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To my family



The greatest obstacle to discovery is not ignorance—it is the
illusion of knowledge.

—Daniel J. Boorstin



Supervisor’s Foreword

How does the flow of a simple liquid change when particles are added to it? This
was calculated by Albert Einstein in his PhD thesis over 100 years ago for small
volume fractions of particles and subsequently extended by others to increasingly
larger fractions. The result is that the suspension’s resistance to applied shear, i.e.,
its viscosity, rises rapidly as more and more particles are added, to the point where
all flow becomes arrested and the suspension’s viscosity diverges. Underlying this
divergence is the mechanism of jamming: beyond some critical volume fraction
there simply is no longer room for neighboring particles to move with respect
to one another and the whole suspension turns rigid, exhibiting a solid-like yield
stress. Exactly when the jamming transition will occur, i.e., what value the critical
volume fraction for jamming will assume, depends on details of the particle–particle
interactions, which in turn is controlled by aspects such as the particles’ shape and
their surface properties. This type of isotropic jamming transition, controlled only
by the particle density, describes the response to applied shear when the suspension
is at rest. There is, however, another possibility to induce jamming, namely by
driving an initially fluid suspension into a rigid state. This type of dynamic jamming
occurs without any overall change in the volume fraction of particles. Instead,
it is a consequence of the fact that shear reorganizes particles into anisotropic
configurations. These configurations can establish load-carrying force chains as long
as the particle volume fraction is not too low and the particle–particle contacts are
sufficiently frictional. This thesis demonstrates how suspensions provide a model
system for investigating such jamming by shear and it describes some of the
remarkable consequences of the associated dynamic transformation that converts
a fluid into a solid in a fully reversible manner.

A key aspect of jamming by shear in suspensions is that the process proceeds
along rapidly moving fronts. Ahead of a front the suspension is still in its initial,
fluid state, while behind the front the suspension has been transformed into a solid-
like state. The thesis breaks new ground in establishing a constitutive framework
that relates the properties of shear-jamming fronts, such as their propagation speed,
to the applied shear stress and strain. In treating the dynamic, effectively transient
conversion of fluid into solid, this significantly extends prior work on jamming
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x Supervisor’s Foreword

phase transitions, which only considered steady-state conditions. As the thesis
shows, the local shear stress in the front region is set by the external stress
applied at the boundary of the suspension. This enables a completely new way of
performing stress-controlled experiments: by using the jamming fronts to generate
conditions of controllable local stress, a method is introduced that overcomes a
critical limitation of standard steady-state rheology, which cannot establish spatially
uniform stress conditions in the interior of a concentrated suspension as jamming
is approached. Finally, the thesis introduces high-speed ultrasound imaging as a
powerful experimental technique to image propagating shear jamming fronts and
extract the associated flow field.

As a whole, the work described here has significantly advanced our understand-
ing of how jamming by shear can reversibly solidify a dense suspension and how
this transformation depends on both the suspension properties and the kind of
forcing that is applied. In concert with the powerful experimental techniques that
are introduced, this opens up exciting new avenues for further research.

Chicago, IL, USA Heinrich Jaeger
January 29, 2020
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Chapter 1
Introduction

In our daily lives, most materials we see are in one of the three states of matter: solid,
liquid, or gas. When a material in one state is broken up into small particles and
mixed with material in another state, rich and interesting phenomena can happen.
For example, the air is so “soft” that most of the time one can hardly feel its
existence. However, when many air bubbles are distributed in water, the foam that
forms develops a rigidity that can hold its shape against gravity. Another famous
example of such mixtures is a suspension of hard cornstarch particles in water,
which is sometimes referred to as the “Oobleck” in Dr. Seuss’ stories. One striking
behavior of this solid-liquid mixture is that it flows like a viscous fluid under normal
conditions, but solidifies under a sudden impact. The transition is so dramatic that
people can jog or jump on the surface of such mixtures. When they stop moving, the
material can no longer support their weight, and they slowly sink in. This reversible,
dynamic fluid-solid transition is the main focus of this thesis.

Suspensions are mixtures of solid particles and liquids. The “particles” can have
various shapes, such as spheres, rods, plates, etc. Here we consider suspensions
comprised of spherical or non-spherical particles with an aspect ratio close to 1.
At the same time, we only focus on non-Brownian suspensions, which means
that the particles are so big (1–100µm) that the effect of thermal motion can
be ignored. Such systems are far from thermal equilibrium. We will show that
the dynamic fluid-solid transition in concentrated non-Brownian suspensions is
purely driven by mechanical stress. The applied stress plays two major roles: it
provides kinetic energy for the system to explore phase space, and also it changes
the interactions between the particles on a microscopic level. Such microscopic
interactions at the points where surfaces of particles come into contact determine the
stable (or unstable) configurations that can form locally, and subsequently control
the macroscopic mechanical properties of the material. It is the complex interplay
of forces arising from hydrodynamic interactions and frictional contacts that makes
the behaviors of such suspensions so rich and fascinating.

© Springer Nature Switzerland AG 2020
E. Han, Transient Dynamics of Concentrated Particulate Suspensions
Under Shear, Springer Theses, https://doi.org/10.1007/978-3-030-38348-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38348-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-38348-0_1


2 1 Introduction

1.1 Steady-State Rheology of Suspensions

The mechanical properties of suspensions are usually characterized by rheology
experiments. Rheology is the study of the deformation and flow of matter [1]. Any
deformation of a material can be written as the sum of a hydrostatic compression
(Fig. 1.1a) and a pure shear (Fig. 1.1b) [2]. In practice, normally rheologists test
the mechanical properties of a material by applying a simple shear as illustrated in
Fig. 1.1c, which can be decomposed into a pure shear in two dimensions and solid
body rotation. When a material is sheared, its volume keeps invariant.

If the material under simple shear is solid, when a tangential force F is applied
on its upper surface with area A, a finite shear strain γ ≡ �x/y will be reached
at the end as shown in Fig. 1.1c. The shear stress is defined as � ≡ F/A, and
the ratio G = �/γ is called the shear modulus, which represents the rigidity of
the solid. In comparison, for a fluid sheared under constant stress, the deformation
keeps accumulating. Now shear stress � controls the rate of deformation, or shear
rate γ̇ ≡ dγ /dt , instead of the absolute amount of shear strain γ . For a fluid under
simple shear, the ratio between � and γ̇ is its viscosity η = �/γ̇ [3].

The research on how solid particles change the viscosity of suspensions dates
back to Einstein [4]. In his Ph.D. thesis, he calculated the viscosity of very dilute
suspensions where the interactions between particles can be ignored, and found a
linear relationship between the viscosity of the suspension and the volume fraction
of the particles (also called the packing fraction) φ:

ηr ≡ η

η0
= 1 + 2.5φ, (1.1)

where η is the viscosity of the suspension, η0 is the viscosity of the solvent or the
liquid phase in the suspension, and ηr is the relative viscosity. For denser (more
concentrated) suspensions, higher order terms need to be taken into consideration
[5, 6].

On the end of the φ axis, we have the phenomenon of jamming [7, 8]. Jamming
occurs when the particle concentration becomes so large, and there is so little space

Fig. 1.1 Examples of how a material deforms: (a) hydrostatic compression, (b) pure shear, (c)
simple shear. The dashed black lines represent the shape of the material before deformation, and
the solid black lines represent the shape after deformation. In (c), a tangential force F is applied
on the red surface, which has an area of A
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for each particle to move that the whole system cannot flow anymore. This critical
packing fraction is named the jamming packing fraction φJ. For mono-disperse hard
spheres, the jamming point approaches random close packing φJ = φRCP ≈ 0.64 as
the system size goes to infinity [7]. For a dense suspension, while φ approaches φJ,
the viscosity diverges. This behavior is captured by a more general relation between
ηr and φ,

ηr =
(

1 − φ

φJ

)−α

, (1.2)

which is based on the work of Maron and Pierce (α = 2) [9], Krieger and Dougherty
(α = 2.5φJ) [10], Brady [11], and others. Krieger and Dougherty’s model [10]
reproduces Einstein’s equation (Eq. 1.1) in the low-φ limit, but according to the
experimental results obtained from both colloidal and non-colloidal suspensions,
Maron and Pierce’s model [9] better describes the data [12]. Here in this thesis we
use α = 2.

Very dilute suspensions are Newtonian fluids, which means that their viscosity
does not change with how fast or how strongly they are sheared. Air, water, and
glycerol are all Newtonian fluids. Their viscosity is independent of the shear rate γ̇ .
At the same time, there are fluids whose viscosity changes when they are sheared
faster or slower, and these are the so-called non-Newtonian fluids. If the viscosity of
a fluid increases with γ̇ , it is a shear thickening fluid, and a cornstarch-water mixture
is a typical example. In comparison, if the viscosity decreases while γ̇ increases, the
fluid is a shear thinning fluid, such as paint or blood. Another type of non-Newtonian
fluid does not flow unless the applied shear stress exceeds a certain threshold, which
is called the yield stress. These fluids are referred to as Bingham fluids [1]. Shaving
foam and toothpaste are Bingham fluids.

For most suspensions, the viscosity is not only a function of the packing fraction
φ. As shown in Fig. 1.2 [13], they can exhibit complex non-Newtonian behaviors
under different steady-state driving conditions.1 Correspondingly, various mecha-
nisms have been proposed. At low shear stress, suspensions can be Newtonian (at
low φ), shear thinning, or have non-zero yield stress (at high φ). The possible causes
of shear thinning include attractive interactions [14, 15], repulsive interactions [16],
changes in particle structure (entropic) [17], plus others [18]. As the applied shear
stress increases, normally there is a Newtonian regime where ηr remains constant,
and then the suspension shear thickens. At a relatively low packing fraction,
typically up to φ ≈ 0.4, the increase in ηr is mild and continuous. This behavior
is named continuous shear thickening (CST) [19]. To explain CST, Brady and
Bossis introduced a model based on hydrodynamic interactions between particles
[20, 21]. The model demonstrates that at high enough Péclet number, particles
form clusters due to hydrodynamic couplings. This model is normally referred to as
the hydrocluster model, and hydroclusters have been observed experimentally with
confocal microscopy [17]. At higher packing fractions, typically above φ ≈ 0.5, a

1Note that Eq. (1.2) is valid only when the viscosity ηr(φ) is measured in the “Newtonian regime.”
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Fig. 1.2 Different regimes of suspension rheology and corresponding mechanisms. In this plot, γ̇

is the shear rate and τ represents the shear stress. Figure reproduced from E. Brown and H. M.
Jaeger, Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations
to jamming, Rep. Prog. Phys. (2014) [13] with permission

more dramatic increase in ηr can be observed, where ηr shoots up discontinuously
as a function of γ̇ [22]. Consequently, this behavior is named discontinuous shear
thickening (DST). For steady-state rheology, Brown and Jaeger [23] related DST
to frustrated dilation, which pointed out the significance of direct particle–particle
contacts in the process of shear thickening [24, 25].

1.2 Shear Jamming in Dry Granular Materials and Dense
Suspensions

Jamming is the onset of rigidity in granular materials [7, 8, 14]. For frictionless
particles, jamming can be achieved by increasing the packing fraction φ across
the jamming point φJ [26]. Applied shear stress � unjams the system when �

exceeds the yield stress �yield. Interestingly, when the interaction between particles
is frictional, the system can be jammed by shear at a packing fraction below φJ
[27]. As shown in Fig. 1.3a, for a two-dimensional dry granular system under quasi-
static pure shear, while φ is in the range of φS < φ < φJ, the system goes
through three different states as � increases: In the fragile state (red), the strong
force networks2 only percolate in the compression direction, so perturbations in the
transverse direction can cause instability in the system [8, 27]. At higher �, the
strong force networks percolate in all directions, and the system reaches a shear-
jammed state (green). At even higher �, the jammed solid yields and goes into

2Strong force is defined as F > Fave, where F is the local contact forces, and Fave is the average
of F across the whole system [27].
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Fig. 1.3 Shear jamming state diagrams for dry grains (a) and suspensions (b). F represents the
fragile state, DST represents discontinuous shear thickening, SJ represents the shear-jammed state,
and J represents the frictionless jammed state. (a) reproduced from D. Bi et al., Jamming by shear,
Nature (2011) [27]. (b) reproduced from I. R. Peters, S. Majumdar, and H. M. Jaeger, Direct
observation of dynamic shear jamming in dense suspensions, Nature (2016) [28]

the unjammed regime (light gray). Jamming by shear was also found in frictionless
systems [29] or with weakly attractive particles [30] by numerical simulations.

Shear jamming in dense suspensions was observed by Peters et al. [28] with a
wide gap Couette cell. The macroscopic feature of shear-jammed suspensions is
that they develop a non-zero shear modulus.3 A state diagram has been mapped out
for dense suspensions under steady-state driving conditions, as shown in Fig. 1.3b.
Similar to dry granular systems, in suspensions, the transitions are also controlled by
φ and �. One significant difference is that at low �, suspensions flow like a viscous
fluid because of the lubrication interaction between the particles. The strongly
non-Newtonian rheological properties become most pronounced at high φ and �,
where suspensions start to exhibit characteristics also found in dry granular material
[8, 26, 27, 31, 32]. Recent experiments [25, 33–37] and numerical simulations [38–
41] point to the existence of a stress threshold above which the dominant interaction
between particles switches from hydrodynamic lubrication to frictional contact
forces.

In dry granular systems, there are three interesting thresholds: the minimum
packing fraction needed for shear jamming φS, the onset stress �SJ(φ) of shear
jamming, and a strain scale that represents the necessary deformation to rearrange
the particles from a uniformly distributed initial state into contact networks [42]. In
suspensions there are three scales as well: a lower boundary for shear jamming
at packing fraction φm, a stress threshold �∗ that is related to the breakdown
of the lubrication layer between particles, and a strain scale γ ∗. The stress scale
�∗ is relatively well understood based on studies using steady-state rheology. In

3Some literature does not clearly distinguish shear thickening and jamming. Sometimes discon-
tinuous shear thickening is referred to as “temporary jamming.” In this thesis, jamming is only
designated to a state that does not flow under applied stress (with a non-zero shear modulus) during
the time scale of the experiments.
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contrast, before the work in this thesis, φm was never tested experimentally, and the
importance of γ ∗ was not recognized, especially for transient phenomena. These
will be discussed in Chap. 4.

1.3 Wyart–Cates Model for Steady-State Rheology

The basis of a phenomenological model developed by Wyart and Cates [43] is that
there is a transition in particle–particle interactions from hydrodynamic lubrication
forces to frictional contact forces and this transition is controlled by stress. This
model unifies CST, DST, and jamming under a common framework for suspensions
under conditions of steady-state driving. The central ideas are as follows:

1. Frictional contacts between particles will be made beyond a characteristic
pressure P ∗. The fraction of frictional contacts f (P ) should be a smooth
function that grows with P , such as

f (P ) = 1 − exp(−P/P ∗). (1.3)

2. The packing fraction φJ at which jamming occurs is known to depend on the
friction coefficient [44]. In suspensions, φJ must then depend on P , and this can
be captured by a linear interpolation

φJ(P ) = f (P )φm + [1 − f (P )] φ0, (1.4)

where φ0 and φm are the frictionless and frictional jamming packing fractions,
respectively. The exact value of φm is controlled by the friction between particles.
Importantly, “friction” here is a phenomenological parameter that can have
different microscopic origins, which include direct solid–solid contact [33, 41],
surface roughness of particles [45, 46], interactions between polymer brushes
[36], or hydrogen bonding [47].

3. When a suspension with packing fraction φ is under shear, the ratio between
normal stress P and shear rate γ̇ diverges at φJ (see Eq. (1.2)):

P

γ̇
∝
[

1 − φ

φJ(P )

]−α

. (1.5)

For frictionless particles the exponent α can be computed analytically, leading
to α = 2.85 [31], whereas for frictional particles it is smaller [48]. Here we
pick α = 2, which is in good agreement with previous experimental results
[34, 49, 50].

4. Equations (1.3)–(1.5) allow one to compute P(γ̇ ), eventually leading to a state
diagram predicting CST, DST, and jamming in the (φ, P ) plane. A further
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Fig. 1.4 Wyart–Cates model for suspension rheology. (a) Exemplary �-γ̇ relations for Newto-
nian, CST, DST, and SJ suspensions. (b) State diagram. Panel (b) reproduced from M. Wyart and
M. E. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions,
Phys. Rev. Lett. (2014) [43]

prediction of the shear stress can be obtained following the relation � = μP ,
where μ is the macroscopic friction coefficient [34]. In principle, μ depends on P

and φ, but in practice, the dependence is weak; thus μ can be well approximated
as a constant of order one. Therefore, we can replace P with �, and P ∗ with �∗
in Eqs. (1.3)–(1.5). Then Eq. (1.5) will have the same form as Eq. (1.2).

Some �-γ̇ curves predicted by the Wyart–Cates model are shown in Fig. 1.4a.
At φ = 0, the system only consists of the solvent, which is a Newtonian fluid. For a
denser suspension, the curve continuously shifts towards larger η as � increases. In
the CST regime, there is a one-to-one correspondence between γ̇ and �. However,
at even higher φ, the �-γ̇ curve becomes sigmoidal. For curves like this, stress-
controlled experiments and rate-controlled experiments will lead to different results,
because for each � there is only one corresponding γ̇ , but for some γ̇ , there are
more than one possible �. A stress-controlled experiment will reproduce the solid
red curve in Fig. 1.4a, while in a rate-controlled experiment discontinuous jumps
will happen as shown by the dashed red lines, and there will be hysteresis [51].
In this regime, we obtain DST. When φ > φm, the �-γ̇ curve intersects with the
vertical axis where γ̇ = 0 s−1. At the intersection, the suspension is in a state of
zero shear rate, but non-zero shear stress, which means that it must have developed
a non-zero shear modulus, i.e., turned into a solid. The stress at the intersection,
therefore, is the onset stress of shear jamming �SJ.

From the �-γ̇ curves, a state diagram is obtained, as shown in Fig. 1.4b. In
steady-state rheology, the state of a suspension is controlled by two parameters φ

and �. Here we call it the η(φ,�) rheology. This phenomenological model allows
us to predict the various behaviors of an unknown suspension by measuring four
parameters (η0, φ0, φm, and �∗) with a rheometer, without the necessity of knowing
any details about the material on the microscopic level.
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1.4 Dynamic Jamming and Transient Flows Under Impact,
Extension, and Shear

Although steady-state rheology of dense suspensions has been studied extensively in
the past decade or so, the experimental observation of shear jamming under steady-
state conditions occurred only very recently [28]. In contrast, dynamic jamming
of dense suspensions was noticed much earlier in transient phenomena. Under a
wide range of dynamic conditions, dense suspensions can undergo a fluid-solid
transformation, for example, ahead of quickly sinking objects [52, 53], during
sudden impact at their free surface [54–57], under shear [28] or during rapid
extension [58]. Detailed investigation of the dynamics during impact has shown
how such solidification is associated with a propagating front that converts fluid-
like, unjammed suspension into a solid-like, jammed material in its wake [54, 59].
This dynamic front moves much faster than the impactor itself.

To explain “impact-activated solidification” and the formation of the front, a
model was proposed [54] that assumed the impact pushes the particles closer
together until they jam. This densification scenario was based on the standard
jamming phase diagram for frictionless hard particles, where entry into a jammed
state requires an increase in particle packing fraction φ [7]. Since the volume of
particles is conserved, the front propagation speed Uf along the direction of impact
then is related to the impactor speed Up via [60]

Uf = φJ

φJ − φ
Up, (1.6)

where φJ is the packing fraction at which jamming occurs and φ (<φJ) is the packing
fraction of the initially unjammed suspension at rest. The closer the initial packing
fraction is to jamming, the faster the front will propagate, and in principle the ratio
Uf/Up diverges at φJ. This model shows excellent agreement with measurements
of Uf in systems where the local packing fraction can change easily, such as dry
granular particle layers that are being compacted snowplow-like from one end [60].

