure. 
Th e basis shown in Fig. 2.2 contains three diff erent atoms. In copper and sodium crystals the basis is single 
atoms; in NaCl, the basis is diatomic and in CaF

2
 the basis is triatomic.

Figure 2.2 Two-dimensional crystal structure

Basis

2.4 Unit cell and lattice parameters
Unit cells for most of the crystals are parallelopipeds or cubes having three sets of parallel faces. A unit cell is 
the basic structural unit or building block of the crystal. A unit cell is defi ned as the smallest parallelopiped 
volume in the crystal, which on repetition along the crystallographic axes gives the actual crystal structure 
or the smallest geometric fi gure, which on repetition in three-dimensional space, gives the actual crystal 
structure called a unit cell. Th e choice of a unit cell is not unique but it can be constructed in a number of 
ways; Fig. 2.3 shows diff erent ways of representing unit cells in a two-dimensional lattice. A unit cell can be 
represented as ABCD or A′B′C′D′ or A″B″C″D″, etc.

To defi ne the lattice parameters, fi rst we defi ne crystallographic axes. Th ese axes are obtained by the 
inter section of the three non-coplanar faces of the unit cell. Th e angle between these faces or crystallographic 
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2-4 Applied Physics

axes are known as interfacial or interaxial angles. Th e angles between the axes Y and Z is α, between Z and X 
is β and between X and Y is γ. Th e translational vectors or primitives a, b, c of a unit cell along X, Y, Z axes 
and interaxial angles α, β, γ are called cell parameters. Th ese cell parameters are shown in Fig. 2.4.

Th e cell parameters determine the actual size and shape of the unit cell. Th e unit cell formed by primi-
tives is called a primitive unit cell. A primitive unit cell contains only one lattice point. If a unit cell contains 
more than one lattice point, then it is called non-primitive or multiple cells. For example, BCC and FCC are 
non-primitive unit cells.

Figure 2.3 Unit cells in crystal lattice

D′ C′
D′′′ C′′′

A′
A′′′′ B′′′ D′′ C′′

A′′ B′′

B′

D C

A B

Figure 2.4 Unit cell parameters

z

x

y

c

α
β

γ a

b

2.5 Crystal systems and Bravais lattices
For representing the type of distribution of lattice points in space, seven diff erent co-ordinate systems are 
required. Th ese co-ordinate systems are called crystal systems. Th e crystal systems are named on the basis of 
geometrical shape and symmetry. Th e seven crystal systems are: (1) Cubic (2) Tetragonal (3) Orthorhombic 
(4) Monoclinic (5) Triclinic (6) Rhombohedral (or Trigonal) and (7) Hexagonal. Space lattices are classifi ed 
according to their symmetry. In 1948, Bravais showed that 14 lattices are suffi  cient to describe all crystals. 
Th ese 14 lattices are known as Bravais lattices and are classifi ed into 7 crystal systems based on cell parameters. 
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Th e Bravais lattices are categorized as primitive lattice (P); body-centred lattice (I); face-centred lattice (F) 
and base-centred lattice (C). Th ese seven crystal systems and Bravais lattices are described below.

1. Cubic crystal system: In this crystal system, all the unit cell edge lengths are equal and are at right angles 
to one another i.e., a = b = c and α = β = γ = 90°. In cubic system, there are three Bravais lattices; they 
are simple (primitive); body-centred and face-centred. Examples for cubic system are Au, Cu, Ag, NaCl, 
diamond, etc.

In simple cubic lattice, lattice points or atoms are present at the corners of the cube. In body-centred 
cube, atoms are present at the corners and one atom is completely present at the centre of the cube. In the case 
of face-centred cube, atoms are present at corners and at the centres of all faces of cube.

(a)

Z

X

Y

a

α
β

γ

a

a

(b)

(c)

Figure 2.5  Cubic crystal system: (a) Simple cubic (P); (b) Body-centred cube (I) and 
(c) Face-centred cube (F)

2. Tetragonal crystal system: In this crystal system, two lengths of the unit cell edges are equal whereas the 
third length is diff erent. Th e three edges are perpendicular to one another i.e., a = b ≠ c and α = β = γ = 90°. 
In tetragonal system, there are two Bravais lattices; they are simple and body-centred. Th ese are shown in 
Fig. 2.6. Examples for tetragonal crystal systems are TiO

2
, SnO

2
, etc.

3. Orthorhombic crystal system: In this crystal system, unit cell edge lengths are diff erent and they are 
perpendicular to one another i.e., a ≠ b ≠ c and α = β = γ = 90°. Th ere are four Bravais lattices in this 

Chapter 02.indd   5Chapter 02.indd   5 9/25/2009   5:28:27 PM9/25/2009   5:28:27 PM
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Figure 2.6 Tetragonal crystal system

a
x

b = a

P I
y

z

c

system. Th ey are simple, face centred, body centred and base centred. Th ese are shown in Fig. 2.7. Examples 
for orthorhombic crystal system are BaSO

4
, K

2
SO

4
, SnSO

4
, etc.

4. Monoclinic crystal system: In this crystal system, the unit cell edge lengths are diff erent. Two unit cell 
edges are not perpendicular, but they are perpendicular to the third edge i.e., a ≠ b ≠ c; α = γ = 90° ≠ β. 
Th is crystal system has two Bravais lattices; they are simple and base centred. Th ese are shown in Fig. 2.8. 
Examples for Monoclinic crystal system are CaSO

4
.2H

2
O (gypsum), Na

3
AlF

6
 (cryolite), etc.

Figure 2.8 Monoclinic crystal system

z

x
a

b

α
 =

 9
0°

β  ≠ 90°

γ = 90°

p c
y

c

Figure 2.7 Orthorhombic crystal system

z

x
a

b

α β

γ

P C
y

c

I F
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Figure 2.9 Triclinic crystal system

c

a

b

Figure 2.10 Rhombohedral crystal system

y

x

z

a

a

a

βα

γ

5. Triclinic crystal system: In this crystal system, the unit cell edge lengths are diff erent and are not 
 perpendicular i.e., a ≠ b ≠ c and α ≠ β ≠ γ ≠ 90° and all the angles are diff erent. Th is crystal exists in primi-
tive cell only. Th is is shown in Fig. 2.9. Examples for triclinic crystal system are K

2
Cr

2
O

7
, CuSO

4
. 5H

2
O, etc.

6. Rhombohedral [Trigonal] crystal system: In this crystal system, all the lengths of unit cell edges are 
equal. Th e angles between the axes are equal but other than 90° i.e., a = b = c and α = β = γ ≠ 90°. Th e Bravais 
lattice is simple only as shown in Fig. 2.10. Examples for Rhombohedral crystal system are As, Bi, Sb, etc.

7. Hexagonal crystal system: In this crystal system, two sides of the unit cell edge lengths are equal and the angle 
between these edges is 120°. Th ese two edges are perpendicular to the third edge, and not equal in length i.e., a = 

b ≠ c and α = β = 90°; γ = 120°. Th e Bravais lattice is primitive only. Th is is shown in Fig. 2.11. Th e atoms in this 
crystal system are arranged in the form of a hexagonal close pack. Th is is dealt with in more detail in Appendix A.

Figure 2.11 Hexagonal crystal system

c

90°

a

O 120°
b
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2-8 Applied Physics

Th e 14 Bravais lattices of 7 crystal systems are shown in the table below.

Sl. No Crystal System Types of Bravais 
Lattices

No. of Bravais 
Lattices

Relation between Lengths 
and Angles

1 Cubic P, I, F 3 a = b = c
α = β = γ = 90°

2 Tetragonal P, I 2 a = b ≠ c
α = β = γ = 90°

3 Orthorhombic P, I, F, C 4 a ≠ b ≠ c
α = β = γ = 90°

4 Monoclinic P, C 2 a ≠ b ≠ c
α = γ = 90° ≠ β 

5 Triclinic P 1 a ≠ b ≠ c
α ≠ β ≠ γ

6 Rhombohedral (Trigonal) P 1 a = b = c
α = β = γ ≠ 90° 

7 Hexagonal P 1 a = b ≠ c
α = β = 90° 

γ = 120°

2.6  Structure and packing fractions of simple 
cubic [SC] structure

Th e unit cell edge lengths of this structure along the crystallographic axes and interaxial angles are equal 
[i.e., a = b = c and α = β = γ = 90°]. Atoms are present only at the corners of this unit cell. A corner atom 
is shared by eight unit cells, so that the contribution of a corner atom to a unit cell is 1/8. Th e cube has 
eight corners, hence the contribution of eight corner atoms to a unit cell or the number of atoms per unit 

cell = 
1

8
8 1× = . Let ‘r’ be the radius of an atom. Th e surfaces of the atoms touch along the cube edges. So, 

the distance between the centres of two neighbouring atoms or the nearest neighbour distance (2r) is equal 
to the lattice constant ‘a’. In simple cubic cell, the number of nearest neighbour atoms to an atom or co-

 ordination number is six. Since atoms are present at a distance of ‘a’ along ± X, ± Y and ± Z directions. 

Th e number of nearest equidistant neighbouring atoms to an atom in the structure is called co-ordination 
number. Figure. 2.12 shows the simple cubic structure. Next, we fi nd the fraction of the unit cell volume 
occupied by the atoms. Th e simple cubic structure contains only one atom per unit cell.

Th e volume occupied by atoms in the unit cell v r( ) = ×1
4

3
3π  and

 Th e volume of unit cell (V   ) = a3. Hence, the packing factor or density of packing in the unit cell (PF) = 
v

V
 

= =
( )

= =

4

3 4

3 2 6
0 52

3

3

3

3

π π πr

a

r

r
.  or 52%
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Figure 2.12 Simple cubic structure

a = 2r
a = 2r

Atomic packing factor is defi ned as the fraction of the space occupied by atoms in the unit cell or it is the 
ratio of the volume occupied by atoms in the unit cell to the unit cell volume. An example for simple cubic 
structure is polonium crystal.

2.7  Structure and packing fractions of body-centred 
cubic structure [BCC]

For this unit cell, atoms are present at the corners of the cube and one atom is completely present at the centre 
of the unit cell. Th e centre of the unit cell is defi ned as the intersecting point of two body diagonals [AD and 
BE as shown in Fig. 2.13]. A corner atom is shared by eight unit cells so that the contribution of a corner 
atom to a unit cell is 1/8. Th erefore, the number of atoms per unit cell = 1 8 8 1 2( )× + = . Th e centre atom 
is surrounded by eight corner atoms, so the coordination number is 8. Th e surfaces of unit cell corner atoms 
may not touch, but they are in contact with the centre atom i.e., the surfaces of atoms are in contact along 
a body diagonal of the unit cell. Half the distance between the centres of a corner atom and central atom is 
equal to the radius (r) of an atom. Th e relation between unit cell edge length (a) and radius (r) of an atom can 
be obtained with reference to Fig. 2.13(b).

Figure 2.13 Body-centred cubic structure

(b)

E D

C

BA

4r

a

(a)

A

B
a

C

D
E

Chapter 02.indd   9Chapter 02.indd   9 9/25/2009   5:28:28 PM9/25/2009   5:28:28 PM



2-10 Applied Physics

Th e length of the body diagonal AD = 4r

 ∴ = + = + + = + + =AD AC CD AB BC CD2 2 2 2 2 2 2 2 2 23a a a a

 4 3
2 2r( ) = a

 4 3r a=

 (or)  a r=
4

3

 Lastly, Packing factor (PF) = 
volume of all atoms in unit celll

volume of uunit cell
=

v

V

 =
×

= =
( )

2
4

3 8

3

8 3 3

3 4

3

3

3

3

3

3

π
π π

r

a

r

a

r

r

 = =
3

8
0 68

π
.  or 68%.

Th e elements like tungsten, chromium, sodium, potassium, etc. possess bcc structure.

2.8  Structure and packing fractions of face-centred 
cubic [FCC] structure

Atoms are present at the corners and at the face centres of this cubic structure. Th e intersection of face diago-
nals represent face centre of the cube. A corner atom is shared by eight unit cells and a face-centred atom is 
shared by two unit cells. Th e cube has eight corners and bounded by six faces; so, the number of atoms per 

unit cell =
1

8
8

1

2
6 4× + × = .

Let r be the radius of an atom. Th e surfaces of atoms do not touch along unit cell edges but the surfaces 
of atoms along face diagonals of this structure are in contact. Th e unit cell structure is shown in Fig. 2.14. Half 
of the nearest neighbour distance along the face diagonal is equal to radius of an atom.

Th e relation between the radius of an atom and unit cell edge length of a unit cell can be obtained with refer-
ence to Fig. 2.14.

Figure 2.14 FCC structure
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 AC AB BC2 2 2= +

 4 2
2 2 2 2r a a( ) = + = a

 4 2r a=  or a r= 2 2

Th e co-ordination number is 12, and this can be explained in following way:
A face-centred atom of the cubic structure is surrounded by four corner atoms of the face of a unit cell, four 
surrounding face-centred atoms of the unit cell and four surrounding face-centred atoms of the adjacent 
unit cell. Th erefore, the co-ordination number is 12. Th e packing factor PF of the unit cell:

 =
volume occupied by all the atoms in a unit cell

unit cell volume

 = =
×

=
( )

v

V

r

a

r

r

4
4

3 16

3 2 2

3

3

3

3

π
π

 =
× ×

= =
16

3 8 2 2 3 2
0 74

3

3

π πr

r
.  or 74%

Th e packing factor of FCC structure is 74%. Examples for this structure are Cu, Ag, Al, etc.

2.9 Diamond cubic structure
Th e structure of diamond crystal unit cell is considered as the interpenetration of two FCC carbon unit cells 

along their body diagonals by a distance of 
1

4
th the diagonal length. Th e origin of one unit cell is at (000) and 

the origin of another unit cell is at 
a a a

4 4 4
, ,

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟. Th e diamond lattice structure and the projection of lattice points 

on bottom face of the cube are shown in Fig. 2.15. Th e fractions denote height of lattice points above the bottom 
face, interms of cube edge.

Figure 2.15
  (a) Diamond lattice structure; (b) Projection of diamond lattice points 

on bottom face
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2-12 Applied Physics

In diamond, each carbon atom is bonded covalently with other surrounding four carbon atoms so that the 
number of nearest neighbours or the co-ordination number is four. Th e surfaces of diamond unit cell corner 
and nearest diagonal atoms touch, half the distance of a corner and the nearest diagonal atom distance is equal 
to radius of the atom. Th e relation between radius of an atom and unit cell edge length ‘a’ can be given with 
reference to Fig. 2.15(a). XY = 2r.

 XY XZ ZY( ) = ( ) + ( )2 2 2 = ( ) + ( ) + ( )XN NZ ZY
2 2 2

 2
4 4 4

2
2 2

r
a a a( ) =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟ =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2 2

3
4

a

 2 3
4

r
a

=  (or) a
r

=
8

3

Th e number of atoms in the unit cell can be estimated in the following way: Atoms are present at 
8 corners of the cube, at 6 face centres of the cube and 4 atoms are completely present in the unit cell along the 
body diagonal at a distance of 1/4th diagonal distance from the face diagonal opposite atoms of the bottom 
face and the other two corners from the top face into the cube. Th erefore, the total number of atoms per unit 

cell = 
1

8
8

1

2
6 4 8× + × + = .

Finally, PF = 
volume occupied by all atoms of the unit celll ( )

volume of unit cell ( )

v

V

 = 

8
4

3 32

3 8

3

32 3 3

3 8

3

3

3

3

3
×

=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

=
× ×

π
π π

r

a

r r

r 88 8 3× r

 
π 3

16
0 34= .  or 34%.

Th is is a loosely packed structure; C, Ge and Si crystallize in this form.

2.10 NaCl crystal structure
Th e Bravais lattice of NaCl crystal is a face-centred cube as shown in Fig. 2.16. NaCl is an ionic crystal. 
It consists of two FCC sub-lattices, one of Cl− ions having origin at (000) and the other of Na+ ion having 
origin at one half of the body diagonal of the unit cell. Th e Na+ and Cl− ions are present at equilibrium 
distances in the crystal. Th e attractive force between Na+ or Cl− ions in the crystal is balanced by the repul-
sive forces between them due to same type of charges. In this crystal, either Na+ or Cl− ions could occupy 
the corner and face-centre positions with the ions of the opposite type occupying the alternate positions in 
between them. Each ion is surrounded by six other type ions so that the co-ordination number is six. Th ere are 
12 next nearest neighbours of the same kind as the reference ion. If Cl− ions occupy corners of the unit cell, 
one corner is taken as the origin and the co-ordinates of ions are expressed in fractions of the edge length of 

the cube. Th e co-ordinates of Cl− ions are 000,
1

2
0

1

2
, 0

1

2

1

2
, 

1

2

1

2
0 .

In the same coordinate system, the co-ordinates of the four Na+ ions are 
1

2

1

2

1

2
, 

1

2
00, 0

1

2
0, 00

1

2
.
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Y

X

Z

(000)

Na+
Cl−

Figure 2.16 NaCl lattice structure

Th e unit cell of NaCl crystal contains four sodium and four chlorine ions. Th erefore, the unit cell contains 
four NaCl molecules. Th e other crystals, which show this type of structure, are KCl, KBr, MgO, AgBr, etc.

2.11 Caesium chloride [CsCl] structure
Th e Bravais lattice of CsCl is a simple cube. It is an ionic compound. It is considered as the interpenetra-
tion of two simple cubic lattices of caesium and chlorine ions along half the body diagonal of a unit cell. Th e 
relative positions of the two cube systems are such that, each ion of one type occupies the centre of the cube 
formed by ions of the other type and vice versa. If caesium ion is present at the origin (000), then chlorine ion 

is present at the centre point 
1

2

1

2

1

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  of the cube as shown in Fig. 2.17. Th e co-ordinates of caesium ions are 

000, 100, 010, 001, 011, 101, 110 and 111. In this unit cell, each kind of ion is surrounded by eight other kinds 
of ions so that the co-ordination number is 8. Th e unit cell contains one CsCl molecule. Other examples of 
this type of structure are RbCl, LiHg, CuZn (brass), AgMg and AlNi.

Figure 2.17 Caesium chloride structure

Cl−
Cs+
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2.12 Zinc sulphide [ZnS] structure
Th is is an ionic compound. Th is structure consists of two diff erent types of atoms. Th e Bravais lattice of 
ZnS is a face-centred cube. Th e crystal structure of ZnS is considered as the interpenetration of two FCC 
sub-lattices along the body diagonal such that the origin of one sub-lattice is at a distance of 1/4th the body 
diagonal from the origin along the body diagonal. One sub-lattice contains Zn atoms and other sub-lattice 
contains S atoms. Th e ZnS crystal structure is similar to diamond crystal structure. Th e unit cell contains four 
ZnS molecules. Each atom is surrounded by four other kind of atoms at the corners of a regular tetrahedron. 

Th e co-ordinates of S atom is 
1

4

1

4

1

4
 and that of Zn atoms co-ordinates are 000,

1

2
0

1

2
, 

1

2

1

2
0  and 0

1

2

1

2
. 

Other examples of this structure are CdS, InSb, CaCl, GaAs, GaP, etc.

2.13 Stacking sequence in metallic crystals
To minimize the potential energy of a metallic crystal, the atoms in it are very closely packed. A close pack-
ing is a way of arranging equidimensional objects in space so that the available space is fi lled very eff ectively. 
In metallic crystals, the atoms are assumed to be hard, incompressible spheres. If we have equal-sized spheres, 
then a closest packing of like spheres is that the arrangement in which each sphere to form an intimate 
contact with a large number of its neighbours, occupying the available space most effi  ciently.

A closest packed layer of equal-sized atoms is shown in Fig. 2.19(a), the sites of atoms are represented 
as ‘A’, each sphere has six nearest neighbours in a closest packed layer and 12 nearest neighbours in three-
dimensional closest packing. As shown in Fig. 2.19, each row of atoms is placed in the space between the 
adjacent atoms of upper and lower rows such that the surfaces of atoms are in contact. Th is layer of atoms 
has several interesting features: (a) each sphere is surrounded by six spheres, (b) each sphere is surrounded 
by six voids and (c) each void is surrounded by three spheres. As shown in Fig. 2.19(a), on an average two 
triangular voids belong to each sphere. Th e apex of one triangular void is pointing up and the other triangular 
void apex is pointing down. To distinguish the two kinds of voids, they are labelled as B and C, respectively.

As shown in Fig. 2.19(b), if the spheres (atoms) in a hexagonal closest packed layer are all moved from 
their original sites i.e., from ‘A’ to new sites ‘B’, another hexagonal closest packed layer results. Similarly, if all 
the ‘C’ sites are occupied by equal spheres, another hexagonal closest packed layer is again obtained. It is obvi-
ous that in the stacking of layers to form a closest packing, a hexagonal closest packed layer can occupy only 
the sites A or B or C. If a layer is named as A, B or C accordingly as the spheres in that layer occupy A, B or 
C sites, then a two-fold choice exists in placing one hexagonal closest packed layer one above the other. If the 

Figure 2.18 ZnS Crystal Structure

Zn
S
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Figure 2.19 A two-dimensional closest packed layer of atoms
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fi rst layer be an ‘A’ layer, then the next layer can be either a ‘B’ layer or a ‘C’ layer; say that it is a ‘B’ layer. Th e 
next layer above can now be either an ‘A’ layer or a ‘C’ layer and so forth. So, the stacking sequence of hexagonal 
closest packed layers can be designated by representing the layers in a sequence by the letters A, B and C.

In stacking successive layers, a fi nite translation period normal to the layers is limited. Th e hexagonal closest 
packing contains the simple two diff erent layers stacking in the sequence … ABAB … as shown in Fig. 2.19(c) 
and the cubic closest packing consisting of three diff erent layers stacked in the sequence … ABC ABC … .

2.14 Calculation of lattice constant
Th e unit cell edge length of a cubic system is calculated using the density of the crystal. Let ‘a’ be the edge 
length (or primitive) of a cubic unit cell and ‘ρ’ be the density of the crystal.

Th e mass of the unit cell = ρa3 ___________ (2.1)

Let ‘M ’ be the molecular weight and N
A
 be the Avogadro number (i.e., number of molecules per kg mole 

of the substance) of the crystal.

Th en, mass of each molecule =
M

N A

If each unit cell contains n molecules (or lattice points),

Th en the mass of unit cell = n
M

N A

___________ (2.2)
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 From Equation (2.1) and (2.2), we have:

 ρa n
M

N

3 =
A

 a
nM

N
a

nM

N

3

1 3

= =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ρ ρA A

or

 Solved Problems

1.  Chromium has BCC structure. Its atomic radius is 0.1249 nm. Calculate the free volume/unit cell .

 (Set-4–May 2007), (Set-4–Sept. 2006)
Sol: Given data are 

 Atomic radius of chromium, r = 0.1249 nm.

 Free volume/unit cell = ?

 If  ‘a’ is the BCC unit cell edge length, then the relation between ‘a’ and ‘r ’ is

 a r= = ×
4

3

4

3
0 1249. nm

     = 0.28845 nm.

 Volume of unit cell, V = a  3 = (0.28845)3 nm3

          = 0.024 nm3

 Number of atoms in BCC unit cell = 2

 Hence volume of atoms in unit cell, v = 
4

3
2 0 016333 3πr × = . nm  

 Free volume/unit cell = V − v = 0.00767 nm3

2.  Lithium crystallizes in BCC structure. Calculate the lattice constant, given that the atomic weight and density for lithium 

are 6.94 and 530 kg/m3 respectively.

 (Set-4–Nov. 2003)
Sol: Lithium crystallizes in BCC structure, so the number of atoms per unit cell, n = 2

 Atomic weight, M = 6.94

 Density, ρ = 530 Kg/m3

 Lattice constant, a = ?

 a
nM

N

3 =
ρ A

, where N
A
 = Avogadro’s number

 a3

26

2 6 94

530 6 02 10
= ×

× ×
.

.

 = 43 50 10 30. × −
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 ∴ = × −a 3 517 10 10.  m

 = 3 517. Å

3.  Iron crystallizes in BCC structure. Calculate the lattice constant, given that the atomic weight and density of iron are 55.85 

and 7860 kg/m3, respectively.

 (Set-3–Sept. 2006), (Set-1–Nov. 2003)
Sol: Atomic weight of iron, M = 55.85

 Density of iron, ρ = 7860 kg/m3

 Find lattice constant, a in BCC iron

 Number of atoms in BCC unit cell, n = 2

 We know that:

 a
nM

N
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ρ A

1 3

 
2 55 85

7860 6 02 1026

1 3

×
× ×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

.
= × −2 87 10 10. m = 2 87. Å

4. If the edge of the unit cell of a cube in the diamond structure is 0.356 nm, calculate the number of atoms/m3.

 (Set-3–Nov. 2003)

Sol: Th e lattice constant of diamond, a = 0.356 nm = × −0 356 10 9. m

 Th e number of carbon atoms per unit cell, n = 8

 Th e number of unit cells in 1 m3 = 
1 3

3

m

a

 and the number of atoms per m3 = 1 8
3

3

m

a
× =

×
× −

1 8

0 356 10

3

9 3

m

m( . )

 = 
8 10

0 356
177 3 10

27

3

27 3×
= ×

( . )
. atoms/m  

5.  A metal in BCC structure has a lattice constant 3.5 Å . Calculate the number of atoms per sq. mm area in the (200) plane.

Sol: Lattice constant, a = 3 5. Å

  Th e (200) plane is perpendicular to X-axis and passes through the centre of the unit cell. So, this plane contains only 
the central atom.

 ∴  Th e area per atom = = × =a2 23 57 3 5 12 25. . .Å Å Å

 Number of atoms per sq. mm = 
1 1

12 25 2

mm mm×
. Å

 =
×

= ×
10 10

12 25
8 16 10

7 7

2

12Å Å
Å.

.  [ ]since mm1 107= Å
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6.  Germanium crystallizes in diamond ( form) structures with 8 atoms per unit cell. If the lattice constant is 5.62 Å, calculate 

its density.

Sol: Number of atoms per unit cell, n = 8

 Lattice constant, a = 5.62 Å = 5.62 × 10−10 m

 Atomic weight of Ge, M = 72.59

 Density, ρ = ?

 We know that a
nM

N

3 =
ρ A

, where N
A
 = Avogadro’s number

 
ρ =

nM

a N3
A

 
=

×

×⎡
⎣⎢

⎤
⎦⎥ × ×−

8 72 59

5 62 10 6 02 1010 3 26

3.

. .
Kg/m

 = 5434.5 kg/m3.

 Multiple Choice Questions

 1.  If the atoms or molecules in a solid are periodical at regular intervals of distances in three dimensions, then that 
solid is known as: ( )

 (a) crystalline solid   (b) amorphous solid
 (c) liquid crystals  (d) none

 2. Unit cells for most of the crystals are: ( )

 (a) spherical (b) elliptical (c) parallelopiped (d) none

 3. Crystallographic axes are obtained by the intersection of ___________ non-coplanar faces of the unit cell. ( )

 (a) three (b) four  (c) fi ve (d) six

 4. Th e number of crystal systems is:  ( )

 (a) 5 (b) 7 (c) 14 (d) 21

 5. Th e number of Bravais lattices is:  ( )

 (a) 256 (b) 7 (c) 14 (d) 37

 6. A cubic crystal system is represented by: ( )

 (a) a = b = c (b) a = b ≠ c (c) a = b = c (d) a ≠ b ≠ c

 α = β = γ ≠ 90° α = β = γ = 90° α = β = γ = 90°  α = β = γ = 90°

 7. Orthorhombic crystal system is represented by ( )

 (a) a = b = c (b) a ≠ b ≠ c (c) a ≠ b ≠ c (d) a ≠ b ≠ c

 α = β = γ = 90° α = β = γ = 90° α = β = γ ≠ 90°  α ≠ β ≠ γ ≠ 90°
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 8. Tetragonal crystal system is represented by ( )

 (a) a = b ≠ c  (b) a ≠ b ≠ c (c) a ≠ b = c (d) a = b = c

 α = β = γ = 90° α = β = γ = 90° α = β = γ ≠ 90° α = β = γ = 90°

 9. Monoclinic crystal system is represented by  ( )

 (a) a ≠ b ≠ c (b) a ≠ b ≠ c (c) a = b = c (d) a ≠ b = c

 α ≠ β ≠ γ ≠ 90° α = γ = 90° α = γ = 90°  α = γ = 90°
  β ≠ 90° β = 90° β = 90°

10. Triclinic crystal system is represented by  ( )

 (a) a ≠ b ≠ c (b) a ≠ b = c (c) a = b ≠ c (d) a ≠ b ≠ c

 α ≠ β ≠ γ ≠ 90°  α ≠ β ≠ γ ≠ 90°  α ≠ β ≠ γ ≠ 90°  α =β= γ ≠ 90°

11. Rhombohedral [Trigonal] system is represented by  ( )

 (a) a = b ≠ c (b) a = b = c  (c) a = b = c (d) a ≠ b = c

 α = β = γ = 90° α = β = γ ≠ 90° α = β ≠ γ = 90° α = β = γ ≠ 90°

12. Hexagonal crystal system is represented by ( )

 (a) a = b ≠ c (b) a = b = c  (c) a = b ≠ c  (d) a = b ≠ c

 α = β = γ = 90° α = β = 90° α = β = 90° α = β = 120°
  γ = 120° γ = 120° γ = 90°

13. Th e number of atoms per unit cell of BCC structure is: ___________  ( )

 (a) 1 (b) 2 (c) 3 (d) 4

14. In body-centred cubic structure, the length of unit cell edge interms of radius of atom (r) is:  ( )

 (a) 
4

3
r  (b) 

4

3
r  (c) 

4

3
r  (d) 

4

3
r

15. Th e packing factor of BCC structure is: ___________ % ( )

 (a) 68 (b) 52 (c) 74 (d) 46

16. Th e packing factor of face-centred cubic structure is: ___________ % ( )

 (a) 68 (b) 52 (c) 74 (d) 46

17. Th e total number of atoms per unit cell of diamond is:  ( )

 (a) 2 (b) 4 (c) 6 (d) 8

18. Th e unit cell of NaCl contains ___________ number of NaCl molecules ( )

 (a) 2 (b) 4 (c) 6 (d) 8

19. Th e Bravais lattice of ZnS is: ( )

 (a) simple cubic (b) body-centred cubic
 (c) face-centred cubic (d) none

20.  When the periodicity of atoms or molecules is extended throughout the solid, then it is known as ___________ 
solid. ( )

 (a) single crystalline   (b) polycrystalline
 (c) amorphous   (d) none
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21.  If the periodicity of atoms or molecules is extended in large number of small regions of diff erent sizes in the solid, 
then it is known as: ( )

 (a) single crystalline solid  (b) polycrystalline solid
 (c) amorphous solid   (d) none

22.  Th e study of geometric form and other physical properties of crystalline solids by using X-rays, electron beam and 
neutron beam constitute:  ( )

 (a) spectroscopy   (b) physiotherapy
 (c) crystallography   (d) none

23.  If an atom or a unit of atoms in a crystal is replaced by a point in space, then it results points in space is
called: ( )

 (a) space lattice   (b) crystal symmetry
 (c) spectrum   (d) diff raction

24.  If the surroundings of each lattice point is the same or the lattice points are identical, then such a lattice is
called: ( )

 (a) Bravais lattice  (b) space lattice
 (c) Braggs lattice  (d) none

25. Th e arrangement of atoms in a crystal is called: ( )

 (a) lattice   (b) crystal structure 
 (c) crystal symmetry   (d) none

26. Th e number of Bravais lattices in cubic crystal system is: ( )

 (a) one   (b) two
 (c) three   (d) four

27. Th e number of Bravais lattices in orthorhombic crystal system is ( )

 (a) one  (b) two  (c) three  (d) four

28. Th e number of Bravais lattices in tetragonal and monoclinic systems is ( )

 (a) equal  (b) unequal  (c) both a and b  (d) none

29. Th e packing factor of simple cubic structure is ( )

 (a) 68%  (b) 74%  (c) 52%  (d) 34%

30. If the number of lattice points per unit cell is one, then it is called ___________ unit cell ( )

 (a) primitive  (b) non-primitive  (c) both a and b  (d) none

31. Th e number of atoms per unit cell of face-centred cubic structure is:  ( )

 (a) one  (b) two  (c) three  (d) four

32.  Th e structure of diamond crystal unit cell is considered as the interpenetration of  ___________ carbon unit cells 
along their body diagonal. ( )

 (a) two FCC (b) two SC  (c) two BCC  (d) none

33. Th e diamond unit cell is a ___________ structure. ( )

 (a) BCC  (b) FCC  (c) SC  (d) none

34. Th e packing factor of diamond is ___________ %, so this is a loosely packed structure. ( )

 (a) 32 (b) 24 (c) 34  (d) 52
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35. Th e Bravais lattice of NaCl crystal is a: ( )

 (a) FCC  (b) BCC  (c) SC  (d) none

36. Th e Bravais lattice of CsCl is a: ( )

 (a) BCC  (b) SC  (c) FCC  (d) none

 Answers

 1. a  2. c  3. a  4. b  5. c  6. c  7. b  8. a  9. b 10. a
11. b 12. c 13. b 14. b 15. a 16. c 17. d 18. b 19. c 20. a
21. b 22. c 23. a 24. a 25. b 26. c 27. d 28. a 29. c 30. a
31. d 32. a 33. b 34. c 35. a 36. b

 Review Questions

 1. Show that FCC is the most closely packed of the three cubic structures by working out the packing factors.
 (Set-1, Set-3–May 2007), (Set-3–Sept. 2007), (Set-2–June 2005), (Set-3–Nov. 2004), (Set-4–May 2004)

 2. Describe the structure of NaCl.
 (Set-1, Set-3–May 2007), (Set-3–Sept. 2007), (Set-2–June 2005),
 (Set-3–Nov. 2004), (Set-4–May 2004), (Set-4–May 2003)

 3. Explain the terms: (i) basis (ii) space lattice and (iii) unit cell.
 (Set-4–May 2006), (Set-1–Sept. 2007), (Set-1, Set-2–June. 2005), (Set-1–Nov. 2004), (Set-3–May 2003)

 4. Describe seven crystal systems with diagrams.
 (Set-1–Sept. 2007), (Set-4–May 2007), (Set-4–May 2006), (Set-4–Sept. 2006),
 (Set-1, Set-2 –June 2005), (Set-1–Nov. 2004), (Set-3–May 2003)

 5. Obtain the relations between the edge of the unit cell and atomic radius for the BCC and FCC lattices.
 (Set-4–Nov. 2003)

 6. What are Bravais lattices? (Set-3–Sept. 2006), (Set-1–Nov. 2003)

 7. Deduce packing factors for simple cubic and BCC structures. (Set-3–Sept. 2006), (Set-1–Nov. 2003)

 8. Defi ne co-ordination number and packing factor of a crystal.
 (Set-1–Sept. 2008), (Set-1, Set-3–May 2007), (Set-2–Sept. 2006), (Set-2–Nov. 2003)

 9. Describe FCC crystal structure.
  (Set-2–Sept. 2006), (Set-1, Set-3–May 2006), (Set-2–Nov. 2003)

10. Obtain an expression for the packing factor of FCC structure.
 (Set-1–Sept. 2008), (Set-2–Sept. 2006), (Set-1, Set-3–May 2006), (Set-2–Nov. 2003)

11. Explain the crystal structure of diamond with a two-dimensional diagram. (Set-3–Nov. 2003)

12. What is packing fraction? Calculate the packing fraction for a BCC lattice. (Set-3–Nov. 2003)

13. Describe the crystal structure of ZnS. (Set-4–Nov. 2003)

14. Defi ne crystal lattice, unit cell, lattice parameter and coordination number.
 (Set-1–May 2007), (Set-1–Sept. 2006)

15. Explain the unit cell and lattice parameters. What is a primitive cell and how does it diff er from unit cell.
 (Set-4–May 2007), (Set-4–Sept. 2006)
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16. Describe the crystal structure of CsCl. (Set-4–May 2007), (Set-4–Sept. 2006)

17.  Consider a body centred cubic lattice of identical atoms having radius ‘R’ compute (i) the number of atoms per
unit cell (ii) Th e coordination number and (iii) the packing fraction

 (Set-1–Sept. 2006), (Set-1–May 2007)

18. Explain the terms: (i) basis, (ii) space lattice, (iii) lattice parameters and (iv) unit cell. (Set-3–Sept. 2008)

19. Describe BCC structure, with suitable example. (Set-1–Sept. 2008)

20. Describe in detail, the seven crystal systems with diagrams. (Set-4–Sept. 2008)

21.  Prove that which type of the cubic crystal structure has closest packing of atoms. Describe the relation between the 
atomic radius and the unit cell dimension of the crystal, mentioned above.

 (Set-2–Sept. 2007)

22. Tabulate the characteristics of the unit cells of diff erent crystal systems.

23. Illustrate Bravais lattices.

24. Describe the crystal structures of diamond and sodium chloride.

25. Illustrate simple cubic, FCC and BCC crystal structures.

26. What is space lattice? Find the packing fraction for BCC and FCC crystals.

27. Describe in detail the structure of diamond.

28. Explain various types of bondings in solids with suitable examples.

29. Show that FCC crystals are closely packed than BCC crystals.

30. Classify various lattice types in the crystal system.

31. Describe in detail the structure of ZnS.

32. What is a Bravais lattice? What are the diff erent space lattices in the cubic system?
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Crystal Planes, X-ray Diffraction 
and Defects in Solids

3.1 Crystal planes, directions and Miller indices
Crystal planes are defi ned as some imaginary planes inside a crystal in which large concentration of atoms are 
present. Inside the crystal, there exists certain directions along which large concentration of atoms exists. Th ese 
directions are called crystal directions. Figure 3.1 shows a two-dimensional lattice with diff erent  orientations 
of crystal planes.

C H A P T E R 3

Crystal planes and directions can be represented by a set of three small integers called Miller indices 
[because Miller derived a method of representing crystal planes]. Th ese integers are represented in general 
as h, k and l. If these integers are enclosed in round brackets as (hkl ), then it represents a plane. On the other 
hand, if they are enclosed in square brackets as [hkl], then it represents crystal direction perpendicular to the 
above-said plane. Next, we will see the way of obtaining Miller indices for a plane.

Figure 3.1 A two-dimensional lattice with crystal planes
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3-2 Applied Physics

 (i)  As shown in Fig. 3.2, take a lattice point as origin ‘0’ of crystallographic axes X, Y and Z in a space 
 lattice. Th e unit cell translational distances or lattice constants along X, Y and Z directions are a, b and c, 
 respectively. Let a crystal plane ABC intersect these three axes at 2a, 3b and c. In general, the intercepts 
can be represented as pa, qb, and rc.

 (ii)  Divide these intercepts with lattice points translational distances along the axes to obtain intercepts of 
the plane in terms of multiples of unit cell translational lengths.

i.e.,  2 3a

a

b

b

c

c
, ,

 2, 3, 1

in general  pa

a

qb

b

rc

c
, ,

 p, q, r

 (iii)  Take the reciprocals of these multiples, they are 1

2

1

3

1

1
, , ; in general 1 1 1

p q r
, ,

 (iv)  Clear these fractions [by multiplying with LCM] to smallest integers having the same ratio as the 
 fractions, enclose these integers in brackets.

 
1

2
6

1

3
6

1

1
6× × ×, ,

 3 2 6

Figure 3.2 Miller indices for a plane ABC

Y

X

Z

a

b

2b

3b

4b

2a
A

C

B

3a0

c

2c
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in general  pqr

p

pqr

q

pqr

r
, ,

 qr pr pq

Miller indices of the plane ABC is (326). In general, indices of a plane are represented as (hkl ) = (qr pr pq)

or 
1 1 1

p q r
h k l: : : :=

Miller indices may be defi ned as a set of three small integers obtained by clearing the reciprocals of the 
three intercepts [in terms of multiples of unit cell edges] made by a plane on crystallographic axes.

Now, we will see the important features of Miller indices:

 (i) Miller indices represent a set of equidistant parallel planes.
 (ii)  If the Miller indices of a plane represent some multiples of Miller indices of another plane, then these 

planes are parallel. For example (844) and (422) or (211) are parallel planes.
 (iii)  If (hkl ) are the Miller indices of a plane, then the plane divides the lattice constant ‘a’ along X-axis into 

h equal parts, ‘b’ along Y-axis into k equal parts and ‘c’ along Z-axis into l equal parts.

Y

X

Z

0

(100)
(001)

(010)

Y

X

Z

0

(101)

Y

X

Z

0

(111) [100]

[0
01

]

[101]
0

Z

X

Y

[111]

[110][010]

[011]

Figure 3.3
  Represent some important crystal planes and directions in a cubic 

 crystal
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3-4 Applied Physics

 (iv)  If a plane is parallel to one of the crystallographic axes, then the plane intersects that axis at infi nity and 
the Miller indices along that direction is zero.

 (v)  If a plane cuts an axis on the negative side of the origin, then the corresponding index is negative and is 
indicated by placing a minus sign above the index. For example, if the plane cuts on negative Y-axis, then 
Miller indices of the plane is ( ).hkl

 (vi)  When Miller indices are enclosed in curly brackets, {hkl }, they refer to planes which in the crystal are 
equivalent even though their Miller indices may diff er. For example in a cubic lattice, all cube faces 
are equivalent, they are (100), (010), (001), ( ), ( ), ( )100 010 001 ; these planes are represented as {100}. 
 Similarly, a full set of equivalent directions in a crystal is represented by a symbol <hkl >. For example, the 
eight body diagonals of a cube [111], [ ], [ ], [ ], [ ], [ ], [ ], [ ]1 1 1 111 111 111 1 11 111 11 1  are  designated 
as <111>.

3.2  Distance of separation between successive 
hkl planes

Th e separation between successive parallel planes in rectangular axes crystal system can be extracted easily. 
Let us consider a rectangular [cartesian] coordinate system with origin ‘0’at one of the lattice points. Let 
(hkl ) be the Miller indices of a plane ABC, which makes intercepts OA, OB and OC on X, Y and Z axes, 
respectively as shown Fig 3.4. A normal to this plane from the origin passes through a point N in the plane 
ABC, such that ON = d

1
. Th is normal makes α′, β ′, and γ ′ angles with X, Y and Z-axes, respectively. Since 

the plane segments ‘a’ into ‘h’ equal parts, b into k equal parts and c into l equal parts, then the intercepts OA, 
OB and OC are such that:

 OA , OB= =
a

h

b

k
  and  OC =

c

l
  ___________ (3.1)

where a, b, c are the unit cell edge lengths along X, Y and Z-axes, respectively. 

From Fig. 3.4

 cos
OA

cosα β′ ′= =
d d

1 1,
OB

  and  γ ′ =
d

1cos
OC

  ___________ (3.2)

Let the coordinates of N be x, y and z along X, Y and Z axes, then:

Figure 3.4 Orthorhombic crystal

0 A

B

B1

A′

C

C′

Y

X

Z

N

N′

Chapter 03.indd   4Chapter 03.indd   4 9/25/2009   5:26:59 PM9/25/2009   5:26:59 PM
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 ON( ) = = + +
2

1

2 2 2 2d x y z   ___________ (3.3)

Also from Fig. 3.4:

  cos , cos , cosα β γ′ ′ ′= = =
x

d

y

d

z

d
1 1 1

  ___________ (3.4)

Substitute Equation (3.4) in (3.3) gives:

 d d d d
1

2

1

2 2

1

2 2

1

2 2= + +cos cos cosα β γ′ ′ ′  

 = ′ + ′ + ′d
1

2 2 2 2[cos cos cos ]α β γ  

(or)  cos2 α ′ + cos2 β ′ + cos2 γ ′ = 1  ___________ (3.5)

Substitute Equation (3.2) in (3.5) gives:

 d d d
1

2

2

1

2

2

1

2

2
1

OA OB OC( )
+

( )
+

( )
=   ___________ (3.6)

Again substitute Equation (3.1) in (3.6) 

 
d h

a

d k

b

d l

c

1

2 2

2

1

2 2

2

1

2 2

2
+ + = 1  (or)  d

h

a

k

b

l

c
1

2
2

2

2

2

2

2
1+ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =  

 d
h

a

k

b

l

c

1 2

2

2

2

2

2

1
=

+ +

  ___________ (3.7)

Let h k

2 2 2

l⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 be the Miller indices of the next plane ′A ′B ′C , this plane makes intercepts OA′, OB′ and OC′  

on X, Y and Z axes, respectively. A normal from the origin to this plane passes through a point N′, so that 
ON′ = d

2
. As the extension of d

1
 is d

2
, it makes same angles α ′, β ′ and γ ′ with X, Y and Z-axes, respectively. 

Since the plane segments ‘a’ into h/2 equal parts, b into k/2 equal parts and c into l/2 equal parts, then the 
intercepts OA′, OB′ and OC′ are such that:

 OA
2

OB
2′ =

( )
= ′ =

( )
=

a

h

a

h

b

k

b

k
2 2

,   and  OC′ =
( )

=
c

l

c

l
2

2
  ___________ (3.1′)

From Fig. 3.4,

 cos , cosα′
′

′
′

=
( )

=
( )

d d2 2

OA OB
β   and  cos ′

′
=

( )
d 2

OC
γ   ___________ (3.2′)

Let the coordinates of N ′ are x ′, y ′ and z ′ along X, Y and Z-axes, respectively.

 ON′( ) = = ′ + ′ + ′2

2

2 2 2 2d x y z   ___________ (3.3′)
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Also from Fig 3.4:

 cos , cosα β′ ′ ′
′

= =x

d

y

d2 2

  and  cos γ′ ′= z

d 2

  ___________ (3.4′)

Substitute Equation (3.4′) in (3.3′) gives:

 d d d d
2

2

2

2 2

2

2 2

2

2 2= ′ + ′ + ′cos cos cosα β γ

 = d
2

2 2 2 2cos cos cos′ + ′ + ′⎡
⎣⎢

⎤
⎦⎥α β γ

(or)  cos2 α′ + cos2 β′ + cos2 γ ′ = 1  ___________ (3.5′)

Substitute Equation (3.2′) in (3.5′) gives: 

 
d d d

2

2

2

2

2

2

2

2

2
1

OA OB OC′( )
+

′( )
+

′( )
=   ___________ (3.6′)

Again substitute Equation (3.1′) in (3.6′) gives:

 
d h

a

d k

b

d l

c

2

2 2

2

2

2 2

2

2

2 2

2
2 2 2

1
( )

+
( )

+
( )

=   (or)  d
h

a

k

b

l

c
2

2
2

2

2

2

2

2
2 2 2

1
( )

+
( )

+
( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

(or)  d
h

a

k

b

l

c

2 2

2

2

2

2

2

1

2 2 2

=

( )
+

( )
+

( )

  (or)  d
h

a

k

b

l

c

2 2

2

2

2

2

2

2
=

+ +

  ___________ (3.7′)

Let the separation between the planes ABC and A′B′C′ is ‘d  ’.

 ∴ = − =

+ +

d d d
h

a

k

b

l

c

2 1
2

2

2

2

2

2

1
  ___________ (3.8)

Using Equation (3.8), we can determine the interplanar separation in orthorhombic crystals.
For tetragonal crystal a = b ≠ c, substitute these values in Equation (3.8), we have:

 d
h

a

k

a

l

c

h k

a

l

c

=

+ +

=
+

+

1 1
2

2

2

2

2

2

2 2

2

2

2

  ___________ (3.9)

For cubic crystals: a = b = c, substitute these values in Equation (3.8), we have:

 d
h

a

k

a

l

a

=

+ +

1
2

2

2

2

2

2

  (or)  d
a

h k l
=

+ +2 2 2

  ___________ (3.10)

Th e calculation of interplanar spacing for other crystal systems is complicated, so we will not discuss them.
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3.3 Imperfections in crystals
In a sound crystal (or in an ideal crystal), the atoms are arranged regularly and periodically in three dimensions. 
But the grown crystals [or real crystals] may contain imperfections or defects. Th ese defects are mainly divided 
into point, line, surface and volume defects. Point and line defects are discussed here, while surface defects are 
dealt with in Appendix B.

(1) Point defects: As the name indicates, these defects are at some points in the crystal. So, these are also 
called zero-dimensional defects. Th e point defects are divided into three categories: (a) lattice site defects; 
this includes vacancies [Schottky defect] and interstitialcies [Frenkel defect], (b) compositional defects; this 
includes substitutional impurity and interstitial impurity and (c) electronic defects. Th ese defects are dis-
cussed below.

(a) Lattice site defects: In this type of defects, some atoms may not be present in their regular atomic sites. 
Th ey are:

(i) Vacancies: As shown in Fig. 3.5, at a lattice point, one or two or three atoms are missed, and this is 
referred to as single or double or triple vacancies, respectively. Th e vacancies are formed due to the imperfect 
packing during crystallization or due to thermal vibrations at high temperatures.

Schottky defect: In ionic crystals, if a cation vacancy exists, then in the very nearby place an anion vacancy 
also exists. i.e., usually an anion and cation pair is moved to the surface of the crystal, so that charge neutrality 
is maintained in the vacancy region as shown in Fig. 3.6. Th is is known as Schottky defect. Crystals such as 
NaCl, KCl, KBr, etc. show Schottky defect.

Figure 3.5 (a) Perfect crystal; (b) Vacancy defect

Vacancy

(a) (b)

(ii) Interstitial defect: If an atom is moved to an interstitial space in the crystal, then the defect is known 
as interstitial defect.

Figure 3.6 Schottky defect
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Frenkel defect: In ionic crystals, if a cation [positive ion] moves to an interstitial space, then a vacancy is 
formed in its atomic position. Here, charge neutrality is maintained in the defective region as shown in Fig. 3.7. 
Th is type of defect is known as Frenkel defect. Crystals such as CaF

2
, AgBr, AgI, etc. show Frenkel defect.

(b) Compositional defect: Th e presence of impurity atoms in the crystal leads to compositional defects. 
Impurity atoms are present at the sites of regular parent atoms or in the interstitial spaces. Th ese defects are 
described below.

(i) Substitutional defect: As shown in Fig. 3.8(a), during crystallization few foreign atoms occupy the 
 regular parental atoms sites. For example, in extrinsic semiconductors either third or fi fth group atoms occupy 
the sites of silicon or germanium atoms.

Figure 3.7 Frenkel defect

(ii) Interstitial impurity defect: Th e spaces between the parental atoms in a crystal are known as interstitial 
spaces. Small-sized [lower atomic number] atoms, such as hydrogen, etc. may fi t into these interstitial spaces. 
Th ese atoms are known as interstitial atoms and the defect formed due to the presence of interstitial atoms is 
known as interstitial defect. Th is is shown in Fig. 3.8(b). If ‘r ’ is the radius of a parent atom, then a octahedral 
and a tetrahedral space can accommodate an interstitial atom of radius 0.414r and 0.225r, respectively.

(c) Electronic defects: Non-uniformity of charge or energy distribution in the crystal is referred to as 
 electronic defect. Th e presence of impurity atoms such as substitutional and interstitial atoms and vacancies 
can vary the uniform distribution of electronic charge in the crystal. So, the presence of these defects also 
leads to electronic defects. In semiconductors, temperature variation changes charge concentration, so the 
variation of temperature [i.e., thermal energy] leads to electronic defects.

Point defects are formed by thermal fl uctuations, by severe deformation [i.e., by hammering or rolling] 
and by bombarding with high energetic particles.

(2) Line defects: If a crystal plane ends somewhere in the crystal, then along the edge of that incom-
plete plane produces defect in the crystal called line defect. Th e line defect is of two types: they are (i) edge 
 dislocation and (ii) screw dislocation. Th ese are described below.

(i) Edge dislocation: Figure 3.9(a) shows three-dimensional view and front face of a perfect crystal. Th e 
vertical crystal planes are parallel to side faces of a crystal is shown in the fi gure. One of the crystal planes does 

Figure 3.8 (a) Substitutional defect; (b) Interstitial defect

(a) (b)
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not pass from top to bottom face of the crystal, but ends some where in the crystal as shown in Fig. 3.9(b). 
In this crystal, just above the edge of incomplete plane, the atoms are in a state of compression so that the 
bond distances are less than normal values and below the edge of incomplete plane, the atoms are far apart, 
so the bond distances are larger than normal values. Th is situation extends all along the edge of this incom-
plete plane producing edge dislocation. Th e extra plane indicated in Fig. 3.9(b) can be either above or below 
the slip plane shown as dotted line X, Y in Fig. 3.9(c). If the incomplete extra plane is above the slip plane, 
then the edge dislocation is positive and is represented by the symbol ⊥; on the other hand if it is below the 
slip plane, then the edge dislocation is negative and is represented by the symbol 

⊥

. If one plane of atoms 
glides over another separated by an integral multiple of interatomic distance is called slip, and the slip plane 
is the plane in which slip has taken place. Th us, the crystal consists of slipped and normal regions.

Figure 3.9
  (a) Three-dimensional view of perfect crystal; Front view of  perfect 

 crystal; (b) Three-dimensional view of edge dislocation crystal; Front view 
of edge dislocation crystal; (c) Positive and negative edge  dislocations

(a)

(b)

X  Y
Q

Q1

b

A

(c)
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Th e magnitude and direction of the displacement of crystal planes due to edge dislocation can be  represented 
by a vector called Burger’s vector, which is perpendicular to the dislocation line. Th is indicates how much and 
in what direction the lattice above the slip plane is shifted with respect to the lattice below the slip plane. 
Figure 3.9(c) shows a method of determining Burger’s vector for edge dislocation. To fi nd the magnitude and 
direction of Burger’s vector, one starts arbitrarily from a lattice point A, drawing atom-to-atom vectors round 
the dislocation in clockwise direction to form a closed circuit. Here, the number of vectors in horizontal direc-
tion at the top and bottom and vertical vectors at the left and right are equal, but the circuit is not closed unless 
we put the vector 

�
b , as shown in the circuit. Th is is the Burger’s vector for the above-said edge dislocation.

(ii) Screw dislocation: Th e crystal planes spiral about a line in the crystal, called dislocation line. Th e screw 
dislocation is shown in Fig. 3.10. Due to the spiralling of crystal planes, the atoms at one end of the plane 
are displaced by one atomic distance with respect to the other end of the plane in perpendicular direction to 
the plane. As shown in Fig. 3.10, the plane ABCD is the slipped area. Th e upper portion of the crystal has 
been sheared by one atomic distance compared to the right side region of the crystal. Slip has not taken place 
to the right side of AD, so AD is the dislocation line. Burger’s circuit is completed around the dislocation. 
Th e Burger’s vector is parallel to the dislocation line. By knowing the Burger’s vector and dislocation line, the 
dislocation is completely described.

Figure 3.10 Screw dislocation and Burger’s vector

b

A

D

C

B

3.4  Energy for the formation of a vacancy and number 
of vacancies — at equilibrium concentration

Energy supply to a crystal moves some of the atoms present at regular atomic sites in the interior of the crystal 
to the surface, so that vacancies are formed inside the crystal. If we supply energy to an ionic crystal, then 
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either cation–anion pairs are moved to the surface [Schottky defect] or cations are moved to interstitial spaces 
[Frenkel defect], so that vacancies are formed inside the ionic crystal. We shall fi nd the relation between 
number of vacancies and energy of formation of a vacancy in all the above cases.

(i) In metallic crystals: Let a crystal contains N number of atoms. Th e energy required to move an atom 
at a regular atomic site in the interior of the crystal to the surface is E

V
 i.e., the energy required to create a 

vacancy. To create ‘n ’ number of isolated vacant sites, the energy required is nE
V 
. At some thermal equilibrium 

temperature ‘T ’, let ‘n’ number of vacancies present in the crystal. Th e number of ways these ‘n’ vacancies are 
created is given by (P).

 P
N

N n n
=

−( )
!

! !
___________ (3.11)

Th e vacancies created inside the crystal produces disorder in the crystal. Th e disorder can be measured in 
terms of entropy. Th e increase in entropy (S) due to the increase of vacancies is:

 S = K
B
 log P ___________ (3.12)

where K
B
 is Boltzmann constant, substituting Equation (3.11) in (3.2), we have:

 S K
N

N n n
=

−( )B log
!

! !
___________ (3.13)

Th e creation of vacancies produces not only the change in entropy but also change in free energy (F ) of the 
crystal.

  F = U − TS ___________ (3.14)

where U = nE
V
 = internal energy of crystal at temperature T K. Equations (3.12) and (3.14) are taken from 

thermodynamics. Substituting Equation (3.13) in (3.14) gives:

 F nE K T
N

N n n
= −

−( )
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

V B log
!

! !
 

 = nE
V
 − K

B
T [log N ! − log (N − n)! − log n!] ___________ (3.15)

Th e logarithmic term in the above equation can be simplifi ed using Stirling’s approximation,

log x ! = x log x − x

 Equation (3.15) becomes:

 F = nE
V
 − K

B
T [ N log N − (N − n) log (N − n) − n log n] ___________ (3.16)

In thermal equilibrium at constant volume, the free energy is minimum with respect to changes in ‘n’.

 ∴
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= = − −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∂
∂

F

n
E K T

N n

nT

0 V B log   (or)  
E

K T

N n

n
V

B

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

log ___________ (3.17)
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3-12 Applied Physics

Taking exponential on both sides of Equation (3.17), we have:

 exp
E

K T

N n

n
V

B

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= −   (or)  n N n
E

K T
= −

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( ) exp V

B

  if n << N then

 n N
E

K T
≈ exp

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

V

B

  ___________ (3.18)

Th e above equation indicates that by decreasing equilibrium temperature, the concentration of vacancies 
decreases.

(b) In Ionic crystals: Here, we see Schottky and Frenkel defects separately.

(i) Schottky defect: In ionic crystals, equal number of cations [positive ions] and anions [negative ions] 
vacancies are formed i.e., usually cation–anion-paired vacancies are formed, so that charge neutrality is main-
tained in the crystal. Th e energy required to move a cation and an anion from interior of the crystal to the 
surface is E

P 
. At some thermal equilibrium temperature (T ), let ‘n’ pairs of cation–anion vacancies present in a 

crystal containg ‘N’ pairs of ions. Th e number of ways these n-pairs of vacancies are created is given by (P ).

 P
N

N n n
=

−( )
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

!

! !

2

  ___________ (3.19)

Th e vacancies created inside the crystal produces a disorder in the crystal. Th e disorder can be measured in 
terms of entropy. Th e increase in entropy (S), due to the creation of n pairs of vacancies is

 S = K
B
 log P  ___________ (3.20) 

where K
B
 is Boltzmann constant, substituting Equation (3.19) in (3.20) we have:

 S K
N

N n n
=

−( )
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

B log
!

! !

2

  ___________ (3.21)

Th e vacancies produce not only change in entropy but also change in free energy (F ) of the crystal.

 ∴  F = U −TS  ___________ (3.22)

where U = n E
P
 = internal energy of the crystal at temperature T. Equations (3.20) and (3.22) are taken from 

thermodynamics; substituting Equation (3.21) in (3.22) gives:

 F nE K T
N

N n n
= −

−( )
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

P B log
!

! !

2

 

 = nE
P
 − 2 K

B
T [log N ! − log (N − n) ! − log n !]  ___________ (3.23)

Th e logarithmic term in the above equation can be simplifi ed using Stirling’s approximation:

 log x ! = x log x − x.

Chapter 03.indd   12Chapter 03.indd   12 9/25/2009   5:27:00 PM9/25/2009   5:27:00 PM
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∴  Equation (3.23) becomes:

 F = nE
P
 − 2K

B
T [ N log N − (N − n) log (N − n) − n log n ] ___________ (3.24)

In thermal equilibrium at constant volume, the free energy is minimum with repect to the changes in ‘n’.

 ∴
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = = −

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

∂
∂

F

n
E K T

N n

nT

0 2P B log   (or)  
E

K T

N n

n
P

B2
=

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟log ___________ (3.25)

Taking exponential on both sides of Equation (3.25), we get:

 exp
E

K T

N n

n
P

B2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  (or)  n N n

E

K T
= −( ) −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

exp P

B2
  if n << N then:

 n N
E

K T
≈

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

exp P

B2
  ___________ (3.26)

(ii) Frenkel defects: Let the ionic crystal contains N number of atoms and the number of interstitial spaces 
are slightly less than the number of atoms. Let N

i
 be the number of interstitial spaces in a perfect crystal. 

Th e amount of energy required to displace an atom from regular atomic site to an interstitial position is E
i 
. 

At some thermal equilibrium temperature, let there be ‘n’ number of cation site vacancies and same number 
of interstitial atoms. Th e number of ways the ‘n’ Frenkel defects can be formed is:

 P
N

N n n

N

N n n
=

−( )
×

−( )
!

! !

!

! !
i

i

___________ (3.27)

Th e increase in entropy (S) due to the creation of Frenkel defects is given by:

 S = K
B
 log P ___________ (3.28)

Substituting Equation (3.27) in (3.28), we get:

 S K
N

N n n

N

N n n
=

−( )
×

−( )
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

B
i

i

log
!

! !

!

! ! ___________ (3.29)

Th ese defects produce not only change in entropy but also change in free energy (F ) given by:

 F = U − TS ___________ (3.30)

Equations (3.28) and (3.30) are taken from thermodynamics. Substituting Equation (3.29) in (3.30), 
we have:

 F nE K T
N

N n n

N

N n n
= −

−( )
×

−( )
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥

i B
i

i

log
!

! !

!

! ! ⎥⎥⎥
___________ (3.31)
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3-14 Applied Physics

Th e logarithmic term in the above equation can be simplifi ed by applying Stirling’s approximation 
log x ! = x log x − x.

 ∴
−( )

×
−( )

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
=log

!

! !

!

! !
log

!N

N n n

N

N n n

Ni

i NN n n

N

N n n−( )
+

−( )! !
log

!

! !
i

i

 ≅ N log N + N
i
 log N

i
 − (N − n) log (N − n) − (N

i
 − n) log (N

i
 − n) − 2n log n ___________ (3.32)

Substituting Equation (3.32) in (3.31), we have:

 F =  nE
i
 − K

B
T [N log N + N

i
 log N

i
 − (N − n) log (N − n) − (N

i
 − n) 

log (N
i
 − n) − 2 n log n] ___________ (3.33)

At thermal equilibrium, the change in free energy is minimum w.r.t ‘n’, so we have:

 
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= = −
−( ) −( )F

n
E K T

N n N n

nT

0
2i B

ilog ___________ (3.34)

 ∴ =
−( ) −( )

E K T
N n N n

n
i B

ilog
2

  (or)  
E

K T

N n N n

n
i

B

i=
−( ) −( )

log
2

Taking exponential on both sides, we get:

 exp
E

K T

N n N n

n
i

B

i
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−( ) −( )

2

 n N n N n
E

K T

2 = −( ) −( ) −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟i

i

B

exp   if n << N
i

 n N N
E

K T

2 ≈
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

i

B

exp   (or)  n N N
E

K T
= ( ) −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟i

i

B

1
2

2
exp ___________ (3.35)

Th e above equation shows that n is proportional to (NN
i
)½

3.5  Diffraction of X-rays by crystal planes 
and Bragg’s law

Th e visible light rays when pass through a sharp edge of an object can form some bright regions inside 
the geometrical shadow of the object. Th is is due to the bending nature of light, called diff raction. 
 Diff raction of visible light rays can also be produced using plane-ruled grating. Th is grating consists of 
about 6000 lines/cm; so that the spacing between any two consecutive lines in the grating is of the order 
of the wavelength of visible light used to produce diff raction. Th e wavelength of X-rays is of the order of 
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an angstrom, so X-rays are unable to produce diff raction with plane optical grating. To produce  diff raction 
with X-rays, the spacing between the consecutive lines of grating should be of the order of few angstroms. 
Practically, it is not possible to construct such a grating. In the year 1912, a German physicist Laue 
 suggested that the three-dimensional arrangement of atoms in a crystal can serve as a three-dimensional 
grating. Inside the crystal, the spacing between the crystal planes can work as the transparent regions as 
between lines in a ruled grating. Laue’s associates Friedrich and Knipping succeeded in diff racting X-rays 
by passing through a thin crystal.

In 1913, W.L. Bragg and his son W.H. Bragg gave a simple interpretation of the diff raction pattern. 
According to Bragg, the diff raction spots produced are due to the refl ection of some of the incident X-rays 
by various sets of parallel crystal planes. Th ese planes are called Bragg’s planes. Th e Bragg’s interpretation is 
explained in the following topic.

Bragg’s law: W.L. Bragg and W.H. Bragg considered the X-ray diff raction as the process of refl ection of 
X-rays by crystal planes as shown in Fig. 3.11. A monochromatic X-ray beam of wavelength λ is incident 

Figure 3.11 Bragg’s law

D

A

B

C

F

E

P

θθ θ θ

θθ
Q

d

Plane 4

Plane 3

Plane 2

Plane 1

at an angle θ to a family of Bragg planes. Let the interplanar spacing of crystal planes is ‘d ’. Th e dots in the 
planes represent positions of atoms in the crystal. Every atom in the crystal is a source of scatterer of X-rays 
incident on it. A part of the incident X-ray beam AB, incident on an atom at B in plane l, is scattered along 
the direction BC. Similarly, a part of incident X-ray DE [in parallel to AB] falls on atom at E in plane 2 and 
is scattered in the direction EF and it is parallel to BC. Let the beams AB and DE make an angle θ with the 
Bragg’s planes. Th is angle θ is called the angle of diff raction or glancing angle.

If the path diff erence between the rays ABC and DEF is equal to λ, 2λ, 3λ… etc. or nλ, i.e., integral mul-
tiples of wavelength, where n = 1, 2, 3,… etc. are called fi rst-order, second-order, third-order … etc. maxima, 
respectively. As path diff erence is equal to nλ, then the rays refl ected from consecutive planes are in phase; 
so, constructive interference takes place among the refl ected rays BC and EF, hence the resulting diff racted 

ray is intense. On the other hand, if the path diff erence between the rays ABC and DEF is 
λ λ
2

3

2

5

2
, , ,

λ
… etc., 

then the scattered rays BC and EF are out of phase so that destructive interference takes place and hence the 
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3-16 Applied Physics

resulting ray intensity is minimum. To fi nd the path diff erence between these rays, drop perpendiculars from 
B on DE and EF. Th e intersecting points of perpendiculars are P and Q as shown in Fig. 3.11. Th e path 
 diff erence between the rays is PE + QE. From the fi gure, we know that BE is perpendicular to plane 1 and 
BP is perpendicular to AB. So, as the angle between ray AB and plane 1 is θ, then ∠PBE = ∠QBE = θ. 

In the triangle PBE, sin
PE

BE

PE
θ = =

d
 or PE = d sin θ. Similarly, EQ = d sin θ.

∴  For constructive interference, PE + EQ = nλ  or  d sin θ + d sin θ = nλ

 i.e.,  2d sin θ = nλ

Th e above equation is called Bragg’s law.

3.6 Powder method 
X-ray powder method is usually carried for polycrystalline materials. Th e powder photograph is obtained in 
the following way. Th e given polycrystalline material is ground to fi ne powder and this powder can be taken 
either in a capillary tube made up of non-diff racting material or is just struck on a hair with small quantity of 
binding material and fi xed at the centre of cylindrical Debye-Scherrer camera as shown in Fig. 3.12(a).

Figure 3.12
  (a) Debye-Scherrer cylindrical camera; (b) Film mounted in camera; 

(c) Film on stretchout

Luminiscent 
screen

Cones of diffracted rays
Film

X-rays

Collimator

Specimen

(a)

Incident
beam

(b)

S

(c)
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A stripe of X-ray photographic fi lm is arranged along the inner periphery of the camera. A beam 
of monochromatic X-rays is passed through the collimator to obtain a narrow fi ne beam of X-rays. Th is beam 
falls on the polycrystalline specimen and gets diff racted. Th e specimen contains very large number of small 
crystallites oriented in random directions. So, all possible diff raction planes will be available for Bragg refl ec-
tion to take place. Such refl ections will take place from many sets of parallel planes lying at diff erent angles 
to the incident X-ray beam. Also, each set of planes gives not only fi rst-order refl ections but also of higher 
orders as well. Since all orientations are equally likely, the refl ected rays will form a cone whose axis lies along 
the direction of the incident beam and whose semi-vertical angle is equal to twice the glancing angle (θ), 
for that particular set of planes. For each set of planes and for each order, there will be such a cone of refl ected 
X-rays. Th ere intersections with a photographic fi lm sets with its plane normal to the incident beam, form 
a series of concentric circular rings. In this case, a part of the refl ected cone is recorded on the fi lm and it is 
a pair of arcs, the resulting pattern is shown in Fig. 3.12(c). Diameter of these rings or corresponding arcs is 
recorded on the fi lm, and using this the glancing angle and interplanar spacing of the crystalline substance can 
be determined. Figure 3.12(b) shows the fi lm mounted in the camera and the X-ray powder pattern obtained. 
Th e fi lm on spread-out is shown in Fig 3.12(c). Th e distance between any two corresponding arcs on the fi lm 
is indicated by the symbol S.

In case of cylindrical camera, the diff raction angle θ is proportional to S. Th en,

 θ =
S

R4
  where R represents the radius of the camera.

If S
1
, S

2
, S

3
 … etc. are the distances between symmetrical lines on the stretched fi lm, then,

 θ θ θ
1

1
2

2
3

3

4 4 4
= = =

S

R

S

R

S

R
, , ...

Using these values of θ
n
 in Bragg’s equation nλ = 2 d

hkl
 sin θ

n

 where    n = 1, 2, 3, … etc = order of diff raction

  d
hkl

 = interplanar spacing

θ
n
 = angle of diff raction for nth order

Th e interplanar spacing d
hkl

 can be calculated.

3.7 Laue method
In Laue method, a narrow beam of white X-rays [usually in the wavelength range, 0.2 to 2.0 Å] is obtained by 
passing X-rays through a collimator ‘C’. Th is beam is allowed to fall on a stationary single crystal ‘S’ as shown 
in Fig. 3.13(a). Th e crystal act as a 3-dimensional diff raction grating to the incident beam. Th e processes of 
refl ection of X-rays by crystal planes is considered as X-ray diff raction. Th e diff raction phenomenon satisfi es 
Bragg’s law, nλ = 2d sin θ. where n = 1, 2, 3, … represent the order of diff raction, λ = wavelength of diff racted 
X-rays from a system of crystal planes with interplanar spacing ‘d ’ and θ = glancing angle i.e., the angle made 
by X-rays with a crystal plane. As the crystal is not rotated, so, the angle ‘θ ’ is fi xed for a set of planes having 
separation ‘d ’. Diff erent sets of crystal planes satisfy Bragg’s law with diff erent wavelengths of X-rays and 
produce diff raction. Th e diff racted X-rays from a set of planes produce constructive interference, if they are in 
phase and form an intense beam, and this produces dark spots on photographic fi lm. If the diff racted rays are 
out of phase, they produce destructive interference so that photographic fi lm is unaff ected.
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3-18 Applied Physics

Laue photograph is obtained either by allowing the transmitted diff racted rays or by back-refl ected 
 diff racted rays on photographic fi lm as shown in Fig. 3.13(b).

As we observe the diff racted fi lm, the diff racted spots lie on certain curves. Th ese curves are either ellipses 
or hyperbolas on transmission Laue photograph and hyperbolas on back-refl ection Laue photograph. Th e way 
of arrangement of spots on a fi lm is a characteristic property of the crystal. Laue method is useful to decide the 
 crystal symmetry and orientation of the internal arrangement of atoms/molecules in the crystal. Cell parameters 
of a crystal cannot be determined using Laue method. For transmission Laue method, the crystal should be thin.

Laue method can be used to study imperfections or strains in the crystal. Th e presence of above defects 
forms streaks instead of spots in the Laue photograph.

 Formulae

1. d
h

a

k

b

l

c

=

+ +

1
2

2

2

2

2

2

 2. d
a

h k l
=

+ +2 2 2

3. n N
E

K T
≈

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ←exp V

B

Metallic crystal  4. n N
E

K T
≈

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
←exp

P

B2
Schottky defect

5. n NN
E

K T
≈( ) −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ←i

i

B

1
2

2
exp Frenkel defect  6. 2d sin θ = nλ

Figure 3.13 (a) X-ray diffraction by crystal plane; (b) Lane pattern for NaCl crystal

C

Back-reflection
Laue film

Crystal

X-rays

SC 

X-rays

Crystal
Transmission Laue film

(a)

(b)
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 Solved Problems

1.  A beam of X-rays of wavelength 0.071 nm is diff racted by (110) plane of rock salt with lattice constant of 0.28 nm. Find 

the glancing angle for the second-order diff raction.

 (Set-1–Sept. 2007), (Set-2, Set-3–Sept. 2006), (Set-2–May 2006), (Set-3–May 2004), (Set-4–May 2003)

Sol: Given data are:

 Wavelength (λ) of X-rays = 0.071 nm

 Lattice constant (a) = 0.28 nm

 Plane (hkl ) = (110)

 Order of diff raction = 2

 Glancing angle θ = ?

 Bragg’s law is 2d sin θ = nλ

 d
a

h k l
=

+ +2 2 2
, because rock salt is FCC

 =
×

+ +
=

×− −0 28 10

1 1 0

0 28 10

2

9

2 2 2

9. .
m m

 Substitute in Bragg’s equation

 2
0 28 10

2
2 0 071 10

9
9×

×
= × ×

−
−.

sin .θ

 sin
.

.
.θ = × =2

0 071

0 28
0 3586

 θ = sin−1 (0.3586) = 21.01° ≈ 21°

2.  A beam of X-rays is incident on a NaCl crystal with lattice plane spacing 0.282 nm. Calculate the wavelength of X-rays 

if the fi rst-order Bragg refl ection takes place at a glancing angle of 8 °35′. Also calculate the maximum order of diff raction 

possible.

 (Set-4–Sept. 2007), (Set-3–May 2007), (Set-2–May 2004), (Set-3–May 2003)

Sol: Given data are:

 NaCl crystal is FCC

 Lattice plane spacing (d ) = 0.282 nm

 Wavelength of rays (λ) = ?

 Order of diff raction (n) = 1

 Glancing angle θ = 8°35′

 Bragg’s equation is nλ = 2d sin θ

1λ = 2 × 0.282 × 10−9 sin (8°35′)

= 0.0842 nm
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 Maximum order of diff raction (n
max

) = ?

 2d sin θ = nλ

 if θ = 90° then n = n
max

 
∴  2d = n

max
 λ

 n
d

max

.

.
.= =

×
= ≈

2 2 0 282

0 0842λ
nm

nm
6 7 7

3.  Th e fraction of vacant sites in a metal is 1 × 10−10 at 500 ° C. What will be the fraction of vacancy sites at 1000 ° C?
 (Set-4–Sept. 2006), (Set-1–May 2004), (Set-2–May 2003)

Sol: Th e number of vacancies at temperature (T K) in a metal is represented by:

 n N
E

K T
≈

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟exp V

B

  (or)  
n

N

E

K T
=

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟exp V

B

 Th e given data are:

 
n

N
= × −1 10 50010 at C°   or   773 K  

n′
N

= °? at C1000   or  1273 K

 1 10
773

10× =
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

− exp
E

K
V

B

  _____________ (1)

 
n

N

E

K

′
=

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

exp V

B 1273   _____________ (2)

 Taking logarithms on both sides of the above Equations (1) and (2), we get:

 ln 10
773

10− =
−E

K
V

B

  _____________ (3) 

 ln
′⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟=

−n

N

E

K
V

B1273
  _____________ (4)

 Dividing Equation (4) by (3),

 

ln

ln

n

N

E

K

′⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟

−10

1273
10

V

B
⎟⎟⎟

−
= =

E

K
V

B773

773

1273
0 60723.

 

=
′⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟= ×−ln ln .

n

N
10 0 6072310

  = −23.026 × 0.60723 = −13.982
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 Take exponential on both sides,

 
′

= −[ ]× = ×− −n

N
exp . .13 982 10 8 466 107 7

 Th e fraction of vacancy sites at 1000°C is 8.466 × 10−7.

4. Calculate the ratios d
100 

: d
110 

: d
111

  for a simple cubic structure.

 (Set-2–Nov. 2004), (Set-2–Nov. 2003)

Sol: Let ‘a’ be the lattice constant of cubic structure, then,

 d
a

a100 2 2 21 0 0
=

+ +
=

 d
a a

110 2 2 21 1 0 2
=

+ +
=

 d
a a

111 2 2 21 1 1 3
=

+ +
=

 Th e ratios d d d a
a a

100 110 111
2 3

: : : :=

 = =1
1

2

1

3
6 3 2: : : :

5.  Th e Bragg’s angle in the fi rst order for (220) refl ection from nickel (FCC) is 38.2°. When X-rays of wavelength 1.54 Å are 

employed in a diff raction experiment. Determine the lattice parameter of nickel.

 (Set-2–May 2008)

Sol: Order of diff raction, n = 1

 Diff raction angle, θ = 38.2°

 Wavelength of light, λ = 1.54 Å

 Plane of refl ection = (220)

 Lattice parameter, a = ?

 Bragg’s law is 2d sin θ = nλ

 d
n

= =
×

×
λ

θ2

1 1 54

2 38 2sin

.

sin .
 Å

 Also  d
a

h k l
=

+ +2 2 2

a d h k l= × + +

=
×

×
× + +

=

2 2 2

2 2 21 1 54

2 38 2
2 2 0

4 355

.

sin .

. 778

1 23682
3 522

.
.= Å
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6.  Monochromatic X-rays of  λ = 1.5 A.U are incident on a crystal face having an interplanar spacing of 1.6 A.U. Find the 
highest order for which Bragg’s refl ection maximum can be seen.

 (Set-4–May 2006)

Sol: Given data are

 Wavelength of light (λ) = 1.5 Å

 Interplanar spacing (d ) = 1.6 Å

 Glancing angle (θ
m 
) = 90°

 Order of diff raction (n) = ?

 Bragg’s law

 n λ = 2d sin θ

   n
d

= =
× ×

=
2 2 1 6 90

1 5

3 2

1 5

sin . sin

.

.

.

θ
λ

   = 2.13 ≈ 2

 ∴  Th e maximum order of diff raction is 2

7.  Th e distance between (110) planes in a body centred cubic structure is 0.203 nm. What is the size of the unit cell? What is 
the radius of the atom?

 (Set-3–Sept. 2007), (Set-3–May 2006)

Sol: Th e given data are 

 Th e distance between (110) planes of BCC structure (d  
110

) = 0.203 nm = 0.203 × 10−9 m

 Length of unit cell (a) = ?

 Volume of unit cell (a3) = ?

 Radius of the atom (r) = ?

 
d

a

h k l
=

+ +2 2 2

 

0 203 10
1 1 0 2

9

2 2 2
. × =

+ +
=− a a

              
a = × = × −0 203 2 0 287 10 9. . m

 Volume of unit cell a3 = 0.02364 × 10−27 m3

 Radius of atom ( )
. .

r
a

= =
× × −3

4

1 732 0 287 10

4

9

     = 0.1243 × 10−9 m

8.  Monochromatic X-rays of λ = 1.5 A.U. are incident on a crystal face having an interplaner spacing of 1.6 A.U. Find the 
highest order for which Bragg’s refl ection maximum can be seen.

 (Set-1–Sept. 2006)

Sol: Given data are wavelength of  X-rays, λ = 1.5 Å

 Interplanar spacing, d = 1.6 Å

 For highest order of diff raction, θ = 90°

 Highest order of diff raction, n = ?
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 Formula  2d sin θ = n λ

     2 × 1.6 × sin 90° = n × 1.5

          
n =

×
= ≈

2 1 6

1 5
2 13 2

.

.
.

 ∴  Highest order of diff raction is 2.

9.  Calculate the glancing angle at (110) plane of a cubic crystal having axial length 0.26 nm corresponding to the second order 
diff raction maximum for the X-rays of wavelength 0.65 nm.

 (Set-1–May 2007)

Sol: Th e given data are

 Edge length of cubic system, a = 0.26 nm

 Wavelength of X-rays λ = 0.065 nm

 Glancing angle, for plane (110), θ = ?

 Order of diff raction, n = 2

 Separation between (110) planes of a cube, d = 
a

h k l2 2 2 2 2 2

0 26

1 1 0+ +
=

+ +

.
nm

         = =
0 26

2
0 184

.
. nm

 Bragg’s law

    2d sin θ = nλ

 2 × 0.184 nm × sin θ = 2 × 0.065 nm

         sin
.

.
.θ = =

0 065

0 184
0 353

          ∴  θ = sin−1(0.353)

           = 20°41′13″

10.  Th e Bragg’s angle for refl ection from the (111) plane in a FCC crystal is 19.2° for an X-ray wavelength of 1.54 A.U. 
Compute the cube edge of the unit cell.

 (Set-2, Set-4–May 2007)

Sol: Th e given data are

 Bragg’s angle, θ = 19.2°

 Wavelength of X-rays, λ = 1.54 Å

 Order of diff raction, n = 1

 Cube edge, a = ?

 Bragg’s law 

 2d sin θ = nλ

 2d sin 19.2° = 1 × 1.54

        

d =
×

=
×

1 54

2 19 2

1 54

2 0 3289

.

sin .

.

.°

         = 2.3411 Å

        d
a

h k l
=

+ +2 2 2
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  or  a d h k l= + +2 2 2

        
= × + +

= × =

2 3411 1 1 1

2 3411 3 4 05

2 2 2.

. . Å

11.  Th e Bragg’s angle in the fi rst order for (220) refl ection from nickel (FCC) is 38.2°. When X-rays of wavelength 1.54 Å are 
employed in a diff raction experiment. Determine the lattice parameter of nickel.

 (Set-2–May 2008)

Sol:  Order of diff raction, n = 1

 Diff raction angle , θ = 38.2°

 Wavelength of light, λ = 1.54 Å

 Plane of refl ection = (220)

 Lattice parameter, a = ?

 Bragg’s law is 2d sinθ = nλ

        
d

n
= =

×
×

λ
θ2

1 1 54

2 38 2sin

.

sin . ° 
Å

 Also d
a

h k l
=

+ +2 2 2

    
a d h k l= × + +2 2 2

       
=

×
×

× + +
1 1 54

2 38 2
2 2 02 2 2.

sin . °

       
= =

4 35578

1 23682
3 522

.

.
.  Å

12.  Copper has FCC structure with lattice constant 0.36 nm. Calculate the interplanar spacing for (111) and (321) planes.

Sol: Given data is:

 lattice constant (a) = 0.36 nm = 0.36 × 10−9 m

 Interplanar spacing (d ) for (111) plane is:

 d
a

h k l
=

+ +
=

×

+ +
=

×− −

2 2 2

9

2 2 2

90 36 10

1 1 1

0 36 10

3

. .
m

      = 0.208 × 10–9 m = 0.208 nm

 Interplanar spacing for (321) plane

 d
a

h k l
=

+ +
=

×

+ +
=

×
+ +

− −

2 2 2

9

2 2 2

90 36 10

3 2 1

0 36 10

9 4

. .

11

0 36 10

14

9

=
× −.

m

 = 0.096 × 10−9 m

 = 0.096 nm.
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13.  Th e fi rst-order diff raction occurs when a X-ray beam of wavelength 0.675 Å incident at a glancing angle of 5 °25′ on a 

crystal. What is the glancing angle for third-order diff raction to occur?

Sol: Wavelength of X-rays (λ) = 0.675 Å

 Glancing angle for fi rst order (n = 1) diff raction (θ
1
) = 5°25′

 Find the glancing angle for third order (n = 3) diff raction (θ
3
) = ?

 Bragg’s equation is 2d sin θ = nλ

 For fi rst order, 2d sin θ
1
 = 1λ

 2d sin 5°25′ = 0.675 × 10−10 m

 d =
×

° ′
=

×
=

− −0 675 10

2 5 25

0 675 10

0 1888
3

10 10.

sin

.

.
m .. .575 10 10× =− m 3 575 Å

 For third-order diff raction,

 2d sin θ
3
 = 3λ

 sin θ
λ

3

10

10

3

2

3 0 675 10

2 3 575 10
0 283= =

× ×
× ×

=
−

−d

.

.
.

θ
3
 = sin−1 (0.283) = 16.45° = 16°28′.

14.  What is the angle at which the third-order refl ection of X-rays of 0.79 Å wavelength can occur in a calcite crystal of 

3.04 × 10−8 cm spacing.

Sol: Wavelength of X-rays, λ = 0.79 Å = 0.79 × 10−8 cm

 Interplanar spacing, d = 3.04 × 10–8 cm

 Order of diff raction, n = 3

 Angle of diff raction, θ = ?

 2d sin θ = nλ

 sin
.

.
.θ

λ
= =

× ×
× ×

=
−

−

n

d2

3 0 79 10

2 3 04 10
0

8

8
3898

θ = sin−1 (0.3898)

= 25° 29′ 28″

 Multiple Choice Questions

 1. Crystal directions are defi ned as: ( )

 (a) certain directions inside the crystal along which large concentration of atoms exists
 (b) certain directions inside the crystal along which low concentration of atoms exists
 (c) certain directions inside the crystal along which no atoms are present 
 (d) none
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 2. Crystal planes and directions can be represented by a set of ___________ small integers. ( )

 (a) 2 (b) 3 (c) 4 (d) 6

 3. To represent crystal direction, the Miller indices should be enclosed in ( )

 (a) square brackets  (b) round brackets
 (c) curly brackets  (d) none

 4. If the Miller indices of two planes are (211) and (422), then they are: ( )

 (a) parallel  (b) perpendicular
 (c) they are at an angle of 45° (d) none

 5. If the Miller indices of a plane along Y and Z-direction is zero, then: ( )

 (a) the plane is perpendicular to X-axis (b) the plane is parallel to Y-axis
 (c) the plane is parallel to X-axis (d) the plane is parallel to Z-axis

 6. If the Miller indices of a plane is hk l( ), then the plane: ( )

 (a) intersects negative X-axis (b) intersects negative Z-axis
 (c) intersects negative Y-axis (d) intersects positive Y-axis

 7. If {hkl } are the Miller indices in cubic system, they represent: ( )

 (a) (100) and ( )100 planes (b) (010) and ( )010 planes

 (c) (001) and ( )001 planes (d) all

 8. Th e Miller indices <hkl > in cubic system represent the following directions: ( )

 (a) 111 111 111⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥, and  (b) 111 111 111⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥, and

 (c) 111 111[ ] ⎡
⎣⎢

⎤
⎦⎥and   (d) all

 9.  If (hkl ) represents the Miller indices of planes in cubic crystal of lattice constant ‘a’, the separation between the 
parallel planes is: ( )

 (a) 
a

h k l2 2 2+ +
  (b) 

a

h k l+ +

 (c) 
a

h k l2 2 2+ +
  (d) 

a

h k l+ +

10. Crystal defects are: ( )

 (a) point and line defects (b) surface defects
 (c) volume defects  (d) all

11. Point defects are: ( )

 (a) lattice site defects  (b) compositional defects
 (c) electronic defects  (d) all

12. Electrical charge neutrality is maintained in: ( )

 (a) Schottky defect  (b) Frenkel defect
 (c) both a and b  (d) none
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13. Schotty defect may exist in:  ( )

 (a) NaCl crystal  (b) KCl crystal
 (c) KBr crystal  (d) all

14. Substitutional defect and interstitial impurity defect belong to: ( )

 (a) compositional defect  (b) Schottky defect
 (c) Frenkel defect  (d) lattice site defects

15. Non-uniformity of charge or energy distribution in the crystal is referred to as: ( )

 (a) point defect  (b) electronic defect
 (c) Schottky defect  (d) Frenkel defect

16. Point defects in crystals are formed by:  ( )

 (a) thermal fl uctuations  (b) Large deformation
 (c) bombarding with high energetic particles (d) all

17. Edge dislocation and screw dislocation belong to: ( )

 (a) electronic defects  (b) compositional defects
 (c) line defects  (d) point defects

18. Just above the edge of an incomplete crystal plane in a crystal, the bond distances are ___________ . ( )

 (a) equal to normal values (b) lesser than normal values 
 (c) greater than normal values (d) none

19. If the incomplete plane is below the slip plane, then the edge dislocation is: ( )

 (a) positive   (b) negative
 (c) both a and b  (d) none

20. In edge dislocation, the Burger’s vector is ___________ to the dislocation line.  ( )

 (a) parallel  (b) at an angle of 45°
 (c) perpendicular  (d) at an angle of 60°

21.  If E
V
 is the energy required to form a vacancy in the crystal containing ‘N ’ atoms at temperature ‘T ’ , the number of 

vacancies in the crystal is [K
B
 = Boltzmann constant] ( )

 (a) N
E

K T
exp

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

V

B

   (b) N
K T

E
exp

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B

V

 (c) N
E

K T
exp V

B

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   (d) N

E

K T
exp

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

V

B2

22.  If E
P
 is the energy required to move an anion–cation pair from interior to the surface of an ionic crystal con-

taining N pairs of ions, the formation of n pairs of vacancies at temperature ‘T ’ is given by [K
B
 = Boltzmann 

constant] ( )

 (a) N
E

K T
exp

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P

B

  (b) N
E

K T
exp P

B2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 (c) N
E

K T
exp

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P

B2
  (d) N

E

K T
exp P

B

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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23.  Let E
i
 is the energy required to move a cation [positive ion] to the interstitial space of an ionic crystal containing 

‘N ’ number of atoms and N
i 
 be the number of interstitial spaces. Th e number of ways n cations are moved to inter-

stitial spaces, at temperature T is given by [K
B
 = Boltzmann constant] ( )

 (a) NN
E

K T
i

i

B

( ) −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2

2
exp  (b) NN

E

K T
i

i

B

( )
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2

2
exp

 (c) NN
E

K T
i

i

B

( ) −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1
2 exp   (d) NN

E

K T
i

i

B

( ) −⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟exp

2

24.  If a monochromatic X-ray of wavelength ‘λ’ incident at an angle ‘θ ’ on a parallel set of crystal planes of separation 
‘d ’, then the Bragg’s law for constructive interference is [n = 1, 2, 3, … = order of diff raction] ( )

 (a) 2d sin θ = nλ  (b) d sin θ = nλ
 (c) 2λ sin θ = nd  (d) λ sin θ = nd

25. Miller indices of the plane parallel to X and Y axes are: ( )

 (a) (001) (b) (010) (c) (100) (d) (111)

26.  Th e crystal planes are defi ned as some imaginary planes inside a crystal in which ___________ of atoms are 
 present. ( )

 (a) large concentration  (b) low concentration 
 (c) medium concentration  (d) none

27.  Crystal planes and directions can be represented by a set of three small integers called: ( )

 (a) plane indices (b) Miller indices (c) direction indices (d) none

28. If the Miller indices are enclosed in round brackets, then it represents a crystal ( )

 (a) plane (b) direction  (c) set of directions  (d) system of planes

29.  Miller indices may be defi ned as a set of three integers obtained by clearing the reciprocals of the ___________ 
made by a plane on crystallographic axes. ( )

 (a) intercepts  (b) relations  (c) both a and b  (d) none

30. Miller indices represent a set of equidistant ___________ planes. ( )

 (a) perpendicular   (b) intersecting 
 (c) parallel   (d) none

31.  If (hkl ) is the Miller indices of a plane, then the plane divides the lattice constant ‘a ’ along ‘X’ axis 
into ___________ . ( )

 (a) h equal parts (b) k equal parts (c) l equal parts (d) all

32. Point defects in crystals are also called as ___________ defects. ( )

 (a) three-dimensional  (b) two-dimensional
 (c) one-dimensional  (d) zero-dimensional

33.  By moving an anion and a cation from interior of an ionic crystal to the surface of the crystal leads to ___________ 
defect. ( )

 (a) Frenkel (b) Schottky (c) both a and b  (d) none
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34. Vacancies and interstitial defects belong to ___________ defects. ( )

 (a) lattice site  (b) Schottky  (c) Frenkel  (d) none

35.  Th e crystal defect formed by moving a cation to interstitial spaces in an ionic crystal is known as ___________ 
defect. ( )

 (a) Schottky  (b) point defect  (c) Frenkel  (d) none

36. Examples for Frenkel defect ( )

 (a) CaF
2
  (b) AgBr  (c) AgI  (d) all

37. Presence of impure atoms in the crystal leads to ___________ defects. ( )

 (a) Schottky (b) Frenkel (c) compositional (d) none

38.  If ‘r ’ is the radius of a parent atom of a crystal, then octahedral and tetrahedral spaces can accommodate an 
interstitial atom of radius ___________ and ___________ , respectively. ( )

 (a) 0.414r, 0.225r  (b) 0.225r, 0.414r

 (c) 0.0225r, 0.0414r  (d) 0.0414r, 0.0225r

39. Extrinsic semiconductors contain ___________ crystal defect. ( )

 (a) interstitial  (b) substitutional (c) Frenkel (d) Schottky

40.   Just below the edge of an incomplete crystal plane in a crystal, the bond distances are ___________ normal 
values. ( )

 (a) same as (b) more than (c) less than (d) none

41.  If a crystal plane ends some where inside the crystal, then the defect along the edge of the incomplete plane 
is called ___________ . ( )

  (a) edge dislocation  (b) screw dislocation
 (c) Schottky defect  (d) interstitial defect

42. If the incomplete plane is above the slip plane in the crystal, then the edge dislocation is: ( )

 (a) Schottky (b) Frenkel (c) negative (d) positive

43.  Th e magnitude and direction of the displacement of crystal planes due to edge dislocation can be represented 
by a vector called: ( )

 (a) Burger’s vector (b) Laue’s vector (c) both a and b  (d) none

44.  In screw dislocation, the atoms at one end of a plane are displaced by ___________ distance with respect to the 
other end of the plane, perpendicular to plane. ( )

 (a) 3 a tomic  (b) 2 atomic  (c) 1 atomic  (d) none

45. In screw dislocation, Burger’s vector is ___________ to dislocation line. ( )

 (a) perpendicular (b) parallel (c) both a and b (d) none

46. By decreasing the equilibrium temperature of a crystal, the concentration of vacancies ___________ . ( )

 (a) decreases (b) increases  (c) remains the same (d) none

47.  To produce diff raction with X-rays, the spacing between the consecutive lines of grating should be of the order 
of  ___________ angstroms.  ( )

 (a) thousands of  (b) hundreds of (c) few  (d) none
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48. In 1912, Laue suggested that a crystal can serve as a ___________ for X-ray diff raction. ( )

 (a) three-dimensional grating (b) two-dimensional grating 
 (c) one-dimensional grating  (d) none of the above 

49. ___________ and ___________ succeeded in diff racting X-rays by passing through a thin crystal.  ( )

 (a) Friedrich and Knipping (b) Bragg and Knipping
 (c) Friedrich and Laue  (d) none of the above

50.  If the path diff erence between the X-rays refl ected by successive crystal planes is 
λ λ λ
2

3

2

5

2
, , ,..., then the intensity 

of diff racted ray: ( )

 (a) will not change (b) is minimum (c) is maximum (d) none

51.  If the path diff erence between the X-rays refl ected by successive crystal planes is nλ, where n = 1, 2, 3, … ,  then the 
intensity of diff racted ray: ( )

 (a) is minimum (b) is maximum (c) remains the same  (d) none

52. X-ray powder method is usually carried for ___________ materials. ( )

 (a) polycrystalline (b) powder (c) single crystal (d) amorphous

53. Using powder diff raction, ___________ of a crystal can be determined. ( )

 (a) the interatomic spacing (b) the interplanar spacing
 (c) both a and b  (d) none

54. In powder method, ___________ chromatic X-rays are used. ( )

 (a) mono (b) poly (c) both a and b (d) none

55. In Laue method, ___________ X-rays are used.  ( )

 (a) monochromatic (b) white (c) both a and b (d) none

56. In transmission Laue method, the diff racted spots lie on the curves of: ( )

 (a) ellipses (b) hyperbolas (c) a or b  (d) none

57. In back refl ection Laue method, the diff racted spots lie on curves of: ( )

 (a) hyperbola (b) parabolas (c) ellipses (d) none 

58.  Laue method is useful to decide the ___________ and orientation of the internal arrangement of atoms/molecules 
in the crystal. ( )

 (a) cell parameters (b) crystal symmetry (c) both a and b (d) none

59.  Th e diff racted spots will be in the form of ___________ , if the crystal contains imperfections or strains. ( )

 (a) streaks (b) spots (c) both a and b (d) none

 Answers

 1. a  2. b  3. a  4. a  5. a  6. c  7. d  8. d  9. c 10. d 11. d
12. c 13. d 14. a 15. b 16. d 17. c 18. b 19. b 20. c 21. a 22. c
23. a 24. a 25. a 26. a 27. b 28. a 29. a 30. c 31. a 32. d 33. b
34. a 35. c 36. d 37. c 38. a 39. b 40. b 41. a 42. d 43. a 44. c
45. b 46. a 47. c 48. a 49. a 50. b 51. b 52. a 53. b 54. a 55. b
56. c 57. a 58. b 59. a
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 Review Questions

 1. Derive Bragg’s law of X-ray diff raction.
 (Set-1–Sept. 2006), (Set-4–May 2006), (Set-3–May 2003), (Set-3–Nov. 2003)

 2. What are Miller indices? How are they obtained?
 (Set-1–May 2006), (Set-1, Set-2, Set-3, Set-4–June 2005), (Set-4–Nov. 2004),
 (Set-1–May 2003), (Set-4–Nov. 2003)

 3. Explain Schottky and Frenkel defects with the help of suitable fi gures.
 (Set-2–Sept. 2007), (Set-2–May 2007), (Set-4–Sept. 2006), (Set-1, Set-2, Set-3, Set-4–June 2005),
 (Set-4–Nov. 2004), (Set-1–May 2003), (Set-4–Nov. 2003)

 4. State and explain Bragg’s law.
 (Set-1–Sept. 2007), (Set-2, Set-3–Sept. 2006), (Set-2–May 2006), (Set-3–May 2004), (Set-4–May 2003)

 5. Describe with a suitable diagram, the powder method for the determination of crystal structure.
 (Set-1–Sept. 2007), (Set-2–Sept. 2006), (Set-2, Set-3–May 2006), (Set-3–May 2004), (Set-4–May 2003)

 6. Explain Bragg’s law of X-ray diff raction.
 (Set-2, Set-4–Sept. 2007), (Set-2, Set-3, Set-4–May 2007), (Set-1–May 2006),
 (Set-4–Sept. 2006), (Set-3–Nov. 2004), (Set-2–May 2004)

 7. Describe Laue’s method for determination of crystal structure. 
 (Set-2–May 2008), (Set-2, Set-4–Sept. 2007), (Set-3–May 2007),
 (Set-4–Sept. 2006), (Set-2–May 2004), (Set-3–May 2003)

 8. Explain the signifi cance of Miller indices. (Set-1–May 2004), (Set-2–May 2003)

 9. Derive an expression for the number of Schottky defects in equilibrium at a temperature T.
 (Set-4–Sept. 2006), (Set-1–May 2004), (Set-2–May 2003)

10. Explain the various point defects in a crystal. (Set-1–Sept. 2007), (Set-1–Nov. 2004), (Set-1–Nov. 2003)

11. Obtain the expression for the equilibrium concentration of vacancies in a solid at a given temperature.
 (Set-1–Sept. 2007), (Set-1–Nov. 2004), (Set-1–Nov. 2003)

12. Deduce the expression for the interplanar distance in terms of Miller indices for a cubic structure.
 (Set-3–Sept. 2008), (Set-2–Nov. 2004), (Set-2–Nov. 2003)

13. Sketch the following planes of a cubic unit cell: (001), (120) and (211).
 (Set-2–Sept. 2007), (Set-2–Nov. 2004), (Set-2–Nov. 2003)

14. Defi ne Miller indices. Sketch the following atomic planes in a simple cubic structure (010), (110) and (111).
 (Set-4–May 2004)

15. How can the interplanar spacing of a set of Miller planes be calculated in terms of Lattice parameters?
 (Set-4–May 2004)

16. What is Bragg’s law? Explain. (Set-2–May 2008)

17. What are Miller Indices? Draw (111) and (110) planes in a cubic lattice. (Set-2, Set-4–May 2007)

18. Draw the (112) and (120) planes and the [112] and [120] directions of a simple cubic crystal.
 (Set-1–May 2007)

19. Sketch the following planes of a cubic unit cell: (001), (120) and (211). (Set-4–Sept. 2006)

20. What is Frenkel defect? Explain. (Set-1, Set-3–May 2007)
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21. Describe edge and screw dislocations. Draw Burger’s circuit and slip planes for them.
 (Set-4–Sept. 2007), (Set-4–May 2006)

22. Explain the signifi cance to Burger’s vector.
 (Set-2, Set-4–Sept. 2007), (Set-2–May 2007), (Set-3–Sept. 2006), (Set-4–May 2006)

23. Describe Bragg’s X-ray spectrometer and explain how Bragg’s law can be verifi ed.
 (Set-1–Sept. 2006), (Set-4–May 2006)

24. Explain the infl uence of point defects in crystals and how do they aff ect the properties of materials.
 (Set-3–Sept. 2007)

25. Obtain an expression for the energy required to create a vacancy in the crystal. (Set-3–Sept. 2007)

26. Derive an expression for the interplanar spacing in the case of a cubic structure? (Set-1–May 2007)

27. Derive an expression for the energy change due to creation of vacancies inside a solid. (Set-2–May 2006)

28. Derive an expression for the concentration of Frenkel defects present in a crystal at any temperature.
 (Set-1, Set-3–May 2007)

29. Sketch the planes (120), (213) and directions [100] and [211]. (Set-4–Sept. 2008)

30.  Explain how the X-ray diff raction can be employed to determine the crystal structure. Give the ratio of interpla-
nar distances of (100), (110) and (111) planes for a simple cubic structure.
 (Set-3–Sept. 2007), (Set-3–May 2006)

31. Distinguish between Frenkel defects and Schottky defects. (Set-2–May 2006)

32. Explain edge dislocation, screw dislocation and signifi cance of Burger’s vector. (Set-3–Sept. 2006)

33. Write short notes on Burger’s vector in dislocations.

34.  What are Miller indices? Derive an expression for the interplanar spacing between two adjacent planes of Miller 
indices (hkl ) in a cubic lattice of edge length ‘a’.

35 Explain and illustrate, with neat sketches, the edge and screw dislocations; show the Burger’s vector in them.

36. Write short notes on interstitial defects of crystals.

37. What are point defects in crystals? Derive an expression for the concentration of Schottky defect in a crystal.

38. Explain the principle, procedure and advantage of Debye–Scherrer method of X-ray diff raction.

39. Mention the diff erent kinds of crystal imperfections.

40. Compare and contrast Frenkel and Schottky defects.

41. Write short notes on screw dislocation. 

42. What are crystal imperfections? Explain.

43. Distingu ish between edge and screw dislocations. What is Burger’s vector?

44. Discuss the Schottky defect in the case of ionic crystals.

45. Explain the powder method of crystal structure analysis.

46. What are Miller indices? How they are determined?

47.  Show that the number of Frenkel defects in equilibrium at a given temperature is proportional to (NN
i 
)½, where N 

be the number of atoms and N
i
 be the number of interstitial atoms.

48.  Obtain the Miller indices of a plane which intercepts at a, b/2 and 3c in simple cubic unit cell. Draw a neat diagram 
showing the plane.
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49.  What do you understand by Miller indices of a crystal plane? Show that in a cubic crystal the spacing between 
consecutive parallel planes of Miller indices (hkl ) is given by:

 d
a

h k l
=

+ +2 2 2

50. Defi ne Schottky defect and derive an expression for the density of Schottky defects at a specifi ed temperature.

51. Calculate the fi rst nearest neighbour atom distance in ZnS (i.e., from Zn to S atoms) system.

52. Derive an expression for the interplanar distance in the case of cubic systems following Miller indices concept.

53. Defi ne a Frenkel defect and derive an expression for the density of such defects as a function of temperature.

54. Write short notes on the Burger’s vector in dislocation with appropriate diagrams.

55.  Derive the Bragg’s law of X-ray diff raction and obtain the relation that connects the interplanar distance ‘d ’ in 
orthogonal systems with lattice parameters a, b and c.
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Elements of Statistical Mechanics and Principles 
of Quantum Mechanics

4.1 Introduction
Statistical mechanics mainly deals with the distribution of identical, distinguishable and indistinguishable 
 particles of a system in diff erent states of the system. Th e number of ways, in which the particles can be 
arranged in diff erent energy states depends on the distinguishability of the particles. Here we are going to see 
three diff erent types of distributions: (i) Maxwell–Boltzmann distribution, (ii) Fermi–Dirac distribution and 
(iii) Bose–Einstein distribution.

4.2 Phase space
Let us consider a system consisting of a large number of particles. Th e state of a particle at an instant can be 
represented with three position and three momentum coordinates. To specify the position and momentum of a 
particle in a system, a six-dimentional space called phase space or μ-space is used. Any point in this space can be 
represented with three position coordinates x, y, z and with three momentum coordinates P

x
, P

y
, P

z
. Th e points in 

this space are called phase points or representative points. Th e phase space is considered to be divided into large 
number of small elements called cells or groups. Th e volume of each element is dx, dy, dz, dP

x
, dP

y
, dP

z
 and this 

is equal to h 3. Each group possesses as a large number of phase points.

4.3 Maxwell–Boltzmann distribution
Th is distribution is applied to a macroscopic system consisting of a large number n of identical but distin-
guishable particles, such as gas molecules in a container. Th is distribution tells us the way of distribution of 
total energy E of the system among the various identical particles. Let us consider that the entire system is 
divided into groups of particles, such that in every group the particles have nearly the same energy.

C H A P T E R 4
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4-2 Applied Physics

Let the number of particles in the 1st, 2nd, 3rd, . . . ith, . . . groups be n
1
, n

2
, n

3
, . . . n

i
, . . . respectively. Also 

assume that the energies of each particle in the 1st group is E
1
, in the second group is E

2
 and so on. Let the 

degeneracy parameter be denoted by ‘g’ [or the number of electron states] in the 1st, 2nd, 3rd, . . . ith, . . . groups 
be g

1
, g

2
, g

3
, . . . g

i
 . . . and so on respectively. In a given system the total number of particles is constant.

 i.e., n n n n n n
i i

i

= + + + + + = =∑1 2 3
� � constant

Hence its derivative δni∑ = 0  __________ (4.1)

Th e total energy of all particles present in diff erent groups is equal to the energy of the system (E).

 i.e., E E n E n E n E n E ni i i i

i

= + + + + + = =∑1 1 2 2 3 3
� � constant

 Hence its derivative δE ni i

i

∑ = 0  ___________ (4.2)

Th e probability of given distribution W is given by the product of two factors. Th e fi rst factor is, the number 
of ways in which the groups of n

1
, n

2
, n

3
, . . . n

i
 . . . particles can be choosen. To obtain this, fi rst we choose n

1
 

particles which are to be placed in the fi rst group. Th is is done in nCn1
 ways.

 i.e., 
n

n n n

!

!( )!
1 1

−
Th e remaining total number of particles is (n – n

1
). Now, we rearrange n

2
 particles in the second group. Th is 

is done in ( )n n Cn− 1 2
 ways

 i.e., 
( )!

!( )!

n n

n n n n

−
− −

1

2 1 2

∴ Th e number of ways in which the particles in all groups are choosen is

 
W1

1 1

1

1 2

=
−

×
−

− −
×

n

n n n

n n

n n n n

!

!( )!

( )!

!( )!
�

 = =
n

n n n

n

ni i i

!

! ! !

!

!1 2 � � Π
 ___________ (4.3)

where Π
i
 is the multiplication parameter 

Th e second factor is the distribution of particles over the diff erent states and is independent of each 
other.

Of the n
i
 particles in the ith group the fi rst particle can occupy any one of the g

i
 states. So there are g

i
 ways, 

and each of the subsequent particles can also occupy the remaining states in g
i
 ways. So, the total number of 

ways the n
i
 particles are distributed among the g

i
 states is gi

ni  ways.
∴ Th e probability distribution or the total number of ways in which n particles can be distributed among 

the various energy states is W
2

 W2 1 2 3
1 2 3= =( ) ( ) ( ) ( ) ( )g g g g gn n n

i

n

i i

ni i� �� Π  ___________ (4.4)

Th e number of diff erent ways by which n particles of the system are to be distributed among the available 
electron states is

 W W W= =1 2

1 2 3

1 2 3
1 2 3

n

n n n n
g g g g

i

n n n

i

ni
!

! ! ! !
( ) ( ) ( ) ( )

� �
�� �  ___________ (4.5)

 = =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n

n
g n

g

ni i

i i

n

i

i

n

i

i

i!

!
( ) !

!Π
Π Π  ___________ (4.6)
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where Π
i
 represents the multiplication parameter

Taking natural logarithms on both sides of equation (4.5) we have,

 ln ln ! ln ! lnW = − +∑ ∑n n n gi

i

i i

i

 ___________ (4.7)

Applying Stirling’s theorem, ln x! = x ln x – x, on equation (4.7)

 
ln ln ln lnW = − − + +∑ ∑ ∑n n n n n n n gi i

i

i

i

i i

i

 = − +∑ ∑n n n n n gi i

i

i i

i

ln ln ln  ___________ (4.8)

For the most probable distribution, W is maximum provided n and E are constants. Diff erentiate equation 
(4.8) and equate to zero for maximum value of W.

 δ In W
max

 = 0 = − − +∑ ∑ ∑n n n n n g ni i
i

i i

i

i i i

i

1 δ δ δ(ln ) (ln )

 = − + = =∑ ∑ ∑(ln ) (ln ) ( )n n g n ni

i

i i i

i

iδ δ δ0 0∵  ___________ (4.9)

Multiplying equation (4.1) by –α and equation (4.2) by –β and adding to equation (4.9), we get

 [ ln ln ]− + − − =∑ n g E ni i i i

i

α β δ 0  ___________ (4.10)

 
or − + − − =ln lnn gi i iα βΕ 0

 
or ln

n

g
Ei

i

i

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= − −α β

Taking exponential on both sides,

 
n

g
e ei

i

Ei= − −α β
 ___________(4.11)

Equation (4.11) is called Maxwell–Boltzmann (M-B) law. Th e value of β has been extracted separately and is 

equal to 
1

k TB

, where k
B
 = Boltzmann constant and

T = absolute temperature
Equation (4.11) becomes

 f E
n

g e e
MB i

i

i

Ei

BTk

( ) = =
1

α

4.4 Fermi–Dirac distribution
Th e Fermi–Dirac distribution is applicable to indistinguishable particles like electrons, Th ey have a spin in the 
order of half-integral multiples of n.  Th ey obey Pauli exclusion principle (no two electrons in an atom have the 
same quantum state).

Hence occupation number is 0 or 1. Let the system contains ‘n’ number of indistinguishable particles 
possessing diff erent energies E

1
, E

2
, . . . E

i
 . . . Let the system be divided into groups. Th e ith group contains n

i
 

number of particles, distributed in g
i
 quantum states, all these particles have nearly the same energy E

i
. First 
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we fi nd out the number of ways in which these n
i
 particles can be distributed in g

i
 states with not more than 

one particle in a state, as follows.
First, the particles can be arranged in g

i
 ways. Secondly, the remaining particles are arranged in the ( g

i 
– 1) 

states in ( g
i
 – 1) ways. Th irdly, in the ( g

i
 – 2) states in ( g

i
 – 2) ways and so on. Th erefore the total number of 

ways of arranging n
i
 particles is

 g g g g n
g

g n
i i i i i

i

i i

( )( ) ( )
!

( )!
− − − + =

−
1 2 1� �  ___________ (4.12)

Of these arrangements, the permutation n
i 
! of the n

i
 particles is not relevant, because of exclusion principle. 

Hence we have

 =
−

g

n g n

i

i i i

!

!( )!
 ___________ (4.13)

Here, the number of possible ways in which n
1
 particles may have energy E

1
 and n

2
 particles may have the 

energy E
2
 and so on for the other groups of the system. Th erefore the total distribution for the complete 

system is given as

 W =
−

Πi

i

i i i

g

n g n

!

!( )!
 ___________ (4.14)

Taking logarithms on both sides of equation (4.14) we have

 ln W = − − −∑[ln ! ln ! ln( )!]g n g ni i i i

i

 ___________ (4.15)

Applying Stirling’s formula, ln x! = x ln x – x, on equation (4.15) we have

 
ln [ ln ln ( ) ln( ) ( )]W = − − + − − − + −∑ g g g n n n g n g n g ni i i i i i i i i i i i

i

 = − − − −∑[ ln ln ( ) ln( )]g g n n g n g ni i i i i i i i

i

 ___________ (4.16)

For most probable distribution, the derivative of equation (4.16) is zero. We have

 
δ δ δ δ δln [ ln

( )

( )
( ) ln( ) ]W = = − −

−
−

− + −0
n
n i i i

i i

i i

i i i i
i

i
n n n

g n

g n
n g n n

ii

∑

 = − − =∑[ln( ) ln ]g n n ni i i i

i

δ 0  ___________ (4.17)

At equilibrium, the total number of particles in the system n, and the total energy of the system, E are 
 constant, hence we have

 δ δn ni

i

i

= =∑ 0  ___________(4.18)

 and

 δ δE E ni i

i

= =∑ 0  ___________(4.19)

Applying the Lagrange method of undetermined multipliers, multiply equation (4.18) by – α and equation 
(4.19) by – β and add to equation (4.17), we obtain

 [ ln ln( ) ]− + − − − =∑ n g n E ni i i i i

i

α β δ 0  ___________ (4.20)

Since δ
ni
 is arbitrarily choosen, the term in the bracket must be zero for each value of i. 
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So, − + − − − = 0

−
− − =

−

ln ln( )

ln
( )

ln

n g n

g n

n

g n

n

i i i i

i i

i

i

i i

i

α β

α β

Ε

Εor

or

0

⎛⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= +α βΕi

Taking exponential on both sides,

 

g n

ni
e

g

n
e

g

n
e

n

g e

i i

i

i

i

i

E

i

i

i

i

−
=

− =

= +

=
+

+

+

+

+

α β

α β

α β

α β

ιΕ

Εor

or

or

1

1

1

1 ΕΕi

Th e Fermi–Dirac distribution function is

 f E
n

g e e
F D i

i

i

Ei
− = =

+
( )

1

1 α β  ___________ (4.21)

Here n

g

i

i

 represents the average number of particles in each of the quantum states of that energy.

Dropping the subscript ‘i ’ and substituting the values of α =
−E

k T

F

B

 and β =
1

k TB

 equation (4.21) becomes

 f E
e e e

F D EF

B

E

B

E EF

Bk T k T k T
− −

=
+

=
+

−( ) ( )

1

1

1

1
 ___________ (4.22)

4.5 Bose–Einstein distribution
Th e Bose–Einstein distribution deals with the distribution of identical indistinguishable particles like pho-
tons or phonons called bosons. Th ey possess spin of integral multiple of n. Let the system contains n number 
of particles. Th e system is divided into groups. Let n

1
 number of particles have each of energy E

1
 are present 

in 1st group has g
1
 states and n

2
 number of particles have each of energy E

2
 present in the 2nd group which has 

g
2
 states and so on.

