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School of Athens, from the Stanza della Segnatura, 1510-11 (fresco), Raphael (Raffaello Sanzio of
Urbino) (1483-1520)/Vatican Museums and Galleries, Vatican City, Italy/Giraudon/The Bridgeman Art
Library. Legend has it that over the door to Plato’s Academy in Athens there was an inscription “Let no
man ignorant of geometry enter here.” Words to live by, in antiquity and today.
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Preface

The initial work in isogeometric analysis was motivated by the existing gap between the worlds
of finite element analysis (FEA) and computer-aided design (CAD); see Hughes et al., 2005.
As the number of people involved with isogeometric analysis from both the FEA and the CAD
communities has grown, this gap has become increasingly apparent to all involved. It is not
only a shortcoming of the current technology but of the entire engineering process. Indeed,
technological barriers are often easier to overcome than the inertia of the status quo. At this
early stage, one of the most important contributions of the research in isogeometric analysis
has been to initiate conversation between the design and analysis camps, and to begin to make
each side aware of the hurdles that the other faces, as well as what each has to offer. This book
is meant to be part of that dialogue.

What are we providing and for whom?

Isogeometric analysis seeks to unify the fields of CAD and FEA. In pursuing this end we
have found, with very few exceptions, that FEA people know very little about computational
geometry, and computational geometry people know very little about FEA. Our background
is in FEA. We have attempted to cross the divide and learn from and work with computational
geometers in order to orchestrate changes in CAD and FEA that will result in an agreed upon
isogeometric technology satisfactory to both constituencies. That being said, we are neophytes
in computational geometry so nothing fundamentally new on that topic will be found herein.
Our most immediate goals are to encourage computational analysts to learn about isogeometric
analysis and to begin to take advantage of it in their work. Specifically, we have attempted to
build upon a knowledge of finite element analysis and to indicate what is new and different
about isogeometric analysis. A background in finite element analysis at the level of Hughes,
2000 is ideal preparation for understanding this book. Most of the book, however, is sufficiently
self-contained as to not require that much finite element background. We wrote this book so
that the reader could learn how to do isogeometric analysis.

We wanted this book to be accessible, in fact, easy to read and learn from, but we did not
want to superficially gloss over important details to achieve simplicity. Although computational
mechanics has become a sophisticated and complex discipline, the essence of the finite element
method is quite simple and straightforward. The same may be said of isogeometric analysis,
and we endeavored to express this viewpoint in this book. Nevertheless, certain basics of
computational geometry need to be learned, and these are not part of the traditional training
and repertoire of finite element analysts. We have tried to present them in a clear and direct
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manner. We at least hope the book is simple enough that most motivated readers will be able
to learn the essential ideas.

We assumed that many readers would want to add isogeometric capabilities to existing finite
element computer programs, so we developed this theme right from the start. The early chapters
deal with the basic concepts, how to implement them, and how to handcraft isogeometric
models. The latter chapters attempt to demonstrate convincingly why one might want to do
so. By explaining the details of Non-Uniform Rational B-Spline (NURBS) basis functions
and showing how their unique properties come to bear on a wide variety of applications, we
hope to motivate others to consider how their own research might benefit from these powerful
functions.

There are many computational geometry technologies that could serve as a basis for isoge-
ometric analysis. The reason for selecting NURBS as the initial basis is compelling: It is the
most widely used computational geometry technology in engineering design. Unfortunately,
at this stage of the game, an isogeometric modeling toolset is not available. We hope that
this void will be filled in the not-too-distant future and be made available to the community.
Research projects are already underway with this as one of the goals.

Although we present some applications of isogeometric analysis that have appeared previ-
ously in research papers, a conscious effort has been made to present material not in research
papers, in particular, detailed examples and data sets are presented that one needs to thor-
oughly understand to gain a working knowledge of the material. Another theme has been to
only show examples and applications that exhibit some unique feature of isogeometric analysis
not available in traditional finite element analysis. One might consider isogeometric analysis
as simply an expansion and powerful generalization of traditional finite element analysis.

Channeling developments in order to make them more relevant to
downstream engineering

We would like to help people on each side of the CAD/FEA divide to further the state of their
respective arts. By being aware of the their own place in the idea-to-product process, both the
geometer and analyst might strive to design technologies that are integrative and avoid creating
bottlenecks at any stage of the engineering process. We have no doubt that the futures of CAD
and FEA lie much closer together than do their pasts. The reader is invited to participate in the
effort to unify these fields.

Organization of the text

This book begins in Chapter 1 with an historical perspective on the fields of finite element
analysis and computer aided design. This provides a context from which the ideas throughout
the book have emerged. Additionally, we briefly point out some of the issues of isogeometric
analysis that seem to cause some confusion for researchers coming from a classical FEA
background. Each of these issues is discussed in detail within the body of the text, but it
may prove useful for the reader to be aware of them before embarking. We then introduce
Non-Uniform Rational B-Splines (NURBS) in Chapter 2, with an initial focus on geometric
design and the particular features that make this technology unique. A brief tutorial on the
construction of a NURBS geometry is included. Chapter 3 describes how computer aided
design technology can be used within an analysis framework. Particular attention is given
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to a detailed explanation of the Galerkin finite element method as this is the framework
within which the bulk of isogeometric analysis has been performed. Chapter 3 also includes a
discussion of how classical finite element software might be modified to create isogeometric
analysis software.

The bulk of the remainder of this book contains examples of the many different applications
to which isogeometric analysis has been applied. The specific choice of material is meant
to emphasize the interesting properties of NURBS basis functions and to display the unique
capabilities of an analysis framework built upon them. The examples increase in complexity
as the book progresses, loosely chronicling the evolution of the technology. For the most
part, linear problems are discussed before nonlinear problems, and static problems precede
time-dependent problems. Chapters 6 and 7 provide general discussions of time-dependent
problems and nonlinear problems, respectively. The reader unfamiliar with these topics may
want to review these chapters before proceeding to chapters on such applications. We attempt
to be quite thorough on the simpler examples, providing everything needed for an individual
just getting started to be able to perform a calculation. Contrastingly, there is a bias towards
brevity for the more complex problems. The treatment of examples from the forefront of
research is meant to highlight the specific features of isogeometric analysis upon which these
applications rely. Whenever details necessary to replicate the work are omitted, references to
the literature where those details may be found are included. Still, every effort is made to tie
the implementation used and the results obtained to the features of isogeometric analysis that
differ from classical finite elements.

Chapter 4 discusses linear elasticity, with a particular emphasis on the analysis of thin-walled
structures. Chapter 5 covers vibrations and wave propagation. Whereas the examples consid-
ered in Chapter 4 particularly benefit from the geometrical accuracy of isogeometric analysis,
the examples in Chapter 5 demonstrate the accuracy advantages NURBS have over classical
finite elements due to their increased smoothness. In Chapter 6 we move from static to dynamic
problems and discuss various time-integration techniques that are in common usage. Chapter 7
discusses the solution of nonlinear equations, and it expands on the discussion of Chapter 6
to address solving nonlinear, time-dependent problems by means of the generalized-α
method. Chapter 8 discusses one approach to addressing the locking phenomenon common in
the analysis of both linear and nonlinear nearly incompressible solids. Chapter 9 features many
examples from the field of computational fluid dynamics, ranging from the linear advection-
diffusion equation to turbulence. In all cases, smooth NURBS basis functions are shown to
achieve superior accuracy per degree-of-freedom than the classical FEA basis functions of
the same order. Chapter 9 also presents the variational multiscale method. Fluid-structure
interaction and fluids problems posed on moving domains are discussed in Chapter 10. Each
of these problems requires care in tracking the motion of the mesh and correctly formulating
the equations on the moving domain. Chapter 11 discusses partial differential equations in
which the highest order derivative is greater than two. A traditional variational treatment of
such problems requires the use of basis functions that are smoother than C0. This is frequently
difficult or impossible in a classical FEA setting, but is quite easy within isogeometric analy-
sis. Chapter 12 discusses polar forms, which offer an alternative mathematical description of
splines. The use of polar forms has been instrumental in the development of efficient algorithms
for the manipulation of spline objects. Lastly, Chapter 13 discusses the current state-of-the-
art in isogeometric analysis, as well as many promising directions for future work in the
subject.
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Additional resources

There are many places for the interested reader to seek more information about the topics
discussed in this book. Though an effort has been made to make this book as self-contained
as possible, it is not possible to address every topic in the full generality that it deserves.
For a more thorough discussion of NURBS we suggest starting with Rogers, 2001 and then
going on to Piegl and Tiller, 1997. The former is quite readable and features many historical
perspectives on NURBS and those whose work has led to their development; the latter is quite
comprehensive and served as an indispensable guide when we were developing our initial
software. Here is a list of geometry books we have found helpful, including the two already
mentioned. It is by no means complete, and we are still learning from them.

� Geometric Modeling with Splines: An Introduction, E. Cohen et al., 2001
� Curves and Surfaces for CAGD, A Practical Guide, Fifth Edition, G.E. Farin, 1999a
� NURBS Curves and Surfaces: from Projective Geometry to Practical Use, Second Edition,

G.E. Farin, 1999b
� Computational Conformal Geometry, Theory and Algorithms, X.D. Gu and S.-T. Yau, 2008
� The NURBS Book, L. Piegl and W. Tiller, 1997
� Bézier and B-Spline Techniques, H. Prautzsch, W. Boehm and M. Paluszny, 2002
� An Introduction to NURBS: With Historical Perspective, D.F. Rogers, 2001
� Spline Functions: Basic Theory (third edition), L.L. Schumaker, 2007

For an introductory but thorough treatise on the finite element method, see Hughes, 2000.
We attempt as far as possible to be consistent with the notation of Hughes, 2000, which we will
make reference to many times throughout this book. The best source for information on the
many applications contained herein is in the research papers upon which much of the content is
based. Each chapter provides references to original journal articles, which frequently discuss
the topics in a great deal more depth, and with many more examples, than is possible here.

Notation

A word of caution is in order. Notational conventions that are very illustrative in simple settings,
particularly when introducing a concept for the first time, frequently become unwieldy as things
become more complex. For this reason, we attempt to use the notation that provides the most
clarity in a given situation, though this choice is sometimes at odds with other usage. Whenever
there is the potential for confusion, the issue is addressed directly herein.

How work on isogeometric analysis began

Isogeometric analysis began when Tom Hughes was privy to a conversation concerning the
creation of finite element models from CAD representations. The gist of the conversation
expressed the theme that despite years of research into mesh generation, the model creation
problem was a significant bottleneck to the effective use of FEA and, for complex engineering
designs, the problem seemed to be getting worse. It appeared to Tom that if the situation was
that bad, the problem must either be very difficult or the research community was pursuing
a solution from the wrong perspective. After some study he concluded that the problem as
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posed was indeed very difficult, but not only was the research community pursuing it from the
wrong perspective, it was pursuing the wrong problem.

CAD and FEA grew up independently. Despite dealing with the same objects, engineering
designs, they represent them with entirely different geometrical constructs. This seemed to
be the fundamental problem. Tom hoped to replace this situation with a single, agreed upon,
geometrical description. He thought that he might be able to reconstitute analysis within
the geometric framework of CAD technologies. This seemed doable, but it also became
apparent that CAD representations would have to be enhanced. He was surprised to find
that newer technologies emanating from the computational geometry research literature were
actually moving in that direction and that some of these technologies were finding their
way into commercial products. The final piece of the puzzle, developing analysis suitable
trivariate parameterizations from surface representations, is an open problem but one that is
beginning to be addressed by the computational geometry community with new and promising
mathematical approaches. The confluence of all these activities is Isogeometric Analysis.
Through the combined efforts of the computational geometry and computational analysis
communities, we believe the potential of isogeometric analysis can be realized.

Work on isogeometric analysis began in earnest in 2003 almost a year after Tom Hughes
joined the University of Texas at Austin. He had received a research grant to pursue the topic,
but did not have a PhD student assigned to it. A then first-year graduate student, Austin Cottrell,
in the Computational and Applied Mathematics program in the Institute for Computational
Engineering and Sciences came to talk to Tom about research topics and possibly doing his
PhD under Tom’s supervision. Among other topics, Tom described to Austin his vision of this
as yet nameless new approach to analysis and geometry. After thinking things over, Austin
said he would like to pursue it and could get started in the summer of 2003. Tom gave Austin
a copy of Rogers’ book on NURBS.

As Austin was making progress with NURBS technology, another of Tom’s graduate stu-
dents, Yuri Bazilevs, started to interact with him on it, and the two of them implemented
the first NURBS based finite element codes. By the fall of 2003, linear problems were being
solved and good results were being obtained. It was around that time that the name “isoge-
ometric analysis” was coined. Rapid progress was being made developing the technology.
Before long, isogeometric analysis became an integral part of all work in Tom’s group. After
completing his PhD, Victor Calo also joined the effort, as did a number of other students,
post-docs, and visitors to the Institute, including Ido Akkerman, Laurenco Beirão da Veiga,
David Benson, Thomas Elguedj, John Evans, Héctor Gómez, Scott Lipton, Alessandro Reali,
Giancarlo Sangalli, Mike Scott, and Jessica Zhang. The effectiveness of the procedures and
the richness of the subject exceeded everyone’s expectations.

How this book was written

Discussions about writing a book occurred frequently during the course of the work. It was
decided that a good time to start would be after Austin and Yuri completed their PhDs. The
project began in earnest in September of 2007. The plan was to release Austin from all other
obligations and have him rough draft as much as possible, as quickly as possible, and then
he and Tom would begin to iterate on the drafts. Austin and Tom put together an outline and
set as a goal to be finished, or at least declare they were finished, by the end of July, 2008,
when Austin was scheduled to leave for New York City. Realizing this schedule might be a bit
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optimistic, it was intended that Yuri, who provided numerous results and helped in a variety
of ways throughout the project, would step in after Austin left and that he and Tom would
complete the project. Things more or less unfolded as planned.

Acknowledgments

We would like to thank our collaborators on the work contained in this volume. In particular, the
efforts of Ido Akkerman, Laurenco Beirão da Veiga, Victor Calo, Thomas Elguedj, John Evans,
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1
From CAD and FEA to
Isogeometric Analysis:
An Historical Perspective

1.1 Introduction

1.1.1 The need for isogeometric analysis

It may seem inconceivable to young engineers, but it was not long ago that computers were
nowhere to be seen in design offices. Designers worked at drawing boards and designs were
drawn with pencils on vellum or Mylar1. The design drawings were passed to stress analysts
and the interaction between designer and analyst was simple and direct. Times have changed.
Designers now generate CAD (Computer Aided Design) files and these must be translated into
analysis-suitable geometries, meshed and input to large-scale finite element analysis (FEA)
codes. This task is far from trivial and for complex engineering designs is now estimated to
take over 80% of the overall analysis time, and engineering designs are becoming increasingly
more complex; see Figure 1.1. For example, presently, a typical automobile consists of about
3,000 parts, a fighter jet over 30,000, the Boeing 777 over 100,000, and a modern nuclear
submarine over 1,000,000. Engineering design and analysis are not separate endeavors. Design
of sophisticated engineering systems is based on a wide range of computational analysis and
simulation methods, such as structural mechanics, fluid dynamics, acoustics, electromagnetics,
heat transfer, etc. Design speaks to analysis, and analysis speaks to design. However, analysis-
suitable models are not automatically created or readily meshed from CAD geometry. Although
not always appreciated in the academic analysis community, model generation is much more
involved than simply generating a mesh. There are many time consuming, preparatory steps
involved. And one mesh is no longer enough. According to Steve Gordon, Principal Engineer,
General Dynamics / Electric Boat Corporation, “We find that today’s bottleneck in CAD-CAE
integration is not only automated mesh generation, it lies with efficient creation of appropriate
‘simulation-specific’ geometry.” (In the commercial sector analysis is usually referred to as
CAE, which stands for Computer Aided Engineering.) The anatomy of the process has been
studied by Ted Blacker, Manager of Simulation Sciences, Sandia National Laboratories. At
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Figure 1.1 Engineering designs are becoming increasingly complex, making analysis a time consuming
and expensive endeavor. (Courtesy of General Dynamics / Electric Boat Corporation).

Sandia, mesh generation accounts for about 20% of overall analysis time, whereas creation of
the analysis-suitable geometry requires about 60%, and only 20% of overall time is actually
devoted to analysis per se; see Figure 1.2. The 80/20 modeling/analysis ratio seems to be a
very common industrial experience, and there is a strong desire to reverse it, but so far little
progress has been made, despite enormous effort to do so. The integration of CAD and FEA
has proven a formidable problem. It seems that fundamental changes must take place to fully
integrate engineering design and analysis processes.

Recent trends taking place in engineering analysis and high-performance computing are also
demanding greater precision and tighter integration of the overall modeling-analysis process.
We note that a finite element mesh is only an approximation of the CAD geometry, which
we view as “exact.” This approximation can in many situations create errors in analytical
results. The following examples may be mentioned: Shell buckling analysis is very sensitive
to geometric imperfections (see Figure 1.3), boundary layer phenomena are sensitive to the
precise geometry of aerodynamic and hydrodynamic configurations (see Figures 1.4 and 1.5),
and sliding contact between bodies cannot be accurately represented without precise geometric
descriptions (see Figure 1.6). The Babus̆ka paradox (see Birkhoff and Lynch, 1987) is another
example of the pitfalls of polygonal approximations to curved boundaries. Automatic adaptive
mesh refinement has not been as widely adopted in industry as one might assume from the
extensive academic literature, because mesh refinement requires access to the exact geometry
and thus seamless and automatic communication with CAD, which simply does not exist.
Without accurate geometry and mesh adaptivity, convergence and high-precision results are
impossible.
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Figure 1.2 Estimation of the relative time costs of each component of the model generation and
analysis process at Sandia National Laboratories. Note that the process of building the model completely
dominates the time spent performing analysis. (Courtesy of Michael Hardwick and Robert Clay, Sandia
National Laboratories.).

Deficiencies in current engineering analysis procedures also preclude successful application
of important pace-setting technologies, such as design optimization, verification and validation
(V&V), uncertainty quantification (UQ), and petascale computing.

The benefits of design optimization have been largely unavailable to industry. The bottleneck
is that to do shape optimization the CAD geometry-to-mesh mapping needs to be automatic,
differentiable, and tightly integrated with the solver and optimizer. This is simply not the case
as meshes are disconnected from the CAD geometries from which they were generated.

V&V requires error estimation and adaptivity, which in turn requires tight integration of
CAD, geometry, meshing, and analysis. UQ requires simulations with numerous samples of
models needed to characterize probability distributions. Sampling puts a premium on the
ability to rapidly generate geometry models, meshes, and analyses, which again leads to the
need for tightly integrated geometry, meshing, and analysis.

The era of petaflop computing is on the horizon. Parallelism keeps increasing, but the largest
unstructured mesh simulations have stalled, because no one truly knows how to generate and
adapt massive meshes that keep up with increasing concurrency. To be able to capitalize on the
era of O(100,000) core parallel systems, CAD, geometry, meshing, analysis, adaptivity, and
visualization all have to run in a tightly integrated way, in parallel, and in a scalable fashion.
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(a)

(b)

Figure 1.3 Thin shell structures exhibit significant imperfection sensitivity. (a) Faceted geometry of
typical finite element meshes introduces geometric imperfections (adapted from Gee et al., 2005).
(b) Buckling of cylindrical shell with random geometric imperfections. The buckling load depends
significantly upon the magnitude of the imperfections (from Stanley, 1985).
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(a) (b)

Figure 1.4 Isodensity contours of Galerkin/least-squares (GLS) discretization of Ringleb flow. (a)
Isoparametric linear triangular element approximation: both solution and geometry are represented by
piecewise linear functions. (b) Super-isoparametric element approximation: solution is piecewise linear,
while geometry is piecewise quadratic. Smooth geometry avoids spurious entropy layers associated with
piecewise-linear geometric approximations (from Barth, 1998).

It is apparent that the way to break down the barriers between engineering design and
analysis is to reconstitute the entire process, but at the same time maintain compatibility with
existing practices. A fundamental step is to focus on one, and only one, geometric model,
which can be utilized directly as an analysis model, or from which geometrically precise
analysis models can be automatically built. This will require a change from classical finite

x [ m ] x [ m ]
13 15 17 19 21 13 15 17 19 21

4

2

0

-2

-4

4

2

0

-2

-4

y
[m

]

y
[m

]

u u
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-0.05
-0.10

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-0.05
-0.10

Figure 1.5 The two-dimensional Boussinesq equations. The x-component of velocity obtained using
552 triangles with fifth order polynomials on each triangle. On the left, the elements are straight-sided.
The spurious oscillations in the solution on the left are due to the use of straight-sided elements for the
geometric approximation. On the right, the cylinder is approximated by elements with curved edges, and
the oscillations are eliminated (from Eskilsson and Sherwin, 2006).
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(a) Finite element analysis

(a) Isogeometric analysis

Figure 1.6 Sliding contact. (a) Faceted polynomial finite elements create problems in sliding contact
(see Laursen, 2002 and Wriggers, 2002). (b) NURBS geometries can attain the smoothness of real
bodies.

element analysis to an analysis procedure based on CAD representations. This concept is
referred to as Isogeometric Analysis, and it was introduced in Hughes et al., 2005. Since then
a number of additional papers have appeared (Bazilevs et al., 2006a, 2006b; Cottrell et al.,
2006, 2007; Zhang et al., 2007; Gomez et al., 2008).

Here are the reasons why the time may be right to transform design and analysis technologies:
Initiatory investigations of the isogeometric concept have proven very successful. Backward
compatibility with existing design and analysis technologies is attainable. There is interest
in both the computational geometry and analysis communities to embark on isogeometric
research. Several mini-symposia and workshops at international meetings have been held and
several very large multi-institutional research projects have begun in Europe. In particular,
EXCITING – exact geometry simulation for optimized design of vehicles and vessels – is
a three year, six million dollar project focused on developing computational tools for the
optimized design of functional free-form surfaces, and the Integrated Computer Aided Design
and Analysis (ICADA) project is a five year, five million dollar initiative focused on bridging
the gap between design and analysis in industry through isogeometric analysis.

There is an inexorable march toward higher precision and greater reality. New technologies
are being introduced and adopted rapidly in design software to gain competitive advantage.
New and better analysis technologies can be built upon and influence these new CAD tech-
nologies. Engineering analysis can leverage these developments as a basis for the isogeometric
concept.
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Anyone who has lived the last 60 years is acutely aware of the profound changes that have
occurred due to the emergence of new technologies. History has demonstrated repeatedly
that statements to the effect that “people will not change” are false. An interesting example
of a paradigm shift concerns the slide rule, a mechanical device that dominated computing
for approximately 350 years. In the 20th century alone nearly 40 million slide rules were
produced throughout the world. The first transistorized electronic calculators emerged in the
early 1960s, with portable four-function models available by the end of the decade. The first
hand-held scientific calculator, Hewlett-Packard’s HP35, became commercially available in
1972. Keuffel and Esser Co., the world’s largest producer of slide rules, manufactured its last
slide rule in 1975, just 3 years later (see Stoll, 2006).

1.1.2 Computational geometry

There are a number of candidate computational geometry technologies that may be used in
isogeometric analysis. The most widely used in engineering design are NURBS (non-uniform
rational B-splines), the industry standard (see, Piegl and Tiller, 1997; Farin, 1999a, 1999b;
Cohen et al., 2001; Rogers, 2001). The major strengths of NURBS are that they are conve-
nient for free-form surface modeling, can exactly represent all conic sections, and therefore
circles, cylinders, spheres, ellipsoids, etc., and that there exist many efficient and numerically
stable algorithms to generate NURBS objects. They also possess useful mathematical prop-
erties, such as the ability to be refined through knot insertion, C p−1-continuity for pth-order
NURBS, and the variation diminishing and convex hull properties. NURBS are ubiquitous
in CAD systems, representing billions of dollars in development investment. One may argue
the merits of NURBS versus other computational geometry technologies, but their preemi-
nence in engineering design is indisputable. As such, they were the natural starting point for
isogeometric analysis and their use in an analysis setting is the focus of this book.

T-splines (Sederberg et al., 2003; Sederberg et al., 2004) are a recently developed forward
and backward generalization of NURBS technology. T-splines extend NURBS to permit local
refinement and coarsening, and are very robust in their ability to efficiently sew together
adjacent patches. Commercial T-spline plug-ins have been introduced in Maya and Rhino,
two NURBS-based design systems (see references T-Splines, Inc., 2008a and T-Splines, Inc.,
2008b). Initiatory investigations of T-splines in an isogeometric analysis context have been
undertaken by Bazilevs et al., 2009 and Dorfel et al., 2008. These works point to a promising
future for T-splines as an isogeometric technology.

There are other computational geometry technologies that also warrant investigation as
a basis of isogeometric analysis. One is subdivision surfaces which use a limiting process
to define a smooth surface from a mesh of triangles or quadrilaterals (see, e.g., Warren
and Weimer, 2002; Peters and Reif, 2008). They have already been used in analysis of shell
structures by Cirak et al., 2000; Cirak and Ortiz, 2001, 2002. The appeal of subdivision surfaces
is there is no restriction on the topology of the control grid. Like T-splines, they also create
gap-free models. Most of the characters in Pixar animations are modeled using subdivision
surfaces. The CAD industry has not adopted subdivision surfaces very widely because they are
not compatible with NURBS. With billions of dollars of infrastructure invested in NURBS,
the financial cost would be prohibitive. Nevertheless, subdivision surfaces should play an
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important role in isogeometric technology. Subdivision solids have been studied by Bajaj
et al., 2002.

Other geometric technologies that may play a role in the future of isogeometric analysis
include Gordon patches (Gordon, 1969), Gregory patches (Gregory, 1983), S-patches (Loop
and DeRose, 1989), and A-patches (Bajaj et al., 1995). Provatidis has recently solved a number
of problems using Coons patches (see Provatidis, 2009, and references therein). Others may
be invented specifically with the intent of fostering the isogeometric concept, namely, to use
the surface design model directly in analysis. This would only suffice if analysis only requires
the surface geometry, such as in the stress or buckling analysis of a shell. In many cases, the
surface will enclose a volume and an analysis model will need to be created for the volume.
The basic problem is to develop a three-dimensional (trivariate) representation of the solid
in such a way that the surface representation is preserved. This is far from a trivial problem.
Surface differential and computational geometry and topology are now fairly well understood,
but the three-dimensional problem is still open (the Thurston conjecture characterizing its
solution remains to be proven, see Thurston, 1982, 1997). The hope is that through the use of
new technologies, such as, for example, Ricci flows and polycube splines (see Gu and Yau,
2008), progress will be forthcoming.

1.2 The evolution of FEA basis functions

Solution of partial differential equations by the finite element method consists, roughly speak-
ing, of a variational formulation and trial and weighting function spaces defined by their
respective basis functions. These basis functions are defined in turn by finite elements, local
representations of the spaces. The elements are a non-overlapping decomposition of the prob-
lem domain into simple shapes (e.g., triangles, quadrilaterals, tetrahedra, hexahedra, etc.). In
the most widely used variational methods, the trial and weighting functions are essentially the
same. Specifically, the same elements are used in their construction. There are three ways to
improve a finite element method:

1 Improve the variational method. Sometimes this can be done in such a way as to correct
a shortcoming in the finite elements for the problem under consideration, such as, for
example, through the use of selective integration (see Hughes, 2000). Another way is to
use an alternative variational formulation with improved properties, an example being
“stabilized methods.” See Brooks and Hughes, 1982; Hughes et al., 2004.

2 Improve the finite element spaces, that is, the elements themselves.
3 Improve both, that is, the variational method and the elements.

Our focus here is on finite element spaces and ultimately how they perform in comparison
to spaces of functions built from NURBS, T-splines, etc. Consequently, we will give a brief
review of the historical milestones in finite elements.

Typically, finite elements are defined in terms of interpolatory polynomials. The classi-
cal families of polynomials, especially the Lagrange and Hermite polynomials, are widely
utilized (see Hughes, 2000). These may be considered the historical antecedents of finite
elements.
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Figure 1.7 Finite element picture gallery.
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Figure 1.7 (continued)

Early publications in the engineering literature describing what is now known as the finite
element method were Argyris and Kelsey, 1960, which is a collection of articles by those
authors dating from 1954 and 1955, and Turner et al., 1956. The term “finite elements” was
coined by Clough, 1960. However, the first finite element, the linear triangle, can be traced
all the way back to Courant, 1943. It is perhaps the simplest element and is still widely used
today. It is interesting to note that the engineering finite element literature was unaware of this
reference until sometime in the late 1960s by which time the essential features of the finite
element method were well established. The linear tetrahedron appeared in Gallagher et al.,
1962. Through the use of triangular and tetrahedral coordinates (i.e., barycentric coordinates)
and the Pascal triangle and tetrahedron, it became a simple matter to generate C0-continuous
finite elements for straight-edged triangles and flat-surfaced tetrahedra. The bilinear quadrilat-
eral was developed by Taig, 1961, and it presaged the development of isoparametric elements
(Irons, 1966; Zienkiewicz and Cheung, 1968), perhaps the most important concept in the
history of element technology.

The idea of isoparametric elements immediately generalized elements which could be
developed on a regular parent domain, such as a square, or a cube, to an element which
could take on a smoothly curved shape in physical space. Furthermore, it was applicable to
any element topology, including triangles, tetrahedra, etc. An essential feature was that the
spaces so constructed satisfied basic mathematical convergence criteria, as well as physical at-
tributes in problems of mechanics, namely, the ability to represent all affine motions (i.e., rigid
translations and rotations, uniform stretchings and shearings) exactly. Curved quadrilateral and
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hexahedral elements became popular in structural and solid mechanics applications. The clas-
sical isoparametric elements were developed using tensor-product constructs. Subsequently,
procedures were developed to circumvent the necessity of the tensor-product format. The
eight-node serendipity quadrilateral was an early noteworthy example (Zienkiewicz et al.,
1971). This eventually led to the variable-number-of-nodes concept (Zienkiewicz et al., 1970;
Taylor, 1972; see Hughes, 2000, chapter 3, for examples).

In practical applications computational efficiency is critical. In nonlinear dynamic ap-
plications low-order elements have played a dominant role. The constant pressure bilinear
quadrilateral element (Hughes and Allik, 1969; Nagtegaal et al., 1974; Hughes, 1977, 1980;
Malkus and Hughes, 1978) and its three-dimensional generalization, the constant pressure tri-
linear hexahedral element, have dominated nonlinear solid mechanical calculations. Effective
one-point integration quadrilateral bending elements (Hughes et al., 1977, 1978; Hughes and
Liu, 1981a, 1981b; Flanagan and Belytschko, 1981; Belytschko and Tsay, 1983; Belytschko
et al., 1984) with scaled lumped rotatory inertia mass matrices (Hughes et al., 1978; Hughes,
2000) enabled automobile crash analysis to become a standard design tool. The cost of analysis
prior to these developments precluded its practical use.

A limitation of the isoparametric concept was that while it worked for C0-continuous
interpolation, it did not for C1 or higher. There was a strong interest in the development of
C1-continuous interpolation schemes primarily because of the desire to construct thin plate and
shell elements for structural analysis. Thin bending elements require square-integrability of
generalized second derivatives and so C1-continuous elements constitute a suitable subspace.
Many researchers sought solutions to this problem. Noteworthy successes were due to Clough
and Tocher, 1965; Argyris et al., 1968; Cowper et al., 1968; de Veubeke, 1968; Bell, 1969.
However, these elements were complicated to use and expensive, and interest moved to
different variational formulations to circumvent the need for C1-continuous basis functions.
This is an example where it was more convenient to adopt a different variational formulation
than construct appropriate discrete approximation subspaces for the original one. It should be
said, however, that the development of effective Reissner-Mindlin bending elements, requiring
only C0-continuity, was not without its own difficulties.

Mathematicians have played a prominent role in devising discrete approximation spaces
for certain classes of variational formulations. Noteworthy examples are due to Raviart and
Thomas, 1977, and Brezzi et al., 1985; see also Brezzi and Fortin, 1991, for Darcy flow (these
are referred to as H (div) elements) and Nedelec, 1980, Demkowicz, 2007, and Demkowicz
et al., 2008 for Maxwell’s equations (these are referred to as H (curl) and H (div) ⊕ H (curl)
elements). The engineering and mathematics literatures are also replete with various alternative
variational formulations that enhance the performance of simple elements.

Another recent trend in basis function construction has been away from the classical concept
of an element decomposition. These approaches have come to be known as meshless methods
(Nayroles et al., 1992) and they have generated considerable interest. Noteworthy contributions
to meshless methods are the element-free Galerkin method of Belytschko et al., 1994, the
reproducing kernel particle method of Liu et al., 1995, the partition of unity method of Melenk
and Babuska, 1996, and the hp-clouds of Duarte and Oden, 1996. This is another subject
entirely, but we note that, as in the case of the finite element method, the link to CAD
geometry, at best, is tenuous (see, e.g., Sakurai, 2006). A timeline of FEA and meshless basis
function development is presented in Table 1.1
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Table 1.1 Timeline: Milestones in FEA and meshless basis function development

1779 Lagrange polynomials
1864 Hermite polynomials
1943 Linear triangle
1960 Clough coins the name “finite elements”
1961 Bilinear quadrilateral
1962 Linear tetrahedron
1965–1968 C1-continuous triangles and quadrilaterals
1966 Isoparametric elements
1968–1971 Variable-number-of-nodes elements
1977–1986 H (div), H (curl), and H (div) ⊕ H (curl) elements
1992–1996 Meshless methods

Another class of meshless methods that has enjoyed recent popularity is that of particle
methods. An early variant is so-called smoothed particle hydrodynamics (Gingold and Mon-
aghan, 1977). The particle finite element method of Oñate et al., 1996 utilizes geometric
reconstruction from particles combined with finite element remeshing strategies and thus has
features in common with meshless methods and classical finite element discretizations. The
discrete element method of Cundall and Strack, 1979 (see also Munjiza et al., 1995) likewise
combines ideas of particles and finite elements. These procedures have opened the way to
solution of very complex engineering problems that are beyond the scope of classical finite
element procedures.

It needs to be mentioned again that finite elements never faithfully replicate the CAD
geometry. It is always a piecewise polynomial approximation. In most cases involving complex
engineering designs, it has now become a much more formidable task to generate a finite
element model from the CAD geometry than to perform the analysis. This is the primary
motivation behind the development of the isogeometric concept.

1.3 The evolution of CAD representations

It is generally agreed that present day CAD had its origins in the work of two French au-
tomotive engineers, Pierre Bézier of Renault and Paul de Faget de Casteljau of Citroën.
Bézier, 1966, 1967, and 1972 utilized the Bernstein polynomial basis (Bernstein, 1912) to
generate curves and surfaces. De Casteljau, 1959, developed similar ideas, but his work
was never published in the open literature. Although there seem to be earlier instances
of work utilizing splines, the term “spline” was introduced in the mathematical literature
by Schoenberg, 1946, whose work drew attention to the possibilities of spline approximations,
but the subject did not become active until the 1960s (see Curry and Schoenberg, 1966).
During the early years, the role of the Coons patch (Coons, 1967), based on the idea of
generalized Hermite interpolation (http://en.wikipedia.org/wiki/Hermite interpolation), pre-
dominated but its influence faded subsequently in favor of the methods of Bézier and de
Casteljau. A number of fundamental contributions occurred during the 1970s beginning with
Reisenfeld’s Ph.D. dissertation on B-splines (Riesenfeld, 1972). This was followed shortly
thereafter by Versprille’s Ph.D. dissertation on rational B-splines, which have become known as
NURBS (Versprille, 1975).
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Figure 1.8 Computational Geometry Picture Gallery.
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Figure 1.8 (continued)

There are many efficient and numerically stable algorithms that have been developed to
manipulate B-splines, for example, the Cox–de Boor recursion (Cox, 1971; de Boor, 1972),
the de Boor algorithm (de Boor, 1978), the Oslo algorithm (Cohen et al., 1980), polar forms
and blossoms (Ramshaw, 1987a; Ramshaw, 1989), etc.

Another major development in the 1970s was the pioneering work on subdivision surfaces
(Catmull and Clark, 1978; Doo and Sabin, 1978). Ed Catmull is the CEO of Pixar and Walt
Disney Animation Studios and Jim Clark was the founder of Silicon Graphics and Netscape.
The seminal ideas of subdivision are generally attributed to de Rham, 1956 and Chaikin,
1974. Other works of note are Lane and Riesenfeld, 1980, which is intimately linked to Bézier
and B-spline surfaces, and Loop, 1987, which is box spline based. Subdivision surfaces have
become popular in the field of animation. They generate smooth surfaces from quadrilateral
or triangular (Loop, 1987) surface meshes. For engineering design, NURBS are still the
dominant technology. Recent generalizations of NURBS-based technology that allow some
unstructuredness are T-splines (Sederberg et al., 2003, 2004). T-splines constitute a superset
of NURBS (i.e., every NURBS is a T-spline) and the local refinement properties of T-splines
facilitate solution of the gap/overlap problem of intersecting NURBS surfaces. A recent work
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Table 1.2 Timeline: Milestones in CAD representations

1912 Bernstein polynomials
1946 Schoenberg coins the name “spline”
1959 de Casteljau algorithm
1966–1972 Bézier curves and surfaces
1971, 1972 Cox-de Boor recursion
1972 B-splines
1975 NURBS
1978 Catmull–Clark and Doo–Sabin subdivision surfaces
1980 Oslo knot insertion algorithm
1987 Loop subdivision
1987, 1989 Polar forms, blossoms
1996–present Triangular and tetrahedral B-splines
2003 T-splines

shows how to replace trimmed NURBS surfaces with untrimmed T-splines (Sederberg et al.,
2008). Table 1.2 presents a timeline of important developments in CAD.

Other technologies of note include triangular and tetrahedral generalizations of B-splines
(see Lai and Schumaker, 2007).

Splines have also been used as a basis for solving variational problems (see, e.g., Schultz,
1973; Prenter 1975; Höllig 2003; Kwok et al., 2001), but these efforts have been dwarfed by
activity in finite element analysis. Spline finite elements were also developed in the (second)
Ph.D. thesis of Malcolm Sabin (Sabin, 1997).

It is interesting to note that isoparametric elements developed in the 1960s are still the most
widely utilized elements in commercial FEA codes, and even in research activities in FEA.
This is in contrast to CAD in which fundamentally new technologies, such as T-splines, have
only recently been introduced. It seems very likely that this trend may continue, presenting
new opportunities to unify CAD and FEA.

Earlier attempts to integrate finite element analysis and computational geometry were
referred to as “physically-based modeling.” Several researchers developed tools for free-
form geometric design based on mechanical principles (see, e.g., Celniker and Gossard, 1991;
Terzopoulos and Qin, 1994; Kagan et al., 1998; Volpin et al., 1999; Bronstein et al., 2008). For
example, rather than manipulating a B-spline surface by explicitly moving the control points,
the material properties of a thin metal shell are ascribed to the surface so that the geometry
may be deformed by applying fictitious forces wherever desired by the designer to “mold” the
surface into the desired configuration. This mechanical approach to geometrical modeling is
appealing in that the geometries respond in very intuitive ways. The difficulty is that it requires
solving differential equations, frequently using an FEA-based approach, each time the designer
modifies its shape. Many approaches to such modeling are inherently isogeometric. Those
who develop physically-based design systems and those who develop isogeometric analysis
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capabilities have many goals in common. The futures of these technologies are probably
linked.

1.4 Things you need to get used to in order to understand NURBS-based
isogeometric analysis

In FEA there is one notion of a mesh and one notion of an element, but an element has two
representations, one in the parent domain and one in the physical space. Elements are usually
defined by their nodal coordinates and the degrees-of-freedom are usually the values of the
basis functions at the nodes. Finite element basis functions are typically interpolatory and may
take on positive and negative values. Finite element basis functions are often referred to as
“interpolation functions,” of “shape functions.” See Hughes, 2000 for a discussion of the basic
concepts.

In NURBS, the basis functions are usually not interpolatory. There are two notions of
meshes, the control mesh2 and the physical mesh. The control points define the control mesh,
and the control mesh interpolates the control points. The control mesh consists of multilinear
elements, in two dimensions they are bilinear quadrilateral elements, and in three dimensions
they are trilinear hexahedra. The control mesh does not conform to the actual geometry.
Rather, it is like a scaffold that controls the geometry. The control mesh has the look of a
typical finite element mesh of multilinear elements. The control variables are the degrees-of-
freedom and they are located at the control points. They may be thought of as “generalized
coordinates.” Control elements may be degenerated to more primitive shapes, such as triangles
and tetrahedra. The control mesh may also be severely distorted and even inverted to an extent,
while at the same time, for sufficiently smooth NURBS, the physical geometry may still remain
valid (in contrast with finite elements).

The physical mesh is a decomposition of the actual geometry. There are two notions of
elements in the physical mesh, the patch and the knot span. The patch may be thought of
as a macro-element or subdomain. Most geometries utilized for academic test cases can be
modeled with a single patch. Each patch has two representations, one in a parent domain
and one in physical space. In two-dimensional topologies, a patch is a rectangle in the parent
domain representation. In three dimensions it is a cuboid.

Each patch can be decomposed into knot spans. Knots are points, lines, and surfaces in
one-, two-, and three-dimensional topologies, respectively. Knot spans are bounded by knots.
These define element domains where basis functions are smooth (i.e., C∞). Across knots, basis
functions will be C p−m where p is the degree3 of the polynomial and m is the multiplicity
of the knot in question. Knot spans are convenient for numerical quadrature. They may be
thought of as micro-elements because they are the smallest entities we deal with. They also
have representations in both a parent domain and physical space. When we speak of “elements”
without further description, we usually mean knot spans.

There is one other very important notion that is a key to understanding NURBS, the index
space of a patch. It uniquely identifies each knot and discriminates among knots having
multiplicity greater than one.

See Table 1.3 for a summary of NURBS paraphernalia employed in isogeometric analysis.
A schematic illustration of the ideas is presented in Figure 1.9 for a NURBS surface in R

3.
Detailed examples will be provided in subsequent chapters.
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ĵ
(η)
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Figure 1.9 Schematic illustration of NURBS paraphernalia for a one-patch surface model. Open knot
vectors and quadratic C1-continuous basis functions are used. Complex multi-patch geometries may
be constructed by assembling control meshes as in standard finite element analysis. Also depicted are
C1-quadratic (p = 2) basis functions determined by the knot vectors. Basis functions are multiplied by
control points and summed to construct geometrical objects, in this case a surface in R

3. The procedure
used to define basis functions from knot vectors will be described in detail in Chapter 2.
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Table 1.3 NURBS paraphernalia in isogeometric analysis

Index Space

Control Mesh Physical Mesh

Multilinear Control Elements Patches Knot Spans

Topology:

1D: Straight lines defined
by two consecutive control
points

2D: Bilinear quadrilaterals
defined by four control points

3D: Trilinear hexahedra
defined by eight control points

Patches: Images of rectan-
gular meshes in the parent
domain mapped into the ac-
tual geometry. Patches may
be thought of as macro-
elements or subdomains.

Topology of knots in the
parent domain:
1D: Points
2D: Lines
3D: Planes

Topology:
1D: Curves
2D: Surfaces
3D: Volumes

Topology of knots in the
physical space:
1D: Points
2D: Curves
3D: Surfaces

Patches are decomposed
into knot spans, the small-
est notion of an element.

Topology of knots spans,
i.e., “elements”:
1D: Curved segments con-
necting consecutive knots
2D: Curved quadrilaterals
bounded by four curves
3D: Curved hexahedra
bounded by six curved sur-
faces

Notes

1. Young engineers may not know what vellum and Mylar are. Vellum is a translucent drafting
material made from cotton fiber. Mylar is the trade name of a translucent polyester film
used for drafting.

2. The control mesh is also known as the “control net,” the “control lattice,” and curiously the
“control polygon” in the univariate case.

3. There is a terminology conflict between the geometry and analysis communities. Geometers
will say a cubic polynomial has degree 3 and order 4. In geometry, order equals degree
plus one. Analysts will say a cubic polynomial is order three, and use the terms order and
degree synonymously. This is the convention we adhere to.
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2
NURBS as a Pre-analysis
Tool: Geometric Design and
Mesh Generation

2.1 B-splines

NURBS are built from B-splines and so a discussion of B-splines is a natural starting point for
their investigation. Unlike in standard finite element analysis, the B-spline parameter space is
local to patches rather than elements. That is, the parameter space in FEA (tellingly dubbed
the “reference element” or “parent element”) is mapped into a single element in the physical
space, and each element has its own such mapping, as in Figure 2.1. Alternatively, the B-spline
mapping takes a patch of multiple elements in the parameter space into the physical space, as
seen in Figure 2.2. Each element in the physical space is the image of a corresponding element
in the parameter space, but the mapping itself is global to the whole patch, rather than to the
elements themselves. Patches play the role of subdomains within which element types and
material models are assumed to be uniform. Many simple domains can be represented by a
single patch.

2.1.1 Knot vectors

A knot vector in one dimension is a non-decreasing set of coordinates in the parameter
space, written � = {ξ1, ξ2, . . . , ξn+p+1}, where ξi ∈ R is the i th knot, i is the knot index,
i = 1, 2, . . . , n + p + 1, p is the polynomial order, and n is the number of basis functions
used to construct the B-spline curve. The knots partition the parameter space into elements.
Element boundaries in the physical space are simply the images of knot lines under the B-spline
mapping. See, again, Figure 2.2.

Note that the distinction between “elements” and “patches” may be thought of in two
different ways. In Kagan et al., 1998 and 2003, the patches themselves are referred to as
elements. This is not unreasonable as the parameter space is local to patches and a finite
element code must include a loop over the patches during assembly. As is clear from the
discussion thus far, we take the alternate view that patches are subdomains comprised of many

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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x

y

zζ

ξ
η

Figure 2.1 In classical finite element analysis, the parameter space is local to individual elements. Each
element has its own mapping from the reference element.

elements, namely the “knot spans.” This latter view seems more appropriate as, in our work,
numerical quadrature is usually carried out at the knot span level. Furthermore, in the case of
B-splines, the functions are piecewise polynomials where the different “pieces” join along knot
lines. In this way the functions are C∞ within an element. Lastly, surprisingly complicated
domains can be described by a single patch (e.g., all of the numerical examples in Hughes
et al., 2005). Describing such domains as being comprised of one element seems inconsistent
with the traditional notion of what an element is.

Knot vectors may be uniform if the knots are equally spaced in the parameter space. If
they are unequally spaced, the knot vector is non-uniform. Knot values may be repeated, that
is, more than one knot may take on the same value. The multiplicities of knot values have
important implications for the properties of the basis. A knot vector is said to be open if its
first and last knot values appear p + 1 times. Open knot vectors are the standard in the CAD
literature. In one dimension, basis functions formed from open knot vectors are interpolatory at
the ends of the parameter space interval, [ξ1, ξn+p+1], and at the corners of patches in multiple
dimensions, but they are not, in general, interpolatory at interior knots. This is a distinguishing
feature between knots and “nodes” in finite element analysis. A further consequence of the use

x

y

z

ζ

ζ

ξ
k

i

j

ζ

ξ
η

Figure 2.2 The B-spline parameter space is local to the entire patch. Internal knots partition the patch
into elements. A single B-spline map takes the patch from the parameter space to the physical space.
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of open knot vectors in multiple dimensions is that the boundary of a B-spline object with d
parametric dimensions is itself a B-spline object of dimension d − 1. For example, each edge
of a B-spline surface is itself a B-spline curve.

2.1.2 Basis functions

With a knot vector in hand, the B-spline basis functions are defined recursively starting with
piecewise constants (p = 0) :

Ni,0(ξ ) =
{

1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(2.1)

For p = 1, 2, 3, . . . , they are defined by

Ni,p(ξ ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ ). (2.2)

This is referred to as the Cox–de Boor recursion formula (Cox, 1971; de Boor, 1972). The
results of applying (2.1) and (2.2) to a uniform knot vector are presented in Figure 2.3. For
B-spline functions with p = 0 and p = 1, we have the same result as for standard piecewise
constant and linear finite element functions, respectively. Quadratic B-spline basis functions,
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Figure 2.3 Basis functions of order 0, 1, and 2 for uniform knot vector � = {0, 1, 2, 3, 4, . . .}.
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however, differ from their FEA counterparts. They are each identical but shifted relative to
each other, whereas the shape of a quadratic finite element function depends on whether it
corresponds to an internal node or an end node. This “homogeneous” pattern continues for the
B-splines as we continue to higher-orders.

There are several important features to observe in Figure 2.3 in addition to the homogeneity
of the functions. The first is that the basis constitutes a partition of unity, that is, ∀ξ ,

n∑
i=1

Ni,p(ξ ) = 1. (2.3)

Also observe that each basis function is pointwise nonnegative over the entire domain, that is,
Ni,p(ξ ) ≥ 0,∀ξ. This means that all of the entries of a mass matrix will be positive (see Chapter
6), which has implications for developing lumped mass schemes. The third major feature to
note is that each pth order function has p − 1 continuous derivatives across the element
boundaries (i.e., across the knots). This feature has many extremely important implications
for the use of splines as a basis for analysis and is one of the most distinctive features of
isogeometric analysis. Lastly, the support of the B-spline functions of order p is always p + 1
knot spans. Thus higher-order functions have support over much larger portions of the domain
than do classical FEA functions. It is a common misconception that this increasing support
of the functions leads to increased bandwidth in a numerical method. This simply is not the
case. As we see in Figure 2.4 for cubics, the total number of functions that any given function
shares support with (including itself) is 2p + 1 regardless of whether we are using an FEA
basis or B-splines.

(a) Standard cubic finite element basis functions with equally spaced nodes

(b) Cubic B-spline basis functions with equally spaced knots

Figure 2.4 Bandwidth comparison for FEA and B-spline functions. Regardless of whether we use the
C0 FEA cubics or the C2 B-spline cubics, the bandwidth of the resulting matrices will be 2p + 1 = 7.
In each case, the function in black has overlapping support with each of the functions in red, as well as
with itself.
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0 1 2 3 4,4 5
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1 N1,2
N2,2

N3,2 N4,2 N5,2

N6,2

N7,2

N8,2

Figure 2.5 Quadratic basis functions for open, non-uniform knot vector � = {0, 0, 0, 1, 2, 3, 4,

4, 5, 5, 5}.

The use of a non-uniform knot vector allows us to obtain much richer behavior than
is possible with a simple uniform one. A quadratic example is presented in Figure 2.5
for the open, non-uniform knot vector � = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9, ξ10, ξ11} =
{0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}. Note that the basis functions are interpolatory at the ends of
the interval and also at ξ = 4, the location of a repeated knot. At this repeated knot, only C0-
continuity is attained. Elsewhere, the functions are C1-continuous. In general, basis functions
of order p have p − mi continuous derivatives across knot ξi , where mi is the multiplicity of
the value of ξi in the knot vector. When the multiplicity of a knot value is exactly p, the basis
is interpolatory at that knot. When the multiplicity is p + 1, the basis becomes discontinuous
and the patch boundary is formed.

This relationship between continuity and the multiplicity of the knots is even more apparent
in Figure 2.6, in which we have a fourth order curve with differing levels of continuity at
every element boundary. At the first internal element boundary, ξ = 1, the knot value appears
only once in the knot vector, and so we have the maximum level of continuity possible:
C p−1 = C3. At each subsequent internal knot value, the multiplicity is increased by one, and
so the number of continuous derivatives is decreased by one. Note, as before, that when a knot

0,0,0,0,0 1 2,2 3,3,3 4,4,4,4 5,5,5,5,5
0

1

C -1 C 3 C 2 C 1 C 0 C -1

Figure 2.6 Quartic (p = 4) basis functions for an open, non-uniform knot vector � =
{0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}. The continuity across an interior element boundary
is a direct result of the polynomial order and the multiplicity of the corresponding knot value.
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value is repeated p times, in this case at ξ = 4, the C0 basis is interpolatory. The basis is also
interpolatory at the boundary of the domain, where the open knot vector demands that the first
and last knot value be repeated p + 1 times. The result is “C−1”-continuity, that is, the basis
is fully discontinuous, naturally terminating the domain.

Observe that increasing the multiplicities of the knot values seems to have decreased the
support of some of the functions. This is not a contradiction with the trend we observed
previously as the support of each function Ni,p still begins at knot ξi and ends at ξi+p+1. That
is, the support of each function is still p + 1 knot spans, but some of those knot spans have
zero measure due to the repetition of knot values. Surprisingly, none of this has any effect on
the bandwidth.

2.1.2.1 Building functions from non-uniform knot vectors

To see how the repeated knot values come into play in the definition of the basis func-
tions, let us explicitly build the quadratic functions corresponding to knot vector � =
{ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7} = {0, 0, 0, 1, 2, 2, 2} by carefully applying (2.1) and (2.2) within each
knot span. Beginning with i = 1, we have that

N1,0(ξ ) =
{

1 ξ1 ≤ ξ < ξ2,

0 otherwise.
(2.4)

As ξ1 = ξ2 = 0, we observe that there exists no value of ξ such that 0 ≤ ξ and ξ < 0, and
therefore N1,0(ξ ) ≡ 0. There is no ambiguity in the definition; we need only interpret (2.1)
literally. Applying the same logic to the remaining indices, we arrive at the following piecewise
constant functions:

N1,0(ξ ) = 0, (2.5a)

N2,0(ξ ) = 0, (2.5b)

N3,0(ξ ) =
{

1 0 ≤ ξ < 1,

0 otherwise,
(2.5c)

N4,0(ξ ) =
{

1 1 ≤ ξ < 2,

0 otherwise.
(2.5d)

We could proceed to i = 5 and i = 6, but the corresponding functions, N5,p and N6,p, would
be identically zero for all polynomial orders.

In Figure 2.7, we plot the functions of (2.5a)–(2.5d) in the index space, meaning that
we equally space all of the knots independent of their actual values. The constant functions
corresponding to “trivial” knot spans are always identically zero.

We now build the linear functions, Ni,1(ξ ), from these constant functions using (2.2). For
i = 1, now with p = 1, we have

N1,1(ξ ) = ξ − 0

0 − 0
N1,0(ξ ) + 0 − ξ

0 − 0
N2,0(ξ ) (2.6)
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Figure 2.7 Constant basis functions corresponding to � = {0, 0, 0, 1, 2, 2, 2} plotted in the index
space.

Recognizing immediately that N1,0(ξ ) = N2,0(ξ ) = 0, we have only to augment (2.1) and (2.2)
with the definition

0

0
.= 0. (2.7)

Thus, we have that N1,1(ξ ) ≡ 0.
As an additional example, consider i = 3. We have

N3,1(ξ ) = ξ − 0

1 − 0
N3,0(ξ ) + 2 − ξ

2 − 1
N4,0(ξ )

= ξ

{
1 0 ≤ ξ < 1,

0 otherwise,

+ (2 − ξ )

{
1 1 ≤ ξ < 2,

0 otherwise,

=
⎧⎨
⎩

ξ 0 ≤ ξ < 1,

2 − ξ 1 ≤ ξ < 2,

0 otherwise.
(2.8)

Performing the same steps for the remaining indices results in piecewise linear functions

N1,1(ξ ) = 0, (2.9a)

N2,1(ξ ) =
{

1 − ξ 0 ≤ ξ < 1,

0 otherwise,
(2.9b)
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Figure 2.8 Linear basis functions corresponding to � = {0, 0, 0, 1, 2, 2, 2} plotted in the index space.

N3,1(ξ ) =
⎧⎨
⎩

ξ 0 ≤ ξ < 1,

2 − ξ 1 ≤ ξ < 2,

0 otherwise.
(2.9c)

N4,1(ξ ) =
{

ξ − 1 1 ≤ ξ < 2,

0 otherwise.
(2.9d)

shown in Figure 2.8.
Finally, we may build the piecewise quadratic functions from these piecewise linears.

Taking, for example, i = 2, we have

N2,2(ξ ) = ξ − 0

1 − 0
N2,1(ξ ) + 2 − ξ

2 − 0
N3,1(ξ )

= ξ

{
(1 − ξ ) 0 ≤ ξ < 1,

0 otherwise,

+ 1

2
(2 − ξ )

⎧⎨
⎩

ξ 0 ≤ ξ < 1,

(2 − ξ ) 1 ≤ ξ < 2,

0 otherwise,

=
⎧⎨
⎩

ξ (1 − ξ ) + 1
2 (2 − ξ ) ξ 0 ≤ ξ < 1,

1
2 (2 − ξ )2 1 ≤ ξ < 2,

0 otherwise.
(2.10)
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Figure 2.9 Quadratic basis functions corresponding to � = {0, 0, 0, 1, 2, 2, 2} plotted in the index
space.

Completing the process for the remaining indices, we get the following functions (shown in
Figure 2.9):

N1,2(ξ ) =
{

(1 − ξ )2 0 ≤ ξ < 1,

0 otherwise,
(2.11a)

N2,2(ξ ) =
⎧⎨
⎩

ξ (1 − ξ ) + 1
2 (2 − ξ ) ξ 0 ≤ ξ < 1,

1
2 (2 − ξ )2 1 ≤ ξ < 2,

0 otherwise,
(2.11b)

N3,2(ξ ) =
⎧⎨
⎩

1
2ξ 2 0 ≤ ξ < 1,
1
2ξ (2 − ξ ) + (2 − ξ ) (ξ − 1) 1 ≤ ξ < 2,

0 otherwise,
(2.11c)

N4,2(ξ ) =
{

(ξ − 1)2 1 ≤ ξ < 2,

0 otherwise.
(2.11d)

To get these results we have had to carefully add the different pieces of these piecewise
functions together, which is cumbersome. Fortunately, efficient algorithms exist for basis
function evaluation (see, e.g., Piegl and Tiller, 1997). Our purpose in stepping through the
equations so pedantically is to remove some of the mystery about the repeated knots. The
bottom line is that the equations make sense with repeated knots. The confusion comes from
a desire to associate knots with the nodes of classical FEA. We should resist this urge, and
understand the B-spline technology for what it is, not merely by analogy with things that are
already familiar.
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2.1.2.2 Derivatives of B-spline basis functions

The derivatives of B-spline basis functions are efficiently represented in terms of B-spline
lower order bases. This should not be surprising in light of the recursive definition of the basis
in (2.1) and (2.2). For a given polynomial order p and knot vector �, the derivative of the i th

basis function is given by

d

dξ
Ni,p(ξ ) = p

ξi+p − ξi
Ni,p−1(ξ ) − p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ ). (2.12)

We can generalize this to higher derivatives by simply differentiating each side of (2.12) to
get

dk

dkξ
Ni,p(ξ ) = p

ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ )

)

− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ )

)
. (2.13)

Expanding (2.13) by means of (2.12) results in an expression purely in terms of lower order
functions Ni,p−k, . . . , Ni+k,p−k . We have

dk

dkξ
Ni,p(ξ ) = p!

(p − k)!

k∑
j=0

αk, j Ni+ j,p−k(ξ ), (2.14)

with

α0,0 = 1,

αk,0 = αk−1,0

ξi+p−k+1 − ξi
,

αk, j = αk−1, j − αk−1, j−1

ξi+p+ j−k+1 − ξi+ j
j = 1, . . . , k − 1,

αk,k = −αk−1,k−1

ξi+p+1 − ξi+k
.

The denominator of several of these coefficients can be zero in the presence of repeated knots.
Whenever this happens, the coefficient is defined to be zero. Efficient algorithms for these
calculations can be found in Piegl and Tiller, 1997.

2.1.3 B-spline geometries

2.1.3.1 B-spline curves

B-spline curves in R
d are constructed by taking a linear combination of B-spline basis func-

tions, just as in classical FEA. The vector-valued coefficients of the basis functions are referred
to as control points. These are analogous to nodal coordinates in finite element analysis in
that they are the coefficients of the basis functions, but the non-interpolatory nature of the
basis does not lead to a concrete interpretation of the control point values. Given n basis
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(a) Curve and control points (b) Curve and mesh denoted by knot locations

Figure 2.10 B-spline, piecewise quadratic curve in R
2. (a) Control point locations are denoted by .

(b) The knots, which define a mesh by partitioning the curve into elements, are denoted by . Basis
functions and knot vector as in Figure 2.5.

functions, Ni,p, i = 1, 2, . . . , n, and corresponding control points Bi ∈ R
d , i = 1, 2, . . . , n, a

piecewise-polynomial B-spline curve is given by

C(ξ ) =
n∑

i=1

Ni,p(ξ )Bi . (2.15)

Note that the index i in Bi serves to identify the control point and is not a reference to one
of its d components. Piecewise linear interpolation of the control points gives the so-called
control polygon.

The example shown in Figure 2.10 is built from the quadratic basis functions considered in
Figure 2.5. The curve is interpolatory at the first and last control points, a general feature of a
curve built from an open knot vector. Note that it is also interpolatory at the sixth control point.
As discussed above, this is due to the fact that the multiplicity of the knot ξ = 4 is equal to the
polynomial order. Note also that the curve is tangent to the control polygon at the first, last, and
sixth control points. The curve is C p−1 = C1-continuous everywhere except at the location of
the repeated knot, ξ = 4, where it is C p−2 = C0-continuous. Note the difference between the
control points, shown in Figure 2.10a, and the images of the knots, shown in Figure 2.10b. It
is the knots, mapped into the physical space, that partition the curve into elements.

An affine transformation of a B-spline curve is obtained by applying the transformation
directly to the control points. An affine transformation is a mapping � : R

3 → R
3 such that

for any vector x ∈ R
3,

�(x) = Ax + v (2.16)

for some matrix A ∈ R
3×3 and vector v ∈ R

3. Affine transformations include translations,
rotations, scalings, and uniform stretchings and shearings. The ability to apply an affine
transformation to a curve by applying it directly to the control points turns out to be the
essential property for satisfying so-called “patch tests,” as discussed in Hughes et al., 2005.
This property is referred to as affine covariance1.
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Many properties of B-spline curves follow directly from the properties of their basis func-
tions. Both Rogers, 2001 and Piegl and Tiller, 1997 discuss many such properties in detail.
For example, B-spline curves of degree p have p − 1 continuous derivatives in the absence
of repeated knots or control points. In general, a curve will have at least as many continuous
derivatives across an element boundary as its basis functions have across the corresponding
knot value. Another property the curve inherits from its basis is that of locality. Due to the
compact support of the B-spline basis functions, moving a single control point can affect the
geometry of no more than p + 1 elements of the curve.

B-splines obey a strong convex hull property. The non-negativity and partition of unity
properties of the basis, combined with the compact support of the functions, lead to the fact
that a B-spline curve is completely contained within the convex hull defined by its control
points. For a curve of degree p, we define the convex hull as the union of all of the convex hulls
formed by p + 1 successive control points. Figure 2.11 shows such convex hulls for p = 1
through p = 5 for a given set of control points. Note, in particular, that the convex hull for a
piecewise linear curve is just the control polygon itself. Figure 2.12 shows the corresponding
curves that we obtain by pairing these control points with the different bases. As the polynomial
order increases, the curves become smoother and the effect of each individual control point is
diminished.

p = 1

p = 2

p = 3

p = 4

p = 5

Figure 2.11 Convex hulls for p = 1 through p = 5.
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p = 1

p = 2

p = 3

p = 4

p = 5

Figure 2.12 B-spline curves for p = 1 through p = 5 with the control polygon as in Figure 2.11.

B-spline curves also possess a variation diminishing property. No plane has more inter-
sections with the curve than it has with the control polygon. This property is particularly
striking when compared with the behavior of standard Lagrange polynomials. An exam-
ple is illustrated in Figure 2.13a where Lagrange polynomials of orders three, five, and
seven interpolate a discontinuity represented by eight data points in R

2. Note that as the
order is increased, the amplitude of the oscillations also increases. B-splines behave very
differently when the data are viewed as control points. The variation diminishing property
leads the B-spline curves in Figure 2.13b to be monotone, a property that proves useful in
analysis.

A subtle, yet extremely important, point to recognize about Figure 2.13 is that, for a fixed
polynomial order, the Lagrange basis and the B-spline basis we have used in this example span
exactly the same space. This is because we have used only one element and so we are dealing
directly with polynomials, not piecewise polynomials. The difference between the oscillatory
Figure 2.13a and the monotone Figure 2.13b is in whether we have interpreted the data as
nodes in the classical finite element sense, or as control points. It is the pointwise positivity
and the non-interpolatory nature of the B-spline basis that makes this latter interpretation
possible.

An interesting example of the lack of robustness of Lagrange polynomials is found in Farin,
1999a, which we recreate here. Figure 2.14 shows two attempts at the interpolation of the
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1 2 3 4 5 6 7 8

−0.5

0

0.5

1

1.5
p=3
p=5
p=7

(a)

1 2 3 4 5 6 7 8

−0.5

0

0.5

1

1.5
p=3
p=5
p=7

(b)

Figure 2.13 (a) Lagrange interpolation oscillates when faced with discontinuous data. (b) NURBS
exhibit the variation diminishing property for the same data.

function f(θ ) = (2 cos(θ), sin(θ ))T in a finite precision environment. First, 21 points are chosen
by sampling f(θ ) at equal intervals of θ ∈ [0, π/2]. To that initial data, random perturbations of
a prescribed magnitude are added to each point to simulate noisy data, and then interpolation is
performed using a Lagrange basis with p = 20. In Figure 2.14a, the input data are accurate to
six decimal places, whereas in Figure 2.14b only four digits of accuracy are given. Clearly, the
resulting curves differ dramatically. Such fragility makes Lagrange polynomials exceedingly
uncommon in geometrical design software.

2.1.3.2 B-spline surfaces

Given a control net {Bi, j }, i = 1, 2, . . . , n, j = 1, 2, . . . , m, polynomial orders p and q, and
knot vectors � = {ξ1, ξ2, . . . , ξn+p+1}, and H = {η1, η2, . . . , ηm+q+1}, a tensor product B-
spline surface is defined by

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ )M j,q (η)Bi, j (2.17)



P1: ABC/ABC P2: c/d QC: e/f T1: g

c02 JWBK372-Cottrell June 11, 2009 15:37 Printer Name: Yet to Come

NURBS as a Pre-analysis Tool 33

(b)(a)

Figure 2.14 Interpolation with Lagrange polynomials. (a) The points to be interpolated are accurate to
six digits after the decimal point. (b) The points to be interpolated are accurate to only four digits after
the decimal point.

where Ni,p(ξ ) and M j,q (η) are univariate B-spline basis functions of order p and q, corre-
sponding to knot vectors � and H, respectively.

Many of the properties of a B-spline surface are the result of its tensor product nature.
The basis is pointwise nonnegative, and forms a partition of unity as ∀(ξ, η) ∈ [ξ1, ξn+p+1] ×
[η1, ηm+q+1],

n∑
i=1

m∑
j=1

Ni,p(ξ )M j,q (η) =
(

n∑
i=1

Ni,p(ξ )

)⎛
⎝ m∑

j=1

M j,q (η)

⎞
⎠ = 1. (2.18)

The number of continuous partial derivatives in a given parametric direction may be determined
from the associated one-dimensional knot vector and polynomial order. The surface again
possesses the property of affine covariance and has a strong convex hull property. Interestingly,
there is no known variation diminishing property for surfaces, though the convex hull property
precludes any two-dimensional analogues of the types of oscillations we saw in Figure 2.13a,
thus generalizing the result of Figure 2.13b to multiple dimensions.

