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Conversion Factors*

Length:

1 ft ¼ 0.3048 m¼ 12 in¼mile/5280¼ nautical mile/6076¼ km/3281

1m¼ 3.281 ft¼ 39.37 in¼ 100 cm¼ 1000mm¼ 106 micron¼ 1010A
� ¼ km/1000

Mass:

1 lbm¼ 0.45359 kg¼ short ton/2000¼ long ton/2240¼ 16 oz (av.)

¼ 14.58 oz (troy)¼metric ton (tonne)/2204.63¼ 7000 grains¼ slug/32.2

1 kg ¼ 2.2046 lbm¼ 1000 g¼ (metric ton or tonne or Mg)/1000

Force:

1 lbf¼ 4.4482N¼ 32.2 lbm � ft/s2¼ 32.2 poundal¼ 0.4536 kgf

1N ¼ kg �m/s2¼ 105 dyne¼ kgf/9.81¼ 0.2248 lbf

Volume:
1 ft3 ¼ 0.02831 m3¼ 28.31 liter¼ 7.48 US gallons¼ 6.23 Imperial gallons¼ acre-ft/43,560

1US gallon¼ 231 in3¼ barrel (petroleum)/42¼ barrel (beer, USA)/31

¼ 4 US quarts¼ 8 US pints¼ 3.785 liter¼ 0.003785 m3

1m3 ¼ 1000 liter¼ 35.29 ft3

Energy:
1Btu¼ 1055 J¼ 1.055 kW � s¼ 2.93 � 10�4 kWh¼ 252 cal¼ 778.17 ft lbf¼ 3.93 � 10�4 hp � h
1 J ¼ 1 N �m¼ 1 W � s¼ 1 volt � coulomb¼ 9.48 � 10�4 Btu¼ 0.239 cal¼ 107 erg

¼ 6.24�1018 electron volt

kWh ¼ kilowatt � hour¼ 3.6 MJ¼ 3413 Btu

Power:

1 hp¼ 550 ft � lbf/s¼ 33,000 ft � lbf/min¼ 2545Btu/hr¼ 0.746 kW

1W ¼ J/s¼N �m/s¼Volt � ampere¼ 0.239 cal/s¼ 9.48 � 10�4 Btu/s¼ 1.34 � 10�3 hp

Pressure:

1 atm¼ 101.3 kPa¼ 1.013 bar¼ 14.696 lbf/in2¼ 33.89 ft of water¼ 29.92 inches of mercury

¼ 1.033 kgf/cm2¼ 10.33 m of water¼ 760mm of mercury¼ 760 torr

1 psi ¼ atm/14.696¼ 6.89 kPa¼ 27.7 in H2O¼ 51.7 torr

1Pa ¼N/m2¼ kg/m s2¼ 10�5 bar¼ 1.450 � 10�4 lbf/in2¼ 0.0075 torr¼ 0.0040 in H2O

Viscosity:
1 cp¼ 0.01 poise¼ 0.01 g/cm � s¼ 0.001 kg/m � s¼ 0.001 Pa � s

¼ 6.72 � 10�4 lbm/ft � s¼ 2.42 lbm/ft � hr¼ 2.09 � 10�5 lbf � s/ft2¼ 0.01 dyne � s/cm2

Kinematic viscosity:

1 cs¼ 0.01 stoke¼ 0.01 cm2/s¼ 10�6m2/s¼ 1 cp/(g/cm3)

¼ 1.08 � 10�5 ft2/s¼ cp/(62.4 lbm/ft3)

Temperature:

K ¼ �C+ 273.15¼ �R/1.8� �C+273: �C¼ (�F � 32)/1.8
�R¼ �F + 459.67� �F + 460¼ 1.8K: �F¼ 1.8�C+ 32

Ppm:

In the chemical and environmental engineering literature and in this book, ppmapplied to a gas alwaysmeans parts permillion by

volume or by mol. These are identical for an ideal gas, and practically identical for most common gases at 1 atm pressure. Ppm

applied to a liquid or solid almost always means parts per million by mass.

Psia, psig:

Psia means pounds per square inch, absolute. Psig means pounds per square inch, gauge, that is, above or below the local

atmospheric pressure.

*These values are mostly rounded. There are several definitions for some of these quantities, such as the Btu and the calorie; these differ from each other by up to

0.2%. For the most accurate values see American National Standard for Use of the International System of Units (SI): TheModernMetric System, IEEE/ASTM

10�-2002, ASTM, West Conshohocken, PA.
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PREFACE

This book is intended for university juniors in chemical or

environmental engineering. It explains the fundamentals of

physical and chemical equilibrium and how these relate to

practical problems in chemical and environmental engineer-

ing. The student will find that our understanding of equilib-

rium is based on thermodynamics. Nature attempts to min-

imize Gibbs energy; this book shows some of the details of

that minimization.

Traditionally, thismaterial is taught to chemical engineers

as a second course in thermodynamics, following a funda-

mental thermodynamics course, substantially identical to the

introductory thermodynamics course taught in mechanical

engineering. This book assumes that its readers have com-

pleted such a course. A one-chapter review of that material is

presented.

Physical and chemical equilibria present textbook authors

with great opportunities to exercise their mathematical form-

alisms, but these formalisms often obstruct intuitive under-

standing of equilibrium. Furthermore, this topic introduces

somematerial that is counterintuitive, and several properties,

such as fugacity and activity, that are not easily related

intuitively to the common experience of the student. As a

result, most B.S. graduates in chemical engineering have a

poor intuitive understanding of the relations between widely

used equilibrium estimating methods (K values, relative

volatility, equilibrium constants, liquid-liquid distribution

coefficients) and the fundamental thermodynamics behind

them. 1 certainly had little understanding of that topic when I

receivedmyB.S., Ch.E. In this book I have placed asmany of

those formalisms as I could in appendixes, and have added as

much descriptive material as possible to try to help the

student develop the intuitive connection between theworking

equilibrium tools of the chemical engineer and the thermo-

dynamic basis for those tools. All of the material in this book

can be presented in more mathematically compact and

abstract form than it is here. I have deliberately preferred

explanatory value to mathematical elegance. I have not

sacrificed rigor, although the rigorous treatments are often

in the appendixes.

I have been guided by three pedagogical maxims: (1)

“The three rules of teaching are: from the known to the

unknown, from the simple to the complex, one step at a time”

(author unknown to me); (2) “If you don’t understand

something at least two ways, you don’t understand it.” (Alan

Kay); and (3) “The purpose of computing is insight, not

numbers!” (Richard Hamming). I have devoted more space

and effort to determining numerical values of pertinent

quantities than do most authors. I believe students need to

develop a feel for how big? how fast? how hot? and how

much?

In many areas of the book the treatment in the text is

simple, with a more complex treatment outlined or discussed

in one of the problems. Students are encouraged to at least

read through all the problems, to see where more complex

and complete treatments are either described or referred to. In

many places in the book there are digressions, not directly

applicable to the main flow of the text, and problems not

directly related to chemical or environmental engineering.

Some of these show interesting related technical issues. I

include these because I think they help students build mental

bridges to other parts of their personal experiences. Themore

the students are able to integrate the new information in this

book into their existing knowledge base by such connections,

the more likely they are to retain it and be able to use it.

Currently most of the industrial calculations of the type

shown in this book are done by large computer programs.

Most of the “real-world” calculations have no analytical

solutions; they must be done numerically. I have not

xiii



introduced the algorithms for those calculations, or supplied

a CD allowing their use, because I consider it much more

important for students to learn the physical basis of those

calculations than to learn to use the programs. I use spread-

sheets for numerical solutions and encourage the students to

do so, because spreadsheets show the details plainly and their

programming is totally intuitive.

In preparing the second edition, I have corrected the

abundant typos and errors I know about from the first edition,

simplified the notation and some language from the first

edition, deleting some things that I liked but that the students

apparently found confusing, and changed some names to

match current usage (e.g. Gibbs free energy toGibbs energy).

I have added sections on Minimum and Maximum Work,

Adsorption, Hydrates and Equilibrium in Biochemical

reactions and The Bridgman Table. There are also some new

problems and examples.

I thankmy friend and colleague Geoff Silcox for his many

suggestions and comments.

I will be very grateful to readers who point out to me

typographic errors, incorrect equation numbers, incorrect

figure numbers, or errors of any kind. Such errors will be

corrected in subsequent editions or printings.

NOEL DE NEVERS

Salt Lake City, Utah
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NOMENCLATURE

SYMBOL DESCRIPTION SI DIMENSION

ENGLISH ENGINEERING

DIMENSION

A Helmholz energy =U� TS J Btu

a Helmholz energy per unit mass or mol = u� Ts J/mol or J/kg Btu/lbmol or Btu/Ibm

A, B, C constants in various equations various various

ai activity of species i ¼ fi=f
�
i

B second virial coefficient L/mol ft3/lbmol
�br partial molar second virial coefficient L/mol ft3/lbmol

C number of components in phase rule

CP molar or mass heat capacity at constant pressure J/(mol or kg)K Btu/(lbm or lbmol) � �R
CV molar or mass heat capacity at constant volume J/(mol or kg)K Btu/(lbm or lbmol) � �R
E Energy of all types J Btu

EOS equation of state

e reaction coordinate (Chapter 12)

fi fugacity of species i in a mixture Pa psia

G Gibbs energy =H� TS J Btu

g molar or specific Gibbs energy, h� Ts J/(mol or kg) Btu/(lbmol or lbm)

GE excess Gibbs energy J Btu

gE molar or mass excess Gibbs energy J/(mol or kg) Btu/(lbmol or lbm)

Hi Henry’s law constant for species i atm atm

H enthalpy J Btu

h molar or specific enthalpy J/(mol or kg) Btu/(Ibmol or lbm)

K equilibrium constant, VLE, yi/xi
K distribution coefficient, LLE, x

ð1Þ
i =x

ð2Þ
i

K equilibrium constant, chemical reactions

Kb boiling-point elevation constant �C/molal seldom used

Kf freezing-point depression constant �C/molal seldom used

Kp equilibrium constant based on pressures various various

Kf equilibrium constant correction using Lewis–Randall rule

Kf̂ equilibrium constant correction for nonideal solutions

Ksp solubility product various various

kij binary interaction coefficient

xvii



SYMBOL DESCRIPTION SI DIMENSION

ENGLISH ENGINEERING

DIMENSION

M molecular weight g/mol lbm/lbmol

M, N numbers used in derivation of phase rule

m mass kg lbm

m molality mol/kg not used

NBP normal boiling point �C or K �F or �R
ne mols of electrons transferred (electrochemical reactions)

ni number of mols of species i mol lbmol

pi vapor pressure of species i Pa psia

P pressure Pa psia

P number of phases in phase rule

Po power W Btu/s or hp

Pc critical pressure Pa atm

Pr reduced pressure¼P/Pc

Q heat quantity J Btu

R universal gas constant (see inside back cover) J/mol K Btu/lbmol �R
r radius m ft

S entropy J/K Btu/�R
s molar or specific entropy J/(mol or kg)�K Btu/(lbmol or lbm) � �R
stp standard temperature and pressure (1 atm, 20�C)
T absolute temperature K �R
Tc critical temperature K �R
Tr reduced temperature¼ T/Tc
t time s s

U internal energy J Btu

u molar or specific internal energy J/(mol or kg) Btu/(lbmol or lbm)

V volume m3 ft3

v molar or specific volume m3/(mol or kg) ft3/(lbmol or lbm)

V number of degrees of freedom in phase rule

VLE vapor–liquid equilibrium

W work J Btu

x, y, z distances in coordinate directions m ft

x, y, z stand for any variable various various

x mols formed by reaction mol lbmol

xi mol fraction of species i in liquid or solid

[X] concentration or activity of species X various various

x
ð1Þ
a value of variable x of species a in phase 1 various various

x� pure species or reference state value of x various various

�xi partial molar value of any variable xi various/mol various/mol

x* ideal solution or ideal gas value of x various various

yi mol fraction of species i in vapor or gas

z compressibility factor

a volume residual m3/mol ft3/lbmol

a relative volatility

d solubility parameter (cal/cm3)0.5 or (MPa)0.5 not used

d cross term in virial equation for mixtures L/mol ft3/lbmol

gi activity coefficient of species i

G free energy parameter in Chapter 11

u fractional surface coverage in adsorption

mi chemical potential of species i J/mol Btu/lbmol
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SYMBOL DESCRIPTION SI DIMENSION

ENGLISH ENGINEERING

DIMENSION

n stoichiometric coefficient (Chapter 12)

r density kg/m3 lbm/ft3

s surface tension N/m lbf/ft

F volume fraction in liquids

f fugacity coefficient

f̂i partial fugacity coefficient

v accentric factor

v angular velocity 1/s 1/s

Superscripts

0 and 1 base and correction terms in Pitzer-type EOS and functions derived from it

() designates phase number or name

o indicates standard state property.

– superbar indicates partial molar property
� on the symbol for a property (e.g. h�) refers to the value of the property in the ideal gas state. On an equation e.g

(Eq.7.22)� indicates and equation that is only applicable to ideal gases.
† on an equation e.g. (Eq. 7.23)† indicates that the equation is only applicable to ideal solutions.

Subscripts

Letter designates species a, b, c, d

Double designates interaction between two molecules of the same (ii) or different (ij) types

Number various, e.g., first and second states

NOMENCLATURE xix



1
INTRODUCTION TO EQUILIBRIUM

1.1 WHY STUDY EQUILIBRIUM?

The four basic tools used by chemical and environmental

engineers are

1. Material balances

2. Energy balances

3. Equilibrium relations

4. Rate equations

You may be surprised that the second law of thermody-

namics is not on the list.Wewill see later in this book that the

second law of thermodynamics plays a key role in phase and

chemical equilibrium. In fact, the principal use of the second

law for chemical and environmental engineers is its indirect

ulilization in computing the equilibrium states in process of

technical interest.

Figure 1.1(a) shows four of the five practically-identical

ammonia synthesis plants at the Donaldsonville, LA plant of

CF Industries. Each of these produces 1500 tons/day of

ammonia, for use in fertilizer. These five plants produce a

total of about 5 billion pounds per year of ammonia, equiv-

alent to 16 pounds per year for each person in the United

States. That fertilizer contributes in a major way to the

abundance, variety, and low cost of food in the United States.

Such plants are vitally important to the human race. They

produce the fixed nitrogen used in fertilizers throughout the

world. Roughly 80 pounds of a variety of fertilizers are

produced per year for each person on earth. If we lost this

supply of synthetic fertilizers and then all stopped eating

meat, we would be able to feed about 80% of the world’s

current population; the rest would starve [1]. Part (b) of the

same figure shows a very simplified flow diagram of such an

ammonia synthesis plant.

The overall reaction in the synthesis section of these

plants is

3H2 þ N2 , 2NH3 ð1:AÞ

in which the , symbol indicates a chemical equilibrium.

(Every equation in this book has a number. Those, like this

one, that are a specific description of a reaction or that are

parts of examples or in other ways specific to some situation

are number-letter combinations, like (1.A). Those that are not

specific, but general, have number-number combinations,

like (1.1).)

To design a new plant of this type or to analyze or

understand this kind of plant we would use the four tools

listed above, beginning with a material balance, determining

the flow rates and compositions of all the process streams.We

would need to know the chemical equilibrium in the reactor

to estimate the fraction of the feed that is converted in one

pass through the reactor according to Eq. 1.1 to determine the

recycle flow rate and the total flow rate to the reactor. Thenwe

would need to know the physical equilibrium in the separator

to know the temperature and pressure in the separator

required to separate most of that ammonia as a liquid from

the unreacted synthesis gas, which is recycled as a gas. An

energy balance would determine how much the exit temper-

ature of the reactor exceeds the feed temperature, and how

much heatmust be removed from the feed plus recycle stream

to get it to the proper temperature for the separator. Finally,

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
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(b)

(a)

Synthesis section

Recirculating compressor

A small bleed
stream
removes
impurities

Reactor
partly
converts
nitrogen
and
hydrogen
to
ammonia

Chiller cools
reactor exit
stream plus feed
stream enough
to condense most
of the ammonia

Separator
removes
ammonia as a
liquid, and
passes feed
plus recycle to
the reactor

Ammonia product
is removed as a
liquid

Product ammonia plus
unreacted feed is recycled
to the chiller, separator and
reactor

Feed preparation section

Feed preparation section
reacts air, methane and
water to produce a high-
pressure, 3/1
mixture (by mol) of
hydrogen and nitrogen, 
and rejects a waste
stream of carbon dioxide

FIGURE 1.1 (a) An aerial view of main part of the Donaldsonville, LA fertilizer complex of CF

Industries. (Courtesy of CF Industries.) (b) Very simplified flow diagram of an ammonia synthesis

plant. Only the synthesis section is discussed in the text. The feed preparation section is more complex

and expensive than the synthesis section. The seemingly illogical placement of the chiller and

separator so that they process the fresh feed plus the recycle is dictated by the fact that some feed

impurities dissolve in the liquid ammonia, and thus are prevented from entering the reactor. The

reactor converts only about 15% of the feed on each pass [2].
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we would use the rate equations of fluid mechanics to choose

the right pipe sizes, the rate equations of heat transfer to choose

the right type and size for the heat exchanger, the rate equations

for diffusion and chemical reactions to know how large the

reactormust be, and howmuch catalyst it must contain, and the

rate equations of mass transfer to design the separator.

In typical reactors of this type [2], only about 15% of the

feed is converted to ammonia on one pass through the reactor.

We would like to convert more, to limit the number of passes

through the reactor and thus limit the cost of recirculating the

unreacted gases. But the chemical equilibrium in Eq. l.A limits

the amount converted per pass. We will say much more about

chemical equilibrium and about this particular chemical reac-

tion in Chapter 12. Similarly, we would like to remove all of

the ammonia in the chiller-separator combination, but we can

remove only about 80% of it. Here the limitation is phase

equilibrium,whichwewill discuss in the next several chapters.

All four basic tools are needed to understand such a

process. Chemical engineers take courses in all these fields

and become skilled in the use of all these tools. Figure 1.2

shows a common environmental engineering problem:

Liquid benzene has leaked into an underground soil stratum.

To remove it (“remediate the site”), air is pumped through

the stratum. The benzene evaporates into the air, and is

brought to the surfacewhere it is treated to recover or destroy

the benzene. The same four tools are used for this problem:

the material balance to determine how much is to be re-

moved, the equilibrium relationship to determine the max-

imum amount that a unit mass or unit volume of air can

remove, the fluid flow rate equations to select the sizes of

the pumps and lines, and the diffusion equations to estimate

how close to equilibrium we would expect the exit gas to be.

Here, again, we see that although we would like a high

concentration of benzene in the air leaving the contaminated

soil, we can only get a maximum of about 10mo1%, limited

by the phase equilibrium between the liquid benzene in the

soil layer and the air we pass through it.

The order of application of the four tools is not necessarily

the same in both cases, but the tools are the same. Of the four

tools, this book concerns only equilibrium.

The role of equilibrium in these processes is summarized

in Figure 1.3. This shows that we want to go from where we

are to somewhere else (e.g., make ammonia or remove the

benzene contaminant), but that equilibrium acts like a

brick wall between here and there, allowing us to get only

part way.We use separation and recycle (Figure 1.1) or large

amounts of one stream (Figure 1.2) to overcome this

difficulty. To know the dimensions of our problem, we

FIGURE 1.2 A common environmental engineering problem, removal of liquid benzene contami-

nation from soils, to protect groundwater.

FIGURE 1.3 Equilibrium acts as a brick wall between where we

are andwherewewant to go. Knowingwhere thewall is allows us to

find ways around it, when the direct route is impossible.
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must know where the equilibrium limits are. This book is

about that.

1.2 STABILITY AND EQUILIBRIUM

A system is said to be at equilibrium if there is no change

with time in any of the measurable properties of the system.

For some systems we need to consider long time periods.

For example, a piece of iron or steel left on the ground will

turn completely to rust. If we look for changes in one day, we

will see practically none. For most naturally occurring

solids we need to view the changes on a geological time

scale rather than the human time scale to determine if they

are at equilibrium. For most of the problems of common

engineering interest the changes are much more rapid, and

we will consider a system to be at equilibrium if we can

detect no change in it in a few hours or days. For large systems

the changes may be small enough that we do not recognize

them. For example, the deep oceans of the world have

practically a uniform salt content. But it is not an equilibrium

salt content. If we turned off the slow currents that mix the

world’s oceans andwaited a fewmillion years,wewould see a

different distribution of salt, with the concentration increasing

slowlywith depth [3] (see Chapter 14). Similarly, if we turned

off the winds that mix the atmosphere and waited a few

million years, we would see significant chemical concentra-

tion gradients in the atmosphere; the winds that mix the

atmosphere keep its composition practically uniform (except

for its water vapor content, which is generally less than a few

mo1%, but which varies significantly with time and place).

Left to themselves, all systems in theworldmove toward a

state of phase and chemical equilibrium. How fast natural

systems move in the direction of phase and chemical equi-

librium depends on mass transfer rates (for phase equilibri-

um) and chemical reaction rates (for chemical equilibrium).

Thermodynamics tell us little about these rates. So knowing

the equilibrium state tells us in which direction the system

will go, and how far the system is from its equilibrium state

but not how fast it will move in that direction. The systems of

greatest interest to us are mostly not left to themselves. The

earth receives vast amounts of energy from the sun and that

energymovesmany systems on earth away from equilibrium;

when the external energy source is removed, the relentless

march toward equilibrium begins again. Our foods, fuels,

electricity, and autos are all far from equilibrium, mostly

based indirectly on solar energy. The equilibrium state for our

bodies is to be convertedmostly towater and carbon dioxide.

By using the sun’s energy, captured by plants to form foods,

we can stay away from this equilibrium state for a long (and

we hope interesting and useful) life (Figure 1.4). The oceans

and atmosphere are far from equilibrium, mixed by solar-

driven winds and currents. But for many systems of great

practical interest we may safely assume that the system is at

or very near equilibrium.

The fact that there is no measurable change does not mean

that the system is static. If we could see the atoms and

molecules of, for example, steam and water, we would see

that if the two phases are at equilibrium, there is a steady

interchange of water molecules between the two phases.

However, at equilibrium the flow of atoms or molecules in

one direction is exactly equal to the flow in the other direction

(as many water molecules per second pass from the water to

the steam as from the steam to the water). Similarly, in all

chemical reactions at equilibrium the concentrations of the

reactants and products are not changing with time. That does

not mean that the reaction has stopped. It means that the

forward and reverse reactions are occurring at exactly the same

rate, so that the net reaction rate (algebraic sum of the forward

and backward reaction rates) is zero. We do not need this

molecular view to make ordinary engineering calculations,

but later wewill see that it helps to form an intuitive picture of

the relations we will use. So in this book we will occasionally

refer to what is occurring at the molecular level to help us

understand what is going on in engineering-scale systems.

The several kinds of equilibrium aremost easily described

in terms ofmechanicalmodels (Figure 1.5). A ball resting in a

deep cup is in a stable equilibrium; if it is displaced a small

amount from its rest position and then released, it will return

to its original position (the bottom of the cup). This is a case

of equilibrium with the surroundings. If the cup were sud-

denly removed, the ball would fall freely until it encountered

the next obstacle, and then take up a new position of

equilibrium with respect to its new surroundings. Such

stability is also known in the field of chemical equilibria.

In an aqueous solution at room temperature, the equilibrium

product of the concentrations of hydrogen and hydroxyl ions

is� 10�14 (mol/L)2. If we disturb this equilibrium by adding

some acid or base, the concentrations will quickly readjust so

that this product is again � 10�14 (mol/L)2.

Human

Equilibrium with
oxygen in atmosphere

Carbon
dioxide gas

Water

Solids,
mostly
bones and
teeth

FIGURE 1.4 Equilibrium is not always desirable. If we bring a

human to equilibrium with the oxygen in the atmosphere we will

produce mostly water, carbon dioxide, and a solid residue made

mostly of bones and teeth. We work hard at preventing this

equilibrium, mostly by using the energy of the sun, concentrated

in our foods.
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If the cup in the above example is shallow then a very

small displacement may result in the ball returning to the

bottom of the cup, while a moderate-sized displacement

may get it out of the cup and allow it to fall to a lower

location. This is a metastable equilibrium. The typical chem-

ical example of such metastable equilibrium is a stoichio-

metricmixture of hydrogen and oxygen at room temperature.

We may change the temperature over a finite range without

any significant change in chemical composition. However, if

we raise the temperature of a small part of the mixture to a

moderately high temperature, for example, by a spark, the

system will convert to water explosively. Other examples are

the supersaturated solution, which will crystallize if a small

seed crystal is introduced, and the superheated liquid, which

boils explosively when a boiling chip is introduced.

If a small ball were balanced exactly on the top of a very

large ball, then any displacement of any measurable size in

any direction would cause it to roll down the surface of the

larger ball. This is an unstable equilibrium. We may think of

this as the limiting case of a metastable equilibrium, in

which the indentation in which the ball rests in the second

part of the figure becomes shallower and shallower, even-

tually becoming flat and then curved upward. This situation

exists in many nucleation phenomena. For example, as the

temperature of a superheated liquid droplet is increased,

eventually a “critical superheat temperature” is reached at

which the drop boils spontaneously. At this temperature the

drop is unstable and its own internal vibrations are appar-

ently enough to cause it to boil.

A piece of steel in contact with air and water is also an

example of this situation. The steel is actually rusting, so in

mechanical analogy we would says that this is the equivalent

of the small ball on top of the large ball. The rusting process is

very slow, equivalent to the small ball rolling down the

surface of the large one, but very, very slowly.

Neutral equilibrium is represented by a cylindrical pencil

resting on a perfectly flat table. If a pencil at rest is given a

small displacement, it does not return to its original position

of equilibrium but remains at the new one. A corresponding

phase equilibrium situation would be a mixture of ice

and water.

If one adds a little heat to such a system, some of the ice

will melt. When the heating process is stopped, the system

does not go back to its original ratio of ice to water but

remains at the new disturbed ice/water ratio.

1.3 TIME SCALES AND THE APPROACH

TO EQUILIBRIUM

In the process shown in Figure 1.1, we would expect the

stream leaving the reactor to be close to equilibrium, but not

at equilibrium. To get all the way to equilibrium would

require too large and expensive a reactor. It is more econom-

ical to use a smaller reactor and increase the amount recycled.

In the process in Figure 1.2, the air flow is slow enough that if

the benzene is well dispersed in the stratum, then the benzene

concentration of the air leaving the stratum would be very

close to equilibrium. Some natural processes, like flames,

come very close to equilibrium. Others, like geologic pro-

cesses, do not. Generally, small, fast processes come close to

equilibrium; slow, large ones do not.

In spite of this, we most often compute the equilibrium

conditions for processes, because these set the limits of what

is possible. Then we must decide on the basis of economics

how close to equilibrium wewant to come and howmuch we

arewilling to pay, which generallymeans how big the reactor

or separator must be.

1.4 LOOKING AHEAD, GIBBS ENERGY

In Chapter 4 we will show, on the basis of rigorous thermo-

dynamics, that all natural systems try to lower their Gibbs

energy:

Gibbs energy ¼ H�TS

Gibbs energy per mol or per unit mass ¼ h�Ts
ð1:1Þ

The symbols are all defined in the table of nomenclature.

This says that natural processes proceed toward the lowest

Gibbs energy consistent with the constraints imposed on

them (e.g., the temperature, the pressure, the starting materi-

als). At equilibrium natural systems are, in effect, at the

bottomof aGibbs energy basin, inwhich for any infinitesimal

change in any direction the change in Gibbs energy is zero,

and for any finite change the Gibbs energy increases. The

result is borrowed from Chapter 4:

FIGURE 1.5 Mechanical models of stable, metastable, unstable,

and neutral equilibrium.
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For any differential equilibrium change, chemical or

physical or both, at constant T and P,

dGsys ¼ 0 ð4:8Þ

This whole book is simply the working out of the details of this

statement. We will refer back to this idea often. As the details

become complex, remember that they all rest on this one idea.

In dealing with phase or chemical equilibrium we may

think of the situations in Figure 1.5, with the downward

direction (the direction of gravity) replaced by the direction

of decreasing Gibbs energy1.

1.5 UNITS, CONVERSION FACTORS,

AND NOTATION

In this book both English and SI units are used. As much as

possible we use those units most commonly used in the

United States in that particular area of engineering. Histor-

ically, scientists have used SI or metric (often the cgs version

of metric), while U.S. engineers have used the English

engineering system. In most practical equilibrium calcula-

tions we can ignore the effect of gravity, so that the confusion

over weight and mass generally does not arise. Similarly, we

have few accelerated systems, so that force and mass seldom

appear in the same equation. For that reason, students have

less trouble with units in this course than they do, for

example, in fluid mechanics, where they first encounter the

problems with force, weight, and mass.

Some students do have trouble with concentration units.

Phase and chemical equilibrium inevitably lead to mixtures,

and we need suitable ways of describing those mixtures.

In chemical equilibrium calculations, as in almost all of

chemistry, the normal unit of mass is the mol (sometimes

called a gram mol),

�
mols of

substance x

�
¼ 6:023� 1023

�
atoms or molecules

of substance x

�

ð1:2Þ

So, for example, a mol of water (H2O) is 6.023� 1023

molecules of water. The molecular weight of water is M ¼
18g/mol so that the mass of a mol of water is 18g. (A better

name for this quantity would be the molecular mass, because the

gramisaunitofmass.Butmolecularweight is thecommonname.)

In U.S. engineering work the unit of mass is the pound

mass, written lbm. We regularly use the pound mol written

Ibmol:

�
lbmol of

substance x

�
¼ 453:66 � 6:023� 1023

�
atoms of

substance x

�

ð1:3Þ
Thus, a poundmol ofwater is 453.6mol (1 lbm¼ 453.6 g),

and we may write that for water

Mwater ¼ molecular weight of water ¼ 18 g=mol

¼ 18 1bm=lbmol ð1:4Þ
The relation between mass and mols is

mols of i ¼ mass of i

molecular weight of i
ni ¼ mi

Mi

ð1:5Þ

where ni is the number of mols of i, mi is the mass of i, andMi

is the molecular weight of i. With this definition, we can

further define

mol fraction of ið Þ ¼ xi

¼ mols of i in mixture

total mols of all substances in mixture

¼ niP
all substancesnj

ð1:6Þ

Themol fraction is dimensionless; all themol fractions in any

mixture sum to 1.00. Themol fraction of i is equivalent to the

fraction of the molecules (or atoms) in the mixture that are of

species i. This is the most widely used concentration unit in

equilibrium calculations. By common convention the mol

fraction of i in solids and liquids is given the symbol xi, while

that in the gas phase is given the symbol yi.

One also regularly sees concentrations by mass (or

weight); for example,

mass fraction of i ¼ xi

¼ mass of i in mixture

total mass of all substances in mixture

¼ miP
all substancesmj

ð1:7Þ

and the symbol xi is often used for this as well.

The concentrations of solutes in dilute solutions (of gas,

liquid, or solid) are regularly expressed in parts per million

(ppm). In the United States, ppm is almost always by volume

ormol if it is concentration in a gas, and bymass or weight if

it is a concentration in a liquid or solid. (For a liquid or a solid

with a specific gravity of 1.00, likewater or dilute solutions in

water, ppm is the same as mg/kg, which is also widely used.)

This mixed meaning for ppm is a source of confusion when

both liquid or solid and gas concentrations appear in the same

1 For most of the past 100 years the quantity we now call the Gibbs energy

was called the Gibbs free energy. When you encounter this older name

recognize that the two names describe the same quantity.
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problem. (The same is true of parts per billion (ppb), which

equals mg/kg for a solid or liquid material with specific

gravity of 1.00.)

Example 1.1 One kg of sugar solution is made of 990 g of

water, M¼ 18 g/mol, and 10 g of dissolved sugar (sucrose,

C12H22O11), M¼ 342.3 g/mol. What is the sucrose concen-

tration, expressed in mass fraction, mol fraction, molality,

and ppm? The mass fraction is

mass fraction of sucroseð Þ ¼ xiðby massÞ

¼ miP
all substancesmj

¼ 10g

10gþ 990g
¼ 0:01 ¼ 1% ð1:BÞ

This is also the weight fraction. We would say that this is

1wt% sugar (the common expression) or 1mass% sugar

(which we rarely hear).

The mol fraction is

mol fraction of sucroseð Þ ¼ xiðby molÞ

¼ niP
all substancesnj

¼

10g

342:3 g=mol

10g

342:3 g=mol
þ 990g

18g=mol

¼ 0:0292 mol

0:0292 molþ 55:0 mol
¼ 5:31� 10�4 ¼ 0:0531%

ð1:CÞ
Mol% is 100 times the mol fraction, so we would say that

this is 0.0531mol%. For dilute solutions, like this one, we

could also say that

�
mol fraction

of solute

�
�

�
mass fraction

of solute

�
� Msolvent

Msolute

� 0:01
18

342:3
¼ 5:26� 10�4 ¼ 0:0526%

ð1:DÞ
where � means approximately equal (see Problem 1.2).

The molality, a concentration unit widely used in

equilibrium calculations, is defined as

molality¼ mols of solute

kg of solvent
¼

10g

342:3 g=mol

0:99 kg solvent

¼ 0:0295 molal ð1:EÞ

For solutions of solids and liquids (but not gases) ppm

almost always means ppm by mass, so 1%¼ 10,000 ppm.&
(The & symbol indicates the end of an example.)

The concentrations used in Example 1.1 do not depend

on the density of the mixture and do not change if we change

that density by changing the temperature or pressure of the

mixture. The mass and mol concentrations and molarity,

which are also widely used, do depend on the density.

Example 1.2 The density at 20�C of 1.0wt% sucrose

solutions in water is 1.038143 g/cm3 [4]. Using this value,

find the mass and mol concentrations and molarity of the

solution in Example 1.1.

In Example 1.1 the mass was chosen to be 1.00 kg, so that

V ¼ m

r
¼ 1 kg

1:038 g=cm3
� 1000 g

kg
� m3

106cm3

¼ 0:9634� 10�3m3 ¼ 0:9634L ð1:FÞ

The mass concentration is

mass concentration of sucroseð Þ ¼ mass of sucrose

volume of solution

¼ 10 g

0:9634 L
¼ 10:38

g

L
ð1:GÞ

The mol concentration is

mol concentration of sucroseð Þ ¼ mols of sucrose

volume of solution

¼
10 g

342:3 g=mol

0:9634 L
¼ 0:0303

mol

L
ð1:HÞ

This is also the definition of the molarity, so this is an

0.0303 molar solution of sucrose in water. &

These three concentration measures (or their English en-

gineering unit equivalents) arewidely used in process calcula-

tions in theUnitedStates.Theyare seldomused in equilibrium

calculations and will be seldom be used in this book.

Unfortunately, there is no agreement among various

authors about symbols to be used in thermodynamics or in

equilibrium. All symbols used in this text are shown in the

table of nomenclature. The general convention is to use

uppercase letters for externally imposed conditions or

conditions applying to whole systems, such as P, T and

V, U, H, S, and to use lowercase letters for specific (or per

unit mass or per mol) properties, such as v, u, h, s. For

describing a property of one component in one of several

phases in equilibrium, x
ð1Þ
i refers to the property x of

component i in phase 1. If there is no possible confusion

about which phase is meant, the phase superscript is

dropped. This is done for mol fractions in vapor-liquid
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equilibrium, where we use yi and xi for the mol ftractions of

component i in the gas and liquid phases, respectively, and

drop the superscript.

1.6 REALITY AND EQUATIONS

Reality is complex, and our measurements of it are sparse

and imperfect. When we want to know some piece of

physical data, such as the density of water at some specified

T andP, it is very unlikely that wewill find in the literature a

direct measurement of the density at that T and P. If the

intended use of the data is crucial enough, we may be

justified in making a direct measurement, but doing so to

high precision is expensive. Instead, we normally look at

tables and charts of such values. These do not represent

direct measurements at all those values of T and P. Rather,

they are values calculated from data-fitting equations,

which are adjusted so that they reproduce the existing

measurements to within its experimental uncertainty. These

equations are then used to make up the useful tables, at even

values of T and P, for example, the steam tables [5, 6], In the

study of equilibrium, we could measure all the values we

need, which are normally concentration values in phases in

equilibrium (although that can be expensive for extreme

values of T and P and/or for materials which are toxic or

explosive). Instead, we normally try to find an equation that

will reproduce the available experimental data and then use

it to interpolate or extrapolate to the values we need. Much

of this book is devoted to developing such equations.

Normally, thermodynamics will show us that only some

forms of such equations are possible and that others are not.

Once we know the possible forms, we will then need many

fewer expensive experimental data points to make a satis-

factory predictive equation than we would if we did not

know the possible forms and used simple, brute-force

methods to find data-fitting equations.

In principle, we could program the original experimental

data into our computers and let the computers decide how to

interpret them. That would be very cumbersome. Instead, we

almost alwaysfindsomekindofequation to represent thedata,

and let our computers use that equation. Much of this book is

devoted to showing the forms of the equations we use in our

computers, and showing the reasons we choose those forms.

1.7 PHASES AND PHASE DIAGRAMS

Phase equilibrium deals with phases, so we need a working

definition of a phase. A phase is a mass of matter, not

necessarily continuous, in which there are no sharp disconti-

nuities of any physical properties over short distances. An

equilibrium phase is one that (in the absence of significant

gravitational, electrostatic, or magnetic effects) has a

completely uniform composition throughout. In this book

we will deal almost exclusively with equilibrium phases.

All gases form one phase. All gases are miscible, so that

there can be only one gas phase present in any equilibrium

system at any time.

Liquids can form multiple phases. Figure 1.6 shows a

graduate cylinderwith layers of benzene,water, andmercury.

These are all at equilibrium (because we have stirred them

vigorously and then let them settle!). The right-hand part of

the figure shows that within each layer the density is constant,

but that there are sharp discontinuities in density at the

borders of the layers. These are three separate phases.

Hildebrand et al. [7] show an example of 10 liquid phases

in equilibrium: hexane, analine, aqueous methyl cellulose,

aqueous polyvinyl alcohol, aqueous mucilage, silicone oil,

phosphorus, fluorocarbon, gallium, and mercury. That is

probably the record. But examples with three separate liquid

phases, as shown in Figure 1.6, can be constructed in any

laboratory in minutes. (Four is not particularly difficult, but

after that it gets harder.)

Homogeneous solids are single phases, for example dia-

mond, pure metals, pure mineral crystals. Some apparently

simple solids are not single phases, such as cast iron, steel,

wood, bacon, grass. One can observe the “grain” in wood,

showing that it consists of layers of at least two different

compositions, and can similarly observe the fat and meat

FIGURE 1.6 Appearance and elevation–density plot for three liquid phases at equilibrium.
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layers in bacon.With a small microscope one can observe the

same sort of thing in grass, and with a stronger microscope

one can observe it in cast iron. Large numbers of pure solid

phases can be in thermodynamic equilibriumwith each other;

they generally do not mix significantly. (Many metals are

solid solutions, such as brass, which is a solution of copper

and zinc, and bronze, which is a solution of copper and tin.

These are formed by melting the metals together, in which

state they dissolve each other, and then cooling. Most steels

are mostly iron, with some dissolved carbon, and small

amounts of other metals.)

Figure 1.7 shows a beaker of water with a layer of CuSO4

crystals on the bottom. The crystals are slowly dissolving and

diffusing through the water. The solution is one phase. It has

no sharp discontinuities of properties. However, it is not of

uniform chemical composition, or uniform density, color,

and so forth. It is not an equilibrium phase. If we wait long

enough (years!) for diffusion to make it uniform, it will

become an equilibrium phase.

Here the CuSO4 crystals are all one phase, although they

are not continuous. They lie around in a pile at the bottom of

the cylinder, but within any one crystal the properties are

uniform and the properties of one crystal are the same as the

properties of the next crystal.

Throughout this book we will present many forms of

phase diagram.A phase diagram is a representation on some

set of thermodynamic coordinates (many combinations of

such variables are used in phase diagrams) showing which

phase we would expect to find at a given set of values of the

coordinates. The simplest phase diagram, and the one stu-

dents are familiar with, is a vapor-pressure curve. Figure 1.8

shows the vapor-pressure curve for water.

In this figure we see that for pure water at combinations

of temperature and pressure above and to the left of the

vapor-pressure curve, only liquid water can exist. For com-

binations below and to the right of the curve, only gaseous

water (steam or water vapor) can exist. Both can coexist at

temperatures and pressures on the line (the vapor-pressure

curve or equilibrium curve). Much more complex phase

diagrams exist. Figure 1.9 shows the same diagram as

Figure 1.8, extended to the left to �15�C, and showing only
very low pressures. This takes us below the freezing tem-

perature of water, and solid water (ice) appears on the

diagram. Instead of two regions (two phases), we have three.

But, again, we see that for pure H2O at any temperature and

pressure not on one of the curves, only one phase may occur,

either solid (ice), liquid (water), or vapor (water vapor or

steam).

If, instead of going to lowpressures,we ask howFigure 1.8

looks at high pressures, we discover some surprises.

Figure 1.10 shows the same data as in Figures 1.8 and 1.9,

Pure water

Blue solution

Crystals

FIGURE 1.7 Copper sulfate crystals dissolving slowly in an

unstirred graduate cylinder.

FIGURE 1.8 Vapor liquid equilibrium curve for water–steam, in

arithmetic and logarithmic coordinates [6]. The range of values

shown is so large that on arithmetic coordinates the low-temperature

values disappear into the horizontal axis.On a logarithmic scale they

are all visible.
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but also shows the five other forms of solid water (ice), which

exist only at very high pressures. These temperature and

pressure combinations are far beyond those near the surface

of the earth, so these solid forms exist only in high-pressure

research laboratories (at least on this planet).

We have examined the phase diagram for water in more

detail than seems needed at this point. However, it is worth

yourwhile to study it to see that for even an apparently simple

substance like H2O the range of possible phase behavior is

large.Observe that Figures 1.8 and 1.9 aremerely expansions

of part of the horizontal axis of Figure 1.10. Most of the time

we will use Figure 1.8; we will refer to it occasionally in the

rest of this book.

1.8 THE PLAN OF THIS BOOK

The first three chapters of the book are an introduction and

review of basic thermodynamics and of very simple equilibri-

um. Chapters 4–7 set out the basic thermodynamics of equi-

librium. Chapters 8–10 deal with the most common type of

problem, vapor-liquid equilibrium. Chapter 11 deals with other

kinds of phase equilibrium. Chapters 12–13 deal with chemical

equilibrium, and Chapters 14,15 and 16 deal with a variety of

related topics. AppendixA contains the data tables that are used

for examples and homework problems. Appendixes B–G con-

tain derivations and other material that supports the material in

main text. It is placed there to keep the treatment in the texi as

simple as possible. Appendix H contains answers to some of

the problems.

1.9 SUMMARY

1. Equilibrium is one of the four basic tools of the

chemical or environmental engineer. It is as important

as the others, and is needed for a wide variety of

engineering work.

2. As we will see later, nature minimizes Gibbs energy.

A state of equilibrium is one at which the change of

Gibbs energy for any infinitesimal change is zero

because the Gibbs energy of the system is the lowest

value possible, subject to the external constraints on the

system.

3. Equilibriam states are stable, unstable, or neutral. On a

molecular level all equilibria are dynamic; that is of
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FIGURE 1.10 Phase diagram for water at high pressures, show-

ing the five solid forms that do not exist at normal pressures. The

pressures shown are so high that the normal vapor–liquid equilib-

rium curve (Figure 1.8) disappears into the horizontal axis. (The

critical pressure, the highest value on that curve, is 3204 psia

¼ 22.06MPa¼ 0.022GPa. It would barely be visible above that

line, and it occurs at 374�C, far to the right of the figure. At 150�C,
the vapor pressure, p¼ 0.5MPa¼ 0.0005GPa, indistinguishable

from the horizontal axis.) (From Van Wylen, G. J., and R. E.

Sonntag. Fundamentals of Classical Thermodynamics, ed. 3.

� 1985, New York: Wiley, p. 40. Reprinted by permission of John

Wiley and Sons.)

FIGURE 1.9 Extension of Figure 1.8 (arithmetic part only) to

temperatures below the normal freezing point of water, showing the

formation of ice [5, 6]. This is all at low pressures; the maximum

pressure shown is � 0.014 bar. The rightmost curve is the same as

part of the curve in Figure 1.8, simply drawn on a much expanded

pressure scale.
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little concern at the level of most engineering

problems.

4. Wewill workmostly with molar units of mass, andmol

fractions as concentration units.

5. Wewill deal with a variety of phase diagrams, of which

the vapor-pressure curve is the simplest.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (�) on the problem number indicates that

the answer is in Appendix H.

1.1 List the courses in your universitywork that correspond

to the four basic tools of the chemical and environ-

mental engineer.

1.2 Show the derivation of Eg. 1.D. Start with Eq. 1.C and

multiply both numerator and denominator of the

fraction byMsolvent. Then note the relative magnitudes

of the two terms in the denominator.

1.3� Repeat Examples 1.1 and 1.2 for a solution made up of

5 g of sucrose and 995 g of water. The reported density

of this solution at 20�C is 1.0178 g/cm3.

1.4 The sucrose solution in Examples 1.1. and 1.2 is now

heated enough that its volume expands to 105% of its

volume at 20�C.At this higher temperaturewhat are the

values of all the concentration measures in Examples

1.1 and 1.2?

1.5 Sketch the equivalent of Figure 1.10, and on it sketch

the average P-T curve for the earth. Does it intersect

the region in which the high-pressure forms of ice

occur? Take the temperature of the earth as 15�C at

the surface, increasing with depth by about 30�C/km.

The pressure inside the earth (near the surface)

increases by about 30MPa/km.
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2
BASIC THERMODYNAMICS

This chapter assumes that the reader has completed a course

in basic mechanical engineering (ME) thermodynamics.

It presents only a review and summary, to be referred to

later in the text. A basic ME thermodynamics class is mostly

about devices using pure substances, such as steam power

plants, refrigerators, heating systems, and internal combus-

tion engines (treated by the “air standard Otto cycle,” which

allows one to use pure-substance thermodynamics). Chem-

ical engineering thermodynamics extends that approach to

include devices treating mixtures (e.g., all separation pro-

cesses like distillation or crystallization) and chemical

reactors. The principles are the same, but the details and the

viewpoints are often different.

In an elementary ME thermodynamics course the empha-

sis is on applying tables of thermodynamic properties, such

as the steam tables, to a variety of processes. In this book the

emphasis is on how we determine the values in those tables

and howwe produce the corresponding tables (or the parts of

the tables we need) for mixtures. The subsequent courses in

chemical engineering process design rely on the material in

this book the same way that an elementary ME thermody-

namics course relies on the steam tables.

2.1 CONSERVATION AND ACCOUNTING

Much of engineering is simply careful accounting of things

other than money. The accountings are called mass balances,

energy balances, component balances, momentum balances,

and so on. Any balance begins by choosing some carefully

specified region of space, called a system or a control volume.

The rest of the universe, outside the system is called the

surroundings, (Figure 2.1). For the system we can list all the

ways that the amount of some material, property, or set of

individuals can be changed, add them with the proper alge-

braic signs, and thus have an accounting equation for the

system of the form

accumulation ¼ creation�destructionþ flow in

�flow out
ð2:1Þ

This general balance equation and its variants form the

basis of much of chemical engineering. If the creation and

destruction terms are zero, then it is called a conservation

equation. If they are not zero then Eq. 2.1 has no common

name, but is widely used, for example, with chemical reac-

tions, where it allows us to compute the changes in various

chemicals as a chemical reaction destroys one species and

creates another. Remember that it applies only to a system

with properly defined boundaries. All balances can be chan-

ged to rate equations by dividing both sides by some time

interval, dt:

accumulation rateð Þ ¼ creation rateð Þ� destruction rateð Þ
þ flow rate inð Þ� flow rate outð Þ

ð2:2Þ

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
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One also sees this equation and its later variants in the

form

accumulation rateð Þ ¼
X

creation-destruction ratesð Þ
þ
X

flow rates in and outð Þ
ð2:3Þ

which is the same as Eq. 2.2, but in a mathematically more

formal arrangement. In it we assign a positive value to

creation and to flows in and negative values to destruction

and flows out. This equation allows for multiple creations

and destructions (e.g., multiple simultaneous chemical

reactions) and multiple flows in and out. Almost every

chemical engineering problem involves this equation either

explicitly or implicitly. (We normally use the term system

for some container with zero or a finite number of entrances,

and the term control volume for some region in space that

can have flow in or out at every point on its boundary. The

balance equations are the same for either, with the sum of

inflow flow terms in Eq. 2.3 replaced by a surface integral

for a control volume.)

2.2 CONSERVATION OF MASS

One of the great human discoveries is thatmass is conserved.

According to Einstein’s famous E¼mc2, there is a small

conversion of mass to energy in all energy transformations

(for example, your coffee cooling in its cup). This effect is

small enough that, except for nuclear weapons or nuclear

reactors, we can ignore it and slate as a general principle that

mass obeys the general balance equation, with creation¼
destruction¼ 0. This is called the law of conservation of

mass, the principle of mass conservation, or the continuity

equation. There is no known way to derive it from any prior

principle; it rests solely on its ability to predict the result of

any experiment designed to test it.

Mass can exist in a variety of forms, for example, solid,

liquid, gas, and some other bizarre forms, and can convert

from one to the other. When liquid water evaporates we see

the liquid disappear, but we have no visual evidence that the

mass of the surrounding air increased by the mass of the

water vapor thus produced. Lavoisier made the first clear

statement of the law [1], and demonstrated that if processes

similar to the evaporation of water were carried out in a

closed glass jar resting on a balance, there was no loss of

mass; the visiblewater had changed to invisiblewater vapor,

but the mass of the contents of the jar did not change.

The idea that mass is conserved seems quite obvious to us,

but it was not known or believed by the human race before

about 1780. The key discovery was that gases had mass,

which was not intuitively obvious to scientists or the public

before then. For some properly chosen system, we can

restate Eq. 2.1 for mass as

accumulation of

mass in the system

� �
¼ flow of mass

into the system

� �

� flow of mass

out of the system

� � ð2:4Þ

In symbols

dmsystem ¼ dmin�dmout ð2:5Þ

or

dmsystem

dt
¼ dmin

dt
� dmout

dt
¼ _min� _mout ð2:6Þ

The overdot indicates a flowrate. For systems with only

one chemical species we usually use Eqs. 2.5 and 2.6 as

written. However, in chemical engineering we very often

deal with mixtures and with chemical reactions. For those

we usually choose our unit of mass as onemol or one pound

mol (lbmol) (¼ 454mol). The relation between mass and

mols, referred to often in this book, is given by Eq. 1.5. If we

solve that equation for mi and substitute everywhere in

Eqs. 2.5 and 2.6, we find that all theMs cancel, and we have

the same equations for mols, with mis replaced by ni,s.

However, mols are not conserved. For example, in the

reaction

3H2 þN2 , 2NH3 ðl:AÞ

the number ofmols goes from 4 to 2. So if wewrite a general

balance equation for mols, we must retain the creation and

destruction terms, and the resulting equation is not a con-

servation equation.

We can now summarize the law of conservation of

mass: It is an experimental law, not derivable from other

laws, but thoroughly confirmed by experiment. It simply

states that an abstract quantity called mass is conserved.

System
or
control
volume

Surroundings

FIGURE 2.1 The system boundaries divide the whole universe

into two parts: the system and the surroundings.
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Mass obeys the general balance equation with neither

creation nor destruction. From that statement we can write

a very general mass balance, and then the more widely

used simpler forms.

2.3 CONSERVATION OF ENERGY; THE FIRST
LAW OF THERMODYNAMICS

Another of the great human discoveries is that energy is

conserved. The restriction concerningE¼mc2 applies to this

statement as well, but except for nuclear weapons or nuclear

reactors, we can state with almost perfect accuracy as a

general principle that energy obeys the general balance

equation, with creation¼ destruction¼ 0. This is called the

first law of thermodynamics, the principle of conservation of

energy, the energy principle, or the energy balance. There is

no known way to derive it from any prior principle; it rests

solely on its ability to predict the result of any experiment

designed to test it.

Like mass, energy can exist in a variety of forms, which

we now call kinetic, potential, internal, electrostatic,

magnetic, and surface. Before about 1800 the human race

did not know that these were all the same thing in different

forms. The principal discoverers of that fact were Mayer,

Rumford, and Joule [2]. Like the law of conservation of

mass, the law of conservation of energy seems intuitively

obvious to us, but it was far from obvious to the scientists

or the public before about 1800. Furthermore, there is no

satisfactory simple, verbal definition of energy. The defi-

nitions can be simple or accurate, but not both. Simple

definitions like “the ability to do work or warm things” are

useful, but inaccurate or incomplete. The technically

accurate definition is that energy is an abstract quantity,

which can appear in various forms, which can be con-

verted from one form to another subject to some restric-

tions, and which appears to be conserved in all energy

transactions.

For some properly chosen system, we can restate

Eq. 2.1 as

accumulation of

energy in the

system

0
@

1
A ¼ flow of energy

into the system

� �

� flow of energy

out of the system

� � ð2:7Þ

If we let E stand for energy, then the energy balance, in

symbols, it is the same as themass balance, Eqs. 2.5 and 2.6,

with all ms replaced by Es.

Mass can be transferred from one body to another by

cutting a piece off of one and gluing it onto another (or

pouring a liquid from one container to another), and that

mass takes its energy of the above forms with it in such a

transfer. In addition, bodies can exchange energy in the

form of heat and work, which do not involve any transfer of

mass.

In ME thermodynamics and in fluid mechanics, changes

in kinetic energy and potential energy are often important,

and we normally write

E ¼ Uþ kinetic energyþ potential energy ð2:AÞ

But in most equilibrium problems we can ignore all forms

of energy except internal energy (but see Chapter 14!) and

state

E ¼
energy of

some mass

of matter

0
@

1
A ¼ Uþ

other forms

we will

ignore in

most

of this book

0
BBBB@

1
CCCCA � U ¼ mu

ð2:8Þ

where u is the specific internal energy or internal energy

per unit mass, with dimensions Btu/lbm or J/kg, and U is

the internal energy of some body, the product of the

specific internal energy and the mass, with dimensions

Btu or J. Intuitively, we may think of the internal energy as

the energy due to being hot (relative to some arbitrary

datum temperature) and the energy due to being able to

cause a heat-releasing chemical reaction. If we ignite a

mixture of gasoline and air in a constant-volume, adiabatic

container, it will undergo a chemical reaction forming

carbon dioxide and water. When the reaction is over (in

a few milliseconds), the mixture will be much hotter (have

a much higher temperature) than the starting mixture did.

But its internal energy will not have changed; it will have

converted “potential to undergo a heat-releasing chemical

reaction” internal energy to “hotness” internal energy,

without changing their algebraic sum. We may also think

of this as changing from energy stored in chemical bonds

within molecules to energy present as motion of the

molecules; the former is “potential to undergo a heat-

releasing chemical reaction” energy, the latter “hotness”

internal energy. This is only an intuitive approximation,

but it is useful.

Tables of thermodynamic properties are always in terms

of specific properties (properties per lbm, or kg, or per mol).

For systems that involve only one chemical species (e.g.,

steam power plants, refrigerators, the other systems in ME

thermodynamics), the equations and tables are all per unit

mass (lbm or kg). However, in chemical engineering ther-

modynamics, which deals with mixtures and with chemical

reactions, we most often choose our unit of mass as one mol

or one pound mol.
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Writing the balance for energy, using Eq. 2.8 we find

dðmuÞsystem ¼
X

uin or out dðmÞin minus out

þ
X

dQin minus out þ
X

dWin minus out

ð2:9Þ

where dQ stands for a heat flow into the system and dW stands

for external work done on the system (see Figure 2.2).

Equation 2.9 would be a perfectly satisfactory form,

except for a complication in the work term. When some

amount of mass dm crosses the system boundary, it requires

an amount of work of Pvindmin to force it across the system

boundary. This is called the injection work, flow work,

injection energy, and some other names. If we divide the

work term into this injection work, and all other types of

work, we can rearrange Eq. 2.9 into

dðmuÞsystem ¼
X

ðuþPvÞdmin minus out þ
X

dQin minus out

þ
X

dWin minus out excluding injection work

ð2:10Þ

We normally see this equation with the “excluding injection

work” deleted, because it is assumed that the reader knows

that. Two special cases of Eq. 2.10 arewidely used. If there is

no flow of matter in or out, which means that we are

considering some closed system containing a fixed mass of

matter, then Eq. 2.10 becomes

dUsystem ¼
X

dQin minus out þ
X

dWin minus out ð2:11Þ

This is most often written as (Figure 2.3)

dU ¼ dQ� dW ð2:12Þ

The reason for the � sign is that we regularly see this

equation with a plus or a minus before the dW. In almost all

uses of the general balance equation, all flows in arc positive

and all flows out are negative. But thermodynamics was

originally developed around the steam engine, whose net

flows were of heat in and work out. The early thermodyna-

micists defined heat as positive flowing in and work as

positive flowing out. That leads to a � dW in Eq 2.12.

Recently many thermodynamics authors have decided that

this causes students more confusion than it is worth, and

assert that we should follow the conventions in the general

balance equation, not the historical convention, so they write

Eq. 2.12with a þ dW. This book follows the latter usage, and

takes work, heat flow, and mass flow into the system as

positive, thus writing Eq. 2.12 with a þ dW. The reader

should remember that many books define work leaving the

system as positive and write a minus dW in Eq. 2.12.

Equation 2.12 is often called the chemist’s version of the

first law. It is entirely appropriate for chemical reactions in

closed systems, and will be used often in this book. The other

widely used simplification of Eq. 2.10 is the steady-state,

steady-flow form.We begin by dividing both sides by dt, thus

converting it to the rate form. If we apply it to some system or

device, for example, the turbine in a steam power plant, with

a steady flow in and out, then the d(mu)system term must be

zero, because there is no change with time of the energy

content of the system. We remember that dm/dt¼ _m, so

0 ¼
X�

uþPvÞ _min minus out þ
X

_Qin minus out

þ
X

_W in minus out excluding injection work ð2:13Þ

Here _Q is the heat flow rate, Btu/s or cal/s or (J/s¼watt).

Logically, _W should be called the work flow rate, but instead

we use its common name, the power, expressed in

horsepower or watts (horsepower¼ 33,000 ft � lbf/minute¼
0.746 kW). This is the most commonly used form in ele-

mentary ME thermodynamics books (Figure 2.4). In those

The energy change
in the system
is the algebraic sum
of all the energy
flows in and out.

Surroundings

Energy flows in
or out with flows
in or out of

Matter

Heat

Work

FIGURE 2.2 A pictorial representation of the energy balance.

Closed system

Energy flows in
or out with flows
in or out of

The energy change
in the system
is the algebraic sum
of all the energy
flows is and out.

Surroundings

Heat

Work

FIGURE 2.3 For a closed system, there is no flow of matter in or

out, so the energy in the system can change only by the flow of heat

and work.
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applications, kinetic and potential energies are often impor-

tant, so that the (u þ Pv) term also includes terms for kinetic

and potential energies.

We can now summarize the first law: It is an experimental

law, not derivable from other laws, but thoroughly confirmed

by experiment. It simply says that an abstract quantity called

energy is conserved; energy obeys the general balance

equation with neither creation nor destruction. Like mass,

energy can exist in a variety of forms, and be converted from

one to the other. We can write a very general energy balance,

and then write the more-often-used restricted forms for

closed systems or for steady-flow, steady-state systems, (and

some other forms). It is used in some way in almost every

chemical engineering problem.

2.4 THE SECOND LAW OF THERMODYNAMICS

The second law of thermodynamics is the most intuitively

obvious of all the laws of nature. It states that processes that

occur spontaneously in one direction do not occur sponta-

neously in the opposite direction.

2.4.1 Reversibility

Consider the following processes:

1. A drinking glass is dropped on a concrete floor and

shatters.

2. A firecracker explodes.

3. An inflated toy balloon is released; the air rushes out

while the balloon flies erratically around the room.

4. A baby is born, grows to be an adult, ages, and dies.

Will any of these processes ever run in the opposite

direction without outside intervention? We all know that

they won’t; that is the universal result of human experience.

They can be made to appear to run backward by making a

movie of them and running it backward, but most adults will

know that in these cases the film is being run backward. Most

of us laugh at a movie run backward; we recognize it as

“funny.” This shows that our intuition supports the statement

that in nature processes generally only occur in one direction.

There are other kinds of processes, inwhichwe can run the

movie backward or forward and not easily be able to tell

whether it is running forward or backward; for example, a

pendulum swinging, a ball rolling across a hard surface, a

counterweighted garage door opening or closing, an elevator

going up or down, or a gas expanding by driving down a

piston and thereby raising a weight. In each of these cases, if

we watched long enough, we could tell if the movie were

running backward or forward because of friction. (Air re-

sistance ultimately stops a pendulum unless it is driven by

some outside agency; rolling friction eventually stops a ball,

etc.) But, if there were no friction, we could never know

whether these were going forward or backward. If a process

will run either forward or backward without significant

outside intervention, we call it a reversible process. There

are no completely reversible processes in nature; but, for

example, a pendulum swinging in a vacuum is practically

reversible.

On the other hand, processes like the exploding firecracker

or the shattering glass are highly irreversible. They cannot be

made to go in the reverse direction without gigantic outside

intervention. There exist in nature all kinds of intermediate

behavior between the two extremes listed. So we normally

speak of a degree of irreversibility, with processes like the

swinging pendulum being slightly irreversible and processes

like the exploding firecracker being very irreversible.

Why won’t irreversible processes work equally well in

the opposite direction? The “laws of nature” that we have

previously discussed would be perfectly well satisfied if they

did. For example, the exploding firecracker could go in the

opposite direction without violating the principles of con-

servation ofmass, conservation of energy,Newton’s laws, the

electromagnetic laws, and so on. Similar comments apply to

the air going back into the balloon or to the shattered glass

reassembling itself. Thus, these other laws do not tell us in

which direction these processes occur.

Yet this observation of the one-way character of sponta-

neous natural processes is so universal that it is one of the

most basic observations of nature. It has been given a name,

the second law of thermodynamics, although, historically, it

partially precedes the first. Those most important in formu-

lating it were Carnot, Clausius, and Kelvin [2]. Like the first

law, Newton’s laws, or the law of conservation of matter, it

cannot be derived from anymore basic law; rather, it rests on

its ability to explain all the observations ever made to test it.

This law appears in many forms and has very far-reaching

consequences. Many scientists believe that the second law is

the most fundamental of all the laws of nature.

For a steady-state,
steady-flow system
there can be no change
with time of the energy
in the system. The
algebraic sum of all the
flows in and out must be
zero.

Energy flows in
or out with flows
in or out of

Matter

Heat

Work

Surroundings

FIGURE 2.4 For a steady-state, steady-flow system we can have

all three kinds of energyflow in and out, but their algebraic summust

be zero.

THE SECOND LAW OF THERMODYNAMICS 17



To quote A. S. Eddington [3]:

The law lhat entropy always increases—the second law of

thermodynamics—holds, I think, the supreme position

among the laws of Nature. If someone points out to you that

your pet theory of the universe is in disagreement with

Maxwell’s equations—then so much the worse for

Maxwell’s equations. If it is found to be contradicted by

observation—well, these experimentalists do bungle things

sometimes. But if your theory is found to be against

the second law of thermodynamics, I can give you no hope;

there is nothing for it but to collapse in deepest humiliation.

2.4.2 Entropy

While the above statements are intuitively satisfying, for

calculational purposes we need a mathematical statement.

Clausius provided that by defining a new quantity, which he

named entropy. It is defined as a property of some mass of

matter that, for reversible processes in a closed system,

obeys Eq. 2.14:

dS ¼ m dsð Þreversible processes in a closed system ¼ dQ

T
ð2:14Þ

Here the T is the absolute temperature (K or �R, never �F
or �C) s is the specific entropy, and ms¼ S. Later workers

added to Clausius’ definition by showing that for irreversible

processes there is always an entropy increase, which we may

simply call dSirreversible. In terms of the general balance

equation, this is a creation term; entropy increases in

the system without a corresponding entropy decrease in the

surroundings. Using this idea, we can write the general

balance equation for entropy as (Figure 2.5)

dðmsÞsystem ¼
X

ðs dmÞin minus out

þ
X dQ

T

� �
in minus out

þ dSirreversibile ð2:15Þ

Comparing Eq. 2.15 to our treatment of energy we see the

following:

1. This is an accounting or balance equation, but not a

conservation equation.Mass and energy are conserved,

entropy is not. Clausius made that distinction clear in

his famous formulation, “The energy of the universe is

constant; the entropy of the universe increases toward a

maximum,” which irreverent students have rephrased

as “You can’t win; you can’t even break even!”

2. If we restrict our attention to reversible processes,

then entropy is conserved and this becomes a conser-

vation equation. The increase of entropy in our system

due to flow of matter in or out and heat flow in or out is

exactly balanced by the decrease in entropy of the

surroundings from which matter and heat flow into or

out of our system.

3. There are no terms involving work, If we do work on

the system or have it do work in a reversible way, then

its entropy will not change. This leads to the most

common use of the second law; for a reversible device

(e.g., a steam turbine) consuming or producing work,

the change in entropy (batch process) or the change of

entropy of the streams flowing through (steady-state,

steady-flow process) is zero. We may use Eq. 2.15 or

its variants to find final or the outlet state of such a

reversible device. The common definitions of the

efficiencies of real devices are the ratios of the work

produced or consumed by the real device to that of a

reversible device with the same inputs.

4. We have not ignored other forms of entropy, as we did

when we left kinetic, potential, electrostatic, electro-

magnetic, and surface energies out of Eq. 2.8. There is

only one form of entropy.

5. By dropping the appropriate terms we can easily make

up the chemist’s (closed system) form of the second

law,

dSsystem ¼ ðm dsÞsystem
¼
X dQ

T

� �
in minus out

þ dSirreversibile
ð2:16Þ

and the steady-state, steady-flow form

0 ¼
X _Q

T

� �
in minus out

þ
X

ðs _mÞin minus out þ
dSirreversible

dt

ð2:17Þ

As with energy there is no satisfactory simple, verbal

definition of entropy. The definitions can be simple or

accurate, but not both. The simple definitions like “ameasure

Entropy increases
with flows in or out of
matter and of heat / T, but
also increases if there is
an irreversible proces
inside the system.

Matter

Heat / T

Surroundings

Entropy flows in
or out with flows
in or out or

FIGURE 2.5 The entropy balance has no term for work flow, but

does have a term for entropy creation inside the system by any

irreversible process.
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of disorder, or of the uselessness of energy” are helpful but

inaccurate or incomplete. The technically accurate definition

is that entropy is an abstract quantity, equal to dQ/T for

reversible heat transfer, which is conserved in all reversible

energy transactions, and which increases in all irreversible

energy transactions.

2.5 CONVENIENCE PROPERTIES

All of thermodynamics could be worked out in terms of P, T,

m, v, u, and s; some purists do it that way. However, some

combinations of these variables occur together so often that

we can savewriting and calculations by defining convenience

properties, which are combinations of these basic variables.

The most widely seen of these are

enthalpy per unit mass ¼ h ¼ uþPv ð2:18Þ

Gibbs energy per unit mass ¼ g ¼ uþPv�Ts ¼ h�Ts

ð2:19Þ

Helmholz energy per unit mass ¼ a ¼ u�Ts ð2:20Þ

In Chapter 7 we will encounter some more convenience

properties. If we multiply each of these convenience prop-

erties by the mass wewill findH¼mh, and so on. Chemistry

books often use f and F for the Gibbs energy, where chemical

engineers use g and G.

One almost always sees Eq. 2.10 rewritten with the

enthalpy substituted for u þ Pv,

dðmuÞsystem ¼
X

hindqð Þin minus out þ
X

dQin minus out

þ
X

dWin minus out excluding injection work ð2:21Þ

and the common tables of thermodynamic properties all

contain h, while only a few contain u, because in common

engineering problems u appears most often only as part of

the enthalpy.

2.6 USING THE FIRST AND SECOND LAWS

The typical problems addressed in an elementary ME ther-

modynamics course ask the following questions:

1. Howmuch heat and/or workmust be transferred into or

out of some batch or flow system as the material in it

goes from an initial to a final state?

2. If the amount of heat and/or work is specified, what is

the final or outlet state of the matter?

If you have a table of properties of the material in the

system, you can solve such problems using the equations in

the previous section. Such tables are available (and included

as appendices in all elementary thermodynamics books) for

commonly used materials, such as steam, common refriger-

ants, and lowmolecular weight hydrocarbons. A typical table

is made up of several parts, with the description shown in

Table 2.1.

Figure 2.6 shows on a P-T diagram the regions described

in each of the five subtables in a complete table of thermo-

dynamic properties.

Table 2.1 Contents of a Typical Table of Thermodynamic Properties

Part of Table Properties Shown Found in

1. Vapor–liquid saturation at even values of T P, v, h, s, of both vapor and liquid, sometimes u, sometimes f/P All tables

2. Vapor–liquid saturation at even values of P T, v, h. s, of both vapor and liquid, sometimes u, sometimes f/P Some tables

3. Superheated vapor at even values of P and T v, h, s, sometimes u, sometimes f/P All tables

4. Gas–solid equilibrium at even values of T P, v, h, s, of both vapor and solid, sometimes u, sometimes f/P A few tables

5. Compressed liquid values at even values of P and T v, h, s, sometimes f/P A few tables

FIGURE 2.6 The regions covered by the five subtables in a set of

thermodynamic tables. This is a reprint of Figure 1.9, which shows

the actual data for water.
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Because of its economic importance, we have studied

water and steam more thoroughly than almost any other

substance. The common steam tables [4] have all five of the

parts shown in Table 2.1. Refrigerant tables normally show

only the first and third; some show the first three. The

common light hydrocarbon tables [5] shown only the first

and third. These tables are all organized with T and P as the

independent variables; one enters at a known T and P and

looks up the other values (v, h, s, f/P) one needs. There is no

thermodynamic reason why some other pair of variables,

such as s and v, could not have been chosen as independent

variables. The users find tables with T and P as the inde-

pendent variables much more convenient; that choice is

practically universal. (Before we had computers, the infor-

mation in tables like the steam tableswas also often presented

in chart form. Themost popular charts were T-s, h-s,P-h, and

h-T. Those add some intuitive insight to problems, but are

used much less often now that we all have computers.)

Example 2.1 One lbm of steam at 300�F and 14.7 psia is

contained in the piston and cylinder device shown in

Figure 2.7. The surrounding atmosphere is at 14.7 psia, and

the piston is frictionless and weightless, so that the pressure

in the container is always 14.7 psia.

We now add 50 Btu of energy as heat to the system. What

are the increases in internal energy, enthalpy, and entropy of

the steam? Howmuch work is done by the piston, expanding

against the atmosphere?

This is a closed system, for which Eqs. 2.11 and 2.16 are

applicable. From the steam tables [4] we look up the prop-

erties of steam at 300�F and 14.7 psia, finding u¼ 1109.6Btu/

lbm, h¼ 1192.6Btu/lbm, and s¼ 1.8157Btu/(1bm � �R).
The work here is done by the system, equal to

�dW ¼ PApistondx ¼ P dV ¼ Pmdv ð2:BÞ

If we substitute this in Eq 2.11 and rearrange we find

mdðuþPvÞ ¼ m dh ¼ dQ ð2:CÞ

from which we can solve for the final specific enthalpy,

hfinal ¼ hinitial þ dQ ¼ 1192:6þ 50 ¼ 1242:6 Btu=lbm

ð2:DÞ

Next we look in the steam tables at 1 atm for the temperature

at which h¼ 1242.6, finding that we must interpolate be-

tween 400 and 420�F. By linear interpolation we find at

h¼ 1242.6 Btu/1bm and P¼ 1 atm, that T¼ 405.7�F, u¼
1147.7 Btu/1bm, and s¼ 1.8772Btu/(1bm � �R). The in-

creases in internal energy, enthalpy, and entropy are,

respectively, 38.07 Btu/lbm, 50.00 Btu/lbm, and 0.0615Btu/

(1bm � �R). The work done on the atmosphere (which is

generally useless) is the difference between the enthalpy

increase and the internal energy increase, or 11.93 Btu/lbm.

We can perform internal checks by looking up the values of

v at the initial and final states, and computing the work by

Eq. 2.B, finding the same result, and can compute the entropy

change by dividing the heat inflow by the average of the

(Rankine!) temperatures between start and finish, also find-

ing the same value shown here. &

Example 2.2 A reversible, adiabatic, steady-state, steady-

flow steam turbine (see Figure 2.8) has input steam at 600�F
and 200 psia. The exit pressure is 50 psia. What is the work

output of the turbine in Btu/lbm of steam?

Because this is a steady-state, steady-flow process, we use

Eqs. 2.21 and 2.17. Solving Eq. 2.21, we find

work per poundð Þ ¼ _w

_m
¼ �ðhin�houtÞ ð2:EÞ

(Remember the sign convention; here this is thework into the

system. The work we are interested in is that leaving the

system, which is negative according to this sign convention.)

From the steam table we can read the inlet enthalpy and

entropy as 1322.1 Btu/1bm and 1.6767 Btu/(1bm � �R.) To

solve Eq. 2.E we need the value of the outlet enthalpy.

We know the outlet pressure (50 psia) but not the outlet

System contains
1 lbm of steam
at 300º F and
14.7 psia

System
boundary

Container
allows free
heat flow

Frictionless,
weightless
piston

FIGURE 2.7 Piston and cylinder system for Example 2.1.

High pressure
steam in

Adiabatic,
reversible,
steady-flow
steam turbine Work out,

in the form
of a rotating
shaft

Low pressure
steam out

FIGURE 2.8 Flow diagram for Example 2.2.
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temperature. However, from Eq. 2.17 we know that for a

reversible adiabatic steady-state, steady-flow process

0 ¼
X

s _min minus out ¼ sin�soutð Þ _m ð2:FÞ

which requires that the inlet and outlet entropies must be the

same. Thus, we can find the outlet temperature by finding

the value of the temperature in the steam table, for which

the entropy at 50 psia is the same as the inlet entropy,

1.6767Btu/(lbm��R). By linear interpolation in the table

we find Tout¼ 307.1 �R, and by linear interpolation in the

same table we find that hout¼ 1188.1 Btu/1bm. Substituting

these values into Eq. 2.E, we find

work per poundð Þ ¼ �ðhin�houtÞ ¼ ð1322:1�1188:1Þ
¼ �134 Btu=1bm

ð2:GÞ

This is work leaving the system (which this system is

designed to produce). In the traditional sign convention it

would have a positive sign, but in the current sign convention

it has a minus sign. The entropy does not appear in our final

answer. We used it only to determine the outlet temperature,

so that we could find the proper value to use in our first law

statement. That is the normal situation with the second law;

we don’t really care what the entropy is, except to help us

find the right value of the enthalpy or some other property to

use in our energy balance.We use the energy balance to find

the useful numbers, in this case howmuch work we can sell

to our customers. &

Both of these examples used h, not u. That is true for most

but not all simple energy balance problems. It is not true, for

example, for the combustion process in the piston and

cylinder of your auto engine.

These two examples show that if we have the steam tables

or their equivalent, then all first and second law problems for

pure substances are straightforward. Industrial problems

usually have more parts than these examples, but none of

the individual steps is more complex than these two exam-

ples. In complex problems the hard part is choosing the right

system boundaries and making sure that no terms in the

balances have been omitted. If we had tables like the steam

tables for all possible substances we could work all single-

species thermodynamic problems from them. But we have

such detailed tables for only a few substances, and chemical

engineers work with a wide variety of substances. We often

synthesize new substances whose thermodynamic properties

are unknown. For these we must combine experimental data

(if available) plus estimating methods to make up the equiva-

lents of the parts of the steam tables we need. Naturally, we

recognize that such estimated values are less reliable than

the high-quality values in the steam tables.

Furthermore, this book is about equilibrium, mostly for

mixtures. The steam tables and other such tables are for pure

substances. Few if any such detailed tables exist formixtures.

We will see that much of the rest of this book is devoted to

ways of measuring and/or estimating the thermodynamic

properties of mixtures. Once we know those properties, we

can carry out the material and energy balances on which to

base our chemical plant designs. These estimating methods

generally begin with the assumption that we have or can

estimate the properties of the individual pure substances that

make up the mixtures. The next few sections describe where

pure substance tables like the steam tables come from, and

howwewouldmake up such a table (or the part we need of it)

for some new substance.

2.7 DATUMS AND REFERENCE STATES

Equations 2.9 and 2.14 define u and s only in terms of their

changes. To assign a numerical value to u or h and s in the

steam tables or comparable tables for other substances, the

general procedure is to assign an arbitrarily selected numer-

ical value to u or h and to s in some specified state, called the

datum state or reference state, and then to calculate all the

other values in the table by calculating the change in u or h

and s in going from the datum state to some other state in the

table using Eqs. 2.9 and 2.14 (plus some other relations based

on them). This may seem arbitrary, but in all the problems

normally assigned in an elementary thermodynamics course

we are concerned only with changes in energy or entropy,

so this procedure (and the steam or other tables based on it)

work perfectly well.

The third law of thermodynamics (seeAppendix E) shows

us that at 0.00K all perfectly regular crystalline substances

have the same value of the entropy, which we assign a datum

value of s¼ 0.00. Entropies based on this value are called

absolute entropies. They are used only in the study of

chemical equilibrium (Chapter 12). The datum chosen for

the steam tables is u¼ s¼ 0.00 for the saturated liquid at the

triple point (solid, liquid, and gas in equilibrium at 32.018�F
and 0.08866 psia). For refrigerants the common choice is

h¼ s¼ 0.00 for the saturated liquid at�40�F¼�40�C. The
light hydrocarbon tables choose h¼ s¼ 0.00 for the elements

at 0.00K, which is one of the common reference states for

chemical reaction calculations. There are a variety of choices

of datums, all of which seem like the right choice for some

class of substances or problems. These datum or reference

state values can be used in Eqs. 2.9 and 2.14 to calculate those

tables, by methods shown below. There is no logical or

thermodynamic reason why the values in the datum state

must be chosen as 0.00. They could just as well be chosen as

23.7 or
ffiffiffi
p

p
or the first three digits of your social security

number. There is no thermodynamic reason why we cannot

choose the datum for h at one condition and that for s at
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another. Formost tables the choice of h¼ s¼ 0.00, both at the

same datum state, is most convenient. Absolute entropies are

all positive or zero. Steam table entropies can be positive or

negative. The steam table entropy of ice at 32�F¼�0.292

Btu/(lbm��R).
In later chapters we will see other datum or reference

states that are chosen for physical or chemical equilibrium

calculations.

2.8 MEASURABLE AND IMMEASURABLE

PROPERTIES

The quantities in thermodynamics that we can directly

measure with simple instruments are pressure P, tempera-

ture T, massm, and volume V. Although we can argue about

whether these are direct (in a thermocouple we measure an

emf and use a table to convert that value to a temperature),

all of these values are measurable without recourse to

thermodynamic calculations. We commonly combine m

and V to get v¼V/m or its reciprocal, density¼ r¼ l/v¼
m/V. Such measurements are normally called PvT

measurements.

There is no known direct measurement of u or s (or the

properties derived from them, h, g, and a, or the other

convenience properties we will define in Chapter 7). These

must be calculated from PvT (and heat capacity, see below)

measurements. (In so doing we often rely on electrical

measurements in which we measure heat flow rates as the

product of voltage and current.) Thus, all the values you

will ever see of s and u are based at least in part on

calculations, based on the above four measurable

variables.

2.9 WORK AND HEAT

The defining equation for changes in energy involves both

work and heat, and that for entropy involves heat.We have no

direct measurements for either of these quantities. However,

frommechanicswe can show that all work is equivalent to the

product of a force and a distance. Forces and distances can

be measured more or less directly. For the simple case of a

system expanding by driving back a piston the force is the

pressure times the piston area so that

�dW ¼ F dx ¼ ðPA dx ¼ PdVÞfor a simple piston process

ð2:22Þ

We can easily show the equivalent of this for rotating shafts

or electrical or magnetic work. In the English engineering

system the unit of work is the ft � Ibf, and in SI the N �m¼ J.

In the SI system the electrical units were chosen so that

N �m¼ J¼V �C¼W � s¼ several other combinations. In

the English engineering system there is no comparable

simplification.

For heat there is no comparably simple, mechanical way

of defining a unit quantity. The historic choicewas tomeasure

the amount of heat needed to raise the temperature of 1 unit

mass of water by 1 degree and base the unit on that. The

results of that are

British thermal unitð Þ ¼ Btu ¼ heat requred to heat

11bm of water by 1�F

! 

ð2:23Þ

and

ðcalorieÞ ¼ cal¼ heat required to heat 1 g of water by1�Cð Þ
ð2:24Þ

The calorie is an unpractically small engineering unit; we

normally use the kilocalorie (kcal)¼ 1000 cal. (The “calorie”

in diet books is the kilocalorie. A normal adult doing

moderate work needs to eat about 2500 kcal of food

per day.) The Btu is also impracttcally small for industrial

size equipment; we often use 106 Btu as the working unit.

(In 2012 the world wholesale price of natural gas was about

$4/106 Btu, that of coal about $2/106 Btu.)

One of the final steps in establishing the first taw of

thermodynamics was Joule’s measurements of the mechan-

ical equivalent of heat. He used falling weights to drive

paddles around in an insulated tank of water and measured

the temperature increase (Figure 2.9). From the known

mechanical work and mass and temperature rise of the water

he found what was very close to the currently accepted value

Carefully measured
work input drives
stirrer in tank

Thermometer
measures temperature
rise in tank

Insulated tank of
water

FIGURE 2.9 Schematic of Joule’s calorimeter for measuring the

mechanical equivalent of heat. All calorimeters are variations on

this idea.
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of the relation between heat and work,

1Btu ¼ 778:17 � 778 ft � 1bf ð2:25Þ

The corresponding SI statement is

1 cal ¼ 4:184 J 1 kcal ¼ 4:184 kJ ð2:26Þ

In SI the use of the calories or kilocalories is discouraged;

all heat quantities should be stated in joules or kilojoules. In

current practice the calorie and kilocalorie are widely used

because of their high intuitive content (and the reluctance of

people to change).

Joule’s falling-weight-paddlewheel–tank device was one

of the first calorimeters, devices for measuring heat quan-

tities bymeasuring the temperature increase of a knownmass

of some reference substance, almost often water. Most of our

data for the changes of u and s with changes in temperature

are based on measurements made in more refined versions of

Joule’s calorimeter.Wemost often report such information in

terms of the heat capacity,

heat capacityð Þ ¼ C ¼
energy required

to raise one unit mass

of the substance

by 1 degree

0
BB@

1
CCA¼ Q

mDT

ð2:27Þ

where the experimental measurements are Q, m, and DT.
The units of heat capacity are Btu/(lbm��F), kcal/(kg.�C) or J/
(kg��C) Because of its use as a reference substance

heat capacity

of liquid

water is

defined as

0
BB@

1
CCA¼ Cwater ¼ 1:00

Btu

1bm � �F¼ 1:00
kcal

kg � �C

¼ 1:00
cal

g � �C
ð2:28Þ

There are several different definitions of the heat capacity.

For gases we regularly use the heat capacity at constant

pressureCP and also the heat capacity at constant volumeCV.

These are significantly different from each other for gases,

as discussed in any elementary thermodynamics book. For

liquids and solids they are practically the same.

The same calorimeters, in somewhat modified form, are

used to measure latent heats of phase transformations, heats

of mixing, heats of chemical reactions, and some other

thermochemical quantities.

The process of making up a table of thermodynamic

properties is as shown conceptually in Figure 2.10. For some

substance in some state (liquid, gas, or solid) the values of

h and s in the datum state are known (normally¼ 0.00). We

then compute along a constant pressure path to the desired

final temperature, and then along a constant temperature path

to the final pressure, thus computing the values of h and s at

the desired T and P. Other paths are possible and are used for

special circumstances, but the path shown is almost always

the most convenient.

For the constant pressure pathwe apply Eqs. 2.21 and 2.16

at constant pressure to find

hat someT and

P¼Pdatum

¼ hatT¼Tdatum and

P¼Pdatum

þ
ðT
Tdatum

Cp dT ð2:29Þ

and

sat someT and

P¼Pdatum

¼ sat T¼Tdatum and

P¼Pdatum

þ
ðT
Tdatum

CP

T
dT ð2:30Þ

For the normal choice of datum states, the first term on the

right of these two equations is 0.00. The integrations are

normally performed by fitting some simple algebraic rela-

tion, normally a power series, to the experimental Cp data,

substituting that function in these equations, and integrating

on a computer or spreadsheet. Table A.9 shows such relations

for common gases in the ideal gas state, based on simply

fitting the constants to experimental data.

2.10 THE PROPERTY EQUATION

To calculate the changes in h and s with changes in pressure

along the vertical (constant temperature) path in Figure 2.10,

we need the derivatives of h and swith respect toP at constant

Constant-pressure path C
on

st
an

t-t
em

pe
ra

tu
re

 p
at

h

Datum state
h = 0.00
s = 0.00

Temperature

Pr
es

su
re

x

FIGURE2.10 Conceptual procedure formaking up a steam table.
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T. To find thesewe first solveEq. 2.14 for dQ, and substitute it

into Eq. 2.12:

ðdu ¼ T dsþ d WÞreversible ð2:31Þ

This is true for any kind of work or the sum of several

kinds of work. If we next restrict ourselves to work of

expansion, then dW¼�PdV. The minus sign appears be-

cause if the volume increases, then work is done on the

surroundings and thus flows out of the system. (In Chapter 14

we will repeat the treatment here, taking more work forms

into account.) Making this substitution, we find

ðdu ¼ Tds�PdvÞreversible ð2:32Þ

We show this as reversible, becausewe derived it that way.

But various texts show that thermodynamic properties are

state functions, because they do not depend on the route used

to reach them. (The elevation on top of Mt. Everest is the

same, nomatter which of the three common routes are used to

get there; the elevation above sea level, like thermodynamic

properties, is a state function.) Sowemay drop this subscript,

and recognize Eq. 2.32 as the property equation. We base

most calculations of thermodynamic properties on it. (In

Chapter 6 we will see an expanded form of Eq. 2.32.)

This equation shows ds and dv as independent variables.

Many thermodynamicists choose s and v as independent

variables for all calculations. However, there is no direct

measurement of s, and v is more difficult to measure than are

T and P, so for engineering work it is much more practical to

take the readily measured P and T as independent variables.

Some calculus and algebra, shown in most elementary

thermodynamics books, allows us to make up Table 2.2

showing the derivatives of the main thermodynamic prop-

erties as functions of P and T.

From this table it is clear that we can work out all the

needed derivatives if we have data on CV and CP and some

way to evaluate the partial derivatives of v with respect to P

and T. Values of CV and CP are measured in calorimeters.

The derivatives of v are found from an equation of state.

(Most modem equations of state are easy to solve for the

derivatives of P and T with respect to v, but not for the v

derivatives. For these equations we use some circuitous

mathematical routes to provide the exact equivalents of the

equations shown above.)

2.11 EQUATIONS OF STATE (EOS)

An equation of state (EOS) is a mathematical relation

between the absolute pressure P, the absolute temperature

T and the specific or molar volume v of a pure substance or

mixture. Mostly we use the term EOS to describe gases,

liquids at high temperatures, or mixtures of the two. For

solids or liquids well below their critical temperatures we use

very different EOSs than those shown here (seeAppendixD).

For a pure substance (like water) in the gas state we have

perfectly satisfactory EOSs. For mixtures, the problem is

harder, and we have less confidence in our EOSs. We use

EOSs to calculate any one of the above variables when the

other two are known, and to construct the partial derivatives

of v with respect to P or T, which are needed for the

calculations in Table 2.2. All EOSs are attempts to replace

some table of experimental PvT data with an equation, which

we can then use to interpolate and extrapolate between and

beyond the values in the table, and which we can use to

construct derivatives by simple mathematics. As a general

proposition, simple EOSs can reproduce low-pressure gas

PvT data with fair accuracy, but as the pressure becomes

higher we require more and more complex EOSs to have the

equation match the data.

A few of the simplest EOSs are based on theory (or had

theory found for them after their utility was shown). The

more complex EOSs start with the simple EOSs and add

terms that have no theoretical basis at all, but with which they

can match the experimental data to higher and higher pres-

sures. Wewould all like one EOS that represented the liquid,

the gas, the solid, and the two-phase or three-phase mixtures

of gas, liquid, and solid. In principle, it should be possible to

devise such anEOS, but none has been found so far.However,

for making up tables like the steam tables, EOSs have been

found that describe both the liquid and the gas to within

the uncertainties of the best experimental PvT measure-

ments. These EOSs also describe the two phase regions, but

their values there do not correspond to reality (see Chapter

10). We will also see that simpler forms of these EOSs are

widely used in vapor-liquid equilibrium calculations.

Table 2.2 Thermodynamic Properties in Terms of P and T

These relations can all be derived startingwith the property equation

(Eq. 2.32), and the definitions of h, g, a, CP and CV. The derivations

are shown in many thermodynamics books and form a favorite

exercise in calculus and algebra for graduate students. All 168 of

the possible relations between the variables u, h, s, g, a, v, P and T

can be worked out quickly and easily using a Bridgman Table,

Appendix G, (thus missing out on all that fun calculus and algebra).

The following five equations allow us to compute changes of u, h, s,

g, and a with changes in T and P, the most common practical

property calculations (but see Example G.2 and Problem G.3).

du ¼ ½CP�Pð@v=@TÞP�dT�½Tð@v=@TÞP þPð@v=@PÞT �dP (2.33)

dh ¼ CPdT þ ½v�Tð@v=@TÞP�dP (2.34)

ds ¼ CP=TdT� @v=@Tð ÞPdP (2.35)

dg ¼ �sdT þ vdP (2.36)

da ¼ �½sþPð@v=@TÞP�dT�Pð@v=@PÞTdP (2.37)
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2.11.1 EOSs Based on Theory

The simplest and most widely used EOS is the ideal gas law:

Pv ¼ RT ; or its exact equivalent
PV ¼ nRT

ð2:38Þ

HereR is the universal gas constant, (see the end papers), and

v is the volume per mol, or molar volume. This EOS can be

derived from the kinetic theory of gases, in which one

assumes that each gas molecule has zero volume (i.e., is a

mathematical point) and that the individual molecules have

no attraction for one another, but interact only by elastic

collisions. Those assumptions are very close to reality for

gases at low pressure and high temperatures (relative to the

critical temperature of the gas), so this EOS would be

expected to represent experimental PvT data very well under

those conditions, and it does.

The first theoretical improvement on the ideal gas law is

due to van derWaals (vdW). He suggested that the individual

molecules do have some volume, b, and that there is some

attraction between one molecule and another. Using those

two ideas he wrote

P ¼ RT

ðv�bÞ�
a

v2
ð2:39Þ

where the a/v2 term represents attraction between the mole-

cules. For large values of v, the vdW EOS becomes identical

to the ideal gas law. For very low values of v, as (v�b)

approaches zero, it shows liquid-like behavior. The two

constants, a and b, are to be determined from experimental

data for each individual substance.

The vdW EOS is not very good at representing experi-

mental PvT data, but it has had a profound influence on

thermodynamics. Fairly simple, totally empirical modifica-

tions of it by Redlich and Kwong, Soave, and Peng and

Robinson are very widely used in vapor-liquid equilibrium

calculations, as discussed in Chapter 10 and Appendix F.

Furthermore, it led to the principle of corresponding states,

discussed below, which is very useful.

The other useful theoretical EOS, the virial EOS, begins

by defining the compressibility factor

compressibility factorð Þ ¼ “z factor”ð Þ ¼ z ¼ PV

nRT
¼ Pv

RT

ð2:40Þ

For an ideal gas the compressibility factor is 1.00 for all T

and P. Thus, the compressibility factor is a simple, dimen-

sionless measure of the real gas behavior, compared to ideal

gas behavior. With this definition, we can write the basic

virial EOS

z ¼ 1þ B

v
þ C

v2
þ D

v3
þ . . . ð2:41Þ

in which the coefficients, B, C, D,. . . are functions of T but

not of P. Clearly, as v becomes very large (at high T and/or

low P), this becomes the same as the ideal gas law. The

reason this is listed as a theoretical EOS is that from

statistical mechanics we can make some useful statements

about the relations of the coefficients, B, C, D,. . . to

various kinds of molecular interactions. This EOS is most

often used for gas mixtures (see Chapters 9 and 10); with

it we can make some fairly good property estimates for

mixtures for which we have no experimental data. We

most often see this EOS with only the B term, sometimes

with the B and C terms, practically never with the higher

terms. By convention, B is the second virial coefficient, C

is the third, and so on.

2.11.2 EOSs Based on Pure Data Fitting

None of the theoretical EOSs can represent the experimental

data for gases and liquids over a wide range of pressures with

accuracy comparable to the accuracy of the best experimental

data. For the most precise calculations, and for making up

thermodynamic tables like the steam tables,we useEOSs that

have little or no theoretical foundation (they all start with the

ideal gas law and add terms) and that have many adjustable

constants. (The idea of an “adjustable constant” may seem

contradictory. But these are values that, once chosen for a

particular pure substance, do not change with changes in T

and P, so we call them constants.) Using computers we can

select the values of those adjustable constants that minimize

the differences between the EOS and the experimental data.

One of the first of these was the Beattie–Bridgeman (BB)

EOS, used in the 1920s and 1930s. It can be thought of as a

virial EOS of state, Eq. 2.41, with the B, C, andD in that EOS

written as

BEq: 2:41 ¼ B0� A0

RT
� c

T3
ð2:42Þ

CEq: 2:41 ¼ bB0 þ aA0

RT
� cB0

T3
ð2:43Þ

DEq: 2:41 ¼ bcB0

T3
ð2:44Þ

In these three equations, a, b, c, A0, and B0 are adjustable

constants, with values determined from the experimentalPvT

data. Thus, the BB EOS has five adjustable constants.
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TheBenedict–Webb–Rubin (BWR)EOSdeveloped in the

1940s, which has 11 adjustable constants, abandons the strict

virial form, but looks somewhat like it:

z ¼ 1þ B0� A0

RT
� C0

RT3
þ D0

RT4
� E0

RT5

� �
1

v

þ b� a

RT
� d

RT2

� �
1

v2
þ a

RT
aþ d

T

� �
1

v5

þ c

RT3
1þ g

v2

� �
exp � g

v2

� � 1

v3

ð2:45Þ

It is widely used to prepare tables of thermodynamics

properties, particularly for hydrocarbons [5].

The only substance forwhichwe seem justified in using an

even more complex EOS is water (and steam) for which we

have much more detailed PvT data than for any other

substance and for which we have great economic incentive

to have a precise thermodynamic table. The current U.S.

steam table [4] uses a special EOS with 58 adjustable

constants. The more recent SI steam table [7] uses a similar

EOS with 74 adjustable constants. These EOSs have little

theoretical basis and little intuitive content. They would

rarely be used for any substance other than water, and never

for hand calculations.

With EOSs as complex (and with as many adjustable

constants) as the BWR and those in the steam tables, one can

compute the properties of both liquid and vapor from a single

EOS. In the high-pressure, high-temperature region near the

critical point this has some advantages; it is done in the steam

tables and in some hydrocarbon tables.

2.12 CORRESPONDING STATES

One of the useful consequences of the vdW EOS is that, if it

were indeed a correct representation of reality, then it could

be written in the form

z ¼ f
T

Tc
� P

Pc

� �
¼ f ðTr;PrÞ ð2:46Þ

where Tc andPc are the critical temperature and pressure, and

Tr and Pr are the reduced temperature and reduced pressure.

The reduced properties and z are all dimensionless, so that

Eq. 2.46 is a dimensionless EOS as is the virial EOS and

others based on it. This says that on a plot of z vs. Pr the lines

of constant Tr should be the same for every substance. This

is known as the principle of corresponding states. It is only

approximately true, but it is close enough to being correct to

be very useful. Figure A.4 shows such a plot. It is, in effect,

a graphical EOS. We can use it in all the ways we use

an algebraic EOS. Equation 2.46 is a two-constant EOS,

because Tc and Pc are determined from the experimental

PvT data.

Plots like Figure A.4 are made up from the experimental

data for some pure substance. Many are for propane, which

seems to be an average substance and for which good PvT

data have been available for a long time. The plots for

different substances are similar but not identical. This led

thermodynamicists to ask whether adding a third parameter

to Eq. 2.46,

z ¼ f ðTr;Pr; some third dimensionless parameterÞ
ð2:47Þ

would make the corresponding states principle more accu-

rate. It clearly does, suggesting that perhaps some fourth

parameter should be added, and so on. However, the three-

parameter versions seem satisfactory for most purposes, and

the advantages of adding a fourth parameter do not seem to

justify the extra effort. There have been two widely used

choices for the third parameter in Eq. 2.47: the value of z at

the critical point (the critical compressibility factor zc) and

the accentric factor v.
If the simple corresponding states principle (Eq. 2.46)

were true, then all substances would have the same value of

zc. the compressibility factor at the critical point (for which

Pr¼ Tr¼ 1.00). Table A. 1 shows that themeasured values of

zc for a variety of substances range from aboul 0.23 for water

to 0.307 for ethyl amine; most are close to 0.27. Figure A.4 is

for a substance with zc¼ 0.27. Complete tables for using

Eq. 2.47 with zc as the third parameter are shown by Hougen

et al. [6]. However, in recent years most workers have

decided that the choice of the accentric factor v as the third

parameter is more satisfactory. Table A.1 also shows the

values of this parameter for a variety of substances. It is

defined to make it equal 0.00 for argon, 0.2 to 0.3 for most

substances, and up to 0.7 for some. It is negative only for H2

and He, which seem to be different from everything else

because at their low normal boiling points quantum effects

become important. The technical definition and physical

meaning of v are discussed in Section 5.5.

The most widely used corresponding states approach is

that due to Pitzer and his co-workers [8], often called Pitzer-

type equations. The common form of their approach is

z ¼ z0 þvz1 ð2:48Þ

where z0 and z1 are both functions of Tr and Pr. The general

idea is that there is some base function (z0) that describes

the behavior of a substance with v¼ 0.00 and there is also a

correction function (z1), which, when multiplied by v and

added to the base function, gives the best representation of

the experimental data. Equation 2.48 is a three-constant

EOS: Tc, Pc, and v must be determined from the
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experimental PvT data. Pitzer and his co-workers presented

tables of the functions z0 and z1 for various Pr and Tr. The z
0

table is very much like the values we would read from

Figure A.4, except that the values are somewhat larger

(because materials with v¼ 0.00 mostly have zc� 0.29 and

Figure A.4 is for materials with zc¼ 0.27). The z1 table

shows small negative values for Pr and Tr less than 1.00, and

small positive values for Pr and Tr greater than 1.00. Thus,

for the most common uses the vz1 term in Eq. 2.48 is a small

negative correction to the z0 value.

Lee and Kessler [9] developed their own tables of those

functions, which differ slightly from those of Pitzer et. al.

The Lee and Kessler tables are probably the most widely

used tables of this type. In addition to tables of z0 and zl they

present similar tables for other thermodynamic functions,

all in the Pitzer-type format: a base function for v¼ 0.00

and a second function to be multiplied byv and added to the

base function.

While the tables, with proper interpolation are probably

the best corresponding states estimates of fluid properties,

they are inconvenient for computer use. Many attempts have

been made to replace those tables with EOSs. The following

simple, totally empirical estimating EOS called the little

EOS [10, p. 89], is reasonably accurate at low pressures:

z0 ¼ 1þ Pr

Tr
0:083� 0:422

Tr
1:6

� �
ð2:49Þ

and

z1 ¼ Pr

Tr
0:139� 0:172

Tr
4:2

� �
ð2:50Þ

These two equations have no theoretical basis; they are

simply data-correlating equations that do a surprisingly good

job of reproducing pure species PvT data at low pressures.

Example 2.3 Estimate the compressibility factor of steam

at 500�F and 680 psi, using the little EOS (Eqs. 2.48–50), and
compare that estimate with the value from the steam table.

For water (see Table A.I), Tc¼ 647.1K¼ 1164.78�R.
Pc¼ 220.55 bar, and v¼ 0.345, so that

Tr ¼ ð500þ 459:67Þ�R
1164:78�R

¼ 0:8239 ð2:IÞ

Pr ¼ 680 psia

220:55 bar � 14:51 psia
bar

¼ 0:2125 ð2:JÞ

z0 ¼ 1þ 0:2125

0:8239
0:083� 0:422

0:82391:6
¼ 0:8730

� �
ð2:KÞ

z1 ¼ 0:2125

0:8239
0:139� 0:172

0:82394:2

� �
¼ �0:0642 ð2:LÞ

z ¼ 0:8730þ 0:345 � ð�0:0642Þ ¼ 0:851 ð2:MÞ

Based on the steam table (whichmaybe considered as reliable

as the experimental data), the value of z is 0.804. &

Figure 2.11 shows the results of similar comparisons over

a range of pressures and for two temperatures, 500�F (Tr
¼ 0.82) and 800�F (Tr¼ 1.08).

From this comparison we see the following:

1. For pressures less than 50 psia the experimental and

calculated values of z are all� 1.00, indicating that for

this pressure and temperature range steam behaves

practically as an ideal gas.

2. For the lower temperature the departure from ideal gas

behavior is greater than for the higher temperature.

This is the same behavior shown in Figure A.4, and is a

general observation. At a given pressure, increasing the

temperature makes the gas more like an ideal gas.

3. The little EOS does an excellent job of representing the

data below pressures of 100 psia, and a good job at

higher pressures. It is less reliable close to the con-

densation temperature. For the rest of this book wewill

generally use the little EOS for estimating the behavior

of gases at modest pressures. We will see in Chapter 9

that its form makes it convenient for calculating the

behavior or gas mixtures at low pressures.
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FIGURE 2.11 Comparison of compressibility factor from the

steam tables (most reliable values) and computed from the little

EOS. This has the same form as Figure A.4, but covers the Pr range

from 0.0003 to 1.25. The 500�F curves end at 680 psia, at which

pressure steam at 500�F condenses to water.

CORRESPONDING STATES 27



4. The vz1 terms contribute 14% of the answer. The

common z charts like Figure A.4 are made up for an

average substance, so that if we use them without

the corrections for zc not being equal to 0.27, we often

make a small error. The same is not the case for the

Pitzer-type equations, v was defined to be zero for

argon, which is not a typical substance, so if we used

only the z0 term for a typical substance we would

make a serious error.

2.13 DEPARTURE FUNCTIONS

The compressibility factor z, defined by Eq. 2.40 and

shown in Figures 2.11 and A.4, is the simplest of a family

of departure functions that are widely used in chemical

engineering. Most of these are based on selecting as a

model the simplest possible behavior, and then correlating

or predicting departures from this model. The compress-

ibility factor shows departure from ideal gas behavior. In

the limit (low pressure and/or high temperature) the de-

parture becomes negligible, as shown in Figures 2.11 and

A.4 as P ! 0, z ! 1.00.

For pure species gases, the most widely used departure

functions are

enthalpy departureð Þ ¼ h*�h

RTc
ð2:51Þ

and

entropy departureð Þ ¼ s*�s

R
ð2:52Þ

where h� and s� are the specific enthalpy and entropy that an
ideal gas would have at the same T and P as the real gas.

Obviously, these departure functions are both zero for ideal

gases. The RTc and R in the denominators are inserted to

make the terms dimensionless. If the simple corresponding

states statement were exactly true, then a plot of either of

these functions for various Tr and Pr would be the same for

all pure species. In practice these departure functions are

mostly correlated in terms of Tr, Pr, and v, using Pitzer-type
equations. The forms shown in Eq. 2.51 and 2.52 fit

logically with corresponding states estimates. For EOS-

based estimates one often sees these with the RTc and R

dropped, so that, for example, the enthalpy departure be-

comes (h� � h).

Wewill see inChapter 7 that an ideal solutionwill play the

same role for solutions as an ideal gas does for real gases, and

we will correlate and predict departures from ideal solution

behavior much as the compressibility factor lets us deal with

departures from ideal gas behavior.

2.14 THE PROPERTIES OF MIXTURES

This book is about equilibrium, mostly involvingmixtures of

pure species. We say much more about the properties of

mixtures in subsequent chapters, butwe introduce the subject

here so we can use the results in the next section. The molar

enthalpy and entropy of mixtures are described by

hmolar; mixture ¼
X

all chemical pecies

xih
�
i

� �þDhisothermal mixing

ð2:53Þ

and

smolar; mixture ¼
X

all chemical species

xis
�
i

� �þDsisothermal mixing

ð2:54Þ

Where the � indicates pure species at the same temperature

and pressure.We can find the enthalpy and entropy per pound

or kg of mixture by replacing the molar pure species values

by per unit mass values and the mol fractions by mass

fractions.

The isothermal enthalpy of mixing is the amount of heat

we must add or subtract when we mix the species adiabat-

ically and then heat or cool as needed to bring the mixture to

its starting temperature. There is no direct experimental way

tomeasure the isothermal entropy change ofmixing;wemust

infer it from other measurements.

In many cases, Dhmixing is negligible so that the mixture

enthalpy is � the molar average of the enthalpies of the

species present in themix; however for the importantmixture

of sulfuric acid and water Dhmixing is large and dangerous!

Dsmixing is never zero!

For ideal gases, (and ideal solutions of liquids, solids or

nonideal gases, see Chapter 7) Dhmixing¼ 0, so that

hmolar; mixture ¼
X

all chemical species

xih
�
i

� � ideal gases

and ideal

solutions

2
4

3
5

ð2:55Þ

However for ideal gases and other ideal solutions

Dsisothermal mixing ¼ �R
P

xi 1n xi; so that

smolar; mixture ¼
X

all chemical species

xis
�
i

� �

�R
X

xi 1n xi

ideal gases

and ideal

solutions

2
4

3
5

ð2:56Þ
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2.15 THE COMBINED FIRST AND SECOND LAW
STATEMENT; REVERSIBLE WORK

Figure 2.12 shows a very general process, not necessarily at

steady state, with one or more material flows in and out, and

with heat exchange at one or more temperatures. It is shown

exchanging work with the surroundings, but it could be a

zero-work process.What canwe say about howmuchwork it

takes to make this process go? Or how much work it can

produce if it is awork-producing process (e.g. a power plant)?

We can say quite a bit!

We begin bymultiplying Eq. 2.15 byminus To and adding

it to Eq. 2.10, finding,

dðmðu�ToSÞÞsystem ¼
X

ðuþPv�TosÞdmin minus out

þ
X�

1� To

Tin

�
dQin minus out

þ
X

dWin minus out�Todsirreversible

ð2:57Þ

Here To is the surroundings temperature, discussed below. If

the process in the box is an oil refinery, Eq, 2.57 will have

dozens of terms for flows of material, heat and work in and

out. If it is a simple binary distillation column it will have one

material flow in and two out, with heat exchange at two

different temperatures, and (generally negligible) work flows

for some pumps. Chemical engineers often use Eq. 2.57 for

simple applications like the distillation column, although

there is no reason (except for complexity) that it could not be

applied to an oil refinery.

If we now restrict out attention to reversible processes, for

which dsirreversible¼ 0, we can say that the dW must be the

work that the process in the boxwould consume or produce if

it had the same flows of mass and heat in and out, and it were

reversible. We can solve for that reversible work amount as

X
dWreversible; in minus out¼ dðmðu�TosÞÞsystem

�
X

ðuþPv�ToSÞdmin minus out

�
X�

1� To

Tin

�
dQin minus out

ð2:58Þ
The two Ts that appear here are Tin, the temperature at which

heat flows in or out across the system boundary, and To the

reservoir temperature – the lowest temperature of an un-

limited reservoir of heat or cooling, normally the temperature

of the nearest large body of water that can supply or accept

heat, or of the atmosphere, or of an industrial plant’s cooling

water system. The reversible work in this equation is the

maximum work that can be obtained from a work-producing

device (some kind of motor or power plant) or the minimum

work required by somework-consuming device (for example

a compressor or air separation plant). Real devices are never

this good; these minimum and maximum work values show

the thermodynamic limits of real devices and processes.