However, this model has certain limitations. Firstly, since compression is
required, it does not explain why suspensions can also jam under simple shear
or extension. Secondly, since the liquid is effectively incompressible for speeds Up
that are only several meters per second, compression would imply migration of
particles. Since the particles are non-Brownian, the concentrated regions would be
unable to return to the original state when the stress is removed, which contradicts
experimental observations. Lastly, as shown in [59] where the flow field in 2D was
measured accurately, the suspension does not turn into a jammed solid before the
front interacts with a solid boundary. A small but non-zero velocity gradient was
observed behind the freely propagating front, which means the suspension is only
solid-like, but not a solid yet. All these issues point to the need for a revised and
more detailed understanding, and in this thesis, we will get there step by step.
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1.5 The Scope of This Thesis

The primary goal of this thesis is to understand the transient dynamics of dense
particulate suspensions, especially in the shear jamming regime. The main body
is comprised of four parts: In Chap. 2 we introduce several ultrasound techniques
that are useful for characterizing the properties of suspensions, including imaging
interior flows, measuring the bulk modulus using the speed of sound, and measuring
the porosity of porous microparticles. In Chap. 3 we use high-speed ultrasound
imaging to non-invasively probe how the interior of a dense suspension responds
to impact. By measuring the speed of sound we demonstrate that the solidification
proceeds without any detectable increase in packing fraction, and by imaging the
evolving flow field we find that the shear intensity is maximized right at the jamming
front. Taken together, this provides direct experimental evidence for jamming
by shear, rather than densification, as driving the transformation. To develop a
quantitative description of such transient flows, in Chap. 4, we study the fronts
that appear when dense suspensions are subjected to sudden shear in a quasi-
one-dimensional system. Based on the experimental findings, we point out that
the η(φ,�) rheology is not sufficient to explain the transient flows. To fix this,
we generalize the original Wyart–Cates model by introducing a sole additional
parameter: the characteristic strain scale that controls the crossover from start-up
response to steady-state behaviors. Chapter 5 demonstrates how transient shear
flows can be used to perform stress-controlled rheology tests. This technique enables
us to map out properties of dense suspensions in the shear jamming regime, which
is difficult if not impossible with standard steady-state rheology. Chapter 6 contains
conclusions and outlines some open questions that future work might be able to
address.



Chapter 2
Ultrasound Techniques for Studying
Suspensions

2.1 Introduction

Compared to the Higgs boson or exoplanets, colloidal or non-colloidal particles
are much easier to visualize. However, imaging is still a challenging task for soft
matter experiments in general, because they may involve a wide range of length
scales, require a high temporal resolution, need information deep in the bulk, or
deal with optically opaque materials [61]. These are the challenges we must meet to
understand the transient dynamics of dense suspensions.

As an important diagnostic imaging technique, ultrasound has been studied
extensively in medicine. At the same time, it has become a useful tool for
granular material and suspensions, either to make observations or to manipulate
the tested material. For example, diffusion acoustic wave spectroscopy (DAWS) was
developed to measure relative velocity and strain rate in suspensions [62]. Combined
with steady-state rheology, ultrasound speckle velocimetry has been used to measure
the flow field [63, 64]. The transmission of compression or shear waves can be used
to probe the mechanical properties of jammed granular materials [65–68]. As a well-
developed technique, ultrasound has much potential for soft matter experiments,
especially for aqueous but optically opaque materials.

One advantage of ultrasound is its high acquisition frequency. One major
limitation, however, is the attenuation due to scattering or absorption, which
limits the penetration depth of the signals [69]. Standard medical ultrasound has
a frequency f that ranges approximately from 1 to 20 MHz, and is coupled1 to
water or soft tissues, in which the speed of sound c is around 1500 m/s. Therefore
the range of wavelength λ = c/f covered is about 0.1–1 mm. For suspensions
comprised of microparticles, λ usually is at least one order of magnitude larger than
the particle diameter, so scattering is relatively weak. The absorption, though, can

1Here “couple” means that the acoustic impedance is matched. Details see Sect. 2.6.
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still be significant, especially in highly viscous fluids such as dense suspensions.
Higher frequency leads to finer spatial resolution but stronger absorption, thus it
shortens the range of view into the material. Ultrasound imaging with a spatial
resolution beyond the diffraction limit has been achieved [70], but the temporal
resolution has to be sacrificed to accumulate data for statistics. Depending on the
purpose of the observation, we need to find a balance between temporal resolution,
spatial resolution, and penetration depth.

For suspensions, there are three essential length scales: the surface interaction
is at nanometer or sub-nanometer scales, the particle diameter is one micron to
tens of microns, and the characteristic length scale in the transient shear flow is
of order 1 mm. Even with the ultra-fast ultrasound localization microscopy (uULM)
technique (a few µm resolution) [70], it is difficult to visualize individual particles.
Luckily, sometimes to model a system, we only need to choose the “appropriate”
length scale and do not need to have a complete understanding of the details at
smaller scales [71]. As will be discussed later, models can be developed treating
suspensions as a continuum. Experimentally, this allows us to push the limit of
temporal resolution and penetration depth while we only aim for a “reasonable”
spatial resolution.

2.2 Introduction to the Ultrasound System

The apparatus we used for the experiments described in this thesis was a Verasonics
Vantage 128 research ultrasound platform, which is shown in Fig. 2.1a. It has three
main parts: the data acquisition hardware, the host controller computer, and an
ultrasound transducer. The data acquisition hardware has 128 independent channels
that control and communicate with the ultrasound transducer. Transducers are made
of piezoelectric materials that transform pressure signals into electrical signals and
vice versa. Our ultrasound system works with transducers with a linear array, a
curved array, or a phased array. We primarily used a Philips L7-4 linear array
transducer, which has a flat surface as schematically illustrated in Fig. 2.1b. Its
working part is comprised of a one-dimensional linear array of 128 piezoelectric
elements. The width of each element in the x direction is 0.250 mm, and the distance
between the centers of adjacent elements is 0.298 mm. In the y direction, each
element has a length of about 7 mm, but the beam is focused, so the transducer
only scans a thin sheet in the x-z plane.

A transducer can be used as an ultrasound transmitter, receiver, or both
(transceiver). Each element in the array can transmit or receive ultrasound
signals independently. The shape, duration, frequency, and other parameters of
the transmitted signal are all adjustable according to the specific application. Our
most commonly used transmitted signal is a f = 5.00 MHz sinusoidal wave with
the amplitude modulated by a Gaussian envelope, as shown in Fig. 2.1c. When all
the elements transmit the same signal simultaneously, we get a plane wave that
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Fig. 2.1 Introduction to the ultrasound system. (a) Photo of the Verasonics Vantage 128 system
with a Philips L7-4 transducer connected. (b) A schematic illustration of an L7-4 transducer,
with the conventional coordinate system labeled. (c) An exemplary transmitted signal. The red
curves show the functional form of the signal and its Gaussian envelope. The black dots show the
measured transmitted signal reflected from a surface parallel to the x − y plane. The black line is
the envelope of the reflected signal. The amplitude of the signals is normalized by the peak heights
of the envelopes

propagates in the z direction. By controlling the relative transmission time of each
element, we can also realize tilted plane waves, beam sweeping, or focused beams.

After sending out a signal, the transducer is switched to the receiving mode.
For f = 5 MHz signals, we set the center frequency of data acquisition fc to be
5.208 MHz. The actual sampling frequency is 4 × fc = 20.832 MHz, so the system
acquires a bit more than 4 data points in one period of the transmitted signal. The
bandwidth of the L7-4 transducer is 4–7 MHz. The original acquired signal is called
the radio frequency (RF) data, which is a time series of the amplitude of the echo
signals. Each ultrasound element provides one such series, so with all 128 elements,
we obtain an NRF ×128 matrix, where NRF is the number of acquisitions. We chose
NRF based on the maximum depth zmax required for the images:
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NRF ≥ zmax

c
· 4fc · 2, (2.1)

where c is the speed of sound, 4fc is the data acquisition rate, and the factor 2 is
because of the round-trip of the signals. For image reconstruction, the RF data are
transformed into in-phase and quadrature (IQ) components. Then two-dimensional
brightness mode (B-mode) images can be reconstructed based on the IQ data. In
the experiments, we had the freedom to use the RF data, the IQ data, or the B-
mode images depending on the purpose of the measurement. The data acquisition
module can take RF data at a very high rate, and save the data in the local memory.
Transferring data to the host computer takes more time, and following that is the
slowest process—image reconstruction. The highest frame rate can be obtained by
taking RF data consecutively, then transferring and processing the data afterward.
The image depth zmax is also a limiting factor. The time interval between two
adjacent frames should not be shorter than 2zmax/c to make sure that the echoes
are from one transmitted signal only. The maximum frame rate we used for imaging
when all 128 elements were active was 10, 000 frames per second. It can be even
faster if the imaging window is shrunk.

2.3 Speed of Sound Measurements

The speed of sound c (phase speed of the compression wave) in a homogeneous and
isotropic fluid is

c =
√

1

κρ
=
√

K

ρ
, (2.2)

where ρ is the density, κ is the compressibility, and K = 1/κ is the bulk modulus
[69]. For a solid, the speed of sound depends on the shear modulus G as well

c =
√

K + 4
3G

ρ
. (2.3)

So for liquids and soft solids (G � K), a speed of sound measurement is a
convenient way to obtain their bulk modulus.

For a dilute suspension of solid non-porous particles in a liquid, Eq. (2.2) still
applies, but ρ and κ should be replaced by the effective density ρeff and the
mean compressibility κ̄ , respectively. In the long wavelength limit, where the
ultrasound wavelength λ is much larger than the particle size, the mean density
ρ̄ and compressibility κ̄ of the suspension can be written as
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ρ̄ = φρs + (1 − φ)ρl,

κ̄ = φκs + (1 − φ)κl,
(2.4)

where φ is the volume fraction of the solid particles. The subscripts “s” and “l”
represent “solid” and “liquid,” respectively. For suspensions in which the particles
and the liquid have the same density (density-matched suspensions), the effective
density and the mean density are the same [72, 73]: ρeff = ρ̄. However, for
suspensions that are not density-matched, a correction term ρδ has to be added:
ρeff = ρ̄ + ρδ . The detailed form of ρδ is introduced in Appendix A. According
to Eqs. (2.2) and (2.4), by measuring c, we can calculate the compressibility of the
suspending particles κs if we know φ, or measure φ if we know κs. For porous
microparticles, we can even use this method to measure their porosity, as will be
discussed in Sect. 2.4

A schematic illustration of the experimental setup for the speed of sound
measurements is shown in Fig. 2.2. The suspension samples were placed in a
rectangular container. Within the four vertical walls of the container, three were
aluminum and one was acrylic. The dimensions of the container were: length
l = 16.4 mm and width w = 29.0 mm as labeled in the figure. The thickness of the
acrylic wall was 6.1 mm. We adjusted the position and direction of the transducer so
that the ultrasound beam propagated within a horizontal plane, and consequently, it
was perpendicular to the acrylic surface of the container. The transmitted ultrasound
signal was a pulse of a sinusoidal wave at f = 5 MHz, modulated with a Gaussian
profile, as shown in Fig. 2.1c. After being emitted from the transducer, it traveled
through the water toward the front (acrylic) wall of the container, passed through
this wall, penetrated the suspension, and finally hit the back (aluminum) wall of
the container. During this process, the wave was reflected from three interfaces:
the water–acrylic interface, the acrylic–suspension interface, and the suspension–
aluminum interface. Consequently, there are three major peaks in the time series of
the received signal, as shown in Fig. 2.2c. The time difference between P2 (acrylic–
suspension interface) and P3 (suspension–aluminum interface) is the round-trip time
of flight τ of the ultrasound signal in the tested suspension. Since the length l of the
container is fixed, the measured time τ is inversely proportional to the speed of
sound csample in the tested sample. Since the speed of sound in pure water cwater is
well known, here we use it as a reference, thus

csample = τwater

τsample
cwater. (2.5)

The temperature of the water in the tank and the temperature of the suspension
samples were both kept at 20.8 ± 0.4 ◦C during the experiment. At this temperature
cwater = 1484.8 ± 1.2 m/s [74, 75]. We measured the time of flight in deionized
water and got τwater = 22.127 ± 0.007 µs. The mean and standard deviation are
from 13 independent measurements.
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Fig. 2.2 Experimental setup for the speed of sound measurement: (a) side view, (b) top view. The
ultrasound transducer was submerged in water, and it scanned a horizontal slice as represented
by the dashed orange line. The tested material, which can be either a liquid or a soft solid, was
placed in the rectangular container. Shaded parts of the container were made of aluminum, and the
white wall was acrylic. To show it more clearly, we plot the container in cross-section in panel (a).
(c) Envelope of an exemplary received RF signal. The three peaks labeled are reflections from the
water–acrylic interface (P1), the acrylic–sample interface (P2), and the sample–aluminum interface
(P3), respectively

2.4 Measurement of Porosity and Bulk Modulus
of Microparticles in Liquids2

A key parameter controlling the mechanical properties of suspensions is the volume
fraction of the solid particles φ. For suspensions with non-porous particles such as
solid glass or acrylic beads, φ can be easily calculated using the masses and densities

2This section is based on [76].
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of the corresponding liquid and solid. However, when there are porous particles,
obtaining accurate values for φ becomes difficult, because some of the liquid will be
absorbed into the pores and enclosed by a solid outer shell. Cornstarch suspensions
are widely used as a model system for shear thickening fluids, but the starch granules
are porous: They are mostly comprised of amylose and amylopectin, which are
hydrophilic polymers [77]. These polymers tend to form a layered structure with
concentric growth rings [78] and small voids between adjacent lamellae [77]. When
immersed in an aqueous solvent, starch particles will absorb some of the solvent
[79, 80], which makes it difficult to ascertain the correct value for the particle
volume fraction in the suspension.

As far as the rheological properties of a suspension are concerned, the packing
fraction that matters is the effective volume occupied by the particles. For any given
particle, this is the space enclosed by the outer surface that can come in contact
with neighboring particles. Therefore, the volume of hollow regions and connected
pores inside a particle should still count as the “effective” particle volume. Given
the difficulty of reliably extracting the particle porosity in systems like cornstarch,
there has been no general, agreed-upon method for calculating the volume fraction.
Typically, the volume of the particles is considered as the mass of the dry particles
divided by the density of the corresponding material, and the porosity of the particles
is ignored. In the literature, a cornstarch suspension loses the ability to flow (or is
reported as “hard to handle”) when this dry-material-based volume fraction reaches
0.42–0.45 [53, 55]. Compared to the random close packing of mono-disperse
spheres (φ ≈ 0.64), or the packing fraction at which glass spheres exhibit strongly
non-Newtonian effects such as discontinuous shear thickening (φ ≈ 0.58) [81],
this value is considerably smaller. It is known that non-spherical particles, poly-
dispersed particles, and particles with rough surfaces could have a higher jamming
packing fraction. However, even considering all these factors, this discrepancy
still seems too large. To compare cornstarch suspensions with other particulate
suspensions, dry granular systems [7, 27] or theoretical calculations [38, 43], it is
therefore essential to find accurate volume packing fractions by accounting for the
particle porosity. We will now demonstrate how to achieve this by measuring the
speed of ultrasound.

Here we define the particle porosity ψ as the ratio between the pore volume
and the total volume enclosed by the particle surface. In a suspension, when the
pores become filled with the suspending solvent, the volume fraction of the saturated
particles φ is

φ = 1

1 − ψ
φM, (2.6)

where φM is the mass fraction given by Eq. (B.1). By plugging Eqs. (2.4) and (2.6)
into Eq. (2.2), we get

1

1 − ψ
(κs − κl)φM + κl = 1

c2ρeff
. (2.7)
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Here c can be directly measured, and the method to obtain the effect density ρeff
is described in Appendix A (Eq. A.2). Equation (2.7) is the essential equation for
the data analysis. For suspensions in the same solvent (thus the same κl), 1

c2ρeff
is

a linear function of φM. Its slope Sκ = 1
1−ψ

(κs − κl) is a function of the solvent
compressibility κl.

Note that in Eq. (2.7), κs is not the compressibility of the solid material, but the
mean compressibility of the saturated porous particles, which is a function of κl as
well. To calculate κs(κl), we use Gassmann’s equation [82–84]

κs(κl) = κ0 +
(

1

κd − κ0
+ 1

ψ

1

κl − κ0

)−1

, (2.8)

where κ0 is the compressibility of the solid material by itself, κd is the compress-
ibility of the dry particles including all the pores, and ψ is the porosity.3 Thus the
complete expression for the slope Sκ is

Sκ = 1

1 − ψ

[
κ0 − κl +

(
1

κd − κ0
+ 1

ψ

1

κl − κ0

)−1
]

. (2.9)

When particles are non-porous, we have ψ = 0, κ0 = κd = κs, and thus
Sκ = κ0 − κl. This means Sκ is a linear function of κl with a slope of −1. If
the particles are porous but have a much smaller compressibility than the liquid
(κ0 � κl and κd � κl), then Sκ → 1

1−ψ
(κd − κl). In this “soft liquid” limit,

the slope of the Sκ -κl curve approaches −1/(1 − ψ) as κd/κl → 0. In the regime
where κl is comparable to κ0, the function Sκ(κl) deviates from the straight line

1
1−ψ

(κd − κl) and approaches κ0 − κl. This means that we can measure the speed of
sound in cornstarch suspensions comprised of different solvents (therefore different
κl), fit the Sκ -κl data with Eq. (2.9), and obtain the parameters ψ , κ0, and κd. Here
we assume ψ , κ0, and κd do not vary when the particles are submerged in different
solvents.

To find the porosity and compressibility of cornstarch particles experimentally,
we measured the speed of sound c in dilute suspensions with various solvents.
For each suspension, we measured the masses of the cornstarch mcs and the
solvent ml, then calculated φM with Eq. (B.1) and ρ̄ with Eq. (B.2). We performed
experiments with both density-matched and non-density-matched suspensions. The
effective density ρeff of a non-density-matched suspension was calculated using
Eq. (A.2) [87].

3Gassmann’s equation applies in the “low frequency limit,” which means that the time for the pore
pressure to equilibrate is sufficiently long [85, 86]. Though the central frequency of our ultrasound
signal was 5 MHz, which is not normally considered a “low frequency” wave, we could still use
this equation reasonably, because the cornstarch particles are small (∼ 10µm) and permeable, thus
the time it takes for the Biot wave to diffuse through the whole particle is sufficiently short.
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Fig. 2.3 Measuring the porosity and compressibility of microparticles in liquids using the speed
of sound. (a) Linear relations between the mean compressibility κ̄ = 1/(c2ρeff) and the material
volume fraction φM for cornstarch suspensions in different aqueous solvents. Solid and dashed
lines are the best fits of non-density-matched (circles) and density-matched (squares) samples,
respectively. (b) Slopes Sκ of the lines in (a) as functions of κl. The solid red line shows the best
fit using Eq. (2.9). The black dashed line shows slope −1. (c) Uncertainty of the fitting parameters
κd, κ0, and ψ . RSS is the residual sum of squares. The solid red line goes through its minimum at
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dashed black lines label the region of 95% confidence. The dotted black lines show the boundaries
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As shown in Fig. 2.3a, for both density-matched (squares) and non-density-
matched (circles) suspensions, the mean compressibility of a suspension κ̄ =
1/(c2ρeff) was indeed a linear function of φM as Eq. (2.7) predicts. The solvents
in the non-density-matched suspensions were mixtures of glycerol and deionized
water at different mass ratios. In Fig. 2.3a, from top to bottom, the mass ratio of
glycerol was 0, 15, 30, 45, 60, and 75%. For density-matched suspensions, we added
an appropriate amount of CsCl into each glycerol water mixture, so that its density
was 1.63 × 103 kg/m3. In Fig. 2.3a, from top to bottom, the mass ratio of glycerol
(over the sum of glycerol and water) was 0, 25, 50, and 60%. From linear regression,
we obtained the slopes of these lines Sκ .