The local support of the basis functions also follows directly from the one-dimensional func-
tions that form them. The support of a given bivariate function Ñi, j ;p,q (ξ, η) = Ni,p(ξ )M j,q (η)
is exactly [ξi , ξi+p+1] × [η j , η j+q+1]. Let us consider a specific example of a biquadratic (p =
q = 2) surface formed from knot vectors � = {0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1},
with control points listed in Table 2.1, resulting in the control net and mesh shown in Figure
2.15. For this case, the support of Ñ1,1;2,2(ξ, η), is [ξ1, ξ4] × [η1, η4]. Similarly, the support
of Ñ3,2;2,2(ξ, η), for example, is [ξ3, ξ6] × [η2, η5]. The support of each of these functions is
shown in the index space in Figure 2.16a. By equally spacing each of the knots in the plot,
it is easy to see exactly which knot spans each of the functions are supported in, includ-
ing where they overlap. Such a viewpoint is very useful when developing algorithms (see
Appendix A at the end of the book for a discussion of the index space and so-called “NURBS
coordinate” in the context of connectivity). Alternatively, we can present the same information
in the parameter space, as in Figure 2.16b. Here, we have taken into account the actual knot
values. It is clear that we only have two nontrivial elements (elements with positive measure),
and therefore only two elements in which calculations need to be performed during analysis.
Function Ñ3,2;2,2(ξ, η) has support in both of these elements, while Ñ1,1;2,2(ξ, η) is only
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Table 2.1 Control points for
the biquadratic B-spline surface
depicted in Figure 2.15

i j Bi, j

1 1 (0, 0)
1 2 (−1, 0)
1 3 (−2, 0)
2 1 (0, 1)
2 2 (−1, 2)
2 3 (−2, 2)
3 1 (1, 1.5)
3 2 (1, 4)
3 3 (1, 5)
4 1 (3, 1.5)
4 2 (3, 4)
4 3 (3, 5)

supported in the leftmost element. Lastly, we can view these elements in the physical space,
as in Figure 2.16c, which makes it clear which portions of the actual domain are influenced
by each of the basis functions.

In Figure 2.17 we have plotted the actual functions themselves in the physical space. Note
that Ñ1,1;2,2(ξ, η) takes on positive values on two of the edges, and it is interpolatory in the
corner. Alternatively, Ñ3,2;2,2(ξ, η) is identically zero on all of the edges. We could not have
explicitly told this from looking at the parameter space or the physical space pictures in

MeshControl net

Figure 2.15 The control net and mesh for the biquadratic B-spline surface with � =
{0, 0, 0, 0.5, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}.
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(a) Index space
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(b) Parameter space

(3,1.5)

(3,5)

(0,0)(-2,0)

(c) Physical space

Figure 2.16 The three ways of viewing a B-spline. (a) The index space. The support of Ñ1,1;2,2(ξ, η) is
shown in red, while the support of Ñ3,2;2,2(ξ, η) is in blue. The region in which they overlap is purple. (b)
The parameter space. Ñ3,2;2,2(ξ, η) is supported in both elements, while Ñ1,1;2,2(ξ, η) is only supported
in one. (c) The physical space. Again, Ñ3,2;2,2(ξ, η) is supported in both elements, while Ñ1,1;2,2(ξ, η) is
only supported in one.

Figure 2.16b and Figure 2.16c. We could have determined this immediately, however, by
looking at the index space in Figure 2.16a.

2.1.3.3 B-spline solids

Tensor product B-spline solids are defined in analogous fashion to B-spline surfaces. Given a
control lattice2 {Bi, j,k}, i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , l, polynomial orders
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Figure 2.17 Biquadratic functions Ñ1,1;2,2(ξ, η) and Ñ3,2;2,2(ξ, η) plotted in the physical space, from
two different angles.

p, q and r , and knot vectors � = {ξ1, ξ2, . . . , ξn+p+1}, H = {η1, η2, . . . , ηm+q+1}, and Z =
{ζ1, ζ2, . . . , ζl+r+1}, a B-spline solid is defined by

S(ξ, η, ζ ) =
n∑

i=1

m∑
j=1

l∑
k=1

Ni,p(ξ )M j,q (η)Lk,r (ζ )Bi, j,k (2.19)

The properties of a B-spline solid like the one shown in Figure 2.18 are trivariate generalizations
of those for B-spline surfaces.

2.1.4 Refinement

One of the most interesting aspects of B-splines is the myriad of ways in which the basis
may be enriched while leaving the underlying geometry and its parameterization intact. To
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Figure 2.18 A simple B-spline solid.

fully recognize the many possibilities, we must first understand the subtle ways in which the
basic mechanisms of B-spline refinement differ from their finite element counterparts. These
differences lead to more richness in the overall refinement space. In particular, not only do we
have control over the element size and the order of the basis, but we can control the continuity
of the basis as well.

2.1.4.1 Knot insertion

The first mechanism by which one can enrich the basis is knot insertion.3 Knots may be
inserted without changing a curve geometrically or parametrically. Given a knot vector
� = {ξ1, ξ2, . . . , ξn+p+1}, we introduce the notion of an extended knot vector �̄ = {ξ̄1 =
ξ1, ξ̄2, . . . , ξ̄n+m+p+1 = ξn+p+1}, such that � ⊂ �̄. As before, the new n + m basis functions
are formed by (2.1) and (2.2), now by applying them to the new knot vector �̄. The new n + m
control points, B̄ = {B̄1, B̄2, . . . , B̄n+m}T, are formed from linear combinations of the original
control points, B = {B1, B2, . . . , Bn}T, by

B̄ = TpB (2.20)

where

T 0
i j =

{
1 ξ̄i ∈ [ξ j , ξ j+1)
0 otherwise

(2.21)

and

T q+1
i j = ξ̄i+q − ξ j

ξ j+q − ξ j
T q

i j + ξ j+q+1 − ξ̄i+q

ξ j+q+1 − ξ j+1
T q

i j+1 for q = 0, 1, 2, . . . , p − 1 (2.22)

Knot values already present in the knot vector may be repeated in this way, thereby increasing
their multiplicity, but as described in Section 2.1.2, the continuity of the basis will be reduced.
However, continuity of the curve is preserved by choosing the control points as in (2.20)–(2.22).

An example of knot insertion for a simple, one-element, quadratic B-spline curve is presented
in Figure 2.19. The knot vector of the original curve is � = {0, 0, 0, 1, 1, 1}. The control points,
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Ξ = {0, 0, 0, 1, 1, 1} Ξ = {0, 0, 0, .5, 1, 1, 1}
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Figure 2.19 Knot insertion. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by .
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Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} Ξ̄ = {0, 0, 0, .5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4, 4.5, 5, 5, 5}

Original curve and control points Refined curve and control points

Refined ten element meshOriginal five element mesh

0,0,0 1 2 3 4,4 5,5,5
0

1

0,0,0 0.5 1 1.5 2 2.5 3 3.5 4,4 4.5 5,5,5
0

1

New basis functionsOriginal basis functions

Figure 2.20 Knot insertion. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by . Each element has been evenly split in the
parametric domain.

mesh, and basis functions of the unrefined curve are shown on the left. A new knot is inserted
at ξ̄ = 0.5. The new curve, shown on the right, is geometrically and parametrically identical
to the original curve, but the control points are changed, the mesh is partitioned, and the basis
is richer. There is one more control point, one more element, and one more basis function than
in the unrefined case. This process may be repeated to enrich the solution space by adding
more basis functions of the same order while leaving the curve unchanged. Figure 2.20 shows
the more advanced case of a global refinement of the curve from Figure 2.10.

Insertion of new knot values clearly has similarities with the classical h-refinement strategy
in finite element analysis as it splits existing elements into new ones. It differs, however, in the
number of new functions that are created, as well as in the continuity of the basis across the
newly created element boundaries (C p−1 in this case). To perfectly replicate h-refinement, one
would need to insert each of the new knot values p times so that the functions will be C0 across
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the new boundary. The alternative to inserting new knot values – increasing the multiplicity
of existing knot values to decrease the continuity of the basis without creating new elements –
does not have an analogue in FEA, as FEA meshes have C0 element boundaries to begin with.
In this way, knot insertion is very closely related, but not identical to h-refinement. We will
revisit this idea below.

2.1.4.2 Order elevation

The second mechanism by which one can enrich the basis is order elevation (sometimes also
called “degree elevation”). As its name implies, the process involves raising the polynomial
order of the basis functions used to represent the geometry. Recalling from Section 2.1.1 that
the basis has p − mi continuous derivatives across element boundaries, it is clear that when p
is increased, mi must also be increased if we are to preserve the discontinuities in the various
derivatives already existing in the original curve. During order elevation, the multiplicity of
each knot value is increased by one, but no new knot values are added. As with knot insertion,
neither the geometry nor the parameterization are changed.

The process for order elevation begins by replicating existing knots until their multiplicity is
equal to the polynomial order, thus effectively subdividing the curve into many Bézier curves
by knot insertion (see Rogers, 2001 or Farin, 1999b for a discussion of Bézier curves; we may
think of them as one-element B-spline curves). The next step is to elevate the order of the
polynomial on each of these individual segments. Lastly, excess knots are removed to combine
the segments into one, order-elevated, B-spline curve. Several efficient algorithms exist which
combine the steps so as to minimize the computational cost of the process. For a thorough
treatment, see Piegl and Tiller, 1997.

An example of order elevation for a one-element curve is depicted in Figure 2.21. The
original control points, mesh, and quadratic basis functions, shown on the left, are the same
as considered in Figure 2.19. This time the multiplicity of the knots is increased by one but,
as stated above, no new knot values are added. For this simple case, the number of control
points and the number of basis functions each increase by one. The locations of the control
points change, but the elevated curve is geometrically and parametrically identical to the
original curve. There are now four cubic basis functions. Figure 2.22 shows this process on
the more complex example considered in Figure 2.20. The multiplicities of the knots have
been increased but no new elements created. Note that the locations of control points for these
order-elevated curves are different than those in the h-refinement examples (cf. Figures 2.19
and 2.20).

Order elevation clearly has much in common with the classical p-refinement strategy in
finite element analysis as it increases the polynomial order of the basis. The major difference
is that p-refinement always begins with a basis that is C0 everywhere, while order elevation
is compatible with any combination of continuities that exist in the unrefined B-spline mesh.
This flexibility leads us to a new higher-order technique that is unique to isogeometric analysis.

2.1.4.3 k-refinement: higher order and higher continuity

As we have seen, the two primitive refinement operations for B-splines are knot insertion and
order elevation. Knot insertion is similar to h-refinement, but for it to be a perfect analogue
each new knot value would have to be inserted with multiplicity mi = p to ensure a C0 basis
everywhere. Similarly, if we begin with a mesh in which all of the functions are already C0
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Figure 2.21 Order elevation. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by .

across element boundaries, order elevation coincides exactly with the traditional notion of
p-refinement. Knot insertion and order elevation, however, provide us with more to work with
than do the two standard notions of refinement.

As mentioned above, we can insert new knot values with multiplicities equal to one to define
new elements across whose boundaries functions will be C p−1. We can also repeat existing
knot values to lower the continuity of the basis across existing element boundaries. This makes
knot insertion a more flexible process than simple h-refinement. Similarly, we have a more
flexible higher-order refinement as well. It stems from the fact that the processes of order
elevation and knot insertion do not commute. If a unique knot value, ξ̄ , is inserted between
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Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} Ξ̄ = {0, 0, 0, 0, 1, 1, 2, 2,
3, 3, 4, 4, 4, 5, 5, 5, 5}

Original curve and control points Refined curve and control points

Refined five element meshOriginal five element mesh

0,0,0 1 2 3 4,4 5,5,5
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Figure 2.22 Order elevation. Control points are denoted by . The knots, which define a mesh by
partitioning the curve into elements, are denoted by . Note the increased multiplicity of internal knots.
This is done to preserve discontinuities in the appropriate derivatives of the curve.

two distinct knot values in a curve of order p, the number of continuous derivatives of the
basis functions at ξ̄ is p − 1. If we subsequently elevate the order to q, the multiplicity of
every distinct knot value (including the knot just inserted) is increased so that discontinuities
in the pth derivative of the basis are preserved. That is, the basis still has p − 1 continuous
derivatives at ξ̄ , although the polynomial order is now q. If, instead, we elevated the order of
the original, coarsest curve to q and only then inserted the unique knot value ξ̄ , the basis would
have q − 1 continuous derivatives at ξ̄ . We refer to this latter procedure as k-refinement. We
know of no analogous practice in standard finite element analysis.

It is important that we point out that this notion of k-refinement is not the same as the
“k-convergence” described in Kagan et al., 1998 in which the position of the knots is altered.
It bears more in common with the “k-version finite element method” of Surana et al., 2002 in
that k refers to continuity, but the motivations are different. The increased continuity in Surana
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et al., 2002 is required so that a least-squares finite element approach is possible. Such an
approach requires that the solution space have the same number of continuous derivatives as
found in the highest order derivative of the differential operator. Our motivations for using
basis functions of higher continuity are efficiency and robustness of the solution space in a
classical Galerkin finite element formulation of the problem (see Chapter 3).

The concept of k-refinement is potentially a superior approach to high-precision analysis
than p-refinement. In traditional p-refinement there is a very inhomogeneous structure to arrays
due to the different basis functions associated with surface, edge, vertex and interior nodes. In
addition, there is a proliferation in the number of nodes because C0-continuity is maintained
in the refinement process. In k-refinement, there is a homogeneous structure within patches
and growth in the number of control variables is limited.

Consider a classical p-refinement process such as is seen in Figures 2.23b and 2.24a. Assume
the initial domain consists of one element and p + 1 basis functions (assuming an open knot

0 1
0

1

Ξ = {0, 0, 1, 1}, p = 1
(a)

Knot insertion Order elevation
↓ ↓

0 11/3 2/3
0

1

0 1
0

1

Ξ = {0, 0, 1
3 , 2

3 , 1, 1}, p = 1 Ξ = {0, 0, 0, 1, 1, 1}, p = 2
(b) (c)

Figure 2.23 When refining a coarse, low-order mesh to create a fine, higher-order mesh, one may choose
between a p- or k-refinement strategy. Here we see the initial step for each case. (a) Base case of one
linear element. (b) Classic p-refinement approach: knot insertion is performed first to create many low-
order elements. Subsequent order elevation will preserve the C0-continuity across element boundaries.
(c) New k-refinement approach: order elevation is performed on the coarsest discretization. Subsequent
knot insertion will result in a basis which is C p−1 across the newly created element boundaries. See the
results of p- and k-refinement for several different polynomial orders in Figure 2.24.
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Figure 2.24 Three element, higher-order meshes for p- and k-refinement. (a) The p-refinement ap-
proach results in many functions that are C0 across element boundaries. (b) In comparison, k-refinement
results in a much smaller number of functions, each of which is C p−1 across element boundaries.
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vector), which we then refine by inserting new knot values until we have n − p elements
and n basis functions, all C p−1. We then perform order elevation, maintaining continuity at
the p − 1 level. This requires replicating each distinct knot value, adding a basis function
in each element and so increasing the total number of basis functions by n − p to 2n − p.

After a total of r order elevations of this type, we have (r + 1)n − rp basis functions, where
p is still the order of the original basis. This is seen to be a large number of functions when
one considers that in most cases of practical interest the number of elements will be quite
a bit larger than the order of the basis. For comparison, consider beginning with the same
one-element domain and proceeding by k-refinement, as in Figures 2.23c and 2.24b. That is,
order elevate r times adding only one basis function at each refinement, then insert knots until
we have n − p elements as before. The final number of basis functions is n + r, each having
r + p − 1 continuity. This amounts to an enormous savings as n + r is considerably smaller
than (r + 1)n − rp. Additionally, keep in mind that in d dimensions these numbers are raised
to the d power. Graphical comparisons are shown in Figure 2.25. Note that the mesh, defined
by the knot locations, is fixed and is the same for p- and k-refinements.

Observe that k-refinement, as we have defined it, is not really “refinement” in the traditional
sense in that it does not lead to a sequence of nested spaces. Consider again the examples
of Figure 2.24. As we p-refine in Figure 2.24a from quadratics to quintics, each set of basis
functions is capable of representing every function that could be represented by any of the
bases of lower order. The space was being “enriched” as something is gained at each step, but
nothing is lost. Alternatively, the k-refinement process in Figure 2.24b does not possess this
property. This is obvious if we only consider the continuity. A general function of order p
has discontinuities in the pth derivative, but every function of order p + 1 has p continuous
derivatives. While the higher-order bases in this sequence have better approximation properties,
they cannot represent the same set of functions as the lower-order bases in the sequence. This
should not be seen as a shortcoming of the approach, but it is a difference between k-refinement
and the more traditional h- and p-refinements.

It is also important to note that “pure” k-refinement, where all functions maintain maximal
C p−1 continuity across element boundaries, is only possible if the coarsest mesh is comprised
of a single element. If the initial mesh places constraints on the continuity across certain
element boundaries, these constraints will exist on all meshes. In general, though some such
constraints will exist, the number of elements desired for analysis will be much higher than
the number needed for modeling the geometry. Refinements may be performed such that the
functions have p − 1 continuous derivatives across these new element boundaries and the
benefits of k-refinement will still be significant.

2.1.4.4 The hpk-refinement space

As we have shown, knot insertion and order elevation are the primitive operations by which
classical h- and p-refinements, as well as the new k-refinement, can be implemented. Recog-
nizing their flexibility as compared with classical refinement procedures makes feasible the
notion of an hpk-refinement space. Recalling that B-spline curves may have no more than
p − 1 continuous derivatives across an element boundary, the set of possible refinements may
be characterized as in Figure 2.26. Pure k-refinement keeps h fixed but increases the conti-
nuity along with the polynomial order, as in Figure 2.27a. Pure p-refinement increases the
polynomial order while the basis remains C0, as in Figure 2.27b. Increasing the multiplicity of
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Figure 2.25 Comparison of control variable growth. (a) The one-dimensional case with n initial control
points. (b) The two-dimensional case with n2 initial control points. (c) The three-dimensional case with
n3 initial control points.
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Figure 2.26 The hpk-space. The set of all allowable refinements is contained in the region shown in
green. Note that this region extends in the direction of the arrows.

existing knot values decreases the continuity without introducing new elements, as in Figure
2.27c. Inserting new knot values with a multiplicity of p results in classical h-refinement,
whereby new elements are introduced that have C0 boundaries, shown in Figure 2.27d. In-
serting new knot values with a multiplicity of 1 decreases h without decreasing the minimum
continuity already found in the mesh, as in Figure 2.27e. Considering all of the aforementioned
techniques results in a multitude of refinement options beyond simple h-, p- and k-refinement;
see Figure 2.27f.

2.2 Non-Uniform Rational B-Splines

The step from the non-rational B-splines that we have been discussing thus far to Non-
Uniform Rational B-Splines (NURBS) is a significant one because we gain the ability to
exactly represent a wide array of objects that cannot be exactly represented by polynomials,
many of which are ubiquitous in engineering design. To best appreciate how to work with
NURBS entities we must understand them from both a geometric perspective and an algebraic
one. The former viewpoint gives us insight and intuition that will prove invaluable in designing
meshes, proving theorems, and a host of other activities related to isogeometric analysis. The
latter viewpoint is particularly useful in designing algorithms and creating software, and will
be the setting in which we most frequently work. Both are essential for cultivating a broad
understanding of NURBS technology.

2.2.1 The geometric point of view

A NURBS entity in R
d is obtained by the projective transformation of a B-spline entity in

R
d+1. In particular, conic sections, such as circles and ellipses, can be exactly constructed

by projective transformations of piecewise quadratic curves – one of the defining features of
isogeometric analysis. A full discussion of projective geometry is beyond the scope of this
book, but a good introduction in the context of NURBS can be found in Farin, 1999b. For
our purposes, it suffices to consider the example illustrated in Figure 2.28 in which a circle
in R

2 is constructed from a piecewise quadratic B-spline curve in R
3. The transformation is

applied by projecting every point in the curve onto the z = 1 plane by a ray through the origin.
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Figure 2.27 The hpk-space. (a) In pure k-refinement, the locations of the element boundaries (and
thus element size, h) are fixed. As the polynomial order, p, is increased, the continuity of the functions
across element boundaries, k, is increased such that k = p − 1 at all levels of refinement. (b) In pure
p-refinement, the locations of the element boundaries (and thus element size, h) are fixed. As the
polynomial order, p, is increased, the continuity of the functions across element boundaries is fixed at
k = 0 for all levels of refinement. (c) Repetition of existing knot values decreases the continuity across
the corresponding element boundary without creating new elements or changing the polynomial order.
The basis has p − mi continuous derivatives across knot ξi , where mi is the multiplicity of that knot
value. (d) If we insert new knot values with multiplicity of p, new elements are created and the basis
remains C0 across all element boundaries. In this way classical h-refinement is exactly replicated. (e)
Insertion of new knot values with a multiplicity of 1 results in a splitting of elements, and thus a decrease
in h (shown in the figure as an increase in h−1). The basis has p − 1 continuous derivatives across these
new element boundaries, and so the (possibly lower) minimum continuity already existing in the mesh
is unchanged, as is the polynomial order. (f) Combining knot insertion and order elevation in various
permutations allows us to traverse the entire allowable refinement space.
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We get the control points for the NURBS curve by performing exactly the same projective
transformation to the control points of the B-spline curve. In this context the B-spline, Cw(ξ ),
is called the “projective curve” with its associated “projective control points,” Bw

i , while
the terms “curve” and “control points” are reserved for the NURBS objects C(ξ ) and Bi ,
respectively.

With a given projective B-spline curve and its associated projective control points in hand,
the control points for the NURBS curve are obtained by the following relations:

(Bi ) j = (Bw
i ) j/wi , j = 1, . . . , d (2.23)

wi = (Bw
i )d+1 (2.24)

where (Bi ) j is the j th component of the vector Bi and wi is referred to as the i th weight. In
Figure 2.28a, the weights are the z-components of the projective control points. These values,
in general the d + 1 components of projective control points in R

d+1, are positive in most
applications of engineering interest. We will consider them to be positive throughout this book.
Dividing the projective control points by the weights is equivalent to applying the projective
transformation to them. We would like to apply the same transformation to every point in the
curve (e.g., for a projective curve in R

3, we would like to divide every point in the curve by its

2
0

−2 

2
0

−2 

0

1

2

3

B
i

w
i

 B
i
w

origin

xy

z

(a) Control polygons

2
0

−2 

2
0

−2

0

1

2

3

Cw(ξ)

z

xy

C(ξ)

(b) Curves

Figure 2.28 A circle in R
2 constructed by the projective transformation of a piecewise quadratic

B-spline in R
3. (a) Projective transformation of “projective control point” BW

i yields control point Bi .
Weight wi is the z-component of Bw

i . (b) Projective transformation of the B-spline curve Cw(ξ ) yields
the NURBS curve C(ξ ).
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height). We accomplish this by defining the weighting function,

W (ξ ) =
n∑

i=1

Ni,p(ξ )wi , (2.25)

where Ni,p(ξ ) is the standard B-spline basis function. In R
3, W (ξ ) = z(ξ ) is the height of the

curve as a function of the parameter ξ . We can now define the NURBS curve as

(C(ξ )) j = (Cw(ξ )) j

W (ξ )
, j = 1, . . . , d. (2.26)

As Cw(ξ ) and W (ξ ) are both piecewise polynomial functions, the curve C(ξ ) is a piecewise
rational function – within each element it is a polynomial divided by another polynomial. In
this NURBS setting, the two polynomials have the same order, and so we frequently refer to
the “order of the NURBS curve,” meaning that of the B-spline from which it was generated.
Phrases such as “a quadratic NURBS curve” are common and should be interpreted in this
sense.

In Figure 2.28b, the B-spline curve clearly has four points of only C0-continuity. To achieve
this with quadratic functions, the knot values at these locations have multiplicities of two.
Now note that the circle itself has no obvious points of reduced continuity. This is not an
uncommon scenario. Frequently, the maximum level of continuity is restricted by the shape of
the projective curve rather than the curve itself. For the example at hand, there is no reasonable
way to construct a circle without some knots at which the continuity is C0, even though there
is nothing obvious about the circle itself to indicate it.

It is interesting to observe that if one were to multiply all of the projective control points by
a constant (the simplest affine transformation of the projective curve), the resulting NURBS
curve would be unchanged. This is because each point of the projective curve would move
along its ray through the origin, but not onto a different ray. To achieve an affine transformation
of a NURBS object, we apply the affine transformation directly to its control points (as we
would hope), while leaving the weights fixed. Though each weight is associated with a specific
control point, it is important that we do not think of is as a component of the control point.
This is an easy mistake to make as most NURBS data structures will store the weight as the
fourth component of the array that stores its associated control point.

Though this projective geometric interpretation of the situation may seem daunting, rest
assured that we rarely explicitly use it in practice. We will build familiar objects, such as
cylinders or spheres in R

3, from simple templates or by using CAD packages rather than
explicitly determining four-dimensional objects that yield the desired result under transforma-
tion. The main reason that it is important to understand the underlying nature of NURBS is to
recognize that everything that we have discussed thus far for B-splines still holds true. This
is due to the fact that NURBS are built directly from B-splines. In particular, one can refine
the NURBS objects by applying the desired combination of hpk-strategies to the projective
B-spline objects themselves.

2.2.2 The algebraic point of view

Though the geometric viewpoint provides us with some intuition about the NURBS objects
we are working with and how they are constructed, it is the algebraic perspective that allows
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us to manipulate them most directly. Part of the power of B-splines is the ability to intuitively
change their shape by adjusting the control points. We would like to manipulate NURBS in
exactly the same intuitive fashion. To do this, we need to construct a basis for the NURBS
space from knot vectors, and to build curves, surfaces, and solids from linear combinations of
basis functions and control points. In this way, everything that we have learned about B-splines
will also be true of NURBS.

As we have seen above, the weighting function of (2.25) is a scalar, piecewise polynomial
function for the d + 1 component of the projective curve. From the geometric point of view,
we have used it to project a B-spline curve from R

d+1 into R
d . From the algebraic point of

view, it is more productive to use it to construct a basis for the NURBS space directly so
that we may build geometries and meshes in R

d while remaining blissfully ignorant of the
projective geometry lurking behind the scenes. This NURBS basis is given by

R p
i (ξ ) = Ni,p(ξ )wi

W (ξ )
= Ni,p(ξ )wi∑n

î=1 Nî,p(ξ )wî

, (2.27)

which is clearly a piecewise rational function. Using (2.27) in conjunction with the control
points of (2.23) leads to an equation for a NURBS curve,

C(ξ ) =
n∑

i=1

R p
i (ξ )Bi , (2.28)

that is form identical to that for B-splines. In practice, we will always use (2.28) and not (2.26),
although they are equivalent. Rational surfaces and solids are defined analogously in terms of
the rational basis functions

R p,q
i, j (ξ, η) = Ni,p(ξ )M j,q (η)wi, j∑n

î=1

∑m
ĵ=1 Nî,p(ξ )M ĵ,q (η)wî, ĵ

, (2.29)

R p,q,r
i, j,k (ξ, η, ζ ) = Ni,p(ξ )M j,q (η)Lk,r (ζ )wi, j,k∑n

î=1

∑m
ĵ=1

∑l
k̂=1 Nî,p(ξ )M ĵ,q (η)Lk̂,r (ζ )wî, ĵ,k̂

. (2.30)

These rational basis functions bear much in common with their polynomial progenitors. In
particular, the continuity of the functions, as well as their support, follows directly from the
knot vectors exactly as before. The basis still constitutes a partition of unity, and it is pointwise
nonnegative. These properties taken together again result in a strong convex hull property for
the NURBS functions.

Note that the weights play an important role in defining the basis, but they are divorced
from any explicit geometric interpretation in this setting, and we are free to choose control
points independently from their associated weights. Also note that if the weights are all equal,
then R p

i (ξ ) = Ni,p(ξ ) and the curve is again a polynomial. Thus, B-splines are a special case
of NURBS.

2.2.2.1 Derivatives of NURBS basis functions

As the NURBS basis functions are constructed from the B-spline basis functions, the
derivatives of rational functions will clearly depend on the derivatives of their non-rational



P1: ABC/ABC P2: c/d QC: e/f T1: g

c02 JWBK372-Cottrell June 11, 2009 15:37 Printer Name: Yet to Come

52 Isogeometric Analysis: Toward Integration of CAD and FEA

counterparts as well. Simply applying the quotient rule to (2.27) yields

d

dξ
R p

i (ξ ) = wi

W (ξ )N ′
i,p(ξ ) − W ′(ξ )Ni,p(ξ )

(W (ξ ))2 , (2.31)

where N ′
i,p(ξ ) ≡ d

dξ
Ni,p(ξ ) and

W ′(ξ ) =
n∑

î=1

N ′
î,p

(ξ )wî . (2.32)

In practice, this is how we typically compute these derivatives. We have an efficient algorithm
for the derivatives of the non-rational basis (see Piegl and Tiller, 1997, chapter 3, pp. 91–100),
and we use it to compute those of the rational functions using the quotient rule.

An expression is also available for higher-order derivatives of NURBS basis functions.
Following Piegl and Tiller, 1997, let us simplify notation by defining

A(k)
i (ξ ) = wi

dk

dξ k
Ni,p(ξ ), (no sum on i) (2.33)

where we do not sum on the repeated index, and let

W (k)(ξ ) = dk

dξ k
W (ξ ). (2.34)

Higher-order derivatives of these rational functions may be expressed in terms of lower-order
derivatives as

dk

dξ k
R p

i (ξ ) =
A(k)

i (ξ ) −
k∑

j=1

(
k
j

)
W ( j)(ξ ) d (k− j)

dξ (k− j) R p
i (ξ )

W (ξ )
, (2.35)

where (
k
j

)
= k!

j!(k − j)!
. (2.36)

2.3 Multiple patches

In almost all practical circumstances, it will be necessary to describe domains with multiple
NURBS patches. For example, if different material or physical models are to be used in different
parts of the domain, it might simplify things to describe these subdomains by different patches.
Also, if different subdomains are to be assembled in parallel on a multiple processor machine,
it is convenient from the point of view of data structures to not have a single patch split between
different processors. Most common is the case where the domain simply differs topologically
from a cube. The tensor product structure of the parameter space of a patch makes it poorly
suited for representing complex, multiply connected domains. Such geometries can frequently
be handled quite simply by using multiple patches (see, e.g., Figure 2.29).
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Figure 2.29 The bracket on the top is exactly and concisely represented by five simple NURBS patches
(patch boundaries are shown in red, element boundaries in black). The patches match geometrically and
parametrically on the internal faces where they meet.

Remark
In the isogeometric concept, the geometry is exactly preserved as the mesh is refined. This
means that the precise fillet and hole radii in Figure 2.29 will be maintained during refinement.
The reader knowledgeable of elasticity theory will realize that the exact stress concentrations
induced by the fillet and hole radii will be attained upon convergence. This may be contrasted
with the case of finite element mesh refinement. The difficulty of meshing around sharp fillets
and small holes motivates removing these features, as shown in Figure 2.30, but this produces
entirely incorrect stress concentrations. That due to the holes is eliminated, and the right-angle
replacing the fillet leads to infinite stresses. Feature removal is common practice in creating
FEA models. Results must be interpreted with extreme caution, because the solution can
change dramatically. An attractive property of isogeometric analysis is that small features,
such as fillets and holes, can be retained in the model.

Even in cases where a cube can be mapped into the desired object, doing so might introduce
such extreme mesh distortion and widely varying Jacobians within elements that analysis will
be adversely affected. Figure 2.31b (from Hughes et al., 2005) shows the amount of mesh
distortion needed to represent the shell with stiffener of Figure 2.31a with a single NURBS
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Figure 2.30 The removal of holes and fillets from the model facilitates the use of an automatic mesh
generator. The values of the stress, however, will be entirely incorrect. Moreover, automatic mesh
refinement may attempt to resolve the spurious stress singularity, resulting in a proliferation of degrees-
of-freedom near the reentrant corner.

patch. A mesh using multiple patches, shown in Figure 2.31c, exhibits far less distortion and
yields a much more “natural” mesh.

2.4 Generating a NURBS mesh: a tutorial

To complete this chapter on NURBS geometry, it seems appropriate to step through one
simple, albeit nontrivial, example of actually generating a NURBS geometry from scratch.
Though mesh generators and CAD systems obviate some of the details of such an exercise,
getting one’s hands dirty at least once does provide some insight into what goes on under the
hood of such software. Understanding the details of such a process is the first step toward
being able to make sense of any problems that may arise, as well as toward expanding the
technology.

Let us attempt to build a NURBS model of the pipe with a 90◦ elbow bend shown in Figure
2.32. The pipe has an inner radius of 1, outer radius of 2, and the circular bend of the elbow
has a radius of 3 along the center-line of the pipe. This object is easily described by a single
NURBS patch. We will proceed by laying out a set of general steps for geometric design one
at a time, applying them to the modeling of this particular object as we go.
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(a)

)c()b(

(d)

Figure 2.31 Multiple patches usually produce better quality meshes (from Hughes et al., 2005).
(a) The stiffened shell can be modeled using a single NURBS patch. (b) A detail of the stiffener
reveals that such a mapping produces severe mesh distortion that is unavoidable when using a single
patch. (c) Allowing the shell and the stiffener to be modeled by different patches creates a much more
natural mesh. The patch boundaries are shown in red. Analysis on this mesh will be described in Chapter
4. (d) Each of these unique patches has its own parameter space.
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Figure 2.32 A pipe with an elbow bend. This object lends itself to a simple description using NURBS,
but it is completely outside of the space of standard finite element geometries.

2.4.1 Preliminary considerations

There are many ways to go about building a geometrical model from scratch. Each geometer
undoubtedly approaches the process in a different fashion. In our experience, it is fruitful to
begin by identifying some basic features before even starting to assign polynomial orders,
knot vectors, or control points. The major features to look for are:

1. Corners and other points to be interpolated
2. Edges and other lines of reduced continuity
3. Geometric primitives and lower-dimensional NURBS objects
4. Extrusions, surfaces of revolution, symmetries, or other tensor-product-like features

Starting at the beginning of the list, let us address each type of feature one at a time, and
look for them in Figure 2.32. Corners are a natural place to begin as the parameter space is a
cube (there is no loss of generality in assuming it to be a cube, as dividing an entire knot vector
by a constant does not change the resulting geometry in any way at all, and so we may always
normalize the knot vectors such that the parameter space is the unit cube). Additionally, the
use of open knot vectors means that the basis will interpolate the corners, and so identifying
them can give us a few control points immediately. Unfortunately, the pipe in Figure 2.32 does
not possess any corners, and this first step does not help for this example.

The next thing to look for is any place where the continuity is obviously decreased. The
most obvious thing would be a crease in the geometry, that is, a sharp edge other than the
image of one of the edges of the parametric cube. For the pipe example, no such creases exist.
The astute observer will note that there is a discontinuity in the curvature where the cylindrical
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portion of the pipe meets the bend. The experienced NURBS practitioner will realize that this
will actually call for C0-continuity of the basis. Moreover, there will be additional continuity
restrictions in the circumferential direction as well (recall Figure 2.28b). For our purposes, it
suffices to say that we do not see any creases. We will momentarily postpone the discussion
of the decreased continuity until after we have discussed circles in more detail.

The third step is to identify simple objects that we already know how to construct that may
be part of the overall geometry of interest. We can look for “geometrical primitives” such as
polynomials or conic sections that we might have templates for. Recall that the use of open knot
vectors means that each face of the NURBS patch will actually be a NURBS surface, and each
edge of those surfaces is a NURBS curve. Thus we can be on the lookout for one-dimensional
objects that we may already know how to model. In this case, we clearly see the presence of
circular edges in the pipe, and so we will need to know how to construct a circle.

The last step is to look for places in which a NURBS curve or surface has been swept along
a path defined by another NURBS curve. Such extrusions are very common in engineering
design, and identifying them makes the job of modeling much easier by effectively reducing a
three-dimensional problem into two problems of lower dimension. In the case at hand, we can
see that the annular cross section of the pipe is swept along a path to define the solid geometry.
That path is composed of a straight section (in the upper, cylindrical portion of the pipe) and
a circular section (in the elbow). By first calculating the control points for the annulus, then
those for the path along which it is to be swept, and finally sweeping the control points for the
annulus along the control polygon of the path, we will avoid a lot of redundant work.

Foreshadowing the next chapter, it is best to keep in mind that we are generating a mesh to
be used in analysis, not just creating art. For this reason it is prudent as a final preliminary step
to consider how to avoid excessive distortion of the elements in the geometry we are about
to create. Also, we may want to avoid creating a geometry that will have singularities in the
mapping, or in its inverse. These are only guidelines, not strict rules. For example, the mesh
in Figure 2.33 has a singularity in the inverse of the geometrical mapping along its axis, and
yet has been used in analysis without difficulty. One face of each of the elements adjacent to
the axis has been degenerated by placing multiple control points at the same location, and thus
many parameter values map to the same point in physical space. Such a mapping is clearly not
invertible. Still, isogeometric fluid and fluid–structure interaction analyses of arterial blood
flow have been performed quite successfully on meshes topologically identical to this one
(see Bazilevs et al., 2006b). This is due to the fact that the quadrature points utilized never fall
on the singularity itself.

2.4.1.1 A template for a circle

A circle is one of the most common objects in engineering design. There are many ways to
construct circles using NURBS. Some of the more exotic techniques involve negative weights
or control points at infinity, neither of which are desirable for our purposes. The approach
shown here is one of the simplest. For a more thorough treatment, see Piegl and Tiller, 1997.

Arcs of less that 180◦ can be constructed from a single quadratic NURBS element, as shown
in Figure 2.34. The use of the open knot vector � = {0, 0, 0, 1, 1, 1} means that the first and
last of the three elements in the basis will be interpolatory. Thus, the first and last control
points, B1 and B3, respectively, will lie at the endpoints of the desired arc. We select the
associated weights, w1 and w3, to be equal to one. The remaining control point lies at the
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Figure 2.33 The geometrical mapping of this solid cylinder has a degeneracy along its axis. This results
in a singularity in the inverse mapping. In practice, however, such meshes have been used successfully.

intersection of the tangent lines passing through the other two points (now we see why this
technique only works for arcs of less than 180◦). Its weight, w2, is the cosine of half of the
angle subtended by the arc. That is, if ∠B1CB3 = θ , where C is the center of the circle, then
w2 = cos(θ/2).

Arcs greater than 180◦ may be constructed from multiple smaller arcs. These do not have to
be separate patches entirely, but the basis must be no more than C0-continuous where the arcs

B1

B2

B3

w1 = w3 = 1
w2 = cos( /2)

Figure 2.34 To build a circular arc from quadratic NURBS, place the first and third control points at the
endpoints of the arc. The second control point is at the intersection of the tangent lines passing through
these control points. The first and third weights are equal to one, while the second weight is equal to the
cosine of half of the angle subtended by the arc. The associated knot vector is � = {0, 0, 0, 1, 1, 1}.
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B1, B9

B2B3B4

B5

B6 B7 B8

wi =
1

2
for i even

1 otherwise

⎧
⎨
⎪

⎩⎪

Figure 2.35 The NURBS mesh for a circle comprised of four 90◦ arcs. All of the control points lie on
a square in which the circle is inscribed. Five of the control points (one repeated value) are on the circle
itself and have a weight of 1, while the remaining control points are at the corners of the square and have
a weight of 1√

2
.

meet. The reason for this is best understood by referring back to Figure 2.28b. This is a case
where continuity is being restricted by the projective B-spline curve, not the actual geometry
we are trying to create. The continuity in the geometry is preserved by the appropriate selection
of the control points.

In Figure 2.35 we have created a complete circle from four 90◦ arcs. We could represent
each of the arcs using separate patches such as the one we have just created. This, however,
is inefficient as there would be redundant control points where the arcs meet. Instead of
having two control points at each of these locations, one from each patch, we can use a single
patch with multiple elements and C0-continuity at each element boundary. In this case, this is
accomplished using � = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}. The resulting geometry is identical
to that in the multiple patch case, and the redundant control points are no longer present. Note
that we have closed the circle by placing the first and the last control point at the same location4.

2.4.2 Selection of polynomial orders

Returning to the pipe geometry, the first thing to determine is what polynomial orders will be
needed. In general, we will want to use the lowest polynomial order possible in each of the
parametric directions. Analysis may frequently demand higher orders than geometric design
(e.g., higher-order functions may be needed to avoid locking in structural analysis), but it is
best to work with the lowest order possible during design. This will provide the widest array
of options when it finally does become time for analysis.

For the pipe in Figure 2.32, we will definitely need at least quadratic NURBS in the
circumferential direction in order to replicate the circular features in the cross section. We
will make this the ξ -direction in the parametric space and set p = 2. Note that we have
no special features that require modeling through the thickness of the pipe, the η-direction.
Linear functions will suffice, and so q = 1. Lastly, we will need quadratic NURBS in the axial
direction (the ζ -direction in the parameter space) to model the circular geometry of the elbow,
making r = 2. These are the lowest orders that can be used, and so there is no ambiguity in
their selection.
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2.4.3 Selection of knot vectors

Determining the knot vector is not as difficult as it may at first appear. The decision will
be made by determining how many elements are necessary and what level of continuity is
required across each element boundary. Often, we can also gain insight from the templates
that we are using. For most purposes, integer knot values are perfectly sufficient. If a knot
vector in [0, 1] is preferable for some reason, we may proceed by assigning integer values and
simply divide by the greatest value once we are finished, recalling that such an operation has
no bearing on the resulting geometry (nor does adding a constant).

For the pipe, the only geometry in the circumferential direction is circular. If we intend to
follow the template of the above section on circles and use four arcs of 90◦, then we can use
the exact same knot vector used previously, thus � = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}.

In the η-direction, we have no features to model. Here we are only defining the thickness.
A single linear element will do, and so H = {0, 0, 1, 1}.

The ζ -direction requires a bit more care. As is represented schematically in Figure 2.36, we
may think of the whole pipe as being comprised of a cylindrical section adjoining an elbow.
Each of these requires only one element in the axial direction, and we have already determined
that the order of the NURBS basis will be r = 2. We could build the two objects separately
using Z1 = {0, 0, 0, 1, 1, 1} for the cylinder and Z2 = {1, 1, 1, 2, 2, 2} for the elbow. We do
not, however, want to use two distinct patches (each with identical control points on the surface
where they meet). As we did with the circle above, we can avoid such redundancy and use
a single patch with two elements in this direction, with C0-continuity between them. The
appropriate knot vector in this case is Z2 = {0, 0, 0, 1, 1, 2, 2, 2}.

Figure 2.36 The pipe has two basic sections: a cylinder and an elbow. We must choose a knot vector
that respects both of these distinct pieces, while allowing us to join them into one geometrical object.
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(1,0,4,1)
repeated

(1,1,4,1/sqrt(2))(0,1,4,1)(-1,1,4,1/sqrt(2))

(-1,0,4,1)

(-1,-1,4,1/sqrt(2)) (0,-1,4,1) (1,-1,4,1/sqrt(2))

Figure 2.37 Control points for the inner edge at the top of the pipe. Note that the weights (in blue) are
frequently stored as the fourth component of the control point that they are associated with, but we do
not consider them to be part of the control point itself.

2.4.4 Selection of control points

Only now that all of the other pieces of the puzzle are in place are we ready to assign the
actual control points. The easiest place to start is normally the corners of an object as they
will be interpolated, but for the pipe example, we do not have any true corners. What we do
have is the template for a circle. More over, we know that the solid geometry is an extrusion
formed by a NURBS surface being swept along a NURBS curve. Thus, let us begin by using
the template to construct the surface to be extruded.

Knowing that the inner radius of the pipe is 1, we can directly apply the template of Figure
2.34 to obtain control points for the inner edge at the top of the pipe (at height z = 4), as in
Figure 2.37. Similarly, we can apply the template to the outer edge, whose radius we know to
be 2. As the through-thickness discretization consists of a single linear element, this is all of
the information needed to represent the annular cross section, shown with in Figure 2.38.

To form the cylindrical portion of the pipe, we need only to sweep the annulus in a straight
line downward from the top, as in Figure 2.39. We accomplish this by sweeping its control
points in exactly the same way. We know the control points for the top surface, at z = 4. The
control points for the bottom of the cylindrical section will be identical, except with z = 1. If
we were using linear elements in the ζ -direction, this would be the whole story, but we are

(2,0,4,1)
repeated

(2,2,4,1/sqrt(2))(0,2,4,1)(-2,2,4,1/sqrt(2))

(-2,0,4,1)

(-2,-2,4,1/sqrt(2)) (0,-2,4,1) (2,-2,4,1/sqrt(2))

Figure 2.38 The annular surface at the top of the pipe. The control points for the outer edge are shown.
Note that the weights are the same as in Figure 2.37.
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Figure 2.39 We form the cylindrical portion of the pipe by sweeping the cross section straight down-
ward.

using quadratics (recall that quadratics were not necessary for this portion of the domain, but
they will be necessary when we get to the elbow). This means that we have an additional level
of control points between the top and bottom of the cylinder (each level corresponds to one of
the three basis functions in the ζ -direction of this element). Placing them directly between the
other two levels, at z = 2.5, leads to a linear parameterization of this part of the domain, and
so that is what we will do. The resulting control lattice is shown in Figure 2.40.

Figure 2.40 The control lattice for the cylindrical portion of the pipe. Note that there are three levels
of control points, one corresponding to each of the three quadratic NURBS functions in the ζ -direction
of this element.
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Figure 2.41 The elbow of the pipe is obtained by extruding the annulus of Figure 2.38 along the
circular arc of Figure 2.42.

The elbow portion of the pipe (Figure 2.41) is formed by sweeping the annulus of Figure
2.38 along a 90◦ circular arc. As we see in Figure 2.42, the control polygon for such a curve
makes an “L”, forming a right angle. The weight of the point at the corner, as we would
expect, is 1/

√
2. The construction of the control lattice for the elbow exhibits an outer product

structure wherein each point of the control net of the cross section follows the path of the
control polygon for a circle whose radius varies depending on where the control point is
relative to the axis of the pipe. Moreover, the first plane of control points is multiplied by
the weight of the first control point in the circular arc, the second level of control points is
multiplied by the weight of the second control point in the arc, and likewise with the third.
The result is shown in Figure 2.43.

Joining the cylinder and the elbow together, we get the control lattice for the entire pipe,
shown in Figure 2.44. The resulting eight element mesh, exactly encapsulating the pipe

w =1
1

w =1
32w =1/

2

⎧
⎨
⎪

⎩⎪

⎧ ⎨⎪ ⎩⎪

r

r

Figure 2.42 A 90◦ circular arc with radius r . The positions of the control points depend on the radius,
but the weights do not. This is just a special case of the general template seen in Figure 2.34.
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Figure 2.43 The control lattice for the elbow is obtained by “extruding” the control net of the annulus
along the control polygon of the circular curve. The weights of the control points in blue are those of the
annulus, multiplied by the weight of the second control point of the circular curve, 1√

2
.

Figure 2.44 The control lattice for the pipe.
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Figure 2.45 The mesh for the pipe consists of eight elements.

geometry, is shown in Figure 2.45. The control points, polynomial orders, and knot vectors
used in constructing this NURBS model of the pipe are all tabulated in Appendix 2.A at the
end of the chapter.

2.5 Notation

Now that we have introduced NURBS and seen that B-splines are simply a special case of
NURBS, and we have looked at curves, surface, and solids in several spatial dimensions, it
behooves us to consolidate our notation and terminology a bit. Henceforth, we will always
refer to “NURBS” even when we may mean “B-splines,” as every B-spline is also a NURBS.
Additionally, we will simply write N (ξ ) to refer to any basis function. It is to be understood
that this could be a univariate, bivariate, or trivariate, non-rational or rational basis function,
possibly comprised of a tensor-product of univariate functions of differing orders. We may
even suppress the explicit dependence on the parameter for the sake of brevity when it is
not needed. Lastly, to avoid distinguishing between curves, surfaces, and solids, we will refer
generically to a point in the domain at parameter value ξ as x(ξ ). When the details of a
NURBS object under consideration are not stated or made obvious by the context, the reader
may always conclude that the discussion generalizes to all possible cases.

Some additional notation is also warranted. Let us denote the domain in the physical
space (i.e., the geometry) by 
. Similarly, let us denote the domain in the parameter space
by 
̂. Thus, x : 
̂ → 
 is the geometrical mapping, taking points in the parameter space
and returning the corresponding points in the physical space. Unless otherwise specified, we
assume this mapping to be invertible, and so x−1 : 
 → 
̂ takes points in the physical domain
and identifies their corresponding parameter values.

Another point in need of elaboration is the definition of elements. We have already stated
that we consider elements to be the images of knot spans under the NURBS mapping. We
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will denote these knot spans in the parameter space by 
̂e, and their image in the physical
space as 
e, where e runs from 1, . . . , nel , with nel being the total number of elements in the
mesh. Confusion is possible when we consider the case of repeated knot values. In our current
implementations, we count every knot span, regardless of its measure, as an element. This is
the most convenient approach for the sake of bookkeeping and algorithm development as the
support of basis functions is always well defined in terms of the elements when we count this
way (see Appendix A at the end of the book for an example). One could say that such an
approach counts the number of elements in the index space. Alternatively, it is equally valid
to consider only elements of positive measure, particularly if we intend to only use open knot
vectors. This would be equivalent to counting elements in the parameter space (or physical
space as the mapping is assumed invertible) instead of in the index space. It is usually more
intuitive and convenient to take this parameter space view. The reason is that the number of
elements can frequently be determined by simply looking at the mesh. This is the approach
we will take for the remainder of the text. In the end, either approach is equally valid as long
as it is consistent with the data structure being used. None of the discussion in this book will
be dependent upon one interpretation over another.

Lastly, let us refine the usage of indices. In future chapters, the index i , as well as j , k, and
l, will be reserved for components of vectors in physical space, and as such will take on values
from 1, . . . , d . The index A will be used to identify the basis functions. It is taken to run from
1, . . . , nnp, where nnp is the total number of basis functions in the mesh5. The same is true of
control points; again A is used and again it runs from 1, . . . , nnp, as may be expected since the
number of control points is equal to the number of basis functions. When additional indices are
needed in the same role, the letters B, C, and D will be used. On each element, we can simplify
things by recognizing that only a limited number of basis functions, denoted by nen will have
support on the element. For the NURBS basis, nen is fixed and does not depend on the specific
element under consideration. Thus we will frequently identify basis functions, control points,
and control variables (see Chapter 3) on a given element 
e, not by their global index A, but
by a local index a, which runs from 1, . . . , nen . When additional indices are needed in this
same role, the letters b, c, and d will be used. This notation is in keeping with standard finite
element software data structures. For a thorough discussion of the global and local indices, as
well as data structures for relating them on an element by element basis, see Chapter 3.

Appendix 2.A: Data for the bent pipe

The solid geometry for the pipe with an elbow bend featured in Section 2.4 uses a trivariate
NURBS basis. The three parametric directions, ξ , η, and ζ , correspond to the circumferential,
radial, and axial directions, respectively. The corresponding polynomial orders and knot vectors
are given in Table 2.A.1 and the control points are given in Table 2.A.2.

Table 2.A.1 Polynomial orders and knot vectors for the bent pipe

Direction Order Knot vector

ξ p = 2 � = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}
η q = 1 � = {0, 0, 1, 1}
ζ r = 2 � = {0, 0, 0, 1, 1, 2, 2, 2}
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Table 2.A.1 Control points for the bent pipe

i k Bi,1,k Bi,2,k wi,1,k wi,2,k

1 1 (1, 0, 4) (2, 0, 4) 1 1
1 2 (1, 0, 2.5) (2, 0, 2.5) 1 1
1 3 (1, 0, 1) (2, 0, 1) 1 1
1 4 (1, 0, −1) (2, 0, 0) 1/

√
2 1/

√
2

1 5 (3, 0, −1) (3, 0, 0) 1 1
2 1 (1, 1, 4) (2, 2, 4) 1/

√
2 1/

√
2

2 2 (1, 1, 2.5) (2, 2, 2.5) 1/
√

2 1/
√

2
2 3 (1, 1, 1) (2, 2, 1) 1/

√
2 1/

√
2

2 4 (1, 1, −1) (2, 2, 0) 1/2 1/2
2 5 (3, 1, −1) (3, 2, 0) 1/

√
2 1/

√
2

3 1 (0, 1, 4) (0, 2, 4) 1 1
3 2 (0, 1, 2.5) (0, 2, 2.5) 1 1
3 3 (0, 1, 1) (0, 2, 1) 1 1
3 4 (0, 1, −2) (0, 2, −2) 1/

√
2 1/

√
2

3 5 (3, 1, −2) (3, 2, −2) 1 1
4 1 (−1, 1, 4) (−2, 2, 4) 1/

√
2 1/

√
2

4 2 (−1, 1, 2.5) (−2, 2, 2.5) 1/
√

2 1/
√

2
4 3 (−1, 1, 1) (−2, 2, 1) 1/

√
2 1/

√
2

4 4 (−1, 1, −3) (−2, 2, −4) 1/2 1/2
4 5 (3, 1, −3) (3, 2, −4) 1/

√
2 1/

√
2

5 1 (−1, 0, 4) (−2, 0, 4) 1 1
5 2 (−1, 0, 2.5) (−2, 0, 2.5) 1 1
5 3 (−1, 0, 1) (−2, 0, 1) 1 1
5 4 (−1, 0, −3) (−2, 0, −4) 1/

√
2 1/

√
2

5 5 (3, 0, −3) (3, 0, −4) 1 1
6 1 (−1, −1, 4) (−2, −2, 4) 1/

√
2 1/

√
2

6 2 (−1, −1, 2.5) (−2, −2, 2.5) 1/
√

2 1/
√

2
6 3 (−1, −1, 1) (−2, −2, 1) 1/

√
2 1/

√
2

6 4 (−1, −1, −3) (−2, −2, −4) 1/2 1/2
6 5 (3, −1, −3) (3, −2, −4) 1/

√
2 1/

√
2

7 1 (0, −1, 4) (0, −2, 4) 1 1
7 2 (0, −1, 2.5) (0, −2, 2.5) 1 1
7 3 (0, −1, 1) (0, −2, 1) 1 1
7 4 (0, −1, −2) (0, −2, −2) 1/

√
2 1/

√
2

7 5 (3, −1, −2) (3, −2, −2) 1 1
8 1 (1, −1, 4) (2, −2, 4) 1/

√
2 1/

√
2

8 2 (1, −1, 2.5) (2, −2, 2.5) 1/
√

2 1/
√

2
8 3 (1, −1, 1) (2, −2, 1) 1/

√
2 1/

√
2

8 4 (1, −1, −1) (2, −2, 0) 1/2 1/2
8 5 (3, −1, −1) (3, −2, 0) 1/

√
2 1/

√
2

9 1 (1, 0, 4) (2, 0, 4) 1 1
9 2 (1, 0, 2.5) (2, 0, 2.5) 1 1
9 3 (1, 0, 1) (2, 0, 1) 1 1
9 4 (1, 0, −1) (2, 0, 0) 1/

√
2 1/

√
2

9 5 (3, 0, −1) (3, 0, 0) 1 1
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Notes

1. This is frequently referred to as “affine invariance” in the geometry literature
2. The terms control polygon, control net, and control lattice are precise in one, two, and

three dimensions, respectively. It is often our practice, however, to simplify the matter and
use the term control net regardless of the number of dimensions in which we are working.
This will be the case throughout the book, except when there is a benefit in distinguishing
between the cases. All of these are equivalent to the term “control mesh” introduced in the
previous chapter.

3. In the CAD literature “knot insertion” refers to inserting a single knot into a knot vector,
whereas “knot refinement” refers to inserting multiple knots simultaneously. Here, we make
no distinction and use “knot insertion” to refer to both cases.

4. This repetition of control points could be removed by abandoning open knot vectors in this
instance. Though this would be nice in theory, all of our current software is designed under
the assumption of open knot vectors.

5. The subscript np denotes “nodal points,” a term wholly inappropriate for isogeometric
analysis in which we do not have “nodes.” Its present usage is meant to keep the notation
consistent with that of the finite element text of Hughes, 2000.
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3
NURBS as a Basis for Analysis:
Linear Problems

In the previous chapter we introduced NURBS in their natural setting. They have been a
mainstay of geometric design for many years due to their flexibility and precision. In this
chapter we bring them into the setting of analysis – an arena to which their unique prop-
erties are also ideally suited. As a basis for analysis, NURBS generalize and improve upon
the traditional piecewise polynomial basis functions, providing unprecedented accuracy and
robustness across a wide array of applications. The power of this combination of geometric
and analytic capabilities is at the very heart of isogeometric analysis. We will consider linear
problems in this chapter. Nonlinear problems will be discussed in Chapter 7.

3.1 The isoparametric concept

The root idea behind isogeometric analysis is that the basis used to exactly model the geometry
will also serve as the basis for the solution space of the numerical method (Figure 3.1). This
notion of using the same basis for geometry and analysis is called the isoparametric concept,
and it is quite common in classical finite element analysis. The fundamental difference between
this new concept of isogeometric analysis and the old concept of isoparametric finite element
analysis is that, in classical FEA, the basis chosen to approximate the unknown solution fields
is then used to approximate known geometry. Isogeometric analysis turns this idea around and
selects a basis capable of exactly representing the known geometry and uses it as a basis for
the fields we wish to approximate. In a sense, we are reversing the isoparametric arrow such
that it points from the geometry toward the solution space, rather than vice versa; see Figure
3.2. This logical shift allows us to utilize all of the information that we possess. Fortuitously,
we will see that the NURBS basis also possesses many properties that are quite desirable when
approximating solution fields independently of any geometrical considerations.

The reliance of traditional FEA on polynomials is, at least in part, because of their simplicity.
They are easy to program, easy to understand, easy to prove theorems with, and have well
known approximation properties. As long as they are used as the basis of the solution space,
convergence rates and other similar mathematical apparatus are reasonably straightforward
to obtain. This is not to say that proving theorems about other bases is impossible. On the

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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Analysis

Geometry

Figure 3.1 The isoparametric concept links analysis with geometry. Traditional FEA has been slow
to acknowledge the power and importance of geometry – a sin isogeometric analysis avoids. The
Creation of Adam, Michelangelo, circa 1511, Fresco, 480 × 230 cm, Sistine Chapel, Vatican City
(http://en.wikipedia.org/wiki/Michelangelo).

contrary, it is the isoparametric concept itself that allows us to work confidently with more
exotic bases. Though precise results for non-polynomial bases do exist – for example, several
theorems regarding convergence for NURBS based isogeometric analysis have already been
proved in Bazilevs et al., 2006a and are discussed in Appendix 3.B at the end of this chapter –
the most basic convergence requirements in many numerical methods are achieved by any
reasonably smooth isoparametric basis that is also a partition of unity.

As seen, for example, in Hughes, 2000, sufficient conditions for a basic convergence proof
for a wide class of problems are satisfied by a basis that is

� C1 on the element interiors,
� C0 on the element boundaries,
� complete.

The requirements of C1-continuity on the element interiors and C0-continuity on the ele-
ment boundaries are not at all restrictive. Most bases that we might consider are C∞ on the
element interiors and (with the exception of Discontinuous Galerkin methods) have at least
C0-continuity on the element boundaries. The third condition, completeness, requires that, on
any given element �e, the basis be capable of representing all linear functions. That is, given
a basis {Na}nen

a=1 for the solution space, completeness demands that there exist coefficients da

Classical FEA: Geometry ⇐= Fields
imposed

on
Isogeometric Analysis: Geometry =⇒ Fields

Figure 3.2 Reversing the isoparametric arrow. Classical finite element analysis imposes its chosen
solution space onto the description of the geometry. Isogeometric analysis begins with a basis capable
of representing the exact geometry and imposes it on the solution fields.
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such that, for arbitrary constants C0, C1, C2, and C3,

uh |�e ≡
nen∑
a=1

Nada = C0 + C1x + C2y + C3z. (3.1)

This last property is satisfied by any isoparametric basis that is also a partition of unity. To see
this, simply note that for each point x ∈ �e there exists a parameter ξ such that

x(ξ ) ≡
⎧⎨
⎩

x(ξ )
y(ξ )
z(ξ )

⎫⎬
⎭ =

een∑
a=1

Na(ξ )

⎧⎨
⎩

xe
a

ye
a

ze
a

⎫⎬
⎭ , (3.2)

where xe
a, ye

a, and ze
a are simply the components of the ath vector-valued coefficient defining

the geometry in element �e (these could be nodes, control points, etc., depending on the
specific basis being used). As the basis is a partition of unity, at that same point ξ we have

e∑
a=1

Na(ξ ) ≡ 1. (3.3)

Inserting (3.2) and (3.3) into (3.1) and solving for da yields

da = C0 + C1xe
a + C2ye

a + C3ze
a . (3.4)

Thus, the isoparametric concept and the partition of unity are enough to ensure
completeness. Moreover, they are vital to ensuring that isogeometric analysis will result
in convergent methods for many different choices of element technology, NURBS included.

3.1.1 Defining functions on the domain

Interpreting the Na(ξ )’s as NURBS functions and thus recognizing {xe
a, ye

a, ze
a}T as the compo-

nents of control point Ba , we see that the geometrical mapping x : �̂ → � is defined exactly
as in (3.2). We can build other functions over the entire parametric domain in similar fashion.
For example, let ûh : �̂ → R be defined by

ûh(ξ ) ≡
nnp∑
A=1

NA(ξ )dA. (3.5)

The coefficients dA are called control variables. As with control points, the non-interpolatory
nature of the basis prevents strictly interpreting the control variables as we can do with nodal
values in FEA. We can define the function over the domain in the physical space by considering
a composition with the inverse of the geometrical mapping such that uh : � → R is given by

uh = ûh ◦ x−1. (3.6)

In practice, we will take advantage of the fact that the geometrical mapping is invertible, and
we will not distinguish between uh and ûh , writing uh to refer to the function regardless of
which coordinates we are working in.
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The properties of the function uh follow from the basis, just as was the case with other
NURBS objects previously considered. The maximum level of continuity across an element
boundary, for example, is determined by the continuity of the basis across the corresponding
knot span. If the level of resolution is insufficient, the basis may be refined. Recall from Chapter
2 that such a refinement leaves both the geometry and its parameterization unchanged. This
means that the geometrical mapping itself is unchanged. Thus refinement may proceed as
needed for analysis without regard for the geometry, which is exact from the coarsest mesh
onward.

3.2 Boundary value problems (BVPs)

As an example of solving a differential equation posed over the domain defined by a NURBS
geometry, let us consider Laplace’s equation. The goal is to find u : �̄ → R such that

�u + f = 0 in �, (3.7a)

u = g on �D, (3.7b)

∇u · n = h on �N , (3.7c)

βu + ∇u · n = r on �R, (3.7d)

where �D
⋃

�N
⋃

�R = � ≡ ∂�, �D
⋂

�N
⋂

�R = ∅, and n is the unit outward normal
vector on ∂�. The functions f : � → R, g : �D → R, h : �N → R, and r : �R → R are all
given, as is the constant β. Equation (3.7) constitutes the strong form of the boundary value
problem (BVP). The boundary conditions given in (3.7b), (3.7c), and (3.7d) represent the three
major types of boundary conditions one is likely to encounter. These are Dirichlet conditions,
Neumann conditions, and Robin conditions, respectively. They will be discussed in detail in
Section 3.4.

For a sufficiently smooth domain, and under certain restrictions on g, h, and r , a unique
solution u satisfying (3.7) is known to exist, but an analytical expression will usually be
impossible to obtain. However, we may seek an approximate solution of the form of (3.5).
We generically refer to techniques for doing so as numerical methods. Different numerical
methods are simply different techniques for finding dA such that uh ≈ u. Several different
numerical methods that could be implemented in an isogeometric analysis framework are
presented below.

3.3 Numerical methods

There are several classes of numerical methods that lend themselves to isogeometric analysis.
The primary one, Galerkin finite element analysis, is the approach that has been utilized for
most of the examples contained in subsequent chapters. The other techniques to be described –
collocation, least-squares finite element analysis, and meshless methods – all can be imple-
mented using NURBS. In fact, a NURBS-based approach may have significant advantages
over some of the more traditional implementations of these numerical methods.
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3.3.1 Galerkin

In many circles, the term “Galerkin’s method” is for all intents and purposes synonymous with
finite element analysis. While FEA has grown considerably beyond the classical Galerkin
method itself, its roots still lie in the approach. Here we present the Bubnov–Galerkin1 method
that underlies most of modern finite element analysis.

3.3.1.1 A weak form of the problem

The technique begins by defining a weak, or variational, counterpart of (3.7). To do so, we
need to characterize two classes of functions. The first is to be composed of candidate, or trial
solutions. From the outset, these functions will be required to satisfy the Dirichlet boundary
condition of (3.7b), as will be discussed in Section 3.4.

To define the trial and weighting spaces formally, let us first define the space of square
integrable functions on �. This space, called L2(�), is defined as the collection of all functions
u : � → R such that

∫
�

u2 d� < +∞. (3.8)

Let us consider a multi-index ααα ∈ N
d where d is the number of spatial dimensions in the

space. Forααα = {α1, . . . , αd}, we define |ααα| = ∑d
i=1 αi . We now have a concise way to represent

derivative operators. Let Dααα = Dα1
1 Dα2

2 . . . Dαd
d , where D j

i = ∂ j

∂x j
i

. So that certain expressions

to be employed in the formulation make sense, we shall require that the derivatives of the
trial solutions be square-integrable. Specifically, if u : � → R is a trial solution, then we must
insist that

∫
�

∇u · ∇u d� < +∞. (3.9)

Such a function is said to be in the Sobolev space H 1(�), which is characterized by

H 1(�) = {u|Dαααu ∈ L2(�), |ααα| ≤ 1}. (3.10)

We may now define the collection of trial solutions, denoted by S, as all of the functions
which have square-integrable derivatives and that also satisfy

u|�D = g. (3.11)

This is written as

S = {u | u ∈ H 1(�), u|�D = g}. (3.12)

The second collection of functions in which we are interested is called the weighting
functions. This collection is very similar to the trial functions, except that we have the
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homogeneous counterpart of the Dirichlet boundary condition. That is, the weighting functions
are denoted by a set V defined by

V = {w | w ∈ H 1(�), w|�D = 0}. (3.13)

We may now obtain a variational statement of the BVP by multiplying (3.7a) by an arbitrary
test function w ∈ V and integrating by parts, incorporating (3.7c) and (3.7d) as needed. The
resulting weak form of the problem is now: Given f , g, h, and r , find u ∈ S such that for all
w ∈ V ∫

�

∇w · ∇u d� + β

∫
�R

wu d� =
∫

�

w f d� +
∫

�N

wh d� +
∫

�R

wr d�. (3.14)

Note that all of the unknown information, namely u, is contained on the left-hand side of the
equation, while all of the given data, h and r , are contained on the right-hand side.

We now see why H 1(�) was the appropriate space in which to work. Despite the fact that
the strong form of the equation (3.7) required u to have well defined second derivatives, the
weak form from which the numerical method is built (3.14) only requires that first derivatives
be square-integrable.

This weak form may be rewritten as

a(w, u) = L(w) (3.15)

where

a(w, u) =
∫

�

∇w · ∇u d� + β

∫
�R

wu d�, (3.16)

and

L(w) =
∫

�

w f d� +
∫

�N

wh d� +
∫

�R

wr d�. (3.17)

A few properties of a(·, ·) and L(·) are worth noting. The first is the symmetry of a(·, ·). It
follows directly from its definition that a(w, u) = a(u, w). Also, a(·, ·) is bilinear and L(·) is
linear. That is, for all constants C1 and C2,

a(C1u + C2v,w) = C1a(u, w) + C2a(v,w), (3.18)

L(C1u + C2v) = C1L(u) + C2L(v). (3.19)

This concise notation, or variants thereof, is quite common in the finite element literature.
For problems other than the Laplace equation, the details vary, but the basic form remains. It
captures the essential mathematical features of the variational method (as well as suggesting
features of a finite element implementation) that are more general than the details of the
equation itself.