Example 2.4 Figure 2.13 shows the schematic steady-flow

CO2 separation device that will be used if we decide to

separate and store the CO2 in power-plant exhaust gases to

prevent or minimize global climate change. Estimate the

required work per lbmol of CO2 captured for a reversible

plant, using Eq. 2.58.

We begin by solving the general problem, in which

a mixture of A and B (stream 1) is separated into two

streams, one pure A (stream 2), the other pure B (stream 3).

Since the plant in Figure 2.13 operates at steady state

the d(m(u� Tos))system term is zero and since it ex-

changes heat with the surroundings only at To theP�
1�To=Tin

�
dQin minus out term is also zero: Thus

X
dWreversible; in minus out

¼ �
X

ðuþPv�TosÞdmin minus out

¼ ðh�TosÞ2dm2 þðh�TosÞ3dm3�ðh�TosÞ1dm1

ð2:59Þ

Switching now frommass tomols, dividing both sides by dn1
and observing that Figure 2.13 shows only one work flow

(which could be the algebraic sum of several) we find

dWreversible

dn1
¼ ðh�TosÞ2

dn2

dn1
þ h�Tosð Þ3

dn3

dn1
� h�Tosð Þ1

ð2:60Þ

FIGURE 2.12 The flow diagram for a very general process, that

exchanges multiple flows of mass, heat and work with its surround-

ings, and may change internally with time.
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This is the reversible work per mol (lbmol or kgmol) of feed

for any steady-flow processes separating one stream into

two, and exchanging heat only at To (but not, for example,

for a distillation device that exchanges heat at two tem-

peratures). Next we observe that (n2=n1) is the mol fraction

of A in the feed (xa), and similarly ðn3=n1Þ ¼ ðxbÞ in the

feed so that

dWreversible

dn1
¼ ðh�TosÞ2xa þðh�TosÞ3xb�ðh�TosÞ1

ð2:61Þ

This equation is for any A and B; we now restrict it to ideal

gases (or ideal solutions of liquids or solids), and replace the

h and s terms with Eq. 2.55 and 2.56. The h terms cancel and

that all the s terms cancel except the last, so that

dWreversible

dn1
¼�RToðxa lnxaþxb lnxbÞ ideal gases or

ideal solutions

	 


ð2:62Þ

This is the general equation for the reversible work of an

isothermal, constant-pressure, steady-state process that ex-

changes heat only with the reservoir at To and separates an

ideal gas stream (or ideal solution of liquids or solids)

containing A and B into essentially pure A and B.

Returning to the CO2 example, A is CO2 so that xa¼ 0.12,

and xb¼ (1� 0.12)¼ 0.88. For To¼ 70� F¼ 294.7 K,

dWreversible

dn1
¼ �8:314

J

mol K
� 294:7 K

� ð0:12 ln 0:12þ 0:88 ln 0:88Þ

¼ 0:897:7
J

mol
ð2:NÞ

The work per mol of feed is positive (inflowing) so this is a

work-consuming process. All real (nonreversible) work-

consuming plants would require more than this reversible

amount of work.

To find the reversible work per mol of substance A (in this

case CO2.) we divide the reversible work per mol of mixture

by the xa, finding

dWreversible

dna
¼ 1

xa

dWreversible

dn1
¼ 1

0:12
� 897:7 J

mol
¼ 7:48

kJ

mol

¼ 3:2
kBtu

1bmol
¼ 73

Btu

1b
ð2:OÞ

To finish this example, we ask what would happen if instead

of taking the CO2 out of the power plant exhaust gas, we let it

dilute to the concentration in the atmosphere (about 390 ppm)

and then separated it? Substituting xa¼ 0.000390 in the

above equations we find that the required reversible work

increases by a factor of 2.9. &

This example shows some of the utility of the combined

statement. Using it, we can quickly and simply estimate

the reversible work requirement for this separation, and the

reversible work ratio between starting with 12% CO2 and

0.039% (390 ppm). This ratio shows that we should begin

with the most concentrated a CO2 stream as we can.

The combined statement (Eq. 2.58) leads naturally to the

definition of several important convenience properties. If

we consider a steady flow, isothermal process at the reservoir

temperature, then (To /Tin)¼ 1, so that the dQ term is zero,

and at steady state flow the d(m(u� Tos)system term is also

zero, so we have

X
dWreversible; in minus out

¼ �
X

ðuþPv�TosÞdmin minus out
steady flow;
isothermal

	 


ð2:63Þ
The term (u þ Pv� Tos) becomes (u þ Pv� Ts) for this

isothermal process. If we further restrict our attention to a

steady flow device with only one flow in and out, this further

simplifies to

dW

dm
¼�DðuþPv�TsÞin minus out

steady flow;
isothermal at To;
reversible

2
4

3
5

ð2:64Þ

This shows how the convenience function

ðuþPv�TsÞ¼ðh�TsÞ¼g¼ Gibbs energy permass ormolð Þ
ð2:65Þ

FIGURE 2.13 The flow diagram for a general steady-state pro-

cess with one inlet stream (1) and two outlet streams (2 and 3)

exchanging heat with the surroundings only at To, and also for the

specific separation of CO2 from power plant waste gas.
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naturally arises from a combined first and second law anal-

ysis of the minimum or maximum work. The Gibbs energy

also arises naturally and plays a dominant role in the study of

phase and chemical equilibrium in Chap. 4.

Returning to our piston and cylinder in Figure 2.7, we ask

what is the minimum or maximum work for a reversible,

isothermal, constant volume process at (To/Tin)¼ 1 in such

a device. Dropping the unnecessary terms from Eq. 2.58,

we find

dW

dmreversible

¼ Dðu�TsÞsystem
reversible isothermal

constant volume

process at T ¼ To

2
4

3
5

ð2:66Þ
This leads to another convenience function

ðu�TsÞ ¼ a ¼ Helmholz energy per mass or molð Þ
ð2:67Þ

which is not widely used in chemical engineering calcula-

tions (which are mostly made at constant T and P) but more

often used in chemistry, (where many systems operate at

constant T and V).

Eq. 2.58 naturally leads to two other convenience func-

tions,

ðuþPv�TosÞ ¼ ðh�TosÞ ¼ availability functionð Þ
ð2:68Þ

the favorite of the cryogenic engineers, and

ðh�hoÞ�Toðs�soÞ ¼ ðexergyÞ ð2:69Þ

which the mechanical engineers like much more the chem-

ical engineers seem to. Here h0 and s0 are the enthalpy and

entropy per mass or mol in an appropriately chosen datum or

reference state.

Much more details on the use of the combined statement

are given in [11].

2.16 SUMMARY

1. The general balance equation is used in almost every

chemical engineering problem. It can be applied

only to some system or control volume with a pre-

cisely defined set of boundaries.

2. The law of conservation of mass states that mass

obeys the general balance equation with creation¼
destruction¼ 0.

3. The first law of thermodynamics (law of conserva-

tion of energy) states that energy obeys the general

balance equation with creation¼ destruction¼ 0.

4. The second law of thermodynamics states that all real

processes are irreversible, and defines a reversible

process as an ideal to which we may compare real

processes.

5. The second law is most often used numerically by

introducing the entropy, whose values increase by

heat addition and by irreversible processes.

6. In elementary thermodynamics courses we generally

solve problems for devices and systems, processing

pure species, looking up values of v, h, and s in suitable

tables. In this book we are mostly concerned with

mixtures, and howwe compute the equivalent of those

tables of thermodynamic properties for mixtures.

7. The measurable properties in pure-species thermo-

dynamics are P, T, m, and V. All other properties are

calculated from measurements made of those three

(including calorimetric measurements, where differ-

ences in T are used).

8. We make up pure-species thermodynamic property

tables by defining a datum state to which we assign

values of h and s, normally setting both to 0.00 in the

same datum state. Then we calculate the values at

other states using heat capacity data and an EOS.

9. The simplest EOS, the ideal gas law, is based in theory

and quite reliable for low pressures and high tem-

peratures. For higher pressures and lower tempera-

tures we use more complex EOSs all of which begin

with the ideal gas law, and then add other terms,

generally with no theoretical basis, which allow us to

fit the EOS to the experimental PvT data.

10. The corresponding states principle is only approxi-

mately correct, but it has proven very useful. It is, in

effect, an EOS that applies to all substances and for

which we need very little experimental data.

11. Departure functions show the deviation or departure

of real substances from ideal substances. The com-

pressibility factor z shows that departure for real

gases.

12. The combined first and second law statement allows

us to calculate the reversible work for any process,

actual or hypothetical. It also leads to the definitions

of several useful convenience functions.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (�) on a problem number means that the

answer is in Appendix H.

2.1 Write an energy balance for the earth, indicating

which terms are probably important and which are

probably negligible.
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2.2� From an energy balance around the earth estimate the

rate of energy liberated by radioactive decays in the

earth. Assume that heat losses from the earth are at

steady state. Use the following:

Earth is roughly a sphere 8000 mi in diameter.

Geothermal gradient of temperature, dT/dz is approx-

imately 0.02�F/ft.
Thermal conductivity k of earth (near the surface), is

about 1 Btu/(h � �F�ft.) Heat flow is estimated from
_Q¼�kA(dT/dz), where A is area.

2.2 Also calculate the rate at which matter is being

converted to energy in the earth.

2.3 In rating the energy release of nuclear explosives the

Atomic Energy Commission uses the energy unit

“kiloton,” where 1 kton¼ 1012 cal. This is roughly

the energy release involved in detonating 103 tons of

TNT. The Hiroshima bomb was reported to be about

14 kton. How much matter was converted to energy

in it?

2.4 The groups u þ gz þ V2/2 and h þ gz þ V2/2 oc-

cur in most ME thermodynamics problems. To eval-

uate the relative magnitude of the individual terms,

calculate gz and V2/2 in Btu/lbm and J/kg for the

following: z¼ 10, 100, 1000, 10,000 ft; V¼ 10, 100,

1000, 10,000 ft/s. Show these results on a log-log plot.

2.5� Typical high explosives liberate about 1800Btu/lbm

of thermal energy on exploding. It has been sug-

gested that a high-velocity projectile might liberate

as much thermal energy on being stopped, by con-

version of its kinetic energy to thermal energy. How

fast must such a projectile be going in order that its

kinetic energy, if all turned to internal energy, would

be the same as that of the typical explosive described

above? Under what circumstances could a projectile

have this kind of velocity?

2.6 List the sources of irreversibility in an ordinary house-

hold refrigerator. Showwhat methods we could use to

overcome these if the cost were of no concern.

2.7 List two industrial processes that closely approach

reversibility. List two industrial processes that are

very irreversible.

2.8 Most investigators believe that the entropy of all

perfect crystalline materials at 0K is zero. Someone

has suggested that the true situation is that the entropy

of all perfect crystalline materials at 0K is A, where A

is the same for all materials (per gram atom). (This

means that the entropy of a monatomic substance,

such as He, would beA at 0K, while that of a diatomic

substance, such as H2, would be 2A, and so on. Thus,

for any chemical reaction at 0K, there would be no

entropy change, because the number of atoms is

conserved.) If A¼ 0, then the two views are the same.

What experiments could be performed to determine

whether A is equal to zero?

2.9 a. Give an example of a system undergoing a revers-

ible change, during which the system’s entropy

(1) increases, (2) decreases, (3) remains constant,

b. Give an example of a system undergoing an

irreversible change, during which the system’s

entropy (1) increases, (2) decreases, (3) remains

constant.

2.10 Using values from a steam table, verify the statements

in Example 2.1 that the difference between the inter-

nal energy and enthalpy changes is equal to the

product of the pressure and the volume change.

2.11 Verify the statement in Example 2.1 that the change in

entropy is approximately equal to the heat input

divided by the average absolute temperature for the

process.

2.12� One hundred kilograms of steam is contained in a

cylinder with a frictionless, zero-mass piston, the

other side of which is exposed to the atmosphere.

The steam is initially 100% quality at 100�C. Enough
heat is transferred through the cylinderwalls to reduce

the quality (weight fraction vapor) to 25%. Howmuch

heat was transferred? Which way?

2.13 Using the heat capacity constants in Table A.9, esti-

mate the enthalpy and entropy changes when steam at

14.7 psia is heated from 250 to 500�F at constant

pressure. Compare your answer to values from the

steam table (Dh¼ 118.5 Btu/lbm, Ds¼ 0.1431Btu/

(lbm��R)).
2.14 Show the forms of Eqs. 2.33, 2.34, and 2.35 for a gas

that obeys the ideal gas law by substituting the ap-

propriate values of the v derivatives calculated from

the ideal gas law.

2.15 Figure 2.10 shows the constant-pressure (horizontal)

integration at the same pressure as that in the datum

state, which is normally not zero (0.08866 psia¼
0.0061173 bar in both the US and SI steam tables).

Often the available heat capacity equation is for an

ideal gas at zero pressure.

a. If the pressure in the datum state is not zero, andwe

wish to use a zero- pressure heat capacity, sketch

what the integration paths would look like on

Figure 2.10.

b. Show the form of the integration for the vertical

path on Figure 2.10, finding the appropriate de-

rivative (@h/@P)T from Table 2.2.
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c. Show the mathematical form of this derivative if

the material is an ideal gas. Table A.9 indicates

that the equations there for Cp are for the ideal

gas state. Where would they be appropriate on

Figure 2.10?

d. Show the value of this derivative for liquid water

near its datum state (0.018�F, 0.08866 psia). The
specificvolumeofwater at this state is 0.016022 ft3/

lbm and (@v/@T)p� 2 � 10�7 ft3 /(lbm��F).
2.16 Estimate the z of steam at 500�F and 680 psia, using

Figure A.4. Comment on the degree of agreement or

disagreement with the experimental value reported

in Example 2.3.

2.17 The steam table [4] shows that at 500 psia and 500�F
the specific volume of steam is 0.9924 ft3/lbm.

a. Calculate the value of z for steam at this temper-

ature and pressure.

b. Estimate the same quantity from Figure A.4.

2.18 Show the detailed calculations going from Eq. 2.61 to

2.62.

2.19 Estimate the isothermal entropy change of mixing for

binary mixtures of two species for x1¼ 0.5, 0.3, 0.1

and 0.01, assuming ideal solution.

2.20 Show the calculations leading to the statement in

Ex. 2.4 that reducing the inlet concentration of CO2

from 12mol % to 0.039mol % increases the required

reversible work by a factor of 2.9.

2.21 For Ex. 2.3, plot
�1

RTo

dWreversible

dn1
and

�1

RTo
	

dWreversible

dna
vs xa for the range of xa from 0 to 1.0.

2.22 The plot in Prob. 2.21 leads to the conclusion that asxa
goes to zero, the reversible work to separate per mol

mixture goes to zero, while the reversible work to

separate per mole of A goes to infinity!

a. Verify from the plot that this is correct.

b. Show that the equations demand it.

c. Explain physicallywhat the equations are telling us.

d. This part of the problem requires some knowledge

of distillation. Explain it in terms of a distillation

separating A and B. If we have an existing col-

umn, and we cut it open and insert some additional

trays, and then weld it together and run it at

the same feed rate and reflux rate, will the heat

input(s) to the reboiler and condenser increase?

Will the quality of the separation increase?

2.23 The largest scale separation of ideal gas mixtures

into practically pure gases is probably the separation

of air into nitrogen and oxygen (and sometimes also

argon). Air separation plants operateworldwide; there

is probably at least one in your city.

a. Estimate the required reversible work (J/mol of

air) for such a plant, using the sameTo as in Ex. 2.4.

b. Shreve [12] page 110 suggests that for a plant

processing 15,000 lbmol/day of air delivering

practically pure nitrogen and oxygen gases at

practically atmospheric pressure the actual power

input is 1MW.What is the ratio of this power input

to that required for a reversible plant?
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3
THE SIMPLEST PHASE EQUILIBRIUM EXAMPLES AND
SOME SIMPLE ESTIMATING RULES

In this chapter we discuss the simplest phase equilibrium

examples. In various places the discussion is intuitive, not

rigorous; that is pointed out where it occurs. Most of the

material in this chapter is revisited in a rigorous way in

Chapters 7–9, after we have developed the necessary ther-

modynamics in Chapters 4–6.

3.1 SOME GENERAL STATEMENTS ABOUT

EQUILIBRIUM

We know that in a system at equilibrium there can be no

spontaneous process occurring within the system. This leads

to three simple, nonmathematical statements.

First, we know that if a system has temperature differ-

ences in it, then there will be spontaneous change as heat

flows from hot to cold. Thus, for any system to be at

equilibrium with its surroundings, it must be at the same

temperature as its surroundings and must have the same

uniform internal temperature. In many situations we have

systems in which the temperature is not the same at every

point in the system, but it is constant in time at every point;

that is,

@T

@x

� �
y;z;t

6¼ 0; but
@T

@t

� �
x;y;z

¼ 0 ð3:1Þ

This is not an equilibrium situation. Rather it is the “steady

state,” which forms the basis of much of irreversible ther-

modynamics. If we could find a perfect heat insulator, then

we could have a system at equilibrium with two parts at

different temperatures. As yet, no one has any idea how such

an insulator could be made, so that we are secure in making

the sweeping statement that any system at equilibrium is an

isothermal system; and unless it is in an adiabatic container

(which exists only in theory and in thermodynamics text-

books), it is at the same temperature as its surroundings

(Figure 3.1).

Second, we know from basic thermodynamics that any

form of mechanical energy can be converted 100% to some

other form of mechanical energy (if we have frictionless

conversion devices, which, like adiabatic containers, exist

only in theory and thermodynamics textbooks). Thus, con-

version of mechanical, electrical, or kinetic energies from

one form to another is possible in an equilibrium system. We

also know from thermodynamics that we can convert any of

these forms of energy 100% to heat or internal energy by a

frictional process, but that the second law forbids 100%

conversion in the opposite direction. Thus, we know that

any frictional behavior is irreversible, and cannot be occur-

ring in a system at equilibrium. Thus, in any equilibrium

system there can be no processes involving friction. Under

most circumstances this will mean that there are no moving

parts of a system at equilibrium because in any real macro-

scopic system, motion leads to friction.

For most situations this means the system must be at a

uniform pressure. If there is gravity, then there will be a

pressure gradient that is opposed by gravity, and if one part of

a system is in a piston restrained by a spring, or in a droplet or

bubble restrained by surface forces, then that part may be at a

pressure different from the other parts. But in the absence of

restraining gravity, spring, electrostatic,magnetic, osmotic,
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or surface forces, at equilibrium the system must be at a

uniform pressure (Figure 3.2).

If there is a pressure gradient in a system, which is

opposed by gravity (or a spring, etc.), the system is often

said to be inmechanical equilibrium. Such systems can be in

phase and chemical equilibrium with different pressures in

different parts, as discussed in detail in Chapter 14. For most

of the rest of this book we will assume that these pressure

differences are small, and can be ignored, so that a system at

phase and chemical equilibrium will have the same uniform

pressure throughout.

This leaves open a question of oscillating systems. Is a

frictionless pendulum in equilibrium with its surroundings?

This is clearly a matter of definition and we can define it

either way. If we define the “state of the system” to be one of

regular oscillatory motion, then there is no spontaneous

change from this state and, hence, equilibrium. If we define

equilibrium to forbid spontaneous conversion of one form of

energy to another, then we have defined the pendulum as a

nonequilibrium system. This may be a good question for

philosophers, but it seems to have no important engineering

consequences. (We know that in anymaterial not at 0K there

are internal vibrations of the atoms and molecules; these are

present in all systems ofmatter at equilibrium, except at 0K.)

Third, there can be no flow of electric current through any

resistor because this is a spontaneous change that causes the

conversion of some other kind of energy into heat. This

means that for an electric cell to be at equilibrium, it must be

either disconnected (e.g., an auto storage battery with its

terminals not connected) or must be opposed by an equal

voltage in the opposite sense (e.g., a storage battery with its

terminals connected through a balanced potentiometer) The

situation in Figure 3.3 is metastable. As long as we do not

close the switch, the two parts of the system can remain at

different voltages (electric potentials) indefinitely. But when

we close the switch, they will move toward a stable equi-

librium state, in which they are both at the same voltage, by

passing a current through the resistor. (Electrochemical

equilibrium is discussed in Chapter 13.)

In effect this assumes that there exist perfect resistors. If

therewere no good resistors (i.e., electrical insulators), then it

would be impossible to build a storage battery; chargewould

leak through the case of the battery and discharge the battery.

As a practical matter, we all know that electrical insulators do

exist, which are good enough that one can make excellent

storage batterieswhose current leakage rate is� 0 (over a few

months or years). Thus, on a human time scale, we can say

that such resistors exist. The same is not the casewith the flow

of heat. Given the best practically available thermal insula-

tion, it is not now possible to make a small portable icebox

thatwill keep a block of ice frommelting for a summermonth

in the Sahara desert.

The remaining, and interesting part of the study of equi-

librium is determining the chemical compositions of phases

at equilibrium and of chemicals within a phase that are in

chemical-reaction equilibrium.

Low
pressure

High
pressure

FIGURE 3.2 If two parts of system are in contact and do not have

the same pressure, then a spontaneous process will occur unless the

difference in pressure is opposed by gravity, a spring, or surface

tension.

High
voltage

Low
voltage

Switch

Resistor

FIGURE 3.3 A system may be a metastable equilibrium system

with two parts at different voltages, if they have no electrical

connection. But if there is the possibility of a current flow through

any resistance, then a spontaneous change will occur and this is not

an equilibrium system.

Cold

Hot

FIGURE3.1 If two parts of a system are at different temperatures

and are in thermal contact with each other, then there will be a

spontaneous change as heat flows from hot to cold. So this is not an

equilibrium system.
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3.2 THE SIMPLEST EXAMPLE OF
PHASE EQUILIBRIUM

The simplest possible phase equilibrium is that between a

pure liquid and the corresponding gas or vapor.

3.2.1 A Digression, the Distinction Between
Vapor and Gas

It would be less confusing to students if the terms vapor and

gas had not both been invented, because they are often used

interchangeably. In many ways they have the same meaning,

but in some situations we use only one of them, so the student

must leamboth, and learn the distinctionbetween them.Agas

is any substance in the gaseous state, which means that it will

expand as needed to fill any container in which it is placed.

Solids and liquids do not do that. A vapor is a gas that is at a

temperature below its critical temperature. This means that if a

vapor is compressed at a constant temperature it will turn into

a liquid (Figure 1.8). A gas at a temperature above its critical

temperature can be compressed at constant temperatures to

veryhighpressureswithout changing toa liquid.Sinceavapor

is a gas, one could logically suggest that we dispensewith the

term vapor. But it is in very common usage. For example, the

water that exists in the atmosphere is certainly in gaseous

form, but it is below its critical temperature and is always

referred to as water vapor; no other term is ever used.

Similarly, Figure 1.8 and other figures like it show the relation

between a liquid and a gas. But the gas is below its critical

temperature, and such curves are always called vapor-

pressure curves. Throughout this book I have tried to use

the wording that the student will most often encounter in

professional life, but confusion is sure to occur. Remember

that a vapor is a gas, but that some gases are not vapors.

3.2.2 Back to the Simplest Equilibrium

We are all familiar with vapor–liquid equilibrium, in the case

of water and steam. For pure water and steam to be in

equilibrium (without air mixed in) the pressure of the gas

must equal the vapor pressure of the liquid. If the pressure of

the gas is less than the vapor pressure of the liquid, then the

liquid will boil, expelling gas. If the pressure of the gas is

greater than the vapor pressure of the liquid, then the gas will

condense into the liquid. If these processes occur in a closed

container (Figure 3.4), then they will continue until the two

pressures (and temperatures) become the same, at which time

we will have phase equilibrium. From our previous studies,

we know that the vapor pressure of any pure liquid is a simple

function of the temperature, called the vapor-pressure curve.

Its values for many liquids are presented in textbooks and

handbooks and are discussed in detail in Chapter 5.

We may profitably think of this as a situation in which the

rate of escape of molecules from the liquid surface is

proportional to its vapor pressure, and the rate of condensa-

tion of molecules from the steam into the liquid is propor-

tional to the pressure of the gas. These are equal and opposite

(and we have phase equilibrium) when the gas pressure and

the vapor pressure are equal. Figure 1.8 shows this relation-

ship for steam andwater. Equilibrium between liquid and gas

occurs only along the curve shown. Above and to the left of

the curve only liquid can exist; below and to the right of the

curve only gas can exist. At temperatures below the critical

temperature (374�C¼ 705.4�F for water) that gas would be

called a vapor.

In Chapter 5 we will see that the Antoine equation

(Eq. 5.12) represents experimental vapor-pressure data with

reasonable accuracy in a simple algebraic form. It is shown,

along with suitable values for a variety of chemicals, in

Appendix A.2. We will use it in this chapter, while deferring

the discussion of its origin until Chapter 5.

3.3 THE NEXT LEVEL OF COMPLEXITY

IN PHASE EQUILIBRIUM

If we now consider the air–water system, we see that at

temperatures near room temperature and 1 atm pressure there

will be a liquid and a gas, as there was for pure water, but that

there will be air dissolved in the water, and water vapor

dissolved in the gas. Because this system is so important, we

will describe it physically a bit before we begin the math-

ematics. Figure 3.5 shows a piston and cylinder arrangement

containing air and water. It is assumed that heaters or

refrigerators work to keep this system at some constant

temperature and that the piston can move up and down to

adjust the pressure. If we make up this system with very pure

water and dry air, then at first the water will contain no

dissolved air, and the air will contain no water vapor. If we

wait a long enough time, air will dissolve into the water and

water vapor will evaporate into the air, until finally an

equilibrium state is reached in which none of the physical

or chemical properties of the system is changing with time.

Steam

Liquid
water

Rigid
adiabatic
container

FIGURE 3.4 If we place a suitable amount of pure H2O in a rigid

adiabatic container and wait for equilibrium, wewill eventually find

steam and liquid water, both at the same temperature and pressure

(except for thevery small pressure differences caused by gravity and

surface tension).
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If we wait for molecular diffusion to produce this result, we

will have to wait a long time. If we stir or shake the system

vigorously, we can reach the equilibrium state in a few

seconds.

When equilibrium has been reached the composition of

the two phases will be that shown in the Table 3.1. For the

moment, please accept these values on faith; by the end of the

chapter it will be clear how they were calculated.

Observe also that the two phases in equilibrium have very

different chemical compositions. In Figure 3.4 both phases

have the same chemical composition, because there is only

one chemical species present. When we increase the com-

plexity by adding a second or third species, the compositions

of the two phases will generally not be the same (except for

azeotropes; see Section 8.4.4). Most physical separation

processes (distillation, crystallization, evaporation, drying)

utilize this difference in composition between equilibrium

phases to separate one chemical from another.

The amount of oxygen dissolved in the water is small, but

it is needed for almost all life on this planet All living things

conduct their biochemical business in dilute solutions of

various materials in water; most need dissolved oxygen to

conduct that biochemical business. We regularly oxygenate

our fish bowls to provide the oxygen, dissolved in the water,

that the fish must have to live. Our blood and that of most

animals has chemicals in it (ours is hemoglobin in our red

blood cells, which gives our blood its red color) that increase

the equilibrium amount of oxygen dissolved in it making us

much more efficient animals than we would be otherwise

(see Problem 3.1). That dissolved oxygen makes iron and

steel rust. Oxygen-free water will not rust iron or steel; the

feed water for boilers is treated to remove the dissolved

oxygen.

The amount of water in the gas phase (air) is small, but

plays a significant role in many processes. The water content

of the atmosphere is responsible for many of the interesting,

dramatic, and destructive things that our weather does.

Without this water there would be no clouds, rain, lightning,

hurricanes, and so on. Normally outdoor air contains less

moisture than the amount shown in Table 3.1, except in very

humid situations. For this reason, water evaporates from our

skins and clothing into the air. For liquid water, the direction

of equilibrium is to increase the water content of the atmo-

sphere toward 0.023mol fraction (at 20�C and 1 atm pres-

sure). Until it does that, liquid water continues to evaporate

at a rate that depends mostly on the air temperature and the

wind velocity.

If we change the temperature and pressure, wewill change

the values in Table 3.1. Clothes dry faster in a clothes dryer

than on a clothesline, because in the dryer we heat the clothes

and the air around them, thus increasing the equilibrium

concentration of water in air, and making the process go

faster. Conversely, if we lower the temperature of the air, the

equilibrium concentration of water will decline. If there is an

available solid surface, thewater will condense on it, forming

dew. If there is no surface, but there are enough fine particles

in the air, the water will condense on them, forming clouds

or fog.

If we bring a cold drink into a warm room, water will

condense on the glass (Figure 3.6), because the equilibrium

water content of the air at the temperature of the drink is less

than the typical water concentration in the room air. The

cooled air next to the drink must reject water to reach

equilibrium. In Figure 3.6 if the room is at 20�C¼ 68�F
and 50% relative humidity, the water content of the air is

Table 3.1 Composition of Air and Water at Equilibrium at

20� C¼ 68�F, and 1.00 atm Pressure

Gas Phase Liquid Phase

Mol fraction water 0.023 0.999985

Mol fraction oxygen 0.205 5� 10�6

Mol fraction nitrogen 0.772 10� 10�6

Sum of mol fractions 1.00 1.00

Note: This treats air as 21% oxygen, 79% nitrogen, ignoring its other minor

species.

Drink glass
with liquid
water and
ice cube,
T = 32º F

Thin layer
of air cooled
to 40º F. Max.
water content
=0.83 mol%

Room air at
68º F. Max. water
content = 2.3 mol%
If relative
humidity = 50%
water content = 1.15
mol%

FIGURE 3.6 When a cold surface is brought into a warm room,

the equilibrium moisture content of the cooled air layer near the

surfacewill be lower than themoisture content of the air in the room,

and moisture (dew) will form on the cold surface.

Phase 1

Phase 2
System
boundary

Isothermal
container

Frictionless
piston

FIGURE 3.5 Two phases (mostly air and mostly water) in

equilibrium in a piston and cylinder arrangement, at constant

temperature.
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1.15 mol%. Air cooled to 40�F can hold only 0.83 mol%

water, so the air next to the glass must reject water, normally

by forming dew on the glass.

Raising the temperature increases the equilibrium con-

centration of water vapor in air, but it lowers the equilibrium

concentration of oxygen and nitrogen in water. This is easily

seen by filling a glass with very cold water from a tap and

letting it sit on a kitchen counter. As the water warms, the

amount of dissolved oxygen and nitrogen it contains be-

comes more than the equilibrium amount at the warmer

temperature, so the water must reject oxygen and nitrogen

to reach equilibrium. Bubbles of air form on the inside walls

of the glass, where this oxygen and nitrogen comes out of

solution. Raising the pressure has the opposite effect: It

decreases the equilibrium amount of water water vapor in

the air and increases the equilibrium amount of dissolved

oxygen and nitrogen in water. The reader is certainly familiar

with the effect of reducing the pressure on the solubility

carbon dioxide in water, as shown by opening a carbonated

beverage container and watching the carbon dioxide bubbles

come out of solution. Amore sinister example is the effect of

air pressure on the solubility of nitrogen in our blood. Divers

breathe air at pressures comparable to that of the water

around them. At those pressures the equilibrium solubility

of nitrogen in the blood ismuch larger than thevalue shown in

Table 3.1. When the diver comes to the surface and reduces

her body pressure, the amount of dissolved nitrogen in her

blood is more than the equilibrium value at the new, much

lower pressure, and the blood must emit nitrogen, normally

through the lungs. If the pressure reduction is done too

rapidly, the nitrogen comes out of solution in small bubbles

in the blood veins, blocking the blood flow, causing a painful

or fatal case of “the bends.”

3.4 SOME SIMPLE ESTIMATING RULES:

RAOULT’S AND HENRY’S “LAWS”

Before we begin to show the role of thermodynamics in

understanding this simple kind of equilibrium, we consider

two important and widely used estimating rules. The rest of

this chapter sacrifices rigor for intuitive content. We will

revisit this same material rigorously in Chapters 7–9. We

start with our knowledge that for gas–liquid equilibrium of a

single pure species (water and steam, with no air) the

pressure of the gas must equal the liquid’s vapor pressure.

If we add another species (e.g., air), then it will dilute the

water in both phases However, it is reasonable to assume

that at equilibrium there will be something like the equality

of the pressure of the vapor and the liquid’s vapor pressure

in the pure species case At equilibrium the flow of water

molecules from liquid to gas, and from gas to liquid must be

equal, just as it was for pure water and steam. To apply that

equality for mixtures, we define two new quantities. The

partial pressure of a species in a gas is the product of the

total pressure P, of the gas, times the mol fraction of that

species yi, in the gas:

partial pressure
of species i
in a gaseous mixture

 !
� mol fraction of

i in the mixture

� �

:
system
absolute
pressure

 !
¼ yiP

ð3:2Þ

For a pure gas the partial pressure is equal to the total pressure

(because yi¼ 1.0 for a pure gas). For any gas mixture the sum

of the partial pressures equals the total pressure,P
yiP ¼ P

P
yi ¼ P because the sum of the mol fractions

is unity. The partial pressure is defined only for gases; this

term is not used for solids and liquids.

An equivalent term, not as widely used but perhaps

equally useful, is the partial vapor pressure of one species

in a liquid, which is defined as the pure species vapor

pressure of that species pi multiplied by its mol fraction in

the liquid xi

partial vapor pressure
of species i
in a liquid mixture

 !
� mol fraction of

i in the mixture

� �

:
vapor pressure
of pure species i

� �
¼ xipi

ð3:3Þ

(We regularly use yi, for mol fractions in the gas phase and xi
formol fractions in the liquid phase,P for the total pressure of

the gas and pi for the pure-species vapor pressure of species i

in the liquid.) For a pure liquid the partial vapor pressure is

equal to the pure liquid’s vapor pressure at that temperature

(because xi¼ 1.0 for a pure liquid). For one kind of ideal

solution (defined in Chapter 7) the sum of the partial vapor

pressures equals the total vapor pressure of the liquid. The

partial vapor pressure is defined only for liquids; it is

occasionally used for solids and never for gases.

Using these definitions we can state Raoult’s law (which

would be better named “Raoult’s useful estimating ap-

proximation,” because it is not a law like the laws of

thermodynamics). It says that for gas–liquid equilibrium for

each chemical species present, the partial pressure in the gas

is equal to the partial vapor pressure in the liquid. Mathe-

matically, Raoult’s law is

yiP ¼ xipi ð3:4Þ

and by simple extension

P ¼
P

xipiP
yi

¼
X

xipi ð3:AÞ
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Figure 3.7 shows a gas and liquid in equilibrium. If there

is only one chemical species present, for example H2O, then

this is the same as Figure 3.4. In that case the number of

molecules that pass from the gas to the liquid per s �m2 is the

number of gas molecules that strike the surface times the

probability that theywill stick. The number ofmolecules that

pass from the liquid to the gas per s �m2 is the number of

molecules that strike the surface from the liquid side per

s �m2 times the probability that they have enough energy to

pass through the surface and escape. The first of these is

proportional to the gas pressure, the second to the liquid’s

vapor pressure. At equilibrium these are equal.

In the case of a mixture like air–water, the total number of

gas molecules that hit the surface per s �m2 is practically the

same for amixture as for a pure compound. But the number of

water molecules that hit the surface per s �m2 is that number

times the fraction of the molecules in the mixture that are

water, which is the mol fraction of water in the gas phase.

Similarly, for the water molecules escaping from the liquid,

the number of molecules hitting the liquid surface from

below is more or less the same as for a pure liquid, but the

percentage of those that are water is equal to the mol fraction

of water in the liquid. This intuitive description is not

rigorously correct. But it shows a simple way of looking at

why the mol fractions play their crucial role in Raoult’s law.

In all that follows on phase equilibrium, remember that

for two or more phases to be in equilibrium, for each

chemical species present in those phases the value of a

quantity very much like the partial pressure or partial vapor

pressure must be the same in all of the phases at equili-

brium for the net rate of molecular movement from

one phase to the other to be zero. The mathematical details

may become complex, because nature seldom does things

as simply as we would like, but ultimately all phase

equilibrium calculations are based on finding the chemical

compositions of the phases in equilibrium for which the

values of this quantity, for each species, is the same in

all the phases at equilibrium. For most common phase

equilibrium problems that quantity will be a defined

thermodynamic property called the fugaciiy (discussed

in Chapter 7), which has the properties that for mixtures

of ideal gases it is identical to the partial pressure and for

liquid solutions of one common kind it is identical to the

partial vapor pressure defined above. For real solutions that

are not simple and for high pressures, we will still use the

equivalent of Raoult’s law, but using the fugacity instead

of the simple partial pressure and partial vapor pressure we

use here. Chapter 8 discusses this topic in more detail, with

mathematical and thermodynamic rigor.

Figure 3.8 shows that Raoult’s law has a very simple

geometrical interpretation. At a constant value of pi / P, yi is

linearly proportional to xi.We can also see that if we increase

the temperature while holding the total pressure constant,

then pi / P will increase because the vapor pressure pi
increases with increasing temperature. We also see that if

pi / P¼ 1.0, then yi¼ xi.

Example 3.1 Estimate the mol fraction of water vapor in

air in equilibrium with water at 20�C¼ 68�F and one atmo-

sphere pressure.

Rearranging Eq. 3.4, we have

yi ¼ xipi

P
ð3:5Þ

Here we have a ternary mixture of nitrogen, oxygen, and

water. If we let the subscript i stand for water, we can say that

xwater ¼ 1� xN2
� xO2

ð3:BÞ

but we know from experience that the mol fractions of

dissolved N2 and O2 in liquid water are quite small, so that

we are safe in saying that xwater� 1. Later we must check to

see that this approximation is satisfactory, which we do in

Example 3.2. From any steam tablewemay look up the value

of the vapor pressure of water at 20�C, finding pwater¼ 0.023

atm. We use this value in Eq. 3.5, with the total pressure,

P¼ 1.00 atm, finding ywater� 0.023. &

0 1.0

pi / P

xi

yi

FIGURE 3.8 Raoult’s law has a very simple geometrical

interpretation. There is a corresponding plot for species j, species

k, and so on.

Gas or vapor

Liquid

FIGURE 3.7 At equilibrium the net interchange of molecules of

species i between gas and liquid is zero. This means that the two

rates in opposite directions must be equal and opposite.
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From previous parts of this course (see Figure 1.8) we

know that for all liquids the vapor pressure increases with

increasing temperature. From Eq. 3.5 we see that increasing

the temperature, and hence the vapor pressure, increases the

equilibrium water content of air in equilibrium with water.

This explains, in a quantitative way, how dryers work, and

how dew and clouds form. The value shown by Eq. 3.5 is the

equilibrium concentration, in this case also called the satu-

ration concentration, because it shows themaximumamount

of water that air can hold at 20� C. If we start with air with this
water concentration and cool it, Pwater will decrease so that

(ywater)equilibrium will decrease; to come to the new position of

equilibrium, the air must reject water. This is how dew

occurs, how water condenses on the side of a cold drink

container, and how clouds form.

If we want to use Eq. 3.5 to find the equilibrium concen-

tration of oxygen and nitrogen in the water, we quickly find

that we cannot look up the vapor pressures of pure liquid

nitrogen and oxygen at 20�C¼ 298.15K, because that is

above the critical temperature of these materials (154.8K for

oxygen, 126.2K for nitrogen, see Table A.1); they cannot

exist as pure liquids at this temperature. The experimental

measurements of the solubility of gases like oxygen and

nitrogen in liquids like water show that we can still use the

equivalent of Raoult’s law, but in place of the liquid vapor

pressure we must use a “pseudo vapor pressure,” determined

not from measuring the vapor pressure of the pure liquid as

we did for water, but rather from the measured gas solubility

data. This pseudo vapor pressure is called the Henry’s law

constant. Using it we may state Henry’s law (better called

“Henry’s useful estimating approximation”), as follows: At

modest pressures, gases that dissolve only to small amounts

in liquids obey the equivalent of Raoult’s law, with their pure

species vapor pressure replaced by an empirical

pseudo pressure called the “Henry’s law constant.” The

mathematical form of Henry’s law is the same as Eqs. 3.4

and 3.5, with the vapor pressure pi, replaced by the Henry’s

law constant Hi:

yi ¼ xiHi

P
ð3:6Þ

Table A.3 shows the reported values for the Henry’s law

constant for a variety of gases dissolved in water for several

temperatures.

Example 3.2 Estimate the concentration of oxygen dis-

solved in water when air and water are at equilibrium at

20�C¼ 68�F and one atmosphere pressure. From Example

3.1 we know that ywater¼ 0.023, so that YN2
þ YO2

¼
1 – 0.023¼ 0.977. The oxygen is 0.21mol fraction of this

mix, so that

yO2
¼ 0:21 � 0:977 ¼ 0:205 ð3:CÞ

From Table A.3 we look up the Henry’s law constant for

oxygen in water at 20�C, finding H¼ 40,100 atm. Then, by

direct substitution in Eq. 3.6,

xoxygen ¼ yoxygen �P
Hoxygen

¼ 0:205 � 1 atm
40;100 atm

¼ 5� 10�6 ð3:DÞ

This is the value shown in Table 3.1 as the mol fraction of

oxygen dissolved in water at equilibrium at this temperature

and pressure. By the same logic we find that

yN2
¼ 0:79 � 0:977 ¼ 0:772 ð3:EÞ

and

xnitrogen ¼ ynitrogen �P
Hnitrogen

¼ 0:772 � 1 atm
80;400 atm

¼ 10� 10�6 ð3:FÞ

which is the value shown in Table 3.1. Often the concentra-

tions of dissolved gases in water are shown as the equivalent

mass, mols, or volume of the gas at standard temperature

and pressure (stp), taken as 1 atm and 20�C in this book, for

example,

concentration of

dissolved oxygen

in equilibrium with

air at1atm and20�C

0
BB@

1
CCA¼ 5�10�6 molO2

mol solution

�
998:2

g

L solution

18
g

mol solution

¼ 0:00028
molO2

L solution
¼ 0:0090

gO2

L solution

volume of

O2; stp

� �

L solution
¼ 0:00028

molO2

L solution
�24:06 L gas; stp

mol

¼ 6:7
mLO2; stp

L solution
& ð3:GÞ

Figure 3.9 shows the relation of Henry’s law to experimental

data. The small circles represent the experimental data

points; the curve is a simple parabolic fit of those points.

The line is Henry’s law, using the values from Table A.3

(linearly interpolated between 20 and 30�C).
This plot shows:

1. That the solubility of nitrogen in water is small; at a

pressure of 1000 atm, the mol fraction of nitrogen in

water (at 25�C) is just under 0.006. This is true formost

common gases in liquids like water.
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2. For pressures of 25 atm or less, Henry’s law reproduces

the experimental data with sufficient accuracy for most

(but not all!) purposes. For the 25 atm data point,

Henry’s law shows a nitrogen mol fraction of

103.5% of the measured value; for 100 atm it shows

106.9% of the measured value.

3. This agreement should not surprise us. The values in

Table A.3were found by plotting the experimental data

as shown in this figure, drawing a straight line tangent

to the curve as the mol fraction approaches zero, and

extrapolating that line to xi¼1.0. The intercept on that

axis is the H shown in Table A.3.

4. This plot shows only the very left-hand side of a

complete plot. If the horizontal axis went from 0 to

1.0, the data points would disappear into the left axis.

5. Using Henry’s law for pressures greater than 100 atm

(or nitrogen mol fractions greater than about 0.001)

would lead to serious errors.

6. Figure 3.8 shows that Raoult’s law covers the whole

range of xi from 0 to 1.0. The same is not true for

Henry’s law. If we were to continue to increase the

nitrogen pressure in Figure 3.9 we would reach the

pressure (thousands of atmospheres) at which the liquid

would disappear.

7. At the lowpressures and dissolved gasmol fractions for

which we use Henry’s law, its linear form is satisfac-

torily accurate. For higher pressures it is not.

We might try to estimate the Henry’s law constant by

extrapolating the vapor-pressure curve from the critical

point, but the extrapolation is so large and thus uncertain

that instead we normally use the experimental concentration

values for dissolved gases, plotted as in Figure 3.9; this topic

is discussed again in Chapter 9.

Of the gases shown in Table A.3, He, H2, CH4, N2, O2, and

O3 are above their critical temperature, so that they cannot

exist as pure liquids at these temperatures. Acetylene, CO2,

ethane, andH2S can exist as liquids at these temperatures, but

only at high pressures. But most of these liquids do not

dissolve to any substantial extent in water, so applying

Raoult’s law directly to them would lead to serious errors.

However, we can use Henry’s law, which applies at modest

pressures to all gases that have only slight solubility in

liquids. One may think about this situation as sketched in

Figure 3.10. Themutual solubilities of liquidwater and liquid

ethane are very small. The ethane that dissolves in the water,

and the water that dissolves in the ethane behave physically

as if they had first evaporated, and then dissolved as gases in

the liquid. CO2 has a lower value ofH than the other gases in

Table A.3 because it enters into a chemical reaction with

water, discussed in Chapter 13.

Raoult’s law deals with vapor–liquid equilibrium;

Henry’s law deals with gas–liquid equilibrium. For normal

atmospheric air, oxygen and nitrogen are above their critical

temperatures and are gases, not vapors. The water vapor

dissolved in air is also a gas, because it is part of a gaseous

phase. But it is the kind of gas called a vapor, because it is

below its critical temperature. Thus, this is a simultaneous

gas-liquid equilibrium for N2 and O2 and a vapor–liquid

equilibrium for H2O. This mixed terminology does not seem

to cause much confusion.

Gaseous mix of
water and ethane

Liquid
ethane

Liquid
water

FIGURE3.10 Onemay think of the application of Henry’s law to

the solubility of ethane in water by visualizing a closed container

with an internal barrier, with water on one side and liquid ethane on

the other. The ethane evaporates into the gas space and then

dissolves in the water from the gas space, as shown by the arrow.

Henry’s law allows us to estimate the concentration of ethane in

water in this situation. There is a corresponding equilibrium flow of

water through the vapor into the liquid ethane, also estimable by

Henry’s law; both concentrations are small.
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the interpolated value of H from
Table A.3
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FIGURE 3.9 Experimental data [1] for the solubility of nitrogen

gas in water at 25�C on P-x coordinates, compared to a Henry’s law

estimate of the same data, using an interpolated Henry’s law

constant from Appendix A.3.

42 THE SIMPLEST PHASE EQUILIBRIUM EXAMPLES AND SOME SIMPLE ESTIMATING RULES



3.5 THE GENERAL TWO-PHASE EQUILIBRIUM
CALCULATION

In Examples 3.1 and 3.2 the calculation was simple,

because we knew from Table 3.1 that the liquid was

practically pure water and that the concentration of water

vapor in air was small. In general, for solutions involving

more than two species we will not know this, and will have

as many species equilibrium equations to solve simulta-

neously as there are species present, normally by trial and

error. Before the age of computers this calculation was a

giant pain, but our computers now do it for us quickly and

easily. The three equilibrium equations from Examples 3.1

and 3.2 are

ywater P ¼ xwater pwater ð3:HÞ

yoxygen P ¼ xoxygen Hoxygen ð3:IÞ

ynitrogen P ¼ xnitrogen Hnitrogen ð3:JÞ

a set of three equations with six unknowns. We have two

additional equations that say that the mol fractions in each

phase sum to 1.0, making this a system of five equations and

six unknowns. The additional relation we need is supplied by

the assumption that in the gas phase the molar ratio of

nitrogen to oxygen (ynitrogen/yoxygen)¼ 0.79/0.21, indepen-

dent of how much water vapor is dissolved in the air. In

Examples 3.1 and 3.2 we were able to solve this set of six

equations simply because we knew that three of the values

were negligibly small. In general, we will not know that, so

we (or our computers) will be solving sets of simultaneous

equations of this type.

Example 3.3 Repeat the calculation of Table 3.1, using the

above six equations, and not making the simplifications

previously used.

Inserting numerical values, we have

ywater � 1 atm ¼ xwater � 0:023 atm
yoxygen � 1 atm ¼ xoxygen � 40;100 atm
ynitrogen � 1 atm ¼ xnitrogen � 80;400 atm

ywater þ yoxygen þ ynitrogen ¼ 1

xwater þ xoxygen þ xnitrogen ¼ 1

yoxygen

ynitrogen
¼ 0:21

0:79
¼ 0:266

ð3:KÞ

Solving this set of six linear equations in six unknowns by any

of the standard simultaneous linear equation methods, we

find the values shown in Table 3.A. &

This calculation was done iteratively on a spreadsheet,

although it could have been done analytically by any of

several procedures. It shows that the shortcuts taken in

Examples 3.1 and 3.2 lead to very small errors in Table 3.1.

For more complex equilibria, treated in subsequent chapters,

the equations will generally not be linear and often will be

transcendental, so that analytic solutions will be impossible;

the iterative computer solution works in those cases. (You

should not believe that thevalues in Table 3.A are reliable to 7

significant figures; they are shown thus so that the small effect

of the simplifying assumptions becomes clear!) Looking

ahead to Chapters 7–9, we will see that they are largely

devoted to understanding, computing, and correlating

experimental values that replace the Raoult’s law and

Henry’s law equations in the above examples. If we must

compute the vapor–liquid equilibrium for a set of some

three chemicals whose interactions are more complex than

those for air and water, we will use the methods in Chapters

7–9 to find suitable replacements for the Raoult’s and

Henry’s law statements in these examples. The material

balance statements will be unchanged. As we deal with the

complexities of Chapters 7–9, remember that there we are

simply finding replacements for the simple equilibrium

statements that took part in the six simultaneous equations

in this example.

3.6 SOME SIMPLE APPLICATIONS OF RAOULT’S

AND HENRY’S LAWS

If we know the system temperature we can use Raouh’s law

(and the assumption that the vapor is an ideal gas) to solve

some simple vapor–liquid equilibrium problems.

Example 3.4 Estimate the vapor pressure and the compo-

sition of thevapor in equilibriumwith a liquid that is 80mol%

benzene and 20mol% toluene, at 20�C, assuming that ben-

zene and toluene behave according to Raoult’s law.

Here we calculate the vapor pressures of benzene and

toluene at 20�C using the Antoine equation (see Chapter 5)

and Table A.2. For benzene

Table 3.A Values for Example 3.3

Variable

Value from Table 3.1,

Based on Simplifications

in Examples 3.1 and 3.2

Value Found

by Solving Eqs. 3.K

Simultaneously

ywater 0.023 0.0229997

yoxygen 0.205 0.205273

ynitrogen 0.772 0.771726

xwater 0.999985 0.9999853

xoxygen 5� 10�6 5.119� l0�6

xnitrogen 10� 10�6 9.598� 10�6
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log
p

torr
¼ A� B

T=�CþC

¼ 6:90565� 1211:033

20þ 220:79
¼ 1:87623

p ¼ 10 E 1:87623 torr ¼ 75:2 torr

ð3:LÞ

and similarly, for toluene, p¼ 21.8 torr. Then we can com-

pute that

ybenzene P ¼ xbenzene � pbenzene ¼ 0:8 � 75:2 torr ¼ 60:2 torr

ð3:MÞ

and correspondingly for toluene, ytoluene P ¼ 0:2 � 21:8 ¼
4:36 torr. If we add these two values we will have

ybenzene Pþ ytoluene P ¼ ðybenzene þ ytolueneÞP ¼ 64:6 torr

ð3:NÞ

But we know that ybenzene þ ytoluene must equal 1.00, so the

total pressure must be 64.6 torr. To find either mol fraction in

the gas phase we observe that the mol fraction of any species

is equal to that species’ partial pressure divided by the total

pressure, so the two mol fractions are 60.2/64.6¼ 0.932 and

4.36/64.6¼ 0.068. &

Example 3.5 Estimate the concentration of benzene in air

that is saturated with benzene at 20�C.
This repeats Example 3.1, with the vapor pressure of

benzene taken from Example 3.4. Thus,

yi ¼ xipi

P
¼ 1:00 � 75:2 torr

760 torr
¼ 0:099 � 0:1 � 10% ð3:OÞ

which is the value shown in Section 1.1. &

We may repeat Example 3.4 for a variety of values of xb and

plot the results as shown in Figure 3.11.We see that the vapor

pressure of the solution (at constant temperature) is linearly

dependent on the mol fraction of benzene, and that the mol

fraction of the species with the higher vapor pressure (ben-

zene in this case) is higher in thevapor phase than in the liquid

phase. Separation of miscible liquids like benzene and

toluene by distillation is based on this fact.

Ifwe know the systempressure, but not the temperature, in

principle the problem is the same, but in practice it is more

difficult, always leading to a numerical (trial-and-error)

solution.

Example 3.6 At what temperature will the benzene–

toluene mixture in Ex. 3.4 have a vapor pressure of one

atmosphere? (That is, what is the normal boiling point

temperature for this mixture?) Assume that both species

obey Raoult’s law.

Writing the Raoult’s law expression for each species,

adding them, and grouping terms we have

ðybenzene þ ytolueneÞP ¼ xbenzene � pbenzene þ xtoluene ptoluene

ð3:PÞ

The terms on the left of the equation are known, (1�1 atm)¼
1 atm, and the two mol fractions on the right are known. The

two pure species vapor pressures on the right depend on

temperature alone (see Chapter 5, or Figure 1.8, which shows

such a curve for water). In principle we can substitute the

vapor pressure equations for benzene and toluene in the

above equation and solve. But in practice the useful vapor

pressure equations always involve logarithms, and equations

containing two different logarithms have no analytic

solutions, so this is inherently a trial-and-error problem.

Using the Antoine equation and Table A.2 for each pure

species vapor pressure and guessing values of T we may

compute Table 3.B and we see that 84.377�C the vapor

pressure is 760 torr¼ 1 atm. (We should not believe the

computed temperature to more than 3 significant figures, but

the value shown makes the calculated value of P¼ 760.00

torr.) From Raoult’s law we see that the mol fractions in the

vapor are

yb ¼ xbpb

P
¼ 0:8 � 865:4 torr

760 torr
¼ 0:911

yt ¼ xtpt

P
¼ 0:2 � 338:3 torr

760 torr
¼ 0:089

ð3:QÞ
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FIGURE 3.11 Computed liquid vapor pressure and vapor mol%

benzene, according to Raoult’s law, for a mixture of benzene and

toluene at a constant temperature of 20�C. (Herewe usemol percent

instead ofmol fraction on the ordinate so that both curves plot on the

same scale.) The line for mol% benzene in the liquid is shown

because it is traditionally shown in this type of diagram.

44 THE SIMPLEST PHASE EQUILIBRIUM EXAMPLES AND SOME SIMPLE ESTIMATING RULES



This type of problem is a pain to calculate by hand (a giant

pain for systems with a large number of species), but can be

solved quickly and easily on a spreadsheet or other computer

program (as was done here).

This solution was done intuitively. Formally, the set of

equations we are solving is

xb þ xt ¼ 1:00

yb þ yt ¼ 1:00

yb ¼ xbpb

P

yt ¼ xtpt

P

pb

torr
¼ 10 E 6:90565� 1211:003

T=�Cþ 220:79

� �

pt

torr
¼ 10 E 6:95334� 1343:943

T=�Cþ 219:337

� �

P ¼ 760 torr

xb ¼ 0:8 &

ð3:RÞ

The student may verify that the above intuitive solution

satisfies all of Eqs. 3.R. Comparing this equation set to the

equation set 3.K, we see that it is longer because instead of the

vapor pressures being specified (whichwe can do for a known

T), the vapor pressures are shown as functions ofT. In Chapter

8 we will repeat this type of calculation, for more complex

equilibria than those represented by Raoult’s law, showing

that the genera] procedure for this problem is to write Eq. 3.R

in a spreadsheet and use the spreadsheet’s numerical methods

to find the value of T that solves this set of equations.

We may repeat this calculation for various values of xb
and plot the results as shown in Figure 3.12. This is a phase

diagram, just as Figure 1.8 is, but amore complex one because

we have two chemical species, compared to the one species

there. To have a two-dimensional representation, we must

hold some variable constant, in this case the pressure. (Wemay

profitably think of this as a constant-pressure slice through a

three-dimensional figure, whose axes are pressure, tempera-

ture, and mol fraction benzene; see Chapter 10.)

Here, at a constant pressure of 1 atm, we see that at the left,

the vapor–liquid equilibrium temperature is the normal

boiling point (NBP) temperature of pure toluene, 110.6�C,
and at the right the equilibrium temperature is the NBP of

pure benzene, 80.1�C. (NBP is discussed in Chapter 5.) The

two curves divide the space into three regions, just as the

vapor-pressure curve divided Figure 1.8 into two regions.

Above and to the right of the uppermost curve, only gas (or

vapor) can exist. Below and to the left of the lowest line,

only liquid can exist. In the region between the two lines

vapor–liquid mixtures exist. In Chapter 8 we will return to

this figure and discuss how to use it.

Example 3.7 An 0.25-L glass of water at 0�C is brought

into a room at 20�C. Initially the water was in equilibrium

with air at 0�C. Howmuch oxygen and nitrogenmust it reject

to come to equilibrium at 20�C?
From Example 3.3 we know the mol fractions of oxygen

and nitrogen in the water at 20�C. If we repeat the calcula-
tions in Example 3.3, using the Henry’s law constants for

oxygen and nitrogen at 0�C for water from Table A.3 (2.55

and 5.29� 104 atm) and using the vapor pressure of water as

0.006 atm at 0�C, we will find the mol fractions of dissolved

nitrogen and oxygen to be 8.19� 10�6 and 14.84� 10�6.

The amount of oxygen to be rejected is

oxygen rejected�ð0:25LÞð8:19�5:12Þ
�10�6 molO2

mol solution

mol solution

0:018L

¼4:26�10�5molO2¼1:36�10�3g

O2¼1:03mLðstpÞO2

ð3:SÞ

and correspondingly for nitrogen, 7.23� 10�5mol¼ 2.03

� 10�3g¼ 1.75mL (stp). The total volume of air

Table 3.B Solution to Example 3.6

Guessed

T (�C)

pbenzene (torr)

Calculated

from the

Antoine Equation

ptoluene (torr)

Calculated

from the

Antoine Equation

P (torr)

Calculated

from

Eq. 3.P

80 757.7 291.5 664.4

83 830.3 323.0 728.8

84.377 865.4 338.3 760.0

86 908.3 357.1 798.0

90 1021.0 407.1 898.2

115

110

105

100

95

90

85

80

75

Te
m

pe
ra

tu
re

, T
, º

C

0 0.2

Vapor

Liquid

Mol fraction benzene in liquid or vapor. xb, yb

At a constant pressure of 1 atm

Vapor-liquid mixture

0.4 0.4 0.8 1

FIGURE 3.12 Computed temperature, liquid, and vapor

compositions for benzene–toluene at a constant pressure of 1 atm.

The results of Example 3.6 are shown at the right; for xb¼ 0.8,

T¼ 84.4�C, and yb¼ 0.911.
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rejected is 1.03 þ 1.75¼ 2.78mL (stp). Here the equation

for oxygen rejected shows an approximately equal to sign

(�) because it assumes that the mols of solution does

not change. It actually decreases by (4.26 þ 7.23)� 10�5

mols, making a negligible change in the answer

(see Problem 3.20). &

In cold weather, students may try this experimentally in

their kitchens; they will see roughly the calculated

volume of bubbles clinging to the side of the glass as

it warms.

Example 3.8 A diver’s blood and other bodily fluids are

saturated with nitrogen at 5 atm pressure and 0.79mol

fraction nitrogen. The diver comes to the surface and her

blood and other bodily fluids come to equilibrium with the

atmosphere. How much nitrogen must she give up? Assume

that her body mass is 55 kg, that 75% is water, that her body

temperature is 37�C, and that the solubility of nitrogen in

bodily fluids is the same as in pure water (only a fair

assumption, [2]).

At 37�C (98.6�F) the Henry’s law constant for N2 inter-

polated from Table A.3 is 10.05� 104 atm, so that

mols N2

rejected

� �
¼ mols bodily

fluids

� �
xN2:5 atm�xN2:1 atmð Þ

¼
�
mbodily fluids

Mbodily fluids

�

�
�

yi � 5 atm
10:05� 104 atm

� yi � 1 atm
10:05� 104 atm

�

ð3:TÞ

Here the two yi , are slightly different from each other,

because the water vapor content of the air is only 1/5 as

large at 5 atm as at 1 atm. If we simplify by ignoring that and

taking the ynitrogen � 0.79 (but see Problem 3.8!), we can

solve approximately:

mols N2

rejected

� �
�
�
55;000 g � 0:75

18 g=mol

�
� 0:79

�
�

5 atm

10:05� 104 atm
� 1 atm

10:05� 104atm

�

¼ 0:072 mol ¼ 2:02 g ¼ 1:73 L stp &

ð3:UÞ

This surprisingly large value shows why “the bends” can be a

serious or fatal problem. This treatment leaves out many

interesting details about the bends, [2].

3.7 THE USES AND LIMITS OF RAOULT’S
AND HENRY’S LAWS

Raoult’s and Henry’s laws are widely used because they are

simple. However, as discussed above, these are strong sim-

plifications of the real behavior of nature. Later in this book

we discuss how thermodynamics lets us replace these laws

with more accurate and reliable rules. However, we will see

that these more reliable rules will enter into calculations like

Example 3.3, and play exactly the same roles that Raoult’s

and Henry’s laws did in that example. The following general

guidelines may help you decide when you can use these

simple rules, and when you cannot:

1. In a dilute solution of any kind, Raoult’s law will apply

satisfactory to the solvent, but probably not to the

solute. For example, in beer (�3% ethanol, �96%

water, �1% carbon dioxide, plus small amounts of

other materials) the behavior of the water is well

described by Raoult’s law, but the behavior of the

ethanol or carbon dioxide is not.

2. If solute and solvent are chemically similar, like ben-

zene and toluene, then Raoult’s law will apply satis-

factorily for both solute and solvent, over the whole

range of possible concentrations at modest pressures.

3. If the solute and solvent interact strongly chemically

(for example, solutions of strong acids, such as H2SO4,

and bases, such as NaOH in water), then Raoult’s law

gives poor estimates of the behavior.

4. Henry’s law is useful for the solution of most gases in

water, except for gases that interact chemically with

water, such as HC1, NH3, and SO2.

5. Henry’s law is widely used for liquids that are strongly

immiscible with water, such as mercury and hydro-

carbons, in which the minuscule amount of the other

material dissolved in water behaves as if it had first

vaporized and then dissolved as a gas in the water.

6. Henry’s law can also be used for small amounts of

gases dissolved in liquids other thanwater, as discussed

in Chapter 9.

7. Wewill see in Chapter 8 that Raoult’s law, modified by

adding an activity coefficient to account for nonideal

behavior, is applicable and widely used for vapor–

liquid equilibrium calculations and some other kinds

of equilibrium calculations.

3.8 SUMMARY

1. For any physical or chemical equilibrium, the temper-

ature must be uniform throughout all the phases at

equilibrium.Unless the pressure is balanced by gravity,

spring, surface, or osmotic pressures (see Chapter 14),

the pressure must also be uniform throughout all the
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phases at equilibrium. Unless some parts of the system

are separated from others with perfect electrical in-

sulators, the electric potential must be the same

throughout the system.

2. For gas–liquid equilibrium of more than one chemical

species, the compositions of the two phases in equi-

librium will be very different from each other. Many

systems of great chemical and environmental engi-

neering importance are of this type.

3. For these systems, at equilibrium, there is a phase

equilibrium statement for each of the species. In ad-

dition, there is a statement for each phase that the mol

fractions sum to 1.0. To complete the calculation we

usually need more relations, normally the specification

of somemol fractions or mol fraction ratios. This set of

equations can be solved to find the compositions of

both phases. Normally this set will not have an ana-

lytical solution; computers solve the set easily.

4. Raoult’s and Henry’s laws are widely used to supply

the equilibrium relations in the above equation sets.

These are useful estimating approximations, not laws

like Newton’s laws of mechanics or the laws of

thermodynamics.

5. The more reliable estimating methods, based on ther-

modynamics and developed in Chapters 7–9, become

the same as Raoult’s and Henry’s laws for some very

simple (but very common) systems (e.g., ideal gases).

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (�) on the problem number indicates that

the answers is in Appendix H.

3.1� Schmidt-Nielsen [3] reports that for almost all mam-

mals the blood hemoglobin concentration is about the

same (� 130 g/L) and that the corresponding oxygen

concentration of the blood leaving the lungs (for air

at 1 atm and 21% oxygen) is 175mL of oxygen (stp)

per liter. For this problem assume that the blood

leaving the lungs is in equilibrium with air at 1 atm

and ignore the difference between the 20�C in the

examples in this chapter and the 37�C temperature of

the human body.

(a) Howdoes the oxygen content in the blood (mL/L,

stp) compare to the equilibrium volume of oxy-

gen dissolved in pure water at 20�C, shown in

Example 3.2?

(b) For this problem (but not in real life) you may

assume that the hemoglobin in the red cells is a

solid, so that a liter of blood consists of 130 g of

solid red blood cells and 870 g of purewater (plus

dissolved oxygen).What is the distribution of the

oxygen between the pure water and the solid

hemoglobin in the red blood cells?

(c) Using the results from (b) estimate the weight

fraction of oxygen in the hemoglobin. Assume

that the hemoglobin has the same density as water

(only approximately true!)

3.2� Some safety officials are worried about exposing

workers to mercury (M¼ 200.6 g/mol). If the air in

a room is saturated with mercury (vapor pressure at

20�C¼ 0.0012 torr), assuming that the equilibrium

between mercury and air obeys Raoult’s law,

(a) What will the mol fraction of mercury in the air

be?

(b) What will the concentration be, expressed in

g/m3?

(c) The TLV (TLV¼ threshold limit value¼ the per-

missible concentration to which workers may be

exposed for an 8-h shift) for elemental and inor-

ganic mercury was 25mg/m3 in the United States

in 2012.What is the ratio of this value to the value

you computed in part (b)?

(d) An average adult male inhales about 15 kg/day of

air. How much mercury would such an adult

inhale in an 8-h shift, if the air were saturated

with mercury?

3.3 An underground soil layer is contaminated with ben-

zene at 20�C (see Example 3.5). We wish to remove

the benzene by blowing air through the soil, bringing

the air to the surface, and incinerating it to destroy the

benzene. We are able to pass 10 lbm/h of air through

the soil. How many pounds per hour of benzene will

we remove if we are able to bring the air to saturation,

with respect to liquid benzene?

3.4 In Problem 3.3 it has been suggested that if we heated

the air and the soil layer from the 20�C in that example

to 40�C, the process would work much better. Esti-

mate the benzene removal rate for this temperature

and the same airflow rate as in Problem 3.3.

3.5 Estimate the mol fraction of toluene in air that is in

equilibrium with practically pure toluene at 20�C,
(a) At a total pressure of 1 atm.

(b) At a total pressure of 5 atm.

3.6� Estimate the concentration of ethane dissolved in

water, saturated with ethane gas at 20�C and 1 atm.

3.7 A piston and cylinder contains methane (CH4) and

water at 20�C and 1 atm pressure. There are one gas

phase and one liquid phase present. Estimate the

equilibrium concentration of methane in the liquid

phase.
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3.8 Repeat Example 3.8, taking the change in N2 content

due to thewater vapor present in the equilibrium air at

5 atm and at 1 atm into account. The vapor pressure of

water at 37�C � 0.062 atm.

3.9 A kilogram of water is heated from 20 to 40�C.
Initially, the water is in equilibrium with oxygen at

1 atm pressure and 20�C. Finally, the water is in

equilibrium with oxygen also at 1 atm and 40�C.
How much oxygen must flow into or out of the water,

during this heating process, to maintain the

equilibrium?

3.10 Repeat Example 3.8 for an initial pressure of 10 atm.

What depth does this correspond to (see any fluid

mechanics text)? Normal recreational divers do not

go nearly this deep. The deepest recorded dive depth

using ordinary (open-circuit) diving equipment is

about 1000 ft.

3.11 The Henry’s law version shown in this chapter is

the most common version in chemical engineering.

However, the same data can be presented as

yiP¼
some measure

of the concentration

of i

0
@

1
A a Henry’s law

constant in

appropriate units

0
@

1
A

ð3:7Þ
For example, Clever et al. [4] show for the solubility of

mercury in water at 298K that if the measure of

concentration is the mol fraction of mercury in the

water, theHenry’s law value isH¼ 4.7� 104 kPa. The

same source also shows the values for the concentra-

tion being expressed inmol/kg. Another commonway

is to choose the concentration variable as mol/m3.

Let H� be the Henry’s law constant for the concen-

tration expressed in mol/kg, and H�� be that for the

concentration expressed in mol/m3. Show the numer-

ical values and the dimensions of H� and H�� for

mercury in water.

3.12� Estimate the mol fraction of dissolved CO2 in an

ordinary soft drink at 20�C. Assume that the partial

pressure of CO2 in the gas phase¼ 2 atm. We will

repeat this problem in Chapter 13, taking into account

the chemical reaction of carbon dioxide with water,

showing that the answer found here is close to correct.

3.13 Estimate the mass and volume (stp) of dissolved CO2

in an ordinary soft drink at 20�C. Use the equilibrium
mol fraction of CO2 calculated in the preceding

problem. An ordinary soft drink has a liquid mass of

� 0.75 lbm, and may be considered, for this problem,

to be pure water with dissolved CO2.

3.14 Rework Example 3.3 for the gas being 100% oxygen,

instead of air. How many variables are there? How

many equations?What is the resulting computed set of

concentrations?

3.15 Show the equivalent of Table 3.A for 40�C. Include
both the hand and the computer versions of the answer.

3.16 Rework Example 3.3 for air and water, including the

carbon dioxide in the air. How many variables are

there? How many equations? In atmospheric air the

carbon dioxide concentration changes slightly from

place to place and time to time, but on the average, for

dry air, the concentration is about 390 ppm. Assume

that the ratio of mole fractions of CO2 to N2 is always

0.000,390/0.79, independent of the water vapor con-

tent of the air.

3.17 Repeat Example 3.4 for 20 mol% benzene, 80 mol%

toluene. Compare your results to Figure 3.11.

3.18 Repeat Example 3.6 for 20 mol% benzene, 80 mol%

toluene. Compare your results to Figure 3.12.

3.19 A benzene–toluene vapor mixture has ybenzene¼ 0.4,

at a pressure of 1 atm. Estimate

(a) The mol fraction benzene (xbenzene) in the liquid

in equilibrium with this vapor.

(b) The temperature at which they are in equilibrium.

3.20 The calculation in Example 3.7 ignores the change in

number of mols in the solution when the nitrogen

and oxygen are rejected. Show the complete solution,

taking that into account, and show how much differ-

ence this makes.

3.21 Show the calculation of the mol fractions at 0�C in

Example 3.7.

3.22 Show that the trial-and-error solution to Example 3.6

is equal to the solution to equation set 3.R.
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4
MINIMIZATION OF GIBBS ENERGY

4.1 THE FUNDAMENTAL THERMODYNAMIC

CRITERION OF PHASE AND CHEMICAL

EQUILIBRIUM

After all the introductory descriptive material, we are finally

ready to see precisely what thermodynamics tells us about

phase and chemical equilibrium. Figure 4.1 shows a simple,

isothermal piston and cylinder arrangement, containing some

unspecifiedmass of some unspecified substance ormixture of

substances, in one or more phases. We need not know the

identity or state of the contents for the argument here, sowedo

not specify the contents, and we obtain a very general result.

The system is originally at equilibrium, and we now allow

a small change in the system to occur, that is, a condensation

or evaporation or crystallization of a small amount of ma-

terial, or a small chemical reaction. Kinetic, potential, sur-

face, electrostatic and electromagnetic energy effects are

negligible, but the change will probably involve a small

amount of heat given off or absorbed by the system, and a

small volume change, which causes a small piston move-

ment. We may write the energy balance for the contents of

this system (a batch process) as

dU ¼ dQþ dW ¼ dQ� PdV ð4:1Þ
Here the only work term is that of driving back the piston.

A differential change in any system at equilibrium is a

reversible process; for a reversible batch process, the second

law shows us that

dS ¼ dQ

T

only for reversible

batch processes

� �
ð4:2Þ

Eliminating dQ between Eqs. 4.1 and 4.2 we find

dU ¼ TdS� PdV ð4:3Þ
Now we make the algebraic substitutions,

TdS ¼ dðTSÞ � SdT and PdV ¼ dðPVÞ � VdP ð4:4Þ
Which changes Eq. 4.3 to

dðU þ PV � TSÞ ¼ �SdT þ VdP ð4:5Þ
But we have restricted the process to constant temperature

and pressure, so the two terms on the right of Eq. 4.5 are zero,

and we can say that for any reversible equilibrium change at

constant T and P

dðU þ PV � TSÞ ¼ dG ¼ 0 ð4:6Þ

We defined G in Section 2.5; here we see the most

important application of G. For any small change of state

at equilibrium with T and P held constant, there is zero

change in G. This is the principal reason for bothering to

define G. It is normally called the Gibbs energy after Josiah

Willard Gibbs (1790–1861), who made the pioneering in-

vestigation of the thermodynamics of equilibrium. We use G

for the Gibbs energy, but the older literature and present-day

chemists sometimes use F. The Helmholz energy, defined as

A ¼ U � TS ¼ G� PV ð4:7Þ

is widely used for processes at constant temperature and

volume, and will appear again later in this book.
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Both the Gibbs and the Helmholz energies, G and A, are

convenience properties as is the enthalpy H. We could have

done all of thermodynamics and all of equilibrium without

bothering to define them.We defined all of them because they

are combinations that occur so often that their introduction

allows a vast reduction in what we must write and speak to

discuss thermodynamics. If that bothers you, go through the

book, and wherever you see aG replace it withUþPV� TS.

From this simple example, we observe the following:

For any differential equilibrium change, chemical or

physical or both, at constant T and P,

dGsys ¼ 0 ð4:8Þ

This result is placed in a box because it is so important. In

Chapter 3 we saw that at equilibrium, T is uniform and that

unless there are significant effects of gravity, springs, or

surface tension, the phases and species at equilibrium are all

at a constant pressure, so the restriction of constant T and P

does not limit the applicability of this relation very much.

The corresponding relations for other constraints (e.g., con-

stant S and V) are shown in Appendix B.

Example 4.1 A large mass of steam and water are at

equilibrium at 212�F¼ 671.7�R. We now allow 1 lbm of

steam to condense to water at constant temperature and

pressure. What is the Gibbs energy change? Using values

from the steam table [1], we find

Dhcondensation ¼ �970:3 Btu=lbm

Dscondensation ¼ �1:4446 Btu=lbm � �R
So

Dgcondensation ¼ �970:3� ð671:7Þð�1:4446Þ
¼ 0:0 Btu=lbm

&

ð4:AÞ
This does not in any way prove that Eq. 4.8 is correct;

the people who made up the steam tables knew about Eq. 4.8

and used it in their work,which guaranteed that Eq. 4.8would

be satisfied. But it does illustrate that the enthalpy change Dh
for an isothermal vaporization, melting, or sublimation is

equal to T Ds for the same process in any correct table of

thermodynamic properties.

Figure 4.2 restates the conclusion of this section of the

book. This is the most important idea in this book, and

the basis for most of the others.

The fact that dGsys¼ 0 for any differential change of a

system at equilibrium at constant T and P shows that such

a system must be a minimum or a maximum. But which? If

we repeat the above derivation, and consider irreversible

processes, then Eq. 4.2 will be replaced by

dS >
dQ

T

for irreversible

batch processes

� �
ð4:9Þ

and ifwe solve this for dQ, and substitute aswe did before, we

will find that for irreversible processes at constant T and P

dðU þ PV � TSÞ ¼ dG < 0 for irreversible processes½ �
ð4:10Þ

Thus, the situation is as sketched in Figure 4.3. The

equilibrium state is one at the bottom of a Gibbs energy

basin. If the system can reduce its Gibbs energy, it will do so

by an irreversible, spontaneous process. The equilibrium

state is the state with the lowest Gibbs energy consistent

with the constraints on the system, such as its temperature,

pressure, and initial chemical composition.

Figure 4.4 shows the same plot as Figure 4.3, but includes

a metastable state. In that state the system is at a local

minimum of the Gibbs energy. Displacement from that local

minimum (e.g., a small spark in a hydrocarbon–air mixture)

can allow the system to make the transition to the true

equilibrium state, with a lower Gibbs energy. (Many such

metastable states are limited not by being in such a local

Gibbs energy minimum, but by being limited by the rate of

approach to equilibrium, i.e., a kinetic rather than a thermo-

dynamic constraint.)

System
boundary

Isothermal container
allows free heat flow
as needed to hold the
temperature constant

Contents
of the container
may be anything,
any number of
phases and/or
chemical species

Frictionless
piston

FIGURE 4.1 Very general system for illustrating the thermody-

namics of a small, reversible, isothermal change.

Phase 1

Phase 2

For an equilibrium
transfer
of dm of mass
from phase 1
to phase 2,

ΔH ≠ 0

ΔS ≠ 0
ΔG = 0

FIGURE 4.2 One more way to summarize the most important

relation in phase equilibrium.
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4.2 THE CRITERION OF EQUILIBRIUM APPLIED

TO TWO NONREACTING EQUILIBRIUM PHASES

Figure 4.5 shows two phases at equilibrium inside a container

in which the temperature and pressure are held constant.

The phases could be gas–liquid, gas–solid, liquid–liquid,

liquid–solid, or solid–solid without invalidating the mathe-

matics that follows.

Here we have chosen the restraints as constant tempera-

ture and pressure. (The moveable piston allows volume

change.) Other possible restraints are discussed in Appendix

B. However, the constant-temperature, constant-pressure

restriction is the one that proves useful for most industrial

process calculations and for the calculation of tables of

thermodynamic properties that we may then use for systems

with some other kind of restraint, so we will use it here.

As shown in the figure, we have chosen as our system

the entire contents of the container, including both phases.

One might assume that at equilibrium, both phases would

have the same chemical composition; that is not correct.

Chapter 3 shows that for simple systems like air and water,

the two phases in equilibrium have very different chemical

compositions. Now, starting at equilibrium, let some small

amount of mass (dm) move from phase 2 to phase 1. From

Eq. 4.8 we know that there will be no change in the overall

Gibbs energy of the system for this differential movement

of mass.

The fact that the overall Gibbs energy of the systemdid not

change with a small movement of mass from one phase to

another is interesting, butwe can find outmuchmore detailed

information by writing out the total differential of the Gibbs

energy for each phase. To do so, we must decide what we

consider the variables on which G depends. There are

numerous choices, but the convenient one assumes that G

of a phase depends on the temperature, pressure, and the

number of mols of each species present. If we specify that

only one phase is present and we specify the number of mols

of each chemical species present and the temperature and

pressure, we have completely defined the state of that phase.

(To be convinced, try the “thought experiment” of consid-

ering how you could change such a single phase in any way

without altering T, P, or one of the numbers of mols of some

chemical species present. Here we omit the effects of elec-

trostatic, electromagnetic, tensile, or surface energies.) In

mathematical terms

G ¼ GðT;P; na; nb; . . .Þ ð4:11Þ

At constant
temperature
and pressure

Moving from any
nonequilibrium
state toward the
equilibrium state,
dG < 0

At the equilibrium
point, dG = 0

Some property of the system, e.g., chemical
composition, phase composition, or any
other property

G

FIGURE4.3 The equilibrium state is at aGibbs energyminimum.

All adjacent states have higherGibbs energies. From these states any

spontaneous processes takes the system toward the state of lowest

Gibbs energy, which is the equilibrium state.

Some property of the system, e.g., chemical
composition, phase composition, or any
other property

At constant
temperature
and pressure

This point
corresponds
to a metastable
state. Displacing
the state to the
right allows a
transition to a state
of lower Gibbs
energy

at the stable
equilibrium
point, dG = 0

G

FIGURE 4.4 Same as Figure 4.3, but showing how a metastable

state can have a local minimum Gibbs energy, but respond to a

displacement by passing to the stable equilibrium,which has a lower

Gibbs energy.

System
boundaryPhase 2

Phase 1

Isothermal
container

Frictionless
piston

FIGURE 4.5 Simple, constant-pressure, two-phase system.
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where na is the number of mols of species a, and so on. We

could also have done all of this in terms of a unit of mass,

dmi¼Mi �dni, where Mi is the molecular weight of i. The

resulting equations would look the same, and the logic would

be the same, until we came to chemical reactions, where the

equations would become much more complex, because

they would contain multiple values of Mi. Some of the

following relations are shown in both dni and dmi forms in

Chapter 6. We could also have done it all in terms of mol

fractions; the equations would be much more complex.

Performing the total differentiation for each phase we

obtain

dGð1Þ ¼ @G

@P

� �ð1Þ
dPþ @G

@T

� �ð1Þ
dT þ @G

@na

� �ð1Þ
dnð1Þa

þ @G

@nb

� �ð1Þ
dn

ð1Þ
b þ � � � phase 1½ � ð4:12Þ

dGð2Þ ¼ @G

@P

� �ð2Þ
dPþ @G

@T

� �ð2Þ
dT þ @G

@na

� �ð2Þ
dnð2Þa

þ @G

@nb

� �ð2Þ
dn

ð2Þ
b þ � � � phase 2½ � ð4:13Þ

Here, the (number) superscripts refer to the phases, so that

n
ð2Þ
b is the number of mols of species b in phase 2, and so on.

In each of the partial derivatives, all of the other variables

on the right-hand side of Eq. 4.11 are held constant. By

material balance we know that the combined number of

mols of species a in both phases cannot change (excluding

a chemical reaction), so

dnð1Þa þ dnð2Þa ¼ 0 or dnð1Þa ¼ �dnð2Þa ð4:14Þ

and similarly for the dnbs. Thus, we can substitute and

replace the values of dn
ð2Þ
a and dn

ð2Þ
b in Eq. 4.13 with minus

dn
ð1Þ
a and dn

ð1Þ
b . If we then add the two equations, we will

find

dGsys ¼ dGð1Þ þ dGð2Þ

¼ @G

@P

� �ð1Þ
þ @G

@P

� �ð2Þ" #
dPþ @G

@T

� �ð1Þ
þ @G

@T

� �ð2Þ" #
dT

þ @G

@na

� �ð1Þ
� @G

@na

� �ð2Þ" #
dnð1Þa

þ @G

@nb

� �ð1Þ
� @G

@nb

� �ð2Þ" #
dnð1Þa þ � � � ð4:15Þ

But we know from Eq. 4.8 that dGsys¼ 0 and that we have

held T and P constant so that dP¼ dT¼ 0, from which it

follows that

0 ¼ @G

@na

� �ð1Þ
� @G

@na

� �ð2Þ" #
dnð1Þa

þ @G

@nb

� �ð1Þ
� @G

@nb

� �ð2Þ" #
dn

ð1Þ
b þ � � � ð4:16Þ

This must be true for any choice we make of dn
ð1Þ
a ; dn

ð1Þ
b ,

and for any number of species. That can be true only if all the

terms in brackets are zero. Thus, we can say that there will be

phase equilibrium in the all system if and only if

@G

@na

� �ð1Þ
¼ @G

@na

� �ð2Þ
ð4:17Þ

@G

@nb

� �ð1Þ
¼ @G

@nb

� �ð2Þ
ð4:18Þ

and so on for species c, d, . . .. This result is so important that

we spend some time here and all of Chapter 6 discussing the

nature of the partial derivatives in Eqs. 4.17 and 4.18.

ð@G=@naÞð1Þ is the increase in Gibbs energy in phase 1 that

occurs if we add 1mol of species a while holding constant

the values of T, P and the number of mols of all other species

(b, c, d, . . .) in that phase. In the most formal terms, wewould

write it as ½ @G=@nað ÞT ;P;nb ��� �
ð1Þ

to remind ourselves what is

being held constant. This derivative at constant T, P, nb, and

so on has been given a name and a symbol in thermody-

namics; it is called a partial molar derivative or partial

molar property. [For much of its life this kind of derivative

was called a partial molal derivative, but that name is now

rarely used. The terms partial molar and partial molal mean

the same thing.]

The symbol for a partial molar property, widely used in

thermodynamics, is

@ðPROPERTYÞ
@na

� �
T ;P; nb; etc:

" #ð1Þ
¼ ðpropertyÞð1Þa ð4:19Þ

so that

@G

@na

� �
T ;P; nb ;etc:

" #ð1Þ
¼ �gð1Þa ð4:20Þ

However, the most interesting partial molar property, �g
ð1Þ
a ,

has a name and symbol of its own. J. Willard Gibbs, who

was the first to show its importance, gave it a name and

symbol before modern terminology was adopted. He called
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it the “chemical potential” and used the symbol mi. Thus,

we have

partial molar

Gibbs energy

of a in phase 1

0
@

1
A¼ @G

@na

� �
T ;P;nb;etc:

" #ð1Þ
¼ �g

ð1Þ
a ¼ m

ð1Þ
a

¼
chemical potential

of species a in

phase 1

0
@

1
A ð4:21Þ

The later symbol is widely used.

We are all used to the idea of an electrical potential, often

called voltage. Electrons flow as a result a potential differ-

ence or potential gradient (voltage difference or voltage

gradient). For heat flow by conduction, the temperature plays

the same role as does the electrical potential for flow of

electrons, so that temperature is the “potential” for conduc-

tive flow of heat, and the same equations used for flow of

electrons can be used for conductive heat flow with the

symbols renamed. Gibbs recognized that the partial molar

Gibbs energy plays the same role for chemical diffusion of

one species through another and also for chemical reactions,

so he called it the “chemical potential.”

Substituting this definition in Eqs. 4.17 and 4.18, we get

the working form of the equilibrium relationship:

mð1Þ
a ¼ mð2Þ

a ð4:22Þ

m
ð1Þ
b ¼ m

ð2Þ
b ð4:23Þ

and the same for c, d, . . .. This says that the chemical

potential of a is the same in phase 1 as in phase 2, and that the

chemical potential of b is the same in phase 1 as in phase 2. It

does not say that the chemical potential of a is the same as

that of b. That may or may not be so, but is not necessary for

phase equilibrium. This does not say that the Gibbs energy

per mole of phase 1, g(1), is the same as that of phase 2, g(2).

For a pure species, such as in Example 4.1, they are the

same, but for mixtures they generally are not.

Aswe proceed into the study of phase equilibrium,wewill

see that the chemical potential plays the key role. If we knew

the chemical potential for every species of every possible

chemical mixture in every phase, we would know all there

possibly is to know about phase equilibrium and chemical

equilibrium.

This whole discussion has been in terms of a small

amount of matter moving from phase l to phase 2 for

example by molecular diffusion. If we made up the system

in Figure 3.5 by first putting pure liquid water in the

container and then pure gaseous oxygen, some oxygen would

dissolve in the water and some water would evaporate into

the oxygen, both by diffusion. When the process ended, the

system would be at equilibrium. If we repeat the whole

derivation, allowing the small amount of matter to move by

diffusion, we find that we will not change anything. Our

result will still be Eqs. 4.22, 4.23, and so on. Thus, we can

see that those are the equilibrium relations for diffusion.

When we make up the system with pure oxygen and pure

water, the value of the chemical potential of water in the pure

liquid water m
ðliquidÞ
water is greater than the chemical potential of

water in the pure gaseous oxygenm
ðgasÞ
water. Water will evaporate

into (diffuse into) the oxygen until the chemical potential of

the water vapor in the oxygen gas is the same as the chemical

potential of the water in the (practically pure) liquid water.

When the chemical potential of water in both phases is the

same and that of oxygen in both phases is the same, then the

process stops and we have equilibrium. On a molecular level

the process continues at equal rates in both directions; water

andoxygenmove into andout of thegas phase at equal rates so

that the net rate is zero.

4.3 THE CRITERION OF EQUILIBRIUM APPLIED

TO CHEMICAL REACTIONS

Figure 4.6 shows another of our isothermal, constant pressure

containers, in this case containing a single phase in which a

differential chemical reaction occurs. From Eq. 4.8 we know

that if the system is at equilibrium, then dGsys¼ 0 for a

differential change of any kind, including a chemical reac-

tion. Suppose the chemical reaction is of the form A ! B;

then the total differential of the Gibbs energy of the entire

contents of the container is

dG ¼ @G

@P

� �
dPþ @G

@T

� �
dT þ madna þ mbdnb ð4:24Þ

(Here we drop the superscript, because there is only one

phase.) We know from the restraints of the problem that dP

System
boundary

Isothermal
container
allows free
heat flow as
needed to
hold the
temperature
constant

Contents are
one phase, in
which a chemical
reaction occurs

Frictionless
pistons

FIGURE4.6 An isothermal, constant-pressure container contain-

ing only one phase, in which a chemical reaction occurs.
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and dT are zero, and as shown above, dG is zero. Further-

more, from stoichiometry we know that

dna þ dnb ¼ 0 ð4:25Þ

Taking all of these into account, we see that the restraints can

all be satisfied only if

ma ¼ mb ð4:26Þ

By entirely similar arguments, we can show that for a

reaction of the form AþB ! C, the condition for chemical

equilibrium is

ma þ mb ¼ mc ð4:27Þ

and similarly for any other balanced chemical equation we

can write.

Thus, we see that the chemical potential, in addition to

playing the key role in the description of equilibriumbetween

two phases, also plays the key role in the description of

equilibrium in chemical reactions. Chapter 12 shows the

detailed consequences of this statement for chemical

equilibrium.

4.4 SIMPLE GIBBS ENERGY DIAGRAMS

The Gibbs energy is the dominant property for equilibrium.

This section shows graphical examples of how the Gibbs

energy behaves, to help the reader develop an intuitive

picture of this all-important function. Let us first consider

a system consisting of only one chemical species in the form

of two coexisting phases, gas (phase 1) and liquid water

(phase 2). From the criterion listed above, we know that

both phases are at the same temperature, pressure, and

electrical potential, and that m
ð1Þ
a ¼ m

ð2Þ
a . For any single

pure species

mð1Þ
a ¼ �gð1Þa ¼ @G

@na

� �
T ;P;nb;...

¼ gð1Þa ð4:28Þ

We see that for a single pure species, the partial molar Gibbs

energy is the same as the pure species Gibbs energy per mol.

Furthermore, we see that for this equilibrium, the Gibbs

energy per mol (or per g, kg, or lbm) is the same in each

phase. Precisely the same results were obtained in Example

4.1 by writing the enthalpy and entropy changes for the

transition from one phase to the other and solving for the

Gibbs energy change, which was found to be zero.

To make up Gibbs energy diagrams we need the deriva-

tives of G with respect to T and P. These are shown in

Table 2.2. Their derivation is shown here because the values

are so important for equilibrium calculations. First we write

G ¼ H � TS ¼ U þ PV � TS ð4:29Þ

and take the total derivative; we obtain

dG ¼ dU þ PdV þ VdP� TdS� SdT ð4:30Þ

But we know that for any uniform mass of matter, from the

property equation (Chapter 2)

dU ¼ TdS� PdV ð2:32Þ

so we may subtract Eq. 2.32 from Eq. 4.30 obtaining

dG ¼ VdP� SdT ð4:31Þ

This result was shown as derived from a Bridgman table in

Section 2.10. Herewe see a somewhat more intuitive route to

it. From Eq. 4.31 the two necessary derivatives follow by

inspection:

@G

@P

� �
T

¼ V ð4:32Þ

and

@G

@T

� �
P

¼ �S ð4:33Þ

We can obviously divide each of these by the number of mols

or the mass to obtain derivatives on a per-mol, per-pound, or

per-kilogram basis,

@g

@P

� �
T

¼ v and
@g

@T

� �
P

¼ �s ð4:34Þ

The S and s in Eqs. 4.33 and 4.34 are absolute entropies, not

entropies relative to some arbitrary datum like steam table

entropies (see Appendix E).

Now we construct a three-dimensional g-T-P plot for

some substance, such as water. For one phase it will look

like Figure 4.7.

Herewe show the surface sloping upward in the positiveP

direction; it must do this because, as Eq. 4.34 shows us,

the slope (at constant T) is equal to v; and all real substances

have positive values of the specific volume. Similarly, it

shows the surface curving downward in the positive T

direction because, as Eq. 4.34 shows, the slope is minus s;

all real substances have positive values of the absolute

entropy. Furthermore, we can see that the downward slope

of the surface must increase as we increase T because raising

the temperature at constant pressure will always increase the
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value of s and hence increase the absolute value of the slope.

The slope in the P direction must decrease slightly with

increasing P because the specific volume must decrease

slightly as the pressure increases.

Figure 4.7 shows the g-T-P relation for one phase. Now

suppose we plot the same relation for two phases, for

example, liquid and gaseous water, on a single plot, as shown

in Figure 4.8. The figure shows two surfaces that intersect

along a curve labeled Equilibrium Curve. Everywhere else

there are two surfaces, one above the other. We know that for

a temperature and pressure not on the equilibrium curve, only

one phase can exist so at each P-T point not on the equilib-

rium curve, one of these two surfaces must represent an

unstable (or metstable) state, which cannot exist at equilib-

rium.Howarewe to decidewhich of the two is the stable one?

Consider points A and AA. These are on the two surfaces,

each at the same temperature and pressure. They have

different Gibbs energies per pound. As sketched in Fig-

ure 4.3, natural systems move toward the lowest Gibbs

energy consistent with the restrictions on the system. Thus,

the state with the higher Gibbs energy is the unstable one. A

spontaneous change can occur from higher to lower Gibbs

energy, but never the reverse. Therefore, we can conclude

that for the pressures and temperatures on Figure 4.8 at

which the two surfaces do not coincide (not on the equi-

librium curve), the lower Gibbs energy surface is the stable

one; and the higher one represents an unstable or metastable

state. Thus, from Figure 4.8 we see that at low temperatures

and high pressures (to the left in the figure), the liquid is the

stable phase; and at high temperatures and low pressures (to

the right in the figure), the gas is the stable phase. We can

also see that the surfaces must cross because the two phases

have different values of v and s. If we start from the

temperature and pressure corresponding to A and AA and

raise T at constant P, the gas surface must come down more

rapidly than the liquid surface because sgas is larger than

sliquid. Similarly, if we start from the temperature and pres-

sure corresponding to B and BB and increase the pressure at

constant temperature, the gas surface must rise more rapidly

because vgas is larger than vliquid. Finally, we may consider

the projection of the equilibrium curve (the intersection of

the two surfaces) on the P-T plane; this is merely the vapor-

pressure curve with which we are all familiar (Figure 1.8).

If we redrew Figure 4.8 with all six crystalline varieties

of ice, then there would be eight g surfaces, one above the

other. We would trace on the P-T plane the intersection

between the two lowest surfaces at any T and P, forming

Figure 1.10.

4.4.1 Comparison with Enthalpy and Entropy

Figure 4.9 compares the behavior of the enthalpy, entropy,

and Gibbs energy for water at 1 bar (0.987 atm) being heated

through the boiling point. We see that the enthalpy and

entropy have large changes at a constant temperature as the

liquid boils to form a vapor, but the Gibbs energy has no such

change in value at the boiling point. There is no “latent Gibbs

energy ??” of boiling or freezing, corresponding to the latent

enthalpy and entropy changes corresponding to boiling.

Referring to Figure 4.2 we see that this is obvious, after we

think about it. In this sense, a g-T plot has more similarity to a

P-T plot (Figure 1.10) than to the h-T and s-T plots, which

form the top part of Figure 4.9.

4.4.2 Gibbs Energy Diagrams for Pressure-Driven

Phase Changes

It is instructive to make up a g-P diagram for a pressure-

driven phase change, as shown below.

FIGURE4.7 g-T-P plot for one phase of any pure substance, such

as water.
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FIGURE 4.8 g-T-P plot for a pure substance, such as, H2O,

showing both gas and liquid surfaces and their intersection. Points

A and B are on the liquid surface; points AA and BB are on the gas

surface.
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Example 4.2 Construct a Gibbs energy–pressure diagram

for the graphite–diamond system at 25�C, using the data in

Table 4.A.

From Eq. 4.33 we know that the slopes of the curves

@g=@Pð ÞT are equal to the specific volumes v. So, for

example, for graphite at 25�C

@g

@P

� �
T

¼ v ¼ 5:31
cm3

mol
� m3

106 cm3
� J

Nm
� N

m2Pa

¼ 5:31� 10�6 J=mol

Pa
ð4:BÞ

and similarly for diamond, the slope is 3.42� 10�6 (J/mol)/

Pa. If we assume that the specific volumes do not change

with changes in pressure, a fair but not excellent assumption

(see Problem 4.6), then we can see that the above derivatives

must be constant. Each substance must be represented by a

straight line on a g-P plot. We can locate the points on the

P¼ 1 bar� 0 axis from the values of the Gibbs energy, and

thus make up Figure 4.10. &

We see that at 25�C for all pressures below 15,100 atm the

Gibbs energy of diamond is more than that of graphite, while

at pressures higher than this, graphite has the higher Gibbs

energy. This means that at the lower pressures graphite is the

stable phase, and diamond is metastable. If we had a catalyst

that would cause this phase change to occur at room tem-

perature, and touched it to any diamond, the diamond would

change to graphite. No such catalyst is known, so your

diamonds are quite safe. Figure 4.10 is a constant temper-

ature slice through a figure like Figure 4.8. If wewish to show

the pressure–temperature curve for the equilibrium, we must

be able to express the Gibbs energy of each phase as a

function of T and P. Rossini and Jessup did just that in

1938 [3] (Problem 4.7) Based on their work, we can construct

FIGURE4.9 Comparison of the calculated enthalpy, entropy, and

Gibbs energy, as a function of temperature, forwater at temperatures

near 100�C, all at a pressure of 1 bar (0.987 atm). The points are data

from [2]. The entropy plot uses values directly from the table.

The Gibbs energy plot uses absolute entropies, where sabsolute¼
ssteam tableþ 3.515 kJ/(kg K) and steam-table enthalpies, relative to

h¼ 0 for liquid water at the triple point.

FIGURE 4.10 Gibbs energy–pressure diagram for the graphite–

diamond system at 25�C. The two lines cross at 15,300 bar¼ 15,100

atm¼ 2.2� 105 psi. At pressures less than that, graphite has the

lower g, so it is the stable phase. At pressures higher than that,

diamond has the lower g, so it is the stable phase. See Problem 4.5.

Table 4.A Data for Graphite and Diamonds at 25�C and 1 bar

Gibbs Energy

(kJ/mol, see Table A.8)

Specific Volume

(mL/mol)

Graphite 0.00 5.31

Diamond 2.90 3.42
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Figure 4.11 [4]. This shows that the equilibrium pressure

calculated in Example 4.2 forms one point (at 25�C¼
298.15K) on the P-T equilibrium curve.

Their published data (and other similar data) spurred

inventors to try to make synthetic diamonds. The problems

were

1. Devising high-pressure cells that could work at indus-

trially useful sizes at pressures of up to 100,000 atm.

2. Finding a catalyst that would cause the two phases to

come to equilibrium at commercially useful rates.

As Figure 4.11 shows, the catalyst (molten nickel) was

found. (The molten nickel is often referred to as a catalyst-

solvent. Apparently the thermodynamically unstable graph-

ite dissolves in the molten nickel, and then precipitates as

stable diamond.) At temperatures above about 2000K¼
3140�F the conversion rate in the presence of molten nickel

is fast enough. Ingenious mechanical designs of high-

pressure presses were devised. Using them, we have facilities

that make diamonds from graphite on an industrial scale [5]

(initially only industrial quality, later of gem quality.)

4.4.3 Gibbs Energy Diagrams for Chemical Reactions

Figure 4.12 shows the Gibbs energy-composition diagram

formixtures of isobutane and normal butane, two species that

are completely miscible. With an appropriate catalyst, they

will convert from one to the other at moderate temperatures

until they reach an equilibrium concentration. (This is done

on a large scale in modern petroleum refineries, because

isobutane is more valuable than normal butane.)

In this figure there are three curves, one for the g (Gibbs

energy per mol) of the mixture and one for each of the two

values of m. At the two extremes where we have pure

substances, the curves must meet because for any pure

substance, m¼ g. The curve for g of the mixture lies below

the line joining the pure species values because in any

mixture there is an entropy increase on mixing; an entropy

increase lowers the Gibbs energy. The curves for the indi-

vidual ms are shown continuing downward; they each ap-

proach negative infinity (see Chapter 6) and thus are tangent

to the vertical axes.

The equilibrium situation is the one where the two curves

for the individual ms cross (i.e., mn-butane¼misobutane, see

Eq. 4.26. This point is the minimum point on the g curve (see

Figure 4.3). Thus, if we start with either pure substance and

introduce a catalyst that allows that substance to convert to

the other, the system will lower its Gibbs energy spontane-

ously. Moving in whichever direction will take it to the

minimum g, which in this case corresponds to the lowest

point on the g curve.

Example 4.3 In elementary chemistry we learn “the law of

mass action,” which says that for a reaction like the iso-

butane–normal-butane isomerization the concentrations at

equilibrium can be represented by an equation of the form

K ¼ mol fraction of isobutane

mol fraction of n-butane
¼ xiso

xnormal

ð4:35Þ
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FIGURE 4.11 Diamond–graphite equilibrium, showing the cal-

culated equilibrium curve and (shaded) the region of commercial

diamond production. (FromWentorf, R. H. J. Diamond synthetic. In

Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 4, ed. 3.

Grayson, M., ed. � 1978, New York: Wiley. Reprinted by permis-
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where K is the chemical equilibrium constant. (This is a

simplified form, which assumes some types of ideal behav-

ior; we will see the more complex forms in Chapter 12.) For

this reaction, at 25�C, K¼ 4.52, so that, at equilibrium

4:52 ¼ xiso

xnormal

¼ xiso

1� xiso

which we may solve, finding that xiso¼ 0.82. &

Looking back at Figure 4.12, we see that the minimum in the

g curve occurs (as closely as we can read it) at xiso¼ 0.82.

This is also the value of xiso at which the two partial molar

Gibbs energies (chemical potentials) are equal. Thus, we see

that the well-known law of mass action or chemical equi-

librium relation is a shorthand form of the statement that at a

state of chemical equilibrium the system has taken up those

values of the chemical composition at which the Gibbs

energy is aminimum. This is the same as saying that Eq. 4.26

is obeyed (for a reaction of the formA ! B), or that its more

complex equivalent for a more complex reaction is obeyed.

In Chapter 12 we will return to this topic, and see how the

statement in Eq. 4.8 leads directly to the law of mass action

and the common expressions for calculating chemical

equilibrium.

None of the Gibbs energy diagrams shown in this section

are the normal way of treating these problems in process

calculations. There are other, more convenient ways. But

seeing these diagrams should help you connect the other,

more common ways of dealing with these problems with the

basic statement of Eq. 4.8. Nature minimizes Gibbs energy!

4.5 LE CHATELIER’S PRINCIPLE

Le Chatelier’s principle, presented in most physical chem-

istry books, says (among other things) that if a two-phase

system is compressed, the equilibrium will shift in the

direction of the phase with the lower specific volume, and

that if a system that can undergo a chemical reaction is

heated, it will shift its equilibrium in that reaction in the heat-

absorbing direction. Both of these statements can be restated

that natural systems respond to changes in their external

environment by internally readjusting to minimize their

Gibbs energy. Thus, from Eq. 4.32 we see that if we increase

P, the rate of increase of g will be less the smaller v is. Thus,

systems that can respond to increases inP by going to a lower

v will do so. That is what happens in the graphite–diamond

equilibrium. As we squeeze the system, it shrinks to make it

harder for us to raise the pressure. At a high enough pressure

ggraphite becomes greater than gdiamond, so the system

minimizes its Gibbs energy by converting to the lower

specific-volume phase, diamond. The two statements are

equivalent.

If we heat a system that can undergo an equilibrium

reaction, it will move in the endothermic direction, making

it harder for us to raise the temperature.We see from Eq. 4.34

that if we increase T, the rate of increase of g will be less

(the rate of decrease will be greater) the larger the value of s.

Thus, systems that can respond to an increase in T by going to

a larger value of s (by undergoing an endothermic reaction)

will do so. Many chemical reactions are of this form. Thus,

Le Chatelier’s principle, like most of this book, is simply the

working out of the detailed consequences of Eq. 4.8. Nature

minimizes Gibbs energy!

In this chapter the values of G and K appear without a

source being shown. The basis for computing these values is

shown in Chapter 12 and Appendix F.

4.6 SUMMARY

1. The fundamental criterion for all kinds of physical

and chemical equilibrium is that at constant T and P,

dGsys¼ 0 for any infinitesimal change. The constant T

and P restriction does not prevent this from being

almost universally applicable.

2. For finite changes away from the equilibrium state, in

any direction, dGsys> 0. Thus, the equilibrium state is

one of minimum Gibbs energy, subject to the external

constraints.

3. For two or more phases in equilibrium there is a

separate equilibrium relationship for each of the

chemical species present, and that relationship is that

the partial molar Gibbs energy, called the chemical

potential, for species i is the same in all of the phases

(1, 2, . . .). The same statement applies to species

j, k, and so on.

4. A system is at chemical equilibrium when it has

adjusted its chemical compositions so that the overall

Gibbs energy of the system is the minimum possible,

subject to the external constraints (T, P, initial chem-

ical composition, etc.). The shorthand way of showing

this is “the law of mass action” or “chemical equilib-

rium constant.” The relation between the two is ex-

plored in Chapter 12.

5. Le Chatelier’s principle is a detailed restatement of the

fact that natural systems minimize their Gibbs energy.

They respond to changes in T and P by moving in the

direction that minimizes Gibbs energy.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (�) on a problem number means that the

answer is in Appendix H.
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4.1 Repeat the derivation in Section 4.1 leading to Eq. 4.7,

holding T and V constant instead of T and P. Show

that the result is that, for this constraint, nature mini-

mizes the Helmholz energy (Eq. 4.7). See the further

discussion of this problem in Appendix B.

4.2� Repeat Example 4.1 for saturated steam at 100 psia.

4.3 a. Sketch the equivalent of Figure 4.9 for heating

water at 1 bar from �10�C to þ10�C. Show no

numerical values; show only the right relationship

between the various curves.

b. On Figure 4.9 write the equation for the slopes of

the various curves.

c. Do the curves have upward, zero, or downward

curvature for enthalpy? entropy? Gibbs energy?

Assume that CP is practically independent of

temperature.

4.4 The type of phase transitions shown in Figure 4.9 and

Problem 4.2 are called first-order phase transitions to

distinguish them from the group called second-order

phase transitions. Most second-order phase transi-

tions are order–disorder transitions in solids. The one

interesting second-order transition known in a liquid

is the “lambda point” in liquid helium. This marks the

transition from helium I to helium II. At this point,

there is no entropy or energy change of transition, but

there is a jump discontinuity in the heat capacity at

constant pressure. The heat capacity curve looks like a

Greek lambda, as sketched in Figure 4.13. Assuming

that this heat capacity does not reach infinite values,

make a plot for helium similar to Figure 4.9. Indicate

why such a transition is called a second-order tran-

sition in contrast to the first-order transition in

Figure 4.9.

4.5 The graphical procedure for finding the equilibrium

pressure on Figure 4.10 can be reduced to a simple

equation involvingP, and the gs and vs of graphite and

diamonds. Show that equation, solved for Pequilibrium.

The calculation is simplified if one assumes that 1 bar

pressure� zero pressure.