The relation between Sκ and κl is shown in Fig. 2.3b. We fit the data with Eq. (2.9)
and obtain, ψ = 0.31 ± 0.12, κ0 = (0.95 ± 0.06) × 10−10 Pa−1, and κd = (2.1 ±
1.7)×10−10 Pa−1, where ψ , κ0, and κd are independent fitting parameters. In reality,
however, they are not three independent variables, which allows us to narrow down
the range of the parameters. Now we vary κd from 1×10−10 Pa−1 to 6×10−10 Pa−1.
For each κd, we fit the data in Fig. 2.3b with the other two parameters ψ and κ0.
From the residual sum of squares (RSS) we find that the best fit is obtained at κd =
2.1 × 10−10 Pa−1. For a dry, porous material, its compressibility increases with
porosity [88, 89], thus κd satisfies

κd >
1

1 − ψ
κ0. (2.10)
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This boundary is plotted with dotted lines in Fig. 2.3c. Possible values of κd lie on
the right-hand side of these dotted lines. Therefore, the lower limit of ψ becomes
0.25, and the upper limit of κ0 becomes 1.0 × 10−10 Pa−1. We get ψ = 0.31+0.12

−0.06,

κ0 = 0.95+0.05
−0.06 × 10−10 Pa−1, and κd = 2.1+1.7

−0.8 × 10−10 Pa−1.
With the compressibility of the dry granules κd measured in other experiments,

the uncertainty associated with these parameters can be further reduced. Waitukaitis
[90] extracted the Young’s modulus Ecs of dry cornstarch granules from indentation
tests with atomic force microscopy (AFM), and found Ecs ≈ 5 GPa. The Poisson’s
ratio of dry cornstarch particles νd is not well known, but for most polymers, the
Poisson’s ratio is higher than 0.25 [91]. Assuming νd > 0.25, we can use the relation
κd = 3(1−2νd)/Ecs to obtain κd < 3.0×10−10 Pa−1. This leads to κd = 2.1+0.9

−0.8 ×
10−10 Pa−1 and ψ = 0.31+0.06

−0.06.

2.5 Ultrasound Imaging

One of the most powerful functions of ultrasound is imaging the interior of optically
opaque materials. Essentially, what the ultrasound system measures is the time of
flight of the sound wave. The reconstruction process of B-mode images is translating
the time information to position information. A schematic illustration of one data
acquisition event is shown in Fig. 2.4. A plane wave of the signal shown in Fig. 2.1c
is transmitted by the transducer and propagates along the z direction. When the
plane wave interacts with a scatterer, it will be reflected, but the echo back to
the transducer has a curved wavefront. By comparing the phase difference of the

time 

transducer 

x 

z 

Fig. 2.4 Illustration of how ultrasound reflects back from scatterers. The scatterers are represented
by the orange disks, the head of the transducer is the blue rectangle, and the ultrasound wave pulses
are represented by the red bands
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detected signals between adjacent piezoelectric elements, we can find the x position
of the scatter. By measuring the time of flight, we can find the z position of the
scatterer given the speed of sound in the surrounding medium. As a result, to
reconstruct images correctly, firstly we need to measure the speed of sound in the
tested material as introduced in Sect. 2.3.

With the ability to measure the positions of scatterers, ultrasound allows us
to track the motion of the material in which the scatters are embedded by
applying particle image velocimetry (PIV) to the reconstructed images. To check
the reliability of this method, we measured the velocity field in a gelatin block
with embedded particles under simple shear. As illustrated in Fig. 2.5a, the gelatin
sample was a cuboid made of 10% (w/w) gelatin in water, with a layer of glass
spheres uniformly distributed in the middle of the sample. The experimental setup is
sketched in Fig. 2.5b. The gelatin block was placed vertically (meaning the particle
layer was vertical) on a 5/64 inch thick acrylic board and sheared by a plane that slid
horizontally on the top. An L12-5 (50 mm wide) transducer (f = fc = 8.93 MHz)
was placed below the acrylic board, and the imaging plane (x–z plane in Fig. 2.1b)
was aligned with the layer of particles in the sample. Since gelatin is optically
transparent, we observed the motion of the particles simultaneously with a high-
speed camera (Phantom V9), at a spatial resolution of 65.6µm/pixel. In this way,
the ultrasound images could be directly compared with the optical images.

We tried spherical scatterers with two different diameters: d = 300–400µm
(≈ 2λ) and d = 45–63µm (≈ 0.3λ), where λ ≈ 0.17 mm was the wavelength. The
spatial resolution of the reconstructed images is limited by the wavelength—only
objects with a length scale greater than λ can be resolved. As shown in Fig. 2.5c, d,
the positions of individual particles were captured in the ultrasound images when
d ≈ 2λ, but we can only see a speckle pattern that does not have a one-to-one
correspondence with the real particle positions when d ≈ 0.3λ. However, in both
cases, the motion of the speckle pattern represented the motion of the materials.

To test the correlation between the speckle motion and the material motion, we
moved the sliding surface back and forth horizontally by hand and took consecutive
images with the camera and the ultrasound simultaneously. We performed PIV
analysis with both optical and ultrasound images. Each image was divided into
square elements, and the velocity of each element was calculated through a cross-
correlation algorithm between two subsequent frames. As expected for an elastic
solid, the local horizontal velocities increased linearly with the height, and the two
independent measurements showed excellent agreement, for both large and small
scatters. An exemplary result is shown in Fig. 2.5e, which compares horizontal
velocities as a function of time measured by the two methods at a certain height
of the sample with d ≈ 0.3λ spheres. Since the sample was randomly sheared
by hand, there were many fine features in its motion. Nevertheless, the ultrasound
measurements captured all the details in the changing velocity.
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Fig. 2.5 (a) Gelatin block with a layer of embedded glass particles. (b) Experimental setup. The
slider on the top moves horizontally. (c) Comparison between a camera (CAM) image and an
ultrasound B-mode image (US) for 300–400µm (≈ 2λ) particles. (d) Comparison for 45–63µm
(≈ 0.3λ) particles. (e) Horizontal velocity as a function of time obtained from the camera (orange)
and the ultrasound (blue) at the same height, for the sample in (d)

2.6 Visualizing Flows of Dense Suspensions

When sound waves propagate from one medium into another, reflections happen at
the interface. The intensity reflection coefficient RI is defined as the ratio between
the intensity magnitudes of the reflected wave and the incident wave. For normal
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Table 2.1 Speed of sound c, density ρ, and acoustic impedance Z in some materials at room
temperature (20 ◦C)

Material c (m s−1) ρ (kg m−3) Z (kg m−2 s−1)

Air 340 1.20 408

Water 1480 1000 1.48 × 106

Density-matched solvent 1647 1630 2.68 × 106

Cornstarch suspension 1939 1630 3.16 × 106

VoroWhite plastics 2412 1210 2.92 × 106

Acrylic 2744 1180 3.24 × 106

The density-matched solvent was a mixture of 44.3% CsCl, 27.8% glycerol, and 27.8% water
by mass. The Cornstarch suspension was prepared with the solvent above at packing fraction
φ = 0.48

incidence, we have

RI =
(

Z2 − Z1

Z2 + Z1

)2

, (2.11)

where Z = ρc is the acoustic impedance, and 1, 2 represent the media on each side
of the interface. The corresponding intensity transmission coefficient for normal
incidence is TI = 1 − RI . The acoustic impedance of some materials is listed in
Table 2.1.

As Table 2.1 shows, air has a very different impedance compared to water or
cornstarch suspensions. As a result, when there are air bubbles in the suspensions,
we receive strongly scattered signals. After preparing a dense cornstarch suspension,
we immediately transferred it into a 10 ml syringe, sealed the nozzle, and observed
with ultrasound by pushing the transducer against the wall of the syringe. The B-
mode image obtained is shown in Fig. 2.6a. We saw very strong signals close to the
transducer, and the sound wave did not penetrate deeply. We then left the suspension
rest for 30 min, and observed with ultrasound again, as shown in Fig. 2.6b. Now
the system became more transparent, and we can see the wall of the syringe on
the opposite side, but there was still strong scattering in the suspension. Lastly,
we debubbled the suspension by pulling the plunger of the syringe to create a low
pressure inside. The size of the bubbles expanded, and by tapping the syringe, we got
rid of most of the bubbles visible by the ultrasound as shown in Fig. 2.6c. A strong
reflection is seen from the opposite wall. We average the corresponding RF data of
the three images along the x direction, and plot the averaged signal amplitudes as
functions of the depth z in Fig. 2.6c. From the plot, we can see dramatically reduced
scatterings, and a much stronger transmission signal reflected from the opposite wall
at z ≈ 13 mm.

A similar effect can be obtained by pressurizing the suspension. We kept the
syringe sealed, and pushed its plunger with an Instron material tester. The results
are plotted in Fig. 2.6e, which can be directly compared to (d). Again, we can
see that the amplitude of the signals in the sample decreased when the applied
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Fig. 2.6 Effect of air bubbles in ultrasound imaging of dense suspensions. (a–c) Ultrasound B-
mode images of dense cornstarch suspensions in a 10 ml syringe. The transducer is at the bottom
of these images. (d) Amplitude of RF signals in suspensions with different air concentrations. (e)
Amplitude of RF signals in suspensions under different pressure

pressure increased from P0 to 7 × P0 (P0 is the atmospheric pressure). The
amplitude of the signal reflected from the opposite wall increased with pressure,
which confirmed that the decrease of brightness in the bulk was not due to increased
energy dissipation (attenuation), but less scattering. We think this phenomenon is
caused by the decrease in bubble sizes, which leads to smaller scattering cross-
sections, at high pressure. Potentially, this method could be used to detect pressure
in the suspensions, but much more careful calibration is required.

To track the motion of the suspensions, we need an appropriate speckle density
in the B-mode images. A freshly made dense suspension normally has too many
bubbles in it, as shown in Fig. 2.7c. In this case, the penetration depth of the signal
is highly limited, and when the suspension moves, the speckles show significant
deformation besides translations, which makes the tracking more difficult. Thus
for ultrasound imaging, we debubbled a suspension first, so that it became almost
acoustically transparent and featureless as shown in Fig. 2.7a. Then we added a
certain amount of air bubbles back to the suspension by slowly stirring with a
spatula. Figure 2.7b shows an example of the speckle concentration and contrast that
worked well in practice. The speckle pattern in a flowing suspension is demonstrated
in Fig. 2.7d. In this kymograph, vertical slices taken at the same position from a
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Fig. 2.7 Speckle patterns in dense suspensions for tracking. (a–c) Speckle patterns generated by
different air bubble concentrations in dense suspensions: (a) too few scatterers; (b) good speckle
pattern; (c) too many scatterers. (d) Exemplary kymograph. Each column segregated by the thin
black lines is obtained from the same x position in a series of B-mode images

series of B-mode images are stitched next to each other. The speckles moved with
the flow in the vertical direction, as labeled by the dashed black lines. The slope of
each line represents the local vertical velocity of the suspension, which agrees with
the results obtained from the PIV analysis.

Lastly, we checked the effect of air bubbles on the mechanical properties of dense
suspensions with steady-state rheology experiments. When the suspension was just
made (corresponding ultrasound image is shown in Fig. 2.6a), it had higher viscosity
at low shear stress compared to the debubbled suspension, which led to stronger
shear thinning. At shear stress above 1 Pa, there was no difference between the
two samples according to the rheology measurements. For a non-debubbled sample
that was tested 30 min after preparation, there was still a significant amount of air
bubbles in the suspension as shown in Fig. 2.6b, but its rheological properties were
identical to a fully debubbled suspension across the whole stress range tested. Thus
we conclude that adding a limited number of small air bubbles as tracers does not
change the mechanical properties of the suspensions that we are interested in here.



Chapter 3
Investigating Impact-Activated Fronts
with Ultrasound

3.1 Introduction

In this chapter, we will reveal the mechanism of impact-activated solidification
by applying the ultrasound techniques described in Chap. 2 to a series of impact
rheology experiments. As introduced in Sect. 1.4, impact on the surface of a dense
suspension can generate a front that propagates across the system faster than the
impactor itself [54]. This front transforms the suspension from a fluid-like state into
a solid-like state. Initially, a model [60] based on jamming by compression and
thus densification [26] was proposed to explain this dynamic jamming transition.
Although the model well captures the major features of the phenomenon, it has
certain limitations, which we will briefly revisit here.

While preparing suspensions, we can match the density of the interstitial liquid
to the density of the particles. Density matching makes it possible to prepare a three-
dimensional granular material at packing fractions φ well below φJ. Consequently,
jamming by densification implies significant change in φ: �φ = φJ − φ, given
that such systems still exhibit impact-induced solidification. However, unless the
impact speed Up is so fast that the liquid becomes compressible [93], densification
of the particle sub-phase during a short time is counteracted by the hydrodynamic
interactions. Therefore the mechanism underlying Eq. (1.6) becomes questionable,
even though its primary outcome agrees with experimental measurements, which
shows that the ratio between the front speed and the impact speed increases
dramatically as �φ approaches zero [54, 59].

One recently emerged alternative mechanism is the concept of jamming by shear
[27, 43]. As an extension of frictionless, standard jamming, it proposes that the
presence of frictional interactions between particles enables the system under shear
to start from an isotropic, unjammed initial configuration at φ < φJ, and rearrange

This chapter is based on [92].
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the particles into anisotropic fragile or jammed configurations without changing
φ. Shear jamming is also observed in frictionless systems, albeit over a much
narrower range in �φ [29]. So far, shear jamming has been studied experimentally
in two-dimensional (2D) dry granular systems under quasi-static conditions [27].
Investigating the role of shear jamming in impact-induced dynamic solidification of
dense suspensions in 3D requires non-invasive, high-speed imaging of the jamming
fronts and the associated, quickly evolving flow field in the interior of an optically
opaque system.

Ultrasound satisfies all these requirements. Related techniques have been applied
to studying dry granular materials [65, 66] and steady-state flows in suspensions
[63, 64, 94–96]. As the suspension jams, we obtained an upper bound on the change
of packing fraction �φ by measuring the speed of sound c. We found that in the
regime of Up � c, �φ was significantly below the value required if impact-
activated solidification was primarily driven by densification. In the regime of slow
Up, the suspension behaved like a viscous fluid. In the regime of fast Up, it shear
thickened dramatically and developed solid-like characteristics, which we identified
by investigating the flow fields using high-speed ultrasound. We observed the
emergence of concentrated shear bands at the location of the propagating jamming
fronts. The invariant packing fraction and the existence of shear bands provide direct
evidence of dynamic shear jamming in three-dimensional suspensions. Furthermore,
the ability to map out the full flow field allowed us to extract the local shear rates and
identify the origin of a key, but so far unexplained, feature of the jamming fronts:
their longitudinal propagation speed exceeds the transverse propagation speed, and
the ratio was close to two [59].

3.2 Impact Experiment with Ultrasound

Our experimental setup is illustrated in Fig. 3.1. The ultrasound imaging and
speed of sound measurements were performed with a Verasonics Vantage 128
system. We used a prototypical suspension: cornstarch particles dispersed in water–
glycerol–cesium chloride (CsCl) solutions. To increase the amount of sound energy
transmitted into the suspensions, we made the sample container with materials that
closely matched the acoustic impedance of the suspensions. According to Table 2.1,
we could use either “VeroWhitePlus” plastic, which is a UV-cured resin, or acrylic.
Here the sample container was 3D-printed with VeroWhitePlus (Objet Geometries
Inc.). The inner diameter of the container was 10.0 cm and the typical depth H of the
suspension was 2.5–3.5 cm. This diameter-depth ratio ensured that the front reached
the bottom before it interacted with the sidewall. The impactor was a cylinder with
a flat head, and its diameter was 6 or 10 mm. It was driven by a computer-controlled
linear actuator (SCN5, Dyadic Systems) and equipped with a force sensor (DLC101,
Omega). The ultrasound transducer (Philips L7-4) had 128 independent elements,
and its total width was 3.8 cm. The head of the transducer contacted the bottom of
the container through a thin layer of ultrasound gel.
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Fig. 3.1 Schematic of the experimental setup. (a) shows a 3D sketch of the setup, and (b) shows
the 2D cross-section. The sample container and impactor are both cylindrical and concentric. The
ultrasound transducer scans a vertical slice along the central axis (z axis), providing a field of view
as indicated by the striped area

In an impact experiment, the impactor moved downward vertically with a
constant speed Up. The ultrasound system was triggered when the impactor reached
a certain distance above the suspension surface. Once triggered, it made several
hundred acquisitions consecutively. The images were taken at a rate of 10–10,000
frames per second, adjusted based on Up. In one acquisition, all the transducer
elements transmitted the same ultrasonic pulse at the same time, and each element
received an individual time series of the reflected signal. Each pulse was a 5 MHz
sinusoidal wave modulated by a Gaussian profile, and the length of one pulse was six
periods. From the time series received by all the elements and using the previously
measured speed of sound c, we reconstructed B-mode images [69] that captured
speckle patterns that reflect the positions of the tracer particles (air bubbles) in the
suspension. The spatial resolution in our experiments was about 0.4 mm, limited by
the wavelength of the ultrasound. By tracking the motion of the speckle patterns with
a particle imaging velocimetry (PIV) algorithm, we obtained a 2D flow field from
within the bulk of the suspension. We verified that a proper amount of bubbles did
not suppress the penetration of the ultrasound in the suspensions, and their effect on
the speed of sound was negligible. We also determined that the suspension viscosity
was barely affected by the embedded bubbles (see Sect. 2.6). Between successive
impact experiments, the suspension was relaxed by gently shaking and rotating the
container.
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3.3 Measurement of Flow Field

A representative flow field (ur , uz) inside the suspension during an impact is shown
in Fig. 3.2a–c. The horizontal and vertical axes in the image correspond to the r

and z directions in the cylindrical coordinates, and the z axis overlaps with the
central line of the impactor. The flow field shows a solid-like (or highly viscous)
plug under the impactor, as evidenced by the fact that every point moves vertically
with a velocity close to Up. Also evident is a strong velocity gradient around the
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Fig. 3.2 Visualization of the flow field with ultrasound. (a)–(c) Velocity field during an impact
at time 6.0 ms (a), 13.2 ms (b), and 20.3 ms (c) (the impactor reached the surface at time t =
0 ms). The images are B-mode images (shown in gray scale) with overlaid velocity field from PIV
analysis. The color code represents the magnitude and sign of the vertical component of the local
velocity uz (red corresponds to downward, blue to upward flow). Dashed yellow lines indicate the
locations of the free surface of the suspension and of the bottom of the container. The impactor is
outlined in red. The experimental parameters were φ = 0.47, Up = 175 mm·s−1, liquid viscosity
η0 = 4.6 ± 0.2 mPa·s, fill depth H = 30 mm, and impactor diameter of 6.0 mm. The black scale
bar in (b) represents 1 cm for (a)–(c). (d, e) Two components of the shear rate tensor, |ε̇zz| (d)
and |ε̇rz| (e), shown for the same instant in time as the flow field in (c). Dashed lines are contours
connecting points with the same uz. The thicker line indicates uz = Up/2. The white scale bar is
1 cm for (d) and (e)
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periphery of the solid-like region. To show this more explicitly, we calculate the
local shear rate tensor ε̇ from the velocity field (ur , uz). Given rotational symmetry,
it can be written as

ε̇ =
⎡
⎢⎣

∂ur

∂r
0 1

2 ( ∂ur

∂z
+ ∂uz

∂r
)

0 ur

r
0

1
2 ( ∂ur

∂z
+ ∂uz

∂r
) 0 ∂uz

∂z

⎤
⎥⎦ . (3.1)

Figure 3.2d, e show two important components in ε̇: |ε̇zz| = − ∂uz

∂z
and |ε̇rz| =

− 1
2 ( ∂ur

∂z
+ ∂uz

∂r
). Underneath the solid-like region, i.e., in the longitudinal direction,

the diagonal terms dominate. This corresponds to a uniaxial compression (or pure
shear in 2D) that compresses the suspension in the z direction and allows it to expand
radially. By contrast, along the sides of the solid-like plug, the non-diagonal term
ε̇rz dominates, and within it, the main contribution arises from ∂uz

∂r
. In other words,

the gradient of the velocity is perpendicular to Up in the transverse direction. This
is analogous to the simple shear as seen, for example, in parallel plate setups. In
Sect. 3.5, we will revisit this point and reveal the significant implications of having
both types of shear.