The solution to (3.14), or equivalently (3.15), is called a weak solution. Under appropriate
regularity assumptions it can be shown that the weak solution and the strong solution of (3.7)
are equivalent; see Hughes, 2000.



P1: ABC/ABC P2: c/d QC: e/f T1: g

c03 JWBK372-Cottrell May 20, 2009 15:22 Printer Name: Yet to Come

NURBS as a Basis for Analysis 75

3.3.1.2 Galerkin’s method

Galerkin’s method consists of constructing finite-dimensional approximations of S and V ,
denoted Sh and Vh , respectively. Strictly speaking, these will be subsets such that

Sh ⊂ S, (3.20)

Vh ⊂ V. (3.21)

Furthermore, these will be associated with subsets of the space spanned by the isoparametric
basis.

We can further characterize Sh by recognizing that if we have a given function gh ∈ Sh

such that gh|�D = g, then for every uh ∈ Sh there exists a unique vh ∈ Vh such that

uh = vh + gh . (3.22)

This clearly will not be possible for an arbitrary function g, but at present let us assume that
such a gh exists. Section 3.4 will discuss the general case at length.

We can now write a variational equation of the form of (3.15). The Galerkin form of the
problem is: Given gh , h, and r , find uh = vh + gh , where vh ∈ Vh , such that for all wh in Vh

a(wh, uh) = L(wh). (3.23)

Recalling (3.22) and the bilinearity of a(·, ·), we can rewrite (3.23) as

a(wh, vh) = L(wh) − a(wh, gh). (3.24)

In this latter form, the unknown information is on the left-hand side, while everything on
the right-hand side is given, as before. (3.23) and (3.24) are sometimes referred to as the
Bubnov-Galerkin method.

Remark
A related method, the Petrov–Galerkin method, assumes a weighting space that is different
than Vh , that is, vh ∈ Vh but wh ∈ Ṽh �= Vh . The use of Petrov’s name seems to emanate
from Mikhlin, 1964. Boris Galerkin (see Figure 3.3) published his seminal paper in 1915 (see
http//en.wikipedia.org/wiki/Boris Galerkin).

Figure 3.3 Boris Galerkin.
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3.3.1.3 Matrix equations

The finite-dimensional nature of the function spaces used in Galerkin’s method leads to a
coupled system of linear algebraic equations. Let the solution space consist of all linear
combinations of a given set of NURBS functions NA : �̂ → R, where A = 1, . . . , nnp. Recall
that the support of the functions is highly localized and that very few functions are non-zero
on the boundary of the domain. Without loss of generality, we may assume a numbering for
these functions such that there exists an integer neq < nnp such that

NA|�D = 0 ∀A = 1, . . . , neq . (3.25)

Thus, for all wh ∈ Vh , there exist constants cA, A = 1, . . . , neq such that

wh =
neq∑
A=1

NAcA. (3.26)

Furthermore, the function gh (frequently called a “lifting”) is given similarly by coefficients
gA, A = 1, . . . , nnp. In practice, we will always choose gh such that g1 = . . . = gneq = 0 as
they have no effect on its value on �D , and so

gh =
nnp∑

A=neq+1

NAgA. (3.27)

Finally, recalling again (3.22), for any uh ∈ Sh there exist dA, A = 1, . . . , neq such that

uh =
neq∑
A=1

NAdA +
nnp∑

B=neq+1

NBgB =
neq∑
A=1

NAdA + gh . (3.28)

We may insert (3.26) and (3.28) into (3.24), and take advantage of linearity to obtain the
expression

neq∑
A=1

cA

( neq∑
B=1

a(NA, NB)dB − L(NA) + a(NA, gh)

)
= 0. (3.29)

As the cA’s are arbitrary (recall that (3.29) is to hold for all wh ∈ Vh), it follows that the term
in parentheses must vanish. Thus, for A = 1, . . . , neq ,

neq∑
B=1

a(NA, NB)dB = L(NA) − a(NA, gh). (3.30)

Proceeding to define

K AB = a(NA, NB), (3.31)

FA = L(NA) − a(NA, gh), (3.32)
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and

K = [K AB], (3.33)

F = {FA}, (3.34)

d = {dA}, (3.35)

for A, B = 1 . . . , neq , we can rewrite (3.30) as the matrix problem

Kd = F. (3.36)

Due to the finite element method’s historical origins in structural analysis, the following
terminology is frequently applied independently of the actual problem being solved

K = stiffness matrix,

F = force vector,

d = displacement vector.

Solving (3.36) for the dA’s for A = 1, . . . , neq as

d = K−1F, (3.37)

and then inserting them back into (3.28) lets us finally write the solution uh as

uh =
neq∑
A=1

NAdA +
nnp∑

B=neq+1

NBgB . (3.38)

3.3.1.4 Assembling the system

It is important to note that K is a sparse matrix. This is a result of the fact that the support
of each basis function is highly localized. Thus, for many combinations of A and B in the
neq × neq global stiffness matrix, K AB = a(NA, NB) = 0. We can take advantage of this fact
in order to reduce the amount of work necessary in building and solving the algebraic system.

If we look back at any of the pictures of basis functions from Chapter 2, we note that the
maximum number of functions with support on any given element is always fixed by the order
of the polynomial. That is, for each element in the patch, the maximum number of functions
that are not identically equal to zero throughout the patch is the same regardless of which
element is under consideration. Let us denote this number of local shape functions by nen .
Thus, if we were to build an nen × nen element stiffness matrix, ke, by posing the problem
over a single element, this matrix would always be dense. The term local stiffness matrix is
also common, and we use it interchangeably.

The above approach is exactly the one we take in practice. The process of building the
global stiffness matrix and force vector is called assembly. Instead of looping through all of
the global shape functions, taking global integrals to build K one entry at a time, we will loop
through the elements, building element stiffness matrices as we go. Every entry of each of
these dense element stiffness matrices will then be added to the appropriate spot in the global
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stiffness matrix. In this way, we need not expend effort integrating functions over regions in
which we know a priori that they are zero2.

This process is made simple by a connectivity array that links every local shape function
number to a global shape function number. Let us call the connectivity array IEN. For each
element number e from 1, . . . , nel , and local function number a from 1, . . . , nen , there is a
global function number A from 1, . . . , neq such that IEN(a, e) = A. That is, local function
Na of element �e and global function NA are exactly the same. This allows us to build
the global stiffness matrix from a sequence of local ones. Similarly, the global force vector
F is assembled from the local force vectors Fe. Along the way, we are only performing
integration on functions that are non-zero. See Appendix A at the end of the book for a
more detailed discussion of connectivity arrays. The assembly process is described in detail in
Hughes, 2000.

The actual integration is performed by Gaussian quadrature. As seen in Figure 3.4, integrals
are pulled back, first onto the parametric domain and then onto a bi-unit parent element,
and integration is performed using a classical change of variables formulation. Having al-
ready denoted coordinates in the physical space by x and coordinates in the parameter space
by ξξξ , let us denote coordinates in the parent element by ξ̃ξξ . Similarly, we have already de-
noted the element in the physical space by �e and in the parameter space by �̂e, and so let
us denote the parent element by �̃e. The mapping x : �̂ → � from the parameter space to
the physical space is defined in (3.2). We now introduce an affine mapping φ : �̃e → �̂e from
the parent element to the element in the parameter space. The pullback from the physical
space to the parent element, needed to perform quadrature, is achieved using the composition
of the inverses of the two mappings, as in Figure 3.4. At each quadrature point in the parent
element, we must evaluate the basis functions, their gradients, and the Jacobian determinant
of the pullback. This is done via a shape function routine3. The details of these compu-
tations, as well as pseudo-code for a shape function routine for NURBS, are contained in
Appendix 3.A at the end of this chapter. See Hughes, 2000, for additional details of numerical
integration.

Even though the NURBS functions are not necessarily polynomials, Gaussian quadrature
seems to be very effective for integrating them. We can use the same Gauss rule for a pth

order NURBS function as one would use for a polynomial of the same order. Though this
approach to integration is only approximate, it is important to note that integrating the classical
polynomial functions by quadrature on elements with curved sides is only an approximation
as well.

Once Galerkin’s method has been applied and an approximation, uh , has been obtained, it
is fair to inquire as to just how good of an approximation it is. Results for classical FEA and
isogeometric analysis are discussed in Appendix 3.B at the end of this chapter. It turns out
that, for elliptic problems such as the one considered in this section, the solution is optimal in
a very natural sense; see chapter 4 of Hughes, 2000.

3.3.2 Collocation

A much simpler numerical method for approximating solutions to differential equations such
as (3.7) is called collocation. Its simplicity follows from the fact that the differential equation
is only enforced at a discrete set of points, thus making evaluation and assembly much faster.
The trade-off for this simplicity is that it is much more difficult to perform error analysis of
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Figure 3.4 Integration is performed by Gaussian quadrature on one element at a time. The physical
element is pulled back first to the parametric domain through the geometrical mapping, then through a
second mapping, this one affine, to the parent element. Standard change of variables rules apply.

the method, particularly on general domains. However, its efficiency makes it an attractive
alternative to FEA.

A full treatment of collocation is beyond the scope of this book. Practitioners will find
this brief introduction woefully lacking as many collocation techniques are much more so-
phisticated than what we present. Our goal is to give a very simple introduction to how the
approach might be used in an isogeometric analysis setting, not to give a full representation
of the current state of the art.

The goal of collocation is to generate a solution that obeys the differential equation at a set
of discrete points called the collocation points. This is still an isoparametric method in that we
look for a solution in the space of functions spanned by the basis from which we have built the
geometry. That is, we will again look for a solution having the form of (3.28). For simplicity,
let us assume that f = 0, �D ≡ � and thus �N = �R = ∅.

In the simplest of all collocation methods, we will introduce a set of collocation points
ζA ∈ � at which to enforce the differential equation. The collocation problem is simply: Find
uh such that

�uh(ζA) = 0, (3.39)

for A = 1, . . . , neq . Note that, as with the Galerkin finite element case, we have built the
Dirichlet boundary condition directly into the solution space, and thus have no equation
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explicitly pertaining to it as we did in the strong form of the equation (3.7). If we substitute
(3.28) into (3.39) and take advantage of the linearity of the Laplace operator, we may rewrite
the system as

neq∑
B=1

�NB(ζA)dB = −gh(ζA). (3.40)

We may again recast the problem in the language of matrix algebra. To do so, we define

K AB = �NB(ζA) (3.41)

FA = −gh(ζA) (3.42)

and

K = [K AB], (3.43)

F = {FA}, (3.44)

d = {dA}, (3.45)

for A, B = 1 . . . , neq . Now (3.40) may be rewritten as

Kd = F. (3.46)

If K is nonsingular, then (3.46) will have a unique solution

d = K−1F, (3.47)

and uh will again be exactly as in (3.38). Whether or not we can invert the matrix depends on
the locations of the collocation points. The selection of these points is clearly not arbitrary.
It is important that the total number of collocation points be equal to the number of degrees-
of-freedom in the solution space, but if all neq of them were placed in a single element in
which only a small fraction of the total number of basis functions were non-zero, many of the
columns of K would be filled with zeros.

While selecting the appropriate locations of the collocation points has been the topic of
much research, there is a fairly simple solution that seems to work for the NURBS functions.
It was first suggested for curve and surface interpolation in Lim, 1999, and appeared again
in the context of solving BVPs in Kwok et al., 2001. The idea is to associate each of the
neq collocation points with one of the neq basis functions. Each ζA is placed at exactly the
location of the maximum of function NA, see Figure 3.5. Not only does this guarantee a
nonsingular matrix K, but its conditioning, as well as the smoothness of the results, compare
quite favorably with other methods. This simple approach is not perfect, however, as the
stability of the resulting system can still be a problem; see Kwok et al., 2001. Selection of
optimal collocation points is still an open problem.

The only issue remaining is that of selecting the order of NURBS functions to be used. Linear
functions will clearly be insufficient as the second derivatives are required in the assembly
of the stiffness matrix. The second derivatives of the linear functions are all zero on element
interiors and are Dirac layers on the element boundaries. In such cases, the stiffness matrix
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Figure 3.5 For NURBS functions, one approach to the selection of the collocation points is to place
them at the maxima of the basis functions. Each of the collocation points, shown here as red triangles,
are located at parameter values at which a function achieves its maximum. The first and last function,
which have support on the boundary, are not included because they correspond to the lifting, gh . That is,
we do not solve for their coefficients; they are given as gA’s. Another promising possibility is to locate
the collocation points at the Greville abscissae (see Farin, 1999a) as proposed by Johnson, 2005a, 2005b.

would be unusable. Quadratic functions could be used, as long as the collocation points never
corresponded to knot values as the second derivatives would be undefined at the knots. Cubics
and higher are the best option. Not only could the collocation points be chosen at the knots if
necessary, but the continuous second derivative might make the the quality of the result less
sensitive to the location of the collocation points.

3.3.3 Least-squares

An approach that is similar in style to Galerkin FEA is the technique of least-squares finite
element analysis4. As opposed to multiplying the strong form of the equation (3.7) by a
weighting function and integrating, as we did in the Galerkin case, here we first apply the
differential operator to the weighting function itself before multiplying and integrating.

In defining the spaces of trial solutions and weighting functions, we must consider the
effect of the differential operator acting on the weighting function. The space H 1(�) was
sufficient for Galerkin finite elements because integrating by parts allowed us to shift one
of the derivatives off of the trial solution and onto the weighting function. In the case of
least-squares, the weighting function already has the same number of derivatives applied to it
as does the trial solution, and so the integration by parts will not be performed. Thus, we must
require that the spaces have, not just square integrable first derivatives, but square integrable
second derivatives. The Sobolev space H 2(�) is just such a space. It is defined by

H 2(�) = {u|Dαααu ∈ L2(�), |ααα| ≤ 2}. (3.48)

We define the trial solution space and weighting function spaces as

S = {u | u ∈ H 2(�), u|�D = g} (3.49)

and

V = {w | w ∈ H 2(�), w|�D = 0}, (3.50)

respectively.
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Assuming again that �D = �, the resulting weak problem for a least-squares approach is:
Find u ∈ S such that for all w ∈ V

∫
�

�w�u d� =
∫

�

�w f d�. (3.51)

We write this using bilinear form a(·, ·) as

a(w, u) = L(w), (3.52)

where

a(w, u) =
∫

�

�w�u d�, (3.53)

and

L(w) =
∫

�

�w f d�. (3.54)

As with Galerkin FEA, we will seek a numerical solution by working with finite dimensional
subspaces Sh ⊂ S and Vh ⊂ V that are spanned by the NURBS basis. We assume that there
exists a lifting gh ∈ Sh such that gh|�D = g, and thus for every uh ∈ Sh we have a unique
decomposition uh = vh + gh , where vh ∈ Vh . Thus, the least-squares finite element problem
is now: Find uh = vh + gh , where vh ∈ Vh , such that for all wh ∈ Vh

a(wh, vh) = L(wh) − a(wh, gh). (3.55)

From here we proceed exactly as in the Galerkin case to assemble and solve a matrix system
for the coefficients of the solution.

Recall that the solution and weighting spaces here are different than in the Galerkin case.
The need for square-integrable second derivatives demands the use of C1-continuous basis
functions. This is clearly not a problem for the NURBS basis, as long as the functions are
quadratic or higher order. However, at the interface between patches, constructed from open
knot vectors, there will only be C0 continuity. Here the C1 continuity can be enforced weakly
by employing the so-called “continuous/discontinuous Galerkin (CDG) method” of Engel
et al., 2002. See also Hughes and Garikipati, 2004; Wells et al., 2006; Wells and Dung, 2007;
and Dung and Wells, 2008.

Proponents of the least-squares approach assert several desirable features of the method,
many of which strike at topics that are beyond the scope of this book. At the very least, it is
worth mentioning that the resulting stiffness matrix is symmetric and positive definite in all
cases, whereas for the Galerkin approach it depends on the differential operator being used.
(Note that in the example of the Laplace equation, both techniques result in a symmetric
positive definite matrix.) For a good overview of least-squares methods, see Bochev and
Gunzburger, 1998.
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3.3.4 Meshless methods

So called “element-free” or “mesh-free” methods have generated a substantial amount of
research interest in recent years (see, e.g., Nayroles et al., 1992; Belytschko et al., 1994; Liu
et al., 1995; Duarte and Oden, 1996; Melenk and Babuska, 1996), though they are as-of-yet
rarely seen in industrial practice. There are differences in the approaches that are taken and
the names that are used. Usually, the underlying numerical method is Galerkin finite element
analysis. What distinguishes the method is the relationship between the geometry, the basis of
the solution space, and the quadrature technique being used.

The basic concept of a meshless method is schematically depicted in Figure 3.6. Here the
geometry of the domain is typically represented by a boundary description. The basis for
the solution space has nothing to do with the geometric description, and hence this is not
an isoparametric approach. Here a set of radial basis functions is being generated by a set
of nodes scattered in an unstructured fashion throughout the domain. Lastly, a “background
cell structure” is used for the purposes of integration. Quadrature rules are applied on the
intersection of the cells with the domain.

In some ways this is the opposite approach to avoiding the problems of mesh generation
as that taken by isogeometric analysis. Rather than uniting the geometry with the solution
space as much as possible, meshless methods give them complete autonomy so that one might
be considered without the other. While attractive in theory, such an approach is not without
its problems. Sakurai, 2006, describes the difficulty of integration, the treatment of Dirichlet
boundary conditions, and the low computational efficiency as major drawbacks of the method,

quadrature
points

nodes

Figure 3.6 Meshless methods separate the tasks of geometry representation, solution representation,
and quadrature. A boundary representation is used to describe the geometry. An unrelated basis is
introduced to represent the solution. In this case, we have used an unstructured distribution of nodes,
each with an associated radial basis function. The support of one such function is seen in red. In order
to integrate the functions, a background cell structure is often introduced, with quadrature points placed
within each cell.
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but goes on to say that “the greatest disadvantage of [meshless methods] caused by abandoning
elements is that the ability to define the geometry of the analysis object has been lost.” Of
course, this is exactly the area in which isogeometric analysis shines. Still, meshless methods
are enjoying much popularity in the academic community and are worth being aware of.

There are at least two spline-based techniques in the literature that fall under the umbrella of
meshless methods. The first is that of Hollig, 2003, in which the background cells are simply
a B-spline mesh in the parameter space. A basis is generated from this grid, but it is not used
to define a geometrical mapping. Instead, an unrelated description of the geometry is imposed
directly in this parameter space, similar to that in Figure 3.6 (though B-spline functions
are used, instead of the radial basis functions shown). Once the boundary is identified, the
B-spline basis is augmented to construct so-called “weighted, extended B-splines” or web-
splines, which are used as the basis of the solution space. Integration is performed using the
background cells, as described above.

A different approach, far more in keeping with the concept of isogeometric analysis, is
that of Natekar et al., 2004. They perform shape optimization (a true union of design and
analysis) using a NURBS description of the geometry and solution space. Though quadrature is
performed on the knot spans, as in Section 3.3.1, rather than on some background cell structure,
the authors refer to this as a meshless method. The reason for this meshless designation seems
to be related to the nature of the constructive solid geometry approach they employ. In this
technique, the domain is defined by the unions and intersections of multiple, frequently
overlapping, NURBS patches. Thus, there are regions of the domain with multiple parametric
descriptions that must be reconciled. This complicates quadrature and prevents the technique
from being truly isoparametric in the traditional sense, though the same descriptions are
employed for both the geometry and the solution space.

We may also mention the recent work of Gonzalez et al., 2008.

3.4 Boundary conditions

Turning our attention back to NURBS based isogeometric analysis in a Galerkin FEA setting,
let us take a closer look at the implementation of boundary conditions. The three major types
of boundary conditions are each represented in (3.7). They are Dirichlet conditions, Neumann
conditions, and Robin conditions, given in (3.7b), (3.7c), and (3.7d), respectively. They each
present their own set of challenges.

3.4.1 Dirichlet boundary conditions

Dirichlet conditions as in (3.7b) are also known as “essential boundary conditions.” This
reflects the fact that a standard variational statement of the problem, as in (3.15), requires
that these conditions be built directly into the solution space. That is, there is no place in the
Galerkin formulation of the problem in which to impose these conditions, and for that reason
we build them directly into the space.

In Section 3.3.1.2 we assumed that there existed a function gh ∈ Sh such that gh|�D = g,
and we referred to this function as a lifting. In practice, this will frequently be the case, but
there will also often be instances in which a lifting is only an approximation of g. In either
case, we refer to this process of imposing the Dirichlet conditions by building them directly
into the space by means of a lifting as strong imposition of the boundary condition. The
alternative of weak imposition of the Dirichlet condition will also be discussed.
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3.4.1.1 Strongly imposed Dirichlet conditions

The case of g = 0 is referred to as having “homogeneous Dirichlet conditions,” and it is
the most frequently encountered case in practice. Assuming gh is of the form of (3.27),
homogeneous boundary conditions are easily built into the solution space by letting gA = 0
for A = neq + 1, . . . , nnp – recall that we always set g1, . . . , gneq = 0 regardless of the value
of g as they have no effect on the boundary. Similarly, if g is a constant, the partition of unity
property of the basis ensures that we need only set the gneq+1, . . . , gnnp to that constant value.
Other functions that are in the NURBS space (e.g., linear functions) may be set by selecting
the control variables appropriately.

In many instances we will have no reason to believe that g actually exists in the NURBS
space, and so the lifting will only be an approximation gh|�D ≈ g. In such a case, there are
several ways in which to proceed. Classical finite elements typically interpolate g at the nodes.
In isogeometric analysis, we may interpolate g with the control points, but as the basis itself is
non-interpolatory this may result in a slightly smeared gh . It is still a viable option, frequently
yielding better results than FEA (recall Figure 2.13). If this approximation is unacceptable, a
better lifting may be found by running a curve or surface fitting algorithm to get, for example,
a least-squares fit of the prescribed Dirichlet data. Either way, once a lifting gh is found, it is
built into the space and used as though it were exact.

3.4.1.2 Weakly imposed Dirichlet conditions

An alternative to the traditional approach of using a lifting is to impose the boundary conditions
weakly by adding terms to the variational equation to enforce them as Euler–Lagrange condi-
tions. This can be done regardless of whether or not an appropriate lifting exists. In Bazilevs
and Hughes, 2007, it was shown that weakly imposing boundary conditions in problems as-
sociated with boundary layer phenomena can help eliminate some of the spurious oscillations
encountered with traditional strongly imposed conditions.

Let the trial solution and weighting spaces both be H 1(�). Note that we do not enforce
w|�D = 0 in this case. The weak form of (3.7a) that naturally arises from integration by parts
is simply

−
∫

�

∇w · ∇u d� +
∫

�

w∇u · n d� +
∫

�

w f d� = 0. (3.56)

We will augment this equation by the addition of two extra terms, which together serve to
penalize errors in the enforcement of the boundary condition and to ensure that the method is
still optimally convergent. The resulting formulation is

−
∫

�

∇w · ∇u d� +
∫

�

w∇u · n d� +
∫

�

w f d�

+
∫

�D

γ (∇w · n) (u − g) d� +
∫

�D

C

he
w (u − g) d� = 0, (3.57)

where he is an element length scale, C is a constant, and γ = ±1. A discussion of the proper
selection of he, C , and the sign of γ is beyond the scope of the current discussion; for details
see Bazilevs and Hughes, 2007. Note that this formulation remains consistent, as the exact
solution u is also a solution to (3.57).



P1: ABC/ABC P2: c/d QC: e/f T1: g

c03 JWBK372-Cottrell May 20, 2009 15:22 Printer Name: Yet to Come

86 Isogeometric Analysis: Toward Integration of CAD and FEA

The result of this approach is that the boundary condition is never enforced exactly, although
the approximation will improve as the mesh is refined. This ability to satisfy the Dirichlet
boundary condition approximately can be a significant advantage if it allows for greater
accuracy on the interior of the domain. This approach can also be employed to weakly enforce
solution compatibility between non-conforming portions of the mesh, as we will see in several
different settings throughout this book.

3.4.2 Neumann boundary conditions

Neumann boundary conditions of the form of (3.7c) are frequently referred to as “natural
boundary conditions.” This is because of the way they automatically arise in the variational
statement of a problem. Let us assume for the moment that �R = ∅ and that the Dirich-
let conditions are being strongly imposed. Multiplying by a test function and integrating
leads us to

0 =
∫

�

w (�u + f ) d�

= −
∫

�

∇w · ∇u d� +
∫

�

w∇u · n d� +
∫

�

w f d�

= −
∫

�

∇w · ∇u d� +
∫

�N

w∇u · n d� +
∫

�

w f d� (3.58)

where in the third line we have used the fact that the weighting space is defined such that
w|�D = 0.

The integration by parts has completely naturally introduced a boundary integral over �N

that refers explicitly to the condition that we would like to impose. Using (3.7c) we simply
replace ∇u · n with the value we are imposing, h, resulting in

−
∫

�

∇w · ∇u d� +
∫

�

wh d� +
∫

�

w f d� = 0. (3.59)

The effect is a weak imposition of the Neumann condition. That is, we only expect it to be
approximately satisfied. We do, however, expect the accuracy with which this condition is
satisfied to improve under refinement along with the accuracy of the solution on the interior
of the domain. Unlike the choice of weak imposition of Dirichlet conditions, the terms needed
to impose the Neumann condition originated from the variational formulation of the problem
itself. In the Dirichlet case, the terms had to be introduced somewhat artificially, though their
effect is similar.

3.4.3 Robin boundary conditions

Robin boundary conditions of the form of (3.7d) are very similar to Neumann conditions.
They are treated naturally, working from the second line of (3.58) as in the Neumann case.
For brevity, let us assume for the moment that �N = ∅. We rearrange (3.7d) to obtain

∇u · n = r − βu, (3.60)
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which we insert into (3.58) along with w|�D = 0 to arrive at

−
∫

�

∇w · ∇u d� +
∫

�

w f d� +
∫

�R

wr d� − β

∫
�R

wu d� = 0. (3.61)

Though we have replaced one expression involving the unknown u for another, we have
enforced the relationship between them weakly.

3.5 Multiple patches revisited

3.5.1 Local refinement

In Section 3 of Chapter 2 we discussed the need for modeling domains using multiple patches.
We always assume compatible discretizations for the geometry, meaning that on the coarsest
mesh, mappings and parameterizations on the adjoining patch faces are identical. Each control
point on a face is in one-to-one correspondence with a control point from the adjoining face,
likewise for the control variables of the solution. In many instances, this relationship will be
preserved as we refine. To make the assembly of the stiffness matrices and force vectors as
simple as possible, the connectivity array will identify the equivalent local control variables
on each face with a single control variable in the global array. By identifying them as a single
entity for analysis purposes, we simplify the logic and decrease the total amount of work
needed. The result is that the two patches are joined as though they were one.

Identifying two control points at the same location in physical space as being a single entity
is fairly trivial. Slightly subtler is what this implies for the basis functions. The situation is
shown in Figure 3.7. When two bases generated using open knot vectors are brought together,
the effect is indistinguishable from the case of one knot vector with a knot repeated p times,
as long as the coefficients of the two joining functions are the same. This is, of course, exactly
what we have assured by identifying the two control variables as one.

Figure 3.7 If two knot vectors formed from open knot vectors are brought together, they can be made
to act as one if the coefficients (i.e., control variables) of the two functions on their interface are always
equal to each other. The result is indistinguishable from the case of a single knot vector with a C0

boundary at the interface.
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(a) (b)

Figure 3.8 (a) Global refinement employing the continuous Galerkin method. (b) Local refinement
employing the discontinuous Galerkin method or constraint equations at the patch level. With constraint
equations, at least C0-continuity can be attained across patches, and higher-order continuity can be
achieved in certain cases if desired.

Another reason for using multiple patches is that it makes local refinement possible. The
situation is represented in Figure 3.8. Even with multiple patches, if we want the control
points of the two patches on their interface to be in one-to-one correspondence, we need
to have matching knot vectors. This means that refinements of one patch must necessarily
propagate from that patch to the next. If instead we are to allow knots to be inserted on one
side and not the other (i.e., local refinement), we may proceed as follows.

Consider the two B-spline5 patches that meet on an interface, as shown in Figure 3.9. On
the coarsest mesh, we assume that the control points and knot vectors in the plane of the
face are identical on both patches, thus ensuring that the patches match geometrically and
parametrically on that shared face. Using superscripts 1 and 2 to identify the patch numbers, a
subscript f to denote control points on the face where the patches meet, and a subscript n to
denote control points not on that face, we may write the control points for Patches 1 and 2 as

B1 =
(

B1
n

B1
f

)
and B2 =

(
B2

n

B2
f

)
, (3.62)

respectively, where

B2
f = B1

f . (3.63)

Patch 1 Patch 2

Figure 3.9 The two patches share a common interface. On the coarsest mesh, their control points on
that interface are in one-to-one correspondence, trivially enforcing C0 continuity.
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Patch 2Patch 1

Master face Slave face

Figure 3.10 Patch 2 is refined by knot insertion and the one-to-one correspondence of the interface
control points is lost. Constraint equations may be employed to ensure that continuity is maintained.

If we now refine the basis of Patch 2 by knot insertion (Figure 3.10), then we have the
following new set of control points for Patch 2:

B̃2 = T̃B2 =
(

T̃n 0
0 T̃ f

) (
B2

n
B2

f

)
, (3.64)

where T̃ is the multi-dimensional generalization of the extension operator defined in (2.22).
As before, it is sparse and its values are entirely defined by the knot vectors and the polynomial
order. The block diagonal structure follows from the fact that we are using open knot vectors.
When open knot vectors are used, each face of a NURBS solid is influenced only by the control
points on that face. Put simply, each face of the NURBS solid is a NURBS surface.

Combining (3.63) and (3.64), we see that C0-continuity of the geometry is maintained by
the relationship

B̃2
f = T̃ f B1

f . (3.65)

Building on the approach of Kagan et al., 20036, it follows that for the solution space to
enforce the same continuity constraints, we need the control variables to obey precisely the
same relationship. Let

u1 =
(

u1
n

u1
f

)
and u2 =

(
u2

n
u2

f

)
(3.66)

be the control variables on Patch 1 and the refined Patch 2, respectively. Then C0-continuity
of the solution across the interface between the patches may be maintained by enforcing the
constraint

u2
f = T̃ f u1

f . (3.67)

From an implementational point of view, the two patches may be assembled locally to create
the two local problems

K1u1 = b1 (3.68)

and

K2u2 = b2 (3.69)
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for the control points on either patch. Consistent with the partitioning of the control variables
in (3.66), we partition the stiffness matrices as

K1 =
(

K1
nn K1

n f

K1
f n K1

f f

)
and K2 =

(
K2

nn K2
n f

K2
f n K2

f f

)
. (3.70)

Before solving, we must assemble problems (3.68) and (3.69) into one global problem
accounting for the behavior of both patches, as well as their interaction. We should have
three coupled blocks of equations: one corresponding to weighting functions with support in
Patch 1 that vanish on the face shared by the two patches, one corresponding to weighting
functions with support on either or both patches that do not vanish on the shared face, and one
corresponding to weighting functions with support on Patch 2 that vanish on the shared face.
We begin by expanding (3.68) using the partitioning of (3.70) to get

K1
nnu1

n + K1
n f u1

f = b1
n (3.71)

and

K1
f nu1

n + K1
f f u1

f = b1
f . (3.72)

Inserting (3.67) into (3.69) and expanding yields

K2
nnu2

n + K2
n f T̃ f u1

f = b2
n (3.73)

and

K2
f nu2

n + K2
f f T̃ f u1

f = b2
f . (3.74)

Note that (3.71) is the block of equations corresponding to weighting functions in Patch
1 that vanish on the shared face. Similarly, (3.73) is the block of equations corresponding to
weighting functions in Patch 2 that vanish on the shared face. Now (3.72) and (3.74) both
correspond to weighting functions with support on the shared face and as such we would
like to add them together to get a final expression for that block. Unfortunately, they contain
different numbers of equations. This is because we assembled the two patches independently.
We correctly generated the equations in (3.72) by testing against functions in the “master”
weighting space associated with Patch 1, but we generated the equations in (3.74) by testing
against all of the functions in the larger “slave” weighting space on Patch 2 without regard for
the constraint. The basis functions of the slave solution space on Patch 2 corresponding to the
shared face are restricted to act only in the linear combinations defined by T̃ f that result in
functions existing in the master solution space. So too must the functions in the slave weighting
space act only in such linear combinations as replicate functions in the master weighting space.
This constraint may be enforced by now premultiplying (3.74) by T̃T

f , thus constraining the
weighting functions and reducing the number of equations to match that of (3.72):

T̃T
f K2

f nu2
n + T̃T

f K2
f f T̃ f u1

f = T̃T
f b2

f . (3.75)

We may now express the global system comprised of (3.71), (3.73), and
(
(3.72)+(3.75)

)
as

Ku = b, (3.76)
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where

K =

⎛
⎜⎝

K1
nn K1

n f 0

K1
f n (K1

f f + T̃T
f K2

f f T̃ f ) T̃T
f K2

f n

0 K2
n f T̃ f K2

nn

⎞
⎟⎠ , (3.77)

u =

⎛
⎜⎝

u1
n

u1
f

u2
n

⎞
⎟⎠ , (3.78)

and

b =
⎛
⎝ b1

n

b1
f + T̃T

f b2
f

b2
n

⎞
⎠ . (3.79)

We may recover u2
f via (3.67) after solving (3.76).

This approach ensures C0-continuity in the solution across the patch boundary when one
patch is a knot-refined version of the other patch on their common interface. Higher continuity
has also been implemented by applying similar constraint equations in the normal direction.
As long as the geometries are compatible, the patch boundary may be seen as the result of
inserting a knot into some “meta-patch” p + 1 times. It should be noted that these are strong,
exact constraints, not approximations. An approach that would allow for weak enforcement
of continuity, as well as allowing for local order elevation is to use discontinuous Galerkin
techniques at the patch level. That is, weakly enforce continuity of appropriate fluxes across
patch boundaries while strongly enforcing them across element boundaries within the patch.
See, for example, Cockburn, 2004 for an overview of the discontinuous Galerkin method.

3.5.2 Arbitrary topologies

Due to the tensor product structure of B-splines and NURBS it might be assumed that isogeo-
metric analysis utilizing B-splines and NURBS is restricted to block-structured discretizations
in which patches play the role of the blocks. This is not the case. The full topological generality
of finite elements can be achieved by assuming the patches consist of single elements as the
following examples illustrate.

C0 Lagrange elements are widely used in finite element analysis. They are constructed from
tensor products of Lagrange interpolatory polynomials (see Hughes, 2000). A B-spline basis
of Bernstein polynomials can be constructed to produce C0 elements with exactly the same
span. Such elements are called Bézier elements, and they are identical to B-spline patches
comprised of a single element. These Bézier elements possess all the usual properties of B-
splines, namely, the convex hull and variation diminishing properties in terms of the control
points. See Section 2.1.3 and Figure 2.13b in Chapter 2. The elements depicted in Figure 2.13b
are in fact Bézier elements. The construction of bivariate C0 Bézier elements is illustrated in
Figure 3.11 and typical basis functions are presented in Figure 3.12. It should be clear that by
using the concept of a patch consisting of one Bézier element, we can construct unstructured
meshes of isogeometric Bézier elements with completely arbitrary topology, just as in finite
element analysis. We need to define the data processing arrays in the usual way to achieve C0
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Figure 3.11 Construction of bivariate C0 Bézier elements. The basis functions are the tensor products
of the one-dimensional basis functions illustrated. The spans of these elements are the same as for C0

Lagrange elements. The control points of the Bézier elements at the corners are interpolated but all
others are not, in contrast with Lagrange elements. One can transform Lagrange elements to Bézier
elements, and vice versa, through a simple linear transformation of the control points. (a) Four control
point bilinear Bézier element. This element is identical to the four-node bilinear Lagrange element. (b)
Nine control point biquadratic Bézier element. (c) Sixteen control point bicubic Bézier element. Notation
� = {ξi }, i = 1, 2, . . . , 2(p + 1), and H = {η j }, j = 1, 2, . . . , 2(p + 1), are the knot vectors, where p
is the polynomial order.

continuity (see Section 2.3 of Chapter 2 and Section 3.5.1 of this chapter). The span of Bézier
finite element spaces is identical to the span of C0 Lagrange elements spaces, although their
basis functions are different. See Figure 3.13. It is important to observe that the ability to
assemble meshes of this type emanates from the nested loop structure that we advocate for
isogeometric analysis, which consists of an outer patch loop and an element loop within each
patch. A further outer loop can be used to define element groups (see the description of the
DLEARN program in Hughes, 2000) or substructures. See Figure 3.14.

Our intent in discussing the analogy between Lagrange and Bézier elements is to emphasize
anything that can be done with the former is still possible in an isogeometric setting, though
the flexibility of the NURBS technology allows for many more possibilities (two of the most
important being exact representations of conic sections and the use of C p−1-continuous basis
functions).

By using the element degeneration concept (see Hughes, 2000, chapter 3), a variety of other
element shapes, such as triangles, tetrahedra, wedges, and pyramids, can also be constructed.
Patches may even be viewed as unstructured by using T-spline discretizations (see Sederberg
et al., 2003, 2004). We may also mention that smooth, spline-based triangles and tetrahedra
can also be directly constructed (Lai and Schumaker, 2007).

3.6 Comparing isogeometric analysis with classical finite
element analysis

We have seen that isogeometric analysis, in this case NURBS based Galerkin finite elements,
is quite similar in its structure to classical FEA. In short, the only difference is the basis being
used. Of course, this “small” change has huge implications, many of which will be made clear
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Figure 3.12 (a) Bilinear Bézier element (identical to the standard bilinear element). There are four
corner basis functions. (b) Biquadratic Bézier element. There are four corner basis functions, four edge
basis functions, and one internal basis function. (c) Bicubic Bézier element. There are four corner
elements, eight edge basis functions, and four internal basis functions.
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Bézier basis Lagrange element basis
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Span of Lagrange
element basis
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≠

=

Figure 3.13 Relationships of Bézier and Lagrange basis functions and spans of basis functions.

in future chapters when we look at specific applications. In this section, we look at the major
similarities and differences between isogeometric analysis and FEA. It will be important
to bear these comparisons in mind as we examine the numerous examples throughout the
remainder of the book.

3.6.1 Code architecture

Let us first consider the architecture of a classical FEA code. The flowchart for a typical
example of such a piece of software is given in Figure 3.15. The program begins with the
data defining the boundary value problem, the mesh, and all of the geometrical data being
read from files. Once these data have been read, the connectivity information can be generated
(though sometimes this will be read in from an external file as well) and the memory is
allocated for all of the major global arrays, which are subsequently initialized to zero. Once
these preprocessing steps are completed, assembly of the system begins, following the process
described in Section 3.3.1.4. There is a loop through all of the elements in the mesh. Within
each element, the element stiffness matrix and element force vector are initialized, and then
the code enters a loop through the quadrature points. At each quadrature point, a routine is
called that will evaluate all of the basis functions and any necessary derivatives. It is helpful,
for the moment, to think of this routine as a black box. If we know the number of local basis
functions, it is not important what those functions are or how they are evaluated. It is only
important that we have a routine from which we can obtain those values when they are needed.
With these values in hand, we proceed to build the local stiffness matrix and force vector.
After we have been through each quadrature point and fully assembled the local arrays, we

Element group or substructure

Patch loop   

Element loop      

Figure 3.14 Program architecture of the assembly algorithm in isogeometric analysis. The patch loop
does not have a direct analog in finite element analysis, although it might be considered analogous to a
macro-element loop. If each patch consists of a single element, we have the assembly algorithm that is
standard in finite element analysis (see Hughes, 2000).
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Start

Read input
data

Build connectivities and allocate
global arrays

Loop through elements

Loop through quadrature
points
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Ke and Fe

Assemble Ke K
and Fe F

Evaluate basis functions
and derivatives

Solve Kd=F

Stop

Ke=0 and Fe=0

K=0 and F=0

Write
output data

Figure 3.15 Flowchart of a classical finite element code. Such a code can be converted to a single-patch
isogeometric analysis code by replacing the routines shown in green.

use the connectivity information to add their contributions to the global stiffness matrix and
force vector, and then move on to the next element. After all of the elements are assembled,
the global arrays are complete. We then solve the system, write the result to a file, postprocess,
and we are finished. See Hughes, 2000 for further details.

To convert an existing finite element code to a single-patch isogeometric analysis code, the
only portions of the code that require modification are the ones shown in green in Figure 3.15.
Clearly, the input will change as the file format will depend on the specific element technology
being used. The precise forms of the connectivity arrays and the global matrices also depend
on the basis. The structured nature of the NURBS mesh means that the IEN array (see Section
3.3.1.4) can be calculated automatically from the knot vectors and polynomial orders. Next,
the “black box” that evaluated the basis functions must be updated to evaluate the NURBS
functions. This is why we emphasized the modular nature of this routine previously: the type
of information about the basis that it provides to the routine that calls it is exactly the same,
but that information should now correspond to the NURBS basis. Lastly, the output must be
written, and the format of that output will be specific to the NURBS basis.
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3.6.1.1 A multiple patch code

A “multi-patch” isogeometric analysis code can be made to conform with the flowchart in
Figure 3.15. In practice, however, it makes more sense to consider the slight modification
shown in Figure 3.16. In this case, we begin by inputting enough global information to build
the global connectivities, as before. This information includes the polynomial orders and the
knot vectors for each of the patches, but it does not require the control points. We can save
time and memory by not reading the control points until they are needed. If local refinement

Start

Read global
input data

Build connectivities and allocate
global arrays

Loop through elements
on the current patch

Loop through quadrature
points

Add contributions to
Ke and Fe

Assemble Ke K
and Fe F

Evaluate basis functions
and derivatives

Solve Kd=F

Stop

Ke=0 and Fe=0

K=0 and F=0

Write
output data

Loop through patches

Read patch
input data

Figure 3.16 Flowchart of a multi-patch isogeometric analysis code. The routines in green represent
differences from the single-patch code.
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has taken place, we must build the T matrices to be used in the enforcement of continuity, as
in Section 3.3. Again, the knot vectors and polynomial orders are all that is required. Global
arrays are allocated and initialized as before.

At this point the code enters a loop through the patches. The reason for making this loop
explicit is that the control points defining the geometry are relevant to only one patch at a time.
We can input this information within the loop, reading only the information relevant to the
patch we are currently working with. We now loop through the elements on the current patch.
Everything then proceeds exactly as before until after the global system is solved. Lastly, the
output is written to files, typically in a format that makes it easy to identify control variables
with the patch that they correspond to, and so this routine will be specific to the multiple-patch
setting.

The only other potential source of complexity is if local refinement it to be applied, as
described in the previous section. This can either be implemented during assembly, or within
the solver. In either case, modifications of the appropriate routine will be required.

3.6.2 Similarities and differences

Throughout our discussion of NURBS, we have made comparisons with classical FEA func-
tions and geometries. Some of the most notable differences are summarized in Table 3.1. The
first and most important difference is that isogeometric analysis employs the exact geometry
at all levels of discretization, whereas FEA uses piecewise polynomial approximations, even
for such common objects as conic sections. This geometric exactness not only affects the
accuracy of computed solutions, but even the analysis process as a whole as refinement re-
quires no external description of the geometry, unlike in FEA. The second striking difference
between the methods is that neither the control points nor the control variables of isogeometric
analysis are interpolated, unlike nodal points and nodal variables. This means that we cannot
strictly interpret these entities by themselves, but only in conjunction with the basis functions.
Solutions in both cases, however, are linear combinations of coefficients and basis functions,
and so nothing about the mathematical structure of the Galerkin method or its implementation
differs between the methods. Other major differences relate to the properties possessed by the
bases; see Table 3.1.

Isogeometric analysis and classical FEA have many similarities as well, a few of which are
summarized in Table 3.2. They are both isoparametric implementations of Galerkin’s method,
and as such they have a very similar code architecture. Both methods use compactly supported
basis functions, and the bandwidth of matrices corresponding to a given polynomial order
are the same for the two methods (recall Figure 2.4). Both bases obey the partition of unity
property and affine transformations are achieved by applying them directly to the vector valued
coefficients that define the geometry.

Appendix 3.A: Shape function routine

The shape function routine is one of the fundamental components of any finite element
code. Given an element number, e, and quadrature points on the parent element, (ξ̃1, ξ̃2, ξ̃3) ≡
(ξ̃ , η̃, ζ̃ ) ∈ [−1, 1]3, the shape function routine must evaluate each of the local basis functions
(i.e., each function with support in the element) at the given quadrature point, as well as any
required derivatives. Additionally, the Jacobian determinant of the mapping must be calculated
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Table 3.1 Differences between NURBS based isogeometric analysis and finite element analysis

Isogeometric analysis Finite element analysis

Exact geometry Approximate geometry
Control points Nodal points
Control variables Nodal variables
Basis does not interpolate control points and variables Basis interpolates nodal points and variables
NURBS basis Polynomial basis
High, easily controlled continuity C0-continuity, always fixed
hpk-refinement space hp-refinement space
Pointwise positive basis Basis not necessarily positive
Convex hull property No convex hull property
Variation diminishing in the presence of discontinuous Oscillatory in the presence of discontinuous

data data

in order to perform integration. In this appendix, we give an example of a shape function routine
for a NURBS based isogeometric analysis code. It relies heavily on NURBS coordinates and
the IEN array. For a thorough discussion of these concepts, see Appendix A at the end of the
book.

The shape function routine we present assumes the existence of another routine entitled
Bspline basis and derivBspline basis and derivBspline basis and deriv that will calculate all of the relevant univariate B-spline basis func-
tions and their parametric derivatives. For example, let element �̂e = [ξi , ξi+1] × [η j , η j+1] ×
[ζk, ζk+1]. For the ξ -direction, Bspline basis and derivBspline basis and derivBspline basis and deriv will return a vector of p + 1 function
values corresponding to the p + 1 functions that are nonzero on [ξi , ξi+1]. Specifically, the
first entry will be Ni , the second Ni+1 and so forth; likewise for the vector of derivatives.
With these univariate, non-rational function values in hand, the trivariate, rational NURBS
functions, R are calculated using (2.30). The derivatives with respect to the parametric coordi-
nates, ξξξ are calculated by (2.31). To obtain derivatives with respect to the physical coordinates,
(x1, x2, x3) ≡ (x, y, z), one must apply the chain rule in the form

∂ R

∂xi
= ∂ R

∂ξ j

∂ξ j

∂xi
. (3.A.1)

Table 3.2 Common features shared by
isogeometric analysis and finite element analysis

Isogeometric analysis and finite element analysis

Isoparametric concept
Galerkin’s method
Code architecture
Compactly supported basis
Bandwidth of matrices
Partition of unity
Affine covariance
Patch tests are satisfied
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Thus, the gradient of the mapping, ∂x/∂ξξξ must be calculated, along with its inverse. The
mapping will be inverted using the external inverse Cramerinverse Cramerinverse Cramer routine that uses Cramer’s rule
to compute the inverse of a matrix.

Lastly, as the parts of the code that call this shape function routine will be performing the
numerical integration in the parent element, the Jacobian determinant of the mapping from the
parent element to the physical space, J must be calculated. It is given by

J =
∣∣∣∣dx

dξ̃ξξ

∣∣∣∣ =
∣∣∣∣dx
dξξξ

dξξξ

dξ̃ξξ

∣∣∣∣ . (3.A.2)

The actual determinant is calculated in the external routine determinantdeterminantdeterminant.
Our shape function routine is presented in Algorithms 1–3. For the sake of clarity, we have

divided the routine into three parts, though in practice they would usually all be within the
same function. Part I, in Algorithm 1, initializes all of the variables to zero. Then the NURBS
coordinates are determined using the INC and IEN arrays. The parametric coordinates are then
calculated from the knot vectors and the parent element coordinates of the quadrature point.
For example, with �̂e = [ξi , ξi+1] × [η j , η j+1] × [ζk, ζk+1], and thus NURBS coordinates
(i, j, k), we can calculate (ξ, η, ζ ) ∈ �̂e from (ξ̃ , η̃, ζ̃ ) ∈ �̃e as

ξ = ξi + (ξ̃ + 1)
(ξi+1 − ξi )

2
=

(
(ξi+1 − ξi )ξ̃ + (ξi+1 + ξi )

)
2

, (3.A.3)

η = η j + (η̃ + 1)
(η j+1 − η j )

2
=

(
(η j+1 − η j )η̃ + (η j+1 + η j )

)
2

, (3.A.4)

ζ = ζk + (ζ̃ + 1)
(ζk+1 − ζk)

2
=

(
(ζk+1 − ζk)ζ̃ + (ζk+1 + ζk)

)
2

. (3.A.5)

Part II, in Algorithm 2, calculates the values of the basis functions and their derivatives with
respect to the parametric coordinates. These calculations follow directly from the definitions
in Chapter 2. Part III, in Algorithm 3, determines the derivatives with respect to the physical
coordinates. It does so by first calculating the gradient of the mapping, and then using it in
conjunction with the parametric derivatives of Algorithm 2 and the chain rule as in (3.A.1).
The Jacobian determinant is also calculated as in (3.A.2).
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Algorithm 1: Shape function routine: Part I

Data: The quadrature points ξ̃ξξ , element number e, polynomial orders (p, q, and r ), control
net B, knot vectors �, H, and Z , and connectivity arrays INC and IEN must be
included as inputs. The number of local shape functions nen must also be given. Note
that the weights are stored as the fourth component of each control point.

Result: The vector of local shape functions R and an array of their derivatives dR dx, and the
Jacobian determinant J will be returned.

// Initializations:

R[nen]=0; // Array of trivariate NURBS basis functions
dR dx[nen][3]=0; // Trivariate NURBS function derivatives

// w.r.t. physical coordinates
J=0; // Jacobian determinant

// Local variable initializations:

ni, nj, nk = 0; // NURBS coordinates
xi, eta, zeta = 0; // Parametric coordinates
N[p+1], M[q+1], L[r+1] = 0; // Arrays of univariate B-spline

// basis functions
dN dxi[p+1] = 0; // Univariate B-spline
dM deta[q+1] = 0; // function derivatives w.r.t.
dL dzeta[r+1] = 0; // appropriate parametric coordinates
dR dxi[nen][3] = 0; // Trivariate NURBS function derivatives

// w.r.t. parametric coordinates
dx dxi[3][3] = 0; // Derivative of physical coordinates

// w.r.t. parametric coordinates
dxi dx[3][3] = 0; // Inverse of dx dxi
dxi dtildexi[3][3] = 0; // Derivative of parametric coordinates

// w.r.t. parent element coordinates
J mat[3][3] = 0; // Jacobian matrix
i, j, k, aa, bb, cc = 0; // Loop counters
loc num = 0; // Local basis function counter
sum xi, sum eta, sum zeta, sum tot = 0; // Dummy sums for calculating

// rational derivatives

// NURBS coordinates; convention consistent with Algorithm 7
ni = INN[IEN[e][1]][1];
nj = INN[IEN[e][1]][2];
nk = INN[IEN[e][1]][3];

// Calculate parametric coordinates from parent element coordinates
// Knot vectors KV Xi, KV Eta, and KV Zeta and
// parent element coordinates xi tilde, eta tilde, zeta tilde
// are given as input
xi = ((KV Xi[ni+1]-KV Xi[ni])*xi tilde...

... + (KV Xi[ni+1]+KV Xi[ni])) / 2;
eta = ((KV Eta[nj+1]-KV Eta[nj])*eta tilde...

... + (KV Eta[nj+1]+KV Eta[nj])) / 2;
zeta = ((KV Zeta[nk+1]-KV Zeta[nk])*zeta tilde...

... + (KV Zeta[nk+1]+KV Zeta[nk])) / 2;
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Algorithm 2: Shape function routine: Part II

// Calculate univariate B-spline functions using (2.1) and (2.2)
// and their derivatives using (2.12)
call Bspline basis and deriv(ni,p,KV Xi; N,dN dxi); // xi-dir.
call Bspline basis and deriv(nj,q,KV Eta; M,dM deta); // eta-dir.
call Bspline basis and deriv(nk,r,KV Zeta; L,dL dzeta); // zeta-dir.

// Build numerators and denominators
for k = 0 to r do

for j = 0 to q do
for i = 0 to p do

loc num = loc num+1; // Local basis function number

R[loc num] = N[p+1-i]*M[q+1-j]*L[r+1-k]...
... * B[ni-i][nj-j][nk-k][4]; // Function numerator

sum tot = sum tot + R[loc num]; // Function denominator

dR dxi[loc num][1] = dN dxi[p+1]*M[q+1-j]*L[r+1-k]...
... * B[ni-i][nj-j][nk-k][4]; // Derivative num.

sum xi = sum xi + dR dxi[loc num][1]; // Derivative denom.
dR dxi[loc num][2] = N[p+1]*dM deta[q+1-j]*L[r+1-k]...

... * B[ni-i][nj-j][nk-k][4]; // Derivative num.
sum eta = sum eta + dR dxi[loc num][2]; // Derivative denom.
dR dxi[loc num][3] = N dx[p+1]*M[q+1-j]*dL dzeta[r+1-k]...

... * B[ni-i][nj-j][nk-k][4]; // Derivative num.
sum zeta = sum zeta + dR dxi[loc num][1]; // Derivative denom.

end
end

end

// Divide by denominators to complete definitions of functions
// and derivatives w.r.t. parametric coordinates
for loc num = 1 to nen do

R[loc num] = R[loc num]/sum tot;

dR dxi[loc num][1] = (dR dxi[loc num][1]*sum tot...
... - R[loc num]*sum xi) / sum tot2

dR dxi[loc num][2] = (dR dxi[loc num][2]*sum tot...
... - R[loc num]*sum eta) / sum tot2

dR dxi[loc num][3] = (dR dxi[loc num][3]*sum tot...
... - R[loc num]*sum zeta) / sum tot2

end
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Algorithm 3: Shape function routine: Part III

// Gradient of mapping from parameter space to physical space
loc num=0;

for k = 0 to r do
for j = 0 to q do

for i = 0 to p do
loc num=loc num+1;

for aa = 1 to 3 do
for bb = 1 to 3 do

dx dxi[aa][bb] = dx dxi[aa][bb]...
... + B[ni-i][nj-j][nk-k][aa]*dR dxi[loc num][bb];

end
end

end
end

end

// Compute inverse of gradient
call inverse Cramer(dx dxi; dxi dx);

// Compute derivatives of basis functions
// with respect to physical coordinates
for loc num = 1 to nen do

for aa = 1 to 3 do
for bb = 1 to 3 do

dR dx[loc num][aa] = dR dx[loc num][aa]...
... + dR dxi[loc num][bb]*dxi dx[bb][aa];

end
end

end

// Gradient of mapping from parent element to parameter space
dxi dtildexi[1][1] = (KV xi[ni+1]-KV xi[ni])/2;
dxi dtildexi[2][2] = (KV eta[nj+1]-KV eta[nj])/2;
dxi dtildexi[3][3] = (KV zeta[nk+1]-KV zeta[nk])/2;

for aa = 1 to 3 do
for bb = 1 to 3 do

for cc = 1 to 3 do
J mat[aa][bb] = J mat[aa][bb]...

... + dx dxi[aa][cc]*dxi dtildexi[cc][bb];
end

end
end

// Compute Jacobian determinant
call determinant(J mat; J);
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Appendix 3.B: Error estimates

FEA

Well established a priori approximation results exist for classical finite elements applied to
elliptic problems (see, for example, the classic text by Ciarlet, 1978). Recall from above that
a Sobolev space of order r is defined by

Hr (�) = {u|Dαααu ∈ L2(�), |ααα| ≤ r}. (3.B.1)

The norm associated with Hr (�) is given by

‖u‖2
r =

∑
|ααα|≤r

∫
�

(
Dαααu

) · (
Dαααu

)
dx. (3.B.2)

In classical FEA, the fundamental error estimate for the elliptic boundary value problem,
expressed as a bound on the difference between the exact solution, u, and the FEA solution,
uh , takes the form

‖u − uh‖m ≤ Chβ‖u‖r , (3.B.3)

where ‖ · ‖m and ‖ · ‖r are the norms corresponding to Sobolev spaces Hm(�) and Hr (�),
respectively, h is a characteristic length scale related to the size of the elements in the mesh,
β = min(p + 1 − m, r − m) where p is the polynomial order of the basis, and C is a constant
that does not depend on u or h.

The term of interest in (3.B.3) is hβ . The mesh parameter, h, can be defined in several
ways, with the specific definition affecting C . A fairly general definition is the diameter of
the smallest circle (in two dimensions) or sphere (in three dimensions) that is large enough to
circumscribe any element in the mesh. The order of convergence, β, expresses how the error
changes under refinement of the mesh. In particular, if we use h-refinement to bisect each of
the elements in the mesh (i.e., h is replaced with h/2), we would expect the error to decrease
by a factor of (1/2)β .

NURBS

The extremely technical details of the process of obtaining a result analogous to (3.B.3) for
NURBS can be found in Bazilevs et al., 2006a. Here we present the basic ideas, but encourage
the interested reader to consult the original publication.

For classical FEA polynomials, the result in (3.B.3) is obtained by first establishing the
interpolation properties of the basis. Let �m be the projection operator from Hm(�) into the
space spanned by the FEA basis. Then the optimal interpolate is the function

ηηηh = �mu (3.B.4)

such that

‖u − ηηηh‖m ≤ ‖u − vh‖m ∀vh ∈ Sh, (3.B.5)
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where Sh is the finite element space. To establish just how good this optimal approximation is
(i.e., to determine how can ‖u − ηηηh‖m be bounded), we obtain a bound on each element, and
then sum over all of the elements to get a global result. With this interpolation result in hand,
the second step in the process is to relate the result of the Galerkin finite element method,
uh , to the optimal interpolate, ηηηh . In particular, it can be shown that the order of convergence
of the finite element solution is the same as for the optimal interpolate. Taken together, these
two results yield the the bound (3.B.3), which states that (up to a constant) Galerkin’s method
gives us the optimal result.

When we seek an analogous result for NURBS, we face several difficulties. The first is that
the approximation properties of this rational basis are harder to determine than are those of a
standard polynomial basis. In particular, note that the weights are determined by the geometry
and so are out of our control when we attempt to approximate a field over that geometry
and cannot be adjusted to improve the result. The second difficulty originates from the large
support of the spline functions. Standard interpolation estimates seek to find a best fit within
each element and then aggregate these results to obtain an approximation over the entire
domain. This is non-trivial with the spline functions because the support of each function
spans several elements, and so we cannot determine optimal values for the control variables
by looking at each element individually. The issue is further complicated by the possibility
of differing levels of continuity (and thus differing sizes of the the supports of the functions)
throughout the domain.

To overcome the fact that the basis is rational rather than polynomial, we first note that the
parameter space �̂ can be considered to be the unit cube [0, 1]d . No generality is lost in this
assumption as dividing a knot vector by a constant or adding a constant does not change the
resulting physical domain in any way. Let us recall the definition of the rational basis from
Chapter 2:

Ri (ξ ) = Ni (ξ )wi

W (ξ )
, (3.B.6)

with

W (ξ ) =
n∑

i=1

Ni (ξ )wi . (3.B.7)

The important thing to note is that the weighting function7, W (ξ ), does not change as we
h-refine the mesh (it does not change under p-refinement either, though this is not the case
we are interested in at present). While both the weights and the basis functions change, they
do so in such a way as to leave W (ξ ) unaltered. Similarly, the geometrical mapping from
the parameter space into the physical space, F : �̂ → �, does not change as we insert new
knot values. See Figure 3.B.1. It remains exactly the same at all levels of refinement. To take
advantage of this fact, we consider the function we wish to approximate, u : � → R

�. As the
geometrical mapping is one-to-one, we can pull this back to the parametric domain to define
û = u ◦ F−1 : �̂ → R

�. Lastly, we can lift the image of the function using the weighting
function to define ũ = {W û, W } : �̂ → R

�+1. Recalling that we obtain the rational basis in
R

d by a projective transformation (equivalent to dividing by W ) of a B-spline basis in R
d+1,

we see that the ability of the rational NURBS basis to approximate u on � is intimately related
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F

Ni
h1wi

h1

W

⎧
⎨
⎩

⎫
⎬
⎭i=1,...,n1

Ni
h1wi

h1

W °F−1⎧
⎨
⎩

⎫
⎬
⎭i=1,...,n1

(a) Coarse mesh

F

Ni
h2wi

h2

W

⎧
⎨
⎩

⎫
⎬
⎭i=1,...,n2

Ni
h2wi

h2

W °F−1⎧
⎨
⎩

⎫
⎬
⎭i=1,...,n2

(b) First h-refinement

F

Ni
h3wi

h3

W

⎧
⎨
⎩

⎫
⎬
⎭i=1,...,n3

Ni
h3wi

h3

W °F−1⎧
⎨
⎩

⎫
⎬
⎭i=1,...,n3

(c) Second h-refinement

Figure 3.B.1 As we h-refine the mesh, the basis functions Ni and weights wi change, but the geomet-
rical mapping F and the weighting function W are completely fixed at the coarsest level of discretization.
They do not change under refinement.
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to the ability of the underlying B-spline basis to approximate ũ on �̂. Thus we have reduced
the problem of understanding a rational basis on a general domain to that of understanding a
polynomial basis on the unit cube.

The second hurdle is more technical. The fact that each function has support over many
elements and that the continuity across the various element boundaries can vary from one
boundary to the next greatly complicates matters compared with the classical case. Bazilevs
et al., 2006a address this difficulty by proving approximation results in so-called “bent”
Sobolev spaces in which the continuity varies throughout the domain. They prove a sequence
of lemmas leading up to an approximation result that includes not only the norm in these bent
Sobolev spaces of the function u being approximated, but also the gradient of the mapping,
∇F. This last term presents no problem because, as already discussed, it does not change as the
mesh is refined, and thus does not affect the rate of convergence. The resulting approximation
result is: Let k and l be integer indices such that 0 ≤ k ≤ l ≤ p + 1, and let u ∈ Hl(�); then

nel∑
e=1

|u − �ku|2Hk (�e) ≤ C
nel∑

e=1

h2(l−k)
e

l∑
i=0

‖∇F‖2(i−l)
L∞(F−1(�e))|u|2Hi (�e). (3.B.8)

The constant C depends on p and the shape (but not size) of the domain �, as well as the
shape regularity of the mesh. The factors involving the gradient of the mapping render the
estimate dimensionally consistent.

Finally, with the approximation result of (3.B.8) in hand, establishing the manner in which
the isogeometric analysis solution, uh, relates to the optimal interpolate, ηηηh , proceeds exactly
as in the classical case. Combining these results yields the desired result: The isogeometric
analysis solution obtained using NURBS of order p has the same order of convergence as
we would expect in a classical FEA setting using classical basis functions with a polyno-
mial order of p. This is an exceptionally strong result as it is independent of the order of
continuity that the mesh possesses. That is, bisecting all of the elements in an FEA mesh
(thus cutting the mesh parameter from h to h/2) requires the introduction of many more
degrees-of-freedom than does bisection of the same number of NURBS elements while
maintaining p − 1 continuity (see Section 2.1.4 of the previous Chapter). This means that
NURBS can converge at the same rate as FEA polynomials, while remaining much more
efficient.

Notes

1. The “Bubnov” in Bubnov–Galerkin signifies the fact that the weighting and trial functions
come from the same underlying space. This is in contrast to a Petrov–Galerkin method in
which the weighting and solution spaces may have little in common.

2. This prior knowledge lets us use a sparse storage format for the global matrices. See Hughes,
2000.

3. The term “shape function” and “basis function” are often used interchangeably.
4. The term “least-squares” refers to the nature of the formulation. There is no reason to

believe that the resulting solution will be a least-squares fit of the unknown exact solution.
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5. We will discuss the B-spline case here, but it is crucial to note that if we were to use NURBS
rather than B-splines, all of the relationships in this section must hold for the projective
control points and projective control variables.

6. In Kagan et al., 2003, a similar approach was taken for B-spline surfaces. Here we extend
that to NURBS solids.

7. Do not confuse this use of the term “weighting function” with the unrelated use of the same
terminology in Galerkin’s method.
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4
Linear Elasticity

As a first example of an application of NURBS-based isogeometric analysis, let us consider
the problem of linear elasticity. This is a very classical subject with a rich history, and it is
one that is particularly well suited to examination by isogeometric analysis – not only for the
geometrical accuracy that it provides, but also for the high quality of the stress fields resulting
from the use of C1-continuous bases. We will restrict ourselves at present to the case of linear
elastostatics and equilibrium solutions.

Before examining the equations, let us introduce some simplifying notation. First, the reader
is reminded that indices i , j , k, and l take on values 1, . . . , d, where d is the number of spatial
dimensions. Unlike the previous chapter’s example of the Laplace equation, in linear elasticity
the solution field will be vector-valued, with ui referring to the i th component of vector u.
Moreover, differentiation will be denoted by a comma (e.g., ui, j = ui,x j = ∂ui/∂x j ). Lastly, we
will employ a summation convention applying to i , j , k, and l, in which repeated indices imply
summation (e.g., in R

3, ui, j j = ui,11 + ui,22 + ui,33 = ∂2ui/∂x2 + ∂2ui/∂y2 + ∂2ui/∂z2). We
will assume this convention to be in place for these four indices unless otherwise stated
throughout the remainder of the book.

In the case of a general nonsymmetric tensor, A = [Ai j ], we use parentheses around the
indices to denote its symmetric part and square brackets around the indices to denote its
skew-symmetric part. Thus, Ai j = A(i j) + A[i j] where

A(i j) = A( j i) ≡ Ai j + A ji

2
, (4.1)

A[i j] = −A[ j i] ≡ Ai j − A ji

2
, (4.2)

which is known as the Euclidean decomposition. Note that if A is a nonsymmetric tensor, and
B = [Bi j ] = [B(i j)] is a symmetric tensor, then

Ai j Bi j = A(i j) Bi j , (4.3)

which also has the corollary A[i j] Bi j = 0. We will use these properties to reduce redundant
computations below.

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
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4.1 Formulating the equations of elastostatics

Let ui denote the displacement vector and let σσσ = [σi j ] denote the Cartesian components
of the Cauchy stress tensor. The infinitesimal strain tensor, εεε = [εi j ] is defined to be the
symmetric part of the displacement gradient,

εi j = u(i, j) ≡ ui, j + u j,i

2
. (4.4)

The constitutive law relating this strain tensor to the aforementioned stress tensor is the
generalized Hooke’s law, given by

σi j = ci jklεkl, (4.5)

where the ci jkl’s are elastic coefficients, which are given functions of x. If the ci jkl’s are
constant throughout the domain, the body is said to be “homogeneous.” The elastic coefficients
are assumed to satisfy several important properties. The first three,

ci jkl = ckli j , (4.6)

ci jkl = c jikl , (4.7)

ci jkl = ci jlk, (4.8)

relate to symmetry, with (4.6) referred to as “major symmetry,” while (4.7) and (4.8) are
referred to as “minor symmetries.” The coefficients also satisfy positive-definiteness of the
form

ci jklψi jψkl ≥ 0, (4.9)

ci jklψi jψkl = 0 ⇐⇒ ψi j = 0, (4.10)

for all symmetric ψψψ (i.e., ψi j = ψ j i ). These properties, combined with appropriate displace-
ment boundary conditions, lead to the symmetry and positive-definiteness of the stiffness
matrix K. Furthermore, (4.7) implies the symmetry of the stress tensor σσσ . From a physical
point of view, the symmetry of the stress tensor derives from the conservation of angular
momentum.