4.6 In Example 4.2 we assumed that the specific volumes

v of diamond and graphite were independent of

pressure. Actually, they compress slightly with in-

creasing pressure. For a constant temperature of 25�C
the specific volumes of diamond and graphite are

given [3] by equations of the form

v ¼ vzero pressure þ aP ð4:36Þ

and the appropriate values are shown in Table 4.B.

a. Show the integrated form of the equation for the

pressure at which the Gibbs energy change is zero,

at this temperature.

b. Compute the numerical value of the equilibrium

pressure, which is about 7% higher than that

computed in Example 4.2 because the graphite is

more compressible than the diamond.

c. Sketch the equivalent of Figure 4.10, with the

straight lines replaced by the appropriate curves.

If drawn to scale the curves still appear practically

straight; exaggerate thecurvature to showits effect.

d. Observe that of the quadratic equation in part (b)

gives 2 solutions. Show on the sketch in part (c)

what these represent. The higher pressure solution

is unreal physically, because it requires extra-

polating Eq. 4.36 beyond the range of its

applicability.

e. In Appendix D, the equation for the change of

density with pressure is given as

r ¼ r0½1þ bðP� P0Þ�T constant ðD:2Þ

Show that this is approximately the same as

Eq. 4.36 for small values ofb(P�P0).Hint:Write

Eq. (D.2) in volume form as

v ¼ v0

1þ bðP� P0Þ ¼ v0½1þ bðP� P0Þ��1 ð4:CÞ

Expand the v0[1þb(P�P0)]
�1 term by binomial

expansion, and drop the higher-order terms.
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FIGURE 4.13 The heat capacity of liquid helium at the lambda

point temperature. The lambda point temperature depends on

pressure, with values from 1.763K at 3.01MPa to 2.172K at

5.04 kPa.

Table 4.B More Graphite and Diamond Data, at 25�C

v0 (mL/mol) a (mL/(mol atm))

Diamond 3.42 �0.55� 10�6

Graphite 5.31 �16.1� 10�6
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4.7 Rossini and Jessup [3] show the complete develop-

ment of the Gibbs energy values for graphite and

diamond. Their final equation is

gdiamond � ggraphite ¼ 541:82þ 6700

T
þ 1:17662T log T

�2:43723T � 0:000221T2

�ð0:045660þ 0:91236� 10�6T

�0:7830� 10�10T2 � 0:3623

�10�12T3ÞPþ 0:19� 10�6P2

ð4:DÞ

with g in cal/mol, T in K, and P in atm.

a. Show that for 25�C¼ 298.15K and 1 atm, Eq. 4.D

givesthesamevalueforgdiamond� ggraphiteasthedata

used in Example 4.2. (Observe the different units!)

b. Show that if one sets gdiamond� ggraphite equal to

zero, for T¼ 25�C¼ 298.15K, Eq, 4.D gives

approximately the same equilibrium pressure

as is shown in Example 4.2. See the preceding

problem for the reason for the small difference.

c. Compute the equilibrium pressure from Eq. 4.D

for 1400K (the highest temperature for which

Eq. 4.D is claimed to be reliable), and compare

it with the value in Figure 4.11.

4.8 We have brought our sample of graphite to the

diamond-growing region in Figure 4.11 and held it

there long enough to convert all the graphite to

diamonds. We now want to bring our diamonds back

to room temperature and pressure.

a. Should we reduce the pressure first, and the tem-

perature second, or the temperature first and the

pressure second?

b. Why?

The following 3 problems are suitable for graduate

students, probably not for undergraduates.

4.9 Sketch a plot analogous to Figure 4.8, showing solid,

liquid, and gas.

4.10 a. For a substance like water, which expands on

freezing, sketch a Gibbs energy-pressure diagram

showing solid, liquid, and gas states, two-phase

regions, and the critical and triple points. Show

no numerical values, only the correct relations of

the areas.

b. Sketch on the figure a curve of constant temper-

ature for some pressure between the critical and

triple-point temperatures.

4.11 Do the same as in the preceding problem, but for a

substance like benzene, which contracts on freezing.
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5
VAPOR PRESSURE, THE CLAPEYRON EQUATION,
AND SINGLE PURE CHEMICAL SPECIES PHASE
EQUILIBRIUM

The vapor pressure is crucially important in a wide variety of

physical and chemical equilibrium situations, such as those

in Chapter 3. This short chapter discusses vapor pressure and

related topics.

5.1 MEASUREMENT OF VAPOR PRESSURE

The vapor pressure for a pure species is that pressure exerted

by a pure sample of the liquid at a fixed temperature. The

experimentalprocedure tomeasurevaporpressure is sketched

in Figure 5.1.A sample of thematerial to be tested is placed in

a closed container, with the amount chosen so that there will

be both vapor and liquid present. Then the temperature is

made constant over thewhole container, normally by placing

the whole container in a constant-temperature bath, with

circulating water or some other heat transfer fluid. When the

temperature and pressure readings have reached constant

values, these are recorded, and the constant temperature bath

is set for a new temperature. When the temperature and

pressure readings are again unchanging, the values are again

recorded, and a new temperature is chosen, continuing until

the desired range of temperatures has been tested.

Real vapor-pressure measuring devices are more refined

versions of that shown in Figure 5.1, with special attention

directed to getting very accurate measurements of the tem-

perature and pressure, and to making sure that all the air and

other possible contaminants are removed from the container,

so that the sample being measured is as pure as possible. In

principle, the measurement of the vapor pressure of solids is

conducted exactly the sameway as that of liquids; in practice,

the pressuremeasurements are difficult because the pressures

are very low. The vapor pressure of liquid mixtures is not

as often measured as that of pure liquids, but the procedure is

the same.

5.2 REPORTING VAPOR-PRESSURE DATA

Figure 1.8 shows the simplest representation of vapor-

pressure data for one pure substance, H2O, a plot of vapor

pressureor its lnor logvs.T.This is easy tounderstand,butnot

very convenient because of the huge range of values. A more

common and useful plot is shown in Figure 5.2. Therewe see,

for a wide variety of substances, a plot of the log of the vapor

pressure vs. an unusual temperature scale, which makes the

curvesclose tobeingstraight lines (seeProblem5.6).Thisplot

andothers like it areuseful forquick lookupofvalues, but they

are hard to read to more than one significant figure.

Many handbooks have tables of vapor pressures, as do

more detailed tables like the steam tables [1–4]. The values

shown there are not direct experimental measurements.

Instead, they are computed from equations that have been

fitted to the experimental data. In the computer agewewish to

represent the experimental data by equations that our com-

puters can manipulate. There are some strong limits on the

forms those equations can take, which we will see in

Section 5.4.

5.2.1 Normal Boiling Point (NBP)

The temperature at which the vapor pressure is 1.00 atm is

called the normal boiling point, NBP. The most widely

known NBP is that of water, 100�C¼ 212�F. In Figure 5.2

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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the NBP is the temperature at which an individual

compound’s vapor pressure curve crosses 1 atm (14.696 psia)

with values ranging from �44�F for propane to 675�F for

mercury. Handbooks show the NBP for many substances.

Normal boiling points increase more or less regularly with

increasing molecular weight. This increase is quite regular

for members of one chemical family (e.g., alkanes) but not

between families. For high molecular weight materials such

as sugar (sucrose, C12H22O11,M¼ 342.3 g/mol), the NBP is

higher than the chemical decomposition temperature, so the

NBP cannot bemeasured. Cooks know that melted sugar will

“caramelize” before it boils, and use this fact in cooking.

5.3 THE CLAPEYRON EQUATION

If two phases (1 and 2) of a pure substance are in equilibrium

(gas–liquid, gas–solid, liquid–liquid, liquid–solid, or

solid–solid) at T1 and P1, then the Gibbs energy per mol (or

per lbm or kg) must be the same in each of the equilibrium

phases.

gð1Þ ¼ gð2Þ ð5:1Þ

Now, we raise the temperature from T1 to ðT1 þ dTÞ.
At this new temperature we will have a new equilibrium

(Figure 5.3) at which

gð1Þ þ dgð1Þ ¼ gð2Þ þ dgð2Þ ð5:2Þ

So for this change

dgð1Þ ¼ dgð2Þ ð5:3Þ

Thermo-
meter

Vapor

Filling and
emptying line

Liquid

Closed container

Pressure
gauge

FIGURE 5.1 Simplified schematic of the device for measuring

the vapor pressure.
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Using the derivatives in Eq. 4.33 we can write

dgð1Þ ¼ vð1ÞdP�sð1ÞdT ¼ dgð2Þ ¼ vð2ÞdP�sð2ÞdT ð5:4Þ

Factoring gives

ðvð1Þ�vð2ÞÞdP ¼ ðsð1Þ�sð2ÞÞdT
dP

dT
¼ ðsð1Þ�sð2ÞÞ

ðvð1Þ�vð2ÞÞ ¼
�Ds

�Dv
¼ Ds

Dv
¼ Dh

TDv

ð5:5Þ

This is the Clapeyron equation, which is rigorously

correct for any phase change of a single pure chemical

species. All of the curves in Figures 1.7, 1.8, 1.9, and 5.2

agreewith the Clapeyron equation. If your experimental data

do not agree with it, then you have made an experimental

error!

Example 5.1 Compute the value of dP/dT for the steam–

water equilibrium at 212�F using the Clapeyron equation,

and compare it with the value in the steam table [5].

From the steam table, we have Dh ¼ 970:3 Btu=lbm,

Dv ¼ 26:78 ft3=lbm, and T ¼ 671:7�R. Thus,

dP

dT
¼ ð970:3 Btu=lbmÞð778 ft lbf=BtuÞ

ð671:7�RÞð26:78 ft3=lbmÞð144 in2=ft2Þ

¼ 0:2914 psi=�R ð5:AÞ

Using the nearest adjacent steam table entries for vapor

pressure, we have

dP

dT
� DP

DT
¼ 15:291�14:125

214�210
¼ 0:2914 psi=�R & ð5:BÞ

As in Example 4.1, this agreement does not demonstrate the

correctness of the Clapeyron equation; the authors of the

steam tables used the Clapeyron equation in making up that

table. (If thevalues did not agree, itwould showan error in the

steam table!) In the Clapeyron equation we normally use P

for pressure, because the Clapeyron equation applies to any

equilibrium between any two phases of the same pure

substance. If one of the phases is a gas or vapor, then the

(dP/dT) relation is a vapor-pressure curve, and we normally

use p for vapor pressure, so the above derivatives would be

written as dp/dT. This distinction is not very important, but

the use ofP for pressure in general and p for vapor pressure is

common.

5.4 THE CLAUSIUS–CLAPEYRON EQUATION

The Clapeyron equation is rigorous and exact. It applies

not only to gas–liquid equilibrium, but to any two-phase

equilibrium of a pure species (e.g., liquid–solid, gas–solid) or

change between two different crystal forms (e.g., graphite

to diamonds, see Example 4.2). By adding some

simplifications, we find the Clausius–Clapeyron (C-C) equa-

tion, which is only approximate but is a surprisingly good

approximation of observed behavior for gas–liquid

and gas–solid equilibria (vapor pressures) of single pure

species.

For most gases at low and moderate pressures, vðgasÞ is
reasonably represented by the ideal gas law, and vðgasÞ is so
much larger than vðliquidÞ that we may write

Dv ¼ vðgasÞ�vðliquidÞ � vðgasÞ � RT

p
ð5:6Þ

Making this substitution in Eq. 5.5 and rearranging, we find

dp

dT
¼ Dh

TðRT=pÞ ð5:7Þ

dp

p
¼ Dh

R

� �
dT

T2
ð5:8Þ

For small ranges of temperature we may assume that Dh is

practically a constant and integrate, finding the C-C equation

ln p ¼ Dh

R

� � �1

T

� �
þ constant ð5:9Þ

or its alternative form

ln
p2

p1

� �
¼ Dh

R

� �
1

T1
� 1

T2

� �
ð5:10Þ

This equation works fairly well for low-pressure gas–liquid

and gas–solid equilibria.
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FIGURE 5.3 On a P-T diagram for a single pure chemical, we

increase the temperature by dT, which causes the pressure to

increase by dP. On the equilibrium curve g(1)¼ g(2).
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Example 5.2 Estimate the temperature at which the vapor

pressure of ice (solid H2O) is 0.005 psia. From the steam

tables [5] at the triple point, we find T¼ 32.018�F, p¼ 0.0887

psia, Dhsolid-to-gas¼Dhsublimation¼ 1218.7 Btu/lbm. Assum-

ing that the enthalpy change of vaporization is independent of

temperature (a fairly good approximation in this case) we

start with Eq. 5.10 and rearrange:

1

T2
¼ 1

T1
�ln

p2

p1

0
@

1
A � R

DH

¼ 1

492:018�R
�ln

0:005

0:0887

0
@

1
A �

1:987Btu

lbmol � �R

0
@

1
A

1218:7Btu

lbm

0
@

1
A

� lbmol

18 lbm

¼ 2:293� 10�3 1
�R

ð5:CÞ

T2 ¼ 1

2:293� 10�3

�R

0
@

1
A

¼ 436:09�R¼�23:5�F
ð5:DÞ

By interpolation in the steam tables, one finds�23.8�F; these
values are practically equal. &

Again, this close agreement does not prove correctness.

The authors of the steam table used equations practically

identical to the C-C equation to make up their table of the

vapor pressure of solid water (ice).

Returning to Eq. 5.9, we see that the C-C equation implies

that if we plot the ln (or log) of p (the vapor pressure) vs.

(1/absolute T), the experimental data should fall on a straight

line. Since we derived the C-C equation by making the ideal

gas assumption, we would expect that the data plotted this

way would form a straight line only over the low-pressure

region. To our surprise, we observe (see Figure 5.4, [6]) that

the experimental vapor-pressure data for most substances

form practically straight lines on this kind of plot over their

entire temperature ranges. Why?

In deriving the C-C equation, we assumed that Dh was

constant and that Dv was proportional to (T/p). As the

pressure rises, both of these assumptions become incorrect,

but since we are taking the ratio of Dh and (pDv)/T,
both assumptions can be wrong and still have the ratio

(TDh)/(pDv) remain constant. Table 5.1 shows that for sat-

urated steam this ratio varies by only 13% over the pressure

range from 1 to 3000 psia. Thus, the inaccuracies of the two

assumptions tend to cancel each other, and the resulting

equation is surprisingly good.

Example 5.3 Using the C-C equation, estimate the vapor

pressure ofwater at 1155.2�R, based on thevapor pressures at
652.9 and 787.5�R, which are 10 and 100 psia. Compare the

result with that shown in Table 5.1.

Here we can write Eq. 5.9 in the form most often seen,

ln p ¼ A�B

T
ð5:11Þ

whereA andB are constants to be determined from the pair of

T and p values above. We simply write

ln10 ¼ A� B

652:9�R
and ln100 ¼ A� B

787:5�R
ð5:EÞ

By straightforward algebra we find that A¼ 15.715 and

B¼ 8755�R. Thus, for 1155.2�R we have

ln p ¼ 15:715� 8755

1155:2
¼ 8:136 ð5:FÞ

and p¼ 3416 psia. From Table 5.1 we see the correct value is

3000 psi. Thus, there is an error of 11% in the predicted

pressure. &

This example illustrates the advantages and disadvantages

of the C-C equation. Using it, one canvery easilymake useful

vapor-pressure estimates. This example shows a 30-fold

extrapolation from the input pressure (100 psia) with only

an 11% error. For many applications, this is adequate.

5.5 THE ACCENTRIC FACTOR

In Section 2.12 we introduced the accentric factor v as a

dimensionless correlating parameter in the theorem of cor-

responding states, and promised to explain it in this chapter. It

is most easily explained in terms of Figure 5.4 and the

Clausius–Clapyron equation. If the vapor-pressure data for

some pure species form a straight line in Figure 5.4, then the

equation of that line is

lnPr ¼ 1� B

Tr
ð5:12Þ

By rewriting Eq. 5.11 in terms of Pr and Tr we have

eliminated A (and changed the value and dimensions but not

themeaning ofB). If the simple corresponding states theorem

were correct, then all the curves in Figure 5.4 would be

identical (but not necessarily straight), and if they were also

all straight then all substances would be represented by

Eq. 5.12 with the same value of B. In Figure 5.4 the curves

for various species are close to straight, but not exactly

straight, and they have different slopes and thus different

values of B.

64 VAPOR PRESSURE, THE CLAPEYRON EQUATION, AND SINGLE PURE CHEMICAL SPECIES PHASE EQUILIBRIUM



This suggests that if we replaced each of the curves in

Figure 5.4 by a best-fit straight line and determined its

corresponding value of B in Eq. 5.12, then B would be a

good third parameter for corresponding states. It would. The

accentric factor is the practical equivalent of that B. Pitzer

et al. [7] observed that the curves in Figure 5.4 (and other

plots of the same type with many more species on them) fall

into three categories: (1) He and H2, whose behavior is
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FIGURE5.4 Vapor pressures for awidevariety of substances, plotted as logPr vs. 1/Tr. Here instead

of using the vapor pressure and temperature directly, which would have required a much larger plot

because of the wide range of pressures and temperatures involved, the plot uses the reduced vapor

pressure (pressure/critical pressure) and the reduced temperature (absolute temperature/critical

temperature). This makes all the curves come together at (1, 1), which corresponds to the critical

point. We see that most of the curves are close to being straight lines, except for helium and hydrogen,

which are always different from everything else. (If the primitive formof the theoremof corresponding

states were truewewould expect there to be only one curve on this plot; that is clearly not the case, and

the mathematical equivalent of this plot is widely used as a correction to the primitive form of that

theorem, through the accentric factor (Sections 2.12 and 5.4). (FromMartin, J. J., and J. B. Edwards.

Correlation of latent heats of vaporization. AIChEJ 11: 331–333 (1965). Reproduced with permission

of the American Institute of Chemical Engineers.)

Table 5.1 Values of Parameters Used in the Derivation of the C-C Equation Taken from the Steam Tables [5]

P (psia) T (�R) Dh (Btu/lbm) Dv (ft3/lbm) (T Dh)/(p Dv) (Btu��R/ft3�psi)
1 561.4 1036.0 333.6 1743

10 652.9 982.1 38.38 1670

100 787.5 889.2 4.416 1586

500 926.8 755.8 0.9083 1542

1000 1004.4 650.0 0.4249 1537

2000 1095.7 464.4 0.16213 1569

3000 1155.2 213.0 0.04974 1649

3200 1164.9 29.3 0.00639 1669
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different than everything else because at the very low tem-

peratures at which they are liquid, quantum effects are

important; (2) spherical, nonpolar molecules like CH4, Ar,

and Kr (of which only CH4 is shown in Figure 5.4), which all

have practically identical curves on this type offigure; and (3)

other substances, whose values depart more and more from

those of the spherical, nonpolar materials as their shape

departs from spherical and their polarity increases. He then

observed that for the spherical, nonpolarmolecules (which he

called simple fluid) at Tr � 0:7ð1=Tr ¼ 1:428Þ the experi-

mental Pr � 0:1. He defined

accentric

factor

� �
¼ v ¼ �logðPrÞat Tr¼0:7�1 ð5:13Þ

which makes the accentric factor ¼ 0 for the spherical,

nonpolar molecules, positive for nonspherical and/or polar

molecules, and negative for He and H2. Please review the

values of v in Table A.1 to see that this is true!

Example 5.4 Estimate the accentric factor for ethanol from

Figure 5.4. (Ethanol is chosen because its curve is the lowest

one in Figure 5.4.)

At Tr � 0:7ð1=Tr ¼ 1:428Þ, we read Pr � 0:023, so that

v ¼ �log 0:023�1 ¼ �ð�1:64Þ�1 ¼ 0:64 ð5:JÞ

Table A.1 shows that the value based on the best data is

0.645. &

The accentric factor is used exclusively in making

corresponding-states estimates of PvT, EOSs that estimate

PvT, and other thermodynamic properties derived from PvT.

It is almost never used in making vapor-pressure estimates,

and will not be used again in this chapter.

5.6 THE ANTOINE EQUATION AND OTHER

DATA-FITTING EQUATIONS

The Clapeyron equation is rigorous. The C-C equation is

derived from it, using some easily understood approxima-

tions. The C-C equation has only two arbitrary constants

(A and B), which can be determined by using two experi-

mental data points. It is the best two-constant vapor-pressure

estimating equation. For any substancewhose vapor pressure

curve in Figure 5.4 is a straight line, the C-C equation gives a

perfect representation of the data. But most substances

produce a slightly curved line in Figure 5.4. To represent

the experimental data for substanceswhoseplots inFigure5.4

are curved (most substances), we use equations with more

adjustable constants, which are neither rigorous nor based on

any theory.

The Antoine equation

ln p or log p ¼ A� B

T þC
ð5:14Þ

introduces a third arbitrary constant, C, to represent that

curvature. Here A, B, and C are arbitrary constants to be

obtained from the experimental data (e.g., by a least-squares

fit of the experimental vapor-pressure data). There is no

theoretical basis for introducing the third constant; it is

simply the most successful simple way to modify the C-C

equation, improving its ability to fit experimental data.

Normally this equation is applied with T in �C, not K.

If C¼ 273.15, then Eq. 5.14 becomes the same as Eq. 5.11.

Table A.2 shows a sampling of published constants for the

Antoine equation. They show that most values of C are less

than 273.15, so that for most substances, a plot of ln or log pr
vs. 1/Trwill show a slight curvature, as do most of the curves

in Figure 5.4.

To be mathematically precise, we would write of the

logarithm as log (p/torr) and write B and C as B, �C and

C, �C. That would make it unnecessary to state with the

equation what units of p and T are used. While this is

mathematically precise, it is almost never done. The

constants are almost always presented as in Table A.2, and

it is assumed that the user is not terribly upset about taking

the dimensionless log of a quantity that is not itself

dimensionless.

Example 5.5 Estimate theNBP ofwater, using theAntoine

equation and Table A.2.

Equation 5.14, solved for T, is

T ¼ B

A�log p
�C ð5:HÞ

Inserting thevalues of the constants forwater fromTableA.2,

and the value of 1.00 atm expressed in torr we find

T ¼ 1668:21

7:96681� log 760
�228:0 ¼ 100:001�C ð5:IÞ

This does not prove the overall accuracy of the Antoine

equation, but does show that whoever fitted the constants to

the experimental data forwatermade them represent theNBP

(100�C) very well. &

There seems to be widespread agreement that the Antoine

equation is the best three- constant vapor-pressure equation;

it is very widely used. But now that our computers have

grown so large and powerful, we can easily use more

complex equations.
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Poling et al. [8] use a five-constant vapor-pressure

equation

ln p ¼ Aþ B

T
þC lnT þDTE ð5:JÞ

where A . . . E are data-fitting constants (called C1 . . . C5
in [8]). They present values of the constants for 345 pure

compounds (see Problem 5.13). An even larger compilation,

with both equations and plots, is in [9]. Poling et al. [10]

review the field of vapor-pressure equations, recommend

which is best for various applications and present a table of

constants for their recommended equations.

Comparing Eq. 5.J to the C-C equation we see that the

first two terms on the right are those of the C-C equation.

The subsequent terms are always smaller in absolute value

than the sum of the first two terms. They correct for the

approximate nature of the C-C equation. If we have a large

amount of high-quality vapor-pressure data on some sub-

stance, then we are justified in using more complex equa-

tions to represent it. The steam table [5] uses a purely

empirical data-fitting vapor-pressure equation that has 12

data-fitting constants; with it the authors claim they can

represent the best available experimental vapor-pressure

datawith an average disagreement of 0.008%andmaximum

disagreement of 0.017%. In all of these equations the first

two constants (C-C) have some theoretical basis; the re-

maining constants have none.

5.6.1 Choosing a Vapor-Pressure Equation

In choosing among vapor-pressure equations, we trade ac-

curacy for simplicity. The complex equations are more

accurate than the simple ones. This is illustrated by

Figure 5.5. We see that, for the whole range of the vapor

pressure of water from the triple point to the critical point, the

C-C equationmakes errors up to 14%, and that the sign of the

errors changes from plus, to minus, and then back to plus as

we go from low temperatures to high. The Antoine equation,

using the constants from Table A.2, has a maximum error of

5% over the same range, and its error pattern is the reverse of

that of the C-C equation. Equation 5.J using the constants

from [8], reproduces the steam table values over this entire

range with a maximum error of 0.5%; it is not shown in

Figure 5.5 because it would plot as nearly a straight line with

value 1.00� 0.005.

In most of the rest of this book we will use the Antoine

equation and the constants in Table A.2. If we are writing a

computer program for important calculations, the extra effort

to program in Eq. 5.J and the correspondingly larger table

of constants is probably worthwhile. In a few examples we

will use the C-C equation, for reasons that will be clear in

those examples.

5.7 APPLYING THE CLAPEYRON EQUATION

TO OTHER KINDS OF EQUILIBRIUM

As discussed in Section 5.2, the Clapeyron equation (but not

the C-C approximation) applies rigorously to liquid–solid

and solid–solid equilibria, as well as to the more common

vapor pressure (vapor–liquid or vapor–solid) equilibria. We

can also use it to compute the behavior of a phase change

involving only solids and liquids.

Example 5.6 Estimate the freezing pressure of water at

�22�C¼�7.6�F.Here, if we consider the phase change to be
going from ice to water at 32�F, then [5]

Dh¼Dhfusion¼143:35Btu=lbm

Dv¼ vðwaterÞ�vðiceÞ ¼0:01602�0:01747¼�0:00145ft3=lbm

and

dP

dT

� �
32�F

¼
143:35

Btu

lbm
� 778ft lbf

Btu

� �

ð492�RÞ �0:00145
ft3

lbm

� �
144in2

ft2

� �

¼�1085:6
psi
�R

ð5:KÞ

This gives the rigorously correct slope of the liquid–solid

curve at 32�F on a P-T diagram. Here we use P instead of p

because neither phase is a gas, so this is not a vapor pressure.

If we further assume that the solid-liquid curve is a straight

line, which is equivalent to assuming that Dh/(T Dv) is a

constant over the region of interest, then we can estimate the

pressure at �22�C¼�7.6�F by
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FIGURE5.5 Comparison of theC-C andAntoine equations to the

steam table vapor-pressure values over the range between the triple

point and the critical point.
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DP¼
ð

dP

dT

� �
dT� dP

dT

� �
32�F

DT

¼�1085:6
psi
�R

ð�7:6�32Þ�F¼43;000psi ð5:LÞ

From this we would estimate the final pressure as

43,000 þ 0.09� 43,000 psia. In this case, the experimental

pressure is well known, because this temperature corre-

sponds to the triple point between liquid water, ice I (the

common variety), and ice III, a variety that does not exist at

pressures below about 30,000 psia (see Figure 1.10). The

measured value is 30,000 psia, which shows that our as-

sumption of a straight line on a P-T plot (Dh/(TDv)¼ con-

stant) is only approximately correct. &

If we do not make the linear assumption (which the shape

of Figure 1.10 shows is a mediocre assumption), we would

have to write

DP ¼
ðT2
T1

Dh

TDv
dT ð5:15Þ

and use measured or estimated values of Dh and Dv to

perform the integration. At these high pressures it is much

easier to measure pressures, temperatures, and volume

changes than enthalpy changes, so we are more likely to

use Eq. 5.15 to estimate enthalpy changes from themeasured

PvT values than the reverse.

Instead of assuming that Dh/(TDv) is a constant as we did
in Example 5.5, we could assume that Dh/Dv is constant, and
integrate Eq. 5.15, finding

DP ¼ Dh

Dv

ðT2
T1

dT

T
¼ Dh

Dv
ln
T2

T1
ð??Þ ð5:M??Þ

which seems plausible and which regularly appears on

students’ homework and exam papers. However, if we sub-

stitute the above values into Eq. 5.M??, we find a calculated

DP of 45,000 psia, which is a poorer approximation of the

experimental value than the one shown in Example 5.5.

Figure 5.6 compares the observed behavior to the two

approximate applications of the Clapeyron equation dis-

cussed above. For all of the cases I know of, the linear

extrapolation of the tangent (Eq. 5.L) gives a better estimate

of the experimental findings than does Eq. (5.M??) which, as

shown in Figure 5.6, curves in the wrong direction!

Neither the linear extrapolation or Eq. 5.M?? is very good.

Both give an order-of magnitude estimate of the right value.

Remember that Eq. 5.15 is rigorously correct, so that if we

knew the values of Dv and Dh as a function of T, we could

use them in Eq. 5.15 to compute the P-T curve with

complete accuracy. Observe that both Eq. 5.L and 5.M??

are tangent to the experimental curve and givegood estimates

at low values of DT.

5.8 EXTRAPOLATING VAPOR-PRESSURE

CURVES

A true equilibrium vapor-pressure curve extends only from

the triple point (the lowest temperature at which vapor and

liquid can be in equilibrium) to the critical point (the highest

temperature at which vapor and liquid have separate exis-

tence). What would happen if we extrapolated the vapor-

pressure curves? The logical coordinates on which to do this

are ln p vs. 1/T, which correspond to the C-C equation, as

shown in Figure 5.7.

On these coordinates the heavy line represents the true

vapor pressure. The extrapolation to temperatures above the

critical temperature (to the left) represents physically unreal

states, which surprisingly have some meaning, described in

Chapter 9. The extrapolation to temperatures below the triple

point (to the right) represents unstable states, which can

actually be produced and measured in the laboratory! Some

values are shown in Figure 5.8. We see that between 0 and

10�C thevapor pressure ofwater plots as practically a straight

line on these coordinates, as we would expect for these low

pressures at which the C-C equation is quite reliable.

Below 0�C there are two curves, one for subcooled water

and one for ice. The subcooled water curve (practically

a straight line) is almost a linear extension of the liquid line,

as logic suggests it should be. The ice curve (also practically a

straight line) falls below the subcooled water line and has

Equation 5.M??

Linear Extrapolation
from triple point
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FIGURE 5.6 Comparison of the experimental results, the linear

extrapolation of the equilibrium curve and of Eq. 5.M?? for esti-

mating the pressure at the liquid–ice I–ice III triple point of water.

Both the linear extrapolation and Eq. 5.M?? are tangent to the

experimental curve at 0�C.
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a different slope. At equilibrium, the liquid will turn to ice.

We may think of this by imagining a piece of ice separated

from some mass of subcooled water, but both sharing the

same vapor space. The vapor pressure of the ice is less than

that of the water, so that if we select some system pressure

between the vapor pressures of ice and water then the water

will evaporate because its pressure is above the system

pressure, while vapor will deposit on the ice, because the

systempressure is above the ice’s vapor pressure. If a suitable

crystallization nucleus is brought in contact with the water

(almost any solid surface will serve as this nucleus) then the

liquid water will rapidly convert to its stable form at these

temperatures, ice.

The most important examples of this subcooling of liquid

water areweather phenomena.Most cloud seeding takes place

at temperatures below 0�C, in conditions where water drops

have been cooled below their equilibrium freezing tempera-

ture, but forwant of a solid nucleus have not frozen. Providing

the nuclei causes them to freeze, grow in size, and fall as ice or

(upon passing through a higher temperature air layer) as rain.

The most spectacular example of this subcooling is the ice

storm that regularly paralyzes the eastern United States. Rain

forms in a warm air layer. The raindrops fall through an air

layer that is much colder than 0�C, and turn to subcooled

water. When they reach the ground the solid ground provides

the crystallization nucleus they need to turn to ice. This covers

streetswith sheet ice, and covers treeswith ice, adding enough

weight to break limbs, which tear down power lines. The

result is a major power outage, with impassable streets.

Similar unstable or metastable liquids exist in other sub-

stances, but we have studied the water–ice–subcooled water

system shown in Figure 5.8more than any other, because of its

great practical significance.

5.9 VAPOR PRESSURE OF SOLIDS

AsFigure 5.8makes clear, solids havevapor pressures, just as

liquids do. The same is obvious from Figure 1.9 for water and

Figure 5.2 for carbon dioxide. Vapor pressures of solids

behave the same as the vapor pressures of liquids. We have

fewer data for them, and most of those data are at tempera-

tures at which their vapor pressure is modest, and well

represented by the C-C equation. You may not think of

wood, steel, or concrete as having vapor pressures. But they

do. The values, at normal temperatures, are so low that the

evaporation rate is nearly zero, even on a geologic time scale,

(Problem 5.25).

5.10 VAPOR PRESSURES OF MIXTURES

This whole chapter is devoted to the vapor pressure (and

related phenomena) of single pure species. We use that

information, plus other information to estimate the vapor

pressures of mixtures, discussed in detail in Chapters 8–10.

5.11 SUMMARY

1. Vapor pressure is fairly easy to measure and vapor-

pressure data are widely used and widely available, as

plots, tables, or tables of coefficients to be used in

vapor-pressure equations.

2. The Clapeyron equation follows directly from the

basic statement that if any two phases of one pure

substance are in equilibrium, their molar or specific

Gibbs energies are the same. It is a fundamental,

Between the critical and
triple points, the line is
a true equilibrium vapor
pressure.

Below the triple
point the line is
an extrapolation
representing an
unstable state.Above the critical

point the line is an
extrapolation,
whose meaning is
discussed in Ch 9.

critical point triple
point

In
 p

1/T

1/T

1/T

FIGURE5.7 Extrapolation of the vapor-pressure curve on ln p vs.

1/T coordinates, to temperatures above the critical and below the

triple points.
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p,
 to

rr

1
3.5 3.55 3.6 3.65 3.7 3.75

1000 K/T

T = –14 ºC

T = 10 ºC

T = 0.01 ºCLiquid water above

freezing point

Ice, below triple point

Subcooled liquid water

below triple point

3.85 3.93.8

FIGURE 5.8 Experimental vapor pressures of water, subcooled

water, and ice [1, pp. 2–48 and 2–49], plotted on ln p vs. 1000K/T

coordinates. Actual temperatures run from right to left; the values of

�14�C, 0�C, and þ 10�C are shown.
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rigorous thermodynamic relationship, which applies to

any two-phase equilibrium of a single chemical spe-

cies, either gas–liquid, gas–solid, liquid–liquid, li-

quid–solid or solid–solid.

3. If one of the phases is a low-pressure gas, then we

can use the ideal-gas approximation to convert the

Clapeyron equation to the C-C equation, which

is very accurate for low-pressure vapor–liquid and

vapor–solid equilibrium.

4. Surprisingly, the C-C equation is fairly accurate for

high-pressure vapor-liquid equilibrium, where its ideal

gas assumption is clearly inaccurate. The reason is that

the other assumption, constant heat of vaporization, is

also inaccurate, and the two inaccuracies work in

opposite senses and tend to cancel one another.

5. More complex vapor-pressure equations are empirical,

with little if any theoretical basis. They mostly start

with the C-C equation and add ormodify terms tomake

their equation fit the experimental datamore accurately

than the C-C equation. Themostwidely used of these is

the Antoine equation, which adds one arbitrary cor-

rection constant to the C-C equation, thus modestly

increasing its complexity and vastly improving its

ability to fit experimental data.

6. Vapor-pressure data are often needed in equilibrium

calculations; the material in this chapter will be used in

subsequent ones.

PROBLEMS

See the Common Units and Values for Problems and

Examples. An asterisk (�) on a problem number indicates

that the answer is in Appendix H

5.1 Figure 5.2 shows only one line for every substance

except CO2, for which two lines are shown.

a. Explain.

b. How low in pressure would the plot have to go to

show a similar situation for water?

5.2 a. Estimate the vapor pressure of acetic acid at

150�F¼ 65.56�C.
b. Estimate the temperature at which the vapor

pressure of acetic acid is 100 psia.

5.3 a. Estimate the vapor pressure of propane at

100�F¼ 37.78�C.
b. Estimate the temperature at which the vapor

pressure of propane is 1.00 atm.

5.4� Estimate the vapor pressure of solid carbon dioxide

(“dry ice”) at �75�F.

5.5 Estimate the temperature at which the vapor pressure

of n-hexane is 0.5 atm¼ 0.5065 bar.

5.6 Figure 5.2 is a Cox chart. On it the curve for a

reference substance, water, in this case, is drawn as

a perfectly straight line with a logarithmic ordinate.

Then the temperature scale on the abscissa is made up

to match the tabulated values of the vapor pressure of

the reference substance. Then the vapor-pressure

curves of other substances are drawn in on this plot,

whose ordinate is the vapor pressure and whose

abscissa is a special, nonlinear scale based on the

vapor-pressure line of the reference substance.

The temperature scale is approximately (1K)/(T

� 43.15), plotted from right to left. This is equivalent

to using the Antoine equation with C¼ 230�C. Show
that this is so by observing that the water curve on

Figure 5.2 is perfectly straight, and then that a plot of

the ln p values for water vs 1/(T� 43.15) is also

perfectly straight.

5.7 Estimate the heat of vaporizationDHvap in Btu/lbm of

ethane at 0�F from the data shown in Table 5.A.

5.8� Estimate the vapor pressure of ice at 100K, using the

values in Example 5.2.

5.9 a. Estimate the temperature at which the vapor

pressure of ice is 0.001 psia, using the values in

Example 5.2.

b. Estimate the vapor pressure of ice at �40�F¼
�40�C, using the values from Example 5.2.

5.10 Figure 5.2 shows a curve (close to a straight line) for

n-decane. As best I can read that line, it shows that the

vapor pressure of n-deqane is 0.1 psia at T � 111�F
and that the vapor pressure is 100 psia at T � 570�F.
Based on these values estimate the values of the

constants A and B in the C-C equation in its most

commonly used form (Eq. 5.11).

5.11 In Example 5.3, we used the C-C equation to estimate

the vapor pressure of water at 1155.2�R, and com-

pared the calculated value to the steam table value.

Repeat that example using the Antoine equation

(Eq. 5.14) and the constants in Table A.2.

5.12 Estimate the accentric factor v for water

a. Based on Figure 5.4.

b. Based on steam table values.

c. Compare your result to the value in Table A.1.

Comment?

Table 5.A Data for Ethane

T¼ 0�F T¼ 5�F

p (psia) 219.7 237.0

v(liq) (ft3/lbm) 0.0357

v(vap) (ft3/lbm) 0.5754
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5.13 Estimate the vapor pressure of propane at 100�F.
a. Using the Antoine equation (Eq. 5.14) and the

constants in Table A.2.

b. Using Eq. 5.J, with the following constants

from [8]: A, B, C, D, E¼ 59.078, �3492.6,

�6.0669, 1.0919 � 10�5, 2. Here the vapor pres-

sure is in Pa, and the temperature in K.

c. Compare these values with the reported [11] value

of 188.320 psia.

5.14 From the data shown in Example 5.6, estimate the

freezing temperature of water at 10,000 psia.

5.15� Estimate the pressure at which the freezing temper-

ature of water is 31�F.

5.16 Two laboratories have been studying the vapor–liquid

equilibria of monochloro-difluoromethane (CHClF2)

in connection with its use as a refrigerant. They report

conflicting data, shown inTable 5.B.Which set of data

appears to be the more reliable? (Never let your boss

see any data of yours that can be checked by the

Clapeyron equation before you have made that check

yourself!)

5.17 In the preceding problemwe concluded that therewas

at least one error in the data from the April Fool

Laboratory. We have studied their values and con-

clude thatmost likely the error is in the reported values

of the enthalpy of the vapor. If all of the other values in

their table are correct, what value would the enthalpy

of the vapor at 30�F have to be, to make their data

agree with the Clapeyron equation?

5.18 Percy Bridgman, the famous high-pressure physicist,

measured the properties ofwater at very highpressures.

Table 5.C shows some of his data on the equilibrium

between liquid water and one of the crystal modifica-

tions of ice, which he calls ice VII (see Figure 1.10).

a. Using these data, estimate the heat of fusion of ice

VII at 149.5�C.
b. Sketch what kind of apparatus you would use to

make these measurements.

5.19 Themelting temperature of bismuth at 1 atm is 968�F.
At this condition the volume change on melting is

�5.52� 10�5 ft3/lbm and the enthalpy change is þ
18.33Btu/lbm.

a. Estimate the melting temperature at a pressure of

4000 psig.

b. Bismuth is one of very few substances (including

water) that expand on freezing. What industrial

use is made of this property?

5.20 If you are very careful to use very pure water, and to

exclude all crystallization nuclei, it is possible to

subcool liquid water to temperatures far below its

equilibrium freezing point (see Figure 5.8).

a. Estimate the vapor pressure of subcooled liquid

water at �10�C, using the Clausius–Clapeyron

equation, starting at the triple point, at which point

Dhvaporization ¼ 1075:4 Btu=lbm.

b. Compare your answer to the experimental value of

2.149 torr [8 p. 2–48]

c. Estimate the vapor pressure of subcooled water at

this temperature using the Antoine equation and

the constants in Table A.2.

d. The vapor pressure of ice at �10�C is 1.950 torr.

Using this information, sketch the equivalent of

Figure 1.9, adding the subcooled water curve.

(This is the same plot as Figure 5.8, but on P-T

coordinates.)

5.21� In the previous problem you compared the vapor

pressure of ice at�10�C (¼14�F) to that of subcooled
liquid water at the same temperature. Using values

from that problem, your thermodynamics textbook,

or any other source you like, estimate by how much

subcooled liquid water at �10�C will increase or

decrease its Gibbs energy when it changes to ice at

the same temperature.

Table 5.C Some High-Pressure Equilibrium Data for Water

Pressure (atm)

Temperature

(�C)
v(liquid)� v(solid)

(mL/g)

25,162 110.3 0.0847

30,969 149.5 0.0763

36,744 182.5 0.0694

38,710 192.3 0.0674

Table 5.B Two Sets of Thermodynamic Data

Trick or Treat

Laboratory

April Fool

Laboratory

Temperature

(�F)
20 30 40 20 30 40

Vapor pressure

(psia)

58.0 70.0 83.5 57.9 69.9 83.7

Liquid density

(lb/ft3)

81.6 80.4 79.2 81.5 80.5 79.3

Vapor, sp vol

(ft3/lb)

0.937 0.782 0.656 0.937 0.781 0.65

Liquid enthalpy

(Btu/lb)

16.0a 18.7a 21.7a 0b 2.6b 5.5b

Vapor enthalpy

(Btu/lb)

107.1a 108.1a 109.1a 81.0b 82.0b 83.0b

aDatum, �40�F, liquid.
bDatum, þ 20�F, liquid.
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5.22 a. Refer to Figure 1.9. At the triple point, is dP/dT for

the gas–solid equilibrium greater than, equal to, or

less than dP/dT for the gas–liquid equilibrium?

b. Refer to Figure 5.2. Is dP/dT for the gas–solid

equilibrium of carbon dioxide greater than, equal

to, or less than dP/dT for the gas–liquid equilib-

rium of carbon dioxide?

c. Can the results of parts (a) and (b) be explained by

the Clapeyron equation?

5.23 The constants in Table A.2 are for the Antoine equa-

tionwith pressure expressed in torr and temperature in
�C. Those are not the only possible units. Using the

values from Table A.2 for acetaldehyde, show the

revised values of A, B, and C if we:

a. Express pressures in torr, but express temperatures

in K instead of �C.
b. Express temperatures in �C, but express pressures

in psia instead of torr.

c. Express pressures and temperatures in torr and �C,
but use ln p instead of log p.

5.24� Estimate the slope of the P-T curve for the graphite–-

diamond equilibrium at 25�C. At this temperature and

at 1 atm, Dhgraphite to diamond at 1 atm¼ þ 1.9 kJ/mol

(see Table A.8). For graphite and diamonds,M¼ 12 g/

mol. See Example 4.2 for volume data.

a. Show the value of dP/dT you would estimate if

you assume that the Dhgraphite to diamond at 1 atm¼
þ 1.9 kJ/mol (shown above for 1 atm) is appli-

cable for all pressures.

b. Show thevalue of dP/dT youwould estimate if you

do not make the assumption in (a), but instead

assume that the enthalpy of diamond and graphite

both change with pressure according to Eq. 2.34.

We may show that for solids Tð@v=@TÞP 	 v.

c. Compare the results of parts (a) and (b)with Figure

4.11. Are both plausible? Is only one plausible?

Which one?

5.25 The melting temperature of pure iron at 1 atm is

1535�C� 1808K. At that temperature the vapor

pressure of liquid and of solid iron are the same,

0.00037 atm. The enthalpy change of sublimation of

solid iron at that temperature is 418.3 kJ/mol. Using

these data

a. Estimate the vapor pressure of solid iron at 20�C.
b. The evaporation rate of solids and liquids is more

or less proportional to the vapor pressure. Com-

ment on the rate at which steel (which is mostly

iron) is likely to evaporate at 20�C [12].
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6
PARTIAL MOLAR PROPERTIES

In Chapter 4 we saw that for physical equilibrium, the key

thermodynamic relations were equality between phases of

the partial molar Gibbs energy or chemical potential,

mi ¼ �gi ¼ @G=@niÞT ;P;nj
�

, and that for a chemical reaction

the key thermodynamic relation was the equality of the

algebraic sum of these same quantities on either side the

reaction. The chemical potential is the only really important

partial molar property, although a few others are useful. As

mentioned in Chapter 4, partial molar properties (also called

partial molar derivatives) have a strange and counterintuitive

property, discussed in Section 6.9. This chapter illustrates

some of the behavior of partial molar derivatives, and then

explores that counterintuitive property, showing why it leads

naturally to the definition of the fugacity, whichwe explore in

the next chapter.

6.1 PARTIAL MOLAR PROPERTIES

It is difficult to visualize the partial molar Gibbs energy or

chemical potential,mi ¼ �gi ¼ @G=@nið ÞT ;P;ni , and there is no
direct way of measuring it experimentally. So we first study

the partial molar volume and enthalpy, which are easier to

visualize and which can be measured experimentally. Then

we use the insight gained with them to consider the partial

molar Gibbs energy, or chemical potential. Furthermore,

there are some practical applications of partial molar volume

and/or partial molar enthalpies. We could also do all of this

chapter in terms of a unit of mass instead of mol dmi¼Midni,

whereMi is the molecular weight of i. The resulting equation

would look practically the same, and the logic would be

the same, until we came to chemical reactions; there the

equations would become much more complex, because they

would contain multiple values of Mi. This possibility is

explored in detail in Section 6.7.

The basic definition of the partial molar property (in

phase 1) is

@ðPROPERTYÞ
@na

� �
T ;P;nb;etc

" #ð1Þ
¼ propertyð Þð1Þa ð4:18Þ

Herewe showPROPERTY in capitals and its partial molar

derivative, propertyð Þð1Þa , in lowercase letters to emphasize

that the derivative is normally taken of an extensive property,

such as the enthalpy of a system, but the resulting

propertyð Þð1Þa is intensive, for example, enthalpy per mol

Because a partial molar property is the derivative of an

extensive property with respect to number of mols it is an

intensive property itself. Partial molar values normally exist

only for extensive properties (V, U, H, S, A, G). They do not

exist for intensive properties (T, P, viscosity, density, refrac-

tive index, all “specific” or “per unit mass” properties). There

is no meaning to the terms “partial molar temperature”

(degrees per mol at constant T??) or “partial molar specific

volume” (cubic feet per mol per mol??).

In Chapters 7 and 9wewill use the partial molar derivative

of the compressibility factor z, which is an intensive, dimen-

sionless quantity. This usage seems to contradict the previous

paragraph. However, if we define an extensive property

Z¼ nz and insert its value in Eq. 4.18 we will find that

�zi, is perfectly well behaved and has the right dimensions.

This procedure is also sometimes used for other intensive

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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properties, like the coefficients in some equations of state for

mixtures.Multiplying these intensive coefficients by the total

number of mols present converts them to extensive proper-

ties, which we can then insert in Eq. 4.18 (see Example 6.5).

6.2 THE PARTIAL MOLAR EQUATION

Now let us consider some extensive property Y (here Y may

stand for V,S,U,H,A,G, etc.). Then Y¼ Y(T.P,na,nb . . .) and

dYT ;P ¼ @Y

@na

� �
T ;P;nb;nc;...

dna þ @Y

@nb

� �
T ;P;na;ne;...

dnb . . .

¼ �yadna þ�ybdnb . . . ð6:1Þ

This equation is simply a quite general first-order Taylor

series. It states that the differential change of any variable is

the sum of the product of its partial derivatives times the

differential changes in the independent variables. It is slightly

modified from the Taylor series becausewe have held T andP

constant, thus eliminating the terms in dT and dP. However,

we see from it that the derivatives that appear on the right are

the partial molar derivatives of Y. For example, if we let Y be

volume, then

dVT ;P ¼ �vadna þ�vbdnb þ � � � ð6:2Þ

Here at constant T and P the �yi (or �vi) are functions of

composition only.

Now in (Figure 6.1), we take an empty vessel (V¼ 0 for

the contents) and add species a and b simultaneously, at

constant T and P,mixing all the time so that the composition

in the vessel is always constant. Thus, the �vi are all constant
during this process of addition. Integrating Eq. 6.2 yields

Ð
dV ¼ Ð

�vadna þ
Ð
�vbdnb � � � ¼ �va

Ð
dna þ�vb

Ð
dnb � � �

V ¼ �vana þ�vbnb þ � � �
ð6:3Þ

Herewe did the additions by a special path, which allowed us

to perform the integrations. However, V is a state function,

dependent only on P, T, and the various ni. Thus, this relation

is true, no matter what path we follow. For any extensive

property Y follows that

Y ¼ �yana þ�ybxb þ � � � ð6:4Þ

We can divide both sides of Eq. 6.4 by the total number of

moles nT, which changes the Y to a y and changes the number

of mols of each species to the mol fraction of that species;

the result is

y ¼ Y

nT
¼ �yaxa þ�ybxb þ � � � ð6:5Þ

whichwewill use in the section 6.4, and then again in Section

6.9 and subsequent chapters.

Equation 6.4 and its alternative form Eq. 6.5 have no

common names. A good name for them is the partial molar

equation.

6.3 TANGENT SLOPES

Tovisualize this kind of property, supposewe have a graduate

cylinder containing 1000 g of purewater at 20�C (Figure 6.2)

We add somematerial, such as ethanol, a bit at a time, all at a

constant T and P. After each addition, we stir and wait for

equilibrium, holding temperature and pressure constant.

Then we measure the volume and plot it as shown in

Figure 6.3. The slope of the curve at any point is

slope ¼ @V

@ni

� �
T ;P;nj

¼ �yi: ð6:6Þ

so the partial molar volume can be found directly from this

plot, at any value of the number of mols added. Calculating

Species a

Species b

Mixer

At constant T and P

FIGURE 6.1 If we add species a and b at constant rates and run

the mixer vigorously, then the composition of the fluid in the tank

will remain constant, while its volume increases.

Ethanol

FIGURE 6.2 Measuring the partial molar volume by dissolving

ethanol in 1000 g of water at 20�C and 1 atm.
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the partial molar volume this way is called the method of

tangent slopes. (Logically, it should be called simply the

method of slopes, but before we had computers, we drew a

tangent line to the curve by hand and eye and measured the

slope of that line geometrically.)

Generally, we would like the plot like Figure 6.3 to have

some concentrationvariable as an abscissa rather than simply

mols added. The logical one for the above procedure is

molality ¼ mols of solute

1000 g of solvent
ð6:7Þ

The corresponding ordinate must be volume of solution per

1000 g of solvent. Thus, on a plot of (V per 1000 g solvent) vs.

molality of the solute, the slope is partial molar volume of the

solute, �vsolute.
Themolality is not the same asmolarity (mols of solute per

1000mL of solution). Molarity is the convenient concentra-

tion unit for aqueous analytical chemistry using burettes and

standard solutions. Molality has no practical use other than in

making up of plots like Figure 6.3. Most tables of chemical

thermodynamic properties (discussed in Chapter 12) use

molality as the standard unit of concentration, because it is

independent of temperature, which molarity is not. For very

dilute solutionsmolality andmolarity are practically the same

and are often used interchangeably. For dilute solutions

molality is nearly proportional to mol fraction.

Example 6.1 From the data shown in Figure 6.3 estimate

the partial molar volume of ethanol in water solution at

ethanol molalities of 0 and 1 molar, at 20�C.
The data shown in Figure 6.3 appear to form a straight line,

but careful examination shows a modest curvature. These

data can be represented with excellent accuracy by Eq. 6.A, a

simple data-fitting equation, which is applicable only for the

range of molalities shown in Figure 6.3.

solution volume;
liters per 1000 g

of water

0
@

1
A ¼ 1:0019þ 0:054668m�0:000418m2

ð6:AÞ
wherem is the molality of ethanol in water. The partial molar

volume is

�vethanol ¼
d

solution volume;
liters per

1000 g of water

0
@

1
A

dm

¼ 0:054668�2 � 0:000418m ð6:BÞ

So that at zero molality (m¼ 0),

�vethanol ¼ 0:054668 L=mol ¼ 54:7 cm3=mol ð6:CÞ

and at m¼ 1

�vethanol ¼ 53:8 cm3=mol &

Example 6.2 Estimate the volume change on mixing for

1 mol of ethanol with 1000 g of water at 20�C.
For pure ethanol at 20�C; voethanol ¼ 58:4 cm3=mol; and

vowater ¼ 1:0019 L=1000 g. From Eq. 6.A we compute that

the mixed solution volume is 1.05615 L. The volume expan-

sion on mixing is

volume expansion

on mixing

� �

¼ Vfinal; mix�Vinitial; water�Vinitial; ethanol

¼ 1:05615�1:0019�0:0584 ¼ �0:00415 L ¼ �4:15 cm3

ð6:DÞ

We see that there is a net contraction on mixing of (4.15/

58.4¼ 7%) of the volume of the ethanol added; the solution

has less volume than did the parts that were mixed to

make it. &

We can also express this in terms of the partial molar

volume, by writing

Vsolution; final ¼ Vsolution; initial þ
ð
�vi dni ð6:8Þ

(If �vi is independent of composition, then this integral

becomes simply n�vi:) Before we mixed the (ni mols of i into

the solution

At 20ºC and 1 atm
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FIGURE 6.3 Volume of solution plotted vs mols of ethanol

added, for a constant 1000 g of water. The points represent data

from Gillespie et al. [1]. See Problem 6.1.
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Vsolution; and material
to be mixed in

¼ Vsolution; initial þ nvoi
� � ð6:9Þ

where voi is the pure species volume per mol (often called the

molar volume), so the volume change on mixing is

DVmixing ¼ Vsolution; final�Vsolution; and material

to be mixed in
¼

ð
�vi�voi
� �

dn

ð6:10Þ

Example 6.3 Estimate the volume change on mixing in

Example 6.2 by Eq. 6.10.

Here the integrated average value of �vi over the molality

range from 0 to 1 is 0.05425 L/mol, so that

DVmixing ¼ ðvoi; average�voi ÞDn ¼ ð0:05425�0:0584Þ � 1

¼ �0:004175 L ¼ �4:18 cm3 ð6:EÞ

which is within round-off error of the value in

Example 6.2. &

For a pure substance, any partial molar property is the

same as the molar property; for example, the pure species

partial molar volume is the same as the pure species molar

volume. If we add one mol of pure water to a large number

mols of pure water, the volume of the original sample of

water will increase by the exact amount of the volume of the

water added, because there is no volume change on mixing

pure anythingwith itself. However, inmixtures ofmore than

one species, the two are generally not the same, as shown by

Examples 6.1, 6.2, and 6.3.

For chemically similar materials like benzene and toluene,

thevolumechangeonmixing isnegligible,while for lesssimilar

materials like the ethanol and water shown in Figure 6.3

and these three examples, the volume change on mixing is

significant. The volume shrinks by �7% of the volume of

ethanol added, which greatly complicates the measurement

of solutions of ethanol in water for liquor tax purposes. If there

is zero volume change on mixing, then

DVmixing ¼ 0 ¼ nð�vi�voi Þ ½for zero volume
change on mixing�

ð6:11Þ

so that �vi must equal voi (the pure species molar volume of the

solute), which is a constant independent of the concentration.

The plot must be a straight line, and its slope must equal

the pure species molar volume of the solute (Figure 6.4).

In Figure 6.3 the curve is close to, but not exactly straight,

but its slope is only� 93%of the pure speciesmolar volume of

the solute.

For the experiment shown in Figure 6.2, we could also

have measured the heat added to or subtracted from the

system to hold the temperature constant. If we take as our

system the solution (i.e., an open system with mass flow in),

then the energy balance for the process of adding dnmoles of

ethanol is

dðnuÞsys ¼ hindnin þ dQþ dW ð6:12Þ

The system pressure is constant, so the only work is the work

of driving back the surroundings

�dW ¼ PdVsys ¼ PdðnvÞsys ¼ dðnPvÞsys ð6:13Þ

Substituting and rearranging, we have

dðnuÞsys þ dðnPvÞsys ¼ dðnhÞsys ¼ dHsys

¼ hindnin þ dQ
ð6:14Þ

If we now divide by dnin and note that we have held T, P, and

nwater constant, then we have

dHsys

dnin

� �
T ;P;nj

¼ @H

@ni

� �
T ;P;nj

¼ �hi ¼ hoin þ
dQ

dnin
ð6:15Þ

Here �hi is the partialmolar enthalpy and hoin is the pure species

molar enthalpy.

As with the volume, we can represent �hi as the slope of a
plot of the enthalpy of the solutionvs. themols of i added. The

enthalpy, unlike the volume, is known only to plus or minus a

constant which is equal to the value of the enthalpy in the

datum state. Since that datum is normally chosen arbitrarily,

we can make any convenient choice, as long as we do not use

a different datum for the same species somewhere else in the

problem.

From Eq. 6.15 we see that the partial molar enthalpy is

equal to the pure species molar enthalpy of the material

At constant T and P

For a solution with
no volume change
on mixing this curve
is a straight line,
with slope equal
to the pure solute
molar volume.
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FIGURE6.4 Aplot of volume per 1000 g of solvent for a solution

with no volume change of mixing.
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added, plus the heat added permol ofmaterial added.Wemay

illustrate this by rewriting Eq. 6.15 as

dQ

dnin
¼ �hi�hoin ð6:16Þ

If the partialmolar enthalpy is the same as the pure species

molar enthalpy, then (dQ/dn)in is zero and there is zero heat of

mixing.Most solutions of chemically similar materials, such

as benzene and toluene, have negligible heats of mixing, so

for them the partial molar enthalpy is practically the same as

the pure species molar enthalpy. For a mixture with zero heat

of mixing, a plot of enthalpy per 1000 g of solvent vs.

molality would have to be a straight line with slope h
�
i , the

same as is shown for volume in Figure 6.4.

6.4 TANGENT INTERCEPTS

Molality is a satisfactory unit of concentration for dilute

solutions. However, if we wish to cover the entire range of

concentrations from pure solute to pure solvent it becomes

unsatisfactory. (For pure solute, the solute molality is infi-

nite!)Amore convenient plot toworkwith is oneof (property)

per mol vs. mol fraction. For (property)¼ volume this is

shown for the ethanol–water mixture in Figure 6.5.

The curve on this plot shows the molar volume (volume

per mol) as a function of mol fraction of species a, ethanol.

For xa¼ 0 the molar volume is that of pure species b, water,

vob � 0:018 L=mol, while for xa¼ 1 it is the molar volume

of pure species a, ethanol, voa � 0:058 L=mol. The curve

appears to be straight, but careful examination shows that is it

slightly S-shaped.

Figure 6.6 shows the same kind of plot as Figure 6.5, but

with the curvature greatly exaggerated, to allow us to see the

difference between the curve and a tangent drawn to it, at an

arbitrarily chosen value of xa. The tangent line intersects the

two vertical axes at a and b.As we choose different values of

xa at which we draw the tangent, the tangent line rotates,

causing the values of a and b to change. For xa¼ 0, b ¼ vob,

and a is larger than the value shown in Figure 6.6. For xa¼ 1,

a ¼ voa, and b is larger than the value shown on Figure 6.6.

The equation of the tangent line is

v ¼ bþða�bÞxa ¼ axa þ bð1�xaÞ ¼ axa þ bxb ð6:17Þ

with, discussed above, the values of a and b changing with

changes in xa. Comparing Eqs. 6.5 and 6.17 we see that they

are the same if a and b are identical to the partial molar

volumes of species a and b.This same result can be shown by

geometrical arguments (Problem 6.3). Thus we see that by

the simple geometrical construction in Figure 6.6 we can find

the needed partial molar volumes by simply reading the

intercepts of the tangent line. This result is general, for all

partial molar properties. It is not restricted to partial molar

volume.

Example 6.4 Using Figure 6.5, estimate the partial molar

volumes of ethanol and ofwater in a solution that is 1molar in

ethanol, by Eq. 6.17.

First we convert from 1.00 molal to mol fraction

mol fraction

ethanol

� �
¼ xethanol

¼ 1 mol

1 molþ 1000 g water � mol

18 g water

¼ 0:01768 ð6:FÞ
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FIGURE 6.5 Molar volume as a function of mol fraction of

ethanol, xethanol, for ethanol and water at 20�C. Data from [1].
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FIGURE 6.6 Redraft of Figure 6.5, with curvature exaggerated,

to be used in demonstrating the idea of tangent intercepts.

TANGENT INTERCEPTS 77



Next we fit an equation to the low range of data points on

Figure 6.5, finding

specific volume;
L=mol

� �

¼ 0:018032þ 0:037002 xethanol�0:039593ðxethanolÞ2

þ 0:21787ðxethanolÞ3 ð6:GÞ

which is applicable only for 0< xethanol< 0.04 (roughly the

same range as Figure (6.3). Then from Eq. 6.G we can

compute that at this ethanol mol fraction, v¼ 0.018675 L/

mol and dv/dxethanol¼ 0.035806 L/mol. Then by simple

geometry from Figure 6.6 we find

a ¼ vtan þð1�xtanÞ dv

dx1

� �
tan

b ¼ vtan�xtan
dv

dx1

� �
tan

ð6:18Þ

where the tan subscript means the values at the point of

tangency. Inserting values gives

a ¼ �vethanol ¼ 0:018675
L

mol
þð1�0:01768Þ � 0:035806 L

mol

¼ 0:0538
L

mol

b ¼ �vwater ¼ 0:018675
L

mol
�0:01768 � 0:035806 L

mol

¼ 0:01804
L

mol
ð6:HÞ

The partial molar volumes for ethanol computed here

and in Example 6.1 are the same. The method used in

Example 6.1 does not give a value for the partial molar

volume of water, which this method does. See also

Problem 6.4. &

This method of calculating partial molar quantities is

called the method of tangent intercepts. (The required

partial molar property is the intercept of the tangent line

to the curve on the pure-species axis.) We can also readily

make up plots of enthalpy of solution vs. mol fraction and

read from them the partial molar enthalpies by the method

of tangent intercepts. We will see in the rest of this course

that while the method of tangent slopes is more intuitively

obvious, the method of tangent intercepts is more widely

used, because plots like Figures 6.5 and 6.6 are morewidely

available than those like Figure 6.3, and because the mol

fraction is much more widely used as a concentration

variable than the molality.

6.5 THE TWO EQUATIONS FOR PARTIAL
MOLAR PROPERTIES

If we have experimental data, or an equation that is believed

to represent such experimental data for some extensive

property as a function of concentration, we can compute the

partial molar values by the method of tangent slopes or

the method of tangent intercepts. In either case we could

plot the data and make the geometric constructions. How-

ever, the mathematical procedure, which our computers can

do for us is much more useful.

If we have the data in the form of an equation for themolar

value of some property (e.g., the molar volume) as a function

of mol fraction, then from the geometry of Figure 6.6, and

from Eq. 6.18, we can see that, for any value of xa

�va ¼ vat xa þð1�xaÞ dv

dxa

� �
at xa

�vb ¼ vat xa�xa
dv

dxa

� �
at xa

ð6:19Þ

This equation has no common name; a good name for it

would be the tangent intercepts calculating equation. It is

shown here for volume, but equally applicable for any

property whose molar values can be expressed as a function

of mol fraction. It is not restricted to binary mixtures; it

can be applied to species a (or b or c) in mixtures of any

number of species. Example 6.4 shows the application of this

equation.

The corresponding equation for the method of tangent

slopes (Eq. 4.19) requires that we have the property equation

in the formof an extensive property, stated as a function of the

number of mols present of each species. If we have, for

example, an equation for v as a function of xi we canmultiply

both sides of that equation by the total number of mols

present, nT. This makes the following changes

vnT ¼ V and xanT ¼ na ð6:IÞ

Example 6.5 shows its application.

Example 6.5 Repeat Example 6.4, for ethanol only,

using the method of tangent slopes. Multiplying both

sides of Eq. 6.G by nT and inserting those in Eq. 4.19 we find

@ðnTvÞ
@na

� �
T ;P;nb

¼ @

@na

� �
T ;P;nb

anT þ bna þ c
n2a
nT

þ d
n3a
n2T

� �

ð6:JÞ

where a, b, c, and d are the numerical constants from

Eq. 6.G. Then we observe that when we increase na at
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constant nb, then nT is a variable and dnT /dna¼ 1. Perform-

ing the differentiation in Eq. 6.1J we find

�va ¼ aþ bþ c
2nTna�n2a

n2T
þ d

3n2Tn
2
a�2nTn

3
a

n4T

� �
ð6:KÞ

If we then divide out the fractions on the right, thus changing

the numbers of mols back to mol fractions, we find

�va ¼ ðaþ bþ cð2xa�x2aÞþ d 3x2a�2x3a
� �Þ ð6:LÞ

A little algebra (Problem 6.7) shows that Eq. 6.L is identical

to the solution to Example 6.4. &

Example 6.5 is clearly a longer and messier way to do by

tangent slopes what we did more easily by tangent intercepts

in Example 6.4. So why bother? Because some functions are

easier to do by tangent slopes, and this method appears in the

historical literature, so you must understand it to understand

that literature. Most often we use tangent intercepts and Eqs.

6.4 and 6.5

6.6 USING THE IDEA OF TANGENT INTERCEPTS

Althoughwemost oftenmake equilibrium calculations using

the fugacity (as described in the next chapter), we can gain

some further insight into the partial molar Gibbs energy by

onemore example, which also shows the utility of the idea of

tangent intercepts.

Example 6.6 For liquid mixtures of a and b (two imag-

inary chemicals) at some fixed T and P the Gibbs energy per

mol of the mixture is given by

g ¼ Axa þBð1�xaÞ�C sin 3pxa ð6:MÞ

Here xa is the mol fraction of a; A, B, and C are constants, all

positive. At this temperature and pressure, at equilibrium,

this mixture forms two liquid phases. What are their

compositions?

First, observe that no real mixtures have this simple an

equation for Gibbs energy as a function of composition;

however, this equation leads to simple mathematics, so

please bear with it. Here we know that we have two relations

to satisfy, namely that the partial molar Gibbs energy of a is

the same in both phases and that the partial molar Gibbs

energy of b is the same in both phases,

mð1Þ
a ¼ mð2Þ

a and m
ð1Þ
b ¼ m

ð2Þ
b ð6:NÞ

where mð1Þ
a is the partial molar Gibbs energy of a in phase 1,

and so on.

The easiest way to proceed is to sketch the function as

shown in Figure 6.7. We see that g has two minima and one

maximum. Because this is a plot of g vs. x,we can determine

both of the species partial molar Gibbs energies at any value

ofxa by drawing a tangent line to the curve at that value ofxa,

and reading the intercepts on the axes at xa¼ 1 and xb¼ 1.

We can draw a tangent line at any point on the curve, but

if the conditions of equilibrium are to be satisfied then the

only satisfactory tangent line is the one that is tangent to

the curve twice. For it, the intercepts on the pure-species axes

are the values of the ms that are the solutions to the two

equilibrium equations. Then by simple algebra we can

compute that the equilibrium concentrations are those for

which sin 3pxa ¼ 1 ði:e:;xa ¼ 1
6
and xa ¼ 5

6
Þ: (The plot

was drawn for arbitrarily selected values of A, B, C. The

answer is independent of those values.) &

Although the equation used in this example is fanciful, the

curve is similar in shape to that which would be observed in

nature. If, for example, we attempted to sketch such a curve

for a system like benzene-water, for which the mutual

solubilities are only a few hundred parts per million, we

would find that the curve would have two minima, and the

center part would approach positive infinity. The center part

of Figure 6.7 (between the two minima) represents an

unstable solution, which can lower its Gibbs energy by

splitting into two phases. If we could produce such a solution

(e.g., 50% benzene, 50%water) we would expect it to have a

very high Gibbs energy per mol and to split almost imme-

diately into two phases, water with a few hundred ppm of

benzene, and benzene with a few hundred ppm of water (see
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FIGURE 6.7 Gibbs energy composition plot for a very simple

binary that forms two liquid phases. (This example is drawn for

Eq. 6.M, with A, B, C¼ 2, 1, 1.5, all kJ/mol.)
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Chapter 11), thereby greatly lowering its Gibbs energy. For

the imaginary solution sketched in Figure 6.7, if we could

produce a single phasewith 50mol% a, it would be expected
to split into two liquid phases, with xa ¼ 1

6
and 5

6
.

For this example, a solution with 50 mol% a has

g¼ 3 kJ/mol. If one mol of such a solution splits into 0.5

mol each of liquid phases with xa ¼ 1
6
and 5

6
, they will have

g¼�0.333 kJ/mol and þ 0.333 kJ/mol, so that the change

will result in a Gibbs energy change of

DG ¼ ð0:5 molÞ �0:333
kJ

mol

� �
þð0:5 molÞ 0:333

kJ

mol

� �

�ð1:00 molÞ 3:0
kJ

mol

� �
¼ �3 kJ ð6:OÞ

Any system that can reduce its Gibbs energy will do so; this

systemwould. InChapter 11wewill see the application of the

calculation in Ex. 6.6 to real liquid-liquid equilibrium

problems.

Example 6.6 is for two species that do not react chemically

with each other, the common situation in phase equilibrium

(Chapters 7–11), but not for those that can react chemically

(Chapters 12 and 13). If the species do not react, then the

values of A and B in Example 6.6 do not influence the mol

fractions at equilibrium; the student can verify that algebra-

ically. For chemical equilibrium (Chapter 12 and 13), the

values ofA andB (the pure componentmolar Gibbs energies)

play a dominant role.

6.7 PARTIAL MASS PROPERTIES

For equilibrium calculationswe almost always use the partial

molar Gibbs energy or chemical potential. But the partial

volumes and enthalpies appear most often in the form of

partial mass properties, and are used for calculations other

than equilibrium. Wherever a dni appears in this chapter (or

elsewhere in this book) it could be replaced by dmi /Mi

dni ¼ dmi

Mi

ð6:20Þ

If we do that (Problem 6.9) we find analogs to most of the

equations and procedures shown in this chapter, with partial

molar properties replaced by those same properties divided

by the molecular weight. Such properties have no common

name; perhaps they are best called partial mass properties.

The most commonly seen application is with plots of en-

thalpy per unit mass vs. mass fraction, as shown for water and

sulfuric acid in Figure 6.8. As shown in Problem 6.9, if we

apply the method of tangent intercepts to this figure, the

intercept values are the partial mass enthalpies.

Example 6.7 Using Figure 6.8 and the method of tangent

intercepts, estimate the partial molar enthalpies of both water

and H2SO4 in a mixture of 60wt% H2SO4, balance water, at

200�F.
Drawing the tangent to the 200�F curve at 60wt%H2SO4,

we find that it intersects the 0% (pure water) axis at�25Btu/

lbm, and the 100% H2SO4 axis at ��100Btu/lbm. Using

Eq. 6.20 we find

�hwater ¼ �hwater; per pound �Mwater

¼ 25
Btu

lbm
� 18 lbm

lbmol
¼ 450

Btu

lbmol
ð6:PÞ

�hH2SO4
¼ �hH2SO4;per pound �MH2SO4

¼ �100
Btu

lbm
� 98 lbm

lbmol
¼ �9800

Btu

lbmol &

ð6:QÞ

6.8 HEATS OF MIXING AND PARTIAL MOLAR

ENTHALPIES

Figures like Figure 6.8 are widely used for heat of mixing

calculations. These have practicaly nothing to do with equi-

librium, the subject of this book, but are related to partial

molar properties, the subject of this chapter.

6.8.1 Differential Heat of Mixing

Example 6.8 One lbm of water at 200�F is added to a large
mass of H2SO4-water solution at 200

�F and 60wt% H2SO4.

How much heat must be added or subtracted to keep the

temperature constant at 200�F?
From Eq. 6.16 we have

dQ

dmin

¼ �hi�hoin ¼ 25
Btu

lbm
�168

Btu

lbm
¼ �143

Btu

lbm
ð6:RÞ

dQ

dnin
¼ Mi

dQ

dmin

¼ 18
lbm

lbmol
�143

Btu

lbm

� �
¼ �2574

Btu

lbmol

ð6:SÞ
Here the �hi value is taken from Example 6.7, and the hoin is

read from the intersection of the 200�F curve with the left

axis (pure water). The enthalpy datum for Figure 6.8 is

practically the same as that of the common steam tables [2],

so we could have looked up hoin from the steam tables and

found the same answer. The negative value shows that this

mixing is exothermic; we must remove 143 Btu/lbm of

water added. &

The quantity computed here is called the differential heat

of mixing because it refers to adding a differential amount of

pure material into a large amount of solution. If the amount

80 PARTIAL MOLAR PROPERTIES



added were large enough to substantially change the com-

position of the mixture, then the value of �hi used would have
to be the average value over that composition range. We see

that the differential heat ofmixing permol is the partialmolar

enthalpy minus the pure species molar enthalpy at the same

temperature and that the differential heating per unit mass is

simply that per mol divided by the molecular weight.

6.8.2 Integral Heat of Mixing

Example 6.9 Four-tenths of a pound of water is mixed

with 0.6 lbm of H2SO4 to form 1.00 lbm of 60wt%

H2SO4 solution. If the starting materials and the mixed

solution are all to be at 200�F, how much heat must be added

or removed?

FIGURE 6.8 Enthalpy–concentration diagram for sulfuric acid-water. The datum state is zero

enthalpy for pure water and for pure sulfuric acid as liquids at 32�F¼ 0�C, and the pure species vapor
pressure. The “percentage” is weight percent. (The data are from the International Critical Tables, as

plotted in Hougen, O. A., K. M. Watson, and R. A Ragatz, Chemical Process Principles Charts. �
1960, New York: Wiley. Reprinted by permission of the estate of O. A. Hougen.)
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Here at 200�F we can read the solution enthalpy from

Figure 6.8 as a��43 Btu/lbm, and the pure H2SO4 enthalpy

from its rightmost axis as �53 Btu/lbm. Then by energy

balance, using howater from Example 6.8 we find

DQ ¼ ðmhÞsolution�
X

mhð Þinlet streams

¼ 1 � ð�43Þ�ð0:4 � 168þ 0:6 � 53Þ ¼ �243:2Btu

ð6:TÞ
Wemust remove 243.2 Btu per pound of solution to hold the

temperature constant. &

This quantity is called the integral heat of mixing. It is the

total amount of heat that must be removed to hold the

temperature constant while making up the solution, starting

with pure species, both at the solution temperature. Again we

may convert between integral heat of mixing per mass and

per mol by multiplying or dividing by the molecular weight.

Example 6.10 Estimate the enthalpy of a solution of 60wt%

H2SO4 balance water at 200�F, from the partial mass

enthalpies computed in Example 6.7.

From Eq. 6.5, rewritten for masses instead of mols

(Problem 6.9) we have

hsolution ¼ �hwater; mass �xwater; massþ�hH2SO4; mass �xH2SO4; mass

¼ 25
Btu

lbm
�0:4þ

�
�100

Btu

lbm

�
�0:6 ¼ �50

Btu

lbm
&

ð6:UÞ
The fact that Eq. 6.5, rewritten for masses gives the same

value that we read from Figure 6.8 in Example 6.9 should not

surprise us; the equations and the geometry onwhich they are

based demand that this must occur.

6.9 THE GIBBS–DUHEM EQUATION
AND THE COUNTERINTUITIVE BEHAVIOR

OF THE CHEMICAL POTENTIAL

So far nothing this chapter has been very counterintuitive.

But so far we have not applied the partial molar idea to Gibbs

energy (except in Example 6.6, where we did it only in a

graphical way, and not for very dilute solutions). The pre-

vious parts of this chapter are preparation for this part, where

the counterintuitive behavior appears.

Now we return to the partial molar equation (Eq. 6.5) and

differentiate it at constant T and P:

dVT ;P ¼ �vadna þ nad�va þ�vbdnb þ nbd�vb þ . . . ð6:21Þ

Subtracting Eq. 6.2, we find

0 ¼ ðnad�va þ nbd�vb þ � � � ÞT ;P ð6:22Þ

Equation 6.22 is true for anypartialmolar property,�hi; �si, and
so on. Equation 6.22 has no common name; when wewrite it

for G, we find the Gibbs–Duhem equation:

0 ¼ ðnad�ga þ nbd�gb þ � � � ÞT ;P ð6:23Þ

When we divide Eq. 6.23 by nT we find its mol-fraction

equivalent, also called the Gibbs–Duhem equation:

0 ¼ ðxad�ga þ xbd�gb þ � � � ÞT ;P ð6:24Þ

which wewill see in Chapter 9 is widely used in vapor–liquid

equilibrium calculations.

Now we restrict our attention to binary (two species)

mixtures and divide Eq. 6.24 by xadxa at constant T and

P, finding

d�ga
dxa

� �
þ xb

xa

� �
d�gb
dxa

� �
¼ 0

� �
T ;P

ð6:25Þ

which is also sometimes also called the Gibbs–Duhem

equation. Equation 6.25 is also true if we substitute �va or
�ha for �ga, because it is a general consequence of the partial
molar equation. This says that for a binarymixture if we have

a plot of �va vs. xa over the whole range of xa, (Figure 6.9),

then, using the Eq. 6.25, we can construct the curve of�vb over
the whole range of xa, except for a constant of integration.

Normally, the curvemust pass through the pure species value

of the volume of species b; vob
� �

, which supplies the neces-

sary constant of integration.

Now what happens to d�vb=dxa as xb goes to zero? From

Eq. 6.25,

d�vb
dxa

¼ � d�va=dxað Þ
xb=xað Þ ð6:26Þ

as xb ! 0;
d�vb
dxa

!� d�va=dxað Þ
0

ð6:27Þ

At constant T and P

0
xa

va

1

va pure = vaº

–

–

FIGURE 6.9 Partial molar volume of species a, as a function of

composition.
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Case 1 If the derivative d�va=dxað Þgoes to zero asxb goes to
zero, then this leads to an indeterminate form, which may be

zero, finite, or infinite.

Example 6.11 If

d�va
dxa

¼ 3x2b þ 2xb ð6:VÞ

what is the value of d�vb=dxa at xb ¼ 0?

d�vb
dxa

¼ � xa

xb

� �
3x2b�2xb
� � ¼ xa �3xb�2ð Þ ð6:WÞ

lim
xb ! 0

d�vb
dxa

¼ �2xa ¼ �2 & ð6:XÞ

See Figure 6.10.

Case 2 If the derivative ðd�vb=dxaÞ does not go to zero as xb
goes to zero, then Eq. 6.26 indicates that ðd�vb=dxaÞ must go

to plus or minus infinity as xb goes to zero.

Example 6.12 If

d�va
dxa

¼ 3x2b þ 2xb þ 1 ð6:YÞ

what is the value of d�vb=dxa at xb� 0? Starting with

Eq. 6.26

d�vb
dxa

¼ �xa

xb

� �
3x2b þ 2xb þ 1
� � ¼ �xa

3x2b þ 2xb þ 1

xb

� �

ð6:ZÞ

lim
xb ! 0

d�vb
dxa

¼ �¥ & ð6:AAÞ

See Figure 6.11.

ForU,H, V, CP, and so on ðd�va=dxaÞ or ðd�ha=dxaÞ, and so
on, all approach zero as xa ! 1.00. All of these are case 1

above, in which there is no unusual behavior at the dilute end

of the curve. But as will be shown in Chapter 7, for a mixture,

as xa ! 1.00, ðd�sa=dxaÞ does not go to zero. In fact, for a

binarymixture of ideal gases, ðd�sa=dxaÞ ¼ �R=xa, so that as
xa ! 1.00 this derivative approaches �R. Thus, the deriv-

ative of the other partial molar entropy ðd�sb=dxaÞmust go to

plus infinity as xb ! 0! This does not mean that the entropy

of all the species i in the solution becomes infinite as the mol

fraction of i goes to zero. As the mol fraction of i goes to zero

the entropy of all the i present must also go to zero. But that

entropy goes to zero more slowly than the mol fraction does,

so that their ratio,�si, becomes infinite as themol fraction goes

to zero.

Our main reason for studying partial molar properties was

to gain understanding of and facility in computing mi ¼ �gi.
However, by definition

mi ¼ �gi ¼ �hi�T�si ð6:28Þ

5.5

If the va curve has a horizontal tangent here

then the vb curve need not show strange

behavior as xb goes to zero.

5

4.5

Pa
rt
ia
l m
ol
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ol
um
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, v

i

4

3.5

3
0.92 0.93 0.94

Mol fraction a, xa

0.95 0.96 0.97 0.98 0.99 1

va

vb

–

–

–

–

–

FIGURE6.10 Case 1: The partial molar volume of species a has a

horizontal tangent as xa ! 1.00, so that the partial molar volume of

species b does not show strange behavior as the mol fraction of

species b goes to zero. This plot is drawn to scale for the equations in

Example 6.11, with both pure species value of voi ¼ 5:00. Only the
rightmost part of the whole figure is shown.

FIGURE 6.11 Case II: The �va curve does not have a horizontal

tangent as xa ! 1.00, so that the, �vb curve must go to plus or minus

infinity. This plot is drawn to scale for the equations in Example

6.12, with both pure species value of voi ¼ 5:00: Only the rightmost

part of themol fraction range is shown. The�va curve appears close to
horizontal, but careful examination will show that it does indeed

have a slope of þ 1.00.
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and we have shown above that as xi goes to zero, �si becomes

infinite. Thus, we conclude that as the concentration of i goes

to zero, its chemical potential in the solution must become

minus infinity. If we refer back to Figure 4.12, a plot of g and

of the two chemical potentials vs. xa, we see that the g curve

does not have horizontal tangents at the borders of the plot,

and that the mi curves do indeed become asymptotic to the

borders of the plot, thus approaching minus infinity as the

concentrations approach zero.

It is not obvious from Figure 4.12 that the two ends of the

gmixture curve not only do not have horizontal tangents, but

that they do not have finite slopes at the extremes. Instead,

theymeet the axis as tangents, as shown in Figure 6.12. To see

this one must use a computer that carries many significant

figures, and continue the calculation to values closer and

closer to 1.00, or to 0.00 at the other end.

Seeing the difficulty of working numerically with the

chemical potential, whose value goes to minus infinity when

the concentration goes to zero, G. N. Lewis invented a new

property, which he named the fugacity fi , defined by

mi ¼ �gi ¼ RT ln fi þ goi ðTÞ ð6:29Þ

Here goi (T) is some function of temperature alone. Thus, as

�gi�goi ðTÞ
� �

goes to minus infinity, fi , which is proportional

to exp �gi�goi ðTÞ
	 


, goes to zero, indicating that the fugacity

of the solute goes to zero as its concentration in the solution

goes to zero. This makes it a convenient property for equi-

librium calculations. It also makes it intuitively satisfying;

we all prefer a property that becomes zero as the concen-

tration becomes zero to one that becomes minus infinity

when the concentration becomes zero. The fugacity is the

working form of the partial molar Gibbs energy for most

equilibrium calculations. We see from this section that its

form is practically forced upon us by the counterintuitive

property of the partial molar equation, which shows that the

partial molar Gibbs energy approaches minus infinity as the

concentration approaches zero.

6.10 SUMMARY

1. The only important partial molar property is the partial

molar Gibbs energy, or chemical potential

mi ¼ �gi ¼ ð@G=@niÞT ;P;nj . Our real reason for studying
partial molar properties is to gain understanding of this

function.

2. The partial molar volume and enthalpy are easier to

visualize than the chemical potential, and can be

measured directly, which the chemical potential can-

not. They have some uses, mostly in heat-of-mixing or

volume-change-on-mixing calculations.

3. The partial molar equation shows a unique and impor-

tant relation between the partial molar properties in a

mixture. When the differential of the partial molar

equation is applied to the Gibbs energy, the result is

the Gibbs–Duhem equation, which we will use in

Chapter 9.

4. The Gibbs–Duhem equation shows that as the cocenn-

tration of one species of a mixture approaches zero, its

chemical potential approaches minus infinity. This

makes the chemical potential (partial molar Gibbs

energy) an inconvenient working property for equilib-

rium calculations. For this reason we use the fugacity

(Chapter 7) instead.

PROBLEMS

See the Common Units and Values for Problems and Exam-

ples. An asterisk (�) on a problem number indicates that the

answer is in Appendix H.

6.1 The actual data for Figure 6.3 are presented in [1] as a

table of densities and wt% ethanol. For 10wt%

ethanol at 20�C the density is reported as

0.98187 g/cm3. Using these values, calculate the

molality and the volume of solution per 1000 g of

water. Compare your result to the value plotted in

Figure 6.3.

6.2� Solutions of MgSO4 in water at 18�C have the prop-

erties shown in Table 6.A.

a. Using the method of tangent slopes, calculate

�vMgSO4
at molality¼ 0.02, 0.1, and 0.2.

b. Comment on the physical–chemical reasons for

these surprising values.

6.3 Themethod of tangent intercepts is shown in themain

text, based on the partial molar equation, Eq. 6.5. It

may also be shown purely geometrically as follows.

Figure 6.13 is the same as Figure 6.6, but the point of

tangency has been moved to move points b and d

further apart, points c, d, and e have been added, and

unnecessary text has been deleted.

The curve does not
approach with a
finite slope, like
this.

–4
.9
90

0 
kc

al
/m

ol

gmix

x iso

0.9999999999 1.00

Rather, it comes in
with a very, very
small hook,
tangent to the axis,
like this.

FIGURE 6.12 If we carry out the computation of the extreme

ends of the giso curve in Figure 4.12, we find that the slope of the

curve increases continually, thus forming a microscope hook,

tangent to the vertical axis.
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By simple geometry we see that

eb ¼ ed�bd ¼ v�ec
dv

dxa
ð6:ABÞ

where eb is the distance from e to b in Figure 6.13, and

so on. From the definitions of the molar volume and

the mol fraction

v ¼ V

na þ nb
and xa ¼ na

na þ nb
ð6:ACÞ

we have the derivatives with respect to nb, at constant

na:

dV

dnb
¼ �V

ðna þ nbÞ2
þ dV=dnb

ðna þ nbÞ and
dxa

dnb
¼ �na

ðna þ nbÞ2
ð6:ADÞ

Putting the first over a common denominator and

dividing one by the other, we have

dV

dxa
¼ V

na
� ðna þ nbÞðdV=dnbÞ

na
¼ 1

xa
v� dV

dnb

� �

ð6:AEÞ

Substituting this value in Eq. 6.AB and observing that

ec¼ xa, we find

eb ¼ v� xa
dv

dxa
¼ v� xa

1

xa
v� dV

dnb

� �� �
¼ dV

dnb

ð6:AFÞ

which shows on purely geometrical grounds that the

tangent intercept at the left is the partialmolar volume

of species b. Show the corresponding derivation for

dV/dna. This argument is independent ofwhich partial

molar property is involved; it is not restricted to the

partial molar volume.

6.4 In Example 6.4 we used a curve fit of Figure 6.5 that

coveredonlymol fraction from0 to0.04. Ifwecurve-fit

the mol fraction range from 0 to 1.00, we find

specific volume;
L=mol

� �
¼ 0:018056þ 0:034223xethanol

þ 0:0088468ðxethanolÞ2�0:0028901 � ðxethanolÞ3
ð6:AGÞ

Show that by using this equation in Example 6.4 we

compute a partial molar volume for ethanol of

0.0554L/mol. Explain why the answer is different

from that in Example 6.4.

6.5� The specific volumes of ethanol-water mixtures at

10�C are shown in Table 6.B [3].

Table 6.A Volumetric Properties of Solutions of

MgSO4 in Water at 18�C

Molality¼mols Volume (mL per

MgSO4/1000 g H2O 1000 g H2O)

0.00 1001.33

0.02 1001.27

0.04 1001.23

0.06 1001.22

0.08 1001.22

0.10 1001.23

0.12 1001.25

0.14 1001.28

0.16 1001.32

0.18 1001.37

0.20 1001.44

0.22 1001.51

a

g

f

b

c
e

d

0 1

M
ol

ar
 v

ol
um

e,
 v

Mol fraction of component a, xa

FIGURE 6.13 Same as Figure 6.6, but the point of tangency has

been moved to the right to allow more room for symbols, and

unnecessary text has been deleted.

Table 6.B Volumetric Properties of Ethanol-Water

Solutions at 10�C

Wt% Ethanol Specific Volume (mL/g)

0 1.00027

2 1.00399

4 1.00746

6 1.01065

8 1.01358

10 1.01633

12 1.01890

14 1.02133

16 1.02362

18 1.02592

20 1.02826
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a. From these data, calculate the partial mass volume

of ethanol at 0, 2, 4, 6, 8, 10, and 12wt% ethanol, at

10�C, using the method of tangent intercepts.

b. Convert the partial mass volume of ethanol for

10wt% alcohol to partial molar volume at 10�C.

6.6 Figure 6.14 is the same as Figure 6.6, but the mol

fraction has been replaced by the mass fraction, and

the molar volume has been replaced by the specific

volume (volume per unit mass). Show that, for the

construction shown, the two tangent intercepts, a and

b, are the partial mass volumes. Start with Eq. 6.5 and

observe that each mol fraction is the number of mols

that species divided by the total number of mols, nT.

Cancel the nT s in the denominators. Then replace

each of the ni values with the mass of that species

divided by its molecular weight. Then divide both

sides by the total mass of the system.

6.7 Show that Eq. 6.L is the same as the corresponding

result by tangent intercepts in Example 6.4.

Hint: Write the second term as bxa þ b(1 – xa), and

then factor it to be the equivalent of the b part of

Eq. 6.19. Then use an analogous procedure on the c

and d parts.

6.8� In a mixture of water and ethanol in which the mol

fraction of alcohol is 0.4, �vethanol is 57.5 cm
3/mol, and

the density of the mixture is 0.8494 g/cm3, what is

�vwater?

6.9 Repeat Example 6.7 for the following H2SO4 con-

centrations: 20, 40, and 80 wt%.

6.10� Repeat Example 6.8 for the following H2SO4 concen-

trations: 20, 40, and 80wt%.

6.11 Repeat Example 6.9 for the following H2SO4 con-

centrations: 20, 40, and 80wt%.

6.12 a. One lbmol of methanol (MeOH) is added isother-

mally to a large mixture of MeOH-water at 50�C.
The initial composition of the mixture is 50 mol%

MeOH. The addition of 1 mol does not change the

concentration measurably. How much heat must

be added to or subtracted from the system to hold

the temperature constant? The enthalpies MeOH–

water solutions at 50�C are shown in Table 6.C.

b. Same as part (a) except that instead of 1 Ibmol of

MeOH, we add 1 Ibmol of water.

c. One Ibmol of water is mixed isothermally with 1

lbmol of MeOH, all at 50�C. Howmuch heat must

be added or subtracted?Make clear whether this is

heat added or heat subtracted.

d. The following is an incorrect solution to part (a) of

this problem. Where is the error in this solution?

6.13 For a mythical binary at constant T and P, the partial

molar volume of species a is

�va ¼ voa�0:2
cm3

mol
� x2b ð6:AIÞ

where voa is the molar volume of pure species a, and xb
is the mol fraction of species b. If the molar volume of

pure species b is vob write the equation for �vb. Draw a

sketch showing �va and �vb vs. xb.

Tangent

=
 v

 =
 S

pe
ci

fi
c 

vo
lu

m
e

0
Mass fraction of component a, xa

1

a

b

vaº

vbº

composition
at tangent

V m

FIGURE 6.14 Same as Figure 6.6, but both the composition

variable changed to mass fraction and the volume variable are

changed from liters per mol to liters per unit mass.

Table 6.C Enthalpy of MeOH-Water Solutions at 50�C

Mol% MeOH

Enthalpy (Btu/lbmol

of solution)

0 1620

30 1537

40 1543

50 1557

60 1577

70 1600

100 1733

Consider the system to consist originally of two parts: the

lbmol of MeOH and the large mass of solution. The two

are added and mixed isothermally, for which the energy

balance is

dðmuÞ¼ dQ�PdV

Hf�Hi ¼ dQ

Hi ¼ nhsystemþhoi

Hf ¼ðnþ1Þhsystem
dQ¼ðnþ1Þhsystem�ðnhsystemþhoi Þ¼ hsystem�hoi

ð6:AHÞ
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6.14 One Ibmol of a and 2 lbmol of b are mixed in an

isothermal constant-pressure mixer. Estimate the heat

added to or subtracted from the mixture from the

following data:

hoa ¼ 10:0 Btu=lbmol hob ¼ 20:0 Btu=lbmol

�ha ¼ hoa þ 10
Btu

lbmol
� x2b � 5

Btu

lbmol
� x3b

ð6:AJÞ

6.15 Figure 6.15 shows the measured specific volume

and calculated partial mass volumes for mixtures of

ethanol and water as a function of weight fraction.

Using it,

a. Compute the partial molar volumes of water

and ethanol at an ethanol concentration of 1.00

molar, and compare them to the values found in

Example 6.4.

b. Estimate the increase in solution volumewhen 2 g

of ethanol is added to 8 g of water at 20�C.

6.16 In Example 6.6, is the shape of the curves as x

approaches zero and x approaches unity plausible?

If not, why not?

6.17 For phase equilibrium between two partly miscible

liquids, called phases 1 and 2, consisting of two

chemical species, A and B, we know that

m
ð1Þ
A ¼ m

ð2Þ
A and m

ð1Þ
B ¼ m

ð2Þ
B (or in the other notation

�g
ð1Þ
A ¼ �g

ð2Þ
A and �g

ð1Þ
B ¼ �g

ð2Þ
B Þ. Does this mean that the

Gibbs energies per mol of the two phases must

necessarily be equal, g(1)¼ g(2)? Or are these quanti-

ties not equal (or not necessarily equal)?
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7
FUGACITY, IDEAL SOLUTIONS, ACTIVITY,
ACTIVITY COEFFICIENT

7.1 WHY FUGACITY?

Equality of the chemical potentials (partial molar Gibbs

energies) is the fundamental criterion for phase and chemical

equilibrium, but we seldom use it directly because its form

makes it difficult to use. The partial molar derivative (see

Chapter 6) of the Gibbs energy of species i approaches minus

infinity as the concentration of species i in the mixture

approaches zero. This is highly inconvenient and counterin-

tuitive; we expect the properties of interest of any species to

approach zero as the concentration of that species in the

mixture approaches zero. Seeing this inconvenience, G. N.

Lewis [1] invented a new quantity called the fugacity fi,

which remedies this defect and forms a much more conve-

nient working criterion for equilibrium.

7.2 FUGACITY DEFINED

Lewis defined the fugacity by

mi ¼ �gi ¼ RT ln fi þ g�i ðTÞ ð7:1Þ

He chose ln fi to have the right property that asmi ! �1,

the natural log (ln) of fi also approaches minus infinity, which

makes fi ! 0. The RTwas needed because the natural log of

fi is dimensionless and the other terms in the equation have

dimension of (energy/mol).

The fugacity (as we will see later) has the dimension of

pressure, so mathematical purists would have us write

the natural log as ln( fi=1 unit of pressure), for example,

ln( fi=psia), to make the argument of the logarithm dimen-

sionless. Most of us ignore that minor mathematical nicety.

To see the meaning of g�i ðTÞ, consider what happens when
fi ! 1.0. That makes ln fi¼ 0, so Eq. 7.1 becomes

mi ¼ �gi ¼ 0þ g�i ðTÞ ð7:2Þ

showing that g�i ðTÞ is the value of mi ¼ �gi in the state for

which fi¼ 1. Unfortunately, fi has the dimension of pressure;

we regularly see it expressed in psia, bar, atm or torr. This

means that the numerical value of g�i ðTÞ is different for

different units of pressure. In chemical reaction equilibrium

(Chapter 12) this causes no problem, and we regularly use

g�i ðTÞ. But in phase equilibrium the variable value of g�i ðTÞ
would cause real problems. For that reason we practically

never use g�i ðTÞ in phase equilibrium. Instead wework out all

the necessary relations beginning with the derivative of

Eq. 7.1 at constant temperature,

ðd�giÞT ¼ dðRT ln fiÞT ð7:3Þ

The fugacity is a convenience function, like the enthalpy.

We use the enthalpy to replace a more complex set of

symbols, h¼ u þ Pv. If we solve Eq. 7.1 for fi and replace

G in terms of its basic components, we find

fi ¼ exp

@ðUþPV � TSÞ
@ni

� �
T ;P;nj

� g�i ðTÞ

RT

2
6664

3
7775 ð7:AÞ
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Students who do not like to learn new convenience properties

can simplify this book by substituting for the fugacity from

Eq. 7.A, wherever the fugacity appears in this book.

7.3 THE USE OF THE FUGACITY

If phases 1 and 2 are in equilibrium, then we know that for

each species i

m
ð1Þ
i ¼ m

ð2Þ
i or �g

ð1Þ
i ¼ �g

ð2Þ
i ð7:4Þ

If we substitute Eq. 7.1 twice in Eq. 7.4 and simplify, we

find that Eq. 7.4 is equivalent to

f
ð1Þ
i ¼ f

ð2Þ
i ð7:5Þ

and thus we may use equality of the individual species’

fugacities between phases as a working criterion of physical

equilibrium. This is the convenient criterion for computing

phase equilibrium concentrations. We will see that the

fugacities are functions of the mol fractions. Looking back

at Example 3.3 (please look at that example now!), we can

state that Raoult’s and Henry’s laws (which appear there)

are both special cases of Eq. 7.5, which is the general

case. We will explore this further in Chapter 8. This is the

principal use of the fugacity. We will also see in Chapter 12

that fugacities play an important role in chemical equilib-

rium. The rest of this chapter is devoted to the calculation or

estimation of the fugacities of individual species in various

mixtures, as a preliminary step to calculating the composi-

tions of phases in equilibrium, or of mixtures at chemical

equilibrium.

7.4 PURE SUBSTANCE FUGACITIES

Our principal reason to be interested in pure substance

fugacities is that we use them in estimating the fugacities

of individual species in mixtures. If we never dealt with

mixtures, we would not have bothered to define fugacity at

all. In addition, computing the fugacities of pure sub-

stances illustrates some ideas more simply than the same

computation for mixtures. So we begin here by studying

the fugacity of pure substances. Remember that almost the

only use of pure-substance fugacities is as one of the input

data in the computation of individual species fugacities in

mixtures. One exception to this statement is shown in

Chapter 10.

AppendixC shows themathematics of the fugacity of pure

substances and of mixtures. We may summarize the findings

for pure substances from Appendix C as follows. For a pure

substance,

g ¼ RT ln f þ g�i ðTÞ ð7:6Þ

@ln f

@P

� �
T

¼ v

RT
ð7:7Þ

lim
P! 0

f

P
¼ 1 ð7:8Þ

@lnf

@T

� �
P

¼ h* � hð Þ
RT2

ð7:9Þ

The asterisk (�) indicates the property of an ideal gas at

this temperature and pressure.

f

P
¼ f ¼ exp

�1

RT

ðP
0

adP

� �
¼ exp

ðP
0

ðz� 1Þ
P

dP ð7:10Þ

where f is the fugacity coefficient (f/P) which we will use

later,1 and a is another convenience property, the volume

residual:

a¼ volume residual¼ RT

P
� v

� �
¼ v

1

z
� 1

� �
¼ RT

P
ð1� zÞ

ð7:11Þ

where z is the compressibility factor (Pv=RT). For an ideal

gas the volume residual is identically zero. Thus, from

Eq. 7.10 we can see that for an ideal gas f=P¼ exp 0¼ 1,

or f¼P and f¼ 1.00.

At this point we may give a simple answer to the obvious

question, What is the fugacity? For a pure ideal gas the

fugacity is identical to the pressure, and has the same

dimensions as the pressure. Thus, we may think of it as a

“corrected pressure” that enters many equilibrium calcula-

tion in place of the real pressure. Equations 7.8 and 7.10

show that we commonly show pure species fugacities as the

dimensionless ratio of f=P. The mathematics of Appendix C

show why that occurs. For pure species, the plot of the

fugacity most often seen is Figure 7.1, which is somewhat

similar to the common compressibility factor chart (z chart).

This plot is shown in Appendix A.5 along with the same

information in an alternative format. In both f=P and z charts,

an ideal gas is represented by a horizontal line with value

1 In the older literature, the fugacity coefficient f had the symbol n

(Greek nu).
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1.00, and for real gases the curves of constant Tr (for Tr large

enough for the material to be a gas) all become � 1.00 as Pr

goes to zero. The two plots are similar, but not the same. If we

have one plot, it is possible to construct the other plot from it,

using the relations in Appendix C.

From Figure 7.1 we see that for low-pressure gases (e.g.,

Pr< 0.1), and for gases up to medium pressures at high

temperatures (e.g., Tr> 1.4), the pure species fugacity and

the pressure are within a few percent of one another. For

liquids the same is not the case; the fugacity of liquids is

normally much less than the pressure. Wewill see below that

the ways of estimating the fugacities of gases, liquids, and

solids are the same in principle (they all obey Eqs. 7.6

to 7.10), but quite different in practice.

7.4.1 The Fugacity of Pure Gases

Example 7.1 shows the calculation of the fugacity of pure

gases.

Example 7.1 Estimate the fugacity of propane gas at 220�F
and 500 psia. We will proceed in several ways, showing

several possibilities.

a. If we have direct and reliable PvT measurements for

the pure substance, we can compute the fugacity

directly from them. Figure 7.2 shows the measured

compressibility. factor data for propane [2]. To use

these data in Eq. 7.10, we read the z values at various

pressures (from the table in [2]) and compute the

volume residual as shown in Table 7.A. The value of

a for 0 psia is extrapolated, because the definition of

the volume residual (Eq. 7.11) shows that the volume

residual becomes indeterminate (0/0), as P ! 0 (see

Problem 7.1). Observe that while z changes consid-

erably over this pressure range, a changes much less.

This is one of the reasons we define and use a.
We then perform the integration by trapezoid rule,

finding
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FIGURE7.1 Pure species f / P as a function ofPrwith curves of constantTr. This plot, likeAppendix

A.4, is based on the simple, two-parameter version of the theorem of corresponding states, which is

only approximately correct. The figure gives a visual insight into the behavior, but is reliable only to

perhaps �5%. See also Appendix A.5. (From Hougen, O. A., K. M. Watson, and R. A. Ragatz,

Chemical Process Principles, Part II: Thermodynamics, ed. 2. � 1959, New York: Wiley, p. 600.

Reprinted by permission of the estate of O. A. Hougen.)
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ð500 psi

0 psia

a dP � 2128
psi � ft3
lbmol

ð7:BÞ

(This corresponds to an average value of a� 4.25

ft3=lbmol, which the reader may verify is approxi-

mately the average value in Table 7.A.) Then, insert-

ing this value in Eq. 7.10 we find

f

P
¼ exp

�1

RT

ðP
0

adP

� �

¼ exp
�2128

psi �ft3
lbmol

10:73
psi �ft3

lbmol ��R :679:67�R
¼ 0:747 ð7:CÞ

and f¼ 0.747. 500 psia¼ 374 psia.

This is the most direct and rigorous method of

calculating a pure species fugacity. Its reliability is

equal to the reliability of the experimentalPvT data on

which it is based. However, we will most likely not

find z data specific for all the chemicals for which we

wish to estimate the fugacity. So instead of using this

calculation, we normally rely on EOSs, which are the

mathematical equivalent of z charts like Figure 7.2.

b. The simplest EOS is the ideal gas law. If we assume

that propane behaves as an ideal gas, or practically so at

all temperatures and pressures, then we can see from

Eq. 7.11 that a¼ 0 and f=P¼ 1, so f¼ 500 psia. This is

not a very good estimate of f for this high a pressure.

(If all the gases of practical interest were ideal, we

might not have bothered to define the fugacity.)

c. If we can represent the nonideal gas behavior of

propane by an EOS, we can estimate the fugacity from

that EOS. This is the most widely used method, using a

variety of EOSs. Here we will use the little EOS

(Eqs. 2.48–2.50). Substituting these in Eq 7.10 we find

f

P
¼ exp

ðP
0

ðz� 1Þ
P

dP ¼ exp

ðP
0

ðPr=TrÞf ðTrÞ
P

dP

ð7:DÞ

Thenwe factorPr intoP=Pc, cancel thePs, and see that the

integration is simple indeed, finding

f

P
¼ exp

Pr

Tr
� f ðTrÞ

� �
ð7:EÞ

From Chapter 2 we know that in this formulation

f ðTrÞ ¼ 0:083� 0:422

T1:6
r

� �
þv � 0:139� 0:172

T4:2
r

� �

ð7:FÞ
from Table A.1 we find that for propane, Tc¼ 369.8 ¼
K¼ 665.6�R, Pc¼ 42.48 bar¼ 41.9 atm, and, v¼ 0.152

so that

Tr ¼ 680�R
665:6�R

¼ 1:022

Pr ¼ 500 psia

41:9 � 14:7 psia ¼ 0:812
ð7:GÞ

f ðTrÞ ¼ 0:083� 0:422

1:0221:6

0
@

1
Aþ0:152 � 0:139� 0:172

1:0224:2

0
@

1
A

¼ �0:3248þ0:152 � �0:018ð Þ ¼ �0:3276

ð7:HÞ
and

f

P
¼ exp

�0:3276 �0:812
1:022

¼ exp �0:2603ð Þ ¼ 0:771

ð7:IÞ

FIGURE 7.2 Compressibility factor z for propane gas at three

temperatures and along the saturation curve. Data from [2].

Table 7.A Volume Residuals of Propane at 220�F

Pressure (psia) z (dimensionless) a (ft3/Ibmol)

0 1.0 3.8

100 0.9462 3.923

200 0.8873 4.110

300 0.8221 4.324

400 0.7787 4.582

500 0.6621 4.929
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Thus, based on this very simple EOS, wewould estimate a

fugacity of 500 � 0.771¼ 385 psia.

d. FromFigure 7.1 forTr¼ 1.022 andPr¼ 0.812,wemay

estimate f=P � 0.76, from which we would estimate a

fugacity of� 380 psia. Figure 7.1 should be used only

for rough estimates.

e. The hydrocarbon thermodynamics tables of Star-

ling [3] use an extended version of the Benedict–

Webb–Rubin (BWR) EOS (Eq. 2.45) to match the

experimental data. Using that equation, the table shows

a computed value of f=P¼ 0.7493 for this T andP.This

is probably our best current estimate, f¼ 500 � 0.7493
¼ 375 psia. (Starling reports that the constants in his

EOSwere chosen tomatch the data in Figure 7.2, so the

excellent agreement here should not surprise us!)

f. Most pure species thermodynamic tables (like the

steam or refrigerant tables) do not show f=P. But we
can easily calculate it from the values shown in those

tables. If wewrite Eq. 7.6 twice, for states 1 and 2 at the

same temperature, and subtract the equation for state 1

from that for state 2, we will find

g2 � g1 ¼ RT ln
f2

f1

� �
T

ð7:12Þ

We now take the exponential, divide both sides of this

equation by (P1P2) and rearrange, to find

f2

P2

¼ f1

P1

P1

P2

exp
g2 � g1

RT

� �� �
T

ð7:13Þ

which is correct for any states 1 and 2 at the same temper-

ature, for any pure substance.