Th e number of ways of distributing n
i
 particles among the g

i 
states is as follows. Th e g

i
 states will have 

( g
i
 – 1) partitions. Th e ( g

i
 – 1) partitions and n

i
 particles constitute ( g

i
 + n

i
 – 1) objects. Th ey can be arranged 

in ( g
i
 + n

i
 – 1)! ways among themselves. Whereas n

i
 particles can be arranged in ni! ways among themselves 

and ( g
i
 – 1) partitions in ( g

i
 – 1) ways among themselves. Th e eff ective number of ways of arranging them is 

 W
g n

n g
i

i i

i i

=
+ −

−
( )

! ( )!

1

1
 ___________ (4.23)

Similar expressions can be written for other quantum states. Th erefore, the total number of ways of distinct 
arrangement of all the ‘n’ particles of the system in various available states is W

 
W =

+ −
−

+ −
−

+ −( )!

!( )!

( )!

!( )!

( )!

!(

n g

n g

n g

n g

n g

n

i i

i

1 1

1 1

2 2

2 2

1

1

1

1

1
� �

ggi −1)!
�
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 =
+ −

−
Πi

i i

i i

n g

n g

( )!

( )!( )!

1

1
 ___________ (4.24)

Taking logarithms of equation (4.24), we have

 ln W = + − − − −[ ]∑ ln( )! ln ! ln( )!n g n gi i i i

i

1 1  ___________ (4.25)

Using Stirling’s approximation, ln x ! = x ln x – x, equation (4.25) becomes

 ln ( )
i

W = + −( ) + − − − − −⎡
⎣
⎢

⎤
⎦
⎥∑ n g n g n n g gi i i i i i i i1 1 1 1ln ( ) ln ( ) ln

 = +( ) + − −⎡
⎣⎢

⎤
⎦⎥∑ n g n g n n g gi i i i i i i i

i

ln( ) ln ln  ___________ (4.26)

Here, we neglected 1 in comparison to n
i
 and g

i
 as they are very large numbers.

Diff erentiating equation (4.26)

 
δ δ δ δ δln ln( )

( )

( )
lnW = + +

+
+

− −
⎡

⎣
⎢
⎢

⎤

⎦
⎥n n g

n g

n g
n n n

n

n
ni i i

i i

i i

i i i
i

i

i ⎥⎥∑
i

 = + − = −
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∑[ ln( ) ln ] lnδ δn n g n n
n

n g
i i i i i

i

i ii

δδni

i

∑  ___________ (4.27)

For maximum probability the condition is δ ln W = 0

 ∴ −
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=∑ ln
n

n g
ni

i ii

iδ 0  ___________ (4.28)

As the total number of particles in the system n and the total energy of the system E are constant, hence their 
derivatives are equal to zero.

 i.e., δ δn i

i

n= =∑ 0  ___________ (4.29)

and

 δ δE E ni i

i

= =∑ 0  ___________ (4.30)

Applying the Lagrange method of undetermined multipliers i.e., multiplying equation (4.29) by –α and 
equation (4.30) by –β and adding to equation (4.28), we get

 −
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=∑ ln
n

n g
E ni

i i

i i

i

α β δ 0

 or ln
n g

n
Ei i

i

i

+⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= +α β  ___________ (4.31)

Taking exponential on both sides of equation (4.31), we have 

 

n g

n
e

g

n
e

g

n
e

e e

i i

i

E

i

i

E

i

i

E

E

i

i

i

i

+
=

+ =

= −

= −

+

+

+

α β

α β

α β

α β

or

or

1

1

1
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Hence, the Bose–Einstein’s distribution function is 

 f
n

g e e e e
B E

E i

i

E
i

i
Ei

Bk T
− = =

−
=

−

( ) 1

1

1

1
α β

α
 ___________ (4.32)

When k
B
 = Boltzmann constant Since β =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

k TB

4.6  Comparison of Maxwell–Boltzmann, 
Fermi–Dirac and Bose–Einstein distributions

Parameter Maxwell – Boltzmann 
distribution

Fermi – Dirac 
distribution

Bose – Einstein 
distribution

1. System of particles Applies to identical, 
distinguishable particles

Applies to identical 
indistinguishable particles 
which obey Pauli exclusion 

principle

Applies to identical 
indistinguishable 

particles, which will not 
obey Pauli exclusion 

principle.

2.  Distribution of particles Any number of particles 
can occupy a state

Not more than one particle 
per state

No limit to number 
of particles per state

3.  Spin properties of particles Any spin Half-integral multiples of � Integral multiples of �

4. Examples Gas molecules Free electrons in a metal Photons and phonons 

5. Distribution function f(Ei)

1

e e–α
Ei

BTk

1

1 exp+
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

E E

k T
i t

B

1

eα
Ei

BTk −1

4.7 Photon gas 
Einstein proposed the concept of localized small packets of light energy. Th is is similar to Planck’s idea of quanta 
and named such packets as photons. Th e energy of a photon is given by E = h γ, where h = Planck’s constant.

According to Einstein, light is transmitted in terms of particles like photons. As the intensity of light 
beam increases, the photon density increases. Photons have particle character as well as wave character. Light 
contains a very large number of photons and when the particle character of light is considered, photons may 
be visualized as moving similar to gas molecules in a container, or free electrons in a metal (i.e., electron gas). 
Hence light photons is considered as photon gas.

4.8 Concept of electron gas and Fermi energy

(a) Electron gas
A metal consists of immobile positive ions and free electrons. Th ese free electrons are very large in metals. 
Th ey move in random directions inside a metal as we see the gas molecules in a container. Hence they are 
referred to as the free electron gas or electron gas in short.
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4-8 Applied Physics

When an electric fi eld is applied on metals, the free electrons drift in a direction opposite to the applied 
fi eld. Free electrons participate in thermal and electrical conductivity.  Th ey obey gas laws.

(b) Fermi energy
Th e electron gas obey Fermi–Dirac distribution. Let g (E) be the density of electron states. i.e., the number of 
available electron states per unit volume of metal in unit range of energies E. Let the number of electron-fi lled 
states be N (E) in g (E). Th en the Fermi–Dirac distribution function f (E) is 

 f E
N E

g E E E

k T

f

B

( )
( )

( )
exp

= =
+

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

1

 ___________ (4.33)

Th e distribution function f (E) is defi ned as the probability that an energy level E is occupied by an electron. 
Suppose, if the level is empty then f (E) = 0 or if the level is fi lled, then f (E) = 1. In general the value of f (E) 
lies in between 0 and 1.

 At 0K f E for E EF( ) = <1

 = >0 for E EF  ___________ (4.34)

Th is shows that all states below E
F
 are completely fi lled and all states above E

F
 are completely empty.  Th is 

function is plotted in Fig. 4.1 for T = 0K and for higher temperatures. As temperature increases, the f  (E) 
decreases below E 

F
 . At higher temperatures the curves pass through a point at which the probability of the 

electron being in the conduction or valence band is 0.5. Th e energy at which the probability of occupation 
is 0.5 at all temperatures is called Fermi energy. Alternatively, the highest energy possessed by an electron at 
absolute zero of temperature (0K) in a metal is called Fermi energy.

0.5

EFo E

1.0

0

f(E)

T2K

T1,K

0K
T3K T1K<T2K<T3K

Figure 4.1 Fermi–Dirac distribution function for electrons 

4.9 Density of electron states 
Th e number of available electron states present per unit volume of a material in unit energy range at energy 
E is the density of electron states. To obtain an expression for the density of electron states, let us consider 
all possible energies of electrons in a material. Th e electrons are distributed in various electron states in three 
dimensional space. Th e electron states are considered in a quantum space. Let the coordinate axes of this space 
be represented by n

x
, n

y 
, n

z
 with origin at ‘O’ as shown in Fig. 4.2. In this space, every point with integral values 

of coordinates represent an energy state or the unit volume of the space contains one electron state.
To fi nd the density of states at energy, E, let us consider a sphere of radius n such that the origin of the 

sphere coincides with the origin of the coordinate system. Th e energy of a state on the surface of the sphere 
is E. A point on the surface of the sphere can be represented with n

x
,
 
n

y
,
 
n

z
 such that 

 n n n nx y z

2 2 2 2= + +   ___________ (4.35)
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Th e numbers of electron states inside a sphere is equal to the volume of the sphere in the positive quadrant. 
∴ Th e number of available electron states within a sphere of radius n is 

 g E n n1
3 31

8

4

3 6
( ) =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =π

π
 ___________(4.36)

nx

n
O

ntdn

ny

nz

Figure 4.2 Density of electron states sphere

Similarly, the number of available electron states in a sphere of radius (n + dn) is 

 g E E n n n n2

3 31

8

4

3 6
+( ) = +( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= +( )d d dπ

π
 ___________ (4.37)

Th e number of electron states whose energies lie between E and E + dE is obtained by subtracting equation 
(4.36) from equation (4.37).

 

g E E g E E g E n n n

n n n n n n

′( ) ( ) ( )d d d

d d d

= + − = +( ) −

= + + +

2 1

3 3

3 2 2 3

6 6

6
3 3

π π

π
−−⎡⎣ ⎤⎦n3

 ≈ = =
π π π
6

3
2 2

2 2n n n n n n nd d d( )  ___________ (4.38)

(neglecting higher power terms, because they are very small)
Th e expression for energies of electrons in a cubical box of side a is given by 

 E
n h

ma
n

ma E

h
= =

2 2

2

2
2

28

8
or  ___________ (4.39)

 ∴ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n

ma E

h

8 2

2

1
2

 ___________(4.40)

Diff erentiate equation (4.39) with respect to n. We get, 

   2
8 2

2
ndn

ma

h
E= d

 or dndn
ma

h
E=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

2

8 2

2  ___________ (4.41)
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4-10 Applied Physics

Substituting equation (4.40) and equation (4.41) in equation (4.38) gives 

 

′ =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ×

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=

g E dt
ma E

h

ma

h
E( )

π

π

2

8 1

2

8

2

8

2

2

2

2

1
2

d

mma

h
E

ma

h
E

2

2

2

2

1
2 1

2 1

2

8⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ×

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟d

 =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

π
4

8 2

2

3
2 1

2ma

h
E Ed  ___________ (4.42)

According to Pauli’s exclusion principle, each state can accommodate two electrons of opposite spin, hence 
the number of electron energy states available for electron occupancy is 

 

′′ = ×
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

g E dE
ma

h
E E

ma

h

( ) 2
4

8

4

8

2

2

2

2

1
2

3

π

π

d

22 1
2E Ed

 =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

π
2

8
2

3

3
2 1

2m

h
a E Ed  ___________ (4.43)

Density of states is given as the number of energy states per unit volume.
∴ Density of states between E and E + dE is

 g E E
g E E

a

m

h
E E( )

( )
d

d
d=

′′
=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟3 22

8
3
2 1

2π
 ___________ (4.44)

Th is is a parabolic function.

4.10 Black body radiation
A body that completely absorbs all wave lengths of radiation incident on it at low temperatures or emits diff erent 
wave lengths of radiation at higher temperatures is known as a black body. A black body may be idealized by a small 
hole drilled in a cavity. A graph has been plotted between intensity (or energy density spectral) versus wave length 
of radiation from a black body. Th e temperature of the body is raised to diff erent values and distribution curves are 
plotted for diff erent temperatures as shown in Fig. 4.3. From the graph it has been observed that:

 (i) the intensity of radiation increases for each wave length as the temperature of the body increases.
 (ii)  At any given temperature, the intensity of radiation from the body is maximum for a particular wave 

length represented as λ
1m

, λ
2m

, λ
3m

, . . .   Th is wave length shifts towards shorter wave length region with 
increase of temperature.

 (iii) Th e area under the curve is proportional to the total radiation energy emitted by the body in unit time.

Th e spectral energy distribution of black body has been explained by many scientists as given below.

(a) Wien’s law: Wien showed that the maximum energy, E
m
 of the emitted radiation from black body is 

proportional to fi fth power of absolute temperature (T 5).

 i.e  E
m
α T 5 or E

m
 = constant × T 5.
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Wien deduced the relation between the wave length of emission and the temperature of the body as 

 

Uλ λ
λ λ

λ
λλ

λ
d d d= =

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−C
e

ch

e

C

T
hc

kBT

1

5

2

8
1

1
5

[ ] π

where U λ dλ is the energy per unit volume in the wave length range λ and λ + dλ. Here C
1
 and C

2
 are con-

stants.
Wien’s law is valid at lower wave length region, where as it deviates from experimental values at higher 

wave length regions. Th is is shown in Fig. 4.4.

(b) Rayleigh–Jeans law: Rayleigh deduced an equation for the black body radiation based on the prin-
ciple of equipartition of energy. According to equipartition of energy, each mode of vibration has assigned an 
average energy of k

B
T.  Th e number of vibrations per unit volume in the wave length range λ and λ + dλ 

is given by 8πλ–4dλ. Th e vibration energy per unit volume in the range of λ and λ + dλ is

 Uλdλ = 8πk
B
Tλ–4dλ 

Th is is the Rayleigh–Jeans equation. Th is law correctly predicts the fall of intensity in the longer wave length 
side. However, it fails to explain the lower wave length side of the spectrum.

T1 < T2 < T3 < T4

0

T4

T3

T2

T1

Intensity
(or Eλ)

λ4m λ3mλ2m λ1m
λ(inµm)

Rayleigh Jeans law

Planck′s law

Wien′s law

λ (in mm)

Uλ

0

Figure 4.4 The three laws of black body radiation

Figure 4.3
  Graphs drawn between intensity versus wavelength of radiation from 

black body at different temperatures
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4-12 Applied Physics

(c) Planck’s law: Planck assumed that the walls of the black body consists of a large number of  electrical 
oscillators, vibrating with their own natural frequencies. An oscillator possesses an energy equal to h  γ. Where 
h is Planck’s constant and γ is the frequency of the oscillator.

An oscillator may lose or gain energy by emitting or by absorbing photons respectively. Planck derived an 
 equation for the energy per unit volume of black body in the entire spectrum of black body radiation. It is given by

 

U
hc

e
h

kBT
λ λ λd d= −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

8 1
1

5

π
λ

λ

Th is is Planck’s law.

4.11  Waves and particles—de Broglie 
hypothesis—Matter waves

Classical theory of Newtonian mechanics successfully explains the motion of macroscopic particles, but fails 
to explain the motion of microscopic particles such as electrons. Whereas, the quantum theory success-
fully explains the motion of microscopic particles, interference, diff raction and polarization of electromag-
netic waves, black body radiation (1901), photoelectric eff ect (1905), line spectra (1913) and Compton eff ect 
(1924), etc. Explanation of the above eff ects by quantum theory shows the dual nature of waves [wave nature 
and particle nature]. To explain some of the above facts, we consider packets of energy [photons] and waves. 
For example, in case of photoelectric eff ect when photons of suffi  cient energy or radiation of frequency above 
a certain value incident on an alkali metal, then electrons are emitted. In this case, absorption of energy does 
not takes place continuously but in the form of packets of energy called quanta (photons). Th ese photons 
have particle nature. In case of Compton eff ect, a photon of certain energy makes collision with a stationary 
electron, after collision the electron and photon get scattered with lesser energy (or longer wavelength). To 
explain the collision of photon and electron, we consider the particle nature of light wave. With this back 
ground, a French scientist de Broglie in the year 1924, proposed the dual nature of matter.

According to him, moving objects and particles possess wave nature. Th e dual nature of matter was explained 
by combining Planck’s equation for energy of a photon, E = hν and Einstein’s mass and energy relation E = mc 2

 i.e.,  hν = mc 2 ___________ (4.45)

where h = Planck’s constant, ν = frequency of radiation and c = velocity of light.

We know the velocity of light c = νλ  (or)  ν = 
c

λ
___________ (4.46)

Substituting equation (4.46) in (4.45) gives:

 
hc

mc
λ

= 2   (or)  
h

mc p
λ

= =

where p = momentum and λ is the wavelength of photon.

 ∴ =λ
h
p

___________ (4.47)

Th e above equation indicates that a photon is associated with a momentum p. From this, de Broglie 
 proposed the concept of matter waves. According to de Broglie, a particle of mass m, moving with velocity ‘v’ 
is associated with a wave called matter wave or de Broglie wave of wavelength λ, given by:

 λ = = =
h

p

h h

mvmomentum
___________ (4.48)
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Th is is known as de Broglie equation.
According to the theory of relativity, the mass m used in the above equation is not constant but varies with 
its velocity, given by:

 m
m

v

c

=

−

0

2

2
1

  ___________ (4.49)

where m
0
 is the rest mass of the particle.

Suppose an electron is accelerated to a velocity ‘v’ by passing through a potential diff erence V, then work done 
on the electron, eV is equal to increase in its K.E.

 i.e.,  
1

2

2m eVv =   (or)  v =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2
1 2

eV

m

/

and  mv = (2meV )1/2 = momentum of an electron.
Substituting this momentum in de Broglie equation,

 We have  λ = =
h

p

h

meV( ) /2 1 2

taking m ≈ m
0
, rest mass of an electron, the above equation becomes:

 λ = =
×

× × × ×

−

− −

h

meV V2

6 62 10

2 9 11 10 1 6 10

34

31 19

.

. .
 m

    = × =−12 27
10

1 22710. .

V V
m nm

Suppose an electron is accelerated through a potential diff erence of 100 V, it is associated with a wave of 
wavelength equal to 0.1227 nm.

Matter waves

Th e de Broglie concept that a moving particle is associated with a wave can be explained by using one of the 
postulates of Bohr’s atomic model.

Th e angular momentum (L) of a moving electron in an atomic orbit of radius ‘r ’ is quantized interms of �.
So, we have:

 L mvr n
nh

= = =�
2π

  ___________ (4.50)

where v = Linear velocity of an electron
 n = an integer

Equation (4.50) can be written as:

 2π λr
nh

mv

nh

p
n= = =   ___________ (4.51)

In the above equation, 2πr is the circumference length of the orbit and it is equal to n times the  wavelength 
of the associated wave of a moving electron in the orbit. Th is can be diagramatically represented for n = 10 
in Fig. 4.5.
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According to de Broglie, a moving particle behaves as a wave and as a particle. Th e waves associated 
with a moving material particles are called matter waves or de Broglie waves. Th ey are seen with particles like 
electrons, protons, neutrons, etc.

Properties of matter waves
(i)  de Broglie waves are not electromagnetic waves; they are called pilot waves, which means the waves that 

guide the particle. Matter waves consist of a group of waves or a wave packet associated with a particle. 
Th e group has the velocity of particle.

(ii) Each wave of the group travel with a velocity known as phase velocity given as V
k

ph =
ω

.
(iii) Th ese waves cannot be observed.
(iv) Th e wavelength of these waves, λ =

h

p
.

4.12 Relativistic correction
When an electron is accelerated through a high potential diff erence (V ), then the mass of electron varies with 
its velocity. Hence, we have to consider its relativistic mass. Hence, we calculate its relativistic wavelength and 
total energy in the following way.

(a) Relativistic wavelength is calculated as follows:

Th e momentum of an electron is:

 p mv
m v

v

c

= =

−

0

2

2
1

___________ (4.52)

Divide Equation (4.52) by m
0
c, then:

 
p

m c

m v

v

c

m c

v c

v c0

0

2

2

0

2 2

2 2

1 2

1

1

1
=

−

× =
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

/

/

/

Figure 4.5 Bohr’s orbit and de Broglie waves of an electron in the orbit
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Add and subtract 1 to the numerator,

 
p

m c

v

c
v

c

v

0

2

2

2

2

1 2 2

1 1

1

1
=

− + +

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
− +

/

cc
v

c

v

c

v

2

2

2

2

2

1 2

2

1

1

1

1
1

1−
+

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= − +
−

/

cc 2

1 2⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

/

___________ (4.53)

Squaring and rearranging Equation (4.53),

 1
1

1

2

0
2 2 2

2

+ =
−

p

m c v

c

___________ (4.54)

Th e kinetic energy (E) of an electron is given by:

 E mc m c
m c

v

c

m c= − =

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−2
0

2 0
2

2

2

1 2 0
2

1

/

 =

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥m c

v

c

0
2

2

2

1 2

1

1

1
/

⎥⎥
⎥
⎥

  (or)  
E

m c v

c

0
2 2

2

1 2

1

1

1=

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
/

              (or)  1
1

1
0

2 2

2

1 2
+ =

−
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

E

m c v

c

/
  ___________ (4.55)

Squaring Equation (4.55) gives:

 1
1

10
2

2

2

2

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−

E

m c v

c

___________ (4.56)

Equating Equations (4.54) and (4.56), we get:

 1 1 1
22

0
2 2

0
2

2

0
2

2

+ = +
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= + +
p

m c

E

m c

E

m c

E

m00
2 4

2

0
2 2

0
2

2

0
2 4

2

c

p

m c

E

m c

E

m c
⇒ = +   (or)  p m E

E

c

2
0

2

2
2= +

 (or)  p m E
E

c
= +2 0

2

2
___________ (4.57)
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Substituting Equation (4.57) in de Broglie equation, λ =
h

p

We have  λ = =

+

h

p

h

m E
E

c
2 0

2

2

 =

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

=
h

m E
E

m c

h

m
2 1

2

2
0

0
2

1 2/

00 0
2

1 2

1
2E

E

m c
× +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− /

 

 λ = −
×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = × −

⎡

⎣
⎢h

m E

E

m c

h

m E

E

m c2
1

2 2 2
1

4
0 0

2

0 0
2⎢⎢

⎤

⎦
⎥
⎥ ___________ (4.58)

As the electron is accelerated through a potential V, then its kinetic energy (E) = eV. So, Equation (4.58) 
becomes:

 λ = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = −

⎡

⎣

h

m eV

eV

m c V

eV

m c2
1

4

1 227
1

4
0 0

2
0

2

. ⎢⎢
⎢

⎤

⎦
⎥
⎥ nm ___________ (4.59)

Equation (4.15) represents, the relativistically corrected wavelength.

(b) Relativistic formula for total energy is calculated as follows:

Th e rest mass (m
0
) equivalent energy of a particle is m

0
c 2 i.e., E

0
 = m

0
c 2

Th e mass equivalent energy of a particle when it is in motion is mc 2 and this is equal to its total energy.

  where  m
m

v

c

=

−

0

2

2
1

Th e total energy (E) when it is in motion is:

 E mc
m c

v

c

m c E
= =

−

=
−

=
−

2 0
2

2

2

0
2

2

0

2

1
1 1β β

___________ (4.60)

where  β =
v

c

Squaring Equation (4.60),

 E
E2 0

2

21
=

− β
___________ (4.61)
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Cross-multiplying Equation (4.61),

 E E E2 2 2
0
2− =β

(or)  E E E mc
v

c
m v c2

0
2 2 2 2 2

2

2

2 2 2− = =( ) =β

 E E p c2
0
2 2 2− =   (or)  E E pc2

0
2 2= +( )

 ∴ = +( )E E pc0
2 2

___________ (4.62)

Equation (4.62) represents the relativistic total energy of the particle. Hence, kinetic energy of the 
 electron = total energy – rest mass equivalent energy 

 = +( ) −E pc m c0
2 2

0
2
.

4.13 Planck’s quantum theory of black body radiation
A body that absorbs all wavelengths of radiation at low temperatures and emits all wavelengths of radiation 
at high temperatures is known as black body. Figure 4.6 shows the graphs plotted between the intensities of 
emitted light and wavelengths at diff erent temperatures. Th e area under the plot indicates total radiation (R), 
the power emitted per unit area. According to Stefan–Boltzmann law, the radiation is proportional to T4.

 R T= σ 4 ___________ (4.63)

where σ is the Stefan–Boltzmann constant.

Figure 4.6 Plots of black body radiation

lm2

T2

T1

T1 > T2
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Expression for the radiated energy density per unit wavelength range (Rλ) was derived by Wien based on 
thermodynamics is:

 R C e C T

λ λ= −
1

5 2− /λ ___________ (4.64)

where C
1
 and C

2
 are constants. Th is formula explains the black body radiation in short wavelengths as shown 

in Fig. 4.3.
Rayleigh–Jean’s derived another formula for Rλ based on statistical mechanics as:

 R K Tλ π λ= −8 4
B ___________ (4.65)

where K
B
 = Boltzmann constant

Th e above formula could partly explain in the longer wavelength region as shown in Fig. 4.3.
In 1901, Max Planck proposed the particle character of radiation similar to Newton’s corpuscular theory 

known as Planck’s quantum theory. According to this theory,

(1) Th e black body walls contain large number of oscillators having diff erent frequencies.
(2) Th e energy radiated by an oscillator during transition from one quantum state to another is:

E = nhν  ___________ (4.66)

where n is an integer and h = Planck’s constant
hν is the quantum of energy. Th is shows that energy is radiated in the form of wave-packets. 

Th is energy packet has both wave and particle character. Based on this concept, Planck derived an expres-
sion for R λ known as Planck’s radiation law.

 R
h

eh K Tλ ν

π
λ

ν
=

−⎡
⎣⎢

⎤
⎦⎥

8

1
4 / B

  ___________ (4.67)

Th e above equation exactly fi ts the experimental graph shown in Fig. 4.7. Th e Planck’s law, reduces to 
Wien’s law when hν >> K

B
T and to Rayleigh–Jeans law when hν << K

B
T.

Based on this Planck’s quantum theory, Eienstein developed the theory of relativity and successfully 
explained photoelectric eff ect. Raman eff ect of light, Compton eff ect of X-rays, etc., support Planck’s 
 quantum theory.

Rl

Rayleigh–Jean's Law

Planck's Law

Wien's Law

l

Figure 4.7
  Comparison of the three radiation laws with the experimental curve 

[shown with dots]
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4.14 Experimental study of matter waves
de Broglie proposed matter waves but he did not prove it experimentally. Many scientists proved the exis-
tence of matter waves individually. In 1927, Davisson and Germer in the United States and in 1928 Th omson 
proved experimentally the existence of matter waves. Also, Stern and others showed the existence of matter 
waves in connection with molecular and atomic beams.

(a) G.P. Th omson Experiment: Th e diff raction of electrons by metal foil in G.P. Th omson experiment 
showed the wave nature of electrons and hence supports the de Broglie hypothesis. Now, we will study in 
detail the experimental set-up and theory of G.P. Th omson experiment. From the theory, we can estimate the 
wavelength of the waves associated with the moving electrons.

Experimental set-up: As shown in Fig. 4.8, the apparatus consists of a highly evacuated cylindrical tube ‘C’. 
Inside the tube, electrons are produced by heating the fi lament ‘F’ with low-voltage source. Th e  emitted elec-
trons are attracted by the anode ‘A’ to which high positive voltage has been applied and the beam is allowed 
to pass through a fi ne hole in a metallic block ‘B’. A fi ne narrow electron beam, which comes out from ‘B’ is 
allowed to fall on a polycrystalline thin gold foil ‘G’ of thickness 10−8 m. Th e gold foil consists of a large number 
of micro-sized crystallites, which are oriented in random directions. Hence, the crystal planes of these crystal-
lites are oriented in all possible directions in the gold foil. Some of the electrons incident on the crystal planes, 
which satisfy Bragg’s law (2d sin θ = nλ) gets refl ected by the planes (or diff racted). In the Bragg’s equation, 
d = interplanar spacings of crystal planes, θ = diff raction angle, λ = wavelength of the waves associated with 
electrons and n = order of diff raction. Th e diff racted electrons will go in the form of concentric cones and fall 
on fl uorescent screen (S) present at the end surface of the evacuated tube. So, we can see concentric circles of 
diff raction pattern on the fl uorescent screen. To record the diff raction pattern, a photographic plate (P) can be 
inserted in front of fl uorescent screen in the tube as shown in Fig. 4.8. We can see the diff raction pattern on the 
photographic plate after processing it. Th e diff raction pattern consists of a series of concentric diff racted rings 
corresponding to diff erent diff raction orders. Th e diameter of these rings are measured.

Th eory: Figure 4.9 shows the diff raction of an electron beam by a crystal plane and the diff racted rings on 
photographic plate. In the theory of this experiment, we derive expressions for interplanar spacing and the de 
Broglie wavelength of waves associated with electrons.

Expression for interplanar spacing: As shown in Fig. 4.9, Let QR be an electron beam, which undergoes 
 diff raction in the gold foil ‘G’ and falls on a photographic plate at a point E, at a distance r from the  central 

Figure  4.8  G.P. Thomson experimental set-up

F

C A B
G

To pump

S

P

B1
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point ‘O’ of the concentric circles. Let the incident and the fi rst-order diff racted electrons make an equal angle 
‘θ ’ with the crystal plane YZ. Let RO = L, be the distance between gold foil and photographic plate.

Bragg’s law is:

2d sin θ = nλ  where n = 1, 2, 3, …

For fi rst-order diff raction (n = 1)

2d sin θ = 1λ  (or)  d = ≈
λ

θ
λ
θ2 2sin

  ___________ (4.68)  [as θ is small]

From Fig. 4.5,  tan 2θ =
r

L
  also  tan 2θ ≈ 2θ  [Since θ is small]

 So  2θ =
r

L
___________ (4.69)

Substituting Equation (4.69) in (4.68) gives:

 d
L

r
= =

λ
λ

r /L
___________ (4.70)

To fi nd the de Broglie wavelength of an electron: In G.P. Th omson’s experiment, the particles [electrons] 
are accelerated by a potential diff erence of about 25 to 60 KV. Let an electron be accelerated to a velocity ‘v ’. 
Th en the moving electron is associated with a wave. Th e de Broglie wavelength of this electron is given by:

 λ = =

−

h

mv

h

m
v

v

c

0 2

2
1

___________ (4.71)

Figure 4.9 Schematic representation of electron diffraction in gold foil
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Th e quantity 
v

v

c
1

2

2
−

 is obtained by equating the increase in kinetic energy of the electron to workdone on

 it by the accelerating potential [i.e., eV ]
According to the theory of relativity, the increase in kinetic energy of an electron (E) is:

 E = mc 2 − m
0
c 2 

where m
0
 = rest mass of an electron,

 m = relativistic mass when it is moving with velocity ‘v’ and
   c = velocity of light 

 ∴ =

−

− =

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

E
m c

v
c

m c m c
v
c

0
2

2

2

0
2

0
2

2

2
1

1

1

1

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

___________ (4.72)

Since this gain in kinetic energy is equal to eV.

 i.e.,  E = eV

 =

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=m c
v

c

eV0
2

2

2

1

1

1

 
1

1

1
2

2

0
2

−

= +
v

c

eV

m c
___________ (4.73)

Equation (4.73) is a part of Equation (4.71)
Again ‘v’ can be evaluated from Equation (4.73) in the following way. In Equation (4.73), put

eV

m c
x

0
2

= .

Th en,  1

1

1
2

2
−

= +
v

c

x ___________ (4.74)

Squaring and inverting Equation (4.74),

 1 1
2

2

2− = +( )v

c
x

−
  (or)  

v

c
x

2

2

2
1 1= − +( )−

 (or)  v c x= − +( )⎡
⎣⎢

⎤
⎦⎥

−
1 1

2
1

2 ___________ (4.75)
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Multiplying Equations (4.74) and (4.75),

 

v

v

c

c x x

1

1 1 1
2

2

2
1

2

−

= − +( )⎡
⎣⎢

⎤
⎦⎥ +[ ]−

 

= − +( ){ } +( )⎡
⎣⎢

⎤
⎦⎥

= +( ) −⎡
⎣⎢

⎤
⎦⎥

−
c x x c x1 1 1 1 1

2 2
1

2 2
11

2

 
= +⎡

⎣
⎤
⎦c x x2 2
1

2

 
v

v

c

c x
x

1

2 1
22

2

1

2

−

= +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   ___________ (4.76)

Substituting Equation (4.76) in (4.71), we have:

 λ =

+
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+

⎡

⎣
⎢
⎢

⎤
h

m c x
x

h
x

0

1 2

2 1
2

1
2 ⎦⎦

⎥
⎥

[ ]

−1 2

0

1 2
2m c x

Substituting the value of ‘x’, we have:

 λ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
h

m c
eV

m c

eV

m c
0

0
2

1 2

0
2

1

2
1

2/

// /2

0 0
2

1 2

2
1

2
= +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
h

m eV

eV

m c
___________ (4.77)

Equation (4.77) represents the relativistic expression for de Broglie wavelength of an electron  accelerated 
through a high potential diff erence of ‘V ’ volts. If the relativistic eff ect is ignored, then Equation (4.77) 
reduces to:

 λ =
h

m eV2 0

  ___________ (4.78)

Substituting Equation (4.77) in (4.70), we get:

 d
L

r

L

r

h

m eV

eV

m c
= = +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
λ

2
1

2
0 0

2

1 2/

  ___________ (4.79)

Th e value of ‘d ’ calculated using the above equation agree very well with that of the value obtained 
using X-ray method. Th is suggests the validity of this experiment. For example, the values of ‘d ’ obtained by 
G.P. Th omson and X-ray method are 4.08 Å and 4.06 Å, respectively for gold foil.

(b) The Davisson and Germer experiment: Th is experiment proved the de Broglie hypothesis of matter 
waves of electrons in 1927. Th e original aim of this experiment was to fi nd the intensity of  scattered 
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electrons by a metal target in diff erent directions. Th e experimental arrangement of this experiment is 
shown in Fig. 4.10. Th e apparatus consists of an evacuated chamber ‘C’; inside this chamber, electrons are 
produced by heating the fi lament ‘F’ with a low-voltage battery B

1
. Th e emitted electrons are attracted by 

Figure 4.10 Davisson and Germer experimental arrangement

− +H.T
(B2)

G

AF

C

Galvanometer

Target (Ni)

Scattered or
diffracted
electrons

Evacuated
chamberB1

Movable
collector

or
counter

a cylindrical anode ‘A’ to which high variable positive voltage is applied with battery B
2
 and a potential 

divider. A narrow fi ne beam of electrons is obtained by passing the electrons through a series of pin hole 
arrangement present inside the cylindrical anode. Th is beam of electrons is allowed to incident on a single 
nickle crystal. Th is nickel crystal acts as a target material. Th e target is rotated about an axis perpendicu-
lar to the plane of the paper to bring various crystal planes for electron scattering. Nickel crystallizes in 
cubic system so that the crystal possess three-fold symmetry. Th e intensities of the scattered electrons 
are measured with the help of electron collector by moving it along a circular scale. Th e counter can be 
rotated about the same axis as the target. Th e counter receives the scattered electrons ranging from 20° to 
90° with respect to the incident beam. Th e accelerating potential to anode is varied in the range of 30 to 
600 V. Th e electrons received by the counter are allowed to pass through a galvanometer and earthed. Th e 
defl ection in the galvanometer is proportional to the number of scattered electrons received by the coun-
ter in unit time. Th e galvanometer readings are noted when the counter is at diff erent angles with respect 
to the incident beam, as the crystal is rotated through 360° in its own plane for diff erent accelerating 
voltages. Th ere are three variables in the experiment, these being the potential applied to the anode, the 
position of the collector and number of electrons collected by the counter in unit time or galvanometer 
reading.

Graphs are plotted between galvanometer readings [or the number of electrons collected per unit time] 
against the angles of scattered electrons with incident beam [i.e., angle of galvanometer with incident beam] 
for diff erent accelerating voltages as shown in Fig. 4.11.

Th e graph remains fairly smooth till the accelerating voltage is less than 44 V. When the accelerating 
voltage is 44 V, then a spur is observed on the curve. Th e spur becomes more clear as the voltage reaches 
54 V. Th e spur diminishes afterwards, above 68 V the spur disappears as shown in Fig. 4.11. Th e voltage 
and position of the collector are kept fi xed at values corresponding to the largest spur and the crystal is 
rotated. Th e spur appears thrice in a complete rotation of the crystal corresponding to the three-fold sym-
metry of the crystal. Subordinate maxima occurs at the intermediate positions. From this, we know that the 
intensity of scattered [or diff racted] electrons is maximum at an angle of 50° with incident beam, when the 
accelerating voltage is 54 V in case of nickel crystal. Th e accelerating voltage sets up the correct wavelength 
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68 V

40 V 44 V 48 V

60 V 64 V54 V

Figure 4.11
  Curve showing the development of diffracted beam in the setting 

of crystal face

of waves associated with the electrons incident on the nickel crystal for diff raction to take place with 50° 
scattering angle in this experiment. We know that incident and diff racted electron beam makes an angle 
[θ] of 65° with the family of Bragg’s planes [a set of parallel crystal planes] as shown in Fig. 4.12.

Th e above diff racted angle (θ) is substituted in Bragg’s diff raction formula 2d sin θ = nλ, where d = inter-
planar spacing, n = order of diff raction and λ is wavelength. Th e interplanar spacing in nickel crystal can be 
determined using X-rays, it comes to 0.091 nm. Substituting the experimental values for fi rst-order diff raction 
[n = 1] in Bragg’s law,

     we have  2d sin θ = 1λ
 2 × 0.091 × 10−9 × sin 65° = λ
               ∴  λ = 0.165 nm.
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Wavelength of the waves associated with the incident beam of electrons in this experiment can also be 
obtained by applying de Broglie equation:

 λ =
1 227.

V
nm

In the above experiment, the electron diff raction is maximum for an accelerating voltage of 54 V, so the 
wavelength associated with these electrons is:

 λ = =
1 227

54
0 166

.
. nm

Th is value is in very good agreement with the experimental value [0.165 nm]. Th us, this experiment 
proves the de Broglie hypothesis of the wave nature of moving particles.

4.14 Schrödinger’s time-independent wave equation
Based on de Broglie’s idea of matter waves, Schrödinger derived a mathematical equation known as 
Schrödinger’s wave equation. To derive Schrödinger’s wave equation, consider a particle of mass ‘m’ 
moving freely along X-direction [one dimensional] with velocity v. Th is moving particle is associated 
with a de Broglie wave of wavelength ‘λ’ and has frequency ‘ν ’. Th e expression for the displacement of 
a de Broglie wave associated with a moving particle is similar to an expression for undamped harmonic 
waves:

 Ψ x t A i t
x

v
, exp( )= − −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ω ___________ (4.80)

where ω = 2πν = angular frequency and v = νλ = velocity of the wave. Ψ is called wave  function, it is 
function of x and t. Substituting the values of ω and v in Equation (4.80), we have:

Bragg's
planes

Incident
electron beam

Scattered electron
beam

65°
25°

25°

65°

Single nickel
crystal

Figure 4.12 Electron diffraction in nickel crystal
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 Ψ = − −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A i t
x

exp 2π ν
νλ

 = − −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A i t
x

exp 2π ν
λ

___________ (4.81)

Th e energy of the wave can be represented by Planck’s equation E = hν (or) ν = E/h and the de Broglie 
wavelength, λ = h/p. Th e values of ν and λ are substituted in Equation (4.81).

So,  Ψ x t A i
Et

h

px

h
, exp( )= − −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2π

 =
−

−( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A
i

h
Et pxexp

2π

 =
−

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A
i

Et pxexp
�

___________ (4.82)

where � =
h

2π
 in quantum mechanics. Th e above equation represents wave function for a freely moving 

particle along X-direction. If the particle is subjected to external fi elds or forces, then Equation (4.82) is not 
valid. In such cases, we have to obtain a diff erential equation and solving that diff erential equation in specifi c 
situations give Ψ. To obtain the diff erential equation, diff erentiate Equation (4.82) twice with respect to ‘x’ 
and once with respect to ‘t ’ and substitute in the energy equation for the particle.

      
∂
∂

= − −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

Ψ
x

A
i

Et px
ip

exp
� �

 
∂
∂

= − −( )⎡

⎣
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⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

2

2

2 2

2

Ψ
x
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� �

⎟⎟⎟⎟⎟

 
∂
∂

=
−2

2

2

2

Ψ
Ψ

x

p

�
  (or)  � 2

2

2

2∂
∂

= −
Ψ

Ψ
x

P ___________ (4.83)

And  
∂
∂

= − −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Ψ
t

A
i

Et px
iE

exp
� �

        
∂
∂

= −
Ψ

Ψ
t

iE

�

 (or)  
�
i t

E
∂
∂

= −
Ψ

Ψ ___________ (4.84)

Th e total energy, E of the particle is the sum of kinetic energy and potential energy, V (x).

 ∴ = +E mv V x1
2

2 ( )
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=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+ = +

1

2 2

2 2 2
m v

m
V

p

m
V

Multiplying both sides of the above equation with Ψ, we get:

 E
p

m
VΨ Ψ Ψ= +

2

2
___________ (4.85)

Substituting Equations (4.83) and (4.84) in Equation (4.85), we get:

 −
∂
∂

= −
∂
∂

+
� �
i t m x

V
Ψ Ψ

Ψ
2 2

22

 (or)  
�
i t m x

V
∂
∂

=
∂
∂

−
Ψ Ψ

Ψ
� 2 2

22
___________ (4.86)

Th e above equation is known as time-dependent, one-dimensional Schrödinger’s wave equation.
In three dimensions, it can be represented as:

 
�
i t m x y z

∂
∂

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∂
∂

+
∂
∂

+
∂
∂

Ψ Ψ Ψ Ψ� 2 2

2

2

2

2

22

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −V Ψ ___________ (4.87)

Here, Ψ is a function of x, y, z and t.

[Th e diff erential operator ∇ =
∂
∂

+
∂
∂

+
∂
∂

�� �� �� �� �� �� �
i

x
j

y
k

z
i j kwhere , and  are unit vectors along X, Y and 

Z directions]

Using Laplacian operator ∇ =
∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2x y z
 in Equation (4.88)

We have   
�
i t m

V
∂
∂

= ∇ −
Ψ

Ψ Ψ
� 2

2

2
___________ (4.89)

In many cases, the potential energy depends on the position only and independent of time. To obtain 
time-independent wave equation, Equation (4.82) can be represented as:

 Ψ = −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟A

iEt ipx
exp exp

� �

           = Aϕ(t)ψ(x)  ___________ (4.90)

where  ϕ ( ) expt
iEt

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟�
  and  ψ( ) expx

ipx
=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟�

Here, Ψ is a function of x and t whereas ψ is a function of x alone and ϕ is a function of ‘t ’ alone.
Equation (4.90) can be represented as:

 Ψ = −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟A

iEt
ψ exp

�
___________ (4.91)
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Diff erentiating Equation (4.91) twice w.r.t. ‘x ’ and once w.r.t. ‘t ’ and substituting in Equation (4.86), 
we have:

 
∂
∂

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Ψ
x

A
iEt

x
exp

�
dψ
d

  and  
∂
∂

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2

2

2

2

Ψ
x

A
iEt

x
exp

�
d

d

ψ
___________ (4.92)

 and  
∂
∂

= −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟=

−Ψ
t

A
iEt iE Ai

ψexp
� �

EE iEtψ
� �

exp −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ___________ (4.93)

Substituting Equations (4.92) and (4.93) in Equation (4.87), we get:

 
−⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =

�
� �

�
i

AiE iEt
m x

A
ψ ψ
exp

2 2

22
d
d

eexp exp
−⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ −

−⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

iEt
VA

iEt
� �

ψ

 − = −E
m x

Vψ
ψ

ψ
� 2 2

22

d

d
  (or)  

� 2 2

22
0

m x
E V

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ + − =
d

d

ψ
ψ ψ

 (or)  
d

d

2

2 2

2
0

ψ
ψ

x

m
E V+ −( ) =

�
___________ (4.94)

Equation (4.94) is the time-independent one-dimensional Schrödinger’s wave equation. In three 
 dimensions, it is represented as:

 
∂
∂

+
∂
∂

+
∂
∂

+ −( ) =
2

2

2

2

2

2 2

2
0

ψ ψ ψ
ψ

x y z

m
E V

�

 (or)  ∇ + −( ) =2

2

2
0ψ ψ

m
E V

�
___________ (4.95)

Here, ψ is a function of x, y and z only and independent of time.

4.15 Heisenberg uncertainty principle
Heisenberg proposed the uncertainty principle in connection with the dual nature of waves and particles. 
Th e uncertainty principle has been explained in the following way: suppose if a particle is moving along 
X–direction, then according to uncertainty principle, it is impossible to measure accurately simultaneously its 
position (x) and also its momentum ( p

x 
). If Δx is the uncertainty in measuring its position then Δp

x
 is the 

uncertainty in measuring its momentum.
Th en,

 ΔxΔp
x
 � h ___________ (4.96)

where h is Planck’s constant
Th e above equation is applicable in all directions. Along Y– and Z– directions, it is:

 ΔyΔp
y
 � h  and  ΔzΔp

z
 � h ___________ (4.97)

Th e above uncertainty has been already proved using diff raction of electrons by a long narrow slit.
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Th e uncertainties Δx and Δp
x
 associated with the simultaneous measurement of x and p

x
 can be explained 

by considering the diff raction of electrons by a narrow slit as follows:
As shown in Fig. 4.13, let us consider a beam of electrons pass through a long narrow slit of width d, let 

the momentum of electrons along X-direction is negligible.
As the electrons enter the slit, there will be spreading due to diff raction. Let the diff raction angle is Δθ, 

such that:

 Δθ
λ

≈
d

 ( For diff raction through a single slit)

So, that an electron acquires momentum along X–direction given by:

 Δ Δ Δp p p
d

p p
dx xor≈ ≈ ≈θ

λ λ
 [Using above equation; p = momentum of an electron]

As the electron pass through the slit, the uncertainly in simultaneous measurement of position along 
X- direction is Δx ≈ d, then the above equation becomes:

Δ ≈
Δ

p p
x

x

λ
  or  Δ Δ ≈p x px λ   or  Δ Δ ≈p x hx  [using the Broglie equation, λ =

h

p
]

Th us, the uncertainty principle is explained.
Similar to uncertainty in position and momentum, we have uncertainty in measuring time and energy of 

a wave packet. Th e uncertainty relation is:

 ΔEΔt � h ___________ (4.98)

Suppose the uncertainty in the energy determination of a wave packet is Δ
Δ

E
h

t
≈ , then the maximum 

time available for energy determination is Δt.
Th e time–energy uncertainty can be explained by considering the wave packet moving with velocity 

v along X–direction and let it occupies a region Δx. Th e uncertainty in passing this particle at a given point is:

X-direction

d

Screen

Slit

Electron
beam

∆q

Figure 4.13 Diffraction of electron beam by a narrow slit
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 Δ
Δ

t
x

v
≈ ___________ (4.99)

As the packet is localized to a region Δx, then the spread in the momentum is Δp, so,

 Δ
Δ

p
h

x
≥ ___________ (4.100)

 or Δ
Δ

x
h

p
≥ ___________ (4.101)

Substitute Equation (4.101) in (4.99). Th en,

 

Δt
h

v p
�

Δ

or  Δt vΔp � h ___________ (4.102)

But  Δ Δ ΔE
E

p
p v p≈

∂
∂

= ___________ (4.103)

Substitute Equation (4.103) in (4.102)

We have  ΔtΔE � h ___________ (4.104)

Th e above equation shows that the spread in the energy of a particle is ΔE, then the uncertainty in 
 passing that particle through a point is Δt

so that  Δ
Δ

t
h

E
� .

4.16 Physical signifi cance of the wave function
Th e wave function Ψ associated with a moving particle is not an observable quantity and does not have 
any direct physical meaning. It is a complex quantity. Th e complex wave function can be represented as 
Ψ( x, y, z, t) = a + ib and its complex conjugate as Ψ*(x, y, z, t) = a − ib. Th e product of wave function and 
its complex conjugate is Ψ(x, y, z, t)Ψ*(x, y, z, t) = (a + ib) (a − ib) = a 2 + b 2 is a real quantity. However, this 
can represent the probability density of locating the particle at a place in a given instant of time. Th e positive 
square root of Ψ(x, y, z, t) Ψ*(x, y, z, t) is represented as |Ψ(x, y, z, t)|, called the modulus of Ψ. Th e quantity 
|Ψ(x, y, z, t)|2 is called the probability density, denoted as P.

If a particle is moving in a volume V, then the probability of the particle in a volume element dV, 
 surrounding the point x, y, z at an instant ‘t ’ is PdV.

 PdV = Ψ(x, y, z, t) Ψ*(x, y, z, t) dV = |Ψ(x, y, z, t)|2 dV

Integrating this probability throughout the volume V, is equal to 1

i.e.,  Ψ 2
1dV =∫

If the particle is not present in that volume, then Ψ 2
0dV =∫ .
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For a particle moving along X-direction [one dimensional] the quantity, Pdx = Ψ(x, t) Ψ*(x, t) dx = 
|Ψ (x, t)|2 dx, represent the probability of the particle over a small distance ‘dx’, centred at x, at time ‘t ’. 
Th e probability per unit distance [i.e., dx = 1] is called the probability density represented as |Ψ(x, t)|2.

Th e wave function that satisfi es time-independent wave equation has probability independent of time.

4.17 Particle in a potential box
A free electron (particle) in a metallic crystal may move freely inside the crystal from one place to 
another place but will not come out of the crystal because at the surface of the crystal, the electron 
experiences very large (infi nite) potential [called potential barrier]. Th e potential barrier present at the 
surface  [covering the metal surface] will act as a three-dimensional potential box for the free particle 
[electron]. Th is potential box can also be called as potential well because the electron will remain in that 
region only. For simplicity, fi rst we see one-dimensional potential box [or potential well] and extend it to 
three- dimensional box.

(a) Particle in a one-dimensional box [or one dimensional potential well]
Suppose an electron (particle) of mass ‘m’ moves back and forth in a one-dimensional crystal of length 
‘L’  parallel to X-direction. At the ends of the crystal, i.e., at x = 0 and at x = L, two potential walls of infi nite 
height exist, so that the particle may not penetrate the walls. Due to collisions, the energy of the particle 
does not change. Th roughout the length ‘L’ of the box, the potential energy V of the particle is constant and 
this constant potential energy of the particle inside the box is considered to be equal to zero for all  practical 
 purposes. A plot of potential energy of an electron versus distance is shown in Fig. 4.14. As the particle is 
inside the box, then the probability of the particle inside the crystal, P = ψψ * is equal to 1 and outside the 
well probability is equal to zero, hence ψ must be zero when 0 > x > L.

Inside the box, V = 0, by solving one-dimensional Schrödinger’s time-independent wave equation gives 
the motion of the particle inside the box. Th e study will show quantum numbers, discrete values of energy, 
zero-point energy and the wave function associated with the particle.

Figure 4.14
  One dimensional potential box with potential walls of infi nite height 

at x = 0 and at x = L

L
x

V(x)

≈ ≈

x = 0 x = L
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One-dimensional Schrödinger’s time-independent equation is:

 
d

d

2

2 2

2
0

ψ
ψ

x

m
E V+ −( ) =

�
  For the above case, V = 0, so we have:

 
d

d

2

2 2

2
0

ψ
ψ

x

mE
+ =

�
___________ (4.105)

 (or)  
d

d

2

2

2 0
ψ

ψ
x

K+ = ___________ (4.106)

 where  K
mE2

2

2
=

�
___________ (4.107)

Th e K in Equation (4.107) is the wave vector, K =
2π
λ

, this can be shown easily using de Broglie 

 hypothesis in the total energy of the particles. Th e total energy E is equated to K.E because P.E of an electron 
is  considered as zero in this case.

 E mv
p

m
= =

1

2 2
2

2

From de Broglie hypothesis,  p
h h

K
K= = =

λ π2 /
�

 

∴ = =E
p

m

K

m

2 2 2

2 2

�

From this,  K
mE2

2

2
=

�

A solution for Equation (4.106) is of the form  ψ = e αx ___________ (4.108)

Diff erentiating Equation (4.109) twice with respect to x and substituting in Equation (4.60) gives:

 
d

d

ψ
α α

x
e x=   and  

d

d

2

2

2 2ψ
α α ψα

x
e x= = ___________ (4.109)

Substituting in Equation (4.106), we have:

 α2ψ + K 2 ψ = 0

 α2 + K 2 = 0 ⇒ α = + iK

Th e two solutions of ψ are ψ
1
 = e iKx and ψ

2
 = e −iKx

 ∴  Th e general solution will be of the form:

 ψ α α( )x ae bex x= +1 2 , where a and b arbitary constants

 or  ψ(x) = ae iKx + be −iKx ___________ (4.110)

On expansion, we get:

 ψ(x) = a cosKx + ia sinKx + b cosKx − ib sinKx
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 = (a + b) cosKx + i(a − b) sinKx

 = A cosKx + B sinKx ___________ (4.111)

where  A = (a + b) and B = i(a − b) are again constants. 

Equation (4.111) represents a general solution for Equation (4.106). Th e values of constants in 
Equation (4.111) can be obtained by applying boundary conditions at the ends of the crystal.

(i) At x = 0, ψ(x) = 0, applying this on Equation (4.111), we get:

 0 = A × 1 + B × 0 ⇒ A = 0

 Substituting A = 0 in Equation (4.111) gives:

 ψ(x) = B sin Kx ___________ (4.112)

(ii) At x = L  ψ(x) = 0 

 Substituting this in Equation (4.112), we have:

 0 = B sin KL, we cannot take B = 0, because for B = 0, ψ(x) = 0 (from Equation 4.112)

 So,  sin KL = 0  (or)  KL = nπ

 K
n

L
=

π
___________ (4.113)  where n = 1, 2, 3, …

Substituting Equation (4.113) in (4.112) gives:

 ψ
π

n x B
n x

L
( ) sin=   for 0 < x < L ___________ (4.114)

Here, ψ(x) is changed to ψ
n
(x) because wave function takes diff erent values as ‘n’ changes.

If n = 0, then K = 0, E = 0 and ψ(x) = 0 for all values of x in the well, so n ≠ 0. Th is means that a particle 
with zero energy cannot be present in the box.

Substituting Equation (4.113) in (4.107) gives:

 
2

2 4 22

2 2

2

2 2 2

2

2 2 2

2 2

mE n

L
E

n

mL

n h

mL�
= = =

( )
π π π

π
⇒

�

For diff erent values of n, E also takes diff erent values and hence E can be written as E
n

 ∴ =E
n h

mL
n

2 2

28
___________ (4.115)

Th e lowest energy of the particle is obtained by putting n = 1 in Equation (4.115) and it is:

 E
h

mL
1

2

28
=   and  E

n
 = n2E

1
___________ (4.116)

Equations (4.115) and (4.116) indicates that a particle in the box can take discrete values of energy, for 
n = 1, 2, 3, … i.e., the energy is quantized. Th ese discrete energy values are called eigen values of energy. Th e number 
n is called the quantum number. Figure 4.11. shows the energy level diagram for a particle in a box. For the same 
value of quantum number n, the energy is inversely proportional to the mass of the particle and square of the length 
of the box. Th e energy is quantized and so it cannot vary continuously. But according to classical mechanics, there is a 
continuous range of possible energies. Th e increase in spacing between nth energy level and the next higher level is:

 (n + 1)2E
1
 – n2E

1
 = (2n + 1)E

1
___________ (4.117)
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Th e wave function ψ
n
 corresponding to E

n
 is called eigen function of the particle.

Determination of B by normalization

Th e value of B in Equation (4.114) can be obtained by equating the total probability of fi nding the 
particle inside the potential well is equal to unity, and this process is called normalization. Let P

n
(x) is the 

probability density of the particle at x along X-direction:

Th en,  P x x x
L L

n n( ) = =∫ ∫d d
0

2

0
1ψ

Using Equation (4.114)

 B
n x

L
x B

nx

L

2 2

0

2 1

2
1

2
sin

L

d∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = −

⎡

⎣
⎢

π π
cos

⎢⎢
⎤

⎦
⎥
⎥

=∫
0

1
L

dx

 
B

x
L

n

nx

L

L2

02 2

2
1−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
π

π
sin

Th e second term of the above equation becomes zero at both the limits.

 Th us,  
B L

B
L

2

2
1

2
= ⇒ = ___________ (4.118)

Substituting Equation (4.118) in (4.114) gives the normalized wave function:

 ψ
π

n x
L

n x

L
( ) sin=

2
___________ (4.119)

Th e fi rst three wave functions for n = 1, 2 and 3 are shown in Fig. 4.16. Th e shapes of wave functions 
shown in Fig. 4.16 have been obtained by substituting diff erent values for x for each n value.

From Fig. 4.16, it is seen that the wave function ψ
1
 has two nodes at x = 0 and at x = L, the wave 

function ψ
2
 has three nodes at x = 0, L/2 and L. Th e wave function ψ

3
 has four nodes at x = 0, L/3, 2L/3 

and L. Th us, the wave function ψ
n
 will have (n + 1) nodes.

Figure 4.15 Eigen values of energy

n = 4

n = 3

n = 2

n = 1

x

E1

E2 = 4E1

E3 = 9E1

E4 = 16 E1

En

x = Lx = 0
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Probability of location of the particle

Th e probability of fi nding a particle in a small distance dx centred at x is given by:

 P x x x
L

n x

L
xn n( ) sind d d= =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ψ

π2 22

Probability density is:

 P x
L

n x

L
n ( ) sin=

2 2 π

Th is is maximum when,

 
n x

L

π π π π
=

2

3

2

5

2
, , , …  (or)  x

L

n

L

n

L

n
=

2

3

2

5

2
, , ,  …

For n = 1, the most probable positions of the particle is at x = L/2.

For n = 2, the most probable positions are at x = L/4 and 3L/4.

For n = 3, the most probable positions are at x = L/6, 3L/6 and 5L/6.

Th ese positions are shown in Fig. 4.17.
Th e wave mechanical result is quite contradictory to the classical concept. According to classical mechan-

ics, a particle in a potential box would travel with a uniform velocity from one wall to the other and at the 
walls it would be perfectly refl ected. Th erefore, the probability of fi nding the particle within a small distance 
dx, any where in the box is same and is equal to dx/L.

(b) Particle in a rectangular three-dimensional box
Consider a particle [electron] of mass ‘m’ constrained to move freely in the space of the rectangular metallic 
crystal with edges of length a, b and c along X, Y and Z-axes as shown in Fig. 4.18. Potential barrier which 
exists at the surface of the crystal will be in the form of rectangular box for the free electron inside this 
crystal. We take the origin of coordinate system at one corner of the box. We will solve three-dimensional 
time-independent Schrödinger’s wave equation in the box.

 
∇ + −( ) =2

2

2
0ψ ψ

m
E V

�

Figure 4.16 Eigen functions

n = 1

n = 2

n = 3

y1

y2

y3

yn

xx = 0 x = L
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Figure 4.17 Probability density of particle in well

xx = 0 x = L

n = 1

n = 2

n = 3|yn|2

|y3|2

|y2|2

|y1|2

Figure 4.18 Three-dimensional potential box

Y

X

Z

c

a

b
o
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Th e potential energy of the particle is considered to be equal to zero inside the box and it is infi nity (V = α) 
at the boundaries (surface) and in the remaining space.

 Hence,  ∇ + =2

2

2
0ψ ψ

mE

�

 (or)  
∂
∂

+
∂
∂

+
∂
∂

+ =
2

2

2

2

2

2 2

2
0

ψ ψ ψ
ψ

x y z

mE

�
___________ (4.120)

ψ is function of the three variables x, y and z. One way of solving Equation (4.120) is to write ψ as the 
product of three functions as:

 ψ(x, y, z) = X(x) Y(y) Z(z) ___________ (4.121)

Here, the wave function is equal to the product of three wave functions X, Y and Z. Again, X is function 
of x only, Y is function of y only and Z is a function of z only. In simple, Equation (4.121) is represented as:

 ψ = X Y Z ___________ (4.122)

If ψ is a solution of Equation (4.121), then diff erentiate Equation (4.122) with respect to x, y and z twice 
and substitute in Equation (4.120), we get:

 
∂
∂

=
ψ
x

YZ
X

x

d

d
  and  

∂
∂

=
2

2

2

2

ψ
x

YZ
X

x

d

d

Similarly,  
∂
∂

=
2

2

2

2

ψ
y

XZ
Y

y

d

d
  and  

∂
∂

=
2

2

2

2

ψ
z

XY
Z

z

d

d

Substituting these in Equation (4.120), we get:

 YZ
X

x
XZ

Y

y
XY

Z

z

mEd

d

d

d

d

d

2

2

2

2

2

2 2

2
+ + = −

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟�
XXYZ

dividing throughout by XYZ, we have:

 
1 1 1 22

2

2

2

2

2 2

2

X

X

x Y

Y

y Z

Z

z

mE
K

d

d

d

d

d

d
+ + = − = −

�
___________ (4.123)

where  K K K K
mE2 2 2 2

2

2
= + + =x y z �

___________ (4.124)

We, therefore, write Equation (4.123) as:

 
1 2

2

2

X

X

x
KX

d

d
= − ___________ (4.125)

 
1 2

2

2

Y

Y

y
K Y

d

d
= − ___________ (4.126)

 and  
1 2

2

2

Z

Z

z
KZ

d

d
= − ___________ (4.127)
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Similar to the solution for one-dimensional Schrödinger’s wave equation, the general solution of 
 Equation (4.126) will be of the form:

 X(x) = A
x
 cos K

x
 x + B

x
 sin K

x
 x ___________ (4.128)

Applying boundary conditions, we have:

(i)  at x = 0, the wave function along X-direction is zero i.e., X = 0 applying this on Equation (4.128) 
gives A

x
 = 0.

So, Equation (4.128) becomes:

 X(x) = B
x
 sin K

x
 x ___________ (4.129)  and

(ii) at x = a, X = 0 = B
x
 sin K

x
 a 

B
X
 cannot be zero, since B

X
 = 0 gives the wave function along X-direction is zero [X = 0]. i.e., the wave 

function does not exist.

 So  sin K
X 

a = 0, therefore K
X
 a = n

X
 π

 (or)  K
n

aX = xπ ___________ (4.130)

where n
x
 = 1, 2, 3, . . . . . . . , n

X
 ≠ 0, because if n

X
 = 0 gives, X = 0 for all values of x in the box.

Substituting Equation (4.130) in (4.129) gives:

 X
x

= Bx
xsin

n

a

π
___________ (4.131)

Applying the normalization condition on Equation (4.131) between the limits x = 0 and x = a,
we have:

 X x B
n x

a
x

a a
2

0

2 2

0

1∫ ∫=
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =d dx

xsin
π

 

Solving this, we get:

 
B ax

2

2
1=   (or)  B

a
x =

2
___________ (4.132)

Substituting Equation (4.132) in (4.131) gives:

 X
a

n x

a
=

2
sin xπ ___________ (4.133)

With similar treatment on Equation (4.126) and (4.127), we obtain:

 Y
b

n y

b
=

2
sin

yπ
___________ (4.134)

 and  Z
c

n z

c
=

2
sin zπ ___________ (4.135)
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Substituting Equations (4.133), (4.134) and (4.135) in Equation (4.122) gives:

 ψ
π π π

=
2 2 2

a

n x

a b

n y

b c

n z

c
sin sin sinx y z

 ψ
π π π

n x y z
abc

n x

a

n y

b

n z

c
, , sin sin sin( )=

2 2 x y z
___________ (4.136)

Equation (4.124) is:

 E
m

K K K= + +( )� 2
2 2 2

2
x y z

 = + +
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

� �2 2 2

2

2 2

2

2 2

2

2 2

2m

n

a

n

b

n

c
x y zπ π π π

22

2

2

2

2

2

2m

n

a

n

b

n

c
x y z+ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

As n
x
, n

y
 and n

z
 takes diff erent values, so E takes the form:

 i.e.,  E E En n nX Y
,

Z
, =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ + +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

h

m

n

a

n

b

n

c

2 2

2

2

2

2

28
x y z

⎥⎥
___________ (4.137)

where n
x
 = n

y
 = n

z
 = 1, 2, 3, …

Equation (4.136) gives the total normalized wave functions inside the rectangular box for the stationary 
states. Equation (4.137) gives the eigen values of energy of the particle. Th ese values are called the energy 
levels of the particle.

If the particle is confi ned in a cubical box i.e., a = b = c, the eigen values of energy are given by:

 E E En n nX Y Z
, , = + +( )=

h

ma
n n n

h n

ma

2

2

2 2 2
2 2

28 8
x y z ___________ (4.138)

where n n n n2 2 2 2= + +x y z  and the normalized wave functions are:

 ψ
π π π

x y z
a

n x

a

n y

a

n z

a
, , sin sin sin( )=

8
3

x y z
___________ (4.139)

From equation (4.138), we know that several combinations of the three integers give diff erent stationary 
states or diff erent wave functions, in which some energies remain same, then they are said to be degenerate 
states and energy levels.

 Formulae

 1. f
e e

M B

Ei
Ei

BTk
−

α

( ) 1
=  2. f

e
E E

k T

F D

E

i F

B

i

−
−

( ) 1

1

=
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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 3. f
e e

B E

Ei
Ei

kBT
− =

−

( )

( )

1

1α   4. g E E
m

h
E E( )d

2

8
d

2

3
2

1
2=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

π

 5. Wien’s law, Uλ
λd dλ

λ
λ=

−( )C
e

C

T1

5

2

  6. Rayleigh–Jean’s law, Uλ dλ = 8 π k
B
T λ−4 dλ

 7. Planck’s law, Uλ

π
γd dλ

λ
λ=

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( )

8 1

1
5

hc

e
h

kBT

  8. λ = =
( )

=
h

p

h

meV V2

1 227
1

2

.
nm

 9. λ = −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 227
1

4 0
2

.

V

eV

m c
nm  10. E E pc= +( )0

2 2

11. Kinetic energy =  Total energy − Rest mass equivalent energy = +( ) −E pc m c0
2 2

0
2

12. 2d sin θ = nλ  13. d =
L

r

λ

14. λ = +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
h

m eV

eV

m c2
1

20 0
2

1 2

 ≈
h

m eV2 0

  15. d = = +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
L

r

L

r

h

m eV

eV

m c

λ
2

1
20 0

2

1 2/

16. Ψ = −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A
i

Et pxexp
�

  17. 
� �
i t m x

V
∂
∂

=
∂
∂

−
Ψ Ψ

Ψ
2 2

22

18. 
� �
i t m

V
∂
∂

= ∇ −
Ψ

Ψ Ψ
2

2

2
  19. 

d

d

2

2 2

2
0

ψ
ψ

x

m
E V+ −( ) =

�

20. ∇ = −( ) =2

2

2
0ψ ψ

m
E V

�
  21. P v x y z t x y z t

v x y z t

d

d d

∫ ∫
∫

= ( ) ( )

= ( )

Ψ Ψ

Ψ

, , , * , , ,

, , ,
2

vv = 1

22. E
n h

mL
n En = =

2 2

2

2
1

8
  23. E

n + 1 − E
n
 = (2n + 1) E

1

24. ψ
π

n x
L

n x

L
( )=

2
sin   25. P x

L

n x

L
n ( )=

2 2sin
π

26. ψ
π π π

x y z
abc

n x

a

n y

b

n z

c
, ,( )=

2 2
sin sin sinx y z   27. E

h

m

n

a

n

b

n

c
n n nx y z

x y z
, , =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ + +

2 2

2

2

2

2

28

⎡⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

28. ψ
π π π

x y z
a

n x

a

n y

b

n z

c
, ,( )=

8
3

sin sin sinx y z
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 Solved Problems

 1. Calculate the average energy of Planck’s oscillator of frequency 5.6 × 1012 Hz at 330K.

Sol: Th e average energy of planck’s oscillator =
h

e
h

k TB

γ
γ

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   k
B
 = Boltzmann constant = 1.38 × 10−23 J/K

   h = Planck’s constant = 6.625×10−34 JS

 γ = frequency of oscillator = 5.6×1012 Hz

 T = Temperature of the oscillator = 330 K

 Substituting the above values in the expression

 Average energy of Planck’s oscillator = 
6.625 10 5.6 10

exp
6.625 10 5.6 10

1.38 10

34 12

34 12

23

×( )× ×( )
× × ×

× ×

−

−

− 3330

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 2.945 × 10–21 Joules 

 2.  A black body emits radiation at a temperature of 1500K. calculate the energy density per unit wave length at 6000Å of black 
body radiation.

Sol:     Temperature of the black body = 1500K

 Th e wave length at which energy density is to be determined, λ = 6000Å

 Planck’s equation for energy density in the wave length range between λ and λ+dλ, U λ dλ =

8 1

1
5

π
λ γ

hc

e
h

k T

d

B

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

λ

 For one unit range of wave lengths, it is U
hc

e
h

k TB

λ

π
γ=

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

8 1

1
5λ

 Here 
h

k T

hc

k TB B

γ
λ

= =
× × ×

× × × ×
=

−

− −

6 63 10 3 10

6000 10 1 38 10 1500
16

34 8

10 23

.

.

 
∴ × × × × ×

× ×⎡⎣ ⎤⎦
×Uλ

8 22 6.63 10 3 10

7 6000 10

1

e 1
7.23 Jm

34 8

10 5 16

4
−

−

−

−

 3. Calculate the wavelength associated with an electron with energy 2000 eV.

 (Set-1–Sept. 2006), (Set-1–May 2004), (Set-1–May 2003), (Set-4–Nov. 2003)

Sol: E = 2000 eV = 2000 × 1.6 × 10−19 J

 Kinetic energy (E) = =
1

2 2
2

2

mv
p

m
  (or)  p mE= 2
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 ∴ = = =
×

× × × × ×

−

−
λ

h

p

h

mE2

6 63 10

2 9 1 10 2000 1 6 1

34

31

.

. . 00 19−
m  

 = ×
× × × ×

=
×−

−

−
6 63 10

2 9 1 1 6 2000 10

6 63 10

2

34

50

34
.

. .

.

441 33 10 25. × − m

 = 0.0275 × 10−9 m = 0.0275 nm

 4. Calculate the velocity and kinetic energy of an electron of wavelength 1.66 × 10 −10 m. 

(Set-1, Set-3–May 2006), (Set-2, Set-3–June 2005), (Set-2–May 2004), (Set-4–May 2003)

Sol: Wavelength of an electron (λ) = 1.66 × 10−10 m

 λ =
h

mv

 v
h

= =
×

× × ×

−

− −mλ
6 63 10

9 1 10 1 66 10

34

31 10

.

. .
m/s

 =
×

×
6 63

9 1 1 66
107.

. .
m/s  = 438.9 × 104 m/s.

 To calculate KE:

 We know E = P mE= 2

 and  λ = =
h

p

h

mE2

 or  λ2
2

2
=

h

mE
  or  E

h

m
= =

×⎡
⎣⎢

⎤
⎦⎥

× × ×

−

−

2

2

34 2

312

6 626 10

2 9 1 10 1 66λ

.

. . ××( )−10 10 2

 = 6 626 10

2 9 1 1 66 10
8 754 10

2 68

2 51

.

. .
.

( ) ×
× ×( ) ×

= ×
−

−
J −−

−

−=
×

×
18

18

19

8 754 10

1 6 10
J eV

.

.

 = 54.71 eV

 5.  An electron is bound in one-dimensional infi nite well of width 1 × 10 −10 m. Find the energy values in the ground state and 

fi rst two excited states.

(Set-4–June 2005), (Set-2–Nov.  2004), (Set-3–May 2003)

Sol: Potential well of width (L) = 1 × 10−10 m

 E
n h

mL
n =

2 2

28

 For ground state n = 1,

 E
h

mL
1

2

2

34 2

31 18

6 63 10

8 9 1 10 10
= =

×⎡
⎣⎢

⎤
⎦⎥

× × ×

−

− −

.

. 00 10

2

17

10

6 63

8 9 1
10

×
=

( )
×

×−
−J J

.

.

 = 0.6038 × 10−17 J

 (or)  =
×

×
=

−

−

0 6038 10

1 6 10
37 737

17

19

.

.
.eV eV
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 E
2
 = 4E

1
 = 2.415 × 10−17 J

 = 150.95 eV

 E
3
 = 9E

1
 = 5.434 × 10−17 J

 = 339.639 eV.

 6. An electron is bound in one-dimensional box of size 4 × 10−10 m. What will be its minimum energy?

(Set-2–Sept. 2006), (Set-1–Nov. 2004), (Set-2–May 2003)

Sol: Potential box of size (L) = 4 × 10−10 m

 E
h

mL
1

2

2

34 2

31 108

6 63 10

8 9 1 10 4 10
= =

×( )
× × × × ×

−

− −

.

. 44 10 10× − J

 
=

×
× ×

× −6 63 6 63

8 9 1 16
10 17. .

.
J

 = 0.0377 × 10−17 J

 (or)  =
×

×

−

−

0 0377 10

1 6 10

17

19

.

.
eV

 = 2.3586 eV

 7. An electron is moving under a potential fi eld of 15 kV. Calculate the wavelength of the electron waves.

Sol: V = 15 × 103 V  λ = ?

  λ = = =
1 227 1 227

15000

1 227

122 47

. . .

.V
nm nm  nm = 0.01 nm

 6. Find the least energy of an electron moving in one-dimensional potential box (infi nite height) of width 0.05 nm.

Sol: E
n h

mL
n =

2 2

28
  L = 0.05 nm = 0.05 × 10−9 m

 E
h

mL
1

2

2

34 2

31 18

6 63 10

8 9 1 10 0 5 10
= =

×( )
× × × ×

−

− −

.

. . 00 100 5 10× × −.
J

 
=

×
× ×

× = ×− −6 63 6 63

8 9 1 0 25
10 2 4 1017 17. .

. .
.J J

 
=

×
×

=
−

−

2 4 10

1 6 10
150 95

17

19

.

.
. eV

 8.  A quantum particle confi ned to one-dimensional box of width ‘a’ is known to be in its fi rst excited state. Determine the 

 probability of the particle in the central half.

(Set-1–Nov. 2003)

Sol: Width of the box, L = a

 First excited state means, n = 2

 Probability at the centre of the well, P
2
 (L/2) = ?
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 P x
L

n x

L
n( ) sin=

2 2 π

 P L
L

L

L
2

22
2 2 2( )= sin

π

 = =
2

02

L
sin π

 Th e probability of the particle at the centre of the box is zero.

 9.  An electron is confi ned in one-dimensional potential well of width 3 × 10 −10 m. Find the kinetic energy of electron when it 

is in the ground state.

 (Set-2–Nov. 2004), (Set-1–May 2004), (Set-1–Nov. 2003)

Sol: One-dimensional potential well of width, L = 3 × 10–10 m

 Electron is present in ground state, so n = 1

 E
1
 = ?

 E
n h

m
n =

2 2

8 2L

 
E1

1 34

31 10

1 6 63 10

8 9 1 10 3 10

2

=
× ×⎡

⎣⎢
⎤
⎦⎥

× × × ×⎡

−

− −

.

. ⎣⎣⎢
⎤
⎦⎥

= × −
2 0 067 10 17J J.

 or  E1

17

19

0 067 10

1 6 10
=

×
×

−

−

.

.
eV

 = 4.2 eV

 10.  Calculate the de Brogile wavelength of neutron whose kinetic energy is two times the rest mass of electron (given 

m
n
 = 1.676 × 10−27 kg, m

e
 = 9.1 × 10−31 kg, C = 3 × 10 8 m/s and h = 6.63 × 10−34 J.S).

Sol: Kinetic energy of neutron, 
1

2 2
22

2

m v
P

m
mn

n

n

e= =

 P m mn n e= 4   where m
n
 = mass of neutron

 m
e
 = mass of an electron

 de Brogile wavelength of neutron, λ
n
 = ?

 
λn

n n e

h

P

h

m m
= = =

×

× × × ×

−

−4

6 63 10

4 9 1 10 1 676 1

34

31

.

. . 00 27−

 =
6 63 10

7 811 10
0 8488 10 8488

34

29

5.

.
.

×
×

= × =
−

−
−m m nm.

11.  An electron is confi ned to a one-dimensional potential box of length 2 Å. Calculate the energies corresponding to the second 

and fourth quantum states (in eV).

(Set-2–Nov. 2003)
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Sol: Length of the one-dimensional potential box, L = 2Å = 2 × 10–10 m

 Energy of electron in nth level, E
n h

mL
n En = =

2 2

2

2
1

8

 ∴ = =
×( )

× × × ×

−

− −
E

h

mL
1

2

2

34 2

31 108

6 63 10

8 9 1 10 2 10

.

. ⎡⎡
⎣⎢

⎤
⎦⎥
2 J

 = 0.150951 × 10–17 J

 =
×

×
=

−

−

0 150951 10

1 6 10
9 43

17

19

.

.
.e eV V

 Energy corresponding to second and fourth quantum states is:

 E
2
 = 22E

1
 = 4 × 9.43 eV = 37.72 eV

 and

 E
4
 = 42E

1
 = 16 × 9.43 eV = 150.88 eV

12.  Electrons are accelerated by 344 V and are refl ected from a crystal. Th e fi rst refl ection maximum occurs when the glancing 

angle is 60 °. Determine the spacing of the crystal.

(Set-4–Nov. 2004), (Set-3–Nov. 2003)

Sol: Accelerating potential, V = 344 V

 Order of diff raction, n = 1

 Glancing angle, θ = 60°

 Interplanar spacing, d = ?

 We know that  2d sin θ = nλ and λ =
h

meV2
 

 So,  2
2

d sinθ =
nh

meV

 d = =
× ×

× × ×

−

−

nh

meV2 2

1 6 63 10

2 60 2 9 1 10

34

3sin

.

sin .θ 11 191 6 10 344× × ×−.
m

 =
×

= × =
−

−66 3 10

173 3547
0 382 10 0 382

10
10.

.
. .m m Å 

 Th e interplanar spacing is 0.382 Å.

13.  Calculate the energy required to pump an electron from ground state to the 2nd excited state in a metal of length 10−10 m.

Sol: Th e energy of an electron of mass ‘m’ in nth quantum state in a metal of side ‘L’ is:

 E
n h

mL
n En = =

2 2

2

2
1

8

 n = 1, corresponds to ground state

 n = 2, corresponds to fi rst excited state and

 n = 3, corresponds to second excited state
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 E
h

mL
1

2 2

2

34 2

31 10

1

8

6 63 10

8 9 11 10 10
= =

×( )
× × ×

−

− −

.

. ×× −10 10
J

 = × =
×

×
=−

−

−6 0314 10
6 0314 10

1 6 10
37 618

18

19
.

.

.
.J Ve 44 eV

 E
h

mL
E3

2 2

2 1

3

8
9 9 37 64 338 76= = = × =. .e eV V

 ∴  Energy required to pump an electron from ground state to 2nd excited state = E
3
−E

1

 = 338.76 eV − 37.64 eV

 = 301.12 eV

14.  Calculate the minimum energy of free electron trapped in a one-dimensional box of width 0.2 nm. (Given, h = 6.63 −10−34 

 J-S and electron mass × 9.1 × 10 −31 kg )

Sol: One-dimensional box of width, L = 0.2 nm = 2 × 10–10 m

 Minimum energy of the electron, E
1
 = ?

 E
n h

mL
n =

2 2

28

 E1

2 34 2

31 10

1 6 63 10

8 9 1 10 2 10
=

× ×⎡
⎣⎢

⎤
⎦⎥

× × × ×⎡

−

− −

.

. ⎣⎣⎢
⎤
⎦⎥

= × −
2

170 15095 10J J.

 =
×

×
=

−

−

0 15095 10

1 6 10

17

19

.

.
.eV 9 43 eV.

15. Calculate the wavelength associated with an electron raised to a potential 1600 V.

 (Set-1, Set-4–May 2008), (Set-3–May 2004)

Sol: Potential (V ) = 1600 V

 Wavelength (λ) = ?

 λ =
1 227.

V
nm

 = 
1 227

1600

.
nm

 = 0.031 nm = 0.31 Å.

 Multiple Choice Questions

1. Phase space is a ________ dimensional space. ()
 (a) 3 (b) 4 (c) 5 (d) 6

2. Maxwell–Boltzmann statistics is applicable to ()

 (a) identical distinguishable particles

 (b) identical indistinguishable particles

 (c) fermions  (d) bosons
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3. A point in phase space or μ-space can be represented with ()

 (a) Six position coordinates  (b) Six momentum coordinates

 (c) Th ree position and three momentum coordinates  (d) Six position and six momentum coordinates

 4.  At temperature T K, if a particle possess energy E
i
 then the Maxwell–Boltzmann distribution for it can be repre-

sented as [ α = constant, K
B
 = Boltzmann constant] ()

 ( ) ( )a b
1 1

e e e e
Ei

kBT

Ei
kBTα α

_

 ( ) ( )c d
1 1

e e e e
Ei

kBT
Ei

kBT
− −

−α α

 5. Fermi–Dinac distribution is applicable to ()

 (a) distinguishable particles

 (b) indistinguishable particles

 (c) Both a and b  (d) None of the above

 6. Th e Fermions possess a spin of ()

 (a) integral multiples of h– (b) half-integral multiples of h–

 (c) Th ey possess any spin (d) None of the above

 7. Th e Fermi-Dirac distribution function of a particle possessing energy E at temperature Tk is ()

 ( ) ( )a b
1

1

1

1− +
− −( )( )

e e
E EF

BT

E EF

BTk k

 ( ) ( )c d
1

1

1

1e e
E EF

BT

E EF

BTk k
−( ) −

− +
 8. Bose–Einstein statistics is applicable to ()

 (a) identical distinguishable particles
 (b) identical indistinguishable particles
 (c) Both a and b (d) None of the above

 9. Bosons possess a spin of ()

 (a) integral multiples of h–.
 (b) half-integral multiples of h–.
 (c) Th ey can have any spin.
 (d) Th ey would not possess spin.

10.  For a particle of energy E
i
, the Bose-Einstein distribution can be represented as [α, β = const., K

B
 = Boltzmann 

constant] ()

 ( ) ( )a b
α

αe e e
Ei

kBT
Ei

kBT− −1

1

1

 ( ) ( )c d
1

1

1

1e e e e
Ei

kBT
Ei

kBTα α+ −

11. Th e free electrons in a metal follow ________ distribution ()

 (a) Maxwell–Boltzmann  (b) Fermi–Dirac
 (c) Bose–Einstein  (d) None of the above

Chapter 04 new.indd   47Chapter 04 new.indd   47 9/25/2009   5:36:24 PM9/25/2009   5:36:24 PM



4-48 Applied Physics

12. At 0K, the probability of an electron in Fermi energy level is ()

 (a) 0 (b) 0.5
 (c) 1.0 (d) less than 1

13. Th e probability of an electron in Fermi energy level at non-0K temperature is ()

 (a) 0
 (b) 0.5
 (c) between 0.5 and 1
 (d) 1.0

14. Th e expression for the density of electron states at energy E can be represented as [h = Planck’s constant] ()

 ( ) ( )a b
π π
2

8

2

8
2 2

3
2

1
2

3
2m

h
E

m

h
E

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  ( ) ( )c d

π π
2

8

2

8
2 2

2
3

1
2

2
3m

h
E

m

h
E

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

15. Black body is ()

 (a) a body that absorbs all wave lengths of radiation incident on it at low temperatures
 (b) a body that emits diff erent wave lengths of radiation at high temperatures 
 (c) Both a and b
 (d) None of the above

16.  If the temperature of a black body is increased then the intensity of radiation for each wave length of radiation
 ()

 (a) remains constant
 (b) decreases
 (c) increases
 (d) None of the above

17.  In black body radiation, the wave length corresponds to maximum intensity moves towards ________ wave length 
region with increase of temperature. ()

 (a) shorter
 (b) longer
 (c) both a and b
 (d) none of the above

18. Wien’s law explains the black body radiation in ________ region of the spectrum. ()

 (a) the short wave length region
 (b) the medium wave length region
 (c) the longer wave length region 
 (d) None of the above

19. Th e planck’s black body radiation distribution can be represented as ()

  ( )a
λ

λ
λ

λ
5

58

1
d (b)

8 1
d· ·π

π
ch e

ch

e
h

kBT
h

kBT
γ γ

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1 1

  ( ) ( )c d
λ
π

λ
π
λ

λ
5

58

1

1

8 1

1ch e

ch

e
hc

kBT
hc

kBT−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥d d

20. Rayleigh–Jeans explained black body radiation based on ________ of energy ()

 (a) equipartition (b) kinetic theory (c) fi fth power of wave length (d) All the above

21. Rayleigh–Jeans law is applicable to ________ wave length region of the spectrum ()
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 (a) shorter (b) longer (c) complete (d) None of the above

22. Planck’s low is applicable to ________ spectrum of black body radiation ()

 (a) entire (b) only a part of the (c) shorter wave length (d) longer wave length 

23. Quantum theory successfully explains: ()

 (a) interference and diff raction (b) polarization and black body radiation
 (c) photoelectric eff ect and Compton eff ect (d) All the above

24. Dual nature [particle and wave] of matter was proposed by: ()

 (a) de Broglie (b) Planck (c) Einstein (d) Newton

25. Th e wavelength associate with a particle of mass m moving with a velocity v is [h = Planck’s constant] ()

 (a) hmv (b) 
h

mv
 (c) 

mv

h
 (d) 

1

mhv

26.  Th e wavelength of de Broglie wave associated with an electron when accelerated in a potential diff erence V is 
[h = Planck’s constant, e = charge on an electron] ()

 (a) 
h

meV
 (b) 

h

meV2
 (c) 

h

meV2
 (d) 

h

meV2
2( )

27.  When an electron is accelerated in a potential diff erence V, then the de Broglie wave associated with it in nm is:

 ()

 (a) 
1 227.

V
 (b) 

1 227.

V
 (c) 

12 27.

V
 (d) 

12 27.

V

28.  If m
0
 is the rest mass of an electron, accelerated through a potential diff erence V, then its relativistically corrected 

wavelength is [c = velocity of light] ()

 (a) 1 227
1

4 0

2

.

V

eV

m c
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ nm  (b) 1 227

4
1

0

2

.

V

eV

m c
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ nm

 (c) 1 227
1

4 0

2

.

V

eV

m c
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ nm  (d) 1 227

4
1

0

2

.

V

eV

m c
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ nm

29. Th e existence of matter waves is proved by: ()

 (a) Davisson and Germer (b) G.P.  Th omson 
 (c) O. Stern  (d) all

30. Th e gold foil used in G.P. Th omson experiment is:  ()

 (a) single crystal (b) polycrystalline (c) amorphous  (d) none

31. Th e interplanar spacing in gold foil obtained by G.P.  Th omson and by X-ray method is: ()

 (a) 4.08 Å and 4.06 Å  (b) 4.06 Å and 4.08 Å
 (c) 4.8 Å and 4.6 Å  (d) 4.6 Å and 4.8 Å

32. Th e target material in Davisson and Germer experiment is: ()

 (a) gold (b) nickel (c) tungsten  (d) copper
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33.  Th e spur in the curve drawn between the number of electrons collected against the angles of galvanometer with an 
incident beam in Davisson and Germer experiment is more clear for a anode voltage of: ()

 (a) 40 V (b) 44 V (c) 54 V  (d) 68 V

34. Th e diff raction angle for nickel crystal in Davisson and Germer experiment is: ()

 (a) 50° (b) 65° (c) 25°  (d) 130°

35. Schrödinger’s wave equation for a particle of mass m have energy E, moving along X-axis is: ()

 (a) 
d

d

2

2 2

2
0

ψ
ψ

x

m
E V+ −( ) =

�
 (b) 

d

d

ψ
ψ

t

m
E V+ −( ) =

2
0

2�

 (c) 
d

d

ψ
ψ

x

m
E V+ −( ) =

2
0

2�
 (d) 

d

d

2

2 2

2
0

ψ
ψ

x

m
V E+ −( ) =

�

36. Th e wave function ‘ψ’ associated with a moving particle:  ()

 (a) is not an observable quantity (b) does not have direct physical meaning
 (c) is a complex qu antity (d) all

37. By solving one-dimensional Schrödinger’s time-independent wave equation for a particle in the well gives: ()

 (a) quantum numbers 
 (b) discrete values of energy and zero point energy
 (c) wave function associated with the particle
 (d) all

38.  Th e energy possessed by a particle of mass ‘m’ in nth quantum state in a one-dimensional potential well of width 
‘L’ is:  ()

 (a) n h

mL

2 2

28
 (b) 

nh

mL8 2
 (c) n h

mL

2 2

8
 (d) 8 2

2 2

mL

n h

39. In G.P.  Th omson’s experiment ___________ particles are used for diff raction. ()

 (a) slow neutrons (b) fast neutrons (c) slow electrons (d) fast electrons

40. In photoelectric eff ect, absorption or emission of energy takes place:  ()

 (a) in the form of packets of energy called quanta 
 (b) continuously 
 (c) both a and b 
 (d) none

41.  When an electron is accelerated through a potential diff erence of 100 V, then it is associated with a wave of 
 wavelength equal to:  ()

 (a) 0.112 nm   (b) 0.1227 nm 
 (c) 1.227 nm   (d) 12.27 nm

42. ___________ proposed matter waves but he did not prove it experimentally. ()

 (a) Th omson   (b) Davisson and Germer
  (c) de Broglie   (d) Schrödinger

43.  Th e interplanar spacing of gold foil obtained by G.P. Th omson’s method agree very well with that obtained by  
___________ method. ()

 (a) interference  (b) X–ray
 (c) diff raction   (d) none
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44. Th e thickness of gold foil used in G.P. Th omson experiment was: ()

 (a) 10−3 m  (b) 10−5 m  (c) 10−7 m  (d) 10−8 m

45. Th e original aim of Davisson and Germer experiment was to fi nd the ___________ by a metal target.  ()

 (a) intensity of scattered electrons  (b) electron diff raction
 (c) to fi nd interplanar spacing  (d) none 

46. Th e de Broglie wavelength of electrons obtained from Davisson and Germer experiment is: ()

 (a) 0.0165 nm  (b) 0.165 nm  (c) 1.65 nm  (d) 16.5 nm

47. Schrödinger’s wave equation was derived based on ___________ idea of matter waves. ()

 (a) de Broglie’s   (b) Schrödinger’s
 (c) Th omson’s   (d) Newton’s

48. If ψ(x, y, z, t) represent wave function associated with a moving particle, then |ψ(x, y, z, t)|2 represents: ()

 (a) intensity   (b) amplitude
 (c) probability density  (d) none

49.  If E
1
 is the ground state energy of a particle, then the increase in energy from nth energy level to next higher 

level is: ()

 (a) (2n + 1)E
1 

(b) 2nE
1
 (c) (2n − 1)E

1
  (d) (3n + 1)E

1

50. Th e normalized wave function of a particle in a one-dimensional potential well of width L is:  ()

 (a) 
2

L

n x

L
sin

π
 (b) 

L n x

L2
sin

π
 (c) 

L n x

L2
sin

π
 (d) 

2

L

n x

L
sin

π

51.  Th e most probable position of a particle in one-dimensional potential well of width ‘L’ in the fi rst quantum 
state is:  ()

  (a) L /4  (b) L /3  (c) L /2  (d) 2L /3

 Answers

 1. d  2. a  3. c  4. a  5. b  6. b  7. b  8. b  9. a 10. b
11. b 12. c 13 b 14. a 15. c 16. c 17. a 18. a 19. b 20. a
21. b 22. a 23. d 24. a 25. b 26. c 27. b 28. c 29. d 30. b
31. a 32. b 33. c 34. b 35. a 36. d 37. d 38. a 39. c 40. a
41. b 42. c 43. b 44. d 45. a 46. b 47. a 48. c 49. a 50. d 51. c

 Review Questions

1. Derive an expression for the distribution of identical distinguishable particles based on classical concepts?

2. Derive Maxwell–Boltzmann distribution expression?

3. Derive Fermi–Dirac distribution equation for identical indistinguishable particles. 

4. Derive Bose–Einstein distribution for bosons.

5. Distinguish between Maxwell–Boltzmann distribution, Fermi–Dirac distribution and Bose–Einstein distribution. 
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 6. Write short notes on (i) electron gas (ii) photon gas and (iii) Fermi energy.

 7. Derive an expression for density of available electron states between the energies E and E + dE.

 8. Explain black body radiation.

 9. What are matter waves? Explain their properties.
 (Set-1–Sept. 2006), (Set-1–May 2004), (Set-1–May 2003), (Set-4–Nov. 2003)

10. Derive the expression for de Broglie wavelength.
 (Set-1–Sept. 2006), (Set-1–May 2004), (Set-1–May 2003), (Set-4–Nov. 2003)
11. Explain the concept of matter waves.
 (Set-1, Set-3–May 2006), (Set-2, Set-3–June 2005), (Set-2–May 2004), (Set-4–May 2003)

12. Describe Davisson and Gemer’s experiment and explain how it enabled the verifi cation of wave nature of matter.
 (Set-1, Set-3–May 2006), (Set-2, Set-3–June 2005), (Set-2–May 2004), (Set-4–May 2003)

13. Derive time-independent Schrödinger’s wave equation for a free particle.
 (Set-2–Sept. 2006), (Set-4–June 2005), (Set-1–Nov. 2004), (Set-2–Nov. 2004), (Set-2, Set-3–May 2003)

14. Explain the physical signifi cance of wave function.
 (Set-1, Set-3–Sept. 2008), (Set-4–June 2005), (Set-2, Set-3–Nov. 2004), (Set-3–May 2003), (Set-1–Nov. 2003)

15.  Show that the wavelength ‘λ’ associated with an electron of mass ‘m’ and kinetic energy ‘E ’ is given by λ =
h

mE2
.

 (Set-2–Sept. 2006), (Set-3–Nov. 2004), (Set-2–May 2003)

16.  Assuming the time-independent Schrödinger’s wave equation, discuss the solution for a particle in one-dimensional 
potential well of infi nite height.

 (Set-3–Nov. 2004), (Set-1–Nov. 2003)

17. Describe in detail, with a neat diagram, Davison and Germer experiment to show that particles behave like waves. 
  (Set-4–Sept. 2008), (Set-4–Nov. 2004), (Set-3–Nov. 2003)
18. Describe an experiment to establish the wave nature of electrons.
 (Set-4–May 2007), (Set-1–June 2005), (Set-4–May 2004)

19. Explain the diff erence between a matter wave and an electromagnetic wave.
 (Set-4–May 2007), (Set-1–June 2005), (Set-4–May 2004)

20.  Show that the wavelength of an electron accelerated by a potential diff erence V volts is λ =
× −1 227 10 10.

V
m for 

non-relativistic case. 
 (Set-4–May 2007), (Set-1–June 2005), (Set-4–May 2004)

21.  Apply Schrödinger’s equation to the case of a particle in a box and show that the energies of the particle are 
 quantized. 

 (Set-2–Nov. 2003),

22. Explain de Broglie hypothesis. (Set-1–May 2008), (Set-3–May 2004)

23. Explain G.P.  Th omson’s experiment in support of this hypothesis. (Set-3–May 2004)

24.  Starting with the plane wave equation associated with a moving particle, formulate the time-independent 

Schrödinger’s wave equation. 
 (Set-2–Nov. 2003)

25. Explain in detail the properties of matter waves. (Set-2–May 2008)

26. Describe G.P. Th omson’s experiment in support of de Broglie hypothesis. (Set-1–May 2008)
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27. Describe Davisson and Germer experiment to verify the wave nature of matter. (Set-2–May 2008)

28. Distinguish between a matter wave and an electromagnetic wave. (Set-4–May 2008)

29. Describe G.P. Th omson’s experiment to study electron diff raction. (Set-4–May 2008)

30. Discuss the de Broglie hypothesis of duality of matter particles. (Set-4–Sept. 2008), (Set-3–May 2008)

31. Describe G.P. Th omson’s experiment to verify the wave nature of matter. (Set-3–May 2008)

32. Discuss, in detail, the physical signifi cance of wave function. (Set-2–Sept. 2008)

33. Show that the energies of a particle in a 3-dimensional potential box, are quantized. (Set-2–Sept. 2008)

34. Deduce an expression for energy of an electron confi ned to a potential box of width ‘x’ (Set-1–Sept. 2008)

35. Derive 3-dimensional, time independent Schrödinger wave equation for an electron. (Set-1–Sept. 2008)

36. Derive one-dimensional, time independent Schrödinger wave equation for an electron. (Set-3–Sept. 2008)

37. What is de Broglie’s hypothesis? Describe any one experiment by which the hypothesis was verifi ed.

38. Show that the energies of a particle in a potential box are quantized.

39. Explain the concept of wave-particle duality and obtain an expression for the wavelength of matter waves.

40.  Discuss the de Broglie’s hypothesis of duality of material particles. Give in detail the experiment of Davisson and 
Germer in support of the hypothesis.

41. What are matter waves? Obtain an expression for the wavelength of matter waves.

42. Explain in detail the Davisson and Germer’s experiment to prove the existence of matter waves.

43. Explain the dual nature of light. Describe G.P. Th omson’s experiment to verify the dual nature of matter.

44.  Obtain eigen values of energy, normalized wave functions and probability functions for a particle in one-dimensional 
potential box of side ‘L’.

45.  Derive the Schrödinger’s time-independent wave equation of an electron and write the signifi cance of orthonor-
mality condition of wave function.

46.  Give the graphical presentation for the probability of metallic electron in its second allowed state as a function of 
length of potential box.

47.  Show that for a quantum particle confi ned to an infi nite deep potential box with fi nite length, the energy levels are 
quantized.

48. Write the time-independent Schrödinger’s wave equation of electron and write the physical interprelation of ψ.

49.  With suitable picturization of potential well and imposed boundary conditions, derive the Schrödinger’s equation 
for metallic electron and prove that energy levels are unequally spaced. 
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Electron Theory of Metals

5.1 Introduction
Th e valence electrons of isolated metallic atoms are bound to the atoms, whereas in a metallic crystal they 
are not bound to any particular atom; they freely move in the spaces between the atoms. So, they are called 
free electrons. Th ese free electrons participate in electrical conduction; hence they are called as conduction 
electrons. Th e metals possess some physical properties. Th ey are:

   (i)  Due to the existence of large number of free electrons, metals possess high electrical and thermal 
 conductivities.

   (ii) Th ey obey Ohm’s law i.e., the current through a metal is proportional to the applied electric fi eld.
(iii)  Th e resistivity (ρ) is proportional to the fi fth power of absolute temperature [i.e., ρ ∝ T 5] at 

low temperatures, whereas resistivity is proportional to absolute temperature (ρ ∝ T ) at high 
temperatures.

 (iv)  In metals, the ratio of thermal conductivity to electrical conductivity is proportional to absolute 
 temperature. Th is is known as Wiedmann-Franz law.

   (v)  Near absolute zero of temperature, the resistivity of some metals drops to zero; hence they show super-
conductivity.

  (vi) Th e resistance of a metal increases with temperature as given below:

 R(T ) = R
0
 + R

0
αT

 where R (T ) is the resistance at the temperature T ° C
 R

0
 is the resistance at 0° C

 α is the temperature coeffi  cient of resistance
 T is the temperature in °C.

C H A P T E R 5
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5.2 Classical free electron theory of metals
Th e classical free electron theory was introduced by P. Drude in 1900 and developed by Lorentz in 1909 to 
explain electrical conduction in metals. Th is theory has some assumptions; they are:

  (i)  Th e valence electrons of metallic atoms are free to move in the spaces between ions from one place to 
another place within the metallic specimen similar to gaseous molecules so that these electrons are called 
free electron gas. Th ese electrons also participate in electrical conduction; hence they are called conduction 
electrons.

  (ii) Th ere is no interaction between these conduction electrons.
(iii) Th e interaction of free electrons with ion cores is negligible.
 (iv) Th e free electrons fi nd uniform electric fi eld of positive ions and that of electrons in the metal.

To study electrical conductivity
To obtain an expression for electrical conductivity, consider a metallic rod of length l and area of cross  section 
‘A ’ as shown in Fig. (5.1). In the absence of an external electric fi eld, the free electrons move in random direc-
tions, similar to gaseous molecules in a container so that there is no net resultant motion of electrons along 
any direction.

V

A

Ex

L

Figure 5.1 Electron drifting in electric fi eld (Ex )

Th e root mean square velocity of electrons is obtained by applying kinetic theory of gases and  equipartition 
law of energy. Th e pressure ‘P ’ of the gas is:

 P C mnC= =
1

3

1

3

2 2

ρ   ___________ (5.1)

where m is mass of an electron, ‘n’ is the number of free electrons per unit volume, ‘ρ’ is the density of an 
electron gas and C is root mean square velocity.

For molar volume (V
m
 ) of the metal,

 P C m
N

V
C

m

= =
1

3

1

3

2 2

ρ A
  ___________ (5.2)
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where N
A
 is Avogadro’s number

From Equation (5.2)

 PV N C R T
m u

= =
1

3
m

A

2

  (or)  mC
R T

N
K Tu

2

A

B

3
3= =   ___________ (5.3)

where R
u
 is universal gas constant, T is absolute temperature and K

B
 is Boltzmann’s constant.

From Equation (5.3)  C
K T
m

=
3 B   ___________ (5.4)

Now a potential diff erence (V ) is applied across the ends of the rod, kept parallel to X-direction, then an 
electric fi eld, E

x
 acts on the electrons, then the electrons acquire a constant velocity v

x
 in the opposite direc-

tion to that of electric fi eld. Th is constant velocity is called drift velocity, this velocity is superimposed on the 
thermal velocity (C ) of the electrons.

If ‘R
x
’ is the resistance of the rod, then the current I

x
 through it is:

 I
V

R
AJx

x

x
x= =   ___________ (5.5)

where J
x
 is the current density along X-direction

 (or)  J
V

A

E l

A

A E
Ex

x

x

x

x

x

x

x x
R l

= = × = =
ρ ρ

σ   ___________ (5.6)

where E
x
 = intensity of electric fi eld; ρ

x
 = resistivity and σ

x
 = electrical conductivity of the metal.

Th e fi eld E
x
 produces a force − eE

x
 on each electron, due to this force the acceleration on ith electron is:

 a
t

eE

m
ix

ix xdv

d
= = −   ___________ (5.7)

where v
ix
 is the drift velocity of ith electron along X-direction. Since the electrical force eE

x
 is the same 

on all electrons, so the average acceleration is:

 
d

d
v x

x

t

eE

m
< >= −   ___________ (5.8)

where <v
x
> is the average velocity of n free electrons in unit volume of metal, given by:

 < >=
=
∑v vx ix

1

1n i

n

  ___________ (5.9)

Th e current density along X-direction is:

 J
x 
= n <v

x
> (−e) = −ne <v

x
>  ___________ (5.10) 

Th e minus sign shows that J
x
 is in the opposite direction to that of <v

x
>. Th e average velocity <v

x
> can be 

obtained by considering the acceleration and retardation in steady state.

In addition to acceleration, 
eE

m
x

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
 the electrons get retarded due to collisions of electrons with lattice ions. 

Th is is refered to as electron lattice scattering.
In steady state, the sum of acceleration and retardation is equal to zero.

 
d

d
v

d

d
vx x

el lax
t tE

< >
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ < >
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

0  ___________ (5.11)
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Th e retardation, 
d

d
v x

t el la

< >
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

can be calculated as follows: Let <v
x
>0 is the average drift  veloc ity of 

free electrons at t = 0, i.e., at the moment the electric fi eld is removed, afterwards the drift velocity reduces 
exponentially to zero due to electron-lattice collisions.

 < > = < >
−

v vx x
x

0 e
t

τ
  ___________ (5.12)

where τ
x
 is know as relaxation time. It is defi ned as the time taken by an electron to decay its drift velocity 

to 1/e of its initial value. Diff erentiating Equation (5.12) gives retardation.

 
d

d
v

v v
x

x

x

x

x

x

t
e

e l l a

t

< >
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=−
< >

=
−< >

−

−
0

τ τ
τ

  ___________ (5.13)

substituting Equations (5.8) and (5.13) in Equation (5.11) gives:

 
−

−
< >

=
eE

m

x x

x

v

τ
0   (or)  < >= −

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
v

x

x

x

e

m
E

τ
  ___________ (5.14)

Equation (5.14) shows that the drift velocity acquired by the electron is proportional to applied electric 

fi eld and the proportionality constant 
e
m
τ

x  is known as their mobility (μ
x
). It is defi ned as the drift velocity 

 produced per unit applied electric fi eld and it is given by:

 μ
τ

x
x

x

x
v

=
< >

=
E

e

m
  ___________ (5.15)

Finally, comparing Equations J
x
 = σ

x
 E

x
 and J

x
 = − ne < v

x 
>, we have:

 σ
x
E

x
 = −ne < v

x 
>  ___________ (5.16)

Substituting Equation (5.14) in (5.16)

 

σ
τ

x x
x

x
E ne

e
m

E= − −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 ∴ =σ τx x

ne
m

2

  ___________ (5.17)

Substituting Equation (5.15) in (5.17) gives:

 σ
x
 = neμ

x
  ––––––––– (5.18)

(or)  resistivity, ρ
σ μx

x x

= =
1 1

ne
  ___________ (5.19)

Equations (5.17), (5.18) and (5.19) represent electrical conductivity and resistivity in a metal.

Merits and drawbacks (or) failures of classical free electron theory: Classical theory successfully explains 
electrical and thermal conductivities of metals, the increase of resistance with temperature, opacity, luster, etc., 
but fails to explain the following aspects.

5-4 Applied Physics
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 (1)  According to classical theory, the electrical conductivity (σ) of a metal is inversely proportional to its 

square root of its absolute temperature (T  ). i.e., σ∝
1

T
. But practically, it has been observed that the 

electrical conductivity is inversely proportional to its absolute temperature. i.e., σ ∝
1

T
. Th us, classical 

theory failed to explain the electrical conductivity of metals.
 (2)  Experimentally, it has been observed that the specifi c heat of a metal is proportional to its absolute 

 temperature. But the classical theory predicts that the specifi c heat does not depend on temperature. 
Th us, classical theory failed to explain specifi c heat of metals.

 (3)  According to classical free electron theory, the electrical conductivity (σ) is proportional to the free 

 electron concentration (n) because, σ
τ

=
ne

m

2

. Th e free electron concentration of divalent metals like 

Zn, Cd, etc., and trivalent metals like Al, Ga, etc., is larger than the metals like Cu and Ag. But the 
 electrical conductivities of Cu and Ag are larger than that of the above divalent and trivalent metals. 
Th us, the classical free electron theory failed to explain electrical conductivity on the basis of free  electron 
concentration of diff erent metals.

5.3  Relaxation time, mean free path, mean collision 
time and drift velocity

(i) Relaxation time (τ): In the absence of an external electric fi eld, the free electrons in a metallic substance 
will move in random directions, so that the resultant velocity of free electrons in any direction is equal to 
zero. By applying an external electric fi eld on the specimen, the free electrons of the metal acquire a constant 
resultant velocity in the opposite direction to that of the applied electric fi eld. If the fi eld is turned off  sud-
denly at t = 0, then the average drift velocity <v

x
>0 reduces exponentially to zero. Th e drift velocity after 

some time ‘t ’ is:

 < > = < >
−

v vx x 0 e
t

τ   ___________ (5.20) 

where τ is called relaxation time. when t = τ then Equation (5.20) becomes:

 < >= < > =
< >−v v

v
x x

x
0

1 0e
e

  ___________ (5.21)

Th us, relaxation time may be defi ned as the time taken by an electron to reduce its velocity to 1/e of its initial 
value. Diff erentiating Equation (5.20):

 
d v

d

v vx x x
< >

=
−< >

= −
< >

−

t

e
t

0
τ

τ τ
  ___________ (5.22)

Equation (5.22) represents retardation.

(ii) Mean free path (λ): It is the average distance travelled by a free electron between two successive col-
lisions with lattice ions in a metallic crystal. Th e mean free path (λ) of an electron is represented as λ τ= c

c
, 

where c  is the root mean square velocity and τ
c
 is the mean collision time of a conduction electron.

(iii) Mean collision time (τ
c
): Th e time between two successive collisions of a free electron with lattice ions 

in a metallic crystal is called collision time. Th e average of successive collision times of a free electron is called 

Electron Theory of Metals 5-5
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5-6 Applied Physics

the mean collision time. If v is the resultant of thermal and drift velocities of a free electron, then the mean 

collision time (τ
c 
) is given by τ

λ
c

=
v

, where λ is the mean free path of an electron. If the drift velocity (v
d
) of 

an electron is very much lesser than the thermal velocity (v
th
) of the electron [i.e., v

d
 << v

th
] then v ≈ v

th

 ∴ =τ
λ

c
v th

(iv) Relation between τ and τ
c
: Consider a free electron moving with velocity v along AB direction inside 

a metallic crystal as shown in Fig.5.2. At ‘B’, the electron makes collision with a lattice point and travels 
along BC direction with same velocity, making an angle θ with the original direction. Let θ

1
, θ2, θ3, ... be 

the successive scattering angles in diff erent collisions of an electron, then the average of cos θ1, cos θ2, 
cos θ3, … is represented by <cos θ>. Th e relaxation time τ and mean collision time are related through the 
equation:

 τ
τ

θ
=

−< >
c

1 cos

A B

q

C

Figure 5.2 Movement of a free electron inside a metallic crystal

(v) Expression for drift velocity: In the absence of an applied electric fi eld, the free electrons in a metal are 
moving in random directions so that the resultant motion of electrons in any direction is equal to zero. By the 
application of an electric fi eld E, every electron experiences a force (F ) equal to −eE.

 i.e.,  F = −eE  ___________ (5.23)

Due to this force, the velocities of free electrons should gradually increase, but this will not happen because 
of the collisions of conduction electrons with ion cores of the crystal. Th e velocities of free electrons increase 
up to a certain value called drift velocity v

d
, afterwards their velocity does not increase because of retardation 

due to collisions with ions. If v
d
 is the steady state or drift velocity and τ

c 
is the mean collision time of free 

electrons, then the resistive force, F
r
 off ered to its motion is given by:

 F m
r

d

c

=
v

τ
  ___________ (5.24)

In steady state, F
r
 = F

 ie.,  
m

eE
c

vd

τ
= −

Th erefore, the drift velocity (v
d
) is given by v

d c

eE

m
= − τ

Chapter 05.indd   6Chapter 05.indd   6 9/25/2009   5:35:03 PM9/25/2009   5:35:03 PM



Electron Theory of Metals 5-7

5.4 Fermi-Dirac distribution
In a metallic crystal, the free electrons possess diff erent energies except the restriction put forward by Pauli’s 
exclusion principle. According to quantum theory, at absolute zero of temperature, the free electrons occupy 
diff erent energy levels continuously without any vacancy in between fi lled states. Th is can be understood by 
dropping the free electrons of a metal one by one into the potential well. Th e fi rst electron dropped would 
occupy the lowest available energy, E

0
 (say), and the next electron dropped also occupy the same energy level. 

Th e third electron dropped would occupy the next energy level. Th at is, the third electron dropped would 
occupy the energy level E

1
 (>E

0
) and so on because of Pauli’s exclusion principle. If the metal contains 

N (even) number of electrons, they will be distributed in the fi rst N/2 energy levels and the higher energy 
levels will be completely empty as shown in Fig.5.3.

E

EF0

E1

E0

Figure 5.3 Distribution of electrons in various energy levels at 0 K.

Th e highest fi lled level, which separates the fi lled and empty levels at 0 K is known as the Fermi level 
and the energy corresponding to this level is called Fermi energy (E

F
). Fermi energy can also be defi ned 

as the highest energy possessed by an electron in the material at 0 K. At 0 K, the Fermi energy E
F
 is rep-

resented as E
F

0
. As the temperature of the metal is increased from 0 K to T K, then those electrons which 

are present up to a depth of K
B
T from Fermi energy may take thermal energies equal to K

B
T and occupy 

higher energy levels, whereas the electrons present in the lower energy levels i.e., below K
B
T from Fermi 

level, will not take thermal energies because they will not fi nd vacant electron states. Th e probability that a 
particular quantum state at energy E is fi lled with an electron is given by Fermi-Dirac distribution function 
f(E), given by:

 f E
E E K T

( )
exp ( )

=
+ −

1

1
F B

/
  where K

B
 = Boltzmann constant.

A graph has been plotted between f(E) and E, at diff erent temperatures 0 K, T
1
 K, T

2
 K, T

3
 K is shown 

in Fig. 5.4.
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f(E )

1.0

0.5

0.0
E

T = 0 K

T3 K
T2 K

T1 K

T1 K < T2 K < T3 K

EF0

Figure 5.4 Graph between f(E ) and E

Analytical Treatment At 0 K: Substitute T = 0 K in the Fermi-Dirac distribution, we have

f E
E E K

E E

E E

F B

F

F

( )
exp[( ) ]

=
+ − ×

= <

= >

1

1 0
1

0

/
for

for

Th e curve has step-like character with f(E) = 1 for energies below E
F0

 and f(E ) = 0 for energies above 
E

F
0
. Th is represents that all the energy states below E

F0
 are fi lled with electrons and all those above it are 

empty.
At T > 0 K

f E
E E K T

E E

E E

F B

F

F

( )
exp( )

=
+ −

< <

> >

=

1

1
1

0

1

2

/
for

for

foor E E
F

=

As the temperature is raised from absolute zero to T
1
K, the distribution curve begins to departs from 

step-like function and tails off  smoothly to zero. Again with a further increase in temperature to T
2
K and to 

T
3
K, the departure and tailing of the curves increases. Th is indicates that more and more electrons may occupy 

higher energy states with an increase of temperature and as a consequence the number of vacancies below the 
Fermi level increases in the same proportion. At non-zero temperatures, all these curves pass through a point 
whose f(E) =1/2, at E = E

F 
. So E

F
 lies half way between the fi lled and empty states.

5.5  Quantum free electron theory 
of electrical conduction

Sommerfeld (1928) applied the principles of quantum mechanics to classical free electron theory.
According to classical theory, the free electrons in a metal have random motions with equal prob-

ability in all directions. But according to quantum theory, the free electrons occupy diff erent energy levels, 
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E

0′ 0
vx

vz

vy

(a) (b)

o

VF

vx

vy

vz

Figure 5.5
  (a) Distribution of velocities of free electrons of a metal at 0 K;

(b) Displacement of velocities sphere with electric fi eld (E  )

up to Fermi level at 0 K. So, they possess diff erent energies and hence they possess diff erent velocities. Th e 
diff erent velocities of these free electrons of a metal can be seen in  velocity space. At 0 K, the electrons 
present in Fermi level possess maximum velocity, represented as V

F
 . We assume a sphere of radius V

F 
, at 

the origin of velocity space as shown in Fig. 5.5a. Each point inside the sphere represents velocity of a free 
electron. Th is sphere is called Fermi sphere. Th e Fermi surface need not always be spherical. Th e vectors 
joining diff erent points inside the sphere from the origin represent velocity vectors. In the absence of an 
external electric fi eld, the velocity vectors cancel each other in pair-wise and the net velocity of electrons 
in all directions is zero.

Now if we apply an external electric fi eld (E ) along X-direction on these electrons as shown in Fig. 5.5(b), 
then a force eE acts on each electron along negative X-direction. Only those electrons present near the Fermi 
surface can take electrical energy and occupy higher vacant energy levels. For rest of the electrons, the energy 
supplied by electrical force is too small so that they are unable to occupy higher vacant energy levels. Hence, 
the electric fi eld causes the entire equilibrium velocity distribution to be shifted slightly by an amount in the 
opposite direction to the fi eld as shown in Fig. 5.5(b).
In quantum theory, the velocity of a free electron can be represented in terms of propagation vector as:

We know  K
mE2

2

2
=

�

 or  E
K

m

P

m
= =

� 2 2 2

2 2

 So,  P K mv= =�

 v
K

m
=

�
  ___________ (5.25)

where �=
h

2π
 and K =

2π
λ

 = propagation or wave vector.
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Diff erentiating Equation (5.25) with respect to time gives acceleration (a):

 a
v

t m

K

t
= =

d

d

d

d

�
  ___________ (5.26)

Th e force on an electron due to an applied electric fi eld is eE, and this is equated to the product of mass and 
acceleration [from Equation (5.26)] of the electron.