In the examples in this chapter, we will assume that the body is homogeneous. Additionally,
we will assume it is isotropic. That is, the elastic coefficients have the form

ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk), (4.11)

where the Kronecker delta is defined by

δi j =
{

1 i = j ,
0 otherwise.

(4.12)
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Constants λ and μ are the Lamé parameters. These are frequently expressed in terms of the
Young’s modulus, E , and Poisson’s ratio, ν, as

λ = νE

(1 + ν)(1 − 2ν)
(4.13)

ν = E

2(1 + ν)
. (4.14)

4.1.1 Strong form

We can now formally state the strong form of the boundary value problem. Given fi : 	 → R,
gi : 
Di → R, and hi : 
Ni → R, find ui : 	 → R such that

σi j, j + fi = 0 in 	, (4.15a)

ui = gi on 
Di , (4.15b)

σi j n j = hi on 
Ni , (4.15c)

where σi j is defined in terms of ui by (4.4) and (4.5).
Due to the fact that the unknown is a vector, observe that (4.15b) and (4.15c) represent

generalizations of the Dirichlet and Neumann boundary conditions considered previously.
We are applying these conditions in each direction independently and thus 
Di

⋃

Ni = 


and 
Di

⋂

Ni = ∅ for i = 1, . . . , d. In this context, gi and hi are referred to as “prescribed

boundary displacements” and “tractions,” respectively.

4.1.2 Weak form

Let us denote the trial solution space by Si and the weighting space by Vi . As before, each
ui ∈ Si satisfies the Dirichlet condition ui = gi on 
Di , and each wi ∈ Vi satisfies wi = 0
on 
Di . Proceeding as in Section 3.3.1 of Chapter 3, we multiply (4.15a) by a weighting
function and integrate by parts to obtain a variational form of the problem: Given fi : 	 → R,
gi : 
Di → R, and hi : 
Ni → R, find ui ∈ Si such that for all wi ∈ Vi

∫
	

w(i, j)σi j d	 =
∫

	

wi fi d	 +
d∑

i=1

(∫

Ni

wi hi d


)
. (4.16)

Note that we have taken advantage of (4.3) in writing only the symmetric part of wi, j in the
first term. In the last term, we have explicitly written the sum for clarity and to emphasize the
fact that the domain of integration is actually changing for each of the d terms in the sum.

As we did in the previous chapter for the Laplace equation, we can rewrite (4.16) in a more
concise form. Let SSS = {u|ui ∈ Si } and let VVV = {w|wi ∈ Vi }. The weak form of the problem
becomes: Given f = { fi }, g = {gi }, and h = {hi }, find u ∈ SSS such that for all w ∈ VVV

a(w, u) = L(w), (4.17)
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where

a(w, u) =
∫

	

w(i, j)ci jklu(k,l) d	, (4.18)

L(w) =
∫

	

wi fi d	 +
d∑

i=1

(∫

Ni

wi hi d


)
. (4.19)

4.1.3 Galerkin’s method

To turn this weak statement of the problem into a system of algebraic equations, we again
apply Galerkin’s method and work in finite-dimensional subspacesSSSh ⊂ SSS andVVVh ⊂ VVV . These
subspaces are defined using the isoparametric NURBS basis, as before, but now with vector-
valued control variables. Let us assume that we have determined a lifting gh ∈ SSSh , where
gh

i |
Di
= gi , such that for all uh ∈ SSSh we have the decomposition

uh = vh + gh, (4.20)

where vh ∈ VVVh . The Galerkin approximation of (4.17) is given by: find uh = vh + gh ∈ SSSh

such that for all wh ∈ VVVh

a(wh, vh) = L(wh) − a(wh, gh). (4.21)

We can make this more precise by defining ηηη = {1, . . . , nnp} to be the set containing the
indices of all of the functions in the NURBS basis that defines the geometry. Similarly, let
ηηηgi ⊂ ηηη be the set containing the indices of all of the basis functions that are non-zero on 
Di .
Thus we can write the i th component of uh ∈ SSSh as

uh
i =

∑
A∈ηηη−ηηηgi

NAdi A +
∑

B∈ηηηgi

NB gi B =
∑

A∈ηηη−ηηηgi

NAdi A + gh
i , (4.22)

where ηηη − ηηηgi denotes set subtraction. Equation (4.22) is simply the vector-valued generaliza-
tion of (3.28) from the previous chapter, with di A being the i th component of control variable
dA. Similarly, the i th component of wh ∈ VVVh is given by

wh
i =

∑
A∈ηηη−ηηηgi

NAci A. (4.23)

We can now represent uh and wh by

uh = uh
i ei and wh = wh

i ei , (4.24)

where (in R
3)

e1 =
⎛
⎝1

0
0

⎞
⎠, e2 =

⎛
⎝0

1
0

⎞
⎠, and e3 =

⎛
⎝0

0
1

⎞
⎠. (4.25)
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Our goal is to use (4.24) with (4.22) and (4.23) in (4.21) to obtain a matrix formulation
of the problem. The extra complexity that we encounter due to the fact that the unknowns
are vector-valued is that the number of equations we must solve, neq , is much larger than the
number of functions, nnp. For a scalar problem, we used the connectivity array IEN to relate
a local function number and an element number to a global basis function, and we had one
equation for each such global function. Now, we have d equations for each global function.
Thus, we introduce a second level of connectivity through the ID array, which relates a degree-
of-freedom number i = 1, . . . , d and a global function number A ∈ ηηη − ηηηgi and returns the
equation number P = ID(i, A). Furthermore, to go from an element e with local shape function
a and degree-of-freedom i , we can obtain the global equation number by composing ID and
IEN to obtain P = ID(i, IEN(a, e)). Because we will use it so frequently, it is most convenient
to define one final, three-dimensional connectivity array, LM, that incorporates both ID and
IEN, such that P = LM(i, a, e) = ID(i, IEN(a, e)).

We now build the matrix equation

Kd = F, (4.26)

where

K = [K P Q], (4.27)

d = {dQ}, (4.28)

F = {FP}, (4.29)

with

P = ID(i, A) and Q = ID( j, B), (4.30)

such that

K P Q = a(NAei , NBe j ), (4.31)

FP = L(NAei ), (4.32)

and

dQ = d j B . (4.33)

4.1.4 Assembly

Recall that in the previous chapter we assembled the global system by looping – not through
the basis functions as a glance at the formulation might imply – but through the elements,
constructing local stiffness matrices and force vectors, which are then assembled into the
global system by means of the connectivity arrays. We have presented sufficient informa-
tion for such an approach to be implemented for linear elastostatics as well. In practice,
however, the specific structure of the problem can be exploited to reduce the computational
burden.
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Let us define the strain vector for the case of d = 3 as

εεε(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1,1

u2,2

u3,3

u2,3 + u3,2

u3,1 + u1,3

u1,2 + u2,1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (4.34)

Note that, according to our previous notational convention, εεε = [εi j ] was a strain matrix. We
will no longer need this matrix explicitly, and consequently reserve εεε for the strain vector as
in (4.34). Let us now condense the fourth rank tensor of elastic coefficients into the matrix

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 D15

D22 D23 D24 D25

D33 D34 D35

D44 D45

D55

D16

D26

D36

D46

D56

symmetric D66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4.35)

where

DI J = ci jkl , (4.36)

with the indices are related as indicated in Table 4.1. With εεε and D in hand (committing the
same notational crime as with the strain vector) we define the stress vector to be

σσσ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ31

σ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= Dεεε(u). (4.37)

Table 4.1 For the elastic tensor, we collapse indices i
and j into I , and we collapse k and l into J . If we are
interested in the value of I in the first column, then we
read i from the second column and j from the third. If,
instead, we seek J from the first column, then the
second column is to be read as k and the third as l

I/J i/k j/ l

1 1 1
2 2 2
3 3 3
4 2 3
4 3 2
5 1 3
5 3 1
6 1 2
6 2 1
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This is often referred to as the Voight notation. Note from (4.34) that we have removed the
factors of one-half from the shearing components (the terms containing cross-derivatives).
This has been accounted for in (4.37) as we now have one contribution from each shearing
term without any one-half, as opposed to two identical contributions from terms containing
the factor.

All of these new definitions allow us to rewrite (4.18) as

a(w, u) =
∫

	

εεε(w)T Dεεε(u) d	. (4.38)

Furthermore, we can extend the notation by noting that

εεε(NAei ) = BAei , (4.39)

where1

BA =

⎡
⎢⎢⎢⎢⎢⎢⎣

NA,1 0 0
0 NA,2 0
0 0 NA,3

0 NA,3 NA,2

NA,3 0 NA,1

NA,2 NA,1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.40)

Thus, we may rewrite the entries of the global stiffness matrix as

K P Q = eT
i

∫
	

BT
ADBB d	 e j , (4.41)

where the indices are related by (4.30).
We will build the sparse global stiffness matrix and force vector by looping through the

elements and constructing dense local stiffness matrices and force vectors, which are then
assembled into the global system. With d spatial dimensions (i.e., degrees-of-freedom per
control variable) and nen local shape functions, we calculate the entries to the local stiffness
matrix on element 	e as

ke
pq = eT

i

∫
	e

BT
a DBb d	 e j , (4.42)

where

p = d(a − 1) + i and q = d(b − 1) + j. (4.43)

Similarly, the elements of the local force vector are given by

f e
p =

∫
	e

Na fi d	 +
∫


e
hi

Nahi d	 −
d·nen∑
q=1

ke
pq ge

q , (4.44)
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where 
e
hi

is the intersection of the boundary of the element with 
hi , and ge
q = gQ with

q = d(b − 1) + j and Q = LM( j, b, e). Of course, in practice we compute the integrals using
Gaussian quadrature.

The proliferation of indices can be a bit confusing at first. We have already introduced IEN,
which relates the local shape function numbers for a given element number to their corre-
sponding global shape function numbers, ID, which relates the global shape function number
and a degree-of-freedom number to a global equation number, and LM, which combines the
previous two to relate the element number, degree-of-freedom number, and local shape func-
tion number to the appropriate global equation number. Without defining any new array, we
have used (4.43) to connect the local shape function numbers with a local equation number. In
practice, it is common to overload the LM array so that it can accommodate either two indices,
the element number and local equation number, or three indices, the element number, local
shape function number, and degree-of-freedom number, and return the local equation number
in both cases, such that

LM(p, e) = LM(i, a, e), (4.45)

with p as in (4.43). See Appendix A at the end of the book for a detailed discussion of these
data structures, and see Appendix 4.C for an element assembly routine.

4.2 Infinite plate with circular hole under constant in-plane tension

As stated in the introduction to this chapter, NURBS are particularly well suited to linear
elasticity. It is obvious that representing geometry accurately at all levels of discretization
should lead to improved accuracy across all meshes as compared with less geometrically
accurate methods. Furthermore, as we have seen, the standard formulation for linear elasticity
uses the displacements as the unknown degrees-of-freedom. In practice, however, it is often
the case that the quantity of interest is not the displacement but the stress. The stress is a
function of the gradient of the displacement, and so any approach using elements that are
only C0 across element boundaries results in stress values being undefined at these element
boundaries. Alternatively, a C1 NURBS basis results in unambiguous, continuous stresses
across element boundaries.

In this two-dimensional example, we present the NURBS-based isogeometric analysis of
a problem in solid mechanics having an exact solution: an infinite plate with a circular hole
under constant in-plane tension at infinity. We will systematically explore h- and k-refinement.
The infinite plate is modeled by a finite quarter plate. The exact solution (Gould, 1999,
pp. 120–123),

σrr (r, θ ) = Tx

2

(
1 − R2

r2

)
+ Tx

2

(
1 − 4

R2

r2
+ 3

R4

r4

)
cos 2θ, (4.46)

σθθ (r, θ ) = Tx

2

(
1 + R2

r2

)
− Tx

2

(
1 + 3

R4

r4

)
cos 2θ, (4.47)

σrθ (r, θ ) = −Tx

2

(
1 + 2

R2

r2
− 3

R4

r4

)
sin 2θ, (4.48)
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Figure 4.1 Elastic plate with a circular hole: problem definition.

where Tx is the magnitude of the applied stress for the infinite plate case, is applied as a
Neumann boundary condition at the boundary of the finite quarter plate. The setup is illustrated
in Figure 4.1. R is the radius of the hole, L is the edge length of the finite quarter plate, E is
Young’s modulus, and ν is Poisson’s ratio. A rational quadratic basis is the minimum order
capable of representing a circular hole. The coarsest mesh, 
 × H, is defined by the knot
vectors


 = {0, 0, 0, 0.5, 1, 1, 1}, (4.49)

H = {0, 0, 0, 1, 1, 1}, (4.50)

The exact geometry is represented with only two elements, as shown in Figure 4.2a. The
corresponding control net is shown in Figure 4.2b. A repeated control point is responsible
for the upper left-hand corner.2 This is not the only way to model the geometry, and may
not even be the most preferable. This choice allows C1-continuity across all interior element
boundaries, but at the expense of having a singularity in the inverse of the geometrical mapping
at the corner where the control points are repeated. This singularity does not create problems
in the analysis, however, as we need never place a quadrature point at the location of the
singularity. The fact that we still get excellent results demonstrates the overall robustness of
this basis.

The first six meshes used in the analysis are shown in Figure 4.3. Contour plots of results
obtained on meshes 1, 4, and 7 are presented in Figure 4.4. The applied stress is Tx = 10 and
the contours show that the stress concentration of σxx = 30 at the edge of the hole (i.e., at
r = R, θ = 3/2π) is obtained as the mesh is refined.

Convergence results in the L2-norm of stresses are shown in Figure 4.5. The cubic and quartic
NURBS are obtained by order elevation of the quadratic NURBS on the coarsest mesh. Since
the parameterization of the geometrical mapping does not change, the h-refinement algorithm
(knot insertion) generates identical meshes for all polynomial orders. As a result, the continuity
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(b) Control net(a) Coarse mesh

Figure 4.2 Mesh and control net for the elastic plate with circular hole. It is the knot values that
define the elements, not the control net. Two control points at the same location create the upper-left
corner. Coalescing control points is analogous to the degenerated element concept. See Hughes, 2000,
chapter 3.

Mesh 1 Mesh 2 Mesh 3

Mesh 4 Mesh 5 Mesh 6

Figure 4.3 Elastic plate with circular hole. Meshes produced by h-refinement (knot insertion).
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Figure 4.4 Contour plots of σxx obtained with quadratic NURBS. The applied stress is Tx = 10 and
the stress concentration is σxx = 30 at r = R, θ = 3/2π .
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Figure 4.5 Error measured in the L2-norm of stress versus the largest element diameter found in the
mesh.
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of the basis is C p−1 everywhere, except along the line which joins the center of the circular
edge with the upper left-hand corner of the domain (see Figure 4.2a). Along this line, the basis
is C1 as is dictated by the coarsest mesh (from which all of the others have been generated).
The mesh parameter, hmax , is defined as the maximum distance, in physical space, between
diagonally opposite knot locations. As can be seen, the L2-convergence rates of stress for
quadratic, cubic, and quartic NURBS are approximately 2, 3, and 4, respectively. This is in
keeping with the analytical results of Bazilevs et al., 2006a.

4.3 Thin-walled structures modeled as solids

Analysis of thin-walled structures presents several challenges beyond those found in their
more uniformly-dimensioned thick counterparts. They are notoriously sensitive to imperfec-
tions. Anyone who has crushed an aluminum can is familiar with the way in which a small
dent in its side greatly reduces the buckling load. When performing analysis of such struc-
tures, accurate geometrical representations are absolutely vital to obtaining accurate results.
Additionally, they are prone to boundary layer phenomena, locking, and a host of other obsta-
cles to obtaining accurate numerical solutions. In this section we examine several problems
involving thin-walled structures. We treat them as the three-dimensional solid objects that
they are, despite the fact that classical finite element analysis of such structures traditionally
employs surface-based shell elements. Our approach is in keeping with our overall philosophy
of geometrical exactness at all levels of discretization (though a NURBS based shell analysis
is a very promising approach as well – for an excellent comprehensive review of approaches
to shell modeling, see Bischoff et al., 2004). We see that, not only do NURBS accurately
represent the geometry, but they resolve solution features quite well, even on surprisingly
coarse discretizations. Convergence to analytical or benchmark solutions is observed in all
cases.

4.3.1 Thin cylindrical shell with fixed ends subjected to constant
internal pressure

The problem setup and a radial displacement profile for this problem are shown in Figure 4.6.
The fixed ends create boundary layers which are difficult to accurately capture with low
order finite element methods. The exact thin shell theory solution given in Timoshenko and
Woinowsky-Krieger, 1959, pp. 476–477, is obtained under the assumption of plane stress. For
the fully three-dimensional treatment of the problem with fixed-end conditions, we modify
the Timoshenko and Woinowsky-Krieger, 1959 solution to obtain

u(x) = −PR2

Ẽ t
(1 − C1 sin βx sinh βx − C2 cos βx cosh βx) (4.51)

x ∈ (−L/2, L/2),

C1 = sin α cosh α − cos α sinh α

sinh α cosh α + sin α cos α
, (4.52)
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Internal
pressure

Zero end displacements

Radial displacement

Boundary
layers

u, r

Figure 4.6 Thin cylindrical shell. Problem statement and displacement profile.

C2 = cos α sinh α + sin α cosh α

sinh α cosh α + sin α cos α
, (4.53)

β =
(

Ẽ t

4R2 D

)1/4

, α = βL

2
, D = Ẽ t3

12(1 − ν̃3)
, (4.54)

where

Ẽ = E

1 − ν2
, and ν̃ = ν

1 − ν
. (4.55)

The geometry of the shell is shown in Figure 4.7. Note that the radius to thickness ratio is 100,
resulting in solid NURBS elements with a very high aspect ratio. A template for building such
geometries is given in Appendix 4.B at the end of this chapter.

t=.01

 R = 1 (midplane radius)
t = .01

 L = 5

Figure 4.7 Thin cylindrical shell geometry.
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Figure 4.8 Thin cylindrical shell surface meshes. Meshes 1–4.

The meshes are depicted in Figures 4.8 and 4.9. In Figure 4.8, note that we have biased the
mesh toward capturing the boundary layer by creating a coarse mesh with smaller elements near
the fixed ends. Subsequent uniform refinement results in a high percentage of the total elements
in the region containing the layer we wish to capture. This has been accomplished by defining
the initial geometry using the knot vectorZ = {0, 0, 0, 1, 1, 1}, with the corresponding control
points chosen such that the parameterization is linear in the axial direction. The knot values
{1/10, 1/3, 2/3, 9/10} were then inserted to define the elements of the coarsest mesh used for

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(b)(a)

Figure 4.9 Thin cylindrical shell. (a) Quadratic basis functions through the thickness. (b) End view of
the coarse mesh (not to scale).
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Figure 4.10 Thin cylindrical shell. Meshes 2–5. Radial displacement contour plots.

analysis. All further refinements were performed by bisecting the elements (in the surface, not
through the thickness) via knot insertion.

The through-thickness mesh resolution for Mesh 1 is shown in Figure 4.9. Note that there
are two elements in the radial direction and four in the circumferential direction. As the
surface mesh is refined, the number of elements in the circumferential direction increases
accordingly. However, the number of elements in the radial direction is fixed at two throughout
the refinement process. The functions employed for this problem are quadratic NURBS.
Their appearance in the radial, or through-thickness, direction is presented in Figure 4.9a.
Radial displacement contours are presented in Figure 4.10 for Meshes 2–5. Note that, for all
meshes, pointwise axisymmetric response is obtained. Note also the appearance of boundary
layers. The convergence of the radial displacement profile is shown in Figure 4.11. Mesh
1 is too coarse to represent the boundary layers and the plateau between them. Mesh 3
picks up the plateau, but the boundary layers are still not accurately captured. The Mesh
5 solution is indistinguishable from the exact shell theory solution. In the detail on the
right, the exact shell solution and Mesh 5 solution are seen to overlap in the boundary layer
region.

4.3.2 The shell obstacle course

The so-called “shell obstacle course” consists of three problems: the Scordelis-Lo
roof, the pinched hemisphere, and the pinched cylinder. These problems, and their rele-
vance to the assessment of shell analysis procedures, have been discussed extensively in the
literature. The problem descriptions presented in Figure 4.12 are adapted from Belytschko
et al., 1985. Two quadratic NURBS elements are employed in the through-thickness direction
(see Figure 4.9), whereas h-refinement and k-refinement are utilized for surface meshing.
Quadratic through quintic surface NURBS are employed in the convergence analysis of all
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Mesh 1
Mesh 3
Mesh 5
Exact shell theory solution

(a) Global radial displacement

3.8 4 4.2 4.4 4.6 4.8
1.05

1.1

1.15

(b) Detail of the boundary layer

Figure 4.11 Thin cylindrical shell. Convergence of the radial displacement to the exact shell theory
solution. The Mesh 5 solution is indistinguishable from the exact solution.

cases. In one case, the pinched hemisphere, a one-element surface solution, starting with ratio-
nal quadratics, the lowest-order NURBS capable of exactly representing spherical geometry,
and culminating with tenth-order NURBS, is used to assess convergence. This analysis has
the flavor of what are usually referred to as “spectral methods,” which are higher-order accu-
rate procedures, typically utilized for performing detailed studies of geometrically simple but
physically complex phenomena, such as turbulence. (See Canuto et al., 1988 and Moin, 2001
for detailed descriptions and applications of spectral methods.) Convergence is assessed by
comparing the displacement of certain points in the shell with benchmark solutions presented
in Belytschko et al., 1985. Sample contour plots of the solutions for quadratic elements on the
finest meshes studied are presented in Figure 4.13. Note that in each case the contours are very
smooth.

4.3.2.1 Scordelis-Lo roof

The Scordelis-Lo roof is subjected to gravity loading. The ends are supported by fixed di-
aphragms and the side edges are free (see Figure 4.12a). The vertical displacement of the
mid-point of the side edge is the quantity used to assess convergence. The second, fourth,
and sixth meshes used in the study are shown in Figure 4.14. These meshes have 2, 8, and
32 surface elements per side, respectively. Due to symmetry, only one quadrant is meshed.
Convergence of the displacement to the benchmark value is shown in Figure 4.15. In all cases,
convergence is quite rapid. For the higher-order cases, namely, quartic and quintic, even one
element provides a very accurate solution.
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(b) Pinched hemisphere (c) Pinched cylinder
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Figure 4.12 Shell obstacle course. Problem descriptions and data.

4.3.2.2 Pinched hemisphere

In the pinched hemisphere, equal and opposite concentrated forces are applied at antipodal
points of the equator. The equator is otherwise considered to be free (see Figure 4.12b). The
control points, knot vectors, and polynomial orders for the coarsest mesh are tabulated in
Appendix 4.A at the end of this chapter. The second, fourth, and sixth meshes are shown in
Figure 4.16. Due to symmetry, only one quadrant is meshed. Convergence of the displacement
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(a)

)c()b(

Figure 4.13 Shell obstacle course. (a) Scordelis-Lo roof in deformed configuration (scaling factor
of 200 used). Contours of displacement in the direction of the gravity load. (b) Pinched hemisphere
in deformed configuration (scaling factor of 33.3 used). Contours of displacement in the direction
of the inward directed point load. (c) Pinched cylinder in deformed configuration (scaling factor of
3 × 106 used). Contours of displacement in the direction of the point load. Notice the highly localized
displacement in the vicinity of the load.

at the location of the inward directed load is presented in Figure 4.17. The quadratic case
converges very slowly, which is not surprising as quadratic, fully-integrated, solid C0 finite
elements are known to “lock” in shell analysis. Cubic solid C0 finite elements also exhibit
locking in similar circumstances but in the present case cubic NURBS behave reasonably well.
Figure 4.18 presents convergence of the displacement for one surface element meshes. Notice
that the lowest-order meshes lock but eventually accurate results are obtained. One tenth-order
NURBS surface element is seen to provide an essentially exact result. To assess whether there
is any tendency to oscillate, displacement in the direction of the inward directed point load is
plotted for the single tenth-order NURBS surface element case in Figure 4.19. As is evident,
the displacements are very smooth and monotone.
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Mesh 2 Mesh 4

Mesh 6

Figure 4.14 Shell obstacle course. Scordelis-Lo roof meshes.
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Figure 4.15 Shell obstacle course. Scordelis-Lo roof displacement convergence.
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Mesh 4Mesh 2

Mesh 6

Figure 4.16 Shell obstacle course. Pinched hemisphere meshes
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Figure 4.17 Shell obstacle course. Pinched hemisphere displacement convergence.
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Figure 4.18 Shell obstacle course. Pinched hemisphere displacement convergence for one NURBS
surface element.

4.3.2.3 Pinched cylinder

The pinched cylinder is subjected to equal and opposite concentrated forces at its midspan (see
Figure 4.12c). The ends are supported by rigid diaphragms. This constraint results in highly
localized deformation under the loads (see Figure 4.13c). Only one octant of the cylinder is
used in the calculation due to symmetry. The second, fourth, and sixth meshes are shown in
Figure 4.20. Convergence of the displacement under the load is presented in Figure 4.21. The
NURBS elements converge to a very slightly softer solution than the benchmark solution.
This may be due to transverse shear effects. It is well known that, as long as the characteristic
surface element dimension is large compared with the thickness, formulations which permit
transverse shear deformations typically closely approximate formulations which satisfy the
Kirchhoff constraint (i.e., zero transverse shear strain). When this trend reverses, that is, as the
surface element dimension approaches zero, holding the thickness constant, the displacement

Figure 4.19 Shell obstacle course. Pinched hemisphere displacement in the direction of the inward
directed point load for one surface element with p = 10.
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Mesh 2 Mesh 4

Mesh 6

Figure 4.20 Shell obstacle course. Pinched cylinder meshes.

under a concentrated load grows, and converges to infinity. (See Hughes and Franca, 1988 for
elaboration.)

We believe that two quadratic NURBS through the thickness are unnecessary for typical thin
shell analysis, unless warping of through-thickness sections is deemed important. See Bischoff
et al., 2004. We performed some tests with one quadratic NURBS through the thickness and the
results were indistinguishable when compared with the two-quadratic-NURBS case. However,
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Figure 4.21 Shell obstacle course. Pinched cylinder displacement convergence.
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when we reduced to linear variation through the thickness, convergence to correct solutions
was not obtained. The classic shell theory hypothesis of invoking the plane stress condition
in the through-thickness direction is sufficient to correct the deficiency of linear through-
thickness displacement variation. Such a formulation may be competitive with traditional
shell element formulations which employ displacement and rotation degrees-of-freedom at a
reference surface. Using only displacement degrees-of-freedom (i.e., control variables) in the
NURBS case considerably simplifies shell analysis, especially in nonlinear analysis wherein
rotations are no longer vectorial and additive but require a multiplicative group structure. A
further simplification is to use a NURBS surface and employ “rotationless” formulations,
such as the one for plates described in Engel et al., 2002. In this reference a discontinuous
Galerkin formulation is proposed but all interface discontinuity (i.e., “jump”) terms in it
disappear if C1, or higher, continuity is satisfied. This is simply attained with NURBS but
very difficult to achieve in finite element analysis. Rotationless shell elements have recently
gained popularity in computational mechanics (e.g., Phaal and Calladine, 1992; Cirak et al.,
2000; Oñate and Zarate, 2000). The formulation of Engel et al., 2002 has also been proposed as
being an appropriate basis for so-called “strain gradient theories.” These theories also require
C1-continuity, and NURBS would appear to be naturally suited to them. In Chapter 11, phase-
field models are described and once again C1-continuous basis functions are the natural choice.

4.3.3 Hyperboloidal shell

The hyperboloidal shell problem provides some insight into the role that the local control of
continuity can play in analysis. This is still an active area of research, but some preliminary
impressions emerge from examining this problem, as well as the stiffened shell problem of
the next section.

The domain is the thin-walled solid seen in Figure 4.22, whose mid-surface is defined by

x2 + z2 − y2 = 1, y ∈ [−1, 1]. (4.56)
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Figure 4.22 The geometry of the hyperboloidal shell.
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The structure has a thickness of t = 0.001 in the direction normal to this mid-surface (all
distances are in meters). The loading is a smoothly varying pressure normal to the surface,

p(θ ) = p0 cos(2θ ), (4.57)

with p0 = 1.0 MPa. The top and bottom of the structure are fixed.

4.3.3.1 Mesh generation and implementation

Only a quarter of the structure is modeled due to symmetry. The mid-surface is a conic section,
namely a hyperbola, extruded in a path defined by another conic section, a circle. As rational
quadratic NURBS are capable of representing all conic sections, this hyperboloidal surface of
revolution can be represented exactly. However, the inner and outer surfaces of the structure
are defined as offsets of the mid-surface, shifted by ±t/2 in the normal direction, and are not
conic sections. Moreover, they are not in the NURBS space, so the mesh will inherently be
an approximate geometry. Note, however, that it is the offset of the hyperbola which is not
represented exactly. In the radial direction, the offset of a circle is again a circle and therefore
exists in the NURBS space. It is the radii of the circles denoting the inner and outer surfaces
of the structure at a given height y that are not exact.

The decision was made to use two quadratic elements through the thickness of the structure.
The knot value defining the boundary between the elements has a multiplicity equal to its
polynomial order, 2, thereby making the geometrically exact mid-surface a discernible entity
within the mesh – it is the boundary between the inner and outer layers of elements. Knots are
then inserted into the appropriate knot vectors to define the elements in the mid-surface of the
coarsest mesh. This mid-surface mesh is identical for all polynomial orders.

Once the coarse mid-surface mesh is fixed, so too is the number of basis functions in the
axial direction. The offset curves that define the inner and outer surfaces of revolution must
now be interpolated. The number of points along each curve that may be interpolated is equal
to the number of basis functions in the axial direction. Due to the use of open knot vectors, the
number of functions for a fixed mesh grows with p. Specifically, for the chosen mesh there are
14 + p basis functions in the axial (i.e., y) direction. As a result, 14 + p points, equispaced
in the parametric domain, are calculated along the hyperbola, then offset by ±t/2 using the
analytically computed normals to the curve. These offset points are then interpolated using
C p−1 B-splines to create the approximate geometry. In this way, the quality of the overall
geometric approximation improves as the polynomial order increases, though the mid-surface
mesh is the same for all orders. The loading, however, does not differ as it is applied directly
to the mid-surface itself.

To complete Mesh 1 for each polynomial order, knots are inserted near the fixed ends creating
two rows of small elements in order to better resolve the boundary layer. The multiplicity of
these knots is p, and so the basis functions are C0 across these element boundaries, shown in
red in Figure 4.23a. As discussed in Chapter 2, we could have introduced the same number
of new degrees-of-freedom into the region by creating many small elements, each having
p − 1 continuous derivatives across their boundaries. Instead we have chosen fewer elements
with lower continuity. The motivation for introducing these C0 mesh-lines is that previous
experience has indicated that doing so helps to prevent the behavior in the layer from polluting
results elsewhere in the domain. The main reason for this is that introducing a C0 mesh-line
results in localizing the support of the basis functions and thereby decreasing the coupling of
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 4.23 (a) Mesh 1. Basis functions have p − 1 continuous derivatives across blue element bound-
aries. They are only C0 across red element boundaries. (b) Mesh 2. The second mesh is generated by
uniform h-refinement of Mesh 1. The basis is C p−1 across the new element boundaries. (c) Mesh 3. The
third mesh is generated by uniform h-refinement of Mesh 2. Again, the basis is C p−1 across the new
element boundaries.

functions within the boundary layer to functions outside of the boundary layer (see Figure 4.24).
The result is crisper layers and more compact representations of the global solution, particularly
on coarse meshes.3

Meshes 2 and 3, seen in Figures 4.23b and 4.23c, respectively, are the result of subsequent
uniform h-refinements. The basis is C p−1 across the element boundaries introduced through
these refinements. The geometry and parameterization remain unchanged, and so Mesh 1 fixes
the geometry for each polynomial order. In this way, the analysis is an h-method, repeated
for several different polynomial orders, rather than a p-method repeated for several meshes.
Recall, however, that the mid-surface meshes for Mesh 1, Mesh 2 and Mesh 3 are independent
of the polynomial order. This was done in an effort to make the results from one polynomial
order to the next as comparable as possible.

4.3.3.2 Results

The numbers of degrees-of-freedom and the numerically computed volume are reported in
Table 4.2. The potential energy for each mesh, as well as the limit as h → 0 estimated using
Richardson extrapolation, is reported in Table 4.3. Plots of the deformed geometry as seen
from two different angles are shown in Figure 4.25. The displacement has been amplified by
a factor of 10 to make it more visible. Due to the sinusoidal character of the loading, the
deformed structure has “compression lobes” and “expansion lobes.” In both cases, the largest
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0 0.1 1
0

1

Ξ = {0, 0, 0, 0, 0.1, 0.1, 0.1, 1, 1, 1, 1}
(a)

0 0.1 1
0

1

Ξ = {0, 0, 0, 0, 0.03, 0.06, 0.1, 1, 1, 1, 1}
(b)

Figure 4.24 Example boundary layer meshes. Both meshes have the same number of basis functions.
(a) Only one of the seven basis functions has support both inside the layer (ξ < 0.1) and outside of the
layer (ξ > 0.1). (b) Three of the seven basis functions have support both inside and outside of the layer.
This may not be visually apparent, but the red basis function is non-zero for ξ < 0.1.

gradients of the solution are contained in thin layers near the fixed ends of the structure. Plots
of the radial displacement at a compression lobe are shown in Figure 4.26 and Figure 4.27.
In these plots, results for each of the polynomial orders on Mesh 3 are shown. While the
quadratics are far from converged, and cubics seem to be showing signs of the geometry error,
the quartics and quintics lie practically on top of each other.

After this initial study was completed, a second study was performed using the maximum
continuity possible. The shell geometries were identical to those presented above, as were the
meshes outside of the boundary layer region. The width of the boundary layer portion of the
mesh was kept the same as well, but instead of two rows of elements with C0 boundaries,
as in the initial study, many rows of elements with C p−1 boundaries were used (the number
of rows depended on the polynomial order and was chosen so as to equate the number
of degrees-of-freedom in each mesh of this study with the equivalent mesh in the previous

Table 4.2 Mesh data. Here p denotes the polynomial order in the plane of the surface,
while q is the polynomial order through the thickness. The exact volume of the shell is
1.597530 ∗ 10−2 m3

p, q Mesh 1 DOF Mesh 2 DOF Mesh 3 DOF Volume of shell

2, 2 2160 6300 21060 1.597535 * 10−2m3

3, 2 3045 7755 23655 1.597527 * 10−2m3

4, 2 4080 9360 26400 1.597530 * 10−2m3

5, 2 5265 11115 29295 1.597530 * 10−2m3
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Table 4.3 Potential energy. Estimated limit calculated using Richardson extrapolation

p, q Mesh 1 Mesh 2 Mesh 3 Estimated limit

2, 2 −4.668902 −4.751145 −4.796779 −4.799821
3, 2 −4.783082 −4.794395 −4.801991 −4.802112
4, 2 −4.787948 −4.795994 −4.799878 −4.799893
5, 2 −4.791334 −4.798373 −4.799941 −4.799942

* 10−2MNm * 10−2MNm * 10−2MNm * 10−2MNm

Figure 4.25 The deformed configuration viewed from two different angles. Compression lobes are
visible where the loading is directed inward. Expansion lobes are visible where the loading is directed
outward.

−1 −0.5 0 0.5 1
−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

y

ra
di

al
 d

is
pl

ac
em

en
t

Quadratic

Cubic

Quartic

Quintic

Figure 4.26 Compression lobe. Radial displacement versus height.
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Figure 4.27 Compression lobe. Detail of radial displacement versus height.

study). As expected, the results on coarser meshes are always better for the case with decreased
continuity. As the meshes are refined, this performance gap narrows, and eventually the trend
reverses. See, for example, the results for quintic meshes in Table 4.4. As stated previously,
we conclude that the use of functions with the maximum continuity possible at the given
polynomial order will be more efficient asymptotically whenever the exact solution is smooth.
On coarser meshes, however, reducing the continuity and therefore decreasing the support of
the basis functions may result in a more accurate solution.

4.3.4 Hemispherical shell with a stiffener

The hemispherical shell with a stiffener problem (see Figure 4.28) was modeled with a single
NURBS patch in Hughes et al., 2005. As was shown in Section 2.3 of Chapter 2, use of a
single patch leads to substantial distortion of the elements for this problem. While it speaks
well of the overall robustness of the method that accurate results were still obtained, efficiency

Table 4.4 Comparison of the potential energy errors in the two approaches to
boundary layer meshing, p = 5. Though the coarse mesh favors the C0 boundary layer
treatment, smooth functions prove to be more accurate once the meshes are sufficiently
fine. The reference solution used in the error calculation is the estimated limit for the
quintic case from the previous table

Mesh 1 Mesh 2 Mesh 3

C0 Boundary layer 0.1804% 0.0337% 0.0011%
C p−1 Boundary layer 0.3379% 0.0206% 0.0007%
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Figure 4.28 Hemispherical shell with stiffener. Problem description from Rank et al., 2005.

clearly suffered. We wish to compare with the original results of Rank et al., 2005, who used a
trunk space p-refinement strategy. Such an approach does not use the full tensor product space
of basis functions, but the much smaller trunk space, just large enough to ensure the optimal
convergence rate at a given polynomial order (see Szabo et al., 2004 for a discussion of the
trunk space and the p-method in general). As NURBS necessarily have an underlying tensor
product structure, at least on patches, an analogous isogeometric analysis approach exploiting
the trunk space has not been attempted thus far.

Despite the tensor product structure of NURBS, k-refinement presents the possibility of
improved efficiency. In fact, k-refinement, in conjunction with the use of multiple patches to
create better quality meshes, and the use of local refinement as described in Section 3.5.1
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of Chapter 3 to avoid placing functions in regions where they are not needed, enables the
NURBS based approach to show an accuracy per degree-of-freedom comparable to the results
presented in Rank et al., 2005; see Figures 4.31–4.34.

As we have seen several times now, if a given mesh of higher-order and high continuity does
not achieve the level of accuracy desired, one can add more degrees-of-freedom by inserting a
knot in one of the parametric directions. The number of new degrees-of-freedom is exactly the
same regardless of whether a new knot value is inserted (creating new elements by splitting
existing ones), or whether an existing knot value is repeated (creating no new elements, but
decreasing the continuity of the basis across the corresponding element boundaries). While a
rigorous analysis of the two approaches has not yet been performed, in the present results it
seems clear that in regions where the solution is very smooth (such as in the shell, a reasonable
distance away from the stiffener), inserting a new knot, and thus more functions that maintain
high continuity, was the more beneficial refinement. In the vicinity of a singularity (such as
near the reentrant corner where the shell meets the stiffener and the stress is singular), it is
more beneficial to repeat an existing knot value, decreasing the continuity of the basis and
simultaneously decreasing the support of the basis functions in the physical space. Both of
these effects help localize the singularity and prevent it from polluting the results elsewhere
in the domain4 (recall Figure 4.24).

The meshes for the multiple-patch treatment of the stiffened shell are shown in Figures 4.29
and 4.30. The locally refined, k-method meshes are seen in Figure 4.30a. In Figure 4.30b,
we see the case where fewer elements are used. A k-type refinement is used everywhere
except at the knot lines marked in red. The multiplicities of these knots were increased with
the polynomial order such that the basis remained C0 across them. The results for this mesh
are labeled “Local k*-ref” to indicate that the k-refinement paradigm was altered near the
singularity. The displacements are plotted versus the number of degrees-of-freedom for points
A and B in Figures 4.31 and 4.32. The calculated von Mises stresses are plotted versus the
number of degrees-of-freedom in Figures 4.33 and 4.34. The trunk space p-method results

Figure 4.29 Hemispherical shell with stiffener. The coarse mesh may be refined in multiple ways.
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(a) Local k-refinement (b) Local k*-refinement

Figure 4.30 Hemispherical shell with stiffener. (a) A k-refinement approach with C p−1 continuity
across element boundaries. Many small elements are used to get a well-resolved solution. (b) Functions
are C0 across the element boundaries in red, C p−1 elsewhere. Fewer elements are needed than in (a). In
both cases, the basis is C0 across patch boundaries, shown in black, and local refinement is implemented
at the patch level.

from Rank et al., 2005 are plotted for comparison. For displacements, the single patch results
from Hughes et al., 2005 are plotted as well.

In each of the problems in this section, we treated thin-walled geometries quite successfully
with solid, trivariate discretizations. The last two problems, the hyperboloidal shell and the
hemispherical shell with a ring stiffener, provided the opportunity to study the effects of
smoothness of basis functions in the vicinity of singularities. For the hyperboloidal shell, we
reduced smoothness locally in the vicinity of the boundary layer. In the case of coarse meshes,
this improved accuracy, whereas for finer meshes the pure k-method was more accurate. In
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Figure 4.31 Hemispherical shell with stiffener. The displacement at point A is plotted versus the total
number of degrees-of-freedom.

the case of the stiffened shell, we employed a multi-patch approach with local refinement and
again compared smooth discretizations within the patches with ones in which continuity was
reduced to C0 in the vicinity of the singularity. We found this latter approach led to more
rapid convergence. The reason for this seems to be that basis functions having support in the
vicinity of the singularity tend to propagate information away from the singularity. The support
of smooth k-method basis functions is greater than the support of the same order p-method
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Figure 4.32 Hemispherical shell with stiffener. The displacement at point B is plotted versus the total
number of degrees-of-freedom.
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Figure 4.33 Hemispherical shell with stiffener. The von Mises stress at point A is plotted versus the
total number of degrees-of-freedom.

functions when there are approximately the same numbers of degrees-of-freedom. As a result,
the errors created by the singularities tend to propagate further for the smoother basis functions
of the k-method. By judiciously locating a few surfaces of reduced continuity, the “pollution”
created by the singularities seemed to be more locally confined. However, it does not seem to
be a black and white issue, but rather to depend strongly on the nature of the exact solution.
Further studies need to be performed to assess the trade-offs in a wider variety of problems.
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Figure 4.34 Hemispherical shell with stiffener. The von Mises stress at point B is plotted versus the
total number of degrees-of-freedom.
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Appendix 4.A: Geometrical data for the hemispherical shell

The mesh for the hemispherical shell is a quintessential example of a geometry that
we can model quite simply with NURBS, but that is completely outside the space of piecewise
polynomial geometries realizable in a classical finite element setting. Here we present the same
geometrical data as used for the hemispherical shell in the shell obstacle course. We model a
quarter of the domain, applying symmetry boundary conditions where appropriate (see Fig-
ure 4.12b). The coarsest possible mesh has only one element, which is rational quadratic in
the two curved directions of the face and linear through the thickness. The ξ and η coordinates
will map onto the latitude and longitude lines. We have p = q = 2,


 = {0, 0, 0, 1, 1, 1}, (4.A.1)

and

H = {0, 0, 0, 1, 1, 1}. (4.A.2)

Finally, through the thickness we have r = 1 and

Z = {0, 0, 1, 1}. (4.A.3)

The control points are tabulated in Table 4.A.1. Note that the radius of the mid-surface is
R = 10 and the thickness is t = 0.04.

Before performing analysis, we performed k-refinement in the ζ -direction. First we order
elevate to r = 2, and then insert a new knot at ζ = 0.5. From there, further refinements were
made and results compiled. See Section 4.3.2.

Appendix 4.B: Geometrical data for a cylindrical pipe

Another frequently occurring shape in engineering design is the cylinder. As with the other
examples from the shell obstacle course, we modeled the cylindrical shell as a solid using

Table 4.A.1 Control points for the hemispherical shell

i j Bi, j,1 Bi, j,2 wi, j,1 wi, j,2

1 1 (9.98, 0, 0) (10.02, 0, 0) 1 1
1 2 (9.98, 0, 9.98) (10.02, 0, 10.02) 1/

√
2 1/

√
2

1 3 (0, 0, 9.98) (0, 0, 10.02) 1 1
2 1 (9.98, 9.98, 0) (10.02, 10.02, 0) 1/

√
2 1/

√
2

2 2 (9.98, 9.98, 9.98) (10.02, 10.02, 10.02) 1/2 1/2
2 3 (0, 0, 9.98) (0, 0, 10.02) 1/

√
2 1/

√
2

3 1 (0, 9.98, 0) (0, 10.02, 0) 1 1
3 2 (0, 9.98, 9.98) (0, 10.02, 10.02) 1/

√
2 1/

√
2

3 3 (0, 0, 9.98) (0, 0, 10.02) 1 1
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trivariate elements. Here, we will provide a template for such a geometry, but one with more
uniform proportions. Transforming the resulting cylindrical pipe into one with any desired
proportions is a simple task. Chapter 2, and the geometry tutorial of Section 2.4 in particular,
should provide the necessary details.

We let the ξ -direction in the parameter space correspond to the θ -direction in cylindrical
coordinates. The η-direction will align with the radial direction, while the ζ -direction will
correspond to the z-axis. The corresponding polynomial orders will be p = 2, q = 1, and
r = 1, respectively. For the knot vectors we have


 = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}, (4.B.1)

H = {0, 0, 1, 1}, (4.B.2)

Z = {0, 0, 1, 1}. (4.B.3)

Note that we specified the polynomial orders and knot vectors without specifying the
dimensions of the object yet. This is natural as knot vectors in which the knots are in-
tegers are very simple to deal with. To determine the control points, however, we must
know the dimensions of the cylindrical pipe. Let us consider a pipe with an inner radius
of 1, an outer radius of 2, and a height of 5. The necessary control points are tabulated in
Table 4.B.1.

Table 4.B.1 Control points for a cylinder

i k Bi,1,k Bi,2,k wi,1,k wi,2,k

1 1 (1, 0, 0) (2, 0, 0) 1 1
1 2 (1, 0, 5) (2, 0, 5) 1 1
2 1 (1, 1, 0) (2, 2, 0) 1/

√
2 1/

√
2

2 2 (1, 1, 5) (2, 2, 5) 1/
√

2 1/
√

2
3 1 (0, 1, 0) (0, 2, 0) 1 1
3 2 (0, 1, 5) (0, 2, 5) 1 1
4 1 (−1, 1, 0) (−2, 2, 0) 1/

√
2 1/

√
2

4 2 (−1, 1, 5) (−2, 2, 5) 1/
√

2 1/
√

2
5 1 (−1, 0, 0) (−2, 0, 0) 1 1
5 2 (−1, 0, 5) (−2, 0, 5) 1 1
6 1 (−1,−1, 0) (−2,−2, 0) 1/

√
2 1/

√
2

6 2 (−1,−1, 5) (−2,−2, 5) 1/
√

2 1/
√

2
7 1 (0, −1, 0) (0, −2, 0) 1 1
7 2 (0, −1, 5) (0, −2, 5) 1 1
8 1 (1, −1, 0) (2, −2, 0) 1/

√
2 1/

√
2

8 2 (1, −1, 5) (2, −2, 5) 1/
√

2 1/
√

2
9 1 (1, 0, 0) (2, 0, 0) 1 1
9 2 (1, 0, 5) (2, 0, 5) 1 1
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Appendix 4.C: Element assembly routine

In Appendix 3.A at the end of the previous chapter we presented pseudo-code for a shape
function routine that would consume an element number and a quadrature point in the parent
element, and would return the basis functions, their derivatives with respect to the physical
coordinates, and the Jacobian determinant of the mapping, all evaluated at the image of the
quadrature point in the physical domain. Though this was divided into three separate algorithms
for the sake of clarity, let us assume that we have one single function, Shape functionShape functionShape function,
that performs the task in its entirety. In this appendix, we will use that function to build
and assemble5 the local stiffness matrices and load vectors required for the analysis of a
homogeneous linear elastic solid.

The approach that we will take is to loop through the elements and within each element to
loop through the quadrature points. At each point we will evaluate basis functions and their
derivatives, and add the appropriate contributions to the local stiffness matrix and load vector.
When all of the quadrature points have been traversed within a given element, these local
contributions will be assembled into the global system by means of the AssemblyAssemblyAssembly function
(not shown) which will utilize the IEN and ID (or, analogously, LM) arrays discussed in
Appendix A at the end of this book. As the solution field is vector-valued for the case of
three spatial dimensions, the local stiffness matrix is stored as a nen × nen × 9 array and the
local load vector is stored as a nen × 3 array. AssemblyAssemblyAssembly will use the connectivity information
to map the local degrees-of-freedom to the appropriate global equation numbers. We will
assume that the treatment of Dirichlet boundary conditions will be handled appropriately
therein.

Algorithm 4 contains the aforementioned loops through the elements and quadrature
points. The contributions to the local stiffness matrix and local load vector are computed
in Build K localBuild K localBuild K local and Build F localBuild F localBuild F local, shown in Algorithms 5 and 6, respectively. For sim-
plicity, we will assume that the Young’s modulus, Poisson ratio, and body load are uniform
throughout the domain. We use the Young’s modulus and Poisson ratio to construct the Lamé
parameters as in (4.13) and (4.14). We also assume that the same set of quadrature points in
the parent element are appropriate for all physical elements. Lastly, note that the definition
that we have used for an element, the span between the knots, allows for the possibility of
elements which are of zero measure in the parameter space. This happens whenever continuity
has been decreased by knot replication. As a result, we will check to see if the element has
positive measure before attempting to integrate over it.
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Algorithm 4: Element assembly
Data: All of the geometrical, connectivity, material and load data must be input, as well as

the quadrature points and weights.
Result: The global stiffness matrix and global load vector will be assembled.

// Lamé parameters:
lambda = nu P*E Y / ((1.0+nu P)*(1.0+2.0*E Y));
mu = E Y / (2.0*(1.0+nu P));

// Element Loop:
for e = 1 to nel do

// NURBS coordinates; convention consistent with Algorithm 7
ni = INN[IEN[e][1]][1];
nj = INN[IEN[e][1]][2];
nk = INN[IEN[e][1]][3];

// Check if element has zero measure
if (KV Xi[ni+1] == KV Xi[ni]) or (KV Eta[nj+1] == KV Eta[nj]) or

(KV Zeta[nk+1] == KV Zeta[nk])
then

CYCLE; // Jump to end of loop and proceed with next element
end

K local[nen][nen][9] = 0.0; // Local stiffness matrix
F local[nen][3] = 0.0; // Local load vector

for i = 1 to NQUAD do
for j = 1 to NQUAD do

for k = 1 to NQUAD do

// gp is the vector of NQUAD quadrature points
call Shape function(gp[i],gp[j],gp[k],R,dR dx,J);

// Combine quadrature weights with Jacobian
Jmod = J*gw[i]*gw[j]*gw[k];

call Build K local(dR dx,Jmod,lambda,mu,K local);

// Fb is the body load vector
call Build F local(R,Jmod,Fb,F local);

end
end

end

call Assembly(K local,F local);
end
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Algorithm 5: Build K local
Data: The derivatives of the basis functions, modified Jacobian, material parameters λ and μ,

and current local stiffness matrix must be given as inputs.
Result: The local stiffness matrix is updated.

for aa = 1 to nen do
for bb = 1 to nen do

// Contributions to the diagonal
K Local[aa][bb][1] = K Local[aa][bb][1] + (

(lambda + 2.0*mu)*dR dx[aa][1]*dR dx[bb][1] +
mu*(dR dx[aa][2]*dR dx[bb][2] + dR dx[aa][3]*dR dx[bb][3])
)*Jmod;

K Local[aa][bb][5] = K Local[aa][bb][5] + (
(lambda + 2.0*mu)*dR dx[aa][2]*dR dx[bb][2] +
mu*(dR dx[aa][1]*dR dx[bb][1] + dR dx[aa][3]*dR dx[bb][3])
)*Jmod;

K Local[aa][bb][9] = K Local[aa][bb][9] + (
(lambda + 2.0*mu)*dR dx[aa][3]*dR dx[bb][3] +
mu*(dR dx[aa][1]*dR dx[bb][1] + dR dx[aa][2]*dR dx[bb][2])
)*Jmod;

// Contributions to the off-diagonal entries
K Local[aa][bb][2] = K Local[aa][bb][2] + (

lambda*dR dx[aa][1]*dR dx[bb][2] +
mu*dR dx[aa][2]*dR dx[bb][1] )*Jmod;

K Local[aa][bb][3] = K Local[aa][bb][3] + (
lambda*dR dx[aa][1]*dR dx[bb][3] +
mu*dR dx[aa][3]*dR dx[bb][1] )*Jmod;

K Local[aa][bb][4] = K Local[aa][bb][4] + (
lambda*dR dx[aa][2]*dR dx[bb][1] +
mu*dR dx[aa][1]*dR dx[bb][2] )*Jmod;

K Local[aa][bb][6] = K Local[aa][bb][6] + (
lambda*dR dx[aa][2]*dR dx[bb][3] +
mu*dR dx[aa][3]*dR dx[bb][2] )*Jmod;

K Local[aa][bb][7] = K Local[aa][bb][7] + (
lambda*dR dx[aa][3]*dR dx[bb][1] +
mu*dR dx[aa][1]*dR dx[bb][3] )*Jmod;

K Local[aa][bb][8] = K Local[aa][bb][8] + (
lambda*dR dx[aa][3]*dR dx[bb][2] +
mu*dR dx[aa][2]*dR dx[bb][3] )*Jmod;

end
end



P1: ABC/ABC P2: c/d QC: e/f T1: g

c04 JWBK372-Cottrell May 20, 2009 15:33 Printer Name: Yet to Come

Linear Elasticity 147

Algorithm 6: Build F local
Data: The basis functions, modified Jacobian, body load, and current local load vector must

be given as inputs.
Result: The local load vector is updated.

for aa = 1 to nen do

// Fb is the body load vector
F local[aa][1] = F local[aa][1] + Fb[1]*R[aa]*Jmod;
F local[aa][2] = F local[aa][2] + Fb[2]*R[aa]*Jmod;
F local[aa][3] = F local[aa][3] + Fb[3]*R[aa]*Jmod;

end

Notes

1. Do not confuse the symbol BA (i.e., the strain-displacement matrix) with one of the control
points used to define the geometry. There are but a finite number of letters in the alphabet,
and the use of B in this context is the standard in the literature.

2. Coalescing adjacent control points reduces continuity by one order. Coalescing p − 1
adjacent control points for NURBS of order p reduces continuity to C0.

3. Note that we would expect a very fine mesh (e.g., one with all of the elements the size
of those in the boundary layer) comprised of highly continuous functions to represent the
solution more efficiently than a classical p-method on a per degree-of-freedom basis. On a
coarse mesh, however, the efficiency of the method is degraded if a large percentage of the
functions have support in both very small and very large elements. This issue is investigated
in more detail in Section 4.3.4.

4. This is reminiscent of the heuristic notion that an hp-method should use large elements
with higher-order in smooth regions and small elements of lower-order near singularities.
Coupling this with control over the continuity across elements opens the door to the
possibility of an hpk-method.

5. Here “build” refers to the act of performing the integrals necessary to compute the entries
of the local stiffness matrix and load vector, while “assemble” refers to taking these local
objects and adding their contributions to their global counterparts.
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5
Vibrations and Wave Propagation∗

The study of structural vibrations or, more specifically, of eigenvalue problems allows us
to examine in more detail the approximation properties of the smooth NURBS functions
independently of any geometrical considerations. In general, spectrum analysis is the term
applied to the study of how numerically computed natural frequencies, ωh

n , compare with the
analytically computed natural frequencies, ωn . We will see that, for a given number of degrees-
of-freedom and bandwidth, the use of NURBS results in dramatically improved accuracy in
spectral calculations over classical finite elements analysis.

5.1 Longitudinal vibrations of an elastic rod

Let us begin by considering one of the simplest vibrational model problems in one dimension:
the longitudinal vibrations of an elastic rod. If we consider the domain � = (0, L) ⊂ R, there
is no longer an issue of geometrical accuracy. We will begin by taking the mapping from the
parameter space to the physical space to be the identity mapping (equivalently, we can think
of this as simply working in the parameter space). As demonstrated by Cottrell et al., 2006,
we will see that this is not necessarily the best choice. FEA basis functions and NURBS1

are equally capable of representing this domain exactly, and so the quality of the results will
depend entirely on the approximation properties of the basis.

5.1.1 Formulating the problem

To understand the formulation of the eigenproblem representing the longitudinal vibrations
of a “fixed–fixed” elastic rod, let us begin by considering the elastodynamics equation from
which it is derived (elastodynamics will be discussed in more detail in Chapter 6). The behavior
of the rod, which is assumed to move only in the longitudinal direction, is governed by the
equations of linear elasticity combined with Newton’s second law, resulting in

(Eu,x ),x − ρu,t t = 0 in � × (0, T ), (5.1a)

u = 0 on � × (0, T ), (5.1b)

∗ Many of the results in this chapter were originally obtained in Cottrell et al., 2006 and Hughes et al., 2008a

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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where � = (0, L), ρ : (0, L) → R is the density per unit length of the rod, E : (0, L) → R is
Young’s modulus, and the “fixed–fixed” condition (5.1b) ensures that the ends of the rod do
not move. For an actual dynamics problem, we would need to augment (5.1) with appropriate
initial conditions of the form

u(x, 0) = u0(x), (5.2)

u,t (x, 0) = v0(x). (5.3)

At present, however, we are not interested in the transient behavior of the rod. Instead, we are
interested in the natural frequencies and modes in which the rod vibrates. We obtain these by
separation of variables. In a slight abuse of notation, we assume u(x, t) to have the form

u(x, t) = u(x)eiωt , (5.4)

where u(x) is a function of only the spatial variable, x , while i = √−1, and ω is the natural
frequency. Inserting (5.4) into (5.1a) and dividing by the common exponential term results in
the eigenproblem we are seeking:

(Eu,x ),x + ω2ρu = 0 in �, (5.5a)

u = 0 on �. (5.5b)

Equation (5.5) constitutes an eigenproblem for the rod. The nontrivial solutions are count-
ably infinite. That is, for k = 1, 2, . . . ,∞, there is an eigenvalue λk = (ωk)2 and corresponding
eigenfunction u(k) satisfying (5.5). Furthermore, 0 < λ1 ≤ λ2 ≤ . . . , and the eigenfunctions
are orthogonal. Though the eigenfunctions are only defined up to a multiplicative constant, we
can remove the arbitrariness by augmenting the orthogonality condition to include normality.
That is, we can demand that the eigenfunctions all obey the property

L∫
0

u(k)ρu(l) dx = δkl . (5.6)

Following the now familiar process, we multiply (5.5a) by a test function w and integrate by
parts to obtain the weak form of the equation: Find all eigenpairs {u, λ}, u ∈ S, λ = ω2 ∈ R

+,
such that for all w ∈ V

a(w, u) − ω2(w, ρu) = 0, (5.7)

where

a(w, u) =
L∫

0

w,x Eu,x dx, (5.8)

(w, ρu) =
L∫

0

wρu dx . (5.9)
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Note that, due to the homogeneous boundary conditions, S = V = H 1
0 (0, L) = {u ∈

H 1(0, L)|u(0) = u(L) = 0}.
The Galerkin formulation is obtained by restricting ourselves to finite-dimensional sub-

spaces Sh ⊂ S in the usual way. That is, w and u in (5.7) will be replaced by finite dimensional
approximations wh and uh of the form

wh =
neq∑
A=1

NAdA and uh =
neq∑
B=1

NBcB, (5.10)

respectively. The resulting eigenpairs will contain approximations of both natural modes uh
(k)

and the natural frequencies ωh
k . The problem becomes: Find all ωh ∈ R

+ and uh ∈ Sh such
that for all wh ∈ Vh

a(wh, uh) − (ωh)2(wh, ρuh) = 0. (5.11)

Substituting the shape-function expansions for wh and uh in (5.11) gives rise to a matrix
eigenvalue problem: Find natural frequency ωh

k ∈ R
+ and eigenvector ���k , k = 1, . . . , neq ,

such that (
K − (ωh

k )2M
)
���k = 0, (5.12)

where

K = [K AB], (5.13)

M = [MAB], (5.14)

with

K AB = a(NA, NB), (5.15)

MAB = (NA, ρNB), (5.16)

and ���k is the vector of control variables corresponding to uh
(k). The orthonormality condition,

(5.6), can be expressed as

���T
k M���l = δkl . (5.17)

As in the previous chapter, we refer to K as the stiffness matrix. The new object, M, is the mass
matrix. Noting that ρ > 0, and that the NURBS basis functions are pointwise non-negative,
we see from (5.9) that every entry in the mass matrix is also non-negative. This claim cannot
be made for standard finite elements.

5.1.2 Results: NURBS vs. FEA

Let us consider the case where ρ, E , and L are each taken to be 1. Analytically, (5.5a) can
be solved to obtain ωn = nπ for n = 1, . . . ,∞. We can assess the quality of the numerical
method by comparing the ratio of the computed modes, ωh

n , with the analytical result. That
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is, (ωh
n/ωn) = 1 indicates that the numerical frequency is identical to the analytical result. In

practice, the discrete frequencies will always obey the relationship

ωn ≤ ωh
n for n = 1, . . . , neq , (5.18)

and so we expect the ratio (ωh
n/ωn) to be greater than 1 (see, e.g., Strang and Fix, 1973), with

larger values indicating decreased accuracy.

5.1.2.1 Initial results

Note that linear NURBS are identical to linear finite element functions, so let us begin the
comparison with quadratic functions. We compare C1-continuous quadratic NURBS functions
with the classical C0-continuous quadratic finite elements. The results are shown in Figure
5.1, where we have plotted the normalized frequency results, ωh

n/ωn , versus the mode number,
n, normalized by the total number of degrees-of-freedom, N ≡ neq = 999.

Figure 5.1 illustrates the superior behavior of NURBS basis functions compared with finite
elements. In this case, the finite element results depict a so-called acoustical branch for
n/N < 0.5 and an optical branch for n/N > 0.5 (see Brillouin, 1953). This branching is due
to the fact that there are two distinct types of difference equations for the finite elements:
those corresponding to the end-point nodes at element boundaries, and those corresponding
to mid-point nodes on element interiors; see Figure 5.2. The acoustical branch corresponds to
modes in which the neighboring end- and mid-point nodes oscillate in phase with each other,
and the optical branch modes are the modes in which they are out of phase2. Alternatively,
the quadratic NURBS difference equations are all identical (recall Figure 2.3), and no such

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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ω
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/ω
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n / N

Figure 5.1 Fixed–fixed rod. Normalized discrete spectra using quadratic finite elements and NURBS.
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Figure 5.2 Nodal finite element basis functions for the quadratic p-method. Note the two distinct types
of functions corresponding to end-nodes and mid-nodes. These lead to two distinct difference equations
corresponding to the end-point nodes at element boundaries and the mid-point nodes in element interiors.

branching takes place. Observe that the NURBS are more accurate throughout the entire
spectrum, not just in the upper half after the branching of the FEA spectrum.

The results of Figure 5.1 were obtained numerically. One could also have obtained these
results by analytically solving the discrete equations, as will be seen in Section 5.1.3.

The same eigenvalue analysis can be performed using higher-order NURBS basis functions.
The resulting spectra are presented in Figure 5.3; the analyses were carried out using N = 1000
degrees-of-freedom.

Increasing the order, p, of the basis functions, increases accuracy. Increasing p also results
in the appearance of strange frequencies at the very end of the spectrum (see Figure 5.3),
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Figure 5.3 Fixed–fixed rod. Normalized discrete spectra using different order NURBS basis functions.
Outliers appear in the very thin band on the right end of the spectrum.
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Figure 5.4 Fixed–fixed rod. Last normalized frequencies for p = 2, . . . , 10.

referred to as “outlier frequencies,” whose number and magnitude increase with p. In Figure
5.4, this behavior is highlighted by plotting the last computed frequencies for p = 2, . . . , 10.
To understand the outliers, recall the branching of the FEA spectrum seen in Figure 5.1. There
are only two distinct equations in the discrete system, corresponding to element middle and
end nodes, and this gives rise to the two branches. In the case of NURBS, as N → ∞, all
but a finite number of equations are the same, as seen in Figure 5.5. Those associated with
the open knot vectors, at the ends of the domain, are different and are responsible for the
outliers. The outliers constitute a discrete optical branch. The typical equation for a function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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1.5

Figure 5.5 Basis functions for the quadratic NURBS. Note that the number of non-standard basis
functions depends on the polynomial order, but not on the total number of elements in the domain.
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on the interior of the domain gives rise to the continuous acoustic branch, as has been verified
analytically; see Cottrell et al., 2006. In finite element analysis, the frequencies associated
with the optical branch are regarded as inaccurate and, obviously, the same is true for NURBS.
In many applications, these frequencies are in a sense harmless. They can be ignored in
vibration analysis and their participation in transient response can be suppressed through the
use of dissipative, implicit time integration algorithms (see, e.g., Hilber et al., 1977; Hilber
and Hughes, 1978; Miranda et al., 1989; Chung and Hulbert, 1993; Hughes, 2000). However,
they would be detrimental in explicit transient analysis because the frequencies of the highest
modes are grossly overestimated and stability would necessitate an unacceptably small time
step. See Hughes, 2000, chapter 9. It will be shown in the next section how to completely
eliminate the outliers by a reparameterization of the isogeometric mapping. Obviously, the
greater the number of outliers, the less efficient is the discrete approximation, and in this
situation FEA is at a severe disadvantage compared with NURBS.

5.1.2.2 Linear and nonlinear parameterizations

The most natural way to define a basis and geometrical mapping is to begin with a single
linear element with one control point at each end. The parameterization of such a domain is, of
course, linear. As the polynomial order is elevated and knots are inserted, the parameterization
remains linear (i.e., constant Jacobian determinant), though the spacing of the control points
will not be linear. In Cottrell et al., 2006 it has been shown that when studying structural
vibrations, a nonlinear parameterization such that the control points are uniformly spaced gives
better results. In Figure 5.6, we show the one-dimensional distribution of 21 control points
obtained for the two cases using cubic NURBS (top), along with plots of the corresponding
parameterization x = x(ξ ) (middle) and Jacobian J (ξ ) = dx(ξ )

dξ
(bottom). Subsequently, we

will refer to this choice, in which control points are uniformly distributed, as “nonlinear
parameterization,” in contrast with the linear parameterization.

5.1.2.3 Higher-order results

Let us proceed to higher orders, now using the nonlinear parameterization of the domain.
Figure 5.7 shows a comparison of k- and p-method numerical spectra for p = 1, . . . , 4 (we
recall that for p = 1 the two methods coincide). Here, the superiority of the isogeometric
approach is evident, as one can see that optical branches of spectra diverge with p for classical
C0 finite elements. This negative result shows that even higher-order finite elements have no
approximability for higher modes in vibration analysis, and possibly explains the fragility of
higher-order finite element methods in nonlinear and dynamic applications in which higher
modes necessarily participate. In contrast, the entire NURBS spectrum converges for all modes.
This dramatic result is all the more compelling when we recall that the result is independent
of the geometry in this one-dimensional setting. Results such as these can be understood
from a more fundamental functional analysis perspective through the notion of Kolmogorov
n-widths. See Appendix 5.A.