If state 1 is at a low enough pressure that it is practically an

ideal gas, then f1=P1¼ 1.00 and we can write

f2

P2

¼ P1

P2

exp
g2 � g1

RT

� �� �
T

ðcorrect only if f1=P1 ¼ 1:00Þ

ð7:14Þ

Starling’s tables show that at 220�F and 1 psia the

calculated value of f=P¼ 1.0057� 1.00, so that 1 psia is

practically the ideal gas limit shown in Eq. 7.8. If we now

decide that state 1 is at the P ! 0 limit in Eq. 7.8, for which

f1¼P1, then we compute the values in Table 7.B, fromwhich

f

P
¼ 1 psia

500 psia
exp

�
�1554:28� ð�1735:54Þ Btu

lbm

1:987
Btu

lbmol � �R � 679:67�R
� 44:062 lbm

lbmol

0
BBB@

1
CCCA

¼ 0:002 exp ð5:9139Þ ¼ 0:740 ð7:JÞ

If we wish to take the 1.0057 above into account we

would compute an f=P value of 0.740 � 1.0057¼ 0.744. The

difference between the 0.744 here and the 0.749 in part (e) is

most likely round-off error in the calculations. The equa-

tions used to compute h, s, and f=P in any proper table of

thermodynamic properties guarantee that the values should

be the same (see Problem 7.6). These values are summa-

rized in Table 7.C. &

What are we to make of these values? Clearly, the ideal

gas law is highly unreliable in this case. The remaining

values are all in the range 0.74–0.77. The values based

directly or indirectly on the experimental data for propane

are all in the range 0.744–0.749, with the differences due to

round-off error. Figure 7.1 and the little EOS, which are

based on two versions of the (approximate!) theorem of

corresponding states, are not as reliable as the values based

on the experimental data for propane, but are close enough

that they could be used with negligible errors in this case.

Although the s in the free energy definition is an absolute

entropy, the above calculation uses only Ds, which is the

same for absolute entropies, or for those in common steam

and refrigerant tables, which are based on arbitrarily chosen

datums. Thus, this procedure works just as well with

common steam and refrigerant tables as it does here.

Concluding this example, we see that the calculations by

an industrial-strength EOS give practically the same values

as those based directly on the experimental data, while those

based on the (approximate!) theorem of correspond states

give values within a few percent of those values in this case.

This good agreement is somewhat misleading because

propane is a compound whose properties are often used in

Table 7.B Values for Propane at 220�F [3]

P (psia) 1 500

h (Btu/lbm) �588.73 �624.97

s (Btu/lbm��R) 1.6873 1.3673

g¼ h� Ts (Btu/lbm) �1735.54 �1554.28

Table 7.C Summary of Example 7.1

Calculation Method Calculated f/P

(a) Directly from measured PvT data 0.747

(b) Ideal gas law 1.00

(c) Little EOS 0.771

(d) Figure 7.1 0.76

(e) Starling’s table 0.7493

(f) Starling’s table h and s values 0.744
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making up corresponding-states equations and plots; the

agreement would not be as good for some highly polar

substance.

In current industrial practice, we almost always estimate

the fugacity of pure gases from an EOS. For simple esti-

mates, we use a simple EOS; the computer programs that

compute and use such fugacity data normally use complex

EOSs, which are more accurate than simple EOSs like

the little EOS.

7.4.2 The Fugacity of Pure Liquids and Solids

In principle, we could compute the fugacity of pure liquids

and solids the same way we computed that of gases. This is

impractical, however, so we use other methods. The reason

is that the molar volume v of liquids and solids is so small

that the volume residuala is practically the same as the ideal

gas volume.

Example 7.2 Estimate the compressibility factor z and the

volume residual a for liquid water at 100�F and 1 psi.

From the steam table, the specific volume of water at

101.7�F� 100�F and 1 psia is 0.016136 ft3=lbm¼ 0.290

ft3=lbmol and we compute that

z ¼ Pv

RT
¼

1 psia � 0:290 ft3

lbmol

10:73
psia � ft3
lbmol � �R � 560�R

¼ 0:000048 � 0:00005

ð7:KÞ

and

a ¼ RT

P
1� zð Þ ¼

10:73
psia � ft3
lbmol � �R � 560�R

1psia
ð1� 0:00005Þ

¼ 6008
ft3

lbmol
0:99995ð Þ ¼ 6007:7

ft3

lbmol
¼ 0:99995

RT

P
&

ð7:LÞ

This value of a is large enough that if we were to use it in

Eq. 7.10 we would have a very large exponential, which

would be very sensitive to round-off errors and hence very

unreliable. (If we had perfect liquid PvT data, we could

use it. We never have perfect data.) So we proceed a

different way.

Example 7.3 Estimate the fugacity of pure liquid water at

100�Fand1000psia.Here it is easiest to seewhatwe are doing
by drawing the 100�F isotherm on a P-v diagram (Figure 7.3).

We know that as P ! 0, (f/P) ! 1, so f ! 0. Therefore,

on the right in Figure 7.3, fa ! 0. We may find fb by

f

P

� �
b

¼ exp
�1

RT

ðP¼0:9503 psia

0

a dPT

� �

However, it is easy to show that at (b) Pr¼ 0.9503 psia=
3203.6 psia¼ 0.00030, Tr¼ 560�R=1165�R¼ 0.481 for

which, from the tabular equivalents of Figure 7.1 in the same

source, f=P¼ 0.9997� 1.00, so we are safe in calling the

material at (b) an ideal gas with fb¼Pb. See also Problem

7.10, where it is shown that estimating this f=P by the other

methods in Example 7.5 gives the same result.

We also know from Eq. 7.5 that fc¼fb¼ 0.95 psia. To find

fd we use the integrated form of Eq. 7.7

ð
ðd ln f ÞT ¼

ð
v

RT
dP

� �
T ð7:MÞ

Here v is practically constant (for a liquid), so we can take

it out of the integral sign and have

ln
fd

fc
� v

RT
Pd � Pcð Þ ¼

0:016
ft3

lbm
� 18 lbm

lbmol
� 999 psi

10:73
psi � ft3
lbmol�R

� 560�Rð Þ
¼ 0:048

ð7:NÞ

fd¼ fc exp(0.048)¼ 0.95 psia � (1.049)¼ 1.0 psia. (See

Problem 7.9) &
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FIGURE 7.3 Integration path (from a to d) to find the fugacity of

pure liquid water at 100�F and 1000 psia. Both axes are on

logarithmic scales. The position of point a has been shifted slightly

to the right, to make line a-b distinguishable from the vapor specific

volume curve. Line c-d lies in the liquid region, which is not labeled

because there isn’t room for a label.
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This example shows why most discussion of pure species

fugacities is about gases, rather than liquids. Compressing

liquid water from 1 psia to 1000 psia changes the fugacity by

only 4.9%; normally we ignore this and assume that for pure

liquids and solids the fugacity is equal to the vapor pressure.

(Compressing an ideal gas by this same ratio raises its

fugacity by a factor of 1000!) This factor (1.049 in the above

example) is called the Poynting factor or Poynting correc-

tion factor in many physics texts and in some chemical

engineering equilibrium publications [4] (see also Sec-

tion 7.11). In Chapter 14 we will see that we cannot ignore

the effect of pressure on the fugacity of liquids when we

compute osmotic equilibrium or small drop equilibrium. In

those situations, the Poynting factor is the same size as the

other terms in the equilibrium expressions.

7.5 FUGACITIES OF SPECIES IN MIXTURES

Now let us return to the more interesting case of mixtures.

(After all, the fugacity is used almost exclusively for mix-

tures; we discussed pure species fugacities mostly to find out

what the fugacity “feels like” and because we often use pure

species fugacities to help us compute the fugacities of

individual species in mixtures.) Appendix C also shows the

mathematics of the fugacities of species in mixtures. From it

we can summarize the findings as

�gi ¼ RT ln fi þ goi ðTÞ ð7:1Þ

@ln fi
@P

� �
T

¼ �vi
RT

ð7:15Þ

lim
P! 0

fi

Pxi
¼ 1 ð7:16Þ

@ln fi
@T

� �
P

¼ h*i � �hi
� 	

RT2
ð7:17Þ

fi

Pxi
¼ f̂i ¼ exp

�1

RT

ðP
0

�aidP

� �
¼ exp

ðP
0

�zi � 1ð Þ
P

dP

ð7:18Þ

Comparing these equations with the corresponding ones

for pure species, we see that the pressure P has been replaced

by the partial pressure Pxi and the volume, enthalpy, com-

pressibility factor, and volume residual have been replaced

by their partial molar equivalents. Here we introduce f̂i, the

fugacity coefficient for species i in a mixture, sometimes

called the partial fugacity coefficient.

We will discuss the estimation of the fugacities of species

in mixtures in Section 7.12 after we have introduced some

more useful definitions.

7.6 MIXTURES OF IDEAL GASES

For a mixture of ideal gases

V ¼ nTRT

P
ð7:19Þ

�vi ¼ @

@ni

� �
T ;P;nj

nTRT

P
¼ RT

P
ð7:20Þ

and

�ai ¼ RT

P
� �vi ¼ 0 ð7:21Þ

It follows from Eq. 7.21 that the integral in Eq. 7.18. is

zero, or that

fi ¼ Pyi or its exact equivalent f̂i ¼ 1:00 ð7:22Þð*Þ

for ideal gases. Thus, we see that for mixtures of ideal gases,

the fugacity of each species is equal to that species’ partial

pressure. The asterisk (�) on an equation number indicates

that this equation is applicable only to ideal gases.

7.7 WHY IDEAL SOLUTIONS?

If, as shown above, for ideal gas mixtures the fugacity of one

species in the mixture is equal to its partial pressure, then we

would like to extend that simple idea to nonideal gas mix-

tures, and to solutions of liquids and solids.We can, using the

definition of an ideal solution. An ideal solution is like an

ideal gas in the following respects:

1. Neither exists exactly in nature. There are no gases that

show exactly ideal gas behavior over a wide range of

pressures, and no solutions that show exactly ideal

solution behavior over a wide range of compositions.

2. There are many examples of gases and solutions that

have practically ideal behavior. All gases at very low

pressures and most gases at moderate pressures and

temperatures well above their critical temperatures are

practically ideal gases. Most mixtures of gases and
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most liquid mixtures made of members of homologous

series are practically ideal solutions.

3. It is often convenient to work with deviations from

ideal behavior, as amathematical artifice, rather than to

work directly with the properties of the same material.

This is the approach used in the compressibility factor

z, which is a measure of departure from ideal gas

behavior. We will see that the activity coefficient g
plays a similar role for departure from ideal solution

behavior.

4. An ideal solution, like a ideal gas, is the simplest kind

of behavior imaginable. Real gases havemore complex

EOSs than ideal gases; real solutions have more com-

plex behavior than ideal solutions.

7.8 IDEAL SOLUTIONS DEFINED

An ideal solution is one that obeys Eq. 7.23:

fi ¼ xi f
o
i ð7:23Þð†Þ

The symbol † on an equation indicates that it is appli-

cable only to ideal solutions. Here fi is the fugacity of

species i in the solution, xi is the mol fraction of species i in

the solution, and f oi is some constant that will generally

depend on T and P, but not on composition. (Frequently this

constant is called the “standard state fugacity” or “reference

state fugacity.”) This can be any constant, so long as it has

the dimensions of fi and does not depend on xi. Very often it

is taken as the fugacity of pure i at the temperature and

pressure of the solution, which is why it has the symbol f oi .

But this is not the only possible choice; the real definition of

an ideal solution is that for all possible mixtures the fugacity

of a species in the solution is some constant (which may

depend on P and T, but not on composition) times the mol

fraction of that species in the solution. We will say more

about the various choices that are regularly used for f oi in

Chapters 8, 9, 12, and 13.

7.8.1 The Consequences of the Ideal Solution Definition

From mathematics shown in Appendix C, we may show that

any ideal solution (of gases, liquids, or solids) has the

following properties:

fi ¼ xif
o
i ½definition of ideal solution!	 ð7:23Þð†Þ

�gi � goi ¼ RT ln xi ð7:24Þð†Þ

�vi � voi ¼ 0 ð7:25Þð†Þ

�si � soi ¼ � R ln xi ð7:26Þð†Þ

�hi � hoi ¼ 0 ð7:27Þð†Þ

Equation 7.25 says that the partial molar volume of one

species in an ideal solution is equal to its pure-species molar

volume; hence, if we plot molar volume of solution versus

mol fraction of species a as shown in Figure 7.4, wewill have

a straight line. Stated another way, there can be no volume

change on mixing to make up an ideal solution.

Equation 7.27 says that the partial molar enthalpy of a

species in an ideal solution is equal to the pure species molar

enthalpy, or that a molar enthalpy-mol fraction diagrammust

have the form sketched in Figure 7.5. This may also be stated

that there is no heat effect of mixing for any ideal solution.

From the observations that there is no volume change or

heat effect on mixing for an ideal solution, we may infer an

intuitive model of such a solution, which may help us

compare it with real solutions. Since there is no volume

change on mixing, it follows that the average intermolecular

distance in the solution must be the same as the average

For an ideal solution
at constant T and P
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FIGURE 7.4 Molar volume-mol fraction plot for an ideal

solution.
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FIGURE 7.5 Molar enthalpy-mol fraction plot for an ideal

solution.
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intermolecular distance in the pure species. If the two pure

species have different average intermolecular distances, then

each molecule must, on the average, take up the same

distance from its neighbors in the solution that it would take

up in the pure species. Similarly, the fact that there is no heat

effect (neither heat absorbed or heat evolved) on mixing for

an ideal solution suggests that the strength of the intermo-

lecular attractive or repulsive forces is the same between the

various kinds of molecules present in an ideal solution as it

would be between those samemolecules present in their pure

state. If we think of the molecules as people, we would say

that in an ideal solution the molecules are neither more

attracted to nor more repelled by molecules of the other

kind than they are by molecules of their own kind, and that

they form intermolecular bonds of equal strength with their

own kind and the other kind. This useful, intuitive model is

only approximately right; do not use it as substitute for

detailed calculations.

The fact that there is no volume change or heat effect on

mixing for an ideal solution does not mean that there is no

entropy change onmixing.Mixing is always irreversible (an

increase in disorder), so ideal solutions have greater entro-

pies than the same species would have if they existed in the

pure state, unmixed. If we substitute Eq. 7.26 twice in the

partial molar equation (Eq. 6.5) and simplify, we find that

for an ideal solution

s ¼ xas
o
a þ xbs

o
b

� 	� R
X

xi ln xi ð7:28Þð†Þ

This function is sketched in Figure 7.6.

We see that if there were no entropy change on mixing,

then the first term in Eq. 7.28 would represent the entropy of

the mixture. But all mixing produces an entropy increase.

The second term in Eq. 7.28 represents this entropy

increase.

The solid curve in Figure 7.6 represents the sum of the two

terms in Eq. 7.28; the difference between these curves shows

the molar entropy of mixing for ideal solutions. The max-

imum entropy increase on mixing, for an ideal solution,

corresponds to xa¼ xb,¼ 0.5, for which

�R
X

xi lnxi ¼�8:314
J

molK
�2ð0:5 ln 0:5Þ ¼ 5:76

J

molK

ð7:OÞð†Þ

independent of the values of T and P.

If the entropy changes on mixing, then the Gibbs energy

must also change. We may substitute Eq (7;24) twice in Eq.

(6.5) and rearrange, finding that for any ideal solution

g ¼ xag
o
a þ xbg

o
b

� 	þRT
X

xi ln xi ð7:29Þð†Þ

We use this equation to make up the molar Gibbs

energy–mol fraction plot shown in Figure 7.7. Themaximum

Gibbs energy change on mixing, for an ideal solution,

corresponds to xa¼xb¼ 0.5, for which at 25�C¼ 298.15K,
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FIGURE 7.6 Molar entropy-mol fraction plot for an ideal solu-

tion at any constant temperature. Here the values are for benzene–

toluene, with the pure species entropy values being those of

formation from the elements (not absolute entropies) calculated

from thevalues inTableA.8. The straight (dotted) line represents the
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RT
X

xi ln xi ¼ 8:314
J

mol K
� 298:15 K � 2ð0:5 ln 0:5Þ

¼ �1:718
kJ

mol

ð7:PÞ

This negative increase (decrease) corresponds to the

difference between the two curves in Figure 7.7.

7.9 WHY ACTIVITY AND ACTIVITY

COEFFICIENTS?

The fugacity has the dimension of pressure. Often we want a

nondimensional representation of the fugacity, for example,

in mass-action (chemical equilibrium) calculations. We will

see in Chapter 12 that this requirement leads naturally to the

definition of the activity. Furthermore, when we apply the

ideal solution idea to nonideal solutions, we will need a

measure of “departure from ideality,” just as the compress-

ibility factor z is a measure of departure from ideal gas

behavior. The logical choice for that measure is the activity

coefficient, defined below. We will see that the activity and

activity coefficient are dimensionless, and that for ideal

solutions and many practical solutions the activity is equal

to the mol fraction.

7.10 ACTIVITY AND ACTIVITY COEFFICIENTS

DEFINED

Now we define two new quantities:

activity ¼ fi

f oi
¼ ai ð7:30Þ

activity coefficient ¼ gi ¼
ai

xi
¼ fi

xi f
o
i

or fi ¼ gixi f
o
i

ð7:31Þ

These two new quantities have the merit that they are

dimensionless (which the fugacity is not) and, as we will see

later, they lead to very useful correlations of liquid-phase

fugacities. We will also see in Chapter 12 that the normal

chemical equilibrium statement, the law of mass action, is

given in terms of activities.

The activity is almost never used in discussing phase

equilibrium, and will almost never appear in the rest of this

chapter or Chapters 8–11. However, it is widely used in

the common formulation of chemical equilibrium, and will

appear very often in Chapters 12 and 13. Furthermore, we

needed to define it before we could introduce the activity

coefficient, which we will see plays a major role in this

chapter and the next few. (If we did not define the activity for

use in chemical equilibrium, we might have chosen some

other name for what we call the activity coefficient!) From

the definition we see that the activity is equal to the mol

fraction, multiplied by a coefficient that shows how much

more or less “chemically active” the species is than it would

be in an ideal solution.

From these definitions it is clear that for a pure species

or for a species in an ideal solution the activity coefficient

is identically 1.00 and the activity is equal to the mol

fraction. We may then redefine an ideal solution as a

solution with activity coefficient¼ 1.00; this definition is

completely equivalent to Eq. 7.23. (This is like defining an

ideal gas as a gas whose compressibility factor z¼ 1.00.)

Similarly, we may see that the activity coefficient is the

ratio of the fugacity to the fugacity the same species would

have in the same solution, if that solution were an ideal

solution. Thus, we see that the activity coefficient is a

simple, dimensionless measure of the departure of the

species fugacity from ideal solution behavior. Activity

coefficients can be greater than one (“positive deviations

from ideality”) or between zero and one (“negative devia-

tions from ideality”), but never negative; most have values

between 0.1 and 10. Correspondingly, activities can have

any positive value; most are in the range (0.1 to 10) times

the mol fraction.

From mathematics shown in Appendix C,

@ ln gi
@P

� �
T ;xi

¼ �vi � voi
RT

ð7:32Þ

@ ln gi
@T

� �
P;xi

¼ hoi � �hi

RT2
ð7:33Þ

We previously noted that for an ideal solution g¼ 1,

independent of pressure, temperature, or composition. This

means that for an ideal solution the derivatives shown in

Eqs. 7.32 and 7.33 must be identically zero. From Eqs. 7.25

and 7.26 we can see that this is indeed the case.

There is no direct way to measure fugacity, activity, or an

activity coefficient. (If you can invent an instrument to do it,

you will become rich and famous!) All values you will ever

see have been calculated, either by the estimating methods

shown in this and later chapters or computed from the things

we can measure experimentally, such as temperature, pres-

sure, density, and the concentrations (normallymol fractions)

of the various species in the coexisting phases at equilibrium.

The following example (which will be referred to and
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expanded upon in the next chapter) shows that approach, and

gives some idea of the expected values.

Example 7.4 At 1 atm pressure, the ethanol–water azeo-

trope (discussed more in the next chapter) has the same

composition of 10.57 mol% water, (and thus 89.43 mol%

ethanol) in both vapor and liquid phases at a temperature of

78.15�C [5] (Figure 7.8). At this temperature the pure species

vapor pressures are water 0.434 atm and ethanol 0.993 atm.

Estimate the fugacity and activity coefficient for each species

in each phase.

Herewe name ethanol as species a, andwater as species b,

and name the vapor as phase 1 and the liquid as phase 2. Thus,

from the above values

ya ¼ xa ¼ 0:8943 yb ¼ xb ¼ 0:1057 ð7:QÞ

Again, observe the common convention of using y for mol

fractions in gases and vapors, and x for mol fractions in

liquids and solid; with this convention we drop the (super-

script), which tells us which phase we are describing.

To find the liquid-phase fugacities from this type of data,

we begin with some way of estimating the gas-phase fuga-

cities. At a pressure of 1 atm all gases are practically ideal

gases, so that we may safely assume that the vapor is a

mixture of ideal gases, for which Eq. 7.22 tells us that the

fugacity is equal to the partial pressure. Thus, the vapor-

phase fugacities of ethanol and water are approximately

equal to their partial pressures, mol fractions times the total

pressure, yi P, 0.8943 atm, and 0.1057 atm. From Eq. 7.5 we

know that these are the same as the fugacities of the two

species in the liquid, so now we know the liquid-phase

fugacities. Observe that there is no way to know the

liquid-phase fugacities in mixtures directly from experimen-

tal measurements; instead, we infer them from the gas and

liquid compositions and the very good assumption that the

gas phase is practically an ideal gas mixture. For pressures

high enough that we cannot safely assume ideal gas behavior

we need to use an EOS for the vapor. We will discuss this

further later in this chapter, and again in Chapters 8 and 9.

To compute the activity coefficients, we need to assign

values of f oi . We might think that one choice would do for

both phases, but, alas, that doesn’t work. If we look back to

Section 7.4, we see that we use very different methods to

compute the fugacities of gases than those used for liquids

(because their specific volumes are so different). Whatever

choice of f oi wemake for either phase must have the property

that it gives the right value of fi as xi or yi approaches unity.

For the gas (assumed ideal) that means that fi must approach

P, so that the logical choice for ideal gases and vapors

is f oi ¼P. For pure liquids (see Example 7.3) the fugacity,

practically independent of total pressure, is approximately

equal to the vapor pressure pi. Thus, we choose

f oi ¼ P ðthe system pressureÞ for the gas ð7:34Þ

and

f oi ¼ pi

the pure species vapor

pressure for this species

at this temperature

0
@

1
Afor the liquid ð7:35Þ

We now write Eq. (7.5 for each species, inserting the

definition of the activity coefficient (Eq. 7.31) and the

definitions of f oi in Eq. 7.34 and 7.35, finding

f
ðliquid phaseÞ
ethanol ¼ f

ðgas phaseÞ
ethanol ¼ ygPð Þðgas phaseÞethanol ¼ xgpð Þðliquid phaseÞethanol

ð7:36Þ

and

f
ðliquid phaseÞ
water ¼ f

ðgas phaseÞ
water ¼ ygPð Þðgas phaseÞwater ¼ xgpð Þðliquid phaseÞwater

ð7:37Þ

These equations are the correct description, in terms of the

quantities defined so far, for any vapor–liquid equilibrium of

two species (if we substitute their names for those of ethanol

and water). Observe that this equation has four values of g,
one for each species in each of two phases. For any ideal

solution, g¼ 1.00. Mixtures of ideal gases are all ideal

solutions, so if the gas (or vapor) is practically an ideal gas,

then both of the gs for the gas phase in Eqs. 7.36 and 7.37

are� 1.00. In Chapters 8 and 9 we will see that this is an

excellent approximation, so for most pressures we normally

drop those two gs out of Eqs. 7.36 and 7.37 and assume that

any gwe encounter is for one species in a liquid. Then we can
solve Eqs. 7.36 and 7.37 for these gs, finding

Vapor

Liquid

10.57 mol% water

10.57 mol% water

89.43 mol% ethanol

89.43 mol% ethanol

FIGURE 7.8 At any azeotrope, the chemical compositions of the

vapor and the liquid are identical. These are the values for the

ethanol–water azeotrope, at 1 atm and 78.15�C [5].
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gethanol ¼
yP

xp

� �
ethanol

¼ 0:8943 � 1:00 atm
0:8943 � 0:993 atm

� �
¼ 1:007

ð7:RÞ

and

gwater ¼
yP

xp

� �
water

¼ 0:1057 � 1:00 atm
0:1057 � 0:434 atm

� �
¼ 2:31

ð7:SÞ

These results are summarized in Table 7.D. &

This example shows the interrelations between fugacity,

total pressure, vapor pressure, mol fraction, and activity

coefficient. If we dealt only with ideal gas mixtures and

ideal liquid solutions, we would scarcely have bothered to

define fugacity, activity, or activity coefficient, because for

ideal gases the fugacity is equal to the partial pressure (yi �P)
and for ideal solutions of liquids and solids the fugacity is

equal to the mol fraction times the vapor pressure (xi � pi)
making g¼ 1.00 for both. However, Table 7.D (and the

experimental data on which it is based) show that this liquid

is not an ideal solution, because the activity coefficients are

not unity. (The activity coefficient of ethanol¼ 1.007� 1.00,

but that of water is 2.31!) This is an important industrial

system, which we will speak about more in the next chapter.

7.11 FUGACITY COEFFICIENT FOR PURE GASES

AND GAS MIXTURES

In Figure 7.1 we showed and in example 7.1 we estimated the

fugacity coefficient f/P¼f for pure species. Equation 7.10

shows that this quantity could logically be used for both

liquids and gases, but normally is only used for gases, where

f represents the ratio of the pure gas fugacity to the fugacity

of a pure ideal gas at the same T and P, computed by Eq. 7.10

or its equivalent.

The reason that we don’t use f for liquids is shown in

Example 7.3 where we computed the effect of compressing

pure liquid water at 100�F from 1 psia to 1000 psia, showing

that the fugacity increased by a factor of 1.049. However

that factor is equal to f=p, the fugacity divided by the pure

species vapor pressure, not f=P, the fugacity divided by the

system pressure. One could use the results of that example

to define

fLiquid in Exmple 7:3 ¼
fliquid water

Psystem

¼ 1 psia

1000 psia
¼ 0:001 ð7:TÞ

which is formally correct, but not very useful and seldom

seen.

Turning now to the fugacity of individual species in gas

mixtures, we normally use Eq. 7.18 or its equivalent. We find

thevalues of �ai or �zi, using anEOS for themixture (Appendix

F). The resulting f̂i shows both the effects of the nonideal

behavior of the individual gas (i), and also the nonideal

mixing of the various gases. The EOSs normally used in

this computation do not separate these effects, but simply

show the combined effect. We might formulate this as

f̂i ¼ pure species nonideal
f

P

� �
� nonideality

of mixing

� �

¼ fi � gi in the gas phase ð7:37Þ

This is helpful in understanding what the computations

are doing, but not used in actual calculations. The g in the

vapor phase that we show in Table 7.D is logically consistent,

but almost never seen. Instead it is combined with fi to

form f̂i as shown in Eq. 7.37.

7.12 ESTIMATING FUGACITIES OF

INDIVIDUAL SPECIES IN GAS MIXTURES

Our real uses of fugacity involve the fugacities of individual

species in mixtures. These cannot bemeasured by any direct-

reading instrument. They can be computed (or estimated)

from PvT data, EOSs, or vapor–liquid equilibrium

measurements.

7.12.1 Fugacities from Gas PvT Data

Ifwe have reliablePvT data for gasmixtures,we can compute

individual species fugacities from it; the calculated values are

as reliable as the original PvT data.

Example 7.5 Hougen et al. [7, p. 865] present Table 7.E

of the volume residuals for gaseous mixtures of methane

and n-butane at 220�F, based on the experimental PvT data

Table 7.D Summary of Example 7.4

Phase Ethanol, i¼ a Water, i¼ b

VAPOR, PHASE 1

yi 0.8943 0.1057

f
ð1Þ
1 ; atm 0.8943 0.1057

f
ð1Þo
1 ; atm ¼ P¼ 1 ¼ P¼ 1

gð1Þi ðassumedÞ 1.0000 1.0000

LIQUID, PHASE 2

xi 0.8943 0.1057

f
ð2Þ
1 ; atm 0.8943 0.1057

f
ð2Þ�
1 ; atm ¼ pa¼ 0.993 ¼ pb¼ 0.434

gð2Þi 1.007 2.31
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of [8]. Using these values, estimate the fugacity of methane

and of n-butane in a gaseous mixture of 78.4 mol%

methane (50 wt% methane), balance butane, at 220�F and

1000 psia.

To use these values in Eq. 7.18 we need the partial molar

volume residual �amethane. We find its value at 100 psia by

plotting the volume residuals at 100 psia as a function of mol

fraction, as shown in Figure 7.9, drawing the tangent to the

data points atxmethane¼ 0.784 and reading its intercept on the

100 mol% methane axis as� 0.6 ft3=lbmol.

In the same way we find the value of �amethane for all of the

other pressures, and plot them vs. pressure, as shown in

Figure 7.10. From this plot we find the integral we need by

numerical integration (trapezoid rule) as 290 psi � ft3=lbmol.

Thus, for methane

fi

Pyi

¼ f̂i ¼ exp
�1

RT

ðP¼P

P¼0

�aidP

� �

¼ exp
�290

psia � ft3
lbmol

10:73
psia � ft3
lbmol � �R � 680 � �R

¼ 0:961

ð7:UÞ

fi ¼ 0:961 Pyi ¼ 0:961 � 1000 psia � 0:784 ¼ 753 psia

ð7:VÞ

From Figure 7.9 we can also read the other intercept,

finding that �an-butane � 6:6 ft3=lbmol:We can do the same for

other pressures, andmake up the equivalent of Figure 7.10 for

n-butane (Problem 7.15), finding that the integral is 5859

psi � ft3=lbmol, so that for n-butane

fi

Pyi
¼ f̂i ¼ 0:448

fi ¼ 0:448 � 1000 psia � ð1� 0:784Þ ¼ 96:8 psia &

ð7:WÞ

Thevalues of �amethane actually used tomake upFigure 7.10

were found on a spreadsheet, using Eq. 6.5 and numerical

differentiation of the data, which is not as obvious as the

graphical procedure shown in Figure 7.9, but is much more

reliable and much quicker for a group of pressures.

The original authors [8], using graphical differentiation

(on huge graph paper) and then graphical integration, found

fi=Pyi¼ 0.968 for methane, instead of the 0.961 found here.

For n-butane they found fi=Pyi¼ 0.436, instead of the 0.448

found here. The differences are small, but the values from [8]

are probably the more reliable.

Table 7.E Volume Residuals for a Mixture of Methane with

n-Butane (all at 22�F)

Volume Residual a (ft3/lbmol) at

Mol% Pressure, psia !
Methane # 100 200 400 600 800 1000

28.7 5.55 5.55

47.5 4.12 4.00 3.88

60.8 2.99 2.91 2.68 2.44 2.26 2.12

70.7 2.30 2.22 2.01 1.81 1.645 1.52

78.4 1.86 1.745 1.55 1.383 1.252 1.147

84.5 1.42 1.348 1.202 1.062 0.950 0.860

89.4 1.065 1.020 0.921 0.826 0.745 0.679

93.5 0.780 0.746 0.695 0.637 0.579 0.529

97.0 0.546 0.528 0.500 0.461 0.426 0.394

At 220ºF and 100 psia
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FIGURE 7.9 Finding the partial molar volume residual �amethane

by the method of tangent intercepts. The line is tangent to the curve

at ymethane ¼ 0:784. Its intercept on the right hand axis is� 0.6 ft3/

lbmol.
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FIGURE 7.10 Partial molar volume residual of methane at 220�F
and ymethane¼ 0.784 for various pressures. The area under the

curve¼ 290 psia � ft3/lbmol.
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In principle, we could use this same procedure for liquids,

but, as discussed in Section 7.4.2, the values of a for liquids

are huge, so small uncertainties in them cause huge uncer-

tainties in the calculated fugacities. This procedure is rarely

used for liquids.

7.12.2 Fugacities from an EOS for Gas Mixtures

We have experimental PvT data of this quality for only a few

mixtures, so the procedure in Example 7.5, while theoreti-

cally the most reliable, is seldom used. However, if we have

an EOS that we believe accurately reproduces or estimates

thePvT data of amixture, we can repeat the above calculation

using it. When working with experimental PvT data as in

Example 7.5 it is generally most convenient to work with the

first form of Eq. 7.18:

fi

Pxi
¼ f̂i ¼ exp

�1

RT

ðP¼P

P¼0

�aidP

� �
ð7:18Þ

while with an EOS the mathematics are generally simpler if

we use the second form:

fi

Pxi
¼ f̂i ¼ exp

ðP¼P

P¼0

�z� 1ð Þ
P

dP ð7:18Þ

All the EOSs in Chapter 2 are for one single pure species and

can be written in the form z¼ f (T, P, and various constants).

In the corresponding-states formulation, they are mostly

written as z¼ f (Tr, Pr, v). Most EOSs for mixtures begin

with the EOSs for the individual pure species, and then use

empirical or semitheoreticalmixing rules to fill in the region

between the pure species.

If we have a mixture of a and b, at some T and P then we

will have two pure species zs, za, and zb, Any mixing rule

must be of the form

zmix ¼ f ðza; zb; ya; ybÞT ;P ð7:38Þ

Themixing rulesmust give back the pure species values as

the concentration approaches either pure species, so only

some mathematical forms are possible. Many of the empir-

ical, data-fitting rules are of the form

zmix ¼ xaz
1=n
a þ xbz

1=n
b

� �n

ð7:39Þ

where n is an arbitrarily chosen constant. Equation 7.39 has

the correct property that for pure a or b it gives the right

value of z, for any choice of n. If we choose n¼ 1 in Eq. 7.39,

we find the simplest possible mixing rule, linear molar

mixing:

zmix ¼ yaza þ ybzb ð7:XÞ

Aplot of zmix vs. ya according to Eq. 7.X is a straight line, like

Figures 7.4 and 7.5. One may show (Problem 7.17) that Eq

7.X is equivalent to an ideal solution of nonideal gases. (For

ideal gases, z¼ 1.00 for all P and T.) For this mixing rule

�za ¼ za and �zb ¼ zb ð7:YÞ

for all possible values of ya. For most simple EOSs like the

little EOS, this mixing rule leads (Problem 7.19) to equations

of the form

fa

Pya
¼ f̂a ¼ exp

Pr;a

Tr;a
f Tr;a;va

� 	� �
ð7:ZÞ

in which fa=Pya in a mixture depends only on the pressure,

temperature, mol fraction of a, and the properties of pure a.

The calculated fa=Pya would be the same if we replaced all

the b in the mixture with the same number of mols of some

other gas c, independent of what b and c are. This cannot be

rigorously correct, but, as we will see, it is a very useful

approximation. A separate equation gives fb=Pyb for b, as a
function of P, T, and the properties of pure b. This is called

the Lewis and Randall fugacity rule which may also be

stated as f̂i ¼ fi, or that the gin the gas phase in Eq. 7.37

is¼ 1.00.

7.12.3 The Lewis and Randall (L-R) Fugacity Rule

At pressures up to a few atmospheres, we normally use this

simplest possible mixing rule, which assumes that the gas

mixture is an ideal solution of nonideal gases, even though

the corresponding liquid in equilibrium (Chapter 8) may be

quite nonideal. For many gas mixtures at moderate or even

high pressures it appears that there is no measurable

volume change or heat effect on mixing of gases, so that

the gas mixture may be considered an ideal solution, even

though the individual species are at pressures at which they

may not be considered ideal gases (i.e., their z does not

equal 1.00).

Example 7.6 In Example 7.5 we estimated the fugacity of

methane in a mixture of 78.4 mol% methane, balance n-

butane at 1000 psia and 220�F, directly from the measured

PvT data. For that example, estimate the values of fi and f̂i.

Use these values to evaluate the L-R rule for this example,

and to evaluate the relative effects of pure-gas nonideality

and of nonideality of mixing.
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In that example, we found directly from the PvT data that

for methane

fi

Pxi
¼ 0:961 ¼ f̂i ð7:AAÞ

FromStarling’s tables of hydrocarbon properties [3, p. 14]

we read that for pure methane at this T and P, fj=P¼fi

¼ 0.954, from which it follows that

f̂i

fi

¼ 0:961

0:954
¼ 1:007 &ð7:ABÞ

If we had assumed ideal gas behavior, we would have

computed (for methane) f̂i ¼ fi=Pxi ¼ 1:00 which is 4%

higher than the value calculated from the PvT data. Using the

L-R rulewewould have computed f̂i ¼ fi ¼ fi=Pxi ¼ 0:954
which is 0.7% less than the value from the experimental data.

The 0.7%difference between 0.961 and 0.954 is probably less

than the uncertainty in themeasuredPvTdata and in our use of

it in Figures 7.9 and 7.10, so that we may say that within

experimental accuracy the estimate based on the L-R rule and

that based directly on the PvT data are the same.

The L-R rule is widely used because it is simple and is

the next step in complexity (and reliability) over the ideal

gas law. However, frequently gases exist in states for which

we cannot compute fi. Consider the n-butane in Example

7.5. At 220�F the vapor pressure of n-butane is 241.6 psia,

far less than 1000 psia, so that pure n-butane cannot exist as

a gas under these conditions. For n-butane at these condi-

tions, Tr¼ 0.889 and Pr¼ 1.815. If we attempt to find a

suitable value of fi from Figure 7.1 for these values we find

that the pure substance is a liquid for which we would

estimate fi � 0.2. How can the n-butane exist as a gas? We

may form an intuitive model of this behavior by considering

that in a pure n-butane vapor each n-butane molecule

collides only with other n-butane molecules, with which it

forms attractive bonds. The molecules of n-butane in this

mixture mostly collide with methane molecules (which

make up 78.4% of the molecules present). The n-butane

molecules do not form comparably strong attractive bonds

with methane molecules, so the n-butane molecules in this

mixture will not condense at a T and P at which pure n-

butane would condense. (The water vapor in air at 20�C is in

the same situation.)

If we wish to use the L-R rule for the n-butane, we must

estimate the fi for it, not using the observed value of the

nonexistent pure vapor at this T andP.The only practical way

is to use some EOS.

Example 7.7 Estimate the value of fi that n-butane would

have if it could exist as a gas at Tr¼ 0.889 and Pr¼ 1.815,

using the little EOS.

Using the properties of n-butane from Appendix A.1 and

Eq. 7.F we find that

fi

P
¼ fi ¼ exp

Pr

Tr
� f Tr;vð Þ

� �
¼ exp

1:815

0:889
� ð�0:48553Þ

� �

¼ 0:397 &

ð7:ACÞ

This is 89% of the value found directly from PvT data. If

the L-R rule were absolutely correct, and if the extrapolation

of the little EOS—which only applies to gases—from pres-

sures at which butane would be a gas to a pressures at which

butane could not exist as a pure gas were absolutely correct,

then the two values would agree completely. Thus in this case

the L-R rule and the little EOS are only a fair approximation

of the experimental value.Wewill discuss the L-R rule a little

more in Chapter 8.

7.12.4 Other Mixing Rules

Figure 7.11 shows the data from Table 7.E in the form of a

z–ymethane plot. If the L-R rule were absolutely correct (that

is, if Eq. 7.39 with n¼ 1.00 were absolutely correct), then

each of the constant-pressure lines would be absolutely

straight. Figure 7.11 shows that while the data form prac-

tically a straight line for 100 psia, for the higher pressures a

straight line is not a very good representation of these data.

(The ideal solution approximation is fairly good for 100

psia, but not for higher pressures. However, as the previous

example shows, the resulting fugacity calculations are not

very sensitive to this nonideality.) If we wish our mixture

EOS to represent nonideal solutions (which are not straight
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FIGURE 7.11 Compressibility factor z as a function of pressure

and methane %, ymethane, based on the data in Table 7.E.
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lines on Figure 7.11), then we must use the more complex

mixing rules shown in Chapters 9 and 10.

7.13 LIQUID FUGACITIES FROM

VAPOR-LIQUID EQUILIBRIUM

If we have any way of estimating the fugacity of a species in

the gas phase, by ideal gas law, the L-R rule, or any EOSwith

appropriate mixing rules, we can use that way to compute the

fugacity of any species in a gas phase. If that gas phase is in

equilibrium with a liquid, the fugacity of that species must

be the same in the liquid as in the gas, so that if we have VLE

phase composition data and a way of estimating the fugacity

in the gas, we use that to estimate the fugacity in the liquid.

This is shown in Example 7.4 and used many times in

Chapter 8.

7.14 SUMMARY

1. Fugacity was invented to remedy the counterintuitive

behavior of the chemical potential, which makes it

approach minus infinity as the concentration ap-

proaches zero. For pure ideal gases the fugacity is the

same as the pressure, and for ideal gas mixtures the

fugacity of one species is equal to that species’ partial

pressure.

2. For pure gases we normally correlate and compute

f=P¼f based on either measured PvT data or an EOS.

3. For pure liquids and solids we normally compute the

fugacity from the vapor pressure. The effect of in-

creases in pressure above the vapor pressure on the

fugacity of liquids and solids (the Poynting factor) is

generally negligible (because their molar volume is so

small).

4. Ideal solutions are like ideal gases—an approximation,

but a very useful one.

5. Activity and activity coefficient are nondimensional

ways of representing fugacities, based on comparing

the behavior of the solution to that of an ideal solution.

6. Fugacity, activity, and activity coefficient are comput-

ed quantities; none can be measured directly.

7. Formixtures of gases, we can determine the fugacity of

each species directly from the measured PvT data if

they are available. If not, we can use an EOS as a

substitute for the experimental PvT data, We normally

begin with the EOSs for the pure gases, and use

mixing rules to estimate the EOS for the mixture.

8. The simplest mixing rule leads to the L-R rule, an ideal

solution of nonideal gases, which is very widely used

and fairly reliable for modest pressures.

9. Formixtures of liquidswe normally estimate fugacities

of species from measured VLE data, as described in

Chapter 8.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (�) on the problem number indicates that

the answer is in Appendix H.

7.1� What is the value ofa atP¼ 0, in terms of R, T, and z?

7.2 See Problem 7.1. The Boyle-point temperature is

defined as that temperature at which a¼ 0 for P ¼
0. From Figure A.4 estimate the Boyle-point temper-

ature for gases that follow that chart. What is the

practical significance of the Boyle point?

7.3 For small pressures a is practically a constant. Show

that if a¼ constant and a 
 1; ðf=PÞ ffi z:

7.4 a. Show the computation of the volume residuals in

Table 7.A.

b. Show the trapezoid rule integration in Example

7.1(a)

7.5 Repeat Example 7.1, parts (b), (c), (d), and (f), for

water at 2000 psia and 700�F, using values from any

steam table.

7.6 The calculation in Example 7.1(f) is quite sensitive to

small errors or changes, because it leads to the

exponential of a large number.

a. Verify this by repeating that calculation, with the

following common simplifications: (f=P)1psia ¼
1.0057� 1.00:M¼ 44.062 g/mol� 44 g/mol, and

T¼ 679.67�R� 680�R. How much do these

changes change the calculated value of ( f/P)500psia
compared to the values in Example 7.1(f)?

b. The value of f=P at 220�F and 1 psia in Starling’s

table (1.0057) is a misprint. A value greater than

1.00 for this Pr and Tr is impossible. Estimate the

correct value, by repeating Example 7.1(a) for this

pressure, taking a¼ 4.23 ft3=lbmol. Compare it to

the value now suggested by Starling [9] of 0.9995.

7.7 a. The two-term, pressure-explicit virial EOS is

z ¼ Pv

RT
¼ 1þ BP

RT
ð7:ADÞ

where B is a function of temperature alone. For a

gas that obeys this EOS, derive the equation for

ln(f=P).

b. Show that the little EOS (Eqs. 2.48–2.50) is

equivalent to the two-term, pressure-explicit virial

104 FUGACITY, IDEAL SOLUTIONS, ACTIVITY, ACTIVITY COEFFICIENT



EOS. Show the value of B in Eq. 7.AD that makes

it the same as the little EOS.

c. Show the equation for ln(f=P) that corresponds to
the little EOS.

7.8� Estimate the fugacity of pure liquid water at 100�F
and 10,000 psia. For this problem only, you may

assume that the specific volume of liquid water at

100�F is 0.01613 ft3/lbm, independent of the

pressure.

7.9 In Example 7.3 we assumed that the specific volume

of water at 100�F was a constant, independent of

pressure. The steam table [10, p. 104] shows that at

100�F and 1 psia, 500 psia and 1000 psia, the specific

volumes are 0.01613, 0.016106, and 0.016082 ft3=
lbm. Rework Example 7.3 taking this change in water

specific volume into account. How much difference

does it make?

7.10 In Example 7.3, we estimated the value of f=P for pure

water vapor at 100�F and 0.9503 psia as 0.9997.

Repeat that estimate using the method used in part

(c) of Example 7.1.

7.11 In Figure 7.3, sketch the area that corresponds toÐ
adP. A simple free-hand sketch will be satisfactory.

7.12 Estimate @ln f=@Tð ÞP for Freon 12 at 400�F and 1000
psia from the Freon 12 chart or table which is pre-

sented in many introductory thermodynamics books.

The molecular weight of Freon 12 is 121 lbm=lbmol.

7.13 Assuming that n–pentane and n-hexane form an

ideal solution, sketch plots of p–xpentane, volume per

mol–xpentane, enthalpy per mol–xpentane, entropy per

mol–xpentane, and Gibbs energy per mol–xpentane for

liquid mixtures of n-pentane and n-hexane at 25�C
(see Table 7.F). Simple sketches with a few numerical

values will be satisfactory.

7.14 Show the calculation of a�methane at 100 psia in Ex-

ample 7.5 by numerical differentiation and application

of Eq. 6.5. To do this, approximate da /dx1 by

Da

Dxa
¼ 1:86� 2:30

0:784� 0:707
ð7:AEÞ

which is the backward difference approximation. Then

set this function and Eq. 6.5 up on a spreadsheet to

compute the values of �amethanefor all the pressures

in Table 7.E. Compute the values and compare them

to those shown in Figure 7.10.

7.15 Using the method shown in the previous problem,

estimate the fugacity of n-butane in the same mixture

examined in Example 7.5. Compare your results to the

values shown in that example.

7.16 If a substance has the v-x behavior shown in Figure 7.4

what does its z-x plot look like?

7.17 Show that Eq. 7.X (Eq. 7.39 with n¼ 1.0) is an ideal

solution of nonideal gases.

a. Sketch a plot zmix vs. ya.

b. Show by tangent intercepts that �za ¼ za and

�zb ¼ zb:

c. Show that this is equivalent to an ideal solution of

nonideal gases.

7.18 Sketch the equivalent of Figure 7.1 and show the basis

for the statement in Example 7.6 that for the Tr and Pr

of n-butane it would be a liquid with fi � 0.2.

7.19 Show that Eq. 7.Y follows from Eq. 7.X.

7.20 For the two-term, pressure-explicit virial EOS, Eq. 7.

AD,

a. Show the general form it takes for fi=Pyi of a binary
mixture.

b. Then show the form that takes for the L-R rule,

which is equivalent to Eq. 7.39 with n¼ 1.

c. Then show the form that takes for the mixing rule

produced by substituting n¼ 0.5 in Eq. 7.39.

7.21 We occasionally [11] see Eq. 7.10 rewritten and

integrated to

ln
f

f0
¼

ðP
P0

z dðln PÞ ð7:AFÞ

where f0 is the fugacity at P0. Show the derivation of this

equation.
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8
VAPOR–LIQUID EQUILIBRIUM (VLE)
AT LOW PRESSURES

Vapor–liquid equilibrium (VLE) is at the heart of many

chemical and environmental engineering processes and ac-

tivities. Distillation, drying, and evaporation are all based in

VLE. In Figure 1.1, the ammonia synthesis process, VLE

determines the behavior of the separator. The liquid ammonia

product leaving it contains some dissolved nitrogen and

hydrogen and also some impurities from the feed, which we

wish to keep out of the reactor; the recycle gas leaving it

contains about 2% ammonia. The pressure and temperature of

the separation are chosen to have this separation be as com-

plete as possible (we would like zero H2 and N2 in the liquid

and zero NH3 in the vapor, but VLE requires that there be

some). In Figure 1.2 the removal of the benzene contaminant

depends on VLE. All of Chapter 3 and the air–water example

discussed there are about VLE. Raoult’s and Henry’s laws

are VLE laws (really estimating approximations). Although

the applications ofVLE arevery broad, the principal chemical

engineering application, and the one for which VLE has been

studied most thoroughly, is distillation. Distillation is sepa-

ration by boiling point. For ideal solutions it is straightfor-

ward; we can separate any mixture of species with different

boiling points. For nonideal solutions, the process is more

complex, as discussed in this chapter.

If miscible liquids can be separated by distillation, then

that is probably the least expensive way to separate them.

The chemical and petroleum industries are full of distilla-

tion; the visual appearance of a chemical plant or petroleum

refinery is a forest of distillation columns. Figure 8.1 shows

the mercaptan production unit at the Borger, Oklahoma

facility of the Chevron Phillips Chemical Company. In it we

see at least 10 distillation columns.

This chapter discusses low-pressure VLE. At high pres-

sures, VLE is different, mostly because we approach the

critical pressures of the vapor–liquid mixtures. Chapter 10

starts from what we see in this chapter and shows how the

experimental behavior and ourmathematical approaches to it

change at high pressures.

8.1 MEASUREMENT OF VLE

Figure 8.2 shows, schematically, the simplest possible VLE

experiment. A liquid sample of the mixture of interest is

placed in an Erlenmeyer flask and heated to a boil. The

boiling continues until the vapor has displaced all the air from

the flask. This means that the liquid composition will no

longer be equal to that originally prepared, because the vapor

leaving the system does not have the same composition as the

liquid. When we are sure that all the air is gone, we measure

the temperature and take samples of liquid and vapor, which

we analyze (by any of several laboratory techniques, e.g.,

chromatography).

In practice, the simple device in Figure 8.2 is not used

because it is very difficult to collect a large enough vapor

sample to analyse without contaminating it with drops

thrown up from the boiling liquid, and because precise

temperature measurements require special care. The most

common device for measuring the equilibrium temperature

and compositions of the vapor and liquid in equilibrium (a

refined version of Figure 8.2) is sketched and described in

Figure 8.3. It is most often used for binary (two-species)

mixtures, but can equally well be used for mixtures with any

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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number of chemical species. It is most often used at or near

atmospheric pressure or less, although equivalent devices

have been built for high pressures. Table 8.1 shows the results

of such experiments for one binary mixture.

In this table and throughout VLE it is the custom that the

lowest-boiling (most volatile) species in the mixture is

species a, and that the species are listed in order of

increasing normal boiling point (NBP). Thus, a mixture

of methane, n-butane, and n-pentane would almost always

be listed in that order. In a table like Table 8.1 the vapor and

liquid mol fractions of species a (in this case acetone) are

shown, with the mol fractions of species b (water) to be

computed from the values in the table. Similarly, when

properties are plotted vs. mol fraction (e.g., Figure 8.4), the

mol fraction is almost always that of species a, running

from left to right.

If such data were available for all the possible mixtures of

industrial interest, at the pressures of industrial interest, then

wewould not need the estimation and correlation procedures

described in Sections 8.6 and 8.7 and Chapter 9. Although

such tables are available for several thousand binary mix-

tures, they are rarely available for ternary and more complex

mixtures. Most of the available tables of this kind are for

atmospheric pressure; many of the industrial applications are

at pressures far from atmospheric.

There are other ways of measuring VLE that are less

direct but quicker and cheaper [5]; their goal is the same as

the methods described above, to produce the equivalent of

Table 8.1 for the mixture of interest at the pressure of

interest.

FIGURE 8.1 The mercaptan manufacturing facility at the Borger (Texas) facility of the Chevron

Phillips Chemical Company. At least 10 distillation columns are visible. (Courtesy of the Chevron

Phillips Chemical Company.)

Thermometer

Vapor flows out
P = 1 atm

 Vapor
sampler

 Liquid
sampler

 Vapor

 Heat

 Boiling liquid

FIGURE 8.2 Schematic view of the simplest possible VLE

measurement.
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FIGURE 8.3 Sketch of the standard way of measuring low-

pressure VLE, called an Othmer still. The device is first evacuated

through connection G, and the liquid mixture admitted through

opening L. The mixture is then boiled by the heater N, and the

vapor condensed in condenser D. After enough time elapses for

steady state to occur, the liquid in reservoir E will have the

same composition as the vapor flowing up from the pool in A.

The boiling must be vigorous enough to produce compete mixing

in the liquid pool in A, but not so vigorous as to throw up drops of

liquid to be carried up through the aperture in the bottom of tube B

to pass through the condenser and contaminate the condensed-vapor

sample in E. The liquid sample taken from K is in equilibrium

with thevapor sample from J. Thevolume of reservoir E ismuch less

than the total liquid volume, so that the composition of the liquid in

the main reservoir will be close to—but not identical to—the

composition of the liquid originally introduced into the apparatus.

The apparatus can operate under modest pressures, but it normally

operates at atmospheric pressure with the valve L open and the

boiling rate high enough to have a continual small flow out that

opening, thus excluding air. Many modified versions of this

device are in common usage. (Reprinted with permission from

D. F. Othmer, Composition of vapors from boiling binary solutions.

Ind. Eng. Chem. 20: 743–746. Copyright (1928), American

Chemical Society.)

Table 8.1 Vapor–liquid Equilibrium Data for Acetone and

Water at 1.00Atm

Boiling

Temperature,

T(�C)

Mol Fraction

Acetone in

Liquid, xacetone

Mol Fraction

Acetone in

Vapor, yacetone

100 0 0

74.8 0.05 0.6381

68.53 0.1 0.7301

65.26 0.15 0.7716

63.59 0.2 0.7916

61.87 0.3 0.8124

60.75 0.4 0.8269

59.95 0.5 0.8387

59.12 0.6 0.8532

58.29 0.7 0.8712

57.49 0.8 0.895

56.68 0.9 0.9335

56.3 0.95 0.9627

56.15 1 1

Thesedata are from[1],whichshowssuch tables for21mixtures.Dataon466

suchmixtures are given in [2].Very extensive compilations aregiven in [3, 4].

For binary mixtures (mixtures with only two species) the table shows only

one mol fraction in each phase; the other is found by subtracting this value

from1.0. Thesevalues and thevalues shown inmost such tables are not direct

experimental values. Rather, the experimental data points are plotted as in

Figure 8.4, and then the appropriate temperatures and vapormol fractions are

read fromthose curves (byeyeorbycomputer curvefit andcomputer lookup)

at the even values of the liquid mol fractions as shown in this table.

P = 1.00 atm
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FIGURE 8.4 Data from Table 8.1 plotted as an y-x plot for the

more volatile species (which is in this case is acetone, which boils at

56.15�C, compared to 100.0�C for water). The data points from the

table are shown, and a simple interpolation curve is added. The 45�

line represents the condition ya¼ xa. This line is customarily

shown because the equilibrium curve and this line interact in the

McCabe–Thiele method of calculation of equilibrium stages in

distillation. The plot is all for 1 atm pressure (as are most such

plots). The temperatures from Table 8.1 are not shown.
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8.2 PRESENTING EXPERIMENTAL VLE DATA

Themost commonway to present data of this type is as a table,

likeTable 8.1.Thenextmost commonway topresent them is a

y-x plot for the more volatile species (Figure 8.4). Such plots

arewidely used for simple binary distillation calculations, but

for multispecies mixtures there is no correspondingly simple

plot. The general approach for calculating distillation col-

umns for any number of species defines and uses

Ki ¼ yi

xi
¼ “K factor” ¼ “K value”

¼ equilibrium constant

for distillation

� �
¼

vaporization

equilibrium

ratio;VER

0
@

1
A ð8:1Þ

A separate value of Ki exists for each species in a mixture

being distilled, and its value changes with changes in tem-

perature, pressure, and composition. One also frequently sees

a ¼ relative volatility ¼ Kmore volatile species

Kless volatile species

¼ ya � xb
yb � xa ð8:2Þ

which also changes with changes in temperature, pressure, or

composition.

Example 8.1 Compute the two “K factors” and the relative

volatility for a liquid with 0.05 mol fraction (5 mol%)

acetone, balance water.

Using the values from Table 8.1,

Kacetone ¼ 0:6381

0:05
¼ 12:76 ð8:AÞ

Kwater ¼ 1�0:6381

1�0:05
¼ 0:381 ð8:BÞ

a ¼ 12:76

0:381
¼ 33:5 ð8:CÞ

Figure 8.5 shows these values, and the corresponding

values for the other points in Table 8.1. &

We see that the individual Ks can take on values greater

or less than one, but never negative values. As xi ! 1.0,

Ki ! 1.0 for each species. The relative volatility is always

positive and greater than 1 if there is no azeotrope present

(Section 8.4.4). For quick estimates of the difficulty of a

separation by distillation, the relative volatility a is the

chemical engineer’s favorite. If a is greater than 1.5 to 2

over the whole range of composition values, then distillation

will almost always be the cheapest separation method. If a is

less than 1.1, then we seriously consider other separation

methods. The lowest a mixtures that are separated industri-

ally by distillation have a� 1.05; those separations are

difficult and expensive. Figure 8.5 shows a values from

33.5 to 1.4 for this mixture, which is easily separated by

distillation, except near 100% pure acetone, where the curve

for a drops toward 1.00 and the separation becomes difficult.

Most distillation and equilibrium parts of process-design

computer programs (e.g., Aspen, ChemCad, ProMax) report

Ki values for each species in the VLE data for mixtures, and

some distillation programs report a. It must be clear from

their definitions that they are made up from values of the yi
and xi. The computer programs mostly first compute the yi,

and xi, by the methods shown in the rest of this chapter and

the next, and then compute and report the Ki and a values for

the convenience of users who prefer that formulation; the, xi
and yi, are the basic values. The common hand-calculation

methods of estimating VLE are presented in terms of the K

values in Section 8.9.

Section 8.4 shows and discusses several other common

ways of plotting experimental VLE data like that in Table 8.1.

8.3 THE MATHEMATICAL TREATMENT

OF LOW-PRESSURE VLE DATA

The tables and plots shown in the previous section are clear

and have some intuitive content. But in the age of computers

we wish to reduce all such information to equations, which

can then be used by computers to interpolate and extrapolate

the data and to apply it to practical problems. Furthermore,

these equations will allow us to estimate VLE for systems for

which we have little or no data, often with considerable

success.
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FIGURE 8.5 Kwater, Kacetone, and the relative volatility a plotted

as a function of acetone mol fraction in the liquid at 1 atm pressure,

using data from Table 8.1. The curves are simple interpolations.
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The normal way of representing and correlating such data

is via equations for the fugacity coefficient in the gas and the

activity coefficient in the liquid.We know from chapter 7 that

for each species in a VLE, f
vapor
i ¼ f

liquid
i for each species i.

Substituting the definitions of the fugacity coefficient, f̂i, in

the vapor and the activity coefficient, gi, in the liquid we find

f
vapor
i ¼ f̂iyiP¼ f

liquid
i ¼ gixipi or f̂iyiP¼ gixipi ð8:3Þ

The right hand side of Eq. 8.3 is called the “phi-gamma”

representation of VLE, and is used almost universally in

chemical engineering (and in the rest of this book). For most

of low-pressureVLE thevapor phase is close enough to being

an ideal gas that we set f̂i ¼ 1:00;which makes our working

equation

yiP¼ gixipi

working equation for low-pressure VLE;
with vapor phase assumed practically ideal gas

� �
ð8:4Þ

Example 8.2 Estimate the liquid-phase activity coeffi-

cients for acetone and water from the data in Table 8.1.

Here we need to know the vapor pressures pi correspond-

ing to the temperatures of each of the values in the table. We

estimate them from the Antoine equation using the values in

Table A.2. For the data point at 74.8�C, the computed vapor

pressures are 1.812 and 0.377 atm, so

gacetone ¼
yacetoneP

xacetonepacetone
¼ 0:6381 � 1 atm

0:05 � 1:812 atm ¼ 7:04 ð8:DÞ

and

gwater ¼
ywaterP

xwaterpwater
¼ ð1�0:6381Þ � 1 atm

ð1�0:05Þ � 0:377 atm ¼ 1:01 ð8:EÞ

We may repeat this calculation for each point in the table

(which is tedious by hand but very easy on a spreadsheet) and

plot the results as shown in Figure 8.6 &

From the definition of the activity coefficient, it is clear

that it must be unity for a pure species. In Figure 8.6 we

can see that each activity coefficient curve does indeed

become 1.00 and also becomes tangent to the gi¼ 1.00 line

as the mol fraction of that species becomes unity. We also

see that both activity coefficients increase as the concen-

tration of that species decreases. Intuitively, we can say

that as we approach xi¼ 1.00, most of the i molecules are

surrounded by other i molecules, so their interaction with

each other is practically the same as in a pure solution, and

gi¼ 1.00. Conversely, as we approach xi¼ 0.00, each

lonely i molecule is surrounded entirely by the other kind

of molecule, so that any difference in intermolecular

behavior between the two kinds of molecule will be at

its maximum for the few i molecules that remain. That is

also very common behavior. We will see in Chapter 9 that

there are strong restrictions on the possible shapes the

curves on Figure 8.6.

Figure 8.6 contains, implicitly, all the data in Table 8.1.

If we were told, for example, that at 1 atm pressure a

liquid with xacetone¼ 0.05 had gacetone¼ 7.04 and gwater
¼ 1.01 (and that the gas phase was practically an ideal

gas), then that information plus the Antoine equation

constants from Table A.2 would be enough information

to compute both the equilibrium temperature and the value

of yacetone.

8.3.1 Raoult’s Law Again

We can rewrite Eq. 8.4 as

yi ¼ gixipi
P

ð8:5Þ

Comparing this to Eq. 3.5, Raoult’s law, we see that they are

the same, except that Eq. 8.5 has a liquid-phase activity

coefficient, while Raoult’s law has set that equal to 1.0. Since

we defined an ideal solution as one in which gi¼ 1.00 for all

values of xi, we can see that Raoult’s law is the ideal-solution

simplification of the more general form shown in Eq. 8.5.

From the fact that the calculated activity coefficients for

acetone-water (Example 8.2) are greater than 1.00, we can

see that thismixture isnot an ideal solution and does not obey

Raoult’s law.
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FIGURE 8.6 Calculated activity coefficients for acetone and

water at 1 atm based on the experimental values in Table 8.1. The

values in Example 8.2 are the first points from the left in this plot,

corresponding to xacetone¼ 0.05. The curves are simple smoothed

interpolations. Activity coefficient plots are almost always pre-

sented on semi-logarithmic coordinates, as is this one. In the text

we often refer to plotting ln (gi); that is equivalent to what we show
here, plotting gi on a logarithmic scale.
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Example 8.3 Howmuch difference does nonideal solution

behavior make in the acetone-water VLE? To answer this,

compute the boiling temperature and vapor composition that

would correspond to a liquid with xacetone¼ 0.05, if this were

an ideal solution (gi¼ 1.00),—Raoult’s law—and compare

them to the experimental values.

This is a repeat of Example 3.5. We must find, by trial and

error, the temperature at which the sum of the computed ideal

solutionvapor-phasemol fractions is 1.00. For our first try, we

guess T¼ 80�C. Using the Antoine equation constants in

Table A.2, we compute that at 80�C the two pure species

vapor pressures for acetone and for water are 2.11 and

0.47 atm. Then multiplying each of these by the correspond-

ing liquidmol fractions and dividing by 1 atm,we find that the

computed vapor mol fractions are 0.106 and 0.444, and that

their sum is 0.55. This is less than 1.00, so our assumed

temperature is too low. Thesevalues are shown as the first data

row in Table 8.A. The calculation was done on a spreadsheet,

with which one can quickly repeat the calculation for various

assumed temperatures and display the results in subsequent

rows of Table 8.A. The assumed temperature that makes the

sum of the vapor-phasemol fractions equal 1.00 is T¼ 96.406
�C. (We should not believe that we know any boiling tem-

perature �0.001�C, we should report the calculated boiling

temperature as 96.4�C). &

The results of this calculation are compared with the

experimental values in Table 8.B. The ideal solution assump-

tion leads to very poor estimates of thevapor composition and

boiling temperature. Looking back at the values of the

activity coefficients in Figure 8.6, we see that at this xa the

activity coefficient of acetone is �7. The ideal solution

assumption, that these activity coefficients¼ 1.00, is a very

poor assumption here. (If all solutions were ideal solutions,

industry would need far fewer chemical engineers than it

currently employs!)

The choices of values for f oi made here are often called

“Raoult’s law type” choices and the gi thus found are called

“Raoult’s law-type activity coefficients.” We can see why

with Table 8.2. This formulation of simple, low-pressure

VLE in terms of Raoult’s law-type activity coefficients is

the most commonly used formulation. When we see an

activity coefficient for low-pressure VLE without a descrip-

tion of which type it is (i.e., what choices have been made

for f
o; vapor phase
i and f

o; liquid phase
i ), then it is most likely of

this type.

8.4 THE FOUR MOST COMMON TYPES

OF LOW-PRESSURE VLE

Before we continue to the correlation and prediction of low-

pressure VLE, which mostly means the correlation, predic-

tion, and use of liquid-phase activity coefficients of the

Raoult’s law type, we first consider the four most common

outcomes of experimental VLE measurements. These four

differ from each other mostly because of the magnitude and

direction of the intermolecular forces between the two types

of molecules in the liquid phase, as is discussed when we

discuss each of the various types. The vast majority of exper-

imental VLE data can be represented as one of these four

types of behavior. This section follows closely the treatment

in the classic text of Hougen, Watson and Ragatz [6].

Figures 8.7, 8.8, 8.9, and 8.12 show examples of the four

most common types of outcomes of the simple low-pressure,

binary VLE experiments described in Section 8.1, called

types I, II, III, and IV. In each of these figures the vapor is

assumed to be an ideal gas, as in Table 8.2. In each of these

figures the same information is presented four ways. In part

(a), the partial pressure of each species is plotted against mol

fraction of the more volatile (lower boiling) species in the

liquid, and the total equilibrium pressure (sum of the partial

pressures) is shown, all at a constant temperature (not the

same temperature in all four plots, but one chosen for each

mixture to have the total pressure near 1 atm). Part (b) shows

Table 8.A Trial and Error Solution in Example 8.3

Assumed T(�C) Calculated pa (atm) Calculated pb (atm) ya¼xapa/P yb¼ xhpb /P
P

yi

80.0000 2.1114 0.4674 0.1056 0.4441 0.5496

90.0000 2.7939 0.6919 0.1397 0.6573 0.7970

95.0000 3.1927 0.8342 0.1596 0.7925 0.9521

96.4060 3.3123 0.8783 0.1656 0.8344 1.0000

97.0000 3.3638 0.8975 0.1682 0.8526 1.0208

Table 8.B Comparison of Experimental Values to Those

Computed by the Ideal Solution (Raoult’s Law) Assumption,

for xacetone¼ 0.05 and P¼ 1.00 atm

Experimental

Values from

Table 8.1

Values Calculated

in Example 8.3.

Assuming

Ideal Solution

Equilibrium (boiling)

temperature T�C
74.8 96.4

Mol fraction acetone

in the vapor phase (ya)

0.6381 0.1656
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the activity coefficients (Raoult’s law type) plotted the same

way as Figure 8.6. As is customary, these show the activity

coefficient on semi-logarithmic coordinates. Part (c) shows

the vapor composition as a function of the liquid composition

at 1 atm, exactly as is done in Figure 8.4. Finally, part (d)

shows both vapor and liquid compositions and boiling tem-

peratures at 1.00 atm, just as was done in Figure 3.12.

Parts (d) of these figures are phase diagrams. On them we

can enter at a specific temperature and liquid or vapor phase

composition, and determine whether the material is present

as a vapor, a liquid, or a two-phase mixture and if so, the

composition of the other phase (at the pressure for which the

plot was made, 1.00 atm in this case.)

Table 8.2 Comparison of Raoult’s Law, and Raoult’s

Law-type Activity Coefficients

Variable in Eq. 8.3

Replacement in

Raoult’s Law

Replacement with

Raoult’s Law-type

Activity Coefficient

f̂i 1.00 1.00

yi yi yi

f
o;vapor phase
i P P

gi 1.00 gi
f
o;liquid phase
i pi pi

Working

equation for yi

yi ¼ xipi

P
yi ¼ gixipi

P

1200 2.0
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FIGURE 8.7 (a) Partial and total pressure of benzene–toluene solutions at 90�C. (b) Activity
coefficients for benzene–toluene solutions, independent of pressure and temperature. (c) Vapor–liquid

equilibrium diagram for benzene–toluene solutions at 1.00 atm. The “reference curve” is simply a 45�

line on these coordinates. It is traditionally shown because it and the equilibrium curve are used in the

McCabe–Thiele calculation method for distillation columns, (d) Vapor–liquid equilibrium phase

diagram for benzene–toluene solutions at 1 atm. This is the same as Figure 3.12, with the behavior of a

liquid turning to a vapor sketched on it, as described in the text.
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8.4.1 Ideal Solution Behavior (Type I)

Figure 8.7 is for the benzene-toluene mixture, which is

regularly cited as an example of ideal solution behavior; its

measured behavior is very close to ideal solution behavior

(see Problem 8.7). Figure 8.7a shows that for an ideal

solution at a constant temperature of 90
�
C, the total pressure

and the two partial pressures are linear functions of liquid-

phase mol fraction of the more volatile species. The total

pressure goes from the pure species vapor pressure of toluene,

407 torr, to the pure species vapor pressure of benzene, 1021

torr. The partial pressures range from zero to the pure species

vapor pressures. Increasing the temperature would increase

the individual species’ values of pi, thus increasing the end-

points of the lines, but not the overall shape of the figure.

Figure 8.7b shows that for an ideal solution all activity

coefficients are 1.00, forming a remarkably dull plot.

Its analogs for nonideal solutions (types II, III, and IV) are

much more interesting. Figure 8.7c shows that for ideal

solutions of species with different boiling points, at any

liquid composition the equilibrium vapor contains more of

the lower-boiling species than does the liquid. This makes

type I mixtures ideally suited for separation by distillation;

wemay prepare a and b (e.g., benzene and toluene) from such

a mixture by simple distillation to whatever purity we are

willing to pay for.

Figure 8.7d is an exact copy of Figure 3.12 with additional

information. The two-phase boundary curves are labeled as

the bubble-point and dew-point curves, and the course of a

simple equilibrium vaporization (fromA to E) is sketched. If

we heat a liquid mixture of 50 mol% benzene, 50 mol%

toluene at 1 atm, starting at point A at temperatures below

92�C only liquid will be present. At 92�C and 50 mol%

benzene, point B, the bubble point, the liquid begins to boil

and the first vapor bubble appears. This vapor must be at the

same temperature as the liquid, 92�C, but, as shown on the

figure, its composition is that at point C, about 72 mol%

benzene. As we continue to heat the liquid, it boils, so that

the mass and volume of liquid decrease and the mass and

volume of vapor increase. The temperature rises, and the

compositions of the two phases change. The vapor has

more benzene than the liquid, so as we produce vapor we

must reduce the benzene content of the remaining liquid.

As we do so, the vapor subsequently produced is poorer

in benzene than that first produced, so the benzene content

of the vapor also falls (at equilibrium all phases are internally

completelymixed!). The path followed by the liquid is fromB

to D, while that of the vapor is from C to E. At 98�C the last

droplet of liquid, with compositionD, evaporates, so we have

all vapor. This vapor must have the same composition as our

starting liquid, because we have vaporized all the starting

liquid. Point E has the same composition as points A and B.

If we ran the process backward, starting with vapor at a

temperature greater than 98�C and cooling, the path followed

would appear the same in Figure 8.7d, with the direction of

the arrows reversed. When the vapor reached 98�C, the dew
point, the first droplet of liquid would appear, with compo-

sition at pointD. From this we see that the upper curve,which

is labeled dew-point curve on Figure 8.7d represents those

states at which the vapor is in equilibrium with a liquid at the

same temperature, with the liquid composition on the bubble-

point curve. If any liquid and any vapor are in equilibrium,

then the liquid is at its bubble point and the vapor is at its dew

point. If we add a little heat to the mixture, an additional

bubble will form. If we remove a little heat, an additional

drop of dew will form. Both phases must be at the same

temperature and pressure, but, as this figure shows, their

compositions will generally be different.

8.4.2 Positive Deviations from Ideal Solution

Behavior (Type II)

Figure 8.6 shows that for the acetone–water system the

liquid-phase activity coefficients are �1.00 for all possible

mixtures. This is type II, positive deviation from ideal

solution behavior (the logarithms of the activity coefficients

are positive). Figure 8.8 has the same format as Figure 8.7,

and shows that type of deviation for mixtures of isopropanol

and water.

Figure 8.8a shows that for positive deviation from ideal

solution behavior the partial pressure curves and the total

pressure curve all bow upward, relative to the straight line

connecting their endpoints, as Eq. 8.5 says theymust. For this

set of activity coefficients, the total pressure curve (at con-

stant temperature) has a maximum. This corresponds in

Figure 8.8d to a minimum in the boiling-point T-xa curve.

This is produces a minimum-boiling azeotrope.

Figure 8.8b shows the same kind of ln ga, vs. xa plot as
Figure 8.6. As expected, the activity coefficient curves

approach 1.00 asymptotically as the individual mol fractions

approach 1.00, and have values greater than 1.00 for all other

concentrations, becoming larger as the concentration of the

species becomes smaller.

Figure 8.8c shows that for liquid isopropanol concentra-

tions less than the azeotrope (which corresponds to xa¼
yb� 0.685), the vapor contains a higher percentage of

isopropanol than the liquid, while at liquid isopropanol

concentrations greater than the azeotrope the vapor contains

less isopropanol than the liquid. At the azeotrope (where the

equilibrium curve crosses the reference curve) thevapor and

liquid have the same composition, and the boiling-point

temperature of this mixture, 80.4�C, is less than the boiling
point of either pure species or of any mixture of them with a

different composition (at 1.00 atm). This type of azeotrope

is common, and makes separation by distillation difficult. If

we start with a liquid mixture of, say, 10 mol% isopropanol

and attempt to separate it into pure isopropanol and pure

water by distillation, we find that it is easy to get practically
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pure water from the mixture; the low isopropanol part of

Figure 8.8c is similar to that in Figure 8.7c. But it is not

possible to produce pure isopropanol by distillation be-

cause, as Figure 8.8c shows, at high concentrations of

isopropanol, the vapor contains a lower concentration of

isopropanol than the liquid.

Figure 8.8d shows that this system has a minimum

boiling point, and two regions with different behaviors on

either side of the composition at which that minimum

occurs. For liquid solutions to the left of the azeotrope in

Figure 8.8d (xa< 0.685) the figure is of the samegeneral type

as Figure 8.7d. If we attempted to separate a liquid in this

composition range by simple distillation we would produce

practically pure water and the azeotrope. If we started with a

solution to the right of the azeotrope in Figure 8.8d, simple

distillation would produce pure isopropanol and the azeo-

trope. But simple distillation will not produce practically

pure isopropanol and practically pure water from any liquid

solution shown on this diagram.

8.4.3 Negative Deviations from Ideal Solution

Behavior (Type III)

Figure 8.9 shows type III, the opposite of the type II behavior

in Figure 8.8, for mixtures of acetone and chloroform.

The activity coefficients (Figure 8.9b) for all possible mix-

tures are �1.00. This is called negative deviation from ideal

solution behavior (the logarithms of the activity coefficients
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FIGURE 8.8 (a) Partial and total pressure of isopropanol–water solutions at 84�C. (b) Activity
coefficients for isopropanol and water at 1 atm. This is a more interesting plot than Figure 8.7(a).

(c) Vapor–liquid equilibrium diagram for isopropanol–water solutions at 1.00 atm. (d) Vapor–liquid

equilibrium phase diagram for isopropanol–water at 1 aim.
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are negative). Almost all the statementsmade in Section 8.4.2

apply here, with the words minimum and maximum (and

higher and lower and positive and negative) interchanged.

Figure 8.9a shows that for negative deviation from ideal

solution behavior the partial pressure curves and the total

pressure curve all bow downward, relative to the straight line

connecting their endpoints, as Eq. 8.5 shows they must. For

this set of activity coefficients, the total pressure curve (at

constant temperature) has a minimum. This corresponds in

Figure 8.8d to a maximum in the boiling point T-xa curve,

producing a maximum-boiling azeotrope.

Figure 8.9b shows a ln ga vs.xa plot, which is conceptually
the opposite of Figure 8.8b. As expected, the activity coef-

ficient curves approach 1.00 asymptotically as the individual

mol factions approach 1.00, and havevalues less than 1.00 for

all other concentrations, becoming smaller as the concen-

tration of the species becomes smaller.

Figure 8.9c shows that for liquid acetone concentrations

greater than the azeotrope (which corresponds to xa¼ ya
� 0.345), the vapor contains a greater percentage of acetone

than the liquid, while at liquid acetone concentrations less

than the azeotrope the vapor contains less acetone than the

liquid. At the azeotrope the vapor and liquid have the same

composition, and the boiling-point temperature of this mix-

ture, 64.5�C, is greater than the boiling point of either pure

species or of any mixture of them with a different compo-

sition (at 1.00 atm).

Figure 8.9d is practically the vertical mirror image of

Figure 8.8d. It shows that this system has a maximum boiling

point, and two regions with different behaviors on either side

of the liquid composition at which that maximum occurs.

This type of azeotrope is less common thanminimum boiling

azeotropes, but it also makes separation by distillation dif-

ficult. If we start with a mixture to the left of the azeotrope in
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Figure 8.9d (xa< 0.345), simple distillation will produce

practically pure chloroform and the azeotrope, while for

xa> 0.345, simple distillation produces practically pure

acetone and the azeotrope. But simple distillation will not

produce practically pure acetone and practically pure chlo-

roform from any liquid solution shown on this diagram.

Almost all examples of type III behavior (activity coeffi-

cients<1.00) are formixtures inwhich the individual species

form some kind of attractive bond with each other, typically

hydrogen bonds. Normally, these are not as strong as, for

example, the covalent bonds that bind hydrogen to oxygen in

a water molecule, but they are strong enough to produce the

results shown in Figure 8.9. Most often these bonds affect the

behavior of the liquid significantly, but have little effect on

the behavior of the vapor (where the average intermolecular

distances aremuch greater). Thus the assumption of ideal gas

behavior here is a good one. An interesting exception is

discussed in Chapter 13. The evidence for the formation of

such bonding in liquid acetone–chloroform mixtures is

given in [7, p. 86]. A more extreme example of type III is

the water–sulfuric acid system. Figure 8.10 shows that in

dilute solutions of sulfuric acid in water the sulfuric acid

activity coefficient is approximately 10�5 to 10�6.

8.4.4 Azeotropes

A minimum-boiling azeotrope occurs when the system

pressure curve (at constant temperature) has a maximum;

a maximum-boiling azeotrope occurs when the system

pressure curve (at constant temperature) has a minimum.

A minimum-boiling azeotrope can occur only for activity

coefficients greater than 1.00; a maximum-boiling azeo-

trope only for activity coefficients less than 1.00. Activity

coefficients greater than 1.00 indicate that the molecules of

the two species repel one another or at least are less

attracted to each other than to their own kind, for example,

acetone and water. Activity coefficients less than 1.00

indicate that the molecules of the two species are more

attracted to the other kind than to their own kind, for

example, H2SO4–H2O.

For a given degree of mutual repulsion or attraction, the

probability of forming an azeotrope becomes greater as the

difference in boiling points of the two species becomes

smaller. On a plot like parts (a) of Figures 8.7, 8.8, and 8.12

(below), nonideal behavior bends the curve upward (types II

and IV) from the ideal solution line for positive deviation or

downward (type III) for negative deviation. If the ideal

solution line is steep (the boiling points are far apart), then

a large deviation from ideal solution is needed to produce a

minimumor amaximum. If the line is close to flat (the boiling

points are close together), then a modest deviation will

produce aminimum or amaximum. In Figure 8.8 the activity

coefficients are less than shown in Figure 8.6, but the

difference in NBP is small (100 and 82�C). The mixture in

Figure 8.6 is more strongly nonideal than that in Figure 8.8

(larger activity coefficients), but because of its wide differ-

ence in NBP (100�C and 56.1�C) acetone–water does not

form an azeotrope at 1.00 atm.

Figure 8.11 shows the T-x diagram for acetone–water

based directly on Table 8.1. Comparing this to Figure 8.8dwe

see that although the dew-point and bubble-point lines

deviate strongly from an ideal-solution bubble-point and

dew-point lines (Figure 8.7d), the large difference in NBPs
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prevents the curves from showing a minimum, and hence

there is no azeotrope.

Binary azeotropes between compounds with widely dif-

ferent boiling points are rare. Table A.6 shows a sample table

of azeotropes. The Handbook of Chemistry and Physics [9]

lists over a thousand binary azeotropes. For water (NBP –

100�C) the highest boiling is the azeotrope with hydrogen

iodide at 127�C; the vast majority fall in the boiling range

70–99�C. The few that have lower temperatures have very

little water in the azeotrope; for example, the water-isoprene

azeotrope boils at 32.4�C and is 99.86 wt% isoprene. About

90% of the known azeotropes are of the minimum-boiling

variety. It is worth the student’s while to spend a little time

looking at Table A.6, to form an intuitive idea of what kind of

binary mixtures form azeotropes.

8.4.5 Two-Liquid Phase or Heteroazeotropes (Type IV)

Figure 8.12 shows the same four plots for type IV, a

two-liquid phase system or hetewazeotrope. This may be

considered an extreme example of positive deviation from

ideality. In Figure 8.8, type II (isopropanol–water), the
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positive deviation from ideality was strong enough to pro-

duce an azeotrope, but not so strong that the two liquids were

not miscible in all proportions. In Type IV the mutual

repulsion between the two kinds of molecules is strong

enough that over the concentration range from � 65 mol%

water to � 98 mol% water no single liquid phase

exists (at 1 atm and the boiling point). So, for example, if

we were to make up a mixture of 80 mol of water and 20 mol

of n-butanol, at equilibrium we would find two liquids, one

with 65 mol% water and one with 98 mol% water, but no

liquid with 80 mol% water. We discussed this type of

situation in Section 6.5 andFigure 6.9. There the hypothetical

binary had symmetric properties, and the two liquids were
1
6
and 5

6
mol fraction of one species. Real situations are never

as simple as that, as this example shows.

Figure 8.12a shows that for positive deviation from ideal

solution behavior the partial pressure curves and the total

pressure curve all bow upward, relative to the straight line

connecting their endpoints, as Eq. 8.5 shows they must.

Comparing this figure to Figure 8.8a we see that the total

pressure and partial pressure of n-butanol rise very steeply

in thewatermole fraction range 0.98 to 1.00, and that all three

pressure curves are totally horizontal in the two-liquid-

phase region. The maximum in the vapor-pressure curve

(at constant T) produces a minimum-boiling azeotrope like

type II, which is called a heteroazeotrope to make clear that

two liquid phases are present.

Figure 8.12b shows the same kind of In ga vs. xa plot as
Figure 8.6 or 8.8. In the two regions with only one liquid

phase there are only two activity coefficients whose curves

approach 1.00 asymptotically as the individual mol fractions

approach 1.00 and have values greater than 1.00 for all other

concentrations, becoming larger as the concentration of the

species becomes smaller. In the two-phase region there are

two liquids, each with two activity coefficients, so there are

four straight lines across the two-phase region, as discussed

in Example 8.6.

Figure 8.12c has the same general shape as Figure 8.8c,

but the departure from ideal solution is much stronger. In the

two-liquid-phase region themol fraction ofwater in thevapor

is constant, as discussed below. This type of azeotrope is also

common, and makes separation by distillation difficult. If we

start with a mixture to the left of the azeotrope, for example,

10 mol%water, and attempt to separate it into purewater and

pure n–butanol by distillation we find that it is easy to get

practically pure n–butanol from the mixture; the low-water

part of Figure 8.12c is similar to that in Figure 8.7c. But it is

not possible to produce pure water because, as Figure 8.12c

shows, at high concentrations of water the vapor contains a

lower concentration of water than the liquid.

Figure 8.12d shows that this system has a minimum

boiling point, and three regions with different behaviors,

one on either side of the composition at which two liquid

phases are present, and a third type of behavior for the region

in which two liquid phases are present.

This type of equilibrium is not seen in everyday experi-

ence, but is very common in petroleum refining, in which

steam and water are often mixed with hydrocarbons, and the

mixture is then treated by distillation; liquid water and liquid

hydrocarbons repel each other strongly; “water and oil don’t

mix” (but see Chapter 11). We may visualize the situation as

shown in Figure 8.13. The two liquid phases will generally

not have equal densities, so the less-dense liquid will float

upon the more dense liquid (low-molecular weight hydro-

carbons like gasoline float on water). For the three phases to

be in equilibrium, the liquids generally will have to be

boiling, so that vapor bubble formation provides vigorous

agitation. If the liquids are not agitated, and the pressure or

temperature are changed, the vapor will quickly come to

equilibrium with the less dense liquid, which it contacts, but

will not quickly come to equilibrium with the more dense

liquid, which it can exchange matter with only by slow

diffusion through the less dense liquid. The entire discussion

here is of equilibrium with good agitation, normally by

boiling, which brings all three phases to equilibrium.

Example 8.4 Eighty mols of water and 20 mols of n-

butanol are mixed at 92�C, coming to equilibrium. Two

liquid phases form. Based on Figure 8.12 estimate howmany

mols of each of the liquids are present.

Here we know the mol fraction of water in each phase.

Let nT, n
(1), and n(2) be the total number of mols and the

number of mols in each of the two phases. Let zfeed be the

mols of water (species a) fed/total mols fed. Then bymaterial

balance on water

nTzfeed ¼ nð1Þxð1Þa þ nð2Þxð2Þa ¼ nð1Þxð1Þa þðnT�nð1ÞÞxð2Þa

nð1Þ

nT
¼ zfeed�x

ð2Þ
a

x
ð1Þ
a �x

ð2Þ
a

¼ 0:8�0:98

0:65�0:98
¼ 0:545

ð8:FÞ

Vapor

Less dense liquid

More dense liquid

FIGURE 8.13 Two liquid phases and one vapor phase in

equilibrium.
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We would expect to find 54.5 mols of the 65 mol% water

liquid and (100 – 54.5¼ 45.5) (mols of the 98 mol% water

liquid. &

Outside the two-liquid phase region (i.e., for xwater less

than 65 mol% or greater than 98 mol%) the four parts of

Figure 8.12 have the same shapes as Figure 8.8, but with

more extreme deviation from ideal solution behavior

(larger activity coefficients than Figure 8.8). Please make

that comparison to see that this is true. If we repeat

Example 8.4, always for 100 total mols, for any value of

the mols of water in the feed between 65 and 98, we will

find some value of the above ratio between 0.0 and 1.0. As

long as both liquid phases are present, all liquid–phase

intensive properties in both phases are constant, indepen-

dent of the ratio of mass or mols one phase to another. The

ratio of the mass or mols of one phase to the other, which is

not represented in these figures, does change as this feed

ratio changes. Thus, all the curves representing the liquids

are exactly horizontal in this two-liquid-phase region.

However, only one vapor composition can be in equili-

brium with these two liquids, regardless of their mol ratios.

Figure 8.12d shows this; that vapor has about 73 mol%

water.

The previous examples have all been of two phases in

equilibrium. Here we have three. The basic relations must be

the same, but with more terms in the equations. For three

phases (1, 2, 3) with two chemical species (a, b),

f ð1Þa ¼ f ð2Þa ¼ f ð3Þa and f
ð1Þ
b ¼ f

ð2Þ
b ¼ f

ð3Þ
b ð8:GÞ

The fugacity of water is the same in all three phases; the

fugacity of n-butanol is the same in all three phases.

Example 8.5 An equilibrium (dew-point) vapor at

1.00 atm has ywater¼ 60 mol%, balance n-butanol. What is

the composition of the equilibrium (bubble-point) liquid?

Repeat the example for vapors containing 90mol%water and

73 mol% water.

FromFigure 8.12d, if we start at 130�Cand 60mol%water

and cool, wewill have only vapor until wemeet the dew-point

line at 99�C, and at the same temperature the bubble-point

curve shows xwater� 0.22. For ywater¼ 90 mol%, the same

procedure brings us to the rightmost dew-point curve at 98�C.
In this case, the corresponding bubble-point line is not the one

at the left, but the steeply sloping one at the right, from which

we read xwater� 0.99. For ywater¼ 73 mol% we see that the

twodew-point linesmeet at 92�C.Vapor of this composition is

in equilibrium with both liquid phases, as sketched in

Figure 8.12d. Vapor with any other composition is in equi-

librium with only one liquid, with xwater< 0.65

if ywater< 0.73, and xwater> 0.98 if ywater> 0.73. &

Example 8.6 Estimate the activity coefficients for water

and for n-butanol for the situation sketched in Figure 8.13, in

which two liquid phases and the gas phase are all in equi-

librium. From Figure 8.12d we know the mol fractions of

water in all three phases, and the temperature, 92�C. From the

Antoine equation and Table A.2 we estimate the vapor

pressures of pure n-butanol and water at this temperature as

5.38 and 10.9 psia.

We make the same assumptions as in Section 8.2 (ideal

gas), from which we see that the fugacity of water in the gas

phase is the same as its partial pressure, 0.73 atm, and that of

n-butanol is 0.27 atm. Then, from the criterion of equilibri-

um, we know that the fugacity of water in each of the two

liquid phases must be 0.73 atm, and the fugacity of n-butanol

in each of the two liquid phasesmust be 0.27 atm.We see that

we need to compute four liquid-phase activity coefficients,

instead of the two in Section 8.3, because there are two liquid

phases. For water in the phase with xwater� 0.65,

gwater ¼
ywaterP

xwaterpwater
¼ 0:73 � 14:7 psia

0:65 � 10:9 psia ¼ 1:51 ð8:HÞ

We then make up Table 8.C, showing all four liquid-phase

activity coefficients.

These are the four activity coefficients shown in

Figure 8.12d. (The experimental data for this system [10,

p. 328] show considerable data scatter and disagreement

between data sets. The value for gn-butanol calculated here is

roughly twice the value shown in that figure. The experi-

mental data differ at least that much between data sets.)&

From Figure 8.12a we see that the partial pressures form a

maximum, similar to Figure 8.8a, but that over the whole

range where two liquid phases exist that pressure is constant.

From Figure 8.12c we see that this is the same type of

azeotrope as Figure 8.8c, except that the vapor composition

is constant over the range of liquid variables for which two

liquid phases are present.

8.4.6 Zero Solubility and Steam Distillation

A logical extension of Figure 8.12 (type IV) is a pair of

liquids that have practically zero solubility, such asmercury

and water. There is no known case of absolute zero solu-

bility, either theoretically or experimentally (see Chapter

11) but at room temperature the measured solubility of

Table 8.C Summary of Example 8.6

Phase xwater

fwater
(atm) gwater xn-butanol

fn-butanol
(atm) gn-butanol

1 0.65 0.73 1.51 0.35 0.27 2.10

2 0.98 0.73 1.005 0.02 0.27 36.9
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mercury in water is only 4 ppb mol fraction [11]. The

solubility of water in mercury is not easily found in the

literature but is believed to be comparable to the solubility

of mercury in water, a few parts per billion by mol. The

analog of Figure 8.12 would have the two-phase region

extending from xwater¼ 4	 10�9 to about xwater¼ (1.00

minus a few parts per billion). This makes the two miscible

regions so thin that they cannot be distinguished from the

vertical axes, and makes the mercury-in-water activity

coefficient� 2.5	 108 and that of water-in-mercury about

the same. These high activity coefficients indicate the strong

molecular incompatibility betweenwater andmercury. This

is an extreme case of type IV (Figure 8.12).

Example 8.7 Suppose that the solubilities of water in n-

butanol and of n-butanol in water were zero, instead of the

actual solubilities shown in Figure 8.12d. Then, at 1 atm,

what would be the boiling-point temperature of the system

shown in Figure 8.12, and what would be the composition of

the vapor?

In this case the two liquids shown in Figure 8.13 would

be pure water and pure n-butanol. We assume that there is

vigorous boiling, so that both liquids are in contact with the

vapor, and thus in equilibrium with it. Raoult’s law should

apply to each of the two phases separately. If wewrite Eq. 8.5

for either one of the pure phaseswe see that for each yi¼ pi /P,

because in any pure phase xi¼ gi¼ l.00. Writing this

equation for each species, adding the equations, and solving

for P, we find

P ¼
X

yiP ¼
X pi

P
P ¼

X
pi ð8:1Þ

The total pressure is the sum of the individual pure species

vapor pressures. To find the boiling-point temperature

we perform a trial and error like that in Example 8.3 (see

Table 8.D), with the difference that each of the liquid mol

fractions is taken as� 1.00. The result is compared to the

experimental values (fromFigure 8.12d) in Table 8.D.We see

fair agreement, indicating that for mixtures of limitedmutual

solubility, the zero-solubility assumption and Raoult’s law

lead to fair estimates of the boiling point and vapor compo-

sition. This result is the basis of steam distillation. If we had a

sample of n-butanol contaminated with some high-boiling

material, we could boil off the n-butanol, with steam, at a

temperature of 92�C. The boiling point of pure n-butanol is

117.5�C. By using the water we lower the combined boiling

temperature by 25�C. For heat-sensitive or high-boiling

materials this lowering of the boiling point is important, and

steam distillation is widely used. (We could accomplish the

same result by vacuum distillation; for some cases it is more

economical than steam distillation, for others not.) If we have

measured equilibrium data for the mixture, like Figure 8.12,

we use that data to estimate the boiling point and vapor

composition. If we do not have such data, we use the method

in this example, and, as shown, find a fair estimate of the

observed behavior. &

It may seem strange to have practically pure water boiling

at 89�C and 1 atm pressure. But because the vapor is only

65mol%water this is really water boiling at a partial pressure

of 0.65 atm, for which the pure-water boiling temperature

really is 89�C! The values shown above are independent of

how much of each liquid phase is present, as long as both are

present. The same is true for Figure 8.12, as is confirmed by

the phase rule (Chapter 15).

8.4.7 Distillation of the Four Types of Behavior

In Figure 8.7d (type I) we saw that if we beganwith amixture

that was 50mol% benzene and heated it until it began to boil,

the liquid and vaporwould have different compositions. If we

vaporized about half of that mixture (halfway betweenB and

D in that figure) the vapor would have roughly 65 mol%

benzene, and the liquid roughly 35 mol% benzene. If we

separated the vapor and condensed it, we would have per-

formed a simple distillation, changing one liquid with 50mol

% benzene into two liquids with roughly 65 and 35 mol%

benzene. If we then repeated the process with each of these,

we would have four liquids, etc., with a range of benzene

concentrations. Modern fractional distillation columns do

this in an efficient way, producing one overhead product,

which in this case would be practically pure benzene,

and one bottom product, which in this case would be

practically pure toluene. In any simple fractional distillation,

the lower-boiling material concentrates in the overhead, and

the higher-boiling material in the bottoms. For type I the

purity of the two products would be limited only by how

much we were willing to pay.

For types II, III, and IV, the situation is more complex.

If we follows the same logic shown above, we find the results

in Table 8.3. The reader is encouraged to work these

relations out, using the same logic shown above, for types

II, III, and IV.

Table 8.D Solution to Example 8.7

Experimental

Value from

Figure 8.12.d

Value from

Example 8.7,

Assuming Zero

Mutual Solubility

Boiling temperature

T (�C)
92 89

Mol fraction water

in vapor phase, ywater

0.73 0.67
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8.5 GAS–LIQUID EQUILIBRIUM,

HENRY’S LAW AGAIN

In the previous sections of this chapter, VLE has mostly

concerned equilibrium of vapors and liquids (see Section

3.2.1 for the distinction between gases and vapors). In all

of the plots previously presented in this chapter, both of

the species can exist as a pure liquid at the temperature of

interest. In all of the figures shown so far, the vapor–liquid

equilibrium region extends over the whole range of xa. Do

the same ideas and equations apply to gas–liquid equi-

librium, such as the air–water system we spent so much

time on in Chapter 3? In principle, yes; in practice, yes

and no.

First, reconsider Henry’s law. We saw in Chapter 3, that

Henry’s law was Raoult’s law, rewritten to replace the pure

liquid’s vapor pressure piwith an experimentally determined

Henry’s law constant Hi, which for common gases at room

temperature has values of 10,000 – 40,000atm (see Table A.3).

Ifweapply thesame logic aswedid inSection8.3.1,we see that

we can simply expand Table 8.2 into Table 8.4.

We see that most of the statements made about Raoult’s

law apply to Henry’s law. It is normally shown as an ideal

solution law, gi¼ 100, with the pure species vapor pressure

replaced by the Henry’s law constant. Table 8.4 also shows

the equation for xi, in addition to the working equation for yi
because Henry’s law is most often used to estimate the

concentration of a gas dissolved in the liquid. We occasion-

ally see these equations written with a Henry’s law-type

f
o; liquid phase
i and a liquid-phase activity coefficient,

yi¼ gixiHi /P, but that is uncommon in ordinary VLE.

Henry’s law is most often used for gases dissolved in water,

but can also be used for gases dissolved in other solvents. This

topic is discussed further in Chapter 9, and an example of

Henry’s law plus simultaneous chemical reaction is explored

in Chapter 13.

Thus, we see that Henry’s law fits into our computational

scheme for VLE, as an ideal solution law, with the choice of

f
o;liquid phase
i ¼ Hi. Often it is applied in examples like the

air–water example in Chapter 3, in which one species in the

gas (e.g., water) exists as a vapor, while one or more other

species in the gas (e.g., nitrogen and oxygen) are present as

gases above their critical temperatures. Purists would de-

scribe that as part VLE (for the water) and part gas–liquid

equilibrium (for the nitrogen and oxygen). The gaseous phase

would be called a gas, not a vapor, but we see that this is a

matter of arbitrary definitions.

8.6 THE EFFECT OF MODEST PRESSURES

ON VLE

Most experimental VLE data are for pressures at or near

1 atm. For pressures up to perhaps half of the critical pressure

Table 8.4 Comparison of Henry’s Law, Raoult’s Law, and Raoult’s Law-type Activity Coefficients

Variable in Eq. 8.3

Replacement in

Henry’s Law

Replacement in

Raoult’s Law

Replacement with Raoult’s

Law-type Activity Coefficient

f̂i 1.00 1.00 1.00

yi yi yi yi

f
o;vapor phase
i P P P

gi 1.00 1.00 gi

f
o;liquid phase
i H pi pi

Working equation for yi yi ¼ xiHi

P
; xi ¼ Pyi

H
yi ¼ xipi

P
yi ¼ gixipi

P

Table 8.3 Outcomes of Simple Fractional Distillation for Types II, III, and IV

Type II Type III Type IV

For xa< xazeotrope
Overhead product Azeotrope that forms one liquid

on condensation

b Azeotrope that separates into two liquids

on condensation

Bottoms product b Azeotrope b

For xa> xazeotrope
Overhead product Azeotrope that forms one liquid

on condensation

a Azeotrope that separates into two liquids

on condensation

Bottoms product a Azeotrope a
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we can estimate the VLE from data at or near 1 atm by the

methods shown below, if we make suitable corrections for

the effect of pressure. The corrections used for the liquid and

the vapor are not the same.

8.6.1 Liquids

For liquids and solids the effect of pressure on fugacity is

small, and is most often ignored (but see Chapters 10 and

14!). Example 7.3 shows, for instance, that at 100�F, raising
the pressure of liquid water from 1 to 1000 psia increases its

fugacity by only 4.9%. For the most careful VLE work, the

procedure in Example 7.3 is used. For most routine, low-

pressure VLE calculations this small change is ignored, and

the effect of pressure on the fugacity of the liquid is con-

sidered to be nearly zero. The process-design computer

programs make that small correction, because it costs them

practically nothing to do so.

8.6.2 Gases, the L-R Rule

For an ideal gasmixture, increasing the pressure increases the

fugacity of each species in themixture; fi ¼ yiP. If there is no

corresponding increase fi in the liquid, then the gas will

condense into the liquid. (The liquid can practically increase

its fugacity only by increasing its temperature and thus its

vapor pressure. So, the vapor pressure curve shows that the

temperature must increase as the pressure is increased to

maintain equilibrium.) However, for real gases Figure 7.1

shows that as the pressure increases, fi /P¼fi decreases for

gases, with the decrease being faster for lower temperatures

than for higher ones. Thus, we need someway to estimate the

change in fj /P¼fi of individual species in gas mixtures as

the pressure increases, to estimate the VLE behavior.

The Lewis–Randall (L-R) fugacity rule, introduced in

Section 7.12.3, is widely used to estimate the nonideal be-

havior of gases because it is simple and is the next step in

complexity (and reliability) over the ideal gas law. It gives

reasonably good estimates of gas-phase fugacities up to

pressures about half the critical pressure (typically� 300 psia

for common systems). However, frequently gases exist in

states for which we cannot compute fi. Consider the water

vapor that ispresent in theair at68�Fand1 atm(seeChapter3).

If we look in a steam table [12], we see that at this temperature

and pressure pure water can exist only as a liquid, not as a

vapor. We may form an intuitive model of this behavior by

considering that in a pure water vapor each water molecule

collides only with other water molecules, with which it forms

weak attractive bonds. The molecules of water vapor in air

mostly collide with air molecules (which make up more than

95% of the molecules present). The water molecules do not

form comparably strong attractive bonds with air molecules,

so thewatermoleculeswill not condense, at aT andP atwhich

pure water would condense.

If we wished to calculate fi for the water vapor in the air

at 68�F, wewould computePr¼ 1 atm/218.3 atm¼ 0.00458

Tr¼ 528�R/1165�R¼ 0.453. Referring to Figure 7.1 we see

that this condition is at too low a Tr to be represented as a

gas. It is clearly in the liquid region where, if we guess its

f/P, we will find a value like 0.02. From the steam table we

know that for liquid water at 68�F and 1.00 atm, f/P� 0.023.

However, experimentally we can show that the water vapor

dissolved in air behaves as if its value of f/Pwere practically

1.00. We can understand the problem in terms of Fig-

ure 8.14, where we see the line for Pr¼ 0.1 on an f/P versus

Tr plot. At the right, in the gas phase we have a continuous

curve and at the lower left in the liquid phase we have a

continuous curve. These have an extremely sharp change in

slope at the saturation curve. When we remember that

@lnfi
@T

� �
P

¼ h*i �hi

RT2
ð7:9Þ

we see that the enormous change in enthalpy due to the

latent heat of vaporization must cause an extremely sharp

change in slope at the saturation curve. However, the water

vapor in the air does not exist as a pure liquid. It has not

given up the latent heat of condensation, and thus the term

on the right of Eq. 7.9 is practically zero.

If wewish to use the L-R rule for this water vapor, wemust

find some hypothetical state that would represent it. Themost

sensible approach to this problem seems to be to extrapolate

the gas curve into the liquid region. This is shown as a dotted

curve in Figure 8.14. In performing this extrapolation wemay

best fit anEOS to the behavior of thegas fromsome significant

temperature down to the saturation temperature and simply

continue extrapolating with that EOS. The resulting extrap-

olated values are called “hypothetical standard states” [13].

Example 8.8 Estimate the value f/P¼fi for water vapor in

the hypothetical state of 1 atm pressure and 68�F, using the

little EOS.

Using the above values of Tr and Pr, the value of v from

Table A.1, and applying the result for the little EOS from

Example 7.1, we find

f

P
¼fi ¼ exp

Pr

Tr
� f ðTrÞ

� �
ð7:EÞ

f ðTrÞ ¼ 0:083� 0:422

0:4531:6

0
@

1
Aþ0:345 � 0:139� 0:172

0:4534:2

0
@

1
A

¼ �1:425þ0:345 � ð�4:645Þ ¼�3:018

ð8:JÞ
f

P
¼fi ¼ exp

�3:018 �0:00458
0:453

¼ expð�0:0305Þ
¼ 0:970� 1:0 &ð8:KÞ
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For this low a pressure the little EOS is fairly reliable

although the extrapolation to this low a Tr is speculative.

Wemay safely conclude that although water cannot exist at a

pure gas at 1 atm and 68�F, its vapor, dissolved in air will

behave practically as an ideal gas. A similar problem occurs

at substantial pressures in gas mixtures in which the tem-

perature is below the boiling point of some of the species at

the systempressure, such as the n-butane inExamples 7.5 and

7.7. In those cases, the procedure shown in Figure 8.14 or its

EOS equivalent is needed. There is a kind of symmetry

between Henry’s law and the region where we must use

hypothetical standard states in the L-R rule, as illustrated in

Figure 8.15.

For hand calculation the L-R rule is normally satis-

factory. If we are writing a computer program to do many

of these calculations, then the additional cost of additional

complexity is small, so it is common to consider the

possible nonideal behavior of gas mixtures, that is, not

to make the assumption that f̂i ¼ fi. Instead we compute

f̂i from an EOS for the mixture, using some set of mixing

rules believed to be more accurate than the ideal solution

mixing rule that leads to the L-R rule. In most cases the

results are almost the same as those produced by the L-R

rule.

8.7 STANDARD STATES AGAIN

In most of this chapter we have expressed equilibrium in

terms of Eq. 8.3, which involves a standard state fugacity f oi
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for each phase. It would be nice if we could choose the same

standard state, but in the most common approach—the one

you will see most often in the literature—we chose dif-

ferent standard states for gas (f oi ¼P) and liquid (f oi ¼ pi).

You may not have noticed that two other standard states

appeared in this chapter; f oi ¼Hi for Henry’s law (gases

dissolved in liquids), and f oi ¼ fiP for the L-R rule (ideal

solution of nonideal gases). These four standard states are

the most common in VLE calculations and publications.

There are others, used in other places as well (see Chapter

12). Always check which standard state is being used in

publications you read; good publications will make that

very clear.

Henry’s law makes a strange standard state, because its

f oi ¼Hi does not correspond to the behavior of pure i but

rather to the behavior of i in the solution as xi ! 0.00. This

is one of the reasons it says in Chapter 7 that f oi is sometimes

chosen to correspond to the fugacity of pure i at this

temperature and pressure and sometimes not. For dissolved

oxygen in liquid water at 68�F there is no “pure state” of pure
liquid oxygen, because oxygen cannot exist as a liquid at this

temperature. The fact that Henry’s law leads to this strange

value of f
�
i seems to have no practical consequences, and is

pointed out here only to remind the reader that we

make several choices for f oi , some of them not very intuitive.

(Some authors make much of this unimportant distinction,

under the name unsymmetrical standard states.)

8.8 LOW-PRESSURE VLE CALCULATIONS

We made several VLE calculations in Chapter 3, one in

Chapter 7, and several in this chapter. Most of those

were simple enough that we used shortcut, manual

methods. In this section we consider the six standard

types of VLE calculation, more formally than in previous

sections.

For the most low-pressure VLE (up to several hun-

dred psia) we don’t worry much about nonideality in the

gas phase; if we use the L-R rule we will have

reasonable confidence in our estimates in the gas phase.

All of the examples before Example 8.8 assumed that

the gas phase was practically an ideal gas. However,

those examples showed that the liquid phase was often

quite nonideal. Our attempts to correlate and predict the

VLE have mostly been attempts to correlate and predict

liquid-phase activity coefficients. Many mixtures with

widely different chemical structures and widely different

vapor pressures can be represented reasonably well by

Eq. 8.5 and fairly simple equations or prediction meth-

ods for liquid-phase activity coefficients. The next chap-

ter shows how that is done. Before we begin that, we

will borrow a result from that chapter, and show how

the results are used.