Hence,  m
m

K

t
eE× =

� d

d

 (or)  �
d

d

K

t
eE=   ___________ (5.27)

 (or)  d dK
eE

t=
�

  ___________ (5.28)

Integrating Equation (5.28) gives:

 K t K
eEt

( ) ( )− =0
�

  ___________ (5.29)

Let the mean collision time and mean free path of a free electron present at Fermi surface is represented as 
τ

F
 and λ

F
 , respectively then, we have:

 τ
λ

F
F

F

= v   ___________ (5.30)

For an electron at Fermi level, consider t = τ
F
 and K(t) − K(0) = ΔK in Equation (5.29).

Th en,  ΔK
eE eEF F

F

= =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

τ λ

� � v
  ___________ (5.31)  using Equation (5.30).

Th e applied electric fi eld enhances the velocity of electrons present near the Fermi level. Th e increase in 
 velocity (Δv) causes current density (  J ) in the material, given by:

 J = neΔv  ___________ (5.32)

where n is the number of electrons that participate in conduction per unit volume of metal.
Using Equation (5.25), the value of Δv is substituted in Equation (5.32), we have:

 J n e
K

m
=

�Δ
*

  ___________ (5.33)  where m * is the eff ective mass of free electron.

Substituting Equation (5.31) in Equation (5.33) gives:

 J
ne

m

eE ne

m
E

F

F

F

F

= =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

�
�* *

λ λ

v v

2

  ___________ (5.34)

From Ohm’s law,

 J = σ E, where σ = Electrical conductivity.

So,  σ
λ

τ=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
ne

m

ne

m

F

F

F

2 2

* *v
  ___________ (5.35)
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Using Equation (5.35), electrical conductivity of a metal can be calculated.
A similar equation may be obtained from the band theory for electrical conductivity as:

 σ τ=
n e

m
F

eff
2

*
  ___________ (5.36)

where n
eff 

 is the eff ective number of electrons per unit volume of material. 
Th us, in case of quantum theory, the electrical conductivity is due to the electrons which are very close to 

Fermi surface only. Th is expression is in agreement with experimental conclusions.

5.6 Sources of electrical resistance
In a metallic crystal, the electrons move through periodically varying electric potentials (or fi elds) of 
positive ions of the lattice. Th e cause for electrical resistance is the electron scattering and the cause for 
electron scattering is the non-periodicity of the lattice potentials. Th e causes for non-periodicity of lattice 
potentials are: (i) impurities in crystals, (ii) crystal defects (or imperfections) and (iii) thermal vibrations.

Freely moving electrons are associated with de Broglie [or matter] waves. In a perfect crystal, an elec-
tron moves similar to an electromagnetic wave without attenuation so that the mean free paths of electrons 
will be of several hundred Angstroms. Th is is in agreement with the observed values of mean free paths. 
According to classical free electron theory, the electrical resistance is due to collisions of free electrons with 
the positive ion cores of the crystal. From this concept, the mean free path will be a few Angstroms only. 
Th is is contradictory to the observed mean free paths of electrons, so the scattering of electrons by positive 
ions is ignored. Now, we will see in detail the causes of non-periodic potentials of lattice.

(i) Presence of impurities in crystals: Th e presence of impurities introduces electrical resistance in a metallic 
substance. With an increase of impurity concentration, the resistivity of a metal increases as shown in Fig. 5.6.

Figure 5.6 Resistivity variation of impure metal with temperature

R
es

is
tiv

ity
 (

r)

Temp [T(K)]

More impure

Impure

Pure

O

Th e presence of impurity atomic site changes the periodicity of electrical potential. If the impurity con-
centration is more, then at large number of atomic sites non-periodic potentials exist and they cause large 
electron scattering and hence resistivity.

(ii) Crystal defects: Th e presence of imperfections such as vacancies and grain boundaries changes the peri-
odic potentials. So, larger the number of defects, larger will be the non-periodic potentials and hence larger 
the electron scattering and resistivity.

Chapter 05.indd   11Chapter 05.indd   11 9/25/2009   5:35:04 PM9/25/2009   5:35:04 PM
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(iii) Th ermal vibrations: At high temperatures, the resistivity is linearly proportional to absolute  temperature, 
whereas at low temperatures, the resistivity is proportional to the fi fth power of temperature. Due to thermal 
vibrations, the positive ions move away from their ideal positions so that periodicity of potential changes. 
With an increase of temperature, the amplitude of thermal vibrations of positive ions will be more, so non-
periodicity increases. Hence, resistivity increases.

Near absolute zero of temperature, some materials show zero resistivity or superconductivity. For some 
materials, the resistance is not equal to zero even at 0 K. Th e total resistivity (ρ) of a metal is due to impurities 
and defects and also due to thermal vibrations.

 ∴  ρ = ρ
i
 + ρ (T )

where ρ
i
 is the resistivity due to impurities and defects and ρ(T ) = resistivity due to thermal vibrations.

5.7 Band theory of solids
(a) Introduction
According to quantum free electron theory of metals, a conduction electron in a metal experiences constant 
(or zero) potential and free to move inside the crystal but will not come out of the metal because an 
infi nite potential exists at the surface. Th is theory successfully explains electrical conductivity, specifi c heat, 
thermionic emission and paramagnetism. Th is theory is fails to explain many other physical properties, for 
example: (i) it fails to explain the diff erence between conductors, insulators and semiconductors, (ii) positive 
Hall coeffi  cient of metals and (iii) lower conductivities of divalent metals than monovalent metals.

To overcome the above problems, the periodic potentials due to the positive ions in a metal have 
been considered. As shown in Fig. 5.7(a), if an electron moves through these ions, it experiences varying 
potentials. Th e potential of an electron at the positive ion site is zero and is maximum in between two 
ions. Th e potential experienced by an electron, when it passes along a line through the positive ions is 
as shown in Fig. 5.7(b). We see that the potential experienced by an electron varies periodically with 
the same period as the lattice. Th e potential is negative because of an attractive force between electrons 
and positive ions. Along X-direction in the crystal, the potential function V (x) has the periodicity of the 
lattice given by:

 V  (x) = V  (x + a)  ___________ (5.37)  where ‘a’ is the periodicity of the lattice.

Th e energies of electrons can be known by solving Schrödinger’s wave equation in such a lattice. Th e 
Schrödinger time-independent wave equation for the motion of an electron along X-direction is given by:

 
d

d

2

2 2

2
0

ψ
ψ

x

m
E V x+ −⎡
⎣⎢

⎤
⎦⎥ =

�
( )   ___________ (5.38)

Bloch showed a type of solution for Equation (5.38) given by:

 ψ(x) = u
K 

(x) eiKx  ___________ (5.39)

where u
K
(x) represents periodic function given by:

 u
K
 (x) = u

K
 (x + a)  ___________ (5.40)

Here, K =
2π
λ

= propagation vector; λ = wavelength of de Broglie wave associated with the moving 

electron, eiKx represents a plane wave. Equation (5.39) is a solution to Schrödinger’s wave Equation 
(5.38) in sinusoidal potential as shown in Fig. 5.7(b). It is not easy to solve Schrödinger’s equation with 
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Figure 5.7  (a) Electron motion; (b) The potential experienced by an electron in a 
row of ions; (c) Rectangular potentials 

Ions

V(x)
Potential

Distance through ions

+ + + +

(b)

ions

+ + + +

+ + + +

+ + + +

+ + + +

e−

(a)

a

V0

v = 0

V(x)

(c)

these potentials. So, Kronig and Penney approximated these potentials inside the crystal to the shape of 
rectangular steps as shown in Fig. 5.7(c). Th is model is called Kronig-Penney model of potentials.

(b) Kronig–Penney model — origin of energy bands
Th e rectangular potential wells and barriers, as assumed by Kronig and Penney for one-dimensional lattice in 
1931, are best suited to solve Schrödinger’s wave equation. Th ese potentials are shown in Fig. 5.8, in which the 
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II I

−b o
x

V(x)

Vo

a

Figure 5.8 Kronig–Penney model of potentials

width of the potential well and potential barrier are ‘a’ and ‘b’, respectively. Th e potential energy of an electron 
in the well is zero; this corresponds to the potential in the vicinity of the nucleus and in barrier it possesses a 
constant value represented as V

0
. Th e periodicity of the potential is (a + b). Th is is an approximate model but 

close to reality.
Th e energies and wave functions of electrons associated with this model can be calculated by solving 

time-independent one-dimensional Schrödinger’s wave equations for the two regions I and II as shown in 
Fig. 5.8.

 Th e Schrödinger’s equations are:

 
d

d

2

2 2

2
0

ψ
ψ

x

m
E+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

�
  for 0 < x < a  ___________ (5.41)

 
d

d

2

2 2 0

2
0

ψ
ψ

x

m
E V+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ −( ) =

�
  for −b < x < 0  ___________ (5.42)

We defi ne two real quantities (say) α and β such that:

 α 2

2

2
=

mE

�
  and   β 2

2 0

2
= −( )m

V E
�

  ___________ (5.43)

Hence, Equations (5.41) and (5.42) becomes:

 
d

d

2

2

2 0
ψ

α ψ
x

+ =   for 0 < x < a  ___________ (5.44)

 
d

d

2

2

2 0
ψ

β ψ
x

− =   for −b < x < 0  ___________ (5.45)

Th e solution that will be appropriate for both the regions will be of the form of a plane wave eiKx modulated 
with a periodic function u

K
(x):

 ψ(x) = eiKx u
K
 (x)  ___________ (5.46)

where K =
2π
λ

= wave vector or propagation vector 

Diff erentiating Equation (5.46) twice, we get:

 
d

d

d

d

ψ
x

iKe u x e
u

x

iKx

K

iKx= ( )+
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d

d

d

d

d

d

2

2

2
2

2
2

ψ
x

K e u x iKe
u

x
e

u

x

iKx

K

iKx iKx= − ( )+ +

Substituting these values in Equation (5.44) and (5.45), we get:

 − ( )+ + +K e u x iK e
u

x
e

u

x
e uiKx

K

iKx iKx2
2

2

22 iKx d

d

d

d
α KK x( )= 0

 
d

d

d

d

2

2

2 22 0
u

x
iK

u

x
K u xK+ + −( ) ( )=α   for 0 < x < a  ___________ (5.47)

Similarly,

 
d

d

d

d

2

2

2 22 0
u

x
iK

u

x
K u xk+ − +( ) ( )=β   for −b < x < 0  ___________ (5.48)

Now to slove these diff erential equations, assume the solution of the form:

 u = e mx  so that  
d

d

u

x
memx=   and  

d

d

2

2

2u

x
m emx=   ___________ (5.49)

which on substitution in Equation (5.47) gives:

 m2 emx + 2iKm e mx + (α2 − K 2) emx = 0

(or) m2 + 2iKm + ( α2 − K 2 ) = 0  for 0 < x < a

 ∴ m
iK K K

=
− ± −( )− −( )2 4 4

2

2 2 2α

 = −iK ± iα

i.e.,  m
1
 = i(α − K )  and  m

2
 = −i(α + K ) 

Hence, the general solution is:

 u
1
 = Ae i(α−K )x + Be−i(α + K )x  for 0 < x < a

Similarly,

u
2
 = Ce (β − iK )x + De−(β + iK )x  for − b < x < 0  ___________ (5.50)

where u
1
 and u

2
 represent u

K
(x) in region I and II, respectively.

Here, A, B, C and D are constants. Th ese constants may be obtained by applying the following boundary 
conditions.

 [u
1
 (x)]

x = 0 
= [u

2 
(x)]

x = 0
  and  

d

d

d

d

u

x

u

x
x x

1

0

2

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= =

 ___________ (5.51)

 [u
1
 (x)]

x = a 
= [u

2 
(x)]

x = −b
  and  

d

d

d

d

u

x

u

x
x a x b

1 2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= = −

 ___________ (5.52)
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Th e boundary conditions represented in Equation (5.51) show that the wave functions and their fi rst deriva-
tives are equal at x = 0 because of the continuity of wave functions at that point.
Th e boundary conditions represented in Equation (5.52) show that the wave function and its fi rst derivative 
at x = a is equal to that at x = −b, because of the periodicity of wave functions. 
Applying boundary conditions (5.51) and (5.52) on Equation (5.50) gives four equations involving the 
 constants A, B, C and D.

 A + B = C + D  ___________ (5.53)

 Ai(α − K ) − Bi(α + K ) = C(β − iK ) − D(β + iK )  ___________ (5.54)

 Aei(α−K ) a + Be−i(α+K )a = Ce−(β − iK ) b + De(β + iK ) b  ___________ (5.55)

 Ai(α − K ) ei(α − K )a − Bi (α + K ) e −i(α + K )a =  C [β − iK] e−(β − iK )b − 

D[β + iK ] e(β + iK )b  ___________ (5.56)

Th e constants A, B, C and D can be determined by solving Equations 5.53–5.56, and thus the wave 
function u

1
 and u

2
 can be obtained. Th e four Equations 5.53–5.56 have solution only if the determinant of the 

coeffi  cients of A, B, C and D vanishes. Th e above condition leads to the following equation.

 
β α

αβ

2 2

2

+
 sin hβb sin αa + cos hβb cos αa = cos K(a + b)  ___________ (5.57)

Th is equation is quite complicated. To express it in a more simplifi ed form, Kronig and Penney suggested 
delta function such as V

0
 → ∞ and b → 0 but the product V

0
b remains fi nite. Under these circumstances, 

sin hβb → βb and cos hβb → 1 as b → 0. Hence, Equation (5.57) becomes:

  
mV b

a a Ka0

2� α
α α

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ + =sin cos cos   ___________ (5.58)  (since V

0
 >> E)

We defi ne the quantity P
mV ba

= 0

2�
, then Equation (5.58) reduces to:

 P
a

a
a Ka

sin
cos cos

α
α

α+ =   ___________ (5.59)

Equation (5.59) represents a condition for the wave function. P is referred to as the scattering power of 
the potential barrier. It represents the strength with which electrons in a crystal are attracted to the ions. 
Th e term V

0 
B is called barrier strength. With an increase of P, an electron is bound more strongly to a 

potential well, when P→0, the electrons are free. Th e right-hand side of Equation (5.59) can take values 
between + 1, But the left-hand side exceeds this value. By plotting the left-hand side of Equation (5.59) 
for a fi nite value of P ( say 3π/2) against αa, it is possible to determine the allowed values of αa. 
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aa
  

−aa −3p −2p 2p 3p−p p

P + cosαaαa
sinαa

+1

0

−1

Figure 5.9 A graph plotted between P a
a

asin cosα
α

α+  and αa for P = 3π/2

+1

−1

0
2pp 3p

aa

P
aa

sin aa
+ cos aa

Figure 5.10 Shows the decrease of allowed energy bands width for large value of P

To find the allowed parts of the curve, horizontal lines are drawn at +1 on vertical line as shown in 
Fig. 5.9. The parts of the curve, which lies between the +1 horizontal line, are acceptable to the left-
hand side of Equation (5.59).
From the graph, the following conclusions may be drawn.

 (i)  Th e allowed values of αa [and hence energy, since α2

2

2
=

mE

�
] for which wave mechanical solutions 

exist are showns by the shadow portions. From the graph, we know that the conduction electrons in 
periodic potentials of lattice ions possess the bands of allowed energy (shaded region) separated by 
 forbidden regions [unshaded region].

 (ii)  As the value of αa increases, the width of allowed energy bands increases and the width of forbidden 
bands decreases.

 (iii)  Now, we will see the eff ect of varying ‘P ’. If P is large, then curve crosses + 1 line steeply so that the 
allowed bands are narrower and forbidden bands are wider as shown in Fig. 5.10. In the limit P → ∞, 
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a a
2pp 3p

P + cos a a

+1

−1

0

a a
sin a a

Figure 5.11  Shows that the allowed energy bands reduces to single energy levels
as P → ∞ 

the allowed energy bands reduce to single energy levels as shown in Fig. 5.11. Th e energy levels in 
this case are discrete and similar to the energy levels of a particle in a constant potential box of atomic 
dimensions.

 When P → 0, then the left-hand side of Equation (5.59) will not cross + 1 line as shown in Fig. 5.12. 
Hence, all the energies are allowed to the electrons. Th us, by varying P from zero to infi nity, the energies of 
electrons will vary from continuous to bound, i.e., free electrons to bound electrons.

 (iv)  E–K diagram: Th e free electrons moving in periodic potentials of lattice can have energy values only in 
the allowed regions or zones. It is possible to plot the total energies of free electrons versus their wave 
number or propagation vector K as shown in Fig. 5.13.

 We observe that the curve is not continuous; it has discontinuities at K
n

a
= ±

π
, 

where n = 1, 2, 3 … . Th e dotted parabolic curve shows E−K relation for completely free electrons. From 
the graph, we see that the electrons have allowed energy values in the region or zone extending from 

K
a a

=
− +π π

to . Th is is called the fi rst Brillouin zone. After a break in the energy values, called the forbid-

den region or band, the electrons have another allowed zone of energy values in the region extended from 

K
a a

=
− −π π

to
2

 and from 
π π
a a

to
2

. Th is zone is called the second Brillouin zone. Similarly, the higher 

order Brillouin zones can be defi ned.

+1

2pp 3p0

−1

−p−2p−3p
−aa aa

cos aa

Figure 5.12 Shows that all energies are allowed to the electrons as P → 0
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Th e discontinuities occur at the boundaries of the Brillouin zones. Each portion of the curve gives a 
number of allowed energies called allowed band of energies. Th e curves are horizontal at the top and bottom 
and they are parabolic near the top and bottom with curvatures in opposite directions. As ‘P’ decreases, the 
discontinuous E−K graph will reduce to a continuous parabolic graph as shown by the dotted lines and the 
forbidden bands disappear. Th en, the energy values are practically continuous.

5.8 Bloch theorem
Suppose an electron passes along X-direction in a one-dimensional crystal having periodic potentials:

V(x) = V  (x + a) 

where ‘a’ is the periodicity of the potential. Th e Schrödinger wave equation for the moving electron is:

d

d

2

2 2

2
0

ψ
x

m
E V x+ ⎡
⎣
⎢

⎤
⎦
⎥− =

�
( ) ψ   ___________ (5.60)

Th e solution for Equation (5.60) is of the form:

ψ(x) = eiKx u
k
(x)  ___________ (5.61)

where u
k
(x) = u

k
(x + a)  ___________ (5.62)

Equation (5.62) represents periodic function and e iKx represents plane wave. Th e above statement is 
known as Bloch theorem and Equation (5.62) is called Block function. Th e Bloch function has the property:

ψ(x + a) = exp [ik (x + a)] u
k 
(x + a) = ψ(x) exp ika  ___________ (5.63)

or  ψ (x + a) = Qψ (x) where Q = exp ika  ___________ (5.64)

E

−K K

Allowed band

Allowed band

Allowed band

Forbidden band

Forbidden band

−3p −2p −p p
a

First
Brilloiun

zone

a
2p
a

3p
a

0
a a

Figure 5.13 E–K diagram
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Proof: Suppose g(x) and f(x) are two real independent solutions for the Schrödinger’s equation 5.60, then
f(x + a) and g(x + a) are also solutions of the above equation so that:

f (x + a) = α
1
 f (x) + α

2
 g(x)

g(x + a) = β
1
 f (x) + β

2
 g(x)  ___________ (5.65)

where α
1
, α

2
, β

1
 and β

2
 are the real functions of energy (E).

Th e solution for Schrödinger wave equation is of the form:

ψ(x) = A f (x) + Bg(x)  ___________ (5.66)

where A and B are constants and

ψ(x + a) = Af (x + a) + Bg(x + a)  ___________ (5.67)

Substituting Equation (5.65) in Equation (5.67), we have:

ψ(x + a) = A[α
1
 f (x) + α

2 
g(x)] + B[β

1   
f (x) + β

2  
g(x)]

 = [Aα
1
 + Bβ

1
] f (x) + [Aα

2
 + Bβ

2
] g(x)  ___________ (5.68)

From the property of Bloch function, Equation (5.64), and using Equation (5.66), we have:

ψ(x + a) = Qψ (x) = QAf (x) + QBg(x)  ___________ (5.69)

Comparing Equations (5.68) and (5.69), we have:

Aα
1
 + Bβ

1
 = QA

and  Aα
2
 + Bβ

2
 = QB  ___________ (5.70)

In Equations (5.70), A and B have non-vanishing values only if the determinant of the coeffi  cients of A and 
B is equal to zero.

i.e., 
α β

α β
1 1

2 2

0
−

−
=

Q

Q

or  Q 2 − (α
1
 + β

2
)Q + α

1
β

2
 − α

2
β

1
 = 0  ___________ (5.71)

From the above equation, we can show α
1
β

2
 – α

2
β

1
 = 1 Th en the Equation (5.71) becomes:

Q 2 − (α
1
 + β

2
)Q + 1 = 0  ___________ (5.72)

 Th e above quadratic equation has two roots say Q
1 
and Q

2
. So, we have two values for ψ(x) i.e., ψ

1
(x) and 

ψ
2
(x). Also note that Q

1 
Q

2 
= 1. For certain values of energy corresponding to (α

1
 + β

2
)2 < 4, the two roots 

are complex and can be written as:

Q
1
 = eiKa  and  Q

2
 = e−iKa  ___________ (5.73)

Th e wave functions ψ
1
(x) and ψ

2
(x) can be represented as ψ

1
(x + a) = e ika ψ

1
(x) and

ψ
2
(x + a) = e−iKa ψ

2
(x)  ___________ (5.74)

For other regions of energy corresponding to (α
1
 + β

2
)2 > 4, the roots Q

1
 and Q

2
 are real and reciprocal 

to each other. Th ese two roots corresponding to Schrödinger’s equation of the type:

ψ
1
(x) = e μxu(x)  and  ψ

2
(x) = e−μxu(x)  ___________ (5.75)

where μ is a real quantity. Mathematically, the above solutions are sound but not accepted as wave func-
tions describing elections. Th is leads to the energy spectrum of an electron in a periodic potential consists of 
allowed and forbidden energy regions or bands.
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5.9 Origin of energy bands formation in solids
An isolated atom possesses discrete energies of diff erent electrons. Suppose two isolated atoms are brought 
to very close proximity, then the electrons in the orbits of two atoms interact with each other. So, that in the 
combined system, the energies of electrons will not be in the same level but changes and the energies will 
be slightly lower and larger than the original value. So, at the place of each energy level, a closely spaced two 
energy levels exists. If ‘N ’ number of atoms are brought together to form a solid and if these atoms’ electrons 
interact and give ‘N ’ number of closely spaced energy levels in the place of discrete energy levels, it is known 
as bands of allowed energies. Between the bands of allowed energies, there are empty energy regions, called 
forbidden band of energies. Kronig-Penney model supports the existence of these bands of energies (allowed 
bands and forbidden bands). Th e mathematical solution for Schrödinger’s wave equation is very tedious but 
it provides a clue in understanding the origin of energy bands.

Th e formation of energy bands has been explained taking Sodium (Na) metal as an example. When iso-
lated sodium atoms are brought together to form a solid, then the energy levels of the valence electrons spread 
into bands. Th e 3S and 3P orbitals electrons energies are shown in Fig. 5.14. Th ese bands are seen to overlap 
strongly at the interatomic spacing of sodium.

Figure 5.14 Sprending of energy levels into energy bands in sodium metal

C. B

Eg

V. B

O
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E
ne

rg
y
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Electron Theory of Metals

5.10 Velocity and effective mass of an electron 

According to de Broglie hypothesis, a moving electron is associated with a wave. Th e velocity of an electron 
(v) is equal to the group velocity (v

g
) of the associated wave. Th e group velocity is given by:

 v v
K

= =
g

d

d

ω
  ___________ (5.76)

where ω is the angular frequency (2πν) and K is the propagation vector =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2π
λ

 of the wave.
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In quantum mechanics, the energy, ‘E ’ of an electron is given by:

 E = �ω  ___________ (5.77)

Diff erentiating Equation (5.77) with respect to ‘K  ’ , we get:

 
d

d

d

d
or

d

d

d

d

E

K K K

E

K
= =�

�
ω ω 1

  ___________ (5.78)

From Equations (5.76) and (5.78), we have:

 v
E

K
=

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

�
d

d
  ___________ (5.79)

In quantum theory, the momentum of an electron is given by:

p K= �   and energy,  E
K

m
=

� 2 2

2
  ___________ (5.80)

Th e above equation can be proved as follows:

Diff erentiating Equation (5.80) w.r.t ‘K ’, gives:

 d

d

E

K m
K

K

m
= =

� �2 2

2
2   ___________ (5.81)

Substituting Equation (5.81) in (5.79), we have:

 v
K

m

K

m

h

m

h

m

p

m
= = = × = =

1

2

22

�
� �

π
π

λ λ
  ___________ (5.82)

[using de Broglie hypothesis]

 From the above equation, we know that velocity is linearly related with momentum. Also from Equation 
(5.80) we know, E α K 2.

From band theory of solids, we know E is not proportional to K 2. Th e variation of E with K is shown 
in Fig. 5.15(a). Using the type of variation of E with K from Fig. 5.15(a) in Equation (5.79), one can plot 
v versus K as shown in Fig. 5.15(b). At the bottom of the energy band, the velocity of an electron is zero and 
as the value of K increases, the velocity increases and attains a maximum value at K = K

0
, known as the point 

of infl ection on the E−K curve. Beyond this point, the velocity decreases and attains zero at K
a

=
π

, which is 

the top of the band. Th e negative values of the wave vector exhibit a similar behaviour. Th us, a feature, which 
is altogether diff erent from the behaviour of free electrons, is observed.

Effective mass of an electron
Th e mass of an electron in the periodic potentials of a crystal is diff erent from the free electron mass and is 
usually referred to as the eff ective mass.

To fi nd an expression for an eff ective mass, consider an external electric fi eld ‘ε’ act on an electron 
present initially in state K in a Brillouin zone of one-dimensional crystal for a time dt. Th e electron gains 
acceleration and some amount of energy dE equal to the work done on the electron by the electric fi eld 
during the time dt.

i.e.  dE = eεdx = eεvdt  ___________ (5.83)

where dx is the resultant displacement in time dt.
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Substituting Equation (5.79) in Equation (5.83), we have:

 d
d

d
dE e

E

K
t=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ε

1

�
  ___________ (5.84)

(or)  
d

d

K

t

e
=

ε
�

  ___________ (5.85)

Acceleration ‘a’ of the electron can be obtained by diff erentiating Equation (5.79) with respect to ‘t ’:

 a
v

t t

E

K

E

K
= =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟d

d

d

d

d

d

d

d

1 1 2

2� � ⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

d

d

K

t
  ___________ (5.86)

substitute of Equation (5.85) in (5.86) gives:

 a
e E

K
=

ε
� 2

2

2

d

d
  ___________ (5.87)

Th e acceleration ‘a’ of a free electron of mass ‘m’ in an external electric fi eld ε is given by:

 a
e

m
=

ε
  ___________ (5.88)

Figure 5.15
  (a) E-K diagram; (b) Velocity versus K; (c) Effective mass of an electron; 

(d) Degree of freedom of an electron; (e) E-K diagram
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E
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5-24 Applied Physics

Equations (5.87) and (5.88) represent acceleration. Equating these two equations, we obtain the mass of 
an electron based on band theory. Th is mass of an electron is called the eff ective mass of an electron, denoted 
as m*. So, we have:

 
e

m

e E

K

ε ε
*

=
� 2

2

2

d

d
  (or)  m

E K
* =

( )
� 2

2 2d d/
  ___________ (5.89)

Th e eff ective mass is thus determined by d2E/dK  2.
Th e eff ective mass is represented as a function of K in Fig. 5.15(c). For the lower portion of E-K curve, 
d2E/dK 2 is positive so m* is positive, and increases with increase of K, attains a maximum value at the 

point of infl ection K
0
. For further higher values of K, 

d

d

2

2

E

K
 is negative, hence m* is negative. As K

a
→

π
, the 

eff ective mass approaches to a smaller negative value. At the point of infl ection [(d2E/dK2) = 0], m* becomes 
infi nite.

Physically, that in the upper half of the band, the electron behaves as having negative mass or as behaving 
like particles with positive charges. Suppose an electron starts at K = 0, when an electric fi eld is applied, the 
wave vector increases linearly with time. Until the velocity reaches its maximum value, the electron is acceler-
ated by the fi eld, beyond this maximum velocity the same fi eld produces a decrease in velocity, i.e., the mass 
must become negative in the upper part of the band.

Th e eff ective mass of an electron has been experimentally determined from electron specifi c heat and also 
using cyclotron resonance experiments.

Th e degree of freedom of an electron is generally defi ned by a factor:

 f
m

m

m E

K
K = =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟* � 2

2

2

d

d
  ___________ (5.90)

Here, f
K
 is a measure of the extent to which an electron in state K is free. f

K
 is positive in the lower half of the 

band and negative in the upper half of the band as shown in Fig. 5.15(d).
If m* is large f

K
 is small, so the particle behaves as a heavy particle. When f

K
 = 1, the electron behaves as a 

free electron.

5.11  Distinction between metals, semiconductors
and insulators

Th e diff erences between metals, semiconductors and insulators can be made based on the availability of 
number of free electrons that participate in electrical conduction per unit volume when an electric fi eld is 
applied. Th ese free electrons are called eff ective electrons. Th e number of eff ective electrons per unit volume 
(N

eff 
) for a material can be calculated using band theory of solids. According to band theory, the electrons in 

a solid can possess bands of energies called allowed bands of energies and these electrons may not possess 
some other bands of energies called forbidden bands of energies. Th e allowed bands of energies and forbid-
den bands of energies are present alternatively one after another for the electrons of a solid. Th e top-most 
fully fi lled (with electrons) band at absolute zero of temperature (0K) is known as the valence band and next 
allowed band is called the conduction band. Th ese two bands are separated by forbidden band.

To fi nd the diff erence between metals, semiconductors and insulators, we consider E−K diagram of a 
solid material as shown in Fig. 5.15(e). Let us consider the band fi lled with electrons up to a certain value K

1
, 
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which is lesser than π
a

. Now by knowing the number of eff ective electrons per unit volume, one can conclude 

the conductivity of the material. Th e number of eff ective electrons per unit volume of material (N
eff 

) is equal to:

N
eff 

 = Σf
K 

dn  ___________ (5.91)

where  f
d

d
K

m

m

m E

K
= = =

* � 2

2

2
 degree of freeness of an electron

Th e summation has been taken in all the occupied states of the band. Th e number density of states (dn) 
in the interval dK of one-dimensional crystal of length L is:

d dn
L

K=
2π

  ___________ (5.92)

For each positive K value of an electron, negative K value also exists, so the number of eff ective electrons 
from −K

1
 to K

1
 state is:

 

N
L

f K
L

f Kk

K

K

k

K

K

eff d d= × =
− −
∫ ∫2

2

1

1

1

1

π π

 
= × =∫ ∫

L m E

K
K

L m E

K
K

K K

π π� �2

2

2

0

2

2

2

0

2
2

1 1

d

d
d

d

d
d

 =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

⎛

⎝
⎜⎜⎜∫

2 2
2

2

2

0

2

1

mL E

K
K

mL
K

π π� �
d

d
d

⎜⎜
⎞

⎠
⎟⎟⎟⎟
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=

d

d

E

K
K K1

  ___________ (5.93)

From the above equation, we can draw the following conclusions:

(1)  For the fully fi lled top-most band, 
d

d

E

K
= 0  at the top of the band. So, the eff ective number of electrons 

in the material is zero [N
eff

 = 0]. Hence, the material possesses very poor electrical conductivity, 
and it is an insulator. Usually in case of insulators, the top-most completely fi lled band [valence 
band] and next allowed band [conduction band] are separated by large energy gap, so pratically it 
is impossible to excite an appreciable number of electrons present in the top-most energy levels of 
valence band to the lowest energy levels of conduction band by an electric fi eld or by thermal energy. 
In insulators, the energy gap varies from 5 eV to 10 eV. In case of diamond, the energy gap is 6 eV as 
shown in Fig. 5.16(a).

(2)  For the partially fi lled top-most band, 
d

d

E

K
≠ 0  at the top-most fi lled state. So, the eff ective number 

of electrons in the material is not zero [i.e., N
eff 

 ≠ 0]. Hence, the material possesses electrical conduc-

tivity proportional to 
d

d

E

K
. If 

d

d

E

K
 is small for a material, then the material possesses small electrical 

conductivity. Such materials are known as semiconductors. At 0K, they are insulators. Th e energy gap 
between valence band and conduction band is very less; it is about 1 eV. So even at room temperature, the 
 conduction band possesses eff ective electrons for conduction.

Examples for semiconductors are Ge [E
g
 = 0.72 eV] and Si [E

g
 = 1.1 eV]. Th e energy band diagram for 

silicon is shown in Fig. 5.16(b).
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If the partially fi lled top-most band is fi lled up to a point of infl ection (K
1
), then 

d

d

E

K
 is maximum. Th e 

material possesses very large number of eff ective electrons and hence electrical conductivity of the material 
is very large. So, the material is known as a good conductor. Usually, metals possess very good electrical and 
thermal conductivity. In metals, the valence band and conduction band are merged, so that there is no energy 
gap. Th e electrons that are present in valence band will be present also in conduction band. Th e band diagram 
for metals is shown in Fig. 5.16c. Examples for metals are gold, silver, copper, etc.

 Formulae

 1. C
K T

m
B=

3
  2. J = ne v = neμE = σE

 3. 
d

d
x

x

J

t

ne

m
E=

2

  4. < >= < >
−

V V e
t

x x
x

0

τ

 5. μ
τ

x
x=

e

m
  6. σ

τ
μ

ρx
x

x

x

= = =
ne

m
ne

2 1

 7. λ τ= C
c
  8. τ

λ
c V
=

th

 9. τ
τ

θ
=

−< >
c

1 cos
 10. V

e E

m
Ec

d = =
τ

μ

Conduction band

Valence band

Conduction band

Valence band

Forbidden band
Eg ≈ 1.1 eV

Conduction band

Forbidden band
Eg ≈ 6 eV

Valence band

(a) (b) (c)

Figure 5.16
  (a) Band diagram of diamond; (b) Band diagram of silicon; (c) Band 

diagram of a metal
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11. f x
E E K T

( )=
+ −( )

1

1 exp /
F B

 12. τ
λ

F
F

Fv
=

13. J ne
ne

m
E= =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

Δv
v

F

F

2

*

λ
 14. σ

τ
eff

eff

=
n e

m

F

2

*

15. ρ = ρ
i
 + ρ(T )  16. Ψ (x) = eiKx u

k
(x)

17. P
a

a
a Ka

sin
cos cos

α
α

α+ =  18. P
mV ba

= 0

2�

19. v
d

dg K
=

ω
 20. v

E

K
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

�
d

d

21. m
E K

*
/

=
( )

� 2

2 2d d
 22. f

m

m

m E

K
K

= =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟* � 2

2

2

d

d

 Solved Problems

 1. Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy.

(Set-1, Set-3, Set-4–May 2007), (Set-1, Set-2, Set-3–Sept. 2006),
(Set-2, Set-3–May 2006), (Set-1, Set-4–June 2005), (Set-1–May 2003) 

Sol: Probability, f(E)= 1% = 1/100

 E − E
F
 = 0.5 eV

 T = ?

 F(E) = 
1

1 + −exp ( ) /E E K T
F B

K
B
 = 1.381 × 10−23 J/K = 1.381 × 10−23 × 6.24 × 1018 eV/K

= 8.61744 × 10−5 eV/K

 Substituting the values, we get:

 

1

100

1

1
0 5

8 61744 10 5

=

+
×

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−exp
.

. T

 

100 1
0 5

8 61744 10 5
= +

×

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−exp

.

. T

 
100 1

5801 87
= +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

exp
.

T

 

100
5801 87

≈ exp
.

T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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 Taking ln on both sides, we get:

 In 100
5801 87

=
.

T

T = =
5801 87

4 605
1259 98

.

.
. .K

 2.  Fermi energy of copper is 7 eV at room temperature. What is the total number of free electrons/unit volume at the same 

 temperature?

 (Set-2–May 2003)

Sol: Fermi energy, E
F
 = 7 eV = 7 × 1.602 × 10−19 J = 11.214 × 10−19 J

 E
F
 = 

h

m
n

2 2 3

2 3

8

3⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟π

/

/

 

11 214 10
6 63 10

8 9 11 10
19

34 2

31
.

.

.
× =

×⎡
⎣⎢

⎤
⎦⎥

× ×
×−

−

−

33 7

22

3 2

2 3×⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

/

/n

 11 214 10
43 9569 10

72 88 10
0 93219

68

31
.

.

.
.× =

×
×

×−
−

− 66 2 3× n /

n2 3

18

11 214 72 88

43 9569 0 9326 10
19 93/ . .

. .
.=

×
× ×

=− 664 1018×

n = [19.9364 × 1018]3/2   electrons/m3 = 8.9106 × 1028 electrons/m3

 3.  Find the relaxation time of conduction electrons in a metal of resistivity 1.54 × 10-8 Ω-m, if the metal has 5.8 × 1028 
conduction electrons/m3.

 (Set-3–Sept. 2007), (Set-2–May 2007), (Set-1–May 2006), (Set-4–Sept. 2006),
 (Set-1–Nov. 2004), (Set-2–May 2004), (Set-2–Nov. 2003), (Set-4–Nov. 2003)

Sol: Given data are:

 Resistivity of the metal, ρ = 1.54 × 10−8 Ω−m

 Number of conduction electrons, n = 5.8 × 10 28/m3

 Relaxation time, τ = ? 

 σ
τ

=
ne

m

2

  or  τ
σ

ρ
= =

m

ne

m

ne2 2

 = 
9 11 10

5 8 10 1 602 10 1 54

31

28 19 2

.

. . .

×

× × ×⎡
⎣⎢

⎤
⎦⎥ × ×

−

− 110 8−

 = 
9 11 10

5 8 1 602 1 54 10

9 11 1031

2 18

1.

. ( . ) .

.×
× × ×

=
×−

−

− 33

22 92.

 =
×

= ×
−

−911 10

22 92
39 747 10

15
15

.
. s
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 4.  For the metal having 6.5 × 10 28 conduction electrons/m 3. Find the relaxation time of conduction electrons if the metal has 

resistivity 1.43 × 10−8 Ω-m.

 (Set-4–Sept. 2008), (Set-3–Nov. 2003)

Sol: Number of conduction electrons, n = 6.5 × 1028/m3

 Resistivity of the metal, ρ = 1.43 × 10−8 Ω-m

 Relaxation time, τ = ?

 σ
τ

=
ne

m

2

  or  τ
σ

ρ
= =

m

ne

m

ne2 2

 =
×

× × ×( ) × ×
=

−

− −

9 1 10

6 5 10 1 6 10 1 43 10

31

28 19
2

8

.

. . .
s 33 82 10 14. × − s

 5.  Calculate the free electron concentration, mobility and drift velocity of electrons in aluminium wire of length of 5 m 

and resistance of 0.06 Ω carrying a current of 15 A, assuming that each aluminium atom contributes 3 free electrons for 

conduction.

 Given: [Resistivity for aluminium] = 2.7 × 10 −8 Ω−m

 [Atomic weight] = 26.98

 [Density] = 2.7 × 103 Kg/m3

 [Avagadro number] = 6.025 × 10 23 

 (Set-1, Set-2, Set-4–Sept. 2007), (Set-4–May 2006), (Set-2, Set-3–June 2005)

Sol: Given data are:

 Aluminium wire length, L = 5 m

 Resistance of wire, R = 0.06 Ω

 Current in wire, I = 15 A

 Number of conduction electrons of Al atom = 3

 Resistivity of aluminium, ρ = 2.7 × 10−8 Ω−m

 Atomic weight of aluminium, w = 26.98

 Density of aluminium, D = 2.7 × 103 Kg/m3

 Avogadro’s Number, N
A
 = 6.025 × 1026 per k-mol

 Free electron concentration, n = ?

 Mobility of electrons, μ = ?

 Drift velocity of electrons, v
d
 = ?

 Number of conduction electrons per m
no of electrons per atom

atomic weight
A3 ,

.
n

N D
=

× ×

 = 
3 6 025 10 2 7 10

26 98
1 8088 10

26 3
29 3× × × ×

= ×
. .

.
. /m

 We know  ρ
μ

=
1

ne
  or  μ

ρ
=

1

ne
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 mobility, μ = 
1

1 8088 10 1 6 10 2 7 10
0 00128

29 19 8. . .
.

× × × × ×
=

− −
m /V2 SS

 Drift velocity,  v
eE

md
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟×τ

 
E

V

L

IR

L
= =

 and  σ
τ

=
ne

m

2

  or  
τ

σ
ρ

= =
m

ne

m

ne2 2

 ∴  v
e

m

IR

L

m

ne

IR

L ne
d = × × =

ρ ρ2

 = 
15 0 06

5 2 7 10 1 8088 10 1 6 108 29 19

×
× × × × × ×− −

.

. . .

 = 
0 9 10

39 07
2 3 10

2
4.

.
.

×
= ×

−
− m/s.

 6.  Calculate the mobility of the electrons in copper obeying classical laws. Given that the density of copper = 8.92 ×
103 kg/m3, Resistivity of copper = 1.73 × 10  −8 ohm-m, atomic weight of copper = 63.5 and Avogadro’s number = 

6.02 × 10 26 per k-mol.

 (Set-3–May 2008)

Sol: Density of copper, D = 8.92 × 103 kg/m3

 Resistivity of copper, ρ = 1.73 × 10−8 ohm–m

 Atomic weight of copper, W = 63.5

 Avogadro number, N
A
 = 6.02 × 1026 per K-mol

 Mobility μ = ?

Number of free electrons per m3, n
N D

=
× ×No. of free electrons per atom

Atomic weigh
A

tt

          

n =
× × × ×1 6 02 10 8 92 10

63 5

26 3
3. .

.
per m

     = 8.456 × 1028 per m3

  ρ
μ

μ= =
1

ne
where mobility

 

μ
ρ

= =
× × × × ×− −

1 1

8 456 10 1 6 10 1 73 1028 9 8ne . . .

      = 0.0427 m2/Vs.
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 7.  Calculate the mobility of electrons in copper, considering that each atom contributes one electron for conduction. Resistivity 

of copper = 1.721 × 10 −8 Ω-m, Atomic weight is 63.54, density of copper is 8.95 × 10 3 kg/m3 and Avogadro number is 

6.025 × 10 23/mole.

Sol: Given data are:

 Resistivity of copper, ρ = 1.721 × 10−8 Ω-m

 Atomic weight of copper, W = 63.54

 Density of copper, D = 8.95 × 103 kg/m3

 Avogadro’s number, N
A
 = 6.025× 1026 per K-mol

 Number of free electrons per atom = 1

 Mobility of conduction electrons of copper, μ = ? 

 Number of conduction electrons per m3, n = 
no. of electrons per atom

At.weight
A× ×N D

n =
× × × ×

= ×

1 6 025 10 8 95 10
63 54

8 487 10

26 3
3

28 3

. .
.

/

. /

m

m

 we know that  ρ
μ

=
1

ne

 or μ
ρ

= =
× × × × ×− −

1 1

8 487 10 1 6 10 1 721 1028 19 8ne . . .

1

23 37 10
0 0428 2

.
. / .

×
= m Vs

 8.  Find the relaxation time of conduction electrons in a metal contains 6.5 × 10 28 conduction electrons per m3. Th e resistivity 

of the metal is 1.50 × 10−8 Ω−m.

Sol: Given data are:

 Number of conduction electrons, n = 6.5 × 1028/m3

 Resistivity of the metal, ρ = 1.50 × 10–8 ohm−m

 Relaxation time, τ = ?

 we know that  σ
τ

=
ne

m

2

 τ
σ

ρ
= =

m

ne

m

ne2 2

 = 
9 11 10

6 5 10 1 602 10 1 50

31

28 19 2

.

. . .

×

× × ×⎡
⎣⎢

⎤
⎦⎥ × ×

−

− 110 8−

 

=
×

×
= ×

−

−
−9 11 10

25 022 10
0 364 10

31

18

13.

.
. s

 = 3.64 × 10−14s
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 9.  A uniform silver wire has a resistivity of 1.54 × 10−8 Ω–m at a temperature 300 K. For an electric fi eld along the wire 

of 1 V/cm. Calculate:

 (i)  the drift velocity 

 (ii)  the mobility and relaxation time of electrons assuming that there are 5.8 × 10 28 conduction electrons per m3 of the 

material and

 (iii)  calculate the thermal velocity of conduction electrons.

Sol: Given data are:

 Resistivity of silver wire, ρ = 1.54 × 10−8 Ω−m

 Electric fi eld, E = 1 V/cm = 102 V/m

 Number of electrons per unit volume, n = 5.8 × 1028 / m3

 Relaxation time, τ = ? 

 Drift velocity, v
d
 = ?

 Mobility of conduction electrons, n = ?

 σ
τ

τ
σ

ρ
= = =
ne
m

m
ne

m
ne

2

2 2
or

 

Relaxation time, τ =
×

× × × × ×

−

−

9 11 10
5 8 10 1 602 10 1 54 10

31

28 19 2

.
. [ . ] . −−8

            =
×
×

= ×
−

−
−9 11 10

22 93 10
3 97 10

31

18

14.

.
. s

 

Drift velocity,
eE

m
dv =

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟×τ

 

=
× ×

×

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
× × =

−

−
−

1 602 10 10

9 11 10
3 97 10 0 7

19 2

31

14
.

.
. . m/s

 Mobility,  μ = = = × −v

E
d 0 7

10
0 7 10

2

2 2.
. m /Vs

 

3

2

1

2
K T mvB = th

2

 so, thermal velocity, V
th
 = 3 3 1 381 10 300

9 11 10

23

31

K T

m
B =

× × ×
×

−

−

.

.

 = 1.17 × 105 m/s

10.  Th e Fermi energy of silver is 5.5 eV, and the relaxation time of electrons is 3.97 × 10 –14 s. Calculate the Fermi velocity and 

the mean free path for the electrons in silver.

Sol: Th e given data are:

 Th e Fermi energy of silver, E
F
 = 5.5 eV = 5.5 × 1.602 × 10−19 J

 Th e relaxation time of electrons in silver, τ = 3.97 × 10−14 S

 Fermi velocity, V
F
 = ? 
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 Mean free path, λ = ?

 We know that 
1

2

2mv E
F F

=

 

or
2 2 5.5 1.602 10

9.11 10
F

19

31
V

E

m
F= =

× × ×
×

−

−

 1.39 × 106 m/s

 Th e mean free path, λ = V
F
τ

 = 1.39 × 106 × 3.97 × 10−14

 = 5.52 × 10−8 m

11.  Calculate the Fermi energy in eV for silver at 0 K, given that the density of silver is 10500 kg/m3, its atomic weight is 

107.9 and it has one conduction electron per atom.

Sol: Th e given data are:

 Density of silver, D = 10500 kg/m3

 Atomic weight of silver, M = 107.9

 Number of free electrons per atom = 1

 

Electronic concentration
number of free e

,n =
llectrons per atom

A
N D

M

× ×

 

=
× × ×

= ×
1 6 025 10 10500

107 9
5 863 10

26
28.

.
. per m3

 Fermi energy, E
n

m
n

F
=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2 2 3

2 3

8

3

π

/

/

 

=
×⎡

⎣⎢
⎤
⎦⎥

× ×
×

×⎛
⎝
⎜⎜⎜

⎞
⎠

−

−

6 63 10

8 9 11 10

3 7

22

34 2

31

.

.
⎟⎟⎟⎟⎟ × ×( )

2 3

28 2 3
5 863 10

/
/

.

 = 5.85 × 10−38 × 1.5091 × 1019 = 8.83 × 10−19 J

12.  Find the drift velocity of free electrons in a copper wire of cross sectional area 10 mm2. When the wire carries a current of

100 A. Assume that each copper atom contributes one electron to the electron gas. [Density of copper = 8.92 × 10 3 kg/m3, 
Atomic weight of copper = 63.5 and Avogadro’s number = 6.02 × 10 26 per K-mol]

Sol: Area of cross section of wire,  A = 10 mm2

            = 10 × 10−6 m2

 Current through the wire, I = 100 amperes

 Number of free electrons per atom = 1

 Density of copper, D = 8.92 × 103 kg/m3

 Atomic weight of copper, W = 63.5

 Avogadro’s number, N
A
 = 6.02 × 1026 per K-mol
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 Drift velocity of free electron, v
d
 = ?

 Current density, J
I

A
= =

×
=−

100

10 10
10

6

7 2Amp/m

 But J = nev
d
 where n = free electron concentration

 No. of free electrons per m3, n
N D

=
× ×No. of electrons per atom

Atomic weight
A

        n =
× × × ×1 6 02 10 8 92 10

63 5

26 3. .

.
per m3

           

v
J

ned
= =

×
× × × × × −

10 63 5

6 02 10 8 92 10 1 6 10

7

26 3 19

.

. . .

       = 0.7391 × 10−3 m /s

 Multiple Choice Questions

 1. Metals possess: ( )

(a) high electrical and thermal conductivities  (b) obey Ohm’s law 
(c) at high temperatures, resistivity is proportional to temperature  (d) all

 2. According to classical free electron theory, ( )

(a) there is no interaction between conduction electrons
(b) the interaction of free electrons with ion cores is negligible
(c) the free electrons fi nd uniform electric fi eld of positive ions and that of electrons in metal
(d) all

 3.  At absolute temperature T K, the root mean square velocity ( C ) of an electron of mass ‘m’ is [K
B
 = Boltzmann 

constant] ( )

(a) 
3K T

m
B  (b) 3K T

m
B  (c) 

m

K T3
B

 (d) m

K T3
B

 4.  If τ
x
 is the relaxation time of an electron of mass ‘m’ moving along X-direction, the mobility of the electrons (μ

x
) is 

[e = charge on electron] ( )

(a) 
e

m

x
τ

 (b) 
e

m
x

τ
 (c) 

e

m

τx

2
 (d) 

m

e

2

τx

 5.  If m, e, τ and n are the mass, charge, relaxation time and number of free electrons per unit volume, respectively, then 
the electrical conductivity is: ( )

(a) 
ne

m

2τ
 (b) 

ne

m

2

τ
 (c) 

n

me

τ
2

 (d) 
m

ne2τ
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 6.  Th e drift velocity produced by applying electric fi eld of intensity ‘E ’ on an electron of mass ‘m’ having charge 
‘e ’ is [τ

c
 = mean collision time] ( )

(a) 
−eE

m
c

τ
 (b) 

−eE

m
cτ

 (c) 
−m

eE
cτ

 (d) 
−eEm

cτ

 7. At non-zero temperatures, the probability of fi lling Fermi energy level of a metal with electrons is: ( )

(a) 1/3 (b) 2/3 (c) 1/2 (d) ‘0’

 8. Th e cause for electrical resistance of a metal is: ( )

(a) impurities and crystal defects 
(b) thermal vibrations
(c) electron scattering and non-periodicity of lattice potentials
(d) all

 9. Th e observed mean free paths of electrons in a metal are of: ( )

(a) few Angstroms (b) ten Angstroms
(c) several hundred Angstroms (d) none

10. Quantum free electron theory of metals successfully explains: ( )

(a) electrical conductivity
(b) specifi c heat and thermionic emission
(c) paramagnetism
(d) all

11. Quantum free electron theory of metals fails to explain: ( )

(a) the diff erence between conductors, semiconductors and insulators
(b) positive Hall coeffi  cient of metals
(c) lower conductivities of divalent metals than monovalent metals 
(d) all

12. Kronig-Penney model is: ( )

(a) approximate model  (b) real model
(c) both a and b  (d) none

13.  If a and b are the widths of potential well and barrier, V
0
 is the height of barrier. If an electron of mass m is present 

in such potentials, then mV ba0

2�
 represent � =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

h

2π
 ( )

(a) scattering power of the potential barrier
(b) the strength with which electrons in a crystal are attracted to the ions
(c) both a and b
(d) none

14. In E–K diagram, ( )

(a) each portion of the curve represents allowed band of energies
(b) the curves are horizontal at the top and bottom
(c) the curves are parabolic near the top and bottom with curvatures in opposite directions
(d) all
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15. Th e velocity of a free electron in a metal is maximum when: ( )

(a) it is present in the bottom energy levels of an allowed band
(b) it is present in the top energy levels of an allowed band
(c) it is present in a energy level corresponding to a point of infl ection in an allowed band 
(d) none

16. Th e eff ective mass of an electron is maximum when it is: ( )

(a) in the lower energy levels of an allowed band
(b) in the higher energy levels of an allowed band
(c) in the energy level corresponding to a point of infl ection in a allowed band
(d) none

17. Th e valence electrons of metallic atoms are ___________ in the spaces between the atoms.  ( )

(a) freely move  (b) diffi  cult to move
(c) will not move  (d) none

18.  At very low temperatures, the resistivity of a metal is proportional to ___________ power of absolute temperature. ( )

(a) fi rst (b) second (c) third (d) fi fth

19. Classical free electron theory of metals was introduced by: ( )

(a) P. Drude (b) G.P. Th omson (c) Albert Einstein (d) Newton

20.  Relaxation time may be defi ned as the time taken by an electron to reduce its velocity to ___________ of its initial 
value. ( )

(a) half (b) one-third (c) (1/e) (d) 1/2e

21.  Th e average distance travelled by a free electron between two successive collisions with lattice ions of a metallic 
crystal is called: ( )

(a) mean free path (b) free path (c) drift velocity (d) mean collision time

22. Th e time between two successive collisions of a free electron with lattice ions in a metallic crystal is called: ( ) 

(a) mean collision time (b) collision time (c) mean free path (d) free path

23. According to Pauli’s exclusion principle, an energy level can accommodate not more than ___________ electrons. ( )

(a) one (b) two (c) three (d) four

24. At absolute zero of temperature, the highest fi lled energy level of a metal is called: ( )

(a) Fermi energy level  (b) de Broglie energy level
(c) Maxwell energy level  (d) none

25.  At absolute temperature T K, the free electrons of a metal present in the energy levels below K
B
T from Fermi 

energy level ___________ go to higher energy levels [K
B
 = Boltzmann constant]. ( )

(a) may not (b) may (c) both a and b (d) none

26.  As the temperature of a metal is raised from absolute zero temperature, the Fermi-Dirac distribution curve begins 
to depart from ___________ function.  ( )

(a) wave-like (b) tail-like (c) step-like (d) none

27. Th e Fermi surface need not always be: ( )

(a) spherical  (b) cubic (c) parallelopiped  (d) none

28. Th e applied electric fi eld on a metal ___________ the velocity of electrons present near the Fermi level. ( )

(a) decreases  (b) enhances (c) both (a) & (b) (d) none
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29.  According to quantum theory, the electrical conductivity of a metal is due to those free electrons which are very 
close to: ( )

(a) Fermi surface only  (b) acceptor energy level
(c) valence band  (d) none

30.  According to band theory, a freely moving electron inside a metal experiences ___________ potentials of 
positive ions. ( )

(a) constant (b) varying  (c) periodic (d) b or c

31.  If ‘a’ is the periodicity of atoms in a metal, then an electron moving along X-direction in the metal experiences 
same potential at x and at: ( )

(a) x + a (b) x + 2a (c) x + 3a (d) all

32.  In Kronig–Penney model, the width of allowed bands ___________ and the width of forbidden bands ___________ 
with increase of energy [or αa] ( )

(a) increases, decreases  (b) increases, increases
(c) decreases, decreases  (d) decreases, increases

33.  In Kronig–Penney model, as the scattering power of the potential barrier, P → ∞, then the allowed energy bands: ( )

(a) reduce to single energy levels (b) reduce to smaller bands
(c) increase to bigger bands (d) none

34. In Kronig–Penney model, as the scattering power of the potential barrier, P → 0, then, ( )

(a) all the energies are allowed to the electrons 
(b) all the energies are not allowed to the electrons
(c) the forbidden band reduces to smaller size
(d) none

35. Th e discontinuities in the energies of free electrons of a metal occur at the ___________ of the Brillouin zones. ( )

(a) middle (b) boundaries (c) both a & b (d) none

36.  Th e eff ective mass of a free electron is ___________ , when it occupies lower energy levels of allowed band 
of energies: ( )

(a) negative (b) positive (c) low negative (d) none

37.  Th e eff ective mass of a free electron is ___________ , when it occupies higher energy levels of allowed band 
of energies. ( )

(a) negative (b) positive (c) low positive (d) high positive

38. Th e eff ective mass of an electron has been experimentally determined from: ( )

(a) electron specifi c heat  (b) cyclotron resonance experiments 
(c) both a & b  (d) none

39. Th e expression for eff ective mass of an electron (m*) is: ( )

(a) 
� 2

2 2( )d /dE K
  (b) � 2 2 2( )d /dE K

(c) 
h

E K

2

2 2( )d /d
  (d) none

40.  If E
1
 is the energy of the lowest state of one-dimensional potential box of side ‘L’ and E

2
 is the energy of the next 

state, when the length of the box is halved, then E
2
 =  ( )

(a) 2E
1
 (b) 4E

1 (c) 8E
1 (d) 16E

1
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 Answers

 1. d  2. d  3. a  4. b  5. a  6. b  7. c  8. d  9. c 10. d 11. d
12. a 13. c 14. d 15. c 16. c 17. a 18. d 19. a 20. c 21. a 22. b
23. b 24. a 25. a 26. c 27. a 28. b 29. a 30. d 31. d 32. a 33. a
34. a 35. b 36. b 37. a 38. c 39. a 40. d

 Review Questions

 1.  What is Fermi level? Explain the Fermi-Dirac distribution function for electrons in a metal. Discuss the variation 
with temperature.

 (Set-1, Set-2, Set-4–Sept. 2007), (Set-4–May 2006), (Set-2, Set-3–June 2005)

 2. Explain the origin of energy bands in solids.  
 (Set-1, Set-3, Set-4–May 2007), (Set-1, Set-2, Set-3–Sept. 2006),
 (Set-2, Set-3–May 2006), (Set-1, Set-4–June 2005), (Set-1–May 2003)

 3.  Assuming the electron-lattice interaction to be responsible for the scattering of conduction electrons in a metal, 
obtain an expression for conductivity in terms of relaxation time and explain any three drawbacks of classical theory 
of free electrons.

 (Set-1, Set-3, Set-4–May 2007), (Set-1, Set-2, Set-3–Sept. 2006),
 (Set-2, Set-3–May 2006), (Set-1, Set-4–June 2005), (Set-1–May 2003)

 4. Explain drift velocity, mobility and relaxation time, eff ective mass and Bloch theorem.

 (Set-3–Nov. 2004), (Set-4–May 2004), (Set-4–May 2003)

 5. What are the salient features of the ‘free electron gas’ model? Obtain Ohm’s law based on it.

 (Set-4–Nov. 2004), (Set-3–May 2004), (Set-3–May 2003)

 6.  Explain the salient features of quantum free electron theory. Discuss the Kronig–Penney model for the motion of 
an electron in a periodic potential.

 (Set-2–May 2003)

 7. How does the electrical resistance of the metal change with temperature? 
 (Set-3–Sept. 2007), (Set-2–May 2007), (Set-1–May 2006)

 8. Discuss the motion of an electron in a periodic lattice.
 (Set-3–Sept. 2007), (Set-2–May 2007) (Set-1–May 2006), (Set-4–Nov. 2003)

 9. Explain the concept of ‘eff ective mass’. (Set-2, Set-4–Nov. 2004), (Set-1–May 2004), 

 (Set-3–May 2004), (Set-3–May 2003), (Set-1–Nov. 2003)

10. Discuss the motion of an electron in a periodic potential fi eld and explain the formation of energy bands.

 (Set-2–Nov. 2004), (Set-1–May 2004), (Set-1–Nov. 2003)

11. Discuss the origin of electrical resistance in metals.
 (Set-3–Sept. 2008) (Set-3–May 2008), (Set-4–Sept. 2006), (Set-1–Nov. 2004), (Set-2–May 2004), (Set-2–Nov. 2003)

12. Show that the resistivity of a metal above room temperature varies directly with temperature.

 (Set-4–Sept. 2006), (Set-1–Nov. 2004), (Set-2–May 2004), (Set-2–Nov. 2003)

13. Elucidate the diff erence between the classical free electron theory and quantum free electron theory.

 (Set-3–Nov. 2003)

14. Distinguish between conductors, insulators and semiconductors on the basis of band theory of solids.

 (Set-3–Nov. 2003)
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15. Distinguish between metal, insulator and semiconductors.  (Set-2–June 2005)

16.  Distinguish between Drude-Lorentz theory and Sommerfeld’s theory of metals.
 (Set-1–May 2008), (Set-4–Sept. 2008)

17. Defi ne Fermi level of electron. (Set-1–May 2008)

18. Distinguish between classical free electron theory and quantum free electron theory of metals.
 (Set-2–May 2008)

19.  Explain the Fermi-Dirac distribution function of electrons. Explain the eff ect of temperature on the distribution.
 (Set-2–May 2008)

20. Explain the terms (i) mean free path, (ii) relaxation time and (iii) drift velocity of an electron in a metal.
 (Set-3–Sept. 2008), (Set-3–May 2008)

21. Explain the following (i) Electrical resistivity and (ii) Fermi energy. (Set-4–May 2008)

22. Explain briefl y the quantum free electron theory of metals. (Set-4–May 208)

23.  On the basis of band theory, how the crystalline solids are classifi ed into metals, semiconductors and insulators?
 (Set-4–May 2008)

24.  Discuss with suitable mathematical expressions, the kronig Penney model for the energies of an electron in a 
metal.

 (Set-1, Set-2–Sept. 2008)
25. Explain the classifi cation of metals, semiconductors and insulators based on band theory.
 (Set-1, Set-2–Sept. 2008)

26 Explain the Fermi-Dirac distribution function of electrons. (Set-4–Sept. 2008)

27. Derive an expression for electrical conductivity on the basis of classical free electron theory.

28. Derive the expression for the electrical conductivity of a metal. How is it aff ected by temperature?

29.  Discuss the various drawbacks of classical free electron theory of metals and explain the assumptions made in 
quantum theory to overcome the drawback.

30. Describe the salient features of Kronig–Penney model.

31.  Give an account of the band theory of solids based on the Kronig–Penney model. Distinguish between semicon-
ductors and insulators.

32. What are the important features of the free electron gas model?

33. Discuss the salient features of Kronig–Penney model of a crystal.

34. Explain the concept of eff ective mass of an electron.

35.  What are the main sources of electrical resistance in a metal? How does the conductivity of a metal vary with rise 
of temperature and added impurity content?

36. Write short notes on relaxation time, mean free path, collision time and drift velocity.

37. Distinguish between metals, semiconductors and insulators.

38.  Starting with the plane wave equation associated with a moving particle, formulate the time-independent 
Schrödinger’s wave equation.

39. Apply Schrödinger’s equation to the case of a particle in a box and show that the energies of the particle are quantized.

40.  Describe with essential picturization, potential encountered by an electron in a crystal and hence the origin for 
band spectrum.

41. Write a brief account of eff ective mass of an electron.

Chapter 05.indd   39Chapter 05.indd   39 9/25/2009   5:35:09 PM9/25/2009   5:35:09 PM



5-40 Applied Physics

42. Derive an expression for the current density in metals following classical free electron concept. 

43.  State the drawbacks of classical free electron theory of metals. Derive an expression for the conductivity using F-D 
statistics in metals. 

44. Detail the dynamics (velocity and acceleration) of an electron confi ned to a periodic lattice in its fi rst allowed band.

45.  Discuss the consequences of applying F-D statistics to classical free electron theory of metals and detail the rel-
evant source mechanism behind electrical resistance.

46. Prove that the number of allowed states in any energy bands in a solid is equal to the number of primitive unit cells.

47. Write short notes on eff ective mass of an electron.

48. Discuss the formation of allowed and forbidden energy bands on the basis of the Kronig–Penney model.

49.  What is meant by the eff ective mass of an electron? Discuss the conditions when the eff ective mass of an electron 
becomes positive and negative.

50. What are the failures of the Drude–Lorentz free electron theory?

51. Obtain an expression for electrical conductivity on the basis of band theory.

52.  Explain with theory the formation of allowed and forbidden energy bands on the basis of the Kronig–Penney 
model.

53. List the diff erences between metals, semiconductors and insulators based on band structure.

54. Explain Fermi–Dirac distribution for electrons in a semiconductor.

55. Discuss the theory of free electron gas in one-dimensional box. Explain the energy levels.
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Dielectric Properties

6.1 Introduction
Dielectrics are insulating materials. So, there are no free charge carriers in them. Th e dielectrics are of two 
types: (i) non-polar and (ii) polar dielectrics. In non-polar materials, the molecules are usually diatomic and 
composed of same type of atoms; each atom possesses a positive nucleus of charge q and surrounded by a 
symmetrically distributed negative electron cloud of charge −q. In the absence of an applied electric fi eld, the 
centres of the positive and negative charge distribution coincide with each other. When external electric fi eld 
is applied, then the centres of positive and negative charges move apart by a very small distance (10–10 m), then 
the molecules and atoms are said to be polarized. Next, the polar dielectric molecules are normally composed 
of two or more diff erent types of atoms. Th ey have dipole moments even in the absence of an external applied 
electric fi eld. Usually, these molecular dipoles are oriented in random directions, so that the average dipole 
moment over the volume element is zero. In the presence of an externally applied electric fi eld, the molecular 
dipoles tend to rotate certain extent in the direction of an applied electric fi eld so that the material has some 
resultant dipole moment. Not only the rotation of molecular dipoles but also the centres of positive and nega-
tive charges of atoms are separated by small distance and it is called a dipole. It possess dipole moment (p). Th e 
electric dipole moment is defi ned as the product of one of the charge (q) and separation between the charges 
(dl ) [i.e., p = q dl]. Th e resultant dipole moment per unit volume of material is called polarization (P).

Dielectrics fi nd applications in electrical and in electronic equipment. Th ey are used for insulation 
 purposes. In capacitors, dielectric material is used between the capacitor plates to increase capacitance.

6.2 Dielectric constant
Th e permittivity of free space has been represented as ε

0 
and is equal to 8.85 × 10–12 F/m. Th e permitivity of 

any dielectric material can be represented as ε and it is equal to ε
r 
ε

0 
i.e.,

 ∈ = ∈
0
 ∈

r
  (or)  ∈

∈
∈r =

0

___________ (6.1)

C H A P T E R 6
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where ε
r
 is called the relative permittivity or dielectric constant of the dielectric material. It is a dimensionless 

quantity.
Th e dielectric constant can also be obtained from electric fl ux density (D) and an applied electric fi eld (E). 

Th e number of electric force lines passing per unit area perpendicular to fi eld is called electric fl ux density (D). 
It is proportional to the applied electric fi eld (E).

So  D ∝ E  or  D = εE = ε
0
ε

r
 E ___________ (6.2)

If P is the polarisation of the dielectric material due to the applied electric fi eld (E), Th en the fl ux density 
‘D ’ is equal to fl ux density in vacuum plus polarisation of the material. Th erefore, we have:

D = ε
0
 E + P ___________ (6.3)

From Equations (6.2) and (6.3), we have:

P = ε
0
(ε

r
 − 1) E ___________ (6.4)

Th e electric suscesptibility χ is:

 χ
ε

χε= =
P

E
P E

0

0or ___________ (6.5)

From Equations (6.4) and (6.5), we have:

χε
0
E = ε

0
(ε

r
 − 1) E

∴  χ = ε
r
 – 1  (or)  ε

r
 = 1 + χ ___________ (6.6)

Experimentally, the dielectric constant can be obtained easily using parallel plate capacitor. If C and C ′ 
are the capacitances of a capacitor without and with dielectric, respectively between the capacitor plates,

Th en, we have:

 εr

C

C
=

′
___________ (6.7)

6.3 Internal or local fi eld
In dielectric solids, the atoms or molecules experience not only the external applied electric fi eld but also the 
electric fi eld produced by the dipoles. Th e resultant electric fi eld acting on the atoms or molecules of dielectric 
substance is called the local fi eld or an internal fi eld.

To fi nd an expression for local electric fi eld on a dielectric molecule or an atom, we consider a dielectric 
material in the electric fi eld of intensity E, between the capacitor plates so that the material is uniformly 
polarized, as a result opposite type of charges are induced on the surface of the dielectric near the capacitor 
plates. Th e local fi eld is calculated by using the method suggested by Lorentz.

According to this method, consider a small spherical region of the dielectric with an atom at the centre 
of the sphere for which the local fi eld is to be calculated. Th e radius of the sphere is chosen large enough 
so that the region outside the sphere is a continuum while inside the sphere as the actual structure of the 
substance. Th e part of the dielectric external to the sphere maybe represented by a system of charges induced 
and also at the spherical surface as shown in Fig. 6.1.

Th e electric fi eld at the centre of the sphere may be written as:

E
loc

 = E
0
 + E

p
 + E

s
 + E

m
___________ (6.8)
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where E
0
 is the intensity of the electric fi eld due to the charge ‘q’ on the plates, E

p
 is the fi eld due to the 

polarization charges at the plate dielectric interface, E
s
 is the fi eld due to the charges induced on the spherical 

surface and E
m
 due to all the dipoles of the atoms inside the spherical region. Th e macroscopic electric fi eld 

(E ) inside the dielectric is:

 E = E
0
 + E

P

Hence  E
loc

 = E + E
s
 + E

m
___________ (6.9)

For high symmetric crystals, E
m
 = 0. So, we write:

E
loc

 = E + E
s

___________ (6.10)

Equation (6.10) is not applicable to anisotropic materials. So, we consider isotropic materials only so 
that Equation (6.10) holds good. To evaluate E

s
, an enlarged view of the spherical region in dielectric is 

shown in Fig. 6.2.
Th e charge element on a surface element ds of the sphere is equal to the parallel component of the 

 polarization times the surface element i.e., P cos θ⋅ds.
Hence, the intensity of the electric fi eld dE

s
 at the centre due to this charge element in the direction 

of ‘r ’ is:

Figure 6.1 Local fi eld
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Figure 6.2 Enlarged spherical region of dielectric
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6-4 Applied Physics

 d
cos d

E
P s

r
S

=
θ

4
0

2π∈
___________ (6.11)

Th e components of dE
s
, perpendicular to the direction of P will be cancelled due to an equal contribution 

from another symmetrically situated surface element. Only components of dE
s
 parallel to P will contribute to 

the integral of Equation (6.11) over the entire surface. Th us,

 E E
P s

r

P s

S S
= =

×
=

∫
∫

∫
d

d d
cos

cos cos cos
θ

θ θ

π∈

θ

π4 4
0

2

2

∈∈
0

2r
___________ (6.12)

Th e surface element ds is the ring shown in Fig. 6.2 so that ds = 2πr sin θ (r dθ) = 2πr 2 sin θ dθ and the 
limits of integration with respect to θ are from 0 to π. Th us, we have:

 

E
P r

r
S

=
cos sin2 2

0

0

2

2

4

θ π θ θ×∫ d
π

π∈

= =∫ ∫
2

4 2
0

0
0

2

0

π
π

θ θ θ θ θ θ
πP P

∈ ∈

π
cos sin cos sin2 d d

Th is can be evaluated making the substitution Z = cos θ and dZ = −sin θ dθ
So that,

 E
P

Z Z
P Z P

S =
−

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

+

−

−

+

∫2 2 3 30

2

1

1

0

3

1

1

0∈ ∈ ∈
d ___________ (6.13)

Th us, equation (6.10) becomes:

 E E
P

loc
= +

3
0

∈
___________ (6.14)

Equation (6.14) is known as the Lorentz relation for local fi eld.

6.4 Clausius–Mosotti relation
Clausius–Mosotti relation makes relation between microscopic and macroscopic quantities of polarization. 
A dielectric material can be polarized by applying an external fi eld on it. Dipole moment per unit volume of 
material is called polarization. Th e dipole moment ‘p’ is equal to the product of one of the charges and sepa-
ration between the opposite charges of atoms or molecules. Th is dipole moment is proportional to the local 
electric fi eld, E

loc
, so that:

 p = αE
loc

___________ (6.15)

 where ‘α’ is the electrical polarizability. If there are ‘n’ atoms per unit volume of the dielectric, then 
 polarization ‘P ’ is:

 P = np = nαE
loc

___________ (6.16)
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Substituting the equation for local electric fi eld, E
loc

 = E + P/3∈
0
 in the above equation,

 P n E
P

= +
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

α
3

0
∈

  (or)  P n E
n P

= +α
α

3
0

∈
  (or)  P

n
n E1

3
0

−
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
=

α
α

∈

(or)  P
n E

n
=

−

α
α

1
3

0
∈

___________ (6.17)

Polarization per unit electric fl ux density in vacuum is called electric susceptibility, represented as χ
e
.

 χ
∈e

P

E
=

0

___________ (6.18), 

where ∈
0
 is the permittivity of free space.

Substituting Equation (6.17) in (6.18) gives:

 χ
α

∈
∈

α

∈
∈

e

n E

n
E

n

n
=

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥1

3
1

3
0

0 0

0

α α
⎥⎥

___________ (6.19)

Th e expression for electric susceptibility can also be obtained from electric fl ux density. Let the number 
of electric force of lines per unit area of the surface perpendicular to the force of lines or the electric fl ux 
 density ‘D ’ is proportional to the intensity of the applied electric fi eld.

Th e relation between the fl ux density and intensity of the applied electric fi eld is:

 D = ∈ E = ∈
0
∈

r 
E ___________ (6.20)

where ∈ is the permittivity of the dielectric material and ∈
r
 is its relative permittivity or dielectric  constant 

of the material. Th e relation between D and P is:

 D = ∈
0 
E + P ___________ (6.21)

Equations (6.20) and (6.21) are same:

 so,  ∈
0
∈

r 
E = ∈

0 
E + P  (or)  P = ∈

0
(∈

r
 − 1) E ___________ (6.21a)

From Equation (6.18), we have:

 P = χ
e
∈

0 
E ___________ (6.22)

Substituting Equation (6.22) in (6.21) gives:

 D = ∈
0 
E + χ

e
∈

0 
E = ∈

0 
E [1 + χ

e 
] ___________ (6.23)

Equating Equations (6.20) and (6.23), we have:

 ∈
0
∈

r 
E = ∈

0 
E [1 + χ

e
]  (or)  ∈

r
 = 1 + χ

e

(or)  χ
e
 = ∈

r
 − 1 ___________ (6.24)
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6-6 Applied Physics

Equations (6.19) and (6.24) are equal, so:

 χ ∈
∈

∈

e r

n

n
= − =

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

1
3

0

0

α
α

___________ (6.25)

Adding 3 on both sides of Equation (6.25), we have:

 ∈
∈

∈

r

n

n
+ =

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+2

1
3

3

0

0

α
α

___________ (6.26)

Dividing Equation (6.25) by Equation (6.26) gives:

 

∈
∈

α

∈
∈

∈
∈

r

r

n

n

n

n

−
+

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
⎡

⎣
⎢
⎢

1

2

1
3

1
3

0

0

0

0

α

α
α ⎤⎤

⎦
⎥
⎥

+
=

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
⎡

⎣
⎢
⎢

⎤

3

1
3

1
3

0

0

0

0

n

n

n

n

α
α

α
α

∈
∈

∈
∈ ⎦⎦

⎥
⎥

+
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3

1
3

1
3

0

0

0

0

∈
∈

∈
∈

n

n

α

α

 =
+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+ −

=
n

n
n

n

n n

nα

α α
α

α α
α

3 1
3

3 3
0

0

0 0∈
∈

∈ ∈
___________ (6.27)

If there are N diff erent types of atoms in the dielectric such that n
1
, n

2
, n

3
, … n

N
 are the number of fi rst, second, 

third … N th kind of atoms and α
1
, α

2
, α

3
 … α

N
 are the polarizabilities of fi rst, second, third … N th kind of 

atoms, respectively.
Th en, Equation (6.27) becomes:

 ∈
∈ ∈

r

r

i i

i

N

n
−
+

= =
∑

1

2 3

1

0

α
___________ (6.28)

Here, n ni

i

N

=
=
∑

1

 and α
i
 is the polarizability of ith kind of atoms. If ρ is the density, N

A
 is Avogadro number 

and M is molecular weight of the crystal, then ρ =
nM

N A

 (or) n
N

M
=

ρ A , so Equation (6.27) becomes:

 
∈
∈ ∈

r

r

N

M

−
+

=
1

2

1

3 0

ρ αA   (or)  
M

Nr

rρ
α

∈
∈ ∈

−
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
1

2

1

3 0

A ___________ (6.29)

Equation (6.28) or (6.29) is called Clausius-Mosotti equation. It can be used to determine the polarizabili-
ties of the atoms if the dielectric constant is known. Further, the dielectric constants of new materials can be 
predicted from a knowledge of polarizabilities. Th is relation thus provides the necessary relation between the 
microscopic and macroscopic quantities of polarization.
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6.5 Orientational, ionic and electronic polarizations
When an electric fi eld is applied on a dielectric crystal, then the positive charges of atoms and molecules are 
displaced along the fi eld while the negative charges in a direction opposite to that of the applied fi eld. Th is is 
the basis for polarization of a dielectric substance.

If a molecule has permanent dipole moment, then it is a dipolar molecule and the substance is a dipolar 
substance. Example is H

2
O molecule. In the absence of an external electric fi eld, the dipoles are randomly 

 oriented, so that polarization is zero. But when the electric fi eld is applied, these dipoles tend to rotate 
 diff erent extents in the direction of an applied electric fi eld giving rise to dipolar or orientational polariza-
tion. Th e applied fi eld also tends to displace the positive and negative ions of molecule in opposite directions 
 causing a change in the ionic bond length. Th is change in bond length is to produce a net dipole moment in 
the crystal. Th is dipole moment per unit volume of material is known as ionic polarization.

Th e individual ions or atoms of a crystal are themselves polarized in the electric fi eld. Fig. 6.3 shows the 
polarization of an atom, the electrons in its various shells are displaced relative to the nucleus and produce an 
electric dipole moment. Th is dipole moment per unit electric fi eld of the material is called electric polarizability.

Figure 6.3 (a) Unpolarized atom; (b) Polarized atom

+
+

(a) (b)

Th e total polarizability (α) is the sum of the various polarizabilities such as the electronic polarizability 
(α

e 
), ionic polarizability (α

i
) and dipolar polarizability (α

d
). Th erefore, we write α = α

e
 + α

i
 + α

d 
. Now, we 

study each polarization in detail.

(a) Dipolar or orientational polarization
Th e expression for dipolar polarization can be obtained from Langevin-Debye theory as given below. According 
to Debye, oriental polarization is due to the rotation of polar molecules in dielectric substance. In the absence 
of an applied electric fi eld, the dipoles of the substance are randomly oriented in all directions with equal prob-
ability and the resultant polarization is zero. In the presence of an applied electric fi eld (E ), the torque (τ) acting 
on a dipole to rotate it in the direction of E is given as:

 τ θ θ
� �� ��

= × = =F d eEd pEsin sin

where p is the dipole moment of a molecule [Fig. 6.4]. Th e only force that prevents permanent dipoles from 
complete alignment with the fi eld is thermal agitation.

Th erefore, an equilibrium state will reach in which diff erent dipoles will make 0 to π radian angles with 
fi eld direction, producing a net resultant polarization in the direction of the fi eld. Th e potential energy (V ) of 
a dipole corresponding to an angle θ between p and E direction is:
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6-8 Applied Physics

 V pE pE= = = −∫ ∫τ θ θ θ θ
π

θ

π

θ
d d

/ /
sin cos

2 2
___________ (6.30)

According to Boltzmann distribution law, the probability for a dipole to make an angle between θ and θ + dθ 
with the fi eld is proportional to:

 2π θ θ
θ

sin exp
cos

d
B

pE

K T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where 2π sinθ dθ is the solid angle between θ and θ + dθ. Hence, the average component of the dipole 
moment along the fi eld direction is equal to:

 p

p
pE

K T
< >=

⋅
⎡

⎣
⎢
⎢

⎤

⎦
∫

cos

cos sin exp
cos

θ

θ π θ θ
θπ

0
2 d

B

⎥⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫

0
2

π
π θ θ

θ
sin exp

cos
d

B

pE

K T

___________ (6.31)

θ = 0 corresponds to parallel alignment and θ = π to anti-parallel alignment of the dipoles. Dividing 

 numerator and denominator by 2π and putting a
pE

K T
=

B

, x = a cos θ = pE

K TB

 cos θ and dx = −a sin θ dθ. 

Substituting the above values in Equation (6.31), we have:

 < >= =
+
−

− =−

−

−

−

∫
∫

cos θ
1 1

a

xe x

e x

e e

e e a

x

a

a

x

a

a

a a

a a

d

d
ccot ( )ha

a
L a− =

1
___________ (6.32)

L(a) is called Langevin function, because this formula was derived by Langevin in 1905 in connection with 
paramagnetism.

A graph of L(a) versus ‘a ’ has been plotted as shown in Fig. 6.5. Near the origin, the Langevin function 
increases linearly so that L(a) = a/3. As ‘a ’ increases, the function continues to increase and approaching the 
saturation value unity as a → ∞ i.e., for high fi eld strengths. Th is saturation corresponds to complete alignment 
of the dipoles in the fi eld direction, so that <cos θ> = 1

Figure 6.4 Torque acting on a dipole

d

eE −e

E

+e
eE

q
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For moderate fi eld strengths (when a << 1), L(a) = a/3 

so that  p p
a p

K T
E< >= =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

cos θ
3 3

2

B

  ___________ (6.32a)

If there are N molecules per unit volume of the crystal, then the dipolar polarization (P
d
) is:

 P Np
Np E

K Td
= < >=cosθ

2

3
B

___________ (6.33)

Th e average dipolar dipole moment [ p <cos θ> ] is proportional to the intensity of the applied electric fi eld 
[E] i.e., p <cos θ> ∝ E (or) p <cos θ> = α

d
 E, where the proportionality constant α

d
 is called the dipolar 

polarizability given as:

 α
θ

d

p

E

p

K T
=

< >
=

cos 2

3
B

___________ (6.34)  [using Equation (6.32a)]

Equation (6.34) is actually applicable to liquids and gases, because in these substances only the molecular 
dipoles may rotate continuously and freely, as has been assumed in its derivation. In solids, a dipole may move 
back and forth between certain limits, which depends on the temperature and electric fi eld. Th erefore, the 
total polarizability of a dipolar molecule can be written as:

 α α= +
ei

p

K T

2

3
B

___________ (6.35)

where α
ei
 is the combined polarizability from electronic and ionic contributions. Th e Clausius–Mosotti 

 equation for a dipolar system is:

 
M

N
p

K T
r

r

eiρ
α

∈
∈ ∈

−
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

= +
⎡

⎣
⎢1

2

1

3 3
0

2

A

B
⎢⎢⎢

⎤

⎦
⎥
⎥⎥

___________ (6.36)

0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7

a /3

L(a)

a = PE
KBT

Figure 6.5 A graph plotted between L(a) and ‘a’
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Equation (6.36) is known as Debye formula. A plot can be drawn between 
M r

rρ
∈
∈

−
+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

2
 versus 1/T as shown 

in Fig. 6.6
Th e graph is a straight line, the slope of this line is proportional to p 2 and its intercept is proportional to 

α
ei
 . Th is formula leads to the determination of both the dipole moment and α

ei
 .

Figure 6.6 Temperature versus dielectric constant

10
T

rM
Œ

r 
 −

 1
Œ

r 
 +

 2

(b) Ionic polarization
Polarization in ionic crystals arises due to the displacement of ions from their equilibrium positions by the 
force of an applied electric fi eld.

Ionic polarization can be calculated by considering NaCl crystal. Let the masses of Na+ and Cl− ions 
are m and M, respectively. In the absence of an applied electric fi eld, the Na+ and Cl− ions are at equilibrium 
positions and the equilibrium separation between these ions is equal to r

0
 (say). After application of the 

electric fi eld of intensity E, on the NaCl crystal, some amount of force equal to eE acts on each Na+ and Cl− 
ions in opposite directions, so that the ions get displaced by x

1
 and x

2
 distances from equilibrium  position. 

Th ese displacements of ions produce dipole moment in the molecules. Th e induced dipole moment ( p) per 
molecule is:

 p = e ( x
1
 + x

2
 ) ___________ (6.37)

Even though the electric fi eld is continuously acting on the ions, the displacement between the ions will 
not continuously increase because of the restoring force between the oppositely charged ions. At equilibrium 
conditions the restoring force (F ) between the ions is:

 F = K
1
x

1
 = K

2
 x

2
  where K

1
 and K

2
 are force constants

From the above equation, for Na+ ion of mass ‘m’,

 x
F

K

eE

m
1

1 0
2

= =
ω

___________ (6.38)  [Since K
1
 = mω0

2 = force constant]

where ω
0
 is the natural frequency of NaCl molecule. For Cl− ion of mass ‘M ’,
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 x
F

K

eE

M
2

2 0
2

= =
ω

___________ (6.39)  [Since K
2
 = M ω0

2 = force constant]

From Equations (6.38) and (6.39), we have

Th e total displacement ( )x x x
eE

m M
= + = +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1 2

0
2

1 1

ω
___________ (6.40)

Substituting Equation (6.40) in (6.37) gives:

 p e x x
e E

m M
= +( ) = +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1 2

2

0
2

1 1

ω
___________ (6.41)

Th is is the induced dipole moment in NaCl molecule. If N number of NaCl molecules are present per 
unit volume of the crystal, then polarization P is:

 P Np Nex
Ne E

m M
= = = +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2

0
2

1 1

ω
___________ (6.42)

Th e ionic polarizability, α
i
 is  α

ωi

p

E

e

m M
= = +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

2

0
2

1 1
___________ (6.43)

Substituting the various values in the above equation, we get α
i
 = 9.75 × 10−24 F–m2, but the  experimental 

value is 3.3 × 10−24 F-m2. Th e poor agreement between these values is that the eff ective ionic charge on an ion 
was assumed as e, but in fact it turned out to be 0.7e.

(c) Electronic polarization
Electronic polarization can be calculated by considering the atoms of a given substance. In the absence of an 
applied electric fi eld, an atom will be spherical as shown in Fig. 6.6(a). Th e atom consists of a point nucleus 
of charge +Ze, surrounded symmetrically by an electron cloud of charge −Ze in a sphere of radius r. If an 
electric fi eld E is applied on the atom, then a force of |ZeE| acts on the nucleus in the direction of the applied 
electric fi eld and on the electron cloud in the opposite direction, so that they shift with respect to each other 
by a distance ‘d ’ as shown in Fig. 6.6(b). Th e electron cloud is assumed to remain spherical for simplicity.

(a)

r

+Ze

−Ze

(b)

E

d

r

d 3

r 3
−Ze

+Ze

Figure 6.6 Electric polarization
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Th e distance of separation ‘d ’ between the centre of electron cloud and nucleus is such that the restoring 
force on the nucleus and electron cloud is equal to the force of attraction between the nucleus and the fraction 
of the charge inside the sphere of radius ‘d ’. Applying Coulomb’s law for restoring force,

 F

Ze Ze
r

=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟1

4 0

3

3

2π∈

d

d
___________ (6.44)

Th is is equal to force by electric fi eld,

 F = ZeE ___________ (6.45)

Equating these forces, we have:

 1

4 0

3

3

2π∈

Ze Ze
r

ZeE

d

d

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=

gives  d =
×r E

Ze

3
04π∈ ___________ (6.46)

Th e induced dipole moment ‘p
e
’ is:

 p
e
 = Zed = r 3E × 4π∈

0
___________ (6.47)

Th e dipole moment per unit volume is polarization.
If ‘N ’ number of atoms are present in unit volume of material, then electronic polarization P

e
 is:

 P
e
 = Np

e
 = N4π∈

0
r 3E ___________ (6.48)

and the polarizability α
e
 is:

 α πe = =
p

E
re 4 0

3∈ ___________ (6.49)

Using Equation (6.49), electronic polarizability can be calculated.

For monoatomic gas,  P
e
 = N 4πε

0 
r 3E = ε

0
(ε

r 
− 1) E

Hence, we have:

 ε
r
 = 1 + 4πr 3N

Th e value 4πr 3 N is of the order of 10–4. Hence, ε
r
 ≈ 1 for gases. In solids, ε

r
 varies from 2 to 10.

6.6  Frequency dependence of polarizability: 
(Dielectrics in alternating fi elds) 

In this topic, the variation of polarizability, polarization and dielectric constant of the dielectric with the 
frequency of the applied electric fi eld has been explained. Th e permittivity of a dielectric material is equal to 
ε

0
ε

r
, where ε

r
 is called the relative permittivity or dielectric constant of the material and ε

0
 is the permittivity 

of the free space. Also from Clausius–Mosotti relation, we know that the dielectric constant is related to 
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polarizability of the material. So, we can see the variation of permittivity and hence relative permittivity or 
dielectric constant, in turn polarizability of a dielectric material with the frequency of the applied electric 
fi eld. When an alternating electric fi eld of frequency less than 106 Hz is applied on a dielectric material, then 
the orientation of the electric dipoles and hence polarization will reverse every time as the polarity of the fi eld 
reverses. Th e polarization of the material follows the fi eld without any lag so that the permittivity remains 
constant. As the frequency of the applied electric fi eld is increased from 106 Hz to 1011 Hz (radiowave 
frequencies), the electric dipoles present in the material unable to follow the fi eld, hence they lag behind the 
fi eld and orientational polarization ceases. So, the dielectric constant changes whereas ionic and electronic 
polarizations are present. Again if the frequency of the applied electric fi eld is increased from 1011 Hz to 
1014 Hz [infrared frequencies], the heavy positive and negative ions present in the material cannot follow the 
fi eld variations; hence ionic polarization ceases.

Th is leads againt to the change in dielectric constant. Th e electronic polarization exists up to a frequency 
of nearly 1015 Hz, because electrons are light particles and easily follow the variations of the applied voltage.

To know the dependence of electronic polarizability with the frequency of the applied electric fi eld in 
the optical region, we consider an atomic model with a nucleus of charge +e and an electron. Th e electron has 
been represented as a cloud having radius r

0
. In the absence of an applied electric fi eld, the centre of electron 

cloud coincides with the nucleus. After applying static electric fi eld, the centre of electron cloud displaces by 
small distance x (say) relative to the nucleus.

 Th en, the restoring force  (F ) = 
−

= −
e x

r
fx

2

0 0
34πε ___________ (6.50)

 where  f
e

r
=

2

0 0
34πε

 = restoring force constant.

If there is no damping, then the equation of motion is:

 m
x

t
fx

d

d

2

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = − ___________ (6.51)

 or 

 
d

d

2

2
0

x

t

f

m
x+ = ___________ (6.52)

Th e solution for Equation (6.52) is of the form x = x
0
 sin (ω

0
t + δ ), where x

0
 = maximum displacement, 

δ is the integrating constant and ω0 = f m/  is the natural or resonance frequency of the electron cloud. 

If we consider damping in the motion of electrons, then Equation (6.51) becomes:

 m
x

t
fx b

x

t

d

d

d

d

2

2
2= − − ___________ (6.53)

where 2b is the damping constant.
Instead of static electric fi eld, an alternating electric fi eld E = E

0
 cosωt is applied on the electron, then 

the Lorentz force, –eE
0
 cosωt acts on the electron cloud and the equation of motion is:

 m
x

t
fx b

x

t
eE t

d

d

d

d

2

2 02= − − − cos ω ___________ (6.54)

where E
0
 is the maximum electric fi eld.
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(or)

 
d

d

d

d

2

2
02

0
x

t

b

m

x

t

f

m
x

eE

m
t+ + + =cos ω ___________ (6.55)

Th e solution for Equation (6.55) is of the form:

 x t A e( )= ⎡
⎣

⎤
⎦Real * i tω ___________ (6.56)

where A * is complex amplitude

Here,  Real cos
0 0

E e E ti tω ω⎡
⎣⎢

⎤
⎦⎥ =

Equation (6.56) is diff erentiated twice and substituted in Equation (6.55)

 
d

d
Real

x

t
A i e= ⎡

⎣
⎤
⎦* ω i tω

 
d

d
Real i Real

2

2

2 2x

t
e A e= ( )⎡

⎣⎢
⎤
⎦⎥ = −⎡A i t i t* *ω ωω ω

⎣⎣
⎤
⎦

 Substituting these in Equation (6.55)

 Re * * *al − +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +ω

ω2 2
A i

b

m
A

f

m
A

ee

m
E e

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =0 0i tω

___________ (6.57)

As the exponential value in the above equation is not equal to zero, so the value in curling braket is equal 
to zero.

 Th at is − +
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +

⎛
⎝

ω ω2 2
A i

b

m
A

f

m
A

e

m
* * * ⎜⎜⎜⎜

⎞
⎠
⎟⎟⎟ =E0 0

 Substitute 
f

m
= ω0

2

 we have:

 
A i

b

m

eE

m
* ω ω ω0

2 2 02
− +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−

 or  A

i
b

m

*=

−( )+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

0

2 2 2ω ω ω
___________ (6.58)

Substitute Equation (6.58) in Equation (6.56)

 x t

i
b

m

( )=
−( )+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟

Real

0

2 2 2

eE e−
0
/m i tω

ω ω ⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

ω
___________ (6.59)
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Th e induced dipole moment p
ind

 (t) = –ex (t)

 

i
b

m
−( )+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟

Real

0

2 2 2ω ω ⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥⎥

ω

E e
0

e m2/ i tω

= ___________ (6.60)

Under static electric fi eld, the electronic induced dipole moment ( )pind  is proportional to the applied 
electric fi eld E,

So,

p
ind

 ∝ E  or  p
ind

 = α
e
 E ___________ (6.61),  where α

e
 is electronic polarizability.

Comparing Equations (6.60) and (6.61), the coeffi  cient of electric fi eld E
0 
e iωt is the electronic polarizability.

So,

 p t E ee

i t

ind al( ) Re= ⎡
⎣

⎤
⎦α ω* 0

where αe*  is the complex electronic polarizability and is equal to:

 α
ω ω ω

e

e m

i
b

m

*
/

=
−( )+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

0

2 2 2
___________ (6.62)

To separate real and imaginary parts of Equation (6.62), multiply and divide with ω ω ω0
2 2 2

−( )−
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟i

b

m
,

We have:

 α
ω ω

ω ω ωe

e

m b

m

* =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−( )

−( ) +

2
0
2 2

0
2 2 2

2 24
22 0

2 2 2
2

2

4⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−( ) +
−

i
b

m

b

ω

ω ω ω22

2m

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

___________ (6.63)

Th e above equation can be represented in the form as α α αe e ei* = −′ ″ ___________ (6.64)

Here, α
e
′ and αe

″ are the real and imaginary parts of polarizability, respectively. Th e induced electronic 
dipole moment per unit volume of the material is the electronic polarization of the material. Th is can be 
represented as:

 P t N E
ee

i te( )= ⎡
⎣⎢

⎤
⎦⎥Real α *

0

ω ___________ (6.65)

where N is the number of atoms per unit volume of the material

  P t N i E t i te e e( )= −( ) +( )⎡
⎣⎢

⎤
⎦⎥Real α α ω ω′ ″ 0 cos sin

 = N E N E tα ω α ωe e′ ″0 0cos t sin+ ___________ (6.66)
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Substituting αe′ and αe″ in Equation (6.66), we have:

 P t Ne
m

E t
e ( ) =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

−( )
−

2
0
2 2

0

0
2

ω ω ω

ω ω

cos

22 2 2 2

2

2

4( ) +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟

b
m

Ne
mω

⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−( ) +

2

4

0

0
2 2

2 2

b
m

E t

b
m

ω
ω

ω ω
ω

sin

22

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

___________ (6.67)

Th e fi rst part of polarization is in phase with the applied electric fi eld, whereas the second part of polar-
ization lags 90° with the applied fi eld.

Equation (6.65) can also be represented in terms of dielectric constant as:

 P t N E e E ee e
i t

e( )= ⎡
⎣⎢

⎤
⎦⎥ = −( )Real alα ω* *0 0 01Re ε ε ii tω⎡

⎣⎢
⎤
⎦⎥

So,

 ε α0 1εr eN* *−( )= ___________ (6.68)

Substitute αe* from Equation (6.63) in the above Equation 6.68, we have:

 ε ε
ω ω ω

0

0

2 2

1
2

r

i
b

m

* − =
−( )+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

/
2N e m

or

 ε
ε ω ω ω

r*= +

−( )+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢

1
2

2

0 0
2 2

Ne m

i b
m

/
⎤⎤

⎦
⎥
⎥

___________ (6.69)

A graph has been plotted for the real and imaginary parts of αe* (Equation (6.63)) with ω as shown in 
Fig. 6.7.

In Equation (6.62) for ω = 0 (i.e., dc f ield), the imaginary part becomes zero and the real part is:

 α
ωe

e
m

′ =
2

0
2

For ω < ω
0
, the real and imaginary parts of electronic polarizabilities are positive.

For ω > ω
0
, the real part is negative and the imaginary part is positive.

Figure 6.7 Variation of α′e and α″e with ω for a single electron

a
e′,

 a
″ e

0

2b
m

b/m

b/m

w0 Frequency w

e2 /mw 0
2

a ′e
a ″e
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At ω = ω
0
, the real part is zero and the imaginary part has maximum value. From the graph, it has been 

observed that the real part of polarizability is almost constant up to large frequencies from zero frequency, 
whereas the imaginary part vanishes at ω = 0 and when ω → ∞.

So far, we have discussed with an atomic model in which there is only one electron in the atom. Actually, 
majority of atoms have several electrons and each electron has its own restoring force constant (  f  ) and damp-
ing constant (b). In multielectron atoms, there are several values of ω

0
 (natural frequencies of diff erent atoms). 

For multielectron atom, plots have been drawn for αe′ and ′′αe  versus ω and are shown in Fig. 6.8.

Figure 6.8
  A graph has been drawn between, α α

e e
′ ″, , versus ω for 

multielectron atom

w 02w 01 w 02 w

a ′e
a ″e

a ′e

a ″e

6.7 Piezoelectricity
Th e word ‘Piezo’ means ‘pressure’ in Greek. So, ‘piezoelectricity’ means ‘pressure electricity’. Piezoelectric phe-
nomenon was discovered by Curie brothers in 1880. Piezoelectric eff ect is shown by certain non-centrosymmetric 
crystals, such as quartz, rochelle salt, tourmaline and barium titanate. Electric polarization develops opposite 
charges on their surfaces by stress. On these substances, a mechanical stress produces an electric polarization 
and reciprocally, an applied electric fi eld produces a mechanical strain. Th ese eff ects are called the direct and 
inverse piezoelectric eff ects. Crystals with centres of inversion do not exhibit piezoelectricity.

A crystal can exhibit piezoelectricity only if its unit cell lacks centre of inversion. Fig. 6.9(a) shows the 
three-fold symmetry axis of an unstressed quartz crystal. Th e arrows represents the dipole moments. Th e sum 

O2

Si3P = 0

O2
O2

(a) (b)

P

O2

Si3

O2
O2

Figure 6.9  Three-fold symmetry of quartz crystal: (a) when it is unstressed and
(b) when it is stressed
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6-18 Applied Physics

of three dipole moments at the vertex is zero. When subjected to stress, it gets polarization (P) in the direction 
indicated because of the distortion of the charge symmetry.

Piezoelectric eff ect in quartz crystal is explained here. Quartz crystallizes in hexagonal crystal system. 
A section cut perpendicular to Z-axis (optic axis) is shown in Fig. 6.10. Optic axis in a crystal is a direction 
along which the velocity of ordinary and extraordinary rays is the same. Th e lines joining the opposite corners 
are called X-axis and the lines perpendicular to the opposite faces are known as Y-axis. A plate of quartz 
crystal with its faces perpendicular to X-axis is called X-cut quartz crystal. Similarly, a plate with its faces 
perpendicular to the Y-axis is called Y-cut crystal. Quartz crystal will not show piezoelectric eff ect along the 
optic axis, piezoelectricity is maximum along Y-axis and is medium along X-axis.

X X

X X

Y

X XY

Figure 6.10 Quartz crystal: Section cut perpendicular to Z-axis

Applications:

(1) Piezoelectric eff ect is used in detection and to produce sound waves.
(2) Quartz crystal responds to pressure variations; so, it is used as a pressure transducer.
(3)  Th e natural frequency of quartz crystal does not vary with temperature. Using this property, quartz  crystal 

is used to produce highly stable RF oscillations for broadcasting purposes and in quartz watches to main-
tain accurate time.

6.8 Ferroelectricity
Few dielectric substances such as barium titanate [BaTiO

3
], rochelle salt, KDP (KH

2
PO

4
), ADP [NH

4
H

2
PO

4
], 

LiNbO
3
, KNbO

3
, etc. called ferroelectric materials show spontaneous electric polarization (P ) below Curie tem-

perature (T < T
c
) is known as ferroelectricity. Th is is shown in Fig. 6.11(a). Polarization of a material  without any 

applied external electric fi eld on it below Curie temperature is known as spontaneous polarization.
Th e dielectric constant of a ferroelectric material increases enormously as the temperature of the material 

reduces to its Curie temperature. Th e variation of dielectric constant with temperature is shown in Fig. 6.11(b) 

and is given by Curie-Weiss law ∈ r

C

T T
=

− c

, where C is the Curie constant and T
c
 is Curie temperature.

Another important property of ferroelectrics is that they show hysteresis similar to magnetic materials 
under the action of alternating voltages as shown in Fig. 6.11(c). When an electric fi eld is applied on the 
specimen, the polarization increases along the curve OABC. And when the fi eld is reduced to zero, then a 
certain amount of polarization called remanent polarization, P

r
 is still present in the material. To remove this 

polarization, electric fi eld in the opposite direction must be applied. Th e amount of fi eld required to remove 
remanent polarization is called coercive fi eld (E

c
).
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Th e spontaneous polarization of ferroelectric material is due to asymmetrical ionic displacements in 
the crystal structure as it is cooled through T

c
. Th is can be explained by considering BaTiO

3
 as an example. 

Th e structure of BaTiO
3
 above T

c
 (=120° C) is shown in Fig. 6.12. Th e unit cell of BaTiO

3
 above Curie 

temperature is cubic. Oxygen ions are present at the centres of six cube faces. Th ese six oxygen ions form an 
octahedron confi guration.

P

o Tc
T

(a)

o Tc
T

e

(b)

Ec

Pr

P
C

BA

o E

(c)

Figure 6.11  (a) Spontaneous polarization; (b) Variation of dielectric constant with 
temperature; (c) Hysteresis of a ferroelectric material

Figure 6.12 Ba TiO4 unit cell

O2−

Ti4+

Ba2+

Th e Ti4+ ion is present at the centre of this octahedron. Barium ions occupy the corners of the cube. Th e  
centre of the negative charges coincide with that of the centre of positive charges. So, the net dipole moment 
is zero. As it is cooled through T

c
, the Ti4+ and Ba2+ ions move with respect to O2− ions. X-ray and neutron 

diff raction studies show that the titanium and barium ions move up by 2.8% and oxygen ions move down 
by 1%. Th is favours spontaneous polarization of the material. Th e direction of spontaneous polarization may 
lie along any one of the cube edges, giving six possible directions of polarization; the material expands in the 
direction of polarization and contracts perpendicular to that direction. Th us, the unit cell changes from cubic 
to tetragonal structure. Now, the centre of positive charges is no longer coincident with the centre of negative 
charges. Th is explains spontaneous polarization.
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Applications:

 (i)  Th e ferroelectric material possesses very high value of dielectric constant, so they are used in the  manufacture 
of small-sized and large-capacitance capacitors.

 (ii)  Because of the hysteresis property of ferroelectric materials, they are used in the construction of memory 
devices used in computers.

(iii)  Th e ferroelectric materials show piezoelectric property, so they are used to produce and detect sound waves.
(iv)  Th e ferroelectric materials also show pyroelectric property, so they are used to detect infrared radiation.

6.9 Frequency dependence of dielectric constant
Th e permittivity (∈) of a dielectric material is equal to ∈

0
∈

r 
.Where ∈

r
 is called relative permittivity or dielec-

tric constant of the material and ∈
0
 is the permittivity of free space. Also from Clausius-Mosotti relation, 

we know that the dielectric constant is related to polarizability of the material. So, we can see the variation 
of permittivity and hence relative permittivity or, dielectric constant, in turn, polarizability of a dielectric 
material with the frequency of the applied electric fi eld. Th e fall in the permittivity of a dielectric material 
with increasing frequency of the applied electric fi eld is usually referred to as anomalous dispersion.

Th e behaviour of a dielectric material in alternating electric fi eld shows that the dielectric constant is 
a complex quantity. Th e imaginary part of this dielectric constant represents the dielectric loss of the mate-
rial. When an alternating electric fi eld of frequency less than 106 Hz is applied on a dielectric  material, then 
the orientation of the electric dipoles and hence the polarization will reverse every time as the polarity of 
the fi eld reverses. Th e polarization of the material follows the fi eld without any lag so that the permittiv-
ity remains constant. As the frequency of the applied electric fi eld is increased from 106 Hz to 1011 Hz 
[radiowave frequencies], the electric dipoles present in the material are unable to follow the fi eld, hence 
they lag behind the fi eld and orientational polarization ceases. So, the dielectric constant changes whereas 
ionic and electronic polarizations are present. Dispersion arising during the transition from full orienta-
tional polarization at zero or low frequencies to negligible orientational polarization at high radio frequen-
cies is referred to as dielectric relaxation. Again, if the frequency of the applied electric fi eld is increased 
from 1011 Hz to 1014 Hz [infrared wave frequencies], the heavy positive and negative ions present in the 
material cannot follow the fi eld variations, hence ionic polarization ceases. Th is leads again to the change 
in dielectric constant. Th e dispersion arising during the transition from full atomic polarization at radio-
frequencies to negligible atomic polarization at optical frequencies is referred to as resonance absorption. 
Th e electronic polarization exists up to a frequency of nearly 1015 Hz, because electrons are light particles 
and easily follow the variations of applied voltage. Above this frequency, all polarizations ceases.

Now, we will see the variation of the real part and the imaginary part of dielectric constant in orienta-
tional, ionic and electronic polarizations.

Orientational polarization
Th e complex dielectric constant can be expressed as:

 ∈ (ω) = ∈ ′(ω) − i ∈ ″(ω) 

As shown in Fig. 6.13(a), the real part of dielectric constant ∈ ωe
′( ) is constant equal to ∈ (0) for all  frequencies 

in the range ω
τ

<<
1

, where τ is the orientational relaxation time and ω is the frequency of the applied  voltage. 
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Th is frequency range usually covers all frequencies up to the microwave region. In the frequency range 
ω ≥ 1/τ, the real part of dielectric constant decreases to a constant value equal to n

2
 [called optical dielectric 

constant], where n = refractive index of the material. Th e imaginary part, ∈ ″(ω) has its maximum value at 
ω = 1/τ [or ωτ = 1] and decreases as the frequency departs from this value (i.e., increases or decreases), and 
represents dissipation of electrical energy in the form of heat in the dielectric material. Th e rate of dissipation 
is proportional to ∈ ″(ω) and is maximum at ω = 1/τ.

Ionic polarization
In the high frequency range (IR), the ionic contribution vanishes because at high frequencies, the ions cannot 
follow the oscillations of the fi eld.

Electronic polarization
Th e real part of the dielectric constant ∈ ′(ω) gives the value of the dielectric constant and ∈ ″(ω) gives the 
power dissipated and hence the damping loss, the variations of these are shown in Fig. 6.13(b). ∈ ″(ω) has 
a maximum at ω = ω

0
, this means that the material absorbs energy at the natural frequency. Th is is called 

 resonance absorption. ∈ ′(ω) is strongly frequency-dependent and the susceptibility undergoes a change in 
sign is called anomalous dispersion.

Since the dielectric constant of a material is related with the polarizability ‘α’ of a dielectric substance. 
Th e variation of polarizability with frequency is shown in Fig. 6.14.

6.10 Important requirements of insulators
Insulating materials with diff erent properties are required in electrical, thermal, mechanical and chemical 
applications.

Figure 6.13
  Real and imaginary parts of dielectric constant with frequency of 

alternating voltage: (a) Upto microwave region and (b) At optical 
frequencies

0

n2

0.1 1 10

Œ(w)

Œ′(w)
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Œ′
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w0
w

w

(b)
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(a) Electrical requirements
High-resistivity insulating materials are required to reduce leakage current. To withstand at high voltages, 
high dielectric strength materials are used. Dielectric strength is defi ned as the ability of a material to with-
stand up to a certain maximum electric fi eld without breakdown. An insulator should have, low loss factor, 
high thermal stability, good mechanical strength, high resistivity and high dielectric strength. Mostly, poly-
meric materials like polystyrene, polyethylene, polyvinyl chloride, acrylic plastic, kapron, etc. are used.

Insulating materials used in capacitors should have high permittivity, low loss factors, high resistivity 
values, low frequency dependence of loss factor, good thermal stability, high dielectric strength and dielectric 
constant in the frequency range of operation. Good capacitor materials are TiO

2
, SnO

2
 (or) ZrO

2
, CaO, 

MgO or their mixtures.
Phenolics are widely used as insulating varnishes. Laminated sheets are used as insulating components of 

generators, transformers, etc. Tefl on is one of the best insulators, as it has high resistivity.

(b) Thermal requirements
Some insulating materials such as transformer oil, hydrogen, helium, etc. are used for insulation and cooling 
purposes. Good thermal conductivity is desired for the materials which are used as coolants. Th e insulators 
should possess small coeffi  cients of thermal expansion to prevent mechanical damage. Th e insulators should 
be non-ignitable, if ignitable it should be self-extinguishable.

(c) Mechanical requirements
Depending on the use, the insulating materials should have some required mechanical properties. For  example, 
when an insulator is used in electric machine, it should have suffi  cient mechanical strength to withstand 
vibrations and shock. Insulators are used on the basis of volume and not on weight, hence a low-density 
insulator is preferred.

(d) Chemical requirements
Chemically insulating materials should be resistant to oils, acids, alkalies, gas fumes and liquids. Insulators 
should be non-absorbant of water, because by absorbing water the insulating resistance and dielectric strength 
of the material is reduced.

Micro
wave

Infra
red

Ultra
violet

a

ad

ae

wd w i we w

a1

Figure 6.14 Variation of polarizability with frequency of alternating voltage
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 Solved Problems

 1.  A solid elemental dielectric with 3 × 1028 atoms/m3 shows an electronic polarizability of 10−40 F-m2. Assuming the internal 

electric fi eld to be a Lorentz fi eld, calculate the dielectric constant of the material.

 (Set-3–Sept. 2007), (Set-1–May 2004), (Set-4–Nov. 2004), (Set-1–May 2003)

Sol: Number density of dielectric atoms, N = 3 × 1028/m3

Electronic polarizability, α
e
 = 10−40 F-m2
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Calculate the dielectric constant, ∈
r
 = ?

 α
∈ ∈

e

r

N
=

−( )0 1

 (or)  ∈
α
∈r
e N

= + =
× ×
×

+ = +
−

−
0

40 28

12
1

10 3 10

8 85 10
1

3

8 85
1

. .
== 1 339.

 2.  A parallel plate capacitor has an area of 100 cm2, a plate separation of 1 cm and is charged to a potential of 100 V. Calculate 

the capacitance of the capacitor and the charge on the plates.

 (Set-4–May 2007), (Set-4–May 2004), (Set-3–Nov. 2004), (Set-4–May 2003)

Sol: Area of the capacitor plates, A = 100 cm2 = 10−2 m2

 Separation between the plates, d = 1 cm = 10−2 m

 Potential between the plates, V = 100 V

 Capacitance, C = ? and charge on plates, Q = ?

 We know that:

 C = 
ε0 A

d
  and  Q = CV

 C =
× ×

= ×
− −

−
−8 85 10 10

10
8 85 10

12 2

2

12.
. F

 Q = 8.85 × 10−12 × 100 = 8.85 × 10−10 C

 3.  Th e dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 

2.7 × 1025 atoms per m3.

 (Set-1–Sept. 2007), (Set-4–June 2005), (Set-2–May 2004), (Set-2–May 2003), (Set-4–Nov. 2003)

Sol: Th e dielectric constant, ∈
r
 = 1.0000684

 Number density of He atoms, N = 2.7 × 1025/m3

 Electronic polarizability, α
e
 = ?

 α
∈ ∈

e

r

N
=

−( )0 1

 =
× −[ ]

×

−8 85 10 1 0000684 1

2 7 10

12

25

. .

.
 = 2.242 × 10−41 F–m2.

 4.  A parallel plate of area 650 mm2 and a plate separation of 4 mm has a charge of 2 × 10−10 C on it. When a material of 

dielectric constant 3.5 is introduced between the plates. What is the resultant voltage across the capacitor?

 (Set-1–May 2007), (Set-1–Nov. 2003)

Sol: Area of the capacitor plates, A = 650 mm2 = 650 × 10−6 m2

 Distance of separation between the plates, d = 4 mm = 4 × 10−3 m

 Charge on the plates, Q = 2 × 10−10 C
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 Dielectric constant of the material between the plates, ∈
r
 = 3.5

 Voltage across the capacitor, V = ?

 C
A

d V
= =

∈ ∈0 r C Q
and

 So,  
Q
V

A

d
r=

∈ ∈0

 or  V
Qd

A
=

∈
=

× × ×
× × × ×

− −

−
0

10 3

12

2 10 4 10

8 85 10 3 5 650∈ r . . 110 6− =V 39.73 V.

 5.  A parallel plate capacitor having an area 6.45 × 10 −4 m2 and a plate separation of 2 × 10−3 m, across which a potential of 12 V is 

applied. If a material having a dielectric constant 5.0 is positioned within the region between the plates, compute the polarization.

 (Set-3, Set-4–May 2006), (Set-2–Nov. 2003)

Sol: Area of the plates, A = 6.45 × 10−4 m2

 Separation between the plates, d = 2 × 10−3 m

 Potential across the plates, V = 12 V

 Dielectric constant, ∈
r
 = 5 

 Polarization, P = ?

 Intensity of the electric f ield, E
V

d
=

 P E
V

d
r r= − = −[ ]∈ ∈ ∈ ∈0 01 1[ ]

 = × − ×
×

= ×−
−

−8 85 10 5 1
12

2 10
212 4 1012

3

9. [ ] . C-m

 6.  Th e relative dielectric constant of sulphur is 3.75 when measured at 27 ° C. Assuming the internal fi eld constant γ = 1/3, calculate 

the electronic polarizability of sulphur if its density at this temperature is 2050 Kg/m3. Th e atomic weight of sulphur being 32.

 (Set-1–June 2005), (Set-3–May 2004), (Set-3–May 2003)

Sol: Th e dielectric constant of sulphur, ∈
r
 = 3.75

 Internal fi eld constant, γ =
1

3

 Density of sulphur, D = 2050 Kg/m3

 Atomic weight of sulphur, M = 32

 Electronic polarization α
e
 = ?