5.1.3 Analytically computing the discrete spectrum

Thus far, we have looked at numerical results. We can, however, compute spectra by analytically
solving the discrete system. Beginning with the variational form (assuming unit coefficients),
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Figure 5.6 One-dimensional case: linear versus nonlinear parameterization determined by uniformly-
spaced control points (cubic NURBS, 21 control points). Top: distribution of control points; black
dots correspond to linear parameterization control points and red asterisks to uniformly-spaced control
points. Middle: Plot of the parameterizations of the two cases. Bottom: Plot of the Jacobians for the two
cases.
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Figure 5.7 Longitudinal vibrations of an elastic rod. Comparison of k-method and p-method numerical
spectra.

we have ∫
�

wu,t t d� +
∫
�

w,xu,x d� = 0. (5.19)

Letting

w = NA(x) (5.20)

and

u = uB(t)NB(x), (5.21)

with the NA’s being the quadratic B-splines used above, we can analytically perform the
integration in (5.19) to obtain the stencil

h

120
(ü A−2 + 26ü A−1 + 66ü A + 26ü A+1 + ü A+2)

− 1

6h
(u A−2 + 2u A−1 − 6u A + 2u A+1 + u A+2) = 0,

(5.22)

where we use the double-dot to denote differentiation of the coefficient with respect to time.
We can compactly rewrite (5.22) as

h2

20
αü A − βu A = 0, (5.23)
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where α and β are operators defined by

αxA = xA−2 + 26xA−1 + 66xA + 26xA+1 + xA+2,

βxA = xA−2 + 2xA−1 − 6xA + 2xA+1 + xA+2.
(5.24)

We assume the time varying control point to have the form

u A(t) = φAq(t), (5.25)

where φA is a constant coefficient depending only on the control point, A, and q(t) is a function
of time that is the same for each control point. Substituting this expression into (5.23) and

adding and subtracting
(ωhh)2

20
αu A leads to

(q̈ + (ωh)2q)
h2

20
αφA − (

(ωhh)2

20
αφA + βφA)q = 0. (5.26)

The satisfaction of (5.26) is achieved by selecting φA and q such that

q̈ + (ωh)2q = 0 (5.27)

and

(
(ωhh)2

20
α + β)φA = 0. (5.28)

Assuming a solution for (5.28) of the form (for fixed–fixed boundary conditions)

φA = C sin(Aωh), ω = nπ, (5.29)

(5.28) can be rewritten as

(
(ωhh)2

20
α + β) sin(Aωh) = 0. (5.30)

Recalling the definitions of α and β given in (5.24), and the trigonometric identity sin(a ± b) =
sin(a) cos(b) ± sin(b) cos(a), it requires only a small amount of algebraic manipulation to
obtain

(ωhh)2

20
(16 + 13 cos(ωh) + cos2(ωh)) − (2 − cos(ωh) − cos2(ωh)) = 0, (5.31)

which can be solved for
ωh

ω
, giving:

ωh

ω
= 1

ωh

√
20(2 − cos(ωh) − cos2(ωh))

16 + 13 cos(ωh) + cos2(ωh)
. (5.32)

Equation (5.32) is the analytical expression for the normalized discrete spectrum using
quadratic NURBS basis functions. Analogous calculations can be performed for higher-order
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approximations. The expression for cubic NURBS is:

ωh

ω
= 1

ωh

√
42(16 − 3 cos(ωh) − 12 cos2(ωh) − cos3(ωh))

272 + 297 cos(ωh) + 60 cos2(ωh) + cos3(ωh)
. (5.33)

For large N , these curves are indistinguishable from the numerical results plotted in Figure
5.7.

5.1.4 Lumped mass approaches

The mass matrix as we have defined it in (5.16) leads to the so-called “consistent mass
matrix” – an appropriate name as it is the definition that follows from the variational formulation
and leads to optimal order estimates. In a world of unlimited computational resources, this
is what we would normally use. There are circumstances, however, in which computational
savings can be achieved by using a diagonal mass matrix that approximates the consistent
mass. Such a lumped mass matrix can be inverted trivially by taking the reciprocal of each
of its diagonal entries, leading to rapid equation solving. These savings can be even more
compelling for time-dependent problems in which the system must be solved many times.
In fact, lumped-mass, “explicit” procedures are the fundamental technology in large-scale
automobile crash simulation programs and many metal forming applications.

The name “lumped mass” refers to the fact that all of the mass ends up in one spot: the
diagonal of the matrix. There are several techniques for obtaining lumped masses. One of the
most common approaches is the row-sum technique in which the elements of each row are
summed together and lumped on the diagonal. That is

M̃AB =
{∫

�
ρNA d� A = B,

0 A �= B.
(5.34)

To see that this is indeed a row-sum, note that

neq∑
B=1

∫
�

ρNA NB d� =
∫
�

ρNA

( neq∑
B=1

NB

)
d� =

∫
�

ρNA d�, (5.35)

where the last equality follows from the partition of unity property of the basis.
For NURBS, the pointwise positivity of the basis functions ensures that all entries in a

row-sum lumped mass matrix will be positive. This is clearly desirable as the consistent mass
matrix is positive-definite, and so we would like the lumped mass matrix to be as well. On
the other hand, higher-order C0 finite elements can produce zero or negative lumped masses,
which is unacceptable in engineering analysis (see Hughes, 2000, chapter 7).

5.1.4.1 Order of accuracy using row-sum lumped mass

In a manner identical to the approach of Section 5.1.3, the order of accuracy of lumped mass
can be obtained analytically. Employing linearly parameterized quadratic NURBS, we derive

ωh

ω
= 1

ωh

√
2

3
(2 − cos(ωh) − cos2(ωh)), (5.36)
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Figure 5.8 Rod problem and row-sum lumped mass. Analytical versus numerical discrete spectra
computed using quadratic and cubic NURBS.

while with cubic NURBS we obtain

ωh

ω
= 1

ωh

√
1

15
(16 − 3 cos(ωh) − 12 cos2(ωh) − cos3(ωh)). (5.37)

In these cases, the analytical expressions do not reproduce the behavior of the numerical spectra
(which displays some branching), but the two approaches do correspond in the low-frequency
part of the spectrum before the slope discontinuity, as shown in Figure 5.8. This is the relevant
part as far as order of accuracy is concerned. So, by means of Taylor expansions, we obtain,
for quadratic NURBS,

ωh

ω
∼ 1 − (ωh)2

8
, (5.38)

while for cubic NURBS we get

ωh

ω
∼ 1 − (ωh)2

6
. (5.39)

As is evident from Figure 5.8, by increasing the order p, higher-order accuracy is not achieved.
For row-sum lumped mass, it is always equal to 2. Finally, Figures 5.9 and 5.10 confirm the
validity of expressions (5.38) and (5.39), respectively, for low frequencies.

5.1.4.2 A Petrov–Galerkin approach to mass lumping

There is an alternative approach to mass lumping which has some theoretical appeal, but has
not yet been investigated thoroughly. Using the techniques described in Schumaker, 2007, we
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Figure 5.9 Rod problem and row-sum lumped mass. Normalized discrete spectrum using quadratic
NURBS compared with 1 − (ωh)2/8 for low frequencies.

can construct a locally supported dual basis, {N ∗
A}, to a given B-spline basis, {NA}, such that∫

�

N ∗
A NB d� = δAB . (5.40)

In general, constructing a basis such that (5.40) holds is not difficult at all. In fact, it can
be done from a linear combination of the spline functions themselves just by setting up and
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Figure 5.10 Rod problem and row-sum lumped mass. Normalized discrete spectrum using cubic
NURBS compared with 1 − (ωh)2/6 for low frequencies.
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Figure 5.11 Fixed–fixed rod spectra computed with dual mass lumping and row-sum mass lumping,
for quadratic and cubic NURBS elements. Consistent classical finite element results are shown for
comparison.

solving a simple linear system. Such an approach, however, leads to a globally supported dual
basis. The power of the construction of Schumaker, 2007 is that N ∗

A and NA have exactly the
same support.

A locally supported dual basis opens the possibility of a Petrov–Galerkin method where the
solution space is spanned by the spline basis, but the weighting space is spanned by the dual
basis. This would lead to a consistent mass matrix that is naturally diagonal. Figure 5.11, shows
the analytically computed spectra for this dual lumping approach, as well as the analytical
results for row-sum lumping as a reference. Not only are the dual-lumping results dramatically
better, they also improve as the order increases. Notably, the dual lumped cubic NURBS are
competitive with both consistent quadratic and cubic classical finite element approaches.

The use of a fully-integrated stiffness matrix might lead one to expect the order of con-
vergence to increase with p, rather than reaching a plateau as with the row-sum technique.
Unfortunately, this is not the case. The dual basis we have constructed is incomplete (not
even constant functions can be represented) and so standard error estimates do not apply. In
fact, it is not clear that the word “convergence” is really appropriate in this setting. It can
be said, however, that all four of the curves in Figure 5.11 have second-order accuracy. The
improved results for dual lumping as the order increases are a result of reduced coefficients in
the Taylor-expansion of the solution, not higher-order accuracy. In particular, for quadratics
we have

ωh

ω
∼ 1 + 79

648
(ωh)2, (5.41)

while for cubics we have

ωh

ω
∼ 1 + (3

√
2 − 205

48
)(ωh)2. (5.42)
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That is, the second order coefficient for quadratics is approximately 0.1204, while for cubics
it is approximately −0.0282.

Aside from the lack of completeness of the dual basis, another downside of this approach
is that the dual basis is very difficult to construct. The expressions are non-intuitive and do
not lend themselves easily to recursive algorithmic definitions as is the case for B-splines.
Also, the dual basis is only piecewise continuous, containing jump discontinuities. Worse still,
these discontinuities do not align with the element boundaries (i.e., the knots), meaning that
standard quadrature procedures would be inappropriate. Figure 5.12a shows the function N ∗

A

A−1 A A+1 A+2 A+3 A+4
−1.5
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(b) NA(x)

Figure 5.12 (a) The C−1 dual function N ∗
A(x). Note that the discontinuities do not occur at the knots.

(b) The associated C1 quadratic B-spline function NA(x).
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corresponding to the quadratic spline function NA shown in Figure 5.12b. For further details
of the construction of dual bases, see Schumaker, 2007.

We believe that the subject of lumped mass matrices and NURBS deserves further attention.
It still may be possible to develop methods that have higher-order accuracy.

An additional consequence of the weighting functions being discontinuous is that we cannot
integrate by parts. That is, the stiffness matrix for the rod problem is given by

K AB =
∫
�

N ∗
A

∂2NB

∂x2
d�. (5.43)

Interestingly, the resulting stiffness matrix remains symmetric in the cases considered.

5.2 Rotation-free analysis of the transverse vibrations of a
Bernoulli–Euler beam

We now consider the transverse vibrations of a simply-supported, unit length Bernoulli–Euler
beam. Such a beam is the one-dimensional analogue of the Poisson–Kirchhoff plate in that the
formulation assumes that there are zero transverse shear strains during bending of the beam
(see Section 5.4).

For the Bernoulli–Euler beam, the natural frequencies and modes, assuming unit material
and cross-sectional parameters, are governed by:

u,xxxx − ω2u = 0 in �,

u = 0 on �,

u,xx = 0 on �,

(5.44)

where � = (0, 1), � = ∂� = {0, 1}. The analytical frequencies are given by

ωn = (nπ )2, with n = 1, 2, 3, . . . (5.45)

The numerical experiments and results for the Bernoulli–Euler beam problem are analogous
to the ones reported for the rod. The nonlinear parameterization described earlier is utilized.
Note that the classical beam finite element employed to solve problem (5.44) is a two-node
Hermite cubic element (see Figure 5.13). Figure 5.14 presents the discrete spectra obtained
using different order finite element and NURBS basis functions. The Hermite FEA functions
are always C1, while the NURBS are C p−1. The degrees-of-freedom for the Hermite elements
are displacement and slope (i.e., rotation) at each node, whereas the control variables for the
NURBS elements are simply displacements. These latter elements are “rotation-free.” Again,
k-refinement results are dramatically better on a per degree-of-freedom basis.

In the case of a rotation-free beam with zero slope boundary condition, one needs to use
Lagrange multiplier and/or penalty methods to enforce the boundary condition. See Hughes
et al., 2008a for details.
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Figure 5.13 Classical Hermite cubic functions. The blue functions are interpolatory at the nodes, at
which they always have a slope of zero. Conversely, the functions in red always take a value of zero at the
nodes, but their slopes are interpolatory there. This means that Dirichlet conditions relating to slope may
be easily implemented strongly. Unfortunately, having two types of functions still leads to a branching
of the spectrum, as with the rod.

5.3 Transverse vibrations of an elastic membrane

We present some numerical experiments for the transverse vibrations of an elastic membrane.
First, we consider the two-dimensional counterpart of the linear versus nonlinear parameteri-
zation discussion of Section 5.1.
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Figure 5.14 Simply-supported beam. Normalized discrete spectra for higher-order finite elements and
NURBS.
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5.3.1 Linear and nonlinear parameterizations revisited

As we have seen previously, when higher-order functions are used with open knot vectors,
a linear, even spacing of the control points does not result in a linear parameterization of
the domain. Again, the reason for this is that the functions near the beginning and end of
the domain are not identical to those in the interior and so they result in adjustments to the
control point positions when a linearly parameterized domain is being order-elevated. We can
see this for two dimensions in Figure 5.15 for the case of a square domain obtained using
p = q = 4, where p and q are the orders of the basis functions in the ξ and η (i.e., x and y)
directions, and 11 × 11 control points. We show the control points and mesh for both the linear
and nonlinear parameterizations. As before, numerical experiments indicate that the nonlinear
parameterization gives rise to better spectral properties by eliminating the outlier frequencies.
The reader with a background in finite elements may find these notions alien. However, it
is important to deal with them in order to gain an understanding of B-splines and NURBS
methodologies.

5.3.2 Formulation and results

The membrane under consideration is an idealization of the elastic behavior of a material
with zero thickness. Mathematically, the equations are similar to the one-dimensional rod in
Section 5.1. The equation for the axial displacement of the rod is the same as the equation for
the transverse displacement of a string with the string tension replacing the Young’s modulus.
The string is the one-dimensional analogue of the membrane. The natural frequencies and
modes, assuming unit tension, density and edge length, are governed by:

�u(x, y) + ω2u(x, y) = 0 in � = (0, 1) × (0, 1),

u(x, y) = 0 on � = ∂�.
(5.46)

The exact natural frequencies are (see, e.g., Meirovitch, 1967):

ωmn = π
√

m2 + n2, m, n = 1, 2, 3 . . . (5.47)

The conversion of (5.46) into its weak, finite-dimensional counterpart proceeds in the
usual way, as does the subsequent assembly into a system of algebraic equations. As we
have seen for second-order systems, H 1(�) is the appropriate setting for the problem, and
so the finite-dimensional subspaces Sh = Vh do not require higher-order continuity; C0 is
sufficient. This means that a straight–forward application of Galerkin’s method applies to both
the isogeometric approach and the FEA approach. Any difference in the quality of the results
is again due to the properties of the basis.

Figure 5.16 reports the numerical spectra obtained using 70x70 degrees-of-freedom. The
results exhibit similarities to the 1D cases and the superiority of the isogeometric approach is
also clear. Again, for higher frequencies, finite element spectra seem to diverge with p.



P1: ABC/ABC P2: c/d QC: e/f T1: g

c05 JWBK372-Cottrell May 20, 2009 3:16 Printer Name: Yet to Come

Vibrations and Wave Propagation 167

1.0

0.8

0.6

0.4

0.2

0
0 1.00.80.60.40.2

x

y

1.0

0.8

0.6

0.4

0.2

0
0 1.00.80.60.40.2

x

y

1.0

0.8

0.6

0.4

0.2

0
0 1.00.80.60.40.2

ξ

η

1.0

0.8

0.6

0.4

0.2

0
0 1.00.80.60.40.2

x

y

1.0

0.8

0.6

0.4

0.2

0
0 1.00.80.60.40.2

x

y

Figure 5.15 Two-dimensional case: linear versus nonlinear parameterization determined by uniformly-
spaced control points (p = q = 4, 11 × 11 control points). Top: control net (left) and mesh (right)
obtained employing the linear parameterization, both plotted on the physical domain. Middle: uniform
mesh on the parametric domain. Bottom: control net (left) and mesh (right) obtained employing the
nonlinear parameterization, both plotted on the physical domain.
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Figure 5.16 Transverse vibrations of an elastic membrane. Comparison of k-method and p-method
numerical spectra. Top: entire spectrum. Bottom: detail of the first half of the spectrum. The oscillations
in the spectra are due to the mismatches between the numerically obtained frequencies and analytical
frequencies. If the exact correspondence is found, the discrete spectra becomes smooth, but it is very
difficult to find the correct correspondence. The details of the problem are discussed in Hughes et al.,
2008a, along with a two-dimensional example in which the correct correspondence is known.

5.4 Rotation-free analysis of the transverse vibrations of a
Poisson–Kirchhoff plate

We consider the transverse vibrations of a simply-supported, square plate governed by Poisson–
Kirchhoff plate theory, a two-dimensional analogue of the Bernoulli–Euler beam problem. We
do not show any FEA results for this problem, largely because C1 discretizations in more than
one dimension are difficult to construct in classical ways. Alternatively, the smooth NURBS
bases are easy to construct, and they perform quite well.
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Figure 5.17 The Kirchhoff hypothesis states that straight fibers normal to the mid-surface prior to
deformation remain straight and remain normal to the mid-surface after deformation.

Let � ⊂ R
2 denote the mid-surface area of a plate of thickness t . The kinematic behavior

of the plate is defined by the transverse displacement of the mid-surface, u = u(x) for x ∈ �.
We consider the rotation of fibers normal to the mid-surface to be equal to the slope of the
mid-surface. Thus, normal fibers remain normal throughout the deformation of the plate,
resulting in zero transverse shear strain; see Figure 5.17. This is the Kirchhoff hypothesis. The
transverse displacement is the dependent variable of the theory and all other quantities are
derived from it.

The full derivation of the Poisson–Kirchhoff theory is outside the scope of this book, but it
can be shown that vibration analysis of such a plate reduces to a biharmonic problem (hence the
need for continuous derivatives). The natural frequencies and modes, assuming unit flexural
stiffness, density and edge length, are governed by:

� (�u(x, y)) − ω2u(x, y) = 0 in � = (0, 1) × (0, 1),

u(x, y) = 0 on � = ∂�,
(5.48)

for which the exact natural frequencies (see, e.g., Meirovitch, 1967) are:

ωmn = π2(m2 + n2), m, n = 1, 2, 3 . . . (5.49)

As we have noted, the NURBS formulation results in a rotation-free approach, as was the
case for the Bernoulli–Euler beam. The numerical results are similar to the ones obtained for
the elastic membrane. Figure 5.18 shows the spectra obtained employing a uniformly-spaced
control net.

5.5 Vibrations of a clamped thin circular plate using three-dimensional
solid elements

It has been shown in Chapter 4 that higher-order, three-dimensional NURBS elements could be
effectively utilized in the analysis of thin structures. In this section we consider the vibrations
of a clamped, thin circular plate modeled as a three-dimensional solid. A coarse mesh, but one
capable of exactly representing the geometry, is utilized and the order of the basis functions is
increased by way of k-refinement.
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Figure 5.18 Poisson–Kirchhoff plate. Normalized discrete spectra using a uniformly-spaced 90 × 90
control net corresponding to the nonlinear parameterization of Figure 5.15.

5.5.1 Formulating the problem

The exact Poisson–Kirchhoff solution for this problem, given, for example, in Meirovitch,
1967, is

ωmn = C2
mn

π2

R2

√
D

ρt
[rad/s], (5.50)

where R is the radius of the plate, t is the thickness, D = Et3

12(1 − ν2)
is the flexural stiffness

(E and ν are Young’s modulus and Poisson’s ratio, respectively) and ρ is the density (mass
per unit volume). For the first three frequencies, the values of the coefficients Cmn are C01 =
1.015, C11 = 1.468 and C02 = 2.007. The data for the problem are presented in Table 5.1.
Note that, because the radius to thickness ratio is 100, the plate may be considered thin, and
the results of Poisson–Kirchhoff theory may be considered valid.

In practice, however, we model the plate as a three-dimensional solid. We begin with the un-
forced equations of linear elastodynamics (these will be discussed in more detail in Chapter 6)

ρu j,t t = σ jk,k in � × (0, T ), (5.51a)

u j = g j on �D j × (0, T ), (5.51b)

σ jknk = h j on �N j × (0, T ). (5.51c)
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Table 5.1 Clamped circular
plate. Geometric and material
parameters

R 2 [m]

t .02 [m]
E 30·106 [K N/m2]
ν 0.2
ρ 2.320 [K Ns/m4]

As was the case with the rod, if we were interested in actually solving (5.51) for the transient
behavior, we would need to augment these equations with initial conditions

u(x, 0) = u0(x) in �, (5.52)

u,t (x, 0) = v0(x) in �. (5.53)

At present, however, our goal is to pursue the same path for the one-dimensional problems
and obtain an eigenproblem. We separate variables, assuming u to have the form (committing
the same notational crime as with the rod)

u j (x, t) = u j (x)eiωt , (5.54)

where we refer to individual components of u using the letter j , reserving i in this context for
the imaginary unit i = √

1.
Inserting (5.54) into (5.51), multiplying by weighting function w, and integrating by parts

leads to the weak form

a(w, u) − ω2 (w, ρu) = 0, (5.55)

where

(w, ρu) =
∫

�

ρw · u dx, (5.56)

and a(·, ·) is as in (4.18).
We proceed, via Galerkin’s method, to obtain matrix equations by inserting the shape-

function expansions for wh and uh into (5.55) to obtain the matrix eigenvalue problem: Find
natural frequency ωh

k ∈ R
+ and eigenvector ���k such that

(
K − (ωh

k )2M
)
���k = 0, (5.57)

where

K = [KP Q], (5.58)

M = [MP Q], (5.59)
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and

K P Q = a(NAei , NBe j ), (5.60)

and

MP Q = δi j (NA,ρNB), (5.61)

with P = ID(i, A) and Q = ID( j, B).

5.5.2 Results

For this geometry we no longer have the luxury of evenly spacing the control points in order
to tweak the parameterization. The mesh used is topologically identical to that of the solid
cylinder of Figure 2.33. Though the dimensions and number of elements are different, they both
have a degeneracy along the axis of the cylindrical geometry (note that the thin circular plate
is indeed a solid cylinder with a very short “length,” that is, thickness) due to the coalescence
of many control points to the same point in physical space. This relationship is enforced
during assembly by mapping the j th degree-of-freedom for each of the corresponding control
variables to a single equation number.

The initial control net consists of 9 × 4 × 3 control points in the θ, r , and z directions,
respectively, and quadratic approximations in all three parametric directions. Figure 5.19
shows the mesh, consisting of eight elements within a single patch. The numerical results
are compared with the exact solution in Table 5.2, where p, q, and r are the orders of
the basis functions in the circumferential, radial, and vertical directions, respectively. Figure
5.20 shows the first three eigenmodes (computed using p = 4, q = 5, r = 2), which are in
qualitative agreement with the ones depicted in Meirovitch, 1967. The relative errors (i.e.,
(ωh − ω)/ω) for these cases are, respectively, 0.0054, 0.00027, and 0.0012. It is important to
note that the first and third modes exhibit pointwise radial symmetry.

5.6 The NASA aluminum testbed cylinder

As a final example of isogeometric analysis applied to structural vibrations we consider the
NASA aluminum testbed cylinder (ATC). The ATC is a structure inspired by the features of
an airplane fuselage which is used by NASA to validate many of the modeling tools involved
in the analysis and prediction of interior aircraft noise. It represents an application of isogeo-
metric analysis to a “real world” geometry found in the aerospace industry, demonstrating the

Figure 5.19 Clamped circular plate. Mesh of eight solid elements.
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Table 5.2 Clamped circular plate. Numerical
results compared with the exact solution

p q r ω01[rad/s] ω11[rad/s] ω02[rad/s]

2 2 2 138.133 1648.800 2052.440
2 3 2 56.702 267.765 276.684
3 3 2 56.051 126.684 232.788
3 4 2 54.284 124.417 212.451
4 4 2 54.284 113.209 212.451
4 5 2 54.153 112.700 210.840

exact 53.863 112.670 210.597

feasibility of constructing exact geometrical models of complicated objects, as well as the
usage of NURBS on large-scale problems. More importantly, it demonstrates the profound
increase in geometrical modeling capability in simply going from linear or quadratic poly-
nomials to quadratic NURBS. While higher-order basis functions may be very interesting in
analysis, for the geometry it seems to be a fork in the road. It is one of the major accom-
plishments of isogeometric research up to this point. A thorough discussion of this example is
contained in Cottrell et al., 2006.

The ATC is shown in Figures 5.21a and 5.22a. An isogeometric model (see Figures 5.21b
and 5.22b) was constructed from design drawings. There are three distinct members composing
the frame: nine identical main ribs; twenty-four identical prismatic stringers, and two end ribs.
Every geometrical feature of the design drawings is exactly represented in the model. Figures
5.23–5.25 show some of the geometrical details. These features are exactly preserved through
all levels of refinement.

The downside to the complicated geometry is that, as in the previous example of the clamped
plate, we can no longer easily control the parameterization in an effort to eliminate outlier
frequencies. Nevertheless, the results obtained compare favorably with the experimental values
measured in the laboratory (as reported in Grosveld et al., 2002 and Buehrle et al., 2001). The
formulation for the problem is exactly that of Section 5.5.

Numerical results for the frame and skin assembly are presented in Figure 5.26, along
with the experimental data. The mesh consisted of 228,936 rational quadratic elements and
2,219,184 degrees-of-freedom. One could reduce the number of degrees-of-freedom signif-
icantly by exploiting rotational symmetry and modeling only 1/24 of the frame assembly
(as others have done, see Couchman et al., 2003), but part of the goal of this work was to
demonstrate the feasibility of modeling an entire real structure of engineering interest using
isoparametric NURBS elements, and so no such simplifications were employed.

5.7 Wave propagation

The classical equation governing wave propagation is

�u − 1

c

d2u

dt2
= 0, (5.62)
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Figure 5.20 The lowest three computed eigenmodes of the clamped circular plate.

where c is the wave propagation speed. Particular solutions of (5.62) are plane waves of
frequency ω traveling in the direction n at speed c, which can be expressed as the time-harmonic
wave train

u(x, t) = Re
(
Aei(kn·x−ωt)

)
, (5.63)

where k = ω/c is the wave-number, ω is the angular frequency, and A is a complex amplitude.
The wavelength (with units of length) is defined by λ = 2π/k, while the dual measure of
period (with units of time) is defined by T = 2π/ω.
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(a)

(b)

Figure 5.21 NASA aluminum testbed cylinder (ATC). (a) Frame and skin assembly of the actual ATC.
Note that the exterior pegs and rings visible on the skin are part of the measuring apparatus and not part
of the ATC itself. (b) The isogeometric model of the frame and skin assembly.

Assuming time-harmonic solutions, as we did for vibrations, we insert

u(x, t) = eiωt u(x), (5.64)

into (5.62) reducing the linear wave equation to the Helmholtz equation

�u + k2u = 0, (5.65)
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(a)

(b)

Figure 5.22 NASA ATC. (a) Frame assembly of actual ATC. (b) The isogeometric model of the frame
assembly.
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Typical 15° segment

Figure 5.23 NASA ATC. Isogeometric model of the main rib.

Figure 5.24 NASA ATC. Stringer–main-rib junction. The gaps between the stringers and main ribs,
visible in the figure, are a feature of the exact geometry.
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Figure 5.25 NASA ATC. Stringer–end-rib junction.

whose solutions in R
n are linear combinations of plane waves in space

u(x) = eikn·x. (5.66)

The difference between the Helmholtz equation and the equation of free vibration (e.g.,
equation (5.46)) is that in the former case k2 is known, whereas in the latter case ω2 is
unknown and must be determined as part of the solution of the eigenproblem.

5.7.1 Dispersion analysis

We proceed to apply Galerkin’s method to the Helmholtz equation. After discretization, (5.65)
gives rise to the matrix equation

(
K − k2M

)
d = 0, (5.67)

where d = {dA} is the vector of coefficients defining discrete solution uh via

uh(x) =
∑

NA(x)dA. (5.68)
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Figure 5.26 NASA ATC. Comparison of numerical and experimental frequency results for the frame
and skin assembly.
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Figure 5.27 Different exact and numerical wave-numbers produce waves with different wavelengths.

The numerical solution of (5.67) is a linear combination of plane waves having numerical
wave-number kh , where, in general, kh �= k.

Thus, discrete and exact waves have different wavelengths, 2π/kh and 2π/k (see Figure
5.27).

The fundamental issue, which is addressed by dispersion analysis, is to determine how
close the discrete wave-number kh is to its continuous counterpart k.

5.7.2 Duality principle

There is a symmetry between the vibration problems considered previously and the current
wave propagation problem (see Hughes et al., 2008a). Compare (5.67) with (5.57) and notice
the form of the equations. They are identical under the substitution ωh ↔ k. Furthermore, if
we exchange ω and kh as well, we achieve a duality between spectrum analysis and dispersion
analysis in the domain where kh is real.

If we consider the longitudinal vibrations of an elastic rod with unit material properties,
as in Section 5.1, modeled using quadratic NURBS, we get the results seen in Figure 5.28
where we have plotted ωh/ω versus the mode number n normalized by the total number of
modes N (this is the same curve plotted for quadratic NURBS in Figure 5.7). Similarly, if
we consider the one-dimensional Helmholtz equation using the same quadratic NURBS basis
and plot k/kh versus n/N , we again obtain exactly the curve seen in Figure 5.28. This is no
accident. The duality principal is independent of the choice of basis used. We can reinterpret
spectrum analysis as dispersion analysis, and vice-versa. The conclusion to be drawn is that the
excellent behavior of the NURBS basis in vibration analysis carries over to wave propagation,
where superior results are again obtained.

Despite the similarities, there are subtle differences between spectrum and dispersion anal-
ysis that are of note, particularly for higher-order elements. The first is the existence of “outlier
frequencies” in spectrum analysis such as we saw in Section 5.1.2. The second is the existence
of complex wave-numbers, which lead to spurious evanescent waves in dispersion analysis.
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Figure 5.28 Unified dispersion and spectrum analysis for C1-continuous quadratic approximation.

The non-zero imaginary part of khh produces an amplitude modulation of the discrete solu-
tions which is an unphysical feature of the numerical solution. See Hughes et al., 2008a for a
thorough discussion of the topic.

Appendix 5.A: Kolmogorov n-widths

The approximation result (3.B.8) is a basic tool for proving convergence of NURBS to the
solution of partial differential equations with h-refined meshes (see Bazilevs et al., 2006a
for examples). Note that the continuity of the basis functions does not explicitly appear in
(3.B.8). Consequently, the order of convergence in (3.B.8) depends only on the order of
the basis functions employed. However, the results of eigenvalue calculations indicate that
there is a dramatic difference between C0- and C1-continuous pth-order basis functions (see,
e.g., Figures 5.7 and 5.14). In Figures 5.7 and 5.14, as p is increased, the upper part of the
spectrum diverges for C0-continuous classical finite elements whereas it converges for C p−1-
continuous NURBS (i.e., B-splines in this case). This phenomenon is not revealed by standard
approximation theory results of the form (3.B.8). Consequently, we much conclude that there
is a lot of information hiding in the so-called “constant” C in (3.B.8).

It would be desirable to develop a mathematical framework that revealed behavior like that
seen in Figures 5.7 and 5.14 from the outset. The concept of Kolmogorov n-widths seems to
hold the potential to do so. A sketch of some of the main ideas follows: Let X be a normed,
linear space, equipped with norm ‖ · ‖X . In the cases of primary interest here, X would be a
Sobolev space. Let Xn be an n-dimensional subspace of X . Assume we wish to approximate a
given x ∈ A ⊂ X , where A is a subset of X , with a member xn ∈ Xn . We define the distance
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X

Xn

x

xn xn
∗

Figure 5.A.1 The point x∗
n is the closest approximation in Xn to x with respect to the norm ‖ · ‖X .

between x and Xn as

E(x, Xn; X ) = inf
xn∈Xn

‖x − xn‖X , (5.A.1)

where inf stands for infimum (see Figure 5.A.1). If there exists an x∗
n such that

‖x − x∗
n‖X = E(x, Xn; X ) (5.A.2)

then x∗
n is called the best approximation of x (Figure 5.A.1).

Now we assume we are interested in approximating all x ∈ A. For each x ∈ A, the best we
can do is expressed by (5.A.2). The question we wish to have answered is, for which x ∈ A do
we get the worst best-approximation? In other words, for which x ∈ A is infxn∈Xn ‖x − xn‖X

the largest? The idea is to anticipate situations such as those depicted in Figures 5.7 and 5.14.
The worst best-approximation is obtained by computing the supremum of (5.A.2) over all
x ∈ A; we define the deviation, or “sup-inf,” as

E(A, Xn; X ) = sup
x∈A

inf
xn∈Xn

‖x − xn‖X . (5.A.3)

See Figure 5.A.2 for a schematic illustration. Sup-inf’s are useful for comparing the approx-
imation quality of different finite element subspaces, such as C0 and C p−1 splines, but prior
to that we might ask what is the best n-dimensional subspace for approximating A? This is
given by the Kolmogorov n-width, or “inf-sup-inf,” namely,

dn(A, X ) = inf
Xn⊂X

dim Xn=n

sup
x∈A

inf
xn∈Xn

‖x − xn‖X (5.A.4)

= inf
Xn⊂X

dim Xn=n

E(A, Xn; X ). (5.A.5)
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X

Xn

Axn

x

xn
∗

x∗

Figure 5.A.2 The distance between subspaces Xn and A is determined by the “worst-case scenario.”
That is, if the distance between point x∗ ∈ A and its best approximation x∗

n ∈ Xn is the supremum over
all such best-fit pairs, then ‖x∗ − x∗

n‖X defines the distance between Xn and A.

If there exists an X̃n such that

E(A, X̃n; X ) = dn(A, X ), (5.A.6)

then X̃n is called an optimal n-dimensional subspace. In this case, we can define the optimality
ratio, that is, the sup-inf divided by the inf-sup-inf, for a given Xn:

�(A, Xn; X ) = E(A, Xn; X )

dn(A, X )
. (5.A.7)

To illustrate how one might use this measure for comparing spaces, consider the following
example of a uniform mesh on the unit interval [0, 1]. Let X = H 1(0, 1) denote the Sobolev
space of (Lebesgue) square-integrable functions with square-integrable derivatives. Let

A = B5(0, 1) = {x |x ∈ H 5(0, 1), ‖x‖X ≤ 1}, (5.A.8)

where H 5(0, 1) is the Sobolev space of functions having five square-integrable derivatives.
B5(0, 1) is referred to as the unit ball in H 5(0, 1) in the H 1(0, 1)-topology. A comparison
of optimality ratios for quartic C0 and C3 splines is shown in Figure 5.A.3. Note that as
n increases, the optimality ratio of the C3 case approaches 1. Apparently, the C3 case is
converging toward an optimal subspace. In contrast, in the C0 case, the optimality ratio
converges to approximately 5.5, indicating that for each n there is at least one member of
B5(0, 1) that is much more poorly approximated by C0 splines than C3 splines. This result
seems to be qualitatively consistent with what we saw in Figures 5.7 and 5.14. Smooth spline
bases, that is the k-method, exhibit better behavior than classical C0 elements. For further
results and methodology used to compute them, see Evans et al., 2009.
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Figure 5.A.3 The optimality ratio for approximating the H 5 unit ball in H 1 using quartic (p = 4)
elements. As the number of degrees-of-freedom increases, the optimality ratio of C0 FEA functions
diverges, while the optimality ratio of C3-continuous splines converges toward 1.

Remark
Andrei Kolmogorov (1903–1987) was one of the most important mathematicians of the 20th
century. See Figure 5.A.4. In addition to n-widths, he made fundamental contributions to tur-
bulence (e.g., the Kolmogorov inertial spectrum), classical mechanics (e.g., the Kolmogorov–
Arnold–Moser theorem), and many other areas. He is perhaps best known for his work in
probability theory (e.g., the Kolmogorov axioms), laying the foundation for the modern treat-
ment of the subject.

Figure 5.A.4 Andrei Kolmogorov
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Notes

1. In this simple domain, the NURBS reduce to the special case of B-splines.
2. The names “acoustical” branch and “optical” branch originate from the study of a one-

dimensional lattice of sodium and chlorine ions vibrating longitudinally. The theoretical
values of the natural frequencies when the sodium oscillates in phase with the chlorine
are near the range of audible frequencies, and so were dubbed “acoustical,” while the
theoretical frequencies for the two elements to vibrate out of phase are much higher, near
the spectrum of visible light, hence the name “optical.”
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6
Time-Dependent Problems

As we move from static and eigenvalue problems and begin to approximate the transient
behavior of systems, we must employ some type of time integration procedure. The literature is
replete with different approaches, many of which have been designed with a specific application
in mind. Most of these techniques can either be described as semi-discrete methods or space–
time methods. We introduce simple versions of both in this chapter, using the application of
elastodynamics as our motivating example.

6.1 Elastodynamics

Elastodynamics is the study of the transient behavior of elastic solids. The developments in
this chapter generalize those of Chapter 4 by augmenting the static linear elasticity equations.
Whereas in the static case we sought an equilibrium solution in which all forces were balanced,
we now consider the case where the forces are imbalanced, and this drives the acceleration of
the object by Newton’s second law. For elaboration on the notation and constitutive laws, see
Chapter 4.

The strong form of the initial/boundary-value problem is

ρui,t t = σi j, j + fi in � × (0, T ) (6.1a)

ui = gi on �Di × (0, T ) (6.1b)

σi j n j = hi on �Ni × (0, T ) (6.1c)

ui (x, 0) = u0i (x) x ∈ � (6.1d)

ui,t (x, 0) = u̇0i (x) x ∈ � (6.1e)

(6.1f)

where

fi : � × (0, T ) → R (6.2)

gi : �Di × (0, T ) → R (6.3)

hi : �Ni × (0, T ) → R (6.4)

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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are prescribed data, the given initial displacement and velocity are given by

u0i : � → R, (6.5)

and

u̇0i : � → R, (6.6)

respectively, and the density ρ : � → R
+ is also specified.

6.2 Semi-discrete methods

The term semi-discrete refers to the fact we discretize space using a Galerkin finite element
scheme, and formulate the problem as though the time were continuous. In particular, we will
represent the solution as a linear combination of basis functions that depend only on space and
coefficients that depend upon time. We begin by constructing the weak form. Let us define the
space of trial solutions as

St = {u(·, t)|ui (x, t) = gi (x, t), x ∈ �Di , u(·, t) ∈ H 1(�)}. (6.7)

This definition varies as a function of time because the boundary conditions can evolve in
time. The weighting space V has no time dependence at all.

The weak formulation is now obtained exactly as in the static case. We multiply by a test
function and integrate by parts. We assume the Dirichlet data are built directly into the trial
solution space, while the Neumann data are incorporated naturally; see Chapter 3. The problem
statement is: Given f, g, h, u0, and u̇0, find u(t) ∈ St such that for all w ∈ V

(w, ρü) + a(w, u) = L(w), (6.8)

(w, ρu(0)) = (w, ρu0) , (6.9)

(w, ρu̇(0)) = (w, ρu̇0) , (6.10)

where a(·, ·) and L(·) are defined as in (4.18) and (4.19), respectively. Note that, in keeping
with the semi-discrete approach, we have only integrated with respect to space, leaving time
untouched.

6.2.1 Matrix formulation

Proceeding to discretize in space, leaving time continuous, we follow the familiar Galerkin
approach. Defining finite-dimensional subspaces Sh

t ⊂ St and Vh ⊂ V that are spanned by
the isoparametric basis, we seek a solution of the form uh = vh + gh ∈ Sh

t , with vh ∈ Vh and
gh ∈ Sh

t , such that for all wh ∈ Vh

(wh, ρv̈h) + a(wh, vh) = L(wh) − a(wh, gh) − (wh, ρg̈h), (6.11)(
wh, ρvh(0)

) = (
wh, ρu0

) − (
wh, ρgh(0)

)
, (6.12)(

wh, ρv̇h(0)
) = (

wh, ρu̇0
) − (

wh, ρġh(0)
)
. (6.13)



P1: ABC/ABC P2: c/d QC: e/f T1: g

c06 JWBK372-Cottrell May 20, 2009 15:38 Printer Name: Yet to Come

Time-Dependent Problems 187

Representing vh by

vh
i =

∑
A∈ηηη−ηηηg

NA(x)di A(t) (6.14)

allows us to apply the usual arguments and arrive at a matrix problem. Let

M = [MP Q], (6.15)

K = [K P Q], (6.16)

F = {FP (t)}, (6.17)

d(t) = {dQ(t)}, (6.18)

d0 = {d0Q}, (6.19)

ḋ0 = {ḋ0Q}, (6.20)

where, with P = ID(i, A) and Q = ID( j, B), we have defined

MP Q = (NAei , ρNBe j ) = δi j

∫
�

NAρNB d�, (6.21)

KP Q = a(NAei , NBe j ), (6.22)

FP = L(NAei ) − a(NAei , gh) − (NAei , ρg̈h). (6.23)

Let us define the intermediate vectors

d̃0P = (
NAei , ρ(u0 − gh)

)
, (6.24)

˙̃d0P = (
NAei , ρ(u̇0 − ġh)

)
, (6.25)

and denote the Q, P entry of the inverse of the mass matrix, M−1, by M−1
Q P , and thus define

d0Q = M−1
Q P d̃0P , (6.26)

ḋ0Q = M−1
Q P

˙̃d0P . (6.27)

We can then rewrite (6.11)–(6.13) as a matrix problem,

Md̈(t) + Kd(t) = F(t), t ∈ (0, T ) (6.28)

d(0) = d0 (6.29)

ḋ(0) = ḋ0. (6.30)

This is a system of ordinary differential equations (ODE) for the coefficients dP (t).

6.2.2 Viscous damping

In structural dynamics we often work with systems of the form

Md̈ + Cḋ + Kd = F, (6.31)
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where C is the viscous damping matrix. It is often convenient or appropriate to assume that
the damping has one part that is proportional to the mass and another that is proportional to
the stiffness. If we augment (6.1a) to read

ρui,t t + aρui,t = σi j, j + fi , (6.32)

and modify the generalized Hooke’s law to

σi j = ci jkl(u(k,l) + bu̇(k,l)), (6.33)

where a and b are parameters, then the form of C in (6.31) is the Rayleigh damping matrix:

C = aM + bK. (6.34)

The effect of the viscous damping matrix is also felt in modifying the forces due to prescribed
displacement boundary conditions. Specifically, we replace the forcing vector by

FP = right-hand side of (6.23) − (
NAei , aġh

) − a
(
NAei , bġh

)
, (6.35)

where P = ID(i, A).

6.2.3 Predictor/multicorrector Newmark algorithms

There are many techniques for solving semi-discrete systems of the form (6.31). Many of them
are discussed in Hughes, 2000. Here we focus on an important class of methods known as the
predictor/multicorrector Newmark algorithm. We define a step size, �t and iterate within
each time step, n, in order to find an+1 ≈ d̈(tn+1), vn+1 ≈ ḋ(tn+1), and dn+1 ≈ d(tn+1). At the
beginning of each time step, we set the iteration counter to i = 0 and enter a predictor phase
where we initialize the approximations as

di
n+1 = d̃n+1, (6.36)

vi
n+1 = ṽn+1, (6.37)

ai
n+1 = ãn+1, (6.38)

where d̃n+1, ṽn+1, and ãn+1 can be chosen in a variety of ways, but they must be consistent
with the Newmark formulas, that is,

d̃n+1 = dn + �tvn + (�t)2

2
((1 − 2β)an + 2βãn+1) , (6.39)

ṽn+1 = vn + �t ((1 − γ )an + γ ãn+1) , (6.40)

where �t is the time step, and β and γ are parameters. Typical choices of the predictors used
in practice are as follows:
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Constant displacement predictor

d̃n+1 = dn (6.41)

ãn+1 = − 1

β�t
vn − (1 − 2β)

2β
an (6.42)

ṽn+1 defined by (6.40) (6.43)

Constant velocity predictor

ṽn+1 = vn (6.44)

ãn+1 = − (1 − γ )

γ
an (6.45)

d̃n+1 defined by (6.39) (6.46)

Zero acceleration predictor

ãn+1 = 0 (6.47)

ṽn+1 = vn + �t(1 − γ )an (6.48)

d̃n+1 = dn + �tvn + (�t)2

2
(1 − 2β)an (6.49)

The constant displacement predictor is often preferred in nonlinear solid mechanics, especially
in problems involving large deformations and contact. The constant velocity predictor is usually
preferred in problems of fluid mechanics and fluid–structure interaction. The zero acceleration
predictor is often used in linear analysis, the situation under consideration here. Obviously,
there are many other possibilities.

We use these values to compute a residual as

�Fi
n+1 = Fn+1 − Mn+1ai

n+1 − Cn+1vi
n+1 − Kn+1di

n+1. (6.50)

We then use this residual to calculate a correction to the acceleration term by solving

M∗�a = �Fi
n+1, (6.51)

where M∗ depends on the exact method being used. For example, we frequently take M∗ to
have the form

M∗ = M + γ�tC + β(�t)2K. (6.52)

The particular choices of the parameters β and γ determine the properties of the method; for
example, 2β ≥ γ ≥ 1/2 achieves unconditional stability and γ = 1/2 attains second-order
accuracy.

Another popular choice is M∗ = M̃, where M̃ is the lumped mass matrix (see Chapter 5,
Section 5.1.4). In this case, the solution of (6.51) is trivial. This is referred to as an explicit
algorithm because no coupled system of equations needs to be solved to advance the solution.
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All other cases are referred to as implicit. See Hughes, 2000 for a discussion and stability
analysis of implicit and explicit algorithms.

Regardless of the choice of M∗, once we have used it to calculate �a we enter a corrector
phase in which we update the solution, viz.,

ai+1
n+1 = ai

n+1 + �a, (6.53)

vi+1
n+1 = vi

n+1 + γ�t�a, (6.54)

di+1
n+1 = di

n+1 + β(�t)2�a. (6.55)

We then check the residual for convergence. If ‖�Fi
n+1‖ ≤ ε‖�F0

n+1‖ for some predetermined
tolerance ε, we move on to the next time step. If not, we increment the iteration counter i by
1 and return to (6.50) and repeat the process. In linear analysis, in exact precision, with (6.52)
used to define M∗, �Fi

n+1 ≡ 0, i = 1. However, if the precision of the solution of the linear
algebraic system in (6.51) is only approximate, as is often the case in practice, additional
iterations may need to be performed. Of course, iteration is the rule in nonlinear analysis,
which we will discuss in the next chapter.

The derivation of (6.50)–(6.55) follows from requiring that the correctors satisfy (6.31) and
the Newmark formulas:

Mai+1
n+1 + Cvi+1

n+1 + Kdi+1
n+1 = Fn+1, (6.56)

di+1
n+1 = dn + �tvn + (�t)2

2

(
(1 − 2β)an + 2βai+1

n+1

)
, (6.57)

vi+1
n+1 = vn + �t

(
(1 − γ )an + γ ai+1

n+1

)
. (6.58)

We assume (6.57) and (6.58) hold for the i th iterates as well:

di
n+1 = dn + �tvn + (�t)2

2

(
(1 − 2β)an + 2βai

n+1

)
, (6.59)

vi
n+1 = vn + �t

(
(1 − γ )an + γ ai

n+1

)
. (6.60)

Subtracting (6.59) and (6.60) from (6.57) and (6.58), respectively, yields (6.53)–(6.55); (6.50)–
(6.52) are obtained by substituting (6.53)–(6.55) into (6.56).

The predictor/multicorrector Newmark algorithm is summarized in the flow chart of
Figure 6.1.

6.2.3.1 Remarks

1. The classical Newmark algorithm (Newmark, 1959) consists of the Newmark formulas,
(6.39) and (6.40), and

Man+1 + Cvn+1 + Kdn+1 = Fn+1. (6.61)

It is a special case of the predictor/multicorrector version in which M∗ is defined by (6.52)
and only one iteration is used to obtain dn+1, vn+1, and an+1. The predictor/multicorrector
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Stop

Start

i = i+1

no

yes

i = 0
dn+1

i = dn+1

vn+1
i = vn+1

an+1
i = an+1

Predictor

Fn+1
i = Fn+1 Man+1

i Cvn+1
i Kdn+1

i

M a = Fn+1
i

an+1
i+1 = an+1

i + a

vn+1
i+1 = vn+1

i + t a

dn+1
i+1 = dn+1

i + t( )2 a

Corrector

Test

?
Fn+1

i Fn+1
0

Figure 6.1 Flow chart for the predictor/multicorrector Newmark algorithm. This process takes place
within each time step n.

Newmark algorithm was introduced by Hughes et al., 1979 in order to unify the treatment
of implicit and explicit algorithms, develop a second-order accurate explicit procedure for
fluid dynamic applications, and serve as a framework for implicit–explicit mesh partitions.
See Hughes et al., 1979 and Hughes, 2000 for further details.

2. Nathan Newmark (1910–1981) was a world famous applied mechanician and earthquake
engineer. He was also a pioneer in electronic computation. The computing laboratory at the
University of Illinois, Urbana-Champaign, is named in his honor. See Figure 6.2.

6.3 Space–time finite elements

Unlike the semi-discrete approach, in a space–time finite element method we discretize both
space and time. We create a basis in space–time by taking a tensor product of the basis with
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Figure 6.2 Nathan Newmark. (Courtesy of the University of Illinois archives.)

which we have described the geometry and a one-dimensional basis in the “time-direction."
Thus, we define a space–time domain Q = � × (0, T ) with boundary ∂Q = P ∪ � × {0} ∪
� × {T }, where P = � × (0, T ) is referred to as the lateral boundary (see Figure 6.3). Clearly,
adding another dimension to the mesh greatly increases the amount of data that will need to
be stored, as well as the number of floating point operations that will be required to solve the
problem. We attempt to minimize this inflated problem size by partitioning the domain into a
sequence of space–time slabs Qn = � × (tn, tn+1), as seen in Figure 6.3, where the basis is
discontinuous across the slab boundaries in the time-direction. This allows us to solve only
one slab at a time, frequently with each slab having only one element in the time-direction.
We take the initial conditions on each slab to be the result at the end of the previous slab,
which we enforce weakly as in a discontinuous Galerkin (DG) method. This is equivalent to
weakly enforcing continuity of the solution across each slab boundary. Though this approach
results in solutions that are discontinuous across the slab boundaries, the cost of solving for the
solution on each slab Qn one at a time, and repeating this N times, is much less than solving
just one time on the entire space–time domain Q.

In the semi-discrete case we assumed the basis functions only depended on space, and the
coefficients depended upon time. In the space–time setting, the coefficients are constants and
the basis functions depend on both space and time. That is

wh
i (x, t) =

∑
A

NA(x, t)ci A, (6.62)

and

uh
j (x, t) =

∑
B

NB(x, t)d j B . (6.63)
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tt

T

P

0

Q ⊂ 3 × +

Ω ⊂ 3 0 = t0

t1

t2

tn

tn+1

T = tN +1

tN −1

tN

Qn Pn

Figure 6.3 Space–time domain (left) and slicing into space–time slabs (right).

The basis functions NA may be standard finite element or NURBS basis functions defined on
the slab. In d space dimensions, the basis functions are d + 1-dimensional.

As the solution is now discontinuous, at each slab interface we must distinguish between
the solution coming from the “lower slab” and that coming from the “upper slab”. We do
this with superscripts “+” and “−” such that uh(t−

n ) is the solution at time tn corresponding
to slab Qn−1 = � × (tn−1, tn), and uh(t+

n ) is the solution at time tn corresponding to slab
Qn = � × (tn, tn+1). We obtain a weak form of (6.1) by multiplying by a weighting function
and integrating over the entire slab Qn . The integration in time gives us the opportunity to
impose the initial condition on the bottom of the slab naturally by replacing the unknown uh(t+

n )
with the known condition that we would like to impose, namely, uh(t−

n ). This is completely
analogous to the imposition of Neumann data on the boundary, which should be familiar by
now. The resulting Galerkin problem is: find uh ∈ S such that for all wh ∈ V

an(wh, uh) = Ln(wh), (6.64)

where

an(wh, uh) =
∫

Qn

ẇh
i ρüh

i d Q +
∫

Qn

ẇh
(i, j)σi j

(
uh

)
d Q

+
∫

�

ẇh
i (t+

n )ρu̇h
i (t+

n ) d�

+
∫

�

wh
(i, j)(t

+
n )σi j (uh(t+

n )) d�, (6.65)
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and

Ln(wh) =
∫

Qn

ẇh
i fi d Q +

∫
Zn

ẇh
i hi d P

+
∫

�

ẇh
i (t+

n )ρu̇h
i (t−

n ) d�

+
∫

�

wh
(i, j)(t

+
n )σi j (uh(t−

n )) d�, (6.66)

with

σi j (uh) = ci jklεkl(uh)

= ci jklu(k,l). (6.67)

The Neumann boundary of the slab is denoted Zn = �N × (tn, tn+1). See Chapter 4 for further
details.

Assuming the NA are C1-continuous on the slab, the Euler–Lagrange form of (6.64) is

0 =
∫

Qn

ẇh
i

(
ρüh

i − σi j, j (uh) − fi
)

d Q

−
∫
Zn

ẇh
i

(
hi − σi j (uh)n j

)
d P

+
∫

�

ẇh
i (t+

n )ρ
�
u̇h

i (tn)
�

d�

+
∫

�

wh
i (t+

n )
�
σi j, j (uh(tn))

�
d�, (6.68)

where the temporal jump operator is defined by

�w(tn)� = w(t+
n ) − w(t−

n ), (6.69)

and n j is the j th component of the outward unit normal vector to �N . The first term in
(6.68) weakly enforces the differential equation within slab Qn . The second term weakly
enforces the Neumann boundary condition. The third and fourth terms are responsible for the
continuity of the velocity and stress divergence, respectively, across the slab boundary at tn .
The weak form treats the values at tn emanating from slab Qn−1 as known data and weakly
enforces them as initial conditions on the problem for slab Qn . The effect is to “penalize” the
discontinuous approximations of these continuous functions by adding terms to the residual
that are proportional to the jumps in the numerical solution. Such an approach is consistent in
the sense that the exact solution, u, that satisfies (6.1) will also satisfy (6.68).

On each slab, we use (6.64) to form a matrix problem, which we can solve for the solution
within the slab. That solution provides the initial conditions we need for the next slab, and
the process continues. This is a very intellectually satisfying approach, and potentially very
accurate, but it can be costly as well. The best approach to time integration, semi-discrete or
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space–time, depends on the demands of the application under consideration. Both methods are
firmly established in the literature, with semi-discrete methods more common in practice – for
historical reasons if no other. For additional details, see Hughes and Hulbert, 1988 and Hulbert
and Hughes, 1990. Explicit discontinuous Galerkin space–time methods, in which calculations
can proceed on an element-by-element basis, have been developed by Abedi et al., 2005. See
also French 1993, 1998; and French and Peterson, 1996.
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7
Nonlinear Isogeometric Analysis

In Chapter 3 we discussed many approaches to the isogeometric analysis of linear differential
equations. In particular, we discussed the major components of a NURBS based Galerkin
finite element approach. In this chapter, we will expand our investigations to the nonlinear
regime. We begin with a brief discussion of the Newton–Raphson method for solving non-
linear algebraic equations. Subsequently, guided by the simple but illustrative example of
nonlinear heat conduction in one dimension, we will discuss the isogeometric analysis of
nonlinear differential equations in a Galerkin setting.

7.1 The Newton–Raphson method

The simplest and best known technique for solving nonlinear algebraic equations is the
Newton–Raphson method. It is an iterative approach to finding roots based on Taylor’s theorem.
In one dimension, suppose that we are trying to find a root x∗ of a differentiable, nonlinear
function F(x). Beginning with i = 0, we will construct a sequence of approximations xi such
that xi → x∗ and F(x∗) = 0. At any step i , we know that x∗ = xi + �xi for some unknown
�xi . Though we cannot find �xi exactly, we can use a Taylor expansion of F to find an
approximation. We have that

0 = F(x∗) = F(xi + �xi )

= F(xi ) + d F(xi )

dx
�xi + O((�xi )2)

≈ F(xi ) + d F(xi )

dx
�xi . (7.1)

Rearranging, we get

�xi ≈ −
(

d F(xi )

dx

)−1

F(xi ). (7.2)

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
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x1 x2x0= 0 ... xi  x*

F(x0)

F(x1)

F(x2)

F(xi)  0≈ ≈

Figure 7.1 An example iteration path with the Newton–Raphson method.

If F were linear, this equation would be exact and we would have x∗ = xi + �xi . For the
nonlinear case, we take

xi+1 = xi + �xi (7.3)

and repeat the process. We will continue to iterate until F(xi ) ≤ ε|F(x0)| for some predeter-
mined tolerance ε. When that threshold is reached, we take xi ≈ x∗.

This process is depicted in Figure 7.1. The derivative d F(xi )/dx is the slope of the line that
is tangent to the curve at xi . We determine xi+1 by following this tangent line until it crosses
the x-axis.

7.2 Isogeometric analysis of nonlinear differential equations

In the previous chapters, we used Galerkin’s method to turn each linear differential equation
into a system of linear algebraic equations. Now we will use the same approach to turn
nonlinear differential equations into a system of nonlinear algebraic equations. This system
can then be solved using the Newton–Raphson approach. In order to make these developments
concrete, let us consider an example.

7.2.1 Nonlinear heat conduction

Consider the one-dimensional domain � = (0, 1). Assuming the boundary conditions are
comprised of a fixed temperature imposed at x = 1 and a heat flux boundary condition
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specified at x = 0, the strong form of the nonlinear heat conduction problem is written as

q,x = f in �, (7.4a)

u(1) = g, (7.4b)

−(−1)q(0) = h, (7.4c)

q(u, u,x , x) = −κ(u, x)u,x . (7.4d)

The second negative sign in (7.4c) reflects the fact that the outward unit normal at x = 0 is
n = −1. The constitutive equation (7.4d) contains the nonlinearity that makes this problem
fundamentally different to those considered thus far. The thermal conductivity κ depends not
only on space, but on the temperature u as well. This constitutive equation is the nonlinear
Fourier law of heat conduction.

Let us multiply (7.4a) by a test function and integrate by parts to obtain a weak form: Find
u ∈ S = {u|u(1) = g} such that for all w ∈ V = {w|w(1) = 0}

η(w; u) = L(w), (7.5)

where

η(w; u) =
1∫

0

w,xκ(u, x)u,x dx (7.6)

and

L(w) =
1∫

0

w f dx + w(0)h. (7.7)

Note that the treatment of both the Dirichlet condition (7.4b) and the Neumann condition
(7.4c) is identical to the way such conditions were treated in the linear case.

7.2.2 Applying the Newton–Raphson method

Let us proceed formally and attempt to apply the Newton–Raphson method to solve (7.5).
Recall that Newton–Raphson is a root-finding method. For this example, the function that we
want to drive to zero is the residual of the equation, defined by

R(w; u) = η(w; u) − L(w). (7.8)

Our goal is to find u∗ such that

R(w; u∗) = 0 ∀w ∈ V. (7.9)

As in Section 7.1, we will proceed iteratively, beginning with some initial trial solution u1,
and constructing a sequence ui such that ui → u∗. In analogy with (7.2), we seek to solve an
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equation of the form

“�ui = −
(

d R(w; ui )

du

)−1

R(w; ui ), ” (7.10)

so that we might update the solution as

ui+1 = ui + �ui , (7.11)

and check to see if ‖R(w; ui+1)‖ < ε‖R(w; u1)‖.
At a glance this approach might appear straightforward enough, but things are not as simple

as they seem. Note that u is not just a scalar as was x in Section 7.1; it is a function. Thus, we
must be very careful about the meaning of terms such as “(d R/du)−1.” Also, we are dealing
with a weak formulation. We must respect the fact that (7.9) is to hold for all w ∈ V , not
necessarily any conceivable w. These issues are beyond the scope of this book. However, the
use of the Galerkin finite element formulation allows us to work in a finite-dimensional setting
where everything takes on a tangible meaning.

7.2.3 Nonlinear finite element analysis

Returning to an isoparametric setting, we assume that

uh =
neq∑

B=1

NBdB, (7.12)

where NB refers to the basis functions used to represent the geometry. To simplify the notation,
let us drop the superscript h from the trial and weighting functions.

As u is uniquely defined by specifying each of its neq coefficients, the independent variables
are the coefficients dB , and it is on them that we must iterate. We begin by choosing some
initial vector of coefficients d0. There are various techniques for doing so, but in many cases
taking d0 = 0 is sufficient. Thus at any iteration i we have trial solution ui that we obtain from
inserting di into (7.12). As we want R(w; u∗) = 0 for all w ∈ V , we must be able to choose the
weighting function to be any one of the basis functions. Thus, in analogy with (7.1), Taylor’s
theorem leads us to

0 = R(NA; d∗
C NC )

= R(NA; di
C NC + �di

C NC )

≈ R(NA; di
C NC ) + ∂ R(NA; di

C NC )

∂dB
�di

B

= R(NA; ui ) +
(

∂ R(NA; ui )

∂dB

)
�di

B, (7.13)
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where we sum on repeated indices, as usual, and we have dropped the h superscript on ui , that
is, ui is the i th iterate of uh . Solving for �di

B we have

�di
B = −

(
∂ R(NA; ui )

∂dB

)−1

R(NA; ui ). (7.14)

We define

K i
AB = ∂ R(NA; ui )

∂dB

= ∂η(NA; ui )

∂dB

=
1∫

0

NA,x
∂κ(ui , x)

∂u
NB ui

,x dx

+
1∫

0

NA,xκ(ui , x)NB,x dx, (7.15)

and

Ri
A = R(NA; ui ) = η(NA; ui ) − L(NA). (7.16)

Thus, with

Ki = [K i
AB], (7.17)

Ri = {Ri
A}, (7.18)

�di = {�di
B}, (7.19)

we can rewrite (7.14) as a matrix equation,

�di = − (
Ki

)−1
Ri . (7.20)

We call Ki the consistent tangent matrix because it plays the same role in multiple dimen-
sions that was played by the slope d F/dx in the one-dimensional case of (7.2). We assemble
Ki and the residual vector Ri by looping through the elements and using quadrature to build
local tangent matrices and local residual vectors, which we then assemble into a global system
just as we did for linear problems. The only difference is that we must repeat this process
multiple times as we converge toward a solution, rather than being able to reach it in a single
step.

Figure 7.2 shows a flow chart for the Newton–Raphson algorithm. Note that if we are
solving a time dependent problem, then this whole process must be performed within each
time step. There are many variants of this basic method, most of which are aimed at improving
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di+1 =di+ di

Stop

Assemble Ki and Ri

by looping through
elements, as in the

linear case

Ki=0 and Ri=0

i=0, di=0

di = -(Ki)-1Ri

Start

Test for
Convergence
||Ri+1|| < ||R0||

?

i = i+1

no

yes

Figure 7.2 Flow chart for the Newton–Raphson method in a finite element setting.

the computational efficiency of the approach. One may choose not to recompute the tangent at
every step, or to approximate the tangent in some way.1 Other variations on the basic approach
include choosing di+1 = di + α�di where α 
= 1. It may also be prudent to initialize to some
value other than d0 = 0. For instance, in a time dependent problem, it might make more sense
to initialize to the solution at the previous time step, as described in the previous chapter. The
basic structure, however, will follow Figure 7.2.

7.3 Nonlinear time integration: The generalized-α method

In this section we present a time integration algorithm for semi-discrete nonlinear equations.
The method is the generalized-α method proposed by Chung and Hulbert, 1993 for the
equations of structural dynamics, and extended to the equations of fluid mechanics by Jansen
et al., 1999. This is the approach used in all of the nonlinear time-dependent calculations in
this book.
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Consider an abstract, time dependent, nonlinear problem for the vector-valued function
u(x, t). We can write the variational form of the problem as

η(w; u, u̇, ü) = L(w), (7.21)

where we have made it clear the solution, u, and its first and second time derivatives, u̇ and ü,
respectively, can appear explicitly in the semilinear form η. We may think of (7.21) as the weak
form of the nonlinear equations of motion and u the displacement, for definiteness. However,
there are other possible interpretations. Following a semi-discrete approach as in Chapter 6,
let the vector of control variables, U, depend on time such that

uh(x, t) = UB(t)NB(x). (7.22)

Let U̇ and Ü denote the first and second time derivatives, respectively, of U. Thus, we can
define the residual vector as

R(U, U̇, Ü) = {RP}, (7.23)

where P = ID(A, i) and

RP = η(NAei ; uh, u̇h, üh) − L(NAei ). (7.24)

In the time-discrete case, we will adopt the notation of Chapter 6 and replace U, U̇, and Ü with
d, v, and a, respectively.

The generalized-α time integration algorithm is stated as follows: given (dn , vn , an), find
(dn+1, vn+1, an+1, dn+α f , vn+α f , an+αm ), such that

R(dn+α f , vn+α f , an+αm ) = 0, (7.25)

dn+α f = dn + α f (dn+1 − dn), (7.26)

vn+α f = vn + α f (vn+1 − vn), (7.27)

an+αm = an + αm(an+1 − an), (7.28)

vn+1 = vn + �t((1 − γ )an + γ an+1), (7.29)

dn+1 = dn + �tvn + (�t)2

2
((1 − 2β)an + 2βan+1), (7.30)

where �t = tn+1 − tn is the time step, α f , αm , γ , and β are real-valued parameters that define
the method and are selected to ensure second-order accuracy and unconditional stability. For
a second-order linear ordinary differential equation system with constant coefficients, Chung
and Hulbert, 1993 showed that second-order accuracy is attained if

γ = 1

2
− α f + αm, (7.31)

and

β = 1

4
(1 − α f + αm)2, (7.32)
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while unconditional stability requires

αm ≥ α f ≥ 1

2
. (7.33)

Results (7.31) and (7.33) were also shown by Jansen et al., 1999 to hold true for a first-order
linear ordinary differential equation system with constant coefficients. Condition (7.32) only
pertains to the second-order case. In the case of a first-order system, d plays no role. In order
to have strict control over high-frequency damping, αm and α f are parameterized by ρ∞, the
spectral radius of the amplification matrix at infinitely large time step. Optimal high-frequency
damping occurs when all the eigenvalues of the amplification matrix take on the same value,
namely ρ∞. In this case, for the second-order system, Chung and Hulbert, 1993 derive

αc
m = 2 − ρc

∞
1 + ρc∞

, (7.34)

αc
f = 1

1 + ρc∞
,

while for the first-order system Jansen et al., 1999 give

α j
m = 1

2
(
3 − ρ

j
∞

1 + ρ
j
∞

), (7.35)

α
j
f = 1

1 + ρ
j
∞

,

where superscripts distinguish the quantities coming from two different methods. The above
equations show that for the same values of ρ∞ (that is, ρc

∞ = ρ
j
∞) there is a mismatch between

αc
m and αc

j . This inconsistency may be eliminated by setting ρc
∞ = ρ

j
∞ = 1, the case of

zero high-frequency damping corresponding to the mid-point rule, but this is not sufficiently
robust for nonlinear calculations. In the examples considered in the following chapters, the
expressions (7.35) have been used, making the fluid part of the problem optimally damped, and
thus the eigenvalues of the amplification matrix for a second-order linear ordinary differential
equation system at infinitely large time step are given by an expression obtained in Chung and
Hulbert, 1993:

lim
�t→∞

λ = {−1 + (α j
m − α

j
f )

1 + (α j
m − α

j
f )

,
−1 + (α j

m − α
j
f )

1 + (α j
m − α

j
f )

, 1 − 1

α
j
f

}. (7.36)

Substituting (7.35) into (7.36), we obtain

lim
�t→∞

λ = {−1 − 3ρ
j
∞

3 + ρ
j
∞

,
−1 − 3ρ

j
∞

3 + ρ
j
∞

,−ρ j
∞}. (7.37)
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The first two eigenvalues are different from −ρ
j
∞, but it is a simple matter to show that they

are monotone decreasing functions of ρ
j
∞ and

1

3
≤ |−1 − 3ρ

j
∞

3 + ρ
j
∞

| ≤ 1 ∀|ρ j
∞| ≤ 1. (7.38)

This, in turn, implies that the spectral radius of the amplification matrix never exceeds unity in
magnitude and no instabilities are incurred for a second-order system. Note that this choice of
parameters maintains second-order accuracy and unconditional stability because conditions
(7.31)–(7.33) still hold true.