Of themany equations used to correlate and predict liquid-

phase activity coefficients showing the type and extent of

Te
m
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ra

tu
re

Gas or Vapor

May use Raoult’s
law for all species

May use Raoult’s
law for all species

Must use hypothetical
standard states or
equivalent

Critical temperature of one species

Boiling point temperature of one species at this pressure

Cannot use Raoult’s law for
dissolved gas above its critical
temperature, must use Henry’s
law for species with low
critical temperature

Cannot use L-R rule and
pure component fugacity for
species that is below its
boiling point temperature at
this pressure

May use L-R rule and
pure component
fugacities for all species

May use L-R rule and
pure component
fugacities for all species

Liquid

FIGURE 8.15 Symmetry between region where one cannot use Raoult’s law and must use Henry’s

law, and region where one cannot use the L-R rulewith pure species fugacity, because the pure species

cannot exist as a vapor.
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nonideal behavior, one of the simplest and most useful is the

van Laar equation, which says

log ga ¼
Ax2b

A

B
xa þ xb

� �2
log gb ¼

Bx2a

xa þ B

A
xb

� �2
ð8:6Þ

These two equations are most often presented this way. For

programming them into our computers it is often easier to

write their equivalent form

log ga ¼
B2Ax2b

Axa þBxbð Þ2 log ga ¼
A2Bx2a

Axa þBxbð Þ2 ð8:LÞ

We will use this equation in numerous examples in this

section, not because it is the most reliable equation for

this purpose, but because it is simple, easily understood,

and easily programmed into computers. We will use the

ethanol–water system as the example nonideal solution,

both because of its industrial significance and because

experimental data are available for it, to be compared with

our calculations. For the ethanol–water system at 1 atm

pressure, taking ethanol as species a and water as species

b, the values of the constants in Eq. 8.6 (based on fitting

the experimental VLE data) are A¼ 0.7292, B¼ 0.4104

(Table A.7, with A and B interchanged as described in that

table.). In Chapter 9 we will consider other, more complex

equations that play the same role as the van Laar equation,

which are superior for some circumstances and are more

widely used. Table A.7 shows a sampling of van Laar

equation constants for binary mixtures.

The six most common VLE problems can all be formu-

lated in terms of equilibrium flashes. This name (or simply

flashes or sometimes equilibrium flash vaporizations, EFV)

is used for the computation modules that do this type of

calculation in process-design computer programs. The sche-

matic and the basic notation are shown in Figure 8.16. There,

a feed F (which may be a gas, a liquid, or a gas–liquid

mixture) is reduced in pressure through a throttling valve into

a pressure vessel, which acts as a gas-liquid gravity separator.

The vapor V exits the top of the vessel and the liquid L exits

the bottom of the vessel. This is called a flash, because if the

pressure is reduced significantly, some or all of the liquidwill

change to vapor so rapidly that it occurs “in a flash.” The six

basic types of VLE calculations are summarized in Table 8.5.

There are others, for example, specified S or V, which many

computer programs also supply, but the six shown here are

the most commonly seen.

Table 8.6 summarizes the equations that are used to solve

low-pressure VLE problems. It appears formidable, but we

will see that in practice these computations are not difficult.

Most of the equations have been used and discussed previ-

ously. Here we add two more equations. By material balance

in Figure 8.16 we may say that

F ¼ V þ L ð8:7Þ

where F, V, and L are most often expressed in mol/h or some

equivalent molar flow rate. A material balance on species i

leads to

Fzi ¼ Vyi þ Lxi ð8:8Þ

where zi is the mol fraction of i in the feed F.

The examples in this chapter are all for binary (two-

species) mixtures. If we have more than two species, then

Steady-state
flow !

V, yi

Vapor

 T, P

Liquid

F, zi

L, xi

FIGURE 8.16 Figure and notation for flash calculations. F is the

feed entering the equilibrium vessel, V the vapor leaving it, L the

liquid leaving it, and T and P the temperature and pressure at which

the contents of thevessel are at equilibrium.Mol fractions in the feed

are zi, those in the vapor are yi and those in the liquid xi.

Table 8.5 The Six Basic Types of VLE Calculations (Ki¼ yi /xi)

Calculation Type Given To Find Computation

Bubble point, T known T, all xi P, all yi Find P for which
P

yi ¼
P

Kixi ¼ 1:00

Bubble point, P known P, all xi T, all yi Find T for which
P

yi ¼
P

Kixi ¼ 1:00

Dew point, T known T, all yi P, all xi Find P for which
P

xi ¼
P

yi=Ki ¼ 1:00

Dew point, P known P, all yi T, all xi, Find T for which
P

xi ¼
P

yi=Ki ¼ 1:00

Isothermal flash T, P, all zi L/F, V/F, all xi all yi
P

xi�
P

yi ¼ 0

Adiabatic flash P, all zi, HF T, L/F, V/F, all xi, all yi
P

xi�
P

yi ¼ 0; and HV þ HL¼HF
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for each additional species we add two variables, xi and yi
and for each additional species we add one equilibrium

statement and one feed specification, zi. Thus, the number

of variables and of equations both increase by 2 for each

additional species; the solution procedures shown below are

the same, independent of the number of species. If we do not

make the ideal gas assumption, then we leave the f̂i in our

equation forKi and add one equation for f̂i for each species in
the mixture, using the L-R rule or some more complex

mixing rule that allows for nonideal mixing.

8.8.1 Bubble-Point Calculations

In Figure 8.16we first consider a case in which L�F,V� 0.

This is the bubble point calculation, in which we are asking

the composition of the vapor that is in equilibrium with a

liquid of specified composition. For this condition Eq. 8.8

shows that xi¼ zi for all i; all except for an infinitesimal

amount of the material in the feed goes to the liquid. Bubble

points need not be thought of as flashes; we can think of

them as “given the composition of the liquid phase and

either P or T, find the composition of the equilibrium vapor

phase and T or P.” But the process-design programs nor-

mally include them in the flash module, and they have

parallels to the other kinds of flashes in Table 8.5 so we

include them here.

8.8.1.1 Temperature-Specified Bubble Point

Example 8.9 Estimate the boiling pressure and the yis in

equilibrium with a liquid that is 0.1238 mol fraction ethanol,

balance water, at 85.3�C.
The equations to be solved are shown in Table 8.E. The

Antoine equation constants are from Table A.2. We divided

the two Antoine equations by 760 torr/atm, to have the vapor

pressure in atm.

This and the following examples are solved on a spread-

sheet, which is a fast, reliable, intuitive way of doing the

computer equivalent of hand calculations. The solution of

this problem, and the prototype for the rest of the solutions

in this chapter is summarized in Table 8.F. The first column

shows all the variables. The second column shows that T and

liquid mol fractions are given. The next four variables

are intermediate values, calculated directly from the given

values. The pressure is the trial variable; for any value of P

we can compute all the variables below it in the table. The

check value is the sum of the vapor mol fractions, which

must equal 1.00. There is only one value of the trial variable,

P, which makes the check value¼ 1.00. The third column

shows the values that result from an initial guess of P¼ 0.8

atm. The check variable is 1.25, indicating that a larger

value of the trial variable is needed. The fourth column

shows the solution, found using “goal seek” on an Excel

spreadsheet.

Table 8.6 Equations to Be Solved in a General Equilibrium Flash Calculation

Type of Equation, Number of Equations Form

Mol fractions sum to 1.00 in vapor
P

yi ¼ 1:00

Mol fractions sum to 1.00 in liquid
P

xi ¼ 1:00

Overall molar material balance F¼V þ L

Material balance on a species, one equation for each species Fzi¼Vyi þ Lxi

Equilibrium statement, one equation for each species Ki ¼ yi

xi
¼ gipi

f̂iP
most often simplified to

Ki ¼ yi

xi
¼ gipi

f̂iP
¼ gipi

P

Feed specification, as many equations as the number of species minus one. zi¼ specified value

Vapor-pressure equation, one for each species pi¼ f(T) most often the Antoine equation

Liquid-phase activity coefficient, one for each species gi¼ f (xi, xj,. . .) using the van Laar equation in this chapter

Energy balance, for adiabatic flashes only HF¼HV þ HL

Table 8.E Equations in Example 8.9

xa þ xb ¼ 1:00; ya þ yb ¼ 1:00

ya

xa
¼ gapa

P
;

yb

xb
¼ gbpb

P

pa ¼ 10E½8:04494�1554:3=ð222:65þ TÞ
=760
pb ¼ 10E½7:96681�1668:21=ð228:0þ TÞ
=760

ga ¼ 10E
B2Ax2b

ðAxa þBxbÞ2
" #

¼ 10E
ð0:4104Þ2 � 0:7292x2b

ð0:7292xa þ 0:4104xbÞ2
" #

gb ¼ 10E
A2Bx2a

ðAxa þBxbÞ2
" #

¼ 10E
ð0:7292Þ2 � 0:4104x2a

ð0:7292xa þ 0:4014xbÞ2
" #

za ¼ xa ¼ 0:1238

T ¼ 85:3�C:
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WefindP¼ 0.9991 atm and ya¼ 0.474. The experimental

values are 1.00 atm and 0.470 [1]. The small differences

between experimental and calculated values remind us that

theAntoine equation, used for thevapor pressures and thevan

Laar equation, used for the activity coefficients, are both

approximate representations of experimental data. In this

example (and the subsequent ones) the approximation is

good in some cases, excellent in others. &

If we were solving this equation set by hand, we would

compute the two pure species vapor pressures and the two

liquid-phase activity coefficients (the 4 intermediate values

in Table 8.F) first, using the knownvalues of T and the two xi,

thus eliminating four equations and four unknowns. After we

did that, we could solve the problem analytically, without

using the spreadsheet; that solution is shown for benzene–

toluene in Example 3.4. If the liquid is an ideal solution, then

the two activity coefficients become 1.00, which simplifies

the calculation.

This type of bubble-point calculation has no simple

graphical solution on the four types of plots shown in the

previous examples because the pressure is unknown. Fig-

ure 8.17 shows a T-x diagram for ethanol–water at 1 atm,

similar to part d in Figures 8.7, 8.8, 8.9, and 8.12 for a

pressure of 1.00 atm. In principle, we could have a separate

plot of this type for each possible pressure. (If wewanted the

equivalent of Figure 8.17 for some other pressure we could

make it up by repeating Example 8.10 (below) at that

pressure, for a variety of liquid compositions and plotting

the results.) With a set of such plots we would try to find the

plot on which the specified T and xa lie exactly on the liquid

composition curve. Then we would read the pressure at

which that plot was made, and the ya at that temperature. In

this example T and xawere chosen to make P¼ 1.00 atm, to

match reported experimental value! So in Figure 8.17 we

see that we can enter the plot at za¼ xa¼ 0.1238, read

vertically to the liquid line, finding T¼ 85.3�C, and then

read horizontally to the vapor line, finding ya¼ 0.474. But if

the problem statement had asked for the same za¼ xa
¼ 0.1238 but T¼ 100�C instead of 85.3�C, then the pressure
we found in the numerical calculation would have been

greater than 1.00 atm, and we could not solve the problem

on this 1.00-atm graph.

8.8.1.2 Pressure-Specified Bubble Point If the pressure

is specified instead of the temperature, wewill have the same

equations as above, but will not be able to calculate the vapor

pressures in advance. Instead, wemust assume a temperature

and compute the corresponding pure species vapor pressures,

varying the assumed temperature until the computed vapor

mol fractions sum to 1.00.

Example 8.10 Estimate the boiling temperature and the

yis in equilibrium with a liquid that is 0.2608 mol fraction

ethanol, balance water, at P¼ 1.00 atm.

The equation set to be solved is the same as in Table 8.E,

with the T¼ 85.3�C replaced by P¼ 1.00 atm and za¼ xa ¼
0.1238 replaced by za¼ xa¼ 0.2608. The solution is shown

in Table 8.G. We find T¼ 82.0�C, ya¼ 0.568. The experi-

mental values are 82.3�C and 0.558 [1]. &

This problem is inherently a trial and error problem,

because the Antoine equations are inside the trial-and-error

loop and are transcendental; more than one transcendental

equation cannot be simultaneously solved analytically. The

hand trial-and-error solution (for a benzene-toluene solution)

is shown as Example 3.6.

This type of bubble–point problem is easily solved graph-

ically on a figure like Figure 8.17, which is for the specified

pressure.We enter at the bottomat za¼ xa¼ 0.2608, and read

upward to the liquid line, finding a temperature of 82.3�C.We

Table 8.F Trial-and-Error (spreadsheet) Solution

to Example 8.9

Variable Type Initial Guess Solution

T(�C) Given 85.3000 85.3000

xa Given¼ za 0.1238 0.1238

xb Given¼ 1� za 0.8762 0.8762

pa (atm) Intermediate 1.3088 1.3088

pb (atm) Intermediate 0.5772 0.5772

ga Intermediate 2.9235 2.9235

gb Intermediate 1.0388 1.0388

P (atm) Trial variable 0.8000 0.9991

ya Result 0.5921 0.4741

yb Result 0.6567 0.5259

ya þ yb Check value 1.2489 1.0000
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FIGURE 8.17 Temperature–composition diagram for ethanol–

water at 1 atm, using data points from [1]. The curves are simple

smooth interpolations. The arrows show the graphical solution for

the bubble point (temperature-specified) and vapor composition.
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then read horizontally from that point to the vapor curve,

finding ya¼ 0.558.

Summarizing bubble-point calculations we see that by

hand they are easy if T is specified, and harder if P is

specified. Both are easy in computers. We will see below

that dew points are more difficult, because the nonideality is

in the phase we are looking for, not in the specified phase.

8.8.2 Dew-Point Calculations

Dew-point calculations are the mirror image of bubble-point

calculations. Referring to Figure 8.16we see that ifF�V and

L� 0, then according to Eq. 8.8, yi¼ za for all i, because all

but an infinitesimal amount of the material in the feed goes to

the vapor. Dew-points need not be thought of as flashes;

we can think of them as follows: “given the composition of

the vapor phase and either P or T, find the composition of the

equilibrium liquid phase and T or P.” But the process-design

programs normally include them in the flash module, and

they have parallels to the other kinds of flashes in Table 8.5,

so we include them here.

8.8.2.1 Temperature-Specified Dew Point Of the two

dew-point calculation types, the temperature-specified is the

easiest, because we do not need a trial-and-error-procedure

on the temperature.

Example 8.11 Estimate the condensing pressure and the

xis in equilibrium with a vapor that is 0.6122 mol fraction

ethanol, balance water, at 80.7�C.
The equations to be solved are the same as in Table 8.E,

with the T¼ 85.3�C replaced with T¼ 80.7�C, and the za¼
xa¼ 0.1238 replaced with za¼ ya¼ 0.6122. The solution is

shown in Table 8.H.

Here the trial variable isP; the check variable is the sumof

the liquid mol fractions¼ 1.00. (For a bubble point it is the

sum of the vapor mole fractions¼ 1.00.) However, the

activity coefficients are now a mixture of results and inter-

mediates. We need them to compute the liquid mol fractions,

but we need the values of the liquid mol fractions to

compute the activity coefficients. In the Initial Guess column

the liquid mol fractions are guessed, not calculated. Nor-

mally, we would guess xi values that sum to 1.00, but that

makes the check value be 1.00, so the unusual values shown

are chosen. In the solution column the liquid-phase activity

coefficients are computed using thevanLaar equation and the

current values of the liquid mol fractions; then those activity

coefficients are used to update the estimates of the liquid mol

fractions. This leads to “circular reference” problems, which

can be managed iteratively in most spreadsheets.

The calculated values are P¼ 0.997 atm and xa¼ 0.375.

The experimental values [1] are 1.000 atm and 0.397. We

see that our calculated pressure is quite accurate, but the

calculated composition is a good but not excellent approx-

imation of the experimental value. &

This problem is tedious by hand, but if we must do it, we

solve for the vapor pressures, then guess a pressure and a

set of activity coefficients. From those guesses we compute

the liquid mol fractions. Using these, we revise the guess

of the activity coefficients and then again the pressures

until the check value¼ 1.00. For ideal solutions the prob-

lem is much easier, because the activity coefficients are

1.00, and we have a simple trial and error on P.

As with the temperatare-specified bubble point, to solve

this equation set graphically we would look for the constant-

pressure plot on which the specified T and ya met exactly on

the vapor line. Figure 8.18 is the same plot as Figure 8.17,

showing that the specified ya and T domeet on the vapor line,

and reading horizontally (i.e., at the same temperature) we

find xa¼ 0.397.

8.8.2.2 Pressure-Specified Dew Point This is the more

difficult dew point because both the temperature and the

liquid mol fractions (and hence liquid-phase activity coeffi-

cients) are unknown.

Table 8.G Trial-and-Error (spreadsheet) Solution to

Example 8.10

Variable Type Initial Guess Solution

P(atm) Given 1.0000 1.0000

xa Given¼ za 0.2608 0.2608

xb Given¼ 1� za 0.7392 0.7392

ga Intermediate 1.8859 1.8859

gb Intermediate 1.1506 1.1506

T (�C) Trial variable 80.0000 82.0400

pa (atm) Intermediate-trial 1.0678 1.1558

pb (atm) Intermediate-trial 0.4674 0.5074

ya Result 0.5252 0.5684

yb Result 0.3976 0.4316

ya þ yb Check value 0.9228 1.0000

Table 8.H Trial-and-Error (spreadsheet) Solution to

Example 8.11

Variable Type Initial Guess Solution

T (�C) Given 80.7000 80.7000

ya Given¼ za 0.6122 0.6122

yb Given¼ 1� za 0.3878 0.3878

pa (atm) Intermediate 1.0973 1.0973

pb (atm) Intermediate 0.4809 0.4809

P (atm) Trial variable 0.8000 0.9965

xa Result 0.6000 0.3754

xb Result 0.5000 0.6246

ga Result-intermediate 1.1867 1.4809

gb Result-intermediate 1.5495 1.2866

xa þ xb Check Value 1.1000 1.0000
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Example 8.12 Estimate the equilibrium T and the liquid

mol fractions that are in equilibrium with a vapor mixture of

0.1700 mol fraction ethanol, balance water, at 1.00 atm

pressure.

The set of equations to be solved is the same as in

Table 8.E, with T¼ 85.3�C replaced by P¼ 1.00 atm and

za¼ xa¼ 0.1238 replaced with za¼ ya¼ 0.1700. The solu-

tion is shown in Table 8.I

The procedure, on a spreadsheet is similar to that in

Example 8.11, but here the trial variable is T, and the vapor

pressures are inside the trial-and-error loop, along with the

liquid mol fractions, as are the liquid-phase activity coeffi-

cients that depend on the liquid mol fractions. The solution is

T¼ 95.3�C, xa¼ 0.0187. The experimental values [1] are

95�C and 0.0190. &

The graphical solution of this problem can be carried out

in Figure 8.18, by entering from above at ya¼ 0.1700.

reading down to the vapor curve, finding T¼ 95.5�C, and
then reading horizontally (isothermally) to the liquid line,

finding xa¼ 0.0190.

8.8.3 Isothermal Flashes (T- and P-Specified Flashes)

Returning to Figure 8.16, we now consider the case in which

T and P at equilibrium are both specified. This is commonly

called an isothermal flash, although a much better name

would be a T- and P-specified flash. In the bubble-point

calculations, V� 0.00, and in the dew-point calculations

L� 0.00. In T- and P-specified flashes both L and V have

nonzerovalues. Thismeans thatwehavegained twovariables,

but we have also gained two equations, Eqs. 8.7 and 8.8.

(It might appear that we have two Eq. 8.8s, but one of them is

derivable fromEq. 8.7 and the other fromEq. 8.8, so only one

of the two, Eq. 8.9 below, is independent and useful.)

ya

xa
¼ Ka;

yb

xb
¼ Kb

za ¼ V

F
ya þ

�
1�V

F

�
xa ¼ V

F
ya þ

�
1�V

F

�
ya

Ka

ya ¼ za

V

F
þ 1

Ka

�
1�V

F

� : yb ¼ zb

V

F
þ 1

Kb

�
1�V

F

�

ð8:9Þ
Example 8.13 An ethanol–water mixture with za¼ 0.126

is brought to equilibrium (flashed) to a pressure of 1 atm and a

temperature of 91.8�C. Estimate the vapor fraction, and the

mol fractions in both phases.

The applicable equation set is shown in Table 8.J. The trial

variable is V/F the check variable is
P

xi�
P

yi ¼ 0:00: For

Table 8.I Trial-and-Error (spreadsheet) Solution to

Example 8.12

Variable Type Initial Guess Solution

P (atm) Given 1.0000 1.0000

ya Given¼ za 0.1700 0.1700

yb Given¼ 1� za 0.8300 0.8300

T (�C) Trial variable 80.0000 95.3500

pa (atm) Intermediate-trial 1.0678 1.8897

pb (atm) Intermediate-trial 0.4674 0.8450

xa Result 0.1327 0.0187

xb Result 1.4797 0.9813

ga Result-intermediate 1.2000 4.8108

gb Result-intermediate 1.2000 1.0010

xa þ xb Check value 1.6123 1.0000
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FIGURE 8.18 Temperature-composition diagram for ethanol–

water at 1 atm, using data points from Seader et al. [1]. The curves

are simple smooth interpolations. The arrows show the graphical

solution for the dew-point temperature and liquid composition.

Table 8.J Equations to Be Solved in Example 8.13

P
xi�

P
yi ¼ 0:00

ya ¼ za

V

F
þ 1

Ka

1�V

F

� � : yb ¼ zb

V

F
þ 1

Kb

1�V

F

� �

ya

xa
¼ Ka ¼ gapa

P
;

yb

xb
¼ Kb ¼ gbpb

P

ga ¼ 10E
B2Ax2b

Axa þBxbð Þ2
" #

¼ 10E
0:4104ð Þ2 � 0:7292x2b

0:7292xa þ 0:4104xbð Þ2
" #

gb ¼ 10E
A2Bx2a

Axa þBxbð Þ2
" #

¼ 10E
0:7292ð Þ2 � 0:4104x2a

0:7292xa þ 0:4014xbð Þ2
" #

pa ¼ 10E 8:04494�1554:3=ð222:65þ TÞ½ 
=760
pb ¼ 10E 7:96681�1668:21=ð228:0þ TÞ½ 
=760
za ¼ 0:126
T ¼ 91:8�C
P ¼ 1:00 atm
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any assumed value of V/F, we can solve for all the values

shown in Table 8.J.

The calculated values are shown in Table 8.K. In the initial

guess column we not only guess a value of V/F(0.5000) but
also the activity coefficients (both 1.2000). In the solution

column the program computes the values of all three of these,

needed tomake
P

xi �
P

yi ¼ 0:0000: Table 8.L compares

the values calculated here with those read from the chart

in [14] (chart reading accuracy only!, see Problem 8.45). We

see good, but not excellent agreement. However, remember

that the values in the rightmost column in Table 8.L are read

from a chart, which involves both chart-reading errors and

any errors made in constructing the chart from the experi-

mental data. The check value is not very sensitive to changes

in the trial variable; we may think we are close enough to the

solution, and be mistaken. &

This problem can be solved graphically if we have a T-xa
diagram for the specified pressure. Figure 8.19 shows such a

diagram with horizontal and vertical lines corresponding to

the specified T and za.We see that they cross in the two-phase

region, as they must for a T- and P-specified flash if both

liquid and vapor are present. The vapor and liquid composi-

tions in equilibrium (at 1.00 atm and 91.8�C) can be read

directly from the figure. Using those and the specified feed

composition, we can compute V/F from Eq. 8.8.

8.8.4 Adiabatic Flashes

A more complex set of VLE problems involve adiabatic

flashes. In these, some liquid, vapor, or vapor–liquid mixture

is reduced in pressure at constant enthalpy, as, for example,

through an insulated throttling valve, into an insulated pres-

sure vessel. These problems involve all the information in

Example 8.13, plus an energy balance on the system. In them

we normally guess a final temperature, solve for V/F and the

vapor and liquid mol fractions exactly as in Example 8.13,

and then use the energy balance to ask if the outlet energy

equals the inlet energy. If not, a new guess is made of the

outlet temperature, and the process repeated until the

unique T is found for which the energy balance is satisfied.

By hand this is a giant pain, but our computers do it fairly

quickly and easily.

If wemust perform an S orV specified flash, the procedure

is the same as for an adiabatic (H specified) flash. We guess a

final T and P, solve for V/F and then the mol fractions, and

compare the computed S or V with the specification. If the

specification is not met, we adjust the guessed T and P and

repeat the calculation until agreement is reached. This is

seldom done by hand, but is offered as an option in some

process-design computer programs.

The computer methods shown in these five examples

can all be easily extended to any number of species; we

simply add variables and equations. There is no compa-

rably easy way to solve multispecies VLE graphically,

because the compositions are not easily represented in two

dimensions. Thus, the graphical solutions shown here are

Table 8.K Trial-and-Error (spreadsheet) Solution to

Example 8.13

Variable Type Initial Guess Solution

T(�C) Given 91.8000 91.8000

P (atm) Given 1.0000 1.0000

za Given 0.1260 0.1260

zb Given¼ 1 za 0.8740 0.8740

pa (atm) Intermediate 1.6642 1.6642

pb (atm) Intermediate 0.7406 0.7406

V/F Trial variable 0.5000 0.3495

ya/xa¼Ka Intermediate-result 1.9971 7.1308

yb/xb¼Kb Intermediate-result 0.8887 0.7439

ya Result 0.1679 0.2859

yb Result 0.8225 0.7141

xa Intermediate-result 0.0841 0.0401

xb Intermediate-result 0.9255 0.9599

ga Intermediate-result 1.2000 4.2848

gb Intermediate-result 1.2000 1.0045

ya þ yb Intermediate-result 0.9904 1.0000

xa þ xb Intermediate-result 1.0096 1.0000

S xi�Syi Check value 0.0192 0.0000

Table 8.L Comparison of Example 8.13 and Published Values

Variable

Value Calculated in

this Example

Value/Read from the Chart

in [14] (see Problem 8.45)

V/F 0.3495 0.326

ya 0.2859 0.2977

xa 0.0401 0.0416
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FIGURE 8.19 Temperature–composition diagram for ethanol–

water at 1 atm, using data points from Seader et al. [1]. The curves

are simple smooth interpolations. The horizontal and vertical lines

show that the specified za andT correspond to avapor–liquidmixture.
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of little current industrial use, but are included because of

their high intuitive content.

8.9 TRADITIONAL K-FACTOR METHODS

Before we had computers, flash calculations were done by

hand. The most widely used methods, for mixtures of hydro-

carbons and occasionally for other mixtures, were based onK

factors, defined in Eq. 8.1. These are mostly of historical

interest, but also are of some use for simple, noncomputer,

multispecies VLE. In all the examples in Section 8.8, the ratio

Ki¼ yi /xi was assumed to depend on P, T, and the liquid

composition. If the liquid is an ideal solution,K depends on P

and T, but not on liquid composition. For light hydrocarbon

systems over a range of industrial conditions the liquid phases

are close to ideal solutions or have activity coefficients that do

not depend strongly on composition, so that it is possible to

correlate Ki as a function of P and T alone. The most widely

used correlation, by DePreister [15], consists of two charts,

one of which is reproduced as Figure 8.20. DePreister made

very clear that this chart was to be used formaking initial VLE

estimates, to be used as starting points for the more complex

trial-and-error method developed in his paper, which does

take into account the effect of composition on K values.

Others have used Figure 8.20 widely because it is simple and

its predictions are in fair agreement with experiments.

Example 8.14 Estimate the bubble-point temperature at

200 psia and the dew-point composition of a liquidmixture of

1.29 mol% methane, 26.50 mol% ethane and 72.21 mol%

propane, using Figure 8.20.

The equations to be solved are shown above in Table 8.M.

We begin by guessing that T¼ 30�F. We draw a straight

line across Figure 8.20 from 200 psia to 30�F, and read

the threeK values as 8.7, 1.43 and 0.400. Then the calculated

ya is 0.0129	 8.7¼ 0.1118. The other two calculated ys are

0.3790 and 0.2888. These sum to 0.7796, which is less than

the required 1.00, indicating that a higher T is needed.

Guessing T¼ 60�F leads to a sum of 1.0713, but for T¼ 50�F
the Ks (as best we can read them), are 9.5, 1.78 and 0.54,

leading to ys of 0.1221, 0.4718 and 0.3899 and a sum of

0.9838, as close to 1.00 as we are justified in seeking, given

the two-figure accuracy with which we can read Figure 8.20.

The corresponding experimental values [17] are 50�F
and ys of 0.1279, 0.4691 and 0.3979. The remarkably good

performance of Figure 8.20 in this example (and in Prob-

lem 8.52) explains its 60-year-long popularity. &

Although this was devised as a hand method of calcula-

tion, the trial-and-error solution is faster and easier using a

spreadsheet. We read the values from Figure 8.20 by hand,

and enter them into a spreadsheet trial-and-error solution.

Problems 8.53 and 8.54 show the application of Figure 8.20

to estimating dew points.

Plots like Figure 8.20 are only available for the aliphatic

hydrocarbons, because of their practically ideal solution

behavior in the liquid phase. No such plots seem to be avail-

able for seriously nonideal solutions, like ethanol-water.

8.10 MORE USES FOR RAOULT’S LAW

In this chapter we have mostly used Raoult’s law and the

modified formwith an activity coefficient of the Raoult’s law

type. Most low-pressure VLE problems can be satisfactorily

solved that way. In addition, there are some problems that are

not traditional VLE, but for which we can use Raoult’s law to

good effect.

The four types of behavior in Figures 8.7, 8.8, 8.9, and

8.12 all show that as we approach either edge of the ga-xa
plot, the activity coefficient of the species that is becoming

practically pure approaches 1.00, and does so asymptotically.

This is true for even strongly nonideal solutions like sulfuric

acid–water (Figure 8.10). Logically, this must be so, because

as we approach practically pure anything, the molecules of

that species encounter almost entirelymolecules of their own

kind, with which they have ideal-solution interactions. Thus,

even though the solute may have very nonideal behavior, in

any dilute solution the behavior of the solvent is practically

ideal solution and can be described with good accuracy by

Raoult’s law. This does not mean that Raoult’s law applies to

the solute, but often we are satisfied lo know the behavior of

the practically pure solvent. The following two examples

illustrate this.

8.10.1 Nonvolatile Solutes, Boiling-Point Elevation

A logical extension of type I behavior (Figure 8.7) assumes

that we dissolve somematerial with a very high boiling point

in a solvent, for example, sugar in water. At temperatures

near the boiling point of water the vapor pressure of pure

sugar is� 0. As long as the solution is dilute, the behavior of

the water is practically that predicted by Raoult’s law. We

may represent this as being practically the same as

Figure 8.7a, with the vapor pressure line for the solute being

replaced by a horizontal line xbpb,¼ 0, and the total pressure

being the same as the partial pressure of the water.

Example 8.15 One mol of sugar (sucrose, C12H22O11,

M¼ 342.3 g/mol whose vapor pressure psurcrose� 0) is dis-

solved in 1000 g (1000/18¼ 55.6 mol) of water. What is the

vapor pressure of this solution at 100�C¼ 212�F? At what

temperature will this solution boil at 1 atm?

The mol fraction of water in the solution is 55.6/

(55.6 þ 1)¼ 0.982, and at 100�C, pwater¼ 1.00 atm, so that

P ¼ xwaterpwater þ xsugarpsugar

¼ 0:982 � 1:00 atmþ 0:018 � 0 atm ¼ 0:982 atm ð8:MÞ
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The situation is as sketched in Figure 8.21. The total pressure

for equilibrium is the mol fraction of water in the solution

times its pure-solvent vapor pressure.

To find the temperature at which the solution will boil, we

see on the figure that we must raise the temperature to

increase pwater to a value high enough that the total pressure

P¼ 1.00 atm, with xwater¼ 0.982.

pwater ¼ P

xwater
¼ 1 atm

0:982
¼ 1:018 atm ¼ 14:97 psia ð8:NÞ

FIGURE 8.20 DePreister’s K-factor chart, for low temperatures. There is a similar chart for higher

temperatures. An SI equivalent is in [16]. This nomograph is intended only for preliminary estimates,

but is widely used because it is simple. (From DePreister, C. L. Light hydrocarbon vapor–liquid

distribution coefficients. Applied Thermodynamics, CEP Symp Ser. 7–49: 1–43 (1953). Reproduced

with permission of the American Institute of Chemical Engineers.)
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Interpolating in the steam table [12] we find T¼ 212.92�F
¼ 100.51�C. We may restate this that the boiling-point

elevation caused by this dissolved, nonvolatile solute is

0.92�F¼ 0.51�C. &

The amounts of species a and b in this example (1 mol of

solute, 1000 g of solvent, which produce a solute concen-

tration of 1.00 molal) were chosen to match the common

presentation of boiling point elevation in chemistry text-

books. They normally report the boiling-point elevation

coefficient for various solvents. For water at one atmosphere

the molal boiling-point elevation constant Kb� 0.51�C; it
has different values for other solvents. It is common in

chemistry books to write that as

boiling-point

elevation

� �
¼ T

boiling
solution

�T
boiling
pure solvent

¼ Kb
molality

of solute

� �
ð8:10Þ

where the molality (see Chapter 6) is the moles of solute per

1000 g of solvent,¼ 1.00 in this example. This is only

approximately correct; the statement in terms of Raoult’s

law and Example 8.15 is theoretically better. However, for

dilute solutions the results are practically identical (see

Problem 8.56). As always seems to be the case, nature is

more complex than our simplemodels. Figure 8.22 compares

the experimental values of the boiling-point elevation of

sucrose [18] in water with the predictions of Raoult’s law,

and of the simple linear relation of Eq. 8.10.

At the low concentrations at which boiling-point eleva-

tions are most often observed, the experimental results and

the two computed values are indistinguishable. For higher

concentrations, the simple linear values and the Raoult’s law

values are practically the same, while the experimental

boiling-point elevations are substantially larger, indicating

mild type III behavior, in this case most likely caused by

weak association of the water and sugar molecules (see

Problem 8.31).

This type of behavior is regularly observed for solutions of

other organic materials in water, or for solutions of very low

volatility organic solutes in organic solvents. Boiling-point

elevation tests are regularly used to estimate the molecular

weight of some unknown substance; a known weight of the

substance is dissolved in a solvent, the boiling point of the

solution is measured, and the solute molality estimated from

Eq. 8.10. From that molality and the known weight, the

molecular weight is calculable. This type of behavior is not

observed for solutions of electrolytes (salts, acids, bases) in

water, because they ionize. If we repeat Example 8.15,

dissolving 1.00 mol of table salt (NaCl, M¼ 58.5 g/mol),

in 55.6 mol (1000 g) of water, we would expect the

same boiling-point elevation as for 1 mol of sugar, 0.92�F
¼ 0.51�C. The experimental value is roughly twice this

value. The reason is that electrolytes ionize. If all the NaCl

converted toNaþ andCl� ions, then themol fraction ofwater

in this solution is

xwater ¼ nwater

nwater þ nCl� þ nNaþ
¼ 55:6

55:6þ 1þ 1
¼ 0:949

ð8:OÞ

Table 8.M Equations to Be Solved in Example 8.14

xa þ xb þ xc ¼ 1:00; ya þ yb þ yc ¼ 1:00
ya

xa
¼ Ka;

yb

xb
¼ Kb;

yc

xc
¼ Kc

za ¼ xa ¼ 0:0129; zb ¼ xb ¼ 0:2650; zc ¼ xc ¼ 0:7221

P ¼ 200 psia

T = 100ºC = 212ºF

p
1

P

0

1.00 atm

0.982 atm

xwater
1.0

0.982

FIGURE 8.21 Vapor pressure of a dilute solution of a zero-vapor

pressure solute. (This figure is not to scale; if it were, the 0.982 line

would disappear into the rightmost axis.)
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FIGURE 8.22 Comparison of experimental [18] and two com-

puted boiling-point elevations curves for sucrose solutions in water

at 1 atm. Below about 1 molal the three curves are nearly identical.
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instead of the xwater¼ 0.982 we would have if each mol of

NaCl did not produce 2mols of ions (see Problem 8.62). This

ionization is nearly complete for strong acids and bases and

their salts (like NaCl), but is only partial for weak acids and

bases and their salts (e.g., carbonic or acetic acid), so that we

need experimental data or theoretical estimates of the degree

of ionization to carry out this kind of calculation for them.

The experimental data for NaCl solutions in water (Problem

8.63) are similar to those shown for sucrose in Figure 8.22.

For dilute solutions the experimental data, Raoult’s law for

total ionization and Eq. 8.10 for total ionization are practi-

cally identical. For high concentrations the observed boiling-

point elevation is greater than is predicted by Raoult’s law or

Eq 8.10, indicating mild type III behavior.

8.10.2 Freezing-Point Depression

Adding a nonvolatile solute raises the boiling point of a

solvent, but it lowers the freezing point. Again, this is all

explicable in terms of Raoult’s law.

Example 8.16 One mol of sugar (sucrose, C12H22O11,

M¼ 342.3 g/mol) is dissolved in 1000 g (1000/18¼ 55.6

mol) of water. What is the freezing-point temperature of

this solution at 1 atm pressure?

The sugar concentration in this example and the previous

one is about twice that in common soft drinks. Figure 8.23

shows the situation: an ice cube floating in a glass of the

liquid. We are used to seeing this with the surroundings

warmer than the glass and its contents, so the ice slowly

melts and the liquid never gets as cold as the ice – not an

equilibrium situation. For equilibrium, the temperature of

ice, solution and surroundings must all be the same. In

addition, we normally see this situation with the surrounding

gas being air at 1 atm, but for this example we consider the

surrounding gas to consist only of water vapor at a pressure

far below 1 atm.

Next we observe that this is the same sugar solution as in

example 8.15, sowe can rewrite the pressure form ofRaoult’s

law, Eq. 8.M, as

P ¼ xwaterpwater þ xsugarpsugar ¼ 0:982 � pwater þ 0:018 � psugar
ð8:PÞ

and because psugar� 0, the pressure of the system at equi-

librium must be

P ¼ 0:982 � pwater þ 0:018 � 0 ¼ 0:982 � pwater ð8:QÞ

where pwater is the vapor pressure of pure water at the

equilibrium temperature. Because the vapor is also in equi-

libriumwith the solid ice, thismust also be the vapor pressure

of the ice, so that

P ¼ 0:982 � pwater ¼ pice;
pice

pwater
¼ 0:982 ð8:RÞ

If the sugar dissolved significantly in the ice then the pice in

this equation would have to reflect that fact. But it doesn’t, so

we can use the vapor pressure of pure ice.

Figure 5.8 shows the vapor pressure of subcooled water

and of ice. The values in the table from which that figure was

made can be represented by the following totally empirical

data-fitting equation

pice

pwater
� 1þ 0:0096686

�C
T þ 4:0176	 10�5

�Cð Þ2 T2 ð8:SÞ

If we set this equal to 0.982 and solve for Twe find�1.84�C;
the commonly reported value is �1.86�C. If we now repeat

the calculation assuming that the system shown inFigure 8.23

is open to the air at 1 atm we will see that the amount of air

dissolved in the solution and in the ice is small enough to

ignore, and that the above value is correct. &

Almost all the statements made about boiling-point elevation

can be repeated for freezing-point depression. It is commonly

shown in chemistry books as

freezing-point

depression

� �
¼ T

freezing
solution

� T
freezing
pure solvent

¼ Kf
molality

of solute

� �
ð8:11Þ

where Kf is the molal freezing-point depression constant,

which equals – 1.86�C for water and has different values

for other solvents. If the solute ionizes, thenwemust compute

the mol fraction taking that into account just as we did

Ice cube

T and P are not fixed, but will be
determined by the equilibrium 
between ice and the solution

Solution, 0.982 mol
fraction water, 0.018 mol
fraction sugar

FIGURE 8.23 An ice cube floating in a dilute sugar solution both

at the same T and P.
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for boiling-point elevation. If we plot the experimental

data on freezing-point depression for sucrose in the same

form as Figure 8.22, we find the same result; at concentra-

tions of 1 molal or less all three curves are substantially

identical. For higher concentrations we see the same curva-

ture, indicating again mild type III behavior between water

and sucrose.

Before the invention of compression-expansion refrigera-

tors (about 1850) the coldest readily available refrigerant, at

�21.12�C¼�6.016�F, (See Figure 11.14), was the practi-

cally equilibrium mixture of ice, solid salt and the saturated

solution of salt in water. This mixture was used in labora-

tories and in hand-crank ice cream makers until the 1940s. It

seems counter-intuitive that one can take crushed ice and

solid salt pieces, both at 0�C, mix them vigorously and

practically adiabatically, and produce a three-phase, slush

mixture at �21.12�C. However to get the saturated solution

one must supply the heat to melt the ice and the heat to

dissolve the salt making the saturated salt-water solution, and

this can only be supplied by a decrease in temperature of the

unmelted solid ice and undissolved solid salt (both in fairly

small pieces). When Daniel Fahrenheit was devising the

temperature scale that bears is name, he used a similar

water-ice-salt slush using NH4Cl instead of NaCl as the

point for 0�F (and human body temperature for 100�F). Later
workers have modified his values slightly.

The use of road salt is based on this effect.When ice forms

on a street or sidewalk it adheres well and is dangerously

slippery. Salt crystals (typically a fewmillimeters in size) are

scattered on the ice. Each crystal forms a small pool of

concentrated salt solution on the ice surface. The crystal and

its pool dissolve its way down through the ice to the ice-

pavement interface. The pool then spreads laterally, greatly

weakening the bond between ice and pavement, allowing the

ice to break up and be swept away.

8.10.3 Colligative Properties of Solutions

The boiling-point elevation, together with the freezing-

point depression and the change in osmotic pressure caused

by dissolving a solute in a solvent are called the colligative

properties of solutions. We will discuss osmotic pressure

change in Chapter 14. In each of colligative properties, the

change is proportional to the change in mol fraction of

the solvent, (solvent behaves almost as an ideal solution),

with the assumption the solute is practically inert (has a

negligible fugacity for boiling point elevation or freezing

point depression, or is totally excluded from passing

through an osmotic membrane). The simple Raoult’s law

estimates of colligative properties are only accurate for very

low concentrations of solute, but these properties them-

selves are often of considerable technical importance in

cases where the solute concentrations are significant (e.g.,

reverse osmosis desalination, or boiling point elevation in

multiple-effect evaporators). For these cases the Raoult’s

law approximations give useful first estimates, but the non-

ideality of the more concentrated solutions must be taken

into account. Study of the colligative properties of solutions

was one of the cornerstones of the new field of physical

chemistry in the 1890s.

8.11 SUMMARY

1. VLE forms the basis of distillation, one of the most

important chemical engineering processes. It is also

important for drying, humidification, and some chem-

ical reactions.

2. Experimental measurement of VLE at modest tem-

peratures and pressures is fairly easy. Several thousand

binary mixtures have been tested, and the results

catalogued. High pressure, high temperature, or mix-

tures with more than two species make the measure-

ments more expensive and difficult. There are many

fewer measurements of this type in the literature than

measurements of binary systems at modest tempera-

tures and pressures.

3. In most low-pressure VLE the vapor phase is assumed

to be a mixture of ideal gases. For higher pressures its

nonideal behavior must be taken into account. High-

pressure VLE is discussed in Chapter 10.

4. If the liquid forms an ideal solution (or close to it), then

Raoult’s law (and/or Henry’s law) is used to estimate

VLE behavior.

5. If the liquid does not form an ideal solution, then

Raoult’s law-type activity coefficients are added.

About 90% of nonideal liquid mixtures show positive

deviation from Raoult’s law: activity coefficients

greater than l.00: about 10% show negative devia-

tion: activity coefficients less than 1.00. Large positive

deviations and close boiling points lead to minimum-

boiling azeotropes. Large negative deviations and close

boiling points lead to maximum-boiling azeotropes. If

the activity coefficients are large compared to 1.00, the

liquid may separate into two liquid phases, leading to a

heteroazeotrope (see Chapter 11).

6. With correlations of liquid-phase activity coefficients

(Chapter 9) we canmake very accurate estimates of the

low-pressure VLE of many systems. These estimates

normally require an equation for the sum of the mol

fractions in each phase and a statement of equality of

the fugacities for each species present. The latter

may involve subsequent equations for pure species

vapor pressures, liquid-phase activity coefficients, and

vapor-phase fugacity coefficients. For hand calcula-
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tions we often ignore some of these, but computer

programs normally evaluate them all.

7. The six basic types of VLE calculations are illustrated

in Section 8.8 for one particular two-species system

(ethanol–water) at modest pressures. The same calcu-

lation methods are used for systems with more species,

simply adding variables and equations. If vapor-phase

nonidealitymust be taken into account, the examples in

Section 8.8 are easily modified to do that.

8. The colligative properties of solutions—boiling-point

elevation, freezing–point depression, and osmotic

pressure (Chapter 14)—are all easily understood in

terms of Raoult’s law.

PROBLEMS

See common units and values for problems and examples. An

asterisk (�) on a problem number indicates that the answer is

in Appendix H.

8.1� Repeat Example 8.1 for xacetone¼ 0.95.

8.2� a. Repeat Example 8.2 for xacetone¼ 0.10.

b. Repeat Example 8.3 for xacetone¼ 0.10.

8.3� At 1 atm (760 torr) pressure, the normal boiling

points of benzene and toluene are 80.1 and 110.6�C.
Benzene and toluene may be assumed to form ideal

liquid solutions. The vapor pressures of benzene and

toluene at these temperatures are as follows:

T (�C) pbenzene (torr) ptoluene (torr)

80.1 760.0 292.5

110.6 1783.4 760.0

a. If we have a boiling liquid mixture of 99.99 mol%

benzene, balance toluene at 760 torr, what are

the approximate values of Kbenzene, Ktoluene, and

a? What is the mol fraction of toluene in the

equilibrium vapor phase?

b. If we have a liquid boiling mixture of 0.01 mol%

benzene, balance toluene at 760 torr, what are the

approximate values of Kbenzene, Ktoluene, and a?
What is the mol fraction of benzene in the equi-

librium vapor phase?

8.4 In Figures 8.8b, 8.9b and 8.10b there is some liquid-

phase mol fraction, near the center, at which the two

individual activity coefficient curves cross. At that

composition the two activity coefficients are equal.

a. Show that at that liquid-phase mol fraction, the

calculated vapor-phase composition is the same

as we would calculate from the ideal solution

assumption,

b. Show that the equilibrium temperature is not what

we would calculate from that assumption.

c. Is the actual boiling temperature greater or less

than that we would calculate from the ideal solu-

tion assumption for Figure 8.8? For Figure 8.9?

d. Is it a general proposition that for all binary

solutions that do not form two liquid phases there

is some value of xa for which ya is the same as the

value for ideal solution behavior? Is it true that a

clock that is stopped shows the correct time twice

a day?

8.5 a. Show the equations for Ki and a that correspond

to the assumptions that both vapor and liquid

phases are ideal solutions.

b. For the binary mixture benzene–toluene at 1 atm

(practically an ideal solution) estimate Kbenzene,

Ktoluene, and a for liquid mixtures of 1, 50, and

99 mol% benzene. Use the Antoine equation

values in Table A.2.

8.6� For the mixture of a and b at 0�C, the vapor pressures
of the pure species are pa¼ 200 torr; pb,¼ 500 torr.

For a 50-mol% a mixture, the liquid-phase activity

coefficients are ga¼ 1.2, gb¼ 1.3. The vapor phase

may be considered an ideal solution.

a. What is the composition of the equilibrium vapor

phase?

b. What is the vapor pressure?

8.7 In this text and most others, benzene–toluene is nor-

mally given as the example of an ideal solution. No

solution is totally ideal, including benzene-toluene.

How much does it deviate from ideal solution behav-

ior? Table 8.N shows some of the experimental VLE

data at 120�C for benzene and toluene [19]. Using it,

a. Estimate the activity coefficients for benzene and

toluene that correspond to each of these data points.

b. Comment on how good the ideal solution assump-

tion is for this data set.

8.8 Benzene and o-xylene are assumed to form an ideal

solution with each other. The normal boiling points of

benzene and o-xylene are 80.1 and 144.�C. Sketch a

T-x diagram for this mixture at 1 atm, showing the

Table 8.N Experimental VLE for Benzene-Toluene at 120�C

Pressure

P (psia)

Mol Fraction Benzene

in Liquid, xa

Mol Fraction Benzene

in Vapor, ya

21.9 0.117 0.220

25.6 0.264 0.453

25.7 0.258 0.425

29.3 0.440 0.639

36.1 0.682 0.842
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liquid, vapor, and vapor-liquid regions. Include sim-

ple numerical values where appropriate.

8.9� From measurements in a low-pressure equilibrium

cell, we have the following data on the equilibrium of

the binary mixture of a and b:

T ¼ 80�C P ¼ 1 atm

ya ¼ 0:8 xa ¼ 0:6

At 80�C the vapor pressures of the pure species are

pa¼ 1.5 atm, pb¼ 0.7 atm. Assuming that at this pres-

sure the gas phase is an ideal solution of ideal gases,

calculate the activity coefficients of species a and b in

the liquid phase.

8.10 A binary vapor mixture of 50 mol% e, 50 mol% f at

100�F has the following properties:

pe ¼ 2:0 atm pf ¼ 0:4 atm ge ¼ 1:5 gf ¼ 1:8

The vapor is an ideal solution of ideal gases. What is

the composition of the equilibrium liquid?What is the

vapor pressure of this mixture at 100�F?

8.11� a. Estimate themol fraction of a in the liquid that is in

equilibriumwith avapor (assumedan ideal solution

of ideal gases) of 50 mol% a and 50 mol% b at

20�C, using the following data, all at 20�C:

pa ¼ 15 atm ga ¼ 1:8 pb ¼ 7 atm gb ¼ 1:2

b. Estimate the equilibrium pressure.

8.12 a. Estimate the mol fraction of a in the vapor

(assumed an ideal solution of ideal gases) in

equilibrium with a liquid solution of 50 mol% a

and 50 mol% b at 20�C, using the following data,
all at 20�C.

pa ¼ 15 atm ga ¼ 1:2 pb ¼ 7 atm gb ¼ 1:8

b. Estimate the equilibrium pressure.

8.13 At temperature T, a liquid mixture is 40 mol% a,

balance b, for which pa¼ 0.8 atm and pb¼ 1.3 atm.

The vapor in equilibrium with this liquid is an ideal

solution of ideal gases. Estimate the mol fraction of a

in the vapor, if

a. The liquid is an ideal solution.

b. The liquid is not an ideal solution, but ga¼ 1.4 and

gb¼ 1.2.

8.14 Repeat Example 8.4 for 30mols of n-butanol, balance

water.

8.15� Repeat Example 8.5 for ywater¼ 0.10.

8.16 For a vapor–liquid equilibriummixture at ofwater and

n-butanol at 1.00 atm and 110�C (see Figure 8.12d),

estimate the composition of the vapor and the liquid in

equilibrium.

8.17 A vapor is 40 mol% water, 60 mol% n-butanol, at

130�C and 1 atm absolute pressure. We now cool this

vapor at constant pressure.

a. At what temperature will the first drop of liquid

appear?

b. What will be the mol% water in this first drop?

c. Problem 8.29 is the same as this problem, with the

n-butanol replaced with n-butane. Why are the

answers so different?

8.18 Eightmols ofwater and 2mols of n-butanol are placed

in a container and boiled. The resulting vapor is

removed, condensed, and sent to storage.

a. What is the mol fraction of water in the vapor

initially leaving the container?

b. What is the mol fraction of water in the vapor

leaving the container when the container just runs

dry.

c. Sketch a plot of mol fraction water vs. fraction

evaporated for this process (as shown in Fig-

ure 8.24 showing the right shape of the curve and

as many numerical values as you can.

8.19 Show the calculation of the three other activity coeffi-

cients in Example 8.6.

8.20 Show the trial and error computation in Example 8.7.

8.21 For the n-butanol–water binary shown in Figure 8.12,

sketch a g-xa diagram, like Figure 6.7. Show no

numerical values, only the correct shapes of the

various parts of the curve.
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FIGURE 8.24 Coordinates for Problem 8.18 (c).
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8.22 Figure 8.7d shows the behavior when a liquid mixture

of 50% benzene, balance toluene, is heated until it is

all vaporized. Prepare the equivalent of that plot for

water-n-butanol, sketching it on a copy of

Figure 8.12d. The liquid mixture originally placed in

the container was

a. 3 mols of butanol and 7 mols of water.

b. 5 mols of butanol and 5 mols of water

c. 1 mols of butanol and 9 mols of water.

8.23 A liquid mixture of 3 mols of water and 7 mols of

n-butanol is placed in a constant pressure (1 atm)

container and heated.

a. At what temperature does the liquid begin to boil?

b. Atwhat temperature does the last liquid disappear,

leaving only vapor?

8.24 a. On one plot of ln gi vs. xa sketch in the values from
Figures 8.7, 8.8, and 8.9, all to the same scale.

b. Comment on the relation of the numerical values

of the activity coefficient and the existence of

azeotropes and heteroazeotropes.

c. Is there an analog of the heteroazeotrope for very

small values of gi (very large negative deviations

from ideal solution behavior)? If so, what is it?

8.25 Sketch the equivalent of Figure 8.7 (all four parts) for

a binary system consisting of two chemicals, a and b,

which form an ideal solution with each other,

a. If they have identical NBPs, both 0�C.
b. The NBP’s are a: 0�C, b: 300�C. Draw the P-xa

diagram for 0�C, all the other parts for 1 atm.

8.26 Same as Problem 8.25, except that the system of

interest is nitrogen–water. Cover only the nitrogen

mol fraction range from 0 to 0.01. Make the P-x

diagram for 20�C for which the Henry’s law constants

are shown inTableA.3.Make theT-x diagram for 14.7

psia. Here take xa as the mol fraction of nitrogen, so

that pure water is at the left. (See Figure 8.9.)

8.27 Same as Problem 8.25, except that the system of

interest is sodium chloride–water. For the purpose of

this problem assume that the vapor pressure of pure

sodium chloride is zero at temperatures near room

temperature and that the NaCl is 100% ionized. Omit

any solid phases.Assume that both gi¼ 1.00.Draw the

P-xa diagram for 212eF and the T-xa diagram for 14.7

psia. (Sodium chloride melts at 801�C and boils at

1413�C.)

8.28 Same as Problem 8.25, for the system water–mercury.

Assume that the solubilities of water in mercury and

mercury in water are exactly zero. Show the resulting

plots. The NBP of mercury is 357�C. The vapor

pressure of mercury at 100�C is 0.28 torr. Be prepared

to discuss how different the plots would look if we

took the minuscule solubilities of water in mercury

and mercury in water into account.

8.29 A vapor is 40mol% water, 60mol% n-butane, at

130�C and 1 atm absolute pressure. We now cool this

vapor at constant pressure. From Chapter 11 we know

that liquid water and liquid n-butane are practically

insoluble in each other (much less than 1 mol%

solubility) and can be considered for this problem to

be completely insoluble.

a. At what temperature will the first drop of liquid

appear?

b. What will be the mol% water in this first drop?

8.30� The Henry’s law constant for ethane in water at 0�C
is 1.26	 104 atm (Table A.3).

a. If the partial pressure of ethane over water is 1 atm,

what is the mol fraction ethane in the water?

b. To what maximum pressure should this “law” be

used for ethane and water?

8.31 Table 3.A shows the calculated mol fractions for the

air–water equilibrium.

a. What are the values of Ki for all three species in

that example?

b. What is the value of a between oxygen and water?

(It is not common to use Ki and a notation for

Henry’s law problems, but it is perfectly logical to

do so.)

8.32 The ethane-water system forms two immiscible liquid

phases over most of the composition range. At 0�C in

thewater-rich liquid (i.e., the liquid that is almost pure

water), if we take the standard-state fugacities to be

Raoult’s law type (0.09 psia for water and 23 atm for

ethane), then the activity coefficients are practically

independent of composition and are equal to 1.0 for

water and 550 for ethane. Based on these data, esti-

mate themol fraction of ethane in thewater-rich phase

for pressures high enough that two liquid phases are

present.

8.33� A vessel contains liquid water, and a gas which is

mostly N2, with some contained water vapor, all

equilibrium at 20�C and 10 atm (absolute). At this

temperature the vapor pressure of water is 0.023 atm.

What is the mol fraction of water in the vapor phase,

if:

a. The mol fraction of N2 in the liquid is negligible,

and the poynting factor (Eq. 7.N)¼ 1.00?

b. Same as (a) but we take into account the solubility

of N2 in the water?

c. Same as (b) but we take into account the effect of

the poynting factor on the vapor pressure of water?
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8.34� A liquid with 50 mol% a and 50 mol% b is fed to a

continuous distillation column. The column is a very

high efficiency column, which makes a very good

separation. What are the approximate compositions

of the overhead and bottoms products

a. If a and b are benzene–toluene?

b. If a and b are isopropanol–water?

c. If a and b are acetone–chloroform?

d. If a and b are water–n-butanol?

8.35 For the acetone–water system, shown in the first few

examples of this chapter, the activity coefficients

are >1.00. If we feed an acetone–water mixture to

the distillation column in the previous problem, do the

activity coefficients >1.00 help us

a. Get high-purity acetone out the top of the column?

b. Get high-purity water out the bottom of the

column?

8.36 Estimate the composition of the vapor in equilibrium

with a 50 mol% liquid solution of a and b and

the equilibrium pressure from the following data at

20�C:

pa�15 atm pb ¼ 7 atm ga ¼ 1:2 gb ¼ 1:8

The Lewis–Randall fugacity rule may be assumed to

hold for the gas phase, with

fa ¼ 0:8 fb ¼ 0:6

8.37 A binary liquid solution of 50 mol% a, 50 mol% b at

100�F has the following properties:

pa ¼ 20 atm pb ¼ 0:4 atm ga ¼ 1:5 gb ¼ 1:8

What is the minimum reversible power needed to

separate this solution into pure species in an isothermal

steady-flowdevice?Expressyouranswer inBtu/Ibmol.

T¼ To¼ 100�F.

8.38 A new type of steady-flow electrochemical cell has

been proposed that will generate electricity bymixing

liquid a and b. The cell will operate at 100�F, in
contact with a heat reservoir at 100�F. At this tem-

perature, the vapor pressures of a and b are 5

and 8 atm, respectively. The mixing ratio will be 1

mol to 1 mol, and in the final mixture the activity

coefficients are

ga ¼ 0:5 gb ¼ 0:25

What is the maximum amount of electrical work

that this cell can generate per lbmol of a?

8.39 Sketch a figure like Figure 8.8b for a substance that

obeys the van Laar equation (Eq. 8.6):

a. For the case in which A¼B¼ 0.0.

b. For the case in which A¼B¼ 1.0.

c. For the case in which A¼B¼�1.00.

d. For the case in which A¼ 0.5, B¼ 1.0.

8.40 The van Laar equation (Eq. 8.6) is most often seen

with log gi, (see Table A.7). But it can also be shown

with ln gi, which is the most commonly seen form for

most other activity coefficient equations. Using

Eq. 8.6, show the values that replace A and B to

change the log gi form to the ln gi, form.

8.41 Set up Example 8.9 on a spreadsheet.

a. Show that the answers in that example are cor-

rectly calculated.

b. Repeat the calculation for ethanol-water, with

xa¼ 0.0966 and T¼ 86.7�C. The experimental

values are P¼ 1.00 atm, ya¼ 0.4375.

c. Repeat the calculation for benzene and toluene,

which may be assumed to form an ideal solution,

with xa¼ 0.5, T¼ 80�C.

8.42 Set up Example 8.10 on a spreadsheet.

a. Show that the answers in that example are cor-

rectly calculated.

b. Repeat the calculation for ethanol–water, with

xa¼ 0.3273 and P¼ 1.00 atm. The experimental

values are T¼ 81.5�C, ya¼ 0.5826.

c. Repeat the calculation for benzene and toluene,

which may be assumed to form an ideal solution,

with xa¼ 0.3, P¼ 1 atm.

8.43 Set up Example 8.11 on a spreadsheet.

a. Show that the answers in that example are cor-

rectly calculated.

b. Repeat the calculation for ethanol–water, with

ya¼ 0.6564 and T¼ 79.8�C. The experimental

values are P¼ 1.00 atm, xa¼ 0.5079.

c. Repeat the calculation for benzene and toluene,

which may be assumed to form an ideal solution,

with ya¼ 0.5, T¼ 70�C.

8.44 Set up Example 8.12 on a spreadsheet.

a. Show that the answers in that example are cor-

rectly calculated.

b. Repeat the calculation for ethanol–water, with

ya¼ 0.3891 and P¼ 1.00 atm. The experimental

values are T¼ 89.0�C, xa¼ 0.0721.

c. Repeat the calculation for benzene and toluene,

which may be assumed to form an ideal solution,

with ya¼ 0.3, P¼ 1 atm.

8.45 Set up Example 8.13 on a spreadsheet.

a. Show that the answers in that example are cor-

rectly calculated.
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b. Repeat the calculation for ethanol–water with

za¼ 0.228, T¼ 87.3�C, and P¼ 1.00 atm. The

values of V/F, xa and ya (based on chart reading

in [14]) are 0.405, 0.089, and 0.432.

c. Repeat the calculation for benzene and toluene,

which may be assumed to form an ideal solution,

with za¼ 0.3, P¼ 2 atm, and T¼ 100�C.

8.46 Show that instead of using
P

xi�
P

yi ¼ 0 as the

equilibrium criterion in Example 8.13, one could useP
xi ¼ 1:00 or

P
yi ¼ 1:00: Suggest why this might

be computationally less satisfactory.

8.47� At 1 atm pressure, the ethanol–water azeotrope has a

composition of 10.57 mol% water, at a temperature of

78.15�C [9]. The liquid-phase activity coefficients are

computed in Example 7.4. Calculate the corresponding

values of the liquid-phase activity coefficients from

Eq. 8.6.Are they the same? similar? The constantswith

Eq. 8.6 are chosen to give the best average represen-

tation of the VLE data over the whole data range; the

answers to Example 7.4 are best for the azeotrope.

8.48� For a binary mixture of a and b at temperature T and

pressure P, the liquid phase activity coefficients

(Raoult’s law type) are given by

ln ga ¼ Cx2b ln gb ¼ Cx2a ð8:TÞ

where C is an experimental constant. (This is the

symmetrical equation, see Chapter 9.) The pure spe-

cies Gibbs energies per mole of a and b are identical:

goa ¼ gob. IfC is a small number (e.g., 10�6), then a and

bwill form one miscible liquid solution. If it is a large

number (e.g., 106), then they will form an immiscible

liquid pair (as, for example, mercury–water). What is

the maximum value of C for which they form one

liquid? (This is the same as theminimumvalue ofC for

which they form two phases; for that value of C, they

are just beginning to form two phases.)

8.49 Liquid mixtures of a and b obey Eq. 8.T, withC¼ 0.5.

Does this mixture form an azeotrope at a constant

temperature of T, for

a. pa =pb ¼1.0.

b. pa =pb¼ 10.

c. What is the value of pa =pb for which it forms an

azeotrope with xa¼ 0.9900?

d. What is the value of C for which a system with

pa=pb¼ 10 forms an azeotrope with xa¼ 0.9900?

8.50 The values in Table 8.L were calculated from values

read from Figure 330 of [14], which has values shown

in �F and weight fractions. The actual readings from

the chart were T¼ 197.2�F,L/F byweight¼ 0.600, za,

ya, and xa, all by weight, not mol, 0.27, 0.52, 0.10.

Show the conversion of these values to the values

shown in Table 8.L.

8.51 a. Estimate the K value for n-pentane at 100 psi and

0�F from Figure 8.20 (see Example 8.14).

b. Estimate the same K value from Raoult’s law

using the values in Table A.2. Compare the value

to that in part (a).

c. Repeat part (b) using the L-R rule for the vapor.

(You must extrapolate to a hypothetical standard

state, as shown in Figure 8.14.)

8.52 Repeat Example 8.14 for 400 psia and liquid mol

fractions: 0.110, 0.175 and 0.715. Compare them to

the experimental values, 50�F, and yi¼ 0.557, 0.193

and 0.250.

8.53 Find the dewpoint temperature and the liquid (bubble-

point) composition for a vapor that is 5 mol% meth-

ane, 85 mol% n-butane, and 10 mol% n-pentane at 20

psia, using Figure 8.20. The procedure is the same as

in Example 8.14, but we solve for the value of T at

which the xi, calculated from the yi and the Ki, sum to

1.00. In this problem and the next two, although the

chart reading must be done by hand and repeated for

each stage of the trial and error, the solution is easiest

if the computations are done on a spreadsheet.

8.54 Same as the preceding problem, but instead of a known

pressure of 20 psia we have a known temperature of

70�F, and must estimate the dew-point pressure.

8.55� Estimate the 1-atmboiling temperature of an 0.5molal

solution of sugar (sucrose) in water.

8.56 a. Show the equation for mol fraction of solute as a

function of molality of solute and the molecular

weight of the solvent.

b. Then solve that relation for the molality of solute

as a function of mol fraction of solute and the

molecular weight of the solvent.

c. Then show the limiting forms of these two equa-

tions for very small values of the solute molality.

8.57 In Figure 8.22, the experimental data differ by 10%

from that calculated by the two equations at msucrose

� 1.0. At this molality, what is the wt% sugar in the

solution? Is this a dilute solution?

8.58 Repeat Example 8.15 for sugar molalities of 0.1, 0.5

and 2. Compare the boiling-point elevations from the

Raoult’s law expression in Example 8.15 and from the

equation normally shown in elementary chemistry

books, Eq. 8.10.

8.59 Repeat Example 8.15 where the solvent is benzene

(C6H6, M¼ 78 g/mol). Compare your result to the

commonly reported value, Kb¼ 2.53�C/(molal).
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8.60 In Example 8.15 we computed the boiling-point

elevation from the mol fraction of the solvent and

the vapor pressure curve of the solvent. In general, we

must have P¼ pb

dT

dma

¼ dT

dpb

dP

dxa

dxa

dma

ð8:UÞ

where a is the solute and b is the solvent. For pressure

near 1 atm we may replace dT/dpb in terms of the C-C

equation (Eq. 5.8).

a. Show that for dilute solutions (xa<< 1.00), dP/

dxa� pb and dxa/dma�Mb /1000 g.

b. Make all three substitutions in Eq. 8.U, and show

that the result is

dT

dma

¼ RT2
0

Dhb;molar=Mb

:
1

1000 g
ð8:VÞ

c. Use Eq. 8.V to estimate the value of the boiling-

point elevation constant Kb for water at its NBP,

using the value (Dhwater, molar/Mwater)NBP¼ 539.4

cal/g. Compare it to the value shown in Example

8.15.

d. Based on Eq. 8.V list the thermodynamic prop-

erties we should choose to have a solvent with

the highest possible boiling-point elevation con-

stant Kb.

8.61� At 1 atm, a saturated solution of NaCl has a boiling

temperature of 108.7�C and an NaCl molality of

6.87. Assuming that the NaCl is 100% ionized to

Naþ andCl� ions, estimate the activity coefficient of

water in this mixture. (At this temperature the vapor

pressure of pure water is 1.3533 atm.)

8.62 At 1 atm, a saturated solution of NaCl in water has a

salt content of � 390 g/1000 g of water. Estimate its

boiling point by Raoult’s law (see Example 8.15) and

also by Eq. 8.10,

a. For the assumption that the salt does not ionize.

b. For the assumption that each mol of NaCl ionizes

completely to form 2 mole of ions.

c. Compare the results to the observed boiling point,

108.7�C [19], and comment.

8.63 Table 8.O shows the experimental data for the boiling-

point elevation of sodium chloride in water at 1 atm

[17, p. 326]. Using this table (which is based on NaCl,

not Naþ and Cl�),
a. Prepare the equivalent of Figure 8.22, assuming

full ionization of the NaCl.

b. Estimate the Raoult’s law-type activity coeffi-

cients for water in these solutions, again assuming

full ionization of the NaCl.

8.64 Table 8.P shows the experimental data for the freezing-

point depression of sucrose in water at 1 atm [20].

Using this table,

a. Prepare the equivalent of Figure 8.22.

b. Estimate the Raoult’s law-type activity coeffi-

cients for water in these solutions.

8.65 Table 8.Q shows the experimental/data for the freez-

ing-point depression of sodium chloride in water at

1 atm [20]. Using this table,

a. Prepare the equivalent of Figure 8.22.

b. Estimate the Raoult’s law-type activity coeffi-

cients for water in these solutions.

Table 8.O Reported Boiling-Point Elevation for NaCl

Molality of NaCl

in Water, msolute

DTB
xsolute

ð�CÞ; where xsolute is the

Mol Fraction Based on Nonionized NaCl

0.5 53.3

1 54.7

2 58.7

3 63

4 67

5 72

6.78 (saturation) 79.6

Table 8.P Reported Freezing-Point Depression for Sucrose

Molality of Sucrose

in Water, msolute

�DTF
msolute

ð�C=molalÞ

0.005 1.86

0.05 1.87

0.5 1.96

1.00 2.06

2.00 2.3

4.00 2.7

Table 8.Q Reported Freezing-Point Depression for NaCI

Molality of NaCl

in Water, msolute

�DTF
msolute

(�C/molal), where msolute

is Based on Nonionized NaCl

0.001 3.66

0.01 3.604

0.1 3.478

1 3.37

2 3.45

4 3.78

5.2 (eutectic, see Figure 11.14) 4.061
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8.66 How big an error did we make in Example 8.16 by

ignoring the air dissolved in the water at 1 atm? To

simplify the calculation assume that the equilibrium

concentrations at 20�C shown in Table 3.1 apply in

this case.
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9
CORRELATING AND PREDICTING NONIDEAL VLE

In the Section 8.9 we borrowed the van Laar equation for

liquid-phase activity coefficients from this chapter without

showing its logical basis. If we do not make the ideal

solution (Raoult’s law) assumption for the liquid, then we

need some equation of that kind to perform any vapor–

liquid equilibrium (VLE) calculations. The hardest and

most interesting part of VLE is seeking mathematical

relations for the liquid-phase activity coefficients, to use

in this type of calculation. (Many consider all the other parts

trivial, and take VLE to mean the study of liquid-phase

activity coefficients.) Our ultimate goal is to write out

completely reliable predictive equations based on molecu-

lar theory alone. We are far from that goal. Our most

plausible goal is to write out reasonably reliable predictive

equations, either based on simplified molecular or empirical

theories, or based on small amounts of experimental data.

We are much closer to that goal.

The most reliable predictive equations are so complex

that they are used only in computer programs. In this

chapter we consider several predictive equations that are

simple enough for hand (or spreadsheet) calculations,

showing their logical basis and application, and indicate

their relation to the more complex equations used in large

computer programs. We also consider briefly how such

programs estimate the effect of nonideal behavior in the

vapor phase and discuss solubility parameter and gas–liquid

equilibrium. This chapter is all about nonideal behavior in

one phase, mostly in the liquid, occasionally in the gas. For

that reason the superscripts that identify phases will not

appear in this chapter.

9.1 THE MOST COMMON OBSERVATIONS OF

LIQUID-PHASE ACTIVITY COEFFICIENTS

As discussed in Chapter 8, we have no direct measurements

of liquid- or gas-phase activity coefficients. We compute

them from observed VLE (or other kinds of physical mea-

surements [1, p. 173]) or estimate them from molecular

interactionmodels. To compute them fromVLEobservations

wemustmake some kind of assumption about the behavior of

the gas. At low pressures we normally assume ideal gas

behavior, at modest pressures we use the methods shown in

Section 9.7, and at high pressures we use the methods in

Chapter 10.

Figures 8.7, 8.8 and 8.9 show the most common types of

activity coefficient behaviors (types I, II, and III), which are

summarized in Figure 9.1. Type IV (heteroazeotrope) be-

havior (Figure 8.12) is an extreme example of type II. The

activity coefficients are larger than for type II, but have the

same general shape. In all three patterns shown in Figure 9.1

the activity coefficients are both¼ 1.00 (type I), both >1.00

(types II and IV), or both<1.00 (type III). We are suspicious

of any reported activity coefficients that do not fall into one of

these three patterns. However, there is another pattern,

sketched in Figure 9.2, that is uncommon, but that exists

for the important ammonia–water system [2].

9.1.1 Why Nonideal Behavior?

What kinds of molecules would be expected to show the

above four types of behavior? We can offer the following

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
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approximate rules, which help us guess what an activity

coefficient plot would look like, without any data:

1. Molecules of the same homologous series generally

have close to ideal behavior, type I, but as their

difference in size becomes large they show weak

type II behavior. The hydrocarbon K-value plot in

Figure 8.20 generally corresponds to activity coeffi-

cients between 1 and 1.5, reflecting the fact that in the

hydrocarbon systems for which it applies there is

generally a range of molecular sizes, and hence they

have activity coefficients in this range.

2. Molecules with differing polarity tend to have strong

type II or type IV behavior. Water is polar and most

hydrocarbons are not. This leads to strong type IV

behavior for most water–hydrocarbon systems, with

limited liquid-phase solubility and very high activity

coefficients. Adding a polar group to a hydrocarbon, for

example, a hydroxyl group, makes its water repulsion

weaker, leading to complete water solubility for the

lower molecular weight alcohols and decreasing

solubility with increasing molecular weight with the

higher ones. The corresponding activity coefficients for

alcohol–water solutions increase as the number of car-

bon atoms in the alcohol increases (see Figures 8.9 and

8.12!). (This topic is explored further in Chapter 11.)

3. Chemical or quasi-chemical reactions between species

lead to type III behavior. Solvation of molecules and

ions is a weak quasi-chemical reaction, shown for

sucrose and Naþ and Cl� in Chapter 8. Strong quasi-

chemical reactions like that betweenwater and sulfuric

acid lead to strong type III behavior.

4. Some chemicals reversibly form dimers or trimers in

both liquid and vapor phases, for example, carboxylic

acids. This leads to type III behavior (see Chapter 13).

5. Water�organic solutions are almost always complex,

because of the variety of ways in which water can

interact with organic molecules.

We will discuss this topic a bit more in Section 9.9.

9.1.2 The Shapes of ln g � x Curves

As discussed in Section 8.3, the gi for all imust become 1.00

and the approach must be asymptotic to the gi¼ 1.00 axis as

xi approaches 1.00 because as xi approaches 1.00 each i

molecule becomes surrounded by only other molecules of

i, with which it has ideal-solution interactions. As xi appro-

aches 0.00 (and gi approaches g1i ) we expect the most

strongly nonideal behavior (gi moving most rapidly away

from 1.00, either up in type II or down in type III) because

each lonely i molecule is surrounded by molecules of the

other kind with which it has its strongest nonideal interac-

tions. The pattern in Figure 9.2 suggests that something other

than simpleVLEmust be occurring. In this casewe know that

water and ammonia react by

NH3 þ H2O , NH4OH , NHþ
4 þ OH� ð9:AÞ

On the right side of Figure 9.2we have a small amount ofNH3

dissolved in water, sowewould expect Reaction 9.A to move

to the right, thus removing dissolved NH3 from the solution

and producing type III behavior (activity coefficients less

than 1.00). On the left side of the figure we have almost pure

ammonia, near its critical temperature (405.5K) in which the

small number of water molecules do not react and ionize and

P = 1.00 atm

Type II, isopropanol-
water

Type I, benzene-toluene

Type III, acetone-chloroform
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FIGURE 9.1 The three most common patterns of activity coeffi-

cients, copied from Figures 8.7, 8.8, and 8.9.
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FIGURE 9.2 Activity coefficients for ammonia–water, which do

not fit any of the types shown in Figures 8.7, 8.8, 8.9 and 8.12. The

original article shows such plots for 8 different temperatures [2].

Observe that here species a is water, the higher-boiling species. This

is contrary to the common usage, but follows the usage in the

original article.
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are apparently weakly repelled by the ammonia molecules.

This leads to simple type II behavior (activity coefficients

increasewith increasing dilution). In themiddle of Figure 9.2

we have the anomalous situation that one activity coefficient

is greater than 1.00 and the other less. This is very uncommon

behavior; in Figure 9.2 the deviations of the gi from 1.00,

positive and negative, are both small.

For liquidmixtures forwhichwedo not have experimental

VLE data, or for which we have only partial data, we mostly

proceed by extrapolating and interpolating the existing data

and making estimates where the data are missing, using

activity coefficient correlations. We might logically try to

represent those curves with various empirical data-fitting

equations, but there is a strong restriction on what forms of

such data-fitting equations we can use.

9.2 LIMITS ON ACTIVITY COEFFICIENT

CORRELATIONS, THE GIBBS–DUHEM EQUATION

It is shown in Chapter 6 that for any partial molar property

(for example, �q where Q is any extensive property) of any

mixture with any number of species in one phase the partial

molar equation requires that

ðnad�qa þ nbd�qb þ ncd�qc þ � � �ÞT ;P ¼ 0 ð6:22Þ
If we let �q be the partial molar Gibbs energy, then Eq. 6.22

becomes the Gibbs–Duhem equation:

ðnad�ga þ nbd�gb þ ncd�gc þ � � �ÞT ; P
¼ ðnadma þ nbdmb þ ncdmc þ � � �ÞT ; P ¼ 0

ð6:23Þ

If we consider a binary mixture for which ðnc ¼ nd
¼ � � � ¼ 0Þ, then a little algebra converts this to

d�ga
dxa

þ xb

xa
� d�gb
dxa

� �
T ; P

¼ dma

dxa
þ xb

xa
� dmb

dxa

� �
T ; P

¼ 0

ð9:1Þ
which is the most commonly used form of the Gibbs–Duhem

equation. In principle, it applies only at constant T and P, but

in practice that seems to be a restriction we can often ignore

with negligible error (see Section 9.5). A little more algebra

shows that we can substitute fugacities and then activity

coefficients in this equation and find

d ln ga
dxa

þ xb

xa
� d ln gb

dxa

� �
T ; P

¼ 0 ð9:2Þ

which is often also called the Gibbs–Duhem equation, be-

cause it is equivalent to Eq. 9.1. This equation says that if we

have some experimental values of the activity coefficients for

a binary mixture, as in Figure 8.6 or 9.1, and we attempt to

represent this set of values by some empirical curve-fitting

equations, there is a severe restriction on the form our curve-

fitting equations can take.

For example, if we tried

ln ga ¼ Axa þ B

ln gb ¼ Cxb þ D
?? ð9:BÞ

where A, B, C, and D are curve-fitting constants, and then

took the derivatives (noting that dxb ¼ �dxa) and inserted

them in Eq. 9.2, we would find

d ln ga
dxa

þ xb

xa
� d ln gb

dxa

� �
T ; P

¼ A� xb

xa
C

� �
?? ð9:CÞ

which is equal to zero when (xb/xa)¼A/C, but not for any

other value of themol fractions. Equation 9.2must be obeyed

for all values of xa, so the set of data-fitting equations for the

activity coefficients proposed in Eq. 9.B cannot be correct.

Intuitively, the reason for the Gibbs–Duhem equation is

that for each species gi depends on the fraction of the

molecules with which a molecule interacts that are of the

same kind and the fraction that are of the other kind. Thus, as

we change the ratio of one kind of molecule to the other

(change the mol fractions), we would expect both gis to

change; the Gibbs–Duhem equation shows how those

changes relate to each other.

In Figures 8.7, 8.8, 8.9, 8.12, 9.1, and 9.2 themol fractions,

pressures, and temperatures are shown on arithmetic scales,

while the activity coefficients are shown on log scales. They

are almost always shown in that form, to correspond toEq. 9.2,

which says that in that representation, for any value of xi, the

slopes of the two ln gi curves must have opposite signs (one

positive, one negative, or both zero) and that the magnitude of

the slopes must be equal and opposite at xa ¼ xb ¼ 0:5. As
best we can read the slopes on those figures, Eq. 9.2 is obeyed.

In Eq. 9.2 asxb ! 0; ðd ln gaÞ=dxa ! 0 so that the lnga curve
must become horizontal, and thus tangent to the ga¼ 1.00

line.

Several data-fitting equations for activity coefficients have

been proposed and used. All of these have forms that

guarantee that Eq. 9.2 will be obeyed for all xi. One of the

simplest of these, one of few likely to be used in noncomputer

calculations, is the van Laar equation, used in the examples in

Chapter 8:

log or ln ga ¼
Ax2b

A

B
xa þ xb

� �2
log or ln gb ¼

Bx2a

xa þ A

B
xb

� �2

ð8:6Þ

Example 9.1 From Table A.7 for the isopropanol–water

system at 1 atm pressure the van Laar constants (log form) are
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A¼ 1.0728, B¼ 0.4750 (in that table water is shown as a, but

here we use isopropanol as a, which interchanges the values

of A and B). Using these values, estimate the two liquid-

phase activity coefficients for xa¼ xisopropanol¼ 0.4720,

and xb¼ xwater¼ 0.5280.

logga ¼
1:0728 �0:52802

1:0728

0:4750
�0:4720þ0:5280

0
@

1
A

2
¼ 0:1177 ga ¼ 1:31

loggb ¼
0:4750 �0:47202

0:4720þ0:4750

1:0728
0:5280

0
@

1
A

2
¼ 0:2124 gb ¼ 1:63

ð9:DÞ

The values computed directly from the measured VLE data

are 1.32 and 1.63. Thus, for this particular data point, the van

Laar equation does a very good but not perfect job of

estimating these activity coefficients. &

9.3 EXCESS GIBBS ENERGY AND ACTIVITY
COEFFICIENT EQUATIONS

The van Laar equation is simple and useful, but more

complex equations do a better job of correlating, inter-

polating, and extrapolating activity coefficients (and thus

VLE data and calculations). Most of these methods begin

by defining and then correlating a quantity called the

excess Gibbs energy, GE. If we write the equation for the

Gibbs energy of some arbitrary solution, using the prop-

erty from Chapter 6 that for any phase G ¼P ni�gi and

then subtract from it the Gibbs energy that the same

phase would have if it were an ideal solution, we will

have

GE ¼ Gactual � G
solution of the same
composition; but ideal

¼
X

ni�gi �
X

nið�giÞideal solution
¼
X

ni RT lnðxigi f oi Þ
� ��X ni RT lnðxi f oi Þ

� �

¼
X

niðRT ln giÞ ð9:3Þ

from which it follows (see Problem 9.8) that

dGE

dni

� �
nj ; T ; P

¼ dðgEnTÞ
dni

� �
nj ; T ; P

¼ g�E
i ¼ mE

i ¼ RT ln gi

ð9:4Þ

Tofind the above relations in terms ofmol fraction and excess

Gibbs energy gE per mol of solution, we divide each part of

Eq. 9.3 by nT, finding

gE ¼ gactual � g
solution of the same
composition; but ideal

¼ GE

nT
¼
X

xi�gi �
X

xið�giÞideal solution
¼
X

xi RT lnðxigi f oi Þ
� ��X xi RT lnðxi f oi Þ

� �

¼
X

xiðRT ln giÞ ð9:5Þ

For a binary solution, xc;��� ¼ 0 and ðdxb=dxaÞ ¼ �1, so that

dgE

dxa
¼ RT ln

ga
gb

� �
T ; P

ð9:6Þ

and also (see Problem 9.12), for binary solutions only,

RT ln ga ¼ gE þ ð1� xaÞ dg
E

dxa
ð9:7Þ

In most activity coefficient calculations we use gE/RT as

the dimensionless correlating variable, which simplifies

the computations; an additional correlating parameter,

gE=ðRTxaxbÞ, has advantages that will become clear after

the next example.

Example 9.2 Calculate and plot gE/RT and ðgE=RTxaxbÞ
for the acetone–water solution at 1 atm pressure, using the

VLE data from Example 8.2.

Continuing Example 8.2, we have, for xacetone¼ 0.05,

gE

RT
¼
X

xi ln gi

¼ ð0:05 � ln 7:04þ 0:95 � ln 1:01Þ
¼ ð0:0976þ 0:0094Þ ¼ 0:107 ð9:EÞ

gE=RT

xaxb
¼ 0:107

0:05 � 0:95 ¼ 2:25 ð9:FÞ

We then use a spreadsheet to make similar computations

for the other data points, and plot the results as shown in

Figure 9.3. &

From Figure 9.3 we see that gE/RT is a dome-shaped

function that goes to zero at the two extremes. If we wish to

represent it by some data-fitting equation we will need at

least a quadratic equation, more likely a cubic or higher-

power equation. However, gE=ðRTxaxbÞ is close to being a
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straight line; we can often fit it with a linear equation, or even

approximately by a constant (see Example 9.3). This kind of

behavior is common; that is the reason for bothering with

gE=ðRTxaxbÞ.

Example 9.3 Show the equations for the activity coeffi-

cients that result from the following two simplifications of the

gE=ðRTxaxbÞ curve in Figure 9.3:

gE

ðRTxaxbÞ ¼ A ¼ 1:886 ð9:GÞ

gE

ðRTxaxbÞ ¼ axa þ b ¼ �0:51145xa þ 2:127 ð9:HÞ

The first of these is simply an average of the values, corre-

sponding to a horizontal line through the middle of the data

points in Figure 9.3. The second is the result of a least-squares

straight-line fit of the data, corresponding to a linewith amild

negative slope on Figure 9.3, with a and b as linear equation

coefficients.

For Eq. 9.G, some algebra (Problem 9.17) leads to

ln ga ¼ Ax2b ¼ 1:886x2b ln gb ¼ Ax2a ¼ 1:886x2a ð9:IÞ

For Eq. 9.H, we first rewrite the linear equation as

axa þ b ¼ ðaþ bÞxa þ bxb ¼ cxa þ bxb where

c ¼ ðaþ bÞ ¼ 1:6156 ð9:JÞ

Then some more complex algebra (Problem 9.18) leads to

ln ga ¼ x2b bþ 2ðc� bÞxa½ � ¼ x2b 2:127þ 2ð1:6156� 2:127Þxa½ �
¼ x2b 2:127� 1:023xað Þ

ln gb ¼ x2a cþ 2ðb� cÞxb½ � ¼ x2a 1:6156þ 2ð2:127� 1:6156Þxb½ �
¼ x2að1:6156þ 1:023xbÞ

ð9:KÞ

Equation 9.I, the symmetrical equation, is the simplest

mathematical representation of binary solution activity

coefficient data that does not violate the Gibbs–Duhem

equation. Equation 9.K is the Margules equation. (Equa-

tion 9.I is sometimes called the two-suffix Margules equa-

tion, and Eq. 9.K the three-suffix Margules equation. If we

represent the gE/RTxa xb curve on Figure 9.3 by a quadratic

equation in xi, the result is sometimes called the four-suffix

Margules equation. Here the number of the suffix is the

number of the highest power of xi or x
n
i x

m
j in the resulting

equations for the activity coefficients.) To see how well

these equations represent the experimental data they are

plotted in Figure 9.4, along with the experimental data

from Figure 8.6.

From Figure 9.4 it is clear that the two curves predicted

by the symmetrical equation are each other’s mirror

images, and that the two predicted by the Margules

equation are similar in shape, but with different slopes.

The symmetrical curves pass almost exactly through
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FIGURE 9.3 Calculated values of 10gE/RT and ðgE=RTxaxbÞ
plotted as a function of themol fraction of acetone in the liquid phase

for acetone and water. The gE/RT values are multiplied by 10 to

make the values more or less the same size.
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the points nearest xaeetone¼ 0.5, while the Margules

curves pass just below those values. At the extremes

ðxacetone ! 1:00 and ! 0:00Þ the Margules equation repro-

duces the experimental values substantially better than

does the symmetrical equation, which should not surprise

us, when we consider that in Figure 9.3, the symmetrical

equation is a horizontal line through the average of the data

points, which is sure to represent the middle of the data

well, while the Margules equation is a sloping line, which

compromises between fitting the middle and the extreme

values well.

Most of the common activity coefficient correlation

equations can be shown to be relatively simple algebraic

representations of a plot of gE=RTxaxb vs. xa, (see

Problem 9.20). Most of them were not originally derived

that way, but were based on some type of theoretical

model. But they all have that mathematical property.

Table 9.1 shows this relationship for an assortment of

widely used (or historically interesting) activity coefficient

correlations. &

9.4 ACTIVITY COEFFICIENTS AT

INFINITE DILUTION

The values of the activity coefficients as concentrations

approach zero, called infinite dilution values, ln g1a and ln

g1b are often of considerable interest. The reasons [1, p. 215]

are as follows:

1. It is often easier and cheaper to measure these than to

measure the activity coefficients near the middle of

plots like Figure 8.6.

2. For the design of distillation columns this is often the

most important value, because the difficulty of the

separation is often controlled by the difficulty of pro-

ducing a high-purity product, and that is related to the

activity coefficient near infinite dilution of the species

other than the one we want at high purity.

3. The constants in many common activity coefficient

equations can be estimated easily from infinite-dilution

activity coefficients.

Table 9.1 Comparison of Various Equations for Representing and Estimating Liquid-Phase Activity Coefficients

Equation Name
gE

RTxaxb
ln ga and gb

Symmetrical A ln ga ¼ Ax2b
ln gb ¼ Ax2a

Margules cxa þ bxb ln ga ¼ x2b bþ 2ðc� bÞxa½ �
ln gb ¼ x2a cþ 2ðb� cÞxb½ �

van Laar
AB

Bxb þ Axa
ln ga ¼

Ax2b

A

B
xa þ xb

� �2

ln gb ¼
Bx2a

xa þ B

A
xb

� �2

Wilson
�lnðxa þ LabxbÞ

xb
þ�lnðLbaxa þ xbÞ

xa
ln ga ¼ �lnðxa þ LabxbÞ þ xb

Lab

xa þ Labxb
� Lba

Lbaxa þ xb

0
@

1
A

ln gb ¼ same as ln ga; with subscripts interchanged

NRTL
tbaGba

xa þ Gbaxb
þ tabGab

Gabxa þ xb

� �
ln ga ¼ x2b tba

Gba

xa þ Gbaxb

� �2

þ tabGab

Gabxa þ xbð Þ2
" #( )

ln gb ¼ same as ln ga; with subscripts interchanged

Scatchard–Hildebrand
ðda � dbÞ2

RT
xb

va
þ xa

vb

� �
Same as van Laar; with right-hand side

multiplied by
ðda � dbÞ2

RT
and A ¼ va; B ¼ vb

Note:Amore complete table of this type, showingmore details is inWalas [1, Chapter 4].Most of the coefficients in these tables,A, B, etc. are data-fitting values,

obtained from experimental VLE measurements. Some have semi-theoretical bases. The constants in the Scatchard–Hildebrand equation are based on the

“Regular Solution” theory, and are calculable from pure species properties, without any data for tha mixture. Many authors replace all the symbols for the

coefficients with a universal set, Aab and Aba, etc. Here the originally used symbols are shown.
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Example 9.4 Show the relations between ln g1a and ln g1b
and the constants in the Margules equation.

ln g1a is the value of ln ga as xa approaches zero and

xb approaches 1.00. Substituting those values in Eq. 9.K

leads to

ln g1a ¼ b ð9:LÞ

and correspondingly

ln g1b ¼ c & ð9:MÞ

Example 9.5 By simple extrapolation of the data points in

Figure 8.6, it appears that g1acetone � 10 and g1water � 5. Based

on these values, estimate the values of the constants in the

Margules equation for acetone–water at 1 atm.

From Eqs. 9.L and 9.M, we estimate

b ¼ ln g1acetone � ln 10 ¼ 2:303

c ¼ ln g1water � ln 5 ¼ 1:609
ð9:NÞ

From Example 9.3 we know that the estimates of these

coefficients, based on all the data and not just the infinite

dilution data, are 2.127 and 1.616. &

If we had estimated the Margules equation constants this

way, they would have represent the experimental activity

coefficient values at the two extremes better than is shown

in Figure 9.4, but represented the values in the middle of

the plot more poorly. For systems like acetone–water these

large values of ln g1i make it harder to produce pure

acetone by distillation (because the water’s effective vapor

pressure in practically pure acetone is increased) and make

it easier to produce pure water (because the acetone’s

effective vapor pressure in practically pure water is

increased).

9.5 EFFECTSOFPRESSUREANDTEMPERATURE

ON LIQUID-PHASE ACTIVITY COEFFICIENTS

The VLE data for acetone and water in Table 8.1, reproduced

several ways in Chapters 8 and 9, are all for 1 atm pressure.

The temperatures range from the normal boiling point (NBP)

of acetone, 56.15�C, to the NBP of water, 100�C.Most of the

older experimental VLE data were taken at constant pressure

in devices like that shown in Figure 8.2. Most distillation

processes operate at practically constant pressure, but not at a

constant temperature; the older data match that condition. In

recent years new techniques (which would have been im-

practical before the computer age) have made it quicker and

cheaper to collect VLE data at constant temperature, with the

pressure varying from the boiling pressure of one species to

that of the other at this temperature [2]. Much of the current

data is in that form. To apply these to distillation calculations,

we need a way of estimating gi ¼ f ðxiÞ½ �at constant P from
gi ¼ f ðxiÞ½ �at constant T . The general problem is to estimate

the effects of changes in P and T on activity coefficients.

Changes in pressure most often have little effect, but changes

in temperature may have significant effects. The equations

we need (see Appendix C) are

@ ln gi
@P

� �
T ; xi

¼ �v� voi
RT

ð7:31Þ

@ ln gi
@T

� �
p; xi

¼ ðhoi � �hiÞ
RT2

ð7:32Þ

9.5.1 Effect of Pressure Changes on Liquid-Phase

Activity Coefficients

Example 9.6 Estimate the activity coefficient of ethanol in

a solution of 0.1238 mol fraction ethanol, balance water, at

85.3�C and 10 atm.

FromExample 8.9we know that at thisT andxa and 1 atm,

gethanol ¼ 2:9235 (as estimated by the van Laar equation).We

can compute that 0.1238 mol fraction ethanol corresponds to

0.265mass fraction ethanol, and then read in Figure 6.15 that

at 20�C and 0.265 mass fraction ethanol,

�vethanol by mass at 0:265 wt fraction ethanol � 1:16
cm3

g

ð9:OÞ

voethanol by mass � 1:27
cm3

g
ð9:PÞ

ð�v� voÞethanol by mass � ð1:16� 1:27Þ cm
3

g
¼ �0:11

cm3

g

ð9:QÞ

ð�v� voÞethanol ¼ �0:11
cm3

g
� 46 g

mol
¼ �5:06

cm3

mol

¼ �0:00506
L

mol
ð9:RÞ

If we assume that this value is more or less independent of

temperature, we can use it as the corresponding value at

85.3�C, and compute
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@ ln gi
@P

� �
T ; xi

¼ �0:00506 L=mol

0:08206
L � atm
mol �K � ð85:3þ 273:15ÞK

¼ �1:7278� 10�4 1

atm ð9:SÞ

D ln gi �
@ ln gi
@P

� �
T ; xi

�DP ¼ �1:7278� 10�4 1

atm
� 9 atm

¼ �1:548� 10�3 ð9:TÞ

ln gi; 10 atm ¼ ln gi; 1 atm þ ð�1:548� 10�3Þ
¼ 1:07278� 0:001548 ¼ 1:0712

gi;10 atm ¼ expð1:0712Þ ¼ 2:9189

ð9:UÞ

gi;10 atm � gi;1 atm ¼ 2:9189� 2:9235 ¼ �0:0045 &

ð9:VÞ

If there were no volume change on mixing, then the effect of

pressure changes on activity coefficients would be zero.

Ethanol–water is an extreme case. Its volume change on

mixing, in this example is �8.7% of the specific volume of

pure ethanol. Hildebrand and Scott [3, p. 142] show a table of

volume changes on mixing. Most are less than � 2% of the

volume of the substance added. Even with ethanol–water’s

extreme volume change on mixing, the effect of raising the

pressure from1 to 10 atm is negligible (� 0.15%). The reason

is that the specific volume of liquids is so small that even for

large percentage values of the volume change on mixing, the

value of ð�vi � voi Þ must be small and thus the effect of

pressure on the activity coefficient is normally negligible

for liquids (and solids). See also Example 7.3.

9.5.2 Effect of Temperature Changes on Liquid-Phase
Activity Coefficients

Example 9.7 Estimate the activity coefficient of ethanol in

a liquid of 0.1238 mol fraction ethanol, balance water, at

70�C and 1.00 atm.

From Example 8.9 we know that at 1 atm this solution

boils at 85.3�C and has a calculated gethanol ¼ 2:9235.
Figure 9.5 [4] shows the values of ð�hi � hoi Þ for both ethanol
(species a) and water (species b) at a variety of temperatures,

calculated from measured heats of mixing.

For ethanol at xa¼ 0.1238 and temperatures of 90 and

70�C (363.15 and 343.15K) we read ð�hi � hoi Þ � 0.2 and

1.0 kJ/mol. The average of these is 0.6 kJ/mol¼ 600 J/mol.

Using this average value as a constant in Eq. 7.32 (observe

the sign change!) and rearranging to make the integration,

we find

ð
@ ln ga ¼

ð ðhoa � �haÞ
RT2

@T � ðhoa � �haÞaverage
R

ð
@T

T2
ð9:8Þ

ln
ga at T2

ga at T1

� ðhoa � �haÞaverage
R

� 1

T1
� 1

T2

� �
ð9:9Þ

¼
�600

J

mol

8:314
J

mol �K
� 1

358:45 K
� 1

343:15K

� �
¼ 8:98� 10�3

ð9:WÞ

ga; T2 ¼ ga; T1 expð8:98� 10�3Þ
¼ 2:9235 � 1:009 � 2:950 &

ð9:XÞ

We find that a temperature change of �15�C changes the

ethanol activity coefficient by 0.9%. The previous example

showed that a pressure change of 9 atm changed the activity

coefficient by 0.15%. Thus, we see that for small changes

in temperature and pressure we can normally ignore the

changes in liquid-phase activity coefficients. However, if

ethanol
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FIGURE9.5 Values of ð�hi � hoi Þ for ethanol (species a) andwater
(species b) calculated from measured heats of mixing. The two sets

of curves, from the lowest to the highest, correspond to 298.15,

323.15, 331.15, 343.15, 363.15, and 383.15K. The triangles and

circles are comparisons to data from another author. (From Larkin,

J. A. Thermodynamic properties of aqueous nonelectrolyte mix-

tures, I: excess enthalpy for waterþ ethanol at 298.15 to 383.15K.

J. Chem. Thermodyn. 7: 137–148 (1975). Reproduced by permis-

sion of the publisher.)
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the values of ðhoi � �hiÞ are larger, which they often are near

infinite dilution, then the changes in activity coefficient with

temperature can also be significant.

Figure 9.6 shows the measured activity coefficients at

infinite dilution for a variety of solutions based on

[1, pp. 233–235]. The data in Figure 9.6 show that for a

variety of systems the infinite dilution activity coefficients

change little with changes in temperature. (The log scale

minimizes such changes!) From Figure 9.5 we see that as

the ethanol concentration approaches zero, the values of

ðhoi � �hiÞethanol become large and negative. The same does

not happen for water; as its concentration approaches zero,

the values of ð�hi � hoi Þwater remain small. Based on this

observation we would assume that the activity coefficient

at infinite dilution for ethanol should change substantially

with temperature, while that for water would not. Curves P

and Q in Figure 9.6 show that this is found experimentally.

The scatter in the data in Figure 9.6 reminds us that activity

coefficient measurements are not easy to make; most likely

the true values form smoother curves than the experimental

values shown here. We conclude that changes in pressure

have little effect on liquid-phase activity coefficients, and

that changes in temperature can have greater but still modest

effects. If we must estimate an activity coefficient for some T

and P from experimental data at some other T and Pwe try to

find data as close to the desired T as possible and make the P

correction as shown in Example 9.6. Unfortunately, data on

ð�hi � hoi Þ and ð�vi � voi Þ are scarce. For that reason we often

assume that they are negligible, which is equivalent to

assuming that the activity coefficients depend on concentra-

tion, but not on T andP.As Figure 9.6 shows, this is a fair, but

not excellent assumption.

9.6 TERNARY AND MULTISPECIES VLE

The general low-pressure VLE calculation procedure for

mixtures with more than two species is the same as for two

species; we attempt to find equations for the fugacities in gas

and liquid phases that present fi as a function of T, P, and the

mol fractions in that phase. As the number of species goes up,

the mathematical complexity increases and the intuitive

FIGURE 9.6 Measured activity coefficients at infinite dilution g1i for a variety of solutions [1, p.

233–235]. The systems corresponding to the legend are B, acetone in chloroform; C, chloroform in

acetone; D, carbon disulfide in acetone; E, acetone in carbon disulfide; F, acetone in hexane;G, hexane

in acetone; H, methyl ethyl ketone in ethyl benzene; I, ethyl benzene in methyl ethyl ketone; J, 1,4-

dioxane in nitromethane; K, nitromethane in 1,4-dioxane; L, 1,4-dioxane inN,N-dimethyl formamide;

M, N,N-dimethyl formamide in 1,4-dioxane; N, diethyl ether in chloroform; O, chloroform in diethyl

ether; P, water in ethanol; and Q, ethanol in water.
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content of the equations and the calculations declines. For

most low-pressure VLEwe continue to assume that the vapor

is either an ideal gas or is an ideal solution of nonideal gases,

using the Lewis–Randall (L–R) rule, written for each indi-

vidual species in the mixture.

9.6.1 Liquid-Phase Activity Coefficients

for Ternary Mixtures

For liquids, we use the same equations listed in Table 9.1, in

forms that extend to any number of species. Holmes and Van

Winkle [5] show the ternary (three species) forms for the

common activity coefficient equations. Here we consider

only theMargules equation, which seemsmore intuitive than

the others (not necessarily the most accurate, but perhaps

with the best product of accuracy times intuitive content).

The form shown is

log ga ¼ x2b Aab þ 2xaðAba � AabÞ½ �
þx2c Aac þ 2xaðAca � AacÞ½ �
þxbxc½0:5ðAba þ Aab þ Aac þ Aca � Abc � AcbÞ
þxaðAba � Aab þ Aca � AacÞ
þðxb � xcÞðAbc � AcbÞ � ð1� 2xaÞC*�

ð9:10Þ
If we examine this term by term, we will see that it has

more intuitive content than appears at first glance. Compar-

ing it to Eq. 9.K we see that it is in log form, while Eq. 9.K is

in ln form. Then we see that the first term on the right,

x2b Aab þ 2xaðAba � AabÞ½ �, is the same as the right-hand side

of Eq. 9.K, if

Aab ¼ b ¼ log g1
b; in a
mixture with a

and Aba ¼ c ¼ log g1
a; in a
mixture with b

ð9:11Þ

Thus, this term represents the behavior of species a and b, in

the absence of c. (If we set xc¼ 0, all except the first term in

Eq. 9.10 disappears, and we have the simple binary form of

the Margules equation.) Similarly, the second term on the

right represents the behavior of species a and c, in the absence

of b, with

Aac ¼ b ¼ log g1
c; in a

mixture with a

and Aca ¼ c ¼ log g1
a; in a

mixture with c

ð9:12Þ

These two first terms are binary-interaction terms, repre-

senting two of the three possible binary combinations of

species a, b, and c. The final term contains all three mol

fractions and the four As shown above, plus the two addi-

tional As (Abc and Acb) for the third possible combination of

these three species. It represents interactions between three

molecules at a time. It also contains C*, an adjustable

parameter that can be used if ternary VLE data are available,

to make the equation fit that data. If we have no such data, we

set C*¼ 0.00.

If we set C*¼ 0.00, then Eq. 9.10 allows us to estimate

the activity coefficient for species a in mixtures of a, b,

and c, using only the mol fractions and the Margules

equation constants for the three binary combinations of a,

b, and c. To find the activity coefficients for species b and c

we rotate the subscripts, a! b; b! c; c! a or simply

renumber the species, making the one we are now interested

in species a.

Example 9.8 Estimate the activity coefficient of acetone in

a mixture at 1 atm and 66.70�C with

Species Number Identity Mol Fraction in Liquid, xi

a Acetone 0.1200

b Methanol 0.1280

c Water 0.7520

From [5] we read the following values (see Problem 9.28):

acetone–methanol (a-b) Aab¼ 0.2634 Aba¼ 0.2798

acetone–water (a-c) Aac¼ 0.9709 Aca¼ 0.5579

methanol–water (b-c) Abc¼ 0.3794 Acb¼ 0.2211

The first term on the right of Eq. 9.10 is

x2b Aab þ 2xaðAba � AabÞ½ �
¼ ð0:128Þ2 � ½0:2634þ 2 � 0:12 � ð0:2798� 0:2634Þ�
¼ 0:00438 ð9:YÞ

By similar calculations (not very difficult or time-consuming

on a spreadsheet!) the second and third terms are 0.4930 and

0.0550, so that the whole term on the right is 0.5523, and

ga ¼ 100:5523 ¼ 0:357. For this temmperature we may esti-

mate the vapor pressure of acetone as 1.417 atm, so that we

estimate

yacetone ¼ ð0:12 � 0:357 � 1:417 atm=1 atmÞ ¼ 0:6068 ð9:ZÞ

The experimental value is yacetone ¼ 0:698 [6]. &

What are we to make of this result?

1. The calculated yacetone is (0.6068/0.698)¼ 87% of the

experimental yacetone. If we had assumed ideal solution
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wewould have calculated yacetone ¼ 0:170, 24% of the

experimental yacetone. Using only the published data

for the three possible binary mixtures we made a

much, much better estimate than that. If we had one

data point for a mixture of these three species we

could have used it to estimate a value of C* other than

zero, and possibly have gotten a somewhat better

estimate (see Problem 9.34).

2. From the three values we see that the dominant term is

the one for the acetone–water interaction. If we had

assumed that the mixture was 0.12 mol fraction ace-

tone, balancewater, then wewould have estimated that

ga ¼ 100:6751 ¼ 4:73, 133% of the value shown above.

(Looking back at the table of As we see that those for

acetone–water are much larger than those for the other

two combinations, so perhaps we should have known

this result simply from looking at that table!) Thus, this

calculation not only gives us an excellent estimate of

the experimental behavior, but also shows us which

of the three binary interactions provides most of the

nonideality.

3. The three-molecule interaction term contributed

(�0.0988/0.5523¼�18%) of the calculated exponent.

4. This mixture would be expected to be fairly nonideal,

because of a variety of molecule types (water, an

alcohol, and a ketone) and still the prediction was

fairly close to the experimental value.

5. The chosen liquid concentration was for a low value of

xacetone, where we would expect the prediction, based

on constants for acetone at infinite dilution, to be fairly

reliable. Problem 9.32 shows that for other composi-

tions the prediction is not as good, but still fairly good.

Summarizing ternary and multispecies liquid activity

coefficient estimation, we see that the mathematical and

computational complexity increases, but that using only the

readily available binary data we can make a fair estimate of

the observed behavior. More complex schemes are more

accurate and more time-consuming, but are easily done in

computer programs.

9.7 VAPOR-PHASE NONIDEALITY

In all of Chapter 8, the preceding parts of this chapter, and in

almost all hand calculations of VLE, we assumed that the

vapor was a mixture of ideal gases. Before we had computers

we used the L-R rule for hand calculations when the pressures

were high enough that the ideal gas assumption seemed

unreasonable (see Section 8.6.2). Now that we all have com-

puters andmostly have ourVLEcalculations done byprocess-

design programs, the extra cost of estimating vapor phase

nonideality and taking it into account seems small, so most of

these programs do that. For modest pressures the resulting

changes in the calculations are small, but for high pressures

(Chapter 10) and unusual situations they can be significant.