3.4 Invariant Packing Fraction During Front Propagation

The shear modulus vanishes in an unjammed suspension of solid particles in a
Newtonian liquid. In the limit where the wavelength is much longer than the size of

the solid particles, the speed of sound is c = (K/ρ)
1
2 , where K is the average bulk

modulus and ρ the average density of the suspension [72, 97]. In our experiments,
the particles and suspending liquid were density matched, but the average K still
increases with φ since cornstarch particles have a larger bulk modulus than the
liquid (see Sect. 2.4). As shown in Fig. 3.3a, the resulting dependence of c on φ

is, to a good approximation, linear across the regime of φ in which an impact can
jam the suspension dynamically. This allows us to find any variation in packing
fraction �φ = φf −φ0 straightforwardly by detecting changes in c with ultrasound,
where φf is the packing fraction in the solid-like region, and φ0 is the initial packing
fraction of the quiescent suspension.

The experimental setup has been shown in Fig. 3.1. Initially, the head of the
impactor just touched the surface of the suspension, and then it pushed down a
distance zp. The position of the impactor was measured with a high-speed camera
(Phantom V9, Vision Research). At the same time, we used ultrasound to measure
the time of flight T of the signal from when it left the transducer to when it returned
after being reflected by the impactor. The average speed of sound c̄ along this path is

c̄ = 2
H − zp

T
, (3.2)
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Fig. 3.3 Direct measurement of packing fraction variations. (a) Speed of sound c as a function
of packing fraction φ. All data were taken with suspensions in their quiescent fluid-like state, at
φ well below φJ. (b) Sketch of the region beneath the impactor. The black dashed line represents
the initial suspension surface at a fill height H above the bottom of the container (bold black
solid line). As the impactor (outlined in red) pushes down a vertical distance zp the front (dark
blue region) propagates a distance zf. (c) Change in sound speed �c as a function of time (black
trace) at φ0 = 0.48. Impact at the free suspension surface occurs at t = 0 ms. Once the front has
reached the bottom of the container (at t ≈ 35 ms), the force on the impactor (red trace) rises
dramatically. Note that within our experimental uncertainties, the speed of sound does not increase
until the shear-jammed region becomes compressed. Data are averages from seven experiments
that simultaneously measured force and sound speed as functions of time. Dashed lines indicate
one standard deviation. The gray region shows the uncertainty (given by one standard deviation)
in determining �c at low Up, where no solidification takes place

where H is the original depth of the suspension.
As a calibration, we firstly performed a low speed experiment at Up = 5 mm·s−1

to measure the speed of sound in the unjammed, fluid-like suspension, where c̄ =
c(φ0). Defining T0 as the round-trip time of flight when zp = 0 mm, we have H =
c(φ0)T0/2. Since c(φ0) is supposed to be invariant during the whole process, plug
the expression for H into Eq. (3.2), we find

c(φ0) = 2zp

T0 − T
. (3.3)
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The initial packing fraction φ0 of the suspension here was 0.48. The solvent was a
mixture of 44.3% CsCl, 27.8% glycerol, and 27.8% water by mass. Its viscosity was
η0 = 4.6 mPa·s and its density was ρ = 1.63×103 kg·m−3. From six measurements
we obtain c(φ0) = 1939.2 ± 4.6 m·s−1 and H = c(φ0)T0/2 = 34.1 ± 0.1 mm.

At a fast speed Up = 200 mm·s−1, a front was generated as illustrated in
Fig. 3.3b. The sketch indicates two regions: the solid-like region (dark blue) directly
underneath the impactor and an unjammed region (light blue) ahead of the front.
Here we use the value of H measured above and Eq. (3.2) to calculate c̄. The time
of flight now becomes

T = 2

[
H − zf

c(φ0)
+ zf − zp

c(φ0 + �φ)

]
. (3.4)

For �φ = 0, T�φ=0 = 2(H − zp)/c(φ0). If �φ > 0, there will be a difference
between T and T�φ=0, and this difference becomes increasingly more significant as
zf increases, which leads to an increase in c̄ according to Eq. (3.2).

Note that when a suspension transforms from an unjammed state to a jammed
state, an increase in φ may not be the only cause for a faster speed of sound. There
are two other possible mechanisms: (1) an increase in effective bulk modulus K; (2)
the development of a finite shear modulus G [26]. By measuring the speed of sound
alone, we cannot determine how much these three mechanisms each contribute, but
we can estimate the upper limit of each term assuming the other two zero.

Firstly, we estimate the maximum possible increase in φ. Figure 3.3c presents the
experimentally measured �c = c̄ − c(φ0) when a suspension with φ0 = 0.48 was
under impact. The impactor head started moving at time t = 0 s from the suspension
surface and generated a front that reached the bottom of the container at t ≈ 0.035 s.
We identify this point because the force applied on the impactor increased dramatic,
which is well established by prior work with quasi-2D [59] and 3D [54] systems.
Before the front interacted with the bottom, �c = c̄ − c(φ0) kept below the noise
floor of this measurement, which was about 5 m/s. Neglecting any increases in
K and G due to jamming, we find that �c ≈ 5 m/s implies �φ ≈ 0.006 from
Fig. 3.3a. Therefore, φ could have increased to 0.49 at best. Furthermore, even at
the maximum packing fraction φ = 0.52 in Fig. 3.3a, the suspension still flowed
when sheared slowly, which means that the isotropic jamming threshold φJ must
exceed 0.52. As a result, the actual increase in φ due to impact is much less than
what the densification model (Eq. 1.6) requires.

If instead we assume �φ = 0 and use c =
[(

K + 4
3G

)
/ρ
] 1

2
, which considers

the non-zero shear modulus of the jammed solid [69], to describe the dependence
of the speed of sound on K and G within the jammed region behind the front, the
same noise floor �c ≈ 5 m/s implies that the net increase in the sum of the moduli
K̃ = K+ 4

3G could not have exceeded �K̃ ≈ 32 MPa. This is very small compared
to the bulk modulus K0 of the quiescent suspension at φ0 = 0.48: �K̃/K0 ≈ 0.5%.

In the regime where the front had reached the bottom and was compressed even
more, we found �c ≈ 16 m·s−1. While this is significantly above the noise floor,
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the packing fraction did not increase more than �φ ≈ 0.02, still less than necessary
to reach φJ. Nevertheless, the existence of the solid boundary significantly increases
the stress in the dynamically jammed region, which should drive the suspension
deeper into the shear-jammed state. We can, therefore, expect concomitant increases
in bulk and shear moduli and thus in the speed of sound. From Fig. 3.3, the upper
limit of the net increase in the sum of the moduli K̃ is �K̃ ≈ 101 MPa in this
regime.

3.5 Impact-Activated Fronts Are Shear Fronts

The flow fields in Fig. 3.2 allow us to extract the position of the propagating
jamming front. We define the front position as the line of points where the vertical
component of the local velocity uz drops to Up/2. In particular, we focus on the
furthest reaching points in the flow field along the z and r directions, i.e., on the
maximum longitudinal and transverse front speeds. As Fig. 3.4a shows, after an
initial stage of faster growth, the front in both directions propagate essentially at
constant speeds (positions as linear functions of time) before slowing down when it
starts to interact with solid boundaries. As discussed above, when a front and a solid
boundary interact, the incipient jammed region gets compressed by the impactor,
and further compression quickly ceases the motion of the suspension in between.
Here we investigate the linear regime, where the front propagates freely. To compare
how quickly the front propagates relative to the driving speed Up, we define the
dimensionless front propagation speeds kt and kl as

kt = Uft

Up
, kl = Ufl

Up
− 1, (3.5)

where the subscripts t and l represent “transverse” and “longitudinal,” respectively.
The “−1” in kl compensates for the vertical motion of the impactor itself.

The parameters that affect kl and kt include φ, Up, and the suspending liquid’s
viscosity η0. For a suspension with given η0 and φ that is impacted very slowly,
the response is fluid-like and both kt and kl are close to zero. However, beyond
a threshold value Up0, fronts start to appear. The normalized front speed initially
increases quickly with Up but eventually asymptotes to a fixed value k∗. The relation
between kl and Up in suspensions with the same η0 but different φ is shown in
Fig. 3.4b; the behavior of kt is similar. As φ increases the curves shift towards lower
Up0 and higher k∗. For comparison, in suspensions with the same φ, larger solvent
viscosity η0 leads to lower threshold Up0, but leaves k∗ invariant [54]. In order to
extract k∗ and Up0 we fit the data to

k

k∗ =
{

0 (Up ≤ Up0),

1 − e1−Up/Up0 (Up > Up0).
(3.6)
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Fig. 3.4 Propagation of impact-activated fronts. (a) Front position in the longitudinal (black) and
transverse (blue circles: right, blue squares: left) directions as functions of time. The head of the
impactor reaches the suspension surface at time t = 0 ms. The gray regions indicate the initial
front build-up stage (left) and the regime in which the front starts to interact with the bottom of
the container and slows down (right). In this Up = 200 mms, φ = 0.460. (b) Dimensionless front
propagation speed kl in the longitudinal direction as a function of Up for different φ (magenta:
0.439, orange: 0.453, green: 0.460, blue: 0.474, black: 0.498). All data are obtained with a
suspending liquid with viscosity η0 = 4.6 ± 0.2 mPa·s. Error bars show the standard deviation
of three measurements. (c) Front speed kl/k∗

l normalized by its asymptotic value as function of
impactor speed Up normalized by threshold speed Up0. Data from experiments with different φ

and η0 collapse onto a master curve of Eq. (3.6) (solid red line). (d) Relationship between the
asymptotic front speeds k∗

l and k∗
t . Data from both quasi-2D [59] (turquoise) and 3D (black) impact

experiments are shown. The solid red line is the prediction from Eq. (3.7). The slope approaches
2 as k∗

t increases. The dashed red line is a modified version of the model, which includes a small
strain anisotropy δ, here plotted using a value of δ = 0.01. Error bars are the asymptotic standard
error from the fittings of each k-Up curve with Eq. (3.6)

Equation (3.6) is a phenomenological relation that captures the key aspects of the
experimental data: (1) k = 0 at small Up; (2) k increases with Up when Up > Up0;
(3) k approaches a finite value k∗ as Up → ∞. Plotting the data in terms of
the normalized variables k/k∗ and Up/Up0 scales out the dependencies on φ and
η0. The resulting data collapse for the normalized front speed in the longitudinal
direction kl/k∗

l is shown in Fig. 3.4c. The transverse speed ratio kt/k∗
t can be

rescaled the same way.
The data collapse allows us to quantify the anisotropic front propagation speeds

in the longitudinal and transverse directions. Combining results obtained from
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experiments with various φ1 and η0, we plot k∗
l versus k∗

t in Fig. 3.4d. To a good
approximation, all data follow k∗

l ≈ 2k∗
t . In the figure we also present the data

obtained with a quasi-2D suspension system [59], which show good agreement with
the trend as well, except that for higher kt the ratio kl/kt slightly exceeds 2.

Our data in Fig. 3.3c demonstrate that in a dense suspension prepared below
the isotropic jamming point φJ, impact-activated jamming can proceed without any
significant increase in φ, and certainly, the system can jam without increasing φ up
to φJ. This result rules out an earlier model that connects the formation of such fronts
with entering the jammed state via densification of the particle sub-phase [54, 60].
Moreover, analysis of the flow field reveals that the jamming fronts initiated by the
impact coincide with where the local shear rate maximizes (Fig. 3.2d, e). Altogether,
these two findings provide strong evidence for dynamic shear jamming: the
impact triggers propagating fronts that locally create sufficient shear to reorganize
particles into (anisotropic) jammed configurations without changing the average
packing fraction. There are several implications of the shear jamming scenario for
suspensions and several differences from dry granular systems, both of which we
discuss next.

To start, we examine stress. In a dry granular system, stress is sustained only
via direct contact between particles. By contrast, in a dense suspension, stress
can be transmitted without contact because there are hydrodynamic interactions
between the particles such as the lubrication force. As a result, while in dry granular
systems there is only a single characteristic stress scale for entry into the shear-
jammed regime [27], for a suspension, the situation can be more complicated. Some
experiments [25, 33, 35, 50], simulations [38, 40, 41], and theoretical models [43]
have recently suggested that beyond a stress threshold �1, lubrication breaks down
and particles start to experience frictional interactions. Thus, in the regime � < �1,
the suspension behaves like a viscous fluid, while at � > �1, it behaves more like a
frictional granular system. As � increases, the system firstly enters a fragile regime,
and then at a higher second characteristic stress level �2, crosses over into the shear-
jammed regime [27, 28, 98]. Within this picture, we associate the transition at Up0
with the situation where the stress levels at the leading edge of the jamming front
have reached �1 and are large enough for frictional interactions to occur. Thus,
when Up < Up0 the suspension is in the lubrication regime, but when Up > Up0
it transforms into a fragile state with behavior intermediate between solid and fluid
[8, 27, 99]. As the stress increases, frictional contacts start percolating through the
system to form a load-bearing network and eventually reach a shear-jammed state.
We point out that a non-zero shear modulus is not strictly necessary for the front
to propagate (with k > 0). The front will propagate as long as it transforms the
initially liquid-like suspension into a state with sufficiently large viscosity. However,
we know that the material solidifies while interacting with a system boundary
[28, 54, 55, 59]. Thus, before a system-spanning jammed state has been established,
how the shear modulus evolves behind the jamming front remains an open question.

1Both k∗
l and k∗

t increase with φ.
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We will continue this discussion in Chaps. 4 and 5. We will exploit such jamming
fronts to explore the state diagram of dense suspensions systematically, and link �1
and �2 to the onset stress of DST, �DST, and of shear jamming, �SJ.

The stress-based argument above also explains the relaxation or “melting” of the
jammed region when the impact stops. During front propagation, it is the inertia of
the suspension in the shear zone that sustains the stress inside the solid-like region.
When the motion of the impactor stops, the shear zone disappears, and the stress
applied on the boundary of the jammed suspension falls below �1, insufficient to
sustain frictional interactions between particles. Therefore, there is no network of
force chains that can generate non-zero yield stress and support a load. As a result,
the suspension returns to the lubrication regime.

However, while necessary, the existence of threshold stress levels is not sufficient
to explain the asymptotic front speed k∗ at high Up and the seemingly universal
anisotropy in front propagation, expressed by the ratio k∗

l /k∗
t ≈ 2. Actually,

particles need to move out of an initially uniform and isotropic distribution and
reorganize under shear into anisotropic structures (force networks) that can support
the stress. Such reorganization requires a minimum shear strain εc to engage
neighboring particle layers. As a result, shear jamming happens only when stress
and strain both reach their corresponding threshold values. In a quasi-static granular
system [27, 42] the threshold strain only matters when the shear-jammed state is
prepared or when the shear is reversed. In the dynamic systems considered here, the
front continues to propagate into unperturbed suspension, and therefore, the front
advances by applying strain εc locally during the whole process of front propagation.

Here we show that for dense suspensions in the high Up regime, where the stress
behind the front is way above the threshold, k∗ is governed by εc and the anisotropy
in front speeds is a direct consequence of the existence of one strain threshold. As
described above, the suspension experiences pure shear in the longitudinal direction
and simple shear in the transverse direction. In 2D, we can directly compare the
two types of shear using the positive eigenvalues of the shear rate tensors, treating
the propagation of the front in the longitudinal and transverse directions as two
effectively 1D problems. We now assume that a suspension element jams when the
shear strain it experiences reaches εc, irrespective of propagation direction. This
leads to the following relations between k∗

l , k∗
t and εc (see Appendix C for details):

k∗
t = 1

2εc
, k∗

l = 1

eεc − 1
, (3.7)

and thus

k∗
l = 1

e1/(2k∗
t ) − 1

. (3.8)

Equation (3.8) is plotted in Fig. 3.4d. For small εc, we find from Eq. (3.7) that k∗
l ≈

2k∗
t = 1/εc. In other words, the anisotropy ratio of 2 in the normalized front speeds

originates from the factor 1/2 in the non-diagonal terms of the shear rate tensor,
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which in turn arises because simple shear can be decomposed into a combination of
pure shear and solid body rotation.

In 3D, we cannot quantify the effects of pure shear and simple shear via the
same approach. However, we can still represent the magnitude of shear strain with
a scalar and calculate the ratio k∗

l /k∗
t assuming the threshold strain to jamming is

identical everywhere. One possible solution is to use the “strain intensity” D [100],
which leads to k∗

l /k∗
t ≈ 3/

√
2 ≈ 2.12. Another method is to define the shear

rate as Ė =
√

(λ2
1 + λ2

2 + λ2
3)/2, where λ1, λ2, and λ3 are the eigenvalues of the

shear rate tensor (Eq. 3.1), and thus the strain is E = ∫ Ėdt . Assuming E is the
same in the longitudinal and transverse directions results in k∗

l /k∗
t ≈ √

3 ≈ 1.73.
Details regarding D and E are described in Appendix D. As we can see, although the
accurate value of the ratio depends on how the scalar is defined, the ratio is always
≈ 2, which matches the experimental data in 3D systems within our measurement
precision. Recent experimental results [101] show that even when the impact is tilted
instead of upright, this ratio is independent of the incident angle as long as the front
is propagating freely and has no interaction with any solid boundary.

With increasing packing fraction φ, we expect the strain threshold εc to decrease,
which agrees qualitatively with the measurements of εc in dry granular systems [27].
Via Eq. (3.7) this explains why k∗ increases with φ as Fig. 3.4b shows: since it takes
less strain to reorganize the particles into a shear-jammed network, the front will
propagate faster given the same impact speed. We point out that Eq. (1.6), which
formalizes such relationship between packing fraction and front speed, appears
to capture the overall trend qualitatively. However, this seems fortuitous, since
Eq. (1.6) was based on the assumption that the moving front significantly increases
the packing fraction (driving it up to φJ), which we now can rule out in this system.
Besides, Eq. (1.6) cannot predict the observed anisotropy in front shape. Our next
task, therefore, is to develop a model for k∗(φ) based on jamming by shear instead
of densification. We will provide such a model in Chap. 4.

Another interesting aspect of the data in Fig. 3.4d is the deviation from the
anisotropy ratio ≈ 2 at large k∗ values or, equivalently, large packing densities.
This deviation is most apparent in the data available for the quasi-2D system, and it
indicates that the longitudinal speed becomes relatively faster. We speculate that this
may be connected to a breakdown of the assumption of an isotropic strain threshold
εc. For example, if the impact were to introduce a small amount of compression of
the particle sub-phase in the longitudinal direction, εc would be reduced in that
direction. This effect would become increasingly significant at large φ. We can
model this by introducing a correction δ so that

k∗
l = 1

eεc−δ − 1
. (3.9)

Using εc = 1/(2k∗
t ) and δ ≈ 0.01, we can reproduce the trend in Fig. 3.4d (dotted

red line). However, this is just speculation, and there might be other reasons for the
deviation.
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3.6 Conclusions

In conclusion, these results provide valuable insights into the mechanism respon-
sible for impact-induced solidification of dense suspensions. The finding that the
packing fraction does not increase measurably during impact, together with the
observation of strong shear at the leading edge of the propagating solidification
fronts, rules out jamming via densification as the dominant mechanism and point
to jamming by shear.2 In dense suspensions, this introduces a new stress scale or,
equivalently, an impact velocity threshold, which we associate with the breakdown
of lubrication films between particles and the onset of frictional interactions [25, 33,
38, 43, 47, 50]. Behind the front, these frictional interactions create a dynamically
shear-jammed region (corresponding to fragile or shear-jammed states in [27, 43]).
Further support for the shear jamming scenario comes from the observation of
anisotropic front propagation. We quantitatively explained why the front speed in
the longitudinal direction is twice as fast as that in the transverse direction, and relate
this anisotropy to the ability of the material to transmit shear strain. For dynamic
shear jamming, both shear stress and strain need to exceed threshold values, and it
is the critical shear strain that determines the front propagation speed.

2Densification is likely to play a significant role at much larger impact velocities when the
interstitial liquid’s compressibility can no longer be neglected [93].