To solve the nonlinear system of equations (7.25)–(7.30), we employ a Newton–Raphson
method, which can be viewed as a two-phase predictor–multicorrector algorithm. As in the
case considered in the previous chapter, there are various possibilities for the predictors. We
shall assume the case of the constant velocity predictor:

Predictor phase. Set

v0
n+1 = vn, (7.39)

a0
n+1 = (γ − 1)

γ
an, (7.40)

d0
n+1 = dn + �tvn + �t2

2
((1 − 2β)an + 2βa0

n+1). (7.41)

The superscript 0 is the iteration index. Note that the predictor is consistent with the
generalized-α equations (7.29)–(7.30), which are identical to the Newmark formulas.

Multicorrector phase. Repeat the following steps for i = 0, 1, 2, . . . , imax , or until con-
vergence is achieved.

1. Evaluate iterates at the intermediate time levels as

di
n+α f

= dn + α f (di
n+1 − dn) (7.42)

vi
n+α f

= vn + α f (vi
n+1 − vn) (7.43)

ai
n+αm

= an + αm(ai
n+1 − an) (7.44)

2. Use the intermediate solutions to assemble the residuals of the continuity and momentum
equations and the corresponding matrices in the linear system

dRi

dan+1
�a = −Ri

n+1, (7.45)

where

Ri
n+1 = R(di

n+α f
, vi

n+α f
, ai

n+αm
), (7.46)
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and

dRi

dan+1
= dR

dan+1
(di

n+α f
, vi

n+α f
, ai

n+αm
). (7.47)

The explicit calculation of the total derivative dR/dan+1 is described below. Solve this linear
system to a specified tolerance. Various direct and iterative strategies can be employed. In
nonlinear applications the preconditioned GMRES algorithm has enjoyed widespread use
(see Saad and Schultz, 1986).

3. Having solved the linear system, update the iterates as

ai+1
n+1 = ai

n+1 + �a (7.48)

vi+1
n+1 = vi

n+1 + γ�t�a (7.49)

di+1
n+1 = di

n+1 + β(�t)2�a (7.50)

This process is summarized in Figure 7.3.
Note that (7.45) is the nonlinear analogue of (6.51) in the previous chapter. Defining

M∗ ≡ dRi

dan+1
, (7.51)

(7.45) may be rewritten as

M∗�a = −Ri
n+1. (7.52)

Dropping the indices and recalling (7.46), repeated application of the chain rule yields

dR
dan+1

= ∂R
∂an+αm

∂an+αm

∂an+1

+ ∂R
∂vn+α f

∂vn+α f

∂vn+1

∂vn+1

∂an+1

+ ∂R
∂dn+α f

∂dn+α f

∂dn+1

∂dn+1

∂an+1
. (7.53)

Using (7.26)–(7.30), we obtain

M∗ = αmM + α f γ�tC + α f β(�t)2K, (7.54)

where

M ≡ ∂R
∂an+αm

(7.55)

C ≡ ∂R
∂vn+α f

(7.56)

K ≡ ∂R
∂dn+α f

. (7.57)
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Figure 7.3 Flow chart of the algorithm for the generalized-α method. This process takes place within
each time step.

In the special case of αm = α f = 1, this is the analogue of definition (6.52) for the linear
case, and the generalized-α method becomes simply a nonlinear Newmark algorithm.

Remark
The progenitor of the generalized-α method was the HHT-α method (Hilber et al., 1977). The
problem facing time integration of finite element models in the 1970’s was the fact that the
higher-frequency modes were totally inaccurate, representing artifacts of discretization rather
than accurate modal behavior of the partial differential equations being discretized. It became
apparent that the higher-frequency modal components needed to be suppressed because they
were completely spurious. This was accepted at the time as a by-product of discretization and
something that had to be lived with. (The results presented in Figures 5.7 and 5.14 illustrate
that there are now other and better discretization procedures than the classical C0 p-method
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finite elements.) Given the presence of these undesirable modes, it was attempted to develop
time integration algorithms which eliminated their participation.

The first individual to recognize this was E. L. Wilson, a professor at the University of
California at Berkeley who, starting with the Newmark method, developed the Wilson-θ
method. It was realized that the Newmark method was incapable of suppressing higher-modal
components without deleteriously affecting accuracy in the well-represented lower modes
(see Hughes, 2000, chapter 9, for a detailed analysis of the technical problems). Wilson
developed a procedure which attenuated the response of the spurious higher modes, and at the
same time retained quite good accuracy. Unfortunately, this achievement was marred by an
unforeseen problem, a tendency for the discrete solution to wildly overshoot the exact solution
when the loading was very abrupt, such as, for example, in the cases of blast loading and
impact between deformable bodies.

The effort leading to the HHT-α algorithm was similarly inspired, but it also became a
conscious design requirement that the “overshoot problem” would be mitigated. This was the
achievement of HHT-α and it was immediately adopted as a default algorithm in the com-
mercial nonlinear finite element analysis code Abaqus, now marketed by Dassault Systemes
(http://www.3ds.com), the world’s largest CAD company. Shortly thereafter, a variation on
the theme appeared; the Bossak-α method of Wood et al., 1980. The Bossak-α method never
caught on, perhaps because its accuracy and stability properties were somewhat inferior to the
HHT-α method.

A number of years elapsed before the generalized-α appeared. This method was a simple
combination of the HHT-α and Bossak-α methods, but the important result was that superior
properties to both constituent methods could be attained through their combination. This was
the main contribution of Chung and Hulbert, 1993, who performed an incisive analysis. It all
seems rather simple in retrospect, but one can view the HHT-α method as the inclusion of the
parameter α f in the generalized-α algorithm and Bossak-α as the inclusion of the αm .

As things stand right now, the generalized-α method is enjoying increased usage in software.
Up until this time, HHT-α has received the bulk of attention. The original paper of Hilber et al.,
1977 is presently the most cited paper in the history of the international journal Earthquake

Figure 7.4 David Hilbert. Figure 7.5 Hans-Martin Hilber.
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Engineering and Structural Dynamics. A subsequent paper refined understanding of the behav-
ior of the method (Hilber and Hughes, 1978). Nonlinear aspects and a predictor/multicorrector
generalization were described in Miranda et al., 1989.

Despite the numerous citations the original HHT-α paper has received, it seemed to vanish
from sight for many years. It turned out that the citations were being mistakenly attributed
in the Citation Index to a senior author named “Hilbert,” not Hilber. This error is perhaps
understandable because Hilbert, that is David Hilbert (see Figure 7.4), is one of the most
famous names in the history of mathematics. Eventually the error was corrected and the
attribution was made to the actual senior author, Hans-Martin Hilber (see Figure 7.5). Hilber,
after receiving his Ph.D. from the University of California at Berkeley, pursued a professional
career at the engineering firm RIB in southern Germany.

Note

1. While there is some flexibility in the definition of the tangent matrix, the residual vector
must be accurate at each iteration for convergence of the method to be achieved.



P1: ABC/ABC P2: c/d QC: e/f T1: g

c07 JWBK372-Cottrell May 20, 2009 16:3 Printer Name: Yet to Come



P1: ABC/ABC P2: c/d QC: e/f T1: g

c08 JWBK372-Cottrell May 20, 2009 4:34 Printer Name: Yet to Come

8
Nearly Incompressible Solids

The problems of linear elastostatics and elastodynamics that we encountered in Chapters 4
and 6, respectively, were implicitly assuming compressible materials. Such problems can be
relatively simple to formulate and solve. For parameter values corresponding to many common
metals, a straightforward application of Galerkin’s method with your element of choice can
yield a reasonable solution (though accuracy may depend on an accurate description of the
geometry, as we discussed). For other materials, such as rubber, the problems can become
much more difficult. Rubber is highly deformable when sheared, but relatively stiff with
respect to pressure forces. As a result, rubber is described as a nearly incompressible material.
As we discuss in the next section, the reason this presents such a difficulty is that in the limit
of incompressibility, the Poisson’s ratio, ν, goes to 1/2, and thus the Lamé parameter

λ = νE

(1 + ν)(1 − 2ν)
(8.1)

appearing in the standard formulation tends toward infinity, and the problem becomes ill-posed
in the limit. Even before the incompressible limit is reached, the discrete system resulting from
a finite element approach can become quite ill-conditioned. “Locking” occurs and standard
elements have difficulty or fail entirely. This is also a challenge in nonlinear problems such as
modeling the elastic-plastic response of metals or undrained soils, where nearly incompressible
behavior is prevalent. A full discussion of the early experiences and development of effective
methodologies for these problems in the linear setting is presented in Hughes, 2000, chapter 4.

It would seem at this stage of the development of finite element technology that higher-
order approaches would play an important role in nonlinear structural mechanics, but this is
not the case. Nonlinear finite element structural analysis is dominated by the use of low-order
“displacement” elements that are specially designed to avoid volumetric or incompressible
locking. The only higher-order approach that claims any success is the p-method, in which the
polynomial order within elements is increased on a fixed mesh (see Szabo and Babuska, 1991
and Szabo et al., 2004). Though is seems that for standard higher-order C0-continuous finite
elements, volumetric locking is alleviated as the element polynomial order is increased, there
is evidence that the accuracy of the solution at any fixed polynomial order is far from optimal.
In addition, numerical experience indicates standard higher-order elements are much more

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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“fragile” than low-order elements. This lack of robustness is particularly apparent in nonlinear
dynamic analysis of structures involving contact and impact, and subject to high wave number
inputs, such as blast waves. We have already seen some evidence of this in the context of
structural vibrations in Chapter 5 where it was revealed that the higher modes produced by
the p-method diverge with p. That is, whereas formal accuracy is increased, the improvement
is confined to lower modes, while at the same time the higher modes get worse as p increases.
This may help to explain why robustness decreases with p in the classical setting.

As we have seen, isogeometric analysis offers a promising alternative to the pitfalls of
classical p-refinement. It has been shown that k-refined meshes behave entirely differently
than standard finite element methods with respect to higher modal components. In fact, in
some cases all discrete modes converge to exact ones and nearly spectral accuracy is achieved.
To us, this suggests that robust and higher-order accurate finite element methods applicable
to nonlinear structural analysis may be a possibility. Initiatory steps have been taken in this
direction by Elguedj et al., 2008.

We also must deal with the locking problem in both small- and finite-deformation regimes.
The most general and practically useful approach is by way of a pure displacement formula-
tion (i.e., no pressure degrees-of-freedom) as is generally employed in large-scale structural
analysis programs (see, e.g., Livermore Software Technology Corporation, 2007 and Maker,
1995). In order to achieve good behavior, it is imperative to use some form of “projection”
to reduce the number of volumetric constraints. This is absolutely essential for lower-order
elements, and very important for higher-order elements as well (as we will see). The B̄ scheme
(see Hughes, 1977) is a formalism that utilizes projection, and here we discuss a family of
higher-order B̄ schemes as developed in the work of Elguedj et al., 2008.

The large-deformation counterpart of such B̄ approaches involve projection of the deforma-
tion gradient, a so-called F̄ scheme, involving a product decomposition into volumetric and
deviatoric factors. Again following Elguedj et al., 2008, we will present the F̄ formulation based
on a modified minimum potential energy principle. The basics of the method are presented,
with the interested reader encouraged to seek the details in the original paper. We also present
several numerical calculations on quasi-static, small- and large-deformation test problems.

Remark
Note that other approaches to the locking problem are possible, even some rooted in isoge-
ometric analysis. In particular, the stream function approach of Auricchio et al., 2007 takes
advantage of the higher-order continuity of NURBS-based isogeometric analysis to obtain a
divergence free (i.e., incompressible) displacement field from the differentiation of a potential.

8.1 B̄ formulation for linear elasticity using NURBS

As we saw in Chapter 4, the boundary value problem of compressible elasticity for a body �

is given by:

Given f : � → R
3, g : �g → R

3, and h : �h → R
3, find u : � → R

3 such that:

divσ + f = 0 in �, (8.2)

u = g on �g, (8.3)

σ · n = h on �h, (8.4)
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where n is the exterior unit normal on �, the boundary of �, g is the prescribed displacement
on �g and h is the prescribed traction on �h , which together form the boundary � = �h ∪ �g

of �, and f is the body force. The stress tensor σ is defined in terms of the strain tensor ε by
the generalized Hooke’s law:

ε = ∇su = 1

2
(∇u + ∇uT ) or εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (8.5)

σ = c : ε or σi j = ci jklεkl (8.6)

In the compressible isotropic linear elastic case, Hooke’s law can be expressed in terms of
the Lamé parameters λ and μ by:

ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk), (8.7)

σi j = λuk,kδi j + 2μεi j , (8.8)

where

λ = 2νμ

(1 − 2ν)
, μ = E

2(1 + ν)
, (8.9)

and ν is Poisson’s ratio and E is Young’s modulus, as in Chapter 4.
As mentioned in the introduction to this chapter, as ν → 1

2 , λ approaches infinity, that
is, there is a singular limit in the stress–strain relation. The value ν = 1

2 thus represents
incompressibility. The constitutive equation needs to be modified in this case to

σi j = −pδi j + 2μεi j , (8.10)

where p, the hydrostatic pressure, is determined as part of the solution of the boundary value
problem. As p represents an additional unknown, the kinematic condition of incompressibility
must be introduced as an additional equation:

divu = uk,k = 0 in �, (8.11)

leading to a mixed method. In the nearly incompressible case, however, the ratio λ/μ is large
but not infinite. The compressible theory applies, but some modifications in the discrete case
are warranted to help alleviate the propensity for mesh locking.

8.1.1 An intuitive look at mesh locking

To understand mesh locking and why it occurs as incompressibility is approached, it is enough
to consider a very simple situation. Figure 8.1a shows a mesh comprised of two linear,
triangular elements in which the displacements of three of the four nodes are fixed to be zero
due to homogeneous Dirichlet boundary conditions. We assume plane strain conditions, that
is there is no strain in the out-of-plane direction (e.g., ε33 = 0). Only the fourth node (shown
in red) is permitted to move.

Now let us assume that the material is incompressible. This means that (8.11) is satisfied
pointwise. By integrating (8.11) over the volume of each element, we conclude that the
volume remains unchanged after deformation. By virtue of the plane strain constraint, this in
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Figure 8.1 Incompressible linear elasticity. (a) A mesh comprised of two linear, triangular elements.
The top and left sides are fixed due to homogeneous Dirichlet boundary conditions. (b) The boundary
condition on element I constrains the red node to only move in the vertical direction if area is to
be conserved. (c) The boundary condition on element II constrains the red node to only move in the
horizontal direction if area is to be conserved. Taken together, these constraints dictate that the position
of the node must be fixed, and both elements are completely “locked.” (d) If the two elements in the
lower left-hand corner lock, as in (a)–(c), this effectively places a Dirichlet condition on the neighboring
elements, which in turn lock as well. The effect propagates, and the entire mesh locks, admitting no
displacement at all.
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turn means that the area remains unchanged. For element I, this means that the unconstrained
node can only move in the vertical direction and must have zero displacement in the horizontal
direction, as in Figure 8.1b. For element II, the situation is reversed. The base of the element is
fixed and so the height must also be fixed if the element is to preserve its area. Thus, element II
admits only horizontal displacements and not vertical displacements, as in Figure 8.1c. Taken
together, the two-element mesh admits no displacements at all and so it is completely “locked.”

Considering the much larger mesh of Figure 8.1d, the above argument clearly applies
to the elements in the lower left-hand corner of the mesh. Once it is determined that they
locked, the fixed fourth node acts as a homogeneous Dirichlet condition for the neighboring
elements. The same argument extends to them, and they lock as well. The behavior spreads,
and no deformation is possible at all. The mesh is fully locked, and any numerical results are
meaningless.

If we consider the nearly incompressible case, the same logic dictates that the deformations
of the linear elements must be very small. If, alternatively, we had a mesh of very high
polynomial order elements, then deformations would be possible in which the sides of the
elements do not remain straight. In such a case, much larger deformations could take place
while the material remains almost incompressible. This is the intuition behind the fact that
higher-order elements are less prone to locking.

Heuristically, when the number of constraints placed on an element is large relative to
its number of degrees-of-freedom, there is very little for it to do other than lock. Thus,
avoidance of locking can be achieved by increasing the ratio of the number of degrees-of-
freedom to the number of constraints. The B̄ method is a procedure for achieving this objective.

Remark
In the case of plane stress, that is when the out-of-plane stress σ33 = 0, there is no locking
problem. The reason for this is that, from (8.8), 0 = λ(ε11 + ε22 + ε33) + 2με33, and, therefore

ε33 = −λ

λ + 2μ
(ε22 + ε33) (8.12)

Using this result in (8.8) yields

σαβ = λ̃εγ γ δαβ + 2μεαβ, (8.13)

where α, β, and γ range over 1 and 2, and

λ̃ = 2μλ

λ + 2μ
. (8.14)

In this case, as λ → ∞, λ̃ → 2μ and there is no singularity in the stress–strain relation.

8.1.2 Strain projection and the B̄ method

The strain projection approach, referred to as the B̄ method, was introduced by Hughes, 1980.
The main idea in the strain projection approach is to additively split the strain tensor into its
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deviatoric and dilatational (i.e., volumetric) parts

ε(u) = εdev(u) + εdil(u), (8.15)

where

εdil(u) = 1

3
(divu) I or εdil

i j (u) = 1

3

∂uk

∂xk
δi j , (8.16)

and I is the identity tensor.
To achieve an effective formulation in the nearly incompressible case, the dilatational part

is replaced by an “improved” dilatational contribution (i.e., a projected one), using a linear
projection operator π

ε̄dil(u) = π
(
εdil(u)

)
. (8.17)

In terms of B, the strain-displacement matrix introduced in Chapter 4 is replaced by

B̄ = Bdev + B̄dil, (8.18)

with

Bdev = B − Bdil. (8.19)

The effect of this new definition is to lower the number of volumetric constraints, mitigating
the tendency to lock.

8.1.3 B̄, the projection operator, and NURBS

The use of the B̄ method within isogeometric analysis requires further investigation into the
choices of the projection operator and the associated space onto which the projection will be
performed. Since the technique has been applied mostly to piecewise bilinear and trilinear
finite elements, and we want to make intensive use of the properties of high-order k-refined
NURBS, these topics need to be studied without any assumption on the order of approximation.

In the discrete case, we have

uh(x) =
n∑

A=1

uA N A(x), (8.20)

likewise

wh(x) =
n∑

A=1

wA N A(x), (8.21)

where N A are the NURBS basis functions and uA and wA are the associated control variables.
Note that we have temporarily shifted to the convention of making A a superscript for notational
clarity in what follows.

In developing the B̄ method for higher-order finite elements and NURBS, we need to
define the linear projection operator and the spaces upon which to project the dilatational
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strain. Throughout, we use the L2 projection of the strains. For the spaces, we define the
following procedure: assume the displacement space is given. We shall refer to it as Q p, that
is quadrilateral, or hexahedral, elements of order p. The continuity of Q p elements within
a patch can be any order k from 0 to p − 1. We are particularly interested in elements of
maximal continuity, namely, C p−1. As we have throughout, we assume an open knot vector
construction so that only C0 continuity is attained across patch interfaces. The basis functions
for the projected dilatational strain are taken to be one order lower, and usually one order
of continuity lower, namely the space Q p−1, of continuity C p−2. The only exception occurs
when p ≥ 2, but there are lines or surfaces of C0 continuity within a patch. In this situation,
the projected space is also taken to be C0 continuous across those lines or surfaces.

There is nothing fundamental about this choice for the space onto which we project, but
it is a particularly convenient one from the point of view of implementation. The goal is to
project onto a space that is coarser in some way than the solution space. The current choice of
spaces is not even nested, but the lower-order NURBS space onto which we project does have
fewer degrees-of-freedom than its k-refined counterpart that is used for the solution space.
The decreased degrees-of-freedom and the lower polynomial order of this space renders it
sufficiently coarse relative to the solution space. The validity of the choice is argued in Elguedj
et al., 2008 and supported by the numerical results obtained.

As an example of what this construction produces, consider the displacement space Q1.
This is the space of bilinear quadrilaterals, or trilinear hexahedra, and is C0 continuous
across element boundaries (which correspond to knots in this case). The space for projected
dilatational strain is then Q0, of continuity class C−1, that is, piecewise constants. This element
becomes the classical mean dilatational element (see Hughes and Allik, 1969; Nagtegaal et al.,
1974; Hughes, 2000) referred to, herein, as Q1/Q0.

In constructing the Q p/Q p−1 spaces, open knot vectors are employed on each patch. Tensor
product constructs are utilized so we focus on the situation in each direction separately. We
need to specify the order of the space and the knot vector. We begin with the displacement
space, assumed to be of order p ≥ 1. The knot vector, denoted �p, is assumed to have the
following form,

�p = {0, 0, . . . , 0︸ ︷︷ ︸
p+1 copies

, �int , 1, 1, . . . , 1︸ ︷︷ ︸
p+1 copies

}, (8.22)

where, for simplicity, we have assumed the initial and final knots are located at 0 and 1,
respectively. �int denotes the vector of internal knots. The case we are primarily concerned
with at present is each internal knot having multiplicity 1 which results in maximal smoothness
of continuity class C p−1 on each patch. The corresponding knot vector for the projected space,
denoted �p−1, is given by

�p−1 = {0, 0, . . . , 0︸ ︷︷ ︸
p copies

, �int , 1, 1, . . . , 1︸ ︷︷ ︸
p copies

}. (8.23)

The order of the projected space is taken to be p − 1 ≥ 0. The span of the projected space is
precisely the span of the derivatives of all functions in the displacement space. An example
of the spaces Q p/Q p−1, p = 1, 2, 3, in the general case, for a one-dimensional patch of four
elements, is given in Figure 8.2. We see that C p−1/C p−2 continuity is achieved in all cases.



P1: ABC/ABC P2: c/d QC: e/f T1: g

c08 JWBK372-Cottrell May 20, 2009 4:34 Printer Name: Yet to Come

218 Isogeometric Analysis: Toward Integration of CAD and FEA

1

0.8

0.6

0.4

0.2

0
0,0 0.25 0.5 0.75 1,1

1

0.8

0.6

0.4

0.2

0
0,0,0 0.25 0.5 0.75 1,1,1

1

0.8

0.6

0.4

0.2

0
0,0,0,0 0.25 0.5 0.75 1,1,1,1

1

0.8

0.6

0.4

0.2

0
0.25 0.5 0.75

1

0.8

0.6

0.4

0.2

0
0.25 0.5 0.75

1

0.8

0.6

0.4

0.2

0
0.25 0.5 0.75

ξ

ξ

ξ

ξ

ξ

ξ

0

0,0

0,0,0

1

1,1

1,1,1

p=1

p=2

p=3

Qp Qp-1

Figure 8.2 Basis functions Q p/Q p−1, p = 1, 2, 3, for a one-dimensional patch of four elements. All
cases attain continuity C p−1/C p−2.

The exception to the general case occurs when there are lines or surfaces of only C0

continuity within a patch, as mentioned previously. Let us assume that �int has one or more
knots having multiplicity p, signifying C0 continuity. Then, in the space �p−1, �int needs to
be replaced with �̃int , which is identical to �int except for the knots having multiplicity p;
in �̃int these knots have multiplicity p − 1, preserving C0 continuity of the projected space
within each patch. An example of the spaces Q p/Q p−1, p = 2, 3, with a point of C0 continuity
inside the patch, is given in Figure 8.3. Only C0 continuity is achieved across the repeated
knot ξ = 0.75, and C p−1/C p−2 continuity is achieved elsewhere on the patch interior.

1

0.8

0.6

0.4

0.2

0
0,0,0 0.25 0.5 0.75, 0.75 1,1,1

1

0.8

0.6

0.4

0.2

0
0,0,0,0 0.25 0.5 0.75, 0.75, 0.75 1,1,1,1

1

0.8

0.6

0.4

0.2

0
0.25 0.5 0.75

1

0.8

0.6

0.4

0.2

0
0.25 0.5 0.75, 0.75

ξ

ξ

ξ

ξ

0,0 1,1

1,1,1

p=2

p=3

0,0,0

Qp Qp-1

Figure 8.3 Basis functions Q p/Q p−1, p = 2, 3, with a point of C0 continuity within the patch, for a
one-dimensional patch of four elements. All cases attain continuity C p−1/C p−2, except at the repeated
knot ξ = 0.75 where the continuity is only C0.
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Let us denote the basis functions in the parameter space as {N̂ A}, and the basis in the
physical space as {N A}, such that

N A = N̂ A ◦ x−1, (8.24)

where x : �̂ → � is the geometrical mapping, defined via control points {xA} as

x(ξξξ ) =
∑

A

N̂ A(ξξξ )xA. (8.25)

Using the same geometrical mapping, we construct the “tilde basis” {Ñ A}, which corresponds
to the projection space, by

ÑA = ˆ̃NA ◦ x−1, (8.26)

where { ˆ̃N } is the lower order NURBS basis built on the same parametric domain. As described
previously, we take the ˆ̃NA’s to be one order lower than the N̂ A’s to reduce the number of
incompressibility constraints.

Note that, even in the case of lowest-order elements (i.e., bilinear and trilinear), we still use
the exact geometrical mapping. This means the lowest-order elements are isogeometric and
precisely fit curved boundaries. We believe that Barth, 1998 was the first to use this approach,
and to demonstrate its effectiveness in compressible fluid calculations.

In the discrete case, (8.17) becomes:

ε̄dil
i j (uh) =

ñ∑
A=1

ÑAε̃A
i j , (8.27)

where

ε̃A
i j =

ñ∑
B=1

M̃−1
AB

(
ÑB, εdil

i j (uh)
)
�

=
ñ∑

B=1

M̃−1
AB

∫
�

ÑBεdil
i j (uh)d�, (8.28)

that is

ε̄dil
i j (uh) =

ñ∑
A,B=1

n∑
C=1

ÑA M̃−1
AB

∫
�

ÑB
∂NC

∂xk
d� uC

k δi j , (8.29)

and M̃ is the “mass” matrix of the tilde basis, namely

M̃AB = (
ÑA, ÑB

)
�

=
∫

�

ÑA ÑBd�. (8.30)

In summary, the procedure corresponds to L2 projection of εdil
i j onto the {Ñ } basis.

8.1.3.1 Implementational aspects

We consider aspects of solving the global matrix system in this section.
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For an isotropic homogeneous linear elastic material, with Hooke’s law given by (8.8), the
discrete version of the bilinear form is given by:

ā(wh, uh) =
n∑

A,B=1

(
wA

i

∫
�

N A
, j ĉi jkl N

B
,l d� uB

k

+1

3
(3λ + 2μ)

ñ∑
C,D=1

wA
i (N A

,i , ÑC )M̃−1
C D(ÑD, N B

,k ) uB
k

)
, (8.31)

where

ĉi jkl = μ

(
δikδ jl + δilδ jk − 2

3
δi jδkl

)
. (8.32)

Due to the inverse of M̃, the second term in (8.31) increases the population of the stiffness
matrix on each patch for p ≥ 2. Note, as we always assume use of patches constructed with
open knot vectors, the displacement field is continuous across patch interfaces, but no smoother.
Consequently, the tilde basis will be discontinuous across patches and M̃−1 will be uncoupled
from patch to patch. Nevertheless, if we use a direct solver to solve the global equation system,
we need to account for increased coupling of the equations due to M̃−1 on each patch. There are
at least two ways to circumvent the effect of the increased coupling. One is to use an iterative
strategy that does not require the assembly of the stiffness matrix, such as conjugate gradients,
to solve the global problem. Within each conjugate gradient iteration, a direct solver can be
used to evaluate M̃−1 patch-wise, retaining its sparse band-profile structure. This procedure
can be used to solve very large problems. It has been used extensively in these calculations and
found it to be very efficient. A second possibility is to replace M̃ with a diagonal, or “lumped”
approximation. This would only need to be done in the left-hand-side matrix, and so would
be interpreted as a “preconditioner,” see Saad, 2003. In this case, the band-profile structure
of the preconditioner would be only slightly larger than for the system constructed without
projection. Using the consistent M̃ on the right-hand-side would ensure the full accuracy of
the projection procedure. Convergence would require one or more iterations, but this involves
only a forward reduction and back substitution for each additional iteration with an existing
factorized array when employing a direct solver.

8.1.4 Infinite plate with circular hole under in-plane tension

Let us consider a plane-strain infinite plate with a hole under tension. This problem has been
studied previously in Chapter 4 assuming an isotropic compressible linear elastic medium.
It is interesting from the geometrical point of view because quadratic NURBS can exactly
represent the circular hole and the existence of an analytical solution allows us to focus on the
convergence rates that the proposed method can attain without geometrical approximation. In
the nearly incompressible regime, this problem has not been studied extensively. Some results
in the incompressible limit using meshless methods can be found in Huerta and Fernandez-
Mendez, 2001 and Dolbow and Belytschko, 1999. The infinite plate is modeled by a quarter
plate. The geometry, loading, boundary conditions and parameters are shown in Figure 4.1.
The exact solution is given by (4.46)–(4.48). The value for ν was chosen to be 0.49999, very
close to the incompressible limit, in order to study the convergence of the B̄ isogeometric
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Figure 8.4 Plate with a circular hole. Convergence curves in the relative L2 norm of stress with and
without B̄ for various NURBS orders obtained from k-refinement.

analysis for that case. A rational quadratic basis is the minimum order capable of representing
the exact geometry. The sequence of meshes used for the convergence study is the same as
that used in the compressible case; see Figure 4.3 in Chapter 4.

We define the relative error as the error normalized by the corresponding value of the exact
solution. Convergence results for the relative error in the L2 norm of stress are shown in
Figure 8.4. The cubic and quartic NURBS are obtained from k-refinement of the coarsest
quadratic mesh. The mesh parameter h is defined as the maximum distance, in the physical
space, between diagonally opposite knot locations. As can be seen, the B̄ method obtains
good convergence rates with relatively coarse meshes. Note that the standard displacement
based formulation performs relatively poorly and needs comparatively fine meshes to attain
convergence rates equivalent to what is obtained with the B̄ formulation. Even when seemingly
optimal asymptotic rates of convergence are attained in the case of the standard Q p elements,
the error is four orders of magnitude greater than for the corresponding projected Q p/Q p−1

elements. This result clearly shows that optimal rate of convergence is not the only issue to be
considered.

8.2 F̄ formulation for nonlinear elasticity

8.2.1 Constitutive equations

The central idea of this approach is, as done in the geometrically linear case, to split the
tensor that measures the deformation into its deviatoric (volume preserving) and volumetric-
dilatational parts. In the finite deformation case, the deformation gradient F is the relevant
tensor, and, contrary to the small deformation case, the split is multiplicative rather than
additive. This multiplicative decomposition has been exploited previously by Flory, 19611;
Hughes et al., 1975; Simo et al., 1985; Simo and Taylor, 1991 (within a three field Hu-Washizu
principle); and more recently by de Souza Neto et al., 1996, 2005 in an alternative F̄ approach.
The work presented here shares features with these techniques. The intent is for it to be a simple
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pure displacement formulation, but having greater generality and a more rigorous theoretical
base than previous approaches.

The multiplicative split of the deformation gradient is written

F = FdilFdev, (8.33)

where

detF = J = detFdil and detFdev = 1, (8.34)

which leads to:

Fdev = J−1/3F and Fdil = J 1/3I. (8.35)

A modified deformation gradient F̄ is defined in terms of the deviatoric part of the defor-
mation gradient Fdev and a modified dilatational part of the deformation gradient F̄dil:

F̄ = F̄dilFdev, (8.36)

where

F̄dil = π (Fdil) = π (J 1/3)I = J 1/3I, (8.37)

with π a linear projection operator identical to the one proposed previously for the linear case.
Combining (8.35)–(8.37) results in the projected deformation gradient, F̄:

F̄ = αF, (8.38)

α =
(

J 1/3
) / (

J 1/3
)
. (8.39)

The examples will assume hyperelastic homogeneous material behavior for which there
exists a free-energy function2 � that depends on the Cauchy–Green tensor C = FT F and from
which the second Piola–Kirchhoff stress tensor is derived as:

S = 2
∂�(C)

∂C
. (8.40)

The standard additive decomposition of � (see, e.g., Simo and Hughes, 1998) into a volumetric
part depending only on J and an isochoric part is used:

�(J, C) = �dil(J ) + � iso(J, C). (8.41)

A full derivation of the variational formulation incorporating F̄ in this nonlinear setting is
beyond the scope of this book. Please see Elguedj et al., 2008 for details.

8.2.2 Pinched torus

This example again exploits the ability of NURBS to exactly represent conic sections. It
consists of the pinching of a toroidal solid, and is similar to an example proposed in Chavan
et al., 2007.
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Figure 8.5 Pinched torus: geometry, quarter mesh, loading, and boundary conditions.

The geometry, loading, boundary conditions, and mesh are shown in Figure 8.5, and the
material parameters are given in Table 8.1. The material model used is Neo-Hookean following
the additive decomposition of the stored energy function given in (8.41). The isochoric and
volumetric parts of � are (see, e.g., Simo and Hughes, 1998):

�(J, C) = U (J ) + � iso(J−2/3C) (8.42)

U (J ) = 1

2
κ

(
1

2
(J 2 − 1) − ln J

)
(8.43)

� iso(J−2/3C) = 1

2
μ

(
J−2/3tr[C] − 3

)
(8.44)

where κ is the bulk modulus and μ the shear modulus. Due to symmetry conditions, only one
quarter of the structure is considered, with the corresponding symmetry boundary conditions
applied. The quarter mesh with 4 × 16 × 2 elements (that is 4 elements in the “large” circum-
ferential direction, 16 elements in the “small” circumferential direction and 2 elements in the
radial direction) shown in Figure 8.5 with quadratic and cubic NURBS is used.

Table 8.1 Pinched torus: material properties
and boundary conditions

Shear modulus μ 5.67 MPa
Bulk modulus κ 2.8333 103 MPa
Inner radius r 8 m
Outer radius R 10 m
Reference pressure p0 0.195 MPa
BC in plane x = 0 ux = 0
BC in plane y = 0 uy = 0
BC in plane z = 0 uz = 0
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Figure 8.6 Pinched torus: Cauchy stress tensor components (a) σxx and (b) σzz on the deformed
configuration with and without F̄ for C1-quadratic functions and C2-cubic functions.
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The σxx and σzz components of the Cauchy stress tensor plotted on the final deformed
configuration with and without F̄ for C1-quadratic and C2-cubic functions are shown in
Figure 8.6. The differences on the final deformed configurations show that Q2 without F̄
suffers locking. Although F̄ Q2/Q1 and Q3 without F̄ look similar, we can see that F̄ Q3/Q2

improves the result considerably. The stress contours for the component σxx of the Cauchy
stress tensor shows typical oscillations due to locking for Q2 without F̄. These oscillations are
not observed in the three other cases for this component. However, we can see on the bottom
part of Figure 8.6 that oscillations are present for both quadratic and cubic meshes without F̄
for the component σzz of the Cauchy stress tensor. Note that, for both components and both
orders of approximation, the results with F̄ do not present such oscillations: the stresses are
smooth and very similar for Q2/Q1 and Q3/Q2.

A number of additional examples have been solved in Elguedj et al., 2008.

Notes

1. Paul Flory (1910–1985) received the Nobel Prize in chemistry in 1974 “for his fundamental
work, both theoretical and experimental, in the physical chemistry of macromolecules.”

2. The free-energy function is also called the stored energy or strain energy function.
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9
Fluids

Many of the biggest challenges in computational mechanics are encountered when trying to
model the behavior of fluids. This is in part due to the wide range of scales present in such
problems, and also to the fact that these scales frequently interact with each other in complex
ways. Failure to properly represent these interactions can result in inaccurate and/or unstable
calculations. The keys to success when performing computational fluids analysis are accuracy
and robustness. These attributes may or may not be possessed by the methods and functions
used to approximate solutions. NURBS are functions that satisfy both of these criteria and
seem to be an ideal basis for fluid mechanical applications. Methods are another matter. Both
will be discussed in this chapter.

9.1 Dispersion analysis

Fluids problems typically feature a combination of advective and diffusive behavior. Let us
begin by considering the spectral properties of NURBS applied to the limit cases of pure
advection and pure diffusion, in order to assess their accuracy. Compared with standard FEA,
NURBS exhibit superior results in both regimes, suggesting that NURBS might deliver better
quality results when applied to more general fluid dynamics applications. This will indeed be
demonstrated throughout the chapter.

9.1.1 Pure advection: the first-order wave equation

To determine the performance of NURBS applied to flow problems, which by their very
definition contain advective phenomena, a natural starting point is the first-order wave equation,
or pure advection. Here we compare analytic solutions to the discrete equations arrived at by
finite element and NURBS treatments of the problem.

A linear dispersive system is one that admits solutions of the form (see Whitham, 1974)

φ = a cos(kx − ωt), (9.1)

where the frequency ω is a real function of the wavenumber k, with the specific form of ω(k)
being determined by the system. If the phase speed ω(k)/k depends on k, rather than being a
constant, the system is said to be “dispersive.” For the first-order wave equation posed on an
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infinite domain, namely,

∂φ

∂t
+ c

∂φ

∂x
= 0, for x ∈ (−∞, +∞), (9.2)

the frequency ω = kc, and thus any dispersion in a numerical solution is artificial. Every
Fourier mode should travel to the right at speed c (hence the name “pure advection”), and any
deviations from this constant velocity are artifacts of the numerics.

The infinite domain is modeled by a finite domain with periodic boundary conditions. The
effect of this approximation is moot as the local support of the basis functions localizes the
analysis. For both finite elements and NURBS, a solution of the form

φ =
nnp∑
A=1

φA(t)NA(x), (9.3)

is sought. In the case where NA is a standard finite element basis function, its coefficient φA

is associated with the value of the function at the node xA, whereas for the non-interpolatory
NURBS basis, φA is a control variable.

A stencil is arrived at in a manner that is somewhat analogous to the vibration analysis of
Chapter 5. For either finite elements or NURBS, (9.3) is substituted into (9.2), multiplied by
basis function NA, and integrated to obtain

∫ L

0
NA

nnp∑
B=1

(φ̇B NB + cφB N ′
B)dx = 0, (9.4)

where the superposed dot denotes differentiation with respect to t , and the prime superscript
denotes differentiation with respect to x . The integration is performed analytically to obtain
a single equation, rather than assembling a matrix system numerically as done in previous
chapters. Solving this equation provides important analytical information about the numerical
method.

Linear finite elements and linear NURBS are identical, so the quadratic case is investigated
first. Assuming a uniform mesh with element length h and that the NA’s are C1 quadratic
NURBS functions (actually, B-splines in this simple scenario), the integration in (9.4) is
performed yielding

1

120
(φ̇A−2 + 26φ̇A−1 + 66φ̇A + 26φ̇A+1 + φ̇A+2)

+ c

24h
(−φA−2 − 10φA−1 + 10φA+1 + φA+2) = 0. (9.5)

As in Vichnevetsky and Bowles, 1982, φA is expressed as

φA = ei(kh Ah−ωt), (9.6)
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where kh is the discrete wave number, an approximation to k = ω/c, and i = √−1. Substi-
tuting this into (9.5) and simplifying yields

−iω

120
(e−2iθ + 26e−iθ + 66 + 26eiθ + e2iθ )

+ c

24h
(−e−2iθ − 10e−iθ + 10eiθ + e2iθ ) = 0, (9.7)

where θ = khh. Rearranging and recalling that (eiα + e−iα)/2 = cos α and (eiα − e−iα)/2i =
sin α results in

ω(cos 2θ + 26 cos θ + 33) − 5c

h
(sin 2θ + 10 sin θ ) = 0. (9.8)

Finally, solving for k/kh = ωh/ω gives

k

kh
= 5(10 sin θ + sin 2θ )

θ (33 + 26 cos θ + cos 2θ)
. (9.9)

For the classical quadratic finite element, the situation is more complicated as the basis
function NA can take on two forms. If NA corresponds to an end node (i.e., A odd), then
performing the integration in (9.4) results in

1

10
(−φ̇A−2 + 2φ̇A−1 + 8φ̇A + 2φ̇A+1 − φ̇A+2)+

2c
φA+1 − φA−1

2h
− u

φA+2 − φA−2

4h
= 0. (9.10)

For the case where NA is associated with a center node (i.e., A even), performing the same
steps yields

1

10
(φ̇A−1 + 8φ̇A + φ̇A+1) + c

φA+1 − φA−1

2h
= 0. (9.11)

Following Gresho and Sani, 1998, let

φA(t) =
[

1 + (−1)A

2
+ β

1 − (−1)A

2

]
ei(kh Ah−ωt). (9.12)

Substituting (9.12) into (9.11), solving the latter for β and using that result in (9.10), yields1

k

kh
= −2 sin 2θ ± √

(1 − cos 2θ)(19 − cos 2θ )

θ (3 − cos 2θ )
. (9.13)

See Gresho and Sani, 1998 for a discussion on selecting “+” or “−” in (9.13).
Plots of the phase error k/kh = ωh/ω for these two quadratic cases, as well as C2 cubic

NURBS and linears, are shown in Figure 9.1 (see Section 5.7.2 of Chapter 5 for a discussion
of the duality between the dispersion analysis of k/kh and the spectrum analysis of ωh/ω).
We see that the quadratic finite elements actually overshoot the exact solution for part of the
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Figure 9.1 The first-order wave equation. Phase errors versus non-dimensional wave numbers. Com-
parison of linear and quadratic finite elements, C1 quadratic NURBS, and C2 cubic NURBS.

domain whereas the NURBS solution is considerably more accurate. The cubic NURBS are
better still. For a fixed wavenumber, the error in the phase speed goes as O(h4) for C0 quadratic
finite elements and as O(h6) for the C1 quadratic NURBS. In general, the error is O(h2p)
for classical C0 finite elements of order p, p > 1, and O(h2p+2) for C p−1 NURBS of order
p, p ≥ 1 (see Vichnevetsky and Bowles, 1982). Note, this acknowledges the fact that linear
finite elements, that is, p = 1, are superconvergent, in that they achieve O(h4) phase error
(see Gresho and Sani, 1998). These results illustrate the superiority of NURBS over classical
finite elements for advective processes governed by the first-order wave equation.

9.1.2 Pure diffusion: the heat equation

The behavior of NURBS applied to purely diffusive phenomena may be determined by studying
the heat equation:

∂φ

∂t
= κ

∂2φ

∂x2
, for x ∈ (−∞, +∞), (9.14)

and proceeding as in the case of the first-order wave equation. This time φA is written

φA = e(ikh Ah−ωt). (9.15)

The dispersion analysis is performed for finite elements and NURBS using basis functions of
order p = 2 through p = 4. For completeness, the solution using linear elements is shown as
well, though for linear elements there is no difference between finite elements and NURBS.
Results are presented in Figure 9.2.

The superior behavior of NURBS basis functions compared with finite elements is once
again evident. In this case, the finite element results depict an accurate acoustical branch and
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Figure 9.2 The heat equation. Phase errors versus non-dimensional wave numbers. Comparison of
classical C0-continuous finite elements and NURBS for p = 1 to 4.

inaccurate optical branches (see Brillouin, 1953, and Chapter 5). It is very important to observe
the trends in Figure 9.2. For finite elements, the optical branches diverge as p is increased. That
is, the errors in the higher wave numbers become greater as p is increased. On the other hand,
for NURBS, the entire spectrum converges as p is increased. These opposite trends are likely
very important in applications in which the entire discrete spectrum participates significantly
in the solution. These results demonstrate the superiority of NURBS over classical finite
elements for diffusive processes governed by the heat equation. The combination of results
for advective and diffusive processes suggests that NURBS may be capable of attaining better
accuracy than classical finite elements in representing turbulence, as will be demonstrated in
Section 9.4.

Figure 9.2 may look familiar. To machine precision, it is exactly the same as Figure 5.7,
obtained numerically in Chapter 5 for the longitudinal vibrations of an elastic rod. The fact
that these two distinct types of phenomena lead to identical results may be understood from the
duality of spectral and dispersion analyses described in Chapter 5. In both cases, the behavior
of NURBS and FEA functions applied to second-order spatial derivative operators in one
dimension were examined.

9.2 The variational multiscale (VMS) method

In the introduction to this chapter, we mentioned the instabilities that can arise due to the
failure of a numerical method to represent all of the scales present in a problem. In a
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finite-dimensional setting, it is simply impossible to capture all of the features of a sys-
tem, and that which is missing can, for certain classes of problems, have a deleterious effect
on the ability to accurately model the scales that are otherwise within reach. The framework
in which to understand and address these issues is the variational multiscale (VMS) method2.
VMS deserves to be the topic of a book unto itself, and only the surface of this rich and active
area of research will be scratched. For further information, see Hughes et al., 2004 and Hughes
and Sangalli, 2007. However, an attempt will be made to provide a brief explanation of its
motivations so that the formulations employed in the fluids examples throughout the remainder
of the chapter may be better understood.

9.2.1 Numerical example: linear advection–diffusion

Though we will discuss the advection–diffusion equation in more detail in Section 9.3, let us
present an example to motivate the VMS framework. We model the advection and diffusion
of concentration u : 	 → [0, 1] of a species in an incompressible fluid by

a · ∇u − ∇ · (k∇u) = f in 	 (9.16a)

u = g on 
D (9.16b)

−∇u · n = h on 
N (9.16c)

where the (divergence-free) velocity field is a = a(x), k is the diffusivity tensor, f is a
source term, and g and h are prescribed Dirichlet and Neumann boundary data, respectively.
Specifically, consider the two-dimensional problem setup shown in Figure 9.3, where 	 is the
bi-unit square [0, 1] × [0, 1].

Let θ = tan−1(2), and note that ‖a‖ = 1. Whether the problem is more “advection-
dominated,” or “diffusion-dominated” depends on the size of κ . When it is advection-
dominated, boundary layers near the outflow boundaries are expected, along with an internal

u = 0

u = 1

u = 0 u = 0

u = 1

Internal layer

Boundary layers

θ

a = (cosθ, sinθ )

k[ ] ij
= κδ ij

Figure 9.3 Advection skew to mesh. Problem description and data.
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layer aligned with the flow direction. In more diffusion-dominated cases, all such features are
expected to be “smeared,” with no large gradients or sharp layers.

It turns out that the important parameter in the Galerkin method is the element Péclet
number, α, defined as

α = ‖a‖h

2κ
, (9.17)

where h is the edge-length of an element. Clearly, the element Péclet number is a non-
dimensional measure of the competition between advective and diffusive effects on the length
scale of the mesh. When α is greater than 1 (less than 1, respectively) the situation is referred
to as advection-dominated (diffusion-dominated, respectively).

Figure 9.4 shows two results for this problem on a 20 × 20 mesh of linear elements using
a classical Galerkin’s method approach. In Figure 9.4a, the diffusion (κ = 10−1, in this case)
is not drastically out of proportion with the magnitude of the advective velocity. The element
Péclet number is α = 1(0.05)/(2(0.01)) = 0.25, and a very reasonable looking solution with
good accuracy throughout the domain is obtained. Similar accuracy would be expected if
κ were to grow, even if it were to completely dominate. In Figure 9.4b, the diffusivity has
been decreased (κ = 10−3 and so α = 1(0.05)/(2(0.001)) = 25) and the advection dominates.
Oscillatory behavior polluting the solution throughout the domain is observed. This result is
completely inaccurate, and the values of concentration below zero and above one do not even
make physical sense. This oscillatory behavior is a manifestation of “instability,” referred to
previously. This is an example of the fact that when the features of the solution to certain
classes of problems fall significantly below the resolution of the mesh that is being used,
Galerkin’s method becomes unstable and exhibits spurious oscillations. They have been the
bane of many finite element researchers and the topic of thousands of papers over the years.
One interpretation of the cause of the instabilities is the failure to account for the effect of the
scales that are too small to be represented explicitly with the basis employed.

9.2.2 The Green’s operator

In an effort to grasp the salient issues, the following problem for an abstract linear operator L
may be considered,

Lu = f in 	, (9.18a)

u = b on 
, (9.18b)

where we have changed the notation for the Dirichlet condition in order to reserve the letter
g for further duty below. We can re-express (9.18) in a variational form as: Find u ∈ S = V
such that, for all w ∈ V

a(w, u) = L(w), (9.19)

where

a(w, u) = (w,Lu) , (9.20)

L(w) = (w, f ) , (9.21)
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(a) Diffusion-dominated

(b) Advection-dominated
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1

Figure 9.4 Advection–diffusion. (a) For κ = 10−1, diffusion is in balance with the advection, and the
Galerkin solution is reasonable. (b) For κ = 10−3 advection dominates, spurious oscillations emerge,
and the solution is completely unacceptable.

and

(w, u) ≡
∫

	

w(x)u(x) dx. (9.22)

We have used S and V to denote the trial and weighting spaces, as in previous chapters.
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Analytically, we can think of solving (9.18) by means of a global Green’s operator, G, such
that

u = G f. (9.23)

Frequently, we will represent this global Green’s operator by the classical Green’s function,
g : 	 × 	 → R, such that

u(y) =
∫

	

g(x, y) f (x) dx. (9.24)

The problem used to define g is

L∗g(x, y) = δ(x − y) x, y ∈ 	, (9.25a)

g(x, y) = 0 x ∈ 
, (9.25b)

where δ(x − y) is the Dirac delta distribution and L∗ is the adjoint of operator L, as defined
by the relationship

(
L∗w, u

) = (w,Lu) ∀u, w ∈ S. (9.26)

If we had an expression for g, we would have no need for a numerical method, but its existence
is a tool that we can use to gain understanding of the problem.

9.2.3 A multiscale decomposition

Rather than pursuing an expression for the global Green’s function (which might be very
difficult to find), let us instead consider a direct sum decomposition of the solution space S
into a finite dimensional subspace S̄ that we will refer to as the “coarse-scale space,” and an
infinite dimensional subspace S ′, called the “fine-scale space,” such that

S = S̄ ⊕ S ′. (9.27)

Thus, for all u ∈ S, we have a unique decomposition

u = ū + u′, (9.28)

with ū ∈ S̄ and u′ ∈ S ′.
In practice, we will identify S̄ with Sh , the space spanned by the NURBS or FEA basis,

and we will think of S ′ as being comprised of the remaining subgrid scales that the basis is
incapable of representing. Schematically, the idea is represented in Figure 9.5. At this point,
however, we have not provided enough information to make the decomposition (9.28) unique.
We have not stated how the coarse scales will fit the exact solution. For example, ū could
interpolate u at a discrete set of points, or be a best fit in the L2 or H 1 norms. To remove any
ambiguity, we introduce a linear projector P : S → S̄ such that

ū = Pu, (9.29)
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(a) u = ū + u', the exact solution
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(b) ū, the coarse-scale solution
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(c) u', the fine-scale solution

Figure 9.5 A multiscale decomposition of a function u into its coarse-scale component ū, given here
by piecewise linear interpolation, and its fine-scale component u ′ = u − ū, which is the component of u
that the linear basis is incapable of representing.
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and thus

u′ = u − ū = (I − P) u = P ′u, (9.30)

where P ′ = I − P .
The importance of this projector cannot be overstated. Saying that ū is a finite element

approximation of u does not tell us anything about the manner in which they are related, even
when the basis has been clearly specified. It is the specific choice of projector that closes the
loop and determines the type of optimality with which we hope to fit the exact solution. It is
also crucial to note that it is not u or u′ but ū that we will seek to approximate with the finite
element solution, uh . The goal is for uh to be the optimal approximation possible given the
choice of basis, where optimality is defined by (9.29). Of course, by its very definition ū exists
in the discrete space, but the challenge is to find it.

9.2.4 The variational multiscale formulation

We insert (9.28) into (9.19), and consider the analogous splitting for the weighting function,
w = w̄ + w′. Rearranging, taking advantage of linearity, and recalling that (9.19) holds for all
w ∈ V leads us to two separate problems,

a(w̄, ū) + a(w̄, u′) = L(w̄) ∀w̄ ∈ V, (9.31)

and

a(w′, u′) = L(w′) − a(w′, ū) ∀w′ ∈ V ′. (9.32)

If u′ was known, the coarse-scale problem, (9.31), would be an exact, finite-dimensional
problem for the coarse-scale solution, ū. That is, recalling that ū ∈ S̄ and therefore can be
represented by a linear combination of basis functions, we could set up a matrix equation in
the standard way and solve numerically to obtain a ū that would satisfy (9.29). Unfortunately,
we are not given u′. We might hope to solve the fine-scale problem, (9.32), in order to obtain
it, but this problem is infinite-dimensional.

Formally, we can think of the solution u′ to (9.32) as being given by a fine-scale Green’s
operator, G ′, analogously to (9.23), such that

u′ = G ′ R′(ū), (9.33)

where R′, the residual3 of the coarse scales projected onto the fine scales, satisfies

(
w′, R′(ū)

) = L(w′) − a(w′, ū) ∀w′ ∈ V ′. (9.34)

Moreover, as in the global case, we may think of G ′ as being represented by a fine-scale
Green’s function g′ : 	 × 	 → R such that

u′(y) =
∫

	

g′(x, y)R′ (ū(x)) dx. (9.35)
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Clearly, the exact form of G ′ must be dependent upon the projector P . It was shown by Hughes
and Sangalli, 2007 to depend upon the global Green’s function G as well, and to take the form

G ′ = G − GPT
(
PGPT

)−1 PG. (9.36)

Though expression (9.36) is quite elegant, for it to be of practical use we need an expression
for G. Of course, if we had that, we would have no need for G ′, or for a numerical method in
the first place, as we could simply solve for u directly as in (9.23). Though intractable, this
multiscale formulation has still given us quite a bit of insight into the nature of the fine-scale
solution. In particular, (9.32), (9.33), and (9.35) all tell us that the fine scales are driven by the
residual of the coarse scales. This corresponds to the intuitive notion that the more accurately
ū approximates u, the smaller u′ should become. Additionally, (9.36) informs us as to exactly
how the choice of the projector affects the fine scales.

With the projector specified, ū and u′ are well defined entities with an exact mathematical
definition. It is the task of the variational multiscale method to obtain a numerical expression
uh ≈ ū such that (9.29) is approximately satisfied. As we have already noted, uh and ū both
exist in the same space S̄; we are simply trying to devise a numerical method that will select the
member of this space that satisfies the optimality condition. This is a very active area of research
and there are many techniques in the literature. They all hinge upon using what analytical
knowledge we do possess of u′, or more generally, of (9.32), such that we may approximate
the interaction of the fine and coarse scales that appears in the coarse-scale problem (9.32).
Namely, obtaining a quality approximation uh ≈ ū depends upon approximating the term
a(w̄, u′) that appears in the coarse-scale problem. Such modeling of this interaction between
the fine and coarse scales will be pointed out where it arises in the applications considered
throughout the remainder of this chapter.

9.2.5 Reconciling Galerkin’s method with VMS

Examining (9.31), it is obvious that Galerkin’s method is precisely equivalent to the assumption
that u′ = 0. Whether we are able to reach a level of resolution that is fine enough to make this
approximation reasonable depends on the details of the specific problem under investigation,
and it may not be obvious until calculations are performed. Given how completely unusable
results such as those in Figure 9.4b can be, it is reasonable to ask why Galerkin’s method
has enjoyed the success that it has. The answer is that, though it was not conceived with
this goal in mind, Galerkin’s method is optimal in a very natural sense when applied to the
symmetric elliptic problems that dominated the early days of the development of the finite
element method.

In the cases where the bilinear form is symmetric (e.g., the Laplace equation, linear elasticity,
etc.), this bilinear form is also an inner product on the solution space4. As such, it induces a
norm (frequently called the “energy norm” in solids applications), given by

‖u‖2
E = a(u, u). (9.37)

As this norm is naturally induced by the weak form of the problem we are attempting to solve,
it is an appropriate norm in which to seek optimality of the solution. The optimality condition
could be expressed as a projector, as in Section 9.2.3, or we can simply seek to minimize
the error between the exact solution u and finite-dimensional solution ū = ∑neq

B=1 uB NB in
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the energy norm. We are trying to find the ū ∈ S̄ such that a(u − ū, u − ū) = a(u′, u′) is
minimized. Setting the derivative with respect to the coefficients equal to zero, we have that
for A = 1, . . . , neq

0 = ∂

∂u A
[a(u − ū, u − ū)]

= ∂

∂u A
[a(u, u) − 2a(ū, u) + a(ū, ū)]

=
[

∂

∂u A
a(u, u) − 2

∂

∂u A
a(ū, u) + a

∂

∂u A
(ū, ū)

]
= −2a(NA, u) + 2a(NA, ū)

= −2a(NA, u − ū). (9.38)

Dividing by −2 and substituting u′ = u − ū, we obtain

a(NA, u′) = 0, A = 1, . . . , neq , (9.39)

and thus the fine-scale solution u′ is orthogonal to the entire coarse-scale space with respect
to the inner product a(·, ·). This means that, despite the fact that u′ �= 0, the interaction of
the fine scales with the coarse scales, a(w̄, u′), is equal to zero. Thus, the implicit Galerkin
assumption that u′ = 0 is false, but it inadvertently leads to the correct formulation when the
bilinear form is symmetric. Failure to appreciate the subtlety of this “two wrongs make a
right” coincidence is the reason Galerkin’s method has had its vociferous adherents, even for
the classes of problems in which this coincidence no longer holds.

When the bilinear form is no longer symmetric, as is the case in the majority of fluids
problems, it does not constitute an inner product and therefore does not induce a natural norm
for the problem. In these cases, if we seek optimality with respect to any reasonable norm,
we find that a(w̄, u′) �= 0. If we do not account for this term in one fashion or another, we are
inevitably left with an ad hoc, inaccurate method, and we must accustom ourselves to results
such as Figure 9.4b.

9.3 Advection–diffusion equation

Turning our attention from theoretical developments back towards applications, let us consider
the advection–diffusion equation. This equation is frequently the starting point for research in
fluids as many of the difficulties encountered in more complicated nonlinear systems, such as
the Navier–Stokes equations, also appear in this simple linear setting (recall Figure 9.4). This
is a model problem, but a rich one. We will begin by formulating the problem, then take a
brief aside to introduce streamline upwind/Petrov–Galerkin (SUPG) stabilization, and finally
turn our attention to the behavior of NURBS on the two-dimensional problem setup described
previously in Figure 9.3.
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9.3.1 Formulating the problem

We begin with the strong form of the advection–diffusion equation as in (9.16). As usual, we
multiply by a test function and integrate to obtain the weak form

a(w, u) = L(w), (9.40)

where

a(w, u) = −
∫

	

∇w · (au − κ∇u) d	 +
∫


N

wua · n d
 +
∫


N

wh d
, (9.41)

and

L(w) =
∫

	

w f d	. (9.42)

9.3.2 The streamline upwind/Petrov–Galerkin (SUPG) method

Many years before the theoretical framework of the variational multiscale method explained
the origins of the spurious oscillations that plagued fluids calculations, researchers developed
techniques that were designed to suppress the oscillations while attempting to minimize any
negative impact on the overall accuracy of the solution. Though these approaches lacked a
complete theoretical grounding, a lot of practical progress was made. The most successful of
these classical stabilized methods is the streamline upwind/Petrov–Galerkin method (SUPG).
The motivations behind the development of SUPG are found in the original archival journal
paper on the subject, Brooks and Hughes, 1982. In the first paper on VMS (Hughes, 1995) it
was seen that SUPG and VMS are equivalent in the very special case of advection–diffusion
in one dimension with piecewise linear basis functions and a piecewise constant forcing
function. They diverge somewhat in other, more complicated cases, but SUPG remains an
effective method that has enjoyed wide popularity in both academic and commercial settings.

Let us denote the set of element interiors 	int ⊂ 	. This is simply the domain with all of the
element boundaries removed. SUPG augments the Galerkin form of the advection–diffusion
equation with an additional term, applied only on 	int, such that we are tasked with solving

a(wh, uh) + (
Ladvw

h, τ (Luh − f )
)
	int = L(wh), (9.43)

whereLadvw
h = a · ∇wh is the advective part of the operator acting on the weighting function,

and τ is a stabilization parameter.
We can understand some of the effectiveness of this method by comparing it with VMS.

First, note that (without realizing it) SUPG is implicitly approximating the fine-scale field
u′ by the stabilization parameter times the residual of the coarse scales. Consider (9.33) and
(9.35), which tell us that u′ is given by an integral operator acting on the residual of the coarse
scales projected into the fine-scale space. We can approximate this by an algebraic operator
acting directly on the residual of the numerical solution. That is

G ′ R′(ū) ≈ τ R(uh), (9.44)
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where R(uh) = f − Luh , and so

u′ ≈ τ ( f − Luh) (9.45)

Selection of an appropriate τ in various situations has been the subject of much research, but
for advection–diffusion we will use the original formulation from Brooks and Hughes, 1982.

If we temporarily assume homogeneous boundary conditions, then

a(w, u) = (w,Lu) = (L∗w, u), (9.46)

where the adjoint operator L∗ is given by

L∗ = −Ladv + Ldiff = −a · ∇ − κ
. (9.47)

Recall, however, that in the advection-dominated cases we have ‖a‖h >> κ . In such cases,
Ldiff has negligible effect and L∗ ≈ −Ladv. Combining this with (9.45) we see that the SUPG
stabilization term is a reasonable approximation of the multiscale interaction term of VMS:(

Ladvw
h, τ (Luh − f )

)
	int ≈ a(w̄, u′). (9.48)

Thus, despite the fact that such an interpretation was only available more than a decade after
SUPG’s initial introduction, we can now see why it has been such an effective method. (The
relationship between SUPG and VMS has been clarified in Hughes and Sangalli, 2007).

Remark
For comprehensive treatments of stabilized and variational multiscale methods, see Hughes
et al., 2004.

9.3.3 Numerical example: advection–diffusion in two dimensions, revisited

Isogeometric analysis is fundamentally a higher-order approach and one might not expect
good behavior in situations with unresolved interior and boundary layers. Recalling Figure
2.13 from Chapter 2, we remark that oscillations in polynomial-based finite element methods
tend to become more pronounced as polynomial order is increased. This is the reason that most
practical fluids formulations employ lower-order, typically constant and linear, interpolation
of flow variables. However, the variation diminishing property of the Dirichlet boundary
condition specification, plus the notion of k-refinement, leads to some remarkable results in
the case of NURBS.

Let us again consider the problem setup we saw in Figure 9.3. The global Péclet number,
Pe = aL/κ = 106. When this number is greater than one, advection dominates and diffusion
is only important in very small layers. In the present case, diffusion is important in a region
of thickness O(Pe−1lnPe) in the outflow boundary layers and O(Pe−1/2lnPe) in the internal
layer (see Wahlbin, 1991, pp. 468). In all calculations the mesh is uniform, consisting of a
20 × 20 grid of square elements, with element side length h = 1/20 = 0.05. Refinement is
performed by the k-method, and solutions from p = 1 to p = 12 are calculated. In all cases,
the standard SUPG formulation is used with τ = ha/(2a), where ha is the element length in the
direction of the flow velocity which, in the present case, is simply, ha = h/max{cos θ, sin θ}.
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Figure 9.6 The y-coordinate of the control points along the left edge of the domain. (a) Odd polynomial
orders. (b) Even polynomial orders.

The boundary condition is set by specifying the control variables. On the top and right
edges of the domain, all control variables are set to 0 and the boundary condition is exactly
satisfied along these edges. On the bottom, the control variable corresponding to the lower
right-hand corner is set to 0 and the remainder are set to 1. The result is that the boundary
value is identically 1 up to the last element in which it smoothly decreases to 0 at the corner.
The left-hand-side boundary is more interesting. If we think of the control variables as control
points in R

3 defining the surface plot of the solution, where the x and y coordinates have been
fixed by the two-dimensional geometrical mapping and are no longer to be chosen by the user,
then what we have done along the left side of the domain is to set the z-component (our actual
control variable) equal to 1 for each control point that falls in the interval [0, 0.2], and equal
to 0 if it falls in [0.2, 1]. The locations of the control points are shown in Figure 9.6. Note
the clustering of points near the edges of the domain. This is necessary to maintain a linear
parameterization of the domain despite the use of open knot vectors. The resulting boundary
conditions are shown in Figure 9.7. For p = 1, the boundary condition is interpolated, whereas
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Figure 9.7 Dirichlet boundary conditions along the left edge of the domain. (a) Odd polynomial orders.
(b) Even polynomial orders.
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for p > 1 it is fit to the control variables in monotone fashion as the variation diminishing
property of B-splines prevents the curve from over- and undershooting. We wish to emphasize
that k-refinement produces non-nested solution spaces, which prevents us from having exactly
the same boundary condition at each stage of the refinement process. As a result of this
technique, the discontinuity “smears” about the location 0.2. For odd polynomial orders with
p ≤ 9, a control point falls directly on 0.2, whereas for even polynomial orders one does not
(see Figure 9.6). When p is larger than 9, the aforementioned clustering of control points seen
in Figure 9.6 spreads sufficiently to disrupt this pattern.

We wish to assess the ability of NURBS to deal with unresolved boundary and interior
layers. We present the results for θ = 45◦ for p = 1, p = 5, p = 8, and p = 12 in Figure 9.8.
(See Hughes et al., 2005 for a more complete discussion and additional results.) Two views
are presented for each p, one in which the plotting routine sampled the solution with a 100 ×
100 grid of uniformly distributed points and one in which it is sampled with a 21 × 21 uniform
grid. In the former case the plot is Phong shaded, and in the latter it is represented by bilinear
interpolation on each element and the element edges are drawn. The philosophy behind the
dual views is that the 100 × 100 grid plots are a more faithful rendering of the higher-order
cases, whereas the 21 × 21 point piecewise bilinear interpolates are the type of plots that have
appeared in numerous research articles over the years and these may be more easily visually
compared with results in the literature.

For p = 1, there are noticeable oscillations. This demonstrates that classical stabilized
methods alone are unable to achieve accurate solutions in advection–dominated cases with
unresolved layers. As one examines the results, it is clear that they improve as p increases
and are converging toward monotone results with quite sharp layers. One might have expected
that oscillations would increase with increasing p but this is not the case. This is certainly
due in part to monotone treatment of the boundary condition, but it is apparent that the high
continuity of the basis obtained through k-refinement plays an essential role. The conclusion
to be drawn is that higher-order NURBS functions are both accurate and robust, even in the
presence of unresolved features.

9.4 Turbulence

The difficulty of stabilizing a numerical method in the presence of under-resolved features
is even greater for nonlinear problems. Not only can the types of spurious oscillations that
we saw with advection–diffusion affect the accuracy of the solution, but we must worry
about convergence of the nonlinear solver as well. In this section, we examine incompressible
turbulence – a highly nonlinear application that is characterized by rich behavior through an
exceptionally wide range of scales. Success in capturing the character of the solution relies on
two key components: a basis capable of accurately representing both large and small scales and
a formulation that encapsulates the effect of the scales that are simply beyond reach. NURBS-
based isogeometric analysis, paired with the variational multiscale method, provides both.