The calculation is based on Eq. 7.18

fi

Pyi
¼ f̂i ¼ exp

�1

RT

ðP¼P

P¼0

�aidP

� �
¼ exp

ðP¼P

P¼0

ð�zi � 1Þ
P

dP

ð7:18Þ

In Example 7.5 we showed how this calculation is made

from the experimentalPvT data. In Section 7.12.2we showed

that we can base the calculation on the EOS values for the

pure species, using mixing rules. There we showed that the

simplest possible mixing rule led to the L-R rule, an ideal

solution of nonideal gases. Here we examine a very simple

case of a nonideal solution of nonideal gases. In principle, we

could use the same kind of equations we use for PvT

calculations and for making up the steam tables or their

equivalent. But those equations are designed to reproduce

very accurately the measured PvT data for a pure substance,

and are not very good for constructing the derivatives with

respect to concentration, which are needed for Eq. 7.18

Instead, we use different equations, which are not as good

at the steam-table problem, but are better at the composition-

derivative problem.

There are many such EOSs, of varying complexity. In

Chapter 10 and Appendix F we show examples of the same

type as shown here, with more complex EOSs. Here we

consider only one very simple EOS, the two-term, pressure-

explicit form of the virial EOS,

z ¼ PV

RT
¼ 1þ BP

RT
ð7:ADÞ

(see Problem 7.7), where B for the mixture is a function of

temperature and composition, but not of pressure. If we solve

this equation for (z� 1), take the partialmolar derivative, and

insert the value in Eq. 7.18, we can integrate to

fi

Pyi
¼ f̂i ¼ exp

ðP¼P

P¼0

ð�biP=RTÞ
P

dP ¼ exp
�biP

RT

� �
ð9:13Þ

where �bi is the partial molar derivative of B. We can take �bi
out of the integral in Eq. 9.13 because �bi depends on T and

composition, but not on pressure.

This veryconvenient resultmeans that ifwehave reasonable

ways of estimating �bi, then we can easily compute fi=Pyi ¼ f̂i

(see Table 7.D). For pure species at high pressures this EOS is

not very good; wewould never use it to make up the equivalent

of the steam tables. But it has the greatmerit that ifwe know the

values of B for each of the pure species in a mixture, then

molecular interaction theory allows a reasonable estimate of

the value of B of the mixture and thus of �bi. The more complex

VAPOR-PHASE NONIDEALITY 155



equations regularly used in place of this simple one are also

based to some extent on molecular interaction theory.

From molecular interaction theory we know that for the

two-term pressure-explicit virial EOS, the value of B for any

mixture is given by the following mixing rule:

B ¼
X
i

X
j

yiyjBij ð9:14Þ

This equation can be extended to mixtures with more than

two species, by increasing the number of summation signs

and adding yk, and so on. Here we will restrict the

treatment to binary mixtures. If we expand the sums in

Eq. 9.14 we find

B ¼ yayaBaa þ ybybBbb þ yaybBab þ ybyaBba ð9:15Þ

Here Baa and Bbb are the two pure species values of B.

Like Eq. 7.39, Eq. 9.14 has the property that it gives the

correct values for B for the two pure species. Baa and Bbb

account for the interactions of molecules of species a with

other molecules of species a and of molecules of species b

with other molecules of species b. The Bab and Bba account

for the interactions of molecules of species a with those of

species b, and of species bwith those of species a. Since the

latter two must be the same, the cross-coefficient Bab is

equal to Bba and Eq. 9.14 reduces to

B ¼ yayaBaa þ ybybBbb þ 2yaybBab ð9:16Þ

In principle, Baa, Bbb, and Bab can be calculated from

molecular theories. In practice, that has proven difficult,

so that while molecular interaction theory provides some

information, we currently use correlations like the little

EOS (Eqs. 2.48, 2.49 and 2.50) to estimate Baa and Bbb, and

use the semitheoretical or empirical mixing rules described

below to estimate Bab. Equation 9.14 assumes that while B

of themixture depends onvapor composition (so that we can

find its needed partial molar derivative), Baa, Bbb, and Bab

depend only on the properties of the pure species and the

temperature.

Although we could work directly with Eq. 9.16, it is

conventional to rearrange it as follows:

B ¼ yað1� ybÞBaa þ ybð1� yaÞBbb þ 2yaybBab

¼ yaBaa þ ybBbb þ yaybð2Bab � Baa � BbbÞ
ð9:17Þ

and then the rightmost expression in parentheses is given its

own symbol:

d ¼ ð2Bab � Baa � BbbÞ
B ¼ yaBaa þ ybBbb þ yaybd

ð9:18Þ

Figure 9.7 shows the form of Eq. 9.18. From this figure

(and tangent intercepts, Chapter 6) it is clear that if d ¼ 0,

then �ba ¼ Baa and �bb ¼ Bbb for all yi. That corresponds to the

L-R rule (an ideal solution of nonideal gases) (Section 8.6.2).

So it is scarcely worth bothering with this formulation (and

this whole section of this chapter) unless d is known or

believed to be significantly different from zero, and unlesswe

have some way of estimating its value for mixtures of

interest. If Bab equals the average of the two pure species

values, Baa and Bbb, then from Eq. 9.18 we see that d¼ 0.

Thus, what we are really looking for here is the difference

between the cross-coefficient Bab and the average of the pure

species coefficients Baa and Bbb. In principle, we can calcu-

late Bab from molecular theories, but in practice it is most

often estimated from semitheoretical correlations.

The widely used estimating procedure for Bab due to

Prausnitz and his co-workers [7] is illustrated below. In it,

instead of using onemixing rule for z, as we did in Chapter 7,

we choose an EOS and then use separate mixing rules for

each of the parameters that enter into it. These rules are

usable in any EOS that takes as its input the corresponding-

states variables Tr, Pr, zc, andv. Here wewill use them in the

little EOS,which is one of the simplest EOSs of that type. The

computed mixing rule values are shown with the subscript ij,

while the pure species values are shownwith subscripts ii and

jj, to match common convention.

The semitheoretical estimating rules begin with

Tcij ¼ ðTcii � TcjjÞ1=2ð1� kijÞ ð9:AAÞ

where kij is an empirical factor whose value is determined by

testing predictions against experimental data for the mixture.

It is the only place where experimental mixture properties

enter into this set of mixing rules. Of the several quantities

that are called the binary interaction parameter, the kij in

Eq. 9.AA is the most widely used. If you encounter a

reference to a binary interaction parameter without a defi-

nition of which one is intended, your best guess is that it is the

2.2

2
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1.2

1

0.8

Baa = 2 L/mol

Bbb = 1 L/mol

δ = 0.5 L/mol
0.0 L/mol

–0.5 L/mol
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B
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/m
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FIGURE 9.7 Equation 9.18 for arbitrarily selected values of

Baa¼ 2L/mol, Bbh¼ 1 L/mol, and three choices of d.
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kij in Eq. 9.AA. If no suitable data are available,kij is set equal

to some small, positive quantity or to zero. Its values for a

variety of mixtures are shown in [1, p. 596]. The remaining

mixing rules are

vij ¼ vii þ vjj

2
ð9:ABÞ

zcij ¼ zcii þ zcjj

2
ð9:ACÞ

Vcii ¼ zciiRTcii

Pcii

ð9:ADÞ

Vcij ¼
V
1=3
cii þ V

1=3
cjj

2

 !3

ð9:AEÞ

Pcij ¼ zcijRTcij

Pcij

ð9:AFÞ

These mixing rules are based entirely on the pure species

values, except for Tcij, which depends on kij, and Pcij, which

depends on Tcij. Themixture composition enters via Eq. 9.18.

We will illustrate the use of these rules in the little EOS for

two examples previously considered.

Before we plunge into the mathematics, we may sum-

marize where we are going. The procedure is: first esti-

mate Tcij, Pcij and vcij of the mixture from the pure

component values and kij by the mixing rules (9.AA to

9.AF) or by some other set of mixing rules which seem

more appropriate; second compute the corresponding

value of the mixing terms (also called cross terms) in

whatever EOS we are using (Bab in Eqs. 9.14 to 9.18 and

in the little EOS) by inserting the appropriate values of

Tcij, Pcij and vcij in the equations that define each such

term in the EOS; then take the appropriate partial molar

derivative of z from the combined EOS, and use it in

Eq. 7.18 to estimate f̂i.

Example 9.9 Using the above mixing rules and the little

EOS, estimatefi, f̂i and (f̂i/fi) for ethanol and forwater in a

vapor at 85.3�C, 1 atm, and yethanol¼ 0.4741 (see Example

8.9). In Chapter 8 weworked numerous examples of the VLE

of ethanol and water at 1 atm, all with the assumption that

the vapor was practically an ideal solution of ideal gases.

The results of this example will help us see how good (or

bad) that assumption was.

The calculation is summarized in Table 9.A. We read

the values of Tc, Pc, v, and zc for each pure species from

Table A.1. For pure ethanol and pure water we use the

procedure shown Exammple 7.1(c), leading to fethanol and

fwater values of 0.9749 and 0.9863. The value of B for pure

ethanol (see Problem 7.7) is

B ¼ f ðTrÞRTc
Pc

¼ �1:082 �
0:08206

L � atm
mol �K � 513:9 K

61:48 bar
� 1:013 bar

atm

¼ �0:7518
L

mol
ð9:AGÞ

and similarly B¼�0.4055 L/mol for water.

We compute the mixture value of Bij using Eq. 9.18, and

Eq. 9.AA to AF. Here we have no information on kij so we

will compute for assumed values of 0.00 and 0.01, which

are suggested by various authors as plausible. Thus, to find

Tcij for kij¼ 0.00, we compute

Tcij ¼ ð513:9 K � 647:1 KÞ0:5 ¼ 576:67 K ð9:AHÞ

and for kij¼ 0.01 we find 99% of that value. The other values

are computed from the equations; for example, vij is the

arithmetic average of the two pure species values, indepen-

dent of kij . Bij is computed the sameway as B in Eq. 9.18, but

using the mixture values of Pr, Tr, and v.

Table 9.A Estimation offi; f̂i and ðf̂i=fiÞ forEthanol and for
Water in a Vapor at 85.3�C, 1 atm, and yethanol¼ 0.4741, using

the Little EOS and Mixing Rules 9.AA Through 9.AF

Property

Ethanol,

ii

Water,

jj

Mix, ij,

Assuming

kij¼ 0.00

Mix, ij,

Assuming

kij¼ 0.01

Tc (K) 513.9 647.1 576.67 570.90

Pc (bar) 61.48 220.55 109.91 108.62

v 0.645 0.345 0.495 0.495

zc 0.24 0.229 0.2345 0.2345

Vc from Eq. 9.AE

(mL/mol)

166.79 55.86 101.14 101.14

Tr 0.697 0.554 0.6216 0.6279

Pr 0.01647 0.004593 0.00911 0.009206

f (Tr) in little EOS �1.082 �1.664 �1.378 �1.338

Pr � f ðTrÞ
Tr

in little EOS�0.0256 �0.1380

f 0.9749 0.9863

B (L/mol) �0.7518 �0.4055 �0.5945 �0.5771

d (L/mol) �0.0313 0.00351
�bethanol (L/mol) �0.7605 �0.7509
�bwater (L/mol) �0.4125 �0.4047

f̂ethanol 0.9745 0.9750

f̂water 0.9861 0.9863

ðf̂i=fiÞethanol 0.9995 0.9999

ðf̂i=fiÞwater 0.9997 0.9999
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For kij¼ 0.00, we have

d ¼ 2ð�0:5955Þ � ð�0:7518Þ � ð�0:4059Þ
¼ �0:0313

L

mol ð9:AIÞ
By the normal methods of forming partial molar deriva-

tives (see Problem 9.36) we find that that

�ba ¼ Baa þ y2bd and �bb ¼ Bbb þ y2ad ð9:19Þ

so

�bethanol ¼ �0:7518þ ð1� 0:4741Þ2 � ð�0:0313Þ
¼ �0:7605

L

mol

ð9:AJÞ

Returning to Eq. 7.18 we see that

fi

Pyi
¼ f̂i ¼ exp

�biP

RT

� �
ð9:20Þ

Substituting the value from Eq. 9.AJ we find

f̂ethanol ¼ exp

� �biP

RT

�
¼ exp

�0:7605
L

mol
� 1 atm

0:08206
L � atm
mol �K � 358:45K

0
B@

1
CA

¼ 0:9745 ð9:AKÞ

In the same way we compute the other three values f̂ shown

in Table 9.A.

Finally, we may evaluate the relative importance of the

nonideality of the pure species and the nonideality of mixing

by computing

ðf̂i=fiÞethanol ¼
0:9745

0:9749
¼ 0:9995 ð9:ALÞ

and the corresponding other three values shown in

Table 9.A. &

In this 1-atm example, the fi, which represent the depar-

ture of the pure species from ideal gas behavior, are 0.975

and 0.986, independent of concentration and of our as-

sumption for the binary interaction parameter kij. The

f̂i=fi, which represent the departure from ideal solution

behavior and which depend both on the mol fractions and

on our assumed values of the binary interaction parameter

kij, are all practically unity. This EOS with this set of

mixing rules suggests that under these conditions the vapor

mixture is practically an ideal solution ðf̂i=fi � 1:00Þ of

nonideal gases ðfi 6¼ 1:00Þ. This is the description of the

L-R rule (Section 8.6.2).

Looking back at Figure 9.7, we see that for the small

values of d in this example (�0.03 andþ0.003) the predicted

behavior is practically the same as the straight line for d¼ 0,

the L-R rule; that makes the values of ðf̂i=fiÞ practically
1.00. This whole calculation reinforces the statements

made earlier that at modest pressures the nonideality of gas

mixing is so small that we can ignore it with negligible

errors. At pressures near the critical pressures of any of the

species involved, this is not the case, as we will see in

Chapter 10.

9.8 VLE FROM EOS

In all of Chapter 8 and the previous parts of this chapter we

have used the Raoult’s law type of liquid phase activity

coefficients, as defined by fi ¼ xigipi. This is the most

commonly used approach for most low-pressure VLE.

However, for higher pressures (see Chapter 10) and for

mixtures in which some species are above their critical

temperatures, an alternative approach is widely used. This

expresses the fugacity of species i in the liquid in terms

of the system pressure P, instead of in terms of the vapor

pressure pi, by

fi ¼ xif̂iP ð9:21Þ

This has the merit that we do not need to know the pure

species vapor pressure pi , which is not defined for substances

above their critical temperatures, such as the hydrogen that is

dissolved in many industrially important liquids during

hydroprocessing. Several EOSs have been designed to

simultaneously calculate f̂i for the various i in both the

liquid and thevapor from the same equation. Themostwidely

known equations designed for this purpose are the Soave–

Redlich–Kwong (SRK) and Peng–Robinson (PR) equations

often used for hydrocarbonmixtures.Whenwe use a process-

design computer package for VLE calculations, it will often

offer the SRK or PR options for estimating the VLE. These

compute the liquid-phase fugacities by Eq. 9.21; this ap-

proach is explored in Chapter 10 and Appendix F.

9.9 SOLUBILITY PARAMETER

This section and the next do not fit very logically here, but

they fit as well here as any other place in the book and do not

deserve a chapter of their own. So far this book has treated

equilibrium as an experimental science, in which we use

thermodynamics to help us correlate, interpolate, and ex-

trapolate experimental data, without much effort to explain
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what is going on at the level of the molecules. The molecular

explanations advanced so far are very simple intuitive pic-

tures, chosen because they have high intuitive content, and do

not do much violence to molecular theory. There is a vast

literature on applying molecular, theory to phase and chem-

ical equilibriumproblems [8].Most of it is too complex for an

undergraduate textbook.

One theoretical idea, the solubility parameter, widely

used for understanding and predicting VLE and also

liquid–liquid solubility (LLE), is very simple and has a very

high intuitive content. It is not as powerful or accurate as

some of the more advanced theoretical methods, but its ratio

of (intuitive content)/(complexity) is high enough that it

makes sense to introduce it here. In Section 8.4 we discussed

the various kinds of experimental VLE behavior and showed

some simple intuitive ideas about how the interactions

between the molecules influenced liquid behavior. The sol-

ubility parameter idea for describing those interactions, due

to Scatchard and Hildebrand [3], is that in any pure-species

liquid there is a certain force of attraction between the

molecules. If two pure-species liquids have equal values of

this force of attraction, then they should form ideal solutions.

But if this force of attraction is quite different between

two liquids, then the more strongly attracting liquid should

“squeeze out” the less strongly attracting liquid, and the

activity coefficients should be >1.00. The larger the differ-

ence between this force of attraction for the two liquids, the

larger the activity coefficients should be.

Scatchard and Hildebrand suggested that the measure of

this force of attraction is

cohesive energy
density

� �
¼

internal energy change
of vaporization

� �

liquid volumeð Þ
¼ Duvap

vL
¼ D hvap � RT

vL

ð9:22Þ

This is an intuitively satisfying idea. Liquids that have a high

latent heat of vaporization require a large energy input to

overcome the strong intermolecular attractions to change to a

vapor. A more dense liquid (one with a lower value of vL)

must have a higher intermolecular attractive force per unit

mass than one with a lower density. They then defined

solubility

parameter

� �
¼ d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cohesive energy

density

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffi
Duvap
vL

s

ð9:23Þ

They chose this form because in the regular solution

theory [9], which they devised to go with the solubility

parameter,

RT ln ga ¼ va F2
bðda � dbÞ2 ð9:24Þ

where

Fb ¼ volume

fraction of b

� �
¼ xbvb

xava þ xbvb
ð9:25Þ

The internal energy change of vaporization and the liquid

volume may be expressed per mol or per gram; the molec-

ular weight cancels. The traditional unit of the solubility

parameter (sometimes called the Hildebrand parameter)

used in most older publications is (cal/cm3)0.5, which some

authors refer to as a Hildebrand. In SI, used in most current

publications, the unit is (J/cm3)0.5¼ (MPa)0.5:

cal

cm3

� �0:5

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:184 J

cal

r
� cal

cm3

� �0:5

¼ 2:045
J

cm3

� �0:5

¼ 2:045 ðMPaÞ0:5 ð9:26Þ

If the solubility parameter idea and regular solution

theory were exactly true, then we could compute all activity

coefficients, based only on measurement of pure species

heats of vaporization and liquid densities. This is not the

case, as shown below. But the solubility parameter idea has

been productive enough that we see it cited widely in the

literature, and tables of solubility parameters are widely

available [10, 11].

Example 9.10 Estimate the infinite dilution activity

coefficients of n-hexane and diethyl ketone at 65�C.
Table 9.B shows the molar volumes and solubility para-

meters at 25�C. Here we use these, with the assumption

that gi;65�C � gi; 25�C.
At infinite dilution, the volume fraction of the other

species is 1.00, so, for n-hexane

ln ga ¼
va F2

bðda � dbÞ2
RT

¼
131:6

mL

mol
� l2 � ð14:9� 18:1Þ2MPa

8:314
m3Pa

mol �K � 338:15 K
� m3

MðmLÞ

¼ 0:479 ð9:AMÞ

Table 9.B Molar Volumes and Solubility Parameters at 25�C

Substance

Molar

Volume (mL/mol)

Solubility

Parameter (MPa)0.5

n-Hexane 131.6 14.9

Diethylketone 106.4 18.1
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and

g1n-hexane ¼ exp 0:479 ¼ 1:62 ð9:ANÞ

Proceeding the same way for diethyl ketone, we find

g1diethyl ketone ¼ exp 0:388 ¼ 1:46 ð9:AOÞ

The experimental values at 65�C [1, p. 196] are 2.25 and

3.67. &

This is only fair agreement but is about as good as we

ever find with this approach. Regular solution theory ex-

cludes systems that associate or form hydrogen bonds,

which lead to type III behavior (negative deviation from

ideality). Equation 9.24 can only predict activity coeffi-

cients 	1.00. For polar molecules its predictions are poor,

especially for water–organic systems (see Problems 9.41

and 9.42). So why bother with it? Extensions of it to polar

and hydrogen bonding systems have been made [11] and

found very useful, particularly in the solvents and coatings

industry.We regularly see it applied to systems wherewe do

not have any experimental data. While it often does not give

quantitatively useful information, it has been widely used to

correlate solubilities of solids, liquids, and gases in liquids,

often with very good success. Here and in Problems 9.41

and 9.42 we calculate the infinite dilution activity coeffi-

cients because they are easy Fb ¼ 1:00ð Þ. If we know the

infinite dilution values we can use them in Eq. 9.24 or in

many of the other common activity coefficient equations

(see Section 9.4).

9.10 THE SOLUBILITY OF GASES IN LIQUIDS,
HENRY’S LAW AGAIN

The solubility parameter helps us understand and correlate

the solubility ot gases in liquids. Table 9.2 summarizes the

experimental solubilities of various common gases in a range

of solvents, at 1.00 atm and 25�C.Thevalues are times 104, so

that, for example, the mol fraction of He in perfluoro-n-

hexane under these conditions is xhelium¼ 0.00092.

In this table the gases are arranged with increasing critical

temperature from left to right, and the solvents arranged with

increasing solubility parameter from top to bottom. There are

some exceptions, but mostly the solubilities increase from

left to right and from bottom to top. The values in Table 9.2

(excluding the water values) are plotted vs. the solubility

parameter in Figure 9.8.

From Table 9.2 and Figure 9.8 we see the following:

1. The lines on Figure 9.8 are simple least-squares fits of

the equation

gas

solubity

� �
¼ xsolute ¼ a expðbdÞ ð9:APÞ

in which a and b are data-fitting constants (b is a small

negative number), see Problem 9.46.

2. The data scatter about these lines, indicating that

solubility parameter, while a good correlating param-

eter for gas solubility, is far from a perfect one. (For the

8 linear curve fits on Figure 9.8 the average value of R2

is 0.82 – good correlation, but not perfect.)

Table 9.2 Mol Fraction of Dissolved Gas, xsolute� 104 in Various Solvents, at 25�C and a Gas Pressure of 1.00 atm [1, p 329; 14, 15]

Gas ! He H2 Ne N2 Ar O2 CH4 CO2

Gas Tc (K) ! 5.2 33.19 44.4 126.2 150.9 154.6 190.6 304.2

Solvent # d
solvent,
cal
cm3

	 
0:5# Gas Solubility in Solvent, xsolute � 104

# !

Pefluoro-n-hexane 5.9 9.2 14 36 54 54 78 203

n-Hexane 7.27 2.604 6.315 3.699 14.02 25.12 19.3 50.37

n-Octane 7.54 2.397 6.845 3.626 13.04 24.26 20.83 29.27

Cyclohexane 8.19 1.217 4.142 1.792 7.61 14.8 12.48 32.76 76.0

CCl4 8.55 3.349 6.48 13.51 12.01 28.7 105.3

Toluene 8.93 0.974 3.171 1.402 5.74 10.86 9.09 24.14 101.3

Benzene 9.16 0.771 2.58 1.118 4.461 8.815 8.165 20.77 97.3

Acetone 9.62 1.081 2.996 1.577 5.395 9.068 8.383 18.35 185.3

Chlorobenzene 9.67 0.691 2.609 0.979 4.377 8.609 7.91 20.47 98.06

Nitrobenzene 10.8 0.35 0.436 4.448 4.95 99.8

Dimethyl sulfoxide 12.0 0.284 0.761 0.368 0.833 1.54 1.57 3.86 90.8

Ethanol 12.78 0.769 2.067 1.018 3.593 6.231 5.481 12.8 63.66

Methanol 14.5 0.595 0.814 2.747 4.491 4.147 8.695 55.78

Water 23.53 0.068 0.142 0.082 0.119 0.254 0.231 0.248
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3. The solubility parameter for water is almost twice

the highest of the others, so that including it in the

plot would have put its points in the lower right

corner of the figure, and bunched all the other

points on the left side of the figure. Leaving water

out makes a better figure.

4. For all of the gases the solubility decreases as the

solubility parameter of the solvent increases. The

solubility of O2 in perfluoro-n-hexane is 234 times

the solubility of O2 in water. For all the gases in

Table 9.2 the solubility in water is about one-tenth

or less that gas’s solubility in any of the other solvents.

Water is a poor solvent for gases, because of its high

solubility parameter (because of its very strong inter-

nal attractive forces – very high cohesive energy

density) that makes it harder for gas molecules to

enter than it is for gas molecules to enter perfluoro-n-

hexane.

5. The family of perfluorocarbons has the lowest solubil-

ity parameters of any known set of compounds and

correspondingly the highest gas solubilities.

6. If one remakes the plot and the linear correlations

including water, whose solubility parameter is almost

twice that of the highest value on Figure 9.8, one finds

that the slopes and R2s are very little changed; the lines

on Figure 9.8, extrapolated to the solubility parameter

of water pass very close to the solubility data points

for water.

7. The lower critical temperature gases have lower so-

lubilities than the higher critical temperature gases,

with some exceptions. All of the gases shown are

above their critical temperatures at 25�C, except

for CO2 (Tc ¼ 31�C); its solubility is by far the

highest shown.

This last observation suggests that we should be able to

correlate the solubilities as a function of temperature.

Returning now to Henry’s law (see Sections 3.4 and 8.5)

we recall that we found Henry’s law by substituting a data-

fitting constant,Hi, for the vapor pressure pi in Raoult’s law,

because the temperatures of interest were above the critical

temperatures of the gases, so there can be no pure liquid and

hence no true vapor pressure. If we wished to estimate the

Henry’s law constant of the gases in Figure 9.8 from vapor

pressure data, we would presumably use the linear extrap-

olation (on ln p vs. l/T coordinates) shown on the left side of

Figure 5.7. The efficient way to do this is simply to

substitute T¼ 25�C in the Antoine equation, using the

values in Table A.2.

Example 9.11 Estimate the Henry’s law constant for O2 by

extrapolation of the vapor-pressure curve as shown in Figure
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FIGURE 9.8 The solubility of a variety of gases in a variety of solvents, at 1 atm gas

pressure and 25�C. The solubility is shown multiplied by 104, so that a 1 on the left axis corresponds

to xgas-in-solution¼ 10�4 mol fraction. The liquid solvents are those in Table 9.2, in the order from the

top of the table, omitting the values for water.

THE SOLUBILITY OF GASES IN LIQUIDS, HENRY’S LAWAGAIN 161



5.7, and compare the resulting solubility of pure O2 at

1.00 atm and 25�C with the values shown in Table 9.2.

Using the constants for O2 in Table A.2 in the Antoine

equation, we find an extrapolated vapor pressure at 25�C of

521.15 atm. If we take that value as equal to the Henry’s law

constant we find

xi ¼ yiP

pi
¼ yiP

Hi

¼ 1:00 � 1 atm
521:15 atm

¼ 19:2� 10�4 & ð9:AQÞ

This wild extrapolation (Pr¼ 10.5!) is independent of

which solvent the O2 was dissolved in. The quantity cal-

culated is called the ideal solubility of a gas. Table 9.2 and

Figure 9.8 makes clear that the solubility is highest in

solvents with the lowest values of the solubility parameter.

The lowest solubility parameters known are for perfluor-

ocarbons of which perfluoro-n-hexane has the lowest value

shown on that table and figure. The reported solubility,

xoxygen in perfluoro-n-hexane¼ 54� 10�4. If instead of compar-

ing with perfluoro-n-hexane we compare with n-hexane, we

find the experimental solubility agrees very closely to the

ideal solubility; if we make the same comparison for all

the gases shown in Figure 9.8 in n-hexanewe find the results

shown in Table 9.3.

We see that for the three lowest-boiling gases, helium,

hydrogen, and neon, the extrapolated values are not very

close to the observed values. But for the other four gases the

extrapolated values are between 0.8 and 1.31 times the

observed values. This suggests that if we needed to

know the solubility (i.e., the Henry’s law constant) of some

unknown gas in some unknown liquid, if we knew the

Antoine equation constants for the gas and the solubility

parameter of the liquid, we could calculate the ideal solu-

bility as shown above, and use Figure 9.8 or its equivalents to

estimate the fraction of the ideal solubility to be expected in

that liquid. There is no theoretical basis tor this extrapolation

to find the ideal solubility of gases at temperatures above their

critical temperatures. The only reason for doing so is that

using the resulting values in Raoult’s law-type equilibrium

calculations gives values that are often quite close to exper-

imental values, and thus this approach gives useful estimates.

The shorter the extrapolation, the more likely the result is to

be useful. An additional example of this extrapolation is

given in Chapter 10. This type of calculation is obviously

speculative, but it does show that gas solubility is related to

the extrapolated vapor-pressure curve and to the solubility

parameter of the liquid.

Example 9.12 The above estimate of the solubility of O2 in

n-hexane was, in effect, the application of Raoult’s law to a

Henry’s law situation, with the liquid-phase activity coeffi-

cient of the O2, gO2; in hexane ¼ 1:00. If we apply the same

approach to O2 in water at 25�C, what will the calculated

activity coefficient be?

Rewriting Eq. 8.4, and using the above values we find

ga ¼ gO2; in water ¼
yaP

xapa
¼ 1:00 � 1:00 atm

0:231� 10�4 � 521:15 atm
¼ 83:1 & ð9:ARÞ

We see that we can look upon the solubility of O2 in water

at 25�C as a Raoult’s law problem with the extrapolated

vapor pressure and the very high activity coefficient shown,

or we can look at it as a Henry’s law problem.We can see that

the result is the same, by writing that

HO2
¼ pO2; extrapolated � gO2; in water

¼ 521:15 atm � 8:31 ¼ 43;300 atm
ð9:ASÞ

which is very close to the value we would interpolate in

Table A.3.

If we look at the solubility of gases in liquids from the

Raoult’s law viewpoint we would expect a plot of the

gO2; in water vs. xoxygen to be a type II plot, like Figure 8.8b,

with a very large value of g1o
2 ; in water

. This suggests that

as the pressure increases, and the mol fraction of dissolved

gas increases, the activity coefficient should decrease, so that

(solubility/pressure) should increase with increasing pres-

sure. However, to find out how large that effect is, we

continue Example 9.12. According to Henry’s law, at 25�C
we would expect the mol fraction of dissolved O2 in water at

1 atm to be 0.231� 10�4, and at 10 atm to be 0.231� 10�3.

If we next assume that the activity coefficient for O2 in water

can be tolerably represented by the symmetrical equation

(Eq. 9.G), then we would expect that

gO2 in water; 10 atm

gO2 in water; 1 atm

¼ ðxwater; 10 atmÞ
ðxwater; 10 atmÞ ¼

1� xO2; 10 atm

	 
2
1� xO2; 1 atm

	 
2
¼ 1� 0:000231ð Þ2

1� 0:0000231ð Þ2 ¼ 0:9996

ð9:ATÞ

Table 9.3 Comparison of Ideal Solubility of Several Gases to

the Observed Solubility in n-Hexane, at 1.00 atm and 25�C

Calculated,

Ideal Solubility,

xgas� 104 at 25�C
and 1.00 atm

Observed

Solubility in

n-Hexane, xgas� 104

at 25�C and 1.00 atm

Ratio

(calculated/

observed)

Helium 40.63 2.604 15.60

Hydrogen 15.76 6.315 2.50

Neon 11.52 3.699 3.11

Argon 20.23 25.12 0.81

Nitrogen 18.33 14.02 1.31

Oxygen 19.19 19.3 0.99

Methane 40.64 50.37 0.81
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We see that for the symmetrical equation (and most other

useful activity coefficient equations) the activity coefficient

of the solute is proportional to the square of the concentration

of the solvent. Formost gases dissolved in liquids, the change

in solute concentrations is so small that the concentration of

the solvent is practically constant, �1.00. Thus, over the

range of practical interest the activity coefficient—Raoult’s

law type—of the dissolved solute gas is practically constant,

which is the same as saying that Henry’s law is obeyedwithin

experimental accuracy, with Hi� pi, extrapolated g1i .

Extensive reviews present the experimental data and the

theory of solubility of gases in liquids [8,14]. (Mostly such

data compilations do not report Henry’s law constants, but

rather mol fractions of dissolved gas at 1.00 atm and various

temperatures. Calculating Henry’s law constants from these

data is easy.) These compilations show that if the gas does

not interact chemically with the solvent, and the mol

fraction of the gas in the solution is small (as in Figure 9.8

and Table 9.2) then Henry’s law is practically obeyed up to

fairly large pressures, with the Henry’s law constant being

of the order of magnitude of the (1.00/ideal solubility) for

solvents with low values of the solubility parameter and

being substantially larger for solvents like water with high

values of that parameter. Experimental data also show that

Henry’s law works much better at temperatures well below

the critical temperature of the solvent than close to that

temperature. Close to the critical temperature of the solvent

we normally abandon Henry’s law, and use the methods

shown in Chapter 10 and Appendix F.

We often hear that the solubility of gases in liquids

decreases with increasing temperature. If the activity coef-

ficient calculated in Example 9.12 for O2 were independent

of temperature, then that would certainly be true because the

extrapolated vapor pressure increases with increasing tem-

perature, at all temperatures. However, as the temperature

increases, the gO2; in water, in Eq. 9.AS increases, then goes

through a maximum, and then decreases, so that eventually

the solubility of oxygen begins to increase with increasing

temperature, with the minimum solubility at about 380K

� 100�C [14, p. 294]. This behavior is observed in most

common gases. However, the temperature at which the

solubility starts to increase with increasing temperature is

above room temperature for most gases, so that the common

statement that gas solubility decreases with increasing

temperature is true for our most common experiences. The

theory of why dissolved gases behave this way is in [8].

We will consider the combination of Henry’s law and

chemical reactions in the liquid in Chapter 13.

9.11 SUMMARY

1. The most common observation of VLE liquid-phase

activity coefficients are types I, II, and III, shown in

Figure 9.1. Type IV (heteroazeotrope) is an extreme

versionof type II.The type of activity coefficient pattern

shown in Figure 9.2 is uncommon, but does occur.

2. The Gibbs–Duhem equation limits the possible math-

ematical forms we may choose to represent liquid-

phase (or vapor- or solid-phase) activity coefficients.

3. Most widely used liquid-phase activity coefficient

equations represent the group gE/(RTxa xb) as some

relatively simple algebraic function of the liquid mol

fractions. If we choose gE/(RTxaxb)¼ some constant,

we find the symmetrical equation, which is the sim-

plest activity coefficient equation which is consistent

with the Gibbs–Duhem equation. More complex

functions are more successful at fitting experimental

VLE data.

4. Changes in pressure have very little effect on activity

coefficients. Changes in temperature sometimes have

little effect, and sometimes have significant effects.

5. We can estimate ternary liquid-phase activity coeffi-

cients from the measured (or calculated) activity coef-

ficients of the three binary pairs with fair accuracy. The

extension to larger number of species in the solution is

more complex mathematically.

6. In most low-pressure VLE hand calculations, we as-

sume that the vapor phase is an ideal solution of ideal

gases. Most computer VLE programs include vapor-

phase nonideality in their calculations. One easily un-

derstood approach uses the two-term, pressure-explicit

form of the virial EOS, for which molecular theory

provides the basis for estimating the values of the

constants for various molecular interactions. For low

pressures the result is practically the same as the

L-R rule, because the computed deviations from ideal

solution behavior of the mixture are much smaller than

the calculated deviations from ideal gas behavior of

the pure species.

7. Most low-pressure VLE calculations use the Raoult’s

law type of formulation, which uses the pure-species

vapor pressures. A widely used alternative approach

that works much better at high pressures computes

both liquid- and gas-phase fugacities from the same

EOS, most often using the SRK or PR EOSs, dis-

cussed in Chapter 10 and Appendix F.

8. The solubility parameter is widely used to correlate

and predict solid–liquid, liquid–liquid, and gas–liquid

solubilities. It has fair accuracy for nonpolar liquids,

but poor accuracy for polar liquids.

9. Henry’s law is satisfactory for most solutions of spar-

ingly soluble gases at temperatures well below the

critical temperatures of the solvent. The ideal solubility,

calculated by extrapolating the vapor-pressure equation

above the critical temperature, often leads to fair
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estimates of the solubility of gases in nonpolar liquids.

The difference between the ideal solubility and that

estimated by Henry’s law can be estimated from the

solubility parameter of the solvent. Thus, the same

problem can be seen as a Henry’s law problem, or a

Raoult’s law problem with an extrapolated vapor pres-

sure and an experimentally-determined g1i :

PROBLEMS

See common units and values for problems and examples. An

asterisk (*) on a problem number indicates that the answer is

in Appendix H.

9.1 Show the algebra leading from the statement of the

Gibbs–Duhem equation in terms of chemical poten-

tials to the form in terms of activity coefficients

(Eq. 9.1 to Eq. 9.2).

9.2 Sketch what Eq. 9.B would look like on ln ga vs. xa
coordinates. Assume that A, B, C, and D are all 	0.

Does it agree with the shapes shown on Figure 9.1?

9.3 TheGibbs–Duhem equation (Eq. 9.2) requires that on

ln gi vs. xi coordinates the two curves must each

become tangent to gi¼ 1.00 as xi, approaches 1.00

and that atxi¼ 0.5 the two curvesmust have equal and

opposite slopes. Check Figures 8.7, 8.8, 8.9, 8.12,

and 9.2 to see whether these statements appear to be

obeyed there.

9.4 If we have ln ga ¼ Ax2b, show that the Gibbs–Duhem

equation requires that ln gb ¼ Ax2a:

9.5 Sketch the equivalent of Figure 9.1 for the case in

which both ln gi had positive slopes for all xi. Show

that pattern does not match any of the patterns

shown in Figures 9.1 and 9.2 and that it contradicts

the Gibbs–Duhem equation.

9.6 Show that the van Laar equation is consistent with the

Gibbs–Duhem equation. (This is easiest if you start

with Eq. 8.L.)

9.7* a. Repeat Example 9.1 for xa¼ xisopropanol¼ 0.8020.

b. The measured equilibrium temperature at 1.00

atm for this mixture is 80.55�C, and the measured

yisopropanol¼ 0.768. Estimate the activity coeffi-

cients for water and isopropanol based on these

experimental values and compare them to the

values computed in part (a).

9.8 Show the derivation of Eq. 9.4 from Eq. 9.3. Hint:

Write Eq. 6.4, letting Y beGE, and equate it to Eq. 9.3

finding

GE ¼ gEa na þ gEb nb þ � � � ¼ naðRT ln gaÞ
þ nbðRT ln gbÞ þ � � �

Take the derivative with respect to ni.

9.9* If gE/xa xb RT¼A for all values of xa, what is the

value of ga for xa¼ 0.4:

a. For A¼ 0?

b. For A¼ 0.4?

9.10* The van Laar equation constants (log form, i.e., log

ga¼ etc.) for acetone (species a) andwater (species b)

at 1 atm are shown in Table A.7. Based on these

constants estimate

a. The activity coefficient for acetone in a solution

that is 99.9999 mol% water.

b. The activity coefficient for water in a solution that

is 99.9999 mol% acetone.

9.11* a. Estimate Kethanol at infinite dilution (i.e., xethanol
¼ 10�9) inwater, in a solution at its boiling point at

1 atm. Use the van Laar equation, with the con-

stants for ethanol–water used in Chapter 8 (and

Table A.7).

b. Repeat part (a) for Kwater at infinite dilution

(i.e., xwater¼ 10�9) in ethanol, in a solution at its

boiling point at 1 atm (�78.4�C, at which

pwater� 0.438 atm).

9.12 Show the derivation of Eq. 9.6 from Eq. 9.5.

9.13 Show the derivation of Eq. 9.7. Hint. This is the

application of the method of tangent intercepts

(Section 6.3) to Eq. 9.5.

9.14 Ifwe separatevariables inEq. 9.6 and integrate,wefind

ð
dgE ¼ gEfinal � gEinitial ¼ RT

ð
ln

ga
gb

dx ð9:27Þ

If we perform the integration from xi¼ 0.00 to 1.00,

then both of the values of gE are zero (see Figure 9.3)

so that the value of the integral on the right must

be zero.

This forms the basis for a widely used method of

testing experimental VLE data for thermodynamic

consistency. Using the data in Table 8.1 and following

the procedure in Example 8.2, compute the value of ln

(ga/gb) for each data point in that table, and plot the

values vs. xa. If the consistency test is met, then the

areas above and below the ln(ga/gb)¼ 0 line should

be equal. Test visually or mathematically to see if

they are.
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9.15 As xa goes to zero both the numerator and denomi-

nator of gE/(RTxaxb) approach zero.What is the value

of gE/(RTxaxb) for xa¼ 0? for xb¼ 0?

9.16 Sketch the equivalent of the gE/RT curve on Figure 9.3

for the data shown in Figures 8.7, 8.8 and 8.9. Rough

sketches will do.

9.17 Show the derivation of Eq. 9.1 from Eq. 9.G in two

ways (see Examples 6.4 and 6.5):

a. Show the derivation using Eq. 9.4 which is the

equivalent of the method of tangent slopes (Sec-

tion 6.3). This type of derivation is done in terms of

the partial molar derivative, which involves total

mols not mole fractions. Start with Eq. 9.G, re-

written as gE¼ aRTxaxb. Replace each of the xi
with (ni / nT) and substitute in Eq. 9.4, leading to

RT ln ga ¼
@

@na
ðGEÞT ; P; nb

¼ @

@na
ðnTgEÞT ; P; nb

¼ @

@na

aRTnanb

nT

� �
T ; P; nb

ð9:AUÞ

Perform the partial molar differentiation, then

convert (ni / nT) back to xi, using xa¼ (1 � xb)

and simplify.

b. Show the derivation using Eq. 9.7, which is the

equivalent of the method of tangent intercepts

(Section 6.4). Replace the xb, in Eq. 9.G with

(1� xa), carry out the differentiation, simplify,

and then replace (1� xa) with xb.

9.18 Repeat the preceding problem parts (a) and (b),

starting with Eq. 9.H and finding Eq. 9.K.

9.19 Show both algebraically and graphically on Figure 9.3

that if b¼ c, then the Margules equation (Eq. 9.K)

becomes the symmetrical equation.

9.20 Show that the van Laar equation (Eq. 8.11) is equiv-

alent to

gE

RTxaxb
¼ AB

Axa þ Bxb
ð9:AVÞ

Hint: Start with the Eq. 8.L form of the van Laar

equation.

9.21 Show the values of the infinite dilution activity coeffi-

cients for

a. The van Laar equation.

b. The Scatchard–Hildebrand equation.

The infinite dilution activity coefficient relations for

other common activity coefficient equations are shown

in [1, p. 182].

9.22 In Figure 9.2, one of the activity coefficients at infinite

dilution is >1.00, while the other is <1.00. This

means that one of the ln g1i is positive, the other

negative. These are believed to be very reliable

experimental data.

a. Can this situation be represented by the van Laar

equation? Show the form that the equation would

take and what difficulties it would encounter.

b. Can this situation be represented by the Margules

equation? Show the form that the equation would

take. Then, estimating the values of the g1i from

Figure 9.2, make a table of the gi values computed

from the Margules equation and sketch it. Does it

have the same general form as Figure 9.2?

c. In Figure 9.2 each of the activity coefficients has a

minimum or maximum (horizontal part of the

curve) inside the figure. Can that same behavior

arise in the Margules equation with both coeffi-

cients >1.00? To test this compute the values and

sketch the equivalent plot for the water–n–butanol

binary, using the following published values of

the Margules constants (ln form): b¼ 0.8608,

c¼ 3.2051.

9.23 Onemay view the uncommon aspect of Figure 9.2 that

the individual activity coefficient curves have local

maxima or minima inside the figure.

a. Is it possible for one of the curves to have a

maximum or minimum (d ln gi)/dxi¼ 0 without

the other curve showing a minimum or maximum

at the same value of xi?

b. Show that for theMargules equation (Eq. 9.K) we

expect (d ln gi)/dxi¼ 0 for xi¼ 1.00, for any

choice of b and c, and that we expect (d ln gi)/
dxi¼ 0 for some value of xi, inside the figure if

(b/(c� b)) 
 1.00. Hint: Differentiate Eq. 9.K

with respect to xi set the derivative¼ 0.00, divide

out (c � b), and consider the limiting case for

which the local maximum or minimum occurs at

xi¼ 0.00.

9.24 Repeat Example 9.6 for thewater in the samemixture.

9.25 Repeat Example 9.7 for thewater in the samemixture.

9.26 In Example 9.7 we averaged hoa � �ha
	 


over the tem-

perature range 70–90�C, and integrated @T=T2. One

could argue that we should have averaged

hoa � �ha
	 


=T2 over the same temperature range and

then integrated @T . How much difference would it

make? Repeat Example 9.7 doing the averaging this

way, and compare the computed value of ga at T2
=ga at T1

to the value of the same ratio shown in Example 9.7.

9.27 Show the calculations for the second and third parts of

the right-hand side of Eq. 9.10 in Example 9.8, then
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show the sum of all three terms, the activity coeffi-

cient, and yacetone.

9.28 TheMargules equation constants in Example 9.8were

taken from [5]. The van Laar constants for those three

binary systems are shown in TableA.7. Prepare a table

comparing the Margules values in Example 9.8 and

thevanLaar values fromTableA.7. Should they be the

same? Are they the same? Practically the same? Or

very different? Explain.

9.29 a. Show that if we write the excess Gibbs energy as

the ternary equivalent of the symmetrical equation

gE

RT
¼ Axaxb þ Bxaxc þ Cxbxc ð9:AWÞ

then

ln ga ¼ Ax2b þ Bx2c þ xbxc Aþ B� Cð Þ ð9:AXÞ

b. Show that if in Eq. 9.10 we let Aba¼Aab and the

same for the other two sets of coefficients, then Eq.

9.10 becomes the same as Eq. 9.AX (without the

addedC termwhichwe normally ignore), showing

that this is the (approximate) ternary equivalent of

the symmetrical equation (Eq. 9.I).

c. Using the spreadsheet for Example 9.8, replace the

values of the six individual coefficients by using

the averages, so for example we replace Aab

¼ 0.2634 and Aab¼ 0.2798 with Aba¼Aab¼ 0.5*

(0.2634þ 0.2798)¼ 0.2716. Show how much this

changes the computed value of yacetone.

9.30 Show the ideal-solution calculations corresponding to

Example 9.8.

9.31 Show the calculations supporting the statement below

Example 9.8 that if we had assumed that the mixture

were equivalent to 12 mol% acetone, balance water,

we would have computed ga¼ 100.6751¼ 4.73.

9.32 Repeat Example 9.8 for the values shown inTable 9.C.

9.33 Using your spreadsheet for Example 9.8, compute

the values of ymethanol and ywater in that example. Do

the ys sum to 1.00? The reported experimental

values [6] are 0.082 and 0.2218. The 0.082 value is

almost certainly an experimental error; the value you

compute here is likely to be closer to correct than that

value.

9.34 Using the spreadsheet program you developed for the

preceding three problems,

a. Find the value of C* that makes the calculated

yacetone in Example 9.8 equal to the experimental

value.

b. Using this value of C*, repeat the above problem.

c. Discuss the result. Does using one experimental

point to adjust the estimate of the three-molecule

interactions improve the predictive power of the

equation for other compositions? Make it worse?

Make no change?

9.35 Sketch a three-dimensional figure showing the ln

gacetone as a function of the mol fractions in Example

9.8. Make the base of your figure a triangular mol

fraction diagram, with pure acetone, water, and meth-

anol as the vertices, and plot ln gacetone vertically

upward. A simple sketch of the three-dimensional

ln gacetone surface will suffice.

9.36 Show the derivation of Eq. 9.19 from Eq. 9.18.

9.37 Show that combining Eqs. 9.19 and 9.20 produces

ln
fa

Pya
¼ ln f̂a ¼

�baP

RT

� �
¼ P

RT

� �
ðBaa þ y2bdÞ ð9:AYÞ

Then show that since f̂a ¼ fa �
f̂a

fa

we can write

RT

P
ln f̂a ¼

RT

P
ln fa þ

RT

P
ln

f̂a

fa

¼ ðBaa þ y2bdÞ ð9:AZÞ

For pure a this becomes fa¼exp PBaa=RTð Þ
from which a little algebra shows that

f̂a=fa¼exp Py2bd=RT
	 


. Thus in this formulation,Baa

accounts for the pure-species departure from ideality

and y2bd accounts for the nonideality of mixing.

9.38* Repeat Example 9.9 for the same composition, P¼ 5

atm, T¼ 300�C, and kij¼ 0.00 (Here we use 300�C
because at 85.3�C and 5 atm this mixture is all liquid.)

9.39 Repeat Example 8.9, taking into account the vapor-

phase nonideality computed in Example 9.9. How

much difference does it make?

9.40 Show that the Scatchard–Hildebrand equation (Eq.

9.24) has the same form as the van Laar equation by

showing how one would compute A and B in the

van Laar equation from the variables in Eq. 9.24.

9.41 Repeat Example 9.10 for isopropanol–water at 90�C
using the values from Table 9.D and compare the

values to those in Figure 8.8b. This should convince

Table 9.C Values for Problem 9.32

Part of Problem xa xb Tequilibrium (�C) ya,experimental

(a) 0.1700 0.7050 64.90 0.3260

(b) 0.5570 0.0630 59.10 0.885

(c) 0.0730 0.6550 69.40 0.196
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you that regular solution theory is not a reliable

predictor for polar solvents like water.

9.42* Repeat Example 9.10 for benzene–water at 90�C,
using the values from Table 9.D. The experimental

values, calculated from liquid–liquid solubility data

(see Example 11.4) are gðwater-rich phaseÞ
benzene ¼ 2500 and

gðbenzene-rich phaseÞ
water ¼ 333. Comment on the applicabil-

ity of regular solution theory to solutions involving

water and organics.

9.43 Show that the extrapolation to values of T> Tc in

Figure 5.7 and Example 9.11 is practically the same as

applying the Antoine equation at T> Tc.

9.44 Do the values for the solubility of various gases in

water in Table 9.2 agree with the (interpolated) values

of the Henry’s law constants in Table A.3?

9.45* Equation 9.AT shows that for oxygen dissolved in

water, for pressures of 1 and 10 atm, we would expect

the ratio of the solute activity coefficients to be 0.9996.

What would the value of the solubility (xsolute gas) at

1 atm have to be for this ratio to be 0.99? 0.95?

9.46 The straight lines on Figure 9.8 are calculated from

Eq. 9.AP. The constants in the equations are shown in

Table 9.E. Show the extrapolated values for the sol-

ubility in water (d¼ 23.53 (cal/cm3)0.5). Compare

them to the experimental values in the last line of

Table 9.2. Are they identical? Close to one another?

Wildly different? Comment on the results of this

extrapolation.

9.47 Propane and nitrogen are in equilibrium at 25�C and

200 psia. The vapor is 76.1 mol% propane, balance

nitrogen. Estimate the mol fraction of nitrogen in the

liquid. The solubility parameter of propane is 6.4

(cal/cm3)0.5. At this temperature and pressure the

vapor is not quite an ideal gas, but may be assumed to

be a mixture of ideal gases for the purposes of this

problem. The experimental value [15] is 0.9 mol%

which is similar to but not the same as the answer

based on Section 9.10.
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Table 9.E Constants for Linear Fits on Figure 9.8

Gas a b

Ne 12.614 �0.23391

He 19.145 �0.29947

N2 111.2 �0.30965

H2 73.063 �0.33658

O2 177.06 �0.30921

Ar 217 �0.32102

CH4 294.62 �0.27635

CO2 327.33 �0.11907

Table 9.D Molar Volumes and Solubility Parameters at 25�C

Substance

Molar Volume

(mL/mol)

Solubility

Parameter ((MPa)0.5)

Isopropanol 76.8 23.52

Water 18 47.83

Benzene 89 18.8
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10
VAPOR–LIQUID EQUILIBRIUM (VLE)
AT HIGH PRESSURES

Chapters 8 and 9 showed the common observations and

calculation methods for low-pressure VLE. However, the

observations at high pressures are different, and those

calculation methods run into trouble at high pressures.

Figure 10.1 shows why.

The species shown are all straight-chain aliphatic hydro-

carbons, whichwould be expected to havevery close to ideal-

solution behavior with each other. The presentation in terms

of Ki is the standard petroleum engineering practice (see

Section 8.2). If all possible mixtures of these species formed

ideal solutions with each other and the vapor is an ideal gas

(Raoult’s law), then the Kis would be independent of

composition, and be given by Ki¼ pi /P. For any value of

T the value of pi is fixed for each species, so wewould expect

the data to form a series of parallel straight lines with slope

(�1) on a plot of log Ki vs. log P. Such lines are shown,

dotted, in Figure 10.1.We see that below 100 psia all the data

come close to the calculated Raoult’s law lines. The tem-

perature, 150�F¼ 339K, is above the critical temperatures of

methane and ethane (190.6 and 305.3K), so the values of pi
for methane and ethane used in Raoult’s law are Antoine

equation extrapolations above the critical temperature

(see Figure 5.7 and Example 9.12). Even with this long

extrapolation, the experimental data are close to Raoult’s

law for methane and ethane. (However, the extrapolated-

valueKmethane and ethane are larger than the experimental ones,

which influences the calculated results in Examples 10.1 and

10.2.) This figure shows that at 150�F, for pressures below
100 psia, we could estimate the VLE for all mixtures of

straight-chain aliphatic hydrocarbons (up to C10H22) from

Raoult’s lawwith fair accuracy. This partly explains the long-

term popularity of Figure 8.20; it is practically this set of

assumptions, with minor modifications.

Above about 100 psia (sooner for the higher molecular

weight species than for the lowermolecular weight ones), the

data in Figure 10.1 begin to deviate significantly from

Raoult’s law. As the pressures approaches 3000 psia, the Ki

all approach 1.00, indicating that the composition of the

liquid and the vapor are approaching one another, eventually

becoming identical. Obviously, something is happening

here that is quite different from what we observe in low-

pressureVLE.At the right side of Figure 10.1we are entering

the region near the mixture critical state, in which liquid

and vapor are becoming more and more alike. The thermo-

dynamic fundamentals are still the same; for each species in

each VLE the fugacity of that species is the same in each of

the coexisting phases. But the ways of estimating those

fugacities that worked well at low pressures work poorly

here, so we will need different ones.

10.1 CRITICAL PHENOMENA OF PURE SPECIES

Figure 10.2 shows the pressure-volume behavior of

pure water near its critical point. We see that the vapor

specific volume falls rapidly with increasing pressure (and

temperature; the pressure temperature relation is shown in

Figure 1.8). Table 10.1 shows the changes from 2000 psia to

the critical pressure (3203.5 psia).
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Over this 68.4�F temperature range the pressure increases

by 60%. The compressibility factor of the liquid increases by

almost a factor of� 3. It is becoming more and more like an

ideal gas (even though the pressure is rising!). Simultaneous-

ly, the vapor’s compressibility factor falls by a factor of� 2.

It is becoming less like an ideal gas andmore like a liquid. At

the critical point the liquid and the vapor become the same. If

we are watching this happen in a transparent high-pressure

equilibrium cell, we see the interface between liquid and gas

become fainter and fainter, and finally simply disappear. In

Figure 1.8, the vapor-pressure curve for water simply ends at

the critical point; vapor and liquid do not have separate

existence above that temperature. (In Figure 10.2 a fluid

with v� 0.05 ft3/lbm and P� 3203.5 psia would commonly

be called a dense fluid because its behavior is not what we

would expect of either a liquid or a gas.)

10.2 CRITICAL PHENOMENA OF MIXTURES

Naturally, the critical phenomena of mixtures are more

complex and varied than those of single pure species.

Here we consider only the simplest (and most common)

type. The experimental data are mostly obtained in devices

like that shown in Figure 10.3.

If we place a mixture of known composition in such a

device at a low pressure, set the temperature, and slowly

introduce mercury to reduce the volume and thus increase

the pressure, we find that initially the mixture is all vapor. At

the dew-point pressure the first drop of liquid appears. As the

pressure is further increased the liquid volume increases and

the vapor volume decreases, until at the bubble point the

last bubble of vapor disappears, and only liquid remains.

Obviously, we could run the process in reverse, from high

pressure to low, passing through the same states in reverse

order. We can also place a sample in the cell and slowly

raise the temperature, simultaneously removing mercury at a

suitable rate to maintain constant pressure; that process is

sketched for benzene–toluene in Figure 8.7d. The typical

result of such experiments for a binary mixture is sketched

in Figure 10.4.

FIGURE 10.1 Observed K values for a series of aliphatic hydro-

carbons at 150�F. The data are fromavariety of sources and represent

a variety of compositions. The solid lines are empirical curve fits for

the individual species. The dotted lines are calculated by Raoult’s

law. (Reprinted with permission from Yarborough, L. Vapor–liquid

equilibrium data for multicomponent mixtures containing hydro-

carbon and nonhydrocarbon components. J. Chem. Eng. Data 17:

129–133. Copyright (1972) American Chemical Society.)
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FIGURE 10.2 Pressure-specific volume plot for water near the

critical point [1].

Table 10.1 Changes in Saturated Vapor and Liquid Water

from 2000 psia to the Critical Point

P (psia) 2000 3203.5

T (�R) 1096.67 1165.11

zliquid 0.078 0.23

zvapor 0.576 0.23
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In Figure 10.4we see that for a temperaturewell belowTc
the behavior is what we expect at low pressure; increasing

or decreasing pressure at constant temperature (moving

vertically on the figure) or increasing the temperature at

constant pressure (moving horizontally on the figure) pro-

duces the set of results described above. Normally, we will

not have data on the compositions of the coexisting vapor

and liquid, which are difficult to measure with this kind of

device, but will simply note the pressure and temperature

corresponding to the bubble and dew points. (At the bubble

point almost all the material is in the liquid, so that the

liquid-phase composition is almost the same as that of the

material originally placed in the cell and at the dew point it

is almost all in the vapor, so that the vapor-phase compo-

sition is almost the same as that of the material originally

placed in the cell.)

If we run the same experiment, going up in pressure, at Tc
we find that at Pc the two phases become identical and the

interface between them vanishes. This is the critical point of

this particular mixture and the observed behavior is practi-

cally the same as we see in the same experiment for a pure

species (except that for a pure species the whole process is

colorless, while for mixtures, as we pass through the critical

point the system forms fine mists that refract light producing

strong colors that disappear with time). However, if we go to

some temperature slightly above the critical temperature of

the mixture we see behavior that is never seen in a pure

species. For a pure species no liquid can exist at a temperature

above the critical temperature. For many (but not all) mix-

tures, there is some range of temperatures above the critical

temperature in which if we begin with vapor and compress at

constant temperature we will see that a liquid forms at the

bottom of our cell (a dew point). As we continue to increase

the pressure, the volume of liquid increases, then decreases,

and finally the last drop of liquid disappears (another dew

point!). Thus, we have crossed the dew-point curve twice.We

can see in Figure 10.4 that this is possible. This kind of

behavior is called retrograde vaporization of the first kind.

If, at the same constant temperature, we proceed from high

pressure to low, we pass through the same states, in reverse

order, and observe retrograde condensation of the first kind.

As the temperature is increased, the range of pressures over

which two phases exist becomes less and less, and as

sketched in Figure 10.4 there is some maximum temperature

(called the critical condensation temperature or cricon-

dentherm) at which we barely observe the existence of the

liquid. At still higher temperatures no liquid can exist.

Steel block with milled slot
covered with high-strength
glass windows

Isothermal enclosure

Mercury reservior

Reversible mercury pump

P

T

FIGURE 10.3 Schematic of a high-pressure phase-behavior cell.

The sample is contained in a stainless steel blockwith a slotmilled in

it, which is covered front and rear with high-strength glass windows,

held in place with bolted retainers and high-pressure gaskets.

The volume, and thus the pressure, in the cell is controlled by

pumping mercury from a reservoir into or out of the cell, thus

compressing or expanding the sample. The pressure in the cell is

practically equivalent to that of the mercury. Thewhole apparatus is

inside a temperature-controlled environment, which can be set for a

variety of temperatures. A light shines through the cell from the rear.

The cell is viewed from the front through amirror, so that if the glass

windows fail, the fragments will hit the mirror, not the investigator.

This sketch does not show the piping and valves for getting the

sample into and out of the cell, nor the provisions for rocking the cell

to promote equilibrium between gas and liquid [2].
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FIGURE10.4 Typical experimental result for one specificmixture

of two species, showing bubble-point and dew-point curves, critical

point, cricondentherm and cricondenbar, and the paths for retrograde

condensation or vaporization of the first and second kinds.
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Figure 10.4 also shows that for temperatures slightly

below the critical temperature the bubble-point curve is at

a higher pressure than the critical pressure. The maximum

pressure point on the bubble-point curve is called the

critical condensation pressure or cricondenbar. For pres-

sures between the critical pressure and the cricondenbar it is

possible to start with a liquid, heat it at constant pressure, and

observe that when the bubble point is reached gas begins to

appear, the volume of the gas increases, then decreases, and

finally the gas disappears and we have all liquid again. We

crossed the bubble-point curve twice! This behavior is called

retrograde vaporization of the second kind, and if, at the

same fixed pressure, we proceed from high temperature to

low,we see the same states in reverse order, called retrograde

condensation of the second kind.

Retrograde condensation of the first kind occurs in pe-

troleum reservoirs of the “gas-condensate” type. It has been

intensely studied, because the recovery of valuable hydro-

carbons is significantly increased if we avoid such retrograde

condensation as the pressure in such fields is reduced (at

nearly constant temperature) [3]. The economic benefits of

understanding and avoiding this behavior are very large. As

far as I know. retrograde condensation/vaporization of the

second kind is a laboratory curiosity with no industrial or

economic significance.

Figure 10.5 shows the results of a set of experiments like

that sketched in Figure 10.4 for a variety of mixtures of

ethane and n-heptane [4]. In this figure we see that curves 1

and 10 represent the vapor pressure curves for pure ethane

and pure n-heptane, analogous to the vapor–pressure curve

shown for water in Figure 1.8 (and represented throughout

this book by the Antoine equation, see Chapter 5). Curves 2

through 6 are all of the type sketched in Figure 10.4, each

representing some fixed-composition mixture, for various

concentrations of ethane. Curves 7 through 9 show only the

dew points of those mixtures, which are mostly n-heptane.

The dotted curve running from the end of curve 1 to the end of

curve 10 is the critical locus, which simply connects the

critical points of each of the pure species and the various

mixtures.

The information in Figure 10.5 can be represented in

an intuitively useful three-dimensional diagram, sketched

below as Figure 10.6. In this figure the axes are P, T, and

xhigher boiling species. The near and far faces of the figure are the

simple pure-species vapor–pressure curves (like curves 1 and

10 in Figure 10.5 or Figure 1.8). Between those two faces two

surfaces are sketched: the upper is the bubble-point surface,

the lower the dew-point surface. For pressures above the

bubble-point surface, only liquid exists. For pressures below

the dew-point surface only vapor exists. Between the two

surfaces both vapor and liquid exist. The two surfaces join

along the critical locus and on the front and back (pure

species) faces. We may think of this figure as showing the

equivalent of a mitten (with no thumb)made by stitching two

pieces of fabric together along the two pure-species vapor-

pressure curves and along the critical locus.Along the critical

locus the junction is quite rounded, as we would have if we

stitched the two surfaces together, and then turned them

inside out (using a somewhat stiff fabric). Along the vapor-

pressure edges the junction is sharp, as if we laid the two

surfaces fiat, stitched them together, and then trimmed off the

excess beyond the sewn seam. If we make a constant-

composition slice through the figure, the result will be like

Figure 10.4. A constant pressure slice is a T-x diagram, like

those shown in part d of Figures 8.7, 8.8, 8.9, and 8.12.

Figure 10.7 shows such slices for the same system shown in

Figure 10.5, at various pressures.

The 400-psia slice produces a curve very much like the

1-atm benzene–toluene curve shown in Figure 8.7d, but

with a wider spacing between the curves because of the

greater difference in pure-species boiling points. The higher

pressure (e.g., the 1200 psia) slice does not reach either of the

pure species axes. These high-pressure slices correspond to

FIGURE 10.5 Bubble- and dew-point curves for a variety of

mixtures of ethane and n-heptane. See the text for a description of

this figure. (Reprinted with permission from Kay, W. B. Liquid–

vapor phase equilibrium relations in the ethane-n-heptane

system, lnd. Eng. Chem. 30: 459–465. Copyright (1938) American

Chemical Society.)
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the “fingertips of the mitten” in Figure 10.6. A similar plot

could be produced by a constant-temperature slice, which

would look similar to Figure 10.7, butwith axesP and xethane.

The space between a pair of curves would still represent a

vapor–liquidmixture, but the space below both curves would

represent vapor and that above the curves would represent

liquid. (In Figure 10.7 at a fixed pressure the upper curve is

the dew point, the lower a bubble point; on a constant

temperature slice the upper curve is a bubble point and the

lower a dew point.)

Example 10.1 Estimate the bubble-point temperature at

100 psia of a liquid with 10 mol% ethane, balance n-heptane

and the mol fraction ethane in the equilibrium vapor (a) from

Figure 10.7, (b) fromRaoult’s law, and (c) fromRaoult’s law,

using the Lewis–Randall (L-R) rule for the vapor.

a. By direct chart reading, tne (bubble-point curve for 100

psia crosses the 10-mol% ethane line at about 165�F.
We find the corresponding mol fraction ethane in the

equilibrium vapor phase by reading horizontally from

that intersection to the dew-point curve, finding yethane
� 92%. (These values are a mixture of chart reading

and interpolation in the experimental data tables [4]

from which Figure 10.7 was produced.)

b. By Raoult’s law this is a trial-and-error procedure on

the temperature, identical to Example 3.5. Using the

Antoine constants from Table A.2, we find a bubble-

point temperature of 133�F, and yethane� 96.8%.

c. To add the L-R rule, we observe that instead of the

simple Raoult’s law, we now must use

yi ¼ xipi

fiP
ð10:1Þ

We calculate thefi from the little EOS (see Example 7.1(c)).

The results are summarized in Table 10.A. &

This example shows the following:

1. Both Raoult’s law and Raoult’s law plus the L-R rule

substantially underestimate the equilibrium tempera-

ture. This is mostly because the extrapolated vapor

pressure of ethane is too high tomatch the experimental

values in Figure 10.7. Looking back to Figure 10.1 we

see that the Raoult’s law values for ethane on that figure

lead to a higher K (and thus a lower equilibrium

temperature) than the experimental values.

2. The L-R rule makes little change for the ethane, which

practically behaves as an ideal gas. But for n-heptane

the calculated value is low enough that it makes a
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FIGURE 10.6 Three-dimensional representation of the phase behavior of a binary mixture like that

in Figure 10.5. This figure is not to scale, nor specific for any pair of species.
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substantial difference. Adding the L-R rule makes the

error in the calculated temperature greater, but makes

the calculated yn-heptane much closer to the observed

value.

3. Ethane is above its critical temperature; it could not

exist as a pure liquid at this temperature. The temper-

ature is low enough and the pressure high enough that

n-heptane could not exist as a vapor at this temperature

and pressure. That combination of values makes this a

severe test of Raoult’s law and the L-R rule. The results

shown here demonstrate fair, but not good, agreement

between calculation and experiment.

4. The calculated temperature is largely determined by

the estimate of Kethane, which must be �9 because the

vapor, experimental or calculated, is mostly ethane,

and its mol fraction in the liquid is 0.1. The differences

in calculated temperatures are mostly due to different

estimates of Kethane as a function of temperature.

5. The calculated mol fractions in the vapor phase are

mostly determined by Kn-heptane. Both parts (b) and (c)

underestimate this value, leading to low estimates of

the yn-heptane. Adding the L-R rule to the calculation

substantially improves this estimate. The estimate in

part (b) is low by a factor of 2.6, that in part (c) by 1.4.

Example 10.2 Repeat Example 10.1 for 800 psia and

xethane¼ 0.6.

a. The 800-psia bubble-point curve line crosses thexethane
¼ 0.6 line at T� 210�F. Reading horizontally from that

intersection to the dew-point curve we, read yethane
� 95%. By linear interpolation in the experimental

data tables on which Figure 10.7 is based we make a

slightly more reliable estimate, T� 209�F and

yethane� 94.5%.

b. The Raoult’s law calculation, similar to that in Exam-

ple 10.1, leads to a bubble-point temperature of 172�F
and yethane� 99.6%.

c. The Raoult’s law plus L-R rule calculation (using the

little EOS) leads to a bubble-point temperature of 72�F,
and yethane� 64%. &

Raoult’s law makes a very poor estimate of these data

at 800 psia and xethane¼ 0.6; the calculated bubble-point

temperature is low by about 37�F, and the calculated yn-heptane
is low by a factor of 20. Adding the L-R rule makes

the calculated values much worse, because the fn-heptane

calculated by the little EOS¼ 0.001. Clearly, we should not

use Raoult’s law or Raoult’s law plus L-R rule and the little

EOS for mixtures like this one!

The treatment in Figures 10.1 to 10.7 is all for straight-

chain aliphatic hydrocarbon (HC) mixtures for which we

would expect the liquid behavior to be close to ideal solution

behavior. These mixtures have been studied in detail because

they occur at temperatures and pressures near the critical

regions in some petroleum reservoirs and in high-pressure

petroleum processing. We have less information about non-

hydrocarbon mixtures, because they seldom occur near their

critical temperatures and pressures in industrial equipment.

(Prudent engineers avoid near-critical states in ordinary

process equipment, because gas–liquid behavior becomes

very difficult to predict. Some processes, such as super-

critical extraction, intentionally use such states, taking

advantage of the unusual solvent properties of fluids in such

states.) We would expect mixtures whose liquids form non-

ideal solutions and perhaps azeotropes to havemore complex

high-pressure VLE behavior than that shown here for

straight-chain aliphatic HCs. Some of this is reviewed in [5].

10.3 ESTIMATING HIGH-PRESSURE VLE

Themethods used in Chapter 8 and 9 are rarely used for VLE

near the critical region of the mixture (the right side of
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FIGURE 10.7 A series of constant-pressure slices through the

equivalent of Figure 10.6, for the ethane–n-heptane system. Each

pair of curves (e.g., the 400-psia curves) divides the space into

liquid (below both curves), vapor-liquid mix (between the curves),

and vapor (above the upper curve). (Reprinted with permission

from Kay, W. B. Liquid–vapor phase equilibrium relations in the

ethane–n-heptane system. Ind. Eng. Chem. 30: 459–465. Copyright

(1938), American Chemical Society.)
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Figure 10.1, or the “fingertips of the mitten” in Figure 10.6.)

Instead we use one of the following:

1. Empirical K-value correlations

2. Separate correlations for vapor and liquid, not starting

from Raoult’s law

3. Equations of state that represent both vapor and liquid

10.3.1 Empirical K-Value Correlations

Before we had computers, methods were devised for esti-

mating high-pressure VLE of hydrocarbon mixtures, using

graphs, slide rules, and mechanical hand calculators. These

are now only of historical interest, but today’s student should

know about them to understand the older literature. Themost

widely used method started with figures like Figure 10.1. In

that figure the solid lines represent empirical curve fits for

mixtures of these hydrocarbons for which the Ki values all

converged to 1.00 at a pressure of 3000 psia. Data for other

mixtures showed that the convergence pressure for such

systems depended on temperature and composition. Correla-

tions were advanced for estimating at which pressure such

convergence would occur, and a library [6] of plots like

Figure 10.1 was produced for various convergence pressures,

based on experimental data where available and by analogy

to Figure 10.1 where data were not available. With the

correlations one could estimate the proper convergence

pressure, and then estimate Ki values using the proper charts.

Then those values were used to estimate VLE, exactly as in

Example 8.14. In this method the dependence of the indi-

vidual Ki on composition appears only in the choice of

convergence pressure. For a specified convergence pressure,

the Ki are independent of composition. This method is

discussed in [3, Chapter 6].

10.3.2 Estimation Methods for Each Phase Separately,

Not Based on Raoult’s Law

The most widely used method of this type is that of Chao

and Seader [7]. This estimation method (and several variants

of it proposed by other authors, particularly Grayson and

Streed [8]) is offered as a calculationmethod inmany current

process-design computer packages and is widely recom-

mended as being very good with hydrocarbon systems at

high pressure (like Figure 10.1).

To see how it works we rewrite the general equation for

equilibrium between vapor and liquid (Eq. 8.3) as

Ki ¼ yi

xi
¼ gipi

f̂iP
ð10:2Þ

In Raoult’s law-type formulations, we normally take f̂i ¼ fi,

(the L-R rule, and ideal solution of nonideal gases), but Chao

and Seader retained f̂i and computed it from the Redlich and

Kwong (RK) EOS, as described in detail in the next section

and in Appendix F. For the liquid they departed radically

from Raoult’s law by replacing pi with (fi)pure liquid i �P.
Substituting this value in Equation 10.2 produces

Ki ¼ yi

xi
¼ giðfiÞpure liquid i

f̂i

ð10:3Þ

They calculated gi, by a slightly modified version of Equa-

tion 9.24, based on Scatchard and Hildebrand’s regular solu-

tion theory, and found (fi)pure liquid i by a Pitzer-type equation

fið Þpure liquid i ¼ fið Þð0Þpure liquid i þv fið Þð1Þpure liquid i ð10:4Þ

where fið Þð0Þpure liquid i and fið Þð1Þpure liquid i are empirical functions

of Tr and Pr.

Table 10.A Results of Example 10.1

Variable

Values Read or Calculated

from Figure 10.7

Values Calculated from

Raoult’s Law

Values Calculated from Raoult’s

Law with the L-R Rule

P (psia) 100 100 100

xethane 0.1 0.1 0.1

T (�F) 165 133 124

yethane 0.92 0.968 0.943

yn-heptane by difference 0.08 0.031 0.056

pethane, extrapolated (psia) 968 896

pn-heptane (psia) 3.5 2.9

Pr,ethane 0.141

Pr,n-heptane 0.251

Tr,ethane 1.062

Tr,n-heptane 0.600

fethane (little EOS) 0.950

fn-heptane (little EOS) 0.459

Kethane 9.2 9.68 9.43

Kn-heptane 0.089 0.035 0.056
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This does not divorce these values from the measured

vapor-pressure curve of the individual species, because v
depends on the vapor pressure. (If the curves in Figure 5.4

were totally straight instead of being gently curved, then if

we knew vi we could write out the whole vapor-pressure

curve for species i with complete accuracy. In Figure 5.4

none of the experimental data curves cross one another, and

the curvature is more or less proportional to v, so it makes

sense that there could be a universal Pr¼ f (Tr, v) function.
Chao and Seader proposed such a function for hydrocar-

bons; the methods described in the next section also do this,

but in a somewhat different way.)

This method and its modifications will not be discussed

further here because it has largely been supplanted by the

methods discussed next. However, its approach was an impor-

tant step toward thedevelopmentof thosemethods, byshowing

a logical way to separate the liquid-phase behavior from the

vapor-pressure (Raoult’s law) data, and instead use an empir-

ical equation for the liquid-phase fugacities.

10.3.3 Estimation Methods Based on Cubic EOSs

Figure 10.8 shows the calculated 100�F isotherm of propane

on P-v coordinates, calculated by Starling’s modification [9]

of the Benedict–Webb–Rubin equation of state (BWR EOS).

On it the saturation curves are drawn as heavy lines, as is the

line of constant pressure in the two-phase region. The pre-

dictions of the BWR EOS are shown as a lighter-weight

curve. We see, starting at the right (from A to B), that in the

vapor phase the BWR curve for 100�F is slightly above the

saturation curve and shows the P-v behavior of the vapor. At

188 psia (B) the BWREOS curve crosses the saturation curve

and enters the two-phase region. The BWR EOS, like almost

all EOSs, is a one-phase EOS, which should not be expected

to directly show the behavior in the two-phase region.

Instead, it forms a maximum at 297 psi (C) and then falls

to a minimum at – 799 psia (D). After this minimum the

curve rises again, crossing the saturation curve at 188 psia (E)

and entering the liquid region. From there to F it represents

the P-v behavior of the liquid at 100�F. We may verify that

both the vapor and the liquid P-v values for 100�F in [9]

correspond to the one-phase curves shown in Figure 10.8

(theywere calculated from the same equation!). But what are

we to make of the minimum and maximum in the two-phase

region? Do those values have any physical meaning?

The part of the curve from B to C represents subcooled

vapors,whichwill condense to formavapor–liquidmixture if a

suitable condensation nucleus is supplied. This is the basis of

“cloud seeding,” discussed inChapter 14. The part of the curve

fromEtoDrepresents a superheated liquid,whichwill turn toa

vapor–liquid mixture if a suitable boiling nucleus is sup-

plied [10], also discussed in Chapter 14. Both of these parts

of the curve have real physical meaning and can be demon-

strated in careful laboratory experiments. All of the states

shown by the curve between B and E are thermodynamically

unstable. They can lower their Gibbs energies by converting

from a single-phase (gas at the right, liquid at the left) to a two-

phase mixture. The part of the curve between C and D has no

physical meaning and cannot be demonstrated in the labora-

tory. It represents states that, in addition to their thermo-

dynamic instability (which may persist as a metastable

equilibrium for a long period), are alsomechanically unstable,

in which state they cannot persist very long. If we had such a

substance in one of our many piston-and-cylinder arrange-

ments, and pushed the piston in slightly, thus lowering the

volume, if the substance followed the curve betweenCandD it

would fall in pressure, and thus suck the piston in behind it.

In Example 7.1 we showed that for any pure species, we

can calculate the fugacity from an EOS. In Chapters 7 and 9

we used only the little EOS, for which that calculation was

easy. For more complex EOSs the mathematics become

more complex, as shown in Appendix F, but in principle

the procedure is the same. In Figure 10.8 at any value of P

we could read the values of the BWR EOS specific volume

corresponding to the vapor and the liquid. At the pressure

corresponding to the vapor pressure, the calculated fugacities

of these two should be equal. That is themethod actually used

to calculate thevalues of the saturationvapor pressure inmost

modern tables of thermodynamic properties. It has the merit

that the PvT behavior of the liquid, and that of the vapor, and

the vapor-pressure curve are all calculated from the same

EOS, with the consequence that at the phase boundaries all

the values are internally consistent. We might think that

this divorces the calculated vapor pressures from the exper-

imental vapor-pressure measurements, but it does not.

The adjustable constants in the EOS are chosen to make the
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vapor-pressure curve calculated this way match the exper-

imental vapor-pressure data.

Once the idea that we could calculate pure species vapor

pressures (i.e., pure species VLE) from an EOS was widely

accepted, it was a fairly short step to attempting to calculate

multispecies VLE from a single EOS [11, 12]. Most modern

VLE calculation programs do that, using cubic EOSs. As

discussed in detail in Appendix F, these are EOSs that can be

written in the form z¼ f (Tr, Pr. and v) in fairly simple

algebraic expressions. with z appearing only as z3, z2, and

z. Cubic equations can be solved algebraically; numerical

solutions on spreadsheets are much quicker and easier.

Example 10.3 Repeat Example 10.2, using the Soave–

Redlich–Kwong (SRK) EOS.

The necessary background for this calculation and the

details of it are shown in Appendix F (Example F.5/10.3).

The results are summarized and compared with those of

Example 10.2 in Table 10.2. &

In this example, the SRK EOS was used to compute the

fugacities of each species in each of the phases; it estimates

the VLE very well. We also see that the departures from

ideality are in opposite directions for the two components:

Ethane has a slightly lower K value than we would estimate

from Raoult’s law, and n-heptane has a much higher one.

Looking back at Figure 10.1 (which is not directly applicable

here because it is only for 150�F),we see that at 800 psia theK
value for ethane is just about equal to the Raoult’s law value,

while that for n-heptane is �4 times the Raoult’s law value.

The K values in Table 10.2 show the same behavior.

Table 10.3 shows some more of the details of the SRK

calculation. We see the following:

1. At this T and P pure ethane would be a gas and pure n-

heptane a liquid. Neither could exist in the other state.

2. The calculated pure component fi¼ f /P for ethane

works well with the ðf̂i=fiÞ formulation (see Table

7.D); the calculated ðf̂i=fiÞ for both phases are quite

plausible.

3. The calculated pure component fi¼ f /P for n-heptane

works well with the ðf̂i=fiÞ formulation in the liquid

phase; the calculated ðf̂i=fiÞis quite plausible. But

in the vapor phase it does not work well at all;

the calculated ðf̂i=fiÞmakes little sense, mostly be-

cause the computed pure species fi¼ f /P is for a

liquid. If we wished to treat this mixture in that way,

we would have to estimate a hypothetical fi¼ f /P for

n-heptane vapor (see Fig. 8.14), which would be per-

haps 10 times the value shown in Table 10.3.

4. The liquid is behaving more or less as wewould expect

from Raoult’s law, but the vapor is not. The n-heptane

content of the vapor is �15 times what we would

calculate that way. Mostly what we see here is that

high-pressure gases, close to their critical states, are

much better solvents for other liquids (and solids) than

we would expect for an ordinary gas. Most of the

unusual behavior encountered in high-pressure VLE

is due to the high-pressure vapors behaving in a liquid-

likeway, which includes becoming very good solvents.

5. The description in terms of the ðf̂i=fiÞ notation shown
here is rarely used for high-pressure VLE, because the

values of fi calculated as shown above for n-heptane

are unreasonable.

6. This is a difficult mixture for Raoult’s law and the L-R

rule to estimate, because it consists of only two

species with very different normal boiling points

(NBPs) (�88.6�C and 98.4�C). Example 10.3 and

Problem 10.11 show that it is reasonably well

Table 10.2 Summary of Results of Examples 10.2 and 10.3, VLE of Ethane-n-Heptune at 800 psia,

with Liquid Containing 60 mol% Ethane

Experimental Values, Shown in Figure 10.7

and the Tables in [4], Example 10.2

Raoult’s Law,

Example 10.2

SRK EOS for Both Vapor and

Liquid, Example F.3/10.3

Bubble-point temperature T (�F) 209 172.2 210

yethane 0.945 0.996 0.952

yn-heptane 0.055 0.004 0.048

Kethane 1.52 1.66 1.59

Kn-heptane 0.14 0.0096 0.12

fethane (psia) 796.8 620

fn-heptane (psia) 3.1 8.9

Table 10.3 More Details from Example E5/10.3, at 800 psia

and 210�F, Based on the SRK EOS

Ethane n-Heptane

Vapor Liquid Vapor Liquid

Pure species z 0.789 0.322

Pure species fi ¼ f=P 0.811 0.025

Mixture z 0.723 0.246 0.723 0.246

Mixture f̂i 0.815 1.293 0.231 0.027

Calculated ðf̂i=fiÞ 1.005 1.593 9.344 1.110
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estimated by the SRK equation, both in Example

F.3/10.3 and in the process-design programs that carry

out that calculation.

10.4 COMPUTER SOLUTIONS

Most chemical engineers in industry have ready access to

programs that carry out the VLE calculations in Chapters 8, 9

and 10, often as part of more complex process design

calculations.Many university students also have such access.

The internal workings of these programs are similar, but not

necessarily the same as are shown in this book. Problems

10.11 to 10.18 suggest comparisons between the hand or

spreadsheet calculations in Chapters 8, 9 and 10 and these

computer packages.

10.5 SUMMARY

1. The behavior of pure species near their critical states is

different from what we expect well away from those

states. The same is true for mixtures, whose high-

pressure VLE behavior is quite different from that at

low pressures.

2. Mostly this is due to the high-pressure vapors behaving

in a “liquid-like” way, in particular by becoming much

better solvents for all sorts of things (leading to pro-

cesses like “supercritical extraction”).

3. The examples in this chapter are all for straight-chain

aliphatic hydrocarbons, whose behavior is the simplest

possible, because they form close to ideal solutions

with each other. For more complex mixtures the be-

havior is more complex.

4. Current process design computer programs mostly

calculate high-pressure VLE using cubic EOSs, of

which the SRK is one of the most popular. The pro-

cedure is as illustrated in Example F.5/10.3.

PROBLEMS

See common units and values for problems and examples. An

asterisk (�) on a problem number indicates that the answer is

in Appendix H.

10.1� a. Which of curves 2 through 6 of Figure 10.5 show

retrograde condensation–vaporization of the first

kind?

b. Which of curves 2 through 6 of Figure 10.5 show

retrograde condensation–vaporization of the sec-

ond kind?

10.2 Repeat the chart reading shown in Examples 10.1

and 10.2 to show that it is correct.

10.3 Show the Raoult’s law and Raoult’s law plus L-R

rule calculations in Examples 10.1 and 10.2.

10.4� Solve Example 10.1 using the high-temperature

version of Figure 8.20, which is not shown in this

text, but is in [13] and [14, pp. 13–18], as well as

many other thermodynamics textbooks. This is a

repeat of Example 8.14. Is this a better fit of the

experimental data than Raoult’s law? Or worse?

Comment on the probable reasons.

10.5 The calculations in parts (b) and (c) of Example 10.1

assume that the liquid-phase activity coefficients of

both species are 1.00. Chao and Seader [7] compute

the activity coefficients of such systems by Eq. 9.24,

using the values in Table 10.B. Using these, estimate

the two liquid-phase activity coefficients in Example

10.1 (b). If we had included these estimated activity

coefficients in parts (b) and (c) would they have

made the agreement with the experimental results

better? Worse? No change?

10.6 Repeat Example 10.1 using the SRK EOS, as shown

in Example F.5/10.3E.

10.7� Repeat Example 10.1 (all three parts) for 100 psia

and xethane¼ 0.20.

10.8 Based on Figure 10.1, estimate the bubble-point and

dew-point compositions for mixtures of ethane and

n-heptane at 150�F and 200 psia. Compare the

results to the values wewould read from Figure 10.7.

10.9 In Figure 10.7 for the 1200 psia curve:

a. How many critical points are there?

b. What T and xethane do they correspond to?

c. Do these values agree with Figure 10.5?

10.10 In Figure 10.8, if the gas and liquid at B and E are in

equilibrium, then their fugacities must be equal.

From Eq. 7.6 we know that this means that

ðE
B

d ln f ¼ 1

RT

ðE
B

v dP ¼ 0 ð10:7Þ

For the horizontal line B-E this is obviously true,

because dP¼ 0. Butwhat about for the curveB-C-D-

E? Is the integral¼ 0 for this curve as well? The

answer is “yes”; this topic is discussed in [15, p. 14].

Table 10.B Molar Volumes and Solubility Parameters for

Problem 10.5

Substance

Molar Volume

(mL/mol)

Solubility Parameter

(cal/mL)0.5

Ethane 68 6.05

n-Heptane 147.5 7.43
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Computer Problems The following problems require the use

of a computer programwith an internal VLE package, such as

Aspen Plus or ProMax. Such packages offer a wide variety of

calculationmodules. These problemsmostly call for using the

NRTL-IG module, which uses Raoult’s Law with the NRTL

activity coefficient for the liquid and ideal gas in the vapor, the

Chao-Seader module, described in Section 10.3.2 and the

Soave–Redlich–Kwong(SRK)module,describedinAppendix

F. The student is encouraged to explore the consequences of

rerunning the same problems using some of the many other

modules offered.

10.11 Repeat Example 8.9 and compare the results with

that example and the experimental values in it:

a. Using the NRTL/Ideal gas thermodynamic mod-

ule, and

b. Using the NRTL/SRK (or RK) gas thermody-

namic module.

Compare and discuss the results in parts (a) and (b)

10.12 Repeat the following examples using the NRTL/

Ideal gas thermodynamic modules. In each case

compare the calculated results to the spreadsheet

solutions in those examples, and the experimental

results shown in the examples

a. Example 8.10

b. Example 8.11

c. Example 8.12

d. Example 8.13

10.13 Repeat Example 8.13, using the NRTL/Ideal gas

thermodynamic modules, with the change that the

feed is 50 mol% ethanol. Explain the results.

10.14 Repeat Example 8.13, using the NRTL/Ideal gas

thermodynamic module, with the feed at 1 atm,

and the outlets at 0.5 atm, with the flash adiabatic.

Compare the results to those for Example 8.13 with

feed and outlets all at 1 atm.

10.15 Repeat Example 8.14, using the NRTL/Ideal gas

thermodynamic module, which works poorly on this

problem and with the Chao-Seader module and SRK

module, which do much better. Compare these re-

sults with the calculated and experimental values in

Example 8.14.

10.16 Repeat Example 9.8, using the NRTL/Ideal gas

thermodynamic module. Compare these results

with the calculated and experimental values in

Example 9.8.

10.17 Estimate liquid composition (i.e., gas solubility) at

1 atm and 25�C for pure oxygen in n-hexane and in

water using:

a. The NRTL/Ideal gas thermodynamic modules.

b. The Chao-Seader module.

c. The SRK module.

Compare the results to Table 9.2 and discuss them.

10.18 Run the following flashes, using NRTL-IG and/or

Chao-Seader and/or SRK modules. Compare the

results to the hand calculations.

a. Example 10.1

b. Example 10.2

c. Problem 10.7

d. Problem 10.8
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11
LIQUID–LIQUID, LIQUID–SOLID, AND
GAS–SOLID EQUILIBRIUM

The major application of vapor–liquid equilibrium (VLE) is

distillation. The uses of liquid–liquid equilibrium (LLE),

liquid–solid equilibrium (LSE), and gas–solid equilibrium

(GSE) are much more diverse. They include extraction (both

solid and liquid), decantation as a phase separation, vapor-

phase deposition (the heart of the semiconductor business),

and a host of environmental applications. In all of these

applications the equilibrium state and the rate of approaching

it are both important. This book discusses only the equilib-

rium state, normally asking what are the compositions of the

equilibrium phases when the system has minimized its Gibbs

energy, subject to the external constraints and the starting

conditions. As with VLE, the working criterion for LLE,

LSE, and GSE is that the fugacity of any individual species

must be the same in all the phases at equilibrium (Eq. 7.4).

11.1 LIQUID–LIQUID EQUILIBRIUM (LLE)

Most chemical species can exist as a liquid at some combi-

nation of temperature and pressure. The liquids we are most

familiar with are the substances and mixtures that are liquid

at 1 atm and about 20�C. Most of these are water and

solutions or suspensions of other materials in it (our foods

and beverages, the fluids in our bodies, oceans, rivers, rain).

We are also familiar with many organic liquids (gasoline,

lube oil, paint thinner, cooking oil).Mercury is the onlymetal

that is liquid at room temperature. At cryogenic temperatures

gases like oxygen, nitrogen, hydrogen, and helium become

liquids. At high temperatures metals like copper, tin, lead,

and steel become liquids. Many salts like sodium chloride

melt at modest temperatures (801�C for NaCl).

The number of possible LLE is nearly infinite, because

there are so many known pure species and we can select any

two from the list to test. Formost of the rest of this chapter we

will consider LLE between water and those organic com-

pounds that are liquids at or near room temperature. This is

themost thoroughly studied class of LLE, because of its great

industrial, biological, and environmental importance. (It is

also the cheapest and easiest type of LLE to test in the

laboratory.)Wewill make occasional reference to other types

of LLE, but mostly will talk about water and organics that

are liquid at or near room temperature. All of the types of

phenomena in LLE not involving water are illustrated in the

water-LLE examples we discuss here.

11.2 THE EXPERIMENTAL DETERMINATION

OF LLE

If we place samples of two pure liquid species that do not

react chemically in a container, shake them to bring them to

equilibrium, and then observe the result, there are three

possibilities:

1. The two liquids may be totally miscible, forming one

liquid phase, for example, water and ethanol.

2. The two liquids may be practically immiscible, form-

ing two liquids phases, each of which contains only a

small amount (e.g., less than 1mol%) of the other, for

example, water and most organic compounds (“water

and oil don’t mix”).

3. The two liquids are partly miscible with each other,

forming two separate phases, each of which contains
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substantial amounts (more than 1mol%) of the other,

for example, water and some organics like n-butanol

(see Figure 8.12d).

Which of these results occurs is largely dependent on the

molecular interactions between the two pure species.

In the first case, totallymiscible behavior, there is no LLE,

because there is only one liquid phase. In the other two cases

we can mix the two liquids vigorously to obtain equilibrium,

then separate the two resulting liquids (which will generally

have different densities) by gravity or in a centrifuge, sample

each phase, and analyze the samples to find the chemical

composition of that phase. This is the basic LLE experiment.

The first part of this chapter reports on the results of such

experiments, with a little intuitive commentary. Later sec-

tions discuss the thermodynamics of LLE and how we can

use that thermodynamics to predict, interpolate, or extra-

polate LLE data.

11.2.1 Reporting and Presenting LLE Data

The most common way of reporting and presenting two-

species LLEdata [1] is as a table likeTable 11.1.Although [1]

presents solubilities in mol percent, which we mostly use in

this chapter; many sources [2] present them as weight

percent. From Table 11.1 we see that both solubilities

increase slowly with increasing temperature. The effect of

temperature on solubility is discussed in Section 11.2.6.

We also see that the solubility of benzene in water at 25�C
is 0.0405mol%¼ 0.000,405mol fraction¼ 405 ppmbymol.

This is “practically insoluble.”

Example 11.1 A common way to measure small solubi-

lities like those shown in Table 11.1 is to add one species

from a buret, one drop at a time, to a large mass of the other

species. After each drop is added the mixture is shaken and

observed to see if it has turned cloudy, indicating that

the solubility limit has been reached. If we begin with 1 L

of pure water and add benzene one drop at a time from a

buret at 25�C, how many drops should it take to saturate

the water?

Typically a buret will deliver about 20 drops of liquid

per milliliter, so for benzene

1 drop � mL

20
� 0:88 g

mL
:
mol

78g
¼ 5:64� 10�4mol ð11:AÞ

and 1L of water � 1000 g/(18 g/mol)� 55.6mol, so

nbenzene to saturate ¼ 405� 10�6 � 55:6 mol ¼ 0:0225 mol

ð11:BÞ
and

drops of benzene � 0:0225 mol

0.000,564 mol=drop
¼ 40 drops &

ð11:CÞ
Weare all familiar with the expression “water and oil don’t

mix.” From this example and from Table 11.1 we would

conclude that since benzene is an “oil,” the expression should

really be “water and oil don’t mix very much.”

Example 11.2 One thousand pounds of benzene have been

leaked into the soil, in contact with the groundwater. The

benzene slowly dissolves in the groundwater. How many

pounds of groundwater will become saturated with benzene?

The total mols of benzene are

nbenzene ¼ mbenzene

Mbenzene

¼ 1000 lbm

78 lbm=lbmol
¼ 12:82 lbmol

ð11:DÞ
If this is to be 0.000,405mol fraction in water then

nbenzene ¼ xbnT � xb nwater

nwater ¼ nbenzene

xb
¼ 12:82 lbmol

0:000;405
¼ 0:32� 105 lbmol

¼ 5:5� 105 lbm ð11:EÞ

The federal drinking water standard for benzene [3] is 5 ppb

byweight or� (5 � 18/78)¼ 1.15 ppb bymol (1.15� 10�9mol

fraction). Thus, to make this benzene-saturated water accept-

able as drinkingwater wemust remove (1 – 1.15ppb/405 ppm)

¼ 99.9997% of the dissolved benzene. &

This example shows that for benzene the solubility in

water is small enough that one pound of benzenewill saturate

550 pounds of water, but large enough that to clean this

water to meet the federal drinking water standards will

require nearly “six nines” removal efficiency. Don’t let

benzene get into the ground, unless you have a very large

cleanup budget!

Table 11.1 Solubility Data for Benzene (species 1) and

Water (species 2) [1]

Temperature (�C)
Solubility of (1)

in (2) (mol%)

Solubility of (2)

in (1) (mol%)

0 0.04 0.133

5 0.04 0.156

10 0.04 0.180

15 0.04 0.211

20 0.04 0.252

25 0.0405 0.300

30 0.0411 0.356

40 0.0437 0.491

50 0.0474 0.664

60 0.0531 0.895

70 0.0615 1.19
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11.2.2 Practically Insoluble Liquid Pairs at 25�C

Water is practically insoluble in all hydrocarbons that do not

contain oxygen or nitrogen, for example, simple aliphatic or

aromatic hydrocarbons and chlorinated hydrocarbons;

these same hydrocarbons are practically insoluble in water.

Table 11.2 shows some examples of the practical insolubility

of water with some of thesematerials. Thevalues for benzene

in this table do not agree exactly with those in Table 11.1; this

slight disagreement between reported solubility data is, alas,

common. For most of the materials in this table the solubi-

lities are small, but not zero. The solubility of water in these

materials is about 5 to 10 times that of thesematerials inwater

on a mol basis, but typically only about 2 to 4 times as much

on a weight basis.

11.2.3 Partially Soluble Liquid Pairs at 25�C

The species in Table 11.2 are all compounds containing only

C, H, and Cl. The only solubility (water-in-organic or

organic-inwater) greater than 1mol% iswater in chloroform,

13,000 ppm by mol¼ 1.3mol%. Compounds containing C,

H, and O are much more soluble in water, and water is

much more soluble in them. The oxygen-containing groups

(hydroxyl, carboxyl, ketone, ether, ester) are hydrophilic,

while the remaining hydrocarbon (HC) parts of themolecules

are hydrophobic. Such molecules may be thought of as

having a water-soluble part and a part soluble in organic

liquids. Table 11.3 shows some examples of such solubilities.

Comparing Table 11.3 with Table 11.2, we see that the values

are of the order of 100 to 10,000 times as large. Within

each family, increasing the number of carbon atoms makes

the hydrophobic part of each molecule larger, thus decreas-

ing both the organic-in-water and the water-in-organic

solubilities.

11.2.4 Miscible Liquid Pairs at 25�C

If we lower the number of carbon atoms within one organic

family, thus making the hydrophobic part of the molecules

smaller, we would expect the solubilities to increase, which

they do. The lower molecular weight alcohols (methanol,

ethanol, and isopropanol) and the lowest molecular weight

ketone (acetone) are completely miscible with water. The

next larger alcohol (n-butanol) and the next larger ketone

(methyl ethyl ketone) are partlymiscible at 25�C, as shown in
Table 11.3. Adding a second hydroxyl group to an alcohol to

make a glycol increases the water solubility; all the glycols

with up to six C atoms are miscible with water at 25�C.
Organic nitrogen compounds are evenmore water soluble

than organic oxygen compounds. If we replace the oxygen in

an alcohol with a nitrogen and a hydrogen, forming an amine,

the solubility is greater than that of the corresponding

alcohol; amines with up to six C atoms are completely

miscible with water (at 25�C). If we replace one CH group

in practically water-insoluble benzene with an N, we form

totally water-soluble pyridine.

Digressing briefly from our water–organic examples, we

can say that if any two species are enough alike chemically,

the liquids will mix in all proportions. Examples of totally

miscible liquid groups are

1. All the liquids (at room temperature) of the families

of straight-chain or branched hydrocarbons, cyclo-

paraffins, and aromatics, with each other, for example,

n-hexane, 2-methyl-pentane, cyclohexane, benzene.

2. Most chlorinated members of the above families, and

the low molecular weight alcohol, ketone, or ester

derivatives of themwith each other and with the above-

listed hydrocarbons.

3. Most molten metals, such as copper, zinc, lead, and tin

with each other.

4. Many molten salts with each other.

Table 11.2 Solubility ofHydrocarbons inWater, andWater in

Hydrocarbons at 25�C [2]

Hydrocarbon Formula

Solubility in

Water

(mol fraction

� 106)

Solubility of

Water in

(mol fraction

� 106)

n-Pentane C5H12 9.5 480

n-Hexane C6H14 2 520

n-Heptane C7H16 9 280

Cyclohexane C6H12 12 460

Benzene C6H6 420 2,700

Toluene C7H8 100 1,700

Mixed xylenes C8H10 34 2,900

Methylene dichloride CH2Cl2 4000 7,000

Chloroform CHCl3 1250 13,000

Carbon tetrachloride CC14 90 700

Monochlorobenzene C6H5Cl 78 2,000

Table 11.3 Solubility of Oxygen-Containing Organic

Compounds in Water, and Water in Oxygen-Containing

Organic Compounds at 25�C [2]

Compound Formula

Solubility

in Water

(mol%)

Solubility

of Water in

(mol%)

n-Butanol C4H9OH 1.9 51.3

Cyclohexanol C6H11OH 0.8 42.6

Methyl ethyl ketone CH3-CO-C2H5 8.1 35.3

Methyl isobutyl

ketone

CH3-CO-C4H9 0.3 9.7

Diethyl ether C2H5-O-C2H5 1.8 5.1

Diisopropyl ether C3H7-O-C3H7 0.2 3.4

Methyl acetate CH3-O-CO-CH3 7.3 26.9

Ethyl acetate C2H5-O-CO-CH3 1.7 14.3

n-Butyl acetate C4H9-O-CO-CH3 0.11 7.8
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These mixtures need not be ideal solutions (e.g., acetone–

water, see Chapters 8 and 9), but they will be closer to ideal

solutions than those species pairs that do not form a single

phase. In most (but not all!) of these cases the liquids

form type II (see Section 8.4.2) interactions with each

other (positive deviations from ideal solution, gi> 1.00),

but the mutual repulsion is not strong enough to form

two phases.

11.2.5 Ternary LLE at 25�C

If, instead of mixing two pure species, we mix three, we find

more complex behavior:

1. If we mix three members of one homologous series

(such as pentane, heptane, hexane or benzene, toluene,

xylene) we would find that they are miscible, forming

one liquid phase.

2. If we mix three members of very different chemical

types (such as water, benzene, mercury) we would find

three separate liquid phases, each containing one of the

species practically pure, containing less (often much

less!) than 1mol% of each of the other two.

3. If we mix water, ethanol, and benzene, we would

expect more complex behavior, because water and

ethanol are totally miscible, and benzene and ethanol

are totally miscible, but water and benzene, as dis-

cussed above, are practically immiscible.

The most common way to present the experimental data

for such systems [4] is shown in Table 11.4. The data in this

table are redundant; if we know two of the mol fractions we

can calculate the third. But this is the common way of

presenting such data.

This table shows the result of 12 experiments, in each of

which some amounts of the three species were placed in a

container and agitated. Then the two liquid phases were

allowed to settle by gravity or centrifuged, and samples of

each liquid phasewerewithdrawn and analyzed. The first row

tells us that a liquid with 96.134mol% water, 3.817mol%

ethanol, balance benzene, is in equilibrium with another

liquid that is 98.56mol% benzene, 1.010mol% ethanol,

balance water. The terms left phase and right phase refer to

the common plotting convention shown below; the terms

water-rich and benzene-rich are more descriptive. Such a

table has less intuitive content than a plot of the same data.

The traditional presentation has been on an equilateral

triangle plot, as is discussed in most books on unit operations

or material balances [5, 6]. Figure 11.1 shows such a plot of

the data in Table 11.4 (omitting the sixth row from the top,

which practically duplicates the row above it).

Each of the data sets in Table 11.4 (except the one that

practically repeats the one above) is plotted as two data

points, connected by a tie line. Any overall mixture whose

composition lies on a tie linewill spontaneously separate into

the two phases whose compositions are shown at the ends of

that tie line. The lowest tie line corresponds to the first row in

the table. The ends of the tie lines are connected in two

curves (called binodal curves), which show the compositions

of the two equilibrium phases: the left or water-rich phase

and the right or benzene-rich phase. These two curvesmeet at

the plait point, shown as a small square in the diagram. For

high ethanol concentrations only one phase exists. The

single-phase region extends down to the two lower vertices,

forming two narrow strips at the edges of the diagram (ending

at 2700 ppm on the left and 420 ppm on the right) (see

Table 11.2).

Example 11.3 We place into our 25�C mixing container

3.75mol of water, 2.5mol of ethanol, and 3.75mol of

benzene, and shake well. When the phases have separated,

what will be the composition of the two equilibrium phases?

Table 11.4 Equilibrium Data for the System Water (species 1), Ethanol (species 2), and Benzene (species 3) at 25�C [4]

Left (water-rich) Phase Right (benzene-rich) Phase

Mol% 1 Mol% 2 Mol% 3 Mol% 1 Mol% 2 Mol% 3

96.134 3.817 0.049 0.430 1.010 98.560

91.980 7.968 0.052 0.850 3.323 95.827

86.884 12.977 0.139 2.081 5.860 92.059

81.478 18.134 0.388 2.455 9.121 88.424

75.459 23.540 1.001 3.588 12.939 83.474

74.824 24.069 1.107 3.967 13.340 82.694

70.281 27.892 1.828 5.046 16.090 78.864

64.904 31.725 3.371 6.434 18.943 74.623

59.095 35.510 5.395 7.727 22.444 69.829

51.033 39.382 9.584 10.233 26.216 63.551

45.629 41.062 13.309 12.562 29.341 58.096

37.176 41.771 21.053 16.607 33.093 50.300
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By simple stoichiometry the overall mol fractions (1, 2, 3)

are 0.375, 0.25, and 0.375.We locate the point corresponding

to this concentration on the diagram, by drawing any two of

the three straight lines corresponding to those mol fractions,

finding that the point falls almost exactly on the fifth tie line

from the top, for which the end-point values (read from

Table 11.4, fifth row from the bottom) are water-rich phase

64.9, 31.75, and 3.37mol%, and benzene-rich phase, 6.43,

18.94, and 74.62mol%. &

We could use a similar procedure for any point in the

two-phase region, interpolating between tie lines as needed.

We could also compute, by material balance, how many

mols of each of the phases is present (see Problem 11.5).

Although Figure 11.1, the equilateral triangle diagram, is the

traditional way of representing these data, we can also replot

the samedata on a right triangle, as shown in Figure 11.2. This

is currently a more popular representation because it is easier

to produce by common computer graphics programs. Both

Figures 11.1 and 11.2 present exactly the same information.

Figures 11.1 and 11.2 show the simplest case of a trian-

gular diagram representing three-species LLE (called type I).

The two-liquid-phase region forms a dome, which contacts

only the lower edge of the triangle. This type makes up about

75%of the cases forwhich such ternary data are available [4].

This does not mean that this is the most common in nature; it

is the type of greatest industrial, biological, and environ-

mental importance, hence the most-studied type. The other

common type (called type II), accounting for �20% of the

examples in [4] has the two-phase region touch two of the

edges of the triangle; an example is shown in Figure 11.6,

below. The remaining few percent are several other uncom-

mon types. If the two-liquid-phase region contacts only one

edge of the triangle, it is the common convention to draw the

diagram so that the dome rises from the lower edge.

In Figures 11.1 and 11.2 we see that the ethanol acts as a

cosolvent for benzene and water. (Benzene is a very poor

solvent for water, and water a poor solvent for benzene.

Ethanol increases the solubility of each in the other, making

them effectively better solvents for each other. Hence the
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FIGURE 11.1 Equilateral triangular diagram showing the LLE data in Table 11.4 for water–ethanol–benzene at 25�C.
On this type of diagram as shown, each vertex represents a pure species. Each of the sides of the triangle represents a two-

species mixture; for example the right side represents mixtures of ethanol and benzene. Each point within the figure

represents a three-speciesmixture. To locate the lowest point on the right side of Table 11.4,we draw lineAA, parallel to the

base, at value 0.3309 on the right hand scale; every point on this line represents amixturewith 33.09mol%ethanol.Nextwe

draw line BB, parallel to the right border passing through 0.16607 on the left border; every point on this line represents a

mixturewith 16.607mol%water. These two lines determine the point. However, just to check, we draw line CC, parallel to

the left border passing through 0.5030 on the base; every point on this line represents a mixture with 50.33mol% benzene.

If we have drawn the lines correctly they should cross at one point, representing the lowest entry for the right phase

in Table 11.4.
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name “cosolvent.”) For example, if we have 50mol% eth-

anol, then the remaining 50mol% can be any mixture of

benzene and water, and still wewill have only one phase. But

if we remove the ethanol (move down a straight line from

the top vertex through the original composition point on

Figure 11.1 or 11.2) then we will pass into the two-phase

region, eventually reaching the base of the figure, where the

two liquid phases have the compositions shown inTable 11.2.

Such cosolvents are widely used industrially to make mutu-

ally immiscible liquids miscible, or slightly soluble liquids

more soluble. Figures 11.1 and 11.2 also describe LLE

suitable for liquid–liquid extraction (see [7]).