 Number of atoms/m3, N = 
N D

M

A ×
  where N

A
 = Avogadro number

 

=
× ×

= ×
6.02 10 2050

32
385.66 10 atoms m

26
26 3/
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 Hence, from Clausius-Mosotti relation 
∈
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⎞
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⎟⎟⎟⎟⎟
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⎛

⎝
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⎞
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⎟⎟⎟⎟⎟

=
⎛
⎝
⎜⎜⎜

⎞
⎠
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25 65
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.

.

.

3385 66
10 38

.

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−

 = 3.18 × 10−40 F−m2

 7.  Th ere are 1.6 × 10 20 NaCl molecules/m3 in a vapour. Determine the orientational polarization at room temperature if 

the vapour is subjected to a dielectric fi eld 5000 V/Cm. Assume that the NaCl molecule consists of sodium and chlorine ions 

separated by 0.25 nm.

 (Set-2–June 2005)

Sol: Number of NaCl molecules, N = 1.6 × 1020/m3

 Room temperature, T = 300 K

 Intensity of electric fi eld, E = 5000 V/Cm = 5 × 105 V/m

 Separation between ions, x = 0.25 nm = 0.25 × 10−9 m

 Orientation polarization, P
d
 = ?

 P
N p E

K T
d =

2

3 B

; dipolemoment, p = ex

 where K
B
 = Boltzmann constant = 1.381 × 10−23 J/K

 ∴  P
N E

K T
d =

( )
=

× × ×( ) × ×−
ex

2 20 19 2

3

1 6 10 1 6 10 0 25 1

B

. . . 00 5 10

3 1 381 10 300

9 2 5

23

−

−

( ) × ×

× × ×.

 = 1.0298 × 10−11 C-m.

 8.  Th e dielectric constant of helium, measured at 0° C and 1 atmosphere is ∈
r
 = 1.0000684. Under these conditions the gas 

contains 2.7 × 10 25 atoms/m3. Calculate the radius of the electron cloud. Also calculate the displacement when a helium atom 

is subjected to an electric fi eld of 10 6 V/m.
 (Set-3–Sept. 2006)

Sol: Th e dielectric constant, ∈
r
 = 1.0000684

 Number density of He atoms, N = 2.7 × 1025 atoms/m3

 Electronic polarizability, α
e
 = ?

     
αe

r

N
=

−
=

× −
×

−∈ ∈0
12

2

1 8 85 10 1 0000684 1

2 7 10

( ) . [ . ]

. 55

         = 2.242 × 10−41 F-m2

 Electric fi eld applied, E = 106 V/m
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 Radius of electron cloud, r = ?

 Displacement of centres of charges, d = ?

      α
e
 = 4π∈

0
r 3

 or  r e3

0

41

124

2 242 10 7

4 22 8 85 10
= =

× ×
× × ×

−

−

α
π∈

.

.

       = 0.02 × 10−29 = 200 × 10−33

           ∴  r = 5.848 × 10−11 m

 

d
r E

Ze

E

Ze
e=

×
= ×

×3
0

0

04

4

4π α
π

π∈
∈

∈

        

= =
× ×

× ×

−

−

αeE

Ze

2 242 10 10

2 1 6 10

41 6

19

.

.

          = 0.7 × 10−16 m

 9.  A parallel plate capacitor of area 750 mm2 possess a charge of 2.5 × 10−10 C when the plates are separated by 5 mm and the 

space between plates is fi lled with a material of dielectric constant of 3.5. Find the voltage across the capacitor plates.

Sol: Area of plates, A = 750 mm2 = 750 × 10−6 m2

 Separation of plates, d = 5 mm = 5 × 10−3 m

 Charge on plates, Q = 2.5 × 10−10 C

 Dielectric constant of material, ∈
r
 = 3.5

 Voltage across the plates, V = ?

 C
A

d
=

∈ ∈0 r ___________ (1)  and  C
Q

V
= ___________ (2)

 Equation (1) = (2)

 C
A

d

Q

V
r= =

∈ ∈0   (or)  V
Qd

Ar

=
∈ ∈0

 =
× × ×

× × × ×

− −

− −

2 5 10 5 10

8 85 10 3 5 750 10

10 3

12 6

.

. .

 =
× ×
× ×

=
2 5 5 10

8 85 3 5 750
53 8

5.

. .
.V V

10.  A monoatomic gas contains 3 × 10 25 atoms/m3 at 1 atmospheric pressure and at room temperature. Th e radius of gaseous 

atoms is 0.2 nm. Find the dipole moment per unit electric fi eld, polarization, dielectric constant and polarizability.

Sol: Number of atoms per unit volume, N = 3 × 10 25/m3

 Radius of atoms, r = 0.2 nm = 0.2 × 10−9 m

 Dipole moment p = ?

 Polarization, P = ?
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 Dielectric constant, ∈
r
 = ?

 and Polarizability, α
e
 = ?

 Dipole moment per unit electric fi eld, p = 4π∈
0
r 3

 = × × × × ×⎡
⎣⎢

⎤
⎦⎥

− −4
22

7
8 85 10 0 2 1012 19 3. .

 = 8.9 × 10−40 F–m2

 Polarization, P = Np = 3 × 10 25 × 8.9 × 10 −40 = 26.7 × 10 −15 C-m

 To fi nd dielectric constant, ∈
r
:

 
P

∈
∈

0

1
E

= −r

 P Er= −[ ]∈ ∈0 1

 3 10 4
22

7
8 85 10 0 2 10 8 85 1025 12 9 3

× × × × × × ×( ) = ×− −. . . −− −[ ]×12 1 1∈ r

 ∈
r
 − 1 = 0.00302  (or)  ∈

r
 = 1.00302

 Polarizability, α
e
 = 

∈ ∈0
12

25

1 8 85 10 0 00302

3 10

r

N

−( )
=

× ×
×

−. .

 = 8.91 × 10−40 F–m2

11.  Th e relative permittivity of argon at 0 ° C and at 1 atmospheric pressure is 1.000435. Calculate the polarizability of the 

atom if the gas contains 2.7 × 10 25 atoms/m3. Given ∈
0
 = 8.85 × 10−12 F/m

Sol: Relative permittivity, ∈
r
 = 1.000435

 Number density of atoms, N = 2.7 × 1025 atoms/m3

 Polarizability of the atom, α
e
 = ?

 α
∈ ∈

e
r

N
=

−0 1( )

 =
× −[ ]

×
= ×

−
−8 85 10 1 000435 1

2 7 10

12

25

. . ]

.
1.426 10 400 2F m−

12.  If the relative permittivity of sulphur is 4.0, calculate its atomic polarizability. [given that sulphur in cubic form has a 

 density of 2.08 × 10 3 kg/m3 and its atomic weight is 32]

Sol: Relative permittivity of sulphur, ∈
r
 = 4.0

 Polarizability, α
e
 = ?

 
α

∈ ∈
e

r

N
=

−0 1( )
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 where N = number density of atoms

 

N
N D

=
×

=
× × ×A

atomic weight

6 02 10 2 08 10

32

26 3. .

 

 
=

× ×
= ×

6 02 2 08 10

32
0 3913 10

29
29. .

.

 
α

∈ ∈
e

r

N
=

−0 1( )

 = 
8 85 10 4 1 32

6 02 2 08 10

8 85 3 3212

29

. [ ]

. .

.× × − ×
× ×

=
× ×−

66 02 2 08
10 41

. .×
× −

 = 6.785 × 10−40 F-m2 

 Multiple Choice Questions

 1. Dielectrics are: ( )

 (a) metals  (b) semiconductors
 (c) insulating materials  (d) none

 2. Local electric fi eld is calculated by using the method suggested by: ( )

 (a) Lorentz  (b) Weiss  (c) Curie (d) Coulomb

 3.  If P is the polarization of a dielectric material of dielectric constant ∈
0
 and E is the macroscopic electric fi eld, then 

internal fi eld is: ( )

 (a) E
P

+
∈ 0

  (b) E P
+
3 0∈

 (c) E
P

+
3

0∈
  (d) 3

0

E
P

+
∈

 4. A dielectric material can be polarized by applying ___________ fi eld on it. ( )

 (a) magnetic   (b) gravitational
 (c) electric  (d) meson

 5. Polarization per unit applied electric fi eld is called: ( )

 (a) electric susceptibility  (b) magnetic susceptibility
 (c) electric polarization  (d) dielectric constant

 6. In the absence of an external electric fi eld on a dipolar substance, the electric dipoles are: ( )

 (a) parallel  (b) alternatively anti-parallel
 (c) randomly oriented  (d) none

 7. Th e total polarizability of a substance is equal to: ( )

 (a) orientational and ionic polarizabilities (b) ionic and electronic polarizabilities
 (c) both a and b  (d) none
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 8.  Th e dipolar polarizability for low applied electric fi elds, at temperature ‘T  ’ on a dipolar substance is [K
B
 = Boltzmann 

constant and p = dipole moment] ( )

 (a) 
p

K T

2

3 B

  (b) 
3 2p

K TB

 (c) 
p

K T3 2
B

  (d) 
3

2

p

K TB

 9. Dipolar polarization is actually applicable to: ( )

 (a) gases (b) liquids (c) solids (d) both a and b

10. Th e observed ionic polarizability of NaCl molecule is: ( )

 (a) 1.3 × 10−24 F-m2  (b) 3.3 × 10−24 F-m2

 (c) 3.1 × 10−24 F-m2  (d) 5.3 × 10−24 F-m2

11. Th e eff ective ionic charge in NaCl crystal is: ( )

 (a) 1e (b) 1.3e (c) 0.7e (d) 0.5e

12. If r is the radius of an atom and ∈
0
 is the permittivity of free space, then electronic polarizability is: (  )

 (a) 4π∈
0
r 2 (b) 4π∈

0
r 3 (c) 4π2∈

0
r 3 (d) 4π∈

0
2r 3

13. Piezoelectric eff ect is shown by: ( )

 (a) quartz  (b) rochelle salt
 (c) barium titanate  (d) all the above

14. Piezoelectric eff ect in quartz crystal is maximum along: ( )

 (a) X-axis (b) Y-axis (c) Z-axis (d) optic axis

15. Piezoelectric eff ect is used: ( )

 (a) to produce sound waves (b) to detect sound waves
 (c) as a pressure transducer (d) all

16. Quartz crystal is used: ( )

 (a) to produce highly stable RF oscillations for broadcasting
 (b) in watches to maintain accurate time
 (c) both a and b
 (d) none

17. Ferroelectric materials are used: ( )

 (a) to detect infrared radiation (b) to produce and detect sound waves
 (c) in the construction of memory devices (d) all

18. Ferroelectric materials are: ( )

 (a) barium titanate and rochelle salt (b) KH
2
PO

4
 and NH

4
H

2
PO

4

 (c) LiNbO
3
 and KNbO

3 
 (d) all the above

19. Th e ionic polarization ceases at ___________ frequency of the applied electric fi eld. ( )

 (a) 1011 Hz (b) 1013 Hz (c) 1014 Hz (d) 106 Hz
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20. Insulating material used in capacitors should have: ( )

 (a) high permittivity and low loss factors 
 (b) high resistivity and low frequency dependence of loss
 (c) good thermal stability and high dielectric strength
 (d) all

21. Chemically, an insulating material should be resistant to: ( )

 (a) oils and acids  (b) alkalies and gas fumes
 (c) liquids  (d) all the above

22. Dielectric material is used between the capacitor plates to: ( )

 (a) increase electric fi eld  (b) increase capacitance
 (c) decrease capacitance  (d) decrease electric fi eld

23.  Dipole moment is defi ned as the ___________ of one of the charge and separation between the charges. ( )

 (a) product  (b) sum (c) ratio (d) none

24.  Th e resultant electric fi eld acting on the atoms or molecules of dielectric substance is known as
 ___________ . ( )

 (a) local fi eld  (b) internal fi eld (c) both a & b (d) none

25. Clausius-Mosotti relation makes relation between microscopic and macroscopic quantities of: ( )

 (a) electric fi eld   (b) capacitance
 (c) polarization  (d) none

26. Dipole moment per unit volume of material is called: ( )

 (a) polarization  (b) polarizability
 (c) both a & b   (d) none

27. In the absence of an applied electric fi eld on a dipolar substance, the polarization is: ( )

 (a) fi nite   (b) zero
 (c) high  (d) all the above

28. By applying electric fi eld on a dipolar substance, it results in ___________ polarization. ( )

 (a) electrical   (b) ionic 
 (c) orientational  (d) all the above

29. Th e total polarizability of a substance, it is the sum of ___________ polarizabilities: ( )

 (a) dipolar  (b) ionic
 (c) electric  (d) all the above

30. Orientational polarization is due to the ___________ of polar molecules in dielectric substance. ( )

 (a) rotation   (b) change in separation
 (c) both  (d) none

31. In Greek, piezoelectricity means: ( )

 (a) pressure electricity   (b) thermal electricity
 (c) friction electricity  (d) hydroelectricity

32. Piezoelectric eff ect is shown by certain ___________ symmetric crystals. ( )

 (a) centro  (b) non-centro
 (c) mirror centro  (d) none
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33. Piezoelectric eff ect was discovered by ___________ in 1880. ( )

 (a) Weiss   (b) Th omson
 (c) Curie brothers  (d) Alison

34. Crystals with centre of inversion ___________ exhibit piezoelectric eff ect. ( )

 (a) do  (b) do not
 (c) both a & b  (d) none

35. Piezoelectric eff ect is a ___________ eff ect. ( )

 (a) reversible  (b) irreversible
 (c) both  (d) none

36. Quartz crystal ___________ piezoelectric eff ect along the optic axis. ( )

 (a) will show  (b) will not show
 (c) both a & b  (d) none

37. Th e natural frequency of quartz crystal ___________ with temperature. ( )

 (a) do vary  (b) do not vary
 (c) both a & b   (d) none

38. Spontaneous polarization means, polarization of a material ___________ external electric fi eld.  ( )

 (a) without applying  (b) with applying
 (c) both  (d) none

39.  Th e dielectric constant of a ferroelectric material increases enormously as the temperature of the material reduces 
to its ___________ temperature  ( )

 (a) Debye  (b) de Broglie
 (c) Curie  (d) Neel

40. Ferroelectrics show ___________ under the action of alternating voltages. ( )

 (a) polarization  (b) polarizability
 (c) hysteresis  (d) none

41. Th e crystal structure of BaTiO
3
 above its curie temperature is ___________ . ( )

 (a) cubic  (b) hexagonal
 (c) rhombohedral  (d) triclinic

42.  As the temperature of BaTiO
3
 is reduced to below curie temperature, the titanium and barium ions move up by 

2.8% and oxygen ions move down by ___________ %. ( )

 (a) 5 (b) 3 (c) 2 (d) 1

43. Ferroelectric materials are used in the manufacture of small-sized, ___________ capacitance capacitors. ( )

 (a) small (b) large (c) medium (d) none

44.  Th e fall in permittivity of dielectric material with increasing frequency of applied electric fi eld is usually referred 
to as: ( )

 (a) anomalous dispersion (b) optical dispersion
 (c) refraction  (d) none

45. Th e imaginary part of dielectric constant represent ___________ of the material. ( )

 (a) dispersion  (b) polarization
 (c) the dielectric loss  (d) none
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46. Th e dipolar polarization ceases at ___________ frequency of applied electric fi eld. ( )

 (a) 103 Hz (b) 106 Hz (c) 1011 Hz (d) 1014 Hz

47. Th e electronic polarization exists up to a frequency of ___________ . ( )

 (a) 1015 Hz (b) 1018 Hz (c) 1020 Hz (d) 1022 Hz

48.  Th e real part of dielectric constant is strongly frequency-dependent and undergoes a change in sign called  
___________ dispersion. ( )

 (a) optical   (b) anomalous
 (c) both a & b  (d) none

49. High dielectric strength and high resistivity insulating materials are required to: ( )

 (a) withstand high voltages (b) reduce leakage currents
 (c) both a & b  (d) none

50.  An insulating material used in electric machine should have suffi  cient mechanical strength to withstand: ( )

 (a) vibrations  (b) shock (c) both a & b (d) none

51. Th e relation between polarizability and dielectric constant is given by: ( )

 (a) Clausius-Mosotti relation  (b) Th omson relation
 (c) Curie-Weiss relation  (d) none

 Answers

 1. c  2. a  3. b  4. c  5. a  6. c  7. c  8. a  9. d  10. b 11. c
12. b 13. d 14. b 15. d 16. c 17. d 18. d 19. c 20. d 21. d 22. b
23. a 24. c 25. c 26. a 27. b 28. d 29. d 30. a 31. a 32.  b 33. c
34. b 35. a 36. b 37. b 38. a 39. c 40. c 41. a 42. d 43. b 44. a
45. c 46. b 47. a 48. b 49. c 50. c 51. a

 Review Questions

 1. What is piezo electricity? (Set-1–Sept. 2007), (Set-2–May 2004), (Set-2–May 2003)

 2. With usual notations, show that P = ∈
0
(∈

r
 − 1)E.

 (Set-3–Sept. 2007), (Set-1–May 2004), (Set-4–Nov. 2004), (Set-1–May 2003)

 3. What is dipolar relaxation? Discuss the frequency dependence of orientational polarization.
 (Set-3–Sept. 2007), (Set-1–May 2004), (Set-4–Nov. 2004), (Set-1–May 2003)

 4.  Explain electronic polarization in atoms and obtain an expression for electronic polarizability in terms of the radius 
of the atom.

 (Set-4–May 2007), (Set-4–May 2004), (Set-3–Nov. 2004), (Set-4–May 2003)

 5. Explain Clausius–Mosotti relation in dielectrics subjected to static fi elds.
 (Set-1–Sept. 2008), (Set-1–June 2005), (Set-3–June 2005), (Set-3–May 2003)

 6.  What is orientational polarization? Derive an expression for the mean dipole moment when a polar material is 
subjected to an external fi eld.

 (Set-1–June 2005), (Set-3–May 2004), (Set-3–May 2003)
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 7.  Obtain an expression for the internal fi eld seen by an atom in an infi nite array of atoms subjected to an external fi eld.
 (Set-1–Sept. 2007), (Set-2–May 2004), (Set-2–May 2003)

 8. What are the important characteristics of ferroelectric materials?
 (Set-4–June 2005), (Set-2–Nov. 2004), (Set-4–Nov. 2004)

 9. Describe the possible mechanisms of polarization in a dielectric material. (Set-4–June 2005), (Set-4–Nov. 2004)

10. Explain the polarization mechanism in dielectric materials. (Set-1–May 2007), (Set-1–Nov. 2003)

11. What are the important requirements of good insulating materials?
 (Set-1–May 2007), (Set-3–Sept. 2006), (Set-1–Nov. 2003), (Set-3–Nov. 2003)

12.  Explain the concept of internal fi eld in solids and hence obtain an expression for the static dielectric constant in 
elemental solid dielectric.

 (Set-3, Set-4–May 2006), (Set-2–Nov. 2003)

13. Discuss in detail the origin of ferroelectricity in barium titanate. (Set-3–Sept. 2006), (Set-3–Nov. 2003)

14. Explain the characteristics and function of transformer oil in transformers. (Set-2–Nov. 2004)

15. Explain briefl y the classifi cation of ferroelectric materials. (Set-2–June 2005)

16.  What is meant by a local fi eld in a solid dielectric? Derive an expression for the local fi eld for structures possessing 
cubic symmetry.

 (Set-2–June 2005)

17.  Give a schematic sketch of the variation of the total polarizability of a dielectric as a function of the frequency, 
explaining the physical origin of the various contributions and the relevant frequency ranges.

 (Set-2–Nov. 2004)

18. Discuss the variation of spontaneous polarization of roschelle salt with temperature.
 (Set-3–June 2005), (Set-1–May 2004)

19. Obtain an expression for the static dielectric constant of a monoatomic gas.
 (Set-3–June 2005), (Set-1–May 2004)

20. Explain the phenomenon of anomalous dielectric dispersion. (Set-1–May 2004)

21. What is intrinsic breakdown in dielectric materials?
 (Set-4–May 2007), (Set-4–May 2004), (Set-4–May 2003), (Set-3–Nov 2004)

22. Explain the electrochemical breakdown in dielectric materials. (Set-3, Set-4–May 2006)

23. Obtain a relation between electronic polarization and electric susceptibility of the dielectric medium.
 (Set-2–May 2007)

24.  What is dielectric breakdown? Explain briefl y the various factors contributing to breakdown in dielectrics.
 (Set-2–May 2007)

25.  What is orientational polarization? Explain. Obtain an expression for the mean dipole moment when a polar mate-
rial is subjected to an external electric fi eld.

 (Set-2–Sept. 2007)

26.  Describe the phenomenon of electronic polarization and obtain an expression for electronic polarization. 

 (Set-3–May 2008)

27. Write notes on (i) Ferro electricity and (ii) Piezo electricity. (Set-1, Set-2, Set-3–May 2008)

28.  Explain the following (i) Dielectric constant, (ii) Electric susceptibility, (iii) Electric polarization and (iv) Polariz-
ability.

 (Set-1, Set-2–May 2008)
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29. Explain the following: (i) Polarization vector and electric displacement. (Set-4–Sept. 2008)

30. Deduce an expression for Lorentz fi eld relating to a dielectric material. (Set-4–Sept. 2008)

31. Explain the following: (i) Electric polarization and (ii) polarizability. (Set-1–Sept. 2008)

32. Describe the frequency dependence of dielectric constant.

33. Derive Clausius–Mosotti equation.

34. Explain the origin of diff erent kinds of polarization.

35. Explain the ionic and orientation polarization.

36. Explain qualitatively frequency dependence of dielectric constant.

37. Explain the important requirements of insulators.

38. Explain the phenomenon of ferroelectricity with particular reference to barium titanate.

39. What is the frequency dependence of dielectric constant for a dielectric material?

40. Explain clearly the phenomenon of ferroelectricity.

41. Explain the theory of ferroelectricity and piezoelectricity.

42. State and explain the terms in Clausius–Mosotti relation.

43. Describe diff erent types of polarization mechanisms.

44. What are important requirements of good insulating materials?

45. Write a note on piezoelectrics.

46.  Write in detail various types of polarization in dielectrics and derive an expression for the orientational polarization 
at a specifi ed temperature.

47. Derive an expression for the internal electric fi eld in dielectrics exposed to a external electric fi eld E.

48.  Derive Clausius–Mosotti equation of dielectrics and explain the concept of complex dielectric constant.

49. Explain local fi eld. Derive the expression for internal fi eld for solids.

50. Arrive at the relation between the dielectric constant and atomic polarizability.

51.  Obtain Clausius–Mosotti equation and explain how it can be used to determine the dipole moment of a polar 
molecule.

52. How does the total polarizability depend on frequency?

53. Explain piezoelectricity.

54. Derive the expression for dipolar polarizability.

55. Explain electronic polarization. Derive the expression for electronic polarizability.

56. Explain ferroelectricity. Mention its applications.
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Magnetic Properties

7.1 Magnetic permeability
Magnetic permeability represents the ease with which a material allows magnetic force of lines to pass through 
it. Th e permeability of vacuum or free space is denoted by μ

0
 and it is taken as the standard with respect to 

this the permeability of all materials is expressed. Th e permeability of the medium of a material is denoted as 
μ; it is the product of the permeability of free space (μ

0
) and relative permeability (μ

r
).

∴  μ = μ
r
 μ

0
 H/M

μ
r
 is purely a number; it has no units. Th e permeability of free space is:

μ
0
 = 4π × 10−7 H/M

Let B be the magnetic fl ux density in a magnetic material by applying magnetic fi eld of intensity H and 
B

0
 be the fl ux density at the same place if the material is removed [i.e., in air or vacuum].  Th en, B

0
 ∝ H

B
0
 = μ

0
H ___________ (7.1)

Similarly, B = μH ___________ (7.2)

Dividing Equation (7.2) by Equation (7.1)

 B

B
0 0

= =
μ
μ

μ
r

___________ (7.3)

Th erefore, the relative magnetic permeability of a material is defi ned as the ratio of magnetic fl ux density 
[or magnetic induction] in a material to that in vacuum under the same applied magnetic fi eld. Th e magnetic 
induction is the magnetic fl ux over unit area of a surface held normal to the fl ux. It is denoted by B and its 
SI unit is Tesla [Tesla = Wb/m2]. Th e SI unit of magnetic fi eld strength H is A/m and that of μ is wb/A-m 

or H/m. Th e Maxwells equations exhibit that the speed of light in a medium V( ) =
1

με

C H A P T E R 7
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In vacuum, C =
1

0 0μ ε
, where ε

0
 and ε are the permittivity of free space and permittivity in a material 

medium respectively

7.2 Magnetization (M )
A magnetic material acquires magnetism in an applied magnetic fi eld. Th e magnetization is due to the 
 rotation of magnetic dipoles of atoms or molecules of the substance in the direction of the applied magnetic 
fi eld. Th e magnetic dipole moment per unit volume of the material is called intensity of magnetization or 
simply magnetization (M ).

∴ =Magnetization ( )
Magnetic dipole moment of material

Volume of th
M

ee material
A

m

Th e magnetic fl ux density or magnetic induction (B) inside the material is directly proportional to the 
applied magnetic fi eld (H  ) on the material.

i.e.,  B ∝ H  (or)  B = μH = μ
0
μ

r
 H ___________ (7.4)

where μ = magnetic permeability of the material, Equation (7.4) can be written as:

B = μ
0
μ

r
 H + μ

0
H − μ

0
H = μ

0
H + μ

0
H [μ

r
 − 1] ___________ (7.5)

Th e magnetic induction inside the material is due to the applied fi eld H and due to magnetization M of 
the material.

So,  B = μ
0
(H + M ) = μ

0
H + μ

0
M ___________ (7.6)

Comparing Equations (7.5) and (7.6), we have:

M = H [ μ
r
 − 1] ___________ (7.7)

Equation (7.5) indicates that the magnetic fl ux density in a magnetic material by applied magnetic fi eld 
is equal to the sum of the eff ect on vacuum and that on the material. Th e ratio of magnetization (M ) to the 
applied magnetic fi eld strength (H  ) is called the magnetic susceptibility ( χ ) of the material.

∴ =χ
M

H

Using Equation (7.7), χ = μ
r
 − 1

7.3  Origin of magnetic moment—Bohr 
magneton—electron spin

We know that electric current through a conductor develops magnetic fi eld around it or current through a coil 
of wire will act as a magnet. Th is informs that there is an intimate relation between electric current and magnetic 
fi eld. Flow of electrons along a path constitute electric current. In all atoms, electrons are  revolving around the 
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nucleus in diff erent orbits. Th ese revolving electrons constitute an electrical current in the orbits. Th ese currents 
form magnetic dipoles. As electrons in an atom are revolving in diff erent orbits that are  randomly  oriented, so 
the magnetic dipoles due to orbital motion of electrons are randomly oriented, results in zero magnetic dipole 
moment. Th e spin of orbital electrons and the spin of nucleus also contribute to the magnetic eff ects to an atom. 
Under an external applied magnetic fi eld, these dipoles experience torque in the direction of the applied fi eld and 
the atom acquires certain magnetism. Th erefore, the magnetic dipole moment of an atom is due to the orbital 
motion of electrons, spin of electrons and spin of nucleus. We will study these contributions in detail separately.

(i)  Magnetic moment due to orbital motion of electrons 
and orbital angular momentum

As shown in Fig. 7.1, let an electron moving with a constant speed ‘v ’ along a circular orbit of radius ‘r ’. Let 
‘T ’ be the time taken to complete one revolution and −e be the charge on an electron. Th e charge that crosses 

any reference point in the orbit in unit time is 
−e

T
 and this is equal to current in the orbit. So, current in the 

orbit:

I =
−e

T
___________ (7.8)

r Electron orbit
L = mevr

μl

Figure 7.1 Orbital angular momentum of an electron

Th e magnetic moment (μ
l 
) associated with the orbit due to orbital motion of electron is:

μ
l
 = I A ___________ (7.9)

where  A = area of the orbit = πr 2

Equation (7.9) becomes:

μ
π

l

e r

T
=

− 2

___________ (7.10)

Th e angular velocity,  ω
π π

ω
= =

2
or

2

T
T( ) ___________ (7.11)

Substituting Equation (7.11) in Equation (7.10), we have:

μ
π ω
π

ω
l

e r er r erv
=

−
=

− ( )
=

−2

2 2 2
___________ (7.12)

Since linear velocity (v) = rω
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Multiplying and dividing Equation (7.12) with mass of electron, m
e

 μl

em vr

m

eL

m
=

−
=

−e

e e2 2
___________ (7.13)

where L = orbital angular momentum of the electron.
Th e negative sign in Equation (7.13) indicates that the angular momentum vector and magnetic momentum 
vector are in opposite direction. In quantum theory, the angular momentum is expressed as 

 L = l � ___________ (7.14)

where l = 0, 1, 2, 3, etc. for s, p, d, f, etc. electrons and � =
h

2π
.

Substituting Equation (7.14) in Equation (7.13), we get:

 μl

el

m
=

− �
2 e

___________ (7.15)

In the above equation, the quantity 
e

m

�
2 e

 is an atomic unit called Bohr magneton represented as μ
B
 and its 

value is equal to 9.27 × 10–24 A–m2.

 ∴  μ
l
 = −lμ

B
___________ (7.16)

In many substances, the orbital magnetic moment of one electron in an atom gets cancelled by the orbital 
magnetic moment of other electron revolving in opposite direction in the same atom. Th us, the resultant 
magnetic dipole moment of an atom and in turn the substance is zero or very small.

(ii) Magnetic moment due to spin of the electrons
In addition to orbital motion, the electrons spin around its own axis. Th e magnetic moment due to the spin 
of electrons is represented as μ

s
. Th is is analogous to Equation (7.13), in which orbital angular momentum is 

replaced by the spin angular momentum ‘S ’ given by:

 μ γs

e

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

e

m
S

2
___________ (7.17)

where γ is called spin gyromagnetic ratio and it is defi ned as the ratio of the magnetic dipole moment to 
the angular momentum of an electron. Th e experimental value of γ for an electron is −2.0024. According to 

quantum theory, the spin angular momentum of an electron (S) is S = 
1

2
�. Th e magnetic moment due to the 

spin of the electron is given by:

 μ γs =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

e

m2 2e

�
___________ (7.18)

Substituting these values in the above equation:

μ
s
 = 9.4 × 10−24 A−m2
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Th e magnetic moments due to the spin and the orbital motions of an electron are of the same order of 
magnitude.

If the atoms of a material consist of an even number of electrons, then the spin magnetic moments of 
pairs of electrons get cancelled due to the opposite spin. On the other hand, if the material consists of an odd 
number of electrons, then at least one electron remains unpaired and this leads to the magnetic moment of 
the atoms.

(iii) Magnetic moment due to nuclear spin
Similar to electrons, the protons present in nucleus possess spin; the vectorial sum of all the protons spins is 
equal to the nuclear spin. Th e magnetic moment of a nucleus is expressed as nuclear magneton (μ

n 
) given as:

 μn =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
e

m2 p

� ___________ (7.19)

 where m
p
 = mass of a proton.

Th e value of μ
n
 is equal to 5.05 × 10−27 A-m2. Since mass of a proton is nearly 2000 times heavier than 

an electron, so μ
n
 is very small compared to μ

B
 and it can be neglected. Th erefore, the total magnetic moment 

of an atom will be mainly the vectorial sum of the orbital and spin magnetic moments of electrons.

7.4 Classifi cation of magnetic materials
By the application of magnetic fi eld, some materials will not show any eff ect that are called non-magnetic 
materials and those which show some eff ects are called magnetic materials. All magnetic materials magne-
tizes in an applied external magnetic fi eld. Depending on the direction and magnitude of magnetization and 
also the eff ect of temperature on magnetic properties, all magnetic materials are classifi ed into dia, para and 
ferromagnetic materials. Two more classes of materials have structure very close to ferromagnetic materials, 
but possess quite diff erent magnetic properties. Th ey are anti-ferromagnetic and ferrimagnetic materials. Th e 
properties of these materials are described below.

(i) Diamagnetic material
Diamagnetic materials are repelled by the applied magnetic fi elds and they magnetize to a small extent in 
the opposite direction to that of an applied external magnetic fi eld. Th e magnetic susceptibility is small 
and negative for these materials. Magnetic susceptibility represents the ease of magnetization of a sub-
stance and is equal to the ratio of magnetization of a material to the applied magnetic fi eld. Th e relative 
permeability (μ

r 
) is less than 1 for these materials. Examples are gold, copper, silver, bismuth, lead, zinc 

and noble gases.

(ii) Paramagnetic materials
Th ese materials are feebly attracted by external magnetic fi elds and they magnetize in the direction of the 
applied magnetic fi eld. Th e magnetic susceptibility is small and positive. Th e relative permeability is greater 
than 1 for these materials. Paramagnetism is due to the spin and orbital, motion of the electrons. Examples 
are aluminium, platinum, manganese chloride, salts of iron, nickel, tungsten and nitrogen.
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(iii) Ferromagnetic materials
Th ese materials are strongly attracted by magnetic fi elds and they magnetize in the direction of the applied 
external magnetic fi eld. Th e magnetic susceptibility is positive and large. Th e relative permeability is greater 
than 1 for these materials. Th e atoms or molecules of ferromagnetic materials have magnetic dipole moment 
due to the spin of the electrons. Th e permanent magnetic dipoles are all shown in Fig. 7.2(a). Examples are 
iron, cobalt, nickel and their alloys, Gadolinium and Dysprosium.

(iv) Anti-ferromagnetic materials
Antiferromagnetic materials show very little external magnetism. Magnetic susceptibility of these 
materials is positive and small. The atoms or molecules of anti-ferromagnetic materials possess magnetic 
dipole moment due to the spin of electrons. The magnetic dipole moments of adjacent atoms are anti-
parallel as shown in Fig. 7.2(b). Due to the anti-parallel magnetic dipole moments, the magnetic effect of 
an anti-ferromagnetic material is zero, but possess magnetism due to temperature-dependent disruption 
of the magnetic moment alignment. Examples are copper chloride, oxides of manganese, cobalt and 
nickel.

(v) Ferrimagnetic materials [Ferrites]
Th e magnetization of ferrimagnetic materials is intermediate to that of ferromagnetic and anti-ferromagnetic 
materials. Th e magnetic susceptibility is large and positive. Th e magnetic dipole moments of adjacent atoms 
or molecules of ferrimagnetic materials are anti-parallel and unequal in magnitude as shown in Fig. 7.2(c). 
Th is unequal magnetic dipole moments of adjacent atoms result in a net magnetization in the material. Exam-
ples are all ferrites have a general formula MOFe

2
O

3
, in which M stands for any divalent ion, for example 

copper, zinc, cadmium, iron, cobalt, nickel, etc.

7.5  Classical theory of diamagnetism 
[Langevin theory]

In this theory, we will obtain an expression for the change in magnetic moment of an orbiting electron in a 
diamagnetic atom and the induced magnetic moment per unit volume of diamagnetic material in the applied 
magnetic fi eld B

0
.

Figure 7.2
  Magnetic dipole moments for adjacent atoms of (a) Ferro;

(b) Antiferro and (c) Ferrimagnetic substances

(c)(a) (b)
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A revolving electron in an orbit constitutes electric current in the orbit. Th is electric current produces 
magnetic fi eld perpendicular to the plane of the orbit. Th e electrons in an atom are revolving in diff erent 
orbits, oriented in random directions. So, the sum of the magnetic moments produced by all these orbiting 
electrons in an atom is zero. Let the angular velocity of an electron in an orbit of radius ‘r ’ is ‘ω

0
’ before 

applying magnetic fi eld. Th e current in the orbit is I e
e

T

eV

r

e
= −( ) =

−
=

−
=

−ω
π π

ω
π

0 0 0

2 2 2
 [since V

0
 = rω

0
]. 

Th e magnetic moment due to the orbiting electron

 μ
ω
π

π
ω

l IA
e

r
e r( ) = =

− ( ) =
−0 0

2

2 2
2 ___________ (7.20)

where A is the area inside the orbit. As shown in Figs. 7.3(a) and (b), the electrostatic force of attraction 
(F

e
) between a proton and an orbiting electron constitutes centripetal force on the electron and it is equal to

mr
mv

r
ω0

2 0
2

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

where v
0
 = linear velocity of the electron.

 F mre = ω0
2 ___________ (7.21)

After applying magnetic fi eld B
0
, an additional force F

B
 acts on the electron. Depending on the direction 

of the applied magnetic fi eld and depending on the direction of rotation of electron, the force F
B
 either adds 

to F
e
 or reduces F

e
. Let the centrifugal force after applying magnetic fi eld be F (= mrω2), where ω = ω

0
 ± Δω, 

Δω = change in the angular frequency of electron after applying magnetic fi eld.
Th en, we have:

F = F
e
 ± F

B
___________ (7.22)

Th e additional force is equal to:

F
B
 = B

0
 (−e) V = −B

0
erω ___________ (7.23)

Equation (7.22) becomes:

 
mr mr B erω ω ω2

0
2

0= ±

Figure 7.3
  (a) Electron revolving in an orbit of radius ‘r’ around a proton in the 

absence of an external magnetic fi eld; (b) Electron revolving in an orbit 
of radius ‘r ’ around a proton in the presence of applied magnetic fi eld B0

V

−e

+e

(a)

V

−e

+e

B0

FB

(b)
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m m B eω ω ω2

0
2

0= ±

or:

 ω
ω

ω2 0
0
2 0± − =

B e

m
___________ (7.24)

 ω ω ω ω ω0

2 0
0 0

2 0+( ) ± +( )− =Δ
B e

m
Δ   [taking ω ≈ ω

0
 + Δω]

 ω ω ω ω ω ω
0

2 2

0
0

0 0

22 0+ + ± − =Δ Δ
B e
m   [since Δω << ω

0
]

Neglecting Δω 2, we have: 

 Δω = ±
B e

m
0

2
___________ (7.25)

Th e change in magnetic moment (Δμ
l
) for the change in angular frequency (Δω) is obtained using 

Equations (7.20) and (7.25)

 Δ Δμ ωl

er
er

B e

m

e r B

m
=

−
=

−
=

−2
2 0

2 2
0

2

1

2 2 4
___________ (7.26)

Th e induced dipole moment has a direction opposite to the applied magnetic fi eld. Th e magnetic moment 
induced when a pair of electrons have opposite rotation is:

(μ
l
 − Δμ

l 
) + (−μ

l
 − Δμ

l 
) = −2Δμ

l
___________ (7.27)

Th is induced magnetic moment is in the opposite direction to B
0
. Th is is the property of a dia-

magnetic material. Diamagnetic atoms have more than one electron and the orbits are also not circular. 
Suppose r

x
, r

y
 and r

Z
 are the average values of radii of all electrons along three directions, then radius of 

the atom (r
0
) is:

 r r r r r r r
r

0

2 2 2 2 2 2 2 0

2

3
= + + = = =

x y z x y z
also if

Th e average radius of the orbit

 r r r r2 2 2

0

22

3
= + =

x y
___________ (7.28)

Suppose the diamagnetic substance contains N atoms per unit volume and each atom has z electrons, 
then the induced magnetic moment per unit volume (μ

ind
) is:

 μ μind = + =
−

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=
−

NZ

NZe r B

m

NZe r
lΔ

2
0
2

0 2

2

3

4
00
2

0

6

B

m
___________ (7.29)

Chapter 07.indd   8Chapter 07.indd   8 9/25/2009   5:39:13 PM9/25/2009   5:39:13 PM



Magnetic Properties 7-9

since  B
0
 = μ

0
 H

So,  μ
μ

ind =
−NZ e r H

m
0

2
0
2

6
___________ (7.30)

Th e atomic susceptibility, χ
μ μ

= =
−ind

H

NZ e r

m
0

2
0
2

6
___________ (7.31)

Th e value of χ is of the order of 10−6.

7.6 Theory of paramagnetism
Th e atoms of paramagnetic material possess permanent magnetic moment. In the absence of an applied 
external magnetic fi eld, the magnetic dipoles of paramagnetic atoms are oriented in random directions, so 
that there is no resultant magnetism of the material. By applying an external magnetic fi eld on a paramagnetic 
material, the dipoles are rotated by diff erent extents proportional to the strength of fi eld in the direction of 
the applied magnetic fi eld, so that the material acquires magnetism.

To calculate magnetic susceptibility, we consider N number of magnetic dipoles per unit volume of mate-
rial of which N

p
 dipoles are parallel to the applied fi eld and N

a
 dipoles are anti-parallel when a magnetic fi eld 

H applied at temperature T K.

Th e net magnetization of the material, M = N
p
μ

B
 − N

a
μ

B

 = (N
p
 − N

a
)μ

B
___________ (7.32)

where  μ
B
 = Bohr magneton = 

e

m

�
2

Also the magnetic susceptibility χ μ= −( ) =r 1
M

H
___________ (7.33)

Th e torque (τ) experienced in the applied magnetic fi eld is:

 τ = μ
m
 B = μ

0
μ

m
 H ___________ (7.34)

where μ
m
 is the moment of magnetic dipole. Figure (7.4) shows the energy diff erence between parallel 

and anti-parallel spin dipoles.

2μmB

Na

Np

Ea = +μmB

Ep = −μmB 

Figure 7.4 Energy difference between parallel and anti-parallel magnetic dipoles
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Consider the energy θ of a dipole is zero when it is perpendicular to the fi eld. Th e energy of dipole when 
it makes an angle θ to the fi eld is:

 E H H= = −∫ μ μ θ θ μ μ θ
θ

0 0m msin d cos
90°

Enegy of anti-parallel dipole is obtained by putting θ = 180°

 i.e.,  E
a
 = μ

0
 μ

m
 H

Similarly, energy of parallel dipole is obtained by putting θ = 0°

i.e.,  E
p
 = −μ

0 
μ

m 
H

E
a
 − E

p
 = 2μ

0
μ

m 
H ___________ (7.35)

For a single spin moment, μ
m
 = μ

B

So,  E
a
 − E

p
 = 2 μ

0
 μ

B
 H ___________ (7.36)

Using Boltzmann statistics, the ratio 
N

N
a

p

 is given by:

N

N
E E K Ta

p

p a= −( )⎡
⎣⎢

⎤
⎦⎥exp / B

Using Equation (7.36)

N

N
H K Ta

p

B
= −⎡

⎣
⎢

⎤
⎦
⎥exp 2

0 B
μ μ /

 = exp (−2α),  where  α = μ
0
μ

B
H/K

B
T

To obtain N
a
 and N

p
 separately in terms of N, consider:

 1 + =
+

=
N

N

N N

N

N

N
a

p

a p

p p

Hence,  
N

N p

= + −( )1 exp 2α

or  N
N N

p =
+ −( )

=
( )

( ) + −( )1 exp 2

exp

exp expα
α

α α
___________ (7.37)

Similarly,

 
N

N
a =

−( )
( )+ −( )

exp

exp exp

α
α α ___________ (7.38)
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Hence,

 N N N NP a− =
( )− −( )
( ) + −( )

= (
exp exp

exp exp
tan h

α α
α α

α)) ___________ (7.39)

Substituting the above equation in Equation (7.32), we have:

Th e net magnetization M = (N
p
 − N

a
) μ

B
 = N μ

B 
tan hα ___________ (7.40)

where  α = μ
0
μ

B
H/K

B
T

In Fig. 7.5, 
M

N μB

 is plotted against the variable, α

α = μ0μB H/KBT

M
NμB

0 1.0

1.0

.8

.6

.4

.2

1.5

Slope unity

2.00.5

Figure 7.5
  The solid curve represents M/N μB 

as a function of α = μ0 
μB 

H/KBT. 
A dotted line through the origin of slope unity corresponds to α << 1, 
tan h(α) ≅ α

α = μ
0
μ

B
H/K

B
T for α << 1, tan h (α) ≅ α and for α >> 1, tan h (α) approaches unity. So, for strong fi elds at 

low temperatures, the magnetization approaches N μ
B
 i.e., the dipoles are aligned parallel to the applied fi eld. 

For low fi eld at normal temperatures, μ
0
μ

B
H << K

B
T, under these conditions α << 1 so tan h (α) ≅ α.

Hence,  M N H K T≅ μ μ0 B
2

B/   for  μ
0
 μ

B
 H << K

B
T ___________ (7.41)

 χ μ
μ μ

= = −( ) = =
M

H

N

K T

C

T
r

B

B

1 0
2

___________ (7.42)

where  C
N

K
=

μ μ0
2
B

B

 = Curie constant

Hence, we fi nd that the susceptibility varies as 
1

T
.

Th e above equation is known as Curie law of paramagnetism.
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7.7 Domain theory of ferromagnetism
In 1907, Weiss proposed domain theory to explain ferromagnetism. According to this theory, a single crystal 
of ferromagnetic solid compresses a large number of small regions, and each region is spontaneously mag-
netized to saturation extent called a domain as shown in Fig. 7.6. Th e domain size may vary from 10−6 to 
the entire volume of the crystal. Th e spin magnetic moments of all the atoms in a domain are oriented in a 
particular direction. Th e magnetization directions of diff erent domains of the specimen are random so that 
the resultant magnetization of the material is zero in the absence of an external magnetic fi eld. Th ese domains 
arise because the energy is not minimum when a large specimen has a uniform magnetization.

Figure 7.6 Ferromagnetic domains

A ferromagnetic material magnetizes when an external magnetic fi eld is applied. Th e individual domains 
contribute to the total magnetization, M, of the specimen. Becker suggested two independent processes by 
which magnetization of the specimen takes place. Th ey are: (i) the domains that are parallel or nearly parallel 
to the direction of applied magnetic fi eld will grow in size at the cost of other domains and (ii) the mag-
netic moments of the domains can rotate in the direction of applied fi eld. A symbolic representation of the 
response of the domains to the magnetic fi eld is shown in Fig. 7.7.

By the applied magnetic fi eld, either domain wall moments or rotation of domains magnetic moments or 
both depending on the strength of the applied magnetic fi eld takes place.

If weak magnetic fi eld is applied on a ferromagnetic material, then the domains of the material whose 
magnetic moments are parallel or nearly parallel to the direction of applied fi eld will expand in size whereas 
the domains in which magnetic moments are unfavourably oriented to the applied fi eld will diminish in size 
as shown in Fig. 7.7(b). Th is change produces large magnetization for the bulk material.

H = 0 H H H

(a) (b) (c) (d)

Figure 7.7
  (a) Domain orientation in the absence of magnetic fi eld; (b) Domain 

enhancement shrikage due to weak fi elds; (c) Domain rotation due to 
strong fi elds; (d) Saturation due to very high fi elds
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Application of higher magnetic fi elds rotates [twists] partially the domain’s magnetic moments in the 
direction of the magnetic fi eld as shown in Fig. 7.7(c). Th is results in further increase in the magnetization of 
the bulk material.

Application of very strong magnetic fi elds on a ferromagnetic material results in required amount of 
rotation of magnetic moments so as to align parallel to the applied fi eld as shown in Fig. 7.7(d). Th is is the 
highest magnetization of the material called saturated magnetization.

Effect of temperature
Th e Curie–Weiss law for magnetic susceptibility for ferromagnetic substance is:

 χ
θ

=
−
C

T

where C = Curie constant, θ = Curie temperature and T is the temperature of the ferromagnetic material. Here, ‘θ ’ 
represents the tendency towards alignment of the dipole moments and on the other hand T represents the tendency 
of random orientation of dipoles due to thermal agitation. For T > θ, the thermal agitation is predominant; so, the 
substance is paramagnetic. As the temperature (T ) is lowered and if comparable to θ, the spin-exchange interaction 
begins. Th e temperature at which the spontaneous magnetization sets in is called the Curie temperature.

For all temperatures, T < θ, the material behaves as ferromagnetic.

Experimental evidences for domain structure
One experimental evidence for the existence of magnetic domains was given by Bitter from magnetic powder 
pattern microphotographs of domain boundaries. In this method, a drop of colloidal solution of ethyl acetate 
containing a fi ne powder of magnetic material such as magnetite is put on a carefully prepared [clean and 
plane] surface of ferromagnetic material. Th is drop spreads on the surface. When this is observed under the 
microscope, it is found that the magnetite particles in the suspension are moved and highly concentrated 
along certain well-defi ned lines. Th e ethyl acetate evaporates leaving the particles alone. Th e magnetite par-
ticles are attracted to the lines due to the local inhomogeneity of magnetic fi eld, and the lines indicate change 
in the magnetic fi eld direction of material. Th e non-uniformity of magnetite particles on the surface indicates 
that the material is magnetized in diff erent directions at diff erent regions; such a type of each region is called 
a domain. Th is can be photographed. If there are no such domains or the complete material is a single domain, 
then the magnetization would be uniform all over the surface and no concentration of particles would occur.

Fowler and Fryer described another technique for the existence of magnetic domains. Th is is described 
in the following way. Th e surface of a ferromagnetic material is illuminated with polarized light and viewed 
through an analyser. Th e surface appears with areas of diff erent intensity, due to the existence of domains. Th is 
can be explained with Kerr magneto-optical eff ect.

When plane polarized light [electromagnetic waves] incident on the surface of ferromagnetic material, they 
interact with the magnetic fi eld present at diff erent regions on the surface of material and the plane of polariza-
tion is rotated on refl ection by diff erent extents at diff erent regions on the surface. Due to the diff erences in 
the intensity and direction of magnetic fi eld at diff erent regions, the refl ected light appears non-uniform. Th is 
confi rms the existence of domains.

Origin of [Ferromagnetic] domains
In free state, all physical systems attain minimum energy and that is the condition for stability. On this 
basis, one can conclude that domains exist in ferromagnetic materials to minimize the total energy of the 
substance. Th e total energy of a ferromagnetic solid consists of exchange energy, magnetic fi eld energy, 
anisotropy energy, domain wall energy and magnetostrictive energy. Th ese energies are described below:
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(a) Exchange energy
Th is is represented as E J S Si jex e= − ∑2  where   J

e
 = total angular momentum quantum number of an electron, 

S
i
 and S

j
 are the spin quantum number of ith and jth electrons. Th is energy is minimum when the spins are parallel.

(b) Magnetic fi eld energy
Th e magnetic poles formed at the ends of the magnetized specimen produces an external magnetic fi eld. 
If H is the intensity of magnetic fi eld in a small volume dv, then the magnetic fi eld energy in that volume is 

1

8
2

π
H dv. Around the specimen, the intensity of fi eld will be diff erent at diff erent regions. Th e complete fi eld 

energy is represented by integration as 
1

8

2

π
H vd∫ .

(c) Anisotropy energy
It was experimentally found that much higher fi elds are required to produce saturated magnetization along 
certain directions than some other directions in ferromagnetic crystals. Th ey are called hard and easy direc-
tions of magnetizations in the crystal. Th e excess of magnetic fi eld energy required to saturately magnetize 
the specimen in a direction over that of an easy direction of magnetization is called anisotropy energy in that 
direction of magnetization. For example, in BCC iron, much higher fi elds are required to twist the domains 
to produce saturation magnetization along [111] direction than that of [100] direction. So, [100] direction is 
the easy direction and that of [111] direction is the hard direction of magnetization in BCC iron. Th e anisot-
ropy energy is of the order of 105 erg/cm3. In nickel, [111] direction is the easy and [100] direction is the hard 
direction of magnetization. Th e anisotropy energy is of 104 erg/cm3.  In cobalt,  hexagonal crystal axis is the 
easy direction and [100] is the hard direction of magnetization, and its anisotropy energy is 106 erg/cm3.

(d) Domain wall [or Bloch wall] energy
We know that diff erent domains of a ferromagnetic material magnetizes in diff erent directions. As we go 
from one domain to its neighbouring domain, the spin [or magnetization] direction does not change abruptly 
but changes gradually over many atomic planes as shown in Fig. (7.8). So, the spin-exchange energy is lower 
than when a change occurs abruptly to the same extent. Usually, the domain wall thickness varies from 
200 to 300 lattice constants.

(e) Magnetostrictive energy
Th e change in dimensions of a material on magnetization is called magetostriction. Th e work done by the 
magnetic fi eld to produce magnetostriction is stored as energy in the material called energy of magnetostric-
tion or magnetoelastic energy. If the lattice is not strained, then this energy will be zero.

Spin up Spin downBloch wall

Figure 7.8
  Shows the change in spin magnetic moment in the domain wall between 

two domains
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Explanation for origin of domains
Explanation for the origin of domains is given based on minimization of all the above energies. Suppose the 
material is magnetized in an easy direction of magnetization so that the anisotropic energy is minimum and let 
the spin magnetic moments of atoms are parallel so that the exchange energy is minimum and the material com-
presses as a single domain shown in Fig. 7.9(a). Magnetic poles will be developed at the free ends of the specimen 
and produce external magnetic fi elds so that magnetic fi eld energy will be high. To reduce this fi eld energy, let 
the domain will be sub-divided into two equal domains such that opposite poles at the same end as shown in 
Fig. 7.9(b), so that fi eld is confi ned only to a small region near the sample end and magnetic fi eld energy 
would be reduced to one-half of its previous value. Th is confi guration is at lower energy state than the previous 
one as shown in Fig. 7.9(c). Th is process of division leads to lowering of fi eld energy. When the sub-division 
increases, then the domain wall area and hence the domain wall energy increases. Th e process of sub-division 
will be continued [up to n-domains so that the magnetic fi eld energy is reduced to ( / )1 n th  of its initial value] 
up to a stage at which the decreases in magnetic fi eld energy are equal to the increase in domain wall energy. 
Th is is the minimum energy state. With further sub-division, the increase in domain wall energy exceeds the 
decrease in magnetic fi eld energy. Th is will not happen because this violates minimum energy confi guration. 
Although the magnetic fi eld energy is reduced considerably by the sub-division, but it is not equal to zero.

Th ere is an arrangement shown in Fig. 7.9(d) for which the magnetic fi eld energy is zero. In this confi gu-
ration, the magnetization is continuous inside the material so that no free poles are formed anywhere in the 
material. Th ere is no external magnetic fi eld associated with the magnetization and the magnetic fi eld energy 

S S S S
S

N N N N

S N S N

N S N S

S N N

N N S S

(a) (b) (c)

(d) (e)

Figure 7.9 Shows the origin of magnetic domains
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is zero in this case. During the formation of this confi guration, the dimensions of the material are changed 
and this is associated with magnetostrictive strain energy. For example, iron on magnetization, expands in the 
direction of magnetization and contracts laterally so that the volume remains constant.

Th e magnetostrictive strain energy can be reduced by reducing the size of strain-producing horizontal 
domains as shown in Fig. 7.9(e). In this confi guration, the number of vertical domains increases and also sub-
division will be continued until the decrease in magnetostrictive strain energy is compensated by the increase 
in domain wall energy.

7.8 Hysteresis curve
Hysteresis means retardation or lagging of an eff ect behind the cause of the eff ect. In magnetism, hysteresis 
has been used between the applied magnetic fi eld (H ) and magnetization (M ) of a magnetic material. Here, 
the eff ect is magnetization of a material and the cause of magnetization is the applied magnetic fi eld. Usually, 
in magnetic materials, the magnetization of a material lags behind the applied magnetic fi eld. Th is can be 
explained in detail, in the following way:

We start with an unmagnetized (M = 0) ferromagnetic specimen. With an increasing applied magnetic 
fi eld on it, the magnetization of the specimen increases from zero to high values. Th e increase is non-linear. 
With small applied fi elds, the domains pointing approximately in the fi eld direction increase at the expense of 
those that are not. In other words, their boundaries move so as to expand the favourable domains. Th is gives 
rise to a small magnetization corresponding to the initial portion of the hysteresis curve shown in Fig. 7.10.

With somewhat higher fi elds, the magnetization increases rapidly with H. At these fi eld strengths, the 
boundary moments are often large and irreversible. i.e., the boundaries do not go back into their original posi-
tion on reducing H. Application of still higher fi elds, rotates (twists) the magnetization vectors in to the fi eld 
direction. i.e., all the domains point in the direction of H, then the specimen is said to be saturately magne-
tized (M = M

s
). Th e saturated magnetization is represented as point ‘P’ in Fig. 7.10. If the fi eld is decreased, 

then the magnetization decreases below the value M
s
, but this decrease of M does not occur along the same 

M

Ms

Mr

H

2

O

P

1

−M

−H −Hc

Figure 7.10 Hysteresis curve
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path (curve 1), because the domains do not easily return to the original random arrangement. As H is reduced 
to zero, M does not decrease in phase but lags behind H.  Th e value of M that remains in the material when 
H is reduced to zero is called residual magnetization or remanence magnetism (M

r
).

To remove the residual magnetism in the material, magnetic fi eld is applied in the opposite direc-
tion and gradually increased from zero. T he magnetization in the material becomes zero for an applied 
magnetic fi eld of −H

c
, called coercive fi eld for the material. Further increase of the applied magnetic fi eld 

in the opposite direction results in the material magnetization in the opposite direction. Again decreasing 
the magnetic fi eld in the opposite direction to zero results in the residual magnetism in opposite direction. 
Again increasing magnetic fi eld in the forward direction, we will get a curve that completes a closed loop 
called hysteresis loop. Th is loop includes some area. Th is area indicates the amount of energy wasted in one 
cycle of operation. 

7.9 Anti-ferromagnetic substances
Anti-ferromagnetism arises when the spin magnetic moments of neighbouring atoms of the crystal are anti-
parallel so that the spin magnetic moments of alternate atoms are parallel. Because of opposite spin moments, 
we consider an anti-ferromagnetic crystal consists of two diff erent types of atoms i.e., say A-type atoms and 
B-type atoms. T he crystal structure consists of interpenetration of two cubic sublattices, one of with A atoms 
and the other with B atoms. One sub-lattice spontaneously magnetized in one direction and the other in 
opposite direction. One may therefore suggests the BCC structure for an anti-ferromagnetic crystal with 
A atoms occupying the corner points and B atoms at the centre of the cubes as shown in Fig. 7.11. Examples 
are MnO, NiO, FeO, CoO, MnS, etc.

In the absence of an external applied magnetic fi eld, the magnetization of anti-ferro magnetic specimen 
will be zero, because of anti-parallel and equal spin magnetic moments. By the application of the external 
magnetic fi eld, a small magnetization in the direction of the applied magnetic fi eld takes place. Th is mag-
netization varies with temperature as shown in Fig. 7.12. Th e susceptibility increases with an increase of 
temperature up to T

N
, called the Neel temperature, at Neel temperature the magnetization (or  susceptibility) 

is maximum and above it the magnetization decreases with an increasing temperature, confi rming the 

 relation χ
θ

=
+
C

T
, where C = Curie constant and θ is paramagnetic Curie temperature. Th e decrease of 

Figure 7.11  Opposite magnetic moments of A-type and B-type atoms in the unit 
cell of antiferromagnetic substance

A

A

A

A
A

A

A

A

B
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 magnetization with an increase of temperature is a property of the paramagnetic substances; therefore, the 
specimen becomes paramagnetic above T

N
.

Th e variation of magnetic susceptibility with temperature for para, ferro and anti-ferro magnetic  materials 

is shown in Fig. 7.13. In this diagram, a graph has been plotted between 
1

χ
 versus temperature. For the above 

materials, the susceptibilities can be expressed as:

 χ =
C

T
 for paramagnetic

 χ
θ

=
−
C

T
 for ferromagnetic

and  χ
θ

=
+
C

T
 for anti-ferromagnetic materials.

Anti-f
erro

Para

Ferro

T

1
χ

0

Figure 7.13  Shows the variation of susceptibility with temperature for para, ferro 
and antiferromagnetic materials

T

χ

TN
0

Figure 7.12  Shows the variation of magnetic susceptiblity ( χ  ) of antiferromagnetic 
substance with temperature
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7.10 Ferrimagnetic substances [Ferrites]
In ferrimagnetic crystals, the magnetization of two sublattices occurs as the one in anti-ferromagnetic crystals 
but of unequal magnitudes, which results a non-zero value. Th e ferrimagnetic crystals consist of two or more 

diff erent kinds of atoms. Chemically, they are expressed as M Fe Oe 2 4
++ +++ −−, where Me

++ stands for a suitable 

divalent metal ion such as Fe++, Co++, Ni++, Mg++, Mn++, Zn++, Cd++, etc. Th e Fe2
+++ is a trivalent ferric ion. 

If we insert Ni++ for Me++, then the compound would be called as nickel ferrite, if Fe++ is inserted for Me++, 
then the compound is ferrous ferrite, written as Fe Fe O2 4

++ +++ −− or in more familiar form as Fe
3
 O

4
.

X-ray crystallography reveals that usually ferrite oxygens have FCC structure with tetrahedral and octahedral 
interstitial spaces. Th e tetrahedral space is surrounded by four oxygens and octahedral space is surrounded by six 
oxygens. Th ese sites are denoted as A-sites and B-sites, respectively. Th e divalent and trivalent metal ions occupy 
these spaces. Th e arrangement of cations in these spaces shows the magnetic properties of these materials.

Th e magnetization of ferrimagnetic materials can be understood by taking one of the material as an 
example say, ferrous ferrite [ ]Fe Fe O2 4

++ +++ −− . Th is is a natural ferrite called magnetite.
Th e saturated magnetization of a ferrous ferrite molecule is explained as follows: saturated magnetiza-

tion can be calculated from the number of unpaired electron spins of the Fe++ and Fe+++ ions. Fe++ ion 
has six 3d electrons, of which four have unpaired spins and Fe+++ ion has fi ve unpaired electron spins. 
Assuming all the spins are parallel, we expect a saturated magnetic moment of [4 + 2 × 5] μ

B
 = 14 μ

B
 per 

molecule of magnetite. Whereas experimental value is 4.08μ
B
 per molecule, so we rule out the parallism 

of all the electron spins in a molecule. We may conclude that half of the Fe+++ ion electron spins are in 
one direction and the remaining Fe+++ and Fe++ ion electron spins are in the opposite  direction so that the 
magnetic moment per molecule of ferrous ferrite is 4μ

B
. Th is is in agreement with the experimental value.

Th e magnetization in the unit cell of ferrous ferrite is explained in the following way: Th e unit cell con-
tains 8 molecules of ferrous ferrite or 32 divalent oxygens, 16 trivalent iron ions and 8 divalent iron ions. Th ere 
are 8 tetrahedral voids called A-sites and 16 octahedral voids called B-sites. In magnetite, 8 Fe+++ ions occupy 
all the A-sites and the remaining 8 Fe+++ and 8 Fe++ ions occupy B-sites. Figure 7.14 represents the magnetic 

8F+++ions electron spin
magnetic dipole moments

at A-sites of a unit cell

8F+++ions electron spin
magnetic dipole moments

at B-sites of a unit cell

8F++ions electron spin
magnetic dipole moments

at B-sites of a unit cell

Figure 7.14  Shows the magnetic dipole moments of ferric and ferrous ions in the 
unit cell of ferrous ferrite
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dipole moments of ferric and ferrous ions in the unit cell. Each arrow represents the magnetic dipole moment 
of a ion. With this arrangement, the Fe+++ ion contribution to the magnetic moment vanishes completely and 
the net magnetic moment is due to Fe++ ions only and equal to 4μ

B
 per molecule.

7.11 Soft and hard magnetic materials
During the process of magnetization, the domain wall moment takes place so that the favourably oriented 
domains increase in size and unfavourably oriented domains shrink.

Based on the resistance to the moment of domain walls by the applied magnetic fi eld, the area inside the 
hysteresis loop and on some other properties, the magnetic materials are divided into soft and hard magnetic 
materials. Now, we shall discuss these materials separately.

(a) Soft magnetic materials
Th e resistance to the moment of domain walls is less and it is easy to magnetize. Th e soft magnetic materi-
als are characterized by: (i) low remanent magnetization, (ii) low coercivity, (iii) low hysteresis losses, (iv) 
high magnetic permeability and (v) high susceptibility so that they can be magnetized and demagnetized 
easily.

Th e most widely used soft magnetic materials are: (1) pure iron, (2) alloys of iron-silicon, (3) iron-cobalt, 
(4) iron-nickel (permalloy) often other alloying elements are added. Some other substances are: (5) mumetal 
(alloy of Ni, Cu, Cr & Fe) and (6) amorphous ferrous alloys (alloys of Fe, Si & B).

Now, we see the applications of various soft magnetic materials:

(1) pure iron is frequently used as the magnetic core for direct current (DC) applications.
(2)  iron-silicon alloys containing up to 5% silica possess high electrical resistivity and high magnetic perme-

ability and are used as core materials for AC current machinery. Eddy current losses could be minimized 
using iron-silicon alloys. Th ey are used for low-frequency and high-power applications. 

(3)  Iron-nickel alloys are used for audio frequency applications. In iron-nickel alloys, nickel composition 
may vary from 35 to nearly 100%. Generally, the permeability increases with an increase of nickel 
content. Maximum permeability is obtained for 79% of nickel and the rest iron. Th e alloy containing 
79% Ni, 15% Fe, 5% Mo and 0.5% Mn is known as supermalloy that possesses very high perme-
ability.

(4)  Iron-cobalt alloys have very high magnetic saturation than either iron or cobalt; maximum saturation is 
obtained for a composition of about 35 to 50% of cobalt.

(5)  Soft magnetic materials are also used in magnetic amplifi ers, magnetic switching circuits and the other 
applications under alternate magnetic fi elds.

(b) Hard magnetic materials
The resistance to the moment of the magnetic domain walls is large. The causes for such a nature are 
also due to the presence of impurities of non-magnetic materials or the lattice imperfections. The pres-
ence of defects increases the mechanical hardness to the material and an increase the electrical resistiv-
ity and reduces eddy current losses. Hard magnetic materials are characterized by: (i) high remanent 
magnetization, (ii) high coercivity, (iii) high saturation flux density, (iv) low permeability and (v) high 
hysteresis loss.
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Most widely used permanent magnetic materials are low alloy steels containing 0.6% to 1% carbon. 
Other materials are: (1) alnico [alloy of Al, Ni, Co, Cu and Fe], (2) tungsten steel alloy, (3) platinum-cobalt 
alloy and (4) invar, etc.

Hard magnetic materials are used to prepare permanent magnets. Most of them are manufactured 
from alloys of steel with tungsten and chromium. Th e permanent magnets are used in magnetic separators, 
magnetic detectors, in speakers used in audio systems and microphones. Hard magnets made of carbon 
steel fi nd application in the making of magnets for toys and certain types of measuring meters because of 
its low cost.

Comparison between soft and hard magnetic materials

Soft Magnetic Materials Hard Magnetic Materials

1.  Small amount of magnetic fi eld is suffi cient to 
saturately magnetise the material. Since the 
resistance for the moment of domains is less

1.  Large amount of magnetic fi eld is required for 
saturated magnetization. Since the resistance for the 
moment of domain is large.

2.  Hysteresis loss is less so the area inside the 
hysteresis loop is less for soft magnetic materials.

2.  Hysteresis loss is large so the area inside the 
hysteresis loop is more for hard magnetic materials.

3.  Coercivity and retentivity is less so, the material can 
be magnetized and demagnetized easily.

3.  Coercivity and retentivity is large so, the material can 
not be easily magnetized and demagnetized.

4.  In these materials the magnetic permeability and 
magnetic susceptibility is large.

4.  These materials possess low values of magnetic 
permeability and magnetic susceptibility.

5.  Soft magnetic materials are used in the prepara-
tion of magnetic core materials used in transform-
ers,  electric motors, magnetic amplifi ers, magnetic 
switching  circuits, etc.

5.  Hard magnetic materials are used in the preparation 
of permanent magnets. They are used in loud speak-
ers, toys, in measuring meters, microphones, magnetic 
 detectors, magnetic separators, etc.,

7.12 Applications of ferrites
Th e various applications are described below:

(1) Ferrites are used in thermal sensing switches used in refrigerators, air conditioners, electronic ovens, etc.
(2)  Th e magnetostrictive property of ferrites is utilized in producing ultrasonic waves from a ferrite rod by 

the application of an alternating magnetic fi eld.
(3)  Th e insulating property of ferrites fi nds their use in electric motors; they are also used as fl at rings for loud 

speakers, wind screen wiper motors and correction magnets for TV.
(4)  Some ferrites possess high rectangular hysteresis loop, so they are useful in the construction of computer 

memory system for rapid storage and retrieval of digital information.
(5)  Mixed ferrites possess high resistivity and good magnetic properties, so they can be used to prepare cores 

used in inductors and transformers.
(6)  Mn-Zn ferrites are used in television defl ection yokes, cores for television line output transformers and standard 

power supplies. Th ese materials are used in induction cores, antennas for medium and long wave broadcasting, 
transductors [variable inductors], automatic control systems, frequency modulation, switching, fi lters, etc.
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(7)  Ni-Zn ferrites are useful in wide band transformers, antennas for medium and long wave broadcasting, 
power transformer cores, inductor cores and antennas for short wave broadcasting. 

(8)  Oxides of γ-Fe
2
O

3
, Fe

3
 O

4
 and CrO

2
 are used in magnetic recording of audio, visual and digital informa-

tion because of their high remanence magnetization. Th e most widely used material is cobalt modifi ed 
γ-Fe

2
O

3
 and CrO

2
.

(9)  Th e non-reciprocity of some ferrites, such as garnets, are used in a variety of devices like isolators, cal-
culators, switches, etc. An isolator is a device in which the incident electromagnetic wave can propagate 
forward, so that there is no reverse wave.

 Formulae

 1. μ = μ
r
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 = 4π × 10−7H/m  2. B

0
 = μ

0
H  and  B = μH so 

B

B0

 = μ
r

 3. B = μ
0
 (H + M)  4. M = H [μ

r
 − 1]

 5. χ =
M

H
  6. μ

π
μl

e r

T

erv eL

m

el

m
l= =

−
=

−
=

−
=

−
=IA

2

2 2 2e e

B

�

 where  μ
B
 = 9.27 × 10−24 A-m2

 7. μ γs

e

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = × −−e

m
A m

2 2
9 4 10 24 2�
.   8 μn

p

=
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= × −−e

m2
5 05 10 27 2� . A m

 9. χ
θ

=
−
C

T
for ferromagnetic 10. χ

θ
=

+
C

T
for anti-ferromagnetic

11. χ =
C

T
for para magnetic

 Solved Problems

 1.  Th e magnetic susceptibility of silicon is −0.4 × 10 −5. Calculate the fl ux density and magnetic moment per unit volume when 

magnetic fi eld of intensity 5 × 10 5 A /m is applied.

Sol: Given: χ = −0.4 × 10–5

 H = 5 × 105 A /m

 B = ?  and  M = ?

 B = μ
0
(H + M) = μ

0
 H(1 + χ)

 = 4π × 10–7 × 5 × 105 [1 – 0.4 × 10–5] = 4π × 5 × 10−2 × 0.9996 = 0.62 Wb/m2

 M = χH = −0.4 × 10−5 × 5 × 105 = −2.0 A /m.

 2.  Th e magnetic fi eld strength in silicon is 1000 A /m. If the magnetic susceptibility is −0.25 × 10−5, calculate the  magnetization 

and fl ux density in silicon.

Sol: Magnetic fi eld strength (H ) = 1000 A /m

 Magnetic susceptibility (χ) = −0.25 × 10−5

 Magnetization (M ) = χH = −0.25 × 10−5 × 1000 = −0.25 × 10−2 A /m.
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 Magnetic fl ux density (B) = μ
0
(H + M) = 4π × 10−7 (1000 − 0.25 × 10−2)

 = 1.25 × 10−3 Wb/m2.

 3.  When a magnetic material is subjected to a magnetic fi eld of intensity 250 A/m. Its relative permeability is 15. Calculate its 

magnetization and magnetic fl ux density.

Sol: Given data are:

 Intensity of applied magnetic fi eld (H ) = 250 A/m

 Relative permeability (μ
r 
) = 15

 Magnetization (M ) = ?

 Magnetic fl ux density (B) = ?

 M = H [μ
r
 − 1] = 250 [15 − 1] A/m = 250 × 14 = 3500 A /m

 B = μ0 [H + M] = 4π × 10−7 [250 + 3500] Wb/m2 = 4.71 × 10−3 Wb/m2

 4.  Calculate magnetic dipole moment per unit volume and fl ux density of a material placed in magnetic fi eld of intensity 

1000 A/m. Th e magnetic susceptibility is −0.42 × 10−3.

Sol: Th e given data are:

 Th e intensity of magnetic fi eld (H) = 1000 A/m

 Magnetic susceptibility (χ) = −0.42 × 10−3

 Magnetic moment per unit volume or Magnetization (M) = χ H

 = −0.42 × 10−3 × 1000 = −0.42 A /m

 Flux density or magnetic induction (B) = μ
0
(H + M)

 = 4π × 10−7 × [1000 − 0.42] = 1.257 × 10−3 Wb/m2

 5.  A circular loop of copper having a diameter of 10 cm carries a current of 500 mA. Calculate the magnetic moment associated 

with the loop.

 (Set-2–Nov. 2004), (Set-1–Nov. 2003)
Sol: Magnetic moment, μ = area × current

 Diameter of the loop, 2r = 10 cm = 0.1 m

 or radius of the loop, r = 5 cm = 0.05 m

 Current in the loop, i = 500 mA = 0.5 A

 ∴ = = × × = × −μ πr i2 22

7
(0.05) 0.5 3.93 10 A2 3 2−m

 6.  A magnetic material has a magnetization of 3300 A /m and fl ux density of 0.0044 Wb/m2. Calculate the magnetizing 

force and the relative permeability of the material.

 (Set-4–Nov. 2003)

Sol: Magnetization, M = 3300 A/m

 Flux density, B = 0.0044 Wb/m2

 Magnetizing force, H = ?

 Relative permeability, μ
r
 = ?

 B = μ
0
 [H + M]
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B
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 7.  An electron in a hydrogen atom circulates with a radius 0.052 nm. Calculate the change in its magnetic moment if a 

 magnetic induction (B) = 3 Wb/m2 acts at right angles to the plane of orbit.

 (Set-3–Nov. 2004), (Set-2–Nov. 2003)

Sol: Radius of hydrogen atom, r = 0.052 nm = 0.52 × 10−10 m

 Magnetic induction that acts perpendicular to orbit, B = 3 Wb/m2

 Change in magnetic moment, Δμ = ?

 
Δμ = =

×⎡
⎣⎢

⎤
⎦⎥ × ×−

er eB

m

e r B

m

2 2 2 19 2

2 2 4

1 6 10 0 52 10. . −−

−

⎡
⎣⎢

⎤
⎦⎥ ×

× ×

10 2

31

3

4 9 1 10.
A-m2

   = 5.715 A-m2.

 8.  Calculate the change in magnetic moment of a circulating electron in an applied fi eld of 2 tesla acting perpendicular to the 

plane of the orbit. Given r = 5.29 × 10−11 m for the radius of the orbit.

 (Set-3–May 2004)

Sol: Applied magnetic fi eld perpendicular to orbit, B = 2 Tesla

 Radius of the orbit, r = 5.29 ×10–11 m

 Change in magnetic moment, dμ = ?

 dμ = = =
×( ) × ×− −

er eB

m

e r B

m

2 2 2 19 2 11

2 2 4

1 6 10 5 29 10. .(( ) ×

× ×
−−

2

31

2
2

4 9 1 10.
A m

 =3.936 × 10-29 A−m2

 9.  A paramagnetic material has 10 28 atoms per m3. Its susceptibilty at 350 K is 2.8 × 10 –4. Calculate the susceptibility at 300 K.

 (Set-4–Nov. 2004)

Sol: Number of atoms, N = 1028/m3

 Susceptibility at 350 K, χ
1
 = 2.8 × 10-4

 Temperature, T
1
 = 350 K

 Susceptibility at 300 K, χ
2
 = ?

 Temperature, T
2
 = 300 K

 For paramagnetic substance χ χ= =
C

T
C Tor

 ∴  χ
1
T

1
 = χ

2
T

2

 
χ

χ
2

1 1

2

4
42 8 10 350

300
3 267 10= =

× ×
= ×

−
−T

T

.
.
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10.  Th e magnetic fi eld in the interior of a certain solenoid has the value of 6.5 × 10 -4 T when the solenoid is empty. When it is 

fi lled with iron, the fi eld becomes 1.4 T. Find the relative permeability of iron.

 (Set-3–June 2005)

Sol: Magnetic fi eld without iron material, B
0
 = 6.5 × 10 –4 Tesla

 Magnetic fi eld with iron material, B = 1.4 Tesla

 Th e relative permeability of iron, μr

B

B
= =

×
= =−

0

1.4

6.5 10

14000

6.5
2153.85

4

 Multiple Choice Questions

 1. Th e magnetic susceptibility of a diamagnetic substance is: ( )

 (a) negative (b) zero
 (c) positive and low value (d) positive and high value

 2. Ferrites show: ( )

 (a) diamagnetism (b) paramagnetism
 (c) ferromagnetism (d) ferrimagnetism

 3. A Bohr magneton is equal to: ( )

 (a) 9.27 × 10−14 A−m2 (b) 9.27 × 10−24 A−m2

 (c) 6.27 × 10−14 A−m2 (d) 6.27 × 10−24 A−m2.

 4. If the applied magnetic fi eld will not show any eff ect on a material, then the material is a: ( )

 (a) diamagnetic material (b) ferromagnetic material
 (c) anti-ferromagnetic material (d) non-magnetic material

 5.  A material which magnetizes to a small extent in the opposite direction to the applied
 external magnetic fi eld is: ( )

 (a) ferrimagnetic material (b) anti-ferromagnetic material
 (c) diamagnetic material (d) paramagnetic material

 6. Examples for diamagnetic materials are: ( )

 (a) gold and copper  (b) bismuth and lead
 (c) zinc and noble gases (d) all the above

 7. Th e materials which are feebly attracted by external magnetic fi elds are ___________ magnetic materials. ( )

 (a) para  (b) ferro
 (c) ferri  (d) anti-ferro

 8. Examples for paramagnetic materials are: ( )

 (a) aluminium and platinum (b) manganese chloride
 (c) salts of iron and nickel (d) all

 9. Th e magnetic susceptibility is positive and large for ___________ magnetic materials. ( )

 (a) ferro (b) para (c) ferri (d) anti-ferro

10.  Th e magnetic dipole moments of neighbouring atoms are anti-parallel and unequal  for ___________ magnetic 
material. ( )

 (a) anti-ferro  (b) ferri
 (c) dia  (d) para
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11. Th e domain theory of ferromagnetism was proposed by: ( )

 (a) Curie (b) Ronald (c) Weiss (d) Einstein

12. Th e polarized light refl ected on the surface of a ferromagnetic substance appears as: ( )

 (a) non-uniform intensity at diff erent regions on the surface
 (b) uniform intensity at diff erent regions on the surface
 (c) very low intensity at diff erent regions on the surface
 (d) none of the above

13. If ‘H ’ is the intensity of magnetic fi eld in a volume dv, then the fi eld energy in that volume is: ( )

 (a) 
1

8
2

π
H vd  (b) 

1

8π
H vd  (c) 8π Hdv (d) none

14. Th e anisotropy energy in BCC iron along [111] direction over that of [100] direction is: ( )

 (a) 105 erg/cm3 (b) 104 erg/cm3 (c) 106 erg/cm3 (d) 103 erg/cm3

15.  If ‘I ’ is the current due to the orbital motion of an electron, then the magnetic moment
 associated with that orbit of area ‘A ’ is: ( )

 (a) I/A (b) A/I (c) I + A  (d) IA

16. Magnetic dipole moment per unit volume of material is called: ( )

 (a) polarization  (b) permeability
 (c) magnetization  (d) magnetic induction

17. Magnetic fl ux over a unit area of a surface held normal to the fl ux is: ( )

 (a) magnetic induction  (b) magnetic permeability
 (c) magnetization  (d) relative magnetic permeability

18. Th e neighbouring atomic magnetic moments of anti-ferromagnetic substance is: ( )

 (a) equal and parallel  (b) equal and anti-parallel
 (c) unequal and parallel  (d) unequal and anti-parallel

19. Th e magnetic moment of atom is due to: ( )

 (a) the spin of electrons  (b) the angular momentum of the electrons 
 (c) by the applied magnetic fi eld  (d) all the above

20. Th e spin magnetic moments of neighbouring atoms of a ferromagnetic substance are: ( )

 (a) parallel (b) anti-parallel (c) random (d) perpendicular

21.  If an electron of mass, m
e
 revolving in an orbit with an angular momentum ‘L,’ then it is 

associated with megnetic moment of: ( )

 (a) 
eL

me

 (b) 
eL

me2
 (c) 

2eL

me

 (d) 
m

eL
e

2

22. Th e SI unit of magnetic moment is: ( )

 (a) Wb (b) Wb/m2 (c) A−m2 (d) A/m2

23. Th e magnetostrictive strain energy can be reduced by: ( )

 (a) increasing the size of strain-producing horizontal domains
 (b) decreasing the size of strain-producing horizontal domains
 (c) decreasing the size of strain-producing vertical domains
 (d) increasing the size of strain-producing vertical domains
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24.  If C and θ are the Curie constant and paramagnetic Curie temperature of a paramagnetic substance at a tempera-
ture TK, the magnetic susceptibility is: ( )

 (a) 
C

T − θ
 (b) 

C

T + θ
 (c) 

C

T
 (d) none of the above

25. Soft magnetic materials possess: ( )

 (a) low remanent magnetization
 (b) low coercivity and hysteresis losses
 (c) high magnetic permeability and susceptibility
 (d) all the above

26. Hard magnetic materials possess: ( )

 (a) high remanent magnetization and coercivity
 (b) low permeability
 (c) high hysteresis loss
 (d) all the above

27. Hard magnetic materials are used in: ( )

 (a) magnetic separators and detectors
 (b) speakers used in audio systems and microphones
 (c) in toys and measuring meters
 (d) all the above

28. Ferrites are used in: ( )

 (a) thermal-sensing switches used in refrigerators and air conditioners
 (b) to produce ultrasonic waves
 (c) in electric motors
 (d) all the above

29.  Th e ratio of magnetic fl ux density in a material to that in vacuum under the same applied
 magnetic fi eld is called: ( )

 (a) relative magnetic permeability
 (b) relative permeability
 (c) magnetic induction
 (d) none of the above

30.  Th e ratio of magnetization to the applied magnetic fi eld strength of a material is called: ( )

 (a) magnetic susceptibility (b) magnetic permeability
 (c) magnetic induction (d) none of the above

31.  A material which is repelled by an external magnetic fi eld is ___________ magnetic material. ( )

 (a) para (b) ferro (c) anti-ferro (d) dia

32.  A material which is strongly attracted by magnetic fi elds is ___________ magnetic material. ( )

 (a) para (b) ferro (c) anti-ferro (d) dia

33. Examples for ferromagnetic materials are: ( )

 (a) iron (b) cobalt (c) nickel (d) all the above

34. If M stands for a divalent ion, a general formula for ferrites is: ( )

 (a) MoFe
2 
O

3 
 (b) MoFeO

3
 (c) MoFe

2
O (d) MFe

2
O

3
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35.  Th e change in dimensions of a material on magnetization is called: ( )

 (a) piezoelectricity  (b) ferroelectricity
 (c) magnetostriction  (d) none

36. Hysteresis means ___________ of an eff ect behind the cause of eff ect. ( )

 (a) lagging (b) advancing (c) both a & b (d) none

37. For an anti-ferromagnetic substance, the magnetic susceptibility is maximum at ___________ temperature. ( )

 (a) Fermi (b) Debye (c) Neel (d) Curie

38. Th e magnetic dipole moment per molecule of ferrous ferrite is equal to: ( )

 (a) 2μ
B
 (b) 8μ

B
 (c) 4μ

B
 (d) 16μ

B

39. Th e hysteresis loss is less for ___________ magnetic materials. ( )

 (a) dia (b) para (c) hard (d) soft

40. Th e alloy containing 79% Ni, 15% Fe, 5% Mo and 0.5% Mn is known as superm alloy possess:  ( )

 (a) very low permeability (b) very high permeability
 (c) very low magnetic induction (d) none of the above

41. ___________ magnetic materials are used in magnetic amplifi ers and in magnetic switching circuits. ( )

 (a) dia (b) para (c) soft (d) hard

42. Some ferrites possess rectangular hysteresis loop, so they are used in the construction of ___________ devices. ( )

 (a) memory (b) transformer core
 (c) permanent magnets (d) none of the above

43. Ni–Zn ferrites are used in: ( )

 (a) power transformer cores (b) inductor cores
 (c) antenna’s for short wave broadcasting (d) all the above

44. Th e unit of magnetic permeability of a diamagnetic substance is independent of: ( )

 (a) temperature (b) pressure (c) humidity (d) none

45. Th e magnetic permeability of a diamagnetic substance is independent of: ( )

 (a) temperature (b) pressure (c) humidity (d) none

46.  Th e ratio of magnetic moment (M ) to the angular momentum (L) of an electron is called ___________ ratio. ( )

 (a) gyromagnetic ratio (b) magnetic susceptibility
 (c) permeability  (d) none of the above

47. Below curie temperature, a ferromagnetic substance possess ___________ magnetization.  ( )

 (a) dia (b) para (c) spontaneous (d) none

48. Th e area enclosed by hysteresis loop of a ferromagnetic substance represents ___________ loss per cycle.  ( )

 (a) magnetization (b) dielectiric (c) energy (d) power

49. Every domain of a ferromagnetic substance is ___________ magnetized. ( )

 (a) dia (b) spontaneoulsly (c) para (d) none

50. Th e boundary between domains is called ___________  ( )

 (a) Bloch wall (b) potential wall (c) both a & b (d) none
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51. Paramagnetic atoms possess ___________ number of electrons. ( )

 (a) even (b) odd (c) both a & b (d) none

52. A current loop behaves as a ___________  ( )

 (a) electric motor (b) magnetic shell
 (c) electric shell (d) none of the above

53.  Magnetic permeability represents the ___________ with which a material allows magnetic force
 of lines to pass through it. ( )

 (a) diffi  cult (b) easy (c) both a & b (d) none

 Answers

 1. a  2. d  3. b  4. d  5. c  6. d  7. a  8. d  9. a 10. b 11. c 12. a
13. a 14. a 15. d 16. c 17. a 18. b 19. d 20. a 21. b 22. c 23. b 24. c
25. d 26. d 27. d 28. d 29. a 30. a 31. d 32. b  33. d 34. a 35. c 36. a
37. c 38. c 39. d 40. b 41. c 42. a 43. d 44. a 45. a 46. a 47. c 48. c
49. b 50. a 51. b 52. b 53. b

 Review Questions

 1. What are paramagnetic and diamagnetic materials? Explain.
 (Set-4–Sept. 2006), (Set-1, Set-4–June 2005), (Set-4–Nov. 2004)

 2. Explain the properties of paramagnetic materials. (Set-3–Nov. 2003)

 3.  Defi ne the terms permeability (μ) susceptibility, magnetic induction (B), magnetic fi eld (H) and magnetization (M) 
with reference to magnetism. Obtain a relation between magnetic susceptibility, magnetization and magnetic fi eld.
 (Set-2–Nov. 2004), (Set-1–Nov. 2003)

 4. Explain how the magnetic materials are classifi ed from the atomic point of view. (Set-4–Nov. 2003)

 5. What are the diff erences between hard and soft magnetic materials? (Set-4–Nov. 2003)

 6. Explain the origin of diamagnetism. Obtain an expression for the diamagnetic susceptibility of a magnetic material.
 (Set-3–Nov. 2004), (Set-2–Nov. 2003)

 7. Distinguish between ferromagnetic, anti-ferromagnetic and ferrimagnetic materials. (Set-3–Nov. 2003)

 8.  Obtain an expression for paramagnetic susceptibility (χ). How does the magnetic susceptibility of a material vary 
with temperature?

 (Set-4–Nov. 2004)

 9. Draw the B-H curve for a ferromagnetic material and identify the retentivity and the coersive fi eld on the curve.
 (Set-4–Sept. 2006), (Set-1, Set-4–June 2005)

10.  Explain clearly the diff erences between hard and soft magnetic materials. What are mixed ferrites? Mention their uses.
 (Set-2–June 2005)

11. How ferrites are superior to ferromagnetic materials? (Set-2–June 2005)

12. Give an account of ferromagnetic materials. (Set-3–May 2004)

13. Explain the important properties of ferrites. (Set-2–May 2003), (Set-4–May 2004)
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14. What are the characteristics of soft magnetic materials? (Set-3–June 2005)

15. Defi ne magnetization and show that. B = μ
0
 (H + M). (Set-3–May 2004)

16.  What is ferromagnetic curie temperature? Discuss the behaviour of a ferromagnetic material below the curie 
temperature.

 (Set-3–June 2005)

17.  In a hydrogen atom, an electron having charge e revolves around the nucleus at a distance of r metre with an angular 
velocity ‘ω’ rad/sec. Obtain an expression for magnetic moment associated with it due to its orbital motion.

 (Set-1–Nov. 2004)

18. What are the sources of permanent dipole moment in magnetic materials?
 (Set-2–Sept. 2008), (Set-4–May 2004), (Set-2–May 2003)

19. Defi ne the terms magnetic susceptibility, magnetic permeability, magnetic induction and magnetization.
 (Set-4–May 2004), (Set-2–May 2003)

20. Explain hysteresis of a ferromagnetic material. (Set-1–May 2004), (Set-3–May 2003)

21. Explain ferrimagnetism and anti-ferromagnetism. (Set-1–May 2004), (Set-3–May 2003)

22. How materials are classifi ed as dia or para or ferromagnetism? Explain. (Set-1–May 2004), (Set-3–May 2003)

23. What are ferrites? Explain the magnetic properties of ferrites and mention their industrial applications.
 (Set-3–May 2007), (Set-2–May 2004), (Set-4–May 2003)

24. What is ferromagnetism? What are the distinguishing features of ferromagnetism?
 (Set-3–May 2007), (Set-2–May 2004), (Set-4–May 2003)

25.  In hydrogen atom, an electron ‘e’ revolves around the nucleus at a distance of ‘r ’ metre with an angular velocity 
ω rad/sec. Obtain an expression for magnetic moment associated with it due to its orbital motion.

 (Set-1–May 2003)

26. Defi ne magnetic moment. Explain the origin of magnetic moment at the atomic level. What is a Bohr magneton?
 (Set-1–Nov. 2004), (Set-1–May 2003)

27. Explain clearly diff erence between hard and soft magnetic materials. (Set-4–May 2008)

28 Explain the hysteresis loop observed in ferromagnetic materials. (Set-4–May 2008)

29. Defi ne the terms magnetic susceptibility, magnetic induction and permeability. (Set-1–May 2006)

30. How is magnetic susceptibility of a material is measured? (Set-1–May 2006)

31. Explain the salient features of anti-ferromagnetic materials. (Set-1–May 2006)

32. What is meant by ferromagnetic materials? Give example. (Set-2–May 2006)

33. Explain the hysteresis properties of ferromagnetic materials. (Set-2–May 2006), (Set-2–Sept. 2008)

34. Mention the various properties of paramagnetic materials. (Set-2–May 2006)

35. What are the properties of antiferromagnetic materials? (Set-1–Sept. 2006)

36. Explain how antiferromagnetic materials are diff erent from diamagnetic and paramagnetic materials.
 (Set-1–Sept. 2006)

37. State the properties of diamagnetic materials.  (Set-4–Sept. 2007), (Set-2–Sept. 2006)

38.  Explain the terms (i) Magnetic fl ux density, (ii) Magnetic fi eld strength, (iii) Magnetization and (iv) Magnetic 
susceptibility. How they are related to each other.

 (Set-3–Sept. 2008)
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39. What are hard and soft magnetic materials? Write their characteristic properties and applications.
 (Set-3–Sept. 2008)

40. What is meant by Neel temperature? (Set-1–Sept. 2006)

41. Write notes on ferroelectricity. (Set-2–Sept. 2008)

42. Draw and explain B-H curve for a ferromegnetic material placed in a magnetic fi eld.
 (Set-4–Sept. 2007), (Set-2–Sept. 2006)

43. Discuss the theory of paramagnetism. (Set-4–Sept. 2007), (Set-2–Sept. 2006)

44. Write short notes on hysteresis curve.

45. Explain ferromagnetism and B–H curve.

46. Write the importance of hard magnetic materials in engineering applications.

47. Explain in detail the classifi cation of magnetic materials on the basis of electron spin.

48. What is Bohr magneton? How is it related to magnetic moment of electron?

49. Explain in detail domain theory of ferromagnetism.

50.  Explain the origin of magnetic moment. Find the magnetic dipole moments due to orbital and spin motions of an 
electron.

51. Show the nature of magnetic dipole moments in ferro, ferri and anti-ferro magnetic materials.

52. Describe hysteresis loop. How is it used to classify magnets?

53. Give an account of the uses of ferrites.

54. Describe the experimental evidence to demonstrate the existence of ferromagnetic domains.

55. Explain in detail the concept of ferromagnetic domains and explain how it was experimentally established.

56. What are ferromagnetic domains? Explain their existence.

57. Explain the diff erent contributions for the formation of domains in a ferromagnetic material.

58. Write on Bohr magneton.

59. Write briefl y on hysteresis in ferromagnets.

60.  Write the necessary theory to relate electron momentum to the origin of magnetism and write the brief classifi ca-
tion of magnetism in materials based on the temperature dependence of susceptibility.

61. Explain hysteresis in soft and hard magnetic materials and their specifi c applications.

62. Explain Weiss theory of ferromagnetic materials.

63. Give the qualitative explanation of quantum theory for paramagnetic materials.

64. Explain hysteresis using domain structure.

65. Explain the properties of ferrimagnetic materials.

66. Explain ferromagnetism based on domain structure.

67. Explain the formation of domains based on exchange interaction.

68. Explain the formation of Bloch wall with a neat diagram. 
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Semiconductors and Physics of 
Semiconductor Devices

8.1 Introduction
Based on electrical conductivity, materials are divided into conductors, insulators and semiconductors.  Usually, 
metals are good conductors of electricity and all dielectrics are insulators. Th e electrical conductivity of semicon-
ductors lie in between metals and dielectrics. Good examples for semiconductor are germanium and silicon. Th ese 
elements belong to IV group in the periodic table. At 0 K, these elements are insulators, whereas at room tempera-
tures they possess certain amount of conductivity. Pure germanium and silicon are called intrinsic semiconduc-
tors. By adding a small quantity of either III group or V group element atoms as impurity into pure Ge or Si, the 
electrical conductivity of the material increases. Th is impure semiconductor is called an extrinsic semiconductor.

8.2 Intrinsic semiconductors—carrier concentration
Pure germanium or silicon crystal is called an intrinsic semiconductor. Each semiconductor atom possesses four 
valence electrons in the outermost orbit. To get stability, each of these atoms has to get eight electrons in the 
outermost orbit, so that each atom makes four covalent bonds with the surrounding four other atoms in the 
crystal. A two-dimensional representation of the crystal structure of silicon (or germanium) at 0 K is shown in 
Fig. 8.1(a). Th e band diagram of this material is shown in Fig. 8.1(b).

At 0 K, all the valence electrons of Si atoms are participating in covalent bonds and their energies constitute 
a band of energies called valence band. So, at 0 K, valence band is completely fi lled and conduction band is empty 
of electrons. Th e allowed band of energies above valence band is called conduction band. Suppose, if we raise the 
temperature of the semiconductor to some room temperature T K, at this temperature some of the electrons which 
are participating in covalent bonds and present in the top energy levels of valence band will take thermal energies. 
If the increase in thermal energy of electrons present in top energy levels of valence band is equal to or greater 
than energy gap of the semiconductor, then electrons come away from bonding and move freely inside the crystal 
as shown in Fig. 8.2(a). Now these electrons possess energies equal to the lower energy levels of conduction band. 
Th ese free electrons participate in electrical conduction, hence the band in which these electrons present is named 

C H A P T E R 8
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8-2 Applied Physics

as conduction band. If an electron comes away from bonding, then that atom acquires one unit positive charge, then 
it participates in electrical conduction. Th is electron vacancy or electron defi ciency of an intrinsic semiconductor is 
called hole. Th e electron vacancies in valence band will exist as holes in the valence band as shown in Fig. 8.2(b).

Th us, at temperature T K, in an intrinsic semiconductor, if n covalent bonds are broken per unit volume of 
the material, then there will be n electrons in the conduction band and the same number of holes in the valence 

Si Si Si Si

SiSiSiSi

Si Si Si

Si SiSiSi

Si

(a)

E

Electron

Ect

Ec

EF

EV

Evb

Eg

Valence 
band 

Conduction
band 

(b)

Figure 8.1 (a) Crystal structure of Si at 0 K; (b) Band diagram of Si at 0 K
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band. Usually, the number of free (or conduction) electrons present per unit volume of material, whose ener-
gies lie in the conduction band is called electron concentration and is represented as ‘n’. Similarly, the number 
of holes present per unit volume of the semiconductor and in the valence band is called hole concentration 
represented as ‘p’. Both the free electrons and holes present in the material participate in electrical conduction. 
Th e free electrons and holes present per unit volume of the material is called carrier concentration.

At some temperature T K, the free electron and hole concentration in an intrinsic semiconductor can be 
extracted in the following way:

Figure 8.2 (a) Crystal structure of Si at T K; (b) Band diagram of Si at T K
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8-4 Applied Physics

Electron concentration
Th e number of free electrons per unit volume of semiconductor having energies in between E and E + dE is 
represented as N(E) dE [i.e., in a width of dE]. N(E) dE can be obtained by multiplying the number of avail-
able electron states between E and E + dE per unit volume of the material, g

e
(E) dE with the probability that 

an electron occupies an electron state at energy E [i.e.,  f
e
(E)].

Th erefore, we have:

 N(E) dE = g
e
(E) dE f

e
(E) ___________ (8.1)

Th e number of electrons present in the conduction band per unit volume of material ‘n’ is obtained by 
integrating N(E) dE between the limits E

c
 and E

ct
 where E

c
 and E

ct
 are the bottom and top energy levels of 

conduction band, respectively.

 i.e.,  n N E E g E f E Ee e

E

E

E

E

c

ct

c

ct

= = ∫∫ ( ) ( ) ( )d d ___________ (8.2)

Equation (8.2) can be represented as:

 n g E f E E g E f E Ee e

E

e e

Ec ct

= −∫ ∫( ) ( ) ( ) ( )d d

∞ ∞

___________ (8.3)

Above E
ct
, electrons will not be present. Hence, Equation (8.3) becomes:

 n g E f E Ee e

Ec

= ∫ ( ) ( )d

∞

___________ (8.4)

Th e Fermi-Dirac distribution function f
e
(E) can be represented as:

 f E
E E

K T

e ( )

exp

=
+

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1

1 F

B

___________ (8.5)

Compared to the exponential value, the ‘1’ in the denominator is negligible.

 i.e.,  exp
E E

K T

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

>>F

B

1

 Hence,  f E
E E

K T

E E

K T
e ( )

exp

exp=
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
−⎛

⎝
⎜1

F

B

F

B

⎜⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

___________ (8.6)

Th e density of electron states g
e
(E) in the energy space from E = 0 to E can be written as:

 g E
m

h
Ee

e( )
*

( )=
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−

π
2

8
0

2

3
2

1
2 ___________ (8.7)

where me
*  is the eff ective mass of an electron and h is Planck’s constant.

 g E E
m

h
E Ee

e( ) ( )d d
1

2=
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−

π
2

8
0

2

3
2

*
___________ (8.8)
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To evaluate n, the density of states is counted from E
c
, since the minimum energy state in conduction 

band is E
c
. So Equation (8.8) becomes:

 g E E
m

h
E E Ee

e
c( ) ( )d d

1
2=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−

π
2

8
2

3
2

*
___________ (8.9)

Substituting Equations (8.6) and (8.9) in (8.4) gives:

 n
m

h
E E

E

E

e
c

c

=
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
−

∞

∫
π
2

8
2

3
2

1
2

*
( ) exp FF

B

d
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

E

K T
E

 =
⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
−( )

−⎛

⎝

⎜⎜⎜⎜⎜⎜

∞

∫
π
2

8
2

3
2

1
2m

h
E E

E E

K T

e

E
c

c

*
exp

F

B

⎞⎞

⎠

⎟⎟⎟⎟⎟⎟
dE ___________ (8.10)

Th e above equation can be simplifi ed by the following substitution:

 Put ε = E – E
c

___________ (8.11)

 So,  dε = dE

In Equation (8.11), E
c
 is constant, as we change the variable E to ε in Equation (8.10), the integral limits 

also change.
In Equation (8.11), as E → E

c
 then ε → 0 and E → ∞, then ε also → ∞. With reference to Fig. 8.2(b), 

the exponential term in Equation (8.10) becomes:

 exp exp
( ) ( )E E

K T

E E E E

K T
c cF

B

F

B

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
− + −⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥exp

( )E E

K T
cF

B

ε

 =
−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

exp exp
E E

K T K T

cF

B B

ε
___________ (8.12)

Substituting Equations (8.11) and (8.12) in (8.10), we get:

 n
m

h

E E

K T
e=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥π

2

8
2

3
2

1
2

*
expε F C

B
⎥⎥

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∞

∫ exp
ε

ε
K TB

d
0

 =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∞

∫
π
2

8
2

3
2

0

m

h

E E

K T
e
*

exp F C

B

εε
ε

ε
1

2 exp
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟K TB

d  ___________ (8.13)

Th e integral (I) in the above equation can be simplifi ed by substitution. Put ε = x2

 so that  dε = 2x dx

 Th en  I x
x

K T
x x=

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∞

∫ exp
0

2

2
B

d

 =
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

∞

∫ 2 2

0

2

x
x

K T
xexp

B

d
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 =
( )

= ( )π π

2 1 23
2

3
2

K T
K T

B

B ___________ (8.14)

Substituting Equation (8.14) in (8.13) gives:

 n
m

h

E E

K T
e=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

−⎛

⎝
⎜⎜⎜

π
2

8
2

3
2*

exp F C

B
⎜⎜

⎞

⎠
⎟⎟⎟⎟ ( )π

2

3
2K TB

 =
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

−⎛

⎝
1

4

8
2

3
2

m K T

h

E E

K T
e
*

exp
π B F C

B

⎜⎜⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟

 n
m K T

h

E E

K T
e=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎛

⎝
⎜⎜⎜⎜

8

4

2
2

3
2

*
exp

π B F C

B

⎞⎞

⎠
⎟⎟⎟⎟

 n
m K T

h

E E

K T
e=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−⎛

⎝
⎜⎜⎜⎜

2
2

2

3
2

*
exp

π B C F

B

⎞⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

___________ (8.15)

Th e term 2
2

2

3
2

m K T

h
e
*π B

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 is almost a constant compared with the exponential term as the temperature 

changes. So, it is a pseudo constant and is given by the symbol N
c
. So, we have:

 n N
E E

K T
C= −

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥exp

( )C F

B

___________ (8.16)

For hole concentration
Th e number of holes per unit volume of semiconductor in the energy range E and E + dE in valence band is 
represented as P(E) dE. P(E) dE can be obtained by multiplying the number of available hole states between 
E and E + dE per unit volume of the material [i.e., g

h
(E) dE] with the hole probability in a hole state at 

energy E [i.e.,  f
h
(E)].

Th erefore,  P(E) dE = g
h
(E) dE f

h
(E) ___________ (8.17)

Th e number of holes present in the valence band per unit volume of material ‘p’ is obtained by  integrating 
P(E) dE between the limits E

vb
 and E

V
 where E

V
 and E

vb
 are the top and bottom energy levels of valence 

band, respectively.
i.e.,

 p E E f E E
E

E

E

E

= =∫ ∫P E d g d
vb

V

vb

V

h h
( ) ( ) ( ) ___________ (8.18)

Equation (8.18) can be represented as:

 p g E f E E g E f E E
E E

= −
− −∫ ∫h h h h

V vb

d d( ) ( ) ( ) ( )
∞ ∞

___________ (8.19)

below E
vb

 holes will not exist. Hence, Equation (8.19) becomes:

 p g E f E E
E

=
−∫ h h

V

d( ) ( )
∞

___________ (8.20)
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Th e presence of a hole can be represented as the absence of an electron. Hence, the Fermi-Dirac function 
of holes f

h
(E) in the valence band is:

 f
h
 (E) = 1 − f

e
 (E) = 1

1

1 exp F

B

−
+

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

E E

K T

 =

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

+
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠

exp

1 exp

F

B

F

B

E E

K T

E E

K T

⎟⎟⎟⎟⎟

=
+

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+

−⎡
1

1
1

exp

1

1 exp
F

B

F

B
E E

K T

E E

K T⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

Compared to exponential, the ‘1’ in the denominator is negligible, i.e., exp 1F

B

E E

K T

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

>>

 Hence,  f E
E E

K T
h

F

B

( ) exp=
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

___________ (8.21)

Th e density of hole states between E and E + dE in valence band can be written similar to Equation (8.9) 
for electrons.

 g E E
m

h
E E E

h
h

2 V

1
2d

2

8 *
d( ) ( )=

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

−
π

3
2

___________ (8.22)

where mh*  is the eff ective mass of hole.

Substituting Equations (8.21) and (8.22) in (8.20),

  we get  p
m

h
E E

E E

K T
E

E

=
⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

−
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥−

π
2

8 *
exp dh

2 V

1 F

B

V

3
2

2( )
∞∫∫

 =
⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

−
−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥−∫

π
2

8 *
exp dh

2 V

1
2

F

B

Vm

h
E E

E E

K T
E

E

3
2

( )
∞

___________ (8.23)

Th e above equation can be simplifi ed by the substitution:

 Put ε = E
V
 − E ___________ (8.24)

 so  dε = − dE

In Equation (8.24), E
V
 is constant, as we change the variable E to ε in Equation (8.23), the integral limits 

also change.
In Equation (8.24), as E → E

V
 then ε → 0 and E→ −∞, then ε → ∞ with reference to Fig. 8.2(b), the 

exponential term in Equation (8.23) becomes:

 exp expF

B

V V F

B

E E

K T

E E E E

K T

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

− + −⎡

⎣
⎢
⎢
( ) ( ) ⎤⎤

⎦
⎥
⎥
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=

− + −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥exp exp expV F

B B

ε εE E

K T K T

EE E

K T
V F

B

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

___________ (8.25)

Substituting Equations (8.24) and (8.25) in (8.23), we get:

 p
m

h

E E

K T
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
ε

2

8
2

1
h

3
2

V F

B

*
exp 22

0

∞

∫
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

exp d
B

ε
ε

K T
___________ (8.26)

From Equation (8.14), we know the integral value:

 So,  p
m

h

E E

K T
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π π
2

8

22
h

3
2

V F

B

*
exp (( )K TB

3
2

 =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥1

4
expB

3
2

V F

B

8
2

m K T

h

E E

K T
h
*π

⎥⎥

 =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2
2

2

3
2

m K T

h

E E

K T
h B

F V

B

exp
* ( )π

___________ (8.27)

Th e term 2
2

2

3
2

m K T

h
h B
*π⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 is almost constant compared with the exponential term as the temperature 

changes. So, it is a pseudo constant and is given by the symbol N
V
. So, we have:

 p N
E E

K T
=

− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V

F V

B

exp
( )

___________ (8.28)

To evaluate Fermi energy
At temperature T K, the electron concentration ‘n’ is equal to hole concentration ‘p’ in an intrinsic semicon-
ductor i.e., n = p.

Equating Equations (8.15) and (8.27), we get:

 

2
2

2

3
2

πm K T

h

E E

K T
e B C F

B

*
exp

( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −⎡

⎣
⎢
⎢

⎤

⎦
⎥⎥
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −( )⎡

⎣
2

2
2

3
2

πm K T

h

E E

K T
h B F V

B

*
exp ⎢⎢

⎢
⎤

⎦
⎥
⎥

( ) − −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = ( )m

E E

K T
me

C F

B

h
* exp *

3
2

3
22

exp

exp

− −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

E E

K T

E E

K T

F V

B

F V

B

××
− −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

exp
*

*

E E

K T

m

m

C F

B

h

e

3
2

eexp
*

*

E E E E

K T

m

m

F V C F

B

h

e

− − +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

33
2

2
exp

*

*

E E E

K T

m

m

F C V

B

h

e

− +( )⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

3
2
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Taking logarithms on both sides, we get:

2 3
2

E E E
K T

m
m

F C V

B

h

e

− +( )
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ln

*

*

 

2
3

2

2

E E E K T
m

m

E

F C V B
h

e

F

ln
*

− +( ) =
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟*

== + +
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

∴ =
+

E E K T
m

m

E
E

C V B
h

e

C

ln
3

2

*

*

F

EE
K T

m

m
V

B
h

e

ln
2

3

4
+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

*

*
___________ (8.29)

Normally, mh*  is greater than me* , since ln
m

m

h

e

*

*

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
 is very small so that E

F
 is just above the middle of 

energy gap and slightly rises with increase of temperature. In case of Si and Ge, m mh e
* *≈ , hence the Fermi 

level lies at the middle of energy gap. 

To fi nd intrinsic concentration (ni  )
Inside a semiconductor, electrons and holes will be lost due to electron-hole recombinations and electron-
hole pairs will be created due to thermal energies. Th e electron concentration and hole concentration remain 
constant as long as the temperature remains constant. At temperature T K, in an intrinsic semiconductor
n = p = n

i
, where n

i
 is called intrinsic concentration.

 Also the product np n= i
2 ___________ (8.30)

Substituting Equations (8.16) and (8.28) in (8.30) gives:

 

n N N
E E

K T

E E
i V C

C F

B

F V2 =
− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −
( ) exp

( )
exp

( )

KK T

N N
E E E E

K T

B

V C
C F F V

B

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
− + − +⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥exp

==
− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

( ) exp
( )

( ) exp

N N
E E

K T

N N
E

V C
C V

B

V C

g

KK T
E E E

n N N

B

g c V

i V C

Since
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= −

∴ =

( )

( )
1

2 eexp
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

E

K T

g

B2

 

              ___________ (8.31)

Also substituting Equations (8.15) and (8.27) in (8.30) gives:

 np n
K T

h
m m

E

K T
= =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
i

B
e h

g

B

*2

2

3
3

24
2π

( * ) exp
⎛⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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 n
K T

h
m m

E

K Ti
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−⎛

⎝
2

2

22

3
2 3

4
π

B
e h

g

B

( * * ) exp
⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
___________ (8.32)

If m m me h
* *= = , where m is the rest mass of an electron, then Equation (8.32) becomes:

 n
mK T

h

E

K T
i =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟2

2

22

3
2π B g

B

exp ⎟⎟⎟⎟

 =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟2

2

22

3
2 3

2
π m K

h
T

E

K T
B g

B

exp ⎟⎟⎟⎟

 =
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

CT
E

K T

3
2

2
exp

g

B

___________ (8.33)

where

 
C

mK

h
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ×2
2

4 83 10
2

3
2

21π B .

At 300 K, for a semiconductor having E
g
 ≈ 1 eV, n

i
 ≈ 1017/m3.

8.3 Electrical conductivity of a semiconductor
In a semiconductor, the conduction band electrons and valence band holes will participate in electrical  conduction. 
To obtain an expression for electrical conductivity, we consider a rectangular bar of intrinsic semiconductor con-
nected to a battery as shown in Fig. 8.3. Th en, electric fi eld exists along X-direction. Th is fi eld accelerates the 
free (or conduction band) electrons along negative X-direction and holes along X-   direction. So, the velocity of 
electrons along negative X-direction increases and attains some constant resultant velocity. Th is constant velocity 
is called drift velocity, represented as v

d
. Th is drift velocity is superimposed on their random thermal motion. Th e 

total electrical current through the semiconductor is the sum of electron current I
e
, and hole current I

h
.

 Th e total current (I ) = I
e
 + I

h
.

electron flow

hole flow

electron flow hole flow

+ −

E

B

Figure 8.3 Shows the electric current in intrinsic semiconductor
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To fi nd an expression for electrical conductivity, fi rst we shall consider electron fl ow in the  semiconductor. 
Let A be the area of cross section of the bar, v

de
 be the drift velocity of electrons and ‘n’ be the number of 

conduction band electrons per unit volume of the semiconductor. Th en, the free electrons present in a volume 
Av

de
 will cross an imaginary plane assumed to be perpendicular to the bar in 1 second.

 Th e number of electrons crossing the imaginary plane in 1 s = nAv
de

___________ (8.34)

 ∴  Th e electron charge which crosses the plane in 1 s = I
e
 = neAv

de
___________ (8.35)

 Th e electron current density, J
I

A
ne v

e
e

de
= = ___________ (8.36)

From Ohm’s law, the current density (  J
e
) due to electrons is given as:

 J
e
 = σ

e
 E ___________ (8.37)

where σ
e
 is the electrical conductivity of electrons.

From Equations (8.36) and (8.37), we have:

 σ
e
 E = ne v

de
___________ (8.38)

Th e drift velocity produced per unit applied electric fi eld is called the mobility of electrons represented as:

 μ
e

v

E
= de   (or)  v

de
 = μ

e
E ___________ (8.39)

Substituting Equation (8.39) in (8.38) gives:

 σ
e
 E = ne μ

e
 E  (or)  σ

e
 = ne μ

e
___________ (8.40)

Equation (8.40) represents electrical conductivity due to electrons.
Similarly, the electrical conductivity of holes (σ

h
) can be obtained. Let p be the number of holes per unit 

volume of the material, μ
h
 is the mobility of holes and the charge on a hole is e, then:

 σ
h
 = pe μ

h
___________ (8.41)

Th e total conductivity of a semiconductor is given by the sum of Equations (8.40) and (8.41).

 i.e.,  σ = σ
e
 + σ

h
 = ne μ

e
 + pe μ

h

 = e [nμ
e
 + p μ

h
] ___________ (8.42)

For an intrinsic semiconductor, n = p = n
i
, where n

i
 is called intrinsic density. So, Equation (8.42) can 

be represented as

 σ
i
 = n

i
 e [μ

e
 + μ

h
] ___________(8.43)

Th e mobilities of carriers depend on temperature in the following way μ ∝
1

3
2T

For electrons, μ
e
 = α T

−3/2 
and for holes μ

h
 = β T

−3/2
___________ (8.44)

where α and β are proportionality constants.

 So,  μ
e
 + μ

h
 = (α + β) T

−3/2

 = γ T
−3/2

___________ (8.45)  where γ = α + β
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Substituting Equation (8.45) in (8.43), we get:

 σ
i
 = n

i 
e γ T

−3/2
___________ (8.46)

Th e intrinsic concentration n
i
 is given as:

 n CT
E

K T
i =

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3 2

2
/ exp

g

B

___________ (8.47)  where  C
mK

h
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
2

2

3
2π B

Substituting Equation (8.47) in (8.46) gives:

 σ
i
 = CT 

3/2
 exp[−E

g
/2K

B
T ] e γ T

−3/2

 = γCe exp[−E
g
/2K

B
T ]

 = B exp[−E
g
/2K

B
T ] ___________ (8.48)  where  B = γ Ce = constant

Th is is the expression for electrical conductivity of an intrinsic semiconductor. Th e resistivity (ρ
i
) can be 

written as:

 ρ
σi

i B

E

K T
A

E

K T
= =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
⎡

⎣

1 1

2 2
exp exp

g

B

g

B

⎢⎢
⎢

⎤

⎦
⎥
⎥ ___________ (8.49)

where  A
B

=
1

 = constant

To fi nd energy gap of a semiconductor
Taking logarithms on both sides of Equation (8.49), we have:

 ln ln
g

B

ρi

E

K T
A= +

2
___________ (8.50)

Th is equation represents a straight line.