Much of the traditional research in turbulence has focused on understanding fundamental
physical behavior of the system through numerical simulations that have typically made use
of very simple geometries and high-order spectral or compact finite difference methods (see,
e.g., Lele, 1992; Moin, 2001). The underlying function spaces utilized in spectral methods
are of high continuity (C∞ in the cases of Fourier series and global polynomials). While such
approaches are capable of accuracy across many scales, they are exceedingly restrictive in the
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Figure 9.8 Advection skew to the mesh, θ = 45◦. The mesh is 20 × 20 in all cases. Top to bottom:
results for p = 1, p = 5, p = 8, and p = 12. Left: plot with 100 × 100 sampling points, Phong shaded.
Right: plot with 21 × 21 sampling points.
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types of geometries that can be considered. Turbulent flows, however, are also of great interest
in general geometry industrial applications. These are typically computed using finite volume
and finite element methods, which employ low-order approximation functions that are at most
C0-continuous. Clearly, this as an opportunity for isogeometric analysis to bridge these worlds
by combining geometrical flexibility with the ability to use functions of higher-order and
higher-continuity. In this section, however, we will restrict ourselves to simple geometries in
an effort to isolate the effects of continuity and compare how smooth C1-continuous quadratic
NURBS functions perform as compared with their C0-continuous quadratic counterparts.

9.4.1 Incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations can be expressed in terms of the linear momen-
tum equations and incompressibility constraint given by

∂u
∂t

+ ∇ · (u ⊗ u) + ∇ p − ∇ · (2ν∇su) − f = 0 in 	, (9.49)

∇ · u = 0 in 	, (9.50)

where

∇su = 1

2
(∇u + ∇uT ), (9.51)

f is the force (per unit mass), ν is the kinematic viscosity, u is the velocity vector, and p is the
pressure divided by the density.

Note that one may use the incompressibility constraint to simplify the momentum equation
as

∂u
∂t

+ u · ∇u + ∇ p − ν
u − f = 0 in 	. (9.52)

We assume for simplicity of presentation that u = 0 on 
 and
∫
	

p(t) d	 = 0 for all t ∈
(0, T ). Following the standard approach, we seek to recast (9.49) as a variational formulation.
Let V denote both the trial solution and weighting function spaces, which are assumed to
be the same. Multiplication by a test function and integration lead to a weak form of the
incompressible Navier–Stokes equations: Find U = {u, p} ∈ V such that ∀W = {w, q} ∈ V ,

a(W; U) = L(W) (9.53)

where

a(W; U) =
(

w,
∂u
∂t

)
	

− (∇w, u ⊗ u)	 + (q,∇ · u)	

− (∇ · w, p)	 + (∇sw, 2ν∇su
)
	

(9.54)

and

L(W) = (w, f)	. (9.55)
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Note that a( · ; · ) is no longer a bilinear form. The semicolon is used to denote the fact that
it is linear with respect to the weighting function, to the left of the semicolon, but nonlinear
with respect to the solution.

9.4.2 Multiscale residual-based formulation of the incompressible
Navier–Stokes equations employing the advective form

As in Section 9.2, we consider a multiscale direct-sum decomposition of V into coarse-scale
and fine-scale subspaces, Vh = V̄ and V ′, respectively,

V = Vh ⊕ V ′, (9.56)

where we have assumed from the outset that the coarse-scale space is given by the span of
the basis functions to be used in the calculations. Again, to obtain a unique decomposition
in (9.56), we require the aid of a linear projection operator P , that gives Uh = PU ∈ Vh and
U′ = (I − P)U ∈ V ′ from a given U ∈ V .

Following the VMS methodology, we restrict the weighting space to Vh in (9.53) in order to
obtain a finite-dimensional problem for the coarse scales. Employing the direct-sum decompo-
sition (9.56) for the solution space yields the coarse-scale equation: Find Uh = {uh, ph} ∈ Vh

such that ∀Wh = {wh, qh} ∈ Vh ,

a(Wh ; Uh + U′) = L(Wh). (9.57)

We now see the manner in which the large scales depend on U′ = {u′, p′}, but the coupling is
more complex than for advection–diffusion due to the nonlinearity of a( · ; · ) with respect to
its second argument.

Expanding and rearranging (9.57), the problem has become: Find Uh ∈ Vh , such that ∀Wh ∈
Vh ,

(
wh,

∂uh

∂t

)
	

− (∇wh, uh ⊗ uh
)
	

+ (
qh,∇ · uh

)
	

− (∇ · wh, ph
)
	

+ (∇swh, 2ν∇suh
)
	

− (
wh, f

)
	

+
(

wh,
∂u′

∂t

)
	

− (∇wh, uh ⊗ u′)
	

− (∇wh, u′ ⊗ uh
)
	

− (∇wh, u′ ⊗ u′)
	

+ (
qh,∇ · u′)

	

− (∇ · wh, p′)
	

+ (∇swh, 2ν∇su′)
	

= 0 (9.58)

We make the simplifying assumption that
(
wh, ∂u′

∂t

)
	

= 0. Note, however, that Codina et al.,

2007 have demonstrated that it is beneficial to incorporate this effect in modeling the fine
scales. The term

(∇swh, 2∇su′)
	

may be omitted by selecting a projector that enforces the
orthogonality of the coarse and fine scales in the semi-norm induced by this term (see Hughes
and Sangalli, 2007).
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Let us elaborate on the convective terms in (9.58). Assuming incompressibility of the
velocity field, namely, ∇ · (uh + u′) = 0, we compute:

− (∇wh, uh ⊗ uh
)
	

− (∇wh, uh ⊗ u′)
	

− (∇wh, u′ ⊗ uh
)
	

− (∇wh, u′ ⊗ u′)
	

= − (∇wh, uh ⊗ (uh + u′)
)
	

− (∇wh, u′ ⊗ uh
)
	

− (∇wh, u′ ⊗ u′)
	

= (
wh, (uh + u′) · ∇uh

)
	

− (∇wh, u′ ⊗ uh
)
	

− (∇wh, u′ ⊗ u′)
	

(9.59)

As previously, we model the fine scales by a scaling parameter multiplying the residual of
the coarse scales, see Bazilevs et al., 2007a:

U′ ≈ τττR(Uh), (9.60)

where τττ is a 4 × 4 matrix (in three spatial dimensions) and R(Uh) is a 4 × 1 vector that collects
momentum and continuity residuals of the Navier–Stokes equations,

R(Uh) = {rT
M (uh, ph), rC (uh)}T , (9.61)

in which

rM (uh, ph) = f − ∂uh

∂t
− uh · ∇uh − ∇ ph + ν
uh, (9.62)

rC (uh) = −∇ · uh (9.63)

With x = {xi }d
i=1 denoting the coordinates of element 	e in physical space, ξξξ = {ξi }d

i=1
denoting the coordinates of element 	̂e in parametric space, and ξ̃ξξ = {ξ̃i }d

i=1 denoting the
coordinates of the parent element, 	̃e (recall Figure 3.4 in Chapter 3), we assume x = x(ξ̃ξξ ) :
	̃e → 	e to be a continuously differentiable map with a continuously differentiable inverse.
We define τττ as follows:

τττ = diag(τM , τM , τM , τC ), (9.64)

where

τM = (
4


t2 + uh · Guh + CI ν
2G : G)−1/2, (9.65)

τC = (g · τMg)−1, (9.66)

G is a second rank metric tensor given by

G = ∂ξ̃ξξ

∂x

T
∂ξ̃ξξ

∂x
, (9.67)
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and g is a vector obtained from the column sums of ∂ξ̃ξξ

∂x ,

g = {gi }

gi =
d∑

j=1

(
∂ξ̃ξξ

∂x
) j i . (9.68)

As an example of ∂ξ̃ξξ/∂x, consider the case when the element under consideration is a cube
with edge length h. The parent element is scaled such that ∂ξ̃ξξ/∂x = 2h−1I, where I is the
identity matrix. See Bazilevs et al., 2007a for further details.

The definition of τM in (9.65) is inspired by the theory of stabilized methods for advection–
diffusion–reaction systems (see, e.g., Hughes and Mallet, 1986; Shakib et al., 1991). The
definition of τC comes from the small-scale Shur complement operator for the pressure. In the
definition of τM (9.65), CI is a positive constant, independent of the mesh size, that derives
from an element-wise inverse estimate (see, e.g., Johnson, 1987; Ern and Guermond, 2004).

Combining equations (9.58)–(9.60), we obtain the discrete formulation: Find Uh ∈ Vh , such
that ∀Wh ∈ Vh ,(

wh,
∂uh

∂t

)
	

+ (
wh, (uh − τMrM ) · ∇uh

)
	

+ (
qh,∇ · uh

)
	

− (∇ · wh, ph
)
	

+ (∇swh, 2ν∇suh
)
	

− (
wh, f

)
	

+ (
uh · ∇wh + ∇qh, τMrM

)
	

+ (∇ · wh, τC∇ · uh
)
	

− (∇wh, τMrM ⊗ τMrM
)
	

= 0. (9.69)

9.4.3 Turbulent channel flow

To examine the effects of continuity, we examine a turbulent channel flow at Reynolds number
Reτ = 590 based on the friction velocity and the channel half-width (for results at Reτ = 180
and Reτ = 590 on a coarser mesh, see Akkerman et al., 2008). To assess the accuracy of the
calculations, comparison is made with the direct numerical simulation (DNS) of Moser et al.,
1999.

The computational domain for this problem is a rectangular box, and the flow is driven by
a constant pressure gradient in the stream-wise direction. Periodic boundary conditions are
imposed in the stream-wise and span-wise directions, commonly referred to as homogeneous
directions. A no-slip boundary condition is applied at the walls. This no-slip boundary condi-
tion is enforced strongly, that is, the discrete velocity is set to zero at the walls. An alternative
approach is to enforce Dirichlet boundary conditions weakly. As discussed in Chapter 3, this
is accomplished by appropriately augmenting the semi-discrete equations (9.69) by terms that
enforce the no-slip condition weakly (see Bazilevs and Hughes, 2007; Bazilevs et al., 2007b,
2008b for additional details). Though not employed in the computations presented herein,
weak enforcement of Dirichlet boundary conditions is an extremely powerful technique that
should be considered in many application areas.

The domain size is 2π , 2, and 4/3π in the stream-wise, wall-normal, and span-wise di-
rections, respectively. The corresponding DNS computation was carried out on a domain of



P1: ABC/ABC P2: c/d QC: e/f T1: g

c09 JWBK372-Cottrell May 20, 2009 4:44 Printer Name: Yet to Come

Fluids 249

0
0 1 2 3 4 5 6

(a) C0-continuous quadratic elements

0
0 1 2 3 4 5 6

(b) C1-continuous quadratic NURBS

Figure 9.9 Basis functions employed in homogeneous directions. Periodic boundary conditions are
imposed by associating each function that is non-zero on one of the boundaries of the computational
domain (denoted by the gray vertical lines) with a function that is non-zero on the opposite boundary.
For example, a function drawn in red that is non-zero at the left boundary will be given exactly the same
control variables and the red function at the right boundary, thus treating them as one unique function
within the code.

the same size with 128 × 129 × 128 spectral functions in the stream-wise, wall-normal and
span-wise direction, respectively.

Computations were carried out employing C0- and C1-continuous quadratic discretizations,
keeping the number of degrees of freedom nearly the same in both cases. For the C0 case a
mesh of 323 elements was used, which gave 64 × 65 × 64 basis functions in the discrete space,
whereas for the C1 case a mesh of 643 elements was employed, which led to a discrete space
comprised of 64 × 66 × 64 basis functions (the open knot vector construction is responsible
for the extra basis function in the wall-normal direction). Figures 9.9a and 9.9b show the types
of functions used in the stream-wise and span-wise direction for the C0 and C1 calculations,
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respectively (for the sake of visual clarity, fewer elements are shown than were used in the
computation). Periodic boundary conditions are enforced by ensuring that the coefficient
(control variable) multiplying any function with support at one edge of the computational
domain is identical to the coefficient of an appropriate function on the opposite edge of the
computational domain. This ensures that the analysis code treats them as one single function.
Note that in the C1 case, the functions are chosen such that continuity at the periodic boundary
is not degraded.5 The mesh is non-uniform in the wall-normal direction (not shown), with
smaller elements placed near the boundary for increased resolution. The C0 basis is analogous
to that of Figure 9.9a, but stretched toward the wall. For the C1 case, open knot vectors are
employed and the same stretching is employed.

The semi-discrete equations (9.69) are advanced in time using the generalized-α method
(see Chung and Hulbert, 1993; Jansen et al., 1999). We use meshes that are stretched in
the wall-normal direction according to a hyperbolic function to cluster points near the wall.
Moreover, in the definition of τM (9.65) we set CI to 36.
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(b) Stream-wise velocity fluctuations

Figure 9.10 Turbulent channel flow at Reτ = 590 computed on a 643 element mesh. Comparison of
C0- versus C1-continuous discretizations.
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Numerical results are reported in the form of statistics of the mean velocity and root-
mean-square velocity fluctuations. The statistics were computed by sampling the velocity
field at the mesh knots and averaging the solution in time as well as in the homogeneous
directions. The meshes were chosen such that the number of degrees-of-freedom for both
quadratic discretizations are approximately the same. All computational results are presented
in non-dimensional wall units.

Figure 9.10a illustrates that the mean flow obtained with the C1-continuous discretization is
quite a bit more accurate. The stream-wise velocity fluctuations in Figure 9.10b are also better
in the case of C1 quadratics. This confirms the intuition gleaned in Section 9.1: the smooth
NURBS functions appear more accurate per degree-of-freedom than their C0 counterparts
when applied to systems with advective and diffusive phenomena taking place across a wide
range of scales.

Notes

1. Note that if we had considered C0 quadratic NURBS instead of C0 quadratic finite elements,
the stencil would have been different, but the results for k/kh would be exactly the same.
This is because C0 NURBS basis functions are different from the classical finite element
basis functions, but the space they span is exactly the same.

2. The letters “VMS” stand for Variational MultiScale. Some researchers also refer to the
Variational Multiscale Method by the abbreviation “VMM.”

3. The sign associated with the residual is a matter of preference. Some take it to be f − Lu,
while others use Lu − f . Here, we use the former, but use care when consulting the
literature.

4. Recall that after we define a lift that satisfies the Dirichlet conditions, the terms involving
that lift are moved to the right hand side of the equation and treated as data. From that point
on, both the weighting functions and the solutions that we seek are zero on the Dirichlet
boundary. Thus it makes sense to speak of the solution and weighting spaces as being
identical.

5. In practice, this can be accomplished using open knot vectors by restricting the basis to
act only in linear combinations that reproduce C1-periodic behavior. This technique is
completely analogous to the approach to local refinement discussed in Chapter 3, Section
3.5.1. The appropriate restriction is given by treating the C−1 basis at the boundary as the
result of repeatedly replicating a knot in a C1 basis, and making the degrees-of-freedom of
the finer C−1 basis slaves to those of the coarser C1 basis.
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10
Fluid–Structure Interaction and
Fluids on Moving Domains

In fluid–structure interaction (FSI), both the fluid and the structural equations emanate from
conservation laws posed on moving domains (note that the very movement of the domains is
a result of the structure and the fluid interacting with each other). There are many ways to
write these laws, for example, on the material, referential, and current/physical domain. As
a result, various discretization techniques exist for FSI, including but not limited to arbitrary
Lagrangian–Eulerian (ALE), space–time, and particle FEM (PFEM) approaches. Each of these
approaches has advantages and disadvantages depending on the application. In this section
we will focus on the ALE formulation. See Bazilevs et al., 2008a and references therein for
additional details.

There are two main classes of solution algorithms for ALE formulations of fluid–structure
interaction, staggered and monolithic. In the staggered approaches, the solid and fluid equations
are solved in uncoupled fashion. Typically, the motion of the solid defines the geometry of
the fluid domain. This can create problems in certain situations (see Bazilevs et al., 2008a
for elaboration). The advantage of the staggered approach is that one can combine existing,
independently developed solid and fluid computer programs. The drawback is that the passing
of information from one code to another can lead to time-stepping instabilities or, in the case
when iteration is utilized, lack of convergence of iterates. Many examples of these phenomena
have been reported, and various special “fixes” have been proposed. Monolithic procedures
endeavor to solve the fluid–structure interaction system in fully-coupled fashion. This results
in a large system of equations compared with the staggered approach. The benefit is improved
numerical stability and more rapid convergence of iterates. This is the approach described
herein. For further information, see Bazilevs et al., 2008a.

10.1 The arbitrary Lagrangian–Eulerian (ALE) formulation

The structure is treated as a nonlinear elastic solid in the Lagrangian description governed by
the equations of elastodynamics. By “Lagrangian description” we mean that the geometrical
mapping of the solid domain moves with the material such that each parametric coordinate

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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refers to the same solid particle throughout its deformation. This is the most utilized approach
in structural analysis, and is the one adopted previously in Chapter 8, Section 8.2.

We shall assume the fluid to be viscous and incompressible, governed by the incompressible
Navier–Stokes equations. Heretofore we have treated fluids problems in an Eulerian setting.
That is, the mesh remained fixed in the region of interest while the particles of the fluid flowed
through it. We would like to again use an Eulerian description of the fluid domain in the FSI
calculations, but we also seek to maintain a compatible discretization with the solid domain,
in which the mesh is moving with the material. This is accomplished by allowing the mesh to
move in the fluid domain in such a way as to avoid becoming excessively distorted as the solid
domain moves. This is referred to as the arbitrary Lagrangian–Eulerian (ALE) formulation.

ALE equations mandate the specification of the motion of the mesh in the region of the fluid.
This motion is found by considering the fluid domain to be a fictitious elastic solid and solving
an auxiliary static linear elasticity boundary value problem for which the fluid–solid interface
displacement acts as a Dirichlet boundary condition (see, e.g., Johnson and Tezduyar, 1994).
We know from the movement of the solid how the boundary of the fluid mesh must move
(parts of the boundary of the fluid region may also have motion prescribed independent of the
motion of the solid; naturally, this is handled by Dirichlet boundary conditions as well), and
we use the fictitious elasticity problem posed on the fluid domain to move the mesh in a way
that is compatible with the prescribed motion at the boundary while preserving the topology
on the interior. In practice, this problem is solved monolithically with the FSI problem, but the
coupling is one-way from the FSI problem to the elasticity problem for the mesh. At each step,
the solution to the FSI problem dictates how the boundary for the elasticity problem must move.

It is interesting to consider the appropriate elastic coefficients for the moving mesh problem.
They should be selected such that the fluid mesh quality is preserved for as long as possible. In
particular, mesh quality can be preserved by dividing the elastic coefficients by the Jacobian
of the element mapping, effectively increasing the stiffness of the smaller elements, which are
typically placed near the fluid–solid interface (see Tezduyar et al., 1992).

The kinematic compatibility (i.e., “no-slip”) condition between the fluid and the solid must
be enforced. That is, the fluid velocity must be equal to the velocity of the solid at the interface.
The coupled FSI problem is written in a variational form such that the stress compatibility
condition at the fluid–solid interface is enforced weakly. Note also that the formulation in the
fluid domain must be carefully written to incorporate the relative motion of the mesh. For a
general discussion of ALE, the reader is referred to Hughes et al., 1981; Donea et al., 1982;
LeTallec and Mouro, 2001; Farhat et al., 2001; Farhat and Geuzaine, 2004; Bazilevs et al.,
2008a and references therein.

10.2 Inflation of a balloon

Bazilevs et al., 2008a consider a three-dimensional benchmark example, originally proposed
by Tezduyar and Sathe, 2007, belonging to a class of problems known as “flows in enclosed
domains.” For such problems, the boundary of the fluid subdomain is composed of two parts,
an inflow and a fluid–solid interface. For incompressible fluids, conservation of mass results in
the condition that the inflow flow-rate must equal the rate of change of the volume of the fluid
domain (see, e.g., Kuttler et al., 2006). In loosely coupled approaches, where the solutions
of the fluid and the solid subproblems are obtained in a staggered fashion, this condition is
lost during each subiteration, often leading to divergence of the calculations. In this section
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Periodic inflow
T = 2s

Fluid domain

Solid wall

Figure 10.1 Inflation of a balloon. Problem setup.

it is shown that the strongly-coupled, NURBS-based procedures advocated in Bazilevs et al.,
2008a have no difficulty dealing with this situation.

The problem setup is illustrated in Figure 10.1. An initially spherical balloon is inflated,
with the inflow velocity being given by a cosine function with a period of 2 s and an amplitude
varying from 0 m/s to 2 m/s. The problem geometry, boundary conditions and material
parameters are as in Tezduyar and Sathe, 2007 and Bazilevs et al., 2008a. The mesh of the
initial configuration, comprised of 10,336 quadratic NURBS elements, is shown in Figure 10.2.
Note that, because NURBS are used to define the analysis-suitable geometry, the spherical
balloon geometry is represented exactly.

For the motion of the mesh, one can take advantage of the parametric definition of the
geometry. In this case Em , the fictitious elastic modulus for the mesh motion problem, is set
to be an exponentially increasing function of the parameter defining the radial direction, thus
effectively “stiffening” the fluid elements near the fluid–solid boundary, thereby preserving
the shape of the fluid mesh in this region.

(a) Top view (b) Bottom view

Figure 10.2 Inflation of a balloon. NURBS mesh of the balloon in both top and bottom views.
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The computation is advanced for 14 inflow cycles, during which the volume of the balloon
grows by a factor of approximately five with respect to its initial value. Figures 10.3–10.5 show
snapshots of fluid velocity vectors superposed on the pressure contours at a planar cut through
the diameter of the sphere. The flow is initially axially symmetric, although it is apparent that
the symmetry of the solution breaks down towards the end of the computation. This is not
surprising as the Reynolds number of the flow, based on the initial diameter of the balloon and
the maximum inflow speed, is 4 × 105.

Figure 10.6(a) shows the inflow flow-rate versus the rate of change of the fluid domain
volume, which are expected to be the same. On the scale of the plot they are indistinguishable.
A closer examination of the error between the inflow flow-rate and the rate of change of
the fluid domain volume reveals that the relative error in the quantities is on the order of
10−4 − 10−3, which is attributable to the fact that the nonlinear equations are solved up to
a tolerance of this order (see Figure 10.6(b)). Note that the results are, on average, slightly
less accurate during the last few periods of the simulation, which is attributable to the loss of
radial symmetry in the solution. Also note that the error has the same sign, that is, the rate of
change of the fluid domain volume is always greater than the inflow flow-rate. This suggests
that in the discrete setting there is a tendency of the balloon to expand slightly faster (i.e.,
overcompensate) than dictated by the inflow flow-rate.

10.3 Flow in a patient-specific abdominal aorta with aneurysm

One of the interesting application areas of FSI technology has been in the modeling of arterial
blood flow. In particular, patient specific modeling allows the opportunity to address complex
geometrical issues, intricate flow patterns, and interesting biophysics all within the same
analysis.

10.3.1 Construction of the arterial cross-section

Blood vessels are tubular objects and so we employ a sweeping method to construct meshes
for isogeometric analysis. A solid NURBS description of a single arterial branch is obtained
by extrusion of a circular curve along the vessel path, projection onto the true surface, and
filling the volume radially inward. Arterial systems engender various branchings and inter-
sections, which are handled with a template-based approach described in detail in Zhang
et al., 2007. Application of these procedures generates multi-patch, trivariate descriptions of
patient-specific arterial geometries that are also analysis suitable.

A central feature of the approach is a construction of an arterial cross-section template that
is based on the NURBS definition of the circular surface. Here we focus on the construction of
the cross-section template as it relates to fluid–structure interaction analysis of arterial blood
flow. We identify the area occupied by the blood, or the fluid region, and the arterial wall, or
the solid region. Fluid and solid regions are separated by the luminal surface, or the fluid–solid
interface. Figure 10.7 shows an example of a NURBS mesh for a circular cross-section with
both fluid and solid regions present. Recall that NURBS elements are defined as areas enclosed
between isoparametric lines (i.e., knot spans). Note that the isoparametric lines correspond to
radial and circumferential directions. For purposes of analysis we separate the fluid and the
solid region by a C0 surface as the solution is not expected to have regularity beyond C0 at
the interface. Knot vectors and control points for the cylindrical template for this arterial mesh
can be found in Appendix 10.A at the end of this chapter.
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(a) t = 0.2 s

(b) t = 5.0 s

Figure 10.3 Inflation of a balloon. Mesh deformation and fluid velocity vectors superposed on the
pressure plotted on a planar cut through the diameter of the balloon.
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(a) t = 9.8 s

(b) t = 14.6 s

Figure 10.4 Inflation of a balloon. Mesh deformation and fluid velocity vectors superposed on the
pressure plotted on a planar cut through the diameter of the balloon.
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(a) t = 19.4 s

(b) t = 24.2 s

Figure 10.5 Inflation of a balloon. Mesh deformation and fluid velocity vectors superposed on the
pressure plotted on a planar cut through the diameter of the balloon.
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Figure 10.6 Inflation of a balloon. (a) Plot of the volumetric inflow rate versus the rate of change of
the fluid domain volume. (b) Plot of the relative error in the flow rates that is attributable to convergence
tolerances employed in the calculations.

Human arteries are not exactly circular, hence projection of the template onto the true sur-
face is necessary. Only control points that govern the cross-section geometry are involved in
the projection process, while the underlying parametric description of the cross-section stays
unchanged. The end result of this construction is shown in Figure 10.7, which illustrates the
mapping of the template cross-section onto the patient-specific geometry. Here the isopara-
metric lines are somewhat distorted so as to conform to the true geometry, while the topology
of the fluid and solid subdomains is preserved along with their interface. It is worth noting
that cross-sections of healthy arteries are nearly circular, so little distortion of the template is
required to accurately capture the true geometry in this case.

Compared to the standard finite element method, the current method has significant ben-
efits for analysis of blood flow in arteries, both in terms of accuracy and implementational
convenience. It is well known in fluid mechanics that steady, laminar, incompressible flow
in a straight circular pipe that is driven by a constant pressure gradient develops a parabolic
profile in the radial direction and has no dependence on the circumferential or axial directions.
NURBS discretization is capable of exactly representing this solution profile pointwise, in
contrast to standard finite element discretizations.
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Blood (fluid)
Map onto a patient-specific

geometry that preserves
parameterization

Blood (fluid)

Artery wall (solid) Artery wall (solid)Luminal boundary
(fluid–solid interface,

conforming mesh)

Figure 10.7 Arterial cross-section template based on a NURBS mesh of a circle that is subsequently
mapped onto a patient-specific geometry. Fluid and solid regions are identified and separated by an
interface. For analysis purposes, basis functions are made C0-continuous at the fluid–solid interface.
Note that the topology of the fluid and the solid subdomains remains unchanged.

Parametric definition of the geometry is not only attractive from the mesh refinement point
of view, it is also beneficial in arterial blood flow applications for the following reasons:

� In the fluid region it allows one to build high quality structured boundary layer meshes near
arterial walls. This is crucial for overall accuracy of the fluid–structural simulation as well as
for obtaining accurate wall quantities, which play an important role in predicting the onset
and development of vascular disease.

� In the solid region it allows for a natural representation of material anisotropy of the arterial
wall because the parametric coordinates are aligned with the axial, circumferential and wall-
normal directions. See Holzapfel, 2004 for arterial wall material modeling which accounts
for anisotropic behavior.

� Parametric mesh definition in the fluid region allows for a straightforward specification of
the elastic mesh parameters used for the mesh-movement problem. For example, we “stiffen"
the mesh near the fluid–structure interface so as to preserve boundary-layer elements during
mesh motion.

10.3.2 Numerical results

A patient-specific geometry was obtained using 64-slice CT angiography and was provided
to us by T. Kvamsdal and J.H. Kaspersen of SINTEF, Norway. The geometrical model, which
contains some of the major branches of a typical abdominal aorta, is shown in Figure 10.8(a).
Note that one of the renal arteries is missing in the model because the patient had only one
kidney. The fluid properties are: ρ f = 1.06 g/cm3, μ f = 0.04 g/cm s. The solid has the density
ρs = 1 g/cm3, Young’s modulus, E = 4.144 × 106 dyn/cm2, and Poisson’s ratio, ν = 0.45.
The computational mesh, consisting of 44,892 quadratic NURBS elements, is shown in Figure
10.8(c). Two quadratic NURBS elements and four C1-continuous basis functions are used for
through-thickness resolution of the arterial wall (see Figure 4.9).
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(a) (b) (c)

Figure 10.8 Flow in a patient-specific abdominal aorta with aneurysm. (a) Patient-specific imaging
data; (b) Skeleton of the NURBS mesh; (c) Smoothed and truncated NURBS model and mesh. In
(c), every NURBS patch is assigned a different color. For more details of geometrical modeling for
isogeometric analysis of blood flow the reader is referred to Zhang et al., 2007.

A periodic flow waveform, with period T = 1.05 s, is applied at the inlet of the aorta, while
resistance boundary conditions are applied at all outlets. The solid is fixed at the inlet and at
all outlets. Material and flow rate data, as well as resistance values are taken from Figueroa
et al., 2006. Wall thickness for this model is taken to be 15% of the nominal radius of each
cross-section of the fluid domain model.

Figure 10.9 shows snapshots of the velocity field plotted on the moving domain at two dif-
ferent times during the heart cycle. The flow field is quite complex and fully three-dimensional,
especially in diastole. The velocity magnitude is largest near the inflow and is significantly
lower in the aneurysmal region. This occurs in part due to the fact that a significant percent-
age of the flow goes to the upper branches of the abdominal aorta and the increase in the
cross-sectional area of the vessel associated with the aneurysm.

Figure 10.10 shows the so-called oscillatory shear index (OSI) distribution at the luminal
surface. OSI is defined as (see, e.g., Taylor et al., 1998, 1999),

OSI = 1

2

(
1 − τmean

τabs

)
, (10.1)
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(a) Flow as the heart contracts during systole

(b) Flow as the heart relaxes during diastole

Figure 10.9 Flow in a patient-specific abdominal aorta with aneurysm. Large frame: fluid velocity
vectors colored by their magnitude, zoom on the top portion of the artery. Left small frame: volume
rendering of the velocity magnitude. Right small frame: fluid velocity isosurfaces.
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(a) Front view (b) Top view (c) Side view

OSI
0.483

0.241

0

Figure 10.10 Flow in a patient-specific abdominal aorta with aneurysm. Oscillatory shear index (OSI)
plotted in three different views.

where, denoting by τττ s the wall shear stress vector,

τmean =
∣∣∣ 1

T

∫ T

0
τττ sdt

∣∣∣, (10.2)

and

τabs = 1

T

∫ T

0
|τττ s |dt. (10.3)

Note that OSI is largest in the aneurysm region, especially along the posterior wall, indicating
that wall shear stress is highly oscillatory there. Low time-averaged wall shear stress, in
combination with high shear stress temporal oscillations, as measured by the OSI, are identified
with regions of high probability of occurrence of atherosclerotic disease.

10.4 Rotating components

Applications involving flows with rotating components, for example, ship propellers, cooling
fans, heat exchangers, etc., have a great practical significance in various branches of engineer-
ing. As a result, robust and accurate simulation techniques are necessary to predict and analyze
the behavior and physical characteristics of these systems. Computation of flows around ro-
tating objects engenders two difficulties compared with computation of flows on stationary
domains: 1) obtaining discretizations that are compatible with the relative motion of rotating
and fixed components and 2) deriving the discrete formulation and solution spaces for the
flow fields in question. The unique combination of the geometrical flexibility and accuracy
possessed by NURBS on problems of computational fluid dynamics facilitates addressing
these problems in an elegant and effective manner.
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Initial configuration Rotated configuration

Sliding mesh interface No geometric incompatibilities

Figure 10.11 Embedding of a rotating component in a stationary flow domain using NURBS
discretizations.

As we have seen many times by now, NURBS are capable of exactly representing all conic
sections, including circular and cylindrical surfaces. This method for problems of rotating
components consists of embedding a rotating body in a circular (in 2D) or a cylindrical (in 3D)
domain, which, in turn, is placed inside the surrounding flow domain. While the surrounding
flow domain is stationary, the subdomain that contains a rotating body spins with it. A key
observation for the developments is that the interface between the rotating and stationary
subdomains is unique, it remains circular or cylindrical at all times, and it can be exactly
represented in the space of quadratic or higher-order NURBS functions. In this approach,
unlike in standard finite elements, geometric compatibility between the rotating and stationary
subdomains is exact. This situation is illustrated in Figures 10.11 and 10.12.

Although geometric compatibility is naturally attained by using a NURBS representation,
imposing solution compatibility directly in the solution space is too restrictive with respect
to the kinds of meshes and time step sizes we wish to employ in the computations. Hence,
we abandon compatible discretizations at the stationary and rotating subdomain interface and
devise a numerical technique that imposes continuity of the discrete solution weakly. For this
purpose, we borrow ideas from the discontinuous Galerkin (DG) methodology, as we did for
the weak enforcement of boundary conditions in Chapter 3. It should be noted that using ideas
from DG methods to impose solution compatibility in the presence of incompatible meshes
and multi-physics phenomena has been exploited, for example, by Wriggers and Zavarise,
2007 for solid mechanics and contact, and by Hansbo and Hermansson, 2003 and Hansbo
et al., 2004 for fluid–structure interaction.

Finite elements:
gaps and overlaps

Isogeometric analysis:
no geometric incompatibilities

Figure 10.12 Embedding of a rotating component in a stationary flow domain: comparison between
NURBS and finite element discretizations.
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10.4.1 Coupling of the rotating and stationary domains

In this section we give a semi-discrete formulation of the problem that couples stationary and
rotating parts of the domain. We first consider the individual subproblems of the incompressible
fluid on the stationary and rotating domains. We then state the coupled formulation at the
continuous level. We close the section with a statement of the coupled problem at the semi-
discrete level and discuss implementation details.

10.4.1.1 Incompressible Navier–Stokes equations on the stationary and
rotating domains

We begin by considering a weak formulation of the incompressible Navier–Stokes equations
posed on a stationary domain �s . We follow the approach of Bazilevs and Hughes, 2008, which
may be consulted for additional details. We note that there are some differences between
this formulation and the one described in Chapter 9, Section 9.4. In particular, the present
formulation is written in the advective form whereas the one in Chapter 9, Section 9.4 is
written in conservation form. Let V(�s) denote the trial solution and weighting function
spaces, which are assumed to be the same. The variational formulation on a stationary domain
is stated as follows: Find a velocity–pressure pair, U = {u, p} ∈ V(�s), such that for all
weighting functions W = {w, q} ∈ V(�s)

Bs(W , U) = Fs(W ) , (10.4)

where

Bs(W , U) =
(

w, ρ
∂u
∂t

+ ρu · ∇u
)

�s

+ (q,∇ · u)�s − (∇ · w, p)�s (10.5)

+ (∇sw, 2μ∇s u
)
�s

,

and

Fs(W ) = (w, ρ f )�s . (10.6)

In (10.5), μ is the dynamic viscosity, ρ is the density, f is the body force per unit mass, and
∇s = 1

2 (∇ + ∇T ).
Variational equations (10.4)–(10.6) imply satisfaction of the linear momentum equations

and the incompressibility constraint, namely,

Ls(u, p) − ρ f = 0 in �s, (10.7)

and

∇ · u = 0 in �s, (10.8)

where

Ls(u, p) = ρ
∂u
∂t

+ ρu · ∇u + ∇ p − ∇ · (2μ∇su). (10.9)
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In the case of the rotating domain, denoted by �r (t), the weak formulation becomes: Find
U = {u, p} ∈ V(�r (t)), such that for all weighting functions W = {w, q} ∈ V(�r (t))

Br (W , U; v) = Fr (W ) , (10.10)

where

Br (W , U; v) =
(

w, ρ
∂u
∂t

|y + ρ(u − v) · ∇u
)

�r (t)

(10.11)

+ (q,∇ · u)�r (t) − (∇ · w, p)�r (t) + (∇sw, 2μ∇s u
)
�r (t) ,

and

Fr (W ) = (w, ρ f )�r (t). (10.12)

In the above equations �r (t) is a configuration at time t that is an image of some referential
configuration �̂r under a time-dependent mapping φ : R

3 × R → R
3 called the motion. In

(10.11), v is the velocity of �r (t) in the spatial description defined as

v = v̂ ◦ φ−1, (10.13)

where v̂ is the velocity of �r (t) in the referential description given as

v̂ = ∂φ( y, t)

∂t
|y, (10.14)

◦ denotes composition, the y’s are the referential coordinates, and φ−1 is understood as the
inverse of the mapping φ at a fixed time.

Variational equation (10.10) implies satisfaction of the linear momentum equations and of
the incompressibility constraint, namely

Lr (u, p; v) − ρ f = 0 in �r (t), (10.15)

and

∇ · u = 0 in �r (t), (10.16)

where

Lr (u, p) = ρ
∂u
∂t

+ ρ(u − v) · ∇u + ∇ p − ∇ · (2μ∇su). (10.17)

For a rotation, the mapping φ takes on a particularly simple form:

φ = R(t)( y − y0) + y0, (10.18)

where y0 is a fixed point, and R(t) is a rotation matrix satisfying

R(t)T R(t) = I (10.19)
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and

det R(t) = 1. (10.20)

Taking the referential time derivative of φ defined by (10.18), the velocity of �r (t) in the
referential description becomes

v̂ = ∂ R(t)

∂t
( y − y0), (10.21)

and the acceleration of �r (t) is

â = ∂2 R(t)

∂t2
( y − y0). (10.22)

Remark
Variational equation (10.10) pertains to an arbitrary Lagrangian–Eulerian (ALE) description
of the incompressible fluid flow on a moving domain. We use ALE in this work to handle
rotating domain motion rather than expressing the equations in a co-rotational frame of
reference. This enables the formulation to be used for more general motions in addition to
rotations.

10.4.1.2 Continuous problem

Consider a domain �(t) = �s ∪ �r (t), where �s is the stationary subdomain, and �r (t) is
a subdomain that contains a rotating component. We assume that �r (t) rotates inside �(t)
with the speed of rotation of the rotating component that is embedded in it. We refer to
�sr = �s ∩ �r (t), the interface between the stationary and rotating domains, as the “sliding
interface.” �sr is a circular surface in two spatial dimensions, and a cylindrical surface in
three spatial dimensions. Note that, although �r (t) undergoes a rotating motion, �sr does not
change with time.

We state the continuous problem as follows: Find Us = {us, ps} ∈ V(�s) and
Ur = {ur , pr } ∈ V(�r (t)), such that for all W s = {ws, qs} ∈ V(�s) and W r = {wr , qr }
∈ V(�r (t))

Bs(W s, Us) + Br (W r , Ur ; v) − Fs(W s) − Fr (W r ) = 0, (10.23)

subject to

us = ur on �sr (10.24)

and

ws = wr on �sr . (10.25)
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Variational equations (10.23), together with (10.24) and (10.25), imply satisfaction of linear
momentum and incompressibility in both subdomains, as well as compatibility of tractions at
the interface between the subdomains, namely

Ls(us, ps) − ρ f = 0 in �s, (10.26)

∇ · us = 0 in �s, (10.27)

Lr (ur , pr ; v) − ρ f = 0 in �r (t), (10.28)

∇ · ur = 0 in �r (t), (10.29)

−psns + 2μ∇sus · ns − pr nr + 2μ∇sur · nr = 0 on �sr , (10.30)

where ns and nr are the unit outward normal vectors to the stationary and rotating subdomains,
respectively. Also note, ns = −nr .

10.4.1.3 Discrete formulation

Let �s and �r (t) be decomposed into NURBS elements. The discretization of �r (t) is
obtained by simply applying a rotation to �r (0), a configuration of the rotating subdomain
at initial time. Note that, due to the affine covariance property of NURBS (see Chapter 2),
the rotation needs to be applied only to the control mesh of �r (0), which is a very simple
operation. Discretization of �s and �r (t) induces two separate discretizations of �sr , one
coming from the stationary side and one from the rotating side. These two discretizations may
be combined by means of h-refinement, which is done by inserting knots from both �s and
�r (t) into �sr . Note that the knots that need to be inserted from the rotating patch change their
parametric locations in the stationary patch due to the relative motion of two subdomains. See
Figure 10.13.

Stationary domain

Sliding interface
Rotating domain

Knot lines

Integration over the
sliding interface mesh

- knots
- quadrature pointsX

X

X

X
X X

Figure 10.13 Embedding of a rotating component in a stationary flow domain.
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Combining the two interface meshes into a finer mesh is necessary in order to accurately
compute interface integrals that are present in the formulation described later in this section.
Gauss quadrature is performed over the elements of the combined mesh. On the interiors of
these interface integral elements, basis functions coming from the rotating and stationary sides
of the domain are smooth and, as a result, Gaussian integration gives accurate results. See
Figure 10.13.

Let the stationary and rotating subdomains be decomposed into nes and ner elements,
respectively. Let the knot insertion procedure at a given time t generate neb boundary faces
on �sr . We discretize (10.23) together with (10.24) and (10.25) over the finite-dimensional
NURBS spaces as follows: Find Us = {us, ps} ∈ Vh(�s) and Ur = {ur , pr } ∈ Vh(�r (t)), such
that for all W s = {ws, qs} ∈ Vh(�s) and W r = {wr , qr } ∈ Vh(�r (t)),

BMS
s (W s, Us) + BMS

r (W r , Ur ; v) − Fs(W s) − Fr (W r )

−
neb∑

eb=1

((ws − wr ), t(us, ps, ur , pr ))�eb

−
neb∑

eb=1

(
t̃u(ws, qs,wr , qr ), (us − ur )

)
�eb

+
neb∑

eb=1

((ws − wr )τB, (us − ur ))�eb
= 0, (10.31)

where

BMS
s (W s,Us) = Bs(W s, Us)

+
nes∑
e=1

((us · ∇ws + ∇qs/ρ)τM s,Ls(us, ps) − ρ f )�e

−
nes∑
e=1

(
wsτM s, (Ls(us, ps) − ρ f ) · ∇us

)
�e

−
nes∑
e=1

(∇ws, τM s(Ls(us, ps) − ρ f ) ⊗ τM s(Ls(us, ps) − ρ f ))�e

+
nes∑
e=1

(∇ · ws, τC s∇ · us)�e , (10.32)
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and

BMS
r (W r ,Ur ; v) = Br (W r , Ur ; v)

+
ner∑
e=1

(((ur − v) · ∇wr + ∇qr/ρ)τMr ,Lr (ur , pr ; v) − ρ f )�e

−
ner∑
e=1

(wrτMr , (Lr (ur , pr ; v) − ρ f ) · ∇ur )�e

−
ner∑
e=1

(∇wr , τMr (Lr (ur , pr ; v) − ρ f ) ⊗ τMr (Lr (ur , pr ; v) − ρ f ))�e

+
ner∑
e=1

(∇ · wr , τCr∇ · ur )�e . (10.33)

(10.32) and (10.33) are the discrete semilinear forms corresponding to the variational mul-
tiscale residual-based formulation of the incompressible Navier–Stokes equations in the sta-
tionary and rotating subdomains, respectively. The finite-dimensional NURBS spaces denoted
by Vh(�s) ⊂ V(�s) and Vh(�r (t)) ⊂ Vh(�r (t)). For precise definitions of τM s , τMr , τC s , and
τCr the reader is referred to Bazilevs et al., 2007a, although it should be noted that in the ALE
setting ur − v is used as the advective velocity in the definition of τMr , and, as a result, in τCr .
The τ ’s are designed by asymptotic scaling arguments (Barenblatt, 1979), developed within
the theory of stabilized methods (see, e.g., Brooks and Hughes, 1982; Hughes and Mallet,
1986; Shakib et al., 1991; Tezduyar, 2003). They may also be viewed as approximations to the
small-scale Green’s operator within the theory of multiscale methods introduced by Hughes
et al., 1998 and studied in detail by Hughes and Sangalli, 2007.

The last three terms of (10.31) are associated with the weak imposition of solution conti-
nuity. Operators t(us, ps, ur , pr ) and t̃u(ws, qs,wr , qr ), acting on the solution and weighting
functions, are the tractions defined as

t(us, ps, ur , pr ) = ( − psns + μ(∇us + ∇uT
s )ns

+ pr nr − μ(∇ur + ∇uT
r )nr )/2, (10.34)

and

t̃u(ws, qs,wr , qr ) = (qsns + μ(∇ws + ∇wT
s )ns

−qr nr − μ(∇vr + ∇vT
r )nr )/2

+(ws − wr )({us · ns}− + {ur · nr }−). (10.35)

In (10.31), {A}− denotes the negative part of A, that is, {A}− = A if A < 0 and {A}− = 0 if
A ≥ 0. τB is defined as

τB = 1

2

(
Csμ

hs
+ Crμ

hr

)
, (10.36)
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where hs and hr are the element lengths in the normal direction to the sliding interface in the
stationary and rotating domains, respectively, and are explicitly given as

hs = 2

(
nT

s

∂ξ

∂x

T ∂ξ

∂x
ns

)−1/2

and hr = 2

(
nT

r

∂ξ

∂x

T ∂ξ

∂x
nr

)−1/2

, (10.37)

where ∂ξ

∂x is the inverse Jacobian of the element mapping between the parent and physical
domains, and Cs and Cr are positive constants arising in the element-wise inverse estimates
(see, e.g., Ern and Guermond, 2004). The parametric mapping, x(ξ ), in this case is defined by
the local element, that is, the region between consecutive knots. In the simplest geometries,
hs and hr become the radial distances between knots in the physical space.

Remarks
1. The last three terms on the left-hand side of (10.31) are associated with the weak enforce-

ment of continuity of the velocities and tractions at the interface between the stationary and
rotating subdomains. The form of these terms is inspired by the selective interior penalty
Galerkin (SIPG) discontinuous method of Wheeler, 1978. The third-to-last term in (10.31)
is the so-called consistency term: When deriving the Euler–Lagrange equations correspond-
ing to (10.31), integration-by-parts yields a term that is canceled by the consistency term.
The second-to-last term in (10.31) is the so-called adjoint-consistency term: If the exact
solution of the adjoint problem is inserted into equation (10.31) in place of the test function,
(10.31) is satisfied identically; see Arnold et al., 2002 for details on adjoint consistency.
The last term of (10.31) penalizes the discrete version of (10.24).

2. Note that the terms involving the pressure trial solution and weighting function appear
in a “skew-symmetric” form in (10.31). This form renders these terms stability-neutral,
without upsetting adjoint-consistency of the formulation. Reversal of the sign of the pressure
weighting function terms leads to numerical instability.

10.4.2 Numerical example: two propellers spinning in opposite directions

The problem description is given in Figure 10.14. Two four-blade propellers, with blades
pitched at 5◦ angles, are rotating at a constant angular velocity in opposite directions, as shown
in the figure. No-slip boundary conditions are applied at the propeller surfaces as well as the
outer edges of the box. The flow is characterized by a Taylor number T a ≈ 150, 000, defined
as

T a = 4ω2 R4/ν2, (10.38)

where ω = 2π f is the angular velocity, f is the cyclic frequency, R is a characteristic dimen-
sion of the propeller blades, and ν is the kinematic viscosity of the fluid. Here f is 0.05, R
is 2.5, and ν is 0.01. This Taylor number is sufficiently high for convective instabilities to set
in and create complex flow structures known as Taylor vortices. The Reynolds number of the
flow, based on the velocity of the tip of the propeller blades and R, is 196.

Figure 10.15 shows the computational mesh in the reference configuration. Note that even
in the reference configuration the mesh between the rotating and stationary subdomains is
non-matching. 4360 quadratic NURBS elements were employed in the computation. The
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No-slip walls

Line of geometric symmetry

Sliding interfaces

R

45

5

1
1.5

1.5

3.071

Figure 10.14 Two propellers spinning in opposite directions. Problem setup and dimensions.

problem was solved using a three-dimensional code with boundary conditions prescribed to
ensure a two-dimensional response. The semi-discrete equations were advanced in time using
the generalized-α method (see Chapter 7, Section 7.3, and the original references, Chung and
Hulbert, 1993; Jansen et al., 1999). To complete the specification of the problem, we set the
values of the inverse constants to Cs = Cr = 4 (see (10.36)).

The flow was impulsively started and it took several propeller revolutions before the vortical
structures appeared. Figure 10.16 shows several snapshots of the flow field at various times
after the flow symmetry was broken by the onset of Taylor vortices. It should be noted that

Figure 10.15 Two propellers spinning in opposite directions. Computational mesh in the reference
configuration.
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(a)

(b)

(c)

Figure 10.16 Two propellers spinning in opposite directions. Snapshots of the velocity vectors super-
posed on the contours of fluid pressure. In the early stages of the simulation, the flow loses symmetry
and becomes complex. The later stages are characterized by the appearance of smaller vortices.
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although a discontinuous discretization of the fields is employed at the interface between the
rotating and stationary domains, the velocity field is virtually continuous as is evidenced by the
continuity of the flow vectors in Figure 10.16. Furthermore, the method builds what appears to
be a nearly continuous pressure field at the interface, although this condition is not explicitly
built into the formulation. We conjecture that this behavior is in part due to the geometric
compatibility at the interface engendered by the NURBS-based discretization.

Appendix 10.A A geometrical template for arterial blood flow modeling

Patient-specific blood flow modeling begins with geometry construction. This approach is
often template based, beginning with a simple cylindrical model incorporating both the solid
arterial wall and the fluid domain. As described in detail in Zhang et al., 2007, this template –
matched with the appropriate templates for the various types of arterial bifurcations – is
deformed to match patient-specific data obtained from medical imaging procedures.

Here we present the basic arterial template. We begin with the simplest possible description.
Beginning at the coarsest level of discretization allows the user the most flexibility in being
able to refine in whatever manner suits the need of the specific application.

For the simple cylindrical case shown in Figure 10.A.1, we choose the ξ -direction in the
parameter space to correspond to the circumferential direction, the η-direction to correspond
with the radial direction, and the ζ -direction to correspond to the axial direction. Thus, we
require the associated polynomial orders to be p = 2, q = 1, and r = 1, respectively. Recalling
the circular template from Chapter 2, we take the knot vector in the circumferential direction
to be

� = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}. (10.A.1)

Solid domain
Fluid domain

Figure 10.A.1 Artery template mesh. Both the solid artery wall and the enclosed fluid domain are
modeled.
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We must consider that we have both a fluid domain and a solid domain, necessitating two
elements in the radial direction. The typical arterial wall has a thickness that is between about
7% and 17% of the exterior radius (see, e.g., Humphrey, 2002). Splitting the difference, we
take the knot vector in the radial direction to be

H = {0, 0, 0.88, 1, 1}, (10.A.2)

where the first, larger element will be the fluid domain, and the smaller element will be the
arterial wall. We need only a single element in the axial direction, thus

Z = {0, 0, 1, 1}. (10.A.3)

For illustrative purposes, let us assume a unit radius for the outer arterial wall, and length
of 5. Clearly, these numbers are not of particular importance in and of themselves, and the
application will dictate the most reasonable values. The control points for the mesh are given
in Table 10.A.1.

Table 10.A.1 Control points for the artery template

i j Bi, j,1 Bi, j,2 wi, j,1 wi, j,2

1 1 (0, 0, 0) (0, 0, 5) 1 1
1 2 (0.88, 0, 0) (0.88, 0, 5) 1 1
1 3 (1, 0, 0) (1, 0, 5) 1 1
2 1 (0, 0, 0) (0, 0, 5) 1/

√
2 1/

√
2

2 2 (0.88, 0.88, 0) (0.88, 0.88, 5) 1/
√

2 1/
√

2
2 3 (1, 1, 0) (1, 1, 5) 1/

√
2 1/

√
2

3 1 (0, 0, 0) (0, 0, 5) 1 1
3 2 (0, 0.88, 0) (0, 0.88, 5) 1 1
3 3 (0, 1, 0) (0, 1, 5) 1 1
4 1 (0, 0, 0) (0, 0, 5) 1/

√
2 1/

√
2

4 2 (−0.88, 0.88, 0) (−0.88, 0.88, 5) 1/
√

2 1/
√

2
4 3 (−1, 1, 0) (−1, 1, 5) 1/

√
2 1/

√
2

5 1 (0, 0, 0) (0, 0, 5) 1 1
5 2 (−0.88, 0, 0) (−0.88, 0, 5) 1 1
5 3 (−1, 0, 0) (−1, 0, 5) 1 1
6 1 (0, 0, 0) (0, 0, 5) 1/

√
2 1/

√
2

6 2 (−0.88,−0.88, 0) (−0.88,−0.88, 5) 1/
√

2 1/
√

2
6 3 (−1, −1, 0) (−1, −1, 5) 1/

√
2 1/

√
2

7 1 (0, 0, 0) (0, 0, 5) 1 1
7 2 (0, −0.88, 0) (0, −0.88, 5) 1 1
7 3 (0,−1, 0) (0, −1, 5) 1 1
8 1 (0, 0, 0) (0, 0, 5) 1/

√
2 1/

√
2

8 2 (0.88, −0.88, 0) (0.88, −0.88, 5) 1/
√

2 1/
√

2
8 3 (1,−1, 0) (1, −1, 5) 1/

√
2 1/

√
2

9 1 (0, 0, 0) (0, 0, 5) 1 1
9 2 (0.88, 0, 0) (0.88, 0, 5) 1 1
9 3 (1, 0, 0) (1, 0, 5) 1 1
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Solid domain
Fluid domain

Figure 10.A.2 The artery template should be refined somewhat before deformation to fit the patient-
specific geometry. Smaller elements in the fluid domain near the fluid–solid boundary allow for better
resolution of the resulting boundary layer.

Before deforming the template to fit patient-specific data, refinement will be required.
Elements will need to be added in the axial direction in order to have any flexibility in fitting
a prescribed geometry. Similarly, the order must be elevated as physical arteries are usually
curved. The approach to take here is k-refinement, where we order elevate first and then insert
the new elements. This will allow the smoothest fit of the data, and give the nicest domain
upon which to perform out analysis. Artificial corners in the geometry would drastically alter
the nature of the blood flow within the artery, degrading accuracy. We will also want to refine
in the radial direction in order to ensure maximal accuracy in the calculations. It is important
that we accurately resolve the solution near the fluid–structure boundary, and so we might
consider biasing the refinements in such a way that the smallest elements in the fluid domain
are near that boundary. Again, k-refinement will provide the best results. See an example of a
refined mesh in Figure 10.A.2.

To refine the mesh for analysis purposes, we can insert knots in each of the knot vectors and
determine new control points according to (2.1) and (2.2). We can also elevate the order of the
functions, but we need to repeat knots at the solid–fluid interface to maintain C0-continuity
there.

One final point of note regarding this template is the fact that the mapping has a degeneracy
along the axis of the cylinder. This is due to the fact that many different control points are
located at the same point in physical space. When solving a system of equations, we map the
control variables associated with these repeated control points to a single control variable, thus
assuring a priori that the solution will not be multi-valued along the axis.

The current construction is very intuitive to work with as the parametric directions cor-
respond perfectly to the circumferential, radial, and axial directions. More importantly, it
facilitates construction of a very nice boundary layer mesh next to the fluid–structure bound-
ary. This is vital to obtaining accurate, rapidly converging solutions. Meshes of this kind have
been used successfully in a number of analyses.
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11
Higher-order Partial Differential
Equations

Applications involving differential operators of order greater than two have not historically lent
themselves well to finite element analysis. The variational statements of such problems involve
second derivatives, necessitating the use of a globally C1-continuous basis. The difficulty in
constructing bases in a general setting has relegated the study of such equations to the realm
of finite-differences and spectral methods, both of which are viable methods, but far more
limited than FEA in their scope and flexibility.

As we have seen throughout this book, with NURBS based isogeometric analysis, we have
a higher-order accurate, robust method with tremendous geometric flexibility and compactly
supported basis functions, all while maintaining the possibility of higher-order continuity.
Thus, it is an ideal technology for the study of equations involving higher-order differential
operators (see, e.g., Auricchio et al., 2007 for a stream function approach to isogeometric
analysis of incompressible elastic solids). In this chapter, we focus on the example of the
Cahn–Hilliard phase-field model, which has been used most frequently to simulate the seg-
regation of a binary alloy system, but also has found use in applications as diverse as image
processing, planet formation, and cancer growth.

11.1 The Cahn–Hilliard equation

Two different approaches have been used to describe phase transition phenomena: sharp-
interface models and phase-field (diffuse-interface) models. Traditionally, the evolution of
interfaces, such as the liquid–solid interface, has been modeled using sharp-interface models,
as we saw in the previous chapter on fluid–structure interaction. Such an approach requires the
resolution of a moving boundary problem, separate differential equations hold in each phase,
and certain quantities may suffer jump discontinuities across the interface.

Phase-field models provide an alternative description for phase-transition phenomena by
approximating the interface as being diffuse such that it does not need to be tracked explicitly.
Such models can be derived from classical irreversible thermodynamics. Utilizing asymptotic
expansions for vanishing interface thickness, it can be shown that classical sharp-interface
models, including physical laws at interfaces and multiple junctions, are recovered in the
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limit. In order to capture the physics of the problem, the transition regions (diffuse interfaces)
have to be extremely thin. The phase-field model we examine has its origins in the work
of Cahn and Hilliard, 1958.

11.1.1 The strong form

Let � ⊂ R
d be an open set, where d = 2 or 3. The boundary is composed of two complemen-

tary parts � = �g ∪ �s . A binary mixture is contained in � and c denotes the concentration
of one of its components. The object is to find c : �̄ × (0, T ) → R such that

∂c

∂t
= ∇ · (Mc∇ (μc − λ�c)) in � × (0, T ) , (11.1a)

c = g on �g × (0, T ) , (11.1b)

Mc∇ (μc − λ�c) · n = s on �s × (0, T ) , (11.1c)

Mcλ∇c · n = 0 on � × (0, T ) , (11.1d)

c(x, 0) = c0(x) in �, (11.1e)

where Mc is the mobility, μc represents the chemical potential of a regular solution in the
absence of phase interfaces, and λ is a positive constant such that

√
λ represents a length scale

of the problem. This length scale is related to the thickness of the interfaces that represent the
transition between the two phases.

For the mobility, we adopt the relationship

Mc = Dc(1 − c), (11.2)

where D is a positive constant which has dimensions of diffusivity (length2/time). This is
commonly called “degenerate mobility” as pure phases (i.e., c = 0 and c = 1) have vanishing
mobility. This expression appeared in the original derivation of the Cahn–Hilliard equation
by Cahn, 1961.

The chemical potential of a uniform solution, μc, is a highly nonlinear function of the
concentration. Though it is frequently approximated by a polynomial of degree three, we
prefer the full, thermodynamically consistent form, viz.,

μc = 1

2θ
log

c

1 − c
+ 1 − 2c, (11.3)

where θ = Tc/T is a dimensionless number representing the ratio between the critical temper-
ature, Tc, at which the two phases attain the same composition, and the absolute temperature, T .

It can be shown that for θ > 1 the chemical free energy is non-convex, with two wells,
which drives phase segregation into the binodal points, the two values of c that constitute
local minima. This is the case in which we are interested. Note, however, that these binodal
points do not correspond to pure phases (i.e., c is neither one nor zero), but they do represent
two distinct states for the system. For θ ≤ 1 the free energy has a single well, and only a single
state of the system is admitted, with a constant concentration.
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11.1.2 The dimensionless strong form

It is convenient to write the Cahn–Hilliard equation in a dimensionless form. To do so, we
introduce non-dimensional space and time coordinates

x� = x/L0, t� = t/T0, (11.4)

where L0 is a representative length scale and T0 = L4
0/(Dλ). Thus, in dimensionless coordi-

nates, we can rewrite (11.1a) as

∂c

∂t�
= ∇� · (

M�
c ∇�

(
μ�

c − ��c
))

, (11.5)

where M�
c = c(1 − c) and μ�

c = μc L2
0/λ.

Let us identify one further dimensionless number of importance. Defining

α = L2
0

3λ
(11.6)

we have that the thickness of the interface layers will be directly proportional to α−1/2. Fixing
the value θ = 3/2, which corresponds to a physically relevant case, we have that the value of
α completely characterizes the solutions, playing a role somewhat analogous to the Reynolds
number in fluid dynamics.

Henceforth we will use (11.5) the dimensionless form of the Cahn–Hilliard equation. Thus,
let us drop the superscript � for the sake of notational convenience.

11.1.3 The weak form

We construct a weak form in the standard way: multiply by a weighting function and integrate
by parts. Letting V denote the trial solution and weighting spaces, which we assume to be
identical, we seek c ∈ V such that ∀w ∈ V ,

B(w, c) = 0, (11.7)

where

B(w, c) =
(

w,
∂c

∂t

)
�

+ (∇w, Mc∇μc + ∇Mc�c)� + (�w, Mc�c)�. (11.8)

As expected, we discretize (11.8) by a straight-forward application of Galerkin’s method,
using the NURBS basis with at least C1 continuity. The second derivatives appearing in (11.8)
are precisely the reason for this added continuity. Any approach utilizing functions that are
not at least C1 necessitates a more complex formulation of the problem. An example of a
shape function routine capable of generating C1-continuous NURBS function is contained in
Appendix 3.A at the end of Chapter 3. The expression for higher-order derivatives of NURBS
basis functions is given by (2.35).

We will use a generalized-α approach to integrate the equation in time (see Chapter 7), with
time-step size adaptivity. The adaptivity is needed to reach steady solutions in a reasonable
amount of time, as the time step typically varies over many orders of magnitude. See Gomez
et al., 2008 for details.
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11.2 Numerical results

Studies were performed on the periodic box � = [0, 1]d for both d = 2 and d = 3. The
domains were intentionally kept geometrically simple in an effort to assess the physical and
numerical aspects of the problem. C1-quadratic uniform B-spline meshes were used. Initial
conditions were of the form

c0(x) = c̄ + r, (11.9)

where c̄ is the constant volume fraction and r is a random variable with uniform distribution
in (−0.05, 0.05).

11.2.1 A two-dimensional example

The two-dimensional cases considered tracked the evolution of the system from its complex
transient behavior until a steady state was reached. Stationary solutions to the Cahn–Hilliard
equation are closely related to the so-called “periodic isoperimetric1 problem,” which is
one of the major open problems in geometry, see Hauswirth et al., 2004. In particular, we
expect stationary solutions of the Cahn–Hilliard equation to converge (under the appropriate
rescaling) to solutions of the isoperimetric problem when α → ∞ and θ → ∞. In a two-
dimensional periodic square, the solution of the periodic isoperimetric problem is well known.
For 0 < c̄ < 1/π and 1 − 1/π < c̄ < 1 the solutions are circles, while for 1/π ≤ c̄ ≤ 1 − 1/π

the solution is a strip.
Numerically, we take the domain to be the two-dimensional periodic square, and we seek

solutions to the Cahn–Hilliard equation first with α = 3000. Recall from above that we are
interested in the case of θ = 3/2. Figure 11.1 shows several snapshots of the time-history of
the numerical solution for the case of c̄ = 0.5 obtained on a mesh of 1282 quadratic elements.
The behavior evolves from the highly random initial condition, becoming more structured in
time as the two phases emerge, eventually reaching the steady state of a strip, as we anticipated.
It should be noted that the time-step size necessary to resolve the dynamics immediately after
the evolution begins is about seven orders of magnitude smaller than the amount of time it
takes the system to reach its steady state. Adaptive time stepping is the key to making the
problem tractable. The situation in three dimensions is even more dramatic.

11.2.2 A three-dimensional example

The difficulties involved in obtaining numerical solutions to the Cahn–Hilliard equation in
three dimensions is much greater than it was in the two-dimensional setting. The topology of
the solution is much more complex, and it experiences significant changes as time evolves.
Additionally, little is known about the steady state solutions on three-dimensional domains.
The isoperimetric problem remains open in three dimensions, though it has been conjectured
that solutions take the form of a sphere, a cylinder, or two parallel planes. Even the numerical
simulations in the literature have been limited to the early transient behavior in two dimensions.
This barrier was broken through in Gomez et al., 2008, whose results for stationary solutions
in two and three dimensions appear to be the first of their kind.

As an example, consider the case of α = 600 and c̄ = 0.75 on the three-dimensional periodic
cube. Figure 11.2 shows isosurfaces of the solution on a 1283 mesh at several times during its
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(a) t = 1.971 · 10−6 (b) t = 1.609 · 10−5

(c) t = 1.390 · 10−4 (d) Steady state

Figure 11.1 Evolution of the concentration from a randomly perturbed initial condition for α = 3000,
c̄ = 0.50. The mesh is comprised of 1282 quadratic elements.

evolution from the randomly perturbed initial condition to the final steady state. The steady
state is a cylinder, corresponding to one of the proposed solutions to the isoperimetric problem.

11.3 The continuous/discontinuous Galerkin (CDG) method

The CDG method was originally proposed by Engel et al., 2002. It was further devel-
oped by Hughes and Garikipati, 2004; Wells et al., 2006; Wells and Dung, 2007; Dung
and Wells, 2008. The basic idea is to use C0-continuous finite element basis functions
for partial differential equations involving derivatives of higher than second order. In the
usual continuous Galerkin finite element method this would not work because basis func-
tions are required to have C1-continuity. In the CDG method, weak C1-continuity is ac-
complished through discontinuous Galerkin treatment of first derivatives. This is convenient
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(a) t = 3.063 · 10−6 (b) t = 1.114 · 10−3

(c) t = 1.236 · 10−3 (d) t = 2.035 · 10−3

(e) t = 4.168 · 10−3 (f) Steady state

Figure 11.2 Evolution of the concentration from a randomly perturbed initial condition for α = 600,
c̄ = 0.75. The mesh is comprised of 1283 quadratic elements.
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because C0-continuous finite element basis functions are ubiquitous and quite simple, whereas
C1-continuous finite element basis functions are few and far between and those that exist are
very complex.

The CDG methodology fills an important gap in finite element technology. It also may play
a role in isogeometric analysis. There will be times when it is difficult or impossible to create
globally smooth parameterizations. A typical case would involve an assemblage of multiple
patches joined in only C0-continuous fashion. In this case, the CDG method could be used to
provide weak continuity across patch interfaces.

For an example of the use of discontinuous Galerkin methodology to enforce C0-continuity
across a sliding interface in isogeometric analysis, see Chapter 10, Section 10.4.

Note

1. This has nothing in common with the similarly named “isoparametric concept” discussed
in Chapter 3.
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12
Some Additional Geometry

This chapter addresses an alternative way to think of B-splines based on polar forms. For many
in the analysis community, this approach is less intuitive than the presentation of Chapter 2, and
an understanding of this material is not necessary to develop isogeometric analysis applications.
Still, many of the most common algorithms are based on the polar form of splines, and the
proofs of many theorems rely on it as well. Once the initial hurdle of understanding polar forms
has been crossed, many concepts actually become simpler. In particular, one can frequently
replace the operation of evaluating polynomial basis functions with the simpler process of
linear interpolation between control points, thus leading to a subdivision approach to spline
manipulation. Our notation will stray slightly from that which has been used throughout the
book in an effort to emphasize what a different viewpoint the use of polar forms represents.
All of the developments in this chapter pertain to B-splines in R

d . The relevant extension
to NURBS is made by applying all of these concepts to the projective control points of the
corresponding B-spline in R

d+1.

12.1 The polar form of polynomials

Consider the univariate quadratic function f (t) = t2 and the bilinear function F(u, v) = uv. It
is obvious that F(t, t) = f (t), and so f is just the restriction of F to the diagonal u = v of the
uv-plane. This simple example encapsulates the general principle that every polynomial g(t)
of degree p is isomorphic with a symmetric, multiaffine function G(u1, . . . , u p) that satisfies
G(t, . . . , t) = g(t). Such a G is called the polar form1 of g. Its uniqueness follows from the
requirement of symmetry, which demands that G(u1, . . . , u p) remains unchanged under any
permutation of its arguments. For example, consider a cubic function of the form

g(t) = C1t3 + C2t2 + C3t + C4. (12.1)

While there are infinitely many trilinear functions F(u, v, w) such that F(t, t, t) = g(t), the
additional requirement of symmetry leaves only one, namely

G(u, v, w) = C1uvw + C2

3
(uv + uw + vw) + C3

3
(u + v + w) + C4. (12.2)

As desired, G(t, t, t) = g(t) and G(u, v, w) = G(u, w, v) = G(v, u, w) = G(v,w, u) =
G(w, u, v) = G(w, v, u).