11.2.6 LLE at Temperatures Other Than 25�C

As Table 11.1 makes clear, LLE values change with changes

in temperature. For practically insoluble materials like the

benzene–water binary in Table 11.1 both solubilities increase

slightly with increasing temperature. (The solubility of ben-

zene in water increases by a factor of 1.5 and that of water

in benzene by a factor of 9 as the temperature increases from

0 to 70�C.) This behavior is observed for most practically

insoluble liquid pairs.

For pairs with significant solubility, the behavior is more

complex. Figure 11.3 shows the solubility diagram for n-

butanol andwater for pressures above the boiling points of the

mixtures. From Figure 8.12d we see that at 1 atm pressure the

boiling temperature is� 92�C and the two liquid phases have

about 65 and 98mol%water. FromFigure 11.3we read that at

92�C, the two liquid phases in equilibrium have these same

values. This should not surprise us; Figure 8.12d is almost

certainly based on the same set of experimental data as

Figure 11.3.We also see in Figure 11.3 that as the temperature

is increased the phases become more and more alike, at

� 125�C, the critical solution temperature (also called con-

solute temperature), the two become the same, and for higher

temperatures there is only one liquid phase. This critical

solution temperature is in some ways like the critical tem-

perature at which liquid and gas become identical; in

each case the number of phases decreases by one. But 125�C
is far below the critical temperatures of water and n-butanol

FIGURE 11.2 Replot of Figure 11.1, on rectangular coordinates. The top part of the triangle, above

x2¼ 0.5 is omitted because it is blank. The scales on the two axes are not the same; the vertical scale is

expanded compared to the horizontal scale.

FIGURE 11.3 Solubility–temperature diagram for 1-butanol and

water. The circles and squares represent the experimental data [4].

The single-phase region extends as a thin strip down the right side of

the figure.
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(374 and 290�C), so we should not confuse this critical

solution state with the gas–liquid critical state. (There are

other events or states in engineering and science that are called

“critical”; theword is popular for describing any singular state

or occurrence.) On this figure we could determine the com-

position of the equilibrium phases at any temperature, simply

by drawing a horizontal line at that temperature and reading

the mol fractions corresponding to the two boundaries be-

tween the two-phase region and the single-phase region

(which extends as a thin strip along the right axis of the figure).

Figure 11.3 is the most common type of two-species

solubility diagram. However, nature presents some other

versions of this figure. Figures 11.4 and 11.5 show two of

these. In Figure 11.3 there is one point at which increasing the

temperature causes the two phases to become identical,

which is called an upper critical solution temperature

(UCST). In Figure 11.4 there is also one such point, but it

is a lower critical solution temperature (LCST). Above that

temperature two phases exist; below it only one phase exists.

In Figure 11.5 there are both UCST and LCST. Between

� 72�C and 135�C two phases exist, while below 72�C or

above 135�C only one phase can exist.

Figure 11.1 shows the most common behavior for partly

soluble ternary mixtures (called type I). Figure 11.6, for n-

hexane, methylcyclopentane, and analine, shows the next

most common type (called type II) at 25�C. Two of the three
binary mixtures form two liquid phases, so that the two-

phase region touches two of the edges of the triangle. At

34.5�C the methylcyclopentane–analine binary is at its

UCST (the same as 125�C in Figure 11.3). At that temper-

ature the two-phase region has shrunk, compared to its size

at 25�C, and its plait point barely touches the M-A edge. At

45�C the two-phase region has shrunk even further and only

touches one of the three edges, so the diagram has the same

form (type 1) as Figure 11.1.

11.3 THE ELEMENTARY THEORY OF LLE

So far this chapter has presented a description of the most

common (and interesting and important) types of LLE.

There are ample LLE data in the literature, and the experi-

ments to determine LLE (of nontoxic liquids at modest T and

P) need not be terribly expensive or difficult. So we could

simply assume that wewill look up or measure any LLE data

we need. Current process design computer programs can

estimate such LLE data from theory with fair-to-good accu-

racy much more quickly and cheaply than we could find it in

the library or the laboratory. This section shows the funda-

mentals of that theory and some simplified (hand or spread-

sheet calculable) versions of the more complex algorithms in

those computer programs.

The fundamental relation for any LLE is the same as that

for VLE, or for any phase equilibrium, that for any of the

species present at equilibrium the fugacity must be the same

for that species in all of the phases present,

f
ð1Þ
i ¼ f

ð2Þ
i ð11:1Þ

where f
ð1Þ
i is the fugacity of species i in phase 1, and f

ð2Þ
i is

the fugacity of species i in phase 2. (Alas, there is no

agreement on subscripts and superscripts to represent species

and phases. This is one of the most commonly used conven-

tions.) Equation 11.1 is separately obeyed for each of the

FIGURE 11.4 Solubility–temperature diagram for dipropyl

amine and water [1, p. 434]. The squares and circles are the

experimental data points. The horizontal axis extends only to 80%.

FIGURE 11.5 Solubility–temperature diagram for tetrahydrofu-

ran, THF (1,4-epoxy butane) and water [1, p. 221]. The squares

and circles are the experimental data points. The horizontal axis

extends only from 5 to 45%. The one-phase region surrounds the

two-phase region.
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species present. In almost all LLE we represent the fugacities

by the “Raoult’s law with activity coefficient” form (see

Table 8.2). That changes Eq. 11.2 to

x
ð1Þ
i g

ð1Þ
i p

ð1Þ
i ¼ x

ð2Þ
i g

ð2Þ
i p

ð2Þ
i ð11:2Þ

here p
ð1Þ
i ¼ p

ð2Þ
i is the vapor pressure of i at the system

temperature, which is the same on both sides of Eq. 11.2,

and is normally canceled. Solving for x
ð1Þ
i we find

x
ð1Þ
i ¼ x

ð2Þ
i g

ð2Þ
i

g
ð1Þ
i

ð11:3Þ

which is true for any number of species and any number of

liquid phases. If we consider only binary systems, and prac-

tically insoluble liquid pairs, then if species i is the species

present to a few parts per million in phase 1, it will be

practically pure in the other liquid, phase 2, so that

both x
ð2Þ
i and g

ð2Þ
i will be � l.00 (see Section 8.5). That

simplifies Eq. 11.3 to

x
ð1Þ
i � 1

g
ð1Þ
i

practically insoluble
species in binary mixtures ð11:4Þ

Example 11.4 Estimate the activity coefficients of benzene

in water and water in benzene at 25�C.
The mol fractions of benzene in water and water in

benzene (from Table 11.1) are 405 and 3000 ppm by mol,

so that the mol fractions of water in the water-rich phase and

benzene in the benzene-rich phase are 0.999595 and 0.997,

both � 1.00. Thus, the assumptions leading to Eq. 11.4 are

certainly suitable here. Solving Eq. 11.4 forg
ð1Þ
i and inserting

the values from Table 11.1, we find

g
ðwater-rich phaseÞ
benzene ¼ � 1

x
ðwater-rich phaseÞ
benzene

¼ 1

405� 10�6
¼ 2500

ð11:FÞ

and

g
ðbenzene-rich phaseÞ
water ¼ 1

x
ðbenzene-rich phaseÞ
water

¼ 1

3000� 10�6
¼ 333&

ð11:GÞ
For practically insoluble liquids, the activity coefficient

values calculated this way, which are of the same type we

used in Chapters 8 and 9, are always very large, much

larger than any we saw in those chapters. For partly soluble

liquid pairs the calculation is more difficult, because in

Eq. 11.3 neither of the liquids is practically pure, so we

may not assume that any of the terms in the equation is

�1.00.

In low-pressure VLE (see Chapters 8 and 9) we normally

begin with experimental data, calculate liquid-phase activity

coefficients, use those to estimate the appropriate constants in

a suitable liquid-phase activity coefficient equation, and then

use that plus a suitable estimate of the vapor-phase nonide-

ality (often the ideal gas law or the L-R rule for low-pressure

VLE) to calculate equilibrium phase concentrations. In LLE

we most often begin with some kind of liquid-phase activity

coefficient equation, use it to calculate the composition of the

equilibrium phases (without going through the intermediate

step of calculating activity coefficients), and then compare

the predicted to the experimental equilibrium concentrations,

adjusting our equations as needed to get agreement. Then we

use the equation to estimate other data points, the values at

other temperatures, and so on.

To do this we return to the equivalent of Figure 6.7, where

we showed that a liquid mixture will form two liquid phases

only if its g� xa plot has an internal maximum, and that

the equilibrium concentrations are those corresponding to the

two points of tangency of a single straight line.

Example 11.5 Species a and b have pure-species Gibbs

energies of goa ¼ 2 kJ/mol and gob ¼ 1 kJ/mol. Their liquid-

phase activity coefficients are represented adequately by

M M M

H H HA A A
T = 25ºC T = 34.5ºC T = 45ºC

FIGURE11.6 Effect of temperature on solubility for the system n-hexane (H), methylcyclopentane

(M), and analine (A). Increasing the temperature reduces the size of the two-phase region. (From

Seader, J. D., and E. J. Henley. Separation Process Principles. � 1998, New York: Wiley, p. 438.

Reprinted by permission of John Wiley & Sons, Inc.)
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Eq. 9.G (which leads to the symmetric or 2-suffix Margules

equation, Eq. 9.1). Prepare a plot, similar to Figure 6.7 for this

mixture at 298.15K, for values of the constant in Eq. 9.I of

A¼ 0, 1, 2, and 3.

Starting with Eq. 9.5, we have

gmixture ¼ gsolution of the same composition; but ideal þ gE

¼
X

xig
o
i þ

X
xiðRT ln xiÞþ

X
xiðRT ln giÞ ð11:5Þ

which is a general expression for the molar Gibbs energy

of any mixture. For the symmetric equation the individual

ln gi¼A (1� xi)
2 so that

X
xiðRT ln giÞ ¼

X
xiRTAð1�xiÞ2 ð11:HÞ

and

gmixture ¼
X

xig
o
i þ

X
xiðRTlnxiÞþ

X
xiRTAð1�xiÞ2

ð11:IÞ
As an example point, for xa¼ 0.3 and A¼ 2, this becomes

gmixture ¼
 
0:3 � 2 kJ

mol
þ 0:7 � 1 kJ

mol

!

þRTð0:3 ln 0:3þ 0:7 ln 0:7Þ

þ 2RTð0:3 � 0:72 þ 0:7 � 0:32Þ ð11:JÞ

gmixture ¼ 1:3
kJ

mol
þ8:314

J

molK
�298:15K � ð�0:611þ0:42Þ

¼ 1:3
kJ

mol
þ2:480

kJ

mol
� ð�0:1909Þ ¼ 0:827

kJ

mol

ð11:KÞ

Similar calculations (easy on a spreadsheet!) produce curves

shown in Figure 11.7.

From Figure 11.7 (and Eq. 11.I) we see that A¼ 0 makes

all the activity coefficients¼ 100, and corresponds to an ideal

solution. ForA¼ 1.0 the activity coefficients are greater (than

1.00, but not large enough to cause liquid-phase separation

(see Figure 6.7!). ForA¼ 2 the center of the plot is practically

straight. We may show (see Problem 11.12) that for this

equation, andA¼ 2.00, at themiddle of the plot (xa¼ 0.5) the

second derivative d2gmixture=dx
2
a ¼ 0: This corresponds to

the beginning of a local maximum in the curve. For all values

A< 2.00 there is no local maximum; d2gmixture=dx
2
a > 0 for

all xa. For all values of A > 2.00 there is a local maximum;

d2gmixture=dx
2
a < 0 for xa ¼ 0:5. So (for this assumed sim-

plest possible activity coefficient relation!) if A¼ 2.00, then

the system is at the boundary between one-liquid phase

systems and two-liquid-phase systems. For A¼ 3 the curve

shows a distinct local maximum. By drawing the line that is

tangent to the A¼ 3 curve twice we see that the calculated

mol fractions of species 1 in the two phases are approxi-

mately 0.1 and 0.9 (see Problem 11.14). &

Wemay show (Problem 11.13) that the values of goa and g
o
b

in the above example do not influence whether there is one

liquid phase or two or the composition of the two liquids. For

that reason the quantity normally plotted in such figures is

gmixture�
X

xig
o
i ¼

X
xiðRT ln xiÞþ

X
xiðRT ln giÞ

ð11:LÞ

which is the vertical distance in Figure 11.7 (and Figure 6.7)

between the local value of gmixture and the straight line

connecting the two goi values. This quantity has all the useful

properties of the quantity plotted in Figures 11.7 and 6.7.

FIGURE 11.7 Calculated values of the molar Gibbs energy of a binary mixture at 25�C, assuming

the symmetrical activity coefficient equation, with various values of A.
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Example 11.6 Estimate whether water and n-butanol form

two phases as 92�C, and, if so, what the phase compositions

are, based on the assumption that the liquid-phase activity

coefficients are described by the van Laar equation (Eq. 8.9),

in the ln g form, with constants A¼ 1.2739 and B¼ 3.9771,

which are based on VLE measurements, (Table A.7).

As an example point, at xa¼ 0.3, for water

ln ga ¼
B2Ax2b

ðAxa þBxbÞ2
¼ 3:97712 � 1:2739 � ð1:�0:3Þ2

ð1:2739 � 0:3þ 3:9771 � 0:7Þ2

¼ 0:985 ð11:MÞ

and correspondingly for n-butanol, ln gb¼ 0.0579, so

gmixture�
X

xig
o
i ¼ 3:037

kJ

mol
� ð0:3 ln 0:3þ 0:7 ln 0:7

þ 0:3þ 0:985þ 0:7 � 0:0579Þ

¼ 3:037
kJ

mol
� ð�0:2748Þ ¼ �0:835

kJ

mol

ð11:NÞ

Figure 11.8 shows the result of similar calculations, for the

whole range of xa and also the straight line tangent to

the curve twice.

Figure 11.8 shows the same type of behavior as the A¼ 3

curve in Figures 11.7 and 6.7 (except that the van Laar

equation is not symmetrical, so the internal maximum is

not in the center as it was in those figures). The straight line,

drawn to be tangent to the curve twice, touches the curve

at about xa� 0.47 and 0.97. Thus, based on the severe

assumption that the van Laar equation (with constants

based on VLE measurements) is an accurate representation

of the LLE, wewould conclude that at 92�Cwater–n-butanol

does form two liquid phases, which is correct, and that the

two xa� 0.47 and 0.97, while the experimental values

are 0.65 and 0.98. &

This disagreement between the experimental equilibrium

phase compositions and those calculated from VLE activity

coefficient equations is common [8, Chapter 7], The calcu-

lated results are quite sensitive to the equation parameters,

and the values like those in Table A.7 are the best average

values for the whole range of VLE data. Process-design

computer programs estimate LLE phase compositions by

the same method as Example 11.6, but generally using more

complex (and more accurate) liquid-phase activity coeffi-

cient relationships. Several of these methods are discussed

and compared in [9]. For three species the line is replaced by a

plane that must be tangent three times to a three-dimensional

surface instead of twice to the two-dimensional curve shown

in Figures 6.7 and 11.8. That leads to more complex numer-

ical solutions, which are hard to show by hand, but easily

done in large computer programs. In principle, they are the

same as Example 11.6.

11.4 THE EFFECT OF PRESSURE ON LLE

All of the information presented so far in this chapter is

practically independent of the system pressure, as long as the

pressure is above the boiling-point pressure of the mixture.

The reason, as shown in Chapter 7, is that change in fugacity

with pressure is given by Eqs. 7.6 and 7.14, which show that

FIGURE 11.8 Calculated values of gmixture�
P

xig
o
i ¼ ðRT lnxiÞþ

P
xiðRT lngiÞ for water and

n-butanol at 92 �C, based on the van Laar equation, with constants based on VLE measurements,

and the straight line tangent to the curve in two places.
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that change is proportional to the exponential of the

molar volume for a pure species or the partial molar volume

for one species in a mixture. The molar volumes of pure

liquids and the partial molar volumes of species in liquid

mixtures are small enough that this effect is generally

negligible (see Example 7.3). The sources for the data in

Tables 11.1–11.4 do not report the pressures for those

equilibria, assuming that the readers know that the effect of

pressure on LLE is negligible (as long as the pressure is high

enough to prevent boiling). At very high pressures (hundreds

or thousands of atmospheres) these effects can become

significant and must be considered.

11.5 EFFECT OF TEMPERATURE ON LLE

For practically insoluble mixtures we can estimate the effect

of temperature change on LLE with some confidence. As

shown in Eq. 11.4, the solubility is inversely proportional to

the activity coefficient. If we take the ln of both sides of

Eq. 11.4, differentiate with respect to temperature, and then

substitute from Eq. 7.32, we find.

d lnx
ð1Þ
i

dT
¼ � d lng

ð1Þ
i

dT
¼ �ðhoi��hiÞ

RT2

practically insoluble
species in binary
mixtures ð11:6Þ

If we assume that hoi � �hi
� �

(minus the differential heat of

mixing, see Eq. 6.11) is a constant, independent of temper-

ature, then we can integrate Eq. 11.6, finding

lnx
ð1Þ
i ¼ ðhoi ��hiÞ

RT
þ constant of integration ð11:7Þ

which suggests that a plot of ln x
ð1Þ
i vs. (1/T) should form a

straight line. Figure 11.9 shows the data from Table 11.1,

plotted as ln x
ð1Þ
i vs. (1000K/T). For water in benzene the

data do form practically a straight line, while for benzene in

water there is slight curvature.

Example 11.7 Estimate the heat of mixing of water in

benzene and of benzene in water, from the straight lines in

Figure 11.9.We find that thewater-in-benzene least-squares-

fit line has the equation

lnx
ðbenzene-rich phaseÞ
water ¼ 4:175� 2967:7K

T
ð11:OÞ

Comparing this term-by-term with Eq. 11.7, we

conclude that

hoi ��hi
� �

RT
¼ � 2967:7K

T
ð11:PÞ

so that

hoi��hi
� � ¼ �2967:7K � 8:314 J

mol K
¼ �24:67

kJ

mol

ð11:QÞ

for benzene-in-water the constant in Eq. 11.P is �522.9 K,

leading to a calculated value of hoi��hi
� �¼ 4.347 kJ/mol.&

What physical meaning should we attach to these values?

hoi��hi
� �

is the enthalpy of the pure liquid minus the partial

molar enthalpy of that species in solution, both at the solution

temperature. Thus, we would have to add 24.67 kJ for

each mol of water we dissolve in benzene, and add 4.37 kJ

for each mol of benzene we dissolve in water. These values

are 55 and 12% of the heats of vaporization of water and

benzene at room temperature. For practically insoluble pairs,

the energy required to get the molecules of solute away

from each other and to insert them in the solvent is of the

same order of magnitude as that needed to vaporize the

solute. The type of behavior described here is very common;

Figures 11.10 and 11.11 [10] show the plots corresponding to

Figure 11.9 for a variety of hydrocarbon–water pairs.

Observe that the horizontal axis is reversed, (1/T) is plotted

from right to left, and the corresponding temperatures shown

from left to right.

Example 11.8 Gasoline is put into the tank of an auto,

saturated with water at 50�F. A sudden cold wave cools the

auto and its fuel system to 20�F. How much water would we

expect to come out of solution in the gasoline? What would

its effect likely be?

0.02

0.01

0.001

1000 K/T

Water in benzene

Benzene in water

M
ol

 f
ra

ct
io

n,
 x

i

0.003
2.9         3         3.1       3.2        3.3       3.4       3.5        3.6       3.7

FIGURE 11.9 Benzene–water solubility data, in the form sug-

gested by Eq. 11.7. The points are the values from Table 11.1. The

lines are least-squares fits of the data. In this formulation temper-

ature increases from right to left!

EFFECT OF TEMPERATURE ON LLE 191



1.0

0.8

0.6

0.4

0.2

0.1

0.08

0.06

0.04

M
O

L
E

  F
R

A
C

T
IO

N
  W

A
T

E
R

0.02

0.01

0.008

0.006

0.004

0.002

0.001

0.0008

0.0006

0.0004

0.0002

0.0001
0                                  50                        100                 150               200           250          300      350     400     450      500  550

0                                  50                        100                 150               200           250          300      350     400     450      500  550

TEMPERATURE, ºF

               FIGURE 9A1.1

     SOLUBILITY OF WATER IN

PURE LIQUID HYDROCARBONS

                      UNDER

             VAPOR-LIQUID-LIQUID

           EQUILIOUM CONDITIONS

    TECHNICAL DATA BOOK

                 July 1968

      Approved : MRF & WGB

RECPROCAL ABSOLUTE TEMPERATURE SCALE

THREE PHASE CRITICAL

PROPENE (P
ROPYLENE)

 n
-H

EX
A

N
E

PR
O

PA
N

E

 n
-B

U
TA

N
E

CY
CLO

H
EX

A
N

E

BENZENE

CY
CLO

H
EX

A
N

E

FIGURE 11.10 Solubility of water in pure liquid hydrocarbons. The horizontal scale is (1/T), plotted from right to left,

with the corresponding values of T in �F shown. This plot is a summary of all the available experimental data as of 1968.

(From Daubert, T. E., and R. P. Danner. Phase equilibria in water–hydrocarbon systems. In Technical Data Book,

Petroleum Refining, Vol. 2, Chapter 9, Figure 9A1.1. Washington, DC: American Petroleum Institute (1978). Reproduced

by permission of the American Petroleum Institute.)
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FIGURE11.11 Solubility of pure liquid aromatic hydrocarbons inwater. The horizontal scale is (1/T), plotted from right

to left, with the corresponding values of T in �F shown. This plot is a summary of all the available experimental data as of

1968. (From Daubert, T. E., and R. P. Danner. Phase equilibria in water-hydrocarbon systems. In Technical Data Book,

Petroleum Refining, Vol. 2, Chapter 9, Figure 9A2.3.Washington, DC: American Petroleum Institute (1978). Reproduced

by permission of the American Petroleum Institute.)
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Another plot in [10], not shown here, suggests that the

solubility of water in typical gasoline is very similar to

that in cyclohexane, shown in Figure 11.10. From that

figure we read the solubility of water in cyclohexane at

50�F as 0.00026mol fraction. The cyclohexane curve in

Figure 11.10, is totally straight, so we linearly extrapolate

it to 20�F, finding a water solubility of � 0.0001mol

fraction. Thus, we would expect the gasoline to reject

(0.00026� 0.0001)¼ 0.00016mol of water per mol of

gasoline. The molecular weight of gasolines varies some-

what, but a typical value is 115 g/mol; the density of

gasoline also varies, but a typical value is 720 g/L at room

temperature. Thus, we would expect

nwater rejected ¼ 0:00016
mol water

mol gasoline
� mol gasoline

115 g
� 720g

L

¼ 0:001
mol water

Lgasoline
¼ 0:018

gwater

Lgasoline

ð11:RÞ
If the fuel tank contains 10 gallons � 40 L, then we would

expect 0.018 � 40¼ 0.72 g� 0.72mLofwater to come out of

solution in the gasoline.

At 20�F we would expect this water to become solid ice,

forming a piece large enough to plug the fuel line of a parked

auto. This is a disaster for the driver, who has to find a way to

thaw the fuel line without freezing her/his fingers or nose!

Petroleum refiners try to keep the water content of

their gasolines as low as possible. After they have made

the final water removal, many add small amounts of

cosolvent, typically methanol or ethanol, to the gasoline

to increase the water solubility (in winter and in cold

climates). You can also purchase gasoline fuel-line

deicers (cosolvents) to add to the tank of an auto driven

from a warm climate to a cold one; these are practically

pure methanol. They work. &

So far we have discussed only the temperature effect on

practically insoluble liquid pairs, based on the assumption

(Eq. 11.4) that the solvent was practically pure. That

assumption is not available for partly soluble pairs like

water–n-butanol (Figure 11.3). The logic shown above ap-

plies in a qualitative way to the upper critical solution

curves shown in Figures 11.3 and 11.5, but not in a quan-

titative way. Clearly, it cannot explain the lower critical

solution temperatures on Figures 11.4 and 11.5, even qual-

itatively. Equation 11.8 shows that if ðhoi��hiÞ is negative,

as in Figure 11.9, then the solubility must increase with

increasing temperature, while if it is positive, the reverse

must be true. So the pairs that form lower critical solution

temperatures would be expected to evolve heat on mixing.

This is not common behavior, but it is observed in the

mixtures that form LCSTs [11].

11.6 DISTRIBUTION COEFFICIENTS

For extraction process and some others, we wish to know the

relative solubility of one species in two insoluble solutions.

Example 11.9 At 25�C we place 5mol of water, 5mol of

benzene, and 0.1mol of ethanol in a container and agitate

them to produce equilibrium. At this low an ethanol content

we are sure to have two phases present (see Figures 11.1

and 11.2). What will the distribution of ethanol between the

two phases be?

The fugacity of ethanol must be the same in each of the

two phases, so that from Eq. 11.3 we have

K ¼ distribution

coefficient

� �
¼ x

ðwater-rich phaseÞ
ethanol

x
ðbenzene-rich phaseÞ
ethanol

¼ g
ðbenzene-rich phaseÞ
ethanol

g
ðwater-rich phaseÞ
ethanol

ð11:8Þ

Here we have defined the distribution coefficient K as the

ratio of mol fractions of the distributed solute between the

two phases, thus introducing another quantity normally

written as K. We observe that for the first experimental data

set in Table 11.4

K ¼ distribution

coefficient

� �
¼ x

ðwater-rich phaseÞ
ethanol

x
ðbenzene-rich phaseÞ
ethanol

¼ 3:817%

1:010%
¼ 3:78 ð11:SÞ

Then we repeat the calculations for all the data points in that

table and plot them as shown in Figure 11.12.
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FIGURE 11.12 Distribution coefficient of ethanol between

water-rich and benzene-rich phases, based on Table 11.4.
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We see that at the low mole percent ethanol in this

example, the distribution coefficient will be � 4, so that the

total 0.1mol of ethanol will distribute itself about 80% in the

water-rich phase and 20% in the benzene-rich phase (if each

phase has the same number of moles). &

This distribution coefficient> 1.00 indicates that, for ex-

ample, we could extract ethanol from benzene with water

fairly easily, but that extracting ethanol from water with

benzene would work poorly. If we consider only concentra-

tions more than about 5mol% ethanol in the benzene-rich

phase, then we see that the ethanol distribution coefficient is

nearly a constant � 1.75. If the distribution coefficient is

nearly constant, some shortcut calculations can be used for

liquid–liquid extraction, so this term is widely used.

11.7 LIQUID–SOLID EQUILIBRIUM (LSE)

A solid is a material at a temperature below its melting point.

Almost all solids will melt, but some like CO2 can exist as

liquids only at pressures above atmospheric, and some

solids like CaCO3 and wood decompose on heating before

they melt. The pure-species solids we are familiar with

are the common metals (aluminum, copper, tin,. . .),
salts (sodium chloride, calcium carbonate,. . .), and some

crystalline organic materials (sucrose, naphthalene, waxes),

ice (frozen water), and dry ice (frozen CO2). Most of the

solids we encounter in daily life are not pure species, for

example, wood, steel (mostly iron and carbon), plastics

(mixtures of polymers of various chain lengths with plasti-

cizers and other additives), fabrics (blends of various natural

and synthetic polymers with dyes, and surface treatment

chemicals), concrete, asphalt, rubbers, and apples. Some

apparently solid materials, like glass, are polymers, which

are believed to be fluids at a temperature low enough that

their viscosity is practically infinite. (Glass has no simple

melting-point temperature like ice does; on heating it be-

comes less and less viscous, thus changing from a material

that shatters if struck to a runny fluid, with no sharp boundary

between the two.)

11.7.1 One-Species LSE

The simplest LSE is that of a single pure species, represented

by the L-S or melting-point curve in Figure 1.9. We see that

the curve is practically vertical, indicating that the melting

temperature is practically independent of pressure, 0�C for

water. Figure 1.10 shows that for pressures in thousands of

atmospheres the curve for water has a slightly negative slope.

This is true only for the few substances like water that

expand on freezing; most substances shrink on freezing,

and their equivalents of Figure 1.10 have a freezing curve

with a slight positive slope. For one species there is no

“solubility” as we would understand the term. At any fixed

T and P not exactly on the L-S equilibrium curve any pure

species can exist as solid or liquid, but not as one dissolved in

the other. So the term LSE refers to systems with more than

one species.

11.7.2 The Experimental Determination of LSE

The experimental determination of LSE is similar to that of

LLE. We place a sample of the pure-species solid in a

container with a sample of pure-species liquid, shake until

the liquid has become saturated with the solid, separate by

gravity or filtration, and analyze the liquid to determine how

much solid is dissolved in it. The solubility of liquids in most

pure-species solids is small enough that we ignore it. (Poly-

mers, natural and synthetic, often absorb solvents, and

increase in volume, called “swelling” in the polymer field.

Metals and salts generally do not measurably absorb liquids

and swell.) This means that the equivalent of Table 11.1

shows the solubility of the solid in the liquid, but almost never

the solubility of the liquid in the solid.

Compared to the three possible outcomes of the LLE

experiment (Section 11.2) we have only two here. There is no

equivalent of total miscibility; that would require that mixing

an infinitesimal amount of liquid with a large amount of solid

produced all liquid. The other two possibilities are

1. Practically insoluble solids (less than a fraction of a

mol percent dissolved), such as iron, copper, wax, or

rubber in water.

2. Substantial solubility (more than a few mol percent

dissolved), such as table salt or sugar in water.

11.7.3 Presenting LSE Data

The most common presentation of LSE data is a table like

Table 11.5. We see that the solubility of NaCI in water

increases very slowly with increases in temperature.

Example 11.10 Table 11.5 shows the most commonly

reported unit for reporting such solubility. Show the corre-

sponding values of the weight fraction and mol fraction of

NaCl in a saturated solution in water at 20�C:

Table 11.5 Solubility of NaCl in Water [12]

Temperature (�C)
Solubility of NaCl

(g per 100 g of water)

0 35.7

20 36.0

40 36.6

60 37.3

80 38.4

100 39.8
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weight fraction ¼ 36:0 g

ð100þ 36Þ g ¼ 0:265 ¼ 26:5 wt%

ð11:TÞ

mol fraction ¼
36 g

58:5 g=mol

36 g

58:5 g=mol
þ 100 g

18 g=mol

¼ 0:0997 � 0:10 ¼ 10 mol% & ð11:UÞ

This simple example is included to show the relations

among the three most commonways of expressing LSE data.

For very low solubility salts the results are almost always

presented in terms of the solubility product, discussed in

Section 13.3. For medium-solubility materials they are often

presented inplots likeFigure11.13.The solubilitiesofcalcium

salts are much lower than those of sodium salts; the top of the

diagram is only 3000 ppm¼ 0.3% by weight. Calcium salts

also exhibit inverted solubility curves, that is, the solubility

decreases as the temperature increases. Most solids, like

NaClshowtheoppositeeffect:Thesolubility increases slightly

with increasing temperature (see Table 11.5). This nasty

behavior of calcium salts has practical consequences.

Example 11.11 Most municipal water systems use surface

waters (rivers or lakes) or groundwaters (from wells).

The surface waters often have low content of Ca salts, but

groundwaters are often saturated at about 20�Cwith calcium

carbonate. Often the water will also contain calcium bi-

carbonate, Ca(HCO3)2 which converts to calcium carbonate

on heating. Most municipal waters contain much less of the

sulfate salts than the carbonate salts, because the world has a

lot more limestone than gypsum. If the household water

heater takes water saturated with calcium carbonate at 20�C
(¼68�F) and delivers it to the house at 140�F (a typical

household water heater setting) how much solid calcium

carbonatewill it deposit in thewater heater? For this example

we ignore the other salts present in thewater, such as calcium

sulfates and bicarbonates and magnesium salts, all of which

contribute to water “hardness.”

From Figure 11.13 we read the solubilities of calcium

carbonate at 68 and 140�F as about 60 and 30 ppm.

Thus, wewould expect approximately (60�30)¼ 30 ppm

of calcium carbonate to come out of solution and remain

in the water heater. A typical household water heater heats

� 100 gallons/per day (strongly dependent on how much

laundry is done and the number of people in the house), so

we would expect to deposit

CaCO3

deposited

� �
¼ 30� 10�6 � 100 gal

day
� 8:33 lb

gal

¼ 0:025
lb

day
& ð11:VÞ

This is a high estimate of the deposition rate. Most waters

do not deposit this much. But this deposition is a serious

problem in domestic water heaters; the solids collect in the

bottom of the heater, impeding heat transfer and speeding

the eventual wear-out of the heater. Water softeners use ion

exchange to replace the calcium (and magnesium) ions in

water with sodium ions (fromNaCl, sending the reject CaCl2
to the sewer). The resultingNa salts remain in solution and do

not react with soaps theway Ca salts do, thus producing “soft

water.” Water softeners lengthen the life of water heaters.

Industrial water heaters and boilers use a variety of techni-

ques to prevent this deposition of sulfates and carbonates.

(In the early days of the industrial revolution the role of these

Ca and Mg salts in boiler feed waters was not understood;

they led to some disastrous boiler explosions!)

If we extend the temperature scale of figures like

Figure 11.13 down to the freezing temperature of the solvent,
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then the behavior becomes more complex (and much more

interesting). Figure 11.14 shows such a diagram for the

NaCl–water system at some pressure above the boiling

pressure of the liquid. The effect of changing pressure on

such diagrams is so small that the pressure is normally not

specified.

Figure 11.14 is a phase diagram; with it for any temper-

ature and weight percent salt we may determine by inspec-

tion which phases are present. We may illustrate this

complex diagram by mentally following several paths on

it. If we begin at 0 wt% NaCl and 5�C and proceed

horizontally to the right (by adding NaCl and stirring), we

will be in the unsaturated brine (solutions of ordinary salts

are called brines) region until we reach 26 wt%. At

that point the solution becomes saturated; it can hold no

more NaCl. If we continue to add NaCl and stir, the

solid NaCl will not dissolve. If we stir hard enough it will

remain suspended in the brine; when we stop stirring it

settles to the bottomof the container. In Figure 11.14wewill

have passed into the region marked “Salt and saturated

brine,” indicating that the composition of the brine does not

change as we add more salt; only the ratio of brine to solid

salt changes.

Next we consider starting with a brine that is 5 wt% salt at

15�C, and cooling it. At ��3� we encounter the phase

boundary between “unsaturated brine” and “Ice and brine.”

At this boundary ice begins to form. This ice contains no salt

(if we proceed slowly enough so that none of the brine is

mechanically trapped in the ice). As the ice forms it removes

water from the brine, so that the salt concentration in the

remaining brine increases. Further cooling causes the tem-

perature to fall, more ice to form, and the composition of the

remaining brine to follow the phase boundary line, until we

reach �21.12�C and a salt content of 23.31 wt%. At that

temperature the solution begins to freeze, forming a eutectic,

which is a mixture of crystals of ice and dihydrate (NaCl �
2H2O). It is not a solid solution, rather it is an intimate

mixture of the two crystal types, which form simultaneously.

From the phase diagram we see that since the overall

composition is still 5 wt% salt, we will have crystals of pure

ice and crystals of the eutectic.

11.7.4 Eutectics

Most systems involving water and solid salts like NaCl have

phase diagrams like Figure 11.14, in which the liquid has

negligible solubility in the solid phases (ice or dihydrate).

That is not the case in the many technically important

metallurgical eutectics. Figure 11.15 shows the equivalent

of Figure 11.14, for the important Sn-Pb (tin-lead) system.

This figure shows no intermediate compound like

NaCl � 2H2O. It does show, as a and b, two solid solutions,

one with a little Pb dissolved in almost pure Sn and the other

with a substantial amount of Sn dissolved in Pb.No such solid

solutions occur in Figure 11.14 because the three solids on

Figure 11.14 (ice, salt, dihydrate) are crystalline solids that

do not dissolve measurable amounts of water or the other

solids. (Solubilities can never be truly zero, so if we had

suitable instruments, we could detect some very, very small

amount of water dissolved in these solids.) At the eutectic
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composition (183�C, 61.9wt% Sn) we have equilibrium

between a 61.9wt% Sn liquid, solid a (19.0wt% Sn) and

solid b (2.5wt% Sn). Industry uses a variety of solders for

special purposes; the common solder sold in your hardware

store (approximately 61.9wt% Sn), melts at 183�C, a tem-

perature easily reached by ordinary soldering irons and

propane torches. It wets and bonds easily to clean copper,

so that it is regularly used to join copper wires and copper

plumbing tubing and pipes, making joints that are good

electrical conductors and that seal well against leaks. Its

melting point is high enough that it does not appreciably

soften on hot summer days, nor with hot water flowing in the

pipes. This combination of virtues made its use practically

universal, until concerns about it transferring Pb into drinking

water led many to stop using it in drinking water plumbing.

With a goodmicroscope you can see that the solid solder is an

intimatemixture of the two different solid solutions (a andb).
Repeating the discussion of Figure 11.14, supposewe cool

a liquid that is 40 wt% Sn. When we reach about 240�C, a
solid begins to form. Unlike the pure ice that forms in the

same situation in Figure 11.14, the solid that forms here is the

a solid, with about 12%Sn, 88%Pb. Aswe continue cooling,

the liquid follows the line sloping to the right, as the solid

depletes Pb in the liquid. However the deposited solid’s tin

content increases from about 12% to about 19%. For this to

happen we must cool slowly enough for the solid already

precipitated to remain in equilibrium with the liquid, whose

Sn content is continually increasing as we cool and deposit a

solid that ismostly Pb. Finally at 183�C,we reach the eutectic
composition, with two intimately mixed solids, one with

about 2.5% Sn, the other with about 19% Sn. If we could

maintain equilibrium (difficult and slow with mixed solids)

then on continued cooling the compositions of the two solids

would change, with the a solid reaching 1.9% Sn at about

20�C, and the b solid becoming practically pure tin at about

150�C. That requires diffusion rates in solids larger than we

observe in nature, so that practically the compositions at the

eutectic are “frozen” in place.

The type of eutectic shown in Figure 11.15 is very

common in metallurgy. The Fe-C diagram that directs the

science of steelmaking has two eutectics like Figure 11.15

(a liquid and two solids) and one with three solids, and

one intermediate compound Fe3C, like the NaCl � 2H2O in

Figure 11.14. Metallurgy books are full of such diagrams.

In Section 11.3 (LLE) we used equality of the individual

species’ fugacities as our working equilibrium criterion. That

is rarely donewith solids, or with systems like those shown in

Figures 11.14 and 11.15, because the vapor pressures of most

solids are low. Ice has a substantial vapor pressure at its

melting point or slightly below (Example 8.16), but the vapor

pressure of NaCl at 0�C (extrapolated by the C-C equation

from much higher temperatures where it can be measured)

is 10�30 atm., much too low to measure. The vapor pressures

of Sn and Pb at their melting points on Figure 11.15 (extrap-

olated the same way) are 10�27 and 10�11 atm. (If we wanted

to represent the fugacity of such solids using a Raoult’s-law-

type formulation,wewould find that the pure solid had fi� 0!)

Instead, metallurgists normally think of such equilibria in

terms of Gibbs energy-composition diagrams like Fig-

ures 11.7 and 11.8. Figure 11.16 shows an example of that.

The lower right of the five figures that make up

Figure 11.16 is a generic representation of a temperature-
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composition phase diagram like the Sn-Pb on Figure 11.15.

It shows the four temperatures, (T1. . . T4) at which the

preceding four g-xb diagrams are made. On each of the

constant-temperature diagrams the three curves represent

the Gibbs energy of the a solid, the b solid and the liquid

(L). In each of these figures the compositions of the equi-

librium phases are found by drawing a line tangent to the

lowest 2 or 3 of these curves, (see the discussion of this

procedure in terms of the chemical potentials in section 6.6).

At T1 there is only one possible such tangent line; the one we

could draw between curves a and b lies above the L curve,

and thus does not represent an equilibrium situation. At T2
there are two such tangents showing the four possible equi-

librium phases at this temperature. T3 represents the eutectic,

where one line is tangent to all three curves; two solids and a

liquid are in equilibrium. At T4 the line touches only the

two solids; no liquid exists at this temperature. I hope this

short digression helps chemical engineering students

see the direct connection between our way of describing the

thermodynamics of multiphase equilibrium, and the same

phenomena as described by the metallurgists.

11.7.5 Gas Hydrates (Clathrates)

Figures 11.14 and 11.15 show the common L-S equilibrium

situation (see Section 8.10.2), in which a liquid exists at a

temperature lower than the freezing temperature of either

pure solid; we see this often in metallurgy and in aqueous

solutions of mineral salts. In a much less common G-L-S

situation, a solid called a gas hydrate can exist at a temper-

ature above the freezing temperature of both of the com-

pounds thatmake it up;most of these aremade bywater using

other (“guest”) molecules with diameters between about 4

and 7A
�
(roughly argon through n-butane) as templates to

form solid ice-like structures with internal cages that hold

the guest molecules. Several other compounds besides water

(e.g., urea) also form these cage compounds (named

clathrate from Latin words approximately meaning cage;

some are also called adducts). If the cage-former is water,

they are almost always spoken of as hydrates.

The water-NaCl dihydrate in Figure 11.14 has a simple

molecular formula and forms regular-structure crystals, as do

most such compounds. The cage-structure hydrates discussed

here do not, because the guest molecules do not bind to host

molecules in a stoichiometric way, like water and NaCl [14,

p. 313]. The S-L equilibria in Figures 11.13 and 11.14 are

practically independent of pressure. Because the G in G-L-S

has a much larger specific volume than liquids or solids, gas

hydrates phase diagrams are pressure-dependent.

Figure 1.17 shows a summary of the experimental data for

hydrate formation between water and methane [14]. This

figure is entirely analogous to Figure 1.9 for water alone,

except that the vertical scale is logarithmic because of the

range of pressures covered. In Figure 1.9 an area represents

one phase, a curve represent twophases (the two in the areas it

divides) and the point of three meeting curves represents all

three phases in equilibrium (the triple point). Figure 11.17

represents two species; the phase rule (Chapter 15) tells us

that in a figure like Figure 1.9, adding a new species increases

all of the numbers of phases by one, so that on Figure 11.17 an

area represent two phases, the curve dividing two areas

represents three phases and the point where the four

curves meet represents four phases in equilibrium (the qua-

druple point). The four phases on this figure are vapor (V),

solid hydrate (H), ice (I) a liquid that is mostly water (L).

The areas are marked on the figure. The curves, (clock-

wise from the upper right corner) represent the (V, L, H)

equilibrium, the (V, L, I) equilibrium, the (V, I, H) equilib-

rium and the (I, H, L) equilibrium. The quadruple point

represents the (V, L, I, H) equilibrium.

On this figure two of the phase boundaries have been

carefully measured, as the data points show. The two nearly-

vertical boundaries at 32�F represent the ordinary freezing

curve for water, drawn on the assumption that the small

amount of methane that dissolves in water does not influence

the shape of this curve much. At high pressures this curve

bends to the left (Problem 11.34) but over the range shown it

is practically straight and vertical.

This is one of the simplest phase diagrams for hydrate

formation, many others are more complex [14], mostly

because the hydrates have at least three different crystalline
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structures, leading to additional phases. Water is known to

form such hydrates with Ar, Kr, N2, O2, CH4, Xe, H2S, CO2,

C2H6, (CH3)2O, C3H8 and i-C4H10. In Figure 11.17 methane

is far below its Tc so that it cannot exist as a liquid. Guest

molecules like propane can exist as a liquid at hydrate

temperatures forming an additional phase, mostly liquid

propane, producing at least two quadruple points on the

phase diagram [14, p 164].

We introduce this topic and Figure 11.17 because:

1. The behavior in Figure 11.17 is quite remarkable.

Water is shown forming an ice-like solid at tempera-

tures up to 120�F. This requires pressures of

30,000 psia, which are uncommon, but at 1000 psia

(a common pressure in deep-sea ocean bottoms and in

some natural gas pipelines) the solid can exist up to

50�F. This hydrate looks like compacted snow, with a

density practically the same as ice and a methane

content of 10 to 13 wt%.When brought to atmospheric

pressure it evaporates; the methane gas emitted burns

in a typical natural gas flame [15].

2. Hydrates are a major problem for the natural gas

industry. The natural gas (and associated natural gas

liquids) come out of the ground fairly warm, but in

surface (or underwater) gathering pipes they cool

enough to form hydrates that plug up pipes and

valves at high pressure and/or low temperatures.

The defenses against them are rigorous water re-

moval, and/or addition of hydrate-preventing dilu-

ents (often glycols or methanol). The deep oceans

have temperatures and pressures in the hydrate-

forming range for methane and for its mixtures with

other natural gas liquids, which was publicly dem-

onstrated in the unsuccessful efforts to capture the

flow of the uncontrolled Macondo deep Gulf of

Mexico oil well in 2010.

3. The deep ocean bottoms and the arctic permafrost

contain buried methane hydrate. The estimated

amounts are large enough [16, 17] that some consider

the prospect of mining them to capture the methane for

fuel. Others fear that their inadvertent release would

put enoughmethane – a potent greenhouse gas - into the

atmosphere to seriously increase global warming.

11.8 THE ELEMENTARY THERMODYNAMICS

OF LSE

At every point in a phase diagram like Figure 11.14, if more

than one phase is present and we have true thermodynamic

equilibrium (systems like that in Figure 11.14 often display

metastable equilibria), we can say that the system has taken

up the statewith the lowest Gibbs energy consistent with the

external constraints and the initial state. That means that for

every individual species present the fugacity must be the

same in all of the phases at equilibrium. In Table 11.5 and

Figures 11.13 and 11.14 the pressure was not specified. As

long as it is greater than the system’s vapor pressure and less

than hundreds or thousands of atmospheres, it has practi-

cally no effect on the values shown. We normally observe

these systems at 1 atm in contact with air. That means that

there will be some oxygen, nitrogen, CO2, and so forth

dissolved in the liquids. Those dissolved amounts are

normally small enough (see Chapter 3) that they make no

measurable change in the values shown. If we have one of

our many piston-and-cylinder devices containing salt and

water, at any point in Figure 11.14, and we use a vacuum

pump to remove all the air, then the remaining vapor will be

practically pure water at the equilibrium vapor pressure of

the phase or phases in the container. At these temperatures

salt (melting point 801�C, boiling point 1413�C) has a

negligible vapor pressure, so the vapor will be practically

pure water.

Equation 11.1, which we applied to LLE, applies to any

phase equilibrium, so it must apply to LSE, with phase 1

being the liquid and phase 2 being the solid. Substituting the

definition of the fugacity in terms of the standard state

fugacity and solving for the mol fraction of dissolved solid,

we find

x
ð1Þ
i ¼ x

ð2Þ
1 g

ð2Þ
i f

ð2Þ�
i

g
ð1Þ
i f

ð1Þ�
i

ð11:9Þ

which is also true for any two-phase equilibrium. In LLE we

made the Raoult’s law type of standard state definition,

f
ð1Þ�
i ¼ pi for each species in each phase, which allowed us

to cancel the two standard state values to find Eq. 11.3. Here

we can certainly do that for the pure solid phase (if we have

some reasonable way of estimating its vapor pressure), but

what arewe to use for the standard state of the dissolved solid

in the liquid phase?We immediately think we should use the

same standard state in both phases, which worked well for

LLE. However, in VLE (Chapter 8) we saw that when the

phases were of different types we normally had to choose

different standard states for each phase, such as Raoult’s law

and Henry’s law. Here a plausible guess for a standard state

for the solid dissolved in the liquid is the vapor pressure that

the solid would have if it existed as a subcooled liquid below

the triple point (Figure 5.7). This is a guess, to be tested for

usefulness, not a piece of rigorous thermodynamics.

If we make that guess, we can also assert that for the pure

solid phase x
ð2Þ
i g

ð2Þ
i ¼ 1; so Eq. 11.9 becomes

x
ð1Þ
i ¼ pi; solid phase

g
ð1Þ
i pi; subcooled liquid

ð11:10Þ

At the triple point pi; solid phase ¼ pi; liquid: If we then assume

that we are dealingwith low pressures (the vapor pressures of

most substances at the triple point are quite low) we may
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represent each of these vapor pressures by the Clausius–

Clapyron equation (Eq. 5.10)

ln
pi; solid phase

pi; solid phase triple pointT

� �
¼ Dhsolid to vapor

R
� 1

Ttriple point

� 1

T

� �

ð11:11Þ

and an almost identical equation for the liquid, with

Dhsolid to vapor replaced by Dhliquid to vapor: We then subtract

this second equation from Eq. 11.11 and rearrange to

ln
pi; solid phase

pi; subcooled liquid

� �
¼ Dhsolid to liquid

R
:

1

Ttriple point

� 1

T

� �

ð11:12Þ

We then take the ln of Eq 11.10, rearrange, and substitute

Eq. 11.12, finding

lnðxð1Þi g
ð1Þ
i Þ ¼ ln

pi; solid phase

pi; subcooled liquid

� �

¼ Dhsolid to liquid

R
� 1

Ttriple point

� 1

T

� �
ð11:13Þ

Melting-point data are much more widely available than

triple-point data, and for most substances the 1-atm melting-

point temperature� the triple-point temperature, so it is

common to substitute Tmelting for Ttriple point in Eq. 11.13,

and also to multiply both sides by minus 1, finding

ln
1

x
ð1Þ
i g

ð1Þ
i

 !
¼ ln

pi; subcooled liquid

pi; solid phase

� �

¼ Dhsolid to liquid

R
� 1

T
� 1

Tmelting point

� �
ð11:14Þ

or

ln
1

x
ð1Þ
i g

ð1Þ
i

 !
¼ ln

pi; subcooled liquid

pi; solid phase

� �

¼ Dhsolid to liquid

RTmelting point

� Tmelting point

T
�1

� �
ð11:15Þ

Equation 11.14 has the Clausius–Clapyron assumptions built

into it; the more complex version without those assumptions

is in [18, p. 640] (See Problem 11.36).

If we further assume that the dissolved solid forms an ideal

solution in the solvent, we may drop the g
ð1Þ
i from Eq. 11.15,

and find an “ideal solubility curve.” If this long and

somewhat speculative derivation is correct, then if we had

a family of compounds (e.g., aromatic compounds that are

solid at room temperature), we would expect them to form

ideal solutions in benzene. If they had equal values of

Dhsolid to liquid=Tmelting point ¼ Dsfusion at melting point; then we

could calculate such an ideal solubility curve for all of them

on ln x
ð1Þ
i vs:ðTmelting point=TÞ coordinates. Figure 11.18

shows such a plot. The ideal solubility curve is calculated

on the assumption that for all aromatics that melt somewhat

above room temperature,Dsfusion at melting point ¼ 54:5 J=mol K.

The comparison with the experimental data is very good,

indicating that, at least for this particularly simple solubility

problem, Eq. 11.14 is a very good approximation.

If we wish to extend this idea to nonideal solutions, we

must retain the g
ð1Þ
i in Eq. l1.15. We may test this idea by

dissolving the aromatic compounds in Figure 11.18 in a

nonaromatic solvent, in which they would be expected

to show g
ð1Þ
i > 1:00. Figure 11.19 shows a similar plot

for the solubilities of these same aromatic compounds in

nonaromatic CCl4. The “ideal solubility curve” is the same as

that in Figure 11.18: From Figure 11.19 we see that the

solubilities in CCl4 are less than those in benzene.

Example 11.12 Estimate the activity coefficients at x2 ¼
0.1 for the aromatic solutes in Figures 11.18 and 11.19.

Those figures do not indicate a constant activity coefficient

independent of temperature or solubility; that would require

parallel lines on the figure. The two lines meeting in the upper

left corner indicate an activity coefficient of 1.00 at the

melting point and activity coefficients that increase with

0.1
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FIGURE11.18 Solubility of aromatic solids in benzene [19]. The

solid line is a best linear fit of the experimental data. The compounds

listed from B to J in the figure are pyrene, fluorene, fluoranthene,

biphenyl, acenaphthene, phenanthrene, o-terphenyl, m-terphenyl,

and anthracene. The authors also show tabular solubility values for

triphenylene, p-terphenyl, and 1,3,5-triphenyl benzene, which are

not shown in the above plot (or the plot in the original article). Those

values differ from the data fit line by up to a factor of 3. The authors

cite the fact that these three compounds have fusion temperatures

much higher than those of the compounds shown as the probable

reason for this disagreement.
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increasing separation from the melting point. (Remember

from Chapter 9 that for type II behavior, the activity coeffi-

cients increase as the concentration decreases. That behavior

is shown here.) From the definitions we can write that

g
ð1Þ
i ¼

x
ð1Þ
i

� �
ideal solution

x
ð1Þ
i

2
4

3
5
T

ð11:16Þ

FromFigures 11.18 and 11.19 (or the equations of the lines on

those figures, presented in [18]) we can compute the values

in Table 11.6.

We see that at xsolute¼ 10% the average of these com-

pounds has gi¼ 1.14 in benzene, corresponding to practi-

cally ideal solution and gi¼ 1.52 in CCl4, corresponding to

mild type II behavior (see Section 8.4.2). &

Example 11.13 Estimate the solubility of NaCl in water at

20�C, based on Eq. 11.15.

Ignoring for themoment thewild extrapolation involved,

we simply insert the appropriate values, Tm� 800�C,
Dhfusion¼ 517.1 J/g¼ 30,219 J/mol [21. p. 359], and find

ln
1

x
ð1Þ
i g

ð1Þ
i

 !
¼

30; 219
J

mol

8:314
J

mol K
� 297�15K

:
1073:15 K

297:15 K
�1

� �

¼ 8:845 ð11:WÞ
and

x
ðacueous solutionÞ
NaCl g

ð1Þ
i ¼ 1

exp 8:845
¼ 0:000;144 ð11:XÞ

If we make the plausible (??) assumption that g
ð1Þ
i ¼ 1.00,

then x
ðaqueous solutionÞ
NaCl ¼ 0.000144, which is clearly very far

wrong. FromExample 11.10we know that the experimental

value is 0.10. &

What does thismean? First, observe that this simple theory

of solubility uses no information about the solvent. The

above theoretical calculation is for any solvent. If the solute

(NaCl in this case) does not interact with the solvent, then this

may be a fair estimate. The reported solubility of NaCl in

ethanol at 25�C is 0.00025mol fraction, 1.7 times the value

calculated above. If wewanted to know the solubility ofNaCl

in gasoline or diesel fuel, withwhich it would not be expected

to interact much, the 0.00014mol fraction computed in

Example 11.13 would be a fair estimate. However, we know

that water and NaCl interact strongly. The salt ionizes, the

ions solvate with the water molecules. We may think of their

interaction as a strong example of type III (Section 8.4.3)

with a calculated activity coefficient of 0.000,14. All of the

salts that dissolve to high concentrations in water are similar

to NaCl in this behavior.

The other class of materials that dissolve in water to

substantial degrees, well below their melting points, are

carbohydrates like sucrose. They have multiple –OH groups

exposed to water, with which they form hydrogen bonds.

The above type of calculation for the solubility of sucrose in

some nonhydrogen-bonding solvent would give a fair esti-

mate, but would not give a reasonable estimate for any

solvent, like water, in which sucrose forms hydrogen bonds.

At the end of this discussion of LSE we see that if the solute

(solid) species does not form quasi-chemical bonds (ioniza-

tion, solvation, hydrogen bonding) with the solvent, then the

simple theory advanced above has some predictive power. It

predicts that the solubility falls as exp(Tmelting/T), and allows

an estimate of the numerical relationship. For solutes that do

form quasi-chemical bonds with the solvent, we need ex-

perimental data, molecular-interaction theory, or both.

11.9 GAS–SOLID EQUILIBRIUM (GSE)

AT LOW PRESSURES

The simplest gas–solid equilibrium is that between a the solid

and gas of a pure species, such as the gas-solid curve forwater

Table 11.6 Values for Example 11.12

Figure 11.18,

Solutions in

Benzene

Figure 11.19,

Solutions

in CCl4

Tm=T at which log xexperimental¼�1 1.332 1.288

xideal at that value of Tm=T 0.114 0.152

g ð1Þi ¼
x
ð1Þ
i

� �
ideal solution

x
ð1Þ
i

2
4

3
5
T

1.14 1.52

0.1

Ideal solubility
curve

Data best fit lineM
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FIGURE 11.19 Solubility of aromatic solids in carbon tetrachlo-

ride [20]. The solid line is a best linear fit of the experimental data.

The symbols represent the same compounds as in Figure 11.18.
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vapor and ice in Figure 1.9. This curve is also a vapor-

pressure curve, although we most often see that term applied

to VLE, not GSE. For a pure species, GSE and VLE are

practical identical, except that the highest point on a pure-

species VLE curve is the critical point and on a GSE curve it

is the triple point. If the fugacity of the solid is greater than

that in the surrounding gas, then the solid at the surface

evaporates or sublimes into the gas, and if the fugacity of the

solid is less, then the gas either crystallizes onto the solid

surface or condenses onto it as an amorphous solid. For gas

mixtures at low pressures we can treat the gas phase in GSE

the same way we did in Chapter 8, assuming most often that

the gas is an ideal solution of ideal gases, or, if the pressures

are too high for that, assuming that it is adequately described

by the L-R rule.

Example 11.14 Solid water (ice) is in equilibrium with air

at 1 atm and 30�F. What is the equilibrium concentration of

water vapor in the air?

This is practically the same problem we addressed in

Example 3.1. Thevapor pressure of ice at 30�F is 0.0808 psia.
As in that problem we may assume that the solubility of

nitrogen and oxygen in solid ice is negligible, and thus use

Raoult’s law, finding

ywater vapor ¼ xwater in ice pice

P
¼ 1:00 � 0:0808 psia

14:7 psia

¼ 0:0055 & ð11:YÞ

We are not used to thinking about the vapor pressure of ice,

but Figure 1.9 clearly shows that it has one, whose value we

can look up in the steam tables. Residents of cold climates

know that ice disappears slowly from our streets (and our

laundry ifwe hang it out to dry frozen) even if the temperature

never goes above freezing. This example shows why; the

atmospheric air in cold climates rarely contains this much

water vapor, so the ice vaporizes into it. If we were to repeat

all the parts of Examples 3.1–3.3., we would find that, as in

that example, the solubility of nitrogen and oxygen in the ice

would not change our answer significantly.

The inverse of this example is vapor deposition. If

we place a cool object in a space in which the vapor’s

pressure is higher than the vapor pressure of pure solid at

the temperature of the cool object, then the vapor will

condense on the cool object. Many variants of this process

are used in the production of computer chips. (Some are

simple physical deposition as described here; others are

chemical vapor deposition in which the vapor reacts chem-

ically with the surface.)

The vapor pressure data for solids is often shown incon-

spicuously in handbooks. For example, in the vapor pressure

tables in [12, p. 2.58] the values for elemental iodine

are shown as a row in the table (see Table 11.A). From

the value in the rightmost column we see that the four

rightmost values are the vapor pressure of pure liquid iodine

(above the melting point) and the five leftmost values are the

vapor pressures of pure solid iodine.

11.10 GSE AT HIGH PRESSURES

As with VLE, increasing the pressure does not change

the properties of the solid very much (see Example 7.3), but

it does change the properties of the gas. As we saw in

Chapter 10, for gas pressures above the critical pressure and

temperatures close to the critical temperature, the gaseous

material (often called a “dense fluid” because its properties

are different from those we expect from a gas) can become a

good solvent for solids and liquids (see Example 10.3).

Figure 11.20, shows a dramatic example of this effect.

Table 11.A Vapor Pressure of Elemental Iodine [12, p. 2.58]

Pressure, mm Hg Melting Point �C

1 5 10 20 40 60 100 200 400 760

Temperature, �C
38.7 62.2 73.2 84.7 97.5 105.4 116.5 137.3 159.8 183.0 112.9

0.1

Raoult’s law times
Poynting factor

Raoult’s law

0.01

Pressure, P , atm

0.001
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FIGURE11.20 Themeasuredmol fraction of naphthalene inCO2

at 35�C as a function of pressure, compared to Raoult’s law, and

Raoult’s law times the Poynting factor. Observe that the scales are

different; if the same scale had been used on both axes the Raoult’s

law line would have a slope of�1. The circles are the experimental

data of [22].
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Example 11.15 Estimate the solubility of naphthalene in

CO2 at 35
�C and 100 atm, by Raoult’s law and by Raoult’s

law times the Poynting correction factor.

The calculated vapor pressure of naphthalene at 35�C is

0.000,65 atm. The solid is practically pure naphthalene, so

substituting the appropriate values in Eq. 11.Y, we find the

calculated ynaphthalene by Raoult’s law is 6.5� 10�6. At

this high a pressure the volume of solid naphthalene is

� 132 cm3/mol, so that, from Eq. 7.N,

f oi; 100 atm

f oi; 1 atm

¼ exp
132

cm3

mol
� ð100�1Þ atm

82:06
cm3 atm

mol K
� 308:15 K

¼ 1:68 ð11:ZÞ

and the estimated ynaphthalene¼ 6.5� 10�6 � 1.68¼
10.9� 10�6. &

These are the values plotted in Figure 11.20. From the

same figure we read the experimental value as� 001, which

is � l500 times the Raoult’s law value and �915 times the

value from Raoult’s law times the Poynting correction.

(This latter ratio is often called the enhancement factor

for GSE. It shows how much the solubility is increased by

the nonideal gas behavior of the solvent.) What are we to

make of this huge difference between the experimental

values and what we would compute from Example

11.15? At this high a pressure the Poynting factor is

significant, but it is only a factor of 1.68, while the solubility

is �915 times what we would expect. The reason is that in

this situation the gas phase is not behaving as a gas at all, but

as a dense fluid. The critical temperature and pressure of

CO2 are 304.2 K and 72.9 atm, so at this T and P, the CO2 is

clearly not a gas. The measured density of “gaseous” CO2

is �0.73 g/cm3, comparable to that of liquid gasoline at

room temperature.

We may also look back to Figures 11.18 and 11.19,

observe that for naphthalene the 1-atm melting point is

353.5K, so that

Tm

T
¼ 353:5

308:15
¼ 1:147 ð11:AAÞ

From Figure 11.18 at this value of Tm/T we read log x2�
�0.42, orx2� 0.38. Thus, the solubility of naphthalene in the

dense CO2 in Example 11.15 is about 0.01/0.38� 3% of its

solubility in benzene at the same temperature. Compared to

benzene, dense fluid CO2 is not a very good solvent, but

compared to an ideal gas at the same T and P it is an

amazingly good solvent. This solvent power has led to its

use, and that of other gases at comparable Tr and Pr, for

supercritical extraction [7, p. 641]. Remarkable results are

often obtained, but the high pressures used make the pro-

cesses expensive.

11.11 GAS–SOLID ADSORPTION, VAPOR–SOLID
ADSORPTION

So far we have dealt with well-defined, intuitively obvious

phases: gas, liquid solid. But chemical engineers deal with

other, less intuitive phases of considerable technical interest

and economic importance, for example gases and vapors

adsorbed onto solids. Figure 11.21 shows, as an example

the equilibrium curve (always called an “adsorption

isotherm” or “isotherm” in the adsorption literature) for

nitrogen adsorbed on zeolite at a temperature well below

room temperature, but far above the critical temperature of

nitrogen (126.2 K).

Such data are measured in the apparatus shown schemat-

ically in Figure 11.22. About a gram of adsorbent it placed on

the sample hanger of an electronicmicrobalance and inserted

in a closed container, surrounded by a constant temperature

bath. The sample container is evacuated, and then the gas

(or vapor) to be adsorbed is admitted. The pressure and the

mass adsorbed are recorded, and then the pressure is changed,

producing data points like those in Figure 11.21. The

amounts adsorbed are small enough that the standard

measure of amount adsorbed is (0.001mol adsorbed)/(g of

adsorbent)¼mmol/g. Measurements are often made going

up in pressure and then down, to be sure that equilibriumwas

truly reached. The experimental details are more complex

than this simple sketch shows. The electronic microbalance

as made this measurement much easier than it was with older

volumetric methods.

Points are experimental data
Curve is a Langmuir curve,
described below
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FIGURE 11.21 Experimental measurements of the adsorption of

nitrogen on solid zeolite at 172.04K [23]. The curve is a best fit of

Langmuir’s absorption equation, described below.
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From Figure 11.21 we see that

1. The curve, based on Langmuir’s absorption equation

discussed below, is only a fair fit of the data.

2. At the atmospheric pressure (101.3 kPa) the adsorbed

amount is 3.2mmol/g� 0.09 g adsorbed/g of adsorbent.

This is certainly measurable, but not overwhelming.

3. The same source shows this zeolite has an estimated

surface area (mostly internal surface) of 672m2/g.

Based on this value, at one atmosphere the adsorbed

amount is ¼ 0.00013 g/m2. Thus, the surface of an

ordinary desk (about 2m2) would have about

0.00026 g of adsorbed nitrogen (facing pure nitrogen,

not air). This is certainly a small enough value that we

have not made serious errors by ignoring gases ad-

sorbed on surfaces in the previous parts of this book.

4. The same source shows that the amount absorbed (at

constant pressure) decreases with increasing temper-

ature, falling by about a factor of 7 in going from

�101�C to 0�C. The curve for a higher temperature

would lie below and to the right of the curve shown on

Figure 11.21.

5. At this point you are certainly wondering why we

bother with this small an effect. The surface area of

adsorbent materials like the zeolite in this example is

truly remarkable. A gram of this material is about a

cubic centimeter, the size of a standard sugar cube. Its

surface area is about 1/8 that of a football field! The

large internal surface area of industrial (and laboratory)

adsorbents makes this small amount adsorbed per unit

area significant.

6. The curve shown is truly an equilibrium curve. One

can increase or decrease the pressure (at constant T )

and find the same amount adsorbed at any pressure

(but see below!). It closely resembles Figure 3.9, but

with the axes interchanged. (Adsorption isotherms are

always plotted with adsorbed amount – concentration

– on the vertical axis and pressure on the horizontal.

VLE curves almost always have the concentration

variable – most often mol fraction – on the horizontal

axis and P or T on the vertical axis.) Making the

conceptual interchange of the axes, we see that the

curve in this figure is like Figure 3.9 with the differ-

ence that instead of mol fraction of nitrogen dissolved

in water we have its adsorbed concentration in

mmol/g of adsorbent. This similarity leads writers

on adsorption to refer to the low-pressure part of the

Figure 11.21 as the “Henry’s law region,” directly

analogous to Figure 3.9.

7. This similaritywould lead us to believe that this is some

kind of a VLE curve, with the adsorbed nitrogen on the

solid surface behaving as if it were a liquid. This is an

intuitively satisfying idea; it is supported by the fact

that when such an adsorption occurs there is always a

heat release, generally of the order of the heat of

condensation (the heat release on converting from

vapor to liquid). However the temperature here is well

above the critical temperature of nitrogen, so that liquid

nitrogen cannot exist at this temperature. For tempera-

tures below the critical temperature (discussed below)

this works better. Tomaintain this intuitively satisfying

idea, we must consider nitrogen-adsorbed-on-zeolite

as a kind of liquid, in some ways similar to ordinary

liquid, but different. Its “apparent vapor pressure”

depends not only on the temperature (as an ordinary

liquid’s would) but also on the amount adsorbed,

which is quite different from the behavior of an

ordinary liquid.

8. If the whole adsorbing surface were the same, then

we would expect the isotherm to be vertical; once the

pressure for adsorption were reached, the pressure

would continue constant until the surface was cov-

ered. The shape of the curve (and supporting theory)

suggests that instead of a simple, uniform plane, the

surface is irregular, with some sites having much

more attraction for the gas molecules than others. As

we introduce gas or vapor to be adsorbed the mole-

cules attach first to the most attractive sites, then as

those are taken up it requires more pressure to attach

a molecule to the next most attractive site, and so on

leading to the shape of the curve shown. Heat of

condensation data (discussed below) strongly sup-

port this idea.

11.11.1 Langmuir’s Adsorption Theory

Langmuir’s adsorption theory, like the EOS of van der

Walls, was one of the first to set out a scientific model for

describing gas adsorption on a solid. Like the vdWEOS it is

TO ELECTRONIC
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TEMPERATURE  BATH

ADSORBENT
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VACUUM SYSTEM
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FIGURE 11.22 Simplified schematic of a device for measuring

gas-solid or vapor-solid adsorption.
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not very good at predicting or correlating experimental data.

Compare the curve and the data in Figure 11.21; that is about

as good as it ever gets, and this data set was chosen because

it gives a better-than-average fit to the Langmuir equation.

Also like the vdW EOS, Langmuir’s theory has had a

profound effect on all subsequent work in the field. Much

of subsequent work builds on it. It is simple, intuitively

satisfying, and helps us form a mental picture of gas–solid

and vapor–solid adsorption, with the knowledge that this

picture is a gross simplification of a complex reality and

the resulting equation is only a fair representation of

experimental data.

Langmuir’s equation [24] is regularly derived in a variety

of ways, of which the most intuitive is based on chemical

equilibrium (Chapter 12) rather than phase equilibrium. He

originally based it only on the external surface of crystalline

solids, not on the internal surface of the pores in crystalline or

amorphous solids – by far the most industrially important

adsorption application; it is most often applied to these

internal surfaces. The discussion here is a significant simpli-

fication of that he presented. He assumed that at equilibrium

the rates of adsorption and desorption were equal and that

rate of

adsorption

� �
¼ pressure �

area available
for a molecule
to adsorb onto

 ! 
adsorption
rate
constant

!

¼ PAavailableKforward

¼ PAtotal

fraction
unoccupied

� �
kforward ð11:17Þ

and

rate of
desorption

� �
¼ area covered with

adsorbed molecules

� �
� desorption

rate constant

� �

¼ Aoccupiedkreverse ¼ Atotal
fraction of
area occupied

� �
kreverse ð11:18Þ

Setting these equal, letting the fraction of the area occupied be

u and the fraction unoccupied be (1�u) we find

PkforwardAtotal 1�uð Þ ¼ Atotalukreverse ð11:19Þ

which simplifies to

P
kforward

kreverse
¼ u

ð1�uÞ or Pb ¼ u

ð1�uÞ where b ¼ kforward

kreverse

� �

or u ¼ Pb

ð1þPbÞ ð11:20Þ

We have no direct measurement of u, so we assume that

there is some number of mols of absorbate (nmax) that

corresponds to covering the whole surface with an adsorbed

layer one molecule thick – a monolayer – and thus that u
¼ nadsorbed/nmax. In Figure 11.21 the vertical axis is nadsorbed;

the asymptotic value of the curve if we extended the pressure

to infinity would presumably be nmax. We will see below

other ways to estimate that value. Substituting this value of u
and multiplying out we find

nadsorbed

nmax

þ nadsorbed

nmax

Pb ¼ Pb or
P

nadsorbed
¼ 1

bnmax

þ P

nmax

ð11:21Þ

This suggests that if we plot P/nadsorbed vs P the plot should

be linear and we should be able to determine nmax and b from

the slope and intercept. Figure 11.23 shows the data in

Figure 11.21 replotted this way.

slope ¼ 1

nmax

¼ 0:2372
kPa=ðmmol=gÞ

kPa
;

nmax ¼ 1

0:2372
¼ 4:216

mmol

g
ð11:ABÞ

intercept ¼ 1

bnmax

: b ¼ 1

4:216
mmol

g
� 6:33 k Pa

mmol=g

¼ 0:0375
1

kPa
ð11:ACÞ

70

60

50

40

Slope = 0.2372
mmol/g

1

P
/n

ad
so

rb
ed

 k
Pa

/ (
m

m
ol

/g
)

30

20

10

Pressure, P, kPa

0
0                 50             100             150            200                          300

Intercept = 6.33
mmol/g

kPa

FIGURE 11.23 The same data as shown in Figure 11.21, on the

coordinates suggested by Eq. 11.21. The curve on Figure 11.21 is

the same as the line on this figure, with the coordinates

transformed.
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The best fit of Eq. 11.21 to the data on these two figures is

nabsorbed ¼ 4:216
mmol

g
�

0:375

kPa
P

1þ 0:0375

kPa
P

� � ð11:ADÞ

11.11.2 Vapor-solid Adsorption, BET Theory

If we choose a temperature below the critical temperature of

the gas adsorbed, (thus creating a vapor-solid situation), the

results are different from (and technically more interesting)

than the simpler gas-solid case. Figure 11.24 shows a sample

of that case, again nitrogen, but on a different adsorbent

(silica gel), at 77K, nitrogen’s normal boiling point.

From this figure we see that

1. The true curve must pass through the origin, so the

leftmost part of the curve cannot be completely

correct. I have drawn it theway it appears in the original

papers.

2. The pressures shown in atmospheres (not kPa as in

Figure 11.21) are lower than in that figure; 0.6 atm

� 62 kPa. Because this plot is at the NBP of nitrogen,

the pressure (in atm.) is equal to P/P0, the ratio of the

actual vapor pressure to the boiling pressure at this

temperature.Many plots of this type chooseP/P0 as the

horizontal axis, to facilitate comparison with adsorp-

tion isotherms of other gases with different NBPs.

3. The original data source shows that this material has

a calculated surface area of 595m2/g. Using that value

and the calculated area of a single nitrogenmolecule on

a surface (at the NBP, see Problem 11.41) we compute

that about 6mmol/g should cover the surface with a

monolayer of adsorbed nitrogen, (at about P/P0�
0.15). The part of the curve to the left of this value,

with less than a monolayer has the same curvature as

Figure 11.21 (and the Langmuir theory) but to the right

of P/P0� 0.30, (about 1.3 monolayers) the experimen-

tal data curves upward to the right, the opposite of the

curvature in Figure 11.21.

4. At any of the pressures shown on this figure, pure liquid

nitrogen cannot exist at equilibrium; itwould evaporate.

So the adsorbed layer is not simply liquid nitrogen.

The common, and intuitively satisfying explanation is

that the molecules of the solid surface attract nitrogen

molecules more strongly than molecules in an ordinary

liquid do. In this case we would say that the fugacity of

this first layer is about 0.15 asmuch as it would have if it

were the surface layer of a pool of liquid nitrogen at this

temperature. The second layer of molecules should not

be held on as strongly as the first, but apparently are

held onmore strongly than they would be as the surface

layer of a pool of liquid. At 12mmol/g, from the

observed P/P0� 0.5 we would infer that the fugacity

of the surface layer of the adsorbedfilmwas about 0.5 as

much as in such a pool of liquid.

5. The above explanation is simple and intuitively satis-

fying, but is certainly a great simplification of what

nature is really doing.

Faced with this type of adsorption, Brunauer, Emmett and

Teller (BET) [26] worked out the mathematics of multiple

layers of adsorbed molecules, subject to some simplifying

assumptions, including that there were multiple one-mole-

cule-thick layers, and that each layer covers a smaller part of

the surface than the one below it. Their resulting equation

(rewritten to use the notation in this chapter) is

nadsorbed

nmonolayer

¼ bðP=P0Þ
ð1�P=P0Þ � 1þðb�1Þ � ðP=P0Þ½ � ð11:22Þ

which contains the terms in Eq. 11.20, with some others.

There seems to be no simple derivation for Eq. 11.22, as

there is for Eq. 11.20, Like that equation, this one can be

rewritten

P

nadsorbedðP0�PÞ ¼
1

bnmonolayer

þ ðbþ 1Þ
bnmonolayer

� P

P0

ð11:23Þ

showing that a plot of P=nadsorbedðP0�PÞ vs P=P0 should

produce a straight line, from whose slope and intercept we

should be able to determine b and nmonolayer. If one plots all

Points are experimental data
Curve is a simple smooth
curve through the data
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FIGURE 11.24 Experimental measurements of the adsorption of

nitrogen on solid silica gel at 77K, the NBP of nitrogen [25]. The

curve is a simple smooth interpolation.
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the data points shown in Figure 11.24 that way and draws the

best-fit straight line, one finds that the intercept is negative,

leading to the embarrassing conclusion that either b or

nmonolayer must be negative! (See Problem 11.44).

Faced with this annoying disagreement with their theory,

BET pointed out that if one restricted oneself to data points

with P/P0 less than 0.35 the data points formed a well-

behaved straight line with a positive intercept. Figure 11.25

shows such a plot of the data in Figure 11.24, showing only

points for P/P0 less than 0.37.

Example 11.16 Using Figure 11.25 estimate the surface

area (m2/g) for the solid adsorbent in that example. By

rearranging Eq. 11.23 (See Problem 11.42) we find that

nmonolayer ¼ 1/(slope þ intercept) ¼ (mmol/g)/(0.1749 þ
0.00099)¼ 5.685mmol/g. Using Avogadro’s number we

find that this is 3.52 � 1021molecules/monolayer. Then

assigning each of those molecules a surface area of

16.2 (A
�
)2. (See Problem 11.41 and Table 1 of [27]) we find

a surface area of 571m2/g. The authors of the data report

595m2/g. Given the fact that the data points for figures 11.24

and 11.25were obtained bymeasuring off a graph in [25], this

is excellent agreement! &

The calculation in this example, based on measured

adsorption of nitrogen at its NBP, is the standard “BET

Method” of determining surface area of porous solids. If

the BET theory were perfect then the areas determined for

a single solid would be independent of which gas were

used. Alas, the values are similar but not identical; the

users have agreed to accept the surface areas values based

on nitrogen at its boiling point as industry standard.

Instrument companies sell equipment specifically designed

for this measurement. From this discussion it should be

clear that

1. The BET method builds on and extends Langmuir’s

theory.

2. Its applicability to only P/P0 less than 0.35 shows that

although it is based on multiple-layer adsorption, it is

only reliable to adsorption values less than a few

complete monolayers.

3. The BET theory, involving the possibility of multi-

molecular layers, must be closer to physical reality

for vapors below their critical temperatures than

the single-layer Langmuir theory. However it gains

scientific credibility at the expense of loss of intuitive

content.

11.11.3 Adsorption from Mixtures

The Langmuir and BET models described above apply to

adsorption of pure gases and vapors on solid surfaces.

Industrially we are much more interested in adsorption

of one or more components of a mixture onto such a

surface. The typical example is the facemask worn by

painters to prevent inhalation of the evaporating solvent from

the paint they spray or brush onto a surface. The concentra-

tion of the evaporated solvent in the air must be less than the

vapor pressure of the solvent in the paint, or it would not

evaporate. The facemask normally has throwaway canisters

filled with charcoal adsorbent, whose behavior with the

evaporated solvent is like the nitrogen-silica gel system in

Figure 11.24. In this case instead of total pressure on the

horizontal axis we would place partial pressure, typically

less than 0.01 atm, far to the left on Figure 11.24. Here

the purpose is not separation but capture. For larger-scale

applications the throwaway cartridges are replaced with

adsorbent beds, which are regenerated (desorbing the

adsorbed material) by raising the temperature, or lowering

the pressure, or flowing air or another gas through the filter.

The latter approach is used in the carbon canister that

adsorbs the evaporative emissions from the fuel tanks on all

modern autos.

In the above cases adsorption was used to separate

mixed hydrocarbon vapors from air, without influencing

the distribution among the various hydrocarbon species in

those mixtures. That separation is easy because the NBPs

of all the hydrocarbons in gasoline or paint solvents are far

above those of air. If the NBPs of the species in a mixed

vapor are close to each other, adsorption can be used

to separate one from the other. Figure 11.26 shows two

equilibrium curves. The one with the circles is a simple

curve fit of the experimental data for the adsorption of an
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Point are experimental data

Slope = 0.1749 / (mmol/g)

Intercept = 0.00099 / (mmol/g)

Curve is a best-fit straight
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FIGURE 11.25 The data in Figure 11.24, replotted on the co-

ordinates suggested by Eq. 11.23, omitting the two highest-pressure

data points.
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ethane-propane mixture on activated carbon. The other is a

simple VLE curve for the same mixture, calculated from

Raoult’s law.

Comparing the two curves in this figure we see

1. The composition of the adsorbed phase (xethane and

(xpropane¼ 1�xethane)) depends on the composition

of the vapor (yethane, and (ypropane¼ 1� yethane)) pretty

much as it would if this were a vapor-liquid example.

In both cases at equilibrium the individual fugacities of

each species must be equal in the two equilibrium

phases. This data suggests that the ratio [(fugacity of

ethane)/(fugacity of propane)] in the adsorbed phase

must be quite similar to that in an ordinary, ideal

solution liquid containing ethane and propane at the

same concentration.

2. Experimental data not shown here [28] indicate that the

same is true even for quite nonideal solutions, with

some adjustments of activity coefficients.

3. For the VLE example we can specify only two of the

three variables (T, P, and one mol fraction in one of the

phases) then all the others are fixed. For the adsorption

example we can specify three from this list. This is

discussed as a phase-rule problem in Chapter 15.

In addition to the adsorptive separation based on the

different fugacities of the adsorbed species shown in Fig-

ure 11.26 separations are made industrially based on syn-

thetic zeolites (“molecular sieves”) whose pore openings are

chosen so that the smallest members of the mixture can enter

and larger ones cannot. The separation here is more physical

(like a sieve with holes about equal to the size of the smaller

molecules) than thermodynamic (like VLE).

11.11.4 Heat of Adsorption

The Clapeyron equation (Eq. 5.5) applies to equilibrium

between any two phases of a pure substance. If we wish to

apply it to the adsorbed phase and the gas or vapor in

equilibrium with it, we see that because the vapor pressure

of the adsorbed phase depends not only on the temperature but

also on the amount adsorbed per mass of adsorbent, we must

specify the amount adsorbed as well. Thus, for equilibrium

between the adsorbed phase and gas or vapor, Eq. 5.5 becomes

qP
qT

� �
nadsorbed

¼ Dh
TDv

ð11:24Þ

For the low pressures normally involved in adsorption, the

Clausius-Clapeyron simplifications (Eqs. 5.8, 5.9, and 5.10)
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FIGURE 11.26 Comparison of experimental adsorption equilibrium data for an ethane-propane

mix ([23] p. 242), with the calculated VLE data for ethane-propane, according to Raoult’s law, both at

293.15K. The adsorption data are all at P¼ 1 atm, while the calculated VLE is at a pressure varying

from 38 atm (pure ethane) to 8 atm (pure propane).
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seem reasonable, so that we have

ln
P2

P1

¼ Dhaverage
R

� 1

T1
� 1

T2

� �� �
nadsorbed

ð11:25Þ

Where Dhaverage is the average heat of adsorption over the

temperature range (assumed to be a constant in the integration

leading to Eq. 5.10.)

Example 11.17 The source of the data in Figure 11.24 also

reports the isotherm for 90.15K, from which we find that at

nadsorbed¼ 6mmol/g the pressure is 0.566 atm while for

77.2Kwe read the table leading to Figure 11.24 as 0.118 atm

at the same amount adsorbed. Substituting these values in

Eq. 11.25, we find

ln
0:566 atm

0:118 atm
¼ Dhaverage

R
� 1

77:2K
� 1

90:15K

� �� �
nadsorbed

ð11:AEÞ
Dhaverage ¼ R

1:556

0:001875=K
¼ 835 K �R ¼ 1659

cal

mol

¼ 2986
Btu

lbmol
¼ 106:7

Btu

lbm
& ð11:AFÞ

This is somewhat larger than the 85Btu/lbm at the average

of the two temperatures for simpleVLE, [29]. If we repeat this

calculation at nadsorbed¼ 4.5mmol/g we find DHaverage¼ 131

Btu/lbm. These twovalues illustrate the common observation

that heats of adsorption are somewhat larger than heats of

condensation, and that they are larger at low values of nadsorbed
than at higher ones. The explanation normally given is that at

the start of adsorption the molecules attach to the strongest

adsorption sites, with the largest heat effect, and so on. Heats

of adsorption can also be directly measured calorimetrically.

The resulting values are in at least fair agreement with those

computed in Example 11.17 (with exceptions) [30].

11.11.5 Hysteresis

Alas, adsorption is more complex than VLE or than the

simple picture show above. Figure 11.27 shows experimental

data for the adsorption and desorption of water on silica

gel [31].

From this figure we see that

1. The first adsorption curve starts like Figure 11.24, but

then levels out as the pressure approaches the satura-

tion pressure (P/P0 approaches 1.0). The maximum

adsorbed value (0.4 g/g) corresponds roughly to the

amount of water that would fill all the pores in the silica

gel (porosity about 40%).

2. The first desorption curve shows two kinds of hyster-

esis. From P/P0� 1.0 to 0.3 the observed values are

much larger than thevalues observed during adsorption.

Below P/P0� 0.3 the curve shows a dramatic change in

slope, and then parallels the first adsorption curve.

3. For the second adsorption the curve lies somewhat

above the first adsorption curve and practically retraces

the lower part of the desorption curve toP/P0� 0.3, but

then does not follow it upward, but rather practically

parallels the first adsorption curve.

Such curves in which the values going up and down are

not the same are called hysteresis curves. Their explanation is

far from agreed upon among experts, but the following,

advanced in [31] is widely accepted. On the first desorption,

liquid adsorbed into small pores is held in place by surface

tension and does not evaporate at the same external pressure

as it would if it were a flat sheet. This is called capillary

condensation, discussed in Chapter 14. As the pressure falls,

more and more of the liquid bound that way desorbs, and at

about P/P0� 0.3 those pores are empty, and the behavior

parallels that of the first adsorption curve. On the second

adsorption those pores are filling again but capillary con-

densation does not affect their adsorption behavior.

The first desorption and second absorption curves are

reported as equilibrium curves, meaning that one could go up

and down on them, finding the same values. The offset of the

second adsorption curve from the first is explained by the

authors as an “irreversible type of hysteresis possibly due to

imperfect rigidity in the gel structure.”
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FIGURE 11.27 Adsorption of water on silica gel [31], showing

hysteresis. The vertical axis shows gadsorbed/100 gadsorbent, rather

than the conventional mmol/g. The three curves correspond to the

first adsorption of water, the first desorption and then the second

adsorption.
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At the end of this discussion of this figure, we can say that

thermodynamics (Chapter 14) suggests an explanation of the

hysteresis loop in the adsorption-desorption curves, but gives

no suggestions about the offset between the first and second

adsorption curves. I end this section on adsorption with this

unexplained result and the lame explanation of it to remind

the reader that the interactions between gas and liquid

molecules and heterogeneous solid surfaces is not nearly as

simple or as well understood as the interactions between

liquids, gases and homogeneous solids.

11.12 SUMMARY

1. LLE. LSE, and GSE all obey the same basic thermo-

dynamics as VLE. At equilibrium the system has taken

up the lowest Gibbs energy consistent with the external

constraints. The working form of this statement is that

for any species in any such equilibrium the fugacity of

any species is the same in all the phases at equilibrium.

2. LLE and LSE show extreme nonideal behavior, such as

that between water and hydrocarbons. The calculated

activity coefficients are much larger than are observed

in common VLE situations.

3. For a liquid mixture to form two phases, its isothermal

plot of gmixture VS. mol fraction must show an internal

maximum, as in Figure 11.8. The calculation proce-

dures for estimating whether two phases exist and the

compositions of the two phases are the equivalent of

computing such a curve and computing the two points

of tangency of a straight line that touches the curve

twice. This is donewith activity coefficient correlations

more powerful (and complex) than the simple ones in

the examples presented here.

4. For most LLE and LSE increasing the temperature

increases the solubility. There are important exceptions.

5. Eutectics, LSE that occursmost often inmetallurgy and

also in water-mineral salt systems, involve one liquid

and two solid phases at temperatures below the melting

point of both of the solids. Hydrates (clathrates), GSL

that occurs most often with hydrocarbons and water at

temperatures above the melting points of the chemical

species involved, involve a solid, sometimes a gas, and

oneormore liquid phases. For both the behavior follows

the same thermodynamic rules as the other equilibria in

this book, but with more complexity.

6. For solids that dissolve without molecular interactions

with their solvents, we can make tolerable estimates of

the solubility from the extrapolated liquid-phasevapor-

pressure curve. Many common solids, such as NaCl

and sucrose, do interact with water as a solvent, thus

producing much greater solubility than we would

estimate this way.

7. For low-pressure GSEwe can estimate the vapor-phase

composition from Raoult’s law with fair certainty.

8. For high-pressure GSE, at pressures above the critical

pressure, the solid solubility is many times the value we

would compute from Raoult’s law (with the Poynting

correction).The solvents are acting as densefluids,whose

behavior is more like that of a liquid than that of a gas.

9. Gas-solid adsorption follows the same thermodynamic

rules as the rest of this book, but the solid surface ismore

complex and heterogeneous than the simple solid,

liquid and gas phases in the rest of the book, leading

to more complex and poorly understood behavior.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (*) on a problem number indicates that

the answer is in Appendix H.

11.1* Repeat Example 11.1 for determining the solubility

of water in benzene. Howmany drops of water must

we add to saturate 1.00 kg of benzene?

11.2* At 25�C, what is the solubility of benzene in water

and water in benzene, expressed as wt%?

11.3 Repeat Example 11.2 for toluene in water. The

Federal drinking water standard for toluene is 1 ppm

by weight [3].

11.4 Suggest a molecular explanation for the fact that in

Table 11.2 the solubilities of methylene dichloride

and chloroform are substantially greater than those

of carbon tetrachloride and most hydrocarbons.

11.5* In Example 11.3 find the number of mols of each of

the two liquid phases present, bymaterial balance on

one of the species.

11.6 Repeat Example 11.3 for 5mols of benzene, 1mol of

ethanol, and 4mols of water.

11.7* In Example 11.3 if the total number of mols (nT)

� 10 and me the mols of benzene¼ 5, what number

of mols of ethanol correspond to the boundary

between the one-phase and two-phase regions?

11.8 Repeat Example 11.3 using Figure 11.2 instead of

Figure 11.1. Are the results the same? Should they

be?

11.9 The Greek liquor ouzo is a clear liquid (� 17mol%

ethanol, 82mol% water, 1mol% other substances).

When it is diluted with water it turns cloudy.

Suggest an explanation, based on this chapter.Hint:

Sketch a plausible triangular diagram, and sketch

the dilution process on it.
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11.10* Repeat Example 11.4 for n-heptane and water.

11.11 Repeat the numerical part of Example 11.5 for x1
¼ 0.5, A¼ 3. Compare the result to the value shown

in Figure 11.7.

11.12 Show that for the symmetrical equation.

a. If A¼ 2.00, and xa¼ 0.5 the second derivative

d2gmixture=dx
2
a ¼ 0:

b. For all values of A< 2.00 there is no local

maximum; d2gmixture=dx
2
a > 0 for all xa.

c. For all values of A> 2.00 there is a local max-

imum; d2gmixture=dx
2
a < 0 for xa ¼ 0:5:

11.13 Show that Eq. 11.L and Figure 11.8 are the equiv-

alent of Eq. 11.5 and Figure 11.7.Hint: The require-

ment of the tangent line is that it have the same slope

at both places. Show how that slope, as a function of

composition, is influenced by changing from one

formulation to the other.

11.14* a. Show that if the symmetrical equation is plotted

as shown in Figure 11.8, the curve is symmetrical

about xa¼ 0.5; either side is the mirror image of

the other.

b. Then show that this requires that the straight line

tangent to the curve in two places must have

slope (dg/dxa)¼ 0.

c. Then show that in Figure 11.7 the corresponding

requirement is that dg=dxa ¼ goa � gob; which is

equal to 1.0 kJ/mol in Figure 11.7.

d. Then use this information to find the two xa’s for

which (dg/dxa)¼ 1 kJ/mol, using the derivative

calculated from Eq. 11.L.

e. Visually compare the values calculated in part (d)

with those we would read from Figure 11.7.

11.15 The graphical procedure shown in Example 11.6,

and Figure 11.8 has a high intuitive content, but is not

suitable for computer solution. Solve that same

example numerically, as follows:

a. Show that substitution of the van Laar equation

into Eq. 11.L leads to

gmixture�
P

xig
o
i

RT
¼
X

xiðln xiÞ

þ xa
B2Ax2b

ðAxa þBxbÞ2
þ xb

BA2x2a

ðAxa þBxbÞ2
ð11:AGÞ

which can be simplified to

G ¼ gmixture�
P

xig
o
i

RT

¼
X

xiðln xiÞþ BAxaxb

ðAxa þBxbÞ ð11:AHÞ

where we have introduced the dummy variable G to

simplify the following equations.

b. Show that the derivative of Eq. 11.AH is

dG
dxa

¼ ln
xa

xb

þBA
ðAxa þBxbÞ � ð1�2xaÞ�ðA�BÞ � ðxa�x2aÞ

ðAxa þBxbÞ2
ð11:AIÞ

c. Show that the conditions at equilibrium are that

the values of the derivative in Eq. 11.AI must be

the same at the two points of tangency and that the

slope of the line between the two points must

have the same value. If we let the two points of

tangency be a and b, then this slope is (Gb�Ga)/

(x
ðbÞ
a �x

ðaÞ
a ). Thus, we have two algebraic equa-

tions to solve numerically,

Gb�Ga

x
ðbÞ
a �x

ðaÞ
a

¼
ln
x
ðaÞ
a

x
ðaÞ
b

þBA
�
AxðaÞa þBx

ðaÞ
b

�
�
�
1�2xðaÞa

�
�ðA�BÞ � xðaÞa �

�
xðaÞa

�2� 	

�
Ax

ðaÞ
a þBx

ðaÞ
b

�2

0
BBBB@

1
CCCCA ð11:AJÞ

and

Gb�Ga

x
ðbÞ
a �x

ðaÞ
a

¼
ln
x
ðbÞ
a

x
ðbÞ
b

þBA
�
AxðbÞa þBx

ðbÞ
b

�
�
�
1�2xðbÞa

�
�ðA�BÞ � xðbÞa �

�
xðbÞa

�2� 	

�
Ax

ðbÞ
a þBx

ðbÞ
b

�2

0
BBBB@

1
CCCCA ð11:AKÞ
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in which the G’s are evaluated from Eq. 11.AH

for x
ðaÞ
a and x

ðbÞ
a . The xbs are evaluated by xb¼

(1� xa).When all of these are combined,we have

two algebraic equations with two unknowns, x
ðaÞ
a

and x
ðbÞ
a , which any competent nonlinear simul-

taneous algebraic equation solver can handle.

d. Show that solution for Example 11.6.

11.16 Repeat the preceding problem using the Margules

equation instead of the van Laar equation. The

Margules constants are shown in Problem 9.22.

11.17 Figure 11.8 (like Figure 6.7) shows the Gibbs energy

relations for equilibriumbetween two liquids. Figure

8.12(d) shows a three-phase equilibrium between

two liquids and a vapor. Sketch a copy of Figure 11.8

and then sketch on it what the curve for the Gibbs

energy of the vapor must be at that temperature and

pressure.Hint; the vapor curvemust be tangent to the

L-L tangent line. Where? What does it look like for

other compositions?

11.18* Example 11.4 shows the activity coefficients of

water in benzene and benzene in water at 25�C.
What values of A and B in the van Laar equation

reproduce these values?

11.19 Sketch the probable triangular diagram for water–

gasoline–ethanol, treating gasoline as if it were a

single pure species. Indicate what adding a small

amount of ethanol to the gasoline would do to the

solubility of water in the gasoline.

11.20 Repeat Example 11.11 for heating the water to its

NBP, 212�F. This was the situation in the earliest

steampower plant boilers. Suggestways inwhich the

problem of accumulation of solids in the boilers

could be dealt with.

11.21 At 140�F, the solubilities of gypsum and anhydrite,

read from Figure 11.13 are approximately 2020

and 1600ppm. Taking into account the water of hy-

dration in gypsum, which of the two is more soluble?

11.22 Water softeners replace the Ca2þ (and Mg2þ ) ions
in the water with equivalent amounts of Naþ reject-

ing the calcium as CaCl2 in the waste stream.

a. For the water in Example 11.11, how many

pounds of NaCl will be needed per pound of

water to replace the Ca2þ only?

b. How many pounds of NaCl will be needed per

month for the typical water demand in that

example?

c. How does this value compare with your personal

experience with salt demand if you have a res-

idential water softener? Comment?

11.23 On Figure 11.14, if we begin with pure solid ice at

�5�C, and slowly add NaCl and mix, sketch and

describe the path of states that we will follow.

Assume that we add or subtract heat as needed to

hold the temperature at �5�C.

11.24 On Figure 11.14, if we begin with a mixture of ice

and eutectic with overall NaCl weight fraction

¼ 10% at �30�C and heat slowly, sketch and de-

scribe the path of states that we will follow.

11.25* Calculate the weight percent NaCl in NaCl�2H2O.

11.26* Show the details of proceeding from Eq. 11.11 to

Eq. 11.13.

11.27 A liquid solution of sodium chloride in water with

25wt% sodium chloride originally at 0�C is slowly

cooled.

a. At what temperaturewill the first particle of solid

appear?

b. What will be the weight percent sodium chloride

in this first particle?

11.28 On Figure 11.15, if we begin with pure solid Pb at

200�C, and slowly add Sn and mix, sketch and

describe the path of states that we will follow.

Assume that we add or subtract heat as needed to

hold the temperature at 200�C.

11.29 OnFigure 11.15, ifwe beginwith amixture of Sn and

Pb with overall Pb wt fraction¼ 10%, at 150�C and

heat slowly, sketch and describe the path of states

that we will follow.

11.30* Calculate the wt ratio of phases a and b at the

eutectic on Figure 11.15.

11.31 If we start with a liquid, 10% Sn at 350�C and cool

slowly, sketch and describe the path of states that we

will follow. Explain the meaning of the changes that

occur between 150�C and 100�C. How rapidly

would we expect those changes to occur?

11.32 Sketch the equivalent of Figure 11.16 for the water-

n-butanol VLE shown in Figure 8.12(d).

11.33 On Figure 11.17 the quadruple point is at 32�F and

approximately 383 psia.

a. Estimate the mol fraction of methane dissolved

in water at this condition.

b. Estimate the mol fraction of water in the equi-

librium vapor.

c. Comment on the reliability of the assumption that

these two small values are effectively zero.

11.34 Figure 11.17 shows the melting temperature of water

as constant at 32�F ignoring the fact that as pressure

increases themelting temperature ofwater decreases.
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a. Estimate the melting temperature of water at the

quadruple point on that figure, P¼ 383 psia,

using the values from part (b).

b. From Figure 1.10 (actually the table from which

that figurewasmade)we have the following values

for points on that curve; P, psia: 0, 2900, 7,250,

14,500, 21,750 and 29,000, T, �F: 32, 29.6, 23.3,
14.2, 4.94, �6.4. Plot these values on a copy of

Figure 11.17 and sketch the curve through them.

c. How bad is the straight, vertical approximation

we made in Figure 11.17?

11.35 Sketchaplausible analog toFigure11.17 forwaterand

propane. As in Figure 11.17 an area represents two

phases in equilibrium, a curve three and four curves

meeting at a point four phases. The new phase that

appears here is a liquid phase, mostly propane. The

books on this topic use the symbols Lw and LHC for

the mostly-water phase and the mostly-hydrocarbon

phase. On this diagram the V-LW-LHC curve is practi-

cally the same as the vapor pressure curve for pure

propane; it forms a second quadruple point above

and to the right of one shown on Figure 11.17. See

[14, Fig 4.2b] for confirmation (?) of your sketch.

11.36 The worst simplification in Eq. 11.15 is the built-in

assumption that Dhsolid to liquid is a constant, inde-

pendent of temperature. Reference [18, p. 640]

shows that if we do not make that simplification,

but do assume that the heat capacities of solid and

liquid are constant, independent of temperature,

Eq. 11.15 becomes

ln
1

x
ð1Þ
i g

ð1Þ
i

0
@

1
A ¼ Dhsolid to liquid

RTmelting point

� Tmelting point

T
�1

0
@

1
A

þ DCp

R
� ln

Tmelting point

T
þ 1� Tmelting point

T

0
@

1
A

ð11:26Þ

Show the derivation of Eq. 11.26.

11.37 Sketch what Figure 11.19would look like if the solid

aromatics dissolved in CCl4 all had g
ðliquidÞ
i ¼ 2:00

independent of liquid composition.

11.38* Repeat Example 11.13 at log x2¼�0.6

11.39 Figure 11.20 indicates that at about 200 atm the

“Raoult’s law times Poynting factor” curve has a

minimum, and then turns upward with increasing

pressure. Can that be right? Write the equation for

that curve, solve it for the minimum, then insert values

to see at what pressure the minimum should occur.

11.40 Typical porous adsorbents have surface areas of up to

1000m2/g.

a. If we had a simple sheet of the material, like a

sheet of paper, and its density were 2 g/cm3, how

thick would the sheet be to have this high a

surface area (both sides of the sheet)?

b. How would one make a porous solid with this

much internal surface area, and still some me-

chanical strength? Hint; consider how you make

charcoal.

11.41 In the Langmuir curve examplewemade an estimate

of nmonolayer, the total amount of nitrogen that would

form a completemonolayer on the internal surface of

the adsorbent. If we knew the surface area occupied

by one molecule of adsorbed nitrogen, we could use

it to estimate the total surface area of the solid, Make

such an estimate as follows:

a. Assume that the adsorbed nitrogen has the

same density as liquid nitrogen at its NBP,

0.808 g/cm3,¼ 808 kg/m3.

b. Determine the number of nitrogen molecules in

this many kg. Then divide that number into the

above mass to find the average volume occupied

by one nitrogen molecule.

c. Then make the strong simplifying assumption

that each molecule occupies a cubical volume,

and compute the length of the edge of that cube.

d. From that compute the area of one face of the

cube. Compare this with the commonly used

value of 16.2 (A
�
)2 [25].

11.42 Show the algebra to get from Eq. 11.22 to Eq. 11.23.

11.43 Show that if one prepares a plot like Figure 11.25

based on Eq. 11.23, then from the straight line

shown, b¼ 1 þ slope/intercept, and nmonolayer¼
1/(slope þ intercept).

11.44 a. Prepare the equivalent of Figure 11.25, using all

the data points in Figure 11.24, and show that the

best-fit straight line has a negative intercept.

Table 11.B shows the data (captured by

Table 11.B Data points for Figures 11.24 and 11.25

Pressure, atm nadsorbed, mmol/(g of adsorbent)

0.021 4.337

0.182 6.831

0.235 7.376

0.331 8.395

0.364 8.795

0.441 9.865

0.529 11.509
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computer scanning the data points in Figure 6

of [25]. And converting to the consistent

dimensions shown,)

b. The negative intercept (with a value close to

zero) makes b a large negative number (see

Problem 11.43). But does it lead to a very dif-

ferent value of nmonolayer than Example 11.16?

c. Plot these data in the Langmuir form (Eq. 11.21,

Figure 11.23). Does it form a straight line?
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12
CHEMICAL EQUILIBRIUM

12.1 INTRODUCTION TO CHEMICAL

REACTIONS AND CHEMICAL EQUILIBRIUM

Chemical reactions transform one chemical species or set

of species to another species or set of species: reactant(s) !
product(s). Sometimes we do this because the products

(e.g., pharmaceuticals) are much more valuable than the

reactants from which they are made. Sometimes we want

the heat released by the chemical reaction of the materials

(e.g., fuels) with air (burning) either to heat some material

(cooking our food or heating our homes) or to burn the fuels

inside the engines that propel our vehicles or generate

electricity. Sometimes we destroy harmful materials by

chemical reaction (incineration of hazardous hydrocarbons,

destruction of bacteria, protozoa, and viruses in drinking

water with chlorine or ozone). The most important chemical

reactions are those within our bodies. Every second millions

of chemical reactions are occurring in our bodies, accom-

plishing all the things we call life. The chemical reactions in

our nervous system control our muscular movements and our

thoughts; the nerve gases that interfere with those chemical

reactions can kill in seconds.

In this chapterwe consider only single chemical reactions,

all occurring in one phase. In the next chapter we consider

multiple reactions, in series and in parallel, occurring in one

or more phases. The next chapter introduces no new princi-

ples, only more complex and interesting applications of the

ideas of this chapter.

12.2 FORMAL DESCRIPTION OF CHEMICAL

REACTIONS

All chemical reactions can be described in general as

aReactant 1þ bReactant 2þ � � � , rProduct 1

þ sProduct 2þ � � � ð12:1Þ

where a, b, . . ., r, s are the number of molecules consumed or

produced, and the, sign indicates that this reaction can go in

either direction, and that at some set of concentrations there is

an equilibrium in which the rate of the forward (reactant to

product) reaction is equal and opposite to that of the back-

ward (product to reactant) reaction so that there is no net

changewith time, andwe have reached chemical equilibrium.

If the reaction goes only onewaywe often replace the,with

a ! to indicate that. Some books replace both of these

symbols with an ¼.

As an example of this kind of reaction, which will appear

often in this chapter, consider the reaction of hydrogen and

nitrogen to form ammonia

N2 þ 3H2 , 2NH3 ð12:AÞ

in which one nitrogen and 3 hydrogen molecules are the

reactants and 2 ammonia molecules are the products. (This

reaction is the basis of the production of nitrogen fertilizers

and explosives; hundreds of factories carry out this reaction

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
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on a large scale, see Section 1.1.) Equation 12.1 is often

written as

aAþ bBþ � � � , pPþ rRþ � � � ð12:2Þ

whereA, B, . . . are the reactants and P, R, . . . are the products.
The numbers of each molecule involved in the reaction,

a, b, . . ., p, r,. . . are called the stoichiometric coefficients

of the reaction (see Section 12.6.1). We often also see

Reaction 12.A written in the form

0:5N2 þ 1:5H2 , NH3 ð12:BÞ

which is obviously Reaction 12.A divided by 2. In the

ammonia literature the reaction is almost always expressed

as Reaction 12.B, not Reaction 12.A, so in the rest of this

chapter we will follow that practice, using Reaction 12.B.

12.3 MINIMIZING GIBBS ENERGY

In principle, all chemical reactions are equilibrium reactions,

but, as we shall see later, in practice, many are not. In all

chemical reactions, at equilibrium the reacting system has

taken up the set of compositions that minimizes the Gibbs

energy of the mixture of reactants and products, as described

in Section 4.5.3 and Figure 4.12. Thus, all that we do in this

chapter is apply Eq. 4.6, minimization of Gibbs energy, to

chemical reaction equilibria.

Figure 12.1 (a repeat of Figure 4.11 without the chemical

potentials) shows the calculated Gibbs energy for mixtures

of normal and isobutane. If there were no change of Gibbs

energy on mixing, then the curve would be replaced by a

straight line connecting the two pure-component values of

the Gibbs energy of normal and isobutane. But from

Chapters 7, 8, and 9 we know that for an ideal binary solution

the Gibbs energy is given by

gmix ¼
X

xig
o
i þRT

X
xiln xi ½binary ideal solution�

ð12:3Þ

where the first term on the right is a straight line between the

pure-component values, and the second is the Gibbs energy

increase on mixing, which is always negative because the ln

of numbers less than 1.00 is always negative.

Example 12.1 Estimate the chemical equilibrium compo-

sition of a gaseous mixture of n-butane and isobutane at

298.15K and 1 bar, based on direct minimization of Gibbs

energy. Assume that n-butane and isobutane form an ideal

solution of ideal gases at this T and P.