In r i

In A

1/T

Slope =
Eg

2KB

Figure 8.4 A graph between ln ρi versus 1/ T for an intrinsic semiconductor

Chapter 08.indd   12Chapter 08.indd   12 9/25/2009   5:40:38 PM9/25/2009   5:40:38 PM



Semiconductors and Physics of Semiconductor Devices 8-13

At diff erent temperatures, the resistivity (ρ
i
) of an intrinsic semiconductor has been determined. A graph 

has been plotted between ln ρ
i
 versus 1/T as shown in Fig. 8.4.

Th e graph is a straight line, and the slope of the line is equal to E
g
/2K

B
. Equating the slope of the graph 

to E
g
/2K

B
, E

g
 can be determined.

Th e intercept on ln ρ
i
 axis is equal to ln A. We can also obtain energy gap using Equation (8.48). A graph 

can be drawn between ln σ
i
 versus 1/T, the resulting graph is a straight line as shown in Fig. 8.5. Th is graph has 

a negative slope, which is equal to −E
g
/2K

B
, from this, E

g
 can be obtained. Th e energy gap of Ge and Si are 

0.72 eV and 1.12 eV respectively.

Increase of temperature to double the conductivity
From Equation (8.46), we know doubling the  conductivity is equal to doubling the intrinsic concentration by 
raising the temperature. Th e intrinsic concentration is:

 n N N
E

K T
i V C

g

B

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥( ) exp

1
2

2
___________ (8.51)

To double n
i
, the increase in temperature is (say) ΔT, then, we have:

 2
2

1
2n N N

E

K T T
i V C

g

B

= ( )
−

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥exp

( )Δ
___________ (8.52)

Dividing Equation (8.52) by (8.51), we have:

 2
2 2

=
−

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⇒exp

( )
exp

E

K T T

E

K T

g

B

g

BΔ
22

2

1 1
= −

+

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

exp
E

K T T T

g

B Δ

 2
2

2
2 2

=
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ⇒ =

⎡
exp

( )
exp

E

K

T

T T T

E

K

T

T

g

B

g

B

Δ
Δ

Δ

⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

since  T (T + ΔT ) ≈ T 2

Slope = 
2KB

−Eg

ln si

1/T

Figure 8.5 A graph between ln σi versus 1/T for an intrinsic semiconductor
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Taking logarithms on both sides, we get:

 ln
E

K T

T

T
2

2
=

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

g

B

Δ
  (or)  

ΔT

T

K T

E
ln=

2
2B

g

___________ (8.53)

In Equation (8.53), ΔT represents the increase in temperature to double the electrical conductivity of an 
intrinsic semiconductor. At room temperature, the conductivities of Si and Ge doubles for every 10° C and 
15° C increase in temperature, respectively. Th erefore, we conclude that semiconductors are very sensitive to 
the temperature changes.

8.4 Extrinsic semiconductors
Th e conductivity of an intrinsic semiconductor can be increased enormously by adding small amounts of 
impurity atoms [such as III or V group atoms]. For example, the conductivity of silica is increased by 1000 
times on adding 10 parts of boron per million part of Si. Th e process of adding impurities is called doping 
and the impurity added is called dopant. Th e doping is done during crystallization process [i.e., when the 
substance is in molten state]. On crystallization, the impurity atoms replace some of the intrinsic atoms.

When some pentavalent [Group V] impurity atoms such as P [or As, Sb, Bi, etc.] are added to an  intrinsic 
semiconductor Si (or Ge), then the impurity atoms interlock in the crystal lattice because the size of impurity atoms 
is not greatly diff erent from that of silica atoms. As shown in Fig. 8.6(a), four of the fi ve valence electrons of phos-
phorous will make covalent bonds with the surrounding silica atoms and the fi fth electron is feebly attached with the 
phosphorous atom at 0 K. Th e ground state energy of this fi fth electron lies just below the conduction band of silica. 
Th e phosphorous atoms create an energy level that lies at 0.045 eV below the conduction band of silica as shown in 
Fig. 8.6(b). Th e number of electron states in this level is equal to the number of phosphorous atoms present per unit 
volume of the material. Each electron state is represented by a dash in this energy level. At 0 K, the fi fth electron 
of phosphorous atoms occupy these electron states. If we slightly rise the temperature of the material such that the 
increase in the energy of fi fth electron of phosphorous is equal to or greater than 0.045 eV, then that electron enters 
into the conduction band of silica. In the crystal, that electron moves away from the binding forces of phosphorous 
atom and moves freely in the crystal. Now, this electron will participate in electrical conduction.

Th e increase in temperature to free the fi fth electron of phosphorous is very much less compared to the 
increase in temperature to break a covalent bond in the crystal. Th is means the phosphorous atoms readily 
give electrons for conduction, and also the energy level created by phosphorous atoms in the energy gap is 
called donor energy level (E

D
). Even at low temperatures, the donor level donates electrons to the conduction 

band as shown in Fig. 8.6(c).
When an electron leaves a phosphorous atom, then it remains as a positive ion, but holes will not be cre-

ated. So, we have large number of electrons in the conduction band than the holes in the valence band. At room 
temperature T K, the number of electrons in the conduction band is equal to the number of phosphorous atoms 
per unit volume and the number of covalent bonds broken per unit volume of the material, whereas the number 
of holes in the valence band is equal to the number of covalent bonds ruptured per unit volume of the material. 
Th e free electrons are very large in number compared to the holes in the material. Electrons are the majority 
carriers and holes are the minority carriers, so this material is called n-type semiconductor.

Instead of adding pentavalent impurity atoms, if trivalent [Group III] impurity atoms such as B 
[or Al, Ga, In, etc.] atoms are doped in an intrinsic semiconductor, Si (or Ge), then the impurity atoms 
occupy some of the silica atom sites because the size of impurity atoms and Si atoms is almost the same. 
As shown in Fig. 8.7(a), with three valence electrons each boron atom makes three covalent bonds with the 
surrounding three silica atoms. To attain stability, it completes fourth covalent bond by accepting a stray elec-
tron in its vicinity. Since this stray electron belongs to a silica atom, silica atom acquires a hole. Th e boron 
atoms introduce an energy level just above the valence band in the energy gap of silica crystal. Th e number 
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Figure 8.6
  (a) Two dimensional crystal structure of silica droped with phospho-

rous atoms; (b) Energy band diagram of n-type material at 0 K; 
(c) Energy band diagram of n-type material at T K

of  electron states in this energy level is equal to the number of boron atoms present per unit volume of silica 
crystal. Each electron state of this energy level is represented by a dash in the band diagram as shown in
Fig. 8.7(b). Th is energy level is called acceptor energy level because the electron states in this energy level readily 
receive electrons from the valence band. Th e number of holes formed in the valence band is equal to the number 
of electrons transferred to acceptor states. Since the energy diff erence between acceptor level and valence band 
energy levels is very small, so even at very low temperatures the valence band electrons gain suffi  cient thermal 
energy to occupy the acceptor energy level states as shown in Fig. 8.7(c).
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Figure 8.7
  (a) Crystal structure of a p-type material; (b) Energy band diagram of 

p-type material at 0 K; (c) Energy band diagram of p-type material at T K

After receiving an electron, the boron atom becomes a negative ion. At room temperature T K, the 
number of holes present per unit volume of the material is equal to the number of boron ions and number of 
covalent bonds ruptured. In this material, holes are large compared to conduction electrons. Holes are major-
ity carriers and electrons are minority carriers, so this type of material is called a p-type semiconductor.

In a semiconductor at T K, the rate of electron hole recombination is proportional to electron concentration 
and hole concentration. In general, the recombination rate is proportional to the product np. In an  intrinsic 
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semiconductor, n = p = n
i
, so that np n= i

2. In case of n-type semiconductor, n is large and  correspondingly 
p is less so that the product remains constant. Similarly, in case of p-type semiconductor, holes are large; so 
correspondingly conduction electrons reduces so that the product np remains constant.

8.5 Carrier concentration in extrinsic semiconductors
Th e number of charge carriers present per unit volume of a semiconductor material is called carrier  concentration. 
Suppose donor and acceptor atoms are doped in a semiconductor, then at some room temperature T K, the 
material contains n, p, N A

− and N D
+, which denote number of conduction electrons, holes,  acceptor ions and 

donor ions per unit volume of material, respectively. Th e material will be electrically neutral if,

  n N p N+ = +− +
A D

___________ (8.54)

Th at is the total negative charge due to conduction electrons and acceptor ions is equal to holes and donor 
ions in unit volume of material. Equation (8.54) is called charge neutrality equation. In the above equation,

 n N
E E

K T
=

− −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥C

C F

B

exp   and  p N
E E

K T
=

− −( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V

F V

B

exp ___________ (8.55) 

And the product of acceptor concentration and the probability of fi nding an electron in acceptor level 
gives the concentration of acceptor ions [i.e., N A

− ].

 ∴ =
+

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−N
N

E E

K T

A
A

A F

B

1 exp

___________ (8.56)

Similarly, the donor ions concentration is:

 N N
E E

K T

D D

D F

B

+ = −
+

−( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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⎢
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⎦

1
1
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⎥
⎥
⎥
⎥
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⎥
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⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−

N

E E
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E E

K T

D
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B

D F

B

exp

exp1
⎛⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 =
+

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥N

E E

K T

D

F D

B

1

1 exp
⎥⎥
⎥
⎥
⎥

___________ (8.57)

In n-type material, there are no acceptor atoms [and hence the acceptor ions], so N A
− = 0 . At 0 K, all 

the electron states in donor level are occupied by electrons. As the temperature is increased from 0 K, some of the 
 electrons jump from these donor states into the conduction band, leaving these states empty of electrons. Also 
the  concentration of holes is extremely less compared with the concentration of conduction electrons [i.e.,  p << n]
From Equation (8.54), we have:

   n p N= + D
+

(or)  n N≈ D
+ ___________ (8.58)  [since p << N D

+
]
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At some room temperature T K, almost all the donor atoms donate electrons to conduction band. So, in 
n-type material, the free electron concentration is almost equal to the donor atoms. Th en, Equation (8.58) 
can be written as:

 n
n
 ≈ N

D
___________ (8.59)

where n
n
 represents electrons in n-type material

Th e hole concentration in n-type material can be obtained by applying law of mass action [i.e., np ni= 2 ] 
as n

n
 p nn i

2=

 (or)  p
n

n

n

N
n

i

n

i

D

= ≈
2 2

___________ (8.60)

where p
n
 represents holes concentration in n-type material. In n-type material at 0 K, the Fermi energy 

level lies in the middle of E
C
 and E

D
 as shown in Fig. 8.8(a).

 i.e.,  E
E E

F
C D=

+
2

As the temperature increases from 0 K, the Fermi level shifts upwards according to Equation (8.61) 
slightly due to ionization of donor atoms. With further increase of temperature, electron-hole pairs are gener-
ated due to the breaking of covalent bonds, hence Fermi level shifts downwards.

 E
E E

K T
N

N
F

C D
B

D

C

ln=
+

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟2

1

2
___________ (8.61)

In p-type semiconductor, there are no donor atoms [and hence no N D
+  ions], so N D

+ = 0. At 0 K, all the 
acceptor levels are not occupied by electrons. As the temperature is increased from 0 K, some electrons jump 
from top valence band energy levels to the acceptor states, leaving holes in the valence band and acceptor 
ions N A

−  are formed. At some room temperature T K, concentration of conduction electrons is extremely less 
compared with hole concentration.

 ∴  From Equation (8.54), we have:  n N p+ =−
A ___________ (8.62)

 (or)  N pA
− ≈ ___________ (8.63)  [since n << N A

− ]

At some room temperature T K, in p-type material, the hole concentration is almost equal to the acceptor 
atoms in unit volume of the material. So, Equation (8.63) can be written as:

 p
p
 ≈ N

A
___________ (8.64)

where p
p
 represents holes in p-type material

Th e electron concentration in p-type material can be obtained by applying law of mass action [i.e.,  pn ni= 2] 
as n

p
p n

p i
= 2

 (or)  n
n

p

n

N
p

i

p

i= ≈
2 2

A

___________ (8.65)

where n
p
 represent free electron concentration in p-type material. In p-type material, the Fermi level lies in 

between E
V
 and E

A
 at 0 K, as shown in Fig. 8.8(b). As the temperature is increased from 0 K, the Fermi level shifts 

downwards slightly as per Equation (8.66) due to ionization of acceptor atoms. And with further increase of tem-
perature, electron-hole pairs are generated due to the rupture of covalent bonds, so Fermi level shifts upwards.

 E
E E K T N

N
F

V A B A

V

ln=
+

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟2 2

___________ (8.66)
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Figure 8.8
  (a) Band diagram of n-type material at 0 K; (b) Band diagram of p-type 

material at 0 K

8.6 Minority carrier life time
In this topic, we will study the life time of minority carriers in an extrinsic semiconductor. In n-type 
 semiconductor, hole carrier life time and in p-type semiconductor electron carrier life time are called the 
minority carrier life times. Th is can be explained in the following way.
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In a semiconductor, the conduction electrons and holes are moving in random directions. So, for every 
second, some free electrons may come across holes or some holes may come across free electrons and 
recombination takes place. For every recombination, a pair of electron-hole will be lost in the material. 
Th e number of recombinations take place in 1 second per unit volume of the material is called recombina-
tion rate and is represented by ‘R’. Th e recombination rate is proportional to electron concentration and 
hole concentration in the material. In general, recombination rate is proportional to the product of electron 
and hole concentrations.

 i.e.,  R ∝ np

 R = rnp ___________ (8.67)

where ‘r’ is the proportionality constant called recombination coeffi  cient. Suppose a semiconductor is in 
thermal equilibrium at some (room) temperature T K. At this temperature, due to recombination, the carrier 
concentration should decrease, but actually carrier concentration remains constant as long as the temperature 
remains constant. So, equal number of electrons and holes is generated due to thermal energy. Th e number of 
electron-hole pairs created in 1 second per unit volume of the material is called carrier generation rate and is 
represented as ‘g’. In the semiconductor on an average, a hole exists for a time τ

p
 and an electron exists for a 

time τ
n
 before recombination. In n-type material, τ

p 
is called minority carrier life time and in p-type material 

τ
n
 is called minority carrier life time. Th e rate of change of hole concentration in n-type material is:

 
d

d

p

t
g rnp

T
= − ___________ (8.68)

where g
T
 is thermal generation rate of electrons and holes.

At thermal equilibrium, 
d

d

p

t
= 0

 ∴  g
T
 = rn

0
 p

0
___________ (8.69)

where n
0
 and p

0
 are equilibrium concentrations of electrons and holes, respectively.

Let an n-type semiconductor is slightly disturbed from equilibrium by thermal or by optical excitation, 
then few excess of holes (Δp) and equal number of electrons (Δn) are created in unit volume. Th en, the per-
centage increase of holes [minority carriers] is much larger than percentage increase of electrons. Hence, we 
are interested in hole (minority) carrier life time in n-type material. Th e excess of hole recombination rate 
(or loss) at a time ‘t ’ is given by:

 − = +( ) +( )−
d

dt
p r n n p p rn p( )Δ Δ Δ0 0 0 0

 = r (n
0
 p

0
 + n

0
 Δ p +Δn p

0
 + Δn Δp – n

0
 p

0
)

 ≈ r [n
0
 Δp + Δn p

0
]

 (or)  
d

d

Δ
Δ

p

t
r p n p= − +[ ]0 0

___________ (8.70)  [Since Δn = Δp]

In the above equation, the quantity r (n
0
 + p

0
) has the dimensions of time inverse.

So,  
1

0 0r n p+( )
 = τ = minority carrier life time.

Equation (8.70) can be written as: − =
d

dt
p

p
Δ

Δ
τ

___________ (8.71)
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Equation (8.71) is integrated by variable separation method. 
d p

p

dΔ
Δ
( )

=
−

( )

t

τ

(or)  ln (Δp) = 
−

+
t

C
τ

ln  where ln C is integration constant 

 ln
p

C

tΔ⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟=

−
τ

Taking exponential on both sides, (Δp) = C e
t−

τ ___________ (8.72)

‘C ’ can be found by applying initial conditions.

At t = 0, Δp is equal to (Δp)
0
 = C

Equation (8.72) becomes  Δ Δp p e
t

=
−

( )0
τ ___________ (8.73)

After time τ from excitation of semiconductor [i.e., at t = τ]

 Δ Δ
Δ Δ

Δp p e
p

e

p
p= = = =−( )

( ) ( )

.
( )/

0
0 0

0
2 718

37τ τ % of

So, minority carrier life time (τ) is defi ned as the time in which the excess carrier concentration reduces to 
1/e or 37% of its initial value. Th e life time in a pure semiconductor free from defects range from 2000 to 3000 
micro seconds.

A graph plotted between Δp versus ‘t ’ is shown in Fig. 8.9.
Th e carrier life time depends on the bulk of the material, i.e., life time measured in an infi nite crystal and 

on the surface, i.e., the life time measured due to the condition on sample surface.

 Th en,  Δ Δp p
t t

=
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟( ) exp exp0 τ τB S

⎟⎟⎟⎟
= − +

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥( ) expΔp t0

1 1

τ τB S ⎥⎥

 = Δp( ) −⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟0

exp
t

τ

t = t t

(∆p)o

∆p

(∆p)o

e

Figure 8.9 Excess hole [minority] carrier concentration decay with respect to time
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 ∴  
1 1 1

τ τ τ
= +

B S

where τ = observed life time
τ

B
 = bulk life time and τ

s 
= surface life time

τ
B
 is measured by observing τ for a variety of surface treatments.

8.7 Drift and diffusion currents
Often, we come across drift and diff usion currents in semiconductors. Th e drift current occurs due to an applied 
electric fi eld on a semiconductor and the diff usion current occurs whenever carrier concentration  gradient 
exists in the material. In a semiconductor, both currents are explained separately in the following way.

(a) Drift current
Let us consider a semiconductor material of length ‘l ’ at some (room) temperature T K. At this temperature, 
the free electron and hole concentrations are n and p, respectively. Th e free electrons and holes possess random 
motions so that they do not possess any resultant velocity in any direction inside the crystal. When a voltage 
‘V  ’ is applied across the semiconductor, then the intensity of electric fi eld (E) in the material is equal to V/l. 
Th is electric fi eld (E) exerts a force eE on each carrier, so that an acceleration eE/m acts on the carriers, the 
velocities of electrons and holes are increased in opposite directions up to certain constant value called drift 
velocity of carriers. Th ese velocities will not increase to large values because of electrical resistance due to 
thermal vibrations of ions (or atoms) at that temperature. Th e drift velocities of electrons and holes produce 
drift current in the material. Th e drift current density of electrons is:

 J
n, drift

 = nev
de

___________ (8.74)

where v
de

 is the drift velocity of electrons and ‘n’ is the number of conduction (free) electrons per unit 
volume of material. Th e current density of electrons can also be represented using Ohm’s law as:

 J
n, drift

 = σ
n
E ___________ (8.75)

where σ
n
 is the electrical conductivity of free electrons.

From Equations (8.74) and (8.75) we have:

 σ
n
E = nev

de
___________ (8.76)

Th e drift velocity of an electron can be found in the following way:
Th e moment at which we apply electric fi eld [E] on the semiconductor (t = 0), the drift velocity is zero 
[v

de
= 0]. Th e electric fi eld exerts a force eE on each electron, so that each electron acquires constant drift 

velocity v
de

 after time τ, called collsion time. v
de

 can be obtained from equations of motion [v = u + at, as 
in dynamics].

 v
eE

m

e

m
Ede = +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟0 τ

τ
___________ (8.77)

In Equation (8.77) eτ/m is constant and it can be represented as μ
n
 [= eτ/m], called mobility of electrons. 

Th erefore, Equation (8.77) can be represented as:

 v
de

 = μ
n
E ___________ (8.78)
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Substituting Equation (8.78) in (8.76) we have:

 σ
n
E = neμ

n
E  (or)  σ

n
 = neμ

n
___________ (8.79)

Similarly, the conductivity of holes can be written as:

 σ
p
 = peμ

p
___________ (8.80)

Th e total drift conductivity of the semiconductor is:

 σ = σ
n
 + σ

p
 = neμ

n
 + peμ

p
___________ (8.81)

In an intrinsic semiconductor, n = p = n
i

 so  σ
i
 = n

i
e (μ

n
 + μ

p
) ___________ (8.82)

Th e resistivity (ρ) of the semiconductor is:

 ρ
σ μ μ

= =
+

1 1

ne pen p

___________ (8.83)

Using Equation (8.81), we can write the drift current densities of electrons and holes as:

 J
n, drift

 = neμ
n
E ___________ (8.84)  and  J

p, drift
 = peμ

p
E ___________ (8.85)

Th e total drift current density is equal to sum of electron and hole drift current densities.

 J
drift

 = neμ
n
E + peμ

p
E ___________ (8.86)

Th e variation of conductivity with temperature can be described as follows: At 0 K, there are no  carriers 
in the semiconductor. As the temperature of a semiconductor is increased from 0 K to some low temperature, 
then the electrons present in donor level will go to conduction band in n-type semiconductor or electrons 
present in valence band will go to acceptor level to produce holes in valence band of p-type semiconductor. 
By increasing temperature from 0 K to some low temperature (T K), the carrier concentration increases in 
the extrinsic semiconductor. Also the thermal vibrations of ions and hence electrical  resistivity increases. Th e 
increase in conductivity depends on the relative values of the above two quantities, so conductivity increases. 
Afterwards as the temperature of extrinsic semiconductor is increased near to room temperature, the carrier 
concentration would not increase and resistivity increases. So, the material possesses positive temperature 
coeffi  cient of resistivity. Above room temperature, the intrinsic carrier concentration and hence the conduc-
tivity increases with rise of temperature compared to the increase of resistivity. So, the material possesses 
negative temperature coeffi  cient of resistivity at and above room temperatures. At higher temperatures, the 
material exhibits its intrinsic behaviour [i.e., the covalent bonds are ruptured with an increase of temperature 
and forms equal conduction electrons and holes in the semiconductor].

(b) Diffusion current
Non-uniform concentration of charge carriers produces diff usion current. Non-uniform concentration of 
charge carriers can be formed by thermal or radiation excitation of a part of the material or by injecting 
 carriers into the material through surface.

Suppose the concentration of electrons and holes increases by Δn and Δp at a point in the material 
due to excitation. Th ese excess carriers diff use to low concentrated place; the rate of diff usion according 

to Fick’s law is proportional to concentration gradient ∂
∂
Δn

x
 along X-direction for excess electrons. As the 

fl ow takes place from high concentration region to low concentration region, so the rate of fl ow of electrons 
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is  proportional to −
∂
∂x

nΔ , and the rate of fl ow of electrons through unit area is equal to −
∂

D
n

x
n

∂ Δ( )
.

Here, Dn is the proportionality constant called diff usion coeffi  cient of electrons. Th is electron charge fl ow 

constitutes electron diff usion current density represented as J
n, diff 

 J e D
n

x
D e

n

x
n, diff n n= − × −

∂( )
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

∂( )
∂

( )
Δ Δ

___________ (8.87)

Similarly for holes,

 J e D
p

x
D e

p

x
p, diff P P= × −

∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= −

∂( )
∂

( )
Δ Δ

___________ (8.88)

where D
p
 is called diff usion coeffi  cient of holes. Even though the excess electrons and holes diff uses in 

the same direction, their current densities are in opposite direction because of opposite charge on electron and 
hole. Th e total diff usion current is:

 J
diff 

 = J
n, diff 

 + J
p, diff 

 =
∂( )

∂
−

∂( )
∂

D e
n

x
D e

p

x
n P

Δ Δ
___________ (8.89)

If there is concentration gradient along X-direction and if we apply an electric fi eld E on it, then the total 
current in the semiconductor is the sum of drift and diff usion currents. Th e total current due to electrons and 
holes are:

 J
n
 = J

n, drift
 + J

n, diff 

 = +
∂

∂
ne E D e

n

x
n n

μ
( )Δ

___________ (8.90)

 J
p
 = J

p, drift
 + J

p, diff 

 = −
∂

∂
pe E D e

p

x
p pμ

( )Δ
___________ (8.91)  and  J = J

n
 + J

p

 J ne E D e
n

x
pe E D e

p

x
n n p ptotal

= +
∂

∂
+ −

∂
∂

μ μ
( ) ( )Δ Δ

___________ (8.92) 

8.8 Einstein’s relations
Einstein showed the direct relation between the mobility (μ) and diff usion coeffi  cient (D) of a semicon-
ductor. Suppose a semiconductor is in equilibrium at some temperature T K with no applied electric fi eld. 
Th e free electrons and holes distribution is uniform and there is no net current fl ow in any direction. Any 
disturbance in the carrier concentration leads to diff usion current in the material. As the material is at some 
temperature T K, it possesses electrical resistance due to thermal vibrations of ions. Th e product of resistance 
and diff usion current results in voltage and hence electric fi eld in the material. Th erefore, in equilibrium, the 
drift and diff usion currents due to excess concentration are equal. So, for electrons, we can write:

 ( )
( )

Δ
Δ

n e E D e
n

x
n nμ =

∂
∂

___________ (8.93)
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Th e force (F ) on excess electrons (Δn) to restore equilibrium is given by the product of Δn and electric 
force eE on each electron. Th us, we have:

 F = (Δn) eE ___________ (8.94)

Equation (8.93) can be written as:

 ( )
( )

Δ
Δ

n eE
D

e
n

x
F

n

n

=
∂

∂
=μ ___________ (8.95)

At temperature T K, the force on excess electrons to maintain equilibrium depends on thermal energy of 

excess electrons [equal to K
B
T ] times the concentration gradient 

∂
∂
( )Δn

x
.

 Th us,  F K T
n

x
=

∂
∂B

( )Δ
___________ (8.96)

Equations (8.95) and (8.96) are equal.

 
D

e
n

x
K T

n

x
n

nμ
∂

∂
=

∂
∂

( ) ( )Δ Δ
B

  (or)  
D K T

e
n

nμ
= B ___________ (8.97)

(or)  D
K T

e
n n=μ B ___________ (8.98)

Similarly, for holes,

 
D K T

e

p

pμ
= B ___________ (8.99)  (or)  D

K T

e
p p= μ B ___________ (8.100)

From Equations (8.97) and (8.99), we have:

 
D D

n

n

p

pμ μ
= ___________ (8.101)  (or)  

D

D
n

P

n

p

=
μ
μ

___________ (8.102)

Equations (8.97) to (8.102) are called Einstein’s equations. Using the above equations, the diff usion 

coeffi  cients of electrons and holes can be determined. At 300 K, 
K T

e
B mV= 26 . Th e diff usion coeffi  -

cients for Si are D
n
 = 3.6 × 10–3 m2/s and D

p
 = 1.3 × 10−3 m2/s and for Ge, D

n
 = 10 × 10–3 m2/s and 

D
p
 = 5 × 10–3 m2/s.

8.9 Continuity equation
Th e mathematical relations formed from the excess carriers in unit volume of semiconductor due to gen-
eration, recombination, drift and diff usion are called continuity equations. Th e continuity equation can be 
derived with reference to an elemental volume A δx at x in a rectangular bar of semiconductor is shown in 
Fig. 8.10.

Let the number of excess electrons in the element due to generation, recombination, drift and diff usion 
is Δn (Aδx) and the rate of increase of this number in the element is:
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∂
∂

( )
t

n A xΔ δ ___________ (8.103)

Th is value can be extracted separately in the following way:

(a) Rate of increase of an excess electron concentration due to generation and recombination: At thermal 
equilibrium, the rate of generation is equal to rate of recombination represented as r n

0     
p

0
, where r is recombina-

tion coeffi  cient, n
0
 and p

0
 are equilibrium concentration of free electrons and holes. Due to thermal or optical 

excitation, carriers are generated and the concentration of electrons and holes becomes n
0
 + Δn and p

0
 + Δp. 

Now, the recombination rate is equal to r (n
0
 + Δn) ( p

0
 + Δp). Th e rate of increase of carriers per unit volume 

is equal to the diff erence between the two rates of recombination.

 i.e.,  −
∂( )

∂
= +( ) +( )−

Δ
Δ Δ

n

t
r n n p p rn p0 0 0 0

 −
∂( )

∂
= + + + −[ ]Δ

Δ Δ Δ Δ
n

t
r n p n p p n n p n p0 0 0 0 0 0

 ≈ r [n
0
 Δp + p

0
 Δn]  [since Δp Δn is negligible]

 ≈ rΔn (n
0
 + p

0
)  [since Δn = Δp]

 ≈
Δn

nτ
  [since τn

r n p
=

+
1

0 0( )
 = carrier life time of the electrons]

 ∴ ∂( )
∂

=
−Δ Δn

t

n

nτ
 per unit volume of the material 

Plane 1 Plane 2

x

Excess electron
density (∆n) at plane 1

Excess electron density
[∆n + d(∆n) at plane 2

x + dx

Figure 8.10 A rectangular bar of semiconductor
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In the element of volume Aδx,

 
∂( )

∂
=

−Δ Δn

t
A x

n
A x

n

δ δ|gen and recomb τ
___________ (8.104)

(b) Rate of increase of excess electron concentration due to drift: Due to the applied electric fi eld ‘E ’, elec-
trons drift into the element at plane 2 and leave at plane 1. Let the excess electron concentration at plane 1 
is Δn, so the electron current at plane 1 i.e., the electron current leaving the element is Δn (eμ

n
E)A, where 

A is the cross-sectional area of the element. Similarly, let the excess electron concentration at plane 2 be [Δn 
+ δ(Δn)], so the electron current at plane 2 i.e., current entering the element is [Δn + δ(Δn)] (eμ

n
E)A. Th e 

net rate of increase of the electron charge in the element is equal to [Δn + δ(Δn)] eμ
n
E A – Δn eμ

n
E A. Th e 

rate of increase of the number of excess electrons in the element due to drift is represented as 
∂ Δn

t
A x

( )
∂

δ |drift  
and is equal to:

 
∂ Δ Δ Δ Δn

t
A x

n n e E A ne E( )
∂

=
+ ( )[ ][ ] −[ ]

δ |drift

n nδ μ μ AA

e
n EA= ( )δ Δ μn

 But  δ Δ Δn
x

n x( ) =
∂
∂

( ) δ

 So  
∂( )

∂
=

∂( )
∂

Δ Δn

t
A x

n

x
EA xδ δ|drift nμ ___________ (8.105)

(c) Rate of increase of excess electron concentration due to diff usion: Diff usion is due to the concentra-

tion gradient of carriers. Let the excess electron concentration gradient at x is 
∂

∂
( )Δn

x
 and at x + δx is 

∂
∂

+ ( )[ ]
x

n nΔ Δδ  as shown in Fig. 8.11.

Th e rate of diff usion of electrons into the element at plane 2 is greater than the rate of diff usion out of 
the element at plane 1. Th e number of electrons diff uses into the element in unit time is:

 D A
x

n n D A
x

n
x

nn n

∂
∂

+ ( )( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

∂
∂

( ) +
∂
∂

Δ Δ Δ Δδ
2

2
(( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ( ) =

∂( )
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

δ δ δx n
n

x
xbecause Δ

Δ

Figure 8.11
  Electron diffusion in the elemental volume of semiconductor due to 

nonuniform electron density

Plane 1
Plane 2

Electron gradient

Electron gradient is

X x + dx

[d(∆n)]

d(∆n)

∂(∆n)
∂x

∂(∆n)
∂x

∂
∂x

+
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 =
∂ Δ

∂
+

∂ Δ
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥D A

n

x

n

x
x

n

( ) ( )2

2
δ

And the number of electrons diff uses out of the element in unit time is = D A
n

x
n

∂
∂
( )Δ

Th e rate of increase of number of electrons in the element is represented as 
∂

∂
( )Δn

A x
t

|diffδ  and is equal to 

∂ Δ
∂

=
∂ Δ

∂
+

∂ Δ
∂

⎡

⎣
⎢
⎢

⎤( )
|

( ) ( )n
A x D A

n

x

n

x
x

t diff n
δ δ

2

2

⎦⎦
⎥
⎥ −

∂ Δ
∂

D A
n

xn

( )

 =
∂ Δ

∂
D

n

x
A xn

2

2

( )
δ ___________ (8.106)

Th e rate of increase of excess electrons in the element is equal to sum of Equations (8.104), (8.105) and 
(8.106) and is equal to Equation (8.103).

 ∴ ∂ Δ
∂

=
−Δ

+
∂ Δ

∂
+

∂ Δ( ) ( ) ( )n

t
A x

n
A x

n

x
E A x D

n
δ

τ
μ δ

n

n nδ
2

∂∂x
A x

2
δ

 (or)  ∴ ∂ Δ
∂

= −
Δ

+
∂ Δ

∂
+

∂ Δ
∂

( ) ( ) ( )n

t

n n

x
E D

n

xτ
μ

n

n n

2

2
___________ (8.107)

Th is is continuity equation for excess electrons. Similarly, we can write continuity equation for excess 
holes as:

 
∂ Δ

∂
= −

Δ
−

∂ Δ
∂

+
∂ Δ

∂
( ) ( ) ( )p

t

p p

x
E D

p

xpτ
μp p

2

2
___________ (8.108)

Equations (8.107) and (8.108) can be represented in short by using the drift and diff usion current densi-
ties of excess electrons and holes. For electrons,

 J ne E D e
n

x
n n n= Δ +

∂ Δ
∂

μ
( )

___________ (8.109)

Diff erentiating Equation (8.109) with respect to ‘x’, we get:

 
∂
∂

=
∂ Δ

∂
+

∂ Δ
∂

J

x

n

x
e E D e

n

x
n

n n

( ) ( )
μ

2

2

 (or)  
1 2

2e

J

x

n

x
E D

n

x

∂
∂

=
∂ Δ

∂
+

∂ Δ
∂

n
n n

( ) ( )
μ ___________ (8.110)

Equation (8.110) replaces the last two terms in Equation (8.107). So, Equation (8.107) becomes:

 
∂ Δ

∂
=

−Δ
+

∂
∂

( )n

t

n

e

J

xτn

n1
___________ (8.111)

Similarly for holes,

 
∂ Δ

∂
=

−Δ
−

∂

∂
( )p

t

p

e

J

xτp

p1
___________ (8.112)
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Equations (8.111) and (8.112) represent another form of representing continuity equations of excess 
electrons and holes, respectively.

8.10 Hall effect
When magnetic fi eld is applied perpendicular to a current-carrying conductor, then a voltage is developed in 
the material perpendicular to both magnetic fi eld and current in the conductor. Th is eff ect is known as Hall 
eff ect and the voltage developed is known as Hall voltage (V

H
). Hall eff ect is useful to identify the nature 

of charge carriers in a material and hence to decide whether the material is n-type semiconductor or p-type 
semiconductor, also to calculate carrier concentration and mobility of carriers.

Hall eff ect can be explained by considering a rectangular block of an extrinsic semiconductor in which 
current is fl owing along the positive X-direction and magnetic fi eld B is applied along Z-direction as shown 
in Fig. 8.12.

Suppose if the semiconductor is n-type, then mostly the carriers are electrons and the electric current is due 
to the drifting of electrons along negative X-direction or if the semiconductor is p-type, then mostly the carriers 
are holes and the electric current is due to drifting of the holes along positive X-direction. As these carriers are 
moving in magnetic fi eld in the semiconductor, they experience Lorentz force (F

L
) equal to Bev

d
, where v

d
 is 

the drift velocity of the carriers.
Th e direction of this force can be obtained by applying Fleming’s left-hand rule in electromagnetism. 

[If we stretch the thumb, fore fi nger and middle fi nger in three perpendicular directions so that the fore fi nger 
is parallel to the magnetic fi eld and the middle fi nger is parallel to the current direction, then thumb repre-
sents the direction of force on the current-carrying carriers]. Th e Lorentz force is exerted on the carriers in 
the negative Y-direction. Due to Lorentz force, more and more carriers will be deposited at the bottom face 
[face 1] of the conductor. Th e deposition of carriers at the bottom face is continued till the repulsive force due 
to accumulated charge, balances the Lorentz force. After some time of the applied voltage, both the forces 

0
X

Ix

Z
B

VH

Y

Face 2 B

W

Face 1

d

Figure 8.12 Hall effect
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become equal in magnitude and act in opposite direction, then the potential diff erence between the top and 
bottom faces is equal to Hall voltage and that can be measured.

At equilibrium, the Lorentz force on a carrier  (F
L
) = Bev

d
___________ (8.113)

 and the Hall force  F
H
 = eE

H
___________ (8.114)

where E
H
 is the Hall electric fi eld due to accumulated charge.

 At equilibrium,  F
H
 = F

L

 e E
H
 = Bev

d

 ∴  E
H
 = Bv

d
___________ (8.115)

If ‘d ’ is the distance between the upper and lower surfaces of the slab, then the Hall fi eld

 E
d

H
HV

= ___________ (8.116)

In n-type material,  J
x
 = −nev

d

 (or)  v
J

ne
x

d = − ___________ (8.117)

where n is free electron concentration, substituting Equation (8.117) in (8.115) gives:

 E
B J

ne
x

H =
−

___________ (8.118)

For a given semiconductor, the Hall fi eld E
H
 is proportional to the current density J

x
 and the intensity of 

magnetic fi eld ‘B ’ in the material. 

 i.e  E
H
 ∝ J

x
B

 (or)  E
H
 = R

H
 J

x
B ___________ (8.119)  where R

H
 = Hall coeffi  cient

Equations (8.118) and (8.119) are same so, we have:

 R J B
B J

ne
x

x
H =

−
  (or)  R

ne
H

1 1
=

−
=

−
ρ

___________ (8.120)

where ρ is charge density. Similarly for p-type material,

 R
ne

H

1 1
= =

ρ
___________ (8.121)

Using Equations (8.120) and (8.121), carrier concentration can be determined.
Th us, the Hall coeffi  cient is negative for n-type material. In n-type material, as more negative charge is 

deposited at the bottom surface, so the top face acquires positive polarity and the Hall fi eld is along nega-
tive Y-direction. Th e polarity at the top and bottom faces can be measured by applying probes. Similarly, in 
case of p-type material, more positive charge is deposited at the bottom surface. So, the top face acquires 
negative polarity and the Hall fi eld is along positive Y-direction. Th us, the sign of Hall coeffi  cient decides 
the nature of (n-type or p-type) material. Th e Hall coeffi  cient can be determined experimentally in the 
following way:

Multiplying Equation (8.119) with ‘d ’, we have:

E
H

d = V
H
 = R

H  
J

x
Bd ___________ (8.122)
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From Fig. 8.12, we know the current density (  J
x 
)

 J
I

Wdx

x=

Th en, Equation (8.122) becomes:

 V R
I

Wd
Bd R

I B

W
x x

H H H
= =   (or)  R

V W

I B
x

H
H= ___________ (8.123)

Substituting the measured values of V
H
, I

x
, B and W in Equation (8.123), R

H
 is obtained. Th e polarity of 

V
H
 will be opposite for n- and p-type semiconductors.

Th e mobility of charge carriers can be found by using the Hall eff ect, for example, the conductivity of 
electrons is:

 σ
n
 = neμ

n

 (or)  μ
σ

σn
n

n
ne

R= = H ___________ (8.124)

Using Equations (8.123) and (8.124), we get:

 μ
σ

n
n

x

V W

I B
= H

8.11 Direct and indirect band gap semiconductors
Based on the structure of energy bands, semiconductors are classifi ed into: (i) Direct band gap semiconduc-
tors and (ii) Indirect band gap semiconductors.

Th is has been explained in the following way:
Th e electrons and holes present in a Semiconductor possess energies corresponding to allowed bands but 

none of them possesses energies correspond to energy gap. Th e energy of electrons and holes comprises both 
potential energy and kinetic energy. As they possess kinetic energy, they possess momentum. As shown in 
Figs. (8.13) and (8.14), graphs have been plotted between energy (E) versus momentum (�K ) or propagation 
vector (K ) for direct band gap and indirect band gap semiconductors. In both the fi gures, the lower curves 
represent the variation of E with K for holes in the valence band and the upper curves represent the variation 
of E with K for electrons in the conduction band.

It can be seen that the energy diff erence between the bottom of conduction band and the top of the 
valence band varies with K. Th e energy gap of the semiconductor is equal to the energy diff erence between 
minimum energy of conduction band and maximum energy of valence band. If the maximum energy of 
valence band is exactly below the minimum energy of conduction band and both the above energies are at the 
same K value, then the material is direct band gap semiconductor (Fig. 8.13). Th e electron transition between 
these bands causes emission or absorption of a photon. Th e conservation of energy and momentum is obeyed 
during this transition. In direct band gap transition, the momentum of electron remains almost the same 

because the momentum of the emitted photon h

c

ν⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 is very small.

As shown in Fig. (8.14), the K value corresponds to the maximum energy of valence band and the 
minimum energy of conduction band are diff erent also between these K values, there exists large probabil-
ity of transition. Th e semiconductors which possess this type of band structure are called indirect band gap 
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K

Valence
band

Conduction
band

E
Ec

Ev

∆K

Eg

 semiconductors. When transition takes place between the minimum of conduction band and maximum of 
valence band, then the diff erence in energy is generated in the form of phonons. Phonons are the quanta of 
crystal lattice vibrations. Th e generated phonon has wave vector, ΔK equal to the diff erence in the above-said 
K values.

If E
ph

 is the energy of a phonon and hν is the energy of a emitted photon, then the energy gap E
g
 of the 

indirect band gap semiconductor is:

E
g
 = hν + E

ph

Examples for indirect band gap semiconductors are Germanium and Silicon. Similarly, an example for 
direct band gap semiconductors is GaAs. Th is material has been used in the manufacture of LEDs and 
 semiconductor lasers.

Figure 8.13 E–K diagram for direct band gap semiconductor

Figure 8.14 E–K diagram for indirect band gap semiconductor

K

Photon
Eg = hn

Valence
band

Direct band
gap energy,

Conduction
bandE

Ec

Ev
Eg
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8.12 Formation of p-n junction
It is not possible to make a single piece of p-n junction by placing a p-type semiconductor material in contact 
with n-type semiconductor material, because even if the surfaces of contact are very smooth, the area of con-
tact is less at atomic scale. Also, discontinuities in the crystal structure at the junction will be large. Th e p-n 
junction can be formed by diff erent methods. Th ey are (i) Grown junction method, (ii) Alloying method and 
(iii) Diff usion method. Th ese are discribed below.

(i) Grown junction method: In this method, a impure semiconductor crystal is grown from n-type (or 
p-type) melt to some extent and the melt is counter doped by enough p-type (or n-type) impurity and 
the crystal is allowed to grow further. To begin with, the molten material contains donor impurity. After 
growing the crystal to some extent acceptor impurity is added, so that the acceptor impurity concentration 
dominates donor impurity concentration, and the crystal grown further will be a p-type semiconductor: 
A p-n junction is formed between these n-type and p-type materials.

(ii) Alloying method: In this method a pillet or foil of indium (trivalent impurity) is melted on a 
n-type germanium semiconductor material at a high temperature of about 500°C, so that indium and 
some amount of the germanium is melted. A puddle of molten Ge-In mixture will be formed. Th is 
molten indium will slowly dissolve in the semiconductor crystal to some extent like liquid solution and 
on slow cooling, recrystallization takes place forming n-region and p-region. Here the base material 
is n-type (or p-type) and the regrown material is p-type (or n-type) so that a p-n junction is formed 
between the two regions.

(iii) Diff usion method: Inside a chamber a p-type (or n-type) semiconductor material in heated to 
gaseous phase. Th e chamber also contains n-type (or p-type) base material. Th e gaseous atoms at elevated 
temperature diff use into the base material, so that a diff used p-n junction is formed. Fig. 8.15 shows the 
p-n junction immediately after its formation.

− − − − + + + +

− − − − + + + +

− − − − + + + +

− − − − + + + +

+ + + + − − − −

+ + + + − − − −

+ + + + − − − −

+ + + + − − − −

Fixed ions

Free holes Free electrons

Junction

p n

Figure 8.15 Newly made p-n junction

Th e charges in the circles represent impurity ions and uncircled charges represent free carriers. Th e 
plus (+) signs represent holes and minus (–) signs represent free electrons. Th e atomic plane that joins the 
p-side and n-side regions is called p-n junction. In the p-region, the electrons present in the upper energy 
levels of valence band goes to the acceptor energy level. Hence, a large number of negative ions and holes 
are formed. In the n-region the electrons present in the donor energy level goes to the conduction band so 
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that large number of positive ions and free electrons are formed. Immediately after the formation of the 
junction, a large number of holes near the junction in the p-region and a large number of free electrons 
near the junction in the n-region are seen. Due to thermal energy these carriers may diff use through the 
junction. Th us the holes diff use from p-side to n-side and electrons diff use from n-side to p-side. Th e dif-
fusion carriers fi nd large number of opposite charges, hence electron-hole recombinations takes place, due 
to recombination a pair of opposite charges are lost soon after the formation of p-n junction. Th e number 
of free charge carriers are continuously reduced due to recombinations and the junction becomes devoid of 
free charge carriers. Hence the p-n junction is known as the depletion region. Far away from the junction 
free charge carriers are present. Th is leaves negative (acceptor) ions near the junction in the p-region and 
positive (donor) ions near the junction in the n-region. Th ese ions will form a barrier for further diff usion 
of free charge carriers. Th is is called potential barrier or junction barrier. At 300 K it is about 0.3 V for Ge 
and 0.7 V for Si. Fig. 8.16(a) shows the p-n junction with potential barrier.

Arrow head bar

− − − − + + + +

− − − − + + + +

− − − − + + + +

− − − − + + + +

+ + + − − −

+ + + − − −

+ + + − − −

+ + + − − −

p-type n-type

depletion
region

(potential barrier)

Figure 8.16 (a) p-n junction shown with potential

Th e potential barrier stops the fl ow of charge carriers from one side to the other side because, the positive 
charges on the n-side (adjacent to the junction) repels the holes crossing from the p-side to the n-side and 
vice versa.

Th e electron and hole concentrations are non-uniform in the junction region of the material, hence the 
potential varies with distance as shown in Fig. 8.17.

Figure 8.16 (b) p-n diode symbol 

A p-n junction is known as the semiconductor diode. It is represented by the symbol shown in Fig. 8.16(b). 
Th e arrow indicates the direction of easier conventional current fl ow.
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Th e hole concentration remains constant throughout the p-region. Similarly electron concentration remains 
constant throughout the n-region. In the depletion region, there is a variation in electron and hole concen-
trations as shown in the above fi gures. Th e n-side of the depletion region contains positive ions, so it is at a 
higher potential than the p-side of the depletion region which contains negative ions.

Distance from junction
0

Hole concentration

p-region

n-region

Depletion
region

Junction

Figure 8.17 (a) Variation of hole concentration with distance from junction

Figure 8.17 (b) Variation of electron concentration with distance from junction
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Figure 8.17 (c) Variation of potential with distance from junction
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8.13 Energy band diagram of p-n diode
Th e band diagram of isolated p-type and n-type materials are shown in Figs. 8.18(a) and (b)

Eg

EF

Conduction
band

Valence
band

Figure 8.18 (a) Band diagram of p-type material

Th e Fermi level lies close to the conduction band in n-type material and it is close to valence band in p-type 
material. When a p-n diode is made with p-type and n-type materials, then fl ow of free charge carriers takes 
place at the junction. As the charge carriers fl ow from one side of the junction to the other side, the potential 
and hence the position of the Fermi level changes. In equilibrium state the Fermi level in both sides of the junc-
tion is at the same level. Th e energy band diagram for a p-n diode is shown in Fig. 8.19. Th e width of the deple-
tion region is of the order of 10−8m. Th e potential developed across the barrier is represented by V

B
.

Th e Fermi level in p-type material is close to the top of valence band and in n-type material it is close to 
the bottom of conduction band. When contact is made between p- and n-type materials then electrons in the 
conduction band of n-type material travel across the junction (leaving positive ions) and combine with holes 
in the valence band of p-type material (negative ions are formed). Th e fl ow of electrons from n- to p-side 
takes place until the Fermi level in both regions adjust to the same level. Unneutralised immobile charge will 
remain at the junction, this is called the space charge region. Th e space charge produces an internal potential, 
V

B
. Th e conduction band of p-type move upwards by eV

B 
over the conduction band of n-type.

Figure 8.18 (b) Band diagram of n-type material
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8.14 Diode equation
Th e general characteristics of a p-n diode can be represented by an equation called Shockley’s equation for 
the forward and reverse bias regions:

 I I e
V

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥s

D

TVη
1

where
 I  = Diode current
 I

s
  = Reverse saturation current

 V
D 

= Forward biased voltage across the diode
 η =  Identity factor, this depends on the construction and operating conditions
 = 1 to 2, usually taken as 1

 V
T
 = Th ermal voltage = 

k T
B

q
 k

B 
= Boltzmann’s constant = 1.38 × 10−23 J/K

 T = Absolute temperature in Kelvin
 q = magnitude of electronic charge =1.6 × 10−19 C

8.15 p-n junction biasing
Th e free carriers can be made to cross the junction by increasing their kinetic energy by some external 
means. Th e kinetic energy (K.E) of carriers can be increased by applying electic potential externally across 
the junction. As the electric potential across the junction increases, the K.E of free electrons also increases. 
When the K.E of carriers attain the energy of the potential barrier (eV

B
) between p-region and n-region, the 

carriers start crossing the junction.

F.L of intrinsic material

F.L of n-type

n-type
p-type

conduction band

EF

F.L of intrinsic material
EF

Ef

evB

Election
energy

Fermi level
after the formation of

depletion region

Valence band

Valance band

Depletion
region

F.L of p-type

Figure 8.19 Energy band diagram of p-n diode
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Suppose the positive terminal of a battery is connected to the p-type and the negative terminal to the 
n-type of a p-n junction, a large current fl ows through the junction, and the p-n junction is said to be forward 
biased. If terminals of battery are interchanged, then very small current fl ows through the junction and it is 
said to be reverse biased. Th e forward biasing and reverse biasing of a p-n diode is described below.

(i) Forward bias: To forward bias a p-n junction, the positive terminal of the battery is connected to the
p-side of the diode and the negative terminal of the battery is connected to the n-side of the diode as shown in 
Fig. 8.20 (a). Th e symbolic representation of p-n diode in the forward bias circuit is shown in Fig. 8.20 (b).

Th e negative terminal of battery connected to n-type material can drive the free electrons towards the 
junction and the positive terminal of battery connected to p-type material of the diode can drive the holes 
towards the junction, so that the width of potential barrier becomes thin and the carriers easily cross the junc-
tion. As large number of carriers cross the junction, large amount of electric current pass through the junction. 
Th is circuit is called a forward bias circuit and the current is called forward bias current. Th e p-n junction 
off ers low electrical resistance to forward bias current.

(ii) Reverse biasing: As shown in Fig. 8.21(a), the positive terminal of battery is connected to n-region and 
the negative terminal of battery is connected to p-region of the diode, in a reverse biased p-n junction. Th e nega-
tive terminal of the battery attracts the holes in the p-region and the positive terminal of the battery attracts the 
electrons in the n-region. Hence, the width of the potential barrier and hence the barrier potential increases. 
Th is prevents the fl ow of charge carriers across the junction. Th us the diode off ers high resistance to the current. 
However very little leakage current pass through the junction due to minority carrier fl ow. Fig. 8.21(b) shows the 
symbolic representation of a p-n junction in reverse bias.

Figure 8.20 (a) Forward biasing of the p-n junction
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Figure 8.20 (b) Symbolic representation of p-n diode in forward bias
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8.16 V–I characteristics of p-n diode
A diode shows variation in electric current passing through it when the biasing voltage is varied. V–I characteristics 
of the diode have been studied separately for both forward bias and reverse bias.

(i) Forward bias: Th e circuit diagram for a p-n diode in forward bias is shown in Fig. 8.22.
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Figure 8.21 (b) Symbolic representation of a p-n diode in reverse bias 
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V
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Rh

+ −

R

B

Figure 8.22 Circuit for forward biased p-n diode

Figure 8.21 (a) Reverse biasing of the p-n junction 
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By varying the rheostat contact, the voltage applied to the diode can be slowly increased. Th e voltage applied 
across the diode can be recorded with a voltmeter connected in parallel to the diode. To control the fl ow of 
current through the diode, a resistor R is connected in series to it. A milliammeter reads the current through 
the diode. Th e voltage applied across the diode is gradually increased in steps and current in the circuit is 
noted. As shown in Fig. 8.23. A graph is plotted between the applied voltage versus current through the diode 
for forward bias. It is seen that the current rises exponentially with the applied voltage. At room temperature 
a potential of 0.3 V is required to start the current fl ow in the circuit for Ge and it is 0.7 V for Si. Th is volt-
age is known as threshold voltage (V

th
) or cut-in-voltage. Th is is practically the same as barrier voltage, V

B
. 

For V < V
B 
, the current fl ow is negligible. As the applied voltage is increased beyond the threshold value the 

forward current increases sharply.

Figure 8.23 The V–I characteristics for forward biased p-n diode

Forward
current
(in mA)

Forward voltage
(in volts)

O
Vth

(ii) Reverse bias: Th e circuit diagram for a p-n diode in reverse bias is shown in Fig. 8.24. In reverse bias, the 
battery connections are opposite to those for forward biasing. As the voltage is increased, a small current starts 
fl owing in the reverse direction due to opposite battery connections. Th is current is measured using microam-
meter. Th e potential barrier width increases with reverse voltage and hence the diode off ers a very high electrical 
resistance. Practically, the current through the diode is negligible. Th e small current is due to fl ow of minority 
carriers and is known as reverse saturation current. As the applied voltage is slowly increased, at a particular value 
of voltage the potential barrier breaks down and a very large amount of current pass through the diode. Th is volt-
age is known as breakdown voltage, V

Br
. A graph plotted between current and voltage is shown in Fig. 8.25. Th e 

forward and reverse bias characters can also be represented in a single graph as shown in Fig. 8.26.

Figure 8.24 Circuit for reverse biased p-n diode
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8.17 p-n diode rectifi er
A p-n diode is used in a circuit to convert a.c supply into d.c supply. Th e process of converting a.c supply into 
d.c supply is called rectifi cation. A rectifi er is a device that permits current to fl ow through it in one direction 
only. We have mainly two diff erent types of rectifi ers (i) Half-wave rectifi er and (ii) Full-wave rectifi er.

Figure 8.25 V–I characteristics for reverse biased p-n diode

Figure 8.26 V–I characteristics of p-n diode
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(i) Half-wave rectifi er: Th e half-wave rectifying circuit is shown in Fig. 8.27(a). Th e circuit consists of 
a single crystal p-n diode and load resister, R

L
. Th ese are connected in series with the secondary winding of 

a transformer (or a.c source). Th e rectifi er conducts current only during the positive half cycles of input a.c 
supply. Let the input a.c supply have sinusoidal wave form as shown in Fig. 8.27(b). During each positive 
half cycle of a.c supply voltage, the diode is in forward bias and conducts current through the circuit in the 
direction shown in Fig. 8.27(a).

Figure 8.27 (a) Half wave rectifi er

a.c supply

Primary
winding

Secondary
winding

i

n = Vm sin θ

i
p n

RL

Transformer

Figure 8.27 (b) Input Voltage of half wave rectifi er

O

Vm

n

t

Figure 8.27 (c) Output voltage of half wave rectifi er

O

Vout

t

Th e diode conducts only the positive half-cycles of input current, for which it off ers practically no resistance. 
Below the cut-in-voltage there is no current in the  circuit. So, here onwards we consider an ideal diode. 
During each negative half cycle of input voltage the diode is in reverse bias and it off ers infi nite electrical 
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resistance. Th us, no current passes through the diode and hence through the load resistance, R
L
. Th e output 

voltage across the load, V
out

 shown in Fig. 8.27(c). It  consists of a series of positive half-cycle voltage pulses 
of input. Th e current due to V

out
 always fl ows through the load, R

L
 in the same direction. Hence pulses of d.c 

output is obtained across R
L
. Th ese pulses of output are smoothened with the help of a fi lter circuit.

Here we see some more points relating half-wave rectifi er.

(a) Output average current (I
av

):  Th is is represented by I
av

.

For one cycle

 

I I i d
V

r R

V
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d
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2

π πθ
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___________ (1)

where I
dc
 = d.c current in the circuit

 r
f 
= forward bias diode resistance

 V
m
 = maximum peak voltage

 i = instantaneous a.c current.

(b) Output d.c power, P
dc

:

Th is is represented by

 P I R Rdc dc L L= × =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ×2

2Im
π

 ___________ (2)

(c) Rectifying effi  ciency (η):  Th is is the ratio of output d.c power to the applied input a.c power.

 

Rectifying efficieny ( )
output d.c power

input a.c power
η =

Equation (2) represents output d.c power. Th e input a.c power is given by P I r Rac rms f L= +( )2  ___________ (3)

Using equation (2) and equation (3), we have

 

η π=

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ×

⎛
⎝
⎜⎜⎜

⎞
⎠
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=
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=

I
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I
r R
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L

m
f L

L

f L

2
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0 406 0 40. . 66

1
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+
≈ <<r

R

r R
f

L

f L. ( )Since

 ∴ Maximum rectifying effi  cieny of half-wave rectifi er is 0.406 or 40.6%

(ii) Full-wave rectifi er: In full wave rectifi er, current fl ows through load resister, R
L
 in the same direction 

for both half cycles of a.c input. Usually there are two confi gurations for full wave rectifi cation (a) Central 
tapped full wave rectifi er and (b) Bridge rectifi er.
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(a) Centre-tapped transformer full-wave rectifi er: Th e circuit diagram of centre tapped full wave 
 rectifi er is shown in Fig. 8.28. It consists of two diodes D

1 
and D

2
 connected to the secondary of centre tapped 

transformer [tapped at ‘O’] so that each diode uses one half cycle of input a.c supply. Th e sinusoidal input 
voltage is shown in Fig. 8.28(b) and the output voltage across the load resistor, R

L
 is shown in Fig. 8.28(c). 

Th e working of this rectifi er is explained below.

a-c supply

i

i

i
D1

D2

R2
RL

vm

vm

A

B

O

O

O

Vm

Vout

ν

t

t

Figure 8.28 (a) Circuit diagram of centre tapped transformer full wave rectifi er

Figure 8.28 (b) Sinusoidal voltage (c) Full wave rectifi ed voltage across load

During the positive half-cycles of input voltage, the end A of the secondary winding is positive and the end 
B of secondary winding is negative. Th is makes the diode D

1
 forward bias and the diode D

2
 reverse biased. So 

the diode D
1
 conducts current through load resister, R

L
 and the upper half of secondary winding, where as D

2
 

does not conduct current during positive half cycles. During the negative half cycle of input voltage, the end 
B of the secondary winding is positive and the end A of secondary winding in negative. Th is makes the diode 
D

2
 forward biased and the diode D

1
 reverse biased. So, the diode D

2
 conducts current through load resistor, R

L
 

and in the lower half of the secondary winding, whereas D
1
 does not conduct current during negative half cycles. 
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It is seen that for both half cycles of input a.c voltage, the current that shown in Fig. 8.28(c) will fl ow in the 
same direction through the load resistor R

L
. So we say that d.c is obtained across the load resistor.

(b) Full-wave bridge rectifi er: Th e circuit diagram of a full wave bridge rectifi er is shown in Fig. 8.29(a). 
Th is bridge rectifi er uses four diodes. Th e use of two more extra diodes in bridge rectifi er is less costly than the 
use of centre tapped transformer as discussed earlier. So bridge rectifi er is more popular.

RL

D3 D2

D1D4

Transformer

a.c supply

A

B

Figure 8.29 (a) Bridge rectifi er

t
O

Vout

Figure 8.29 (b) The output voltage across the load, RL in bridge rectifi er

As shown in Fig. 8.29(a), the transformer secondary winding is connected to the diagonally opposite ends of the 
bridge rectifi er. Between the other two diagonally opposite ends of the bridge, a load resistance, R

L
 is connected. 

During the positive half cycles of secondary voltage, the end A of secondary winding is positive and the end B 
is negative. Th is positive voltage makes the diodes D

1
 and D

3
 to be forward biased whereas diodes D

2
 and D

4
 

are reverse biased. Th e diodes D
1
 and D

3
 are in series with the load resistance, R

L
. So current fl ows from A to B 

through load resistance, R
L
. Th e conventional current is shown by dotted arrows. During the negative half-cycles 

of secondary voltage the end B of secondary winding is positive and the end A is  negative. Th is voltage makes the 
diodes D

1
 and D

3
 reverse biased. Th e diodes D

2
 and D

4
 are in series with the load resistance, R

L
 and current fl ows 

from B to A through load resistance, R
L
. For both the positive and negative half cycles of a.c supply, the current 

fl ows in the same direction through the load resistance R
L
. Th e output voltage (V

out
) across the load resistance, 

R
L 

is shown in Fig. 8.29(b). Here we will see some more points relating to full wave rectifi er.

 (i)  Peak Inverse Voltage (PIV): In bridge rectifi er, the peak inverse voltage of each diode is equal to the 
maximum secondary voltage (V

m
) of the transformer. Whereas in the case of centre-tapped transformer, 
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V
m
 is the maximum voltage across half secondary winding. Hence the peak inverse voltage is twice the 

maximum voltage across the half secondary winding of centre-tapped transformer i.e. PIV = 2V
m
.

 (ii) D.C output power:  Th e d.c output power, P
dc

 is

    P I R
I

Rdc L
m

L= × =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ ×dc

2

2
2

π
 ___________ (1)

 (iii) A.C input power:  Th e a.c input. power is given by

   
P I r Rac rms f L= +2 ( )

  For full-wave rectifi er, we have

   
I rms =

Im

2

   ∴ =
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ +P r Rac f L

I
( )m

2

2

 ___________ (2)

 (iv) Full-wave rectifi cation effi  ciency (η):

  From equations 1 and equation 2 we can write 

 

η
π
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  Th is is double the effi  ciency due to half-wave rectifi er 

 (v) Ripple factor:  It is the ratio of r.m.s value of a.c component to the d.c component in the rectifi er 
output 

 

∴ = −Ripple factor
r.m.s valueof a.c component

Valueof d.c component

II

I

ac

dc

  For half-wave rectifi er the ripple factor is 1.21 or 121% and for full wave rectifi er it is 0.48 or 48%

 (vi) Frequency:  Th e frequency of a.c component in full-wave rectifi cation is twice the frequency of a.c 
supply.

8.18 Light emitting diode [LED]
On forward biasing a p-n diode, energy is given off  in the form of heat in some diodes, while photons are 
emitted in addition to heat in some other diodes. A p-n diode specially prepared to produce visible and IR 
light on forward biasing is called light emitting diode. On forward biasing a LED, the majority carriers present 
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in the respective regions of diode cross the p-n junction. Th e free electrons at the n-side move towards the 
p-side and holes at the p-side move towards the n-side of the diode. Th e free electrons that enter the p-side 
from the n-side are called minority carriers in the p-region and vice versa.

Th is increases the local minority carrier population than the normal value. Th is is known as minority 
carrier injection. Th e excess minority carriers diff use away from the junction and produce recombinations 
with majority carriers. For example, the excess minority electrons in the conduction band of the p-region 
recombine with the majority holes in the valence band of the p-region and emit photons. Here the electrons 
make downward transition from conduction band to valence band for recombination with holes and the 
diff erence of energy will be emitted in the form of photons of energy E

g
. Similar action takes place in the 

n-region also. Under reverse bias no photons are emitted. Th e above process has been shown with the energy 
band diagram shown in Fig. 8.30. Th e wave length of emitted photon in given by

 λ =
hc

E
g

 ___________ (1) 

where h = Planck’s constant = 6.626 × 10−34  Js.

EFEF

+ + + + +

− − − − −

− − − − −

+ + + + +

hn

hn

Figure 8.30
   Band diagram showing injection electroluminiscence in forward 

biased LED

Th e basic structure of LED is shown in Fig. 8.31 (a), and its standard symbol in Fig. 8.31(b)
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Figure 8.31 (a) Basic structure of LED

Chapter 08.indd   47Chapter 08.indd   47 9/25/2009   5:40:45 PM9/25/2009   5:40:45 PM



8-48 Applied Physics

Th e contact area of electrode on p-type material is smaller to permit the emergence of a large number of 
photons when the device is forward biased. Th e Si and Ge semiconductor diodes will not emit photons on 
forward biasing but heat is dissipated at the junction. Th e following table give the various LED materials and 
the colour of emitted waves.

p n
+ −

Figure 8. 31 (b) Symbol of LED

Table: Different LED materials in visible region 

Material Colour

GaP Green

SiC Blue

GaN Blue

AlInGaP Yellow

GaAsP [Direct band gap] Red

GaAsP [Indirect band gap] yellow

Th e emitted photons move in random directions. Some of them will be absorbed in the material. To get 
large photon emissions per second, a large number of electron-hole recombinations should takes place per 
second. To have a large recombination rate, the doping concentration in n- and p-regions should be high. 
Th ere is large concentration of electrons in the conduction band of n-region and large concentration of holes 
in the valence band of p-region. It is essential that light should be emitted from one side of the junction and 
most of the light emitted should come out of the device. For this, the device is made of an assymmetrically 
doped junction. Th e impurity concentration in the n-region should be higher than in the p-region. Th en 
injection of carriers proceed in one direction. 

Electrons are injected in large numbers into the p-region. Th us, the large number of photons released in 
the p-region reaches the surface and becomes visible without loss. As photons pass through the p-region some 
of them get absorbed. Th is can be reduced by making the p-region very thin. Also, the photons that fall on the 
interface between the p-type material and air causes total internal refl ection if the angle of incidence at the 
interface is greater than critical angle (θ

c
). Suppose n

1
 and n

2 
are the refractive indices of air and semiconduc-

tor respectively then θ
c 
= sin−1 n

n

1

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

. If the refractive index of the LED material is about 3.3 to 3.8. Th en the 

critical angle will come to 15° to18°. So the rays that strike the surface at angles less than this come out and 
the rest get internally refl ected. Th is problem can be overcome by enclosing the LED in an epoxy resin, whose 
refractive index lies between air and the LED material. From equation (1), the semiconductor should have 
an energy gap between 1.7 eV and 3.0 eV, to get emission in the visible region. So LEDs are fabricated from 
GaP and GaAsP. LEDs operate at low voltages and currents, typically at 1.5 V and 10 mA. Th e reverse break-
down voltage is very low, usually 3 V.

Chapter 08.indd   48Chapter 08.indd   48 9/25/2009   5:40:45 PM9/25/2009   5:40:45 PM



Semiconductors and Physics of Semiconductor Devices 8-49

LEDs are used as indicators, as light sources in fi bre optic communication, etc. A number of LEDs are 
grouped to form a seven-segment display as shown in Fig. 8.32(a). Th e decimal numbers 0 to 9 can be dis-
played using the seven segments. Th e LEDs can also be arranged in the form of a 5×7 matrix as shown in 
Fig. 8.32(b) to get a decimal number or an alphabetical character. Such a display is known as an alpha numeric 
display. Th e number 3 is shown in Fig. 8.32 (a) and the alphabet ‘C’ is shown in Fig. 8.32 (b).

4

6

1

2

3

7

5

Figure 8.32 (a) Seven-segment display

Figure 8.32 (b) LED array displaying alphabet ‘C’

8.19 Liquid crystal display (LCD)
Liquid crystals are the intermediate phases between liquid and crystal. LCDs do not generate light energy, 
but simply alter or control the existing light to make selected areas appear bright or dark. Liquid crystals have 
orientational order but lack positional order. Th e material that used in liquid crystal display is 4-methoxy - 4′
n-butyl benzylidene aniline (MBBA) molecules. It can act as a liquid crystal between the temperatures 
of 21°C to 48°C. It has an elongated rod-like structure. Th ere are three phases in liquid crystals. Th ey are 
smetic, nematic and cholestic. In smetic phase the molecules are cigar shapped and are arranged in layers. 
Th e molecules can move forward and backward but not up and down. In nematic phase all the molecular 
axes are parallel to each other, but it is not a layered structure. Th is can be considered as a one-dimensional 
liquid. In the cholestic phase the molecules are plate-shapped and this is a stack of thin layers. As one 
goes down the stack, the direction of orientation rotates in the form of a screw. Th is phase of crystals 
possess double refraction. Th e other liquid crystal is pentyl cyano biphenyl. Th is has nematic form in the 
temperature range of 18°C to 35°C.
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Properties of liquid crystals: 

 1. Liquid crystals are very sensitive to temperature, electric fi eld, mechanical stress, etc. Change in 
any of the above parameters causes change in the optical properties of liquid crystals.

 2. As temperature changes the cholestric phase can change the colour of radiation. Th is fact is used to 
measure the temperature of children, and also in thermography to detect beast cancer.

 3. Nematic phase is widely used for displays. Th e display is based on the change of polarisation during 
the application of electric fi eld.

Th ere are two types of liquid crystal displays (i) Dynamic scattering display and (ii) Twisted nematic fi eld 
eff ect display. Th e dynamic scallering display is not presently used because of its short life time and larger 
power consumption during operation. In case of twisted nematic fi eld eff ect disply, a thin layer of liquid 
crystal material of 10–20 μm thick is kept in between two glass plates coated with transparent tin oxide on 
the inner side surfaces, which acts as electrodes as shown in Fig. 8.33(a). In the absence of applied electric 
fi eld, the top glass plate is rotated through 90°, this causes the liquid crystal molecules also to be twisted 
through 90°.  Above the top glass plate, a polariser and below the bottom glass plate, an analyser are kept 
in crossed positions. When light is allowed to pass through the liquid crystal cell and through the crossed 
polariser and analyser, the cell appears bright due to additional phase diff erence introduced by twisting. 
When an electric fi eld is applied, the liquid crystal molecules orient themselves parallel to the fi eld direc-
tion as shown in Fig. 8.33(b). Hence the cell appears dark due to the crossed polariser and analyser.

Polariser

Electrodes

Light

bright light

Analyser

Twisted
nematic

liquid crystal
molecules

no light

Analyser

Light
Polariser

+
−

B

Figure 8.33
  (a) Twisted nematic fi eld effect display in the absence of applied

electric fi eld (b) Twisted nematic fi eld effect display under 
applied electric fi eld
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8.20 Photodiodes
A photo diode is a reverse biased semiconductor p-n diode whose reverse current increases with the increase 
in intensity of light incident at the junction. When light is incident on the p-n junction of a photo diode, 
the atoms at the junction absorb the energy of photons and create more free electrons and holes. Th ese 
additional carriers increase the reverse current. As the intensity of incident light on the junction increases 
the reverse current also increases.  Th e basic biasing arrangement and construction of a photodiode is shown 
in Fig. 8.34(a). Its standard symbol is shown in Fig. 8.34(b). Th e lens is used to concentrate the light to the 
junction region.

Light

Anode Cathodeλ

Figure 8.34 (b) Symbol of photodiode

Th e diode has a few microamperes of reverse saturation current due to thermally generated minority carri-
ers in the n- and p-type materials. When light is incident on the junction, the minority carriers increase and 
hence the level of reverse current increases. Th e graph shown in Fig. 8.35 has been plotted between the reverse 
saturation current and the applied voltage for diff erent intensity levels of light incident on the junction. Th e 
reverse current that exists when no light is incident on the junction is known as dark current. Th e equal spac-
ings between curves show that for the same increment in the luminous fl ux, the increase in the reverse satura-
tion current is the same. Th is indicates that the photodiode has good linearity.

p n

B

− +

R

Lens

Light

Figure 8.34  (a) The basic biasing arrangement and construction
of a photodiode
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We have two diff erent photodiodes (i) p-i-n photodiode and (ii) Avalanche photodiode.

(i) p-i-n photodiode: Th e structure of this diode is shown in Fig. 8.36. It consists of a p-n junction sepa-
rated by a wide insulating layer (i). On biasing a large electric fi eld exists across this layer. Th is fi eld sweeps the 
excess holes and excess electrons across the insulating layer ‘i’ by drift. Th ese excess carriers contribute to 
the photo current. For biasing the diode, two metal electrodes are present, one at the bottom and the other at 
the top of the layers. Th is is used in switching and logic circuits, and to detect laser pulses.

−50 −40 −30 −20

−200

−400

−600

−800

−1000

−10 0

Dark current
1000 fc

2000 fc

3000 fc

4000 fc

5000 fc

VT
V(Volts)

Reverse voltage
(in volts)

Reverse current (in µA)
I(µA)

Figure 8.35 Photodiode characteristics

p

i

n Metal
electrode

Metal
electrode

Wide insulating
layer

SiO2 (insulator)

Anti reflection
coating

Figure 8.36 Structure of p-i-n diode

(ii) Avalanche photodiode: Under high reverse bias voltage, breakdown of the p-n junction takes place 
resulting in a current gain of nearly 1000. Th is is known as avalanche breakdown. 
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Th e product of current gain and band width is 100 GHz. Hence they are biased at microwave frequen-
cies. Fig. 8.37 shows the structure of an avalanche photodiode. Holes are swept from InGaAs region to the 
InP junction, where avalanche multiplication takes place. Separation of absorption and multiplication regions 
reduces the junction leakage current.

Applications: Th ese diodes fi nd large number of applications. We will see a few of them.

(i) Alarm circuit using photodiode: Photodiodes are used in alarm systems fi xed to doors of houses. 
Th e light from light source is allowed to fall on a photodiode fi tted to the doorway. As long as there is no 
break of light on the photodiode, constant reverse current passes. If a parson passes through the door, then 
there is a break in the light beam falling on the photodiode, so the photo current drops to its dark current 
level. Th is causes an alarm to sound.

(ii) Counting of objects: In industries, the objects that pass on a conveyer belt are counted using a photo-
diode. Here a light beam from a source passes across the conveyer to a photodiode. If an object passes on 
the conveyer then the light beam is broken resulting in dark current in the circuit, and causes the count to 
increase by one.
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 Solved Problems

1.  Find the resistivity of an intrinsic semiconductor with intrinsic concentration of 2.5 × 1019 per m3. Th e mobilities of 

 electrons and holes are 0.40 m2/ V-s and 0.20 m2/ V-s.

Sol: Given data are:

 Intrinsic concentration (n
i
) = 2.5 × 1019/m3

 Mobility of electrons (μ
n
) = 0.40 m2/V-s
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 Th e mobility of holes (μ
p
) = 0.20 m2/V-s

 Th e conductivity of an intrinsic semiconductor (σ
i
) = n

i
e[μ

n
 + μ

p
]

 Th e resistivity ( )ρ
σ μ μ

i

i i n pn e
= =

+⎡
⎣⎢

⎤
⎦⎥

1 1

 =
× × × +[ ]−

1

2 5 10 1 6 10 0 40 0 2019 19. . . .

 =
× ×

1

2 5 1 6 0 6. . .
 = 0.4166 Ω-m.

2.  Calculate the number of donor atoms per m3 of n-type material having resistivity of 0.25 Ω-m, the mobility of electrons is 

0.3 m2/V-s.

Sol: We know:

 1 1

σ
ρ

μ
= =

ne n

 [Since n = number of free electron per m3 ≈ number of donor atoms in n-type]

 So n
e n

= =
× × ×

= ×−

1 1

0 25 1 6 10 0 3
8 333 10

19

19

ρ μ . . .
. per m33

3.  At 300 K, fi nd the diff usion coeffi  cient of electrons in silicon. Given the mobility of electrons (μ
n  
) is 0.21 m2/V-s.

Sol: From Einstein’s equation, we know:

 
D K T

e
n

nμ
= B

 D
K T

e
n n= =

× × ×
×

−

−μ B 0 21 1 38 10 300

1 6 10

23

19

. .

.
 = 54.34 × 10−4 m2/s

4.  Th e Hall coeffi  cient (R
H  

) of a semiconductor is 3.22 × 10−4 m3 C−1. Its resistivity is 8.50 × 10−3 Ω-m. Calculate the  mobility 

and carrier concentration of the carriers.

Sol: Since R
H
 is positive, so the given semiconductor is p-type.

 So R
p e

H =
1

 where p = hole concentration

 (or)  p
R e

= =
× × ×

= ×− −
−1 1

3 22 10 1 6 10
19 4 10

4 19

21 3

H

m
. .

.

 Mobility of holes μ
p
 is:

 μ
σ

σ
ρp

p

p
H

pe
R

R
= = =H

; where ρ = resistivity = 8.50 × 10−3 Ω-m
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 =
×
×

−

−μp

3 22 10

8 50 10

4

3

.

.
 = 0.0378 m2/V-s

5.  Mobilities of electrons and holes in a sample of intrinsic germanium at 300 K are 0.36 m2/V-s and 0.17 m2/ V-s,  respectively. 

If the resistivity of the specimen is 2.12 Ω-m, compute the intrinsic concentration.

Sol: Mobility of electrons (μ
e
) = 0.36 m2/ V-s

 Mobility of holes (μ
h
) = 0.17 m2/ V-s

 Resistivity ρ
i
 = 2.12 Ω-m

 Energy gap (E
g
) = ?

 
σ

ρ
μ μi

i

i e hn e= = +
1

( )

 
1

2 12
1 6 10 0 36 0 1719

.
. . .= × × +[ ]−ni

 ni =
× ×

= ×
10

2 12 1 6 0 53
556 25 10

19
16 3

. . .
. /m

6.  Th e following data are given for intrinsic germanium at 300 K n
i
 = 2.4 × 1019/m3; μ

e
 = 0.39 m2/V-s; μ

h
 = 0.19 m2/V-s. 

Calculate the resistivity of the sample.

 (Set-1–Sept. 2007), (Set-2–Sept. 2006), (Set-1–May 2003)

Sol: ρ
μ μi

i e hn e
=

+( )
1

 n
i
 = 2.4 × 1019/m3; μ

e
 = 0.39 m2 /V-s μ

h
 = 0.19 m2/V-s

 ρi =
× × × × +( )

=
×−

1

2 4 10 1 6 10 0 39 0 19

1

2 4 1 619 19. . . . . . ××
=

0 58
0 449

.
. -Ω m

7.  Th e electron and hole mobilites in a silicon sample are 0.135 and 0.048 m2/V-s, respectively. Determine the  conductivity 

of intrinsic Si at 300 K if the intrinsic carrier concentration is 1.5 × 1016 atoms/m3. Th e sample is doped with 10 23 

 phosphorous atoms/m3. Determine the hole concentration and conductivity.

 (Set-3–May 2004), (Set-4–May 2003)

Sol: Mobility of electrons (μ
e
) = 0.135 m2/V-s

 Mobility of holes (μ
h
) = 0.048 m2/V-s

 Instrinsic carrier concentration (n
i
) = 1.5 × 1016/m3

 Conductivity (σ) = n
i
e (μ

e
 + μ

h
) = 1.5 × 1016 × 1.6 × 10−19 [0.135 + 0.048]

  = 1.5 × 1.6 × 0.183 × 10−3 = 0.439 × 10−3/Ω-m.

 Doping concentration, N
D
 = 1023 phosphorous atoms/m3
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 hole concentration, p = ?

 conductivity (σ
n
) = ?

 p
n

N
i

D

= =
×( )

= ×
2 16 2

23

9 3
1 5 10

10
2 25 10

.
. /m

 σ
n
 = N

D 
e μ

e
 = 1023 × 1.6 × 10−19 × 0.135 = 2.16 × 103/Ω-m.

 8. Th e R
H
 of a specimen is 3.66 × 10−4 m3/c. Its resistivity is 8.93 × 10−3 Ω-m. Find μ and n.

 (Set-1–May 2004), (Set-2–May 2003)

Sol: Since R
H
 is positive, the given specimen is p-type material, R

pe
H =

1

 
Carrier concentration

hole concentration[ ]
⎫
⎬
⎪⎪

⎭⎭⎪⎪
( )= =

× × ×
= ×− −p

R eH

1 1

3 66 10 1 6 10
1 7 10

4 19

22

. .
. m−−3

 Mobility (μ) = σ
H
 R

H
 = 

RH

H

m V s
ρ

=
×
×

= ×
−

−
−3 66 10

8 93 10
4 099 10

4

3

2 2.

.
. / -

 9.  Find the conductivity of intrinsic silicon at 300 K. It is given that n
i
 at 300 K in silicon is 1.5 × 1016/m3 and the mobilities 

of electrons and holes in silicon are 0.13 m2/V-s and 0.05 m2/V-s, respectively

 (Set-2–May 2003)

Sol: Intrinsic concentration (n
i
) = 1.5 × 1016/m3

 Mobility of electrons (μ
e
) = 0.13 m2/V-m

 Mobility of holes (μ
h
) = 0.05 m2/V-m

 Conductivity (σ) = n
i
e (μ

e
 + μ

h
) = 1.5 × 1016 × 1.6 × 10−19 (0.13 + 0.05)/Ω-m

 = 4.32 × 10−4/Ω-m

10.  A pure silicon material has an intrinsic concentration of 1.5 × 1016/m3 at 300 K. If it is doped with donor impurity atoms 

at the rate of 1 in 10 8 atoms of silicon, then calculate its conductivity. Assume that all the impurity atoms are ionized. Given 

that the atomic weight of silicon is 28.09, density = 2.33 × 10 3 kg/m3 electron and hole mobilities are 0.14 m2/V-s and 

0.05 m2/V-s, respectively.

Sol: Given data are:

 Intrinsic concentration (n
i
) = 1.5 × 1016/m3

 Atomic weight of silicon (A ) = 28.09

 Density of silicon (D) = 2.33 × 103 kg/m3

 Electron mobility (μ
e
) = 0.14 m2/V-s

 Hole mobility (μ
h
) = 0.05 m2/V-s

 No. of silicon atoms per unit volume (N ) = N D

A
A ×
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=

× × ×
= ×

6 025 10 2 33 10

28 09
5 10

26 3
28. .

.
/m3

 Since the doping concentration is 1 in 108 silicon atoms

 ∴ Electron concentration n
N( )= =

×
= ×

10

5 10

10
5 10

8

28

8

20 3/m

 From law of mass action, hole concentration p
n

n
i= =

×
×

2 162

20

1 5 10

5 10

.

  = 4.5 × 1011/m3

 ∴ Conductivity (σ) = e[nμ
e
 + pμ

h
] = 1.6 × 10−19[5 × 1020 × 0.14 + 4.5 × 1011 × 0.05]

 = 1.6 × 10−19 [70,000 × 1015 + 0.0000225 × 1015] = 1.6 × 10−19 × 70,000.0000225 × 1015 

 = 11.2/Ω-m

11.  Pure germanium at 300 K has a density of charge carries 2.5 × 1019/m3. A specimen of pure germanium is doped with

donor impurity atoms at the rate of one impurity atom for every 10 6 atoms of germanium. Assuming that all the impurity 

atoms are ionized, fi nd the resistivity of the doped germanium if the electron and hole mobilities are 0.36 m2/V-s and

0.18 m2/V-s, respectively and the number of germanium atoms/unit volume is 4.2 × 10 28 atoms/m3.

Sol: Given data are:

 Density of charge carriers (n
i
) = 2.5 × 1019/m3

 Mobility of electrons (μ
e
) = 0.36 m2/ V-s

 Mobility of holes (μ
h
) = 0.18 m2/ V-s

 Since doping concentration is 1 in 106 

 Hence, impurity atoms per m
No. of germanium atoms in m

10

3

3

6
=

 = =
4.2 10

10
4.2 10 /m

28

6

22 3×
×

 As all the impurity atoms are ionized,

 So, the number of free electrons per m3 = n = 4.2 × 1022/m3

 Th e hole concentration p is obtained from law of mass action as:

 np ni= 2

 p
n

n
i= =

×( )
×

= ×
2 19 2

22

16 3
2 5 10

4 2 10
1 488 10

.

.
. /m

 Resistivity (ρ
i
)  = =

+
=

+[ ]
1 1 1

σ μ μ μ μi e h e hne pe e n p
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   = × × × + × ×⎡
⎣⎢

−

1

1 6 10 4 2 10 0 36 1 488 10 0 1819 22 16. . . . . ⎤⎤
⎦⎥

   =
× × + ×⎡

⎣⎢
⎤
⎦⎥

−

1

1 6 10 1512 10 0 0002678 1019 19 19. .

   =
×

= × −1

1 6 1512 0002678
4 13 10 4

. .
. /Ω-m

12.  An intrinsic Ge at room temperature with a carrier concentration of 2.4 × 10 9 m−3 is doped with one Sb atom in 10 6 Ge atoms. 

What would be the concentration of holes if the Ge atom concentration is 4 × 10 28 m−3?

Sol: Carrier concentration in Ge at room temperature, (n + p) = 2.4 × 109 m−3

 Doping concentration of Sb atoms = 1 in 106 Ge atoms

 Concentration of Ge atoms, N = 4 × 1028 m−3

  Since Sb atoms are pentavalent atoms, their ionization contributes free electrons and positive ions in the material, 
but holes will not be aff ected.

 So, hole concentration, p = ×
1

2
carrier concentration

 
= × × = ×− −1

2
2.4 10 m 1.2 10 m .9 3 9 3

13.  Calculate the density of donor atoms to produce an n-type material with 0.2 Ω-m resistivity and 0.35 m2V−1 electron 

 mobility.

Sol: Resistivity of the material, ρ = 0.2 Ω-m

 Mobility of electrons, μ
n
 = 0.35 m2 V−1

 Density of donor atoms, n = ?

 Electrical conductivity, σ
e
 = neμ

e

 or  n
e e

e

e e e

= = =
× × ×

= ×−

σ
μ ρ μ

1 1

0 2 1 602 10 0 35
8 92 1

19. . .
. 0019 3electron/m

14.  If resistivity of an intrinsic semiconductor is 5 Ω-m at 300 K and 2.5 Ω-m at 320 K, what would be its energy gap?

Sol: Resistivity at 300 K, ρ
1
 = 5 Ω-m

 Resistivtiy at 320 K, ρ
2
 = 2.5 Ω-m

 Energy gap of intrinsic semiconductor, E
g
 = ?

 For intrinsic semiconductor,

 We know σ =
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟A

E

K T
A

g
exp

2 B

where is constant
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ρ
σ

= =
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

1 1

2
A

E

K T

g
exp

B

 ρ ρ1

1

2

22 2
∝

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ∝

⎛

⎝
exp exp

E

K T

E

K T

g g

B B

and ⎜⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

 ρ

ρ
1

2

1

2

2

2

=

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜⎜

exp

exp

E

K T

E

K T

g

g

B

B

⎞⎞

⎠
⎟⎟⎟⎟

= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥exp

E

K T T

g

2

1 1

1 2B
⎥⎥⎥

 l
E

K T T
n

gρ

ρ
1

2 1 22

1 1⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
= −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟

B

⎟⎟⎟

 E

K

T T

g =

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

1 1

1

2

1 2

B ln
ρ
ρ

==
× ×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−
⎛
⎝
⎜⎜

−2 1 38 10
5

2 5

1

300

1

320

23.
.

ln

⎜⎜
⎞
⎠
⎟⎟⎟

=
×
×

= ×
−

−
−1 913 10

2 0833 10
0 918 10

23

4

19.

.
. J

 =
×
×

=
−

−

0.918 10

1.602 10
eV 0.573 eV

19

19

15. Find the diff usion coeffi  cient of electrons in Silicon at 300 K if μ
e
 is 0.19 m2/V-s.

 (Set-2–Sept. 2007), (Set-3–May 2007), (Set-4–June 2003), (Set-2–May 2004)

Sol: Probability of electrons, μ
e
 = 0.19 m2/V-s

 Temperature of specimen, T = 300 K

 Diff usion coeffi  cient of electrons, D
n 
= ?

 D
K T

e
n

e=
μ B , where K

B
= Boltzmann constant

 = 1.38 × 10−23 J/K

 and e = charge on electrons = 1.6 × 10−19 C

 Dn =
× × ×

×
= ×

−

−
−0 19 1 38 10 300

1 6 10
4 92 10

23

19

3. .

.
. m2//sec

16.  Th e resistivity of an intrinsic semiconductor is 4.5 Ω-m at 20° C and 2.0 Ω-m at 32° C. What is the energy band gap?

 (Set-4–May 2004)

Sol: ρ
1
 = 4.5 Ω-m

 ρ
2
 = 2.0 Ω-m

 T
1
 = 20° C = 293 K
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 T
2
 = 32° C = 305 K

 Energy band gap, E
g
 = ?

 We know:

 Resistivity,   ρ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥A

k T
exp

Εg

B2

 where A = constant

 k
B 

= Boltzmann constant

 = 1.38 × 10−23 J/k

 
ρ

ρ

1

2

1

2

1

2

2

2

1 1
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
A

E

k T

A
E

k T

E

k T T

exp

exp

exp

g

B

g

B

g

B 22

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

 Taking logarithm on both sides, we get:

 ln
ρ

ρ

1

2 1 22

1 1
⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
= −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

E

k T T

g

B

 E
k

T T

g
B ln=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

2

1 1

1 2

1

2

ρ

ρ

 = 
2 1 38 10

1

293

1

305

4 5

2 0

23× ×

−
×

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

−.
n

.

.
l J

 = 1.6669 × 10−19 J = 1.04 eV

17.   A load resistance of 500 Ω is connected in series with a silicon diode, and to this an a.c voltage of peak value 20 v is applied. 

Th e forward resistance of diode is 10 Ω. Find (i) the peak current and (ii) the peak output voltage. 
Sol:  Load resistance, R

L
 = 500 Ω

 Peak input voltage, V
m
 = 20 V

 Forward resistance of diode, r
f
 = 10 Ω

 Barrier voltage, V
B
 = 0.7 V

 V V I r Rm B f f L= + +( )

 ∴ I
V V

r R
m

m b

f L

20 0.7

10 500

19.3

510
37.8 mA

−
+

=
−
+

= =

 Peak output voltage = I
m
 × R

L
 = 37.8 mA × 500 Ω

 =18.9 V.

18.  A load resistance of 1000 Ω is connected to a full-wave rectifi er having ideal diodes. If the alternate voltage sup-

plied to the diodes is 200 – 0 – 200 Volts (rms), then calculate (i) the average d.c voltage, (ii) average d.c current 

and (iii) ripple voltage.
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Sol: Th e load resistance, R
L
 = 1000 Ω

 rms voltage, V
rms

 = 200 V

 Th e peak current, I
m
  = 

V

R

V

R

m

L

rms

L

=
× 2

 = =
200 2

1000
0.2828 A

×

 Th e average d.c current, I
dc

 = 
2 2 0.2828

0.18 A
Im

π π
= =

×

 Th e d.c voltage across the load, V
dc

 = I
dc

 × R
L
 = 0.18 × 1000 = 180 V

 Ripple factor, γ = 
V

V

2

2

2

2
1

200

180
1 0 4843rms

dc

− =
( )
( )

− = .

 Ripple voltage, γ × V
dc

 = 0.4843 × 180 = 87.17 V

 Multiple Choice Questions

 1. Th e electrical conductivity of a semiconductor at absolute zero of temperature is: ( )

(a) fi nite (b) very large
(c) zero (d) none

 2.  At room temperature, the conduction band electrons are ___________ that of valence band holes in an intrinsic 
semiconductor. ( )

(a) less than  (b) greater than
(c) equal to  (d) none

 3. If m m
h
* *e> , then the position of Fermi energy level is: ( )

(a) at the centre of energy gap  (b) just above the centre of energy gap
(c) just below conduction band (d) just above valence band

 4. Th e carrier concentration in an intrinsic semiconductor ___________ with increase of temperature. ( )

(a) increases (b) decreases
(c) remains the same (d) none

 5. Electrical current in an intrinsic semiconductor is due to: ( )

(a) conduction band electrons (b) valence band holes
(c) both (a) and (b) (d) None 

 6. At 300K, the intrinsic concentration in a semiconductor having energy gap nearly equal to 1 eV is: ( )

 (a) 1010/m3 (b) 1015/m3 (c) 1020/m3 (d) 1017/m3

 7. Th e mobility (μ) of a carrier is proportional to: ( )

(a) T  −3/2 (b) T  3/2

(c) T  −2/3 (d) T  2/3
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 8.  Th e conductivity of silicon increases by ___________ times by adding 10 parts of boron per million parts of 
silicon. ( )

 (a) 10 (b) 100 (c) 1000 (d) 10,000

 9. In n-type material, the majority carriers are: ( )

(a) valence band electrons (b) conduction band electrons
(c) valence band holes (d) electrons and holes

10.  Th e phosphorous atoms in silica crystal create donor energy level, ___________ eV below the conduction band of 
silica. ( )

 (a) 0.01 (b) 0.1 (c) 0.045 (d) 0.45

11. With increase of temperature, the Fermi energy level moves ___________ in n-type semiconductors. ( )

(a) upwards (b) downwards
(c) uncharged (d) None

12. At room temperature, in n-type material, ( )

(a) large number of holes exist (b) large number of positive ions exist
(c) large number of negative ions exist. (d) None

13. At 0 K, in n-type material, the Fermi energy level lies: ( )

(a) at the centre of energy gap
(b) at the centre of donor energy level and bottom of conduction band
(c) at the centre of acceptor energy level and top energy level of valence band
(d) None of the above

14.  Minority carrier life time is defi ned as the time taken by the minority carriers to decay to ___________ % of
initial carriers. ( )

 (a) 67 (b) 33 (c) 37 (d) 25

15. Th e ratio of diff usion coeffi  cient to mobility of carriers is proportional to: ( )

 (a) T (b) T  2 (c) 1/T (d) 1/T  2

16. According to Einstein, the ratio of diff usion coeffi  cient to mobility is equal to: ( )

(a) 
2k T

e
B

 (b) 
e

k T2 B

(c) 
k T

e
B

 (d) 
e

k TB

17. If the Hall coeffi  cient is negative, then the semiconductor is: ( )

 (a) n-type  (b) p-type (c) intrinsic (d) None

18.  If n and μ
e are the free electron concentration and mobility of electrons, then the conductivity, σ

e
 is [e = charge on 

an electron] ( )

(a) 
ne

eμ  (b) ne μ
e

(c) 
μe

ne
 (d) 

1

ne eμ

Chapter 08.indd   64Chapter 08.indd   64 9/25/2009   5:40:47 PM9/25/2009   5:40:47 PM



Semiconductors and Physics of Semiconductor Devices 8-65

19. An intrinsic semiconductor atom possesses ___________ valence electrons. ( )

 (a) 1 (b) 2 (c) 3 (d) 4

20. At 0 K, valence band of a semiconductor has full of electrons and conduction band of a semiconductor has: ( )

(a) full of electrons  (b) no electrons 
(c) partially fi lled with electrons (d) None of the above

21. Th e maximum energy possessed by an electron at absolute zero of temperature is called: ( )

(a) Fermi energy (b) de Broglie energy
(c) energy gap energy (d) None of the above

22. Th e drift velocity produced in a carrier per unit applied electric fi eld is called its: ( )

(a) mobility (b) current density
(c) Hall eff ect  (d) None of the above

23.  Th e slope of a straight line drawn between ln ρ
i
 versus 1/T  for an intrinsic semiconductor is equal to ___________ . 

[ ρ
i
 = resistivity and T = temperature in Kelvin]. ( )

 (a) E
g
/k

B
 (b) E

g
/2k

B
 (c) 2E

g
/k

B
 (d) E

g
/3k

B

24. Th e mobility of electrons is ___________ that of holes. ( )

(a) less than (b) equal to
(c) larger than (d) None of the above

25.  At room temperature, the conductivity of Si and Ge becomes double for ___________  and ___________ rise of 
temperature. ( )

(a) 5° C and 10° C (b) 10° C and 5° C (c) 10° C and 15° C (d) 20° C and 15° C

26. At room temperature, a semiconductor possesses ___________ coeffi  cient of resistivity. ( )

 (a) positive (b) negative (c) zero (d) None

27. By doping ___________ group atoms in silica crystal, a n-type semiconductor is obtained. ( )

 (a) fi rst (b) second (c) third (d) fi fth

28. Boron atoms in silica crystal creates ___________ energy level in the energy gap of silica. ( ) 

 (a) acceptor (b) donor (c) both a & b (d) None

29. With increase of temperature, the Fermi energy level moves ___________ in p-type semiconductor. ( )

 (a) downwards (b) upwards (c) left (d) right

30. Th e product np varies by changing: ( )

 (a) temperature  (b) pressure
 (c) humidity  (d) doping concentration

31.  At room temperatures, in n-type material, the free electron concentration is almost equal to the number of 

___________ atoms present per unit volume of the material. ( )

 (a) acceptor (b) donor  (c) both a & b (d) None

32. An electron-hole recombination results in: ( )

 (a) release of energy  (b) absorption of energy
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 (c) both a & b  (d) None

33. Th e diff usion current is proportional to ___________ of charge carriers. ( )

 (a) concentration gradient (b) drift velocity
 (c) mobility  (d) None

34. Th e electrical conductivity of semiconductors lies in between ___________ and dielectrics. ( )

 (a) plastics  (b) metals (c) ceramics (d) None

35. Th e electron vacancies in valence band of a semiconductor will exist as: ( )

 (a) positive ions (b) holes (c) negative ions (d) None

36. In semiconductors both free electrons and ___________ participate in electrical conduction. ( )

 (a) holes (b) positive ions (c) negative ions (d) None

37. Above room temperature, a semiconductor possesses ___________ coeffi  cient of temperature resistance. ( )

 (a) negative   (b) positive
 (c) both a & b  (d) None

38.  At 300K, the electron and hole diff usion coeffi  cients of silica material is 3.6 × 10−3 m2/s and ___________ m2/s.
 ( )

 (a) 1.3 × 10−3 (b) 2.3 × 10−3 (c) 3.2 × 10−3 (d) 0.5 × 10−3

39.  At 300 K the electron and hole diff usion coeffi  cients of germanium is 10 × 10−3 m2/s and____________ m2/s. ( )

 (a) 2 × 10−3 (b) 5 × 10−3 (c) 10 × 10−3 (d) 3.6 × 10−3

40.  A p-n junction can be formed by the ___________ method. (  )

 (a) grown junction (b) alloying (c) diff usion (d) All the above 

41. Immediately after the formation of a p-n junction (  )

 (a) electrons in the valence band of the p-region goes to the acceptor level 
 (b) electrons in the donor energy level of the n-region goes to the conduction band 
 (c)  a large number of holes near the junction in the p-region and a large number of free electrons near 

the junction in the n-region are seen
 (d) All the above

42. At 300 K, the potential barrier at the junction is (  )

 (a) 0.3 V for Ge (b) 0.7 V for Si (c) both a and b (d) none of the above

43.  Th e n-side of the depletion region contains positive ions, so it is at ___________ potential  than the p-side of the 
depletion region. (  )

 (a) higher (b) lower (c) both a and b (d) none of the above

44. Th e Fermi energy level is  (  )

 (a) close to the conduction band in n-type. 
 (b) close to the valence band in p-type.
 (c) at the centre of energy gap in n-   and p-type.
 (d) Both a and b.

45. Th e Fermi level in both sides of the p-n junction in equilibrium is at the ___________ level (  )
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 (a) same (b) diff erent (c) Both a and b (d) None of the above

46. Th e width of depletion region is of the order of (  )

 (a) 10−10 m (b) 10−8 m (c) 10−6 m (d) 10−4 m

47. Th e current through a p-n diode cow be represented by ___________ equation (  )

 (a) Schottky (b) Schockley’s (c) Planck’s (d) Einstein’s

48. Th e current through a p-n diode can be represented by (  )

 (a) I I e
V

V
b I I e

V

V
= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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D

T

s
T

Dη
η

1 1( )

 (c) I I e
V

V
d I I e

V

V
= −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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T
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η
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49. Forward biasing a p-n diode means (  )

 (a) connecting the positive terminal of the battery to p- and the negative terminal to n-type materials.
 (b) connecting the negative terminal of battery to p- and the positive terminal to n-type materials.
  (c) the battery is not connected to diode terminals.
 (d) None of the above.

50. Biasing a p-n diode means (  )

 (a) connecting the positive terminal of battery to p- and the negative terminal to n-type materials.
 (b) connecting the negative terminal of battery to p- and the positive terminal to n-type materials.
  (c) Both a and b.
 (d) None of the above.

51. During forward bias, the width of depletion region in a p-n diode (  )

 (a) increases (b) decreases (c) No change (d) None of the above

52. Th e electrical resistance of p-n junction is ___________ during forward bias. (  )

 (a) low (b) high (c) very large (d) zero

53.  Th e depletion region width of a reverse biased p-n diode is ___________ and it off ers ___________ resistance for 
current fl ow. (  )

 (a) large, infi nite (b) small, infi nite (c) large, fi nite (d) small, fi nite

54. At room temperature the minimum voltage required to start current fl ow in a circuit is known as (  )

 (a) biasing voltage (b) cut-in voltage (c) a or b

55. Th e reverse voltage that is required for a p-n diode to break the potential barrier at the junction is known as (  )

 (a) cut-in voltage (b) break down voltage (c) threshold voltage (d) biasing voltage

56. Th e reverse current in a diode is of the order of (  )

 (a) several milli amperes (b) micro amperes
 (c) a few amperes  (d) many amperes 

57. A rectifi er is a device that  (  )

 (a) converts alternating current into direct current.
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 (b) converts direct current into alternating current.
 (c) amplifi es input voltage.
 (d) amplifi es input power.

58. In the case of a half-wave rectifi er, the average current, I
av
 is equal to [I

m
 = maximum current] (  )

 (a) I
m
 (b) 

Im

π
 (c) π I

m
 (d) 2 Im

59. Th e maximum rectifying effi  ciency of a half wave rectifi er is (  )

 (a) 0.5 (b) 0.75 (c) 0.406 (d) 0.812

60. Th e maximum rectifying effi  ciency of a full wave rectifi er is (  )

 (a) 0.5 (b) 0.75 (c) 0.406 (d) 0.812

61. Th e ripple factor in half wave rectifi er is ___________ % (  )

 (a) 80 (b) 100 (c) 121 (d) 150

62. Th e ripple factor in full wave rectifi er is ___________ % (  )

 (a) 25 (b) 38 (c) 48 (d) 28

63. Th e output of LEDs is (  )

 (a) visible light (b) IR light (c) current (d) both a and b

64. Th e GaAsP direct band gap photo diode emits ___________ colour light (  )

 (a) red (b) blue (c) green (d) yellow

65. Th e GaAsP indirect band gap photo diode emits ___________ colour light (  )

 (a) red (b) blue (c) green (d) yellow

66. Th e GaP photo diode emits ___________ colour light (  )

 (a) red (b) blue (c) green (d) yellow

67. Th e SiC and GaN photo diodes emits ___________ colour light (  )

 (a) red (b) blue (c) green (d) yellow

68. Th e following diode emits light (  )

 (a) LED (b) LCD (c) Both a and b (d) None of the above

69. LCDs (  )

 (a) generate light.  (b) do not generate light.
 (c) alter or control the existing light. (d) Both b and c.

70. Th e phases in liquid crystals are (  )

 (a) smetic (b) nematic (c) cholestic (d) all the above

71. Choose the correct statement: (  )

 (a) In smetic phase, the molecules are cigar shapped.
 (b) In nematic phase, all the molecular axes are parallel to each other, this is not a layered structure.
 (c) In cholestic phase the molecules are plate like shapped and is a stack of thin layers.
 (d) All the above.
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72. Liquid crystals are sensitive to (  )

 (a) temperature (b) electric fi eld (c) mechanical stress (d) All the above

73.  Th e reverse current in a photo diode ___________ with the increase in intensity of light incident at the
junction (  )

 (a) increases (b) decreases (c) no change (d) None of the above 

74. Th e reverse current that exists when no light is incident at the junction of a photo diode is known as  (  )

 (a) dead current
 (b) dark current
 (c) break down current
 (d) None of the above.

75. Th e current gain in avalanche photo diode after avalanche break down is  (  )

 (a) 10 (b) 100 (c) 1000 (d) 50

76. Photo diodes are used in  (  )

 (a) alarm circuits (b) counting of objects in industries
 (c) both a and b (d) None of the above.

 Answers

  1. c  2. c  3. b  4. a  5. c  6. d  7. a  8. c  9. b 10. c 11. b
 12. b 13. b 14. c 15. a 16. c 17. a 18. b 19. d 20. b 21. a 22. a
 23. b 24. c 25. c 26. b 27. d 28. a 29. b 30. a 31. b 32. a 33. a
 34. b 35. b 36. a 37. a 38. a 39. b 40. d 41. d 42. c 43. a 44. d
 45. a 46. b 47. b 48. a 49. a 50. c 51. b 52. a 53. a 54. c 55. b
 56. b 57. a 58. b 59. c 60. d 61. c 62. c 63. d 64. a 65. d 66. c
 67. b 68. a 69. d 70. d 71. d 72. d 73. a 74. b 75. c 76. c

 Review Questions

 1. Derive the continuity equation for conduction electrons. (Set-4–June 2005), (Set-2–May 2004)

 2. Derive an expression for the density of holes in the valence band of an intrinsic semiconductor.

 (Set-1–Sept. 2008), (Set-1–Sept. 2007), (Set-2–Sept. 2006), (Set-1–May 2003)

 3. Explain Hall eff ect. Show that for a n-type semiconductor the Hall coeffi  cient R
ne

H = −
1

.

 (Set-1–May 2004), (Set-2–May 2003)

 4. Explain the eff ect of temperature and dopent on the Fermi level in a semiconductor.  (Set-2–May 2003)

 5. Describe the drift and diff usion currents in a semiconductor. Derive their expressions and deduce Einstein’s relation.

 (Set-1–May 2006), (Set-4–Nov. 2004), (Set-4–Nov. 2003)

 6. Explain the eff ect of temperature on resistivity of a semiconductor.

 (Set-3–Sept. 2007), (Set-1–May 2007), (Set-2–June 2005)

 7.  Derive an expression for the number of electrons per unit volume in the conduction band of an intrinsic 
semiconductor.
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 (Set-3, Set-4–Sept. 2008), (Set-3–Sept. 2007), (Set-1–May 2007), (Set-3, Set-4–Sept. 2006),

 (Set-2–June 2005), (Set-1–Nov. 2003)

 8.  State the expression for the density of electrons and holes in an intrinsic semiconductor. Derive the expression for 
Fermi level.

 (Set-1–Nov. 2004), (Set-2–Nov. 2003)

 9. Derive the relation between the intrinsic carrier concentration and absolute temperature.

 (Set-1–Nov. 2004), (Set-2–Nov. 2003)

10. When donor impurities are added to a semiconductor, the concentration of holes decreases. Explain with reasons.

 (Set-1–June 2005), (Set-3–Nov. 2004), (Set-3–Nov. 2003)

11. Show that the Fermi level is nearer to the conduction band in a n-type semiconductor.

 (Set-1–June 2005), (Set-3–Nov. 2004), Set-3–Nov. 2003)

12. Discuss the variation of conductivity with temperature of an n-type semiconductor.

 (Set-1–June 2005), (Set-3–Nov. 2004), (Set-3–Nov. 2003)

13. What physical law is manifested in the continuity equation? (Set-4–June 2005), (Set-2–May 2004)

14. Explain the eff ect of temperature on resistivity of a semiconductor. (Set-3, Set-4–Sept. 2006), (Set-1–Nov. 2003)

15. Distinguish between metals, semiconductors and insulators.

 (Set-3–Sept. 2007), (Set-1–May 2007), (Set-3, Set-4–Sept. 2006), (Set-1–Nov. 2003)

16.  Explain the diff erence between metals and semiconductors from the consideration of temperature coeffi  cient of 
resistivity.

 (Set-3–May 2004), (Set-4–May 2003)

17. Explain the applications of Hall eff ect. (Set-4–May 2004)

18. Write a note on diff usion length. (Set-4–May 2004)

19.  Explain n-type and p-type semiconductors. Indicate on an energy level diagram, the conduction and valence bands, 
donor and acceptor levels from intrinsic and extrinsic semiconductors.

 (Set-4–Sept. 2007), (Set-4–May 2006), (Set-2–Nov. 2004)

20. Explain the detailed mechanism of current conduction in n- and p-type semiconductors.

 (Set-4–Sept. 2007), (Set-4–May 2006), (Set-2–Nov. 2004)

21. Distinguish between intrinsic and extrinsic impurity semiconductors with suitable examples.

 (Set-4–Sept. 2008), (Set-1–Sept. 2007), (Set-2–Sept. 2006), (Set-1–May 2003)

22. Derive an expression for the carrier concentration in n-type extrinsic semiconductors. (Set-3–May 2008)

23. Write a note on intrinsic semiconductors. (Set-3–May 2008), (Set-3–Sept. 2008)

24. Derive the continuity equation for electrons. (Set-3–May 2007), (Set-2–Sept. 2007)

25. What physical law is manifested in the continuity equation? (Set-2–Sept. 2007), (Set-3–May 2007)

26. Distinguish between intrinsic and extrinsic semiconductors with suitable examples. (Set-1–Sept. 2008)

27. Write notes on direct band gap and indirect band gap semiconductors. (Set-2–Sept. 2008)

28. Show that for a p-type semiconductors the Hall coeffi  cient, R
ne

H =
1

  (Set-2–Sept. 2008)

29.  What is an intrinsic semiconductor? Derive equations for electron and hole concentration in an intrinsic semicon-
ductor at room temperature T K.
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30.  Derive an equation for Fermi energy level of an intrinsic semiconductor at temperature T K, by equating electron 
and hole densities. Comment on the position of Fermi energy level.

31.  Distinguish between intrinsic and extrinsic semiconductors. Obtain an expression for carrier concentration in an 
extrinsic semiconductor.

32.  Explain extrinsic semiconductors with the help of energy band diagrams and specify the position of Fermi energy 

level in n-type and p-type semiconductors.

33.  Derive an equation for the conductivity of an intrinsic semiconductor in terms of carrier concentration and the 
mobilities of carriers. Explain the method of obtaining energy gap of a semiconductor.

34. Obtain equations for drift and diff usion current densities of electrons and holes.

35. Write short notes on Einstein’s relations.

36. What is Hall eff ect? Explain. What are the uses of Hall eff ect?

37.  Point out the importance of continuity equations. Deduce the continuity equation for the electrons in a p-type 
material.

38.  Obtain the equation for the conductivity of an intrinsic semiconductor in terms of carrier concentration and carrier 
mobility.

39.  What do you understand by drift and diff usion currents in the case of a semiconductor? Deduce Einstein’s relation 
relating to these currents.

40. Explain with necessary theory the concept of minority carrier life time in an extrinsic semiconductor.

41.  Derive the expression for the densities of electrons and holes in the conduction and valence bands, respectively. Th e 

Fermi level in an intrinsic semiconductor lies approximately half-way between the top of the valence band and the 
bottom of conduction band.

42.  What is an intrinsic semiconductor? Write the expression for electron concentration and hole concentration and 
deduce from them that the Fermi energy level is at the middle of the conduction band and valence band of the 
intrinsic semiconductor.

43.  Using the expressions of electron concentration and hole concentration for an intrinsic semiconductor, show that 
the product of these two concentrations is independent of the Fermi level of any type of semiconductor.

44. Derive an expression for the carrier concentration in a p-type semiconductor using Fermi-Dirac statistics.

45.  Prove that the recombination rate in an extrinsic semiconductor is indirectly proportional to its minority carrier 
life time.

46.  Derive the continuity equation in the non-equilibrium condition of semiconductors and write the practical impli-
cations of minority carrier lifetime in appliances.

47. Derive an expression for the density of holes in the valency band in an intrinsic semiconductor.

48. Derive an equation of continuity in semiconductors involving drift and diff usion mechanisms of carriers.

49. Explain the concept of drift and diff usion current. How are they diff erent?

50. Derive an expression for electron and hole concentrations for an intrinsic semiconductor.

51. Explain charge neutrality in an intrinsic semiconductor.

52.  Defi ne Fermi level. Assuming the expressions for electron and hole concentration, show that Fermi level lies 

half-way between the valence band and the conduction band.

53. Deduce the continuity equation for electrons in p-type material.
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54. Derive the expression for conductivity of an intrinsic semiconductor.

55. What are mobility and drift current? Obtain Einstein’s relation for doped semiconductors.

56. Explain Hall eff ect.

57. Derive an expression for density of electrons in the conduction band for an n-type semiconductor.

58.  What is an extrinsic semiconductor? Discuss the variation of the Fermi level with temperature for an n-type semi-
conductor.

59. Explain the diff erent methods to form a semiconductor p-n junction.

60. Draw and explain the energy band diagram of a p-n junction.

61. Mention and explain Shockley’s diode equation.

62. What is diode biasing? Explain the forward and reverse biasing of a p-n diode.

63. Explain half-wave rectifi cation using p-n diode.

64. What is full-wave rectifi cation? Explain full-wave rectifi cation with centre tap transformer and bridge circuits.

65. Write notes on (i) LEDs, (ii) LCDs and (iii) photodiodes.
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Superconductivity

9.1 Introduction
From free electron theory of metals, we know that by decreasing the temperature of a perfect metal, the 
thermal vibrations and electron scattering of ions (or atoms) decrease and hence the electrical resistance of 
the substance decreases. One would expect that the electrical resistance of a substance may become zero as 
its temperature reaches 0 K. Based on this point, experiments were conducted on many substances by sci-
entists. In 1911, Kammerling Onnes found that the electrical resistance of pure mercury vanishes suddenly 
at 4.2 K as shown in Fig. 9.1. Th is temperature is called its superconducting transition temperature and 
denoted as T

C
. Th e superconducting transition temperature of a few important materials is shown below.

C H A P T E R 9

Material Transition Temperature (TC) (in K)

Hg 4.15

CuS 1.6

Nb 9.3

Nb3 Au 11.5

Nb3Sn 18.0

Nb3Ge 23.2

YBa2Cu3O7 90

Tl 2Ga 2Ba 2Cu4O10 125

Above the superconducting transition temperature, the material possesses normal resistance and is 
said to be in the normal state. Below this temperature, the resistance of the material becomes zero and its 
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conductivity reaches infi nity. Th is state of the material is called superconducting state. Now, the superconducting 
transition temperature can be defi ned as the temperature at which the material changes from normal state to 
superconducting state as it is cooled. Th e total disappearance of electrical resistance of these few substances is 
called superconductivity and the materials which exhibit this property are called superconductors.

Th e electrical resistivity of a material is caused by electron scattering. Th is is due to: (a) temperature, 
(b) impurities and (c) crystal defects. Figure 9.2 shows the variation of electrical resistivity of an impure defec-
tive material and pure perfect material with temperature. Curve ‘A’ shows the presence of electrical resistance 
even at 0 K; this is due to defects and impurities in the material and curve ‘B’ shows the superconductivity of 
pure perfect crystalline material.