Chapter 4
Modeling Shear Fronts in One Dimension

4.1 Introduction

As discussed in Chap. 1, efforts have been made to map out a state diagram that
delineates the properties of dense suspensions as a function of packing fraction
and the imposed forcing. However, previous work focused almost exclusively
on steady-state conditions, which did not capture the many remarkable transient
phenomena exhibited by suspensions [28, 52–55, 58, 59, 92, 102]. Only a few years
ago it was discovered [54, 59] that the impact-activated solidification is a dynamic
process where impact at the suspension surface initiates jamming fronts that rapidly
propagate into the bulk of the material and transform the suspension from a
fluid-like into a solid-like state in its wake. Since the suspensions are prepared
below jamming, these jamming fronts are fundamentally different from the shock
waves due to compression or shear observed in granular systems above jamming
[103, 104] or in fragile networks [105]. In Chap. 3, with the help of high-speed
ultrasound, we showed that the impact-activated solidification is not due to jamming
by compression [106, 107]. However, so far, several key aspects have remained
largely unresolved, including: (1) the conditions under which dense suspensions
can develop jamming fronts; (2) the shape of the flow profile at the front; and impor-
tantly (3) the relation between the applied stress and the front speed. These questions
underline the need to build a description that would encompass both the transient
and steady-state properties of shear thickening and shear jamming materials.

In this chapter, we consider the arguably simplest geometry in which these
properties can be measured: a plane of fluid that is sheared along one of its bound-
aries. The resulting flow field changes only along the direction perpendicular to the
sheared boundary, which enables us to consider it as a one-dimensional (1D) system.
A key finding here is that the velocity-stress relation measured at the boundary,

This chapter is based on [98].
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i.e., the macroscopic response of the suspension to applied forcing, is governed
by a microscopic, particle-scale quantity: the amount of strain accumulated locally
when the jamming front passes through. This accumulated strain depends not only
on the intrinsic properties of the suspension, such as the packing fraction, but
also on the system’s preparation condition. We can capture this transient behavior
by introducing one additional parameter, a strain amplitude γ ∗ characterizing the
crossover to steady-state flow, into a model developed initially for steady-state
rheology [43]. This generalized model exhibits well-defined jamming fronts and
allows us to compute their dependence on packing fraction and forcing conditions,
leading to predictions for the three points raised at the end of the previous paragraph,
which agree well with our experimental measurements.

4.2 Quasi-One-Dimensional Wide Gap Shear Experiment

As illustrated schematically in Fig. 4.2, our experimental system consisted of a layer
of cornstarch suspension and a thin plate inserted in it. Starting from rest, the plate
was impacted by a computer-controlled linear actuator (Parker ETT050) and then
moved along the y-direction at constant speed U0. The suspension floated on a
heavy, low-viscosity oil (Fluorinert FC-3283 from 3M), which provided a nearly
stress-free boundary condition [59]. This allowed us to deduce the stress applied at
the boundary from the velocity field that we measured experimentally. A high-speed
camera (Phantom V12) was used to image the motion of the suspension surface.
The videos were analyzed using a particle imaging velocimetry (PIV) algorithm to
obtain the flow field.

4.2.1 Features of Dynamic Shear Fronts

Shear fronts are generated at fast enough boundary speed U0. The flow field obtained
inside the dashed red box in Fig. 4.1 is shown in Fig. 4.2a. Colors represent the y

component of local velocities vy . In the yellow regions, the suspension moved with
a velocity very close to U0 = 0.46 m/s, and in the dark green regions, the suspension
did not move. We can see a clear boundary between the yellow and green regions
that propagate away from the plate and into the bulk. To a good approximation,
the flow was a quasi-1D flow. There was a significant velocity gradient along the
x direction, but the points at the same x position have almost identical velocities.
Therefore, here we average the velocity field in the y direction and leave x as the
only spatial coordinate. Figure 4.2b shows the evolution of the resulting averaged
velocity profiles. As the red arrows indicate, a moving region rapidly expands
outward to either side of the plate, while the shape of the velocity profiles stays
approximately invariant.
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Fig. 4.1 Illustration of the
wide-gap shear experiment.
The setup consists of a layer
of cornstarch suspension
(yellow) that floats on a heavy
oil (blue). Dashed black lines
represent rubber sheets
confining the suspension. An
acrylic plate with a
roughened surface was
inserted in the middle of the
container (at x = 0 m) and
moved with speed U0. The
dashed red box indicates the
area used for data analysis.
The cross-sectional area Sp is
the surface area of the shaded
region in the side view
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For convenience, we define the front position xf as the position of the point on a
velocity profile where vy = 0.45U0. As shown in Fig. 4.2c, xf is a linear function of
time on both sides of the plate, providing a well-defined, constant front propagation
speed Uf. As an example, here Uf = 3.60 ± 0.03 m/s, which is 7.8 times the
plate speed U0 = 0.46 ± 0.02 m/s, but much slower than the speed of sound in
the material (above 1900 m/s, see Chap. 3). Furthermore, we were able to extract
the local accumulated strain γ from the flow fields at each time point. Because
the velocity profiles are almost invariant in shape, we collapse γ (t) at different x

by shifting the curves using the time tf when the front reaches that position, i.e.,
xf(tf) = x. Figure 4.2d shows γ (t − tf) after averaging. We can see that γ increases
quickly at the beginning but then slows down because of shear thickening. The red
curves are power law fits to the data in the region of t > 0 ms. Interestingly, the
accumulated strain asymptotically approaches a finite value γ∞ (in this case 0.12)
under continued finite stress, which is a clear indicator of jamming.

To obtain the shear rate distribution along the velocity profiles, we averaged them
after shifting the front positions xf to zero. The absolute value of the local shear rate
|γ̇ | = |dvy/dx| is shown in Fig. 4.2e.1 The maximum shear rate γ̇max is close to
the front position. One important observation is that the shear rate profile is not
symmetric with respect to |x|− |xf| = 0. It exhibits a steeper gradient at the leading
edge (|x| > |xf|), and has a tail of small, but finite shear rate behind the front
(|x| < |xf|). Thus, strictly speaking, the region in the wake of the passing front does

1Since in our 1D system, γ always changes monotonically, we only consider the absolute value of
γ̇ and γ . In this thesis, the signs on γ̇ and γ are ignored.
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Fig. 4.2 Flow of the shear front obtained from the quasi-1D experiment. (a) Flow field on the
suspension surface at four different times. Arrows label local velocities. Colors represent vy .
Dashed red box outlines the position and width of the plate. (b) Exemplary velocity profiles of
a shear front for φ = 0.532 and U0 = 0.46 ± 0.02 m/s, propagating transversely to either side of
the plate (dashed blue line). (c, d) Front position xf and accumulated strain γ as functions of time
t . In (c), red lines show the linear fits. In (d), time t = 0 ms represents the time when x = xf. Red
lines show fits to a power law. Black dashed lines indicate the asymptotic accumulated strain γ∞.
(e) Local shear rate calculated from the mean velocity profiles. Blue and pink represent the left and
right branches, respectively, in (b)

not immediately become a jammed solid. However, as the front keeps moving ahead
and the local strain approaches γ∞, a jammed state with non-zero shear modulus
will be reached at the end. By contrast, if a suspension does not “jam” but only
shear “thickens,” we expect the accumulated strain to keep growing and the shear
rate to stay finite.

From this discussion, we extract three defining features for jamming fronts: (1) A
well-defined, step-like velocity profile that stays invariant over time; (2) A constant
propagation speed Uf; (3) An asymptotically accumulated strain that stays finite.
These characteristics distinguish jamming fronts from the more diffusive response
to applied shear that occurs at low driving speeds U0 or low packing fractions,
as will be discussed below. We will use these three features in comparing model
calculations to the experiments.
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4.2.2 Flow Profile at Slow Boundary Speed

Like the impact-activated fronts discussed in Chap. 3, the 1D shear fronts are
generated only above a threshold boundary velocity. When U0 was sufficiently slow,
the suspension was in the lubrication regime and behaved like a Newtonian fluid.
For a Newtonian fluid sheared in a semi-infinite 1D system, the flow profile is self-
similar with a characteristic length scale

√
νt , where ν is the kinematic viscosity.

If we define a normalized, time-dependent length scale sν = x/(
√

νt), the velocity
vy(x, t) is [3]

vy(x, t) = U0

[
1 − erf

( sν

2

)]
, (4.1)

where erf(x) is the error function. The numerically calculated and experimentally
measured flow profiles at φ = 0.521 and U0 = 0.01 m/s are shown in Fig. 4.3 as
an example. One difference is that in the calculation the system was strictly one
dimensional and semi-infinite, so the local velocity was always positive during the
whole process. However, in the experiment, negative flow velocity was observed
further away from the plate, which originated from fluid re-circulation due to the
finite container size. However, we can still define the “front position” xf as the x

position at which u = 0.45U0. As shown in Fig. 4.3c, in the calculation, xf kept
growing as a function of time, and before the flow reached the other boundary it
satisfied xf ∝ √

νt , where ν = η0(1 − φ/φ0)
−2/ρ. Here η0 is the solvent viscosity,

ρ is the suspension density, and φ0 is the frictionless jamming packing fraction

Fig. 4.3 Flow profiles in the
fluid-like regime and “front”
position xf at φ = 0.521 and
U0 = 0.01 m/s. (a) Numerical
calculation based on the
model. (b) Experimental data.
(c) Position of the front,
defined as the position where
vy = 0.45U0
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introduced in Sect. 1.3. In the experiments, the front almost stopped propagating at
late time and the system reached a steady state.

As U0 increased, we started to see a front that propagated out. However, before
U0 is sufficiently fast, the flow did not exhibit the three defining features of
jamming fronts. For example, the xf-t relation was not strictly linear at a moderate
driving speed. We now focus on the limit of sufficiently fast U0, where we obtain
jamming fronts as defined above. Behaviors of the material at moderate speeds will
be discussed more in Chap. 5.

4.2.3 Front Speed and Accumulated Strain

From now on in this section, we will focus on the fast U0 regime where jamming
fronts are generated. We will discuss how Uf, γ∞, the stress at the boundary �, and
the maximum shear rate γ̇max depend on U0 at different φ, as shown in Fig. 4.4.
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Fig. 4.4 Characteristics of propagating jamming fronts as functions of shearing speed U0. Solid
symbols show experimentally obtained data for different packing fractions φ. In (a–c), dashed
lines are from model calculations. (a) Dimensionless front propagation speed k. (b) Asymptotic
accumulated strain γ∞. (c) Stress at the boundary �. Solid circles are calculated by plugging the
experimentally measured U0 and k into Eq. (4.3). Dashed lines show the stress at the boundary
obtained from the numerical calculations, which satisfy � ∼ U2

0 . (d) Maximum shear rate γ̇max.
Open circles are from the model (the same color scheme is used for data from the experiments).
Black lines are power law fits
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Fig. 4.5 Dimensionless front propagation speed k (black) and asymptotic accumulated strain γ∞
(blue) as functions of packing fraction φ. The blue curve shows Eq. (4.19) and the black curve
shows its reciprocal, both with γ ∗ = 0.197. Data at φ = 0.556 and 0.544 are represented by open
circles

We define the normalized front propagation speed as k ≡ Uf/U0. The variation of
k as a function of U0 is presented in Fig. 4.4a, b shows the corresponding γ∞. At
φ ≤ 0.5, both k and γ∞ are essentially constant. For the highest values of φ and U0
we probed, departures from this constant behavior were detected, an effect whose
relative magnitude was as large as 30%. But still, for each φ < 0.54, we find a range
in which k and γ∞ are nearly independent of U0. Using the average value in such
a range, we define k(φ) and γ∞(φ) at each φ. Note that k(φ) increases with φ, but
the trend is reversed for γ∞(φ). These results are documented in Fig. 4.5.

Visual inspections of Figs. 4.4a,b, and 4.5 suggest an inverse relationship
between k and γ∞, which we now derive. The total accumulated strain when the
front passes through is γ∞ = ∫ +∞

−∞ γ̇ dt . For a propagating front with an invariant

shape, we have γ̇ = ∂v
∂x

= ∂v
Uf∂t

, so that

γ∞ = 1

Uf

∫ U0

0
dv = U0

Uf
= 1

k
. (4.2)

Thus, how fast a jamming front propagates depends on how much total strain is
accumulated locally as the jamming front moves through. The physical picture
is that a finite strain is required to shear the suspension out of an initial state,
where the particles are uniformly distributed, into a contact network that jams. The
denser the particles pack, the less rearrangement is necessary toward jamming, and
consequently, the front propagates faster.
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Fig. 4.6 Front position as a
function of time for different
pre-shear. The fast plate
speed was U0 = 360 mm/s
and the slow pre-shear speed
Upre varied as labeled in the
plot. Positive Upre represents
pre-shear in the same
direction as U0 and negative
Upre was in the opposite
direction
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To further prove that the front propagation speed depends on the microscopic
particle configuration, we prepared an anisotropic initial state of the suspension by
moving the plate at a slow speed Upre before the high-speed shear. We moved the
plate 10 mm forward or backward at Upre = 1 mm/s or 10 mm/s, and then applied
fast shear at a much faster U0. Results for φ = 0.526 and U0 = 0.36 m/s are
shown in Fig. 4.6 as an example. The front propagated faster (slower) when the
suspension was pre-sheared along the same (opposite) direction. This suggests that
the front propagation speed not only depends on φ but also on the system preparation
conditions and straining history.

We performed pre-shear at different Upre (from 0.1 to 10 mm/s), and waited for
different lengths of time between pre-shear and fast shear, from several seconds to
10 min. In each case we obtained almost identical xf-t curves, as long as Upre was
slow enough so that the suspension remained fluid-like. It shows that cornstarch
suspensions can be treated as an athermal system over time scales as long as several
minutes. Note that in our experiments, the velocity profile was not always linear
during the pre-shear. This was due to the limited range the plate could move,
so the distribution of “pre-strain” was not the same everywhere. When the pre-
shear finished, the accumulated strain close to the plate was the maximum, and
it decreased gradually to the side. As a result, in the following step, when sheared at
speed U0, Uf slowed down as it propagated away from the plate, which can be seen
in Fig. 4.6.

4.2.4 Relation Between Applied Stress and Front Speed

In our system, a relation connecting the applied stress � to the velocity U0 is readily
extracted from momentum conservation. The momentum of an elongating jammed
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part of the material with a cross-sectional area Sp in the plane perpendicular to the
front propagation direction is p = ρSpxf U0. Equating the time derivative of this
quantity with the force �Sp, one obtains

� = ρU0Uf = ρkU2
0 , (4.3)

where ρ = 1.63 × 103 kg/m3 is the density of the suspension. We calculated �

with Eq. (4.3) using the experimental data. As Fig. 4.4c shows, the dependence of
� on U0 matches a quadratic power law well. Interestingly, the form of Eq. (4.3)
is identical to the expression for the dynamic pressure, except that the density is
renormalized by a factor k, so the effective density becomes ρeff ∼ kρ, where k

can be as big as a factor of 10 according to our experiments. This “added mass”
generated by the propagating fronts was tracked and imaged in previous impact
experiments [54, 59, 92].

Note that as the shear stress increases with U0, so does the normal stress. As the
front passes by, the surface of the suspension turns from smooth to matte due to the
dilation of grains [108]. The protrusion of particles increases the confining stress
applied by surface tension at the suspension-air interface [23]. However, there is an
upper limit in confinement stress at the free interface, which is of order 103 Pa for
our suspensions [13]. As a result, at sufficiently fast U0 the material could expand
near the surface, causing φ to decrease in the bulk [34]. This effect may lead to
the departure of the power law behavior in Fig. 4.4c for the highest stresses we
probed, or equivalently (according to Eq. (4.3)) to the erosion of the U0-independent
behavior of k in Fig. 4.4a. In the model developed below, we neglect this dilation
effect. Thus it predicts a constant k(U0) at fast U0.

4.2.5 Maximum Shear Rate

The maximum shear rate γ̇max characterizes the steepness of the fronts. It is
inversely related to the front width � since dimensionally we must have � ∼
U0/γ̇max. Figure 4.4d shows γ̇max as a function of U0. To a good approximation, the
experimental data for different φ from 0.462 to 0.532 collapse onto a single curve,
revealing a power law of the form γ̇max ∝ Ub

0 , with the exponent bexp = 1.51±0.09.
From this observation we can deduce that � ∝ U1−b

0 ∝ U−0.5
0 . Since γ̇max is

roughly independent of φ, we predict the front width to be insensitive to φ, which is
different from what was found in the case of compression front [106].

4.3 Validating the Original Wyart–Cates Model with
Steady-State Rheology

The steady-state rheology experiments were performed with an Anton Paar MCR
301 rheometer. The suspensions were tested between parallel plates, and the
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diameter of the upper plate was 25 mm (tool PP25). An enclosed solvent trap
was used to prevent evaporation. We performed both shear rate controlled and
shear stress controlled experiments at different φ. Before each measurement, the
suspension was pre-sheared by ramping from � = 0.1 to 100 Pa for 50 s in
total, then sheared slowly at � = 0.1 Pa for 30 to 60 s. After these two steps of
preparation, we ran the actual measurements, where we took 20 data points in a scan
from low to high γ̇ or � (from approximately 0.1 to 1000 Pa). At each point, the
measurement lasted for 10 to 30 s, and we made sure that the time was long enough
so that the viscosity did not vary with time. Some exemplary viscosity-shear rate
data (η-γ̇ curves) at different φ are shown in Fig. 4.7a.

The steady-state model by Wyart and Cates [43] predicts that, for suspensions
in the CST and DST regimes, the η-γ̇ curves have two Newtonian regimes: ηN,1 at
low stress and ηN,2 at high stress. Both ηN,1 and ηN,2 increase with φ, and the stress
threshold �∗ controls the stress at which the transition occurs from one regime
to the other. In the experiments, there are several differences from this model,
which we need to account for. Firstly, dense suspensions show shear thinning at
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Fig. 4.7 Validate the Wyart–Cates model with steady-state rheology. (a) Viscosity η at different
shear rates γ̇ and packing fractions φ. Squares connected by thin solid lines represent stress
controlled experiments; circles connected by thin dashed lines represent shear rate controlled
experiments. The predictions of the Wyart–Cates model are shown by the thick curves with the
same color as the experiments. The dashed black line indicates a constant stress � = 500 Pa,
which is provided by surface tension and corresponds to the upper limit of stress in steady-state
experiments using our shear cell geometry. (b) The lower Newtonian viscosity ηN,1 (solid circles)
and higher Newtonian viscosity ηN,2 (open circles) at different φ. The two curves show the best
fit of ηN,1 and ηN,2 with Eq. (4.5). The vertical dashed lines label φm (left) and φ0 (right) obtained
from the fitting. (c) Relation between rescaled packing fraction � and onset stress �DST. For each
�, the corresponding φ is labeled on the right. The solid black points are experimental data. The
red curve is the prediction of the model for �∗ = 20.4 Pa
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low shear rate. To accommodate this, we took the average viscosity in the flat
section near the minimum of a η-γ̇ curve as ηN,1. Secondly, the higher branches
of the η-γ̇ curves are more like smooth peaks instead of plateaus. We therefore
took the peak values of η as ηN,2. Lastly, in steady-state rheology experiments,
there is another stress limit set by the surface tension at the suspension-air interface,
which confines the suspensions between the parallel plates. The empirical relation
is �max ≈ 0.1�/d, where � is the surface tension of the solvent and d is the particle
diameter [13, 23]. The surface tension of our solvent was about 75 N/m, and the
average diameter of cornstarch granules was about 15µm. As a result, �max was
500 Pa approximately. Above this stress, the surface tension could not confine the
suspension, and the measurements became unreliable, i.e., the data could no longer
be used to extract ηN,2.

According to the model, the viscosity of a suspension is

η = �

γ̇
= η0

[
1 − φ

φJ(�)

]−2

. (4.4)

In the two limits of �, Eq. (4.4) has two asymptotes

ηN,1 = η0(1 − φ/φ0)
−2, (� → 0),

ηN,2 = η0(1 − φ/φm)−2, (� → +∞).
(4.5)

This predicts that though both ηN,1 and ηN,2 increase with φ, they grow with
different rate and diverge at different φ: ηN,2 diverges at φ = φm, while ηN,1
diverges at φ0. Figure 4.7b shows ηN,1 and ηN,2 as functions of φ. We fit both
ηN,1 and ηN,2 simultaneously on log scales to Eq. (4.5) and obtain the parameters
η0 = 13.6 mPas, φ0 = 0.593, and φm = 0.452.