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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12.1.1 Bézier curves and the de Casteljau algorithm

Bézier curves (Bézier, 1966, 1967) may be thought of as single element B-spline curves. It
follows that they are polynomial curves, rather than piecewise polynomials. Bézier curves
predate B-splines, and they stand as the technology that revolutionized geometric design by
offering intuitive control of the curve through the manipulation of control points.

Bézier curves or order p are built from the famous Bernstein basis (Bernstein, 1912). If we
define a Bézier curve as a B-spline curve with the knot vector � = {0, . . . , 0, 1, . . . , 1}, where
both 0 and 1 appear p + 1 times, and apply (2.1) and (2.2), we recover exactly the B-spline
basis and so the intuitive notion of a Bézier curve as a one element B-spline is perfectly
accurate. The curve is defined by taking a linear combination of the p + 1 basis functions, Ni ,
and the corresponding p + 1 control points, Bi , to obtain a polynomial of the form

g(t) =
p+1∑
i=1

Bi Ni (t). (12.3)

Performing the necessary algebra, one may obtain the polar form, G(u1, . . . , u p), corre-
sponding to (12.3). Doing so yields a remarkable result: the control points of the Bézier curve
correspond to G evaluated at the corners of the unit hypercube in R

p. Specifically, let ei be
unit vectors in R

p such that (ei ) j = δi j , where δi j is the Kronecker delta. The control points
are given by

B1 = G(0) = G(0, . . . , 0) (12.4)

and

Bi = G

⎛
⎝ i−1∑

j=1

eT
j

⎞
⎠ . (12.5)

As an example, let us consider the case of a cubic Bézier curve (i.e., p = 3). We have unit
vectors

eT
1 = (1, 0, 0), (12.6)

eT
2 = (0, 1, 0), (12.7)

eT
3 = (0, 0, 1). (12.8)

From (12.4) we have that

B1 = G(0, 0, 0). (12.9)

Inserting (12.6)–(12.8) into (12.5) yields

B2 = G(eT
1 ) = G(1, 0, 0) (12.10)

B3 = G(eT
1 + eT

2 ) = G(1, 1, 0), (12.11)

B4 = G(eT
1 + eT

2 + eT
3 ) = G(1, 1, 1). (12.12)
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B = G(0,0,0)
1

B = G(1,1,1)
4

B = G(0,0,1)
2

B = G(0,1,1)
3

Figure 12.1 The control points for a Bézier curve, g(t) with t ∈ [0, 1], such as the cubic curve shown
here, are given by the polar form, G, evaluated at the corners of the hypercube in R

p .

The symmetry of G implies that it is invariant under interchange of any two of its arguments,
and thus we also have

B2 = G(1, 0, 0) = G(0, 1, 0) = G(0, 0, 1), (12.13)

B3 = G(1, 1, 0) = G(1, 0, 1) = G(0, 1, 1). (12.14)

An example of such a cubic Bézier curve is shown in Figure 12.1.
A practical application of this alternative viewpoint is found when we seek to evaluate g(t)

at a point t ∈ (0, 1). Recall that G is linear with respect to each of its p arguments, and the
control points are evaluations of G at a linearly independent set of points. One can evaluate G
at any other point in R

p by taking linear combinations of these p + 1 points. In particular, if
we are interested in a point G(t, . . . , t) = g(t) for t ∈ (0, 1) that lies on the Bézier curve, we
can find it through a process of linear interpolation without ever evaluating any basis functions.
This approach results in the famous de Casteljau algorithm (de Casteljau, 1959), also known
as the “corner cutting algorithm.”

Consider the de Casteljau algorithm applied to the cubic Bézier curve of Figure 12.1. As a
first step, one can exploit the linearity of G with respect to each of its arguments to calculate

G(0, 0, t) = (1 − t) G(0, 0, 0) + t G(0, 0, 1), (12.15)

G(0, t, 1) = (1 − t) G(0, 0, 1) + t G(0, 1, 1), (12.16)

and

G(t, 1, 1) = (1 − t) G(0, 1, 1) + t G(1, 1, 1), (12.17)

as shown in green in Figure 12.2 for the case of t = 0.6. The second step employs not just
the linearity of G, but the symmetry as well. Noting that G(0, t, 1) = G(0, 1, t) one can
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G(0,0,0)

G(0,0,1)

G(0,1,1)

G(1,1,1)

G(0,0,t)

G(0,t,1)

G(t,1,1)

G(0,t,t)

G(t,t,1)g(t)=G(t,t,t)

Figure 12.2 The de Casteljau algorithm, also known as the “corner-cutting algorithm,” for evaluating
points on a Bézier curve. In this example, we seek g(t) = G(t, t, t) for t = 0.6. Use of the polar form
allows the curve to be evaluated without ever referring to the underlying basis.

calculate

G(0, t, t) = (1 − t) G(0, 0, t) + t G(0, 1, t)

= (1 − t) G(0, 0, t) + t G(0, t, 1). (12.18)

Similarly, G(t, 1, 1) = G(1, t, 1) allows one to calculate

G(t, t, 1) = (1 − t) G(0, t, 1) + t G(1, t, 1)

= (1 − t) G(0, t, 1) + t G(t, 1, 1). (12.19)

Both of these points are shown in purple in Figure 12.2. Lastly, one obtains the point of interest
as

G(t, t, t) = (1 − t) G(0, t, t) + t G(1, t, t)

= (1 − t) G(0, t, t) + t G(t, t, 1). (12.20)

The entire process consisted of taking linear combinations of control points, but never required
evaluating the recursively defined basis functions. It is particularly efficient and numerically
stable, making it a common algorithm in software implementations.

Note that the de Casteljau algorithm would have worked equally well had the starting point
been any p + 1 values of G so long as they were taken at a linearly independent set of points
in R

p. Similarly, one could equally easily evaluate the curve for t /∈ [0, 1]. The particular
choice of points and parameter values that we have used, however, is the set that corresponds
to the interpretation of control points of a Bézier curve as the coefficients to the Bernstein
basis.
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12.1.2 Continuity of piecewise curves

Let us consider a Bézier curve constructed on the parametric interval [a, b] instead of [0, 1].
This is just an affine mapping, φ : R → R, comprised of a scaling and a translation. As
discussed for B-splines in Chapter 2, translating and scaling the knot vector has no effect on
the geometry if the control points are unchanged. The parameterization changes by the same
affine mapping as has been applied to the knot vector. As the Bézier curve is a special case
of a B-spline, the result must still hold, but the polar form inevitably changes. Fortunately,
the change is trivial. Simply compose G with the inverse of the mapping, φ−1, applied to
each of its p + 1 dimensions. As expected, the control points (which have not changed) are
equal to this new polar form evaluated at the corners of hypercube

⊗p+1
1 [a, b]. Thus, if we

reparameterized the example of Figures 12.1 and 12.2 such that t ∈ [a, b] (this is equivalent
to use of the knot vector � = {a, a, a, a, b, b, b, b}), we have

B1 = G(a, a, a),

B2 = G(b, a, a) = G(a, b, a) = G(a, a, b),

B3 = G(b, b, a) = G(b, a, b) = G(a, b, b),

B4 = G(b, b, b).

Piecewise polynomials can be formed from composite Bézier curves by considering two
separate curves where, for example, the first curve is defined for t ∈ [a, b) and the second
curve is defined for t ∈ [b, c]. Figure 12.3 shows two such quadratic curves for the case of
a = 0, b = 1, c = 2. The composite curve is clearly discontinuous in this case. Experience
with B-splines should indicate that C0 continuity can be obtained, as in Figure 12.4, by simply
ensuring that the last control point of the first curve lies at the same position as the first control
point of the second curve. As one might expect, this can be translated into a corresponding
restriction on the polar form of the two curves.

The general result, presented in Ramshaw, 1989, for a composite Bézier curve comprised
of two polynomials of degree p being Ck-continuous at a parameter value r is that

G1(u1, . . . , uk, r, . . . , r︸ ︷︷ ︸
p−k

) = G2(u1, . . . , uk, r, . . . , r︸ ︷︷ ︸
p−k

) (12.21)

G (0,0)
1

G (1,1)
1

G (0,1)
1

G (1,1)
2

G (1,2)
2

G (2,2)
2

Figure 12.3 A piecewise quadratic curve g(t) for t ∈ [0, 2] is defined by two separate Bézier curves,
the first for t ∈ [0, 1) and the second for t ∈ [1, 2]. Obviously, the composite curve is discontinuous in
this case.
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G (0,0)
1

G (0,1)
1

G (1,1)=G (1,1)
1

G (1,2)
2

G (2,2)
2

2

Figure 12.4 C0-continuity for two quadratic curves meeting at r = 1 demands that G1(1, 1) =
G2(1, 1). This is equivalent to the B-spline condition that the last control point of the first curve and the
first control point of the second curve lie at the same position.

That is, if G1 is the polar form of the first curve, and G2 is the polar form of the second
curve, then the two curves agree to kth order at point r if and only if G1 and G2 agree on a
set of polar arguments that contain at most k values different from r . One way to think about
(12.21) for k ≥ 0 is that Ck-continuity demands that G1 and G2 are equal on a nonempty set of
hyperplanes of dimension k that intersect at (r, . . . , r ) (the symmetry of the polar form makes
the set on which they are equal richer than just one single hyperplane).

Consider the two trivial cases. If G1 and G2 are C0-continuous, then G1(r, . . . , r ) =
G2(r, . . . , r ) (as in Figure 12.4) and the polar forms are equal on a zero-dimensional sub-
space of R

p, namely the point (r, . . . , r ). If k = p, then G1(u1, . . . , u p) = G2(u1, . . . , u p),
and the polar forms are identical everywhere in R

p. Of course, in this case the resulting curves
are identical as well.

The case of 0 < k < p is slightly more subtle. For example, consider two curves with p = 2
that meet with C1 continuity at parameter value r , as in Figure 12.5. From (12.21) we see that
G1(u, r ) = G2(u, r ) for all values of u. Thus, there is a subspace of dimension 1 on which
the polar forms are equal, namely the line in the uv-plane corresponding to v = r . Symmetry
dictates that the polar forms are identical along the line u = r as well.

G (0,0)
1

G (0,1)
1

G (1,1)=G (1,1)
1

G (1,2)
2

G (2,2)
2

2

=1/2(G (0,1)+G (1,2))
1 2

×

G (t,1)=G (t,1)
1 2

∀t ∈

Figure 12.5 C1-continuity for two quadratic curves meeting at r = 1. The control points obey
G1(1, 1) = G2(1, 1), but the higher order continuity requires that G1(1, t) = G2(1, t) for all t ∈ R.
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12.2 The polar form of B-splines

The previous section discussed the constraints that must exist on a set of polynomial curves
of order p for them to form a piecewise polynomial curve of prescribed continuity. Each
polynomial segment could be interpreted as a Bézier curve with the location of its p + 1
control points defined in terms of its own polar form. Heuristically speaking, B-splines remove
the clutter by eliminating the unnecessary control points from such a construction. The fact
that continuity renders some control points unnecessary follows from the constraint imposed
by (12.21), which implies that continuity between the segments dictates that some of the
Bézier control points will be linearly dependent on the others. This statement will be made
precise in a moment, but first consider that we could remove one control point from the curve
in Figure 12.4 because G1(1, 1) and G2(1, 1) are identical, and thus we have no need to keep
track of both of them. Taking things one step further, we can remove two control points from
Figure 12.5 because G1(1, 1) and G2(1, 1) are not only identical, but they are also a linear
combination of G1(0, 1) and G2(1, 2). As such, we have no need to keep track of either of
them.

To facilitate the following discussion, let a multiset be a collection of values, in any
order, where repeated values are allowed. Thus, for example, α = {1, 4.3, 2, 4.3} and
β = {4.3, 4.3, 1, 2} both represent the same multiset. We use the term “multiset” instead
of “sequence” as the collection is not ordered, and in place of the term “set”, as repeated
values are allowed. Additionally, let a super-multiset of a multiset β be any multiset α such
that each item of β appears in α with at least as high of a multiplicity as in β. That is, with
β = {4.3, 4.3, 1, 2}, α1 = {4.3, 7, 4.3, 2, 1} is a super-multiset of β, but α1 = {4.3, 7, 8, 2, 1}
is not. Using this new terminology, one can restate the continuity condition (12.21) as: Two
curves agree to kth order at a point r if their polar forms agree when the multiset of polar
arguments is any super-multiset of

β = {r, . . . , r︸ ︷︷ ︸
p−k

}. (12.22)

12.2.1 Knot vectors and control points

Following Ramshaw, 1989, let {ti }n+p+1
i=1 be a non-decreasing sequence in R, where we insist

that the multiplicity of any value in the sequence be no greater than p + 1. For each open
interval of nonzero measure (ti , ti+1), let gi (t) be a polynomial curve of degree p. That is, if
ti < ti+1, the piecewise polynomial spline curve g(t) (which we are in the process of building)
follows a single polynomial gi (t) over the interval (ti , ti+1). The curve gi will join, on its
right end, the curve gi+m , where m is the largest integer such that ti+1 = · · · = ti+m . From
(12.21), it follows that to form a spline with C p−m-continuity, the polar forms Gi and Gi+m of
polynomials gi and gi+m , respectively, must agree on all super-multisets of {ti+1, . . . , ti+m}.

Noting that ti+1 = · · · = ti+m , this is no more than a restatement of (12.21), which was
developed for Bézier curves in the previous section. Applying the same logic to each interval
in the knot vector {ti }n+p+1

i=1 , however, establishes the connection between the polar forms of
the present chapter and the rules regarding continuity and the multiplicity of the knots that
have been familiar since Chapter 2: increasing the multiplicity of a knot value decreases the
continuity of the spline at that point. To complete the polar viewpoint of B-splines, one must
identify the control points with evaluations of the polar forms, as was done for Bézier curves.
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B = G(0,0)
1

B = G(1,0)
2

B = G(1,2)
3

B = G(2,2)
4

Figure 12.6 The B-spline curve corresponding to the C1 piecewise quadratic curve in Figure 12.5. The
control points follow from the polar forms via (12.23).

Without proof, we present the following result from Ramshaw, 1989: Given a knot vector
T = {ti }n+p+1

i=1 , whose knot values have multiplicity of at most p + 1, and given a sequence
of n points {Bk}n

k=1 in R
d , there exists a unique spline of degree p and knot vector T such

that

Bk = Gi (tk+1, . . . , tk+p) for k ≤ i ≤ k + p. (12.23)

Moreover, this is exactly the spline that would be generated if we were to interpret {Bk}n
k=1 as

control points and use knot vector T with (2.1) and (2.2) to define a B-spline.
Figure 12.6 shows exactly the same C1 piecewise quadratic curve as is formed from two

separate Bézier curves in Figure 12.5. The knot vector for this B-spline representation is
T = {t1, t2, t3, t4, t5, t6, t7} = {0, 0, 0, 1, 2, 2, 2}. Using (12.23), one obtains

B1 = G1(t2, t3) = G1(0, 0), (12.24)

B2 = G1(t3, t4) = G1(0, 1), (12.25)

B3 = G2(t4, t5) = G2(1, 2), (12.26)

B4 = G2(t5, t6) = G2(2, 2). (12.27)

As foreshadowed in the discussion at the beginning of the section, the control points that are
required are a subset of those needed to describe the two Bézier curves separately. In the next
section, it will be shown that there is no longer a need to distinguish between the different polar
forms Gi . Instead one may refer to a single, piecewise-defined polar form G, as in Figure
12.6. Because of the unambiguous mapping between control point Bk and the polar form
evaluated at knots, G(tk+1, . . . , tk+p), we refer to (tk+1, . . . , tk+p) as the polar label of control
point Bk .

For the quadratic B-spline in Figure 12.6, we saw that the first control point is B1 = G(t2, t3),
while the second control point is B2 = G(t3, t4). Noting both the symmetry and linearity of
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G(0,0)

G(0,1)

G(1,2)

G(2,2)

{(0,1)

(0,1)

(1,2)

(1,2)}{{
Figure 12.7 Each leg of the control polygon has a parametric interval mapped to it. The interval is
easily deduced by looking at the polar argument that differs (recalling symmetry) between consecutive
polar labels of the control points.

the polar form, it follows that

G(t, t3) = t4 − t

t4 − t2
G(t2, t3) + t − t2

t4 − t2
G(t4, t3)

= t4 − t

t4 − t2
B1 + t − t2

t4 − t2
B2 (12.28)

∀t ∈ (t2, t4).

In effect, we have created a mapping from the interval (t2, t4) to the leg of the control polygon
between B1 and B2. In this case, t2 = t3 = 0 and t4 = 1, and so this interval is (0, 1), as
depicted in Figure 12.7. Repeating the same logic again results in a mapping from (0, 2) to the
second leg of control polygon, and from (1, 2) for the third leg.

In the general case, Bk = G(tk+1, . . . , tk+p) and Bk+1 = G(tk+2, . . . , tk+p+1). Observe that
both control points have the polar arguments tk+2, . . . , tk+p, while only Bk has tk+1 and only
Bk+1 has tk+p+1. Symmetry and linearity lead to the result that

G(t, tk+2, . . . , tk+p) = tk+p+1 − t

tk+p+1 − tk+1
G(tk+1, . . . , tk+p)

+ t − tk+1

tk+p+1 − tk+1
G(tk+2, . . . , tk+p+1)

= tk+p+1 − t

tk+p+1 − tk+1
Bk + t − tk+1

tk+p+1 − tk+1
Bk+1 (12.29)

∀t ∈ (tk+1, tk+p+1),

and thus there is a mapping from the interval (tk+1, tk+p+1) to the leg of the control polygon
between Bk and Bk+1.

12.2.2 Knot insertion and the de Boor algorithm

Let us consider what happens when a knot is inserted into the knot vector of an existing
B-spline curve. For example, let t ∈ (ti , ti+1) be the knot to be inserted. Before knot insertion,
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the curve in this parametric interval is defined by polar form Gi . After insertion, this same
segment will be described by two separate polar forms, say, Ḡi and Ḡi+1. As the curve is
completely unchanged, we must have that Gi = Ḡi = Ḡi+1. More generally, it follows that
the piecewise polar form of the entire B-spline curve, G, remains completely unchanged under
knot insertion. However, from (12.23) it is clear that the control points depend on the specific
knot values contained in the knot vector. Under knot insertion, we obtain the new control
points by simply evaluating the old, unchanged polar form at the various multisets of knots
from the refined knot vector as dictated by (12.23). This may seem like an impediment as
the polar form has not been explicitly constructed. Knowledge of it is limited to the original
control points and their polar labels. Fortunately, this is sufficient. As new knot values must
necessarily be inserted into existing knot intervals (of course, existing knot values may be
repeated as well), each of the new control points can be determined by linearly interpolating
between the existing control points using (12.29).

As an example, let us return to the case of the B-spline curve in Figure 12.6. This piecewise
quadratic curve has an initial knot vector of T = {0, 0, 0, 1, 2, 2, 2}, into which we wish to
insert the point t = 3

4 . The new knot vector will be T̄ = {0, 0, 0, 3
4 , 1, 2, 2, 2}. The original

control points are contained in (12.24)–(12.27). From (12.23) and T̄ we know that the new
control points will be

B̄1 = G(0, 0), (12.30)

B̄2 = G(0, 3
4 ), (12.31)

B̄3 = G( 3
4 , 1), (12.32)

B̄4 = G(1, 2), (12.33)

B̄5 = G(2, 2). (12.34)

Clearly, B̄1 = B1, B̄4 = B3, and B̄5 = B4. The two remaining points are calculated using
(12.29):

B̄2 = 1− 3
4

1 B1 +
3
4 −0

1 B2, (12.35)

B̄3 = 2− 3
4

2 B2 +
3
4 −0

2 B3. (12.36)

The situation is depicted in Figure 12.8. The original control points are in red, while the
new control points after insertion of this single knot are shown in green. Note that G(0, 3

4 ) is
75% of the way between G(0, 0) and G(0, 1), but G(1, 3

4 ) is less than half of the way between
G(0, 1) and G(1, 2). Recall that, as in Figure 12.7, the parametric interval mapped onto this
second leg of the control polygon is (0, 2), and thus the new control point is only 37.5% of the
distance between the old ones.

Consider inserting the knot t = 3
4 a second time. The new control point added in this case

is exactly G( 3
4 , 3

4 ), as shown in black in Figure 12.8. Of course, by the very definition of the
polar form, we have G( 3

4 , 3
4 ) = g( 3

4 ), and the control point lies directly on the curve itself.
Thus, by inserting the knot until its multiplicity is equal to the polynomial order of the curve
and calculating the corresponding control points, we have actually evaluated the B-spline at
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G(0,0)

G(0,1)

G(1,2)

G(2,2)

G(0,3/4)

G(3/4,1)

G(3/4,3/4)

Figure 12.8 The de Boor algorithm for B-spline evaluation is the generalization of the de Casteljau
algorithm. It is actually more illuminating as each step of the process corresponds to knot insertion. When
the multiplicity of the knot is equal to the polynomial order, the control point lies on the curve. Thus,
calculating the control points for such a repeated knot insertion is an alternative, and efficient, method
for evaluating points on a B-spline curve. Like the de Casteljau algorithm, it requires no evaluations of
basis functions.

this point. This approach is called the de Boor algorithm (de Boor, 1978). This should be
recognized as a generalization of the de Casteljau algorithm. In fact, it sheds light on the
de Casteljau algorithm in the regard that, if we interpret a Bézier curve as a single element
B-spline, each step of the de Casteljau algorithm amounts to calculating the new control points
corresponding to the insertion of a single knot. Of course, Bézier curves in their original form
have no notion of knot insertion and so the de Casteljau algorithm predates this interpretation.

12.2.3 Bézier decomposition and function subdivision

As has just been shown, the process of B-spline evaluation by the de Boor algorithm and knot
insertion are intimately related. All of the control points needed to actually insert a knot p times
are calculated along the way to evaluating the point on the curve. If we continue the process
one step farther to raise the multiplicity of the new knot, t , to p + 1, then the last control point
calculated, G(t, . . . , t), is simply repeated. This corresponds to splitting the curve into two
separate B-splines, each with their own sets of control points (one copy of G(t, . . . , t) being
associated with the curve to the left and the other copy belonging to the curve to the right).
If this is done for every knot in the original knot vector, then each of the original polynomial
segments of the B-spline (i.e., every element in an isogeometric analysis setting) has been
represented by a separate Bézier curve. This process is called Bézier decomposition, and it is
utilized in several procedures, including order elevation of a B-spline curve. For the quadratic
curve of Figure 12.6, the Bézier control points are exactly those depicted previously in Figure
12.5.

From the polar viewpoint, this process calculates the control points for the Bézier repre-
sentation of each polynomial segment of the original piecewise polynomial curve from the
original B-spline control points. If we leave the polar viewpoint and return to the parametric
representation utilized throughout this book, we can extend this concept to relate the poly-
nomial basis functions on each Bézier segment to the original set of piecewise polynomial
B-spline basis functions.
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To see the connection, note that the control points of the decomposed curve, B̄ = {B̄i } have
been calculated as a linear combination of the original control points, B = {Bi }, which we
may represent by the matrix operation

B̄ = MB. (12.37)

Let us similarly collect the basis functions for the Bézier and B-spline representations into
vectors N̄ = {N̄i (t)} and N = {Ni (t)}, respectively, such that we may write the curve as

g(t) = B · N = B̄ · N̄ . (12.38)

Inserting (12.37) into (12.38) yields

g(t) = B · N = B̄ · N̄
= (MB) · N̄
= BT MT N̄
= B · (

MT N̄
)
. (12.39)

It follows that

MT N̄ = N , (12.40)

and thus the relationship between the B-spline basis and the basis of the Bézier decomposition
is defined by the same set of coefficients that relate the control points for the two cases.

As an example, consider a two element, C2-continuous, cubic B-spline with the knot vector
T = {0, 0, 0, 0, 1

2 , 1, 1, 1, 1}. The basis for such a curve is shown in Figure 12.9. Partitioning
the spline into two separate Bézier curves is equivalent to increasing the multiplicity of each
knot to p + 1 = 4, resulting in knot vector T̄ = {0, 0, 0, 0, 1

2 , 1
2 , 1

2 , 1
2 , 1, 1, 1, 1} and the basis

shown in Figure 12.10. Each function of the original basis, N = {Ni }5
i=1, may be expressed

0 11/2
0

1
N1 N5

N2
N3

N4

Figure 12.9 C2-continuous B-spline basis corresponding to knot vector T = {0, 0, 0, 0, 1
2 , 1, 1, 1, 1}.

Each of these basis functions can be represented as a linear combination of the basis functions of the
Bézier decomposition, shown in Figure 12.10.
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1/2 10
0

1

N1 N4

N2 N3

N5 N8

N6 N7

Figure 12.10 The basis functions corresponding to the Bézier decomposition of the B-spline curve
built from the basis in Figure 12.9. Note that this is two separate sets of function: one for the polynomial
on [0, 1

2 ] and one for the polynomial on [ 1
2 , 1]. Equivalently, this may be viewed as a C−1-continuous

(i.e., discontinuous) B-spline basis corresponding to knot vector T̄ = {0, 0, 0, 0, 1
2 , 1

2 , 1
2 , 1

2 , 1, 1, 1, 1}.

as a linear combination of the new basis functions, N̄ = {N̄i }8
i=1. To extract the coefficients

of this linear relationship, one must first examine the corresponding relationship between the
control points, and then use (12.40).

From (12.23), it is clear that the control points for the original curve are given by

B1 = G(0, 0, 0), (12.41)

B2 = G(0, 0, 1
2 ), (12.42)

B3 = G(0, 1
2 , 1), (12.43)

B4 = G( 1
2 , 1, 1), (12.44)

B5 = G(1, 1, 1), (12.45)

where G is the polar form for the curve. In practice, the only information available about the
specific polar form comes from the specification of these control points. This is important,
because as knots are inserted to partition the curve into two separate Bézier curves, the polar
labels of the new control points follow trivially by applying (12.23). The actual position of
these control points, however, must be calculated by linearly interpolating between the existing
control points, just as is in the de Boor algorithm. The first two and the last two of the new
control points correspond to points of the original curve:

B̄1 = G(0, 0, 0) = B1, (12.46)

B̄2 = G(0, 0, 1
2 ) = B2, (12.47)

B̄7 = G( 1
2 , 1, 1) = B4, (12.48)

B̄8 = G(1, 1, 1) = B5. (12.49)
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Two more points follow simply from these by virtue of the linearity and symmetry of the polar
form:

B̄3 = G(0, 1
2 , 1

2 )

= 1
2 G(0, 0, 1

2 ) + 1
2 G(0, 1, 1

2 )

= 1
2 B2 + 1

2 B3, (12.50)

B̄6 = G( 1
2 , 1

2 , 1)

= 1
2 G( 1

2 , 0, 1) + 1
2 G( 1

2 , 1, 1)

= 1
2 B3 + 1

2 B4. (12.51)

The last two control points for the Bézier decomposition are obtained from the results already
computed:

B̄4 = G( 1
2 , 1

2 , 1
2 )

= 1
2 G( 1

2 , 1
2 , 0) + 1

2 G( 1
2 , 1

2 , 1)

= 1
2 B̄3 + 1

2 B̄6

= 1
4 B2 + 1

2 B3 + 1
4 B4, (12.52)

B̄5 = B̄4. (12.53)

Concisely, (12.46)–(12.53) can be expressed in the form of (12.37), as

B̄ = MB ⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̄1

B̄2

B̄3

B̄4

B̄5

B̄6

B̄7

B̄8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 1/2 1/2 0 0
0 1/4 1/2 1/4 0
0 1/4 1/2 1/4 0
0 0 1/2 1/2 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

B1

B2

B3

B4

B5

⎞
⎟⎟⎟⎟⎠ . (12.54)

As seen in (12.38) and (12.40), the coefficient matrix relating the new and old control points
in (12.55) is the transpose of the matrix relating the new and old basis functions. Specifically,

MT N̄ = N ⇔

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 1/2 1/4 1/4 0 0 0
0 0 1/2 1/2 1/2 1/2 0 0
0 0 0 1/4 1/4 1/2 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N̄1

N̄2

N̄3

N̄4

N̄5

N̄6

N̄7

N̄8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

N1

N2

N3

N4

N5

⎞
⎟⎟⎟⎟⎠ . (12.55)
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This symmetry of the relationship between the refined and unrefined control points and
the refined and unrefined basis functions has already been encountered implicitly in the
discussion of patchwise local refinement in Chapter 3. The control point relationship, (12.37),
is utilized in (3.65) to ensure that the solution on the interface between two patches is in the
space of functions that can be represented on the coarser patch. The relationship between basis
functions, (12.40), is used in (3.75) to ensure that the weighting functions used on the interface
are only those emanating from the same coarse space. See Chapter 3.

Note

1. The term “blossom” has also been used for an independent development of these concepts
by Ramshaw, 1987b. The equivalence between blossoms and polar forms was clarified
in Ramshaw, 1989.
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13
State-of-the-Art and
Future Directions

This is our assessment of the state-of-the-art and promising future research directions.

13.1 State-of-the-art

The current status of isogeometric analysis is summarized as follows:

� A number of single and multiple patch NURBS-based parametric models have been devel-
oped and analyzed. Application areas include linear and nonlinear structures, laminar and
turbulent flows, and fluid–structure interaction.

� A new projection technique has been developed for handling incompressibility for higher-
order NURBS discretizations. Applications to linear and nonlinear problems in solid me-
chanics have proved successful. This is the first time a coherent strategy for higher-order
elements has been developed. The accuracy of stresses is particularly noteworthy.

� Basic mesh refinement schemes have been investigated, namely, h-, p- and k-refinement,
corresponding to, respectively, traditional mesh refinement, C0 order elevation, and C p−1

order elevation. It has been shown that NURBS-based isogeometric analysis preserves
geometry at all levels of refinement and that detailed features can be retained without
excessive mesh refinement, in contrast with traditional finite element analysis. A constraint
equation approach has been developed to transition between NURBS patches involving
different levels of refinement.

� Superior accuracy to traditional finite element analysis has been demonstrated in all cases,
and indications of significantly increased robustness in vibration and time-harmonic wave
propagation analysis have been noted. A duality principle relating dispersion error analysis
on an infinite domain and frequency analysis on a finite domain has been established.
Superior accuracy of NURBS over finite elements has been established for turbulent flows.

� A mathematical theory of h-refinement has been developed. Mathematical investigations
utilizing “n-widths” are under way to quantify spline-based approximations compared with
traditional finite elements procedures. See Appendix 5.A and Evans et al., 2009.

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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(a) (b) (c)

Figure 13.1 Control meshes can be severely distorted and still result in useful physical meshes, as in
the case of this single element quadratic NURBS patch. (a) The control mesh in the index space. (b) The
control mesh in the physical space. Note that some regions of the control elements have zero area. (c)
The physical mesh. Two of the three sides are straight, while proper selection of the weights has resulted
in a third side that is a circular arc. Such an element has been used in Lipton et al., 2009 to model fillets in
geometries containing reentrant corners. Despite the amount of distortion of the NURBS patch required
to generate such a shape, isogeometric analysis with this fillet element resulted in accurate stresses and
full convergence rates. See Lipton et al., 2009.

� So far, isogeometric analysis has been applied to solid parts and simple thin-walled structures,
and the extension to more complex stiffened thin-walled structures seems apparent. The
challenge is to apply it to very complex modules and assemblages.

� It has been shown (Lipton et al., 2009) that valid, higher-order NURBS geometries can
be developed from control meshes that include various degrees of degeneration, including
shapes such as tetrahedra, wedges, and pyramids, and non-convex elements. The control
mesh can even include elements that are turned inside out and the physical mesh remains
valid. Patch tests are passed in these situations. It is believed that this will loosen restrictions
on the generation of three-dimensional meshes compared with traditional finite elements.
An example of a “fillet element” resulting from such degeneration is shown in Figure 13.1.

� A T-spline analysis capability has been developed and initial structural analysis calculations
have proved successful.

� An interface to LS-Dyna (Livermore Software Technology Corporation, 2007) is under
development. It accommodates input of NURBS surface (bivariate) and volume (trivari-
ate) models. NURBS surface models can be converted directly to Reissner–Mindlin shell
elements without first generating a mesh (see Benson et al., 2009). Successful initial calcu-
lations of shells and solids have been performed. To the best of the authors’ knowledge, this
is the first time a CAD file has been used directly in a commercial finite element code to
perform a structural analysis without any intermediate steps of geometry clean-up or mesh
generation. We believe that this is the beginning of a new trend in removing the barriers that
exist between design and analysis.

� Successful calculations of solutions of the Cahn–Hilliard equation have been attained with
higher-order NURBS bases. This sets the stage for further applications to phase-field models
of physical interest.
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13.2 Future directions

Here are some of the topics that we think should be pursued.

� Local unstructured refinement algorithms. Isogeometric analysis provides finite element
codes with a precise geometry that may be refined without communication with the CAD file
from which it was generated. However, efficient local unstructured refinement algorithms,
suitable for analysis applications, do not yet exist. This is an extremely important research
focus because isogeometric models created by designers may capture the geometry accu-
rately but will most likely be too coarse for analysis. Consequently, it will be necessary to
perform adaptive refinement in the analysis code in order to achieve the required accuracy
for the application under consideration. There are several approaches that might be pursued.
Here are three:
– Hierarchical refinement. The idea is to treat knot spans as elements and to perform

h-refinement by subdividing the knot spans. This approach is geometrically intuitive and
similar to procedures used in finite elements. However, in the context of splines, the full
smoothness of the original basis will need to be retained in the refinement. This is essential
for the efficiency, accuracy and robustness of the refinement scheme. The added basis
functions will be assigned “hierarchical” degrees-of-freedom, and a natural multilevel
algorithmic architecture ensues. This has several benefits. For example, the control points
for the original geometric model are retained at all levels of refinement, providing a
concise geometric parameterization for design optimization. Additionally, hierarchically
defined bases result in improved condition numbers, of critical importance to the efficiency
of iterative solvers. Element-based approaches with splines are facilitated by conversion
to a Bézier basis on knot spans. The Bézier basis is also frequently used in geometry
applications because there are many efficient algorithms that have been developed for
manipulating it. Octree data structures are also anticipated to be useful in developing
element-based spline refinement schemes.

– Function subdivision. Geometers tend to think in terms of basis functions rather than
elements, despite the fact that knot spans provide a rather natural definition of elements.
In smooth particle hydrodynamics (SPH, see Gingold and Monaghan, 1977), and the
various meshless methods, the fundamental object is the basis function rather than the
element. In the function subdivision approach, a basis function is decomposed into a sum
of refined basis functions of the same class and the original function is then replaced
by the new basis functions. The data structure for this procedure seems to be entirely
different than for the element-based approach described above. The two approaches need
to be compared as to their suitability for engineering analysis applications.

– Partition of unity method. In the partition of unity method, new basis functions are
added, but all previous basis functions are retained. Each of the basis functions is then
divided by the sum of all the basis functions in order to reestablish the partition of unity
property. Even if the original basis consists of only polynomials, the refined basis will
consist of rational functions. In the case of splines it is typical to start with a rational basis
composed of NURBS or T-splines. One of the key issues that must be carefully researched
is the ability of the refinement scheme to avoid linear dependencies.

� Dynamic structural applications. So far the isogeometric approach has been applied pri-
marily to linear and nonlinear static structural applications, structural eigenvalue problems,
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and time-harmonic wave propagation. It needs to be tested on linear and nonlinear dynamic
structural applications. If a consistent mass matrix would be employed, the full accuracy
of NURBS would be attained. It is noted that ad hoc “row-sum” lumped mass matrices
developed in previous work on structural vibrations only achieved second-order accuracy,
that is, they did not maintain the full rate-of-convergence of consistent mass. Lumped mass
approaches dominate certain areas of transient analysis, such as crash and blast analysis,
metal forming, and wave propagation. It would be very desirable to develop higher-order
accurate lumped mass matrices. One promising approach to achieving this end is through
the construction of dual bases. These produce diagonal mass matrices and should retain full
rate-of-coverage if implemented in a consistent, Petrov–Galerkin, weighted-residual format.
The challenge to success here is the numerical stability of the internal force calculation and
the complexity and lack of smoothness of dual basis functions. If these obstacles can be
overcome, it may open the way toward higher-order accurate explicit procedures, which
would be of enormous practical value.

� Quadrature. Isogeometric analysis has been shown to be more accurate than traditional finite
element analysis per degree-of-freedom. So far, sufficiently accurate Gaussian quadrature has
been utilized on knot spans, which engenders considerable overhead compared with higher-
order C0 elements. The reason for this is, roughly speaking, knot locations correspond to
nodes in finite element analysis and Gaussian quadrature rules can be used over multiple
knot spans within finite elements because basis functions are C∞ there. Of course, for
isogeometric Bézier elements (see Section 5.2) the cost of quadrature is identical to standard
C0 Lagrange elements.

Initial attempts have been made to develop efficient quadrature rules for splines. See
Hughes et al., 2008b. The new rules take account of the precise level of smoothness across
knots and improve upon the brute force approach of using Gaussian rules between knots.
These rules have been developed for uniform and non-uniform knot spacing and are de-
termined numerically in all but the simplest cases. They need to be generalized for local
refinement in multiple dimensions. There may be opportunity to further improve the situation
by utilizing additional considerations.

It is important to keep the issue of quadrature in perspective. The cost of analysis typically
does not scale linearly with the number of quadrature points except in special cases, such as
explicit dynamic analysis (Livermore Software Technology Corporation, 2007). Quadrature
is also highly parallelizable, whereas equation solving is typically only partially paralleliz-
able. Equation solving also usually scales with a power greater than 1 of the number of
elements and equivalently the number of quadrature points, and, consequently, dominates
overall analysis cost, especially for large three-dimensional problems.

� Collocation. The smoothness of higher-order NURBS basis functions permits the construc-
tion of variational methods in which the strong form of the residual may be used (i.e., the
form in which integration-by-parts is not used). This offers the possibility of developing
collocation methods in which the residual is evaluated at a number of collocation points
equal to the number of control points in the model. This number is much less than the num-
ber of quadrature points necessary in a typical Galerkin formulation. The proper location of
collocation points is intimately linked to the issue of efficient quadrature and thus this topic
builds upon the previous one. The challenges that need to be addressed in the development of
collocation schemes are maintaining the numerical stability of the inertial and internal forces
with a small number of evaluation points and developing a methodology that identifies the
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optimal location of collocation points. Collocation techniques are preferred over Galerkin
methods when the number of quadrature points dominates solution cost. The possibility of
efficient higher-order collocation procedures seems unique to smooth spline bases.

� Contact problems with friction. One of the drawbacks of traditional finite elements is the
faceted approximation of smooth boundaries. Problems manifest themselves in several appli-
cation areas, such as flows about smooth hydrodynamic configurations, shape optimization of
ships requiring curvature continuity, and imperfection-sensitive thin shell buckling analysis.
An application that cannot be dealt with by faceted finite elements is sliding contact between
solid bodies. The lack of smoothness necessitates “fixes” even in very simple situations. In
some procedures the kinematics are projected onto smooth B-spline surfaces necessitating
inserting these surfaces between contacting bodies and anticipating where contact may occur
in the problem set-up. These techniques complicate code architecture and are not applicable
to complex engineering designs. It would seem that smooth NURBS bases would be much
better suited for sliding contact and may eliminate the need for special purpose procedures.
The challenge to be met here would be to develop algorithms to efficiently locate contact
regions and adaptively generate compatible refinements of the contact surface.

� Shells without rotational degrees-of-freedom. The smooth basis functions of NURBS
presents the opportunity to develop thin shell elements without rotational degrees-of-
freedom. In traditional finite element analysis, based on C0 shape functions, rotational
degrees-of-freedom are required to maintain compatibility across element interfaces. In
the analysis of smooth shell structures, these are unnecessary with NURBS. However, to
maintain proper continuity at locations where shells intersect at finite angles, and to en-
force rotation (i.e., slope) boundary conditions, either Lagrange multiplier or discontinuous
Galerkin procedures are required. Eliminating rotations, especially in large-deformation ap-
plications, is an enormous simplification. This approach eliminates shear locking ab initio,
results in half the number of degrees-of-freedom of traditional shell analysis, and eliminates
complex parameterizations of rotational degrees-of-freedom in large-deformation analysis.
(Finite rotations are not vectorial, they form a multiplicative matrix group, and require Euler
angles or some other cumbersome parameterization.)

� Curved NURBS beam element. In order to develop a frame structural analysis capability
and a compatible beam for a Reissner–Mindlin shell formulation, a curved Timoshenko
beam element needs to be developed. This will be useful for the analysis of stiffened shell
structures. Development of a curved beam element without rotational degrees-of-freedom,
for use with the previously described shell formulation, would also be welcome.

� Geometrical model development. The key to eliminating the CAD/CAE bottleneck is
to create parameterized geometries in the design phase. The recent development of T-
spline surfaces illustrates the possibilities. Trimmed NURBS surfaces can be made into
untrimmed T-splines, from which untrimmed NURBS can be generated (see Sederberg et al.,
2008). Either the untrimmed NURBS or T-spline surface files can be directly transferred
to isogeometric analysis codes and shell structural analysis can be performed without the
necessity of all the usual geometric clean-up, defeaturing, and mesh generation. This has
already been demonstrated for some simple “obstacle course” shell calculations using the
isogeometric interface to the LS-Dyna code. This is the first and most significant step toward
automating the “design to analysis” cycle. The most significant challenge facing isogeometric
analysis is developing three-dimensional spline parameterizations from surfaces. This is a
problem of geometry generation. The most promising starting points seem to be based
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on the assumption of untrimmed T-spline or NURBS surfaces containing a volume. This
would be applicable to solid parts and also internal flow geometries. The case of external
flow geometries appears to be easier. Ideally, it would be desirable to retain the surface
parameterization in the process. However, this probably could be relaxed for many practical
applications. There are several promising directions to be researched. Different procedures
may be better suited for specific application areas. Here are some:
– Develop the three-dimensional analogue to T. Sederberg’s surface “sewing” algorithm,

that is, view the solid as being trimmed by the T-spline or NURBS surface and create
an untrimmed volumetric T-spline or NURBS. This could follow along the lines of ex-
isting octree based mesh generation procedures, the difference compared with traditional
finite elements being the increased ability of higher-order NURBS to maintain geometric
validity in the face of degenerated element shapes, non-convex elements, etc.

– If we do not insist on maintaining the surface parameterization and are content with
approximating the surface geometry to a predefined precision, then existing hexahedral
mesh generation technology may be given a new life because of the ability of higher-order
NURBS to generate valid geometries from quite pathological hexahedral control meshes.

– The work by Y. He and D. Gu on generating conformal meshes on surfaces, Ricci flows,
and polycube spline decompositions provides another direction to pursue (Li et al., 2007;
Gu and Yau, 2008).

� Boundary Integral Methods. Surface models composed of NURBS, T-splines, or subdi-
vision surfaces could be used directly in an isogeometric boundary integral formulation
(see Cervera and Trevelyan, 2005a, 2005b). This would appear to be a straightforward but
practically important development. There are a number of problem classes where the bound-
ary integral method is a viable analysis choice. The advantage is of course that no volume
discretization is required.

� Phase-field modeling. The smoothness of NURBS and T-splines and their geometric flexi-
bility make them ideal candidates for phase-field modeling, which invariably entails higher-
order spatial differential operators. Smooth basis functions are necessary for developing
simple Galerkin discretizations of the phase-field equations. Initial experiences with the
Cahn–Hilliard equation, perhaps the most utilized phase-field model, have been very good.
The approach developed is able to calculate early-time dynamics and late-time equilib-
rium solutions accurately and efficiently. Adaptive time-stepping is essential in calculating
equilibria because the dynamics frequently varies over many orders of magnitude in an
analysis. In addition, it has been determined how to desensitize calculations from mesh
dependence. This opens the way to calculating topologically correct phase-field solutions
on coarser meshes, of importance in practical engineering applications. The resolution of
sharp interfaces is also remarkably crisp with NURBS basis functions. Current and future
efforts should be devoted to the development of a phase-field model for water/water-vapor
two-phase flows (the Navier–Stokes–Korteweg equations, Korteweg, 1901, and generaliza-
tions such as in Jamet et al., 2001) and air/water/water-vapor three-phase flows. The last
two theories may be useful in representing cavitation phenomena and the last theory may
be applicable to water mists used to fight fires. Other applications of phase-field models are
topology optimization and crack propagation. There are many others.

� Shape optimization. A key advantage of isogeometric analysis is the potential ability of
integrating CAD, FEA and shape optimization. The control variables of the geometry provide
a concise parameterization that can be used as design variables. Once an optimal design has
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Figure 13.2 Isogeometric shape optimization applied to the open spanner problem. The initial design
is shown (top) along with its control net. The optimal design is shown with control points (middle) and
deformed (bottom). From Wall et al., 2008.

been obtained, the design can be returned to the CAD system directly because it will already
be in the “language” of the system, namely, NURBS, T-splines, etc. A recent study has
initiated this pursuit (see Figure 13.2, from Wall et al., 2008).

� Isogeometric meshless methods. There is an enormous interest in meshless methods, but
so far the relationship to geometry has been almost universally ignored. This was identified
as the major shortcoming of meshless technology by Sakurai, 2006. Meshless isogeometric
methods could be developed utilizing the concept of PB-splines (i.e., point-based splines),
see Sederberg et al., 2003. See Figure 13.3.
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Figure 13.3 PB-splines. (a) The supports, Dα , and the parameter space for the spline, D. (b) The
corresponding biquadratic PB-spline with its four control points.

� Toolkits for analysis model construction. During the more than fifty years of development
of finite element technology, many software tools have been developed to facilitate analysis
model construction. There are numerous commercial, industrial, and academic software
packages available. Tool sets for spline-based analysis are currently non-existent. This is
an important future endeavor. One of the deliverables of the EXCITING project in Europe
is an isogeometric analysis toolkit. The organization responsible for its development is the
Institut National de Recherche en Informatique et Automatique (INRIA) in France.

� Triangular and tetrahedral NURBS. There are NURBS constructs for triangular and
tetrahedral patches (see Lai and Schumaker, 2007). These shapes, however, have not been
widely utilized in design, with the possible exception of the Loop subdivision surface method
(Loop, 1987) which is based on triangles. As noted previously, however, subdivision surfaces
have not yet found extensive use in engineering design applications.

� Convex constraints. If the solution of an analysis problem is required to reside in a convex
set, the constraint can be applied to the control variables and the convex hull property will
then ensure that the solution will satisfy the constraint in pointwise fashion. This is in
contrast with classical higher-order finite elements.

� Analysis with trimmed objects. Trimmed NURBS surfaces are a ubiquitous feature of
design. See Figure 13.4. On the one hand, it is possible to replace trimmed NURBS with
T-splines (Sederberg et al., 2003, 2004). However, this may not always be desirable and
so there needs to be analysis methodology that can accommodate trimming. In fact, there
is considerable legacy methodology in computational analysis that is applicable. Early
examples are described as “fictitious domain methods” (see, e.g., Saulev, 1962, 1963). More
recently Glowinski et al., 1999 have developed procedures for the dynamics of flows with
spherical particles. Of late there has been increased interest in so-called “embedded boundary
methods” and “immersed boundary methods” (see, e.g., Roma et al., 1999; Helzel et al.,
2005). An issue of the journal Computer Methods in Applied Mechanics and Engineering has
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Figure 13.4 Screenshot from Realsoft 3D (Realsoft Graphics, 2008). Current CAD technology fre-
quently relies on trimmed NURBS surfaces to describe complex geometries, particularly when two
parametric surfaces intersect. Trimmed geometries present a host of difficulties for meshing and
analysis.

been devoted to research developments on this topic (Fogelson et al., 2008). Of particular
note is the work of Parvizian et al., 2007 in the context of p-methods. In this work,
higher-order accuracy was attained and it would seem that extension to NURBS would be
straightforward. Mention may also be made of Hollig, 2003. In all, there seem to be many
promising procedures to deal with trimmed NURBS efficiently.

� T-splines. The major deficiency of NURBS is topological in that gaps and overlaps at
intersections of surfaces cannot be avoided, complicating mesh generation. See Table 13.1.
Another deficiency is that they utilize a tensor product structure making the representation
of detailed local features inefficient. T-splines are a recently developed generalization of
NURBS technology. T-splines correct the deficiencies of NURBS in that they permit local
refinement and coarsening, and a solution to the gap/overlap problem. In CAD as in FEA,
there is always some approximation somewhere. However, it needs to be controlled to the
degree of accuracy determined by the application. T-splines is a technology satisfying this
requirement. Commercial T-spline plug-ins have been introduced for Maya and Rhino, two
NURBS-based design systems (see T-Splines, Inc., 2008a, 2008b).

A NURBS surface is defined using a set of control points, which lie, topologically, in a
rectangular grid. This means that a large percentage of NURBS control points are superfluous
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Table 13.1 Finite element analysis models the topology of a domain in an accurate
fashion, though the geometry itself is only approximate. Computer aided design
accurately represents the geometry, though the topology has historically been incorrect.
Isogeometric analysis attempts to model both the topology and the geometry accurately

Topology Geometry

Finite element analysis
√ ×

Computer aided design × √
Isogeometric analysis

√ √

in that they contain no significant geometric information, but merely are needed to satisfy
topological constraints. In many cases 80% or more of NURBS control points are superfluous
for design purposes. By contrast, a T-spline control mesh is allowed to have partial rows of
control points. A partial row of control points terminates in a T-junction, hence the name
T-splines. T-spline models typically require only 20% of the control points compared to
NURBS models. For a designer, fewer control points means faster modeling time.

Refinement, the process of adding new control points to a control mesh without changing
the surface, is an important basic operation used by designers. A limitation of NURBS
is that refinement requires the insertion of an entire row of control points. T-junctions
enable T-splines to be locally refined. Another limitation of NURBS is that because a single
NURBS surface must have a rectangular topology, most objects must be modeled using
several NURBS surfaces. It is difficult to join multiple NURBS surfaces in a single, smooth,
watertight model, especially if corners of valence other than four are introduced. These are
referred to as “extraordinary points.” T-junctions make it possible to merge together several
NURBS surfaces into a gap-free T-spline.

Another serious problem inherent in NURBS is that it is mathematically impossible for a
trimmed NURBS to accurately represent the intersection of two NURBS surfaces without
introducing gaps in the model. A reason for this is that a generic curve of intersection
between two bicubic patches is degree 324 (Sederberg et al., 1984), whereas the degree of
the image of a conventional trimming curve is only 18. An NSF-sponsored workshop (MSRI,
1999) identified the unavoidable gaps in trimmed NURBS as the most pressing unresolved
problem in the field of CAD. This problem is a major cause of the incompatibility between
CAD and analysis software (Kasik et al., 2005), which in 1999 was estimated to cost the
U.S. automotive industry alone over $1 billion annually (Brunnermeier and Martin, 1999).
The existing approach to identifying and resolving such problems is to employ “healing”
software, which does not fix the problem, but only reduces the size of gaps. The problem
is a significant ingredient in the design–analysis bottleneck because a CAD model must be
closed in order to generate an analysis-suitable geometry and mesh. T-splines provide a way
to close the gap and solve many of the problems with NURBS that have vexed the CAD
community for three decades. T-splines are also forward and backward compatible with
NURBS. Every NURBS is a special case of a T-spline (i.e., a T-spline with no T-junctions or
extraordinary points) and every T-spline can be converted into one or more NURBS surfaces
by performing repeated local refinement to eliminate all T-junctions. Compatibility is crucial
for commercialization, especially in a mature industry like CAD.
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Appendix A: Connectivity Arrays

Let us make the discussions of Chapters 3 and 4 regarding the various connectivity arrays a bit
more concrete by considering a specific example. We take the simple two-dimensional mesh
shown in Figure 2.16 of Chapter 2. With p = q = 2 and knot vectors � = {0, 0, 0, 0.5, 1, 1, 1}
and H = {0, 0, 0, 1, 1, 1}, it is not difficult to deduce that we will have two elements of
non-zero area. Recalling our tensor product structure, it is also evident that we will have
twelve biquadratic functions requiring some type of numbering convention. During assembly,
however, we will only be looking at local entities and local numbering conventions. The
purpose of the connectivity arrays is to maintain simple bookkeeping procedures that will
relate these local and global schemes.

Before proceeding, a comment about notation is in order. In this appendix, when we
consider the trivariate case with parametric directions ξ , η, and ζ , we will associate with
them polynomial orders p, q , and r , respectively. The number of basis functions in each of
these parametric directions is given by n, m, and l. Though potentially confusing, this reverse
alphabetical ordering of these last three variable names is consistent with the standard practice
of using n for the univariate case, and it allows us to avoid the potentially more confusing
practice of using the letter o as a variable. With this convention in place and open knot
vectors assumed, in the ξ -direction we have � = {ξ1, . . . , ξn+p+1}, in the η-direction we have
H = {η1, . . . , ηm+q+1}, and in the ζ -direction we have Z = {ζ1, . . . , ζl+r+1}.

A.1 The INC array

For higher-dimensional NURBS objects, it is very convenient to introduce the concept of
NURBS coordinates. Examining the index space view in Figure A.1, the NURBS coordinates
of any vertex in the mesh are simply the indices of the knots that define it. For example, the
vertex created by the intersection of the knot lines corresponding to ξ3 and η2 has NURBS
coordinates (3, 2). Note that this is the vertex at which the support of the blue function begins.
In fact, this is how we will most frequently use NURBS coordinates: to identify the knots at
which the support of a function begins.

Isogeometric Analysis: Toward Integration of CAD and FEA by J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs
C© 2009, John Wiley & Sons, Ltd
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Figure A.1 The index space view of the mesh from Figure 2.16 in Chapter 2. The support of
Ñ1,1;2,2(ξ, η) is shown in red, while the support of Ñ3,2;2,2(ξ, η) is in blue. The region in which they
overlap is purple. Examination of the knot values indicates that only two of the knot spans correspond
to elements with positive measure in the parameter space (i.e., those denoted �1 and �2).

This leads us to a natural scheme for the global numbering of basis functions. If there are n
functions in the ξ -direction and m functions in the η-direction, then define

A = n( j − 1) + i (A.1)

such that the global bivariate function ÑA(ξ, η) is the tensor product of univariate functions
Ni (ξ ) and M j (η). We define the INC (“NURBS coordinates”) array such that given a global
basis function number and a parametric direction, it returns the index of the one-dimensional
basis function in the specified direction that was used to build the global function. Because the
support of any one-dimensional NURBS function Ni (ξ ) is [ξi , ξi+p+1], we can also interpret the
INC array as relating the global basis function number and the specified parametric direction
with the index of the knot in the appropriate knot vector at which the support of the function
begins. Thus, with ÑA(ξ, η) = Ni (ξ )M j (η) we have

i = INC(A, 1) and j = INC(A, 2). (A.2)

Turning our attention to Figure A.1 and noting that n = 4, p = 2, m = 3, and q = 2, we have
the INC array given in Table A.1. Thus we see that the red function is Ñ1(ξ, η) and has NURBS

Table A.1 The INC array corresponding to the mesh in Figures A.1 and A.3. INC
consumes a global basis function number and a parametric direction number and returns
the corresponding NURBS coordinate

A (global function number)

INC 1 2 3 4 5 6 7 8 9 10 11 12

1 (ξ -coordinate) 1 2 3 4 1 2 3 4 1 2 3 4
2 (η-coordinate) 1 1 1 1 2 2 2 2 3 3 3 3
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Appendix A: Connectivity Arrays 315

coordinates (1, 1), while the blue function is Ñ7(ξ, η) with NURBS coordinates (3, 2). The
NURBS coordinates are required by many routines, such as basis function evaluation, that
explicitly utilize the knot vectors. They can be useful in many other settings as well, depending
upon the data structures chosen.

A.2 The IEN array

The concept of NURBS coordinates provides us with an easy way to determine which functions
have support in a given element. First, let us assign element numbers. Knowing that we are
using open knot vectors, the number of elements in the ξ -direction is n − p; similarly, in the
η-direction we have m − q elements (note that due to the possibility of repeated internal knots,
some of these elements may have zero measure in the parametric domain; this scheme does
not, however, apply element numbers to the knot spans that are known a priori to have zero
measure due to the use of open knot vectors). Consider an element �e = [ξi , ξi+1] × [η j , η j+1],
where p + 1 ≤ i ≤ n and q + 1 ≤ j ≤ m. A natural numbering scheme is to assign the
element number

e = ( j − q − 1)(n − p) + (i − p). (A.3)

Thus, the “lower, left-hand corner” of element e has NURBS coordinates (i, j). See
Figure A.2.

From our examination of univariate spline functions in Chapter 2, we know exactly which
functions have support in element e, namely, any function of the form Nα(ξ )Mβ(η) for integers
α and β such that i − p ≤ α ≤ i and j − q ≤ β ≤ j . Thus, the total number of local basis
functions is nen = (p + 1)(q + 1). Let us assign local function number 1 to the function with
NURBS coordinates (i, j). We then assign the remaining local numbers, working backwards
in ξ first, followed by η. Thus, with A as in (A.1), the global numbers of the first p + 1 local

e

(i, j)

Figure A.2 Element number e and NURBS coordinates (i, j). NURBS coordinates are the indices
where a basis function ÑA(ξ, η) = Ni (ξ )Mj (η) begins in the index space. The support of this basis
function is shown, assuming p = q = 2.
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functions are A, A − 1, . . . , A − p. The function NA−p−1 does not have support in the element,
so we move a row in the η-direction and continue numbering with A − n, A − n − 1, . . . , A −
n − p. Again, we must move to the next row and continue with A − 2n, . . . , A − 2n − p.
This continues until we reach our last set of function numbers, A − qn, . . . , A − qn − p, at
which point we are finished.

The IEN (“element nodes”) array connects these global function numbers to their local
ordering on the element. In finite elements, global basis function numbers are identified with
global node numbers, and local basis function numbers are identified with local node numbers.
It is for this reason that the IEN array is referred to as the “element nodes” array. Even though
this designation no longer applies in the present case, we retain the name. Given the element
number, e, and the local basis function number, b, the corresponding global basis function
number, B, is given by

B = IEN(b, e). (A.4)

Thus, if A = IEN(1, e) as in the previous paragraph, then we have, for example, A − 1 =
IEN(2, e), A − n = IEN(p + 2, e), and A − qn − p = IEN((p + 1)(q + 1), e).

The IEN array corresponding to the mesh in Figures A.1 and A.3 is shown in Table A.2.
Observe that the blue function, Ñ7, which has support in both elements, has local number
a = 4 on element e = 1 and also local number a = 5 on element e = 2. That is, IEN(4, 1) =
IEN(5, 2) = 7. The red function, Ñ1, has support in only the first element. The only entry
corresponding to it is IEN(9, 1) = 1.

Let us consider the trivariate case. With a knowledge of just the polynomial orders and the
number of univariate functions in each parametric direction, we can set up IEN and INC by
implementing the pseudocode in Algorithm 7.

Table A.2 The IEN array corresponding to the mesh in Figures A.1 and
A.3. IEN consumes a local basis function number and an element number
and returns the corresponding global basis function number

a (local basis function number)

IEN 1 2 3 4 5 6 7 8 9

11 10 9 7 6 5 3 2 1
12 11 10 8 7 6 4 3 2

e =
{

1
2
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Algorithm 7: Building the INC and IEN arrays.

Data: The polynomial orders (p, q, and r ) and number of univariate basis functions (n, m,
and l) for each of the parametric directions (ξ , η, and ζ , respectively) must be included
as inputs.

Result: We will construct the INC and IEN arrays. The total number of elements, nel , the
total number of global basis functions, nnp, and the number of local basis functions,
nen , will also be defined.

// Global variable definitions and initializations:

nel = (n-p)*(m-q)*(l-r); // number of elements
nnp = n*m*l; // number of global basis functions
nen = (p+1)*(q+1)*(r+1); // number of local basis functions
INN[nnp][3] = 0; // NURBS coordinates array
IEN[nen][nel] = 0; // connectivity array

// Local variable initializations:

e, A, B, b, i, j, k, iloc, jloc, kloc // should all be
// initialized to zero

for k = 1 to l do
for j = 1 to m do

for i = 1 to n do

A = A + 1; // increment global function number

INN[A][1] = i;
INN[A][2] = j; // assign NURBS coordinates
INN[A][3] = k;

if i, j, and k ≥ (p+1), (q+1), and (r+1), respectively then

e = e+1; // increment element number

for kloc = 0 to r do
for jloc = 0 to q do

for iloc = 0 to p do

B = A - kloc*n*m - jloc*n - iloc;
// global function number

b = kloc*(p+1)*(q+1) + jloc*(p+1)+ iloc + 1;
// local function number

IEN[b][e] = B; // assign connectivity

end
end

end
end

end
end

end
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A.3 The ID array

A.3.1 The scalar case

Now that we have numbered all of the basis functions used to construct our geometry, estab-
lished a local numbering convention, and collected the connectivity information relating the
two points of view, we need to turn our attention to the specific requirements of analysis. First,
let us consider the case of a scalar solution field. Recall that in Chapter 3 we assumed a num-
bering of the global functions such that each function with support on the Dirichlet boundary
had a higher index than any without support on that boundary. This was convenient for the
exposition of finite element concepts, but we have no reason to expect it to be compatible
with the numbering system proposed in the previous section. In general, we have one equation
corresponding to each function that does not have support on the Dirichlet boundary. This
assumes Dirichlet boundary conditions are satisfied strongly (see Section 3.4 in Chapter 3 for
elaboration). We must construct a mapping between the global index of those functions, and
an equation number between 1 and neq , the total number of equations (which, in the scalar
case, is less than or equal to the total number of functions). This information is stored in the
ID (“destination”) array.

The ID array itself will depend on the specifics of the boundary conditions. Referring to
Figure A.3, assume that we have Dirichlet data prescribed along the edge from (3, 1.5) to
(3, 5) in the physical space. We can tell from Figure A.1 that any function NA such that
INC(A, 1) = 4 is going to have support on that edge, and thus will not have an equation
number corresponding to it. Though there are many conventions we might adopt, we simply
assign equation numbers in ascending order, assigning 0 to any function with support on the
Dirichlet boundary.1 Thus, we arrive at the ID array shown in Table A.3.

A.3.2 The vector case

When the unknowns are vector-valued, we must expand ID to consume not only a global
function number, A, but a degree-of-freedom number, i , as well. Again, there are several
ways that we might do this, but one straightforward approach traverses an outer loop through
the function numbers and an inner loop through the degrees-of-freedom, assigning equation

(3,1.5)

(3,5)

(0,0)(-2,0)

Ω1

Ω2

Figure A.3 The physical space view of the mesh from Figure 2.16 in Chapter 2. Both Ñ1,1;2,2(ξ, η)
and Ñ3,2;2,2(ξ, η) have support in �1, while only Ñ3,2;2,2(ξ, η) has support in �2. In the diagram, the
coordinates of points in physical space are enclosed in parentheses.
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Table A.3 The ID array corresponding to the mesh in Figures A.1 and A.3 and a
scalar solution field. In the scalar case, ID consumes a global basis function number
and returns the corresponding equation number. Functions with equation number 0 are
associated with the lifting gh (i.e., strongly enforced Dirichlet boundary conditions)
and do not correspond to active degrees-of-freedom

A (global function number)

ID 1 2 3 4 5 6 7 8 9 10 11 12

P (equation number) 1 2 3 0 4 5 6 0 7 8 9 0

numbers sequentially, with any constrained (i, A) pair being mapped to 0. Thus, the ID array
relates equation number P to the corresponding degree-of-freedom, i , and global function
number A by way of

P = ID(i, A). (A.5)

Each component of the solution field may involve Dirichlet data prescribed on different
portions of the domain, but this does not create a conflict as long as the information is stored
properly in the ID array. For example, assume we wish to solve a problem of two-dimensional
linear elasticity on the domain from Figure A.3. We might wish to prescribe displacements
in the x-direction on the edge from (3, 1.5) to (3, 5), while prescribing displacements in the
y-direction on the edge from (−2, 0) to (0, 0). This would result in the ID array given in
Table A.4.

A.4 The LM array

The final connectivity array that we will consider is just a composition of the previous two.
The most common form of the LM (“location matrix”) array consumes a degree-of-freedom
number, i , a local basis function number, a, and an element number, e, and it returns a global
equation number,

P = LM(i, a, e) (A.6)

Table A.4 The ID array corresponding to the mesh in Figures A.1 and A.3 and a
vector-valued solution field. In the vectorial case, ID consumes a global basis
function number and a degree-of-freedom number and returns the corresponding
equation number. Combinations (i, A) with equation number 0 are associated with
the lifting gh

i (i.e., strongly enforced Dirichlet boundary conditions) and do not
correspond to active degrees-of-freedom

A (global function number)

ID 1 2 3 4 5 6 7 8 9 10 11 12

1 2 4 0 7 8 10 0 13 14 16 0
0 3 5 6 0 9 11 12 0 15 17 18

i =
{

1
2
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Table A.5 The LM array corresponding to the mesh in Figures
A.1 and A.3 and a vector-valued solution field. In the vectorial
case, LM consumes a degree-of-freedom number, a local basis
function number, and an element number, and returns the
corresponding equation number. Combinations (i, a, e) with
equation number 0 are associated with the lifting gh

i (i.e., strongly
enforced Dirichlet boundary conditions) and do not correspond to
active degrees-of-freedom

e (element number)

LM 1 2

16 0
17 18

a = 1

{
i = 1
i = 2

14 16
15 17

a = 2

{
i = 1
i = 2

13 14
0 15

a = 3

{
i = 1
i = 2

10 0
11 12

a = 4

{
i = 1
i = 2

8 10
9 11

a = 5

{
i = 1
i = 2

7 8
0 9

a = 6

{
i = 1
i = 2

4 0
5 6

a = 7

{
i = 1
i = 2

2 4
4 5

a = 8

{
i = 1
i = 2

1 2
0 3

a = 9

{
i = 1
i = 2

such that

LM(i, a, e) = ID(i, IEN(a, e)). (A.7)

With this definition, we can build the LM array shown in Table A.5 from the data in Tables
A.2 and A.4.

Alternatively, we can define LM as a two-dimensional array. To do this, define the number
of degrees-of-freedom in each control variable to be ned . For example, in linear elasticity we
usually have ned = d , where d is the number of spatial dimensions. Thus, define the local
equation number, p, corresponding to degree-of-freedom number i and local basis function
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number a to be

p = ned (a − 1) + i, (A.8)

where, clearly, we must be careful not to confuse this use of the symbol “p” here with
its previous usage as a polynomial order. With this definition, we can implement the two-
dimensional variant of LM such that

LM(p, e) = LM(i, a, e). (A.9)

The data structures and arrays necessary for implementing isogeometric analysis are almost
the same as for finite elements (see Hughes, 2000). Only the INC array does not have a direct
counterpart in standard implementations of finite elements.

Note

1. This convention is appropriate for strongly enforced Dirichlet boundary data. If Dirichlet
data are implemented weakly, all degrees-of-freedom are active and receive (positive)
equation numbers. In fluid mechanics, we have come to prefer weakly enforced Dirichlet
boundary conditions. For elaboration see Bazilevs and Hughes, 2007; Bazilevs et al., 2007b,
2008b.
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6:1.

Kuttler, U., Forster, C., and Wall, W.A. (2006). A solution for the incompressibility dilemma in partitioned fluid–
structure interaction with pure Dirichlet fluid domains. Computational Mechanics, 38:417–429.
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