4.2 K
TC

R
es

is
ta

nc
e

Temp (K)

Figure 9.1 Variation of resistance with decrease of temperature for mercury

Figure 9.2
  Shows the variation of electrical resistivity with decrease of tempera-

ture. Curve A for a defective impure crystal and curve B for a perfect 
pure crystal

0

A

B

Resistivity
(r)

r0

Temp (K)TC
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9.2 General features of superconductors
Superconductors show many features. We could study these features one by one as shown below:

1. Persistent current: Th e electrical current in a superconductor, in superconducting state remains for a very 
long time. Th is can be proved by placing a superconducting loop of material in magnetic fi eld and lowering its 
temperature to below its superconducting transition temperature (T

C
) and the magnetic fi eld is removed. Th is 

causes dc current in the superconductor loop and the current remains for a very long period without attenua-
tion. File and Mills determined the time taken by the super current to reduce to 1/e of its initial value is more 
than 1,00,000 years. Th is indicates that the dc current in a superconducting material is persistent.

2. Normally, superconductivity has been observed in metals having valence electrons between 2 and 8 and not 1.

3. Some good conductors of electricity at room temperature will not show superconductivity at low temperatures. 
For example, gold, silver, copper, sodium, crystalline iron, ferromagnetic and anti-ferromagnetic materials.

4. Th e materials which possess high resistance at room temperatures will show superconductivity at low 
temperatures. For example, amorphous thin fi lms of beryllium, bismuth and iron. Under pressure, antimony, 
bismuth and tellurium show superconductivity.

5. By reducing the temperature of a material, it changes from normal to superconducting state. Th is transition 
is sharp in case of pure perfect metals and is broad for metals containing impurities as shown in Fig. 9.3.

Figure 9.3 Shows the transition width of impure metals

Transition width
Temp (K)

R
es

is
ta

nc
e

6. Isotopic eff ect: Transition temperature (T
C
) of a superconducting substance varies with isotopic mass (M ). 

For example, the transition temperature of three isotopes of mercury is shown below.

Isotopic Mass (M) of Hg Transition Temperature [TC in K ]

199 4.161

200 4.153

204 4.126
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It has been observed that T
C
 ∝ M−β  (or) T

C
 M β = constant. For large number of materials, β ≈ +0.5.

so T
C
 M 1/2 = constant.

However, deviations from this value have been observed for some materials.

7. Eff ect of magnetic fi eld: By appling magnetic fi eld of suffi  cient strength, the superconductivity of a 
 material can be destroyed . Th e minimum magnetic fi eld strength required to destroy superconductivity of 
a substance, below T

C
 is called critical magnetic fi eld (H

C
) at that temperature. H

C
 varies with temperature. 

Th is variation has been shown for a number of superconducting elements in Fig. 9.4.

Figure 9.4
  Shows the variation of critical magnetic fi eld with temperature for a 

few elements
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 From the graph, we see that the critical magnetic fi eld for diff erent elements will be diff erent at diff erent 
temperatures. Also it shows for a material, the critical magnetic fi eld increases with decrease of temperature 
below T

C
. At T

C
, no magnetic fi eld is required to change the material from superconducting to normal state. 

Maximum magnetic fi eld is required to destroy superconductivity at 0 K. Th e critical magnetic fi eld at 0 K is 
H

0
. Th e critical magnetic fi eld (H

C
) at any temperature ‘T ’ below T

C
 can be represented as:

H H
T

T
C

C

= −
⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0

2

1

8. Critical currents: Suppose a material carries electric current in superconducting state, this current produces 
magnetic fi eld. If this magnetic fi eld exceeds critical magnetic fi eld (H

C
) at that temperature T (< T

C
 ), then 

normal resistance will be included in the material and it will be in the normal state. Hence, it is not possible to 
pass large currents through a superconductor. Th e  maximum current that can be passed through a supercon-
ductor in superconducting state is called critical current, represented by I

C
.

9. AC Resistivity: Th e current in a superconductor in normal state is carried by normal electrons only. When 
the material changes from normal state to superconducting state, then few normal electrons are converted 
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into super electrons which carry dc current in superconducting state without any electrical resistance. If a 
constant dc current is fl owing in a superconductor, there is no resistance in the material; hence, no electric fi eld 
in the material. If we apply dc voltage source to a superconductor [below T

C
], then current will not increase 

suddenly but at the rate at which the electrons accelerate in the electric fi eld. Th is indicates the presence of 
electric fi eld in the material. If we apply ac voltage source to the superconductor, then the superelectrons 
accelerate in the forward and backward direction; they lag behind the fi eld because of inertia. Also under 
ac fi elds, current is carried not only by superelectrons but also by normal electrons; this adds resistance to 
superconductor [below T

C
]. Under high frequency ac voltages, a superconductor behaves as a normal material 

because under ac voltages, electric fi eld exists in the material that excites superelectrons to go into higher 
states where they behave as normal electrons.

10. Entropy: Entropy is the measure of disorder in a material. By reducing the temperature of a material, it 
goes into superconducting state. Also thermal vibrations and entropy of the material get reduced. In all super-
conducting materials, entropy decreases as they change from normal to superconducting state. Th e electrons 
in superconducting state are more ordered than in normal state.

11. Heat Capacity and energy gap: At all temperatures in normal state, the heat capacity of a superconduc-
tor is almost the same. A sudden change in heat capacity at the transition temperature was observed. Again 
in superconducting state, heat capacity changes exponentially with temperature. Th is suggests the existence of 
an energy gap at the Fermi gas of the material. Th is energy gap is represented in Fig. 9.5.

Figure 9.5 Represents the existence of energy gap in superconductors

EF EF

(b) Superconducting(a) Normal 

Energy gap

Filled Filled

Th is energy gap separates the superconducting electrons and normal electrons. Th e superconducting 
electrons lie below the energy gap and the normal electrons are above it. Th e width of this energy gap is not 
constant as we see in case of an insulator. In insulators, the energy gap is attached to the lattice and the width 
of energy gap will not vary with temperature. In case of superconductors, the width of energy gap at Fermi gas 
increases by decreasing temperature below T

C
. Th is energy gap attains maximum at 0 K and reduces to zero 

at T
C
. Giaever confi rmed the existence of energy gap in superconductors by electron tunnelling observation 

across the superconducting junctions.

12. Th ermal conductivity: It has been observed that the thermal conductivity of a material in superconduct-
ing state is less than in normal state. By applying suffi  cient magnetic fi eld, a material changes from supercon-
ducting state to normal state below T

C
 . In normal state, all free electrons participate in thermal conductivity; 

hence, the thermal conductivity is large. Whereas in superconducting state, the materials have superelectrons 
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and normal electrons, the superelectrons will not participate in thermal conductivity; so, thermal conductivity is 
less. A sudden drop in thermal conductivity has been observed when a material changes from normal to super-
conducting state at a temperature below T

C
. Th e thermal conductivities of tin as a function of temperature in 

normal and superconducting state are shown in Fig. 9.6.

13. Mechanical eff ects: Experimentally, it was found that the superconducting transition temperature and 
critical magnetic fi eld change slightly by applying mechanical stress on it. Small changes in volume, coef-
fi cient of thermal expansion and bulk modulus of elasticity were seen when a material changes from normal 
state to superconducting state.

14. Acoustic attenuation: When sound wave propagates through a metal, then the ions will be slightly 
displaced from their original positions. Th ese displacements produce microscopic electric fi elds. Th ese fi elds 
increase the energy of electrons present near the Fermi surface. So, the wave is attenuated. Th is attenuation 
has been expressed in terms of attenuation coeffi  cient, α of the acoustic waves. Th e ratio of α in superconduct-
ing state to normal state of a material has been expressed as:

 
α
α

s

n

B

=

+
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

1 exp
ΔE

K T

At low temperatures, 
α
α

s

n B

= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2exp
ΔE

K T
.

15. Flux exclusion or Meissner eff ect: In 1933, Meissner and Ochsen Feld found the exclusion of magnetic fl ux 
lines by a superconductor below T

C
. Th ey reduced the temperature of a long superconductor in magnetic fi eld. 

Th ey observed that the superconductor pushes the magnetic lines of force out of the body at some low tempera-
ture, T

C
 as shown in Fig. 9.7. When the material is in normal state, the magnetic force of lines pass through it. 

Th e magnetic induction (B) inside the material is given as 

 B = μ0(H + M ) = μ
0
H (1 + χ).

Figure 9.6
  Shows the variation of thermal conductivity of tin in normal and 

superconducting states
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where μ
0
 is the magnetic permeability of free space. H is the intensity of applied magnetic fi eld, M is the 

magnetization of the material and χ is the magnetic susceptibility given as χ = M/H.
When the temperature reaches below T

C
, the material enters into superconducting state and it expels the 

magnetic force lines. So, B = 0 inside the material. From the above equation, we write 0 = μ
0
 (H + M )

⇒ H = − M  or  χ = − 1.0.

In superconducting state, inside the material magnetization takes place which is equal in magnitude 
and opposite in direction to the applied fi eld. Th e superconductor is a perfect diamagnetic material (since 
χ = − 1.0). Th e exclusion of magnetic lines from a superconductor when it is cooled in magnetic fi eld to 
below its transition temperature is called Meissner eff ect.

9.3 Type-I and Type-II superconductors 
Depending on the way of transition from superconducting state to normal state by the application of 
magnetic fi eld, superconductors are divided into Type-I and Type-II superconductors. In case of Type-I 
superconductors, as we increase the intensity of applied magnetic fi eld, inside the material opposing mag-
netization takes place up to some applied magnetic fi eld, up to this applied magnetic fi eld, the material is 
completely diamagnetic and it is in superconducting state. As the applied fi eld reaches the critical value, 
H

C
, all of a sudden the magnetic force lines pass through the material and the material changes sharply 

from superconducting state to normal state as shown in Fig. 9.8. Th is eff ect (Type-I superconductivity) 
was fi rst noted by Silsbee in 1916. So, this eff ect is also called Silsbee eff ect. Th e critical magnetic fi eld, 
H

C
 for Type-I superconductors is of the order of 0.1 Tesla or less so, high magnetic fi elds cannot be pro-

duced using Type-I superconductors. Th ese are called soft superconductors. Almost all elements show Type-I 
 superconductivity.

(a) Normal state ( T > TC) (b) Superconducting state (T < TC)

Figure 9.7 Figure shows the superconductor in applied magnetic fi eld (H )
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9-8 Applied Physics

In case of  Type-II superconductors, as we increase the intensity of applied magnetic fi eld, in the material 
opposing magnetization takes place up to some applied magnetic fi eld H

C
1
, called lower critical magnetic 

fi led. Up to this magnetic fi eld, the material completely expels the magnetic force lines. Th e material is 
completely diamagnetic and it is in superconducting state. If the applied magnetic fi eld exceeds H

C
1
, slowly 

the magnetic force lines pass through the material and the transition from superconducting to normal state 
takes place gradually. Th e penetration of magnetic force lines through the material increases gradually from 
H

C
1
 to H

C
2
. At H

C
2
, the magnetic force lines completely pass through the material and the material changes 

completely from superconducting state to normal state. Above H
C

2
, the material is in normal state. Th e 

material is in mixed state from H
C

1
 to H

C
2
. Th e variation of magnetization with applied magnetic fi eld in 

Type-II superconductors is shown in Fig. 9.9.

Superconducting
state

Normal
state

M

HHC

Figure 9.8
  Shows the relation between magnetization and applied magnetic fi eld 

for Type-I superconductors

Figure 9.9
  Figure shows the variation of magnetization with applied magnetic 

fi eld for Type-II superconductors

M

H

Normal
state

HC2

Superconducting
state

HC1

Mixed state
(or)

Vortex  state
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Type-II superconductivity was discovered by Schubnikov et al. in 1930s. Th e critical magnetic fi eld H
C

2
 

for Type-II superconductors is of the order of 10 Tesla. H
C

2
 is called upper critical fi eld. Type-II superconduc-

tors with a large amount of magnetic hysteresis are called hard superconductors. Type-II superconductors are 
alloys or transition metals with high values of electrical resistivity.

9.4 Penetration depth 
In 1935, F. London and H. London obtained an expression for penetration of applied magnetic fi eld into 
superconducting material from the surface by adding: (i) Meissner eff ect i.e., the magnetic induction (B) 
inside a superconducting material is equal to zero (B = 0) and (ii) zero resistivity i.e., the intensity of electric 
fi eld (E) in a superconductor in superconducting state is equal to zero (E = 0) to Maxwell’s electromagnetic 
equations. According to them, the applied magnetic fi eld does not drop to zero at the surface of the supercon-
ductor [in superconducting state] but decreases exponentially as given by the equation:

 H H
x

=
−⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟0 exp

λ
where H is the intensity of magnetic fi eld at a depth x from the surface, H

0
 is the intensity of magnetic 

fi eld at the surface and λ is called London penetration depth. London penetration depth is defi ned as the dis-
tance from the surface of the superconductor to a point inside the material at which the intensity of magnetic 

fi eld is 
1

e

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟  of the magnetic fi eld at the surface [i.e., H

0 
/e]. Th e variation of intensity of magnetic fi eld with 

distance from the surface into the material for tin is shown in Fig. 9.10.
Th e magnetic fi eld is likely to penetrate to a depth of 10 to 100 nm from the surface of a superconductor. 

If the superconducting fi lm or fi lament is thinner than this value, then its properties are signifi cantly diff erent 
from that of the bulk material. For example, the critical magnetic fi eld increases with a decrease in thinness. 
Th e value of λ for some materials is given below.

Figure 9.10
  Figure shows the variation of the intensity of magnetic fi eld with

distance into the material for tin

H0

H

0 x

H0

e

l
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Material λ(in nm) 

Mercury 70

Aluminium 50

Tin 50

Lead 39

Indium 64

Figure 9.11 Variation of penetration depth in tin
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Th e penetration depth is not constant but varies with temperature as shown in Fig. 9.11 for tin.
From the fi gure, we know that the penetration depth is independent of temperature, but the penetration 

depth increases rapidly and approaches infi nity as the temperature approaches the transition temperature of 
the material. Th e London penetration depth at temperature T (< T 

C
) can be obtained using the equation 

λ
λ

=

−
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

4
1

2

1
T

T
c

where λ
0
 is the London penetration depth at 0 K.

9.5 Flux quantization 

We know that electric charge is quantized in terms of integral multiples of charge on an electron [1.6 × 10 −19 C]. 
Similarly, the magnetic fl ux lines passing through a superconducting loop due to persistent current is quantized 
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Figure 9.12 Sample cooled in the presence of magnetic fi eld

 

Cooled

Magnetic 
force 

of lines

(a) T > TC (b) T < TC

in terms of integral multiples of 
h

e
Webers

2
2 10 15= ×( )− . Flux quantization can be proved with the help of a 

superconducting material in the form of a hollow cylinder or ring.
Magnetic fi eld is applied on the superconducting ring in normal state as shown in Fig. 9.12. As its tem-

perature is reduced to below critical temperature, the material expels the magnetic lines of force and enters 
into superconducting state. Persistent current is set up in the material this current will remain in the material 
even if the applied magnetic fi eld is removed. Th is persistent current sets up magnetic force lines in the ring. 
Th is magnetic fl ux adjusts itself such that the total fl ux through the cylinder is quantized in integral multiples 

of 
h

e
n

h

e2 2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟i.e., . If the persistent current in the superconductor decreases, then the magnetic fl ux also 

decreases and adjust to integral multiples of 
h

e2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ . Here, 2e is the charge on a pair of electrons. Experimen-

tally, it was found that the value of h/2e is equal to 2.07 × 10–15 webers. It confi rms the existence of an electron 
pair in the superconductor in superconducting state. Th is is very well agreed with the Cooper pair concept. 
Th e Cooper pair concept plays a major role in BCS theory.

9.6 Quantum tunnelling
As shown in Fig. 9.13(a), if a thick insulating layer is sandwiched between two metals, then electric current 
will not pass through this insulating layer. If the insulating layer is very thin ( ≈ 10 to 20 Å), then there is a 
large probability for electrons to pass from one metal to another through this insulating layer by quantum 
mechanical process called tunnelling. If both the metals are normal conductors, then the V − I characteristics 
is a straight line as shown in Fig. 9.13(b).

In 1961, Giaever took a system in which an insulating layer of 10 nm thick has been sandwiched between 
a normal metal and a superconductor as shown in Fig. 9.14(a). Gradually, an increasing potential has been 
applied between the metal and superconductor by connecting them to electrodes. Up to certain voltage, V

C
, 

there is no current in the circuit, afterwards the current increases as shown in Fig. 9.14(b).
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9-12 Applied Physics

Th e fl ow of current through this insulating layer has been explained on the basis of quantum mechanical 
tunnelling of electrons. Quantum theory says that an electron on one side of the insulator [barrier] has a certain 
probability of tunnelling through it, if there is an allowed available equal energy electron state on the other side 
of the barrier. Th e quantum tunnelling for the above system can be explained with the aid of electron states in the 
energy space. Figure 9.15 shows the energy level diagram for the sandwich consisting of superconductor, insulator 
and metal at 0 K. Th e Fermi energy levels of these materials adjust to a same height after sandwiching.

Th e electron tunnelling in the above sandwich can be explained in the following way: When voltage is 
not applied across the sandwich, then electrons are fi lled upto the Fermi energy level EF2

 in the normal metal. 
At this energy, there is a forbidden energy band in superconductor. So, electron states in the superconductor 
are not available for the electrons present at E

F2
 in normal metal. 

So, electron tunnelling will not take place. Suppose voltage (V ) is applied across the sandwich, then the 
electrons present at the Fermi energy level or near to it in the normal metal gain energy and will go to higher 

Figure 9.13
  (a) Shows an insulator sandwiched between two metals;

(b) V-I characteristics for the system shown in Fig. 9.13(a)

i

V

Metal

Insulator

Metal

(a) (b)

Figure 9.14
  (a) Figure shows the sandwich of an insulator between a normal metal 

and a superconductor; (b) V-I characteristics for the system shown in 
Fig. 9.14(a)

(a) (b)

InsulatorSuperconductor

Metal
i

VVC
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energy level. By the continuous increase of voltage across the sandwich, the electrons present at the Fermi energy 
level or near to it will go to excited states. Th e voltage across the barrier is raised such that the electrons in a metal 
should raise to a height of E

1

1  or higher than that. Th en, the electrons in the normal metal can see vacant energy 
levels in superconductor and tunnel through the insulating layer and reaches the superconducting material. Th us, 
quantum tunnelling takes place. Obviously, there is no current until the voltage becomes equal to V

C
 so that eV

C
 

is equal to energy gap E E
1

1 −
F

2
. Th us, the fl ow of electrons through a thin insulating layer has been explained 

based on the quantum mechanical tunnelling process.

9.7 Josephson’s effect
In 1962, Josephson passed electrical current consisting of correlated pairs of electrons across an insulating gap 
(∼ 10 Å) between two superconductors. Th is eff ect is known as Josephson eff ect.

Josephson eff ect can be explained in the following way. As shown in Fig. 9.16(a), a rectangular superconducting 
bar is connected in series with a battery (B), plug key (K) and an ammeter (A ). A voltmeter (V ) is connected 
across the superconductor. Since the superconductor has zero resistance, so the voltmeter shows zero reading. 
Whereas the ammeter shows the current through the superconductor. Next, the superconductor is cut into two 
pieces as shown in Fig. 9.16(b). If the gap between the two pieces is about 1 cm, then current will not fl ow 
through the superconductor pieces, so ammeter shows zero reading and the voltmeter shows the open circuit 
voltage of the battery. If the gap between the superconducting pieces is reduced to 1 nm, then the voltmeter 
reading drops to zero and the ammeter shows dc current through the superconducting pieces and across the gap 
between the superconducting pieces [ Josephson Junction]. Th at is without any applied voltage across the gap, 
dc current passes through the insulating gap. Th is eff ect is known as dc Josephson eff ect.

Th e gap between the superconducting pieces is slightly increased and the applied voltage is increased, the 
current passes through the gap also increased so that a small dc voltage exists across the gap. Now, a high-frequency 
electromagnetic radiation is observed from the gap. Th at is the gap emits a high-frequency electromagnetic rays. 
Th is indicate a high-frequency ac current through the gap. Th is eff ect is known as ac Josephson eff ect.

Th e V–I characteristics of a Josephson junction is shown in Fig. 9.17. With zero applied voltage across 
the Josephson’s junction, a dc current passes across the junction. As shown in fi gure, the dc current is in 

Figure 9.15
  Figure shows the energy level diagram for the sandwich consisting of 

superconductor—insulator and normal metal

Occupied

Superconductor Normal metal
Insulator

E

EF1 EF2
E1

E1
1

energy
states
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energy states
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9-14 Applied Physics

between I
0
 to – I

0
, where I

0
 is the maximum dc current under no applied voltage across the junction. Th is 

current is due to the quantum mechanical tunnelling of Cooper pairs of electrons across the junction. Th ese 
electrons tunnel from one superconductor to another across the junction (barrier) and returns to the fi rst 
conductor through the external circuit. If current exceeds I

0
, then a potential diff erence develops across the 

junction. Th is indicates resistance in the junction. Th e change from zero to fi nite resistance is not related to 
the elimination of superconductivity.

Th e current across the junction can be represented as I = I
0
 sin φ, where φ is the phase diff erence 

between the waves associated with Cooper pairs of electrons on two sides of the gap. As shown in Fig. 9.17, 
whenever current exceeds I

0
, a potential diff erence (V ) exists across the junction. Th is shows that the Cooper 

Figure 9.16
  Shows Josephson’s effect: (a) Current through superconductor bar and

(b) The bar is cut into two pieces with a narrow gap between them

Superconductor

V

A

B BK

(a) (b)

K
A

V

Figure 9.17 V-I characteristics of a Josephson’s junction
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pairs on both sides of the junction diff er by an energy equal to 2eV, where 2e is the charge on a Cooper pair 
of electrons. Since in superconductors, current is carried by Cooper pairs of electrons, if a Cooper pair passes 
across the gap, then it emits a photon of energy (hν) equal to 2eV. Th en, the frequency of emitted radiation is 

ν =
2eV

h
. Th is is the oscillating frequency of sinusoidal current across the gap. 

Th e phase diff erence φ = 2πt/T = 2πtν

 =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ =

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟2

2 4
π

π
t

e

h
t

eV

h

V

Suppose the potential diff erence across the gap is 1 mV, then the frequency is of the order of 480 GHz, 
this lies in the microwave region. Th is enables to construct microwaves resonators.

9.8 BCS theor y

Th e existence of energy gap and long-range electronic order in superconducting state pointed that electrons 
in superconductor are somehow bound together. Th e positively charged ions screen the Coulomb repulsive 
forces between electrons. In 1950, Frohlich and Bardeen concluded that a moving electron inside a crystal 
distorts the crystal lattice and this distortion is quantized in terms of virtual phonons. Th at means the reaction 
between an electron and lattice phonons represent the vibrations of crystal lattice in a solid. Th e electron-
phonon interaction can cause resistance or superconductivity. Th e interaction of electrons and virtual pho-
nons causes superconductivity. We know generally that superconductors are always poor conductors at room 
temperature and the best conductor do not become superconductors. For example, gold, silver and copper at 
low temperatures.

In 1957, Bardeen, Cooper and Schriff er put forward a theory [called BCS theory] [ Jhon Bardeen 
received noble prize twice in physics; in 1947, he invented transistor and later he developed the key concepts 
of photocopy machine] which explains very well for all the properties shown by superconductors, such as 
zero resistance, Meissner eff ect, etc. Th is theory involves electron interactions through phonons. Th e basis for 
BCS theory is: (i) isotopic eff ect and (ii) specifi c heat of superconductors. Isotopic eff ect, T

C
 M 1/2 = constant, 

infers that the transition to superconducting state must involve the dynamics of motions, lattice vibrations 
and phonons. Also as T

c
 → 0, then M approaches infi nity. Th is suggests non-zero transition temperature and 

fi nite mass of ions.

Description
Suppose an electron approaches a positive ion core in the crystal, then the electron makes an attractive 
interaction with a positive ion. This attractive interaction sets in motion the positive ion and this ion 
motion distorts the lattice. This distortion of lattice is quantized in terms of phonons. At that instant, 
if another electron approaches the distorted lattice, then the interaction between this second electron 
and distorted lattice takes place; this interaction lowers the energy of second electron. Now, the two 
electrons interact through the lattice distortion or the phonon field and results in the lowering of 
energy of the electrons. The lowering of energy indicates that an attractive force exists between the 
electrons. This attractive interaction is larger if the two electrons have opposite spin and momenta. 
This interaction is called electron-lattice-electron interaction or electron-electron interaction through 
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Figure 9.18 Electron-electron interaction through phonons

K1 K2

K2 + qK1 − q

q

phonons as a mediator. Cooper stated that the presence of an  attractive interaction even weak in 
between two electrons in a superconductor makes them to form a bound pair. Cooper showed that 
the lowering of energy leads to the formation of a bound state. Such bound pairs of electrons formed 
by the interaction between the electrons with opposite spin and momenta are known as Cooper pairs. 
This interaction can be represented in terms of the wave vector of electrons as shown in Fig. 9.18. Let 
an electron having wave vector K

1
 emits a virtual phonon q and this phonon is absorbed by another 

electron having wave vector K
2
, then K

1
 is scattered as K

1
−q and K

2
 as K

2
+q. Conservation of energy 

is not satisfied in this reaction. This process is called virtual because virtual phonons are involved in 
this process.

In this interaction, phonon exchange takes place between electrons. If the phonon energy exceeds 
electronic energy, then the interaction is attractive and the attractive force between these two electrons 
exceeds the usual repulsive force. Th ese two electrons which interact attractively in the phonon fi eld are 
called Cooper pairs. Th e Cooper pair of electrons are said to be in the bound state or in the condensed 
state so that their energy is less than in the free state. Th e diff erence of energy of these electrons between 
these two states is equal to the binding energy of Cooper pair. Below critical temperature, the electron-
lattice-electron interaction is stronger than electron-electron coulomb interaction, so electrons tend to 
pair up. Th e pairing is complete at 0 K and is completely broken at critical temperature. According 
to quantum theory, a wave function could be associated with a Cooper pair by treating it as a single 
entity. Th e Cooper pairs do not get scattered in the material and the conductivity becomes infi nite 
which is named as superconductivity. Th e best conductors such as gold, silver and copper do not exhibit 
superconductivity because the electrons in these metals move freely in the lattice that, the electron-lattice 
interaction is virtually absent and the Cooper pairs will not form. Hence, these metals will not show 
superconductivity.

BCS theory explains the energy gap in superconductors in the following way: Th e energy gap at the 
Fermi surface is the energy diff erence between the free state of the electron and its paired state. Th e energy 
gap is a function of temperature. Th e energy gap is maximum at 0 K because pairing is complete at this tem-
perature. At transition temperature, the energy gap reduces to zero because pairing is dissolved. Th e existence 
of energy gap in superconductors can be proved by the absorption of electromagnetic waves in microwave 
region. At temperature close to 0 K, a superconductor does not absorb energy of incident radiation until the 
energy of the incident radiation exceeds the width of the gap (2Δ) after absorption of energy, the electrons 
become free or normal.
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Coherent length
Th e paired electrons (Cooper pair) are not scattered because they smoothly ride over the lattice points or 
to the lattice imperfections. Th e Cooper pairs are not slowed down. Hence, the substance does not posses 
any electrical resistivity. Superconductivity is due to the mutual interaction and correlation of electrons over 
a considerable distance called coherent length (∈

0
). It is found to be of the order of 10−6 m. Th e coherent 

length is defi ned as the maximum distance up to which the state of paired electrons are correlated to produce 
superconductivity. Th e ratio of London penetration depth (λ) to the coherence length (∈

0
) is represented as

(K ) = λ  /∈
0
, is a number. For Type-I superconductors, K <

1

2
 and for Type-II superconductors, K >

1

2
. 

Th e intrinsic coherence (∈
0
) is realated to the energy gap as ∈ 0

2
≈

�ν
Δ

F  where 2Δ is the energy gap.

BCS ground state
Fermi gas in the ground state is bounded by Fermi surface, excited state of an electron can be formed by 
taking an electron from the Fermi surface to just above it. According to BCS theory in superconducting 
state, there is an attractive interaction between the electrons [Cooper pairs]. In this case, we cannot form 
an exited state unless we supply an energy which exceeds the energy of attraction between electrons. Th ese 
electron states are known as BCS ground states. Th is implies that the energy of Cooper pairs of electrons 
or BCS ground state is separated by a fi nite energy gap Eg (=  2Δ) from the lowest excited energy state
(Fermi energy). Further, the Cooper pairs are situated within about K

B
θ

D
 of the Fermi energy where θ

D
 is 

the Debye temperature. Th e energy gap is situated about the Fermi surface of the Fermi state. Th e probability 
of occupation of the ground state in terms of one partical states is shown in Fig. 9.19(a).

BCS ground state of superconductor is shown in Fig. 9.20. Figure 9.20(a) shows the ground state of 
Fermi gas and Fig. 9.20(b) shows the BCS ground state of electrons with an attractive interaction between 
them, states near E

F
 are fi lled in accordance with the probability shown in Fig. 9.19(b). Th e lowest excited 

state is separated from the ground state in this case by an energy gap E
g
.

Th e total energy (T.E) of the BCS state is lower than that of the Fermi state. Th e total energy of the BCS 
state consists of K.E and attractive P.E, whereas that of Fermi state comprises K.E only. Th us, the attractive 
P.E reduces the T.E of the BCS state. Th is is in agreement with experimental observations on the supercon-
ducting and normal states.

Figure 9.19 (a) Ground state of Fermi gas; (b) BCS ground state
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1.0

P(E )

0
EFE

1.0

P(E )

0
EFE

Eg
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9.9 Applications of superconductivity
Superconductors fi nd many applications. Some of them are mentioned below:

9.9.1 Magnetic applications
a. Superconducting magnets
Similar to electromagnets, superconducting magnets can also be formed by using coils of wire made up 
of superconducting material. To obtain magnetic fi elds from electromagnets, current should be maintained 
in the coil, whereas in superconducting coils, current once introduced into the coil will remain for a very 
long time and during this period magnetic fi eld can be obtained, provided the temperature of the coil is 
maintained below its transition temperature [usually at liquid helium temperature]. Th e benefi t of using 
superconducting magnets instead of electromagnets is the cost of power required to maintain superconduc-
tors at low temperature will be 1000 times less than the cost of power required in case of electromagnets to 
produce the same magnetic fi eld. Th e size of superconducting magnets is less than that of electromagnets. 
Superconducting magnets are made of Type-II superconducting material because strong magnetic fi elds 
is of the order of 20 Tesla can be produced. Of the many superconducting materials, niobium-titanium
(Nb Ti), a Type-II superconducting material, is mostly used because it can be easily drawn into thin wires.

Th e superconducting coils are used in electric machines, transformers and magnetic resonance imaging 
(MRI) instruments. MRI instruments are used in hospitals to obtain human body cross-sectional images. 
Th is process is much safer than using X-rays. Superconductor coils are used in magnetically levitated 
vehicles and in high-resolution nuclear magnetic resonance (NMR) instruments. Using NMR instru-
ments, molecular structure of chemical compounds can be known. Superconducting coils are used in NMR 
imaging equipment, this equipment is used in hospitals for scanning the whole human body and diagnoze 
medical problems.

b. Magnetic bearings
Meissner eff ect is used in these bearings. Mutual repulsion between two superconducting materials due to oppo-
site magnetic fi elds is used in the construction of magnetic bearings. Th ere is no friction in these bearings.

Kz

Kx

Ky

Fermi surface
Eg

Lowest excited state

Fermi surface

Kz

Kx

Ky

0

(a) (b)

Figure 9.20 (a) Ground state of Fermi gas; (b) BCS ground state of an  electron gas
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9.9.2 Electrical applications

a. Loss-less power transmission
DC current through an ordinary metallic wire causes heating eff ect called Joule’s heating that is proportional 
to i 2 R. Th is means an amount of electrical energy equal to i 2R is wasted for every second. Th is dc power 
loss can be eliminated by passing current through a superconductor wire. For ac, the superconductors shows 
resistance.

b. Superconductor fuse and breaker
We know some insulating materials that show superconductivity at low temperatures, thin fi lms of such 
materials can be used instead of fuse because when more than critical current pass through them, then they 
change into normal state. In normal state, they are insulators. Th ey would not conduct current, so it will
act as a fuse. In breaker, a long thin fi lm of superconductor is used. In normal state, this fi lm possesses high 
resistance. In this, lead is used.

c. Cryotron switch
In this device, the resistance of a superconducting material can be made to zero or normal value by appling 
magnetic fi eld of strength just below and above its critical magnetic fi eld.

Th e device consists of a thick straight wire (or core), made up of some superconducting material S
1
, 

on the surface of this another long thin wire made up of some other superconducting material S
2
, has been 

wounded. Th is is called coil. Th e superconducting materials S
1
 and S

2
 are selected in such a way that the 

transition temperature of S
1
 should be less than that of S

2
, hence the critical magnetic fi eld of S

1
 is less than 

the critical magnetic fi eld of S
2
, at some temperature ‘T ’  below their transition temperatures. Th is set-up is 

immersed in a cold enclosure as shown in Fig. 9.21. Th e temperature in the enclosure should be less than the 
transition temperature of S

1
 and S

2
, so that the core and coil is in superconducting state. 

Th e current fl owing through the coil is adjusted such that the magnetic fi eld produced is very close to the 
critical magnetic fi eld of core at that temperature. Now, by slightly increasing the current through the coil, the 
core can be changed from superconducting to normal state; again by slightly reducing the current through 
the coil, the core can be brought back to superconducting state. Because by increasing the current through the 
coil, the magnetic fi eld produced will exceed the critical magnetic fi eld of core again by decreasing the current 
through the coil, the magnetic fi eld produced can be brought below the critical magnetic fi eld of core. Even 
the core changes to normal state, the coil will be in the superconducting state because of its high transition 
temperature. Th us, the resistance of core is made ON or OFF by external control, so that this arrangement 
functions as a switch. Cryotron may be used as an element in fl ip-fl op.

To produce low temperature in the enclosure, the liquid helium [T
C
 = 4.2 K] is used, then the core mate-

rial could be tantalum [T
C
 = 4.38 K] and coil material will be lead [T

C
 = 7.2 K] or niobium [T

C
 = 9.3 K].

Figure 9.21 Cr yotron switch

Cold enclosure
Coil of superconducting
material S2[lead or niobium]

Core of superconducting
material S1[tantalum]
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9.9.3 Computer applications
A closed superconducting ring [or a circular ring of superconductor] is used in memory cell. When persistent 
current in superconducting state passes through it, then it is said to be in ‘1’ state. In normal state, current 
will not pass through it, then it is said to be in ‘0’ state. Th us, the superconducting memory cell is a binary 
system.

9.9.4 Josephson junction devices
A very small gap between superconductors forms a junction called Josephson Junction. Th e devices which 
use such junctions are called Josephson Junction device. Th e dc Josephson eff ect is used in the construction of 
sensitive magnetometers. Th ese devices can measure magnetic fi elds accurately up to 10−11 gauss. AC Josephson 
eff ect is used to generate and detect electromagnetic radiations from radio frequencies to infrared frequencies.

9.9.5 Maglev vehicles
Maglev vehicles means magnetically levitated vehicles. Th ese vehicles are made to stay afl oat above the guide 
way. So, it is not in contact with guide way. High speeds can be achieved with less energy. It is based on Meissner 
eff ect.

Th e Maglev vehicle is shown in Fig. 9.22. It consists of superconducting magnet at its base. Th ere is a 
segmented aluminium guide way above which the maglev can be made to afl oat by magnetic repulsion. Th e 
magnetic repulsion is in between the superconducting magnet at the bottom of Maglev and the magnetic 
fi eld obtained by passing current through electric coils arranged in the aluminium guide way.

During the motion of the vehicle, only the part of the guided way over which the vehicle is located is 
actuated instantaneously. For this purpose, the guide way is formed into a large number of segments provided 
with coils. Th e currents in the segmented guide way not only levitate the vehicle but also help to move. 
Usually, the vehicle is levitated above the guide way by 10 to 15 cm. Th e vehicle is provided with retractable 
wheels. Once the vehicle is levitated in air, the wheels are pulled into the body, while stopping the wheels are 
drawn out and the vehicle slowly settles on the guide way after running a certain distance. Maglev train has 
been constructed in Japan, it runs at a speed of 500 km/h.

Figure 9.22 Maglev vehicle

Aluminium guide way

Carriage Superconducting
magnect

Wheel
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9.9.6 Medical applications

a. Superconducting sensitive magnetometer
Superconducting quantum interference devices (SQUIDs) are used in the construction of superconducting 
sensitive magnetometers. Basically, SQUIDs are superconducting rings that are used in magnetic fl ux storage 
devices. Th e quantization of magnetic fl ux in SQUID is the basis for construction of sensitive magnetometer. 
With the aid of good electronic feedback circuit, SQUIDs can measure magnetic fi eld strengths that are less 
than 1/1000 of a quantum of magnetic fl ux. SQUIDs are used in medical diagnostics of heart and brain. Th ey 
can measure the magnetic fi elds generated by heater brain signals. Th ey are of the order of 10−14 Tesla. Th e 
SQUIDs are used to measure the voltages associated with brain, chest and cardiac activity. Earth magnetic 
fi eld can be measured accurately using SQUIDs and a magnetic map can be constructed. Th is map helps us 
to detect mineral and oil deposites inside the earth.

b. Superconductors in medicine
(i) Human blood contains iron in certain percentage. Iron supplies oxygen to various parts of the body. 
If the iron content is less, then oxygen supply will be reduced and if iron content is more then it causes 
heart attack. Th e disease caused due to the variation of iron content in blood is called haemochroma-
tosis. It is diffi  cult to diagnoze this disease, often overlooked. Doctors can detect this disease easily and 
quickly using superconducting susceptometer. In this instrument, superconducting magnet and SQUIDs 
are used.

(ii) A disease that produces disorder in nervous system of brain is called epilepsy. This disorder causes 
fits and brain malfunctions. The epiliptic attacked part of the brain is short circuited. If the disease 
is severe in certain part of the brain, there the nerve path ways get jammed and the person receives 
meaningless signals from that damaged region. The only permanent cure for epilepsy is to operate and 
remove the damaged portion of the brain. The short-circuited epileptic centre produces distinctive 
magnetic signals. Doctors can locate the damaged portion of the brain by placing an array of a dozen 
SQUID magnetometers around the patient head and magnetic signals received by the magnetometers 
are fed to a computer. Computer analysis gives a three-dimensional picture of the activity within the 
brain. Doctors can locate the damaged portion of the brain in the image. This technique is known as 
magnetoencephalography.
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 Solved Problems

1.  Th e critical fi eld for niobium is 1 × 10 5 amp/m at 8 K and 2 × 10 5 amp/m at absolute zero. Find the transition tempera-

ture of the element.

 (Set-2–May 2008)

Sol: Critical magnetic fi eld at 8 K, H
C
 = 1 × 105 amp/m

 T = 8 K

 Critical magnetic fi eld at 0 K, H
0
 = 2 × 105 amp/m

 Transition temperature, T
C
 = ?
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2.  A Josephson junction having a voltage of 8.50 μV across its terminals, then calculate the frequency of the alternating current. 

[Planck’s constant = 6.626 × 10 −34 J-sec]
 (Set-1–May 2008)

Sol: Voltage across the junction, V = 8.50 μV

       = 8.5 × 10−6 V

 Frequency of alternating current, ν =?

 

ν = =
× × × ×

×

− −

−

2 2 1 6 10 8 5 10

6 626 10

19 6

34
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h

. .

.

         = 4.1 × 109 Hz

3.  A super conducting material has a critical temperature of 3.7 K, and a magnetic fi eld of 0.0306 tesla at 0 K. Find the critical 

fi eld at 2 K.

 (Set-2–May 2007)

Sol: T
C
 = 3.7 K

 T = 2 K

 H
0
 = 0.0306 T

 H
C
 = ?
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        = 0.02166 Tesla
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4.  A long superconducting wire produces a magnetic fi eld of 200 × 10 3 A/m on its surface due to current through it at tempera-

ture T (< T
C 
). Its critical magnetic fi eld at 0 K is 250 × 10 3 A/m. Th e critical temperature of the material of wire is 12 K. 

Find the value of  T.

Sol:   H H
T

T

H

H

T

T
C

C

C

C

= −
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⇒ = −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟0

2

0

1 1

22

 T

T

H

H
T T

H

HC

C
C

C
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ = − ⇒ = −

⎛

⎝
⎜⎜⎜⎜

⎞2

0

2

0

1 12

⎠⎠
⎟⎟⎟⎟

 T
C
 = 12 K

 H
0
 = 250 × 103 A /m

 H
C
 = 200 × 103 A /m

 Th en,  T2 2

2

12 1
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( )

      ∴  T 2 = 144 (1 − 0.64)

           T 2 = 144 × .36 = 51.84

           T = 7.2 K.

5.  Th e superconducting transition temperature of tin is 3.7 K. Its critical magnetic fi eld at 0 K is 0.03 Tesla. What is the critical 

magnetic fi eld at 2.5 K?

Sol: T
C
 = 3.7 K , T = 2.5 K

 H
0
 = 0.03 T, H

C
 = ?
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Tesla  = 0.0163 Tesla.

3.  What is the frequency of the electronmagnetic waves radiated from a Josephson junction, if the voltage drop at the junction 

is 650 μV?

Sol: ν = ?

 V = 650 × 10−6 V

 e = 1.6 × 10−19 C

 h = 6.625 × 10−34 JS

 ν = =
× × × ×

×
=

×

×

− −

−

−

−

2 2 1 6 10 650 10
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  = 313.96 × 109 Hz.
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6.  A lead super conductor with T
C

 = 7.2 K has a critical magnetic fi eld of 6.5 × 10 3 Am−1 at absolute zero. What would be the 

value of critical fi eld at 5 K temperature?

Sol: T
C
 = 7.2 K

 H
0
 = 6.5 × 103 A /m

 T   = 5 K

 H
C
 = ?
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    = 3.365 × 103 A /m.

 Multiple Choice Questions

 1. Below transition temperature, the electrical resistance of a superconductor is.     (  )

 (a) fi nite (b) large (c) zero (d) none 

 2. For an impure metal, the transition width is.  (  )

 (a) zero (b) fi nite (c) large (d) none 

 3. Th e time required to decay persistent current to 1/e of its initial value is3 (  )

 (a) more than 1,00,000 years (b) 1000 years
 (c) 100 years  (d) 10 years

 4. Th e following element will not show superconductivity.  (  )

 (a) gold (b) silver (c) coper (d) all

 5. Superconducting bearings operate: (  )

 (a) with contact  (b) without contact
 (c) with lubricant  (d) without lubricant

 6. Th e energy gap in a superconductor is maximum at. (  )

 (a) critical temperature  (b) above critical temperature
 (c) below critical temperature (d) at 0 K

 7. Below transition temperature, the London penetration depth. (  )

 (a) almost constant  (b) increases exponentially
 (c) decreases exponentially (d) none

 8. Cooper pairs are broken at ___________ temperature. (  )

 (a) 0 K  (b) critical temperature
 (c) below critical temperature (d) above critical temperature
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 9. Th e relation between transition temperature (T
C
) and isotopic mass (M ) is.  ( )

 (a) T
C
 ∝ M 1/2 (b) T

C
 ∝ M −1/2 (c) T

C
 ∝ M−1 (d) T

C
 ∝ M

10. Th e critical magnetic fi eld (H
C
) at temperature T K is:. ( )
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11. Th e thermal conductivity of a metal in normal and in superconducting state is.   ( )

 (a) same (b) diff erent (c) both a and b (d) none

12. Type-I superconductivity is also called as: ( )

 (a) Silsbee eff ect  (b) Subnikov eff ect
 (c) Boltzmann eff ect  (d) Planck’s eff ect

13. Type-I superconductors can produce magnetic fi elds of the order of.  ( )

 (a) 100 Tesla (b) 10 Tesla (c) 1 Tesla (d) 0.1 Tesla

14. Examples for Type-I superconductors are: ( )

 (a) all elements  (b) alloys
 (c) ferromagnetic materials (d) ceramics

15.  Th e distance from the surface of a superconductor to a point in the superconductor at which the intensity of mag-
netic fi eld is (1/e) at the surface is called. ( )

 (a) Josephson penetration depth (b) London penetration depth
 (c) Maxwell penetration depth (d) none

16.  If H
0
 is the intensity of magnetic fi eld on the surface of a material, then the intensity of fi eld at a depth ‘x’ from the 

surface is. ( )
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17. At temperature T (< T
C
), the London penetration depth can be expressed as.    ( )
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18. A quantum of magnetic fl ux in a superconductor is equal to. ( )

 (a) 
h

e
 (b) 

h

e2
 (c) 

h

e4
 (d) 

h

e5

19.  Th e maintenance cost of superconducting magnets is ___________  times less than the maintenance cost of 
electromagnet to produce same magnetic fi eld. ( )

 (a) 10,000 (b) 1000 (c) 100 (d) 10

20. Usually, maglev vehicle is raised above the aluminium path by a height of. ( )

 (a) 10 to 20 cm (b) 1 to 2 cm (c) 50 to 70 cm (d) 70 to 100 cm
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21. SQUIDS are used to measure ___________ associated with brain and chest.  ( )

 (a) power (b) energy (c) stress (d) voltages

22. Superconducting susceptometer is used to detect. ( )

 (a) epilipsy (b) haemochromatosis (c) diabeties (d) none

23. Th e electron pairs in a superconductor are called. ( )

 (a) Cooper pairs (b) Bardeen pairs (c) BCS-pairs (d) Josephson pairs

24. A material changes from normal to superconducting state below ___________ temperature. ( )

 (a) Curie (b) critical (c) Weiss (d) none 

25. Th e transition temperature of mercury is. ( )

 (a) 4.2 K (b) 7.5 K (c) 12 K (d) 20 K

26. At transition temperature, the electrical resistance of a material. ( )

 (a) is large (b) is less (c) vanishes (d) none 

27. For a superconductor, the critical magnetic fi eld ___________ with decrease of temperature. ( )  

 (a) increases (b) decreases (c) will not change (d) none

28. In superconducting state, we ___________ pass large current. ( )

 (a) can (b) cannot (c) both a & b (d) none

29. Th e maximum current that can be passed through a superconductor is called. ( )

 (a) supercurrent (b) optimum current (c) critical current (d) none

30. Superconductivity is not shown for ___________. ( )

 (a) dc current (b) ac current (c) saw-tooth current (d) none

31. A superconductor is in more ordered than ___________. ( )

 (a) a normal metal (b) a semiconductor (c) a dielectric (d) none

32. Below transition  temperature, the heat capacity of a superconductor. ( )

 (a) changes with temperature (b) changes with magnetic fi eld
 (c) changes with electric fi eld (d) none

33. Th e width of superconducting energy gap. ( )

 (a) increases with temperature (b) decreases with increase of temperature
 (c) will not change with temperature (d) none

34. A superconductor is a perfect ___________ material.  ( )

 (a) diamagnetic (b) dielectric (c) insulator (d) semiconductor

35.  In Type-I superconductors, the transition from superconducting to normal state by the application of magnetic 
fi eld is. ( )

 (a) erratic (b) sharp (c) both a & b (d) none

36.  In Type-II superconductors, the transition from superconducting to normal state by the application of magnetic 
fi eld is. ( )

 (a) sharp (b) not sharp (c) erratic (d) none
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37. Type-II superconductors are: ( )

 (a) alloys  (b) transition metals
 (c) both a & b  (d) none

38.  Th e intensity of an applied magnetic fi eld decreases ___________ with depth from the surface of a 
superconductor. ( )

 (a) exponentially (b) linearly (c) logarithmically (d) inversely

39. If dc voltage exists across Josephson junction, then ___________ current passes across the junction. ( )

 (a) dc (b) ac  (c) pulsating (d) none

40. Th e material used in the construction of superconducting magnets are: ( )

 (a) niobium (b) titanium (c) both a & b (d) none

41. Joules heating in superconductors is: ( )

 (a) present (b) absent (c) both a & b (d) none

42. Th e core and coil of a cryotron switch is prepared with ___________ superconducting material. ( )

 (a) same (b) diff erent (c) both a & b (d) none

43.  ___________ Josephson eff ect is  used to generate and detect electromagnetic waves of frequencies ranging from 
radiowave to infrared wave. ( )

 (a) ac (b) dc (c) both a & b (d) none

44. Maglev vehicles are constructed based on ___________ eff ect. ( )

 (a) gravitational (b) electrical (c) Meissner (d) none

45.  With the aid of good electronic feedback circuit, SQUIDS can measure magnetic fi elds that are less 
than ___________ of a quantum of magnetic fl ux. ( )

 (a) 1/10 (b) 1/100 (c) 1/1000 (d) none

 Answers

  1. c  2. b  3. a  4. d  5. b  6. d  7. a  8. b  9. b 10. c
 11. b 12. a 13. d 14. a 15. b 16. b 17. a 18. b 19. b 20. a
 21. d 22. b 23. a 24. b 25. a 26. c 27. a 28. b 29. c 30. b
 31. a 32. a 33. b 34. a 35. b 36. b 37. c 38. a 39. b 40. c
 41. b 42. b 43. a 44. c 45. c

 Review Questions

 1. Describe the BCS theory of superconductivity. (Set-3–June 2005)

 2. Write various applications of superconductivity. (Set-3–June 2005)

 3. Explain dc and ac Josephoson’s eff ect. (Set-3–June 2005)

 4. Write notes on the applications of superconducting materials. (Set-4–May 2008)

 5. Describe the diff erences between Type-I and Type-II superconductors. (Set-2–May 2008)
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9-28 Applied Physics

 6. Explain the critical parameters and their signifi cance in superconductors. (Set-1–May 2008)

 7. Write notes on (i) isotopic eff ect and (ii) energy gap in superconductors. (Set-1–May 2008)

 8. What is Meissner eff ect? Explain. (Set-2, Set-4–May 2008), (Set-2–May 2007)

 9.  Explain the following (a) critical magnetic fi eld of a superconductor as a function of temperature, (b) Meissner 
eff ect and (c) cryotrons.

 (Set-4–May 2007)

10. How are superconductors classifi ed? Explain their properties.
 (Set-4–May 2008), (Set-1–Sept. 2006), (Set-2–May 2006)

11. What is meant by isotopic eff ect? Explain with suitable example. (Set-2–May 2007)

12. Defi ne the terms of superconductivity: (i) critical temperature, (ii) critical magnetic fi eld and critical current.
 (Set-3–May 2006)

13. What are Cooper pairs? Explain. (Set-3–May 2006)

14. Write notes on any four applications of superconductors. (Set-3–May 2006)

15. Write notes on the applications of superconducting materials.
 (Set-4–May 2008), (Set-1–Sept. 2006), (Set-2–May 2006)

16. Explain Meissner eff ect? (Set-2–May 2007)

17. (a) What is superconductivity?

 (b) Explain the two types of superconductors briefl y.

18. Discuss the formation of Cooper pairs and energy gap in superconductors on the basis of BCS theory.

19. Explain the phenomenon of superconductivity and Meissner eff ect.

20. Briefl y describe, how Cooper pairs are formed.

21. Explain fl ux quantization in superconductivity.

22. Write short notes on Type-I and Type-II superconductors.

23.  Explain the origin of energy gap of a superconducting material. How this energy gap diff ers from that of a normal 
conductor?

24. Explain the properties of a superconductor in detail.

25. Distinguish between Type-I and Type-II superconductors.

26.  What is superconductivity? Describe the eff ect of: (a) magnetic fi eld (b) frequency and (c) isotopes on supercon-
ductors. Mention a few industrial applications of superconductors.

27. What is superconductivity? Explain Meissner eff ect. What are the possible applications of superconductivity?

28. Explain Type-I and Type-II superconductors. What are Josephson’s eff ects?

29. Mention some important characteristics of superconductivity.

30. Explain the BCS theory of superconductivity.

31. Describe Josephson eff ect and their applications.

32.  Perfect diamagnetism is a more fundamental property than perfect conductivity to assert that a material is in super-
conducting state. Explain this statement.

33. Explain Meissner eff ect. How is it used to classify the superconductors?
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Superconductivity 9-29

34.  Describe dc and ac Josephson eff ect in superconductors and prove that the current density across a superconducting 
junction in the former case varies sinusoidally as the phase diff erence of state function of Cooper pair on either side 
of it.

35.  Describe the phenomena of fl ux quantization in superconductors and prove that the current oscillates with a 

frequency equal to 
2e

�
 times the potential diff erence across the superconducting junction.

36. Justify that a superconductor can be used as a fuse with the relevant mechanism.

37. Write short notes on Type-II superconductors.

38. Explain the working of a SQUID.

39. Explain BCS theory of superconductors.

40. Describe the Josephson eff ect underlying a SQUID.

41.  Explain Meissner eff ect. Discuss Type-I and Type-II superconductors. Mention a few applications of supercon-
ductors.

42. What are superconductors? Give the qualitative description of the BCS theory.

43. Explain critical temperature, critical fi eld and critical current in a superconductor. Explain BCS theory.
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Lasers

10.1 Introduction
LASER stands for Light Amplifi cation by Stimulated Emission of Radiation. Laser light is diff erent from 
conventional light. In conventional light sources [such as tube light or electric bulb], there is no coordina-
tion among diff erent atoms emitting radiation. Whereas in lasers, all atoms act together and produce highly 
directional, monochromatic, coherent and stimulated radiation. In conventional light source, diff erent atoms 
emit radiation at diff erent times and in diff erent directions so that there is no phase relation between the 
emitted photons. Th e photons emitted by diff erent atoms of laser are in phase or they maintain constant 
phase relationship and they move in the same direction. Lasing has been extended upto γ-rays. γ-ray lasers 
are called Grasers.

10.2 Characteristics of laser radiation
Laser radiation has the following important characteristics over ordinary light source. Th ey are: i) monochro-
maticity, ii) directionality, iii) coherence and iv) brightness.

(i) Monochromaticity: A laser beam is more or less in single wavelength. i.e., the line width of laser beams 
are extremely narrow. Th e wavelengths spread of conventional light sources is usually 1 in 106, whereas in case of 
laser light it will be 1 in 1015. i.e., if the frequency of radiation is 1015 Hz, then the width of line will be 1 Hz. So, 
laser radiation is said to be highly monochromatic. Th e degree of non-monochrotmaticity has been expressed 

as ξ
λ

λ
ν

ν
= =

d d
 where dλ or dν is the variation in wavelength or variation in frequency of radiation.

(ii) Directionality: Laser beam is highly directional because laser emit light only in one direction. It can travel 
very long distances without divergence. So, laser communication has been carried between earth and moon.

C H A P T E R 10

Chapter 10.indd   1Chapter 10.indd   1 9/25/2009   5:43:12 PM9/25/2009   5:43:12 PM



10-2 Applied Physics

A laser beam sent from earth to moon was recorded on earth after refl ection by moon. Th e directionality of a 
laser beam has been expressed in terms of divergence. Suppose r

1
 and r

2 
are the radii of laser beam at distances 

D
1
 and D

2
 from a laser, then we have:

Th e divergence, Δθ =
r r
D D

2 1

2 1

−
−

Th e divergence for a laser beam is 0.01 milliradian whereas in case of search light it is 0.5 radian.

(iii) Coherence: Laser beam is spatially and temporally coherent.

Spatial coherence: If a wave maintains a constant phase diff erence or in phase at two diff erent points on 
the wave over a time ‘t’, then the wave is said to have spatial coherence. For He-Ne gas laser, the coherence 
length ‘L

c
’ is about 600 Km. Coherence length is defi ned as the length over which the wave maintains same 

phase. For sodium lamp light source, the coherent length is 3 cm. Th ere is an inverse relation between non-
chromacity and coherent length.

 non-chromaticity ∝ 
1

cL

So, laser light has very less non-chromaticity.

Temporal cohrence: It refers to the correlation between light fi elds at diff erent times at a point on the wave. 
If there is no change in phase over a time ‘t’ at a point on the wave, then it is said to be coherent temporally 
during that time. If the phase changes many times at a point, then it is said to be incoherent. For He-Ne 
laser, the coherence time is 2 × 10−3 seconds whereas for sodium lamp, it is ≈ 10−10 seconds. So, there is no 
temporal coherence for light from sodium lamp.

(iv) Brightness: Th e laser beam is highly bright (intense) as compared to the conventional light sources 
because more light energy is concentrated in a small region. Th e light from an ordinary lamp comes out 
more or less in all directions. It has been observed that the intensity of 1mV laser light is 10,000 times 
brighter than the light from the sun at the earth’s surface. Th e number of photons coming out from a laser 
per second per unit area is about 1022 to 1034 whereas the number of photons comes out per second per unit 
area of black body at 1000 K having wavelength (λ) = 6000 Å is ≈ 1016. Th us, a very hot body cannot gen-
erate the number of photons per second per unit area coming out from a laser in the visible region. Laser 
light is coherent, so at a time many photons are in phase and they superimpose to produce a wave of larger 
amplitude. Th e intensity is proportional to the square of amplitude. Hence, the intensity of the resultant 
laser beam is very high.

10.3 Spontaneous and stimulated emission
In lasers, the interaction between matter and light is of three diff erent types. Th ey are: absorption, spontane-
ous emission and stimulated emission. In these processes, two energy levels of atoms are involved. As shown 
in Fig. 10.1, Let E

1
 and E

2
 be ground and excited states of an atom. Th e dot in Fig. 10.1, represents an atom. 

Transition between these states involves absorption or emission of a photon of energy E
2
 − E

1
 = hν

12
, where 

‘h’ is Planck’s constant. Now, we study these processes in detail.
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(a) Absorption: As shown in Fig. 10.1(a), if a photon of energy hν
12

 (= E
2
 − E

1
) collides with an atom 

present in the ground state of energy E
1
 then the atom completely absorbs the incident photon and makes 

transition to excited state E
2
.

(b) Spontaneous emission: As shown in Fig. 10.1(b), an atom initially present in the excited state  makes 
transition voluntarily on its own, without any aid of external stimulus or an agency to the ground state 
and emits a photon of energy hν

12
 (=E

2
 − E

1
). Th is is called spontaneous emission. Diff erent atoms of the 

medium emit photons at diff erent times and in diff erent directions. Hence, there is no phase relationship 
among the emitted photons, so they are incoherent. Examples for spontaneous light are glowing tube light, 
electric bulb, candle fl ame, etc.

(c) Stimulated emission: As shown in Fig. 10.1(c), a photon having energy hν
12

 (= E
2
 − E

1
) impinges 

(or passes in the vicinity) on an atom present in the excited state and the atom is stimulated to make transition 
to the ground state and gives off  a photon of energy hν

12
. Th e emitted photon is in phase with the incident 

photon. Th e two photons travel in the same direction and they possess same energy and frequency. Th ey are 
coherent. Th is type of emission is known as stimulated emission.

Figure 10.1 (a) Absorption; (b) Spontaneous emission; (c) Stimulated emission

(c)

Emitted photon
of energy hn12

Incident photon
of energy hn12

Incident photon
of energy hn12

E2

E1 E1

E2

Emitted photon
of energy hn12

E2

E1 E1

E2

(b)

(a)

Atom

Excited state

Ground state

E2

E1 E1

E2

Incident photon
of energy hn12

Before After
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10-4 Applied Physics

Diff erences between spontaneous emission and stimulated emission of radiation:

Spontaneous Emission Stimulated Emission

1. Polychromatic radiation 1. Monochromatic radiation

2. Less intensity 2. High intensity

3.  Less directionality, so more angular spread during 
propagation

3.  High directionality, so less angular spread during 
propagation

4.  Spacially and temporally incoherent radiation 4. Spacially and temporally coherent radiation

5.  Spontaneous emission takes place when excited atoms 
make transition to lower energy level voluntarily without 
any external stimulation.

5.  Stimulated emission takes place when a photon of 
energy equal to hν (= E2 – E1) stimulates an excited 
atom to make transition to lower energy level.

10.4 Einstein’s coeffi cients
To illustrate a laser, the idea of stimulated emission is essential. Th is can be understood in the following 
way: atoms absorb photons and emits photons of diff erent frequencies. Th e emission may be spontaneous 
or stimulated. To obtain an expression that represents the ratio of spontaneous emission to stimulated emis-
sion, we consider a container having atoms and radiation. Some of the atoms present in the ground state 
absorb photons of energy hν

12
 and raised to excited state (E

2
) and they make spontaneous or stimulated 

emissions.
In steady state, let n

1
 and n

2
 be the number of atoms in ground state (E

1
) and in excited state (E

2
) 

per unit volume of the material. Th e ratio of n
1
 and n

2
 can be represented using Boltzmann distribution 

law, as:

 
n

n

E E

K T

hf

K T
1

2

2 1

B B

exp exp=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

___________ (10.1)

where K
B
 is Boltzmann constant,  f is the frequency of radiation and T is the absolute temperature of the 

atoms. Inside the container, radiation is present so, the number of photons per unit volume having frequen-
cies around ‘f  ’ in unit range [ i.e., radiation density] is represented as σ(  f  ) and is given by Planck’s black body 
radiation law as:

 σ ( )f =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

8

exp 1

3

3

B

π hf

c hf
K T

___________ (10.2)

where ‘h’ is Planck’s constant and c is the velocity of light. An atom in the lower energy state E
1
 gets 

excited to E
2
 state by absorbing radiation of frequency,

 f
E

=
−2 1E

h
___________ (10.3)
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Th e number of such absorptions in unit volume of the material per unit time is proportional to n
1
 and 

radiation density σ(  f  ). Hence, we have:

 Th e absorption rate = B
12 

 n
1
 σ(  f  ) ___________ (10.4)

where B
12

 is the absorption proportionality constant. Th e atoms in the excited state are unstable, they make 
transition from excited state to ground state by making spontaneous and stimulated emissions. Th e number of 
spontaneous emissions in unit volume of the material per unit time is proportional to n

2
. Hence, we have:

 Th e spontaneous emission rate = A
21

n
2

___________ (10.5)

where A
21

 is the spontaneous emission proportionality constant. Similarly, the number of stimulated 
emissions in unit volume of the material per unit time is proportional to n

2
 and radiation density, σ(  f  ). 

Hence, we have:

 Th e stimulated emission rate = B
21

n
2
σ(  f  ) ___________ (10.6)

where B
21

 = stimulated emission proportionality constant.
In steady state,

∴   From Equations (10.4), (10.5) and (10.6) we write:

 B
12

n
1
σ(  f  ) = A

21
n

2
 + B

21
n

2
σ(  f  )

(or)  σ(  f  ) [B
12

n
1
 − B

21
n

2
] = A

21
 n

2
___________ (10.7)

    
σ( )f

A n

B n B n

A n

n B
B n

B n

=
−

=
−

21 2

12 1 21 2

21 2

2 21
12 1

21 2

11
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     =
−

A B

B

B

n

n

21 21

12

21

1

2

1

/
___________ (10.8)

Substituting Equation (10.1) in (10.8) for n
1
/n

2
, we have:

 σ ( )f
A B

B

B

hf

K T

=
−

21 21

12

21 B

/

exp 1
___________ (10.9)

In thermal equilibrium state, Equations (10.2) and (10.9) are equal.
so,

 
8

exp 1

/3

3

B

21π hf

c
hf

K T

A B

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 221

12

21 B

exp 1
B

B

hf

K T

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−

___________ (10.10)

Under stimulated emission, the probability of upward transitions and probability of downward  transitions 
are equal, so:

 B
12

 = B
21

 = B and A
21

 = A (say).
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Th en, Equation (10.10) becomes:

 
A

B

A

B

hf

c

21

21

3

3

8
= =

π
___________ (10.11)

Th e proportionality constants A
21

, B
12

 and B
21

 are called Einstein’s A and B coeffi  cients. From Equations 
(10.5) and (10.6), the ratio of spontaneous emission rate to stimulated emission rate is:

 
A n

B n f

A

B f

A B

f
21 2

21 2

21

21

/

σ σ σ( ) ( ) ( )
= = ___________ (10.12)

Substituting Equations (10.2) and (10.11) in (10.12) gives:

 =
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−

⎡

⎣
⎢
⎢

⎤

⎦

8 8

1

3

3

3

3

π πhf

c

hf

c
hf

K T
exp

B

⎥⎥
⎥

=
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−exp

hf

K TB
1 ___________ (10.13)

Th is ratio works out to be 1010, thus at optical frequencies, the emission is predominantly spontaneous. 
So, the conventional light sources emit incoherent radiation.

10.5 Population inversion
Usually in a system the number of atoms (N

1
) present in the ground state (E

1
) is larger than the number of 

atoms (N
2
) present in the higher energy state. Th e process of making N

2
 > N

1
 is called population inversion. 

Population inversion can be explained with three energy levels E
1
, E

2
 and E

3
 of a system. Let E

1
, E

2
 and E

3
 be 

ground state, metastable state and excited states of energies of the system respectively such that E
1
 < E

2
 < E

3
. 

In a system, the population of atoms (N ) in an energy level E, at absolute temperature T has been expressed 
in terms of the population (N

1
) in the ground state using Boltzmann’s distribution law 

N = N
1
exp(−E / K

B
T )   where K

B
 = Boltzmann’s constant

Graphically this has been shown in Fig. 10.2(b). As shown in Fig. 10.2(a), let the atoms in the system be 
excited from E

1
 state to E

3
 state by supplying energy equal to E

3
 − E

1
 (= hν) from an external source. Th e 

atoms in E
3
 state are unstable, they make downward transition in a time approximately 10−8 seconds to E

2
 

state. In E
2
 state, the atoms stay over a very long duration of the order of milliseconds. So, the population of 

E
2
 state increases steadily. As atoms in E

1
 state are continuously excited to E

3
 so, the population in E

1
 energy 

level goes on decreasing. A stage will reach at which the population in E
2
 state exceeds as that present in E

1
 

state (i.e., N
2
 > N

1
). Th is situation is known as population inversion. Graphically the population inversion has 

been shown in Fig. 10.2(c).

Conditions for population inversion are:

(a)  Th e system should possess at least a pair of energy levels (E
2
 > E

1
), separated by an energy equal to the 

energy of a photon (hν).
(b)  Th ere should be a continuous supply of energy to the system such that the atoms must be raised continu-

ously to the excited state.
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Population inversion can be achieved by a number of ways. Some of them are: (i) optical pumping 
(ii) electrical discharge (iii) inelastic collision of atoms (iv) chemical reaction and (v) direct conversion.

In a laser, if the active medium is a transparent dielectric, then optical pumping method is used. If the 
active medium is conductive, then electric fi eld is used to produce population inversion. Few of the above 
pumping methods are explained below.

Optical Pumping: To explain optical pumping, we consider the three energy levels of atoms as shown in 
Fig. 10.3(a) & 10.3(b).

Th e transitions of atoms in these energy levels and laser emission has been explained in two ways. 
(i) As shown in Fig. 10.3(a), an atom present in the ground state (E

1
 energy level) absorbs a photon of energy 

equal to hν
13

 and occupies E
3
 energy level.

Figure 10.2
  (a) Population inversion between E1 and E2 energy levels; (b) Population 

under thermal equilibrium; (c) Population inversion of E2 with respect to E1

E2

Ground state

Metastable state

Excited state

E3

E1

(a)

E3

E2

E1

Energy
(E )

Population (N )

(b)

E3

E2

E1

Energy
(E )

Population (N )

(c)
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(b)

Metastable state

hn13 hn12 hn12

hn12

E3

E2

E1

Metastable state
E3

E2

hn13

hn23

hn23

hn23

E1

(a)

Figure 10.3 Three-level laser energy levels

If the atoms makes transition from E
3
 to E

2
 energy level slowly and E

2 
to E

1 
fastly, then the number of atoms 

in E
3 
energy level will be more than in E

2 
energy level. i.e., population inversion (N

3
 > N

2
) exists between E

3 
and 

E
2 
energy levels. Th e energy level E

3
 is called metastable state. An external photon of energy hν

23
 (=E

3
 − E

2
) 

stimulates an atom in E
3 
level and hence stimulated emission takes place. So, the photon of energy hν

23
 acts as a 

laser light. Th e atoms present in E
2
 energy level makes non-radiative transition to E

1 
energy level. 

(ii) As shown in Fig. 10.3(b), an atom present in the ground state (E
1 
energy level) absorbs a photon of 

energy hν
13

 and excited to E
3 
 energy level. Th e atoms will remain very short duration (<10−8 sec) in E

3 

energy level and makes transition to E
2 

energy. Th is transition is non-radiative. In E
2 

energy level, the 
atoms will remain for longer duration than in E

3 
energy level. By continuous supply of energy hν

13
, the 

number of atoms in E
2
 energy level go on increasing and the number of atoms in E

1 
energy level is reduced. 

Hence, population inversion exists between E
2 
and E

1
 energy levels i.e., N

2
 > N

1
. Now, an external photon 

of energy hν
12

 can make stimulated emission. Hence, a laser beam of photon energy hv is obtained.
In electrical pumping, the applied electric fi eld caused ionization of the medium and raises to the excited 

state. Th is has been used in gas lasers.
Direct conversion of electric energy into light energy has been used in semiconductor lasers.

10.6 Helium–Neon gas [He–Ne] laser
Helium–Neon gas laser is a continuous four level gas laser. It consists of a long, narrow cylindrical tube made 
up of fused quartz. Th e diameter of the tube will vary from 2 to 8 mm and length will vary from 10 to 100 cm. 
Flat quartz plates are sealed at the ends of the tube, the plates are sealed at Brewster angle with the axis of the 
tube to obtain polarized laser light as shown in Fig. 10.4. So, the plates are called Brewster windows. Th e tube 
is fi lled with helium and neon gases in the ratio of 10:1. Th e partial pressure of helium gas is 1 mm of Hg and 
neon gas is 0.1 mm of Hg, so that the pressure of the mixture of gases inside the tube is nearly 1 mm of Hg.

Laser action is due to the neon atoms. Helium is used for selective pumping of neon atoms to upper 
energy levels. Two electrodes are fi xed near the ends of the tube to pass electric discharge through the gas. 
Two optically plane mirrors are fi xed at the two ends of the tube normal to its axis. One of the mirrors is 
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fully silvered so that nearly 100% refl ection takes place and the other is partially silvered so that 1% of 
the light incident on it will be transmitted. Optical resonance column is formed between these mirrors.

Working: When a voltage of about 1000 V is applied between the electrodes, then electric discharge 
takes place through the gas in the tube. Th e free electrons accelerate towards the positive electrode. In their 
journey, some of these electrons collide with the majority helium gaseous atoms in the tube. When a fast-
moving electron collides with a ground state He atoms then the helium atoms are pumped to two metastable 
energy levels 21s and 23s of helium as shown in Fig. 10.5. In the metastable state, the atoms remain relatively 
long time. So, more number of helium atoms will be present in metastable state than in ground state, which 
leads to an increase of population in each of these metastable states.

Electrodes

Brewster
windowsFully silvered

 mirror
Partially

silvered mirror

Polarized 
laser beam

He–Ne gas

Figure 10.4 Helium–Neon gas laser

3s

2s

Collisions

Metastable state

Collisions

2p

3p

Helium Neon

Metastable state
21s

23s

Energy
Ground state

Excitation of helium
atoms due to electron
collisions

1s
Metastable

state Neon atoms return to
ground state by collisions
with walls of the tube 

1.15 µm

6328 Å

3.39 µm

Figure 10.5 He–Ne energy level diagram
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Inside the tube, the helium atoms present in metastable states may make collisions with the neon atoms 
present in the ground state and excite them to 2s and 3s levels. During collisions, the metastable helium 
atoms transfer their energy to ground state neon atoms and the helium atoms come back to the ground state. 
During collision, resonance transfer of energy form He to Ne atoms takes place because the 21s and 23s energy 
levels of helium atoms are very close with 3s and 2s energy levels of neon. Th us, the population inversion in 
neon atoms takes place. Th e excited neon atoms transit to ground state in three diff erent ways leading to 
three lasers of diff erent wavelengths. Th ey are: (a) transition from 3s level to 3p level gives rise to radiation of 
wavelength 3.39 μm, this lies in the infrared region (b) transition from 3s level to 2p level gives rise to visible 
radiation of wavelength 6328 Å, this lies in red region and (c) the transition from 2s level to 2p level gives 
rise to a wavelength of 1.15 μm, this again lies in the infrared region. Th e atoms in 3p and 2p level undergo 
spontaneous transitions to 1s level, this is a metastable state [3s and 2s levels are not metastable states]. Th e 
photons emitted by the the atoms coming down from 3p or 2p level to 1s level are likely to excite the 1s atoms 
back to 3p or 2p levels. Th is aff ects the population inversion in 3s and 2s levels. Th e atoms in 1s level return 
back to the ground level mainly by collisions with the walls of the discharge tube. Th is eff ect makes the gain 
of He-Ne laser to be inversely proportional to the diameter of the discharge tube, so the discharge tubes are 
made only to a few millimetres of diameter. Th e mirrors placed out side the tube produces optical pumping 
in the resonance column inside the tube, which enhances stimulated emissions. Red laser light comes out of 
the partially silvered mirror.

10.7 Ruby laser
Ruby laser is a solid state pulsed, three-level laser. It consists of a cylindrical-shaped ruby crystal rod of length 
varying from 2 to 20 cms and diameter varying from 0.1 to 2 cms. Th e end faces of the rod are highly fl at and 
parallel. One of the faces is highly silvered and the other face is partially silvered so that it transmits 10 to 25% 
of incident light and refl ects the rest so as to make the rod-resonant cavity. Basically, ruby crystal is aluminium 
oxide [Al

2
O

3
] doped with 0.05 to 0.5% of chromium atoms. Th ese chromium atoms serve as activators. Due 

to the presence of 0.05% of chromium, the ruby crystal appears in pink colour. Th e ruby crystal is placed along 
the axis of a helical Xenon or Krypton fl ash lamp of high intensity. Th is is surrounded by a refl ector as shown 
in Fig. 10.6. Th e ends of the fl ash lamp are connected to a pulsed high-voltage source, so that the lamp gives 
fl ashes of an intense light.

Each fl ash of light losts for several milliseconds. Th e ruby rod absorbs the fl ashes of light to excite chro-
mium ions [Cr 3+] to higher energy levels. During the course of fl ash, enormous amount of heat is produced. 
Th e ruby rod is protected from the heat by enclosing it in a hollow tube through which cold water is circu-
lated [not shown in the Figure]. Th e chromium ions are responsible for the stimulated emission of radiations 
whereas aluminium and oxygen ions are passive.

Th e emission of radiations by chromium atoms can be explained with the help of energy level diagram 
as shown in Fig. 10.7. Th e energy level diagram of a solid consists of energy bands. As large number of the 
chromium ions absorb the radiations of wavelength around 5500 Å and 4000 Å emitted by the fl ash lamp and 
get excited to 4F

1
 and 4F

2
 energy levels from ground state. Th e chromium ions remain for about 10−8 to 10−9 

seconds in these energy levels and makes non-radiative transition to the metastable state 2E, consisting of a pair 
of energy levels. In metastable state, the chromium ions remain for longer duration of the order of milliseconds. 
So, population inversion takes place between metastable and ground state. As a result, stimulated emission 
takes place and the chromium ions translate from metastable to ground state. Th e transitions give rise to the 
emission of light of wave lengths 6929 Å and 6943 Å, respectively. In these 6929 Å, wavelength radiation is 
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very weak in intensity and the laser radiation is mostly due to 6943 Å wavelength radiation. Th e spontaneously 
emitted initial photons would travel in all directions, of these, those travelling parallel to the axis of the rod 
would be refl ected at the ends and pass many times through the amplifying medium and stimulates the atoms 
in metastable state. Th e output of this laser consists of a series of laser pulses for a  duration of microseconds or 
less.

+ −
C

−+

Laser beam

B

Partially silvered face

Helical xenon flash lampReflector

Highly
silverred

face      

Ruby rod

R

Figure 10.6 Ruby laser

Metastable
doublet energy levels

Energy bands

4F1

4F2

Pumping
radiations

5500 Å

4000 Å
Ground state

2E

6929 Å

6943 Å

Stimulated
transitions

Figure 10.7 Energy level diagram of chromium ions in a ruby crystal
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10.8 Semiconductor lasers
A highly doped p-n junction diode made up of direct band gap semiconductor material under forward bias 
emits photons from the junction due to the recombination of conduction band electrons and valence band 
holes. Example for direct band gap semiconductor is GaAs. During recombination a conduction band elec-
tron crosses the energy gap (E

g 
) and combines with a hole present in the valence band. A photon of energy, hν 

equal to E
g
 is released. Hence E h

hc
g = =ν

λ
. Where h = Planck’s constant = 6.63 × 10−34 J-S; C = velocity 

of light = 3 × 108 m/s and λ = wavelength of emitted photon. In semiconductors, p-n junction is the active 
region to produce laser radiation. To produce laser radiation two conditions must be satisfi ed: (1) population 
inversion and (2) optical feedback. Population inversion means there must be a region of the device in which 
large density of free electrons in the bottom energy levels of conduction band and large density of holes in the 
top energy levels of valence band exists. Th is is obtained with high doping concentration. Optical feedback is 
obtained by clearing or by polishing the ends of p-n junction at right angles to the junction layer. Forward-
biased current is slowly increased through the junction. At low current densities, spontaneous emission takes 
place. Above threshold current density-stimulated emission takes place.

Homo- and Heterostructure lasers: If the energy gap width of the semiconductor material on one side 
of p-n junction is the same as that on the other side of the junction, then such a semiconductor laser is 
known as homostructure laser. On the other hand, if the energy gap width of the semiconductor material 
on one side of p-n junction is diff erent from that on the other side of the junction, then such a semi-
conductor laser is known as heterostructure laser. Th e basic structure of a p-n junction laser is shown in 
Fig. 10.8.

A pair of opposite parallel faces of the p-n junction laser are polished to provide optical feedback and the 
other two opposite faces are roughened to eliminate lasing in that direction. 

Th e band diagram of a heavily doped homostructure p-n junction laser is shown is Fig. 10.9(a). In the 
n+ region, the Fermi level lies within the conduction band and in the P+ region, the Fermi level lies in the 
valence band.  Th e junction is forward-biased such that the biasing voltage is equal to the energy gap voltage 
(E

g
/e), then the electrons and holes are injected across the junction and population inversion takes place in 

the active region.

Metal contact

Active region

Laser rays

Laser rays

Optically flat and
parallel faces

P-type

n-type

Figure 10.8 Semiconductor p-n junction laser
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Figure 10.9
  (a) Band diagram of a heavily doped p-n junction in equilibrium 

(b) Band diagram of a heavily doped p-n junction with forward bias

n

p

p

GaAs

GaAs

AlxGa1-x As

n

p

p

AlxGa1-x As

GaAs

AlxGa1-x As

(a) (b)

Figure 10.10  (a) Single heterostructure laser; (b) Double heterostructure laser

Th e band diagram after forward biasing is shown in Fig. 10. 9(b).
When the biasing current is low, then spontaneous emission takes place in all directions. As the biasing 

current reaches threshold value, then stimulated emission occurs and a monochromatic and highly directional 
beam of light is emitted from the junction.

In case of homojunction lasers [for example GaAs p-n junction], the threshold current density (  J
th
) 

increases rapidly with raise of temperature. At room temperature [300K], the threshold   current density is 
about 5.0 × 104 A/cm2. Th is large current density leads to serious diffi  culties in operating the laser continu-
ously at room temperature. Th reshold current densities are of the order of 103 A/cm2 in heterojunction lasers. 
Th ese lasers are built using epitaxial techniques as shown in Fig. 10.10.

In the structure shown in Fig. 10.10(a), there is only one heterojunction and that shown in Fig. 10.10(b), 
there are two heterojunctions. In Al

x
Ga

1-x
As, x represents mole fraction.

Th e variation of threshold current density with temperature is very much less in double heterostructure 
laser when compared to homostructure and single heterostructure laser. Th e above semiconductor lasers are 
broad area lasers. Because, in the complete area of p-n junction, lasing action takes place. To reduce the oper-
ating currents to a large extent, heterostructure strip geometry lasers are used. Figure 10.11 shows two such 
strip geometries. 

Th e various layers shown in the above structures are fabricated by epitaxial growth. Th e oxide layer 
in the structure shown in Fig. 10.11(a) is an insulating layer. A thin strip of oxide layer at the centre 
has been removed by chemical etching techniques and a metal layer was deposited. On biasing, current 
passes under the strip contact only, because the oxide layer insulates the remaining region. Lasing takes 
place under the strip in the active layer. Instead of an oxide layer, proton bombardment is carried at the 
top surface of the structure as shown in Fig. 10.11(b). Proton bombardment produces high resistance; 
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this bombardment has been carried except along a stripe at the centre of active layer. Th e strip widths 
vary from 5 to 30 μm. Th e advantages of stripe geometry are: (1) reduction of operating current and 
(2) improve response time due to small junction capacitance.

Lasing action can be obtained with extremely small currents by using buried heterostructure laser shown 
in Fig. 10.11(c). Th e active region in this structure is completely surrounded by higher band gap, lower 
refractive index material so, all those photons which are produced in the active region and whose energies are 
less than energy gap of the surrounding material are transmitted without absorption. Due to lower refractive 
index of the surrounding material, the rays bend less when come out of the device. Th e cross-sectional area of 
the active region is as small as 1 μm2. So, the threshold current is as low as 15 mA.

Metal

Oxide
P+ – GaAs
P – Alx Ga1-xAs
n or p – GaAs
(Active layer)
n – Alx Ga1-x As
Substrate

Metal

Laser
rays

(a)

P+ – GaAs
P – Alx Ga1-xAs
n or p – GaAs
(Active layer)
n – Alx Ga1-x As
Substrate

Laser
rays

Metal

Tungsten wire
(12 µm dia)

protons
protons

(b)

Metal

Oxide

p – Alx Ga1-x As

Ga As
(Active region)

n – Alx Ga1-x  As

n – GaAs

Metal

(c)

Figure 10.11
  (a) Oxide-coated heterostructure strip geometry laser;

(b) Proton-bombarding heterostructure strip geometry laser;
(c) Buried heterostructure laser 
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10.9 Carbon dioxide laser
(i) Introduction: Th e carbon dioxide laser was invented by C. Kumar. N. Patel in the year 1963. Th is laser 
uses a mixture of carbon dioxide [CO

2
], Nitrogen [N

2
] and Helium [He] gases in the active medium of laser. 

Th e lasing action is from carbon dioxide molecules. Th ey are the active molecules in the laser. Th e CO
2
 mol-

ecule is a linear symmetric molecule with carbon atom at the centre and oxygen atoms are on each side of the 
carbon atom. Th e lasing is due to the transitions of CO

2
 molecules in between vibrational-rotational levels. 

Th e CO
2
 molecules possess three diff erent types of vibrational modes and each vibrational mode possesses a 

number of rotational modes. Th e vibrational modes are described as shown in Fig. 10.12.
In symmetric stretching mode, the carbon atom is stationary and the oxygen atoms symmetrically move 

away or approaches the carbon atom.
In bending mode, some atoms (not all) move perpendicular to the molecular axis. In asymmetric stretch-

ing mode, both the oxygens move in one direction along the molecular axis and carbon move in opposite 
direction. [Th e state of a vibrating molecule is represented by a set of three vibrational quantum numbers, 
labeled as (nmlp), where n is the frequency of the photon emitted due to symmetric stretch, m is the frequency 
of the photon emitted due to bending and p is the frequency of the photon emitted due to asymmetric 
stretch. Th e bending vibration is doubly degenerate, i.e., it can occur both in the plane of the fi gure and the 
plane perpendicular to it. Th e superscript l represents the angular momentum of this vibration with respect to 
molecular axis. For example, (02°0) shows the two vibrations combine to give an angular momentum l = 0]

(ii) Construction: As shown in Fig. 10.13, one of the CO
2
 laser consists of a long tube of about 5 m long 

and 2.5 cm diameter. Th e output power of this laser is approximately, proportional to the length of the tube. 
Th e ends of the tube is closed with alkali halide [NaCl] Brewster windows. Outside the ends of the tube, 

Figure 10.12 Fundamental modes of vibration of CO2 molecule

(i)

(ii)

(iii)

O

Oxygen Oxygen

Symmetric stretching mode [n00]

Carbon

C O

Bending mode [0n0]

C

O O

Asymmetric stretching mode [00n]O C O
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confocal silicon mirrors coated with aluminium are arranged. Th is forms the resonant cavity. Th e gases CO
2
, 

N
2
 and He are allowed into the tube through gas valves. Inside the tube, these gases combine and continuously 

pass through it. During discharge, the gases may dissociate and contaminate the laser, so continuous fl ow of 
gases is maintained in the tube.

Th e pressures of the gases in the tube are P
He

 ≈ 7 torr; P
N2

 ≈ 1.2 torr and P
CO2

 ≈ 0.33 torr.
Th e optimum value of pressure tube diameter product is around 33 torr mm. Th e purpose of N

2
 gas in 

the tube is to produce high population inversion in CO
2
 molecules. Here, resonance transfer of energy from 

N
2
 gas molecules to CO

2
 gas molecules takes place in the tube. To avoid population in the lower laser levels 

by thermal excitation, it is necessary that the temperature of CO
2
 should be low. For this purpose, helium gas 

is passed through the tube along CO
2
 and N

2
 gases, because helium gas possesses high thermal conductivity 

and helps to conduct heat away to the walls, keeping CO
2
 temperature low. Th us N

2
 helps to increase the 

population of upper level and helium helps to depopulate the lower level.

(iii) Working: Suffi  ciently high voltage of the order of 8 KV per metre length of the tube must be main-
tained to get discharge. Two diff erent confi gurations are available for high output power. Th ey are TEA and 
Gas dynamic laser.

(a) TEA [Transverse Excitation Atmospheric] CO
2
 laser: Th e output power of the laser can be increased 

by increasing gas pressure. At atmospheric pressure, to initiate and maintain electric discharge, 12 KV per 
cm is required. In longitudinal confi guration with 1 m or above length tubes, it is not possible to apply such 
high electric fi elds. In TEA laser, the discharge is arranged to take place at a number of points in a direction 
transverse to laser cavity, as shown in Fig. 10.14.

(b) Gas dynamic laser: In this laser, population inversion is obtained through thermodynamic principles 
rather than discharge. Th e gas mixture containing N

2
 and CO

2
 is heated, compressed and allow to expand into 

low-pressure region. At high temperatures, the N
2
 molecules reaches to the higher vibrational levels and after 

expansion into low-pressure region, the N
2
 molecules makes resonant collisions with CO

2
 molecules. Th en, 

the CO
2
 molecules makes transition to (001) state and produce population inversion. Th is laser produce 

output powers in excess of 100 KW.

Figure 10.13 CO2 laser
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Th e emission of laser radiation from CO
2
 molecules has been explained with the help of vibrational-

rotational energy levels in the following way.
Th e electric discharge in CO

2
 laser may excite CO

2
 and N

2
 molecules to higher vibrational rotational 

levels by electron impacts. Th e electronic collision cross-section of CO
2
 for the excitation to the level 

Figure 10.14 TEA laser
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Figure 10.15 CO2 laser energy levels
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(00°1) is very large, this is the metastable state. Th is level is populated by: (i) non-radiative transition 
from the upper excited levels such as (00°2) of CO

2
 and (ii) the collision of N

2
 molecules present in

ν ″ = 1 level with CO
2
 molecules lead to resonance transfer of energy. Because the ν ″ = 1 level of N

2
 

molecules and (00°1) levels of CO
2
 are nearly at the same energy and the lifetime of ν ″ = 1 is quite 

large [0.1 s at 1 torr]. Population  inversion exists between (00°1) and (10°0), (02°0) levels. Two laser 
transitions takes place between these levels: (i) (00°1) to (10°0) gives laser radiation of wavelength
10.6 μm and (ii) (00°1) to (02°0) gives laser radiation of wavelength 9.6 μm. Of these 10.6 μm waves 
are intense, its power output is of 10 KW, effi  ciency being 30%, this is quite large and 9.6 μm waves are 
weak. Th e lower levels (10°0), (02°0) and (01°0) are very close. Th e CO

2
 molecules present in (10°0), 

(02°0) and (01°0) levels may make non-radiative transition to the ground state quickly by colliding with 
He atoms (Fig. 10.15). In this process, energy dissipation takes place in the form of heat.

10.10 Applications of lasers
Lasers fi nd applications in various fi elds of science and technology. Th ey are described below:

(1) In communications:

(a)  Lasers are used in optical fi bre communicatiuons. In optical fi bre communications, lasers are used 
as light source to transmit audio, video signals and data to long distances without attenuation and 
distortion.

(b)  Th e narrow angular spread of laser beam recommends that laser beam can be used for the communication 
between earth and moon or to other satellites.

(c)  As laser radiation is not absorbed by water, so laser beam can be used in under water [inside sea] com-
munication networks.

(2) Industrial applications: Lasers are used in metal cutting, welding, surface treatment and hole drilling.

(a)  When a laser beam is focussed on a very small area, then laser light energy is converted into heat energy, 
so, the material may be heated, melted and evaporated. Using these techniques, holes can be drilled in 
steel, ceramics, diamond and alloys. Using lasers, controlled orifi ces and aerosol nozzles are drilled with 
controlled precision. Holes of micron order can be easily drilled using lasers. Th ese techniques are used 
in cutting materials such as metal sheets and cloths. In mass production of stitched clothes, the cutting 
in the desired dimension is done by stock fi ling a large number of cloth material and cutting them all at 
once by exposing a laser beam.

Using lasers, cutting can be obtained to any desired shape and the cutted surface is very smooth.

(b)  Welding has been carried by using laser beam. A laser beam is exposed to the place where welding has to 
be done, at that place the material melts due to the heat produced by the beam and on cooling the mate-
rial makes a stronger joint.

(c)  Dissimilar metals can be welded and microwelding is done with great ease.

(d) Laser beam is used in selective heat treatment for tempering the desired parts in automobile industry.

(e) Lasers are widely used in electronic industry in trimming the components of ICs.

(3) Medical applications:

(a)  Lasers are used in eye surgery, especially in detached retina. Under certain abnormal conditions, the 
retina may get detached from the choroid, this results blindness at the detached part of the retina. Th e 
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retina can be attached to the choroid by heating it over a number of spots almost of the size of tissues. 
Th e heating can be achieved by focusing a laser beam of predetermined intensity on to the retina. Th e 
laser beam reaches the right spot where the welding of the retina to the choroid occurs. Th e fl ash of 
laser beam lost in short time (1 milli second). Th e patient does not feel any pain, so anaesthesia is not 
required.

(b)  Lasers are used for treatments such as plastic surgery, skin injuries and to remove moles and tumours 
developed in skin tissue.

(c)  Lasers are used in stomatology—the study of mouth and its disease. Where a laser beam is used for selec-
tive destroying, the part of the tooth aff ected by caries. Mouth ulcers can be cured by exposing it to a laser 
beam.

(d)  Laser radiation is sent through optical fi bre to open the blocked artery region, here the laser rays burn 
the excess growth in the blocked region and regulates blood fl ow without any requirement for bypass 
surgery.

(e)  Lasers are used to destroy kidney stones and gall stones. Th e laser pulses are sent through optical fi bres to 
the stoned region. Th e laser pulses break the stones into small pieces.

(f ) Lasers are used in cancer diagnosis and therapy.
(g)  Lasers are used in blood loss less surgery. During operation, the cutted blood veins are fused at their tips 

by exposing to infrared laser light, so that there is no blood loss.
(h) Lasers are used to control haemorrhage.
(i)  Using organ  and CO

2
 lasers, liver and lung treatment can be carried out.

( j)  Lasers are used in endoscopes to detect hidden parts.
(k) Laser doppler velocimetry is used to measure blood velocity in the blood vessels.

(4) Military applications: Th e various military applications are:
(a)  Death rays: By focusing high-energetic laser beam for few seconds to aircraft, missile, etc. can be destroyed. 

So, these rays are called death rays or war weapons.
(b)  Laser gun: Th e vital part of enemy body can be evaporated at short range by focusing a highly convergent 

laser beam from a laser gun.
(c)  LIDAR [Light Detecting And Ranging]: In place of RADAR, we can use LIDAR to estimate the size 

and shape of distant objects or war weapons. Th e diff erence between RADAR and LIDAR is that, in case 
of RADAR, radio waves are used where as in case of LIDAR light is used.

(5) In computers: By using lasers, a large amount of information or data can be stored in CD-ROM or their 
storage capacity can be increased. Lasers are also used in computer printers.

(6) In thermonuclear fusion: To initiate nuclear fusion reaction, very high temperature and pressure is 
required. Th is can be created by concentrating large amount of laser energy in a small volume. In the fusion of 
deuterium and tritium, irradiation with a high-energy laser beam pulse of 1 nanosecond duration develops a 
temperature of 1017 °C, this temperature is suffi  cient to initiate nuclear fusion reaction.

(7) In scientifi c research:
(a)  Laser beam can initiate or fasten chemical reactions. Laser beam helps us to study the nature of chemical 

bonds. An intense laser beam can break molecules.
(b)  Lasers are used in counting of atoms in isotope separation and to seperate isotopes of uranium.
(c)  Lasers are used to estimate the size and shape of biological cells such as erythrocytes.
(d) Lasers can be used in air pollution, to fi nd the size of dust particles.
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(e)  Lasers are used in holography for recording and reconstruction of a hologram. Using holograms, the 
three-dimensional images of objects can be recorded.

(f )   To measure the constantly changing distance between moon and earth by astronomers. Th is gives the 
day-to-day changes in the rotation of earth about its axis and slight wobbles.

(g)  In plastic industries, polymers are obtained by irradiating monomers. During laser irradiation, the mono-
mers are united to form polymers.

(h) By using lasers, the stimulated Raman spectrum is obtained for small biological samples.
(i)   Lasers are used to develop hidden fi nger prints and to clean delicate pieces of art.

 Formula

1. 
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 Solved Problems

1.  A semiconductor diode laser has a peak emission wavelength of 1.55 μm. Find its band gap in eV.

 (Set-2–May 2008)

Sol: Energy gap of semiconductor, E
g
 = energy of emitted photon, hν
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2. Calculate the wavelength of emitted radiation from GaAs which has a band gap of 1.44 eV.

 (Set-3–May 2008)
Sol: Energy gap of semiconductor, Eg = hν

 h = Planck’s constant = 6.63 × 10−34 J-S
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 Multiple Choice Questions

 1. Laser action is found in ___________ semiconductor. ( )

 (a) direct band gap  (b) indirect band gap
 (c) germanium  (d) silicon

 2. In computer, printers ___________ laser is used. ( )

 (a) He–Ne gas  (b) ruby
 (c) semiconductor  (d) CO

2

 3. Laser radiation is: ( )

 (a) highly monochromatic  (b) partially monochromatic
 (c) white light  (d) none

 4.  Under population inversion, the number of atoms in the higher energy state is ___________ than in the lower 
energy state. ( )

 (a) lesser (b) larger (c) both a and b (d) none

 5. Laser radiation is: ( )

 (a) highly directional  (b) monochromatic
 (c) coherent and stimulated  (d) all

 6. In conventional light sources, ( )

 (a) diff erent atoms emit radiation at diff erent times
 (b) there is no phase relation between the emitted photons
 (c) diff erent atoms emit photons in diff erent directions
 (d) all

 7. In laser sources, ( )

 (a) photons emitted by diff erent atoms are in phase or maintain constant phase relationship
 (b) diff erent atoms emit photons in the same direction
 (c) both a and b
 (d) none

 8. In spontaneous emissions, ( )

 (a) atoms are initially in the excited state
 (b) transitions are without any aid of an external agency
 (c) both a and b
 (d) none

 9. In conventional light sources, the ratio of spontaneous emission rate to stimulated emission rate is nearly: ( )

 (a) 1010 (b) 1020 (c) 105 (d) 103

10. In excited states, the atoms will remain for a time of: ( )

 (a) 108 s (b) 10–8 s (c) 10–3 s (d) 10–5 s

11. He–Ne gas laser is a: ( )

 (a) continuous laser  (b) pulsed laser
 (c) both a and b  (d) none

12. Th e ratio of the Helium and Neon gaseous atoms are: ( )

 (a) 1:10 (b) 10:1 (c) 1:1 (d) 1:20
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13. Ruby laser is a solid state: ( )

 (a) pulsed, three-level laser (b) pulsed, four-level laser
 (c) continuous, three-level laser (d) continuous, four-level laser

14. If the ruby rod contains 0.05 % of chromium atoms, then it appears in ___________ colour. ( )

 (a) red (b) yellow (c) pink (d) green

15.  At room temperatures, the threshold current density in heterostructure laser is of the order 
of ___________ A/cm2. ( )

 (a) 105 (b) 103 (c) 102 (d) 104

16. In heterostructure strip geometry semiconductor lasers, the strip widths will vary from: ( )

 (a) 5 to 30 μm   (b) 50 to 100 μm
 (c) 5 to 150 μm  (d) 1 to 5 μm

17. In buried hetero structure laser, the active region is completely surrounded by: ( )

 (a) lower band gap and lower refractive index material
 (b) lower band gap and higher refractive index material
 (c) higher band gap and higher refractive index material
 (d) higher band gap and lower refractive index material

18. Th e cross-sectional area of the active region in buried heterostructure laser is as small as: ( )

 (a) 50 μm2 (b) 10 μm2 (c) 1 μm2 (d) 100 μm2

19. Lasers are used in:

 (a) metal cutting and hole drilling (b) welding
 (c) surface treatment  (d) all

20. Th e gas lasers give ___________ coherent beam compare to semiconductor laser. ( )

 (a) less (b) equal (c) more (d) none

21. LASER stands for Light Amplifi cation by ___________ of light. ( )

 (a) stimulated emission  (b) spontaneous emission
 (c) both a & b  (d) none

22. Examples for ___________ emission light are glowing tube light, electric bulb, candle fl ame, etc., ( )

 (a) stimulated  (b) spontaneous 
 (c) both a & b  (d) none

23. To form stimulated emission, a photon should make collision with an atom initially present in: ( )

 (a) ground state  (b) exited state
 (c) both a & b  (d) none

24. He–Ne gas laser is a: ( )

 (a) two-level laser  (b) three-level laser
 (c) four-level laser  (d) none of the above

25. Flat quartz plates are sealed at the ends of He–Ne gas laser to obtain: ( )

 (a) polarized laser light  (b) non-polarized laser light
 (c) polychromatic laser light (d) monochromaic laser light
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26. He–Ne laser gives ___________ coloured laser light. ( )

 (a) pink (b) red (c) green (d) orange

27.  In ruby laser, chromium ions are responsible for stimulated emission of radiations whereas ––––––––– ions are 
passive. ( )

 (a) oxygen (b) aluminium (c) both a & b (d) none

28. Mostly, the wavelength of laser radiation from ruby laser is ___________ . ( )

 (a) 6943 Å (b) 6929 Å (c) 6328 Å (d) 1.15 nm

29.  In homostructure semiconductor laser, the energy gap on one side of P-N junction is ___________ on the other 
side of the junction. ( )

 (a) diff erent as that  (b) same as that
 (c) both a & b  (d) none of the above

30.  In heterostructure semiconductor laser, the energy gap on one side of the P-N junction is ___________ on the 
other side of the junction. ( )

 (a) diff erent as that (b) same as that (c) both a & b (d) none

31. At room temperature (300K), the threshold current density of homostructure laser is about: ( )

 (a) 5.0 × 10 5 A /cm2  (b) 5.0 × 10 4 A /cm2

 (c) 5.0 × 10 –4 A /cm2  (d) 5.0 × 10 –5 A /cm2

32. To reduce the operating currents to a large extent, heterostructure ___________ geometry lasers are used. ( )

 (a) strip (b) rectangular (c) helical (d) parabolic

33. Basically, a ruby crystal is aluminium oxide doped with 0.05 to ___________ % of chromium atoms. ( )

 (a) 5 (b) 10 (c) 15 (d) 0.5

34. Lasing action can be obtained with extremely small currents by using ___________ structure lasers. ( )

 (a) homo  (b) hetero 
 (c) buried homo  (d) buried hetero

35. Th e threshold current in buried heterostructure is as low as ___________ . ( )

 (a) 5 mA (b) 10 mA (c) 15 mA (d) 15 A

36.  Because of narrow angular spread, laser beam can be used for the communication between ___________ and moon 
or other satellites. ( )

 (a) earth (b) sun (c) both a & b (d) none

37. Lasers are used in ___________ the components of IC’s. ( )

 (a) fabricating (b) trimming (c) both a & b (d) none

 Answers

 1. a  2. c  3. a  4. b  5. d  6. d  7. c  8. c  9. a 10. b 11. a 12. b 
13. a 14. c 15. b 16. a 17. d 18. c 19. d 20. c 21. a 22. b 23. b 24. c 
25. a 26. b 27. c 28. a 29. b 30. a 31. b 32. a 33. d 34. d 35. c 36. a 
37. b
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 Review Questions

 1. Explain the principle, construction and working of a semiconductor laser. (Set-3–June 2005)

 2. Explain the purpose of an active medium in a gas laser. (Set-3–Nov. 2004)

 3. State the applications of lasers.  (Set-1–Nov. 2003), (Set-2–Nov. 2003), (Set-3–Nov. 2003)

 4.  Derive the relation between the probabilities of spontaneous emission and stimulated emission in terms of  Einstein’s 
coeffi  cients.

 (Set-4–Sept. 2007), (Set-1, Set-3–May 2007), (Set-2–Nov. 2004)

 5. Explain the characteristics of a laser. 
 (Set-1–May 2008), (Set-2, Set-3–Sept. 2007), (Set-2–Sept. 2006), (Set-1–Nov. 2004)

 6. With the help of suitable diagrams, explain the principle, construction and working of a ruby laser.
 (Set-4–Nov. 2004)

 7. What do you understand by population inversion? How it is achieved?
 (Set-4–Sept. 2007), (Set-1, Set-3–May 2007), (Set-2–Nov. 2004)

 8. Mention any two applications of laser, each in the fi eld of scientifi c research, engineering and medicine.
 (Set-2–June 2005), (Set-1–Nov. 2004), (Set-1–May 2003)

 9. Explain the characteristics of laser beam.
 (Set-2, Set-3–Sept. 2007), (Set-2–Sept. 2006), (Set-2–June 2005), (Set-1–Nov. 2004), (Set-1–May 2003)

10.  Explain the need of a cavity resonator in a laser, with the help of suitable diagrams explain the principle, construc-
tion and working of a ruby laser.

 (Set-1–Sept. 2006), (Set-4–May 2003)

11.  Explain the purpose of an active medium in a gas laser. With the help of suitable diagrams, explain the principle, 
construction and working of a Helium–Neon laser.

 (Set-3–Nov. 2004), (Set-3–May 2003)

12.  What do you understand by population inversion? How it is achieved? Derive the relation between the probabili-
ties of spontaneous emission and stimulated emission in terms of Einstein’s coeffi  cients.

 (Set-2–May 2003)

13. With neat diagram, explain the construction and working of He–Ne gas laser. (Set-1–Nov. 2003)

14. Describe the construction and working of a ruby laser.
 (Set-1–May 2008), (Set-3–Sept. 2007), (Set-2–June 2005), (Set-1–Nov. 2004), (Set-1–May 2003)

15. Write the applications of lasers. (Set-4–Sept. 2006), (Set-4–May 2006), (Set-3–June 2005)

16. Describe the principle, construction and working of He–Ne laser. (Set-2–Nov. 2003)

17. Describe the principle, construction and working of a semiconductor laser.
 (Set-4–May 2006), (Set-3–Nov. 2003)

18. Distinguish between spontaneous emission and stimulated emission of the light.
 (Set-2, Set-3–May 2008), (Set-1–May 2006)

19. With the help of a suitable diagram, explain the principle, construction and working of a semiconductor laser.
 (Set-4–May 2008)

20. Write any four applications of laser. (Set-1–May 2008), (Set-2–Sept. 2008)

21. Distinguish between homo-junction semiconductor laser and hetero-junction semiconductor laser.
 (Set-2, Set-3–May 2008), (Set-4–Sept. 2008)
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22. Describe the various methods to achieve population inversion relating to lasers.
 (Set-4–May 2008), (Set-3–Sept. 2008)

23.  Explain the terms (i) absorption, (ii) spontaneous emission, (iii) stimulated emission, (iv) pumping mechanism,
(v) population inversion and (vi) optical cavity.

 (Set-2–May 2007)

24. Mension the medical applications of laser. (Set-2–May 2007)

25. With neat sketch explain the construction and working of a ruby laser. (Set-2–Sept. 2007), (Set-2–Sept. 2006)

26. Explain the following typical characteristics of a laser (i) coherence, (ii) divergence and monochromaticity.
 (Set-3–May 2006), (Set-3–Sept. 2006)

27. Explain the principle and working of a ruby laser. (Set-3–May 2006), (Set-3–Sept. 2006)

28. What is population inversion. (Set-2–Sept. 2007), (Set-2–Sept. 2006) 

29. With neat diagrams, describe the construction and action of ruby laser. (Set-4–Sept. 2006)

30. Explain the following (i) life time of an energy level, (ii) optical pumping process and (iii) metastable states.
 (Set-1–May 2006)

31. Discuss briefl y the diff erent methods of producing laser light. (Set-1–May 2006)

32. Explain with a neat diagram (i) absorption, (ii) spontaneous emission and (iii) stimulated emission of radiation.
 (Set-4–May 2007)

33. With necessary theory and energy level diagram, explain the working of a He-Ne gas laser.
 (Set-1–Sept. 2007),  (Set-2–May 2006)

34. Mension some important applications of lasers. (Set-1–Sept. 2007), (Set-2–May 2006)

35. What is population inversion? How it is acheived by optical pumping. (Set-4–May 2007)

36. Discuss, how lasers are helpful in induced fusion and isotope separation process. (Set-3–Sept. 2007)

37. What is population inversion relating to laser action? Explain. (Set-1, Set-4–Sept. 2008)

38.  Show that the ratio of Einstein’s coeffi  cient of spontaneous emission to Einstein’s Coeffi  cient of absorption is 
 proportional to the cube of the frequency of the incident photon.

 (Set-1–Sept. 2008).

39. With the help of a suitable diagram, explain the principle, construction and working of a helium-neon laser.
 (Set-3–Sept. 2008)

40. Describe the construction and working of a semiconductor laser. (Set-2–Sept. 2008)

41. What are the important characteristics of laser radiation?

42.  Explain the phenomenon of absorption, spontaneous and stimulated emission of radiation with two energy levels 
of an atom.

43. Explain the construction and working of a semiconductor laser.

44. Explain the various applications of lasers.

45. Write short notes on population inversion and Einstein’s coeffi  cients.

46. Describe semiconductor laser. Give the applications of lasers.

47. Explain the basic principle for producing laser beam. Write the medical applications of lasers.

48.  What is population inversion in a laser? How it is achieved? What are the advantages of lasers in communication?
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49. Describe He–Ne laser.

50. What are Einstein’s coeffi  cients?

51.  Explain the terms: stimulated emission and population inversion. Mention the applications of lasers in the fi eld of 
communication and medicine.

52. Explain in detail the working of a semiconductor laser.

53. Explain the principle and working of a semiconductor laser.

54. Write short notes on energy level diagram of He–Ne laser.

55. Write briefl y on Einstein’s coeffi  cients.

56. Write short notes on stimulated emission.

57. Write short notes on semiconductor laser.
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Fibre Optics

11.1 Introduction
Optical fi bre is a long, thin transparent dielectric material made up of glass or plastic, which carries electro-
magnetic waves of optical frequencies [visible to infrared] from one end of the fi bre to the other by means of 
multiple total internal refl ections. Th us, optical fi bres work as wave guides in optical communication systems. 
An optical fi bre consists of an inner cylindrical material made up of glass or plastic called core. Th e core is 
surrounded by a cylindrical shell of glass or plastic called the cladding. Th e refractive index of core (n

1
) is 

slightly larger than the refractive index of cladding (n
2
), [i.e., n

1
 > n

2
]. Typical refractive index values are

n
1
 = 1.48 and n

2
 = 1.46. Th e core diameter is ≈ 50 μm and the thickness of cladding is ≈ 1 or 2 wave-

lengths of light propagate through the fi bre. Th e cladding is enclosed in a polyurethane jacket as shown in 
Fig. 11.1. Th is layer protects the fi bre from the surrounding atmosphere. Many fi bres are grouped to form a 
cable. A cable may contain one to several hundred such fi bres.

11.2  Principle of optical fi bre, acceptance angle 
and acceptance cone

Principle: Once light rays enter into core, they propagate by means of multiple total internal refl ections at the 
core-cladding interface, so that the rays travel from one end of the optical fi bre to the other. Th e phenomenon 
of total internal refl ection in a straight optical fi bre is explained in the following way. Let the refractive index 
of the core is n

1
 and that of the cladding is n

2
 such that n

1
 > n

2
. As shown in Fig. 11.2, a ray of light AO is 

incident at ‘O’ on the end face of core; let this ray makes an angle of incidence θ
0
 with the axis of the fi bre. Th is 

ray is refracted into the core and passes along OB, the angle of refraction in the core is, say θ
1
. Th e ray OB is 

incident on the core-cladding interface with an angle of incidence, 90°-θ
1
. Suppose this angle of incidence is 

equal to the critical angle [θ
c
= 90° − θ1] in core at the core-cladding interface, then the angle of refraction 

in cladding is 90°, so that the ray (BC) passes along the interface between core and cladding. If the angle of 
incidence for a ray at the end face is less than θ0, then the angle of refraction is less than θ

1
 and angle of inci-

dence at the core-cladding interface is lager than critical angle, so the ray suff ers total internal refl ection at the 

C H A P T E R 11
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Figure 11.1 Optical fi bre
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Figure 11.2 Light propagation in an optical fi bre

core-cladding interface. If the angle of incidence for a ray at the end face is larger than θ
0
, then the angle of 

refraction is larger than θ1 and the angle of incidence at the core-cladding interface is less than critical angle 
so that the ray will be refracted into the cladding and get lost in it due to absorption.

So, all those rays which enter the core at an angle of incidence less than θ
0
 will have refracting angles less 

than θ
1
. As a result, their angles of incidence at the interface between core and cladding will be more than critical 

angle. As a consequence, they will be totally refl ected in core and travel by multiple total internal refl ections.

Acceptance angle and acceptance cone: As shown in Fig. 11.2, if the ray AO is rotated around the fi bre axis 
keeping the angle of incidence θ

0
 constant, it results in a conical surface. As such, only those rays which are 

within this cone suff er total internal refl ections so that they confi ne to the core for propagation. If a ray falls 
at the end face of the optical fi bre at an angle greater than θ

0
 or out of the cone, that ray does not undergo 

total internal refl ection at the core-cladding interface, it enters into cladding material and gets lost in the 
cladding material. Th us, for light rays to propagate through the optical fi bre by total internal refl ection, they 
must be incident on the fi bre core within the angle θ

0
. Th is angle is known as acceptance angle. Acceptance 

angle is defi ned as the maximum angle of incidence at the end face of an optical fi bre for which the ray can 
be propagated in the optical fi bre. Th is angle is also called acceptance cone half-angle.
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A cone obtained by rotating a ray at the end face of an optical fi bre, around the fi bre axis with acceptance 
angle is known as acceptance cone. Expression for acceptance angle is obtained by applying Snell’s law at 
points B and 0°.

Snell’s law at ‘B’ is:

n
1
 sin (90° − θ 1) = n

2
 sin 90°

       

n n

n

n

n

n

1 1 2

1
2

1

1
2

1

2
2

1

1

cos

cos

sin cos

θ

θ

θ θ

=

=

= −

= −

or

11
2

___________ (11.1)

Snell’s law at ‘O’

     n
0
 sin θ0 = n

1
 sin θ 1

 or  sin sinθ θ0
1

0

1=
n

n
___________ (11.2)

Substitute Equation 11.1 in Equation 11.2

 sinθ0
1

0

2
2

1
2

1
2

2
2

0

1= − =
−n

n

n

n

n n

n
___________ (11.3)

As the fi bre is in air.
So, the refractive index n

0
 = 1

Th e Equation (11.3) becomes:

 sinθ0 1
2

2
2= −n n ___________ (11.4)

Th is is the equation for acceptance angle.

11.3 Numerical aperture (NA)
Numerical aperture represents the light-gathering capacity of an optical fi bre. Light-gathering capacity is 
proportional to the acceptance angle, θ0. So, numerical aperture can be represented by the sine of acceptance 
angle of the fi bre i.e., sin θ0.

Expression for numerical aperture (NA): Expression for numerical aperture can be obtained by applying 
Snell’s law at ‘O’ and at ‘B’ in Fig. 11.2. Let n

1
, n

2
 and n

0 
be the refractive indices of core, cladding and the 

 surrounding medium (air), respectively. Applying Snell’s law at the point of entry of the ray [i.e., at ‘O’],
We have:

 n
0
 sin θ

0
 = n

1
 sin θ

1
___________ (11.5)

At point ‘ B ’ on the core-cladding interface, the angle of incidence = 90° − θ1. Applying Snell’s law at 
‘ B  ’, we have:

 n
1 
sin (90° − θ

1
) = n

2
 sin 90°
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 n
1
 cos θ

1
 = n

2

 cos θ
1

2

1

=
n

n
  (or)

 sin θ θ
1

2

1
2

2

1

2
1 1= − = −cos

n

n
___________ (11.6)

Substituting Equation (11.6) in (11.5), we have:

 n n
n

n
0 0 1

2

2

1

2
1sin θ = −

   sin θ0
1

0

1
2

2
2

1
2

=
−n

n

n n

n

    sinθ0

1
2

2
2

0

=
−n n

n
___________ (11.7)

If the surrounding medium of the fi bre is air, then n
0
 = 1.

 So,  sin θ
0 1

2

2

2= −n n

According to the defi nition for numerical aperture (NA),

 NA sin= = −θ
0 1

2

2

2n n ___________ (11.8)

Let the fractional change in the refractive index (Δ) be the ratio between the diff erence in refractive indices 
of core and cladding to the refractive index of core.

 i.e.,  Δ =
−n n

n
1 2

1

___________ (11.9)

 (or)  n
1
 − n

2
 = Δn

1
___________ (11.10)

Equation (11.10) can be written as:

 NA = − = −( ) +( )n n n n n n1
2

2
2

1 2 1 2
___________ (11.11)

Substituting Equation (11.10) in (11.11), we have:

 NA = +( )Δn n n1 1 2

Since  n
1
 ≈ n

2
;  so,  n

1
 + n

2
 ≈ 2n

1

 ∴  NA = =2 2
1

2

1
Δ Δn n ___________ (11.12)

Numerical aperture can be increased by increasing ‘Δ’ and thus enchances the light-gathering capacity of 
the fi bre. We cannot increase Δ to a very large value because it leads to intermodal dispersion, which causes 
signal distortion.

Condition for light propagation in the fi bre: If θ
i
 is the angle of incidence of an incident ray at the end of 

optical fi bre, then the ray will propagate if θ
i
 < θ

0
 

 (or)  sin θ
i
 < sin θ

0
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 (or)  sin
i

θ < −n n
1

2

2

2

 (or)  sin θ
i
 < NA is the condition for propagation of light within the fi bre.

11.4  Step index fi bres and graded index
fi bres—transmission of signals in them

Based on the variation of refractive index of core, optical fi bres are divided into: (1) step index and (2) graded 
index fi bres. Again based on the mode of propagation, all these fi bres are divided into: (1) single mode and 
multimode fi bres. In all optical fi bres, the refractive index of cladding material is uniform. Now, we will see 
the construction, refractive index of core and cladding with radial distance of fi bre, ray propagation and 
applications of the above optical fi bres.