We can then use the onset stress of DST, �DST, to obtain the threshold stress �∗.
�DST is the stress at the turning point where a η-γ̇ curve becomes vertical, so we
have

dγ̇

d�

∣∣∣∣
�=�DST

= 0. (4.6)

Now with the three parameters η0, φ0, and φm already extracted, �DST is only a
function of φ and �∗. Equivalently, we can define a rescaled packing fraction �:

� = φ − φm

φ0 − φm
. (4.7)

Figure 4.7c shows the relation between � and �DST obtained from experiments. To
obtain the �∗ that best fits �-�DST, we varied �∗ from 15 to 25 Pa. For each �∗, we
calculated the �-γ̇ curve and found the corresponding �DST at the experimentally
measured packing fractions. Then we calculated the sum of squared residuals (SSR)
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between the measured and calculated �DST, and obtained �∗ = 20.4 Pa, for the
minimum SSR (Fig. 4.10).

The four parameters to describe the steady-state behavior of our suspensions are:
η0 = 13.6 × 10−3 Pas, φ0 = 0.593, φm = 0.452, and �∗ = 20.4 Pa. With these
in hand, we can calculate the η-γ̇ relation at any packing fraction and compare it
with the experimental measurement, as shown in Fig. 4.7a. The lowest three curves
(green, light blue, and gray) are in the CST regime with φ < φm. The next two
curves above, at φ = 0.417 and 0.449, are in the DST regime where φm < φ < φ0.
In this regime, one might expect to see a discontinuous jump in viscosity, while the
transitions seen in the experiments are less sharp than the model predicts. We note
that this “sharpness” may be affected by the size distribution of the particles. It has
been shown that the onset stress of shear thickening is a function of the particle size
[50]: The larger the particles, the smaller the onset stress. Since cornstarch is highly
poly-disperse, there should be a distribution of onset stress in the system, which
smooths the transition. Lastly, the curves at the four highest packing fractions (from
0.472 to 0.544) are in the jamming regime where φ > φm.

4.4 Generalized Wyart–Cates Model for Transient Flows

4.4.1 Generalize the Wyart–Cates Model

The Wyart–Cates model for steady-state rheology of suspensions has been intro-
duced in Sect. 1.3 and tested in Sect. 4.3. To model transient phenomena, consider an
initial isotropic state where particles are not touching. There must be a characteristic
strain γ ∗ beyond which the microscopic structure becomes anisotropic, and particles
start to make contact. Let us denote the fraction of such particles by g(γ ), whose
contacts can be frictional or not (if the force is insufficient). The exact functional
form of g(γ ) is not crucial, but it must be a growing function, such as:

g(γ ) = 1 − exp
(−γ /γ ∗) . (4.8)

The density of frictional contacts can now be estimated as g(γ )f (�). We thus
obtain for the jamming packing fraction:

φJ(�, γ ) = g(γ )f (�)φm + [1 − f (�)g(γ )] φ0, (4.9)

where

f (�) = 1 − exp(−�/�∗), (4.10)
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and �∗ = μP ∗. Additionally, assuming the viscosity of the transient flow only
depends on φJ,2 we obtain the shear stress (in the spirit of Eq. (1.5)):

� = η0γ̇

[
1 − φ

φJ(�, γ )

]−2

, (4.11)

where η0 is the solvent viscosity. Note that this equation can be applied to higher
dimensions as well, where � and γ̇ then indicate the shear stress and shear strain
tensors, respectively.3 Equations (4.8), (4.9), and (4.11) lead to a closed relationship
for �(γ, γ̇ , φ). If the suspension does not jam, we can take the limit γ → +∞, and
Eq. (4.9) reverts back to Eq. (1.4) for a steady-state system, as it should.

4.4.2 Numerical Calculations

Furthermore, to study transient flows such as the fronts, Newton’s second law must
be included. The equation of motion is

ρ
∂vy

∂t
= −∂�

∂x
, (4.12)

where the minus sign is because � decreases when x increases, but ∂vy/∂t is always
positive. Here we calculate the velocity and stress distributions in a one-dimensional
model system with a finite element method, as illustrated in Fig. 4.8. It is comprised

U0 
un un+1 un-1 

l 

x 

y 

O

1 2 3 n-1 n n+1 N-1 N-2 N 

n-1 n

Fig. 4.8 Schematic illustration of the model system used for the numerical calculations. The black
boxes represent the fluid elements, the blue arrows represent the local velocities, and the red arrows
show the shear stress applied on the left and right boundaries of the n-th element. The boundary
conditions are u1 = U0 and uN = 0. The width of an element is �l

2This is a simplification, as the viscosity should not only depend on the fraction of frictional
contacts, but also on the anisotropy of the contact network characterized by γ . Our results support
that this dependence is not essential to describe fronts.
3To describe propagating fronts in two or three dimensions, one may further assume that φ is
constant in space since particle migration is slow, and the material is incompressible.
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of N elements aligned in the x direction as labeled. Each element is allowed to move
in the y direction only. The initial condition is zero velocity and zero strain for every
element. At the time t = 0 s the velocity of the 1st element is set to be U0 and kept
fixed throughout the calculation.

The velocity change of the n’th element �vn over a time step �t is set by the
shear stresses σn−1 and σn applied on its left and right boundaries, respectively.
Using Eq. (4.12), we get

�vn = �t

ρ�l
(σn−1 − σn), (4.13)

where �l is the width of individual element. We set v1 = U0 and vN = 0 throughout
the calculation. For the other elements, the velocity vn(t) is calculated using the
forward Euler method. From time step i to i + 1, we have

vn(i + 1) = vn(i) + �vn(i). (4.14)

The stresses σn−1(vn−1, vn) and σn(vn, vn+1) are calculated as

σn = η0γ̇n

[
1 − φ/φJ,n

]−2
, (4.15)

where

γ̇n = vn − vn+1

�l
. (4.16)

In Eq. (4.15), φJ,n is calculated according to the generalized model discussed above
(Eqs. 4.8–4.10). The increment of strain to calculate g(γ ) in every step is

γn(i + 1) = γn(i) + γ̇n�t. (4.17)

Note that in the transient regime the inertia of the suspension plays a role on
the macroscopic scale because of the acceleration term ∂u/∂t . However, on the
length scale of a particle, the Stokes number St = ρpd2

pγ̇ /η [40] is still at least two
orders of magnitude smaller than one in our experiments. Some basic parameters
are: particle diameter dp ≈ 15µm; density of the particles ρp matched to the density
of the solvent ρl , ρp = ρl ≈ 1.6 × 103 kg/m3; dynamic viscosity of the solvent η ≈
14 mPas. Even at the maximum shear rate applied in the experiments, γ̇ ≈ 200 s−1,
we get St ≈ 5 × 10−3 � 1. As a result, the “no inertia” requirement of the original
model by Wyart and Cates [43] is still met.

On the macroscopic level, when it comes to the effect of inertia in a transient flow,
we need to consider both terms in the material derivative of velocity ∂u/∂t+(u·∇)u
in the Navier–Stokes equations. In a steady flow ∂u/∂t = 0, and the effect of inertia
is indicated by the Reynolds number Re, which is the ratio between the inertia term
(u · ∇)u and the viscous term ν∇2u. In a transient flow, however, the ∂u/∂t term
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should also be considered. In our case, the time scale T for the front to propagate
through its width � is T ∼ �/(kU0), and this time is also comparable to the time
for the suspension to accelerate from 0 to U0. This allows us to estimate the order
of each term:

O

(
∂u
∂t

)
∼ O

(
U

T

)
∼ kU2

0

�
,

O ((u · ∇)u) ∼ O

(
U2

L

)
∼ U2

0

�
,

O
(
ν∇2u

)
∼ O

(
ν

U

L2

)
∼ ν

U0

�2 ,

(4.18)

where U , L, T represent the characteristic speed, length, and time scales, respec-
tively. In our experiments k ranges from ∼2 to ∼10 depending on φ (Fig. 4.5), thus
∂u/∂t is several times larger than (u · ∇)u, except for φ very close to φm. Actually,
in an ideal one-dimensional system (with this specific geometry), the (u · ∇)u
term simply vanishes because the direction along which the flow velocity varies
is perpendicular to the direction of the flow itself. So finally, it is a balance between
the acceleration term ∂u/∂t and the viscous term ν∇2u, just in this case ν is not
a constant. As a result, before the front reaches any outside boundary, the inertia
will always play a role. The suspension close to the front is accelerating, thus there
must be a stress gradient. This should be a valid result as long as the flow in the
suspension is still laminar and no circulation or instability is generated.

4.4.3 Transition from Slow to Fast U0

To better understand the transition from slow U0 to fast U0, we look at the evolution
of the �-γ̇ relation as γ accumulates, as shown in Fig. 4.9. The �-γ̇ relation for a
steady-state system is labeled by the dashed black curve in (d). Since φ > φm, it
intersects with the γ̇ = 0 s−1 axis and does not have an upper branch. However, in
the generalized model, since we introduced the g(γ ) term, the �-γ̇ relation evolves
as γ accumulates. When γ = 0, the relation between � and γ̇ is linear with a
constant viscosity η0(1 −φ/φ0)

−2. As γ increases, the �-γ̇ curve turns from linear
to sigmoidal, and finally approaches the black dashed line as γ → +∞.

Given the �-γ̇ relation at any γ , we now discuss, as a specific example, the
variation of � with γ̇ in element number two of the numerical 1D system, which
we call the “state” of that element. When U0 = 0.01 m/s, the state moves up along
the Newtonian fluid line and then turns back down along an almost identical path as
γ̇ is varied (black line). In contrast, at U0 = 0.5 m/s, the stress quickly reaches the
upper branch of the sigmoidal curves and stays up there as γ keeps accumulating
and γ̇ slows down. If γ keeps increasing, the shear rate approaches γ̇ = 0 s−1. Since
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Fig. 4.9 (a–c) Velocity profiles at different times for φ = 0.521, U0 = 0.01 m/s (a), 0.1 m/s (b),
and 0.5 m/s (c). (a) is in the fluid-like regime, (b) is in the unstable regime, and (c) is in the front
regime. (d) Evolution of �-γ̇ at φ = 0.521. The blue curves show the �-γ̇ relations at different γ

(starting from zero, with strain increments of 0.0105 between adjacent curves), as predicted by the
generalized Wyart–Cates model. The dashed black line corresponds to the relation at steady state
(γ → +∞). The thick black, green, and red lines show the relation between stress and shear rate
in element no. 2, calculated numerically for different U0 as indicated

� stays constant, the viscosity of the suspension diverges as γ̇ → 0, which leads to
a jammed state (red line). At intermediate U0, the system can enter a regime where
the flows become unstable (green lines). Here the stress reaches the upper branch
and forms a plateau at the beginning. However, as γ accumulates and γ̇ slows down,
the state of the element (at that stress level) enters a section of the S-shaped �-γ̇
curves with a negative slope. As a consequence, the stress has to jump down to
the lower branch and then build up again. As this cycle repeats, the flow becomes
unstable.

4.5 Validation of the Generalized Model

4.5.1 Qualitative Predictions of the Model

When U0 (or equivalently the stress �) is sufficiently small, φJ ≈ φ0 and the
viscosity is constant according to Eq. (4.11). Injecting this relation into Eq. (4.12)
leads to a diffusion equation, and one recovers the usual flow profile for a Newtonian
liquid, evolving with a characteristic length scale

√
νt toward a steady-state shear
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Fig. 4.10 Calculated 1D front based on the generalized Wyart–Cates model. The parameters used
in the calculation are obtained from Sect. 4.3. Here we used φ = 0.532 and U0 = 0.456 m/s, so
the results can be directly compared with the experiment shown in Fig. 4.2. (a, b) Velocity profiles
and accumulated strain γ at different time. (c) Front position xf as a function of time. The red line
shows a linear fit. (d) Accumulated strain γ as a function of time in element n = 80. The red curve
is a fit to a power law. The dashed black line indicates the asymptotic strain. (e) Local shear rate
calculated from the mean velocity profile

flow, where ν is the kinematic viscosity. We did recover such a diffusive profile in
our finite element implementation of the model, as shown in Fig. 4.9a.

By contrast, if U0 is large and φ > φm, then there must exist a front separating the
solid-like and fluid-like regions. According to Eq. (4.3), this front must move with
a constant speed. This was recovered in our numerics as well. Figure 4.10 shows
the numerically obtained velocity (a) and local accumulated strain (b) profiles at
different times, as well as the front location xf (c), the accumulated strain γ at a
fixed position(d), and local shear rate γ̇ (e). The parameters are indicated in the
figure caption, and they were chosen (see below) to correspond to the experimental
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data in Fig. 4.2, allowing a direct comparison. The model reproduces a front that
propagates with a constant speed. The local accumulated strain always approaches
a finite value asymptotically, which is in close agreement with observations. The
shape of the γ̇ (x) curve plotted in panel (e) also agrees with the experimental data
in several key aspects. The maximum shear rate is obtained near x = xf, and both
curves show asymmetry with respect to |x| − |xf| = 0: γ̇ grows quickly as the front
approaches, but decays with a tail after the front has passed by. However, the front
is sharper than in the experiments, which will be quantified later.

Finally, at intermediate U0 the model predicts a regime of instability (not seen
in our experiments), exemplified in Fig. 4.9b. After propagating across a certain
distance, the shape of the velocity profile in the co-moving frame oscillates back and
forth. Such instability is not entirely surprising: for these velocities, the stress � lies
inside the S-shaped portion of the flow curves (see Sect. 4.4). In that stress range, a
complex sequence of instabilities and chaotic behaviors in steady-state systems have
been reported experimentally [109], which appears to be sensitive to the presence of
a free surface that can be deformed. Modeling the front in this velocity regime in the
one-dimensional geometry discussed here may thus require to allow for deformation
of the free surface. This goes beyond the scope of this work, and here we focus on
the fast U0 regime.

4.5.2 Quantitative Comparison with Experiments

There are five parameters in our model, but we can obtain four of them, φ0, φm, η0,
and �∗, from steady-state rheology. This is shown in Sect. 4.3 where we obtain φ0 =
0.593, φm = 0.452, η0 = 13.6 mPa·s, and �∗ = 20.4 Pa. We are left with a single
parameter, γ ∗ = 0.197 ± 0.002, obtained by fitting the front propagation speed
k and its inverse γ∞ at different φ, as shown in Fig. 4.5. Interestingly, a threshold
strain of approximately 0.2 is also found in regular granular materials [110] and
in suspensions [102] as the strain scale below which transient, start-up behavior is
observed.

Note that the most essential predicted quantities (k and γ∞) can be estimated
analytically in our model in the limit of large U0. In this case, the stress is so large
when the front passes through that we may take f (�) ≈ 1 in Eq. (4.9). Jamming
occurs when φJ = φ, leading to g(γ ∗) = (φ0 − φ)/(φ0 − φm). For our choice of g

this implies

γ∞ = γ ∗ · ln
φ0 − φm

φ − φm
. (4.19)

To further test the model we compute k, γ∞, �, and γ̇max across a range
of packing fractions φ and boundary speeds U0, and compare the results with
experiments directly in Fig. 4.4. As follows from Eq. (4.19), we predict k and
γ∞ to be essentially independent of U0 for large values, and � ∼ U2

0 . These
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predictions match the data very well at each φ (except for the largest φ values where
k shows some decay, presumably induced by the deformation of the free interface,
as discussed above).

As shown in Fig. 4.4d, γ̇max obtained from experiments (solid circles) and
calculations (hollowed circles) both obey power laws as functions of U0, and their
pre-factors are both relatively φ-independent over the range φ ∈ [0.462, 0.532]
(see Appendix E). However, the model predicts an exponent around b = 2 instead
of b = 1.5, and the pre-factor is about one order of magnitude larger. For both
transient and steady-state systems (see Sect. 4.3), the model overestimates the
sharpness of the transition from low to high viscosity. Firstly, this could be due to the
complexity of cornstarch granules (irregular shape, poly-dispersity, etc.). Secondly,
more sophisticated models describing not only the fraction of frictional contacts
but also the evolution of the anisotropy of the contact network with strain may be
required for a more detailed treatment of the front width.

4.6 Conclusions

By studying the rapidly propagating jamming fronts generated when applying
a sudden shear, we proposed and validated a phenomenological framework for
fluid–solid front propagation in dense particulate suspensions. We found that
besides the applied stress, the properties of such fronts are controlled by the
local accumulated shear strain as well. These transient, start-up dynamics can be
captured by introducing a characteristic strain scale γ ∗ into a model [43] that
describes the steady-state rheology of shear-thickening suspensions. Despite its
simplicity, this extended model gives good agreement with the experiments. It
quantitatively reproduces the dependence of the normalized front speed k and the
locally accumulated shear strain γ∞ on the packing fraction φ. It also correctly
predicts the qualitative relation between the maximum shear rate γ̇max and the
system and forcing parameters.

Importantly, the generalized model introduced here establishes a direct link
between the steady-state and transient behaviors in dense suspensions. It shows that
to obtain jamming fronts, the packing fraction of the suspension must be above the
frictional jamming packing fraction φm. In the range between φm and the frictionless
jamming packing fraction φ0, the suspension will evolve into a state that jams at high
stress, but can still flow at low stress.
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While we discussed the model in its simplest form, appropriate for a semi-infinite
1D system, the same ideas and numerical approaches should allow for several
extensions. This includes accounting for the presence of walls (which can take up
significant stress once reached by the fronts) as well as extensions to 2D or 3D
systems (where the fronts propagate with different speeds in the directions along the
applied forcing and perpendicular to it as discussed in Chap. 3 and in [59, 92, 102]).



Chapter 5
Rheology in the Shear Jamming Regime

5.1 Introduction

Non-Newtonian behaviors of suspensions include continuous shear thickening
(CST) [17, 19, 20] and discontinuous shear thickening (DST) [13, 22, 23]. Even
richer dynamics occur when φ approaches the threshold for jamming [7, 27]: at
sufficiently high shear stress, suspensions can reversibly transform from a viscous
fluid into a solidified state [28, 54]. Experiments [23, 24, 33, 34, 36, 47, 50] and
simulations [38, 111] both suggest that strong thickening and solidification due
to shear are related to a stress-dependent change in particle–particle interactions,
which switch from lubrication at low stress to direct, frictional contact at high stress.
In Chap. 1, we have introduced a phenomenological model developed by Wyart and
Cates [43] that unifies CST and DST within a framework based on such stress-
dependent interactions. Predictions of this model for the shear thickening regime
have been validated by experimental [50, 51, 109] and numerical [39–41, 111] work.
However, the model also predicts the transition into the shear-jammed, solid-like
state, which has not yet been tested.

A key reason for this is that conventional rheology experiments, as well as
simulations, establish steady-state shearing conditions and assume spatially uniform
flows. Neither of these is appropriate in situations where a fluid is about to
transform into a solid. Stress-activated solidification in dense suspensions has been
studied extensively under non-stationary conditions, including impact [54–56, 92],
extension [58, 102], and simple shear [28, 98]. In each case, rapid external forcing
turns the suspension into a jammed solid, which can “melt” and return to a fluid
state once the applied stress vanishes [28, 52–54]. The critical element here is that
this dynamic jamming, irrespective of how it is triggered, proceeds via propagating
fronts that build up a region that sustains high stress between the front and the
solid driving boundary. In Chap. 4, we have brought up the point that in the co-
moving frame, such flows can establish a local environment that is exquisitely stress
controlled [98].
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In this chapter, we are going to compare steady-state rheology in a narrow
gap, and transient flows in a wide gap, for suspensions in the shear jamming
regime. We will demonstrate how propagating fronts can be exploited to perform
stress-controlled rheology in regimes inaccessible to methods based on steady-state
driving. For the first time, we quantitatively test a significant prediction of the
Wyart–Cates model [43]—the location of the boundary delineating DST and shear-
jammed states as a function of packing fraction and applied stress.