(1) Step index fi bre: Th e refractive index is uniform throughout the core of this fi bre. As we go radially 
in this fi bre, the refractive index undergoes a step change at the core-cladding interface. Based on the 
mode of propagation of light rays, step index fi bres are of two types: (a) single mode step index fi bres and
(b) multimode step index fi bres. Mode means, the number of paths available for light propagation in a fi bre. 
We describe the diff erent types of fi bres below.

(a) Single mode step index fi bre: Th e core diameter of this fi bre is about 8 to 10 μm and outer diameter of 
cladding is 60 to 70 μm. Th ere is only one path for ray propagation, so, it is called single mode fi bre. Th e cross 
sectional view, refractive index profi le and ray propagation are shown in Fig. 11.3. In this fi bre, the transmis-
sion of light is by successive total internal refl ections. i.e., it is a refl ective type fi bre. Nearly 80% of the fi bres 
 manufactured today in the world are single mode fi bres. So, they are extensively used. Lasers are used as light 
source in these fi bres. Th ese fi bres are mainly used in submarine cable system.

Figure 11.3
  Single mode step index fi bre: (a) Cross sectional view and refractive 

index profi le; (b) Ray propagation

Ray propagationCore

Cladding

(b)(a)

Fibre cross section

Refractive
index

Refractive
index profile

8 to 10 µm

60 to 70 µm

Radial distance
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100 to 250 µm

50 to 200 µm Fibre cross-section

Refractive
index

Refractive
index profile

Redial distance

(a)

Ray propagation

Core

1

3 2

Cladding

(b)

Figure 11.4
  Multimode step index fi bre: (a) Cross sectional view and refractive 

index profi le; (b) Ray propagation

(b) Multimode step index fi bre: Th e construction of multimode step index fi bre is similar to single mode 
step index fi bre except that its core and cladding diameters are much larger to have many paths for light 
propagation. Th e core diameter of this fi bre varies from 50 to 200 μm and the outer diameter of cladding 
varies from 100 to 250 μm. Th e cross-sectional view, refractive index profi le and ray propagation are shown 
in Fig. 11.4. Light propagation in this fi bre is by multiple total internal refl ections. i.e., it is a refl ective type 
fi bre. It is used in data links which have lower bandwidth requirements.

(c) Transmission of signal in step index fi bre: Generally, the signal is transmitted through the fi bre in digital 
form i.e., in the form of 1’s and 0’s. Th e propagation of pulses through multimode fi bre is shown in Fig. 11.4(b). 
Th e pulse which travels along path 1 (straight) will reach fi rst at the other end of fi bre. Next, the pulse that 
 travels along path 2 (zig-zag) reaches the other end with some time delay. Lastly, the pulse that travels along 
path 3 reaches the other end. Hence, the pulsed signal received at the other end is broadened. Th is is known as 
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100 to 250 µm 

50 to 200 µm 
Cross-sectional

view

Refractive
index

Refractive
index profile

Radial distance

(a)

Ray propagation

Core

Cladding

(b)

Figure 11.5
  Multimode graded index fi bre: (a) Cross sectional view and refractive 

index profi le; (b) Ray propagation

intermodal dispersion. Th is imposes limitation on the separation between pulses and reduces the transmission 
rate and capacity. To overcome this problem, graded index fi bres are used.

(2) Graded index fi bre: In this fi bre, the refractive index decreases continuously from centre radially to the 
surface of the core. Th e refractive index is maximum at the centre and minimum at the surface of core. Th is 
fi bre can be single mode or multimode fi bre. Th e cross-sectional view, refractive index profi le and ray propaga-
tion of multimode graded index fi bre are shown in Fig. 11.5(a). Th e diameter of core varies from 50 to 200 μm 
and outer diameter of cladding varies from 100 to 250 μm.

Th e refractive index profi le is circularly symmetric. As refractive index changes continuously radially 
in core, the light rays suff er continuous refraction in core. Th e propagation of light rays is not due to total 
internal refl ection but by refraction as shown in Fig. 11.5(b). In graded index fi bre, light rays travel at dif-
ferent speeds in diff erent parts of the fi bre. Near the surface of core, the refractive index is lower, so rays 
near the outer surface travel faster than the rays travel at the centre. Because of this, all the rays arrive at 
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11-8 Applied Physics

the receiving end of the fi bre approximately at the same time. Th is fi bre is costly. Either laser or LED is 
used as light source. Its typical applications is in the telephone trunk between central offi  ces.

Transmission of signal in graded index fi bre: In multimode graded index fi bre, large number of paths are 
available for light ray propagation. To discuss about intermodal dispersion, we consider ray path 1 along the 
axis of fi bre as shown in Fig. 11.5(b) and another ray path 2. Along the axis of fi bre, the refractive index of 
core is maximum, so the speed of ray along path 1 is less. Path 2 is sinusoidal and it is longer; along this path 
refractive index varies. Th e ray mostly travels in low refractive index region, so the ray 2 moves slightly faster. 
Hence, the pulses of signals that travel along path 1 and path 2 reach other end of fi bre simultaneously. 
Th us, the problem of intermodal dispersion can be reduced to a large extent using graded index fi bres.

Step Index Fibre Graded Index Fibre

1.  The refractive index of the core is uniform and step or 
abrupt change in refractive index takes place at the 
interface of core and cladding in step index fi bres.

1.  The refractive index of core is non-uniform, the 
refractive index of core decreases parabolically 
from the axis of the fi bre to its surface.

2.  The light rays propagate in zig-zag manner inside the 
core. The rays travel in the fi bre as meridional rays 
and they cross the fi bre axis for every refl ection.

2.  The light rays propagate in the form of skew rays or 
helical rays. They will not cross the fi bre axis.

3.  Signal distortion is more in case of high-angle rays in 
multimode step index fi bre. In single mode step index 
fi bre, there is no distortion.

3.  Signal distortion is very low even though the rays 
travel with different speeds inside the fi bre.

4.  The bandwidth is about 50 MHz km for multimode 
step index fi bre whereas it is more than 1000 MHz Km 
in case of single mode step index fi bre.

4.  The bandwidth of the fi bre lies in between 200 MHz Km 
to 600 MHz Km even though theoretically it has an 
infi nite bandwidth.

5.  Attenuation of light rays is more in multimode step index 
fi bres but for single mode step index fi bres, it is very less.

5.  Attenuation of light rays is less in graded index 
fi bres.

6.  NA of multimode step index fi bre is more whereas in 
single mode step index fi bres, it is very less.

6. NA of graded index fi bres is less.

11.5  Differences between step index fi bres 
and graded index fi bres

Single Mode Fibres Multimode Fibres

1.  In single mode fi bres there is only one path for ray 
propagation.

1.  In multimode fi bres, large number of paths are 
available for light ray propagation.

2.  Single mode step index fi bres have less core 
diameter (<10 μm) and the difference between the 
refractive indices of core and cladding is very small.

2.  Multimode step index fi bres have larger core diameter 
(50 to 200 μm) and the difference between the 
refractive indices of core and cladding is large.

11.6  Differences between single mode fi bres 
and multimode fi bres

Chapter 11.indd   8Chapter 11.indd   8 9/25/2009   5:45:15 PM9/25/2009   5:45:15 PM



Fibre Optics 11-9

11.7 Attenuation in optical fi bres
A very important parameter of an optical fi bre is the attenuation of light signal in the fi bre. Attenuation 
decreases light transmittance. Usually, the power of light at the output end of optical fi bre is less than the 
power launched at the input end, then the signal is said to be attenuated. Th e signal attenuation is defi ned as 
the ratio of the input optical power (P

i
) into the fi bre to the power of light coming out at the output end (P

0
). 

Th e attenuation coeffi  cient is given as:

 α =
10

10

0L

P

P
Bilog /d Km   where L is the length of the fi bre

Th e causes of attenuation are numerous, some of them are waveguide structure, material compositions, 
material dispersion, material scattering, microbending losses, mode coupling radiation losses, etc. Th e attenua-
tion is the function of wavelength and material. Optical communication wavelengths are 0.8, 1.3 and 1.55 μm. 
Th e attenuation is mainly due to: (i) absorption and (ii) scattering.

(i) Absorption losses: In glass fi bres, three diff erent absorptions take place. Th ey are ultraviolet absorption, 
infrared absorption and ion resonance absorption. Ion resonance absorption losses in pure fused silica are 
shown in Fig.11.6.

Absorption of uv radiation around 0.14 μm results in the ionization of valence electrons. Absorption of 
IR photons by atoms within the glass molecules causes heating. Th is gives absorption peak at 8 μm, also minor 
peaks at 3.2, 3.8 and 4.4 μm. Th e OH− ions of water trapped during manufacturing causes absorption at 0.95, 
1.25 and 1.39 μm as shown in Fig. 11.6. Th e presence of other impurities such as iron, copper and chromium 
also causes absorption. All these absorptions results in absorption loss in the fi bre.

(ii) Scattering losses: Th e molten glass, when drawn into a very thin fi bre under proper tension causes sub-
microscopic variation in the density of glass in the fi bre takes place. Th e dopants added to glass to vary the 
refractive index also leads to inhomogenities in the fi bre. Th e microscopic variation of density and inhomogenities 
acts as refl ecting and refracting facets, these scatter a small portion of light passing through the glass. Th us, 
the scattering losses. If the size of density-fl uctuating regions is of the order of λ/10 or less then they act as 
point source scattering centre. Th is kind of scattering is known as Rayleigh scattering. Th e scattering losses is 
proportional to 1/λ4. On this basis, the scattering losses at a wavelength of 1.3 μm is about 0.3 dB/Km whereas 
at a wavelength of 0.7 μm it is about 5 dB/Km. Th e Rayleigh scattering losses for silica is shown in Fig. 11.7.

3.  In single mode fi bres, there is no dispersion. 3.  There is signal distortion and dispersion takes place in 
multimode fi bres.

4.  Signal transmission capacity is less but the 
single mode fi bres are suitable for long distance 
communication.

4.  Signal transmission capacity is more in multimode 
fi bres. Because of large dispersion and attenuation, 
they are less suitable for long distance transmission.

5.  Launching of light into single mode fi bres is diffi cult. 5. Launching of light into multi mode fi bres is easy.

6. Fabrication cost is very high. 6. Fabrication cost is less.

7.  The V-number of a fi bre V n r=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2π
λ 1

Δ  is less than 

2.405 for single mode fi bre. n1, r are the refractive 
index and radius of core respectively, λ = wavelength 
of light that propagates through the fi bre.

7. The V-number of a multimode fi bre is greater than 2.405.
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Figure 11.6 Ion resonance absorption loss effects in fused silica glass fi bres

(iii) Bending Losses: In a bent fi bre, there is loss in power of the transmitted signal called bending losses. 
Einstein explained the bending losses. According to Einstein’s theory of relativity, the part of the ray that 
enters into cladding will travel faster. Th e energy associated with this part of the ray is lost. Th is loss can be 
represented by absorption coeffi  cient (α) 

 α =
−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

C
R

RC

exp  where C is constant

R = radius of curvature of fi bre bend and R
r

C
NA

=
( )2

Wavelength, l0 (µm)

Lo
ss

 (
dB

/k
m

)
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Figure 11.7 Rayleigh scattering losses in silica fi bres
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r = radius of the fi bre. Th e bends with radius of curvature is of magnitude of the fi bre radius gives rises 
to heavy losses.

(iv) Microbending and wave guide losses: A large number of small bends present in the fi bre causes large 
attenuation in the signal transmission. Th is is known as microbending loss. Usually, microbends are formed 
when an unsheathed fi bre is wound in tension on a drum during manufacture. Th ese bends will be more if the 
surface of drum is non-uniform.

During manufacturing, if proper care is not taken, then a continuous small variation in the fi bre diameter 
or circularity is formed. Th is gives scattering loss, known as waveguide losses.

11.8 Optical fi bres in communication
Fibre optics essentially deals with the communication [including voice signals, video signals or digital data] by 
transmission of light through optical fi bres. Optical fi bre communication system essentially consists of three 
parts: (a) transmitter (b) optical fi bre and (c) receiver (Fig. 11.8). Th e transmitter includes modulator, encoder, 
light source, drive circuits and couplers. Th e light source can be a light emitting diode [LED] or a semicon-
ductor laser diode. Basically, a fi bre optic system simply converts an electrical signal [corresponds to analogue 
information such as voice] to binary data by an encoder and this binary data comes out as a stream of electrical 
pulses and these electrical pulses are converted into pulses of optical power by modulating the light emitted 
by the light source. Th at means the laser drive circuit directly modulates the intensity of the semiconductor 

Transmitter

AF signal such
as voice in analogue

form (electrical)

AF output i.e.,
information again
in analogue form

Amplifier
and

decoder

Light
detector

Repeater

encoder
Binary

Binary

Electrical
signal

Modulator, light
drive circuits and

couplers

electrical
signal

Optical
fibre

Receiver

Figure 11.8 Block diagram represents optical fi bre communication system
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laser light with the encoded digital signal. Th is digital optical signal is launched into the optical fi bre cable. 
Th e transmitter also has couplers to couple the transmitted light signals with the fi bre. Fibres might require 
connectors to increase the length of the fi bre medium. To transmit signals to long distances, repeaters are used 
after certain lengths in the optical fi bre. 

As the signal propagates in the fi bre, it is subjected to attenuation and delay distortion. Attenuation is 
the loss of optical power due to absorption and scattering of photons. Even the leakage of light due to fi bre 
bends adds to the attenuation eff ect. Delay distortion is because of spreading of pulses with time. Th e pulse 
spreading is mainly due to the variation in velocity of various spectral components of the pulse during its 
propagation in the fi bre. When the attenuation and pulse spreading reaches beyond a limiting stage, then it 
may not be possible to retrieve the information from the light signal. Just at this threshold stage, a repeater is 
needed in the transmission path.

An optical repeater consists of a receiver and a transmitter arranged adjacently. Th e receiver section con-
verts the optical signal into corresponding electrical signal, further this electrical signal is amplifi ed and recast 
in the original form by means of an electrical regenerator i.e., reshape the signal and this signal is sent into an 
optical transmitter section, where the electrical signal is again converted back to optical signal and fed into 
an optical fi bre.

Finally, at the end of optical fi bre the signal is fed to the receiver. Th e receiver contains light detector. 
Th is can be either an Avalanche Photo Diode [APD] or a Positive Intrinsic Negative [PIN] diode. In the 
photodetector, the signal is converted in to pulses of electrical current, which is then fed to the decoder, which 
converts the sequence of binary data stream into an analogue signal as that fed at the transmitting end.

11.9 Advantages of optical fi bres in communication
Th e following are the advantages of optical fi bres in communication:

(i)  Extremely wide band: Th e rate at which information can be transmitted is directly related to signal frequency. 
Light has very high frequency in the range of 1014 to 1015 Hz, as compared to radio frequencies ∼ 106 Hz and 
microwave frequencies 108−1010 Hz. So, light can transmit information at a higher rate than systems that 
operate at radio frequencies or microwave frequencies.

(ii)  Smaller diameter and light weight: Optical fi bres are light-weight, smaller diameter and fl exible; so, they 
can be handled more easily than copper cables.

(iii)  Lack of cross-talk between parallel fi bres: In copper cable communication circuits, signals often stray 
from one circuit to another, resulting in other calls being heard in the background.

Th is cross talk is negligible in optical fi bres even when many fi bres are cabled together.

(iv)  Longer life-span: Th e life-span of optical fi bres is expected to be 20−30 years as compared to copper 
cables, which have a life-span of 12−15 years.

(v) Temperature resistant: In contrast to copper cables, they have high tolerance to temperature extremes.
(vi) Easy maintenance: Optical cables are more reliable and easy to maintain than copper cables.

(vii) Much safer than copper cables: Th is is because only light and not electricity is being conducted.
(viii)  Potential of delivering signals at low cost, because fi bres are made up of silica, which is available in 

abandance in nature.
(ix)  Th ey possess low transmission loss and noise-free transmission is obtained as compared to copper 

cables. Since the transmission loss in optical fi bres is as low as 0.2 dB/Km.
(x) Ruggedness and fl exibility: Optical fi bre cables are fl exible, compact and extremely rugged.
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11.10 Fibre optic sensing applications
Fibre optic sensors are used to monitor displacement, liquid level, fl ow, temperature and pressure, chemical 
composition etc. Optic fi bre sensors can be devided into two types, they are:

(a) Intrinsic sensors/active sensors and (b) extrinsic sensors/passive sensors.

Th e Active sensors: In active sensors, the quantity to be measured acts directly on the fi bre and modifi es the 
radiation passing down the fi bre.
Th e various active sensors are:

(i) Intensity modulated sensors: Th ese are based on the change in refractive index, temperature, absorption, etc

(ii) Phase-modulated sensors: Th ese involve the interference between the signal and reference in the inter-
ferometer. Th is leads to a shift in the interference fringes by the variable.

(iii) Polarization-modulated sensors: In this, a change in polarization state of the guided signal by the 
variable takes place.

(iv) Wavelength-modulated sensors: In this, the spectral dependent variation of absorption and emission 
by the variable takes place.

Th e passive sensors: In passive sensors, the modulation takes place outside the fi bre. Th e fi bre acts merely 
as a convenient transmission channel for light. Th e passive sensors has a sensor head and the sensed optical 
signal is transmitted to a remote point for signal processing. Th e table below gives the physical parameter to 
be measured using passive sensor and the modulation eff ects in the fi bre.

Physical Quantity to be Measured Modulation Effects in the Fibres

1. Temperature Thermoluminescence

2. Pressure Piezo optic effect

3. Density Triboluminiscence

4. Mechanical force Stress birefringence

5. Electric fi eld Electro optic effect

6. Magnetic fi eld Magneto optic effect

7. Electric current Electro luminescene

8. Nuclear radiation Radiation-induced luminescene

Now, we study some sensors in detail.

(a) Displacement sensors 
Intensity modulation of the transmitted light beam is utilized in this sensor. Figure 11.9 shows the displace-
ment sensor.

Light from the source passes through one optical fi bre and incident on the target. Th e refl ected light 
reaches the detector through another optical fi bre. Light refl ected from the target and collected by the  detector 
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Figure 11.9 Displacement sensor

Detector DetectorSourceSource

Optical
dip stick

Figure 11.10 Fluid level detector

is a function of the distance between the fi bre ends and the target. Hence, the position or displacement of 
the target may be registered at the optical detector. Further, the sensitivity of this sensor may be improved by 
placing the axis of the feed and return fi bre at an angle to one another and to the target.

(b) Liquid level sensor
Figure 11.10 shows the operation of a simple optical fl uid level switch. If the level of liquid is below the optical 
dipstick, due to total internal refl ection, light from the source reaches the detector. If the level of liquid is above the 
camfered end of the dipstick, then the light is transmitted into the fl uid and the detector ceases to get light.

(c) Temperature and pressure sensor
When a single optical fi bre is subjected to temperature or pressure variations, then its length and refractive 
index changes. Th is causes change in phase of light at the end of fi bre. Th e change in phase of light is pro-
portional to magnitude of the change in temperature or pressure. Th e phase changes can be measured by an 
interferometer method shown in Fig. 11.11.

Here, the light from a laser source is split into two beams of approximately equal amplitude by a 50% beam 
splitter. One beam is passed through sensing fi bre, which is subjected to temperature or pressure variations and 
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the other beam through reference fi bre, which is not subjected to any changes and is used for comparison. 
Light from these two fi bres is superimposed using another beam splitter. Interference of these two waves gives 
fringes. Th e intensity of the fringe depends on the phase relation between the two waves. If the waves are in 
phase, then the intensity is maximum; this happens when the sensing fi bre is not disturbed. Th e intensity is 
minimum if the waves are out of phase due to λ/2 change in length of sensing fi bre. Th e intensity of interfer-
ence fringes can be measured with a photodetector and temperature or pressure changes can be measured.

(d) Chemical sensors
Here, the sensing element is a modifi ed fi bre, and this sensing element senses the concentration of a chemical 
in terms of the phase change of the light wave. For example, in hydrogen sensor, palladium wire is fi xed to the 
sensor. Hydrogen absorption changes the dimensions of the wire. Th is change produces strain in the optical 
fi bre. Th is strain in the fi bre changes the path length of light in the fi bre. So, the concentration of hydrogen is 
proportional to the change in path length of light.

11.11 Applications of optical fi bres in medical fi eld
Optical fi bre medical instruments may contain bundles of optical fi bres. An optical fi bre instrument used to 
see the internal parts of human body is endoscope. Th e endoscope facilitates the physicians to see the internal 
parts of body without performing surgery. Th e main part in endoscope is fi brescope. Based on application, the 
endoscopes are classifi ed into:

Figure 11.11 Measurement of phase changes by interferometer method

50% beam splitter

Laser

Reference
fibre

Photo
detector

Beam
splitter

Sensing
fibre
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(i)  Gastroscope is used to examine the stomach. A gastroscope can be fi tted with various parts to photo-
graph tumours and ulcers. Laser-used gastroscope is used to remove objects that have been swallowed. 
Gastroscope can also guide a laser, used to destroy tumours.

(ii) Bronchoscope is used to see upper passages of lungs.
(iii) Orthoscope is used to see the small spaces within joints.
(iv) Couldoscope is used to test female pelvic organs.
(v) Peritoneoscope is used to test the abdominal cavity, lower parts of liver and gall bladder.

Also in ophthalmology, laser guided by the fi bres is used to reattach the detached retina and to correct 
the defects in the vision.

Th e fabrication of fi brescope is used in endoscope. Fibrescope is shown in Fig. 11.12 below.

Figure 11.12 Flexible fi brescope

Eye
Outer fibres conduct light

to object

Inner fibres
conduct image

to observer
Object

Th e fi brescope is also useful in industry. It could be used to examine welds, nozzles and combustion 
chambers inside the aircraft engines. Th ese are not easily accessible for observation otherwise.

 Formulae

1. NA sin= = −θ0 1
2

2
2n n  2. Δ =

−n n

n

1 2

1

3. NA = n1 2Δ

 Solved Problems

 1.   Th e refractive indices of core and cladding materials of a step index fi bre are 1.48 and 1.45, respectively. Calculate: 

(i) numerical aperture, (ii) acceptance angle, and (iii) the critical angle at the core-cladding interface and (iv) fractional 

refractive indices change.

 (Set-1–May 2006)

Sol: Let the refractive index of core, n
1
 = 1.48

 and the refractive index of cladding , n
2
 = 1.45
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 (i) Numerical aperture ( )NA = −n n1
2

2
2

 = 1 48 1 45 2 1904 2 1025 0 0879 0 2965
2 2

. . . . . .( ) −( ) = − = =  

 (ii) Let θ
0
 be the acceptance angle

 Th en, sin θ
0
 = NA = n n1

2
2
2−

 θ0
1

1
2

2
2 1 0 2965 17 15= − = = ° ′− −sin sin ( . )n n  

 (iii) n
2
 sin 90 = n

1
 sin θ

c
  [θ

c
 = critical angle]

 sin θc

n

n
= 2

1

 θc

n

n
= =

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟= ° ′− −sin sin

.

.

1 2

1

1 1 45

1 48
78 26

 (iv) Th e fractional refractive indices change, Δ =
−

=
−

=
n n

n

1 2

1

1 48 1 45

1 48
0 02

. .

.
.

 2.   Calculate the angle of acceptance of a given optical fi bre, if the refractive indices of the core and cladding are 1.563 and 

1.498, respectively.

 (Set-3–Sept. 2008), (Set-1–May 2004)

Sol: Refractive index of core, n
1
 = 1.563

 Refractive index of cladding, n
2
 = 1.498

 Numerical aperture, NA = − = − =n n1

2

2

2 2 21 563 1 498 0 446. . .

 Acceptance angle, θ0 sin NA sin= ( )= ( )= ° ′− −1 1 0 446 26 30. .

 3.   Calculate the fractional index change for a given optical fi bre if the refractive indices of the core and cladding are 

1.563 and 1.498, respectively. 

 (Set-1–Sept. 2007), (Set-4–May 2004)
Sol: Refractive index of the core, n

1
 = 1.563

 Refractive index of cladding, n
2
 = 1.498

 Th e fractional refractive indices change, Δ =
−

=
−

=
n n

n

1 2

1

1 563 1 498

1 563
0 0416

. .

.
. .

 4.  An optical fi bre has a core material of refractive index 1.55 and cladding material of refractive index 1.50. Th e light is 

launched into it in air. Calculate its numerical aperture.

 (Set-4–May 2006), (Set-2–May 2004)

Sol: Refractive index of core, n
1
 = 1.55

 Refractive index of cladding, n
2
 = 1.50

 Numerical aperture,  NA = n n1
2

2
2−

 = − =1 55 1 50 0 39052 2. . .
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 5.  Th e numerical aparture of an optical fi bre is 0.39. If the diff erence in the refractive indices of the material of its core and the 

cladding is 0.05, calculate the refractive index of material of the core.

 (Set-1–May 2008), (Set-3–May 2004)

Sol: Numerical aperture, NA = 0.39

 Th e diff erence in refractive indices = n
1
 − n

2
 = 0.05 ___________ (1)

 Refractive index of the core, n
1
 = ?

 From Equation (1)

 n
1
 = n

2
 + 0.05 ___________ (2)

 NA = − = −( ) +( )n n n n n n1
2

2
2

1 2 1 2

 0 39 0 05 1 2. .= × +( )n n

 0 39

0 05
3 042

2

1 2

.

.
.= + =n n ___________ (3)

 Substituting Equation (2) in (3), we get:

 3.042 = n
2
 + 0.05 + n

2
 = 2n

2
 + 0.05

 n
2
 = 1.496

 ∴  n
1
 = n

2
 + 0.05 = 1.493 + 0.05 = 1.546.

 6.  An optical fi bre has a core material of refractive index 1.55 and cladding material of refractive index 1.50. Th e light is 

launched into it in air. Calculate its numerical aperture.

 (Set-4–May 2006), (Set-1–June 2005)

Sol: Refractive index of core, n
1
 = 1.55

 Refractive index of cladding, n
2
 = 1.50

 Numerical aperture, NA = − = − =n n1
2

2
2 2 21 55 1 50 0 3905. . .

 7.  Calculate the numerical aperature and acceptance angle for an optical fi bre with core and cladding refractive indices being 

1.48 and 1.45, respectively. 

 (Set-4–May 2007), (Set-4–June 2005)

Sol: Refractive index of core, n
1
 = 1.48 

 Refractive index of cladding, n
2
 = 1.45

 Numerical aperture, NA = ?

 acceptance angle, θ
0
 = ?

 NA = − = − =n n1
2

2
2 2 21 48 1 45 0 2965. . .

 θ0
1

1
2

2
2 10 2965 17 15= − = = ° ′− −sin n n sin . .
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 8.  Calculate the refractive indices of core and cladding of an optical fi bre with a numerical aperture of 0.33 and their fractional 

diff erence of refractive indices being 0.02.

 (Set-2–May 2006)

Sol: Refractive index of core, n
1
 = ?

 Refractive index of cladding, n
2
 = ?

 Numerical aperture, NA = 0.33

 Fractional diff erence of refractive index, Δ = 0.02

 

Δ =
−

= −
n n

n
n n n1 2

1

1 1 2
0 02or .

 n
2
 = (1 − .02)

 n
1
 = 0.98n

1

 

NA = −n n1
2

2
2

 

0 33 0 981
2

1
2. ( . )= −n n

 0.33 = n
1
 × 0.198997

 n
1
 = 1.6583

 n
2
 = 0.98 × 1.6583 = 1.625

 9.  An optical fi bre has a numerical aperture of 0.20 and a cladding refractive index of 1.59. Find the acceptance angle for the 

fi bre in water which has a refractive index of 1.33.

 (Set-3–May 2006), (Set-1, Set-2, Set-4–Sept. 2006), (Set-2–May 2007), (Set-2–Sept. 2007)

Sol: Numerical aperture of the fi bre, NA = 0.20

 Refractive index of cladding , n
2
 = 1.59

 Refractive index of water, n
0
 = 1.33

 Acceptance angle of fi bre in water, θ
0
 = ?

 
NA = −n n1

2
2
2

 
NA2 = −n n1

2
2
2

 
0 04 1 591

2 2. ( . )= −n

      
n1

2 20 04 1 59= +. ( . )

     = 2.5681

   n
1
 = 1.60253

 

sinθ0
1
2

2
2

0

=
−n n

n

     
=

−( . ) ( . )

.

1 60253 1 59

1 33

2 2
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=
−

=
2 5681 2 5281

1 33

0 2

1 33

. .

.

.

.

      = 0.15037

 θ
0
 = sin−1 [0.15037]

       = 8°38′ 56″

10.  A fi bre has the core and cladding refractive indices 1.45 and 1.44 respectively. Find the relative refractive index diff erence.

 (Set-4–Sept. 2007)

Sol: Refractive index of core (n
1
) = 1.45

 Refractive index of cladding (n
2
) = 1.44

 Relative refractive index diff erence (Δ) 

 =
−

=
−

= × −n n

n
1 2

1

31 45 1 44

1 45
6 896 10

. .

.
.

11.  Th e refractive index of core of step index fi bre is 1.50 and the fractional change in refractive index is 4 %. Estimate:

(i) refractive index of cladding, (ii) numerical aperture, (iii) acceptance angle in air and (iv) the critical angle at the core-

cladding interface.

Sol:  (i) Th e refractive index of the core, n
1
 = 1.50

 Th e fractional change in refractive index, Δ =
−

=
n n

n

1 2

1

4

100

 where n
2
 = refractive index of cladding

 ∴ −
=

n n

n
1 2

1

0 04.

 n
1
 − n

2
 = 0.04 × 1.5 = 0.06

 1.5 − n
2
 = 0.06

 ∴  n
2
 = 1.44

 (ii) Numerical aperture, NA = −n n1
2

2
2

 = ( ) −( ) = − = =1 5 1 44 2 25 2 0736 0 1764 0 42
2 2

. . . . . .

 (iii) Acceptance angle, θ
0
 = sin−1 (NA)

 = sin−1 (0.42) = 24°50′

 (iv) Critical angle, θc

n

n
= −sin 1 2

1

 sin
.

.
sin .− −= = ° ′1 11 44

1 50
0 96 73 44
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12.  Th e refractive indices of core and cladding of a step index optical fi bre are 1.563 and 1.498, respectively. Calculate: 

(i) numerical aperture and (ii) angle of acceptance in air.

Sol: Refractive index of core (n
1
) = 1.563

 Refractive index of cladding (n
2
) = 1.498

 (i) Numerical aperture (NA) = ?

 NA = −n n1
2

2
2

 = − =1 563 1 498 0 4462 2. . .

 (ii) Acceptance angle (θ
0
) = ? 

 θ
0
 = sin−1(NA) 

 = sin−1(0.446) 

 = 26°30 ′

 Multiple Choice Questions

 1. Th e light sources used in fi bre optic communication are.  ( )

 (a) LEDs  (b) semiconductor lasers
 (c) phototransistors  (d) both a and b

 2.  Acceptance angle is defi ned as the ___________ angle of incidence at the endface of an optical fi bre, for which the 
ray can be propagated in the optical fi bre is.  ( )

 (a) maximum  (b) minimum
 (c) Either a or b  (d) none of the above

 3. Th e core diameter of single mode step index fi bre is about:  ( )

 (a) 60 to 70 μm  (b) 8 to 10 μm
 (c) 100 to 250 μm  (d) 50 to 200 μm

 4. In multimode graded index fi bre, light rays travel ___________ in diff erent parts of the fi bre. ( )

 (a) at diff erent speeds  (b) with same speed
 (c) both a and b   (d) none of the above

 5. In optical communication system, the light detector is:  ( )

 (a) Avalanche Photo Diode (APD) (b) Positive Intrinsic Negative (PIN) diode
 (c) phototransistor  (d) Either a or b 

 6. Optical fi bres guides light waves by:  ( )

 (a) interference of waves  (b) diff raction of waves
 (c) polarization of waves  (d) by total internal refl ection of waves
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 7.  In an optical fi bre, if n
1
 and n

2
 are the refractive indices of core and cladding, the condition for light propagation 

through fi bre is:   ( )

 (a) n
1
 = n

2
   (b) n

1
 > n

2

 (c) n
1
 < n

2
  (d) none of the above

 8. Loss of intensity of light in optical fi bre is due to: ( )

 (a) absorption  (b) scattering
 (c) refl ection  (d) both a and b

 9.  If n
1
 and n

2
 are the refractive indices of core and cladding, then numerical aperture (NA) of the fi bre is: ( )

 (a) n n1
2

2
2−   (b) n n2

2
1
2−

 (c) n n1
2

2
2−   (d) n n1

2
2
2−

10.  By increasing the refractive index of core material, the number of modes of propagation in an optical fi bre 
___________ .  ( )

 (a) increases   (b) decreases
 (c) remains same  (d) none of the above

11. Th e life span of optical fi bres is expected to be: ( )

 (a) 40 to 50 years  (b) about 100 years
 (c) 20 to 30 years  (d) less than 10 years

12. Fibre optic sensors are used to monitor:  ( )

 (a) displacement and fl ow (b) temperature
 (b) pressure   (d) all the above

13. Total internal refl ection takes place when the angle of incidence is ___________ the critical angle. ( )

 (a) greater than  (b) less than (c) equal to (d) both a and b

14. Numerical aperture represents ___________ capacity of a optical fi bre.  ( )

 (a) light gathering  (b) light dissipation
 (c) heat dissipation  (d) magnetic lines gathering 

15. In optical fi bres, mode means ___________ available for light rays to propagate in the fi bre.   ( )

 (a) the number of paths  (b) the number of fi bre in optical fi bre cable
 (c) the change in refractive index (d) none of the above  

16. In multimode step index fi bres, the core diameter is ___________ .  ( ) 

 (a) 8 to 10 μm  (b) 10 to 30 μm
 (c) 50 to 200 μm  (d) 100 to 250 μm

17.  In multimode graded index fi bre, the core refractive index profi le is___________ . ( )

 (a) circularly symmetric    (b) non-linear
 (c) step index  (d) none of the above  

18. Th e widely used optical fi bre in the world is:   ( )

 (a) multimode step index fi bre (b) multimode graded index
 (c) single mode step index (d) none of the above 
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19. Th e acceptance angle is maximum if the critical angle is ___________ .  ( )

 (a) minimum (b) maximum (c) both a & b (d) none

20. In multimode optical fi bre, the core diameter is ___________ in single mode fi bre.  ( )

 (a) lesser than (b) larger than (c) equal to (d) none

21. Optical fi bres are made up with ___________ materials.  ( )

 (a) semiconductors  (b) metals
 (c) conductors  (d) dielectrics 

22.  In a refl ective type optical fi bre, the light rays pass from one end of the fi bre to the other end by means 
of ___________ .  ( )

 (a) multiple total internal refl ections (b) refraction
 (c) diff raction  (d) polarization  

23.  If the angle of incidence for a ray at the end face of an optical fi bre is larger than acceptance angle, then the 
ray ___________ .  ( )

 (a) will not propagate in the fi bre (b) will propagate in the fi bre
 (c) both a & b  (d) none of the above

24. All the light rays which enter at a time into the multimode graded index fi bre may arrive at ___________ .  ( )

 (a) diff erent times at the other end of the fi bre
 (b) same time at the other end of the fi bre
 (c) both a & b
 (d) none of the above

25. Delay distortion of light pulses in optical fi bre is because of:  ( )

 (a) spreading of pulses with time  
 (b) spreading of pulses with wavelength
 (c) spreading of pulses with refractive index 
 (d) none of the above

26. Optical fi bres carry very large information compared to copper cables because of:   ( )

 (a) large thickness of fi bre (b) extremely wide bandwidth
 (c) extremely less band width (d) none 

 Answers

 1. d  2. a  3. b  4. a  5. d  6. d  7. b  8. d  9. c 10. a
 11.  c  12. d 13. a 14. a 15. a 16. c 17. a 18. c 19. a 20. b
21. d 22. a 23. a 24. b 25. a 26. b

 Review Questions

 1. Explain the advantages of optical fi bres in communication. (Set-3–May 2004)

 2. Explain the terms numerical aperture and acceptance angle.

 (Set-4–May 2006), (Set-1–June 2005), (Set-2–May 2004)
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 3. Defi ne acceptance angle and numerical aperture. Obtain an expression for numerical aperture of an optical fi bre.
 (Set-4–May 2007), (Set-1–May 2006), (Set-4–June 2005)

 4. What are the advantages of an optical fi bre communication system over the conventional ones?
 (Set-4–Sept. 2007), (Set-4–Nov. 2003)

 5. Describe the basic elements of a fi bre optics communication system with a block diagram. (Set-4–Nov. 2003)

 6. Write a note on the applications of optical fi bres. (Set-1–Sept. 2007), (Set-4–May 2004)

 7. Explain how the optical fi bres are classifi ed. (Set-3–Sept. 2008), (Set-1–May 2004)

 8. Describe the construction of a typical optical fi bre and give the dimensions of the various parts. 
 (Set-4–May 2007), (Set-1–May 2006), (Set-4–June 2005)

 9.  With the help of a suitable diagram, explain the principle, construction and working of an optical fi bre as a waveguide. 
 (Set-4–May 2006), (Set-1–June 2005), (Set-2–May 2004)

10. Explain the principle of an optical fi bre. (Set-3–Sept. 2008),(Set-1–May 2004)

11. Derive expressions for the numerical aperture and the fractional change of an optical fi bre.
 (Set-1–Sept. 2007), (Set-3, Set-4–May 2004)

12. Describe the graded index optical fi bres and explain the transmission of signal through it. (Set-3–Sept. 2007)

13. Derive an expression for the numerical aperture of an optical fi bre. (Set-1–May 2008), (Set-3–Sept. 2006)

14. Explain the advantages of optical communication system. (Set-1–May 2008)

15. Derive the expressions for (i) acceptance angle and (ii) numerical aperture of an optical fi bre.
 (Set-2–May 2008), (Set-4-Sept. 2008), (Set-3–Sept. 2006)

16. Describe diff erent types of fi bres by giving the refractive index profi les and propagation details.
 (Set-2–May 2008), (Set-4-Sept. 2008)

17. What are important features of optical fi bres? (Set-3–May 2008)

18. Describe the communication process using optical fi bres. (Set-3–May 2008)

19. Write the uses of fi bre optics in diff erent fi elds. (Set-3–May 2008)

20. Distinguish between light propagation in (i) step index optical fi bre and graded index optical fi bre.
 (Set-4–May 2008), (Set-2–May 2006)

21. Write a note on fi bre optic medical endoscopy. (Set-4–May 2008)

22. Defi ne the relative refractive index diff erence of an optical fi bre. Show how it is related to numerical aperture.
 (Set-1, Set-3–May 2007)

23. Draw the block diagram of an optical fi bre communication system and explain the function of each block.
 (Set-1, Set-3–May 2007)

24. Discuss the various advantages of communication with optical fi bres over the conventional coaxial cables.
 (Set-2–May 2006)

25. Explain the principle behind the functioning of an optical fi bre.

 (Set-2–Sept. 2007), (Set-2–May 2007), (Set-1, Set-4–Sept. 2006), (Set-3–May 2006)

26. Derive an expression for acceptance angle for an optical fi bre. How it is related to numerical aperture?
 (Set-2–Sept. 2007), (Set-2–May 2007), (Set-1, Set-4–Sept. 2006), (Set-3–May 2006)

27.  What is meant by an acceptance angle and numerical aperture; obtain mathematical expressions for acceptance 
angle and numerical aperture.

 (Set-2–Sept. 2006)
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28. What is the principle of optical fi bre communication? Explain. (Set-3–Sept. 2006)

29. Explain the basic principle of an optical fi bre. (Set-3–Sept. 2007), (Set-1–Sept. 2008)

30. What are diff erent losses in optical fi bres? Write brief notes on each. (Set-3–Sept. 2007)

31. Explain the diff erence between a step index fi bre and graded index fi bre. (Set-4–Sept. 2007)

32. Write the applications of fi bre optics in medicine and industry. (Set-1–Sept. 2008)

33. Describe the structure of an optical fi bre. (Set-1–Sept. 2008)

34. Describe the step index fi bre and explain the transmission of signal through it.

35. Write short notes on acceptance angle in a fi bre.

36. Explain the propagation of light waves through an optical fi bre.

37.  Draw the block diagram of fi bre optic communication system and explain the function of each element in the 
system.

38. Describe the structure of diff erent types of optical fi bres with ray paths.

39. Explain the terms: numerical aperture and acceptance angle of a fi bre. Derive expressions for them.

40. Explain the transmission of signal in step index and graded index fi bres.   

41. Describe optical fi bres in communication system.

42. What is the principle of optical fi bre? Describe various types of optical fi bres.

43. Distinguish between step index and graded index fi bres with the help of refractive index profi le.

44. What is mode in optical fi bre? Distinguish between single mode and multimode step index fi bres.

45. Describe the various fi bre optic sensor applications.

46. Explain the advantages of optical fi bre communications.

47. Write briefl y on step and graded index optical fi bres and numerical aperture of optical fi bres.

48. Write briefl y on numerical aperture of optical fi bre, step and graded index optical fi bres.

49. Write short notes on acceptance angle in optical fi bres.

50. Write short notes on refractive index profi les of step-graded index fi bres.
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Holography

12.1 Introduction
Th e conventional photography records only the intensities of light coming from an object. It fails to record 
the phases of the waves that come from the objects. Hence, they show two-dimensional images of three-
 dimensional objects. In 1948, Dennis Gabor, a British scientist, developed a method of recording and  producing 
three-dimensional images of objects through interference phenomena of coherent light known as holography. 
In Greek, ‘holo’ means ‘whole’ or ‘complete’, ‘holography’ means ‘complete recording’ i.e., the intensities and 
phase of the waves that come from the objects are recorded. In 1971, he received noble prize for his eff orts.

12.2 Basic principle of holography
An object is illuminated with a beam of coherent light [object beam]. Th en every point on the surface of the 
object acts as a source of secondary waves. Th ese secondary waves spread in all directions. Some of these waves 
are allowed to fall on a recording plate [holographic plate]. Simultaneously, another beam of same coherent 
light [reference beam] is allowed to fall on this holographic plate. In the holographic plate, both the beams 
combine and interference pattern will be formed. Th is interference pattern is recorded on the holographic plate. 
Th e three-dimensional image of the object can be seen by exposing the recorded holographic plate [hologram] 
to coherent light. Th is is the principle of holography.

12.3 Recording of image on a holographic plate
Figure 12.1 shows the method of recording a image on a holographic plate. Th e monochromatic light from a 
laser has been passed through a 50% beam splitter so that the amplitude division of the incident beam into 
two beams takes place. One beam falls on mirror M

1
 and the light refl ected from M

1
 falls on the object. Th is 

beam is known as an object beam.

C H A P T E R 12
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Th e object scatters this beam in all directions, so that a part of the scattered beam falls on the holographic 
plate. Th e other beam is refl ected by mirror M

2
 and falls on the holographic plate. Th is beam is known as 

reference beam. Superposition of the scattered rays from the object and the reference beam takes place on 
the plane of the holographic plate, so that interference pattern is formed on the plate and it is recorded. Th e 
recorded interference pattern contains all the information of the scattered rays i.e., the phases and intensi-
ties of the scattered rays. For proper recording, the holographic plate has to be exposed to the interference 
pattern for a few seconds. After exposing, the holographic plate is to be developed and fi xed as like in the 
case of  ordinary photograph. Th e recorded holographic plate is known as hologram or Gabor zone plate. Th e 
hologram does not contain a distinct image of the object. It contains information in the form of interference 
pattern.

12.4 Reconstruction of image from a hologram
As shown in Fig. 12.2, the hologram is exposed to the laser beam [that used during construction or identical to 
the reference beam used for construction] from one side and it can be viewed from the other side. Th is beam 
is known as reconstruction beam. Th e reconstruction beam illuminates the hologram at the same angle as the 
reference beam. Th e hologram acts as a diff raction grating, so constructive interference takes place in some 
directions and destructive interference takes place in other directions. A real image is formed in front of the 
hologram and a virtual image is formed behind the hologram. It is identical to the object and hence it appears 
as if the object is present. Th e three-dimensional eff ect in the image can be seen by moving the head of the 
observer. During recording, the secondary waves from every point of the object reach complete plate. So, each 
bit of the plate  contains complete information of the object. Hence, image can be constructed using a small 
piece of hologram.

Figure 12.1 Recording of hologram

Mirror

Reference
beam

Coherent laser

light
Laser

Beam splitter

Object

Object beam Mirror

Holographic
plate

M2

M1
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12.5 Applications of holography
1.  Th e three-dimensional images produced by holograms have been used in various fi elds, such as technical, 

educational also in advertising, artistic display etc.
2.  Holographic diff raction gratings: Th e interference of two plane wavefronts of laser beams on the surface 

of holographic plate produces holographic diff raction grating. Th e lines in this grating are more uniform 
than in case of conventional grating.

3.  Hologram is a reliable object for data storage, because even a small broken piece of hologram contains 
complete data or information about the object with reduced clarity.

4.  Th e information-holding capacity of a hologram is very high because many objects can be recorded in a 
single hologram, by slightly changing the angle between reference beam and holographic plate. For each 
diff erent angle, diff erent images can be stored.

5.  In hospitals holography can be used to view the working of inner organs three dimensionally. i.e., the 
 beating of the heart, the foetus of the pregnant lady and fl owing blood based on motion holography.

6.  Holographic interferometry is used in non-destructive testing of materials to fi nd fl aws in structural parts 
and minute distortions due to stress or vibrations, etc. in the objects.

7. Holography is used in information coding.

 Multiple Choice Questions

 1. Holography records ___________ of light coming from an object. ( )

 (a) intensities  (b) phases 
 (c) both a and b  (d) none of the above

 2. Holography was discovered by ( )

 (a) Dennis Gabor  (b) Einstein 
 (c) Newton  ` (d) Curie brothers

Figure 12.2 Image reconstruction

Laser beam
Laser 

Virtual image
Hologram

Real image

Zero order

First order
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 3. Th rough holography we can produce ___________ dimensional images of objects. ( )

 (a) one   (b) two 
 (c) three   (d) none of the above

 4. Holography produces ( )

 (a) real images  (b) virtual images
 (c) both a and b  (d) none of the above

 5. A recorded holographic plate contains information in the ___________ pattern. ( )

 (a) interference  (b) diff raction
 (c) both a and b  (d) none of the above

 6. In holography interference pattern is produced from  ( )

 (a) object beam  (b) reference beam 
 (c) both a and b  (d) none of the above

 7. If a hologram breaks into pieces, then each piece can produce ( )

 (a) part of image  (b) complete image 
 (c) no image  (d) none of the above

 8. In the reconstruction of images from hologram, we get ( )

 (a) one real and one virtual image  (b) two real images 
 (c) two virtual images  (d) large number of real and virtual images

 9. Th e recorded holographic plate is known as ( )

 (a) hologram  (b) Gabor zone plate 
 (c) both a and b  (d) none of the above

10. A hologram acts as a ___________. ( )

 (a) diff raction grating  (b) polariser
 (c) analyser  (d) mirror

11. Holography has been used in ( )

 (a) to view the working of the inner organs of body in three dimensionally
 (b) in non-destructive testing of materials to fi nd fl aws
 (c) data storage
 (d) all the above

12. Information holding capacity of a hologram is ( )

 (a) limited (b) large (c) less (d) none of the above

 Answers

1. c 2. a 3. c 4. c 5. a 6. c 7. b 8. a 9. c 10. a 11. d 12. b

 Review Questions

1. What is the basic principle of holography? Explain. (Set-2–Sept. 2008)

2. How does one construct and reconstruct a hologram? (Set-2–Sept. 2008)
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Acoustics of Buildings and Acoustic Quieting

13.1 Introduction to acoustics of buildings
Acoustics deals with the origin, propagation and hearing of sound. Architectural acoustics deals with 
the design and construction of accoustically good buildings, music halls, sound recording rooms and 
movie  theatres where the audience receive the best sound quality. In 1911, Wallace C. Sabine, professor of 
 physics at  Harvard university laid the foundations of acoustic engineering. Here, we see some defi nitions 
of sound:

 (i)  Tone: A sound having a well-defi ned frequency is called tone. Suppose a fundamental tone has  frequency f, 
then the frequencies 2f, 3t, 4f … are called overtones or harmonics.

 (ii)  Pitch: It is a physiological quantity, which produces a mental sensation that varies with frequency. Th e 
sound appears shrill at high frequencies and hoarse at low frequencies. Pitch will not depend on loudness 
or quality. 

 (iii) Timbre/quality: It is the ability to distinguish between diff erent sounds of the same frequency.
 (iv)  Intensity/loudness of sound: It is a sensation perceived by the ear. It is measured by the amount of sound 

energy fl owing through unit area of a section kept perpendicular to the direction of propagation of 
sound.

 (v)  Echo and reverberation: Th ese are refl ected sound waves. A refl ected sound wave that reaches the ear at 
least 100 ms later than the direct sound is called an echo. A refl ected sound that reaches the ear within 
60 ms after the original sound due to prolonged refl ections, is called a reverberation.

13.2 Reverberation and time of reverberation
A sound produced inside a hall will propagate in all directions. Sound waves incident on the surfaces of walls, 
fl oor, ceiling and furniture inside a hall will be multiply refl ected. A listener inside the hall will receive the 
sound waves directly from the source, as well as the refl ected waves. As the source of sound is turned off , the 
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 listener hears the sound with gradually reducing intensity for some time due to the persistence of sound by 
multiple refl ections at diff erent places in the room. Th e persistence of audible sound even after the source of 
sound is turned off  is called reverberation.

Th e time taken by the sound intensity to fall to one millionth 
1

106

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟  of its initial intensity i.e., the  intensity 

just before the source of sound in turned off , is called reverberation time.

13.3  Sabine’s empirical formula 
for reverberation time

Th e following are Sabine’s conclusions:

 (i) Th e reverberation time is directly proportional to the volume (V ) of the hall. 
 (ii)  Th e reverberation time is inversely proportional to the coeffi  cient of absorption of diff erent materials 

and surfaces inside the hall.
 (iii)  Reverberation time depends on the frequency of the sound waves, because absorption coeffi  cient for 

most of the materials increases with frequency.

 ∴ Reverberati n time, 
   

  
o

Volume of the hall

Asorption of so
T

V
α

,

uund, A

 or  T
KV

A
=  where K = proportionality constant, the value of K is 0.161.

 ∴ =T
V

A
0 161.

where A a S a s a s a s
n

i i n n= = + + +Σ
1

1 1 2 2 ... ,

where s
1
, s

2
, s

3
,…s

n 
are surface areas of diff erent materials and a

1
, a

2
, a

3
,…a

n
 are their absorption coeffi  cients 

respectively.

13.4  Sabine’s reverberation theory 
for reverberation time

Sabine derived a mathematical equation for reverberation time by measuring the rise and decay of sound 
energy inside a closed hall. Th e following assumptions are considered in the derivation.

 (i) Th e enclosure is a big one so that sound energy is uniformly distributed in it.
 (ii) Sound travels uniformly in all directions from the source.
 (iii) Absorption of sound energy by air is negligible.
 (iv) Standing wave formation is negligible.

When sound is produced inside a hall, the sound energy is spread uniformly inside the hall. As shown in 
Fig. 13.1, let us consider a small element of area as on the surface of a wall ABCD, on which sound energy is 
incident from diff erent elemental volumes of the hall. 

First, we consider the elemental volume EFGH of volume dV, on the surface of a hemisphere of radius r.
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Th e origin of the hemisphere is at the centre of ds. Th e rate of sound energy absorbed by ds due to dV is 
 determined as follows:

Let the arc length EF of elemental volume dV be rdθ and its thickness FG be dr as shown in Fig. 13.1. 
Th e face EFGH of area rdθdr is rotated about the normal (along E to J ) through an angle dφ. Th e distance 
moved by this area will be the circumferential length r dsinθ φ .

∴  Th e volume of the element, dV = Area of face EFGH × length EJ (approximately)

 = ×( )×( ) =rd dr r d r d dr dθ θ θ θsin sin    φ φ2  ___________ (13.1)

If E is the energy per unit volume of the hall (i.e energy density) then the energy in the element,

 dv Er d dr d= 2 sinθ θ   φ  ___________ (13.2)

Th is energy travels equally in all directions.

Th e energy that travels per unit solid angle =
Er d dr d2

4

sinθ θ
π
   φ

 ___________ (13.3)

Th e solid angle subtended by ds at dV
ds

r
=

cosθ
2

 ___________ (13.4)

Th erefore the sound energy that is received by

 ds dv
Er d dr d ds

r

Eds d d from 
    

 cos  = × =
2

24 4

sin
sin

θ θ
π

θ
π

θ θ θ
φ cos

rr d φ  ___________ (13.5)

In one second, the sound travels a distance of v equal to its velocity. So r = v . Th e amount of energy that 
reaches ds in unit time is obtained by integrating equation (13.5).

Energy received at ds
Eds

d dr d
v

= ∫ ∫ ∫4 0

2

0 0

2

π
θ θ θ

π π

φ cos sin  

 = × × × =
Es

v
Evds

4
2

1

2 4π
π  ___________ (13.6)

A

D
C

B
Wall

dr

G

H

E

Fdφ
dθ

r
rθ

Elemental
volume, dV

r sin θ dφ
I

J

ds

Figure 13.1 Volume element at a distance r from ds on the surface of wall ABCD
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If a is the absorption coeffi  cient of the surface of wall, then the sound energy absorbed per second by ds  is

 
=

E adsv

4

∴ Th e total energy absorbed by all surfaces in the hall

 = ∑ =
E

a ds
v EvA

4 4
 ___________ (13.7)

Where A = Total absorption = ∑ ads

Again, to total energy in the room = EV where E = energy density 
Th is total energy increases continuously as the source gives off  energy continuously.

∴  Th e rate of growth of energy in the hall = =
d

dt
EV

dE

dt
( ) V  ___________ (13.8)

Sound energy build up in the Hall: 
At any instant,

 
The rate of growth

of energy in the hall

   

    

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

=
    

   

 
Rate of supply of

energy by the source

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

−

RRate of

of energy by all

surface in the hall

  

   

   

absorption

s

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

 ∴ = −
V vdE

dt
P

E A

4
 ___________ (13.9) (where P = power of sound source)

 
or

VdE

dt

VAE
P+ =

4

 or
dE

dt

A
E

P

V
+ =

V

V4
 ___________ (13.10)

 Let α =
vA

V4
 ___________ (13.11)

Equation (13.10) becomes

 dE

dt
E

P

V
+ =α

 or
dE

dt
E

A

P

A
+ = =α

α α4 4

v
P

v
 ___________ (13.12) (using equation (13.11)) 

Multiplying both sides of equation (13.12) with e tα

 dE

dt
E e

P

vA
et t+

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ =α αα α4

 d

dt
E e

P

vA
et tα αα( ) =

4  ___________ (13.13)
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Integrating equation (13.13) we have

 E e
P

vA
e Kt tα α= +

4  ___________ (13.14)

where K is the constant of integration.

Using initial conditions, K can be extracted.
When t = 0, E = 0

 So  0
4

= +
P

vA
K

 or  K
P

A
= −

4

v
 ___________ (13.15)

Substituting (13.15) in (13.14)

 E e
P

vA
e

P

vA

t tα α= −
4 4

Dividing throughout with e tα , we have

 E
P

vA

P

vA
e t= − −4 4 α

 
or E

P

A
e t= − −4

1
v

( )α

 or E E em

t= − −( )1 α
 ___________ (13.16)

where E
P

A
m =

4

v

Th e growth of sound energy density E with time is shown in Fig. 13.2.

Decay of sound energy in the hall:
At steady state E = E

m
. If the source of sound is cut off , then t = 0 and p = 0

Equation (13.14) then becomes

 E K Em m= + =0 or K  
___________ (13.17)

0

Em

Time (t )

Energy
density

(E )

Figure 13.2 Growth of sound energy density in a hall
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Substituting equation (13.17) in equation (13.14), we have

 Ee Et

m

α =  since P = 0

 or E E em

t= −α  ___________ (13.18)

Th e above equation shows the decay of sound energy density with time when the source of sound is turned 
off . A graph can be plotted between the sound density versus time as shown in Fig. 13.3.

Sabine’s formula

According to the defi nition of reverberation time, T, we have

 
E

Em

= −10 6
 at t = T

From equation (13.18) we can write

 

E

E
e t T

m

t= = =− −α 10 6 at

Taking logarithms on both sides of above equation 

 αT = = ×6 10 6 2 3026log .

 Substuting α =
v

V

A

4

 αT
A

V
T= = ×

v

4
6 2 3026.

Taking v = Velocity of sound in air = 344 m/s

 T =
× ×

×
4 6 2 3026

344

.  

  

V

A

 or T =
0 161.  V

A
 ___________ (13.19)

Th is is Sabine’s formula for reverberation time.

0

Em

Time (t )

Energy
density

(E )

Figure 13.3 Decay of sound energy density
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Equation (13.19) is applicable for large halls; when the average absorption coeffi  cient is less than 0.2. 

Eyring’s formula gives correct results for all values of a. It is given as T =
− −

0 161
1

.  

 ln(1 )

V

S a
For a dead room (where a = 1)

 we have  T =
−

= =−

0 161 0 161
0

1

. . 

 ln(1 1)

 

 ln( )

V

S

V

S α

13.5  Absorption coeffi cient of sound 
and its measurement

Th e absorption coeffi  cient (a) of a material is defi ned as the ratio of sound energy absorbed by its surface to 
that of the total sound energy incident on the surface.

 
i.e Absorption coefficent

Sound energy absorbed by the
  

     
( )a =

ssurface

Sound energy incident on the surface     

An open window is considered as an ideal absorber of sound. Th e unit of sound absorption is open 
window unit or Sabin. A 1m2 Sabine is equal to the amount of sound energy that is absorbed or passed 
through one square metre area of open window. Table 13.1 given below shows the absorption coeffi  cients of 
diff erent materials.

Measurement
Th e reverberation time inside a room are measured without and with a standard large sample of material. Let 
the reverberation time be T

1
 and T

2
 respectively. By using Sabine’s formula we have 

 

1

0 161 0 161

1

0 1611 2T

A

V

a

V T

a a S

V
= = =

+
. . .  

and
 

Σ ΣS S s s

Material Abs orption coeffi cient per m2 500 Hz

Open window 1.00

Fibre glass 0.75

Human body 0.50

Fibre board 0.55

Heavy curtains 0.50

Carpet 0.30

Straw board 0.30

Asbestos 0.26

Cork 0.23

Concrete 0.17
Marble 0.01

Table 13.1: Sound Absorption Coeffi cient of Different Materials
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Where a
s
 is the absorption coeffi  cient of the sample and S

s
 is the surface area of the sample. From the 

above equations we have,

 

1 1

0 161

0 161 1 1

2 1 2 1T T

a

V

V

T T

S
= = −

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

s s
or

.

.

Ss

Using the above equation, a
s
 can be determined.

13.6 Basic requirements of an acoustically good hall
Th e following are the conditions for an acoustically good hall:

 (i) Th e speech or music carried on the dias should be clearly audible to all the participants.
 (ii) Th e syllables should be clear without overlap. 
 (iii)  Th e loudness, intensity and quality of sound should be uniform and suffi  ciently high throughout the hall.
 (iv)  Th e boundaries should be suffi  ciently provided with sound proofs to exclude the sounds produced outside 

the theatre or auditorium.
 (v) Echoes, interference, resonance and echelon eff ects should not occur in the hall.
 (vi)  Proper reverberation time should be maintained. For music the reverberation time should be 1 to 2 

seconds and for speech it should be 0.5 to 1 second.
 (vii)  Whether the hall is fully or partially fi lled with audience, the quality of music heard should be 

unchanged.
 (viii) Th e hall must be full of audience.
 (ix) Sound should not be concentrated towards any part of the hall.

13.7  Factors affecting architectural acoustics 
and their remedies

In an acoustically good hall, every syllable or musical note reaches an audible level of loudness at every point 
in the hall and then quickly dies away to make place for the next syllable. Any deviation from this makes the 
hall acoustically defective. Architectural acoustics depends on the volume of the hall and the surface materials 
such as chairs and curtains that are present inside. Some of the factors that aff ect the architectural acoustics 
are given below.

(i) Reverberation: Large reverberation causes overlapping of successive sounds, this causes loss in clarity 
of hearing. On the other hand, low reverberation causes inadequate loudness. Reverberation determines the 
speed of sound decay in a hall. A very short reverberation time makes a room dead. Th us the time of 
 reverberation for a hall should neither be too large nor too small, it must have a defi nite value that satisfi es the 
speaker and the  audience. Th is is known as optimum reverberation. Practically, it was found that the time of 
reverberation depends on size of the hall, loudness of sound and the type of sound [speech or music] in the 
hall. For music, reverberation adds to the fullness of tone, blended sound and richness of bass frequencies. Th e 
optimum reverberation time at a frequency of 512 Hz for a small hall will be between 1 and 1.5 seconds, while 
for large halls it will be upto 2.3 seconds. A reverberation time of 0.5 seconds in acceptable for speeches and 
lectures. Reverberation can be controlled by the following factors:
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 (a)  By closing or opening doors, windows and ventilators, the time of reverberation can be made  optimum.
 (b) By using heavy curtains with folds.
 (c)  By covering the walls of the hall with sound-absorbing materials such as glass wool, thermocole, 

fi bre board, card board and felt. Th e sound absorbing materials should have porous structure and a 
rough surface.

 (d) By covering the fl oor with carpets.
 (e) By having a full-capacity audience, since audience also contribute to the absorption of sound.

(ii) Adequate loudness: A short reverberation time achieved by using large absorbing materials will 
minimise the chances of  confusion between diff erent syllables of sound. However the loudness of the sound 
will drop below the level of hearing. Suffi  cient loudness should be perceived at every portion of the hall for 
satisfactory hearing by the audience. Loudness can be increased in the following ways:

 (a) By providing good quality loud speakers.
 (b)  By using large polished refl ecting surfaces and sounding board, behind the speaker and facing the 

 audience.
 (c) Low ceilings are also help in refl ecting sound towards the audience.

(iii) Focusing due to walls and ceilings: Inside the hall, if there are any focusing surfaces (curved surfaces), 
such as concave, spherical, cylindrical or parabolic surfaces on the walls, ceilings or on the fl oor of the hall, then 
sound is concentrated at their focus regions. Hence, no sound reaches the other regions of the hall, causing poor 
audiability. Th ere should be no interference of direct and refl ected waves, because it produces maximum sound at 
some places and minimum sound at other places. Th is non-uniform distribution of sound intensity is unwanted 
and hence correction is required. For uniform distribution of sound energy the following points are to be taken 
into account.

(a)  No curved surfaces should be present inside the hall. If they are present, they should be covered with 
absorbent material.

(b) A paraboloidal surface behind the speaker may send uniform refl ected sound across the hall.
(c) Th e ceiling should be low.

(iv) Echoes: Echo is a refl ected sound, coming from a long distance, so that it reaches the listener  later 

than 
1

7
 second of direct sound wave from the source. Th e echoes causes confusion. Th ese can be avoided by 

covering the long distant walls and high ceiling with absorbent material. Th e surface of the wall should be 

roughened but not polished.

(v) Echelon eff ect: A musical note produced due to the combination of echoes having regular phase dif-
ference is known as Echelon eff ect. Th e refl ected sound waves from regularly spaced refl ecting surfaces such 
as equally spaced stair cases or a set of railings produce musical note due to the regular succession of echoes 
of the original sound to the listener. Th is makes of the original sound confused or unintelligible. Th is may 
be avoided by forming the staircases with unequal  spacings between them, and covering them with sound 
absorbing materials like carpet.

(vi) Resonance: Some times window panes, loosely fi tted wooden portions, wall separators, hollows and 
crevices start vibrating by absorbing the sound produced in the hall. Th ese may create sound. Certain tones 
of the original music and the created sound combine to produce an interference such that the original sound 
gets distorted. Th is eff ect can be suppressed by hanging a large number of curtains in the hall.
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(vii) Noise: Generally there are three types of noise.  Th ey are (a) air-borne noise, (b) structure-borne noise 
and (c) inside noise. Th ese are explained below:

(a) Air-borne noise: Th e noise that enters the hall from outside through open windows, doors and ven-
tilators is known as air-borne noise. Th e method of reducing this is given below.

(1) By using heavy glass doors, windows and ventilators.
(2) By using double-wall doors and windows with insulating material in between them.
(3) Forming double wall construction.
(4) By fi xing doors and windows at proper places 
(5) Air conditioning the hall and sealing the openings perfectly.

(b) Structure-borne noise: Th e noise that reaches through the structures of buildings are known as 
 structural noise. Th e activity around the building may cause a structural vibration of the building. For exam-
ple, foot steps, operating machinery, street traffi  c, etc.  Th e remedy for this is given below.

(1) By using double walls with air space in between them. 
(2) By using anti-vibration mounts.
(3) By properly insulating the equipments such as refrigirators, lifts, fans, etc.
(4) By using carpets on the fl oor.

(c) Inside noise:  Th e noise produced inside big halls or offi  ces due to equipment such as air conditioners, 
type writers and fans are called inside noise.Th is noise may be minimised as follows:

(1) Placing the machinery on sound absorbent pads.
(2) Using noise-free air conditioners.
(3) Covering the fl oor with carpets.
(4) Covering the fl oor, walls and ceiling with sound absorbing materials.

13.8 Acoustic quieting 

Introduction 
Th e vibrations of machinery produces sound waves in air, hydro-acoustic waves in liquids and produces mechani-
cal stress in solid matter. Th e hydro-acoustic waves coming from submarines make them easy to be detected 
by sonar. One of the major military goal is to prevent the detection of submarines by sonar. For this the subject 
of acoustic quieting has been developed. Acoustic quieting deals with the suppression of sound coming from 
machinery by damping the vibrations or by absorbing the vibrational energy coming from them, or by redirecting 
the waves coming towards observer, so that the observer is free from machinery disturbances. Th is technology has 
been extended to many industries and products, such as computers and  automobiles.

Aspects of Acoustic Quieting 
Th ere are a number of aspects of acoustic quieting.  Th e aim of each aspect is to minimise the noise received 
by an observer. Various aspects of acoustic quieting are given below.

 (i)  Noise generation: Th is is to minimise the noise at the source, for example, use of plastic gears reduce 
the noise producing eff ects of the impact between teeth.

 (ii) Sympathetic vibrations: Th is should decouple the acoustic waves.
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 (iii)  Resonations: Resonations can be suppressed by acoustic damping or by changing the stiff ness and size 
of the resonator. In case of machines, to suppress resonance, the running speed can be changed.

 (iv)  Sound transmissions:  Diff erent methods are used to reduce sound transmission. Th e selection of these 
methods depends on the transmission medium such as air, liquid or solid.

 (vi)  Sound refl ections: Refl ection of sound can be reduced by using acoustic absorption (deadening) mate-
rials, trapping the sound and providing window for the sound to go out. An acoustic scientist can use 
various methods to quieten the machine. Th is quieting might be tested by changing materials of source, 
using damping  material, isolating the machine, running the machine in vacuum or running it at low 
speed.

13.9 Methods of quieting 
Th e various methods of quieting are given below 

(i) Sound isolation: Here, the transferring of sound (noise) and vibrational energy from one area to another 
is prevented by using sound control barriers made of deadening materials like fi bre glass or  synthetic rubber. 
Machines can be mounted on isolating springs to reduce the transmission of vibration to the fl oor surfaces and 
to the building structure. In the construction of homes and offi  ces, sound control barriers (fi bre glass) are placed 
in the walls to arrest the transmission of noise. An enclosure may be successful in reducing noise level, but the 
noise energy would be bottled up within the enclosure due to high reverberation. Th is can be reduced by lining 
the inside walls of the enclosure with sound-absorbing materials.

(ii) Noise absorption: Th e unwanted sounds or noise that are produced inside a room can be made to be 
absorbed by suitable materials; instead of being refl ected towards the listener. Th us the listener receives only 
the direct sound but not echo refl ections. For example, sound proofi ng rooms are constructed using acoustic 
tiles for recording studios.

(iii) Acoustic damping: Damping mounts have been used to suppress the vibrations in many degrees of 
freedom. Th e damping materials prevent the vibrations from being transferred to another material. Motors 
and rotating shafts are fi tted with damping mounts. Th ese are used at the points where they are in contact 
such as with a building or the chasis of a large machine.

(iv) Acoustic decoupling: Some of the machine parts like frame,  chasis or external shaft are built in such 
a way that they keep receiving unwanted vibrations from a moving part due to acoustic decoupling.

(v) Preventing stalls: Whenever a machine enters into an aerodynamic stall, it will suddenly vibrate.  Th e 
motion of fan blades through the air is the main source of energy in the aerodynamic state.

(vi) Preventing cavitation: Th ere is a large chance for a machine to undergo cavitation when it is in 
contact with a fl uid.  Th e rapid formation and vanishing of bubbles produce noise.  Th e cavitation of screws 
in ships and in submarines may facilitate their detection through the sonar.

(vii) Preventing water hammer: Th e abrupt opening and closing of valves present in a water hammer 
may generate considerable noise in hydralics and in plumbing.

(viii) Shock absorption: Th e shock absorbers present in vehicles prevent mechanical shocks from reaching 
the passengers.  Th ey receive quieting shocks also.
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(ix) Reduction of resonance: Every object vibrates with its natural frequency. Many parts of a machine 
vibrate and produce waves. Th ese waves resonate and form noise.

(x) Material selection: Th e transmission of sound and vibrations can be minimized by using non-metallic 
components in place of metal components.  Th is reduces noise. In some cases air can be removed from a machine 
and hermitically sealed.  Th e vacuum inside the machine will arrest noise transmission.

13.10 Quieting for specifi c observers 

 (i)  Under-water acoustics: All the quieting methods are applicable to submarines. Submarines are operated 
below the depth of the sound-channel axis, where the speed of sound in water is the lowest.  So a sub-
marine can escape being detected by surface ships.

 (ii)  Sound refraction: Similar to submarines, sound refraction can be used to prevent certain observers from 
hearing the noise.  For example an outdoor observer close to the ground will receive sound waves refracted 
towards him when the ground is cooler than ambient air, but the sound waves will refract away when the 
ground is hotter than ambient air.

 (iii)  Sound redirection: Th e observer placed out of the path of sound of the highest amplitude will receive 
much quieter sounds.  For example, the sound is loudest in line with a jet’s exhaust. Perpendicular to the 
exhaust, the sound is signifi cantly quieter.

 (iv)  Hearing Protection: In highly noise-polluted regions such as open air fi ring region or airport region, an 
observer wearing ear plugs may receive less sound.

 (v)  Electronic quieting: Noise can be controlled using electronic methods. A few devices used for electronic 
quieting are mentioned below.

(a)  Electronic vibration control: Electronics, sensors and computers are now employed to reduce 
vibration. Using high speed logic, vibration can be damped quickly and eff ectively by encountering 
the motion before it exceeds a certain level.

(b)  Electronic noise control: The noise can be reduced by using phase cancellation, employing 
electronics,  sensors and  computers. This method is used in active sound generating devices 
such as  loudspeakers.

13.11 Muffl er (or silencer) 
A muffl  er is a device for reducing the noise emitted by a machine. After internal combustion in engines the 
exhaust comes out through the muffl  er. A muffl  er is a long straight cylindrical barrel that merges perfectly 
at the end of the exhaust pipe. In internal combustion engines, the muffl  er (or silencer) is parallel to the fi re- 
arm suppressor.  Th e exhaust system of an internal combustion engine contains an exhaust pipe and muffl  er 
to reduce its exhaust noise.  Th e muffl  er accomplishes with a resonating chamber, which is specifi cally tuned 
to cause destructive interference of sound waves. Muffl  ers reduce back pressure relative to earlier models, 
such that the engine effi  ciency, performance and power output are increased. Th ey reduce the wear and tear 
of engine  components and control sound levels.

Th ere are two diff erent type of silencers.  Th ey are (i) dissipative (or absorptive) and (ii) reactive  silencers. 
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 (i)  In dissipative silencers, acoustic energy is converted into heat by the sound absorbing process. Because 
of the frequency characteristics of the absorbing materials, it is more eff ective at medium and high 
 frequencies.

 (ii)  Reactive silencers provide an impedance mismatch to the sound waves, causing refl ection back towards 
the source.  Th is causes destructive interference to particular frequencies.  It is more eff ective at low 
 frequencies.

In addition to the above we have mini muffl  ers. Th ey can be fi xed in the place of a normal muffl  er in a car 
exhaust system to increase the sound of the exhaust. Th ese are smaller in size.

In cars, a muffl  er can be fi xed length wise in such a way that it blows the exhaust backwards to the rear 
end, or to the sides before the side wheels. In motor cycles, muffl  ers are placed  beside the engine and the rear 
wheel, blowing exhaust backwards. In large diesel-powered trucks, the muffl  er is mounted vertically behind 
the cab or crosswise under the front of the cab, blowing sideways.

13.12 Sound proofi ng 
Th e process of reducing sound pressure with respect to sound source and the receptor is known as sound 
proofi ng.  Th ere are diff erent ways of reducing the intensity of sound. Th ey are: increasing the distance 
between the source and the receiver, keeping a noise barrier to block and absorb the sound energy, using 
damping structures such as sound baffl  es or antinoise sound generators, etc. Some of these methods are 
described below.

(i) Distance: Th e dissipation of sound is proportional to distance. Hence the intensity of sound felt by 
an observer decreases progressively as the receiver moves away from the source of sound.  If any intervening 
objects are present, they absorb part of the sound energy and vibrate. Th e dissipation of sound energy also 
depends on the weather and refl ections from the soil.

(ii) Damping: During damping the sound energy is converted into heat. Damping can be achieved by 
adding a layer of material , such as lead or neoprene, which is heavy and soft. Th is will act as a sound deadening 
layer. However, since lead and neoprene are costly, a dry wall such as quiet rock is used. Acoustic damping can 
be obtained by using acoustic foam on the face of the wall or ceiling. Noise damping can be obtained by passing 
sound waves through diff erent layers of material with diff erent densities. Multiple foam cell air pocket is also 
used for damping.

(iii) Noise barriers as exterior sound proofi ng: Along major highways, noise barriers are used to protect adja-
cent residents from road way noise. Th e noise barriers used may be constructed with wood, masonry, earth or 
some combination thereof.

(iv) Noise cancellation: Th is is a modern technique.  In this, a microphone receives the sound and is analysed 
by a computer.  Th en, sound waves with opposite phase (at all frequencies) are produced through a speaker.  
Th is produces destructive interference and suppresses a lot of noise.

(v) Residential sound proofi ng: Th is sound proofi ng is done mainly reduce or eliminate the eff ects of exte-
rior noise. Usually, curtains are used to damp sound that enters through doors and windows. Air chambers 
known as honey combs are also used. To have higher degree of damping, single-, double- and triple honey 
comb designs are used. Double pane windows give better damping than single pane windows.

(vi) Room within a room: In houses, vibrations pass directly through the brick, woodwork and other solid 
structural elements. Th e use of acoustic foam and other absorbent materials have no impact on transmitted 
vibration. Ideal de-coupling eliminates vibrational transfer both in solid material and in air. One method of 
eliminating the transmittal of sound is to construct a room within a room.
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 Formulae

 (1) Reverberation time, T
V

A
A a Si i

i

n

= = ∑ 0.161 where

 (2) Sound absorption coeffi  cent, a
S T T

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 161 1 1

2 1

.

s

 Solved Problem

1. Th e volume of a hall is 2265 m3 and its absorption is equal to 92.9 m2 of open window. If the hall is fi lled with audi-
ence, then the absorption becomes double. Find the reverberation time when the hall is without and with  audeience. 

Sol. Th e Sabines formula for reverberation time is 

 

T
A

= =

=

0 161. V
where A total absorption in the hall

V volumeof alh ll

 A = 92.9 m2 of open window
 V = 2265 m3

 ∴ Reverberation time of hall without audience, T1

0 161 2265

92 9
3 9=

×
=

.

.
. seconds

 and 

 Reverberation time of hall with audience, T2

0 161 2265

92 9 2
1 95=

×
×

=
.

.
. seconds

 Multiple Choice Questions

 1. Acoustics deals with ___________ of sound. ( )

 (a) origin (b) propagation (c) hearing (d) all the above

 2. Architectural acoustics deals with ( )

 (a) design of acoustically good buildings.
 (b) construction of acoustically good buildings.
 (c) Both a and b.
 (d) None of the above.

 3.  A refl ected sound that reaches the ear within ___________ after the orginal sound, due to prolonged refl ections is 
called reverberation. ( )

 (a) 60 milliseconds (b) 600 milliseconds (c) 1 second (d) 2 seconds

 4. Th e time taken for the intensity of sound to fall to ___________ of its initial intensity is called reverberation time.
 ( )

 ( ) ( ) ( ) ( )a b c d
1

10

1

10

1

10

1

103 2 4 6
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 5. Inside a big hall, the reverberation time is ___________ of the hall. ( )

 (a) directly proportional to volume
 (b) inversely proportional to sound absorption 
 (c) Both a and b
 (d) None of the above.

 6. If the total volume of hall is V and its total absorption is A, then the expression for reverberation time is ( )

 ( ) . ( ) . ( ) . ( )
.

a b c d0 161 0 161 0 161
0 161V

A

A

V
AV

AV

 7. While deriving an expression for reverberation time, Sabine assumed that ( )

 (a) the enclosure should be big.
 (b) standing wave formation is negligible.
 (c) sound absorption by air is negligible.
 (d) All the above.

 8. Th e unit of coeffi  cient of sound absorption is ( )

 (a) Sabine (b) open window unit (c) a or b (d) None of the above

 9. Th e sound absorption coeffi  cient of human body is ( )

 (a) 0.75 (b) 0.50 (c) 0.25 (d) 1.00

10. Th e basic requirement for an acoustically good hall is: ( )

 (a) Echoes, interference, resonance and echelon eff ects should not occur in the hall.
 (b) Th e reverberation time for speech should be 0.5 to 1 second and for music it should be 1 to 2 seconds.
 (c) Th ere should not be concentration of sounds at any part of the hall.
 (d) All the above.

11. For optimum architectural acoustics, the following factors should be considered: ( )

 (a) Th e time of reverberation for a hall should neither be too large nor too small.
 (b) Suffi  cient loudness at every portion of the hall
 (c) Reduction of air-borne, structure-borne and inside noise
 (d) All the above.

12. Noise that enters into a hall from the outside through ___________ is known as air-borne noise ( )

 (a) open windows (b) open doors (c) open ventilators (d) All the above.

13. Air-borne noise can be reduced by ( )

 (a) forming a double wall construction. 
 (b) by using heavy glass doors, windows and ventilators.
 (c) by using double wall doors and windows.
 (d) All the above.

14. Structure-borne noise can be reduced ( )

 (a) by using anti-vibrating mounts.
 (b) by using double walls with air space in between them.
 (c) by properly insulating refrigerators, lifts, fans, etc. 
 (d) All the above

15. Noise produced due to air conditioners, typewriters, fans etc. present inside a hall is called ( )

 (a) structure-borne noise (b) inside noise (c) air-borne noise (d) All the above. 
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16. Acoustic quieting deals with the suppression of sound comming from machinery by ( )

 (a) damping the vibrations. (b) absorbing the vibrational energy.
 (c) redirecting the waves comming towards observer. (d) All the above. 

17. Th e aspect of acoustic quieting is ___________ of noise received by an observer. ( )

 (a) minimisation (b) maximisation (c) optimisation (d) All the above. 

18. Acoustic quieting can be obtained ( )

 (a) by minimising the noise at the source. 
 (b) by generating sympathetic vibrations. 
 (c) by reducing sound transmission and sound refl ection using acoustic absorption materials.
 (d) All the above.

19. Acoustic quieting can be achieved  ( )

 (a) by sound isolation. (b) by using acoustic tiles.
 (c) by using damping mounts. (d) All the above. 

20. Hearing protection is used ( )

 (a) in a highly noise polluted region. (b) an airport region.
 (c) an open air fi ring region. (d) All the above. 

21. A muffl  er ( )

 (a) is a device for reducing the noise emitted by a machine. 
 (b) acomplishes with a resonating chamber, which is tuned to cause destructive interference of sound waves. 
 (c) Both a and b.
 (d) None of the above.

22. Th e process of reducing the sound pressure with respect to sound source and the receeptor is known as ( )

 (a) acoustic quieting (b) sound proofi ng (c) reverberation (d) None of the above. 

23. Sound proofi ng can be achieved ( )

 (a) by moving the receiver away from the source of sound. 
 (b) by damping the sound using acoustic foam, lead or neoprene on the face of the wall or ceiling. 
 (c) by using noise cancellation. 
 (d) All the above.

 Answers 

 1. d  2. c  3. a  4. d  5. c  6. a  7. d  8. c  9. b 10. d 11. d 12. d 
13. d 14. d 15. b 16. d 17. a 18. d 19. d 20. d 21. c 22. b 23. d

 Review Questions

(1) Write an essay about the acoustics of buildings.

(2) Derive Sabine’s mathematical relation for reverberation time. 

(3) Explain reverberation and reverberation time.

(4) Defi ne and explain the sound absorption coeffi  cient of materials.
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(5) What are the basic requirements of an acoustically good hall?

(6) Explain the various factors that aff ect architectural acoustics. What are their remedies?

(7) What is acoustic quieting ? What are the diff erent aspects of acoustic quieting?

(8) Explain the various methods of acoustic quieting.

(9) Write notes on quieting for specifi c observers.

(10) What is sound proofi ng? Explains the diff erent methods of sound proofi ng.
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Nanotechnology

14.1  Basic principle of nanoscience and 
nanotechnology

Nanotechnology is the extension of existing science into the nanoscale. It pushed towards microminiatur-
ization. Th e word ‘nano’ means ‘one-billionth’, (10−9). Feynman, a noble laureate in physics, brought this 
nanotechnology into daylight by delivering lectures in 1959. Nanoscience is the study of the fundamental 
principles of molecules and structures having sizes in between 1 and 100 nm. Th ese are known as nanostruc-
tures. Th e 20th century scientists called this as top-down science. Th e physical, chemical, biological properties 
associated with the nanostructures constituted from atoms and molecules is known as bottom-up process. Th e 
top-down process refers to machining and etching techniques and the bottom-up process refers to building 
organic and inorganic structures atom-by-atom or molecule-by-molecule.

Nanotechnology deals with the design, manufacturing and applications of nanostructures in useful 
nanoscale devices such as electronic circuits and mechanical devices at the molecular level. Th ese are the smallest 
solid things possible to make. In nanotechnology, the fundamental properties of materials and machines depend 
on their size. For example, a nanoscale wire or circuit component does not necessarily obey Ohm’s law.

Th e principle of the nanoscale science and engineering refers to the fundamental understanding and 
technological advances from the exploitation of new physical, chemical, electrical and biological properties of 
systems having size in between molecules [or atoms] and bulk materials. Nanotechnology refers to the fi eld 
of applied  science and technology that deals with the fabrication of devices or materials which lie in the sizes 
of 1 to 100 nm.

Th rough nanotechnology, we can understand many new things. For example, if we properly arrange carbon 
atoms in coal then it may become diamond. By rearranging atoms in sand, silicon chip can be made. Single atom 
manipulation has been known in late 1980s using the scanning tunneling microscope (STM). Th e probe of the 
STM is as sharp as an atom at the tip. Th e distance between the tip and the fl at surface of the specimen is nearly 
1 nm and kept constant by monitoring the tunneling current. By applying a voltage pulse in this condition, a 
single atom can be extracted from the surface of the specimen and then placed at a desired  position. Th e STM 
is also useful for manipulating single molecules, observing molecular shapes, microfabrication technology for 
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semiconductor devices and bio-chemical technology. Nanotechnology produces materials that are built up 
atom-by-atom. With carbon atoms tubular molecules are made and they are called carbon nanotubes. Spherical 
molecules with 60 carbon atoms having a diameter slighting less than 1 nm can also be made and these are 
called bucky balls or fullerenes. Th e factors that diff erentiate nanomaterials from bulk materials is the increase 
in surface area to volume ratio and quantum confi nement eff ects. Th ese are explained below.

(a) Surface area to volume ratio: Th is value is very large for nanomaterials. To understand this concept, 
 consider a spherical material of radius ‘r ’ then:

 
Surface area of the sphere

Volume of the sphere
=

4πr 22

34
3

3

( )
=

πr r

As the size of the sphere decreases, the above ratio increases. Alternatively, if the material is cubic, as 
it is divided into small cubes, then also the surface area to volume ratio increases. Hence, the nanomaterials 
 possess large value of surface area to volume ratio as compared to the bulk material.

(b) Quantum confi nement eff ects: According to band theory, solid materials have energy bands and i solated 
atoms possess discrete energy levels. Nanomaterials are in intermediate to the above two cases. For nanoma-
terials, if the dimensions of potential wells or potential boxes are of the order of the de Broglie wavelength 
of electrons or mean free path of electrons, then the energy levels of electrons change, and the electron will 
remain confi ned to a small region of the material. Th is is called quantum confi nement.

Nanomaterials are very strong, hard, wear resistant, corrosion resistant, erosion resistant and chemically 
active.

Th e electrons in bulk solid material possess alternatively discrete allowed and forbidden bands of 
 energies. As the material changes from bulk to nanoparticle size, the energies of electrons change. A graph 
plotted between the density of electron states versus the energies of electrons for a bulk material is a parabola, 
whereas this is not the case for nanoparticle materials. Th e quantum eff ects are dominant in nanoparticle 
materials. So, we come across quantum dots, quantum wires and quantum wells (or quantum fi lms) in nano-
science. Th ey are zero, one and two dimensional nanoparticles. Th e concept of the above materials and their 
electron density states are illustrated below.

When a bulk nanoparticle material is reduced in one, two and three dimensions to nanometers then it 
results in the formation of quantum fi lm, quantum wire and quantum dot as shown in Fig. 14.1.

(a)
Three dimensional

bulk material

(b)
Two dimensional

film

(c)
One dimensional

wire

(d)
Zero dimensional

material or quantum dot

Figure 14.1
  Representation of quantum fi lm, quantum wire and quantum dot in a 

bulk nanoparticle material

Th e energies of electrons in quantum dots appear as clusters. Th e density of electron states vary from 
cluster to cluster as shown in Fig. 14.2a.

Chapter 14.indd   2Chapter 14.indd   2 9/25/2009   5:49:24 PM9/25/2009   5:49:24 PM



Nanotechnology 14-3

Figure 14. 2a Density of electron states versus energy of electrons for quantum dots

In the case of quantum wires, the density peaks are high at energy values E
1
, E

2
, E

3 
… and decrease 

 rapidly for ranges in between as shown in Fig. 14.2b. Th e density of states

Ω( ) = ∑
−( )

−

⎡

⎣
⎢
⎢⎢
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Where n
i 
is degeneracy factor and H (E−E

i
) is the Heaviside function. Th e density of states is of the 

order of 109/m eV.

Figure 14. 2b Density of states versus energy of electrons for quantum wire

Density of
states Ω(E )

E1 E2
Energy
E3

In quantum wells, the graph between density of electron states and energy is a step function as shown in 
Fig. 14.2c. Th e density of states

D E dE
m

H E E dEi( ) = ∑ −( )*

π�2

Where m* = eff ective mass of electron and H (E−E
i
) is a step function called the Heaviside function. 

Th is value is zero for E < E
i
 and 1 for E ≥ E

i 
. Th e density of states is of the order of 1018/m2 eV. Th e locus 

of all corners of the step function is a parabola.

Density of
electron
states

E10 E2

Energy
E3
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14.2 Physical properties
At the macro scale, the physical and chemical properties are not dependent on the size of the material, but at 
the nanoscale every thing will change including colour, melting point and chemical properties. Th is is due to 
the diff erence in the nature of interactions between atoms in nanostructures and in bulk materials. Materials 
reduced to the nanoscale can suddenly show very diff erent properties compared to what they exhibit on a 
macroscale. Th e various physical properties have been explained below:

(i) Geometric structure
Large nanoparticles have the same crystal structure as that of the bulk material but diff erent lattice param-
eters. In cluster nanoparticles, the structure is deviated. In nanomaterials, the surface to volume ratio increases. 
Similarly, the interatomic distance decreases by reducing the size of nanoparticles.

(ii) Optical properties
Diff erent-sized nanoparticles scatter diff erent wavelengths of light incident on it and hence they appear 
with diff erent colours. For example, nanogold doesn’t act like bulk gold. Th e nanoscale gold particles can be 
orange, purple, red or greenish in colour depending on their grain size. Th e bulk copper is opaque whereas 
 nanoparticle copper is transparent. Porous silicon exhibits red photoluminescence, but bulk silicon will 
not show this eff ect. In nanoparticle semiconductor elements (such as Ge, Si), a shift in optical absorption 
spectra (towards blue) have been observed. Th e electroabsorption eff ects are observed in CdTe quantum 
dots.

(iii) Thermal properties
Th ere is a change in thermal properties of some materials as they go from bulk to nanoparticles. A few of 
them are given below. Th e melting point of nanogold decreases from 1200 K to 800 K as the size of particles 

Figure 14. 2c Density of electron states versus energy of electrons for quantum fi lm

Density of
electron

states D(E )

E1 E2

Energy
E3
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decreases from 300Å to 200Å. Th e Debye temperature and ferroelectric phase transition temperature are lower 
for nanomaterials. Th e diff usion coeffi  cient and solid state phase transition pressure are high for nanomaterials. 
At higher temperatures, there is breakdown in symmetry of nanoparticles due to high thermal vibrations of 
surface atoms in nanostructures. Superplasticity of nanomaterial occurs at lower temperatures by reducing the 
grain size. Stable aluminium becomes combustible in nanophase. Solid gold changes into liquid as it goes from 
bulk to nanomaterial at room temperature.

(iv) Magnetic properties
Th e magnetic properties of nanomaterials are diff erent from that of bulk materials. In small  ferromagnetic 
particles, the magnetic properties are diff erent from that of bulk material. Th ey are saturated magnets. 
In nanomaterials, we use single domains unlike large number of domains in bulk materials. Th e coer-
civity of single domain is very large. Small clusters [containing less than 80 atoms] of non-magnetic 
 substances show spontaneous magnetic moment whereas in case of magnetic nanoparticles, the magnetic 
moment is reduced. For example, Fe, Co, Ni and Gd are ferromagnetic in bulk but they exhibit super 
paramagnetism in the nanophase. Na, K and Rh are paramagnetic in bulk but in nanophase, they are fer-
romagnetic. Cr is anti- ferromagnetic in bulk, in nanophase it shows frustrated paramagnetic property. At 
higher temperatures, clusters show less magnetic moment called super paramagnetism because thermal 
 vibrations change the alignment of magnetic moment. Clusters of non-magnetic element supported on 
metal substrates also show  magnetism. Th is shows that small particles possess more magnetism than the 
bulk material.

(v) Electronic properties
Th e electrical conductivity and energy bandwidth of some materials change when they pass from bulk 
phase to nanoparticle phase. For example, bulk silicon is an insulator; it becomes a conductor in the 
nanophase. Nanomaterial semiconductors such as Ge and Si do not show semiconducting property. In 
nanoceramics and in nanomagnetic composites, electrical conductivity increases with reducing particle 
size. In metals, electrical conductivity decreases with reducing particle size. By reducing the size of metal 
 particles from bulk to nano, the energy bands become narrower and hence the ionization potential energy 
increases.

(vi) Mechanical properties
Th e mechanical behaviour of nanostructures is dominated by the nature of interfaces in them. Mechanical 
properties such as hardness, toughness, elastic modulus, scratch resistance, fatigue strength, crack initiation 
and propagation are signifi cantly diff erent for nanostructures than bulk materials. In metals and alloys, 
the hardness and toughness are increased by reducing the size of nanoparticles. In ceramics, ductility and 
superplasticity are increased on reducing particle size. Nanostructured composites off er an increased den-
sity of inhibitors to slip crack migration so that the strength of the material increases. Hardness increases 
4 to 6 times as one goes from coarse grain Cu to nanocrystalline Cu and it is 7 to 8 for Ni.

It is observed that the materials with smaller grain size are stronger, because crack propagation can be 
delayed or reduced in nanostructures than bulk materials. Fe and Ni continue to harden with decreasing 
grain size. By decreasing the size of nanocrystalline metals from 1 μm to 10 nm, the hardness increases 
2 to 7 times. As the grain size is reduced below 10 nm, the hardness reduces in some  nanomaterials. 
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Th e transition from bulk to nanophase reduces elastic strength and increases plastic behaviour.  Brittle 
materials [ceramics, intermetallics] can become ductile by reducing their grain size. At higher tempera-
tures, nanozirconia material possesses superplastic property. When the material is superplastic, it can 
undergo large tensile deformation without necking and fracture. Creep involves atomic transport along 
grain boundaries, and materials having large number of grains have large creep rates. Th is leads to super-
plasticity. Th e creep rates can be increased by 6 to 8 times by reducing the grain size from microns to 
nanometers. Th e reduction of the size of nanoparticles in steel leads a reduction in ductile-to-brittle 
 transition temperature.

14.3 Chemical properties
Nanocrystalline materials are strong, hard, wear resistant, erosion and corrosion resistant. Th ey are chemically 
active and have the following chemical properties. 

(a) Th e nanostructures in chemistry are colloids and these are formed in a condensed phase having sizes in 
the range from 1 to 100 nm. Nanoscale catalysts have a high degree of dispersion, and this maximizes the 
contact area of a catalyst with the reactant.

(b) Th e eff ect of nanoscale materials on chemical reactivity: Changes in chemical reactivity of nanoscale 
materials have been expected. Chemical reactions are governed by electrons, electron affi  nities [or ionizational 
potential] and electron orbital densities. Coupling exists between chemical reactivity and the electronic char-
acter of the reactants and any catalyst. It was known that the ionizational potential increases as the cluster size 
drops below the bulk limit and it has limited applicability.

Th e electronic properties of a catalyst is host-dependent and possibly even reaction-dependent. Clusters 
of platinum, iridium or osmium reduced to a size of 1 nm and supported on alumina or silica exhibited elec-
tronic properties similar to those found for large crystallites of the metal. Th e electronic structure of metal 
nanocrystallites depends on supported non-conducting oxides. Th e reactivity of a cluster depends on the 
cluster size. Th is is useful in the preparation of catalytic agents. Some chemically inert bulk materials become 
good chemical catalysts in the nanophase, for example: platinum and gold.

(c) Electrochemical reactivity: Nanostructure size eff ects have been observed in catalysis. In the case of metal 
nanocrystallites supported on conductors, we see that in nanocrystallites of platinum supported on  titanium or 
glassy carbon, the photocurrent increases whereas the photoemission current for palladium nanocrystallites of 
supported on glassy carbon decreases relative to that of the bulk metal. So, we say that photoemission currents 
vary as a function of the crystallite size i.e., as compared to the bulk metal, increased  reactivity for supported 
platinum nanocrystallites and decreased reactivity for glassy carbon supported  palladium  nanocrystallites was 
observed.

(d) Eff ect of nanostructures on mass transport: In chemical or electrochemical reactions, the rate of 
increase in mass transport increases as the particle size decreases.

(e) Th e eff ect of chemistry on nanostructures: Th e equibrium vapour pressure, chemical potentials and 
solubilities of nanoparticles are greater than that for the same bulk material. Exposure to high temperatures 
or to certain chemicals can increase the size of a nanostructure. Th e high surface area of atoms or molecules 
of nanocrystallites supports heterogeneous catalysis.

(f ) Hydrogen storage in metals: Most of the metals do not adsorb hydrogen, those adsorb have a metal to 
hydrogen atom ratio of 1. Th e small positively charged clusters of Ni, Pd and Pt containing atoms in between 
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2 to 60 can adsorb hydrogen atoms up to 8 per metal atom. Th is hydrogen adsorption decreases with an 
increase of cluster size. So, small metallic clusters are used as hydrogen storage devices.

14.4 Fabrication
Fabrication applies to the building of machines, structures or process equipment by cutting, shaping and 
assembling components made from raw materials. In nanotechnology, the scanning instruments help to a large 
extent in the development of nanoscience. In these instruments, the tip of the probe slides along a  surface. Th e 
tip has nanoscale dimensions, usually of single-atom size. During sliding, the instrument  measures diff erent 
properties. To determine these properties, there are diff erent types of scanning probe  measurements. Th ey are 
described in brief below.

(i) Atomic force microscopy (AFM): In this, electrons are used to measure the force applied on the probe 
tip as it moves on the object surface.

(ii) Scanning tunneling microscopy (STM): In this, the amount of electrical current fl owing between the 
scanning tip and the object surface is used to measure local electrical conduction and geometry of the object 
at that place.

(iii) Magnetic force microscopy [MFM]: In this, the tip scans the magnetic surface. Th is locally detects the 
magnetic structure of the substance.

All other scanning microscopes also work on the principle of STM. Th e scanning is used to fi nd nano-
sclae structure by measuring force, current, magnetic drag, chemical identity, etc.

Th e scanning probe instrument uses the dragging fi nger analogy. Th is helps us to see structures and 
modifi es a surface with the help of the tip of the scanning probe. Th e individual atoms or molecules can be 
moved on the surface by pushing on the surface or by picking them off  the surface, moving and putting them 
back down. In this process, the scanning tip acts as a sort of earth mover at the nanoscale. Some scanning 
instruments have hundreds or even thousands of probe tips. Th e various nanostructure fabrication processes 
are described below.

(i) Nanolithography: Optical or X-ray lithography is used to make the present computer chips. In this, a 
master mask is made using chemical methods. A lithograph is an image that is produced by carving a pattern 
on the stone. Lithography is used for making objects from stones. In addition, there is microimprint lithog-
raphy. Th is method works in the same way as the rubber stamp.

(ii) Dip pen nanolithography (DPN): Th e DPN is a direct writing technique that is used to create 
nanostructures on a substrate by delivering molecules through a capillary present at the tip of an atomic 
force microscope (AFM), as shown in Fig. 14.3. AFM tips are the ideal nanopens to construct arbitrary 
nanostructures on surfaces. Th e principle of DPN is similar to that of using the fountain pen. In this method, 
a reservoir of ink (atoms or molecules) is present at the top of the probe tip and are arranged across the 
surface.

Th e ink is alkylthiol molecules; these molecules possess a head group of a thiol and 1−4 nm length 
hydrocarbon tail group. Th ese molecules are taken as delivery molecules and a gold substrate is used to collect 
the molecules. Th e thiol molecules form a single layer on the substance with the thiol group forming a strong 
bond with gold and the tail group aligning perpendicular to the surface. Th e DPN device is used to image and 
write a pattern. Using software, the DPN plotter can write complicated patterns also.
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In this method, the resolution depends on the granularity of the resist used, the contrast of the resist  developer, 
spatial distribution of deposited energy and the statistical distribution of photons at each pixel. During litho-
graphic process, the whole system is kept under vacuum and a single beam of electrons is focused at the 
surface of the resist-coated semiconductor wafer. Using pattern generator, the electron beam is moved across 
the surface under computer control.

(iv) Atomic lithography: Th e scanning tunneling microscope [STM] used in this method is capable of 
imaging individual atoms i.e., directly observe the atoms on the surface of a material. Th e resolution is of the 
order of a fraction of atomic diameter. Th e STM works [Fig. 14.5] by using a very sharp tip that is positioned 
over the electrically conducting sample.

AFM tip

Writing direction

Water meniscus

Molecular transport

Substrate

Figure 14.3 Representaion of dip pen lithography

Carbon nanotube

(iii) Electron beam lithography: Th e use of light of small wavelengths generate some problems, so instead 
of light beam electron beam is to be used in lithography. Th e structures at nanoscale can be manufactured 
using e-beam lithography. Figure 14.4 shows the formation of two electrodes using electron beam  lithography. 
Th e structure lying across is a single molecule carbon nanotube.

Figure 14.4
  Two electrodes made using electron beam lithography. The 

horizontal structure one is the carbon nanotube
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Th e magnitude of tunneling current monitors the separation between the tip and the sample surface. As 
the tip moves, the tunneling current changes, and this shows the distance between the tip and surface. Th e 
change in tunneling current is fed back to an electrical circuit, which controls the up and down motion of the 
tip. Th e decrease in tunneling current is an indication of larger separation, then the feedback circuit lowers the 
tip. A voltage diff erence applied between tip and surface causes a small number of electrons to tunnel from 
the tip to the sample surface. By applying a few volts between the tip and surface, an electric fi eld is produced, 
this fi eld can break local chemical bonds or initiate a chemical reaction, resulting in atom displacement, 
removal and deposition of individual atoms or knocking off  of individual atoms.

14.5 Production of nanoparticle
Nanoparticles can be produced by a number of ways. Th ey are described below:

(i) Plasma arcing
Plasma is an ionized gas. Plasma can be produced by the discharge of gas between two electrodes, so that the 
gas dissociates into electrons and positive ions. Using plasma arcing, very thin fi lms of the order of atomic 
dimensions can be deposited on the surface of an electrode. Th is deposition is carried in vacuum or in an inert 
gas. An arc passes from one electrode to the other. Th e fi rst electrode [anode] vapourizes, so positively charged 
ions are produced. Th ese ions deposit on the cathode. By using carbon electrodes, carbon nanotubes can be 
formed on the surface of the cathode. A mixture of conducting and non-conducting materials is also used in 
electrodes to form thin layers of the materials on the cathode.

Figure 14.5 A schematic diagram of the operation of a STM
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14-10 Applied Physics

(ii) Sol–gel method
In solutions, nano-sized molecules are dispersed randomly. Whereas in colloids, the molecules [or particles] 
have diameters in the range of 20 μm to 100 μm and are suspended in the solvent. So, the colloid appears 
cloudy. A colloid that is suspended in a liquid is called a sol. Th e gelation of the sol in the liquid to form a 
network is called gel. Th e formation of sol–gel involves hydrolysis, condensation, growth of particles and the 
formation of networks. Using the sol–gel method, silica gels, zirconia and yttrium gels and aluminosilicate 
gels are formed. Nanostructured surfaces are formed using the sol–gel method.

(iii) Chemical vapour deposition
In this method the material is heated to gaseous phase and allowed to condense on a solid surface in vacuum. 
Nanomaterials of metallic oxides or metallic carbides can be formed by heating metal and carbon or metal 
and oxygen in a vacuum chamber to gaseous phase and allowed to deposit on the surface of a solid. Metal 
nanoparticles are formed by exposing the metal to tuned metal-exciting microwaves so that the metal is 
melted, evaporated and formed into plasma at 1500° C. By cooling this plasma with water in a reaction 
column, nanoparticles are produced. Th e grain size of nanoparticles depends on the concentration of metal 
vapour, its rate of fl ow in the reaction column and temperature.

(iv) Ball milling
In this method, small balls of the material are made to rotate inside a drum and drop under the infl uence 
of gravity on to a solid present in the drum. Th e balls are broken into nanocrystallites. Th is is also known as 
mechanical crushing. Th is method is used for a large number of elements and metal oxides. For example, iron 
nanoparticles of sizes 13 to 30 nm can be formed.

(v) Electrodeposition
As current is passed between the electrodes immersed in an electrolyte, some substances will be deposited on the 
surface of one electrode. By controlling the current, a single layer of atoms can be deposited. Nanostructured fi lms 
of Au, Cu, Pt, Ni, polymers, oxides and semiconductors can be deposited. Th ese fi lms are robust, fl at, uniform and 
shiny. Th e deposited plates are used in batteries, solar cells, fuel cells, sensors, photonic devices and fi eld emitters. 

14.6 Carbon nanotubes

(a) Introduction
Carbon nanotubes are hollow cylindrical tubes. Th e length of carbon nanotubes may vary from several 
micrometers to millimeters and the diameter will vary from 1 to 20 nm. Th e ends are closed with caps 
containing pentagonal rings. A tube may contain one cylindrical wall of graphite or a number of concentric 
cylindrical walls. Under the transmission electron microscope, these cylindrical walls appear as planes. Single 
wall nanotubes appear with two planes whereas the multiwall nanotubes appear with more than two planes 
and are seen as a series of parallel lines as shown in Fig. 14.6.
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Th e single-walled carbon nanotubes are of three diff erent types. Th ey are: (i) arm chair, (ii) zig-zag and 
(ii) chiral type structures. Th ese are shown in Fig. 14.7. In these, a single hexagonal wall is seen. 

Figure 14.7
  Single-walled carbon nanotubes: (a) Arm chair, (b) Zig-zag, and

(c) Chiral type

Figure 14.6 Carbon nanotubes
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(b) Formation of nanotubes
Th ere are a number of methods of making nanotubes.

(i) Plasma arcing method: Carbon nanotubes are prepared by putting an electric current across two carbo-
naceous electrodes [graphite] as in a helium or argon atmosphere as shown in Fig.14.8. Th is method is called 
the plasma arcing method. In this method, evaporation of one  electrode [anode] takes place as cations, and 
the particles are deposited at the other electrode. Th e deposition on the cathode are nanotubes. Normally, 
multi-walled nanotubes are formed from plasma arcing. Single-walled nanotubes are formed if the electrodes 
are bored out and cobalt or other metals are included.

C+ Nanotube
deposit

Current

e

CathodeAnode

B

Figure 14.8 Carbon nanotube formation

(ii) Laser method: Large quantities of single-walled nanotubes can be prepared by dual-pulsed laser 
vapourization method. In this method, the samples can be prepared by laser vapourization of graphite rods 
with equal amounts of cobalt and nickel powder at 1200°C in fl owing argon. After this, heat treatment is car-
ried out at 1000°C in vacuum to remove C

60
 and other fullerenes. Th e fi rst laser vapourization pulse is followed 

by a second pulse for more uniform vapourization. Th e product appears as a mat of ropes having a diameter of 
10−20 nm and a length of 100 μm or more. Th e diameter of tubes can be controlled by varying the parameters 
such as growing temperature and catalyst composition.

Th e other methods include arcing in the presence of cobalt, chemical vapour deposition method, ball milling, 
diff usion fl ame synthesis, electrolysis, solar energy pyrolysis at low temperature, heat treatment of a polymer, etc.

(c) Properties of nanotubes
(i) Th e tubes are mechanically robust.

(ii) Nanotubes are about 6 times lighter, 10 times stiff er and 20 times stronger than steel.
(iii)  Th e tube behaves as a metal and as a semiconductor. As a metal, its electrical conductivity is 1000 times 

more than that of copper.
(iv)  Th e electrical conductivity of nanotubes is a function of diameter, conductivity in multiwalled nanotubes is 

quite  complex.

(d) Applications of nanotubes
(i) Electronics: Th e single-walled nanotube can act as a transistor. Pairs of nanotubes or crossed nanotubes 
show as logic structures. If a line of hexagons form a helix, then the tube acts as a semiconductor. A single 
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nanotube with a natural junction acts as a rectifying diode. Transistor nanotube circuits are built by drawing 
a single nanotube over three parallel gold electrodes, adding a polymer between the electrodes and sprinkling 
potassium atoms on the top. Th e potassium atoms add electrons to the nanotube. In fl at panel displays, a 
nanotube works due to its fi eld emission property. Nanotubes are used in batteries.

(ii) Hydrogen storage: Nanotubes can store hydrogen and also helium, oxides and metals like copper.

(iii) Mechanical machines: Nanotubes can act as axles in nanomachines. Building gear teeth on nanotube 
is favoured to translate diff erent rotational motions.

(iv) Space elevators: Long fi laments of nanotubes are used in fi bre-reinforced plastics, these have less weight. 
So they are used in aeroplanes, space ships and land vehicles. Carbon nanotubes, like graphite,  withstand high 
temperatures, so they are used for thermal protection of spacecraft during re-entry into the atmosphere. 
Carbon nanotubes have high Young’s modules, so they withstand aeronautical strains.

(v) Hospitals: Carbon nanotubes are thin, so they can penetrate the skin without pain. Blood can be drawn 
from diabetic patients through nanostraws to know glucose levels and to inject insulin whenever required.

14.7 Applications of nanotechnology
Nanomaterials are found in both biological systems and man-made structures. Nature has been using  nanomaterials 
for millions of years. Th e large surface area to volume ratio increases the chemical activity. Nanomaterials have 
the following applications.

(i) In microelectronics: In microelectronics, the reduction in size of electronic components leads to faster 
switching times. Nanotechnology includes fabrication of nanowires used in semiconductors. Porous  silicon 
emits visible light, so it fi nds application in optoelectronics. Quantum dot lasers are nanoscaled objects, they 
emit good-quality laser beam compared to semiconductor laser diodes. Th ey are cheaper and the emitted 
wavelength depends on the diameter of the dot.

(ii) Machine tools: Some nanocrystalline materials such as tungsten carbide, tantalum carbide and tita-
nium carbide are harder than conventional materials; they are more wear-resistant and erosion-resistant, so 
they are used in cutting tools and drill bits. Nanocrystalline silicon nitride and silicon carbide are used in 
the manufacturing of high-strength springs, ball bearings and valve lifters because of their excellent physi-
cal, chemical and mechanical properties. Nanocrystalline ceramics such as zirconia (ZrO

2
) are softer than 

conventional materials, so they can be easily pressed and sintered into various shapes at signifi cantly lower 
temperatures.

(iii) High-power magnets: Th e magnetic strength of a material is directly proportional to the surface area 
per unit volume. Th e magnetic nanocrystalline yttrium – samarium – cobalt possess very high magnetic prop-
erties due to large surface area. Th e typical applications of high-power rare earth magnets are in submarines, 
generators, electric motors, automobile alternators, magnetic resonance imaging (MRI) instruments and in 
ultrasensitive analytical instruments.

(iv) In television or in a monitor: In television or in a monitor, the resolution depends on the size of the pixel 
made of phosphors. Th e phosphor glows when a beam of electrons strike them. Th e resolution of images in these 
instruments increases as the size of pixels reduces. Materials like nanocrystalline selenide, zinc sulphide, lead 
 telluride and cadmium sulphide synthesized by the sol-gel method improve the resolution. Th e use of nano-
phosphors may reduce the making cost of high resolution television. In new generation batteries, the separator 
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plates are made up of nanocrystalline materials prepared by the sol-gel method, and they hold more energy. 
For example,  batteries made of nanocrystalline nickel and metal hydrides are long lasting and requires minimal 
recharging.

(v) Motor vehicles and air craft: Th e thermal energy generated in engines is wasted to a large extent. 
Th is can be reduced by coating the cylinders with nanocrystalline ceramics such as zirconia and alumina. 
By retaining more heat energy, combustion of the fuel takes place completely. In air crafts, by decreasing the 
grain size of the materials the fatigue strength increases. By using nanomaterials, the fatigue life increases 
as much as 300%. Th e components made of nanomaterials are stronger and operate at higher temperatures. 
So air crafts can fl y faster using the same amount of aviation fuel.

(vi) Aerogels: Aerogels are nanocrystalline materials. Th ey are porous and hence air is trapped at the inter-
stices. Using these materials for insulation at offi  ces and homes leads to drastic reduction in cooling and heat-
ing bills by saving power. Th ese materials are also used as materials for smart windows, so that the materials 
become darkened when the sun is too bright and lightened when the sun is not shining brightly.

(vii) Energy effi  ciency: For illumination, energy consumption can be greatly reduced by using quantum 
caged atoms or light emitting diodes (LEDs) instead of ordinary fi lament bulbs. Nanostructures with a con-
tinuum of energy band gaps have an increased solar energy conversion effi  ciency as compared to ordinary 
semiconductor solar cells.

In hydrogen fuel cells, nanostructured catalyst material is used on carbon-supported noble metal  particles 
with diameters between 1 and 5 nm. For hydrogen storage, materials with nanosized pores like nanotubes, 
zeolites, etc. are under investigation.

(viii) Medical field: Nanomaterials are used in biology for the development of diagnostic devices, drug 
delivery vehicles, analytical tools and in physical therapy applications. Th e genetic sequence of a sample 
can be detected by tagging gold nanoparticles with short segments of DNA.Magnetic nanoparticles are 
used to label molecules, structures or micro-organisms of an antibody. Iron nanoparticles are used in 
cancer treatment. Nanotechnology is used to reproduce or to repair damaged tissue.

(ix) Textiles: Clothes made of nanofi bres are water and stain repellent and wrinkle-free. Th ey can be washed 
less frequently at low temperatures.

(x) Computer: Quantum computers use fast quantum algorithms and have quantum bit memory space 
(qubit), so it involves in several computations at the same time.

(xi) Cosmetics: Sun screens based on mineral nanoparticles such as titanium dioxide off er several advan-
tages. Th ey have high UV protection compared to the bulk material.

(xii) In addition to the above, we have quantum dots, suntan lotion, nanotubes, protective coatings. Fullerenes 
[C

60
] are used as lubricants [molecular ball bearings], diamond seeding, diamond production, xerographic 

materials, photochronic goggles, etc.

(xiii) Th ere is a scientifi c evidence that some nanomaterials are toxic to humans or to the environment. 
Nanomaterials are able to cross biological membranes and access cells, tissues and organs. Normally, this 
cannot be done by larger sized particles. Some materials penetrate the skin. Nanomaterials have the potential 
to cause DNA mutation and induce major structural damage to mitochondria, even resulting in cell death.
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 Multiple Choice Questions

 1. Nanotechnology was brought into day light by delivering lectures by: ( )

 (a) Feymann (b) Einstein  (c) Newton (d) Max Planck

 2. Nanostructures have sizes in between: ( )

 (a) 1 and 100 Å  (b) 1 and 100 nm 
 (c) 100 and 1000 nm  (d) None of the above

 3.  Nanotechnology deals with ___________ of nanostructures into useful nanoscale devices such as electronic circuits 
and mechanical devices at the molecular level. ( )

 (a) the design (b) manufacturing  (c) applications (d) All the above

 4. Choose the correct statement: ( )

 (a) If we properly arrange carbon atoms in coal then it may become diamond
 (b) By rearranging atoms in sand, silicon chip can be made
 (c) Both a and b 
 (d) None of the above

 5. Th e probe of scanning tunneling microscope is as sharp as ( )

 (a) an atom at the tip  (b) many atoms at the tip 
 (c) a needle  (d) None of the above

 6. Choose the correct statement ( )

 (a)  Scanning tunneling microscope probe can extract single atom from the surface of the specimen and place it at 
the desired position.