5.2 Limitations of Narrow-Gap Steady-State Rheology

Under steady driving conditions, the state of a dense suspension with packing
fraction φ can be described by two parameters: the shear stress � and the shear
rate γ̇ . Together, they define a flow curve. As an example, the black line in Fig. 5.1a
shows the flow curve predicted by the Wyart–Cates model [43] for a suspension
in the shear jamming regime under stress-controlled conditions. With increasing
� it bends back towards low γ̇ , and eventually, intersects with the vertical axis
where γ̇ = 0 s−1. At that intersection, the suspension can sustain non-zero shear
stress at zero shear rate, and therefore must have developed a finite, non-zero shear
modulus. This means the suspension is now jammed. We call the stress at this point
the onset stress of shear jamming (SJ) �SJ. As � increases, presumably, the jammed
suspension remains solid (the vertical portion of the black line along the y-axis),
until � eventually exceeds the yield stress of the jammed solid (not shown). Note
that throughout this chapter, we plot flow curves in a conventional manner, with �

-
-

--

-

Fig. 5.1 (a) Relation between shear stress � and shear rate γ̇ for a suspension in the shear-
jamming regime. Steady-state rheology was performed with parallel plates sketched in (b), and
the transient flow in a wide-gap geometry is shown in (c). Red arrows indicate the motions of the
solid boundaries
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on the y-axis, even though we are discussing stress-controlled protocols where � is
the independent variable.

However, when this model is compared to steady-state experimental data (blue
squares in Fig. 5.1a), we see apparent deviations. The data were taken with a
cornstarch suspension of φ = 0.52, using a parallel-plate geometry (Fig. 5.1b) under
stress-controlled shearing conditions. Its concentration was well above the frictional
jamming packing fraction φm = 0.45 (see Chap. 4), which is the lower limit of φ that
allows shear jamming. Though the model works well at � < 5 Pa, the measured
�–γ̇ curve bends only slightly towards low γ̇ at high �. Instead of intersecting
with the γ̇ = 0 s−1 axis as expected for shear jamming, the curve eventually bends
forward again. Such a behavior is typical for DST, a regime in which the Wyart–
Cates model predicts s-shaped �–γ̇ curves [43, 50, 51]. The question thus arises:
what causes these deviations from the model?

Rheology experiments can be performed with a variety of geometries, including
parallel plates, cone and plate, and concentric cylinders (Couette cell). For these
three geometries, the basic idea is similar: the sample is placed inside a narrow
gap (normally 0.1–1 mm) and sheared continuously. In order to obtain the correct
viscosity from such measurements, certain conditions must hold: the flow must be
steady such that ∂u/∂t = 0; γ̇ and � in the bulk must have well-defined spatial
profiles so they can be calculated from the boundary conditions; and there can be
no boundary slip. For Newtonian fluids, the velocity profile across the gap can
be calculated straightforwardly (e.g., it is linear for a parallel plate geometry as
shown in Fig. 5.1b), but for dense suspensions, this can become more complex
[24, 63]. When � exceeds the onset stress of DST, �DST, there are complex
spatial and temporal rate fluctuations even though the average stress at the boundary
remains constant [109, 112–114] and, in addition, boundary slip can be significant
[28, 63, 113, 115]. As a result, it is exceedingly difficult to maintain a uniformly
sheared jammed state under steady-state driving or to even approach a jammed state
in a truly stress-controlled manner with typical, narrow-gap rheology experiments.

5.3 Steady-State Rheology Using One-Dimensional Transient
Flows

As shown in Fig. 5.1a, there is another, experimentally accessible, path to shear
jamming. Instead of moving up along the black curve, we can get toward shear-
jammed states (e.g., the state indicated by the open black circle) as asymptotic limits
of specific �–γ̇ paths like the one indicated by the orange circles. These data were
taken with the same suspension, but using a wide-gap shear configuration shown in
Fig. 5.1c. Note how this curve bends back significantly and gets much closer to the
vertical axis than the blue data. We now describe how the flow curves of this type
can be used to perform rheology measurements.
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The experimental setup for the wide-gap shear is identical to the one described
in Chap. 4. A 1 cm thick, horizontal layer of suspension was floated on a heavy
oil, and a straight vertical plate in the suspension was used as the solid boundary
that applied the shear. Figure 5.1c sketches the top view of the system. In each
test, the solid boundary on the left moves with a constant speed U0 along the y-
direction. Immediately after start-up, a transient flow develops in the x-direction,
perpendicular to the movement of the boundary, and spreads across the initially
quiescent suspension. For suspensions with φ > φm, this flow generates a shear
jamming front when U0 is sufficiently fast, i.e., the applied stress is sufficiently
large. As discussed in Chap. 4, the profile of such a front has an approximately
invariant shape, thus it can be represented as

F(x, t) = F(x − Uft), (5.1)

where F can be �, γ̇ , or the y component of the velocity v. We define the front
position xf as where v = 0.45U0, which is also approximately where γ̇ peaks. The
front propagates with a constant speed Uf ≡ kU0, where k is the dimensionless front
propagation speed. With increasing U0, k plateaus at kp, which increases with φ.

To use the fronts for rheology, we need to know the local shear rate and stress.
Given our effective 1D flow, the equation of motion is

ρ
∂v

∂t
= −∂�

∂x
, (5.2)

which reflects the fact that the viscous stress is always balanced by the acceleration
of the suspension. This equation allows us to obtain the local shear stress without
measuring forces, simply by calculating the stress needed for the suspension to
accelerate. From Eqs. (5.1) and (5.2), we obtain � = ρUfv, and therefore �(x, t)

has the same shape as v(x, t), but with a prefactor ρUf. The mean velocity profile
v(x − xf) is shown in Fig. 5.2a. Here v(x, t) was shifted by xf and then averaged
to obtain v(x − xf). The corresponding shear stress is shown in Fig. 5.2b. As
(x − Uft) → −∞, v → U0, and � asymptotically approaches �∞ = ρkU2

0 . Since
this stress originates from the acceleration of the whole flow, which develops with
little variation in shape before the front reaches a solid boundary, �∞ is very stable.
Note that here we assumed no boundary slip, but it is not necessary because we
obtained � from velocity measurement instead of the force applied on the boundary
(like in standard rheology).1

The local shear rate γ̇ = |∂v/∂x| calculated from the averaged velocity profile
is also shown in Fig. 5.2b. Because ours is a 1D system, we take γ̇ to be positive for
simplicity. We can see that both � and γ̇ increase at the leading edge of the front
(x > xf). However, behind the front (x < xf), � keeps increasing and approaches

1The boundary slip is minor according to our measurements. It only happens at extremely high φ

and �. Even if the boundary slightly slips, as long as the slip is not intermittent, the conclusions
above are still valid by replacing U0 with the actual speed of the flow right next to the boundary.
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Fig. 5.2 Front profiles in the co-moving frame for a suspension with φ = 0.53. (a) Velocity
profile v(x − xf). (b) Shear stress � (magenta) and shear rate γ̇ (blue) profiles. (c) Local viscosity
η = �/γ̇

�∞, while γ̇ decreases and approaches zero. This means that the viscosity η = �/γ̇

increases dramatically behind the front, as shown in Fig. 5.2c. Using our suspension
at φ = 0.53 as an example, its viscosity in the Newtonian regime prior to shear
thickening was ηN = 1.3 Pa·s. At only 2 cm behind the front xf, the suspension is
already almost 1000-fold more viscous than ηN.

Moreover, compared to DST under steady-state conditions, where η ∝ �, the
viscosity increase here is “beyond discontinuous,” because now η(�) diverges as
� → �∞. In other words, once the front passes, the suspension will evolve toward
a solid-like, shear-jammed state with a finite shear modulus so that γ̇ |t→+∞ → 0.

While we plot the orange curve in Fig. 5.1a together with the steady-state predic-
tion and experiment, this transient flow curve needs to be interpreted differently. For
any point on a steady-state flow curve, the overall accumulated strain γ is irrelevant
since the curve describes a stationary state. In contrast, under transient conditions,
the state of the suspension evolves with time, and each point on the �–γ̇ curve
corresponds to a different γ . For the orange curve in Fig. 5.1, this evolution begins
with γ = 0 at small �. As the strain accumulates while the front sweeps through, the
suspension experiences increasing shear stress � and shear rate γ̇ . In accordance
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Fig. 5.3 �–γ̇ flow curves for a suspension with φ = 0.53, driven at different boundary speeds U0.
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the prediction of the Wyart–Cates model. The dashed black line shows � = ηNγ̇ . The dash-dot
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with Fig. 5.2b, γ̇ then abruptly decreases until the flow curve terminates on the
vertical axis.

Importantly, the specific stress level within the range of jammed states that is
approached in this manner is fully controlled by U0. This means that by changing
U0, we can drive the suspension toward different jammed stress levels �∞, as shown
in Fig. 5.3. We used two analysis methods to obtain the data here: The solid points
are from the mean velocity profiles v(x − xf), and � and γ̇ were extracted the same
way as in Fig. 5.2. The open circles were obtained by first calculating � and γ̇ from
the velocity profiles at each time step, and then averaging � and γ̇ . The two methods
provide well-matched results, especially at large U0.

5.4 Boundary of Shear Jamming in Suspensions

We now use this wide-gap method to probe suspensions in a stress-controlled
manner and map out the onset stress �SJ of steady-state shear jamming. To obtain
�SJ, we need to find the stress above which such jamming fronts can be generated.



5.4 Boundary of Shear Jamming in Suspensions 67

Fig. 5.4 (a) Normalized
dimensionless front
propagation speed k/kp as a
function of shear stress �∞
for different packing fractions
φ. (b) Predictions of the
generalized Wyart–Cates
model (Eq. 5.6)
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To be more quantitative, we not only find the conditions under which a jamming
front is observed but also look at its dimensionless front speed k as a function of �∞
as shown in Fig. 5.4a. In the shear jamming regime, since γ̇ → 0 s−1 eventually, the
accumulated strain (area under the blue curve in Fig. 5.1b) approaches a finite value
γ∞ asymptotically. The dimensionless front propagation speed is directly controlled
by this asymptotic strain, as k = 1/γ∞ (see Chaps. 3 and 4 for details). Since γ∞ is a
function of φ, so is k. For suspensions prepared with different φ, we normalize k(φ)

by its mean peak height, kp(φ). In general, k/kp grows from 0 to 1 as �∞ increases,
with suspensions at smaller φ requiring larger stress �∞ to reach the same k/kp.

Now we compare the experimental measurements with the generalized
Wyart–Cates model described in Chap. 4, in which the constitutive relation is
written as

� = η0γ̇

[
1 − φ

φ0 − f (�)g(γ )(φ0 − φm)

]−2

, (5.3)
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where η0 is the solvent viscosity and φ0 is the frictionless jamming packing fraction.
As long as f and g are continuous monotonic functions that satisfy f (0) = g(0) =
0 and f (+∞) = g(+∞) = 1, the model works qualitatively. For the suspensions
that we use, g(γ ) = 1 − exp(−γ /γ ∗) agrees well with experimental results [98].
The form of f (�), on the other hand, has been proposed in various forms [43, 112,
116, 117]. Here we use f (�) = exp(−�∗/�) [116, 117]. In the equations, γ ∗ and
�∗ are the characteristic strain and stress scales, respectively. The corresponding
values have been reported in Chap. 4.

The suspension reaches a shear-jammed state when the terms in the square
bracket in Eq. (5.3) becomes 0. As a result, we have

f (�∞)g(γ∞) = φ0 − φ

φ0 − φm
≡ 1 − �, (5.4)

thus

γ∞(�∞) = g−1
[

1 − �

f (�∞)

]
, (5.5)

where � is a rescaled packing fraction and g−1 is the inverse function of g. In the
regime of high stress where �∞ � �∗, f (�∞) = 1, thus γ∞(�∞ � �∗) =
g−1(1 − �), which corresponds to 1/kp in the high stress limit. Finally, we get the
relation between k/kp and �∞:

k

kp
= 1/γ∞(�)

1/γ∞(� � �∗)
= g−1(1 − �)

g−1 [(1 − �)/f (�∞)]
. (5.6)

The results are presented in Fig. 5.4b, and we see the stress dependence of k in
agreement with the experiments. Note that in the experiments, at stress above
approximately 2000 Pa, k/kp deviates from 1 and decreases. We suspect that this
is due to excessive dilatancy of the system in the direction perpendicular to the x–y

plane shown in Fig. 5.1c, which was not confined in our experiments. In the model,
we assume that φ is a constant, so any effect due to φ variation is not captured.

The agreement between the experiments and the model allows us to map out
the boundary of the shear jamming regime in the state diagram, as shown in
Fig. 5.5. From steady-state rheology experiments, we obtained φm, φ0, and the
stress scale �∗ (see Chap. 4). As expected, shear jamming is only observed when
φ is between φm (left) and φ0 (right) labeled by the vertical dashed lines. The
solid black curve shows the boundary of the DST regime. The lower part of
this curve (the section with negative slope) labels the onset stress of DST �DST.
Experimental measurements from steady-state rheology with parallel plates (black
squares) (Chaps. 4 and [98]) and wide-gap Couette cell (open squares) [28] lie
right on top of this predicted boundary. This boundary, along with the mechanical
properties of suspensions on the left side of φm, have been extensively studied by
prior experiments [50, 109] and simulations [39, 41].
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Fig. 5.5 State diagram.
Squares show �DST obtained
from standard rheology with
parallel plates (black) [98]
and wide-gap Couette cell
(open) [28]. Solid circles
show the shear jamming
regime mapped out by our
experiments with transient
flows. Open circles are the
onset stress of SJ from Peters
et al. [28]. The red region
shows the DST regime and
the green curve shows �SJ
(Eq. 5.7) predicted by the
Wyart–Cates model [43]
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With the parameters φm, φ0, and �∗ obtained from rheology experiments, we
can already predict �SJ by setting g(γ ) = 1, thus

�SJ = − �∗

ln(1 − �)
. (5.7)

It is shown by the solid green curve in Fig. 5.5, which our experiments now can test
for the first time quantitatively. In a previous experiment by Peters et al., a stress
boundary above which SJ is obtained was detected by poking the surface of sheared
suspensions [28], and this boundary is shown by the open circles in Fig. 5.5. As
we can see, it is significantly above what the model predicts. In comparison, our
experimental method does a much better job detecting possible shear-jammed states
at relatively low stress. The solid circles in Fig. 5.5 show the region where jamming
fronts are observed, and their colors map out the corresponding k/kp. Combining
results shown in Figs. 5.4 and 5.5, we confirm that the Wyart–Cates model provides
a reasonably good prediction of the threshold stress for shear jamming.

5.5 Conclusions

In this chapter, we pointed out that conventional steady-state rheology has limita-
tions while testing suspensions in the regime where shear jamming is approached.
To obtain flow curves for suspensions in this regime, we introduced a new method
that takes advantage of transient shear fronts in a wide-gap linear shear cell. As
the front propagates, the dense suspension behind the front evolves toward a shear-
jammed state, and the stress of this jammed state can be controlled by the speed
of the shearing boundary. This made it possible to map out the onset stress of
shear jamming for different packing fractions and, for the first time, we showed
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that the Wyart–Cates model well predicts the unset stress of shear jamming, and
its generalization captures transient phenomena such as stress-dependent front
propagation speed as well.



Chapter 6
Conclusions and Outlook

6.1 Conclusions

In this thesis, we presented a detailed investigation of the dynamics of dense
particulate suspensions, focusing in particular on their transient dynamics. To
achieve a better understanding of the rapidly evolving flows in such optically opaque
materials, we developed a technique to image flows at high frame rate (up to 10,000
frames per second) with ultrasound. Firstly, we studied a phenomenon called the
impact-activated solidification by combining the speed of sound measurements and
high-speed imaging. Previous work had shown that impact at the surface of dense
suspensions generates a front that propagates fast into the bulk, and transforms the
material from a fluid-like state into a solid-like state in its wake. We achieved the first
direct observation of such fronts in a three-dimensional system. Our speed of sound
measurement revealed that, within the experimental error, there was no detectable
increase in the packing fraction behind the front, which ruled out a model that relates
the front propagation speed to (isotropic) jamming via densification [54, 60]. From
the measured flow fields, we noted that the front formation is closely related to
a narrow, propagating zone of high shear rate. Based on these observations, we
concluded that impact-activated fronts are shear fronts. Furthermore, we showed
that the front propagation speed is controlled by the accumulated strain needed
for shear jamming. We explained the anisotropic front propagation speeds in the
directions along and transverse to the impact by tracing its origin to the differences
in the mode of shear experienced.

Next, to understand this shear front even better and model it quantitatively,
we performed further experiments in a quasi-one-dimensional system, which is
arguably the simplest geometry. We confirmed that the dimensionless front prop-
agation speed is the inverse of the accumulated strain required to shear jam the
suspension. This strain scale is the key that links steady-state rheology to transient
flows. To prove this, we generalized the Wyart and Cates model [43] that was
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developed to describe steady-state conditions by introducing a strain term. The
experiment and theory matched very well both qualitatively and quantitatively.

Lastly, we extended the links between steady-state rheology and transient flows
even further by realizing that transient flows can be used to study steady-state
shear jamming, which is difficult, if not impossible, with conventional rheology
experiments. We demonstrated that by using an experimental setup that corresponds
to a shear flow across a sufficiently wide gap, we can drive suspensions to evolve
towards shear jammed states at precisely controlled stress levels. Using this new
method, we can then map out the onset stress for shear jamming in a state diagram
for dense suspensions.

6.2 Outlook

Particulate suspensions are complex systems that involve interactions on a wide
range of length scales. On the macroscopic level, the characteristic length scales are
of order 1 mm. For example, in standard steady-state rheology, the gap size ranges
from 10−4 to 10−2 m, and for shear fronts, the characteristic length scale is the front
width, which is approximately 10−3–10−2 m. A smaller length scale that matters is
the particle size, which is in the range of 10−6–10−4 m. Parameters on this scale
include, but are not limited to, particle size, shape, and their spatial configuration,
which all control the mechanical properties of the suspension. At an even smaller
length scale, we have contact interactions between two particles, which is of order
10−9 m or less. Among different contact interactions between particles, a crucial
one is “friction,” which can be related to the frictional coefficient of the materials,
the surface roughness of particles, the interactions between polymer brushes on the
particle surfaces, or chemical interactions such as hydrogen bonds [47].

Comparatively, phenomena on the macroscopic length scales are the most
well understood. Over the years, massive data have been collected by rheology
experiments, on shear thinning, shear thickening, and recently, shear jamming.
A separation of length scales allows us to model the macroscopic flows without
considering details on the micron and nanometer levels. Till now, the mean-field
theory by Wyart and Cates and our generalization of this model work reasonably
well. With the state diagram η(φ,�), which has as few as four parameters (solvent
viscosity η0, frictionless and frictional jamming packing fractions φ0 and φm,
and a threshold stress scale �∗) all measurable on a rheometer, one can predict
behaviors of suspensions under different steady-state driving conditions. Shear
fronts constitute a clean, exemplary system that helps us reveal the links between
steady flows and transient flows in such shear thickening fluids. With one more
parameter, a threshold strain scale γ ∗, qualitative or even quantitative predictions
can be made. However, there are still many other transient phenomena that need to
be included to enrich this model. In principle, our current model in one-dimension
can be extended to three dimensions by considering the tensorial forms of strain and
stress. Oscillatory shear is another useful model system to study transient flows,
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especially for investigating the effect of strain. Last but not least, as discussed
in Chap. 5, standard rheology techniques have certain limitations in the jammed
regime. We demonstrated a new experimental method to overcome certain of these
limitations, but clearly, there is still much room for improvement. It will be helpful
if a standardized test for shear jamming materials can be added to the toolbox of
rheologists.

When it comes to the micron and nanometer scales, the party has just started.
The phenomenological models on macroscopic scales rely on the state diagram,
but the parameters that are necessary to map out the diagram are all controlled by
properties on the microscopic level. Understanding how microscopic interactions
affect macroscopically measurable parameters will not only lead to deeper and
richer physics but also guide us to design and engineer suspensions with expected
properties. Currently, some of those links from micro to macro are still missing. For
example, we expect that γ ∗ is related to the rearrangement of particle configuration
in space, but most experiments that explore this relation are performed with quasi-
static dry granular systems in two dimensions. To understand how microscopic
properties affect macroscopic behaviors of real suspensions, we need to perform
experiments on the microscopic level, for example, combine techniques such as
confocal microscopy, x-ray scattering or tomography, and atomic force microscopy
(AFM) with rheology experiments. Simulations are excellent tools for studying the
effect of particle configurations, but until now numerical approaches have been
mostly focusing on steady-state systems, where a relatively small system with
several thousand particles is sufficient. When it comes to transient phenomena,
however, the system might need to be much larger because of the emergence of other
longer length scales such as the front width, and consequently, the computation will
be more expensive.

In recent years, research on dense suspensions has progressed dramatically. New
ideas are emerging, more powerful frameworks are being established, and bigger
pictures are being drawn. The result is a rich field with tremendous opportunities as
well as challenges, and surprises might appear on many different length scales.



Appendix A
Effective Density of
Non-density-Matched Suspensions

For non-density-matched suspensions, many models have been proposed for their
effective density ρeff [87, 118–122]. Among them, Ament [87] better describes the
experimental data [76, 97]. To model sound propagation there are two important
length scales: the wavelength of the ultrasound λ and the length scale of the
viscous layer δ. All the models described here only work in the regime where λ

is much larger than the particle radius a. The thickness of the viscous layer can be
expressed as

δ =
√

2η

ωρl
, (A.1)

where ω = 2πf is the angular frequency of the ultrasound wave and η and ρl are
the dynamic viscosity and density of the liquid in the suspension, respectively. The
ratio a/δ is analogous to the Reynolds number. The system is in the inertial regime
when a/δ � 1 and in the Stokes regime when a/δ � 1. In our experiments the
suspensions were in the inertial regime.

Ament [87] derived a function for ρeff by considering the relative motion of
particles and liquid in non-density-matched suspensions. He got

ρeff = ρ̄ − 2(ρs − ρl)
2φ(1 − φ)

Q

Q2 + U2 (A.2)

where ρ̄ is the mean density shown in Eq. (2.4), Q = 2(ρs −ρl)(1−φ)+( 9
2

δ
a
+3)ρl,

and U = 9
2ρl[ δ

a
+ ( δ

a
)2]. By plugging κ̄ and ρeff into Eq. (2.2) we obtain the speed

of sound c.
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Appendix B
Preparation of Suspensions

The solid particles we used to make suspensions were cornstarch granules (produc-
ers: Ingredion and Roquette). They are non-spherical poly-disperse particles whose
diameter ranges from 5 to 30µm [54, 77], with an average of about 15µm [123].
The density of cornstarch particles was ρcs = (1.63±0.01)×103 kg/m3 measured by
density matching. Detailed procedure can be found in [76]. The suspending solvent
was a mixture of cesium chloride (CsCl), glycerol, and deionized water. The mass
ratio between glycerol and water in the solvent controlled its viscosity. The density
of the solvent was ρl = 1.62 × 103 kg/m3, which was matched to ρcs to prevent
sedimentation.

When a suspension was prepared, we mixed mcs grams of cornstarch particles
with ml grams of the solvent. The dry cornstarch particles were stored in a
temperature and humidity controlled environment at 22.5 ± 0.5 ◦C and 44 ± 2%
relative humidity (RH), so they contained some moisture before mixing [77]. Every
mcs grams of cornstarch dispersed into the solvent actually contained (1 − ξ)mcs
grams of cornstarch “material” and ξmcs grams of water. At 44% RH, the moisture
content (mass fraction) ξ is approximately 13 ± 1% according to literature [77, 80].
The “material” volume fraction φM for cornstarch is

φM = (1 − ξ)mcs/ρcs

(1 − ξ)mcs/ρcs + ml/ρl + ξmcs/ρw
, (B.1)

where “w” represents water. Here φM specifically is the fraction of the volume occu-
pied by the impermeable part of the amylose/amylopectin network that comprises
the cornstarch particles. The mean density of the suspension ρ̄ is also affected by
the moisture content, and this in turn affects ρeff (Eq. A.2). If we assume that the
water initially contained within the cornstarch particles completely mixes with the
solvent, then
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ρ̄ = mcs + ml

(1 − ξ)mcs/ρcs + ml/ρl + ξmcs/ρw
. (B.2)

As discussed in Sect. 2.4, the volume fraction φ occupied by the fully soaked
particles is φ = φM/(1 − ψ) (Eq. 2.6), where ψ = 0.31 is the porosity of the
cornstarch granules. In this thesis, the packing fractions we report are all calculated
using Eqs. (B.1) and (2.6).

After mixing the particles and the solvent, we left the suspension to sit still
for approximately 2 h before performing experiments to allow full wetting of the
particles and for big air bubbles to escape. However, for ultrasound visualization,
there were still too many bubbles after resting, as shown in Sect. 2.6. Therefore, the
suspensions were debubbled before measurements. To prevent solvent evaporation
during debubbling, we placed the mixed suspension samples into 10 or 50 mL
syringes, sealed the nozzles with rubber septa, and withdrew the plungers to
generate low pressure in the syringes. The walls of the syringes were tapped to
liberate trapped bubbles. This method has proven effective in getting rid of bubbles
in suspensions, as shown in Sect. 2.6.

The debubbled suspensions were almost entirely black in the ultrasound B-mode
images. They were used directly in the speed of sound measurements. For imaging
the flow field (e.g., Chap. 3), a small number of air bubbles were added back to the
debubbled suspensions to act as tracer particles. This was done by slowly stirring
the suspension, then tilting and slowly rotating the container till the bubbles were
uniformly distributed.

With the speed of sound measurements, we confirmed two more properties of
the suspensions: (1) The speed of sound in density-matched suspensions did not
change with time over at least 16 h. (2) The cornstarch particles do not partially
dissolve and thereby affect the solvent’s speed of sound. To test the second point,
we prepared suspension samples with cornstarch and DI water at different particle
concentrations. The suspensions in this case were not density matched, so the
particles settled. We decanted the clear supernatant after 2 h and measured its speed
of sound. No significant difference was observed.



Appendix C
Relation Between k Value and
Accumulated Strain in 2D

For an idealized 2D system, we define Cartesian coordinates with x-axis in the
transverse direction and y-axis in the longitudinal direction. To obtain the relation
between the strain threshold εc and the normalized front speeds k we consider
how much shear strain a suspension element experiences when it accelerates from
uy = 0 to uy = Up. We consider the propagation in the transverse and longitudinal
directions separately as two quasi-1D problems. Exemplary sketches of the velocity
profiles are provided in Fig. C.1. The experimental data did not show a significant
change in front width, so here we assume the shape of the front does not change
during propagation. In this case, the velocity profiles can be expressed as

uy(x, t) = ft(x − vftt) (C.1)

in the transverse direction and

uy(y, t) = fl(y − vflt) (C.2)

in the longitudinal direction. In both equations t is the time, vft and vfl are the front
propagation speeds. ft(X) and fl(X) are the functions that satisfy ft = fl = Up as
X → −∞ and ft = fl = 0 as X → +∞.

On either side of the impactor the front propagates transversely with a speed vft =
ktUp, while the local velocity of the flow is perpendicular to the front propagation
direction. The acceleration of a suspension element in the transverse direction is

Duy(x, t)

Dt
= ∂ft

∂t
= −ktUpf

′
t = −ktUp

∂uy

∂x
, (C.3)

where D/Dt is the material derivative and f ′
t = dft(X)/dX. Below the impactor

there are two differences: one is that the suspension element now moves in the same
direction as the front, and the other is vfl = (kl + 1)Up as defined in Eq. (3.5). Thus
the acceleration becomes
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 0

a Up

t1 t2u y
x

 0

b Up

t1 t2u y

y

Fig. C.1 Schematic illustrations of the front profiles along the transverse (x) and longitudinal (y)
directions in 2D. (a) Front profiles in the transverse direction at two times t1 and t2 (t2 > t1). In the
jammed region uy = Up and in the shear zone it drops quickly to zero. It goes slightly negative at
larger x because of the circulation outside of the jammed region, which can be seen in Fig. 3.2. Up

returns back to zero far away from the impactor. (b) Front profiles in the longitudinal direction at
t1 and t2. Both front profiles ft (x − Ukt t) and fl(y − Uklt) approach Up when x or y → 0 and
approach 0 when x or y → +∞

Duy(y, t)

Dt
= ∂fl

∂t
+
(

uy

∂

∂y

)
fl = [uy − (kl + 1)Up]f ′

l

= [
uy − (kl + 1)Up

] ∂uy

∂y
.

(C.4)

Now we look at the relation between the local shear rate ε̇ and the velocity
gradient. In general, for an incompressible 2D fluid the shear rate tensor is

ε̇ =
⎡
⎣ ∂ux

∂x
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
∂uy

∂y

⎤
⎦ , (C.5)

where ∂ux

∂x
+ ∂uy

∂y
= 0. From experimental observation, we have ∂ux

∂y
� ∂uy

∂x
. In the

transverse direction, where simple shear dominates, the diagonal terms vanish and
the shear rate tensor becomes

ε̇t =
[

0 1
2

∂uy

∂x
1
2

∂uy

∂x
0

]
, (C.6)
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while for pure shear in the longitudinal direction the off-diagonal terms vanish and
we have

ε̇l =
[
− ∂uy

∂y
0

0 ∂uy

∂y

]
. (C.7)

In either case the matrix has two eigenvalues with the same magnitude but opposite
sign and the eigenvalues represent the shear rate on the principal axes. Thus we can

represent the shear intensities by the tensors’ positive eigenvalues: ε̇l =
∣∣∣ ∂uy

∂y

∣∣∣ =
− ∂uy

∂y
and ε̇t = 1

2

∣∣∣ ∂uy

∂x

∣∣∣ = − 1
2

∂uy

∂x
.

Using the velocity gradient, we relate the local shear rate with the acceleration
of the element:

ε̇t = 1

2

1

ktUp

Duy

Dt
, (C.8)

ε̇l = 1

(kl + 1)Up − uy

Duy

Dt
. (C.9)

Consequently, the total shear strain ε a suspension element experiences before
jamming is

εt =
∫ ∞

0
ε̇tdt =

∫ Up

0

1

2ktUp
duy = 1

2kt
, (C.10)

and

εl =
∫ ∞

0
ε̇ldt =

∫ Up

0

1

(kl + 1)Up − uy

duy = ln

(
kl + 1

kl

)
. (C.11)

Equation (C.11) gives εl ≈ 1/kl for kl � 1. If we assume the threshold strain to
jamming εc is isotropic, then kt = 1/(2εc) and kl = 1/(eεc − 1).



Appendix D
Relation Between kl and kt in 3D

The shear rate tensor in three dimensions is shown in Eq. (3.1). In the longitudinal
direction pure shear dominates and the shear rate tensor is

ε̇l =
⎡
⎢⎣

∂ur

∂r
0 0

0 ur

r
0

0 0 ∂uz

∂z

⎤
⎥⎦ , (D.1)

where ∂ur

∂r
≈ ur

r
and ∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0. In the transverse direction simple shear

dominates. This gives

ε̇t ≈
⎡
⎢⎣

0 0 1
2

∂uz

∂r

0 0 0
1
2

∂uz

∂r
0 0

⎤
⎥⎦ , (D.2)

where we have used ∂ur

∂z
� ∂uz

∂r
. Though the system is three dimensional,

simple shear only operates in the rz plane while leaving the azimuthal direction

invariant. The corresponding eigenvalues are ėl =
{
− 1

2
∂uz

∂z
,− 1

2
∂uz

∂z
,

∂uz

∂z

}
and

ėt =
{
− 1

2
∂uz

∂r
, 0, 1

2
∂uz

∂r

}
. Unlike the 2D case, we cannot simply use a positive

eigenvalue to represent the shear intensity. However, we can define infinitesimal
strains ei (i = 1, 2, 3) along the three principal axes and rank-order them according
to e1 > e2 > e3. Following the definition given in Ref. [100], the “strain intensity”
D is

D =
√(

ln
1 + e1

1 + e2

)2

+
(

ln
1 + e2

1 + e3

)2

≈
√

(e1 − e2)2 + (e2 − e3)2.

(D.3)
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For pure shear in the longitudinal direction e1 = e2 = −e3/2 and ė3 = ∂uz

∂z
, so

Dl ≈ 3
2 |e3|, which leads to Ḋl ≈ − 3

2
∂uz

∂z
. For simple shear in the transverse direction

e1 = −e3, e2 = 0, and ė3 = 1
2

∂uz

∂r
. This leads to Dt ≈ √

2|e3|, and therefore

Ḋt ≈ −
√

2
2

∂uz

∂r
. Following the procedure for the 2D case we have

Ḋt =
√

2

2

1

ktUp

Duz

Dt
, (D.4)

Ḋl = 3

2

1

(kl + 1)Up − uz

Duz

Dt
. (D.5)

Integration then leads to

Dt =
√

2

2

1

kt
, Dl = 3

2
ln

(
kl + 1

kl

)
. (D.6)

Now we again assume that the system shear-jams when D reaches a threshold strain
value Dc, independent of the type of shear it experiences. From this we find

k∗
l = 1

e
√

2/(3k∗
t ) − 1

(D.7)

and k∗
l /k∗

t ≈ 3/
√

2 ≈ 2.12 for large k.
There is another way to define a scalar that represents the magnitude of strain,

and we label it as E . For simplicity, here we write Eq. (3.1) as

ε̇ =
⎡
⎣a 0 d

0 b 0
d 0 c

⎤
⎦ , (D.8)

where a + b + c = 0 because the suspension is incompressible. We write the
eigenvalues of the matrix in Eq. (D.8) as λ1, λ2, and λ3, and sort them so that
|λ1| ≥ |λ2| ≥ |λ3|. Their values are

λ1 = b

λ2,3 = −b

2
± 1

2

√
(a − c)2 + 4d2.

(D.9)

In this case, they each represent the strain rate along the corresponding principal
axis. We can then write the diagonal matrix diag(λ1, λ2, λ3) in the form
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ε̇ ∼ 2Ė√
3 + 4α2

⎡
⎣1 0 0

0 −( 1
2 + α) 0

0 0 −( 1
2 − α)

⎤
⎦ , (D.10)

where α =
√

(a−c)2+4d2

2|b| ∈ [0, 1/2] and Ė =
√

(λ2
1 + λ2

2 + λ2
3)/2. For the uniaxial

compression in z with isotropic flow in the x–y plane,

ε̇ =
⎡
⎢⎣

− 1
2

∂uz

∂z
0 0

0 − 1
2

∂uz

∂z
0

0 0 ∂uz

∂z

⎤
⎥⎦ . (D.11)

Thus in the longitudinal direction, we have α = 0 and

Ėl =
√

3

2
· ∂uz

∂z
. (D.12)

For the simple shear in the x–z plane, we have

ε̇ =
⎡
⎢⎣

0 0 1
2

∂uz

∂r

0 0 0
1
2

∂uz

∂r
0 0

⎤
⎥⎦ . (D.13)

In this case α = 1/2 and

Ėt = 1

2
· ∂uz

∂r
. (D.14)

Here we have ignored ∂ur/∂z in the non-diagonal terms because it is much smaller
than ∂uz/∂r . Following the ideas of Eqs. (D.4) and (D.5), we get

El =
√

3

2
ln

(
kl + 1

kl

)
≈

√
3

2kl
,

Et = 1

2kt
.

(D.15)

Again, if the threshold strain is the same for any direction, El = Et, we obtain

kl

kt
≈ √

3 ≈ 1.73. (D.16)



Appendix E
Some Calculations Regarding
the Generalized Model

Equation (4.19) is an approximate relation between γ∞ and γ ∗ in the regime of
sufficiently fast U0, where the front speed is constant. To keep the calculation
simple, we make three approximations that are appropriate for this high-speed limit:
First, we approximate Eq. (4.11) by

� ≈ η̃0 · γ̇ [φeff − φ]−2 , (E.1)

where η̃0 ≡ η0φ
2
0 . Second, in this limit � is much larger than �∗, so we take

f (�) ≈ 1. Finally, since the front profile has an approximately invariant shape
while propagating, the accumulated strain can be written as γ (x, t) = γ (Uft −x) ≡
γ (X). This leads to

γ ′ ≡ dγ (X)

dX
= 1

Uf

∂γ

∂t
= −∂γ

∂x
, (E.2)

and

γ ′′ ≡ d2γ (X)

dX2 = 1

U2
f

∂2γ

∂t2 = ∂2γ

∂x2 . (E.3)

Plugging Eq. (E.1) into the equation of motion:

ρ
∂2γ

∂t2 = ∂2�

∂x2 , (E.4)

we get

ρ
∂2γ

∂t2 = ∂2

∂x2

{
η̃0γ̇

[(φ0 − φm)e−γ /γ ∗ + φm − φ]2

}
. (E.5)

© Springer Nature Switzerland AG 2020
E. Han, Transient Dynamics of Concentrated Particulate Suspensions
Under Shear, Springer Theses, https://doi.org/10.1007/978-3-030-38348-0

87

https://doi.org/10.1007/978-3-030-38348-0


88 E Some Calculations Regarding the Generalized Model

Using Eqs. (E.2) and (E.3), we obtain

d2

dX2

{
ρU2

f γ − η̃0Ufγ
′

[(φ0 − φm)e−γ /γ ∗ + φm − φ]2

}
= 0,

which leads to

ρU2
f γ − η̃0Ufγ

′

[(φ0 − φm)e−γ /γ ∗ + φm − φ]2 = C1X + C2, (E.6)

where C1 and C2 are constants. In the region not yet reached by the front, both γ

and γ ′ are zero. This means that as X → −∞ (at large x or small t), the left-hand
side of Eq. (E.6) is zero, so the constants should be C1 = C2 = 0, and we obtain a
first order equation governing the evolution of γ :

dγ

dX
= ρUf

η̃0
γ ·

[
(φ0 − φm)e−γ /γ ∗ + φm − φ

]2
. (E.7)

It has two fixed points. For any given x, γ increases with time from an unstable
fixed point γ = 0 to a half-stable fixed point, which is the asymptotic accumulated
strain in Eq. (4.19):

γ∞ = γ ∗ · ln
φ0 − φm

φ − φm
.

Written as a function of the rescaled packing fraction � defined in Eq. (4.7), it
becomes

γ∞ = −γ ∗ln�. (E.8)

This approximate result captures the relation between γ∞ and γ ∗ very well. In
Fig. E.1a we compare the numerically calculated k and γ∞ at γ ∗ = 0.197 and
U0 = 1 m/s with Eq. (4.19).

Using Eqs. (E.2) and (E.7), we can write out the expression for the shear rate:

γ̇ =
{

ρk2

η̃0
γ ·

[
(φ0 − φm)e−γ /γ ∗ + φm − φ

]2
}

U2
0 , (E.9)

where we have replaced Uf by kU0. The maximum shear rate γ̇max is achieved at
γm, where the function in the curly brackets reaches its peak. By calculating the first
derivative, we find that this occurs when

e−γm/γ ∗
(

1 − 2
γm

γ ∗

)
= �. (E.10)
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Fig. E.1 (a) Dimensionless front propagation speed k and asymptotic accumulated strain γ∞ at
different packing fraction φ obtained numerically at γ ∗ = 0.197 and U0 = 1 m/s. The solid curves
show Eq. (4.19) and its reciprocal at the same γ ∗. (b) Comparison of R(φ) obtained from the
numerical calculation (open circles) with the prediction of Eq. (E.9) (blue line). The dashed black
lines show φm and φ0

This can be evaluated numerically to find γm. Plugging γm into Eq. (E.9), everything
in the curly brackets are independent of U0. As a result, the prediction of the
maximum shear rate by the model can be written as

γ̇max = R(φ) · U2
0 , (E.11)

where the pre-factor R(φ) is simply a function of the packing fraction. As shown
in Fig. E.1b, R(φ) vanishes as φ → φ0 and φ → φm, but in the range φ ∈
[0.462, 0.532], it is relatively flat. This agrees well with the numerical results shown
in Fig. 4.4d in the main text. To extract R(φ) we fit the numerically calculated
γ̇max(U0) at each φ to Eq. (E.11). The results are given by the open circles in
Fig. E.1b.
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