 (b) Scanning tunneling microscope is useful for manipulating single molecules and observing molecular shapes.
 (c) Spherical molecules with 60 carbon atoms can be made and it is called bucky ball or fullerenes.
 (d) All the above

 7. Th e surface area to volume ratio is ___________ for nanomaterials. ( )

 (a) very large  (b) very less 
 (c) moderate  (d) None of the above

 8.  Th e bulk materials, when reduced to nanoparticles will show ___________ physical and chemical 
properties. ( )

 (a) same (b) diff erent  (c) Both a and b (d) None of the above

 9. Th e interatomic distance ___________ by reducing the size of nanoparticles. ( )

 (a) decreases  (b) increases 
 (c) remain same   (d) None of the above

10. Th e diff erent sized nanoparties scatter diff erent wave lengths of light incident on it and they appear with: ( )

 (a) same colour  (b) diff erent colours 
 (c) colourless  (d) None of the above

11. Choose the correct statement: ( )

 (a) Porous silicon exhibits red photoluminescence.
 (b) Nanogold particles can be orange, purple, red or greenish in colour depending on their grain size.
 (c) Nanoparticle copper is transparent 
 (d) All the above
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12. When a bulk material is changed into nanoparticles material then their ___________ properties changes. ( )

 (a) optical (b) thermal  (c) magnetic (d) All the above

13. Choose the correct statement: ( )

 (a)  Th e melting point of nanogold decreases from 1200k to 800k as the size of particles decreases form 300Å 
to 200Å

 (b) Th e Debye temperature and ferroelectric phase transition temperature are lower for nanomaterials.
 (c) Stable aluminium turns to combustible in nanophase.
 (d) All the above

14. Fe, Co, Ni and Gd are ferromagnetic in bulk but they show ___________  magnetic in nanophase. ( )

 (a) super para (b) para  (c) ferri (d) dia

15.  Na, K and Rh show paramagnetic properties in bulk whereas in nanophase they show ___________ 
properties. ( )

 (a) diamagnetic  (b) ferrimagnetic 
 (c) ferromagnetic  (d) antiferromagnetic

16. By reducing the size of metal particles from bulk to nano, the energy bands are:

 (a) narrower (b) remains same  (c) wider (d) None of the above

17. Choose the correct statement: ( )

 (a)  In metals and alloys, the hardness and toughness are increased by reducing the size of nanoparticles and in 
ceramics, ductility and super plasticity are increased.

 (b)  Th e hardness increases by 4 to 6 times for nanocrystalline copper than coarse grain copper and it is 7 to 8 for 
nickel.

 (c) By reducing the size of nanocrystalline metals from 1μm to 10 nm, the hardness increases by 2 to 7 times.
 (d) All the above

18.  Th e nanomaterials with smaller grain size are stronger, because crack propagation can be ___________ than in bulk 
materials. ( )

 (a) reduced  (b) increased 
 (c) a or b  (d) None of the above

19.  Th e creep rates can be increased by ___________ times by reducing the grain size from microns to 
nanometres. ( )

 (a) 4 to 6 (b) 6 to 8  (c) 8 to 10 (d) 2 to 4

20. Choose the correct statement: ( )

 (a)  Some chemically inert bulk materials like Pt and Au can become good chemical catalysts in nanophase.
 (b)  Nanocrystalline materials are strong, hard, wear resistant, errosion resistant, corrosion resistant and are 

chemically active.
 (c)  Th e equilibrium vapour pressure, chemical potentials and solubilities of nanoparticles are greater for nanoma-

terials than bulk materials.
 (d) All the above

21. Choose the correct statement: ( )

 (a) Single walled carbon nanotube can act as a transistor.
 (b) Single walled carbon nanotube with a natural junction can act as a rectifying diode.
 (c) Carbon nanotubes can act as axles in nanomachines.
 (d) All the above
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22. Nanostructures are made using ___________ methods. ( )

 (a) optical of X-ray lithography
 (b) dip pen nanolithography 
 (c) electron beam lithography and atomic lithography
 (d) All the above

23. Nanoparticles are produced using ( )

 (a) sol-gel method
 (b) plasma arcing and ball milling methods 
 (c) chemical vapour deposition and electro deposition methods
 (d) All the above

24. Th e length of a carbon nanotube will vary from: ( )

 (a) several micrometres to millimetres (b) millimetres to centimetres 
 (c) centimetres to metres (d) None of the above

25. Th e diameter of a carbon nanotube will vary from ( )

 (a) 1 to 20 nm (b) 20 to 50 nm (c) 50 to 100 nm (d) 100 to 200 nm

26. Carbon nanotube ends are closed with caps containing ___________ rings. ( )

 (a) tetragonal (b) pentagonal  (c) hexagonal (d) None of the above

27. Th e diff erent types of single wall carbon nanotubes are: ( )

 (a) arm chair (b) zig-zag  (c) chiral type (d) All the above

28. Carbon nanotubes are prepared using: ( )

 (a) laser method and electrolysis method
 (b) plasma arcing method and chemical vapour deposition method
 (c) ball milling method and diff usion fl ame synthesis method
 (d) All the above

29. Carbon nanotubes are: ( )

 (a) 6 times lighter, 10 times stiff er and 20 times stronger than steel 
 (b) robust
 (c) having electrical conductivity 1000 times more than that of copper 

 (d) All the above

30. Choose the correct statement: ( )

 (a)  In atomic force microscopy, electrons are used to measure the force applied on the probe tip as it moves on the 
object surface.

 (b)  In scanning tunneling microscopy, the electrical current fl owing between the scanning tip and the object  surface 
to measure local electrical conduction and geometry of the object at that place.

 (c)  In magnetic force microscopy, the tip scans the magnetic surface and locally detects the magnetic structure of 
the substance.

 (d) All the above

31. Th e nanocrystalline tungsten carbide, tantalum carbide and titanium carbide are: ( )

 (a) harder than their conventional materials
 (b) more wear-resistant and erosion-resistant
 (c) used in cutting tools and drill bits
 (d) All the above
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32. Nanocrystalline silicon nitride and silicon carbide are used in the manufacturing of : ( )

 (a) high strength springs
 (b) ball bearings and value lifters 
 (c) both a and b 
 (d) None of the above

33. Th e nanophosphors may ___________ the making cost of high resolution televison. ( )

 (a) reduce  (b) increase
 (c) have no change in  (d) None of the above

34.  In new generation batteries, the separator plates are made up of with nanocrystalline nickel and metal hydrides 
because they: ( )

 (a) hold more energy  (b) are long losting
 (c) require rare recharging (d) All the above

35.  In air crafts, by decreasing the grain size of nanomaterials the fatigue strength increases and the fatigue life increases 
as much as: ( )

 (a) 50% (b) 200% (c) 300% (d) 100%

36.  Th e thermal energy generated in engine cylinders is wasted to a large extent, this wastage can be reduced by coating 
the cylinders with nanocrystalline ceramics such as: ( )

 (a) zirconia  (b) alumina 
 (c) Both a and b  (d) None of the above

37. Aerogels are used: ( )

 (a) for insulation in offi  ces and homes
 (b) for smart windows
 (c) both a and b
 (d) None of the above

38. Nanomaterials are used in ( )

 (a) micro electronics, machine tools and high power magnets 
 (b) monitors, television, engine cylinders and aerogels
 (c) textiles, computers and in medical fi elds
 (d) All the above

39. In the medical fi eld nanotechnology is used: ( )

 (a) to reproduce or to repair damaged tissue
 (b) iron nanoparticles are used in cancer treatment
 (c) for the development of diagnostic devices, drug delivery vehicles and analytical tools
 (d) All the above

40. Clothes made up of nanofi bres are: ( )

 (a) water and stain repellent  (b) wrinkle free 
 (c) less frequently washed  (d) All the above

41. Choose the correct statement: ( )

 (a) Quantum computers have quantum bit memory space so it involves in several computations at the same time
 (b) Sun Screens based on mineral nanoparticles have high UV Protection compared to the bulk material
 (c) Both a and b 
 (d) Nanomaterials are not toxic to humans or to the environment
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 Answers

 1. a  2. b  3. d  4. c  5. a  6. d  7. a  8. b  9. a 10. b 11. d
12. d 13. d 14. a 15. c 16. a 17. d 18. a 19. b 20. d 21. d 22. d
23. d 24. a 25. a 26. b 27. d 28. d 29. d 30. d 31. d 32. c 33. a
34. d 35. c 36. c 37. c 38. d 39. d 40. d 41. c

 Review Questions

1. Write a detailed note on nanoscience and nanotechnology. (Set-1, Set-3–May 2008), (Set-2–Sept. 2008)

2. Write a detailed note on nanoscience. (Set-1–Sept. 2008), (Set-4–May 2008)

3. How the physical and chemical properties of nanomaterials vary with their size?

 (Set-4–Sept. 2008) (Set-2–May 2008)

4. Write the important applications of nanomaterials. (Set-4–Sept. 2008), (Set-2–May 2008)

5. Write the important applications of nanomaterials in medicine.  (Set-2–Sept. 2008), (Set-1, Set-3–May 2008)

6. Why nanomaterials exhibit diff erent properties? Explain. (Set-1–Sept. 2008), (Set-4–May 2008)

7. What are nanomaterials? Explain. (Set-3–Sept. 2008)

8. Nanomaterials exhibit diff erent properties. Explain the reason. (Set-3–Sept. 2008)
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Hexagonal Close Pack (HCP) Structure

Hexagonal close packed (HCP) crystal structure has two layers of atoms. One layer of atoms is present at the 
bottom face of the unit cell, and it is referred to as the ‘A ’ layer of atoms. Above the bottom layer, we have a 
second layer of atoms. Th is is the middle layer in the unit cell and is referred to as the ‘B ’ layer of atoms. Th e 
atoms in the ‘B ’ layer are seated in the voids between any three atoms of the bottom layer. Above the second layer, 
we have a third layer of atoms. Th is is the top layer of atoms in the unit cell and it is a repetition of the bottom 
layer. Hence, the stacking of a hexagonal close packed crystal structure consists of a series of ABABAB… layers.

Th e unit cell structure of HCP is shown in Fig. A.1. Th e unit cell parameters a, b, c are shown in the 
diagram.

 a = b ≠ c ;

 α = β = 90° and γ = 120°

A P P E N D I X A

Figure A.1 Unit-cell structure of HCP
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A-2 Appendix

In the unit cell, the atoms are present at the six corners of a hexagon and at the centre of the hexagon at 
the bottom and top faces. Th ree more atoms are present at the centres of alternate side faces. Th e bottom face 
atoms are on one plane and the central atoms of the side faces are in another plane. So, it has two layers of 
atoms and these layers repeat themselves in the crystal.

Each corner atom of the unit cell is shared by six unit-cells. Hence, the total number of atoms at the 

twelve corners of a unit cell is 12
1

6
2× = .

Th e central atom at the base is shared by two unit cells. Hence, the number of atoms shared from the 

centres of the bottom and top faces of the unit cell = × =2
1

2
1.

Th e second layer inside the unit cell has 3 atoms.
∴ Th e number of atoms per unit cell of HCP = 6
Along the edge of any of the bottom or top face, the surfaces of two atoms are in contact, hence the 

bottom face edge length, a = 2r or r
a

=
2

.

To get the coordination number, imagine the central atom at the base. Th is is surrounded by six atoms 
on the basal plane, three atoms on its top layer and three atoms on the bottom layer. Hence, the coordination 
number is 12.

To fi nd the relation between the height of the unit cell c and the length of the bottom face edge a, conside the 
bottom and middle planes of the atoms are shown in Fig. A. 2. Th e separation between these two planes is c/2.

From Fig. A.2, the triangle OHI is a right angle triangle, the angle at H is 90°.

 
∴ = = +OI HI OH2 22 2a

 =
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ +

c

2

2

2OH  ___________ (A. 1) 

Since the surfaces of atoms present at ‘O’ and at ‘I ’ are in contact so IO = 2r = a.

Figure A.2 The bottom and middle layer of atoms in a HCP unit cell
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To fi nd OH, consider the triangle ABO in which cosθ =
GO

AO
 or GO = AO cosθ = a cosθ = a cos30° (∴ θ = 30°)

 ∴ =GO
3

2

a

As H is the centre point of the triangle ABO,

 OH
2

3
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Th is is the axial ratio for hcp crystal structure. Lastly, the packing factor can be estimated in the follow-
ing way.
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 V = [6 × area of triangle ABO] × height of the unit cell
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A-4 Appendix
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Substituting equation (A. 5) and equation (A. 6) in equation (A. 4)
we get
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or 74 % using equation (A. 3)
Th e above value of packing factor is equal to the packing factor of FCC.

Appendix A.indd   4Appendix A.indd   4 9/25/2009   5:53:35 PM9/25/2009   5:53:35 PM



Surface Defects

Two-dimensional crystal imperfections are known as surface defects or plane defects. In surface defects, the 
imperfections should lie about a surface having few atomic dimensions thick. Surface defects are of two types 
(a) external surface defects and (b) internal surface defects.

(a) External surface imperfections: Every atom present inside the crystal has a large number of sur-
rounding atoms, whereas the atoms present on the surface of the crystal has no neighbouring atoms on one 
side of the surface. Hence atomic bonds do not extend beyond the surface of the crystal. Because of this, the 
surface atoms possess larger energy than the interior atoms. Th is larger energy at the surface causes imperfec-
tion at the external surface itself.

(b) Internal surface imperfections: Th e change in stacking of atomic planes across a boundary in the 
crystal is known as internal surface imperfection. Some of the internal surface imperfections are explained 
below:

(i) Grain boundaries: Th e non-periodicity of atoms between the crystallets (grains) of a polycrystalline 
material causes grain boundary surface defect. During recrystallization or during solidifi cation of a poly-
crystalline material, the atoms from adjacent regions of two crystallets eventually impinge on each other, 
while the atoms between the crystallets are pulled to take up a compromised position between the two 
crystallets.

Th e thickness of this non-periodic region is of the order of 2 to 10 atomic distances or more. Th is 
boundary region is called a crystal boundary or a grain boundary and is shown in Fig. B.1. Th e orienta-
tion of the crystallets changes sharply at the grain boundary. If the misorientation angle between the 
crystallets is greater than 10 to 15°, then it is called a high-angle grain boundary. On the other hand, if 
the misorientation angle between the adjacent crystals is of the order of a few degrees or less than 10°, then it 
is called a low-angle grain boundary.

A P P E N D I X B
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A-6 Appendix

(ii) Tilt and Twist boundaries: Tilt boundary has an array of edge dislocations as indicated by (⊥) in 
Fig. B.2. In the fi gure, ‘h ’ is the vertical spacing between two consecutive edge dislocations and ‘b’ is the length 

of Burger’s vector. Here tanθ θ≈ = ∗b
h

, is the angle of tilt or misorientation. Th is is a low-angle boundary. 

Twist results from a set of screw dislocations, it is also a low-angle boundary.

Figure B.1 High-angle grain boundaries

Grain
boundaries

Grains

Figure B.2 Tilt boundary

Boundary
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Appendix A-7

(iii) Twin boundaries Th is is a surface imperfection that separates two mirror orientations of a crystal.

As shown in Fig. B.3, the atomic arrangement on one side of a twin boundary is a mirror refl ection of the 
atomic arrangement on the other side of the twin boundary. Th e region between the two boundaries is called 
the twinned region. Th e twin boundaries can be seen under an optical microscope. 

Figure B.3 Twin boundaries

Boundaries
Crystal
planes

(iv) Stacking fault: Stacking fault is a surface imperfection in which there is a discrepancy in the stack-
ing sequence of atomic planes. As shown in Fig. B.4, the stacking sequence in close packed FCC structure is 
ABCABCABC… 

Suppose that in a small region in atomic layer ‘C ’, the atoms are not positioned properly. Th en at this 
region, the stacking sequence is diff erent and here the stacking sequence becomes … ABAB … . Th is is 
the stacking sequence of HCP structure. Th us the missing atoms in a small area of atomic layer ‘C ’ gives rise 
to a stacking fault in close packed FCC crystal. Th e crystal will be sound on both sides of the fault.

(v) Ferro-magnetic domain walls: A ferro-magnetic material contains a large number of ferro-magnetic 
domains. Each domain is magnetised to saturation in a particular direction inside the material. Th e intensity 
of magnetic fi eld and hence the magnetic fi eld energy is almost uniform inside the domains. However, the 
intensity of magnetic fi eld and the magnetic fi eld energy is more at the surface of the domains. Th is large 
magnetic fi eld energy on the surface of the domains gives rise to a surface imperfection known as magnetic 
domain-wall imperfection.

Atomic planes

A
B
C
A
B
C
A
B
C
A
B
C

Figure B.4 Stacking fault
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A-8 Appendix

(2) volume defects: Th e cracks that are formed due to small electrostatic dissimilarity between the 
stacking layers, or due to sudden thermal waves or by using the material for some application cause volume 
defects.

Th e presence of large vacancies or voids due to missing clusters of atoms, non-crystallined regions, and 
inclusion of foreign particles with a dimension of at least 10 to 30Å are considered as volume detects.
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Chapter - I
Appreciable: Large enough to be noticed.

Approach: To come near to in distance or time.

Available: Th at you can get, buy or fi nd.

Bond: A representation or a valency link by which 
one atom is attached to another in a chemical 
compound.

Bound: Held together fi rmly, to tie

Cleave: To split or cut

Cohesion: Th e attraction existing between 
molecules of the same kind. Th e force of reaction 
between similar molecules or molecules of the same 
substance.

Consequence: As a result of

Considerable: Great in amount, size, importance etc.

Consists: To have, possess

Crystal: A natural solid bounded by planes, a substance 
in which the constituents are arranged in a defi nite 
geometrical form

Crystal structure: Th e arrangement of atoms, ions 
or molecules in a crystal is called crystal structure 

Dielectric: A non conductor of electric charge in 
which an applied electric fi eld causes a displacement 
of charge but not a fl ow of charge.

Dipole: Two equal and opposite charges that are 
separated by a distance

Directional: Producing or receiving signals, sound, 
etc, better in one particular direction.

Dispersion: Th e process by which people or things 
are spread over a wide area

Dominate: To control or have a lot of infl uence on 
an unpleasant way.

Electricity: Any eff ect resulting from the existence 
of stationary or moving electric charges.

Electrostatic fi eld: Electric fi eld produced by 
stationary charges or charges at rest.

Equilibrium: A body is said to be equilibrium if (i) 
sum of the force acting on it is zero  and (ii) there is 
no net torque acting on the body.

Evolve: To develop gradually, especially from a 
simple to a more complicated form.

Exist: to be real; to be present in a place or situation.

Extent: How large, important, serious etc.

Fluctuate: To change frequently in size, amount, 
quality etc.,

Dictionary of Selected Terms
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D-2 Dictionary of Selected Terms

Fracture: A break in a material

Incapable: Not able to do

Indicate: To show, to mention, to represent 
information without using words.

Infi nite: Very great; Impossible to measure without 
limits, with out end.

Infl uence: Th e eff ect on the way that behaves or 
thinks

Instantaneous: Happening immediately 

Insulator: A substance that is poor conductor of 
heat and electricity

Inter: Between, from one to another

Inter atomic forces: Forces between atoms

Intermolecular forces: Forces between molecules 
and atoms, such forces are attractive in nature

Ion: An electrically changed atom formed by the 
loss (positive ion) or gain (negative ion) of one or 
more electrons. Positive ions are called cations and 
negative ions are called anions.

Isolate: To separate physically from other things.

Migrate : To move from one place to another

Moment: Th e product of force and the perpendicular 
of its line of action from the point on which it acts.

Occur: To happen 

Opaque: Not allow light through

Overlap: Part of one thing covers part of the other.

Polar: Connected with the poles.

Potential energy: Energy possessed by a body by 
virtue of its position

Primary: Basic, main, most important

Proximity: Th e state of being near in terms of 
distance or time.

Represent: To show, to present, to describe

Rigid: Very strict and diffi  cult to change

Rigidity: Stiff ness, resistance to change of form

Secondary: Less important

Share: To have or use at the same time, to divide 
between two or more

Solvent: A substance, especially a liquid that can 
dissolve another substance.

Stable: Firmly fi xed, not likely to move

Stress: Th e force per unit area on a body that tends 
to cause it to deform

Chapter - II
Base: Th e fi rst or main part of a substance to which 
other things are added.

Constitute: To be the parts that together form

Crystal structure: Th e atoms, ions or molecules 
forming the crystal have a regular arrangement.

Crystalline: Made of or similar to crystals.

Crystallography: Th e study of crystal form and 
structure

Distribution: Th e act of giving or delivering to a 
number of people 

Effi  cient: Doing well and thoroughly with no wast 
of time money or energy.

Exist: To be real, to be present in a place or situation

Geometric: Having regular shapes or lines

Identical: Similar in every detail. 

Interpenetrate: To spread one thing to another in 
each direction.

Intersection: A place where two or more roads, 
lines etc. meet or crosses each other.

Isotropic: Having the same properties in all direction.

Lattice: Regular arrangement of atoms, ions or 
molecules in a crystalline solid.

Occupy: To fi ll or use a space, an area or an amount 
of time.

Parameter: Some thing that decides or limits a way 
in which it can be done

Periodical: Happening fairly often and regularly

Poly: Many

Primitives: Very simple and old fashioned

Projection: Th e act of putting an image on to a surface
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Dictionary of Selected Terms D-3

Represent: To show

Sequence: A set of events, actions, numbers, etc. 
which have a particular order and which lead to a 
particular order.

Stack: A pile, usually neatly arranged, to arrange 
object neatly in a pile.

Symmetries: Symmetry operations which transform 
the body into itself i.e., original position or shape.

Unit cell: Th e group of particles (atoms, ions or 
molecules) in a crystal that is repeated in three 
dimension in the crystal.

Chapter - III
Accommodate: To provide with a room or place

Anion: Negative ion

Arbitrary: Determined by chance, not limited by 
law.

Cation: Positive ion

Complicated: Made of many diff erent things or 
parts that are connected, diffi  cult to understand.

Concentric: Having the same centre for circles.

Consecutive: following one after another in a series, 
without interruption.

Constructive: Having a useful and helpful eff ect 
rather than being negative.

Defect: Discontinuity in a crystal lattice.

Deformation: Th e process of changing and spoiling 
the normal shape

Destructive: Causing damage.

Diff raction: Th e bending of waves as they pass 
through an aperture or round the edge of a barrier

Dislocate: Out of its normal position

Disorder: lack of order

Entropy: a measure of the degree of disorder of a 
system.

Equidistant: Equally far from two or more places.

Extrinsic: Not belonging naturally, coming from or 
existing out side

Fluctuate: To change frequently in size, amount, 
quantity, etc.

Glides: To move smoothly and quietly.

Hammering: Th e act of hitting with a hammer

Indicate: To show, to be a sign of, to mention, to 
make notice.

Intercept: To stop.

Interference: Th e eff ect produced by the 
superposition of waves

Interior: connected with the inside part of

Interplanar: Between planes 

Interpretation: the particular way in which a thing 
is understood or explained.

Intersect: To meet or cross each other lines

Interstitices: A small space

Monochromatic radiation: electromagnetic 
radiation having only one wavelength or frequency.

Neutral: having neither a positive charge nor a 
negative electrical charge

Orientation: Th e act of directing your aims towards 
a particular thing.

Pattern: A regular arrangement of lines, shapes, 
colours, etc. and a design on a material, carpets etc.

Reciprocal: Counterpart, complement

Represent: To show

Scattering: Th e spreading out or diff usion of a beam 
of radiation when it is incident on matter.

Semiconductor: A substance whose conductivity 
lies between that of an insulator and a conductor.

Shear: to break under pressure.

Spiral: A shape or design, consisting of a continuous 
curved line that winds around a central point.

Substitute: Instead of 

Succeed: to achieve that you have been trying to do

Successive: Following immediately one after the 
other

Vacancy: Empty

Vibration: A continuous shaking moment or feeling
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Chapter - IV
Associate: joined or connected with a profession or 
an organization

Associated: the two things are connected because 
they happen together or one thing causes the other.

Collision: Hitting of bodies

Complex: Made of many diff erent things or parts 
that are connected.

Compton eff ect: When an X-ray or γ-ray photon 
collides with an electron. Some of the photon’s 
energy is transferred to the electron and consequently 
the wavelength of the radiation is increased. Th is is 
known as Compton eff ect.

Concentric: circles having the same centre.

Conjugate: to have diff erent forms, showing number, 
person, tense, etc.

Counter: Any device for detecting and counting 
objects or events, often incident charged particles or 
photons.

Damping: a decrease in the amplitude of an 
oscillation as a result of energy being drained from 
the oscillating system to over come from frictional 
or other resistive forces.

Degeneracy: Th e number of diff erent arrangements 
of a system having the same energy.

Derive: to get from

Distribution: Arrangement or classifi cation of 
particles in a system.

Diff ract: to break up a beam of light into a series of 
dark and light bands

Diff raction grating: a glass plate with a very large 
number of closely spaced parallel  lines (about 6000 per 
cm) is used to produce a spectrum of a given light.

Discrete: independent of other things of the same 
type.

Dual: having two parts or aspects

Eigen function: An allowed wave function of 
a system in quantum mechanics. Th e associated 
energies are eigen values.

Evacuate: Remove air

Existence: Th e state or fact of being real or living.

Fluorescent: producing bright light by using some 
forms of radiation

Foil: Metal made into very thin sheets that is used 
for covering or wrapping things

Hypothesis: An assumption as basis for investigation 
or reasoning. An idea or explanation based on a few 
known facts, which has not yet been proved to be 
true or correct.

Incident: Falling or striking on something.

Indicate: To show, to make  notice.

Individual: considered separately rather than as a 
part of a group.

Infi nite: Very great, impossible to measure, without 
limits, without end.

Intensity: Th e strength, degree or extent of any 
given quality.

Instant: happening immediately

Macro: large

Momentum: A quantity expressing the motion of a 
body or system. It is equal to the product of the mass 
of a body and its velocity. For a system, it is equal to 
the vector sum of the products of mass and velocity 
of each particle in the system.

Observe: to see, to notice or to watch

Oriented: to direct for a particular purpose

Photo electric eff ect: When photon of suffi  cient 
energy incident on alkali metals, electrons are 
emitted is known as photoelectric eff ect.

Photon: A quantum or ‘packet’ of electromagnetic 
radiation, usually considered as an elementary 
particle.

Position: Location, refers to the place occupied by 
a body or system

Potential barrier: A region containing a maximum 
of potential that prevents a particle on one side of it 
from passing to the other side.

Probability: How likely a thing is to happen

DIC.indd   4DIC.indd   4 9/25/2009   6:01:59 PM9/25/2009   6:01:59 PM



Dictionary of Selected Terms D-5

Process: A series of things that are done in order to 
achieve a particular result. 

Quantize: To restrict a variable to discrete values, 
each of which is an integral multiple of the same 
value.

Quantum Mechanics: A theory based on the idea 
that most physical quantities like energy, angular 
momentum, etc.  can take up only certain values and 
can not very continuously

Radiation: Th e process by which energy given off  
by one body is transmitted through a medium or 
through space and absorbed by another body.

Receive: to get or accept or given to you

Relativism: in relation to other things

Relativity: According to this theory the mass of 
a body increas with velocity, length and time also 
changes with velocity

Respectively: In the same order as the people or 
things already mentioned

Scatter: to throw or drop things in diff erent direction 
so that they cover an area of ground.

Scattering: Th e spreading out or diff usion of a beam 
of radiation when it is incident on matter

Spur: A sharp pointed object

Substitute: Instead of the one you normally use or 
have

Suggest: To put forward an idea or a plan for other 
people to think about.

Target: An object that people practice shooting at

Validity: Th e state of being logical and true.

Chapter - V
Absolute: Not dependent on or relative to anything 
else.

Acceptable: Agree or approve of most people in the 
society.

Acquire: To gain by your own eff orts, ability or 
behaviour 

Allowed: be done, happen

Assumption: a belief or feeling that is true or that 
will happen. Although there is no proof.

Coeffi  cient: a number which is placed before 
another quantity and which multiplies it.

Collision: Hitting of bodies

Conductive: Able to conduct electricity, heat, etc.

Consequence: as a result of.

Core: Th e central region of a star, planet, atom, etc.

Distribution: the way that some thing is shared, the 
act of giving or delivering to a number of people.

Drift: the movement of current carriers in a semi-
conductor under the infl uence of an applied voltage.

Drop: to fall or allow to fall.

Equipartition: the total energy of a molecule is 
equally distributed among the various degrees of 
freedom of the molecule

Existence: Th e state or fact of being real or living

Forbidden: Not allowed 

Infl ection: A change in the form. 

Insulator: A substance that is a poor conductor of 
heat and electricity

Isolate: to separate physically or socially from other 
people or things

Occupy: To fi ll or use a space, an area or an amount 
of time 

Propagate: To spread an idea, a belief or a piece of 
information among many people.

Quantum mechanics: Th e branch of mechanics 
that deals with moment and force in pieces of matter 
smaller than atoms.

Random: done, chosen, etc. without thinking or 
deciding in advance what is going to happen.

Scatter: To through or drop things in diff erent 
directions so that they cover an area of ground.

Specifi c heat: Heat supplied to a unit mass of a 
body to rise its temperature through one degree 
centigrade.

Specimen: a small amount of
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D-6 Dictionary of Selected Terms

Successive: Following immediately one after the 
other

Superimpose: To put one image on top of another 
so that two can be seen combined.

Chapter - VI
Ability: the state of being able to do, a level of skill 
or intelligence.

Alignment: Arrangement in a straight line

Anomalous Dispersion: A sudden discontinuity in 
the graph of refractive index versus wave length of 
light due to the high absorbivity of the medium at 
wave lengths in the region of absorption band.

Approach: To come near to in distance or time.

Continuum: a series of similar items

Contribute: the act of giving,

Contribution: the act of giving, especially money, to 
help a person or an organization.

Damping: A decrease in the amplitude of an 
oscillation or motion with time.

Dielectric: A non conductor of electric charge in 
which an applied electric fi eld causes a displacement 
of charge but not a fl ow of charge.

Dipole: Two equal and opposite charges that are 
separated by a distance.

Dissipate: To gradually become or make become 
weaker until it disappears.

Distribute: to give things to a large number of 
people.

Distribution: the way that something is shared, the 
act of giving or delivering to a number of people.

Equipment: the things that are needed for a 
particular purpose or activity.

Extinguish: to make a fi re stop burning or light stop 
shining, to destroy

Ignite: to start to burn, to make start to burn

Induce: to infl uence, to cause

Insulator: A substance that is a poor conductor of 
heat and electricity 

Intercept: to stop going from one place to another 
from arriving.

Isotropic: Exhibiting identical properties in all 
directions.

Laminated: made by sticking several thin layers 
together

Microscopic: Extremely small and diffi  cult or 
impossible to see without a microscope.

Moderate: Th at is neither very good, large, hot, etc. 
nor very bad, small, cold, etc.,

Optic axis: A direction in a double refracting crystal 
along which the ordinary and extra- ordinary rays 
travel at the same speed.

Orientation: the direction in which an object faces.

Permittivity: the ratio of the electric displacement 
in a medium to the intensity of the electric fi eld 
producing it.

Polar: connected with or near the north or south pole.

Polarization: When an insulator is placed in an 
electric fi eld, the charges in its molecules separate so 
that one face has  a net positive charge and the other 
a net negative charge. Th is eff ect is called electric 
polarization.

Prevent: to stop from doing

Random: diff erent directions or ways

Remance (retentivity): Th e magnetic fl ux density 
remaining in a ferromagnetic substance when the 
saturation fi eld is reduced to zero.

Resonance: An oscillation of a system at its natural 
frequency of vibration as determined by the physical 
parameters of the system.

Restore: to bring back a situation or feeling that 
existed before, to bring back to a former condition.

Saturation: Th e state or process that happens when  
no more of it can be accepted or added because there 
is already too much of it or too many of them.

Specimen: A small amount of that shows what the 
rest of it is like

Spontaneous: done naturally without being forced.

Stability: Th e quality or state of being steady and 
not changing or being disturbed in any way.
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Suggest: to put forward an idea or plan for other 
people to think about.

Susceptibility: Th e state of being very likely to be 
infl uenced or aff ected.

Transducer: Device for converting a non electrical 
signal, such as sound, light, heat, etc. into an electrical 
signal or vice versa.

Chapter - VII
Acquire: To gain by  your own eff orts, ability or 
behaviour.

Agitation: Th e act of stirring or shaking a liquid.

Alloy: A material that is formed by mixing a metal 
with other metal or other elements.

Analogous: Similar in some way to another thing 
or situation.

Anisotropic: denoting a medium in which certain 
physical properties are diff erent in diff erent directions.

Bulk: Th e main part of 

Confi guration: an arrangement of the parts or a 
group of things 

Confi rm: To state or  how that is difi nitely true or 
correct, especially by providing evidence.

Crystallography: the study of crystal form and 
structure

Disruption: Diffi  cult to continue in the normal way

Domain: Region inside a ferromagnetic material in 
which the atomic magnetic moments all point in the 
same directions.

Existence: the state or fact of being real or living.

Feebly: Very weak 

Gyromagnetic ratio: the ratio of the angular 
momentum of an atomic system to  its magnetic 
moment.

Illuminate: To shine, light on 

Intimate: having a close and  friendly relationship, 
very close 

Lateral: connected with the side of or with 
movement to the side.

Magnetic Induction: Th e  number of magnetic 
lines passing per unit area perpendicular to lines.

Magnetization: Th e act of acquiring or 
communicating magnetism.

Magnetostriction: Change in length of a ferro-
magnetic material when it is magnetized.

Orient: To direct towards

Oven: the part of a cooker like a box in which food 
is cooked or heated.

Permeability: Th e ratio of the magnetic fl ux density 
in a substance to the external fi eld strength.

Predominant: Having more power or infl uence 
than others

Propagate: To spread

Propose: to suggest a plan, an idea, etc., for people 
to think about and decide on, to intended to do.

Saturate: to make completely

Shrink: to become smaller

Specimen: A small amount of that shows what the 
rest of it is like 

Suspension: A liquid with very small pieces of solid 
matter fl oating in it.

Unfavourable: not good likely to cause problems or 
make more diffi  cult.

Vacuum: A space from which the air or any matter 
has been exhausted.

Chapter - VIII
Accumulate: To gradually get more and more of, 
over a period of time, gradually increase in number 
or quality over a period of time.

Acquire: to gain by yours own eff orts, ability or 
behaviour

Coeffi  cient: A number which is placed before 
another quantity and which multiplies it.

Diff usion: the process by which diff erent substances 
mix as a result of the random motions of their 
component atoms, molecules and ions

Drift velocity: Average velocity at which electrons 
or ions progress  through a medium.
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Excess: More than is necessary, larger than

Exert: To make a big eff ort, to use power or infl uence 
to aff ect.

Extrinsic semiconductor: a semiconductor in which 
the current carrier density is mainly due to the 
presence of impurities

Generation: a stage in the development of a product, 
generation of electricity, heat etc.

Identify: to recognize and be able to say who or 
what they are

Infi nite: very great, impossible to measure, without 
limits.

Inject: To  add a particular quantity to a body.

Insulator: A substance that is a poor conductor of 
heat and electricity.

Intrinsic semiconductor: It is a pure semiconductor

Minority: Th e smaller part of a group, less than half 
of the people or things in a large group.

Mobility: Th e ability to move easily from one place 
to another.

Occupy: To fi ll or use a space, an area or an amount 
of time.

Participate: To take part in or become involved in 
an activity.

Representation: Th e act of presenting

Rupture: To burst or break apart inside the body.

Semiconductor: A substance whose conductivity 
lies between that of an insulator and a conductor.

Vacancy: A place that is available

Chapter - IX
Accurate: Correct and true in every detail.

Afl oat: Floating on water

Approach: To come near in distance or time.

Attenuate: To make weaker or less eff ective.

Concept: An idea or a principle that is connected with

Confi rm: To state or show that is defi nitely true or 
correct by providing evidence.

Convert: To change or make change from one form, 
purpose, system, etc to another.

Correlate: To show that there is a close connection 
between two or more facts, fi gures, etc. 

Critical: Serious, uncertain and possibly dangerous

Cryotron: A switch that relies on superconductivity.

Diagnose: To say exactly what an illness or the 
cause of a problem.

Drop: To fall or make fall deliberately, fall down.

Enclosure: Something that is placed, in an envelope

Epilepsy: Disorder of the nervous system that 
causes a person to become unconscious suddenly, 
often with violent movements of the body.

Exceed: To be greater than a particular number or 
amount.

Exclusion: Th e act of excluding.

Exist: To be real, to be present in a place or situation.

Forbidden: Not allowed.

Gradually: slowly, over a long period of time.

Imply: To suggest

Interact: To communicate with

Invent: To produce or design that has not existed 
before

Levitate: To rise and fl oat in the air with no physical 
support 

Magnetic Induction: Th e number of magnetic lines 
passing per unit area perpendicular to  magnetic lines.

Magnetization: Th e act of acquiring or 
communicating magnetism.

Magnetometer: An instrument used for comparing 
magnetic moments or fi elds

Mal: Word prefi x meaning bad or badly, not 
correct

Participate: To take part in or become involved in 
an activity.
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Penetration: process of making a way into or 
through

Persistent: Continuing for a long period of time 
without interruption.

Phonon: A quantum of sound wave energy

Resolution: Giving a clear image

Resonator: A device for making sound louder and 
stronger

Sandwich: To fi t into a very small space between 
two other things.

Scatter: To through or drop things in diff erent 
directions so that they cover an area of ground

Segment: A part that is separate from the other parts

Signifi cantly: in a way that has a special or secret 
meaning 

Super: More or better than normal, extremely

Superconductivity: Th e absence of measurable 
electrical resistance in certain substances at a 
temperature close to 0K.

Susceptibility: Th e state of being very likely to be 
infl uenced or aff ected

Transition: Th e process of changing from one state 
or condition to another

Tunnel eff ect: An eff ect in which there is a fi nite 
probability that electrons are able to tunnel through 
a narrow potential barrier.

Variation: Change

Virtual: Almost or very nearly the things described, 
made to appear to exist.

Chapter - X
Aff ected: infl uenced in a harmful way

Anaesthesia: A reversible loss of sensation in all 
or part of the body, usually induced by drugs which 
may be inhaled or injected.

Attenuation: A loss of intensity suff ered by sound, 
radiation, etc. as it pass through a medium.

Automobile: A motor car.

Brewster’s angle: When unpolarized light incident 
on a medium of refractive index n at a particular 
angle x, called Brewster’s angle, such that n = tanx

Bury: To place in a grave, to hide some thing in the 
ground.

Caries: decay in teeth or bones

Choroid: A layer, which lies between the retina and 
the sclerotic

Collisions: Hitting of bodies.

Container: An object designed for holding or 
storing, such as a box, tin, carton, etc.

Conventional: Traditional, normal, customary

Converge: To move towards a place from diff erent 
directions and meet to form a large crowd

Destroy: To damage so badly that it no longer exist, 
works, etc.

Distortion: Th e extent to which a system fails to 
reproduce the characteristics of its input in its 
output.

Etching: To cut lines onto a piece of glass, metal, 
etc. in order to make words or picture.

Excited: Having energy higher than that of the 
ground state

Flash: A sudden brief blaze of light, a sudden and 
temporary increase in brightness

Hetero: Diff erent, 

Homo: Same

Incoherent light: Electromagnetic radiation energy 
not all of the same phase, also consisting of various 
wavelengths.

Interaction: Action or infl uence of people or things 
on each other

Isotope: An element having same atomic number 
but diff erent mass number

Metastable state: A state of system in which it 
is apparently in a stable equilibrium, however, if 
slightly disturbed the system changes to a new state 
of lower energy.
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Nuclear fusion: A type of nuclear reaction in which 
atomic nuclei of low atomic number fuse to form a 
heavier nucleus with the release of large amount of  
energy.

Plasma: A gas that has been heated to very high 
temperature so that most of its atoms or molecules 
are broken down into free electrons and positive ions

Pollution: Th e adverse eff ect on the natural, 
environment including human, animal or plant life 
of a harmful substance that does not occur naturally

Population inversion: To form a situation in which 
the number of atoms in higher energy level is larger 
than that in lower energy level is called population 
inversion.

Predominant: more numerous, powerful

Pulse: A signal of light or electric current of very 
short duration.

Recombination process: Th e process in which 
a neutral atom or molecule is formed by the 
combination of a positive ion and a negative ion.

Resonance: Vibration that occurs when an object or 
system is made to oscillate at its natural frequency.

Resonant cavity: A closed space within a conductor 
in which an electromagnetic fi eld can be made 
to oscillate at a frequency above those at which a 
resonant circuit will operate.

Satellite: A relatively small natural body that orbits 
a planet 

Spontaneous: Occurring naturally not infl uenced 
from outside, voluntary

Stimulated: Increase activity, to excite

Strip: A long narrow fl at piece of material

Temper: Th e degree of hardness and toughness of 
metal or glass

Th reshold: A starting point, the minimum value of 
a quantity or variable that must be reached before it 
has a specifi ed eff ect.

Transition: A change or passage from one condition, 
state, subject, place, etc. to another.

Trimming: Th e parts cut

Unstable: A body move away from its original 
position on being slightly disturbed.

Vicinity: Th e area around a particular place.

Vital: Necessary or essential in order

Weapon: An object such as a knife, gun, bomb, etc. 
that is used for fi ghting or attacking

Chapter - XI
Acceptance: Th e act of accepting a gift, an invitation, 
an off er etc.,

Aperture: An opening that allows light to reach

Attenuation: A loss of intensity, suff ered by sound, 
radiation etc. as it pass through a medium.

Cladding: A protective covering of a hard 
material

Communication: Th e activity or process of expressing 
ideas and feelings or of giving people information. 
Method of sending information especially telephones, 
radio, computers, etc.

Conventional: Traditional method or style, considered 
acceptable by society in general

Core: Th e central part of an object

Coupling: A link for joining things together.

Critical angle: Th e angle of incidence in denser 
medium for which the angle of refraction in rarer 
medium is 90 degree

Delay: To slow some one or something down or 
make them late

Deliver: To give.

Dipstick: A stick used to measure the level of a 
liquid in a container

Distortion: Th e extent to which a system fails to 
reproduce characteristics of its input.

Encode: To express something in or converted into 
code

Extensive: Covering a large area, great in amount, 
dealing with a wide range of information
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Flexible: Bending easily, readily adaptable to suit 
circumstances

Fringes: alternate dark and bright regions produced 
by interference or diff raction of light

Interferometer: An optical instrument, which divides 
the incident beam and then combines to produce 
interference.

Launch: To send into

Modulate: To alter the tone or volume of

Profi le: Th e edge or outline of that you see against 
a back ground.

Pulse: A signal of light or electric current of very 
short duration.

Receive: To get, be  given, accept, welcome

Refl ection: Th e action or process of sending back 
light, heat, sound, etc. from a surface

Refract: Th e bending of light when it goes from one 
medium to another

Regenerate: To produce again, to renew, to be 
brought back

Reliable: to depend on, to be certain of

Repeater: Someone or something that repeats

Sensor: any of various devices that detect or measure 
a change in a physical quantity, usually by converting 
it into an electrical signal

Span: the interval, length, distance etc. between two 
points in space or time.

Split: to divide or break into, to divide or separate

Spreading: Increasing in size, extent

Submarine: A ship that can travel under water

Successive: Following immediately one after the other

Superimpose: on top of another

Tolerance: the ability to resist or endure pain or 
hardship

Total internal refl ection: Th e total refl ection of a 
beam of light in the danser medium at the  inter 
face of denser medium and rarer medium (of lower 
refractive index) when the angle of incidence in the 
denser medium exceeds critical angle.

Transmission: Th e act or process of passing from 
one person, place or thing to another, the act or 
process of sending out an electronic signal.

Transmitter: Th e equipment that transmits the 
signals

Chapter - XII
Coding: A set of rules and characters for converting 
one form of data to another.

Coherent: Having a constant phase relationship.

Construct: Make by fi tting parts together, build, 
form.

Conventional: Custom, usual or general agreement.

Destructive: Make useless.

Diff raction: Th e process of spreading waves of light 
or other things by passing through a narrow aper-
ture or across sharp edge of an object.

Exposing: Lay open or leave uncovered.

Flaws: An imperfection, a crack or similar fault.

Foetus: An unborn mammalian off spring.

Hologram: A photograph of the interference pat-
tern, which when suitably illuminated produces a 
three dimensional image.

Illuminate: Light up, make bright, spread luster on.

Information: Something told, the act of telling 
news.

Interference: Combine of light (or other) waves to 
produce a pattern.

Monochromatic: Containing only one colour or 
light of single wave length.

Non-destructive: Does not involve destruction or 
damage.

Pregnant: A woman having a child developing in 
the uterus.

Reconstruction: Build or form again.

Virtual: Relating to the points at which rays would 
meet if produced backwards.
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Chapter - XIII
Absorption: To take in or receive; the removal of 
energy by the medium through which it passes.

Acoustics: Th e branch of physics that deals with 
sound and sound waves.

Architecture: Th e design and construction of build-
ings with focus on stability and sense of beauty.

Cavitation: Th e formation and collapse of vapour 
pockets in a fl owing liquid in regions of low pressure.

Damping: To cause a decrease in the energy of 
something.

Decoupling: To cause to become separated or 
 disconnected.

Empirical: Derived from or guided by experience or 
observation, without using scientifi c methods.

Quieting: To make something quiet, or to prevent it 
from making sound.

Remedy: Something that corrects or restores to the 
correct or proper condition.

Resonance: A large vibration produced in a system 
when it is subjected to an external stimulus whose 
frequency is the same or nearly the same as the nat-
ural frequency of the system.

Reverberation: Refl ection or replication of sound.

Stall: Th e condition of an engine being stopped 
because of poor supply or overload of fuel mixture.

Standing wave: A wave that remains in a constant 
position.

Sympathetic vibration: Th e vibration of a body at 
its natural frequency in response to the vibration of 
a neighbouring body at that frequency.

Chapter - XIV
Alignment: Put in a straight line or bring into line.

Alternator: A dynamo that generates an alternating 
current.

Amenable: Responsive, tractable.

Analytical: Using analytic methods.

Aviation: Th e skill or practice of operating air craft.

Bulk: Th e greater part of number, a large bodily vol-
ume or a large mass.

Catalyst: A substance, that without itself undergo-
ing any permanent chemical change, increases the 
rate of a reaction.

Cluster: A close group or bunch of similar things 
growing or occuring.

Coercive: restrain or persuade.

Colloids: A substance consisting of ultra micro-
scopic particles dispersed in a second substance, as 
in gels, soils and emulsions.

Confi ne: Hold captive or restrict.

Corrosion: Th e process of wear away by chemical 
action or destroy gradually.

Cosmitic: intended to adorn or beatify the body.

Design: A preliminary plan or sketch for making 
something.

Desire: A longing or craving

Deviate: Turn aside or diverge.

Diabetes: Any disorder of the metabolism with 
excessive thirst and the production of a large amount 
of urine.

Disperse: Distribute or derive in diff erent directions.

Drag: Draw on, pull along with eff ort.

Ductility: Capable of being drawn into wire or 
 easily moulded.

Erosion: Wear away, destroy or destroyed gradually.

Exist: Be alive, occur, be found, have being under 
specifi ed Conditions.

Exploitation: A daring feat, take advantage of

Extension: A part enlarging or added onto a main 
structure or an instance of extending the process.

Extract: Remove, takeout, select or reproduce for 
quotation.

Fabricate: Construct from prepared components.

Fatigue: Weakness in materials caused by repeated 
variation of stress.
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Gelatin: A virtually colourless, tasteless transparent 
water-soluble protein derived from collagen and 
used in food, photography, etc.

Granular: Like grains or granules.

Host: A person who receives or entertains another 
as a guest.

Illumination: Th e act or process of illuminating.

Inhibit: Prevent or restrain.

Interface: A surface forming a Common boundary 
between two regions.

Isolation: Th e sate of being isolated.

Lithography: A process of printing from a plate so 
that ink adheres only to the design to be printed.

Manipulate: Manage to one’s own advantage, alter.

Manufacture: Th e making of articles.

Monitor: Any of various persons or devices for check-
ing or warning about a situation, operation, etc.

Mutation: Th e process or an instance of change or 
alteration.

Nanotechnology: Th e branch of technology that 
deals with dimensions and tolerances of less than 
100 nanometres.

Opaque: Not transmitting light, impenetrable to 
sight.

Pattern: A model or design from which copies can 
be made.

Pixels: A grid of display elements made up of dots of 
phosphor that glows when stimulated by  electrons.

Photolithography: Lithography using plates made 
photo graphically.

Porous: Full of pores, pore is a minute opening in sur-
face through which gas, liquid or fi ne solids may pass.

Probe: A penetrating investigation, a small divice 
for measuring, testing, etc.

Random: Made, done, etc. without method or 
 conscious choice, with equal chances for each 
item.

Resist: Off er opposition, a protective coating of a 
resistance substance, withstand the action, prevent 
from reaching, penetrating.

Robust: Strong and sturdy in physique or construc-
tion.

Specimen: An individual or part taken as an exam-
ple of a class.

Stain: Spoil, damage, discolour or be discoloured by 
the action of liquid sinking in.

Tag: A label tied to an object to show its address or 
an electronic device that can be attached to a person 
or thing for monitoring purposes.

Th erapy: Th e treatment of physical or mental 
 disorders, other than by surgery.

Tough: Hard to break, cut, tear or chew, durable.

Wafer: Very thin; a very thin slice of a semiconduc-
tor crystal.

Wrinkle: Slight crease in the skin such as is produced 
by age.
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Question Papers

Set - 1

I - B.Tech. Supplementary Examinations, Aug/Sep – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Defi ne coordination number and packing factor of a crystal.
 b. Describe BCC crystal structure, with a suitable example.
 c. Obtain an expression for the packing factor of FCC structure. (4 + 6 + 6)

 2a. Derive 3-dimensional, time independent Schrodinger wave equation for an electron.
 b. What is the physical signifi cance of wave function?
 c. Deduce the expression for energy of an electron confi ned to a potential box of width ‘x’. (6 + 4 + 6)

 3a. Discuss with suitable mathematical expressions, the Kronig-Penney model for the energies of an
electron in a metal.

 b. Explain the classifi cation of metals, semiconductors and insulators based on band theory. (10 + 6)

 4a. Explain the following:
   i. Electric Polarization and
  ii. Polarizability.
 b. Derive Clausius-Mosotti relation in dielectrics subjected to static fi elds.
 c. Argon gas contains 2.70 × 1025 atoms/m3 at 0° C and at 1 atm. Pressure. Calculate the dielectric

constant, if the diameter of argon atom is 0.384 nm. (4 + 8 + 4)
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Q-2 Question Papers

 5a. Distinguish between intrinsic and extrinsic semiconductors with suitable examples.
 b. Derive an expression for the density of holes in valence band of an intrinsic semiconductor. (8 + 8)

 6a. What is population inversion relating to laser action? Explain.
 b. Show that the ratio of Einstein’s coeffi  cient of spontaneous emission to Einstein’s coeffi  cient of absorp-

tion, is proportional to the cube of the frequency of the incident photon. (6 + 10)

 7a. Describe the structure of an optical fi ber.
 b. Explain, in detail, the basic principle of an optical fi ber.
 c. Write the applications of fi ber optics in medicine and industry. (6 + 6 + 4)

 8a. Write a detailed note on nanoscience.
 b. Why nanomaterials exhibit diff erent properties? Explain. (6 + 10)
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Question Papers Q-3

Set - 2

I - B.Tech. Supplementary Examinations, Aug/Sep – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks 

 1a. Explain the formation of an ionic crystal, with a suitable example.
 b. Derive an expression for the cohesive energy of an ionic crystal. (6 + 10)

 2a. Show that the energies of a particle in a 3-dimensional potential box, are quantized.
 b. Discuss, in detail, the physical signifi cance of wave function.
 c. A neutron beam of kinetic energy 0.04 eV is diff racted at the plane (1 0 0) of a simple cubic crystal 

for which d
110

 is 0.314 nm. Calculate the glancing angle at which fi rst order Bragg diff raction will be 
observed. (6 + 4 + 6)

 3a. Discuss with suitable mathematical expressions, the Kronig-Penney model for the energies of an
electron in a metal.

 b. Explain the classifi cation of metals, semiconductors and insulators based on band theory. (10 + 6)

 4a. What are the sources of permanent dipole moment in magnetic materials?
 b. Explain the hysteresis loop observed in Ferro-magnetic materials.
 c. Write notes on Ferro-electricity. (6 + 6 + 4)

 5a. Write notes on direct band gap and indirect band gap semiconductors.
 b. Show that for a p-type semiconductor the Hall coeffi  cient, R

H
 = (1/ne). (8 + 8)

 6a. Explain the characteristics of a LASER.
 b. Describe the construction and working of a semiconductor laser.
 c. Write any four applications of laser. (4 + 8 + 4)

 7a. What is the basic principle of holography? Explain.
 b. How to construct and reconstruct a hologram? (6 + 10)

 8a. Write a detailed note on nanoscience and nanotechnology.
 b. Write the important applications of nanomaterials in medicine. (10 + 6)
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Q-4 Question Papers

Set - 3

I - B.Tech. Supplementary Examinations, Aug/Sep – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the terms
    i. basis
   ii. space lattice
  iii. lattice parameters and
   iv. unit cell.
 b. Deduce the expression for the inter-planar separation in terms of Miller indices for a cubic structure.
 (6 + 10)

 2a. Derive one-dimensional, time independent Schrodinger wave equation for an electron.
 b. What is the physical signifi cance of wave function?
 c. An electron is confi ned to a box of length 10−8m. Calculate the minimum uncertainty in velocity. 

 (8 + 4 + 4)

 3a. Explain the terms (i) mean free path, (ii) relaxation time and (iii) drift velocity of an electron in a 
metal.

 b. Discuss the origin of electrical resistance in metals.
 c. Calculate the mobility of the electrons in copper obeying classical laws. Given that the density of

copper = 8.92 × 103 kg/m3, Resistivity of copper = 1.73 × 10−8 ohm-m, atomic weight of copper = 63.5 
and Avogadro’s number = 6.02 × 1026 per k-mol. (6 + 6 + 4)

 4a. Explain the terms:
    i. Magnetic fl ux density
   ii. Magnetic fi eld strength
  iii. Magnetization and
   iv. Magnetic susceptibility. How they are related to each other?
 b. What are hard and soft magnetic materials? Write their characteristic properties and applications.
 (8 + 8)

 5a. Write a note on intrinsic semiconductors.
 b. Derive an expression for the number of electrons per unit volume in the conduction band of an intrinsic 

semiconductor. (6 + 10)

 6a. Describe the various methods to achieve population inversion relating to lasers.
 b. With the help of a suitable diagram, explain the principle, construction and working of a helium-neon 

laser. (6 + 10)

 7a. Explain the principle of an optical fi ber.
 b. Explain how the optical fi bers are classifi ed.
 c. Calculate the angle of acceptance of a given optical fi bre, if the refractive indices of the core and the 

cladding are 1.563 and 1.498 respectively. (6 + 6 + 4)

 8a. What are nanomaterials Explain.
 b. Nanomaterials exhibit diff erent properties. Explain the reasons. (6 + 10)
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Set - 4

I - B.Tech. Supplementary Examinations, Aug/Sep – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Describe, in detail, the seven crystal systems with diagrams.
 b. Sketch the planes (1 2 0), (2 1 3) and directions [1 0 0] and [2 1 1] (10 + 6)

 2a. Discuss the de Broglie hypothesis of duality of matter particles.
 b. Describe, in detail, with a neat diagram, Davisson and Germer experiment to show that particles behave 

like waves. (6 + 10)

 3a. Distinguish between Drude-Lorentz theory and Sommerfeld’s theory of metals.
 b. Explain the Fermi-Dirac distribution function of electrons.
 c. For a metal having 6.5 × 1028 conduction electrons per m3, calculate relaxation time of electrons, if the 

metal has the resistivity 1.43 × 10−8 ohm-m. [Mass of electron = 9.1 × 10−31 Kg] (6 + 6 + 4)

 4a. Explain the following:
   i. Polarization vector and
  ii. Electric displacement.
 b. Deduce an expression for Lorentz fi eld relating to a dielectric material.
 c. Th e radius of the helium atom is 0.55 Å. Calculate the polarizability of He and its relative permittivity. 

Th e number of He atoms in a volume of one metre cube is 2.70 × 1025 atoms. [permittivity of free
space = 8.85 × 10−12 F/m] (4 + 8 + 4)

 5a. Distinguish between intrinsic and extrinsic semiconductors with suitable examples.
 b. Derive an expression for the density of electros in conduction band of an intrinsic semiconductor.
 (8 + 8)

 6a. What is population inversion relating to laser action? Explain.
 b. Distinguish between homo-junction semiconductor laser and hetero-junction semiconductor laser.
 c. A semiconductor diode laser has a peak emission wavelength of 1.55 μm. Find its band gap in eV.
 (4 + 8 + 4)

 7a. Derive the expressions for
   i. acceptance angle and
  ii. numerical aperture, of an optical fi ber.
 b. Describe diff erent types of fi bers by giving the refractive index profi les and propagation details.

 (8 + 8)

 8a. How the physical and chemical properties of nano-particles vary with their size?
 b. Write the important applications of nanomaterials. (10 + 6)
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Q-6 Question Papers

Set - 1

I - B.Tech. Regular Examinations, May/June – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the forces between the two interacting atoms when they are brought nearer to form a 
molecule.

 b. Derive the expression for the equilibrium spacing of two atoms for which the potential energy is 
minimum. (6 + 10)

 2a. Explain de-Broglie hypothesis.
 b. Describe G.P.Th omson’s experiment in support of this hypothesis.
 c. Find the wavelength associated with an electron rose to a potential 1600 V. (4 + 8 + 4)

 3a. Distinguish between Drude-Lorentz theory and Sommerfeld’s theory of metals.
 b. Defi ne Fermi level of electron.
 c. Find the drift velocity of free electrons in a copper wire of cross-sectional area 10 mm2, when the wire 

carries a current of 100 A. Assume that each copper atom contributes one electron to the electron gas. 
[Density of copper = 8.92 × 103 kg/m3, Atomic weight of copper = 63.5 and Avagadro’s number = 
6.02 × 1026 per k-mol] (10 + 2 + 4)

 4a. Explain the following:
    i. Dielectric constant
   ii. Electric susceptibility
  iii. Electric polarization and 
   iv. Polarizability. (6 + 10)
 b. Write notes on:
   i. Ferro-electricity and 
  ii. Piezo-electricity. (6 + 10)

 5a. Explain the critical parameters and their signifi cance in superconductors.
 b. Write notes on:
   i. isotope eff ect and 
  ii. energy gap, in superconductors.
 c. A Josephson junction having a voltage of 8.50 μV across its terminals, then calculate the frequency of 

the alternating current. [Planck’s constant = 6.626 × 10−34 J -sec) (4 + 8 + 4)

 6a. Explain the characteristics of a LASER.
 b. Describe the construction and working of ruby laser.
 c. Write any four applications of laser. (4 + 8 + 4)

 7a. Derive an expression for the ‘numerical aperture’ of an optical fi ber.
 b. Explain the advantages of optical communication system.

Question.indd   6Question.indd   6 6/18/2009   4:04:07 PM6/18/2009   4:04:07 PM



Question Papers Q-7

 c. Th e numerical aperture of an optical fi ber is 0.39. If the diff erence in the refractive indices of the mate-
rial of its core and the ciadding is 0.55, calculate the refractive index of material of the core, when the 
light is launched into it in air. (8 + 4 + 4)

 8a. Write a detailed note on nanoscience and nanotechnology.
 b. Write the important applications of nanomaterials in medicine. (10 + 6)
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Q-8 Question Papers

Set - 2

I - B.Tech. Regular Examinations, May/June – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. What is Bragg’s law? Explain.
 b. Describe Laue’s method for the determination of crystal structure.
 c. Th e Bragg’s angle in the fi rst order for (2 2 0) refl ection from nickel (FCC) is 38.2° when X-rays of 

wavelength 1.54 Å are employed in a diff raction experiment. Determine the lattice parameter of nickel.
 (4 + 8 + 4)

 2a. Explain, in detail, the properties of matter waves.
 b. Describe Davisson and Germer experiment to verify the wave nature of matter  (6 + 10)

 3a. Distinguish between classical free electron theory and quantum free electron theory of metals.
 b. Explain the Fermi-Dirac distribution function of electrons. Explain the eff ect of temperature on the 

distribution. (8 + 8)

 4a. Explain the following:
    i. Dielectric constant
   ii. Electric susceptibility,
  iii. Electric polarization and 
   iv. Polarizability.
 b. Write notes on:
   i. Ferro-electricity and 
  ii. Piezo-electricity. (6 + 10)

 5a. What is Meissner eff ect? Explain.
 b. Describe the diff erence between Type-I and Type –II superconductors.
 c. Th e critical fi eld for niobium is 1× 105 amp/m at 8 K and 2 × 105 amp/m at absoluate zero. Find the 

transition temperature of the element. (4 + 8 + 4)

 6a. Distinguish between spontaneous emission and stimulated emission.
 b. Distinguish between homo-junction semiconductor laser and hetero-junction semiconductor laser.
 c. A semiconductor diode laser has a peak emission wavelength of 1.55μm. Find its band gap in eV.
 (4 + 8 + 4)

 7.a Derive the expressions for 
   i. acceptance angle and 
  ii. numerical aperture of an optical fi ber.
 b. Describe diff erent types of fi bers by giving the refractive index profi les and propagation details.
 (8 + 8)

 8a. How the physical and chemical properties of nano-particles vary with their size?
 b. Write the important applications of nanomaterials. (10 + 6)
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Question Papers Q-9

Set - 3

I - B.Tech. Regular Examinations, May/June – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Plot and explain the variation of (i) attractive potential energy (ii) repulsive potential energy and
(iii) resultant potential energy with inter-atomic distance, when two atoms are brought nearer.

 b. Th e Madelung constant of KCl is 1.75. Its neighbour separation is 0.314 nm. Find the cohesive, energy 
per atom. [Given that the Repulsive exponent value = 5.77; Ionization energy of potassium = 4.1 eV; 
Electron affi  nity of cholrine = 3.6 eV] (10 + 6)

 2a. Discuss the de Broglie hypothesis of duality of matter particles.
 b. Describe GP Th omsons experiment to verify the wave nature of matter. (6 + 10)

 3a. Explain the teams (i) mean free path, (ii) relaxation time and (iii) drift velocity of an electron in a metal.
 b. Discuss the origin of electrical resistance in metals.
 c. Calculate the mobility of the electrons in copper obeying classical laws. Given that the density of

copper = 8.92 × 103 kg/m3, Resistivity of copper = 1.73 × 10−8 Ohm-m, atomic weight of copper = 
63.5 and Avogadro’s number = 6.02 × 1026 per k-mol. (6 + 6 + 4)

 4a. Describe the phenomenon of electronic polarization and obtain an expression for electronic polariz-
ability.

 b. Write notes on:
   i. Ferro-electricity and 
  ii. Piezo-electricity. (8 + 8)

 5a. write a note on intrinsic semiconductors.
 b. Derive an expression for the carrier concentration in n-type extrinsic semiconductors. (6 + 10)

 6a. Distinguish between spontaneous emission and stimulated emission.
 b. Distinguish between homo-junction semiconductor laser and hetero-junction semiconductor laser.
 c. Calculate the wavelength of emitted radiation from GaAs which has a band gap of 1.44 eV.
 (4 + 8 + 4)

 7a. What are important features of optical fi bers.
 b. Describe the communication process using optical fi bers.
 c. Write the uses of fi ber optics in diff erent fi elds. (4 + 6 + 6)

 8a. Write a detailed note on nanoscience and nanotechnology.
 b. Write the important applications of nanomaterials in medicine. (10 + 6)
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Q-10 Question Papers

Set - 4

I - B.Tech. Regular Examinations, May/June – 2008
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the various types of bonding in solids with suitable examples.
 b. Th e Madelung constant of KCl is 1.75. Its neighbour separation is 0.314 nm. Find the cohesive energy 

per atom. [Given that the Repulsive exponent value = 5.77; Ionization energy of potassium = 4.1 eV; 
Electron affi  nity of cholrine = 3.6eV] (10 + 6)

 2a. Distinguish between a matter wave and an electromagnetic wave.
 b. Describe GP Th omson’s experiment to study electron diff raction.
 c. Find the wavelength associated with an electron rose to a potential 1600 V. (4 + 8 + 4)

 3a. Explain the following:
   i. Electrical resistivity and 
  ii. Fermi energy.
 b. Explain briefl y the quantum free electron theory of metals.
 c. On the basis of band theory how the crystalline solids are classifi ed into metals, semiconductors and 

insulators? (4 + 6 + 6)

 4a. Explain the hysteresis loop observed in ferro-magnetic materials.
 b. Explain clearly diff erence between hard and soft magnetic materials. (8 + 8)

 5a. How are ‘superconductors’ classifi ed? Explain their properties.
 b. What is Meissner eff ect? Explain
 c. Write notes on the applications of superconduction materials. (6 + 4 + 6)

 6a. Describe the various methods to achieve population inversion relating to lasers.
 b. With the help of a suitable diagram, explain the principle, construction and working of a semiconductor 

laser. (6 + 10)

 7a. Distinguish between light propagation in
   i. step index optical fi ber and 
  ii. graded index optical fi ber.
 b. Write a note on fi ber optic medical endoscopy. (10 + 6)

 8a. Write a detailed note on nanoscience.
 b. Why nanomaterials exhibit diff erent properties? Explain. (6 + 10)
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Question Papers Q-11

Set - 1

I - B.Tech. Regular Examinations, April/May – 2007
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Show that FCC is the most closely packed of the three cubic structures by working out the packing 
factors. (10)

 b. Describe the structure of NaCl. (6)

 2a. Draw the (112) and (120) planes and the (112) and (120) directions of a simple cubic crystal. (4)
 b. Derive an expression for the inter-planar spacing in the case of a cubic structure. (8)
 c. Calculate the glancing angle at (110) plane of a cubic crystal having an axial length of 0.26 mm

corresponding to the second order diff raction maximum for the X-rays of wavelength of 0.065 mm. (4)

 3a. What is Frenkel defect? Explain. (6)
 b. Derive an expression for the concentration of Frenkel defects present in a crystal at any temperature. 

 (10)

 4a. Explain the origin of energy bands in solids. (6)
 b. Assuming the electron-lattice interaction to be responsible for scattering of conduction electrons in a 

metal, obtain an expression for conductivity in terms of relaxation time and explain any three drawbacks 
of classical theory of free electrons. (6)

 c. Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi 
energy. (4)

 5a. Explain the polarization mechanism in dielectric materials. (8)
 b. What are the important requirement of good insulating materials? (4)
 c. A parallel plate capacitor of area 650 mm2 and a plate separation of 4 mm has a charge pf 2 × 10−10 C 

on it. When a material of dielectric constant 3.5 is introduced between the plates, what is the resultant 
voltage across the capacitor? (4)

 6a. Distinguish between metals, semiconductors and insulators. (6)
 b. Explain the eff ect of temperature on resistivity of a semiconductor. (4)
 c. Derive an expression for the number of electrons per unit volume in the conduction band of an intrinsic 

semiconductor. (6)

 7a. What do you understand by population inversion? How it is achieved? (6)
 b. Derive the relation between the probabilities of spontaneous emission and stimulated emission in terms 

of Einsteins coeffi  cients. (10)

 8a. Defi ne the relative refractive index diff erence of an optical fi bre. Show how it is related to numerical 
aperture. (6)

 b. Draw the block diagram of an optical fi bre communication system and explain the function of each 
block. (10)
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Q-12 Question Papers

Set - 2

I - B.Tech. Regular Examinations, April/May – 2007
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Defi ne crystal lattice, unite cell, lattice parameter and coordination number. (8)
 b. Consider a body centered cubic lattice of identical atoms having radius R. Compute
    i. the number of atoms per unit cell
   ii. the coordination number and
  iii. the packing fraction (8)

 2a. What are Miller indices? Draw (111) and (110) planes in a cubic lattice. (6)
 b. Explain Bragg’s law of X-ray diff raction. (6)
 c. Th e Bragg’s angle for refl ection from the (111) plane in a FCC crystal is 19.2° for an X-ray 

wavelength of 1.54 A.U. Compute the cube edge of the unit cell. (4)

 3a. Explain Schottky and Frenkel defects with the help of suitabl fi gures. (10)
 b. Explain the signifi cance of Burgers vector. (6)

 4a. How does the electrical resistance of a metal change with temperature? (4)
 b. Discuss the motion of an electron in a periodic lattice. (8)
 c. Find the relaxation time of conduction electrons in a metal having resistivity 1.54 × 10−8 Ω-m, 

if the metal has 5.8 × 1028 conduction electrons per cubic meter. (4)

 5a. Obtain a relation between electronic polartization and electric susceptibility of the dielectric medium. 
 (6)

 b. What is dielectric breakdown? Explain briefl y the various factors contributing to breakdown in
dielectrics. (6)

 c. A parallel plate capacitor having a plate separation of 2 × 10−3 m across which a potential of 10 V is 
applied. Calculate the dielectric displacement, when a material of dielectric constant 6.0 is introducted 
between the plates. (4)

 6a. Explain Meissner eff ect. (6)
 b. What is meant by isotopic eff ect? Explain with suitable example. (6)
 c. A superconducting material has a critical temperature of 3.7 K, and a magnetic fi eld of 0.0306 Tesla

at 0 K. Find the critical fi eld at 2 K. (4)

 7a. Explain the terms:
    i. Absorption
   ii. Spontaneous emission
  iii. Stimulated emission
    iv. Pumping mechanism
     v. Population inversion
    vi. Optical cavity. (12)
 b. Mention the medical applications of lasers. (4)
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Question Papers Q-13

 8a. Explain the principle behind the functioning of an optical fi bre. (4)
 b. Derive an expression for acceptance angle for an optical fi bre. How it is related to numertical aperture?

 (8)
 c. An optical fi bre has a numerical aperture of 0.20 and a cladding refractive index of 1.59.Find the accep-

tance angle for the fi bre in water which has a refractive index of 1.33. (4)
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Q-14 Question Papers

Set - 3

I - B.Tech. Regular Examinations, April/May – 2007
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Show that FCC is the most closely packed of the three cubic structures by working out the packing 
factors. (10)

 b. Describe the structure of NaCl. (6)

 2a. Explain Bragg’s law of X-ray diff raction. (6)
 b. Describe Laues method for determination of crystal structure. (6)
 c. A beam of X-ray is incidernt on a NaCl crystal with lattice spacing 0.282 nm. Calculate the wavelength 

of X-rays if the fi rst order Bragg refl ection takes place at a glancing angle of 8°35′. Also calculate the 
maximum order of diff raction possible. (4)

 3a. What is Frenkel defect? Explain. (6)
 b. Derive an expression for the concentration of Frenkel defects present in a crystal at any temperature. 

 (10)

 4a. Explain the origin of energy bands in solids. (6)
 b. Assuming the electron lattice interaction to be responsible for scattering of conduction electrons in a 

metal, obtain an expression for conductivity in terms of relaxation time and explain any three drawbacks 
of classical theory of free electrons. (6)

 c. Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi 
energy (4)

 5a. What is ferromagnetic? What are the distinguishing features of ferromagnetism? (8)
 b. What are ferrites? Explain the magnetic properties of ferrites and mention their industrial applications.

 (8)

 6a. Derive the continuity equation for electrons. (8)
 b. What physical law is manifested in the continuity equation? (4)
 c. Find the diff usion coeffi  cient of electrons in silicon at 300 K if μ is 0.19 m2 /V-S. (4)

 7a. What do you understand by population inversion? How it is achieved? (6)
 b. Derive the relation between the probabilities of spontaneous emission and stimulated emission in terms 

of Einsteins coeffi  cients. (10)

 8a. Defi ne the relative refractive index diff erence of an optical fi bre. Show how it is related to numerical 
aperture. (6)

 b. Draw the block diagram of an optical fi bre communication system and explain the function of each 
block. (10)
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Question Papers Q-15

Set - 4

I - B.Tech. Regular Examinations, April/May – 2007
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the “Unit Cell” and “Lattice” parameters. What is a primitive cell and how does it diff er from 
unit cell? (6)

 b. Describe the crystal structure of CsCl. (4)
 c. Chromium has BCC structure. Its alomic radius is 0.1249 nm. Calculate the free volume / unit cell.
 (6)

 2a. What are Miller indices? Draw (111) and (110) planes in a cubic lattice. (6)
 b. Explain Bragg’s law of X-ray diff raction. (6)
 c. Th e Bragg’s angle for refl ection from the (111) plane in a FCC crystal is 19.2° for an X-ray wavelength 

of 1.54 A.U. Compute the cube edge of the unit cell. (4)

 3a. Show that the wavelength of an electron accelerated by a potential diff erence ‘V’ volts, is λ = 1.227 × 
10−10 √V m for non-relativistic case. (6)

 b. Describe an experiment to establish the wave nature of electrons. (6)
 c. Explain the diff erence between a matter wave and an electromagnetic wave. (4)

 4a. Explain the origin of energy bands in solids. (6)
 b. Assuming the electron-lattice interaction to be responsible for scattering of conduction electrons in 

a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw 
backs of classical theory of free electrons. (6)

 c. Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi 
energy. (4)

 5a. What is intrinsic break down in dielectric materials? (4)
 b. Explain electronic polarization in atoms and obtain an expression for electronic polarisability in terms 

of the radius of the atom. (8)
 c. A parallel plate capacitor has an area of 100 cm2, with a separation of 1 cm and is charged to a potential 

of 100 V. Calculate the capacitance of the capacitor and the charge on the plates. (4)

 6. Explain the following: (6 + 5 + 5)
 a. Critical magnetic fi eld of a superconductor as a function of temperature.
 b. Meissner eff ect.
 c. Cryotrons.

 7a. Explain with a neat diagram.
    i. absorption
   ii. spontaneous emission and
  iii. stimulated emission of radiation. (8)
 b. What is population inversion? How it is achieved by optical pumping? (8)
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Q-16 Question Papers

 8a. Describe the construction of a typical optical fi bre and give the dimensions of the various parts. (4)
 b. Defi ne the acceptance angle and numerical aperture. Obtain an expression for the numerical aperture 

of an optical fi bre. (8)
 c. Calculate the numerical aperture and acceptance angle for an optical fi bre with core and cladding 

refractive indices being 1.48 and 1.45 respectively. (4)
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Question Papers Q-17

Set - 1

I - B.Tech. Regular Examinations, May/June – 2006
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Defi ne coordination number and packing factor of a crystal. (4)
 b. Describe the FCC crystal structure. (6)
 c. Obtain an expression for the packing factor of FCC structure. (6)

 2a. What are Miller indices? How are they obtained? (8)
 b. Explain Bragg’s Law of X-ray diff raction. (8)

 3a. Explain the concept of matter waves (6)
 b. Describe Davison and Germer’s experiment and explain how it enabled the verifi cation of wave nature 

of matter. (6)
 c. Calculate the velocity and kinetic energy of an electron of wavelength 1.66 × 10−10 m. (4)

 4a. How does the electrical resistance of a metal change with temperature? (4)
 b. Discuss the motion of an electrons in a periodic lattice. (4)
 c. Find the relaxation time of conduction electron in a metal having resistivity 1.54 × 10−8 Ω-m, if the 

metal has 5.8 × 1028 conduction electrons per cubic meter. (4)

 5a. Defi ne the terms magnetic susceptibility, magnetic induction and permeability. How is magnetic
susceptibility of a material measured? (10)

 b. Explain the salient features of anti-ferromagnetic materials. (6)

 6a. Describe the drift and diff usion currents in a semiconductor. (6)
 b. Derive their expressions. (6)
 c. Deduce Einstein relation (4)

 7a. Explain the following:
    i. Life time of an energy level
   ii. Optical pumping processes.
  iii. Metastable states. (6)
 b. Distinguish between spontaneous and stimulated emission processes of light. (4)
 c. Discuss briefl y the diff erent methods of producing laser light (6)

 8a. Describe the construction of a typical optical fi bre and give the dimension of the various parts. (4)
 b. Defi ne the acceptance angle and numerical aperture. Obtain an expression for the numerical aperture 

of an optical fi bre. (8)
 c. Calculate the numerical aperture and acceptance angle for an optical fi bre with core and cladding 

refractive indices being 1.48 and 1.45 respectively. (4)
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Q-18 Question Papers

Set - 2

I - B.Tech. Regular Examinations, May/June – 2006
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the forces between the two interacting atoms when they are brought nearer to form a molecule.
 (6)

 b. Derive the expression for the equilibrium spacing of two atoms for which the potential energy is mini-
mum and hence obtain the dissociation energy. (10)

 2a. State and explain Bragg’s law. (6)
 b. Describe with suitable diagram, the powder method for determination of crystal structure. (6)
 c. A beam of X-ray of wavelength 0.071 nm is diff racted by (110) plane of rock salt with lattice constant 

of 0.28 nm. Find the glancing angle for the second order diff raction. (4)

 3a. Distinguish between Frenkel and Schottky defects. (8)
 b. Derive an expression for the energy change due to creation of vacancies in side a solid. (8)

 4a. Explain the origin of energy bands in solids. (6)
 b. Assuming the electron – lattice interaction to be responsible for scattering of conduction electrons in 

a metal. Obtain an expression for conductivity in terms of relaxation time and explain any three draw 
backs of classical theory of free electrons. (6)

 c. Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi 
energy. (4)

 5a. What is meant by ferror-magnetic materials? Give example. (4)
 b. Explain the hysteresis properties of ferromagnetic materials. (6)
 c. Mention the various properties of para-magnetic materials. (6)

 6a. How are the superconductors classifi ed? Explain their properties. (6)
 b. What is Meissner eff ect? (6)
 c. Write notes on the applications of superconducting materials. (6)

 7a. With necessary theory and energy level diagram, explain the working of a Helium-Neon gas laser. (10)
 b. Mention some important applications of lasers. (6)

 8a. Distinguish between light propagation in
   i. step index and
  ii. graded index optical fi bres.
 b. Discuss the various advantages of communication with optical fi bres over the conventional coaxial 

cables. (6)
 c. Calculate the refractive indices of core and cladding of an optical fi bre with a numerical aperture 0.33 

and their fractional diff erence of refractive indices being 0.02. (4)
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Question Papers Q-19

Set - 3

I - B.Tech. Regular Examinations, May/June – 2006
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Defi ne coordination number and packing factor of a crystal. (4)
 b. Describe the FCC crystal structure. (6)
 c. Obtain an expression for the packing factor of FCC structure. (6)

 2a. Explain how the X-ray diff raction can be employed to determine the crystal structure (10)
 b. Th e distance between (110) planes in a body-centered cubic structure is 0.203 nm. What is the size of 

the unit cell? What is ther radius of the atom? (6)

 3a. Explain the concept of matter waves. (6)
 b. Describe Davison and Germer’s experiment and explain how it enabled the verifi cation of wave nature 

of matter. (6)
 c. Calculate the velocity and kinetic energy of an electron of wavelength 1.66 × 10−10m (4)

 4a. explain the origin of energy bands in solids. (6)
 b. Assuming the electron – lattice interaction to be responsible for scattering of conduction electrons in 

a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw 
backs of classical theory of free electrons. (6)

 c. Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi 
energy. (4)

 5a. Explain the electrochemical breakdown in dielectrie materials. (4)
 b. Explain the concept of internal fi eld in solids and hence obtain an expression for the static dielectric 

constant of elemental solid dielectric. (8)
 c. A parallel plate capacitor having an area 6.45 × 10−4m2 and a plate separation of 2 × 10−3m, across 

which a potential of 12 V is applied. If a material having a dielectric constant 5.0 is positioned within 
the region between the plates, compute the polarization. (4)

 6a. Defi ne the terms of superconductivity;
    i. Critical temperature
   ii. Critical magnetic fi eld and
  iii. Critical current (6)
 b. What are Cooper pairs? Explain. (4)
 c. Write notes on any four applications of superconductors. (6)

 7a. Explain the following typical characteristics of laser:
    i. coherence
   ii. divergence and
  iii. monochromaticity (6)
 b. Explain the principle and working of a ruby laser. (10)
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Q-20 Question Papers

 8a. Explain the principle behind the functioning of an optical fi bre. (4)
 b. Derive an expression for a acceptance angle for an optical fi bre. How it is related to numerical

aperture? (8)
 c. An optical fi bre has a numerical aperture of 0.20 and a cladding refractive index of 1.59. Find the 

acceptance angle for the fi bre in water which has a refractive index of 1.33 (4)
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Question Papers Q-21

Set - 4

I - B.Tech. Regular Examinations, May/June – 2006
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the terms (6)
    i. basis
   ii. space lattice and
  iii. unit cell.
 b. Describe the seven crystal systems with diagrams. (10)

 2a. Describe Bragg’s law of X-ray diff raction. (6)
 b. Describe Bragg’s X-ray spectrometer and explain how Bragg’s law can be verifi ed. (6)
 c. Monochromatic X-ray of λ = 1.5 A.U. are incident on a crystal face having an interplanar spacing of 

1.6 A.U. Find the highest order for which Bragg’s refl ection maximum can be seen. (4)

 3a. Describe edge and screw dislocations. Draw Burgers circuit and slip planes for them. (10)
 b. Explain the signifi cance of Burgers vector. (6)

 4a. What is Fermil level? (2)
 b. Explain Fermi-Dirac distribution for electrons in a metal. Discuss its variation with temperature. (8)
 c. Calculate the free electron concentration, mobility and drift velocity of electrons in aluminum wire of 

length of 5 m and resistance 0.06 Ω carrying a current of 15 A, assuming that each aluminum atom 
contributes 3 free electrons for conduction.

  Given: Resistivity for aluminum = 2.7 × 10−8 Ω-m.
  Atomic weight = 26.98
  Density = 2.7 × 103 kg/m3

  Avagadro number = 6.025 × 1023 (6)

 5a. Explain the electrochemical breakdown in dielectric materials. (4)
 b. Explain the concept of internal fi eld in solids and hence obtain an expression for the static dielectric 

constant of elemental solid dielectric. (8)
 c. A parallel plate capacitor having an area 6.45 × 10−4m2 and a plate separation of 2 × 10−3 m, across 

which a potential of 12 V is applied. If a material having a dielectric constant 5.0 is positioned within 
the region between the plates, compute the polarization. (4)

 6a. Explain n-type and p-type semiconductors. Indicate on an enegy level diagram the conduction and 
valence bands, donor and acceptor levels for an intrinsic and extrinsic semiconductors. (10)

 b. Explain the detailed mechanism of current conduction in n and p type semiconductors. (6)

 7a. Describe the principle, construction and working of a semiconductor laser. (10)
 b. Write the applications of laser. (6)

 8a. Explain the terms ‘numerical aperture’ and ‘acceptance angle’. (6)
 b. With the help of a suitable diagram explain the principle, construction and working of an optical fi bre 

as a wave guide. (6)
 c. An optical fi bre has a core material of refractive index of 1.55 and cladding material of refractive index 

1.50. Th e light is launched into it in air. Calculate its numerical aperture. (4)
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Q-22 Question Papers

Set - 1

I - B.Tech. Regular Examinations, June – 2005
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the terms
  i. basis ii. space lattice and iii. unit cell.
 b. Describe the seven crystal systems with diagrams.

 2a. What are Miller indices? How are they obtained?
 b. Explain Schottky and Frankel defects with the help of suitable fi gures.

 3a. Show that the wavelength of an electron accelerated by a potential diff erence ‘V’ volts, is 
λ = × −1 227 10 10. / V m  for non – relativistic case.

 b. Describe an experiment to establish the wave nature of electrons.
 c. Explain the diff erence between a matter wave and an electromagnetic wave.

 4a. Explain the origin of energy bands in solids.
 b. Assuming the electron - lattice interaction to be responsible for scattering of conduction electrons in 

a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw 
backs of classical theory of free electrons.

 c. Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi 
energy.

 5a. Explain Clausius - Mosotti relation in dielectrics subjected to static fi elds.
 b. What is orientational polarization. Derive an expression for the mean dipole moment when a polar 

material is subjected to an exterrnal fi eld.
 c. Th e relative dielectric constant of sulphur is 3.75 when measured at 27° C. Assuming the internal fi eld 

constant γ = 1/3 calculate the electronic polarizability of sulphur if its density at this temperature is 
2050 kg/m3. Th e atomic weight of sulphur being 32.

 6a. Draw the B-H curve for a ferro-magnetic material and identify the retentivity and the coersive fi eld on 
the curve.

 b. What are paramagnetic and diamagnetic materials.
 c. An atom contains 10 electrons revolving in a circular path of radius 10−11 m. Assuming homogeneous 

charge distribution, calculate the orbital dipole moment of the molecule in Bohr magneton.

 7a. When donor impurities are added to a semiconductor’, the concentration of holes decreases. Explain 
with reasons.

 b. Show that the Fermi level is nearer to the conduction band in a n-type semiconductor. Discuss the 
variation of conductivity with temperature of an n-type semiconductor.

 8a. Explain the terms ‘numerical aperture’ and ‘acceptance angle’.
 b. With the help of a suitable diagram explain the principle, construction and working of an optical fi ber 

as a waveguide.
 c. An optical fi ber has a core material of refractive index of 1.55 and cladding material of refractive index 

1.50. Th e light is launched into it in air. Calculate its numerical aperture.
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Set - 2

I - B.Tech. Regular Examinations, June – 2005
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Show that FCC is the most closely packed of the three cubic structures by working out the packing 
factors.

 b. Describe the structure of NaCl.

 2a. What are Miller indices? How are they obtained?
 b. Explain Schottky and Frankel defects with the help of suitable fi gures.

 3a. Explain the concept of matter waves.
 b. Describe Davison and Germer’s experiment and explain how it enabled the-verifi cation of wave nature 

of matter.
 c. Calculate the velocity and kinetic energy of an electron of wavelength 1.66 × 10−10 m.

 4a. What is Fermi level?
 b. Explain Fermi-Dirac distribution for the electrons in a metal. Discuss its variation with temperature.
 c. Calculate the free electron concentration, mobility and drift velocity of electrons in aluminum wire of 

length of 5 m and resistance 0.06 Ω, carrying a current of 15 A, assuming that each aluminum atom 
contributes 3 free electrons for conduction.

  Given: Resistivity for aluminum = 2.7 × 10−8 Ω-m
  Atomic weight = 26.98
  Density = 2.7 × 103 kg/m3

  Avagadro number = 6.025 × 1023

 5a. Explain briefl y the classifi cation of ferro-electric materials.
 b. What is meant by a local fi eld in a solid dielectric. Derive an expression for the local fi eld for structures 

possessing cubic symmetry.
 c. Th ere are 1.6 × 1020 NaCl molecules/m3 in a vapour. Determine the orientational polarization at room 

temperature if the vapour is subjected to an electric fi eld 5000 V/cm. Assume that the NaCl molecule 
consists of sodium and chlorine ions separated by 0.25 nm

 6a. Explain clearly the diff erence between hard and soft magnetic materials. What are mixed ferrites? 
Mention their uses.

 b. How ferrites are superior to ferromagnetic materials?

 7a. Distinguish between metals, semiconductors and insulators.
 b. Explain the eff ect of temperature on resistivity of a semiconductor.
 c. Derive an expression for the number of electrons per unit volume in the conduction band of an intrinsic 

semiconductor.

 8a. Explain the characteristics of a laser beam.
 b. Mention any two applications of laser, each in the fi eld of scientifi c research, engineering and medicine.
 c. Describe the construction and working of a ruby laser.
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Q-24 Question Papers

Set - 3

I - B.Tech. Regular Examinations, June – 2005
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the terms
    i. basis
  ii. space lattice and unit cell.
 b. Describe the seven crystal systems with diagrams.

 2a. What ate Miller indices? How are they obtained?
 b. Explain Schottky and Frankel defects with the help of suitable fi gures.

 3a. Explain the concept of matter waves.
 b. Describe Davison and Germer’s experiment and explain how it enabled the verifi cation of wave nature 

of matter.
 c. Calculate the velocity and kinetic energy of an electron of wavelength 1066 × 10−10 m.

 4a. What is Fermi level?
 b. Explain Fermi-Dirac distribution for electrons in a metal. Discuss its variation with temperature.
 c. Calculate the free electron concentration, mobility and drift velocity of electrons in aluminum wire of 

length of 5 m and resistance 0.06 Ω, carrying a current of 15 A, assuming that each aluminum atom 
contributes 3 free electrons for conduction.

  Given: Resistivity for aluminum = 2.7 × 10−8 Ω-m
  Atomic weight = 26.98
  Density = 2.7 × 103 kg/m3

  Avagadro number = 6.025 × 1023

 5a. Discuss the variation of spontaneous polarization of Roschelle salt with temperature.
 b. Obtain an expression for the static dielectric constant of a monoatomic gas.
 c. Explain the phenomenon of anomalous dielectric dispersion.

  6a. What are the characteristics of soft magnetic materials?
 b. What is ferro-magnetic curie temperature? Discuss the behaviour of a ferro-magnetic material below 

the curie temperature.
 c. Th e magnetic fi eld in the interior of a certain solenoid has the value of 6.5 × 10−4 T when the solenoid 

is empty. When it is fi lled with iron, the fi eld becomes 1.4 T. Find the relative permeability of iron.

 7a. Explain d.c. Josephson eff ect.
 b. Describe the BCS theory of superconductivity.
 c. Write applications of superconductivity.

 8a. Describe the principle, construction and working of a semiconductor laser.
 b. Write the applications of laser.
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Set - 4

I - B.Tech. Regular Examinations, June – 2005
(E.E.E, E.C.E, C.S.C, C.S.I.T, E.I.E, B.M.E, E.Con.E, C.S.S.E, E.Tele & E.Com.E)

Time: 3 hours Max. Marks: 80

Note: Answer any FIVE questions
 All questions carry equal marks

 1a. Explain the formation of an ionic crystal.
 b. Derive an expression for the cohesive energy of an ionic crystal.
 c. Calculate the cohesive energy of NaCl from the following data:
  Equilibrium separation between the ion pair = 0.281 nm.
  Ionization energy of Na = 5.14 eV.
  Electrton affi  nity of Cl = 3.61 eV.
  Born repulsive exponent = 9
  Madelung constant = 1.748.

 2a. What are Miller indices? How are they obtained?
 b. Explain Schottky and Frankel defects with the help of suitable fi gures.

 3a. Derive time independent Schrödinger’s wave equation for a free particle.
 b. Explain the physical signifi cance of wave function.
 c. An electron is bound in a one-dimensional infi nite well of width 1 × 10−10 m.
  Find the energy values in the ground state and fi rst two excited states.

 4a. Explain the origin of energy bands in solids.
 b. Assuming the electron - lattice interaction to be responsible for scattering of conduction electrons in 

a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw 
backs of classical theory of free electrons.

 c. Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi energy.

 5a. What are the important characteristics of ferro-electric materials?
 b. Describe-thepossible mechanism of polarization in a dielectric material.
 c. Th e dielectric constant of Helium gas at NTP is 1.0000684. Calculate the electronic polarizability of 

He atoms if the gas constains 2.7 × 1025 atoms/m3.

 6a. Draw the B-H curve for a ferro-magnetic material and identify the retentivity and the coersive fi eld on 
the curve.

 b. What are paramagnetic and diamagnetic materials.
 c. An atom contains 10 electrons revolving in a circular path of radius 10−11 m. Assuming homogeneous 

charge distribution, calculate the orbital dipole moment of the molecule in Bohr magneton.

 7a. Derive the continuity equation for electrons.
 b. What physical law is manifested in the continuity equation.
 c. Find the diff usion coeffi  cient of electrons in silicon at 300 K if μ, is 0.19 m2/V-S.

 8a. Describe the construction of a typical optical fi ber and give the dimensions of the various parts.
 b. Defi ne the acceptance angle and numerical aperture. Obtain an expression for the numerical aperture 

of an optical fi ber.
 c. Calculate the numerical aperture and acceptance angle for an optical fi ber with core and cladding 

refractive indices being 1.48 and 1.45 respectively.
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acceptance angle 11.2
acoustic quieting 13.10
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  methods of 13.11
acoustics 13.1
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  timbre 13.1
  tone 13.1
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activators 10.10
a.c. resistivity 9.4
aerogels 14.14
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I-2 Index

battery 4.23, 8.10, 9.13
BCS ground state 9.17
BCS theory 9.15
beam splitter 11.15, 12.2
Becker 7.12
black body radiation 4.10 –4.12
  Planck’s law 4.12
  Planck’s quantum theory 4.17 – 4.18
  Rayleigh–Jeans law 4.11
  Wein’s law 4.10
Bloch 5.12
Bloch theorem 5.19
Bloch wall 7.14
Bohr magneton 7.2
Boltzmann’s constant 5.3
bonds
  covalent 1.2
  dipole 1.4
  dispersion 1.3
  hydrogen 1.4
  inter molecular 1.3
  ionic 1.1
  metallic 1.3
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Bose–Einstein distribution 4.5 –4.7
Bragg’s law 3.14
Bragg’s plane 4.24
Bravais lattice 2.2, 2.4
Brewster
  angle 10.8
  windows 10.8
bucky ball 14.2
Burger’s vector 3.10

buried heterostructure laser 10.14

C

caesium chloride structure 2.13
carbon dioxide laser  10.15
carbon nanotubes  14.10-14.13
  applications 14.12–14.13
  formation 14.12
carrier concentration
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  extrinsic 8.17
  hole 8.6
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cladding 11.1–11.8
classical free electron theory 5.2–5.5
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classifi cation of metals, semiconductors 
 and insulators 5.24
Clausius–Mosotti relation 6.4
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  calculation 1.6 –1.9 
  of  NaCl molecule 1.8
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  fi bre optics 11.11–11.13
  lasers 10.1
Compton eff ect 4.12
condition for ray propagation in a fi bre 11.5
conduction band 8.1
continuity equation 8.25–8.29
conventional light 10.1
Cooper pair 9.16
coordination number 2.8
core 11.1–11.10
cosmetics 14.14
critical currents 9.4
cryotron switch 9.19
crystal defects 3.7 –3.10
  compositional 3.8
  edge 3.8
  electronic 3.8
  Frenkel 3.8
  line 3.8
  point 3.7
  Schottky 3.7
  screw 3.10
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  trigonal 2.7
crystalline solid 2.1
cubic structures
  body centred 2.9
  diamond 2.11
  face centred 2.10
  simple 2.8

Curie constant 7.11

D

damping 13.13
Davisson and Germer experiment 4.22
de Broglie hypothesis 4.12

Debye-Scherrer 3.16

degree of freedom 5.23

density of electron states 4.8 – 4.10

diamagnetic materials 7.5

diamond structure 2.11

dielectric constant 6.1

dielectric properties 6.1

dielectrics 6.1

diff raction 4.20

diff usion current 8.23–8.24

dipolar polarization 6.7

dipole bond 1.4

dipole moment 6.1, 6.4, 6.7, 6.9–6.15, 6.19

dip pen nanolithography 14.7

direct band gap semiconductors 8.31

discrete values of energy 4.31, 4.33

dispersion bond 1.3

displacement sensor 11.13

domain theory of  ferromagnetism 7.12

double heterostructure laser 10.13

drift current 8.23–8.25

drift velocity 5.3

  expression 5.6

Drude 5.2
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Echelon eff ect 13.9
edge dislocation 3.8

eff ective mass of electron 5.22 –5.24

Eigen function 4.15

Eigen values 4.33

Einstein 4.12

Einstein relation 8.24

Einstein’s coeffi  cient 10.4 –10.6

E-K diagram 5.18

electrical conductivity 5.2, 8.11

electron gas 4.7

electron scattering 5.11

electron spin 7.2

electronic polarization 6.11

electrochemical reactivity 14.6

electrodeposition 14.10

electron beam lithography 14.8

electronic properties of nanomaterials 14.5

encoder 11.11

energy effi  ciency 14.14

energy gap 8.14

energy of formation of vacancy 3.10–3.11

entropy 9.5

epilepsy 9.21

exchange energy 7.14

excited state 10.3

extrinsic semiconductor 8.14

F

face-centred cubic structure 2.10

fabrication of nanomaterials 14.7

fatigue 14.14

Fermi–Dirac distribution 4.3 – 4.5, 5.7

Fermi energy 4.8, 5.7

ferrimagnetic materials 7.6, 7.19

ferroelectricity 6.18

ferromagnetic domains

  experimental evidence 7.13

  origin 7.13

ferromagnetic materials 7.6

fi bre optics 11.1–11.16

  acceptance angle 11.2–11.3

  advantages 11.12

  communication 11.11–11.12

  condition for ray propagation 11.4

  graded index 11.5

  numerical aperture 11.3

  principle 11.1

  ray propagation 11.5–11.6

  sensing application 11.13–11.15

  step index 11.5

fl uorescent screen 4.9

fl ux exclusion 9.6

fl ux quantization 9.10

forces
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  repulsive 1.5

formation of carbon nanotubes 14.12
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I-4 Index

free electron theory

  classical 5.2–5.5

  failures 5.4

  quantum 5.9–5.11

Frenkel defect 3.8

frequency dependence of dielectric constant 6.20

fullerenes 14.2
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galvanometer 4.23
general features of superconductivity 9.3–9.7
germanium 8.1
glassy carbon 14.6
gold foil 4.19
G.P Th omson experiment 4.19–4.22
graded index fi bre 11.7

ground state 10.3
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Hall eff ect 8.29–8.31
hard magnetic material 7.20
heat capacity 9.5
Heisenberg uncertainty principle 4.28
helium-neon gas laser 10.8–10.10
hetero structure laser 10.12
hexagonal close pack structure A-1–A-4
  axial ratio of A-3
  packing factor of A-3–A-4
hexagonal crystal system 2.7
high power magnets 14.13
hole 8.6
holography
  application 12.3
  introduction 12.1
  principle 12.1
  reconstruction of image  12.2
  recording of image 12.1
homo structure laser 10.12
hydrogen bond 1.4
hysteresis curve 7.6
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indirect band gap semiconductors 8.31
inter molecular bond 1.3
interference 4.12
internal fi eld 6.2–6.4
intrinsic carrier concentration 8.9

intrinsic semiconductors 8.1 
ionic bond 1.1
ionic polarization 6.7, 6.10

isotopic eff ect 9.3
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Josephson eff ect 9.13–9.15
Josephson junction 9.14

Josephson junction devices 9.20
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Kamerling Onnes 9.1
Kronig–Penney model 5.13 –5.19

krypton fl ash lamp 10.10
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lasers 10.1–10.17
  carbon dioxide 10.15
  He-Ne 10.8–10.10
  ruby 10.10 –10.11
  semiconductor 10.11–10.14
laser method to form nanotubes 14.12
lattice
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  parameters 2.3
  space 2.2
Laue method 3.17 –3.18
line defect 3.8
lithography
  atomic 14.8
  dip pen nano 14.7
  electron beam 14.8
  nano 14.7
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liquid crystal display (LCD) 8.49–8.50
local fi eld 6.2
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M

Madelung constant 1.9
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magnetic force microscopy 14.7

magnetic fi eld energy 7.14

magnetic fl ux density 7.1
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magnetic materials 

  anti-ferro 7.6, 7.17

  dia 7.5

  ferri 7.6

  ferro 7.6

  hard 7.20

  para 7.6

  soft 7.20

magnetic momentum

  electron spin 7.4

  nuclear spin 7.5

  orbital motion 7.3

magnetic permeability 7.1

magnetic properties 7.1
magnetic properties of nanomaterials 14.5

magnetization 7.2

matter waves 4.12, 4.13

  experimental study of 4.19 – 4.25

Maxwell–Boltzmann distribution 4.1 – 4.3

mean collision time 5.6

mean free path 5.6
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medical applications of nanomaterials 14.14

Meissner eff ect 9.6

memory cell 9.20

metallic bond 1.3

metastable state 10.8
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  atomic force 14.7

  magnetic force 14.7

  scanning tunneling 14.1, 14.7, 14.8

Miller indices 3.1

minority carrier life time 8.19–8.22
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monochromatic 3.15, 10.1

monoclinic crystal system 2.6

motor vehicles application of nanomaterials 14.14

muffl  er 13.12 – 13.13
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nanotechnology 14.1
  applications of 14.13 – 14.14
  fabrication 14.7 – 14.9
  principle 14.1
nanoparticles 14.4
  properties of 14.4 – 14.7
  production of 14.9 – 14.10
  quantum eff ects in 14.2 – 14.4
Neel temperature 7.17

nickel 4.23
non–centrosymmetric 6.17
non–polar materials 6.1
normalization 4.34
noise 13.10
nuclear magnetic moment 7.5

numerical aperture 11.3 –11.5

O

optical fi bres in communication 11.11–11.12
optical properties of nanomaterials 14.4
orbital angular momentum 7.3 
orbital magnetic moment 7.3
oriental polarization 6.7
origin of ferromagnetic domains 7.13
origin of magnetic moment 7.2

orthorhombic crystal system 2.5

P

packing factor 2.8

paramagnetic material 7.5

particle in a box 4.31

  one-dimensional box 4.31 –4.35

  three-dimensional box 4.35 – 4.39

Pauli’s exclusion principle 5.7

penetration depth 9.9

permittivity 6.5

persistent current 9.3

phase space 4.1

phonons 9.15
photoelectric eff ect 4.12

photoemission 14.5
photographic plate 4.19
photoluminescence 14.4
photon gas 4.7
photons 4.5
photodiodes 8.51
  avalanche 8.52
  p-i-n 8.52
physical properties of nanomaterials 14.4
piezoelectricity 6.17
Planck’s equation 4.13
plasma arcing 14.9
plasma arcing method 14.9
p-n diode 8.36
  band diagram of 8.36
  Fermi level 8.36
  Shockley’s equation 8.37
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  V–I characteristics of 8.39
p-n junction 8.33
  alloying method 8.33
  biasing of 8.37 – 8.38
  diff usion method 8.33
  formation of 8.33
  grown junction method 8.33
point defect 3.7
polar material 6.1
polarization 4.12
  dipolar 6.7, 6.8
  electronic 6.7, 6.12
  ionic 6.7, 6.10
  orientational 6.7, 6.18
population inversion 10.6
potential energy 1.6
potential well 4.31
powder method 3.16
pressure sensor 11.14
primary bonds 1.1
principle of optical fi bre 11.1
principle of 
  holography 12.1
  nanotechnology 14.1
probability density 4.30, 4.31, 4.34
production of nanomaterials 14.9
properties
  chemical 14.6
  electronic 14.5
  magnetic 14.5
  mechanical 14.5
  optical 14.4
  physical 14.4
  thermal 14.4

Q

quantized 4.13
quantum confi nement eff ects 14.4
quantum free election theory 5.8–5.11
quantum tunneling 9.11–9.13
quartz crystal 6.17

R

ray propagation 11.5, 11.6
reconstruction of image from hologram 12.2
recording of image on a holographic plate 12.1
rectifi er 8.41 – 8.46
  bridge rectifi er 8.45
  full-wave 8.43 – 8.46

  half-wave  8.42
refractive index 11.1
relativistic correction 4.14
relaxation time 5.5
repulsive forces 1.5
repulsive potential energy 1.6
requirements of insulators 6.21
resonance 13.9
reverberation 13.1, 13.2
reverberation time 13.2
rhombohedral crystal system 2.7
Rochelle salt 6.17, 6.18
root mean square velocity 5.2, 5.5
ruby laser 10.10 –10.11

S

Sabine’s empirical formula 13.2
Sabine’s reverberation theory 13.2 – 13.7
scanning tunneling microscope 14.1, 14.7, 14.8
scattered electrons 4.23
scattering power 5.16
Schottky defect 3.7
Schrödinger’s wave equation 4.25–4.28
secondary bonds 1.1, 1.3
semiconductor lasers 10.12
semiconductors
  conductivity double 8.13
  direct band gap 8.31
  electrical conductivity 8.10
  energy gap 8.12
  extrinsic 8.14
  intrinsic 8.1
  indirect band gap 8.31
sensing applications of fi bre 11.13–11.15
sensors 11.13–11.15
  displacement 11.13
  liquid level 11.14
  pressure 11.14
  temperature 11.14
separation between planes 3.4–3.6
silencer 13.12 – 13.13
silicon 8.1

simple cubic structure 2.8

single hetero structure laser 10.13

smart windows 14.14

sodium chloride structure 2.13

soft magnetic materials 7.20

sol-gel method  14.10

sound proofi ng 13.13

source of electrical resistance 5.11

Index.indd   6Index.indd   6 9/25/2009   6:04:27 PM9/25/2009   6:04:27 PM



Index I-7

space elevators 14.13

space lattice 2.2

SQUIDS 9.21

stacking sequence 2.14

step index fi bre 11.5–11.7

  multi mode 11.6

  single mode 11.5

stimulated emission 10.2–10.3

Stirling’s theorem 4.3, 4.4, 4.6

superconducting

  breaker 9.19

  fuse 9.19

  magnets 9.18

superconducting sensitive magnetometer 9.21

superconductivity 9.1

  applications 9.18–9.21

  general features 9.3–9.7

superconductors in medicine 9.21

super paramagnetic 14.5

surface defects A-5–A-8

T

target 4.12
temperature sensor 11.14
tetragonal crystal system 2.5
thermal conductivity 9.5
thermal properties 14.4
thermal vibrations 5.12
thermo nuclear fusion 10.19
threshold current 11.12
tourmaline crystal 6.17
transition temperature 9.1
transmitter 11.11
triclinic crystal system 2.7
trigonal crystal system 2.7

tunneling microscope 14.1, 14.7, 14.8
type-I and type-II superconductors 9.7–9.9

U

unit cell 2.3

V

valence band 8.1

void 2.13

W

wave function 4.25, 4.30
  physical signifi cance of 4.30
wave guides 11.1
waves and particles 4.12
Weiss 7.13

Wiedmann–Franz law 5.1

X

x-cut quartz crystal 6.18
xenon lamp 10.10
x-ray diff raction 3.14

Y

y-cut quartz crystal 6.18

Z

zig-zag carbon nanotubes 14.11
zinc sulphide structure 2.14

Index.indd   7Index.indd   7 9/25/2009   6:04:27 PM9/25/2009   6:04:27 PM



Index.indd   8Index.indd   8 9/25/2009   6:04:27 PM9/25/2009   6:04:27 PM


	Cover
	Contents
	Foreword
	Preface
	Acknowledgements
	Road Map to the Syllabus
	Chapter 1: Bonding in Solids
	1.1 Different types of bonding in solids
	1.2 Cohesive energy and estimation of cohesiveenergy of ionic solids
	1.3. Estimation of cohesive energy of NaCl molecule in a solid
	1.4 Madelung constant
	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 2: Crystal Structures
	2.1 Introduction
	2.2 Space lattice (or) crystal lattice
	2.3 The basis and crystal structure
	2.4 Unit cell and lattice parameters
	2.5 Crystal systems and Bravais lattices
	2.6 Structure and packing fractions of simplecubic [SC] structure
	2.7 Structure and packing fractions of body-centredcubic structure [BCC]
	2.8 Structure and packing fractions of face-centredcubic [FCC] structure
	2.9 Diamond cubic structure
	2.10 NaCl crystal structure
	2.11 Caesium chloride [CsCl] structure
	2.12 Zinc sulphide [ZnS] structure
	2.13 Stacking sequence in metallic crystals
	2.14 Calculation of lattice constant
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 3: Crystal Planes, X-ray Diffraction and Defects in Solids
	3.1 Crystal planes, directions and Miller indices
	3.2 Distance of separation between successive hkl planes
	3.3 Imperfections in crystals
	3.4 Energy for the formation of a vacancy and number of vacancies at equilibrium concentration
	3.5 Diffraction of X-rays by crystal planes and Bragg’s law
	3.6 Powder method
	3.7 Laue method
	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 4: Elements of Statistical Mechanics and Principles of Quantum Mechanics
	4.1 Introduction
	4.2 Phase space
	4.3 Maxwell–Boltzmann distribution
	4.4 Fermi–Dirac distribution
	4.5 Bose–Einstein distribution
	4.6 Comparison of Maxwell–Boltzmann,Fermi–Dirac and Bose–Einstein distributions
	4.7 Photon gas
	4.8 Concept of electron gas and Fermi energy
	4.9 Density of electron states
	4.10 Black body radiation
	4.11 Waves and particles—de Brogliehypothesis—Matter waves
	Matter waves
	Properties of matter waves

	4.12 Relativistic correction
	4.13 Planck’s quantum theory of black body radiation
	4.14 Experimental study of matter waves
	4.14 Schrödinger’s time-independent wave equation
	4.15 Heisenberg uncertainty principle
	4.16 Physical significance of the wave function
	4.17 Particle in a potential box
	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 5: Electron Theory of Metals
	5.1 Introduction
	5.2 Classical free electron theory of metals
	5.3 Relaxation time, mean free path, mean collision time and drift velocity
	5.4 Fermi-Dirac distribution
	5.5 Quantum free electron theory of electrical conduction
	5.6 Sources of electrical resistance
	5.7 Band theory of solids
	5.8 Bloch theorem
	5.9 Origin of energy bands formation in solids
	5.10 Velocity and effective mass of an electron
	5.11 Distinction between metals, semiconductors and insulators
	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 6: Dielectric Properties
	6.1 Introduction
	6.2 Dielectric constant
	6.3 Internal or local field
	6.4 Clausius–Mosotti relation
	6.5 Orientational, ionic and electronic polarizations
	6.6 Frequency dependence of polarizability: (Dielectrics in alternating fields)
	6.7 Piezoelectricity
	6.8 Ferroelectricity
	6.9 Frequency dependence of dielectric constant
	Orientational polarization
	Ionic polarization
	Electronic polarization

	6.10 Important requirements of insulators
	(a) Electrical requirements
	(b) Thermal requirements
	(c) Mechanical requirements
	(d) Chemical requirements

	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 7: Magnetic Properties
	7.1 Magnetic permeability
	7.2 Magnetization (M )
	7.3 Origin of magnetic moment—Bohrmagneton—electron spin
	(i) Magnetic moment due to orbital motion of electrons and orbital angular momentum
	(ii) Magnetic moment due to spin of the electrons
	(iii) Magnetic moment due to nuclear spin

	7.4 Classification of magnetic materials
	(i) Diamagnetic material
	(ii) Paramagnetic materials
	(iii) Ferromagnetic materials
	(iv) Anti-ferromagnetic materials
	(v) Ferrimagnetic materials [Ferrites]

	7.5 Classical theory of diamagnetism [Langevin theory]
	7.6 Theory of paramagnetism
	7.7 Domain theory of ferromagnetism
	Effect of temperature
	Experimental evidences for domain structure
	Origin of [Ferromagnetic] domains
	Explanation for origin of domains

	7.8 Hysteresis curve
	7.9 Anti-ferromagnetic substances
	7.10 Ferrimagnetic substances [Ferrites]
	7.11 Soft and hard magnetic materials
	(a) Soft magnetic materials
	(b) Hard magnetic materials
	Comparison between soft and hard magnetic materials

	7.12 Applications of ferrites
	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 8: Semiconductors and Physics of Semiconductor Devices
	8.1 Introduction
	8.2 Intrinsic semiconductors—carrier concentration
	Electron concentration
	For hole concentration
	To evaluate Fermienergy
	To find intrinsic concentration (NI )

	8.3 Electrical conductivity of a semiconductor
	To find energy gap of a semiconductor
	Increase of temperature to double the conductivity

	8.4 Extrinsic semiconductors
	8.5 Carrier concentration in extrinsic semiconductors
	8.6 Minority carrier life time
	8.7 Drift and diffusion currents
	(a) Drift current
	(b) Diffusion current

	8.8 Einstein’s relations
	8.9 Continuity equation
	8.10 Hall effect
	8.11 Direct and indirect band gap semiconductors
	8.12 Formation of p-n junction
	8.13 Energy band diagram of p-n diode
	8.14 Diode equation
	8.15 p-n junction biasing
	8.16 V–I characteristics of p-n diode
	8.17 p-n diode rectifi er
	8.18 Light emitting diode [LED]
	8.19 Liquid crystal display (LCD)
	8.20 Photodiodes
	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 9: Superconductivity
	9.1 Introduction
	9.2 General features of superconductors
	9.3 Type-I and Type-II superconductors
	9.4 Penetration depth
	9.5 Flux quantization
	9.6 Quantum tunnelling
	9.7 Josephson’s effect
	9.8 BCS theory
	Description
	Coherent length
	BCS ground state

	9.9 Applications of superconductivity
	9.9.1 Magnetic applications
	9.9.2 Electrical applications
	9.9.3 Computer applications
	9.9.4 Josephson junction devices
	9.9.5 Maglev vehicles
	9.9.6 Medical applications

	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 10: Lasers
	10.1 Introduction
	10.2 Characteristics of laser radiation
	10.3 Spontaneous and stimulated emission
	10.4 Einstein’s coefficients
	10.5 Population inversion
	10.6 Helium–Neon gas [He–Ne] laser
	10.7 Ruby laser
	10.8 Semiconductor lasers
	10.9 Carbon dioxide laser
	10.10 Applications of lasers
	Formula
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 11: Fibre Optics
	11.1 Introduction
	11.2 Principle of optical fibre, acceptance angle and acceptance cone
	11.3 Numerical aperture (NA)
	11.4 Step index fibres and graded index fibres—transmission of signals in them
	11.5 Differences between step index fibres and graded index fibres
	11.6 Differences between single mode fibres and multimode fibres
	11.7 Attenuation in optical fibres
	11.8 Optical fibres in communication
	11.9 Advantages of optical fibres in communication
	11.10 Fibre optic sensing applications
	(a) Displacement sensors
	(b) Liquid level sensor
	(c) Temperature and pressure sensor
	(d) Chemical sensors

	11.11 Applications of optical fibres in medical field
	Formulae
	Solved Problems
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 12: Holography
	12.1 Introduction
	12.2 Basic principle of holography
	12.3 Recording of image on a holographic plate
	12.4 Reconstruction of image from a hologram
	12.5 Applications of holography
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 13: Acoustics of Buildings and Acoustic Quieting
	13.1 Introduction to acoustics of buildings
	13.2 Reverberation and time of reverberation
	13.3 Sabine’s empirical formula for reverberation time
	13.4 Sabine’s reverberation theory for reverberation time
	13.5 Absorption coefficient of sound and its measurement
	Measurement

	13.6 Basic requirements of an acoustically good hall
	13.7 Factors affecting architectural acoustics and their remedies
	13.8 Acoustic quieting
	Introduction
	Aspects of Acoustic Quieting

	13.9 Methods of quieting
	13.10 Quieting for specific observers
	13.11 Muffler (or silencer)
	13.12 Sound proofing
	Formulae
	Solved Problem
	Multiple Choice Questions
	Answers
	Review Questions

	Chapter 14: Nanotechnology
	14.1 Basic principle of nanoscience and nanotechnology
	14.2 Physical properties
	(i) Geometric structure
	(ii) Optical properties
	(iii) Thermal properties
	(iv) Magnetic properties
	(v) Electronic properties
	(vi) Mechanical properties

	14.3 Chemical properties
	14.4 Fabrication
	14.5 Production of nanoparticle
	(i) Plasma arcing
	(ii) Sol–gel method
	(iii) Chemical vapour deposition
	(iv) Ball milling
	(v) Electrodeposition

	14.6 Carbon nanotubes
	(a) Introduction
	(b) Formation of nanotubes
	(c) Properties of nanotubes
	(d) Applications of nanotubes

	14.7 Applications of nanotechnology
	Multiple Choice Questions
	Answers
	Review Questions

	Appendix A: Hexagonal Close Pack (HCP) Structure
	Appendix B: Surface Defects
	Dictionary of Selected Terms
	Question Papers
	Index