We differentiate Eq. 12.3 with respect to xa, remembering

that for a binary mixture dxb ¼ �dxa, finding

dgmix

dxa
¼ goa�gob þRT ½ln xa þ 1�ðln xb þ 1Þ�

¼ goa�gob þRT ln xa�lnð1�xaÞ½ �

¼ goa�gob þRT ln

�
x

1�xa

�
ð12:4Þ

Setting this equal to zero (to find the minimum on the g-x

curve) and solving gives

xa

1�xa

� �
¼ exp

gob�goa
RT

� �
xa ¼

exp
gob�goa
RT

� �

1þ exp
gob�goa
RT

� � ð12:5Þ

Inserting the values of the pure component Gibbs

energies from Table A.8 (discussed below) for isobutane,

a, and n-butane, b, we find

exp
gob�goa
RT

� �
¼ exp

�17:2
kJ

mol
� �20:9

kJ

mol

� �

0:008314
J

mol �K � 298:15 K

2
664

3
775

¼ 4:49 xa ¼ 4:49

1þ 4:49
¼ 0:818 ð12:CÞ

The same result is shown graphically in Figure 12.1. &

At 298.15 K and 1 bar

At the minimum
xiso ≈ 0.82
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FIGURE 12.1 Calculated Gibbs energy for a mixture of normal

and isobutane at 25�C¼ 298.15Kand 1.00 bar. The pure component

values are from Table A.8 and the intermediate values based on an

assumed ideal solution. The minimum value, which corresponds to

the chemical equilibrium between the two isomeric forms, occurs at

xiso � 0:82.
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If there were no Gibbs energy change on mixing, then the

lowest point on the curve (now a straight line) would be at

pure isobutane, 100% conversion. The Gibbs energy de-

crease on mixing guarantees that the minimum of the curve

will never be at 100% conversion, but rather will always fall

at some incomplete conversion (see Section 12.6.2). Wemay

think of the same fact another way, in terms of the forward

and reverse rates of the reaction. Chemical reaction rates

almost always increase with an increase in reactant concen-

tration, most often to the first power of the concentration,

sometimes to other powers. If we had 100% conversion then

the forward rate would become zero because the concentra-

tion of the reactant became zero, while the backward ratewas

still finite, so we would move back away from 100% con-

version. Byminimizing the Gibbs energy the system chooses

the concentrations of reactants and products at which the two

rates are equal and opposite.

If the change of Gibbs energy going from reactants to

products is small, like most chemical reactions in our bodies,

or the isomerization reaction in Figure 12.1, then at equilib-

rium there will be substantial amounts of reactants in equi-

librium with the products of the reaction. If the Gibbs energy

change is large, as in combustion or explosive reactions, then

at equilibrium there will be practically no reactants left.

We commonly refer to such reactions (combustion, explo-

sions, cooking of foods, pyrolysis) as irreversible, even

though in principle all chemical reactions are reversible (see

Section 12.6.2).

The rest of this chapter and all of the next chapter are

devoted to mathematical methods to estimate the chemical

composition that corresponds to theminimum in Figure 12.1.

As the details become complex, remember that we are simply

seeking the minimum value of g on the (often multidimen-

sional) equivalent of Figure 12.1. Many computer programs

for chemical equilibrium do exactly what we did in Example

12.1, including the suitable activity and/or fugacity coeffi-

cients in Eq. 12.3, instead of making the ideal solution

assumption. However, a traditional hand calculation ap-

proach, called the law of mass action, has historically been

morewidely used, is almost always used in the literature, and

is perhaps easier to understand. It always leads to the same

result as this direct minimization of Gibbs energy approach.

The rest of this chapter and the next chapter present all of

chemical reaction equilibrium calculations in the lawofmass

action form. Remember that it is merely a computationally

satisfying way of finding the compositions that correspond to

a minimum in the Gibbs energy.

12.4 REACTION RATES, ENERGY BARRIERS,

CATALYSIS, AND EQUILIBRIUM

In principle, the equilibrium state is independent of the rate

of the reaction, but in practice, many reactions reach a

metastable equilibrium, dependent on the reaction rate. For

example, at room temperature at equilibrium the combustion

reaction

2H2 þO2 , 2H2O ð12:DÞ

is almost complete, with practically zero hydrogen and

oxygen remaining. However, at room temperature, without

a catalyst, the rate of the reaction is practically zero, so that

there is a metastable equilibrium, in which none of the

hydrogen and oxygen reacts.

This reaction is typical of combustion reactions; the rate is

�0.00 at room temperature and very fast at high tempera-

tures. If we initiate the reaction in a small part of the reactant

mixture, for example,with an automobile spark plug, then the

heat liberated by the reaction is enough to raise the temper-

ature of the remaining reactants enough that the reaction

propagates, forming a flame or an explosion. The situation

can be intuitively visualized in Figure 12.2.

We see that the energy of the products is less than that of

the reactants, so that if the reaction proceeds from reactants to

products (e.g., fuel and oxygen to combustion products) then

the system’s energy will be reduced and heat will be given

off, as it is for all combustion reactions. But we also see that

there is an energy barrier between reactants and products. For

the reaction to proceed, the reactants (or the products for the

reverse reaction) must go through some intermediate states

with a higher energy than either the reactants or products. For

combustion at room temperature this energy barrier is high

enough that the rate of both the forward and the backward

reaction is practically zero. So there exists a state of meta-

stable equilibrium. If we raise the temperature, we raise

the energy of both reactants and products but do not raise
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FIGURE 12.2 Intuitive picture of the energy relations for an

exothermic chemical reaction.
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the height of the energy barrier. If we raise the temperature

enough that some reactant molecules can get over the energy

barrier, then the reaction will proceed.

In Figure 12.2 we should not think of all the molecules

lying on the curve. In any chemical at any temperature there

is a distribution of energies, with some minimum. We might

think that on either side of the energy barrier in Figure 12.2

the molecules are like a flock of birds, with none flying

below the curve shown, most flying near it, and some flying

high above it. If the barrier is high enough, none can get

over. As the difference between the baseline on either side

and the height of the barrier becomes smaller and smaller,

more and more of the most energetic molecules in the mix

can cross.

Figure 12.2 shows a “catalyst tunnel.” Catalysts are

substances that allow the reaction to proceed by a route that

does not have as high an energy barrier as does the uncata-

lyzed reaction. With catalysts we can cause the reaction to

proceed at temperatures far lower than those needed for the

uncatalyzed reaction. At equilibrium the rates of the forward

and backward reactions are equal; the presence or absence of

the catalyst does not influence the concentration at which

these rates are equal, so that while a catalyst does make a

reaction go faster (or go at a temperature at which the rate

without the catalyst is�0), the catalyst does not, in principle,

influence the equilibrium concentrations.

In practice, catalysts can influence the position of meta-

stable equilibrium, which is often what we seek industrially.

Carbon monoxide and hydrogen can react in many ways;

for example,

COþ 2H2 , CH3OH ð12:EÞ

and

COþ 3H2 , CH4 þH2O ð12:FÞ

At a high temperature both of these reactions come to

equilibrium; we would expect CO, H2, CH3OH, CH4, and

H2O all to be in chemical equilibrium.However, it is possible

to find selective catalysts that promote only Reaction 12.E

without promoting 12.F, or the reverse, so that we can

produce practically pure methanol or practically pure meth-

ane; both of these reactions are carried out on a large scale

industrially, using such selective catalysts. We may think of

this as a three-dimensional equivalent of Figure 12.2; there

are two energy barriers, one for each reaction. A selective

catalyst provides a tunnel for one reaction, but not the other.

In modern industrial catalytic research the goal is almost

always to find a catalyst that is extremely selective, facili-

tating only the desired reaction.

In principle, there is no such thing as a negative catalyst,

one that prevents a reaction. In practice, there are materials

that act as if they were negative catalysts. The selective

catalyst that makes Reaction 12.E proceed to equilibrium at a

temperature low enough that Reaction 12.F does not occur

acts as if it were a negative catalyst for Reaction 12.F. The

real negative influence is the low temperature, but it seems as

if the catalyst is acting as a negative catalyst for the non-

selected reaction. We also know that at the molecular level

many chemical reactions are chain reactions, in which small

amounts of materials that do not appear in the balanced

chemical reaction equation play the role of chain carriers,

being used over and over again. A famous example of this

process is Reaction 12.G:

2COþO2 , 2CO2 ð12:GÞ

Without the hydroxyl radical, OH�, the rate of the reaction is
�0. This means that if there is a little water present CO burns

easily in O2 or air, but that if there is no water present the

reaction rate is �0, even at flame temperatures. Many

successful fire-extinguishing agents and some automotive

antiknock agents act by capturing or destroying these free

radicals and thus stopping chain reactions. Many food pre-

servatives and oxidation inhibitors work this way. Some

vitamins and food chemicals are believed to increase human

longevity by capturing or destroying free radicals in our cells

before they can participate in aging reactions. These reaction

inhibitors act as if they were negative catalysts. But neither

negative nor positive catalysts influence the composition of a

mixture at true thermodynamic equilibrium unless there is a

metastable equilibrium involved, like hydrogen and oxygen

at room temperature, or whichever of Reactions I2.E and

12.F is not catalyzed while the other is.

In the rest of this chapter we assume that we have reached

equilibrium, by using a high enough temperature for the

reaction to proceed without a catalyst, by using a catalyst, by

waiting long enough, or by all three. We ask only what is the

chemical composition of the mixture of reactants and pro-

ducts at that equilibrium state. That information alone is quite

useful for estimating the limits of chemical reactions. Taken

together with information about the rates (kinetics) of the

reactions it allows us to successfully design chemical

reactors.

12.5 THE BASIC THERMODYNAMICS

OF CHEMICAL REACTIONS AND ITS

CONVENIENT FORMULATIONS

The basic statement for all equilibrium is Eq. 4.6: Nature

minimizes Gibbs energy. At any state of chemical or phase

equilibrium the Gibbs energy is the lowest value consistent

with the external constraints (Figure 12.1). In phase equilib-

riumwe found it convenient towork with the fugacity instead

of the Gibbs energy, and we will do the same here. Returning

to the definition of the fugacity in Section 7.2,we can askwhat
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it tells us about chemical equilibrium.Consider the reaction of

hydrogen and nitrogen to form ammonia

0:5N2 þ 1:5H2 , NH3 ð12:BÞ

all in the gas phase. If we apply the same arguments here that

we applied in Chapters 4 and 7 for phase equilibrium, we can

say that if this reaction is at equilibrium, then a differential

conversion of dni of nitrogen and hydrogen to ammonia or the

reverse at constant T and P must cause zero change in the

Gibbs energy. However, we can see that if a differential

number of mols of nitrogen disappears by this reaction, three

times as many mols of hydrogen must also disappear and two

times as many mols of ammonia must be produced.

From Eq. 6.4 we know that for any single-phase system

G ¼ na�ga þ nb�gb þ nc�gc þ � � � ð12:6Þ

and

g ¼ G

nT
¼ xa�ga þ xb�gb þ xc�gc þ � � � ð12:7Þ

This chapter concerns reactions in only one phase; we will

not need the phase superscript in this chapter. The next

chapter considers reactions in more than one phase, where

we will need it. For the net change in the Gibbs energy of

the system to be zero, as we convert dnN2
to ammonia, we

must have

dG ¼ 0 ¼ ð�0:5�gN2
�1:5�gH2

þ �gNH3
ÞdnN2

or

dg

dnN2

¼ 0 ¼ �0:5�gN2
�1:5�gH2

þ �gNH3

¼ �0:5mN2
�1:5mH2

þmNH3 ð12:8Þ

where these are the same partial molar Gibbs energies

(chemical potentials) that we saw played the dominant role

in phase equilibrium. The partial molar Gibbs energies

control not only phase equilibrium, but also chemical equi-

librium. Here we show both the �gN2
and the mN2

forms of this

equation. In phase equilibrium we regularly see both forms,

but in chemical equilibrium we mostly see the �gN2
form and

seldom the mN2
form.

Substituting the definition of fugacity (Eq. 7.1) for �gi,
three times we find

dg

dnN2

¼ 0 ¼ �0:5 RT ln fN2
þ goN2

� �
�1:5 RT ln fH2

þ goH2

� �

þ RT ln fNH3
þ goNH3

� �
ð12:9Þ

Rearranging, we have

RT 0:5 ln fN2
þ 1:5 ln fH2

�ln fNH3
ð Þ ¼ goNH3

�0:5goN2
�1:5goH2

ð12:10Þ

or

ln
fNH3

f 0:5N2
f 1:5H2

 !
¼ �

goNH3
�0:5goN2

�1:5goH2

� �
RT

ð12:11Þ

Previously we have said little about goi other than that it

was a function of temperature only and that each species

had its own value of goi . We discussed standard states in

Chapters 7, 8, and 9. A standard state is some state of matter

that we will all agree upon as a suitable basis for con-

structing tables of properties. For most chemical reaction

purposes we choose the standard state of some substance as

the pure substance in its normal state (solid, liquid, or gas)

at P ¼ 1 atm or 1 bar, and an arbitrarily chosen T, normally

¼ 25�C¼ 298.15K for the tables of interest in this chapter.

Alas, there are other standard states that are much more

convenient for some problems, as discussed previously for

vapor–liquid equilibrium calculations. However, if we put

off for the moment saying what our standard state is, we can

use the symbol � to indicate a property in the standard state,

and then say that, for any pure chemical element or

compound (pure species) the partial molar Gibbs energy

is the same as the pure species Gibbs energy, and in its

standard state

ð�giÞo ¼ goi ¼ RT ln f oi þ goi ½pure species� ð12:12Þ

If we solve this for goi and substitute the value three times in

Eq. 12.11 and rearrange, we find

fNH3

f 0:5N2
� f 1:5H2

¼ exp
�1

RT
goNH3

�0:5goN2
�1:5goH2

� �� �
f oNH3

f oN2

� 	0:5 � f oH2

� 	1:5
" #

ð12:13Þ

or

fNH3

f oNH3

" #

fN2

f oN2

" #0:5
� fH2

f oH2

" #1:5 ¼ exp
�Dgo

RT

� �
¼ K ð12:14Þ
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where

Dgo ¼ goNH3
�0:5goN2

�1:5goH2

� �
ð12:HÞ

12.5.1 The Law of Mass Action and Equilibrium

Constants

Equation 12.14 is the “law of mass action,” which appears

in elementary chemistry books, written for Reaction 12.B.

The termat the right is the familiar “equilibriumconstant,”K,

which has the following characteristics:

1. Its form follows directly from the definition of the

fugacity and the observation that at equilibrium a

differential chemical change produces zero change in

Gibbs energy.

2. Dg� is the Gibbs energy change in going from pure

reactants to pure products, with all reactants and

products in their standard states (normally 1 atm or

1 bar and 25�C). This is often called the “standard

Gibbs energy change of the reaction.” Dg� is not the
Gibbs energy change in going from the starting to

the equilibrium state. In Figure 12.1, Dg� is the

decrease in Gibbs energy from pure n-butane to pure

isobutane. The Gibbs energy change for going from

pure n-butane to the equilibrium state is greater than

Dg�
(see Problem 12.3).

3. The individual species’ fugacities appear only in the

form of the activity

activity ¼ fi

f
�
i

¼ ai ð7:26Þ

so that Eq. 12.14 is often written as

½aNH3
�

½aN2
�0:5 � ½aH2

�1:5 ¼ exp
�Dgo

RT

� �
¼ K ð12:15Þ

In Chapter 7, where we introduced the activity,

we said little about it; here we say a little more.

Equation 7.26 and the definition of the fugacity can

be combined to

RT ln ai ¼ �gi�goi ð12:16Þ
which shows that the value of the activity depends

on our choice f oi or goi . In Chapters 7, 8, and 9 we

saw that several choices were regularly made. For

chemical reactions we almost always use the

choices shown in Table A.8, which are all at 1 bar

pressure and 25�C. We discuss that table in the next

section.

4. This equilibrium constant is dimensionless, as are all

equilibrium constants expressed in terms of activities,

because the equilibrium constant is a ratio of products

of activities to various powers (þ and �), and activ-

ities are all dimensionless. Thatwas one of the reasons

for defining the activity, to make all equilibrium

constants dimensionless. However, the numerical

value of the activity depends on the choice of standard

states. If we change standard states wewill change the

computed numerical value of the equilibrium con-

stant, but in a way that will not change the computed

concentrations at equilibrium (if we pay careful at-

tention to standard states!). As we will see later, we

often use modified equilibrium constants that have

built-in dimensions; however, the basic equilibrium

constant, which is defined by Eqs. 12.14 and 12.15, is

always dimensionless.

5. The equilibrium constant does not depend in any way

on the pressure at which we conduct the reaction.

The individual activities in Eqs. 12.14 and 12.15 do

depend on pressure, aswewill discuss in Section 12.8,

but their ratio in Eq. 12.15 does not.

6. The equilibrium constant does depend on what

pressure we choose for our values of Dg�. If we

always choose these as states at which the pressure

¼ 1.00 bar—which most current tables of properties

do—then there is little opportunity for confusion

here. Unfortunately, some tables of properties also

have other choices, so that the values of K calcu-

lated from them are different from those calculated

for P¼ 1.00 bar. If we are careful to leam what

values of Dg� are used, we will always get the

correct calculated concentrations. (Older tables

mostly used P¼ 1.00 atm; newer ones mostly use

P¼ 1.00 bar. The differences are small, but not zero,

see Problem 12.15.)

7. The equilibrium constant does depend on the tem-

perature of the reaction, both because aT appears in its

defining equation (Eq. 12.14) and because the Dgo of
almost all reactions changes with changes in temper-

ature. We will explore this in Section 12.7.

8. The equilibrium constant depends on how we write

the reaction. If we had done all of this section in terms

of Reaction 12.A instead of Reaction 12.B, then the

Dgo would have been exactly twice as large, and

according to Eq. 12.14

KReaction 12:A ¼ ðKReaction 12:BÞ2 ð12:17Þ

We will see that this does not lead to any uncertainty

about calculated concentrations, as long as we are

careful to observe which form of the reaction is

associated with the K for which data are available.
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9. Unfortunately, the same symbol, K, is used for other

kinds of equilibrium besides chemical equilibrium,

for example, VLE (see Section 8.2) and liquid–liquid

or liquid–solid phase equilibrium (see Section 11.6).

There aren’t enough letters in the alphabet to prevent

this. From the context we can normally determine

which K is meant.

12.6 CALCULATING EQUILIBRIUM CONSTANTS

FROM GIBBS ENERGY TABLES AND THEN USING

EQUILIBRIUM CONSTANTS TO CALCULATE

EQUILIBRIUM CONCENTRATIONS

Equation 12.14 also shows that if we had a table of the

values of the standard state pure species Gibbs energy gi
�

for all chemical elements and compounds, we could use

those tables to calculate the equilibrium constant for any

chemical reaction. We do have such tables for a very large

number of compounds, widely available in handbooks

[1–4]; a sample is shown in Table A.8. How they are actually

constructed is discussed in Appendix E. In making them up

the physical chemists needed to agree upon some datum

values for the Gibbs energy, because we know of no way to

calculate an absolute value for it. We know from experiments

(see Appendix E), as sketched in Figure 12.3, that in going

from gaseous ethanol to the elements C,H2, andO2, theGibbs

energy increases by 168.5 kJ/mol of ethanol, and that in going

from the elements to ethylene the Gibbs energy increases by

68.5 kJ/mol. If we assign all chemical elements a datum value

of go¼ 0, at some temperature and pressure, then we can

assign any compound a “Gibbs energy of formation from the

elements,” and use the values to compute the Gibbs energy

change for any reaction. The resulting values are listed in

Table A.8 as the “Standard Gibbs Energy of Formation from

the Elements.” This choice of datum values is convenient,

because no element can be made from another element, and

every chemical compound can, in principle, bemade from the

elements. To form some element “from the elements” means

to make no change, so the Gibbs energy of formation of the

elements themselves “from the elements” in those tables is

zero. From Figure 12.3 we see that on this basis, the go of

formation from the elements of ethylene is þ68.5 kJ/mol,

while that of ethanol is �168.5 kJ/mol.

The older tables were mostly in kcal/mol, while the newer

ones are mostly in kJ/mol; (cal¼ 4.184 J). Examples

and problems in this text are based on Table A.8, which is

in kJ/mol, and values in other units are used only where

needed (e.g., when quoting a source that uses kcal/mol).

We could have made other choices of datum values; we

sometimes see tables that have other choices. However, the

only use of these tables is to calculate Dgo of some chemical

reaction, and if we were to choose the Gibbs energy of all

the elements as some value X per atom (instead of zero), the

calculated values of Dgo for all reactions would not change,

because we would add and subtract the same amount to

the Gibbs energy of the reactants and the products, for a net

change of zero.

The same tables normally also show the enthalpy change

of formation from the elements at 25�C and 1 atm. With that

value we can also compute the enthalpy change of reactions

(“heat of reaction”). In Section 12.8 we will see the use of

that heat of reaction in calculating the change in K with

temperature. Some elements have multiple forms in the pure

state; for example, diamond and graphite are both pure

carbon. For that reason Table A.8 lists the Gibbs energies of

formation for both, showing that graphite is chosen as

having 0.00 enthalpy and Gibbs energy change of formation

and diamond as having enthalpy and Gibbs energy changes

of formation—from graphite—of 1.9 and 2.9 kJ/mol (see

also Example 4.9).

Example 12.2 Table A.8 shows that at 298.15K the Gibbs

energy of formation from the elements at 1 bar (0.987 atm)

of NO (nitric oxide) is 86.6 kJ/mol. (The corresponding

values for the elements N2 and O2, not shown in the table,

are both 0.00.) Using these values estimate the equilibrium

constant for the reaction of nitrogen and oxygen to form

nitric oxide at 298.15K by

N2 þO2 , 2NO ð12:IÞ

and estimate the equilibrium concentration of NO in air at

1 atm and at this 298.15 and at 2000K.

At 25ºC = 298.15 K

Ethylene, C2H4

G
ib

bs
 e

ne
rg

y,
 k

J/
m

ol

Δg
 =

 6
8.

5
Δg

 =
 1

68
.5

Elements, C, H2, O2

Ethanol, C2H5OH

FIGURE 12.3 Gibbs energy changes for two chemical reactions.
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Here

Dg� ¼ 2g�NO�g�O2
�goN2

¼ 2ð86:6Þ�0�0 ¼ 173:2
kJ

mol

ð12:JÞ

K298:15 ¼ exp

 
�Dgo

RT

!
¼ exp

�173;200
J

mol

8:314
J

molK
�298:15K

0
BBB@

1
CCCA

¼ 4:5� 10�31 ¼ aNO½ �2
aN2
½ � � aO2

½ � ð12:KÞ

The activities are all at ai ¼ fi=f
o
i . The f

o
i all correspond to the

standard states in Table A.8, which for gases are the ideal gas

state at 1 bar, so that f oN2
¼ f oO2

¼ f oNO ¼ 1 bar. If we make the

most general statement of the activities (for gases) we would

have

ai ¼ yif̂iP

f �i
ð12:18Þ

At this low a pressure wemay safely assume that the NO, O2,

andN2 behave as ideal gases for which f̂i ¼ 1:00 andwemay

substitute for the activities, finding

K298:15 ¼ aNO½ �2
aN2
½ � � aO2

½ � ¼
yNOP

1bar

� �2

yN2
P

1bar

� �
� yO2

P

1bar

� �¼ yNO½ �2
yN2
½ � � yO2

½ �

ð12:19Þ

For ideal gas reactions in which the number of mols does not

change (like this one) theP and the pressure dimension in the

mass action equation always cancel, and we find the expres-

sion in terms ofmol fractions.Wewill see that for reactions in

which the number ofmols changes, this cancellation does not

occur, and the formulae are more complex.

We may use this constant to compute the equilibrium

concentration of NO to be expected in a sample of air (�21%

oxygen, �78% nitrogen, �1% argon) at 298.15K as

½yNO�2 ¼ K298:15 � ½yN2
� � ½yO2

� ¼ 4:5� 10�31 � 0:78 � 0:21
¼ 7:4� 10�32

½yNO� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:4� 10�32

p
¼ 2:7� 10�16 ð12:LÞ

which shows that at 25�C¼ 298.15K the equilibrium NO

concentration is negligible. If we repeat the calculation for

2000K (see Problem 12.6), we will find K2000 ¼ 4:0� 10�4

and

½yNO�2 ¼ K2000 � ½yN2
� � ½yO2

� ¼ 4:0� 10�4 � 0:78 � 0:21
¼ 6:55� 10�5

½yNO� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:55� 10�5

p
¼ 8:09� 10�3 � 8100 ppm

ð12:MÞ

See also Problem 12.5. &

The 8100 ppm is a small number, but this reaction plays a

significant role in air pollution, where the NO from high-

temperature flames contributes to the formation of photo-

chemical oxidant (mostly ozone), by the reaction, expressed

in simplified form [5] as

NOþ hydrocarbonsþO2 þ sunlight!NO2 þO3 ð12:NÞ

and contributes to acid rain by producing nitric acid in the

atmospheric reaction

2NOþ 1:5O2 þH2O , 2HNO3 ð12:OÞ

It also plays a major role in the creation and sustenance of

living things. Most plants cannot use the abundant N2 from

the atmosphere; they need fixed nitrogen in which the

extremely strong N�N bond has been broken and replaced

by a weaker N�O or N�H bond. The above reaction,

occurring in the heated air of lightning strikes provides much

of the world’s naturally occurring fixed nitrogen. It was also

the basis for the several fertilizer processes, which were

replaced by the more economical ammonia process de-

scribed in Section 1.1.

12.6.1 Change of Reactant Concentration,

Reaction Coordinate

In Example 12.2 we assumed, without stating the assump-

tion, that the change inmol fraction ofN2 andO2was so small

that we could ignore it and use the starting values in our

equilibrium calculation.

Example 12.3 How large an error did wemake in Example

12.2, by ignoring the changes in N2 and O2 concentrations at

2000K?

Here we start with 1.00mol of air and let the mols of NO

formed be 2x. Then the remaining unreacted mols of N2 and

O2 at equilibrium will be (0.78� x) and (0.21� x) (see

Eq. 12.I). Substituting these values in Eq. 12.L we have

½2x�2 ¼ 4:0� 10�4 � ½0:78�x� � ½0:21�x� ð12:PÞ
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This quadratic equation has roots x¼ 0.0040 and x¼
�0.0041. The negative root is meaningless. The calculated

NO concentration is 2x¼ 0.0080¼ 8000 ppm, 99% of the

value computed in Example 12.2. &

The source of the Gibbs energy values used to compute

K2000 K inExamples12.2and12.3 [6]claimsanaccuracyofno

more than �5%, so for this problem, taking the change in

reactant concentration into account makes a smaller percent-

age change in the answer than the uncertainty in the equilib-

rium constant. However, in principle, this should be a better

estimate, and for other reactions in which there are major

changes from the original reactant concentration, we must

take such changes into account. The most easily understood

approach is that shown above, in which we implicitly chose

one mol of initially reacting mixture, and allowed xmols of

one of the reactants to be formed or to disappear, and then by

material balance wrote the concentration of the other species

present. Then all the concentrations were substituted in the

equilibrium relation, which was solved for x.

A more formal approach defines two new, widely used,

terms

e ¼ reaction

cordinate

� �
¼ some other

names

� �

¼
mols of one selected

reactant consumed or

product produced

0
@

1
A ð12:20Þ

v ¼ stoichiometric

coefficient

� �

¼
mols of one species consumed or

produced per mol of selected species

consumed or produced

0
@

1
A

ð12:21Þ

For Reaction 12.I let us arbitrarily choose oxygen as the

selected reactant. Then we can write

e ¼ noxygen originally present�noxygen ¼ nO2;0�nO2
ð12:QÞ

or

nO2
¼ nO2;0�e ð12:RÞ

and correspondingly

nN2
¼ nN2;0�e ð12:SÞ

nNO ¼ nNO;0 þ 2e ð12:TÞ

Looking back to Example 12.3, we see that the x in that

solution is the same as e. Next we observe that Eqs. 12.R,

12.S, and 12.T can each be written as

ni ¼ ni;0 þ vie ð12:UÞ

where the vi are the stoichiometric coefficients,�1 forO2,�1

for N2, and þ 2 for NO. This makes the meaning of the

stoichiometric coefficient clearer; if Reaction 12.I proceeds

by one mol of the chosen reactant (O2 in this example), then

the number of mols that appear are�1 for O2,�1 for N2, and

þ 2 for NO. The sign convention is that if a mol appears then

the stoichiometric coefficient is positive, and if one disap-

pears it is negative. Inmany reactions, as in this one, there are

several choices for the specified reactant or product on which

to base e. Normally we choose the limiting reactant, the one

that runs out first, which isO2 in this case.We should choose a

reactant or product whose stoichiometric coefficient is þ1 or
�1. Other choices are not wrong, but the following mathe-

matics is correct only for that choice, and other choices lead

to more complex mathematics.

In this example the number ofmols does not change, so the

advantage of the formulation in terms of reaction coordinate

and stoichiometric coefficients is small. Consider again

the reaction for the formation of ammonia:

0:5N2 þ 1:5H2 , NH3 ð12:BÞ

Here we choose NH3 as the specified species, because its

stoichiometric coefficient is 1. Then e is the number of mols

of NH3 produced, and the three stoichiometric coefficients

are �0.5, �1.5, and þ l. If we now write the equation for

the mol fraction of N2 in the mixture at equilibrium, we will

have

yN2
¼ nN2

nN2
þ nH2

þ nNH3

¼ ðnN2;0�0:5eÞ
ðnN2;0�0:5eÞþ ðnH2;0�1:5eÞþ ðnNH3;0 þ eÞ

¼ ðnN2;0 þ vN2
eÞ

ðnN2;0 þ vN2
eÞþ ðnH2;0 þ vH2

eÞþ ðnNH3;0 þ vNH3
eÞ

¼ ðnN2;0 þ vN2
eÞ

nT ;0 þ e
P

vi
� 	 ð12:VÞ

where nT,0 is the initial total number of mols, andP
vi ¼ �0:5�1:5þ 1 ¼ �1 (for every mol of NH3 pro-

duced, the total number of mols decreases by 1.00). If we

assume, for example, that the initial feed was 0.5mols of N2
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and 1.5mols of H2, with no NH3ðnNH3;0 ¼ 0; nT ;0 ¼ 2Þ, then,
at any value of e we will have

yN2
¼ ðnN2;0 þ vN2

eÞ
nT ;0 þ e

P
vi

� 	 ¼ 0:5�0:5e

2�e
ð12:WÞ

yH2
¼ ðnH2;0 þ vH2

eÞ
nT ;0 þ e

P
vi

� 	 ¼ 0:5�1:5e

2�e
ð12:XÞ

yNH3
¼ ðnNH3;0 þ vNH3

eÞ
nT ;0 þ e

P
vi

� 	 ¼ 0þ e

2�e
ð12:YÞ

Figure 12.4 shows how these three mol fractions and the

total number of mols change with increasing reaction. Ob-

serve that we went from a problem with three unknowns,

yNH3
, yN2

and yH2
to one with only one unknown, e. That is a

vast computational improvement.

This is more mathematics than this situation demands, but

for reactions in which the number of mols changes,P
vi 6¼ 0ð Þ, and for multiple reactions the simple, intuitive

approaches may lead us astray and this formal approach

always works. Furthermore, computer process-design pro-

grams formulate their reactor modules in terms of reaction

coordinate and stoichiometric coefficients, so we must un-

derstand this terminology to use those programs.

Example 12.4 Ethanol is made commercially by the gas-

phase hydration of ethylene:

C2H4 þH2O , C2H5OH ð12:ZÞ

For this reaction, write the “mass action law” statement on

the assumption that the initial reactor feed has no ethanol and

0.833mols of water per mol of ethylene ðnwater;0 ¼ 0:833;
nethylene;0 ¼ 1; nethanol;0 ¼ 0; nT ;0 ¼ 1:833Þ.

In general, we must have

½aC2H5OH�
½aC2H4

� � ½aH2O�
¼ K ð12:AAÞ

Here again we substitute Eq. 12.18 and assume that we have

an ideal solution of ideal gases for which f̂i ¼ 1:00 and that
for each reactant or product f oi ¼ 1 bar so that

aC2H5OH½ �
aC2H4
½ � � aH2O½ � ¼ K ¼

xC2H5OHP

1 bar

� �

xC2H4
P

1 bar

� �
� xH2OP

1 bar

� �

¼ xC2H5OH½ �
xC2H4
½ � � xH2O½ � �

1 bar

P

ð12:ABÞ

Here the stoichiometric coefficients are�1,�1, and þ 1, so

that
P

vi
¼ �1 and

0þ e

1:833�e

� �

1�e

1:833�e

� �
� 0:833�e

1:833�e

� � ¼ K � P

1 bar
& ð12:ACÞ

Industrially, the reactor feeds are thousands of mols per

hour. If we multiply the 0, 1, 0.833, 1.833, and e in this

equation by any number, we find this ratio unchanged. The

common approach of choosing onemol of one reactant as the

basis for equilibrium calculations gives the right equilibrium

mol fractions, independent of the actual flow rates of reac-

tants (at the same ratios, one to another!).

Example 12.5 For ideal gases at 25�C¼ 298K, the calcu-

lated equilibrium constant (based on Table A.8) for Reaction

12.Z is K¼ 29.6. If water, ethylene, and ethanol are in

equilibrium at 1 bar and 298K with the same feed ratios as

in Example 12.4, what are the concentrations of reactants and

products?

Equation 12.AB, withK¼ 29.6 and (P/l bar)¼ 1.00 could

be solved analytically as a quadratic equation, but most of

us can solve it faster (and more reliably) numerically, using

our computers, finding e¼ 0.732 (and a meaningless root,

e¼ 1.101). Then

yethanol ¼ 0þ e

1:833�e

� �
¼ 0þ 0:732

1:833�0:732

� �
¼ 0:664

ð12:ADÞ

and similarly, yethylene ¼ 0:244 and ywater ¼ 0:092. &
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FIGURE 12.4 Changes inmol fractions and total number of mols

with increase in the reaction coordinate.
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This reaction does not proceed at commercially useful

rates at these low temperatures. Commercially, it is carried

out over a catalyst at �265�C and 70 atm [7] (see Problem

12.26).

12.6.2 Reversible and Irreversible Reactions

In principle, all chemical reactions are reversible; if we wait

long enough they come to some equilibrium state at which

some amount of reactants are in equilibrium with some

amount of products. However, as the following example

shows, in practice, some reactions seem irreversible, with

practically complete consumption of the reactants.

Example 12.6 Compute the equilibrium concentration of

hydrogen and oxygen to be expected when hydrogen and

oxygen react to form water, at 25�C and 1 bar by

H2 þ 0:5O2 , H2O ð12:AEÞ

Using values of the Gibbs energies of formation in

Table A.8 we have

Dgo ¼ goH2O
�0:5goO2

�goH2
¼ ð�237:1Þ�0:5 � 0�0

¼ �237:1
kJ

mol

and

K ¼ exp

 
�Dg�

RT

!
¼ exp

�
 
�237; 100

J

mol

!

8:314
J

mol K
� 298:15 K

2
666664

3
777775

¼ 3:5� 1041 ¼ aH2O½ �
aH2
½ � � aO2

½ �0:5 ð12:A:GÞ

Substituting for the activities fromEq. 12.18, and simplifying

we find

K ¼ 3:8� 1041 ¼ yH2O½ �
yH2
½ � � yO2

½ �0:5 � 1 bar

P

� �0:5

ð12:AHÞ

Choosing oxygen as the selected reactant, and assuming that

we begin with 0.5mols of oxygen and 1.0mol of hydrogen,

we have stoichiometric coefficients of �1, �0.5, and þ 1,

nT,0¼ 1.5, and
P

vi ¼ �0:5. Thus,

K ¼ 3:8� 1041 ¼
e

1:5�0:5e

h i

1�e

1:5�0:5e

� �
� 0:5�0:5e

1:5�0:5e

� �0:5 ð12:AIÞ

The numerical solution of Eq. 12.AI is e � ð1�2:4� 10�28Þ,
so the final mol fraction of H2 is 2:4� 10�28 and that of

oxygen 0.5 times that value (see Problem 12.13). &

The calculated equilibrium concentration of unreacted

hydrogen is far below the limit of detection by any known

analytical method, so we are safe in calling it zero. If a

reaction consumes all the starting product, we consider it an

irreversible reaction. This reaction, if carried to thermo-

dynamic equilibrium would be such a reaction. Many

combustion reactions have such high values of �Dgoð Þ and
thus such high values of K that at equilibrium they would be

nearly complete and be considered irreversible. Real com-

bustion reactions come close to equilibrium, but are limited

by kinetics. So, in principle, there are no irreversible

reactions, reactions in which none of the reactants remain

at equilibrium. But, in practice, many reactions, mostly

combustion reactions, have such low equilibrium concen-

trations of the original reactants that they appear to be

irreversible.

Figure 12.5 is the equivalent of Figure 12.1, but for a

practically irreversible reaction (Example 12.6). In Figure

12.1 the Dg� of the reaction was small, and the minimum

in the curve fell at x � 0:82, well away from either axis.

With the Dg� of this combustion reaction, Figure 12.5 shows

that the equivalent of the curved g line is practically straight,

except very close to the 1.00 axis, where there exists

a minimum, corresponding to the calculated equilibrium

state.

12.7 MORE ON STANDARD STATES

In some other life, we will all agree on standard states and on

definitions of symbols, and avoid the endless confusion on

these topics. In this life we will have to deal with widely

varying definitions. Table 12.1 shows the most common

definitions of the standards states.

Unfortunately, there is some disagreement among various

published tables of Gibbs energies. Table 12.2 compares the

published values of the Gibbs energy of formation from the

elements, copied from three highly respected sources, for

isobutane, n-butane, and their computed difference. (Note

that these values are in kcal, while the values in Table A.8 are

in kJ; both sets of units are widely used.) The differences are

small, but troublesome. If the problem is important enough,

we can trace the values to their original sources, to see which

is most credible; most often that much time and effort is not

justified (see Problem 12.9).
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Some tables show values for both gas and liquid for

substances that regularly occur as gas and liquid (e.g., water).

If the NPB is higher than 25�C, then the gas is the hypo-

thetical ideal gas at 1 atm and 25�. Water cannot exist as a

pure gas at that T andP, butwe can start with its Gibbs energy

as a liquid and find the Gibbs energy it would have at that

temperature and pressure if it were an ideal gas.

Example 12.7 Estimate the change in g�i for water, going
from liquid at 298.15K and 1 bar to the hypothetical ideal gas

0

–50

At 298.15 K and 1 bar

–100

G
ib

bs
 e

ne
rg

y,
 g

, k
J/

m
ol

–150

–200

–237.1

Vastly enlarged
view of main
figureFraction reacted

  Equilibrium
concentration

–250
0 0.2 0.4 0.6 0.8 1

FIGURE 12.5 g-Fraction reacted diagram for a reaction with a very large, negative, Dg�, which
makes the reaction practically irreversible, in this case the combustion of hydrogen (see Example

12.6). The main plot is practically but not exactly a straight line, but the vast enlargement at the right

shows that in the region very close to 100% reaction, there is a minimum, corresponding to the

equilibrium concentration. Compare this figure to Figure 12.1, which is of the same type, but for a

small value of Dgo of the reaction.

Table 12.1 Most Commonly Used Standard State Definitions

State at Which goi is Measured, Activity

State Normally in kcal/mol or kJ/mol ai ¼ fi=f
o
i

g (gaseous) Pure gas at that pressure at which the fugacity is

1 atm or as a ideal gas at 1 atm or either of these

at 1 bar

fi

f �i
¼ yif̂iP

1 atm or 1 bar

1 (liquid) Pure liquid at a pressure of 1 atm or 1 bar
fi

f oi
¼ xigipi

pi at 25
�C � PF

(PF¼ Poynting factor � 1.00)

c (crystalline) (used for most

solids) or s (solid)

Pure solid at a pressure of 1 atm or 1 bar fi

f �i
¼ same as liquids if pi;solid is measurable,

otherwise
fi

f �i
¼ xi or 1.00 for pure solid

aq (aqueous) The hypothetical aqueous solution with con-

centration of 1.00 molal of the substance. This

applies both to dissolved substances and to ions,

see Chapter 13.

fi

f �i
¼ migi

1 molal

amorph (solids in a noncrystalline

state)

Pure solid at a pressure of 1 atm or 1 bar Same as for crystalline solids

Note. Most sources give these values at 25�C¼ 298.15K� 298K [1, 3]. Same give them at exactly 298.00K. Some use 1 atm pressure, some use 1 bar

(�0.987 atm). Some show the Gibbs energy change of formation from the elements as Dgoi , but the D here leads to confusion with the Dgoreaction.
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as the same T and P. Compare this change to the values from

Table A.8.

We calculate the Gibbs energy change from liquid to

hypothetical gas in three steps:

1. The liquid is reduced in pressure from the standard

pressure of 1 bar to its vapor pressure at 298.15K.

2. The liquid is vaporized at that pressure, for which

Dg ¼ 0 because this is an equilibrium vaporization

(see Chapter 4).

3. The vapor is replaced by an ideal gas, which will not

condense, and compressed from the vapor pressure at

298.15K to 1 bar.

Using the equations from Chapter 7, we find

Dgo ¼ goideal gas�goliquid ¼
ðpvapor at 25�C
1 bar

vliquid dPþ 0

þ
ð1 bar

pvapor at 25�C
videal gas dP

ð12:22Þ

Treating the liquid specific volume as a constant, and repla-

cing the gas specific volume by the ideal gas law and

integrating, we have

Dgo ¼ vliquid � pvapor at 25�C�1 bar
� 	þ 0þRT ln

1 bar

pvapor at 25�C

ð12:23Þ

Dgo ¼ 1:805� 10�5 m3

mol
� ð0:0317 bar�1 barÞ � 105J

m3 � bar

þ 8:314
J

mol K
� 298:15 K � ln 1 bar

0:0317 bar

¼ �1:75þ 8556
J

mol
¼ 8:55

kJ

mol
ð12:AJÞ

From Table A.8 we find

Dgo ¼ �228:6�ð�237:1Þ ¼ 8:5
kJ

mol
& ð12:AKÞ

In Eq. 12.AJ the�1.75 J/mol is the Poynting factor, which

is normally small enough to be ignored here (but not in

Chapter 14). Students will rarely need to make this kind of

calculation, but they need to understand it, because some

tables of the type of Table A.8 show the Gibbs energy of

formation of all substances, even solids, as that of the

hypothetical ideal gas. That appears odd, but has the merit

that we can insert such a table into a general-purpose

computer program and read values for any compound from

it, without any uncertainty as to what standard state is

represented. It might appear that the calculated equilibrium

compositions would depend on which of the standard states

(g) or (l) we choose, but it does not. Changing from one to the

other changes the value ofK, but, as Table 12.1 shows, it also

changes the value of f �i (see Problem 12.17).

While most tables like A.8 are at 25 �C¼ 298.15K, the

widely used JANAF tables for combustion calculations [6]

give Gibbs energy of formation values from the elements at a

wide range of temperatures, in effect defining a new datum

state for each temperature. This works perfectly well if we

understand what the datum state is (see Problem 12.6).

12.8 THE EFFECT OF TEMPERATURE ON

CHEMICAL REACTION EQUILIBRIUM

As discussed in Chapter 7, the values of goi are functions of

temperature alone. Since the equilibrium constants depend

on these values, wewould expect the value of the equilibrium

constant to depend on temperature, and it does. If we take the

ln of both sides of Eq. 12.14 and differentiate with respect to

T, we find

d lnK

dT
¼ d

dT

��Dgo

RT

�
¼ �1

R

d

dT

�
Dho

T
�Dso

�

¼ �1

R

��Dho

T2
þ 1

T

dDho

dT
� dDso

dT

� ð12:24Þ

but the two rightmost terms are equal (because of the relation

between enthalpy change and entropy change) so they can-

cel, and we find the van’t Hoff equation:

d ln K

dT
¼ Dho

RT2
ð12:25Þ

The Dho here, like the Dgo we have been using, is that for the
reaction going 100% to completion, using the h�i (enthalpy of
formation from the elements) from Table A. 8.

Table 12.2 Published Values of the Gibbs Energies of

Formation of n-Bntane and lsobutane at 25�C¼ 298.15K

from Three Highly Respected Sources

Source

go Isobutane

(kcal/mol)

gon-Butane

(kcal/mol)

Dgo ¼
goiso�gonormal

(kcal/mol)

Reid R. C. et al., The

Properties of Liquids

and Gases, ed. 3, p. 643

�4.99 �4.10 �0.89

Lide, D. R. CRC Hand-

book of Chemistry and

Physics, ed. 71, pp. 5–74

�5.00 �4.02 �0.98

Liley, P. E. Perry’s Chem-

ical Engineer’s Hand-

book, ed. 7, pp. 3–148

�4.296 �3.754 �0.542
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If Dho is independent, or practically independent of

temperature, then we can integrate Eq. 12.25, finding

ðT2
T1

d ln K¼ ln
KT2

KT1

¼Dho

R

ðT2
T1

dT

T2
¼Dho

R

1

T1
� 1

T2

� �
ð12:26Þ

which can be rewritten as

lnKT2 ¼ lnKT1 þ
Dho

R
� 1
T1

�Dho

R
� 1
T2

ð12:ALÞ

which we often see as

lnK ¼Aþ B

T
ð12:27Þ

which is the same as Eq. 12.AL if

A¼ ln KT1 þ
Dho

RT1
and B¼�Dho

R
ð12:AMÞ

and T equals the T2 in Eq. 12.AL. Equation 12.27 is the

normal formula for specifying K¼ f(T) in process-design

computer programs; it is widely used and widely seen in the

literature.

However, it is uncommon for Dho to be completely

independent of temperature, so that while Eq. 12.27 is useful

for quick estimates, for the most accurate work we keep Dho
inside the integral, and write

ln
KT2

KT1

¼ 1

R

ð
Dho

T2
dT ð12:28Þ

The relation between Dho and temperature is sketched in

Figure 12.6. From this figure we see that the enthalpy change

of the reaction at T1 is

Dhoat T1 ¼ hoB�hoA ð12:ANÞ

where the A and B subscripts refer to two corners of the

figure. Similarly, at T2

Dhoat T2 ¼ hoD�hoC ð12:AOÞ

By simple energy relations we have

hoC�hoA ¼
ðT2
T1

CP; reactants dT ð12:APÞ

and

hoD�hoB ¼
ðT2
T1

CP; products dT ð12:AQÞ

Summing these four equations we find

Dhoat T2 ¼ Dhoat T1 þ
ðT2
T1

CP; products dT�
ðT2
T1

CP; reactants dT

¼ Dhoat T1 þ
ðT2
T1

ðCP; products�CP; reactantsÞdT

ð12:ARÞ

For most common chemicals the experimental values of

CP have been satisfactorily represented by simple poly-

nomial data-fitting equations of the form

CP ¼ aþ bT þ cT2 þ dT3 ð12:ASÞ

or

CP

R
¼ aþ bT þ cT2 þ d

T2
ð12:ATÞ

Equations 12.ASand 12.AThaveno theoretical basis; they

are simple data-fitting equations. Such equations reproduce the

E
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A

Products

Reactants

T2T1

Temperature, K or ºC

Δhº at T1

Δhº at T2

FIGURE 12.6 Relation between enthalpy and temperature for a

chemical reaction.Here the reaction (fromA toB atT1 or fromC toD

at T2) is endothermic; the enthalpy of the products is greater than that

of the reactants. For an exothermic reaction the enthalpy at B and D

would be less than that at A and C, and the arrows would point down

instead of up. The slopes of the two dotted lines are the CPs of the

reactants or of theproducts. For the slopes shown theenthalpy change

of the reaction is greater atT2 than atT1. If the slopeswere equal, then

the enthalpy change of the reaction would be independent of

temperature. The straight dashed lines correspond to constant CPs,

independent of T. If CP varies with T, then they would be curved.
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experimentalCPmeasurementswithaccuracysatisfactory for

most calculations. In using tables of the constants in such

equationswemust be careful to observewhether theT in these

equations is in K or �C; it makes a big difference. Table A.9

shows the values of the constants for some common sub-

stances, in the form of Eq. 12. AT for temperatures expressed

in K. (Equation 12.AS is normally written as shown, with, for

example, the first constant a having the same dimensions as

CP, which are the same as those of R (J/mol K) or equivalent.

Equation12.ATisnormallypresentedas the ratioCP/R,which

is dimensionless; in Eq. 12.AT the first constant a is dimen-

sionless.Wemay switch fromone form to the other by simply

multiplying or dividing both sides of the equation by R.)

We use Eq. 12.AT for all the following examples. In

Table A.9 all of the entries have only 3 constants, setting

either c or d¼ 0. The tables in [1, 2] use more complex

equations with 5 constants; these are presumably slightly

more accurate than the three-constant equations in TableA.9.

Example 12.8 Estimate the value of the equilibrium con-

stant K for the formation of ammonia from hydrogen and

nitrogen using Reaction 12.B, at 25�C¼ 298.15K and at

400�C¼ 673.15K.

Using the values from Table A.8 we may compute

Dgo298 K ¼ goNH3
�0:5goN2

�1:5goH2

¼ �16:5
kJ

mol
�0:5 � 0�1:5 � 0 ¼ �16:5

kJ

mol

ð12:AUÞ

and

K298 K ¼ exp
�Dgo

RT

� �
¼ exp

� �16; 500
J

mol

� �

8:314
J

mol K
� 298:15 K

2
664

3
775

¼ exp 6:656 ¼ 778 ð12:AVÞ

Then to find the value at any other temperature we must

use Eq. 12.28. From Table A.8 we compute

Dho298K¼hoNH3
�0:5hoN2

�1:5hoH2
¼�46:1

kJ

mol
�0:5�0�1:5 �0

¼�46:1
kJ

mol
ð12:AWÞ

and using the constants from Table A.9 to evaluate

Dhoat some temperature other than 298:15K by Eq. 12.AT, we compute

CP;products�CP; reactants

� 	¼R DaþDbTþcT2þDd
T2

� �

ð12:AXÞ

where

Da ¼ ðaNH3
�0:5aN2

�1:5aH2
Þ

Db ¼ ðbNH3
�0:5bN2

�1:5bH2
Þ

Dc ¼ ðcNH3
�0:5cN2

�1:5cH2
Þ

Dd ¼ ðdNH3
�0:5dN2

�1:5dH2
Þ

ð12:AYÞ

or, in general,

Da or b;c;d¼ðvkak�viai�vjajÞ; etc: ð12:AZÞ

where the vi are the stoichiometric coefficients of the

reaction.

Combining Eqs. 12.AR, 12.AX, and 12.AY, we find

Dhoat T2 ¼ Dhoat T1 þR

ðT2
T1

�
DaþDbT þDcT2 þ Dd

T2

�
dT

¼ Dhoat T1 þR

�
DaT þ DbT2

2
þ DcT3

3
�Dd

T

�T2

T1

ð12:29Þ

Before we substitute this into Eq. 12.28 it is customary to

insert the upper and lower limits of this integration, and to

group the terms as follows

DhoatT2¼DhoatT1þR

�
DaT2þDbT2

2

2
þDcT3

2

3
�Dd
T2

�

�R

�
DaT1þDbT2

1

2
þDcT3

1

3
�Dd
T1

� ð12:BAÞ

We observe that the terms involving T2 are variable, but that

those involving T1 are not, because for the integration of

Eq. 12.28 we almost always take T1 as the temperature of the

Gibbs energy tables, normally (but not always) 298.15K.

Thus, we rewrite this as

DhoatT2 ¼DhoatT1�IþR DaT2þDbT2
2

2
þDcT3

2

3
�Dd
T2

� �

ð12:BBÞ

where

I¼R DaT1þDbT2
1

2
þDcT3

1

3
�Dd
T1

� �
ð12:BCÞ
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Then we substitute Eq. 12.BB in Eq. 12.28, finding

ln
KT2

KT1

¼ 1

R

ðDhoatT1�IþR

 
DaTþDbT2

2
þDcT3

3
�Dd

T

!

T2
dT

¼
ðT2
T1

 
DhoatT1�I

RT2
þDa

T
þDb

2
þDcT

3
�Dd
T3

!
dT

¼
 
�ðDh�

atT1
�IÞ

RT
þDalnTþDbT

2
þDcT2

6
þ Dd
2T2

!T2
T1

ð12:BDÞ

(Here we dropped the subscripts on T2 because it is in the

upper limit of the integration.) Remember that this is a

combination of the rigorous van’t Hoff equation (Eq. 12.25)

with the approximate data fitting equation, Eq. 12.AT, taken

three times.

Wenext look up the appropriatevalues fromTableA.9 and

make up Table 12.3. With these values we can evaluate I:

I ¼ 8:314
J

mol K

"
ð�2:9355Þ � 298:15 K

þ 2:0905� 10�3 � 298:152

2
K

þ 0� 298:153

2
K�ð�0:3305� 105Þ

298:15
K

3
5

¼ �5582
J

mol
ð12:BEÞ

and then

ln
K673:15 K

K298:15 K

¼ �
�46; 100�ð�5582Þ J

mol

8:314
J

mol K
T

2
6664

þð�2:967Þ ln T þ 2:0905� 10�3T

2

þ 0 þ ð�0:3305� 105Þ
2T2

3
5
673:15 K

298:15 K

¼ �11:209�ð�0:260Þ ¼ �10:95 ð12:BFÞ

K673:15 K ¼ K298:15 K expð�10:95Þ ¼ 778 � 1:76� 10�5

¼ 0:0137 & ð12:BGÞ

This calculation is tedious, but once it is programmed into

a computer, we can easily run out the values for any tem-

perature. That has been done for a variety of reactions, with

the results presented in Figure 12.7. The reader may verify

that, within chart reading accuracy, it shows the values of K

computed in the above example at 25 and 400�C. If we have
all the necessary data (whichwe do for all reactions involving

all common chemicals) and have the time to program them

(or have a preprogrammed computer package) then this is the

most reliable method of calculating the effect of temperature

on equilibrium constants. The procedure is rigorous and the

results are as reliable as are the input data (and the accuracy of

the empirical data-fitting heat capacity equations).

We can gain some insight into the previous example and

into Figure 12.7 by reconsideringEq. 12.25. The curvature on

Figure 12.7 is due to the change in Dho=T2 with temperature.

If the effects of temperature on Dho are zero or negligible,

then the integration of Eq. 12.25 becomes simple, with

Eq. 12.26 as the result. For this assumption, a plot of ln K

vs. (1/T) should form a straight line. Figure 12.8 shows a plot

like Figure 12.7 for a variety of reactions on ln K vs. 1/T

coordinates. The resulting curves are much closer to straight

than those in Figure 12.7, but most show some modest

curvature, indicating that Dh� does change modestly with

temperature for most chemical reactions. But this plot shows

that the curvature of the lines in Figure 12.7 is mostly due to

the T2 in the denominator of the integrand, and much less

caused by the change in Dho with temperature. Figure 12.8

does not show the ammonia reaction, but (see Problem 12.19)

we can show that if we estimate K673.15 K from Eq. 12.26,

starting from K298.15 K the resulting estimate is about 2.1

times the value calculated above; for some problems this

would be a satisfactory estimate.

As Figures 12.7 and 12.8 make clear, for some reactions,

increasing T increases K while for others it reduces K.

Equation 12.25 shows that which of these occurs depends

on the sign of the heat of the reaction Dho. If this is positive
(an endothermic reaction), then increasing T increases K;

if it is negative (exothermic reaction), then increasing T

reduces K. The larger the absolute value of Dho, the larger
the rate of increase or decrease of K with a change in T. If

there were a reaction with Dho ¼ 0, its value of K would be

independent of T. This can be seen in terms of LeChatelier’s

principle that nature opposes what wewant to do. If we heat

Table 12.3 Values from Table A.9 for This Example

a

103b

(1/K)

106c

(1/K2) 10�5d(K2)

NH3 3.578 3.020 0 �0.186

H2 3.249 0.422 0 0.083

N2 3.280 0.593 0 0.040

D¼ (NH3�
0.5N2� 1.5H2)

�2.935 2.0905 0 �0.3305
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any reaction, then the equilibrium will move the system in

the heat-absorbing direction making it harder to raise the

system temperature, and conversely a heat-producing re-

action will move in the heat-releasing direction, making it

harder to lower the system temperature.

Using the values of K from Examples 12.8 and Table A.9,

we may estimate the effect of changes in temperature on the

composition at equilibrium.

Example 12.9 Estimate the equilibrium conversion of a

mixture of 1.5mol H2 and 0.5mol of N2 to NH3 at 1 bar

pressure at temperatures of 298.15K and 400�C¼ 673.15K.

We start with Eq. 12.14. For a pressure of 1 bar, with the

assumption of ideal solution of ideal gases and standard state

fugacities of 1 bar,

ai ¼ fi

f �i

� �
� Pyi

1 bar

� �
� yi ð12:BHÞ

Then we substitute Eqs. 12.W through 12.Y in the equili-

brium relation, finding

yNH3
½ �

yN2
½ �0:5 � yH2

½ �1:5 ¼ K ¼
0þ e

2�e

0:5�0:5 � e
2�e

� �0:5
� 1:5�1:5 � e

2�e

� �1:5

ð12:BIÞ

From Example 12.8 we know that K25�C¼298:15 K ¼ 778 and

K400�C¼673:15 K ¼ 0:0137. The numerical solutions to Eq.

12.BI for these two values of K are e298:15 ¼ 0:97 and

e673:15 ¼ 0:0088. The corresponding mol fractions of NH3 in

the equilibrium mixture (see Eq. 12.Y) are 94 and 0.44%. &

From these values it is clear that if we could reach

equilibrium at 1 atm and room temperature, we would

have almost complete conversion to NH3; the equilibrium

is very favorable for the reaction. Alas, the reaction rate at

this temperature is �0, and no catalyst is known that will

make the reaction go at temperatures below about 300�C.
(Fame and fortune await the student who can find one!)

Most industrial ammonia synthesis reactors operate in the

temperature range 350–520�C, at which the rates of the

reaction are satisfactorily rapid (in the presence of a catalyst).

At this temperature and 1 atm the calculated equilibrium

concentration of ammonia is small enough to make the

reaction completely impractical. Industrially, the reaction is

conducted at high pressures, as discussed below.

This is an exothermic (heat-producing) reaction (Dho is
negative). From Eq. 12.25 it is clear that for any exo-

thermic reaction increasing the temperature lowers the

value of K. Many industrially significant chemical reac-

tions are exothermic, so this means that much of the time,

when we raise the temperature to make the reaction go at
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industrially useful rates, we lower the equilibrium con-

version. It would make you believe in the perversity of

nature! The effect of changes in temperature on equilib-

rium concentration discussed in this section are the same,

both in theory and in practice, whether the reactions

involve solids, liquids, or gases. The same is not true for

the effect of pressure on equilibrium, discussed in the next

section.

12.9 THE EFFECT OF PRESSURE ON CHEMICAL

REACTION EQUILIBRIUM

The value of the equilibrium constant K does not depend on

the pressure, because the standard state Gibbs energies do

not. However, the fugacities that appear in the law of mass

action do depend on pressure. We show this effect by

returning to Eq. 12.14, writing out the individual fugacities
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in the form used in Chapter 8 (Eq. 8.9), and writing the f oi as

1 bar. We find

K ¼

fNH3

f oNH3

" #

fN2

f oN2

" #0:5
� fH2

f oH2

" #1:5 ¼
ðyf̂ÞNH3

P

1 bar

" #

ðyf̂ÞN2
P

1 bar

" #0:5
� ðyf̂ÞH2

P

1 bar

" #1:5

ð12:30Þ

We next factor the term on the right to have

K ¼ ðbarÞ1:5þ 0:5�1 � yNH3
P

ðyN2
PÞ0:5 � ðyH2

PÞ1:5 � f̂NH3

ðf̂N2
Þ0:5 � ðf̂H2

Þ1:5
ð12:31Þ

Then we define two terms,

Kp ¼ yNH3
P

ðyN2
PÞ0:5 � ðyH2

PÞ1:5 ð12:32Þ

and

Kf̂ ¼ f̂NH3

ðf̂N2
Þ0:5 � ðf̂H2

Þ1:5 ð12:33Þ

so that

K ¼ ðbarÞð1:5þ 0:5�1Þ �Kp �Kf̂ ð12:34Þ

What did this buy us? We know that K is independent of

pressure. Kp and Kf̂ are both pressure dependent in some

cases. The ðbarÞð1:5þ 0:5�1Þ
term is simply accounting for

the dimensions of our answers. By writing out K in this way

we can consider various cases easily.

12.9.1 Ideal Solution of Ideal Gases

If all the reactants and products behave as ideal gases, then

Kf̂ ¼ 1:00, and Eq. 12.30 simplifies to

K ¼ ðbarÞð1:5þ 0:5�1Þ � yNH3
P

ðyN2
PÞ0:5 � ðyH2

PÞ1:5
ideal solution of ideal gases½ �

ð12:BJÞ

Logic suggests that we should factor this to the form shown

in Eq. 12.BK, but the form show in Eq. 12.BJ, in terms of

partial pressures, is the form most often seen.

If the number ofmols does not change in the reaction, then

changing the pressure will not change the equilibrium

concentrations. However, if the number of mols changes,

then the reaction can be driven in one direction or the other

by changing the pressure. We can see this by rearranging

Eq. 12.BJ to

K
P

1 bar

� �ð1:5þ 0:5�1Þ
¼ K

P

1 bar

� � �
P

við Þ
¼ yNH3

y0:5N2
� y1:5H2

ð12:BKÞ

We see that if
P

vi is zero (no change in number of mols),

then the P term is raised to the zero power,¼ 1.00, and

changing the pressures does not change the equilibrium

concentrations. But if, as in this case,
P

vi ¼ �1, then the

term on the left is proportional to the pressure to the þ 1

power. Thus, if the number of mols decreases as the reaction

proceeds, then we can drive the reaction in the forward

direction by increasing the pressure.

Example 12.10 Modern large ammonia plants mostly

carry out the ammonia production reaction at about 400�C
and 150 atm pressure. Estimate the equilibrium conversion at

these conditions, assuming that all reactants and products

behave as ideal gases.

Comparing this example with Example 12.9, we see that

we can use the same equation, but that in place of K673:15 K

we use

K
P

1bar

� �ð1:5þ0:5�1Þ
¼ 0:0137 � 150atm

1bar
� 1:013bar

atm

� �
¼ 2:08

ð12:BLÞ

Solving Eq. 12.BI with this value of the constant we find

e673;15K;150 atm ¼ 0:48 and an NH3mol fraction in the gas of

� 0:316. &

In this reaction twomols of reactants combine to form one

mol of product. That leads to the (P/bar) term. Physically, it

means that as the pressure is increased, the system can lower

its Gibbs energy by decreasing the number of mols of gas, so

the equilibrium is shifted in the direction of the smaller

number of mols. If wewished to make the reaction operate in

the opposite direction, we would choose as low a pressure as

practical, because that would shift the equilibrium in the

opposite direction. That is exactly what is done in some fuel-

cell power plants. The fuel is stored as liquid ammonia and

then brought to equilibrium over a catalyst at high temper-

ature and 1 atm pressure. The H2�N2 mixture (plus small

amounts of NH3) passes to the fuel cell in which the H2 reacts

with O2 to produce electricity. (It is often cheaper and safer to

store and transport hydrogen as liquid ammonia and disso-

ciate it when needed than to store and transport gaseous or

liquid hydrogen.)
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12.9.2 Nonideal Solution, Nonideal Gases

For high-pressure gas reactions, like the ammonia synthesis

reaction, the Kf̂ term is often important. If we retain it, then

we would rewrite Eq. 12.34 as

K

Kf̂

P

1 bar

� � �
P

við Þ
¼ yNH3

y0:5N2
� y1:5H2

ð12:BMÞ

We rarely have data on gas-phase nonideality, so we

normally make the L-R assumption (an ideal solution of

nonideal gases, Section 8.6.2), f̂i ¼ fi, changing Kf̂ to Kf.

Gillespie and Beattie [8] computed this parameter for the

ammonia synthesis reaction, representing the specific vol-

ume of the various gases by the Beattie–Bridgeman EOS.

They presented their results in the form

log
1

Kf

� �
¼ 0:1191849

T
þ 91:87212

T2
þ 25122730

T4

� �
�P

ð12:BNÞ

for T in K and P in atm. Figure 12.9 shows this function.

We see that at low pressures, as the behavior of the gases

becomes practically ideal, Kf ! 1:00. Kf becomes smaller

with increasing pressure and decreasing temperature, as the

compressibility factor of ammonia becomes smaller and

smaller. These values reflect both the fact that the fugacity

coefficient of ammonia is decreasing with increasing P and

decreasing T and the fact (see Figure 7.1) that at these

temperatures the fugacity coefficients of N2 and H2 are

>1.00.

Example 12.11 Repeat Example 12.10, taking into ac-

count the nonideal gas behavior of the reactants and products.

Combining Eqs. 12.30 and 12.BM, we find

K

Kf
� P

1 bar

� �ð1:5þ 0:5�1Þ
¼ yNH3

y0:5N2
� y1:5H2

¼
0þ e

2�e

0:5�0:5 � e
2�e

� �0:5
� 1:5�1:5 � e

2�e

� �1:5 ð12:BOÞ

Then, from Eq. 12.BN (or Figure 12.9 if we can read

it well enough), we find Kf ¼ 0:84 and

K

Kf
� P

1 bar

� �ð1:5þ 0:5�1Þ
¼ 0:0137

0:84
150 � 1:013½ � ¼ 2:48

ð12:BPÞ

Inserting this value in Eq. 12.BO and solving numerically, we

find e673:15 K; 150 atm; nonideal gas ¼ 0:51 and an NH3 mol frac-

tion in the gas of � 0:345 &

We see that in this case the nonideal gas behavior increases

the fractional conversion, because the product behaves less

like an ideal gas than do the reactants. The effect is small, but

significant (34.5 vs. 31.6mol% NH3 in the equilibrium gas).

This same calculation has been carried out for a variety of

temperatures and pressures; the results are summarized

in Figure 12.10. The reader may verify that (within chart-
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FIGURE 12.9 Kf for the ammonia synthesis reaction, calculated from Eq. 12.BN. (From Hougen,

O. A., K.M.Watson, and R. A. Ragatz.Chemical Process Principles, Part II: Thermodynamics, ed. 2.

� 1959, New York: Wiley, p. 1009. Reprinted by permission of the estate of O. A. Hougen.)
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reading accuracy) this calculation and that figure agree. Such

plots are available for a variety of gas-phase reactions.

12.9.3 Liquids and Solids

The effect of pressure on equilibrium concentration is large

for gases, if the number of mols changes in the reaction or if

one of the reactants or products behaves much more non-

ideally than the others. The effect of pressure on equilibrium

concentration for liquids and solids is small. We may think

about this by remembering the derivative

dg

dP

� �
T

¼ v ð4:32Þ

which shows that for gases that have large values of themolar

(or specific) volume, changing P makes a large change in g,

while for liquids and solids, which have small values of the

molar volume, the effect is much smaller (typically smaller

by a factor of 500 to 1000).

Example 12.12 Estimate the effect of a pressure increase

from 1 to 150 atm at 25�C on the equilibrium concentration

of the liquid-phase production of ethyl acetate

C2H5OH
etahnol

þ CH3COOH
acetic acid

,C2H5OOCCH3
ethyl acetate

þH2O
water

ð12:BQÞ

The physical properties for these chemicals at 20�C [1,

pp. 2–28] are shown in Table 12.4. Ignoring the difference

between 20 and 25�C, we can use the values in Table A.8 to

compute that Dgo ¼ 10:54kJ/mol and thus K¼ 0:0142.
Choosing ethanol as the selected reactant, and assuming

that we start with one mol each of ethanol and acetic acid,

we have

K¼ aethyl acetate �awater
aethanol �aacetic acid ¼

xethyl acetate �xwater
xethanol �xacetic acid ¼

e �e
ð1�eÞ �ð1�eÞ

ð12:BRÞ

where we have assumed that at the same conditions as the

standard states (1 bar, 25�C) the activities are equal to the

mol fractions. (This assumes ideal solution behavior,

which is not likely to be exactly correct, but is not

important for this example.) The solution of Eq. 12.BR,

for K¼ 0.0142 is e¼ 0.106 and the equilibrium mol

fractions of ethyl acetate and water are each

x¼ e=2¼ 0:053.
To see the effect of changing the pressurewe first compute

from the above table that the volume increase of the

reaction is

Dv ¼ 97:67þ 18:03�58:30�57:20 ¼ 0:20
cm3

mol
ð12:BSÞ

which is about 0.15% of the volume of the reacting mixture.

Thus, from Le Chatelier’s principle, we would expect in-

creasing the pressure to lower the fraction converted, forcing

the reaction in the direction of the reactants, away from the

products. But how much? First write the activity of each of

the four species as

ai ¼ fi

f
�
i

¼ xigipi

pi
� exp v

RT
� ðP�piÞ

h i
ð12:BTÞ

where we have switched standard states to the Raoult’s law

type, so that we can simply follow Example 7.3. The

rightmost term is the Poynting factor. Substituting Eq.

12.BT four times in Eq. 12.BR, again assuming ideal
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FIGURE 12.10 Calculated equilibrium concentration of NH3 for

a variety of temperatures and pressures, starting with a feed that is

75mol%H2 and 25mol%N2. (FromComings, E.W.High Pressure

Technology. New York: McGraw–Hill, p. 410, 1956. Reproduced

with permission of the McGraw-Hill Companies).

Table 12.4 Data for Example 12.12

Molecular

Weight (g/mol)

Density at

20�C (g/mL)

Molar Volume

(mL/mol)

Ethanol 46 0.789 58.30

Acetic acid 60 1.049 57.20

Ethyl acetate 88 0.901 97.67

Water 18 0.9985 18.03
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solution so that all the gis¼ 1.00, and simplifying algebra-

ically, we have

K ¼ aethyl acetate �awater
aethanol �aacetic acid ¼

xethyl acetate �xwater
xethanol �xacetic acid

�exp
P

productsv�
P

reactantsv
� �

RT
� ðP�piÞ

2
4

3
5

¼ e �e
ð1�eÞ �ð1�eÞ

�exp
P

productsv�
P

reactantsv
� �

RT
� ðP�piÞ

2
4

3
5 ð12:BUÞ

where the exp term is the Poynting factor for the reaction.

Its numerical value is

exp

P
productsv�

P
reactantsv

� �
RT

� ðP�piÞ
2
4

3
5

¼ exp
0:20cm3=mol

82:06
cm3 atm

molK
�298K

� ð150�1Þatm

2
66664

3
77775

¼ exp½0:0012� ¼ 1:0012 ð12:BVÞ

So that

e �e
ð1�eÞ �ð1�eÞ¼

K

exp½1:0012� ¼
0:0142

1:0012
¼ 0:01418

ð12:BWÞ

We do not know the value of K to that many significant

figures, but ignoring that for themoment and solvingwe find

that e is still 0.106, and that if we carry out the calculation to

enough figures, the new value of e is 0.9993 times the

previously calculated value of e. &

Here we have ignored the effect of the pressure change on

the activity coefficients, but fromChapter 9 we can show that

the expected value of that effect is at least an order of

magnitude less than the effect shown here. Comparing this

result to Examples 12.10 and 12.11, we see that for the

gaseous ammonia synthesis reaction raising the pressure

from 1 to 150 atm increased the mol fraction of ammonia

in the exit stream by a factor of 0.345/0.0044� 78. Here it

multiplies it by a factor of 0.9993. The reason, as stated

before, is that for gases the values of v are large, and thus the

effect of changes inP onGibbs energies are significant, while

for liquids and solids the values of v are small, with the result

shown. Only for the highest pressure reactions (e.g., inside

explosions) need we consider the effect of pressure changes

on chemical reaction equilibrium of solids or liquids.

12.10 THE EFFECT OF NONIDEAL SOLUTION

BEHAVIOR

We rarely have data on gas phase nonideality, and normally

simply use the L-R rule. However modern process design

computer programs often compute f̂i using equations of state

for gasmixtures (Chapter 10 andAppendix F), which include

gas-phase nonideality (and thus allowus to compare f̂i tofi).

Only at pressures of hundreds of atmospheres or more do

their values differ substantially.

12.10.1 Liquid-Phase Nonideality

For liquids the situation is different. If we rewrite Eq. 12.30

using the normal definition of activity for the liquid phase,

and considering the reaction n-butane , isobutane, we will

have

K ¼
fisobutane

f oisobutane

� �

fn-butane

f on-butane

� � ¼
ðxgpÞisobutane
pisobutane at To

� �

ðxgpÞn-butane
pn-butane at To

� � ð12:35Þ

in which the K is based on Dgo for the conversion of liquid

n-butane to liquid isobutane at DTo. This would logically be

factored to

K ¼ xisobutane

xn-butane
� gisobutane

gn-butane

� ðp=pat ToÞisobutane
ðp=pat ToÞn-butane

ð12:36Þ

For this reaction the two rightmost ratios (normally calledKg

and the pressure term, which has no common name or

symbol) are both practically 1.00, so this is almost the same

result as in Example 12.1. However, if the reaction of interest

were one in which the liquid-phase nonideality were sub-

stantial, Eq. 12.36 shows how that would be accounted for

(see Problems 12.30 and 12.31).

12.11 OTHER FORMS OF K

The K shown so far is the basic dimensionless K, formulated

in terms of the activities and calculated by Eq. 12.14.Wevery

often see in its place Kp, defined by Eq. 12.32.

Example 12.13 Estimate the value of Kp for the formation

of ammonia at 150 atm and 400�C.
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Using the values from Example 12.11, we know that

K¼ 0.013, Kf ¼ 0:84 so that

Kp ¼ K

Kf
� 1

bar

� � �
P

við Þ
¼ 0:0137

0:84
� 1

bar

� �þ 1

¼ 0:0163

bar

ð12:BXÞ

The basic K is dimensionless, but Kp has dimensions of

pressure to the
P

vi power. &

In Chapter 16 we will see that the biochemical engineers

and biologists use several other definitions of K that seem

useful in their work.

12.12 SUMMARY

1. Chemical reactions are of paramount importance in

chemical and in environmental engineering, and in

every aspect of our daily life.

2. This chapter and this book deal only with equilibrium,

not with the rate of chemical reactions. By using

selective catalystswe can influence the rate of reactions

so that we produce mixtures that are at or near equi-

librium for one reaction, but not for others. Thermo-

dynamics tells us little about that.

3. At true thermodynamic equilibrium, any chemically

reacting mass of matter has taken up the chemical

composition that has the minimum possible Gibbs

energy for that T, P, and starting composition. All that

we do in this chapter is work out the consequences of

this statement.

4. Themost common formulation is in terms of the law of

mass action, which leads to the equilibrium constantK,

stated in terms of the activities and stoichiometric

coefficients of the reactants and products.

5. K is dimensionless, and can be calculated fromDgo and
T. Other forms of K, such as Kp, are widely used; they

are often not dimensionless.

6. For almost all reactions, changingT changesK and thus

changes the equilibrium concentrations.

7. Changing P does not change the value of K. It does

change the values of Kp and Kf.

8. For reactions involving only liquids and solids, chang-

ing P has negligible effect on the equilibrium

concentrations.

9. For gases, if the number of mols changes in the

reaction, then raising the pressure will drive the

reaction in the direction of the decreasing number

of mols, and lowering the pressure will do the

reverse.

10. For nonideal gases, raising the pressure will drive

the reaction in the direction of the reactant(s) or

product(s) with the lowest values of the fugacity

coefficient f̂i.

11. For reactions in the liquid phase,Kf may be important.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (	) on the problem number indicates that

the answer is in Appendix H.

12.1 Show the construction of Figure 12.1, using the

values in Table A.8 and the ideal solution of ideal

gases assumption.

12.2 If there were no Gibbs energy change on mixing

(which there actually always is!)

a. What would Figure 12.1 look like? Show a

simple sketch.

b. What would the equilibrium composition be?

c. How would this be described in terms of the

equilibrium state being the one at which the

forward and backward chemical reaction rates

are equal and opposite?

12.3	 In Example 12.1,

a. What is the value of Dg�?
b. What is the value of g at the equilibrium state?

c. What is the change in g in going from pure

n-butane to the equilibrium state?

d. What is the change in g in going from pure

isobutane to the equilibrium state?

12.4 Some authors write Reaction 12.I as

0:5N2 þ 0:5O2 , NO ð12:BYÞ

Repeat Example 12.2 (for 298.15K only) for this

reaction instead of Reaction 12.I. Clearly, the final

concentrations cannot depend on which of these

forms of expressing the reaction we choose, but

what do the details of the calculation look like?

12.5	 Repeat Example 12.2 (at 2000K only) for a typical

combustion gas, in which the N2 content is the

same as in Example 12.2, but the O2 content is

typically 4%.

12.6 For reactions at temperatures other than 298.15K

we cannot directly use the goformation from the elements at 298:15

values from Table A.8, but must use the methods

shown in Section 12.8. This is not particularly

difficult with our computers, but before the computer

age it was a giant pain. To simplify this problem, the
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JANAF tables [6] computed those values for the

common gases, and then presented them as

goformation from the elements at temperatureT . This is equiva-

lent to taking the Gibbs energy of the elements as

zero at all temperatures, which is equivalent to using

a different standard state for each temperature.

Using this basis, at 2000K, we have the values in

Table 12.5. These values were used in Example 12.2

and should be used for the high-temperature gas

reaction problems in this chapter. See also Problem

12.28. Observe that these values are in kcal, not kJ.

Using Table 12.5,

a. Show the calculation of the equilibrium constant

in Example 12.2.

b. Estimate the equilibrium concentration ofNO2 in

air at 2000K. The overall reaction is

N2 þ 2O2 , 2NO2 ð12:BZÞ
(b-1)Assume that it proceeds as shown inEq. 12.BZ.

(b-2) Assume that it actually proceeds by Eq. 12.I,

followed by

NOþ 0:5O2 , NO2 ð12:CAÞ
and that the equilibrium NO concentration is that

found in Example 12.2. This latter is the principal

mechanism for forming NO2.

12.7	 Estimate the values of the equilibrium constant K at

25�C for the following reactions, assuming that all

the reactants and products are ideal gases:

a. C2H6 , C2H4 þH2 (12.CB)

b. C2H4 þH2O , C2H5OH (12.CC)

c. Discuss theeconomic significanceof these reactions.

12.8 In theprecedingproblemyouestimated thevalueofK

for Reaction 12.CB at 25�C. Estimate the value of K

for that reactionat1100K.For thisproblem,butnot in

real life, youmay assume thatDho for this reaction is
independent of temperature. (This reaction, one of

the principal industrial sources of ethylene, is nor-

mally conducted at about 1100K.)

12.9 Table 12.2 shows the reported values of the Gibbs

energies of isobutane and n-butane from three

sources. Based on that table, estimate the value of

K and the mol fraction of isobutane in the equili-

brium mix, both at 298.15K and 1 bar, for each of

these three sets of values. Assume that at this con-

dition isobutane and n-butane form an ideal solution

of ideal gases.

12.10 Repeat Example 12.3 for a typical combustion gas, in

which xoxygen � 0:04 ¼ 4%. See Problem 12.5.

12.11 Repeat Example 12.4 for the following reactions:

a. Reaction 12.G

b. Reaction 12.BZ

c. 12.CA.

In each case assume that the initial reacting mix

is stoiciometrically balanced, contains none of the

final products, and that the reactants and products are

all ideal gases. Do not assume that P¼ 1.00 bar.

12.12 Show the solution (both roots) for e in Example 12.5.

Does the other root have any significance?

12.13 Show the numerical solution of Eq. 12.AI in Exam-

ple 12.6. Most spreadsheets will not solve this

directly because the exponent is beyond their per-

mitted range. If we substitute e � 1:00 in that equa-
tion and simplify, we find an equation with an

analytical solution, leading to the stated result.

12.14 Figure 12.5 shows that as the fraction reacted ap-

proaches 1.00 there is a minimum in the g-fraction

reacted plot. If, as shown, the value of g for 100%

completion is�237.1 kJ/kg, what is the value of g at

the minimum?

12.15 Estimate the change in theGibbs energy of formation

from the elements when we switched from tables

with standard state ofP¼ l atm toP¼ l bar. Show the

results for

a. A solid like sodium chloride.

b. A liquid like water.

c. An ideal gas in which the number of mols does

not change on formation (e.g., NO).

d. An ideal gas in which the number of mols does

change on formation (e.g., NO2).

12.16	 Repeat Example 12.7 for ethanol. Compare your

result to the values in Table A.8.

12.17 In Problem 12.7 you computed the equilibrium

constant K for Reaction 12.CC on the assumption

that all reactants and products were ideal gases.

a. Repeat that calculation using the value of gowater
for liquid water from Table A.8. Is K the same as

that calculated in Problem 12.7? Should it be?

Table 12.5 Gibbs Energy of Formation of Some Gases at

2000K, Based on the JANAF Tables [6]

Element or

Compound

ho of Formation from the

Elements, at this

T (kcal/mol)

go of Formation

from the

Elements, at this

T (kcal/mol)

N2 0 0

NO 21.626 15.548

NO2 7.908 38.002

O2 0 0
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b. Show the equation equivalent to Eq. 12.AB

that goes with this value of K. Is it the same as

Eq. 12.AB? Should it be?

c. Discuss the real? or apparent? difficulty caused

by this change in standard states.

12.18 The table of thermodynamic properties [2] presents

the standard enthalpies and Gibbs energies of forma-

tion for allmaterials as that of an ideal gas at 298.15K

and 1 atm. That table does not include common solid

minerals like NaCl, CaCO3, diamonds, or graphite.

What difficulties might we encounter while attempt-

ing to insert these materials in that table?

12.19 Example 12.8 estimates the effect of temperature

change on K for the ammonia synthesis reaction,

taking the effect of change in Dho into account.

a. EstimateK673.15K for this reaction, assuming that

Dho is a constant (i.e., using Eq. 12.26) and the

Dho for this reaction at 293.15K.

b. Estimate the value of Dho for this reaction at

673.15K.

c. Repeat part (a) using the average of the Dho at

298.15K and 673.15K.

d. Compare the results of parts (a) and (c) with the

result in Example 12.8.

e. Sketch the equivalent of Figure 12.6 for this

reaction.

12.20 Repeat Example 12.8, also at 673.15K, for Reaction

12.I and compare the results with Figure 12.8.

12.21	 In Figure 12.8 the curve for Reaction 12.I is

practically straight.

a. Based on that fact, estimate the value of Dho for
this reaction from Figure 12.8.

b. Estimate the value of Dho for this reaction using

the values in Table A.8. Compare the results to

those from part (a).

c. Based on elementary thermochemistry, explain

why the Dho for this reaction should be practi-

cally independent of temperature.

12.22 For the chemical reaction C3H8 ,
C3H6 þ H2ðpropane , propyleneþ hydrogenÞ
a. Estimate the equilibrium constant K at 298.15K.

b. Estimate the temperature at which the equilirium

constant K¼ 1.00, on the assumption (only a fair

assumption, but suitable for this problem) that

DHo of this reaction is totally independent of

temperature.

12.23 The kinetic theory of gases shows that if we ignore

internal molecular vibrations, (a good assumption at

low temperatures, but not at high) then for ideal

gases, CP/R¼ 2.5 for monatomic gases, 3.5 for

diatomic and 4 for gases with 3 or more atoms,

independent of temperature.

a. If this were rigorously true for real gases, then in

Table A.9, what would the values of a, b, c and d

be? How closely do the values shown therematch

these values? Explain why the match is much

better for some classes of molecules than others.

b. Repeat example 12.8 using these kinetic theory

values of CP/R. How much difference does it

make?

12.24 Examples 12.9, 12.10, and 12.11 all assume that the

starting material is 3mols of H2 and 1mol of N2. In

real ammonia plants the reactor feed always contains

some argon and some CH4, which are practically

inert. Figure 1.1 shows that a small bleed stream

must be taken to remove these. Repeat Example

12.11, assuming that the feed consists of 3mols

of H2, 1mol of N2, 0.22mols of Ar, and 0.22mols

of CH4.

12.25 We regularly see equations for K of the form of

Eq. 12.27. For example, for Reaction 12.B, Frear and

Baber [9] show that for 700 to 1000�F

log Kp ¼ �5:963þ 2740 K

T
ð12:CDÞ

with Kp having dimension atm.

a. Using this equation estimate the values of Kp at

700�F (371�C), 400�C, and 1000�F (537.8�C).
b. Compare them to the values computed in Exam-

ple 12.9 for 400�C, and to values computed the

same way as Example 12.9 for the other two

temperatures.

12.26 Repeat Example 12.5 for the reaction temperature

265�C. At that temperature K � 0:005. As in Ex-

ample 12.5, assume that the feed is 0.833mol of

water per mol of ethylene and that all the reactants

and products are ideal gases. Give the value of e and

the mol fraction of ethanol at equilibrium for

a. P¼ 1.00 atm.

b. P¼ 70 atm.

(The values computed here for ideal gases are sim-

ilar to but not identical to those for real gases [7].)

12.27 In Example 12.12, show the mol fraction of each of

the reactants and products at equilibrium.

12.28 Estimate the Gibbs energy of formation of NO from

the elements at 2000K, based on Tables A.8, and

A.9. Compare that value to the one from the JANAF

tables, shown in Problem 12.6 Are they identical?

Close to one another? Discuss.
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12.29 Many tables, like Table A.8, also show a function

log Kf, with Kf defined by

Kf ¼ exp
�goformation from the elements

R � 298:15 K ð12:37Þ

a. Estimate the values of Kf for ammonia, nitrogen,

and hydrogen.

b. Write the equation for K for the ammonia syn-

thesis reaction (12.B) in terms of Kfi for ammo-

nia, nitrogen, and hydrogen.

c. Using the numerical values from part (a), show

the numerical value of K for the equilibrium

between ammonia, nitrogen, and hydrogen.

12.30 In Eq. 12.36:

a. If the activity coefficient of the product is greater

than the activity coefficient of the reactant, does

that lead to greater conversion of reactant to

product than for ideal solution? Or to lesser

conversion than for ideal solution?

b. If the rightmost term is to be independent of

temperature, what must the two vapor pressure

curves look like on Figure 5.2?

12.31* For the reaction A , B, in the liquid phase at

298.15K, for which the rightmost term in

Eq. 12.36¼ 1.00, what is the mol fraction of A

in the equilibrium liquid:

a. If the liquid forms an ideal solution and K¼ 0.1?

1.00? 10?

b. Same as part (a), all three parts, but the liquids

form a type II solution which obeys the sym-

metrical activity coefficient equation (Eq. 9.I),

with A¼ 1.5.
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13
EQUILIBRIUM IN COMPLEX CHEMICAL REACTIONS

Chapter 12 discussed only single reactions in one phase,

involving only nonionized species. In this chapter we

apply the results of that chapter to more complex equi-

libria. There are no new principles or new ideas in this

chapter, only applications of the principles and ideas from

previous chapters to a new set of more complex problems.

Again, nature minimizes Gibbs energy; all we do here

is estimate the concentrations at which that minimum

occurs.

13.1 REACTIONS INVOLVING IONS

All of the discussion in Chapter 12 applies to reactions

involving ions.

Example 13.1 Estimate the equilibrium concentration of

hydrogen ions (Hþ) and hydroxyl ions (OH�) in equilibrium
with pure water at 25 �C.

Here the reaction is

H2O , Hþ þ OH� ð13:AÞ

Reading the necessary values from Table A.8, we find

Dgo ¼ goHþ þ goOH� � goH2O
¼ 0þ ð�157:29Þ � ð�237:1Þ

¼ 79:81
kJ

mol
ð13:BÞ

K ¼ exp
�Dgo

RT

� �
¼ exp

� 79; 810
J

mol

� �

8:314
J

mol K
� 298:15K

2
664

3
775

¼ 1:04� 10�14

¼
Hþ½ �

1 molal

� �
� OH�½ �
1 molal

� �

awater½ � ð13:CÞ

The activity of any pure liquid at its standard state is 1.00,

and here the water is practically pure and at its standard T

and P, so

Hþ½ �
1 molal

� �
� OH�½ �
1 molal

� �
¼ 1:04� 10�14 � 10�14 &

ð13:DÞ

This is the result given in all elementary chemistry

books, that in water at 25 �C, the product of the hydrogen

ion and hydroxyl ion concentrations, both expressed in

molality (¼mol/kg of solvent)¼ 10�14. For dilute solu-

tions, molality�mol/L¼molarity. In tables like Table A.8,

the standard states of ions are all based on electrochemical

measurements, which can only give values for ion pairs

(e.g., Hþ and OH�), never a direct measurement for one ion

alone. The convention adopted is to take the standard state

Gibbs energy of Hþ, go
Hþ , as 0.0000 at a concentration of

1 molal at 25 �C and 1.00 bar. With that convention, the

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Gibbs energies of all ions can be measured, taking the

standard state for each ion asmi¼ 1 molal, T¼ 25 �C, P¼ 1

bar. This standard-state definition is different from that for

Raoult’s or Henry’s laws (see Tables 8.4 and 12.1). With

this convention, the common definition of the activity

coefficient is that the activity coefficient of any ion at

infinite dilution g1
i ¼ 1.00, which has the unusual property

that in the standard state, mi¼ 1.00, the activity coefficient

is not necessarily¼ 1.00. The observational fact is that for

dilute solutions (including those up to mi¼ 1.00) the gi
� 1.00, so it is common to leave the activity coefficients out

of expressions for the activity of ions in dilute solutions.

However, at high concentrations the activity coefficients of

ions can be significantly different from 1.00. For the rest of

this chapter we will express the activities of dissolved or

ionic species simply as [species] with the understanding

that this is the ((concentration � activity coefficient)/l molal)

and that for dilute solutions the activity coefficient� 1.00.

For dimension-checking purposes this means that we have

multiplied K by (1 molal) to the
P

vi power.

13.2 MULTIPLE REACTIONS

Multiple reactions, in series, in parallel, or both, introduce no

new concepts. Nature minimizes Gibbs energy, regardless of

how many reactions are occurring. As the number or reac-

tions increases, the mathematics and the number of variables

to be accounted for increase.

13.2.1 Sequential Reactions

For sequential reactions we have one or more of the

products of the first reaction serving as a reactant in the

second reaction, and so on. Most dibasic acids dissociate in

two steps:

H2SO4ðaqÞ , HSO�
4 þ Hþ ð13:EÞ

and

HSO�
4 , SO2�

4 þ Hþ ð13:FÞ

Figure 13.1 illustrates the two reactions, showing that a

product from the first reaction (bisulfate ion, HSO�
4 ) is a

reactant for the second, and that both reactions produce

Hþ. The Gibbs energies of formation for all the species in

Eqs. 13.E and 13.F are shown in Table A.8. Using these

values in Eq. 12.14 we find that at 25 �C, KReaction 13.E ¼ 104

andKReaction 13.F¼ 0.010 (Problem13.1). These are normally

described as the first ionization constant or first dissociation

constant, K1, and the second ionization constant or second

dissociation constant, K2.

Example 13.2 If we add one mol of H2SO4 to 1000 g of

water at 25 �C, at equilibriumwhat will be the concentrations

of H2SO4;HSO
�
4 ; SO

2�
4 and Hþ?

Writing Eq. 12.14 twice, inserting the calculated disso-

ciation constants, we find that

K1 ¼ 104 ¼ HSO�
4

� � � Hþ½ �
H2SO4½ � ð13:GÞ

and

K2 ¼ 0:010 ¼ ½SO2�
4 � � Hþ½ �
HSO�

4

� � ð13:HÞ

Weuse the scheme outlined in Section 12.6.1, letting e1 be

the mols of Hþ produced by the first ionization reaction and

e2 that by the second. Then we can write out Table 13.A,

which shows that for Hþ and for HSO�
4 both reactions must

be considered simultaneously to compute the equilibrium.

This formulation in terms of e1 and e2 reduces the number of

unknowns from four to two!

Substituting these values into Eqs. 13.G and 13.H, we

have

K1 ¼ 104 ¼ e1 � e2ð Þ � e1 þ e2ð Þ
ð1� e1Þ ð13:IÞ

and

K2 ¼ 0:010 ¼ ðe2Þ � ðe1 þ e2Þ
ðe1 � e2Þ ð13:JÞ

This set of equations is easily solved numerically, finding

e1¼ 0.9906mol/kg of solvent, e2¼ 0.00988mol/kg of sol-

vent. The corresponding equilibrium concentrations are

shown in Table 13.B. The reader may substitute these values

in Eqs. 13.I and 13.J and verify that these equations are

Table 13.A Concentrations in Sequential Ionization

Mols¼Molality in This Example

H2SO4 1� e1
HSO�

4 e1� e2
SO2�

4 e2
Hþ e1þ e2

H2SO4 HSO4
–

SO4
2–HSO4

–

+ H+

+   H+

⇔

⇔

FIGURE 13.1 Schematic of Reactions 13.E and 13.F.
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satisfied. Because this is a quadratic, it has two roots. The

other set of values that satisfy this equation set, e1¼ 1.000386,

e2¼�1.0202, has no physical meaning. &

We see that at this concentration the first ionization is

practically complete, but that the second is only about 1%

complete. Most of the sulfuric acid placed in this solution

is in the form of HSO�
4 (bisulfate) ion. In this example

we computed the ionization constants from Table A.8

(see Problem 13.1). Most handbooks list the ionization

constants directly, saving us this minor effort (see Problem

13.3 (b)).

13.2.2 Simultaneous Reactions

Example 13.3 Methanol is mostly produced [1,2] by the

simultaneous gas-phase reactions

COþ 2H2 , CH3OH ð12:EÞ

and

CO2 þ 3H2 , CH3OHþ H2O ð13:KÞ

at pressures of about 10 MPa (� 98.9 atm) and �250 �C,
using a copper oxide–zinc oxide catalyst. Although we could

analyze the reaction with these two equations, it is common

to subtract Eq. 12.D from Eq. 13.K, finding

CO2 þ H2 , COþ H2O ð13:LÞ

At equilibrium all three of these reactions must be at equi-

librium, but they are not independent of one another (see

Problem 13.4). For 10MPa and 250 �C (¼ 523.15K)we have

the values in Table 13.C [1, 2] (see Examples 12.9–12.11).

Figure 13.2 shows schematically Reactions 12.D and

13.L, and the linkage between the two via the CO and H2

molecules.

The typical reactor feed (synthesis gas) is 15 mol% CO,

8 mol% CO2, 74 mol% H2, and 3 mol% CH4, which latter is

assumed to be inert in this reaction. Estimate the percent

conversion in each of the two reactions, and the mol percent

methanol at equilibrium.

Let e1¼ the mols of CO reacted and e2¼ the mols of CO2

reacted. Then

yCO ¼ ðnCO;0 þ vCO;1e1 þ vCO2
e2Þ

ðnT ;0 þ e1ð
P

viÞ1 þ e2ð
P

viÞ2Þ

¼ 0:15� 1 � e1 þ 1 � e2
1þ e1ð�2Þ þ e2ð0Þ ¼

0:15� e1 þ e2

1� 2e1

ð13:MÞ

and correspondingly

yH2
¼ ðnH2;0 þ vH2;1e1 þ vH2;2e2Þ

nT ;0 þ e1
P

við Þ1 þ e2
P

við Þ2
� 	 ¼ 0:74� 2e1 � e2

1� 2e1

ð13:NÞ

yCH3OH ¼ nCH3OH;0 þ vCH3OH;1e1 þ vCH3OH;2e2
� 	

nT ;0 þ e1
P

við Þ1 þ e2
P

við Þ2
� 	 ¼ 0þ e1

1� 2e1

ð13:OÞ

yCO2
¼ ðnCO2;0 þ vCO2;1e1 þ vCO2;2e2Þ

nT ;0 þ e1
P

við Þ1 þ e2
P

við Þ2
� 	 ¼ 0:08� e2

1� 2e1

ð13:PÞ

yH2O ¼ ðnH2O;0 þ vH2O;1e1 þ vH2O;2e2Þ
nT ;0 þ e1

P
við Þ1 þ e2

P
við Þ2

� 	 ¼ 0þ e2

1� 2e1
ð13:QÞ

and

K

Kf

P

1 atm

� � �
P

við Þ !
12:D

¼
0þ e1

1� 2e1

0:15� e1 þ e2

1� 2e1

� �
� 0:74� 2e1 � e2

1� 2e1

� �2

¼ 49:9 ð13:RÞ

Table 13.B Solutions to Eqs. 13.I and 13.J

Mols¼Molality in This Example

H2SO4 0.0094

HSO�
4 0.9807

SO2�
4 0.00988

Hþ 1.0004

Table 13.C Values for Example 13.3 at 10 MPa and 250 �C

Reaction 12.E Reaction 13.L

K 0.00164 0.0117P
vi �2 0

Kf 0.32 0.36

K

Kf

P

1 atm

� � �
P

við Þ
49.9 0.032

CO  +   2H2

CO + H2O+  H2

CH3OH

CO2

⇔

⇔

FIGURE 13.2 Schematic of Reactions 12.E and 13.L.
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K

Kf

P

1 atm

� � �
P

við Þ !
13:L

¼
0:15� e1 þ e2

1� 2e1

� �
� 0þ e2

1� 2e1

� �

0:08� e2

1� 2e1

� �
� 0:74� 2e1 � e2

1� 2e1

� �

¼ 0:032 ð13:SÞ

These substitutions in terms of e1 and e2 reduce the number of

unknowns from five to two. The resulting equations can

be simplified algebraically and then solved numerically,

giving e1¼ 0.176, e2¼ 0.038, and yCH3OH
¼ 0.272. &

From this calculation we see the following:

1. The conversion of the CO is almost complete:

mols CO reacted

mols CO fed or produced

� �
¼ 0:176

0:15þ 0:032
¼ 0:967

ð13:TÞ

2. The fractional conversion of the CO2 is less, 0.038/

0.08¼ 0.475.

3. The hydrogen in the feed gas could react with CO and

CO2 not only to form methanol, but also to form

methane (see Section 12.4). If the catalyst facilitated

those reactions in addition to the methanol reactions,

then most of the product would be methane. This

synthesis of methanol (which is widely used industri-

ally) is possible only because materials have been

found that catalyze the methanol reactions at a

temperature low enough that the methane reactions do

not occur.

4. The mathematics of Example 13.3 are longer and

more involved than that of the examples in Chapter 12.

There is no new principle involved, and the equations

are each similar to those in Chapter 12. But as the

number of parallel reactions increases, the amount of

stoichiometric accounting, the number of equations,

and their order in the independent variables increase.

(Eq. 13.S is cubic in both independent variables!) For

this reason systems with large numbers of reactions in

parallel lead to complex computational problems.

Smith and Missen [3] devote a whole book to the

mathematics of solving for the equilibrium state in

systems with many reactions (mostly with many

parallel reactions). For combustion, in which there

are dozens or hundreds of parallel reactions, the

simple hand calculation methods shown here are

practically never used; [3] is mostly devoted to solving

for the equilibrium concentrations in that type of

reaction. Either way, the goal of the calculation is to

find the compositions which corresponds to the min-

imum in the Gibbs energy.

13.2.3 The Charge Balance Calculation Method
and Buffers

In the previous calculations we used e (the extent of the

reaction) as a calculation tool. However in aqueous chem-

istry calculations [4] a different calculation method, “charge

balance,” is more convenient and widely used. We introduce

it here and illustrate its use with examples of buffer

solutions.

Example 13.4 To show the effects of a buffer solution, we

begin with asking the pH at 25 �C of an aqueous solution of

0.1 molal acetic acid (HAc, where Ac stands for the acetate

ion, CH3COO
�). HAc is a weak acid, whose ionization

ðHAcÞ , ½Hþ� þ ½Ac�� at 25 �C is described by

KHAc ¼ 1:76� 10�5 ¼
Hþ

1 molal

� �
� Ac�

1 molal

� �

HAc

1 molal

� � ð13:UÞ

For the rest of this section we drop the [1 molal] denomi-

nators, remembering that concentrations are all expressed in

molality (practically equal to molarity for dilute solutions).

Instead of using the extent of reaction, we ask what species

will be present at equilibrium, excluding H2O, which is

present in excess, finding, for this reaction the species Hþ,
Ac�, HAc and OH�. By electroneutrality, we can write

½Hþ� ¼ ½Ac�� þ ½OH��: ð13:VÞ

We will replace [OH�] by

KW ¼ Hþ½ � � OH�½ � or OH�½ � ¼ KW

½Hþ� ð13:WÞ

Where Kw is the ionization constant for water¼ 10�14 at

room temperature. By conservation of Ac we can say that

ðHAcÞ0 ¼ ðHAcÞ þ ½Ac�� ð13:XÞ

Where (HAc)0 is the amount of HAc introduced into the

solution. Combining this with Eq. 13.U

KHAc ¼ Hþ½ � � Ac�½ �
ðHAcÞ ¼ Hþ½ � � Ac�½ �

ðHAcÞ0 � Ac�½ � or

Ac�½ � ¼ KHAcðHAcÞ0
KHAc þ Hþ½ � ð13:YÞ

We now use Eqs. 13.W and 13.Y to eliminate [Ac�] and
[OH�] from Eq. 13.V, finding

Hþ½ � ¼ KHAcðHAcÞ0
KHAc þ ½Hþ� þ

KW

½Hþ� ð13:ZÞ
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For acid solutions like this one the rightmost term in this

equation is certainly negligible, but for other cases it is not,

so we retain it for now. If we clear fractions and group terms

we find that this is a cubic equation in [Hþ] with the only

other quantities being the two Ks and (HAc)0. With any of

several equation solvers (Goal Seek on Excell) we find

[Hþ]¼ 0.00133 molal, pH¼� log(0.00133)¼ 2.88. Only

about 1.3% of the HAc is ionized. &

We could certainly have done this more easily using

e methods, but as the complexity of the problems grows you

will come to appreciate the benefits of this method. We may

also observe that the term involving Kw contributes less than

10�11 molal to the answer, and could have been safely

ignored in this problem.

Example 13.5 Estimate the pH of the above solution if we

add to it (a) 0.03 mols of HC1, or (b) 0.03 of NaOH.

(a) The charge balance equation becomes

½Hþ� ¼ ½Ac�� þ ½OH�� þ ½Cl�� ð13:AAÞ

HC1 is almost totally ionized in dilute solution (KHCl is

some large number, often written as 1000) so that [Cl�]�
(HCl)0. Inserting this value in the charge balance and

rearranging we find

Hþ½ � ¼ KHAcðHAcÞ0
KHAc þ Hþ½ � þ

Kw

Hþ½ � þ ðHClÞ0 ð13:ABÞ

The numerical solution to this cubic equation is [Hþ]¼
0.0309 molal, pH¼ 1.52.

(b) Adding NaOH instead of HCl makes charge balance

Hþ½ � þ Naþ½ � ¼ Ac�½ � þ OH�½ � ð13:ACÞ

As with HC1 so also with NaOH the ionization is prac-

tically complete, so that we may write [Naþ]� (NaOH)0.

Inserting this value in the charge balance and rearranging,

we find

Hþ½ � ¼ KHAcðHAcÞ0
KHAc þ Hþ½ � þ

Kw

Hþ½ � � ðNaOHÞ0 ð13:ADÞ

The numerical solution to this cubic equation is [Hþ]¼
0.000041 molal, pH¼ 4.38. &

Figure 13.3 shows the three values from these two examples

as part of the curve marked “0.1mol/L HAc.” The reader

may verify that those three values fall on that curve, which

was made by repeating Example 13.5 for a variety of values,

plotting them and drawing a smooth curve through them.

The other curve will be discussed below.

Now we start with the 0.1mol/L solution of HAc and add

0.08 mols of NaAc, creating a buffer solution, whose prop-

erties are also sketched on Figure 13.3.

Example 13.6 Repeat the calculations in Examples 13.4

and 13.5 for the buffer solution described above.

The equilibrium constants are unchanged, and the charge

balance is the same as Eq. 13.AB. NaAc is practically totally

ionized, so that [Naþ]� (NaAc)0. The balance on Ac�

becomes

ðHAcÞ0 þ ðNaAcÞ0 ¼ ðHAcÞ þ ½Ac�� ð13:AEÞ

the analog of Eq. 13.Y becomes

KHAc ¼ Hþ½ � � Ac�½ �
HAcð Þ0 þ ðNaAcÞ0 � ½Ac�� or

Ac�½ � ¼ KHAc HAcð Þ0 þ NaAcð Þ0
� 	
KHAc þ ½Hþ� ð13:AFÞ

and the analog of Eq. 13.Z becomes

Hþ½ � ¼ KHAc HAcð Þ0 þ NaAcð Þ0
� 	
KHAc þ ½Hþ� þ Kw

Hþ½ � ð13:AGÞ

The numerical solution to this cubic equation is [Hþ]¼
2.18� 10�5, pH¼ 4.66. The reader may verify that this is the

value for 0 added HCl or NaOH on the upper curve on

Figure 13.3.

Then, if we add 0.03 mols of HCl, the charge balance

becomes

½Hþ� þ Naþ½ � ¼ Ac�½ � þ OH�½ � þ Cl�½ � ð13:AHÞ

As in the previous example, HC1 is almost totally ionized,

so that [Cl�]� (HCl)0 and Eq. 13.AF becomes

Hþ½ � ¼ KHAc HAcð Þ0 þ NaAcð Þ0
� 	
KHAc þ Hþ½ � þ Kw

Hþ½ � þ ðHClÞ0
ð13:AIÞ

The numerical solution to this cubic equation is [Hþ]
¼ 4.56� 10�5, pH¼ 4.34. The reader may verify that this is

the value for 0.03mol added HCl on the upper curve on

Figure 13.3.
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Finally, if we add 0.03 mols of NaOH instead of HCl, then

by the same procedure we find

Hþ½ � ¼ KHAc HAcð Þ0 þ NaAcð Þ0
� 	
KHAc þ ½Hþ� þ Kw

½Hþ� � NaOHð Þ0
ð13:AJÞ

The numerical solution to this cubic equation is [Hþ]¼
1.11� 10�5, pH¼ 4.95. The readermay verify that this is the

value for 0.03 mols of added NaOH on the upper curve on

Figure 13.3. &

From these calculations and their summary onFigure 13.3we

can say

1. The buffer works by shifting the equilibrium [Hþ]þ
[Ac�], (HAc). If we add HCl or some other acid, the

additional Hþ reacts with Ac� to remove Hþ from

the solution, minimizing the effect of the added acid. If

we add NaOH or some other base, the OH� ions take

Hþ ions out of solution but the HAc supplies additional

Hþ ions, minimizing the effect of the added base.

2. The effect can be dramatic. From the above examples

we see that shifting from 0.03 mols of HCl added to

0.03 mols of NaOH added increases the pH of the

unbuffered acid by (4.38� 1.52¼ 2.86, increasing

[Hþ] by 102.86¼ 724) while the same change for the

buffered solution changes the pH by (4.95� 4.34¼
0.61, increasing [Hþ] by 100,61¼ 4).OnFigure 13.3 the

buffer curve between 0.03 HCl and 0.03 NaOH is

practically flat, while the corresponding curve for the

unbuffered HAc is steep.

3. Figure 13.3 shows that the buffering works well for

acid or base additions up to about half of the amount of

buffering agent (0.08mol/L), but becomes weaker as

the buffering capacity approaches exhaustion.

4. Buffer solutions play little role in large-scale indus-

trial chemistry; they have some uses in laboratory

chemistry. But they play a significant role in biochem-

istry. The reactions in living organisms are very

sensitive to pH; nature provides the buffers to make

those reactions proceed; see Chapter 16. Your body is

using buffer solutions millions of times a second to

regulate the biochemistry that makes your life

possible.

5. Although the charge balance is the quickest and easiest

way to solve this class of problems, it is not the

universal solver. The method shown in Example 13.2

is easiest for that class of problems. (Try that example

by charge balance, you will be impressed!)

0.1 mol/L HAc
0.08 mol/L NaAc

0.1 mol/L HAc

Mols NaOH added Mols HCI added

10

1
0.1 0.10.05 0.050

pH

T = 25ºC = 298.15 K

FIGURE 13.3 Response of an ordinary solution of a weak acid (HAc) and of a buffer solution of

HAc and NaAc to additions of HC1 and of NaOH. Observe the log scale for pH, and the unusual

horizontal coordinate with the values plotted increasing in each direction from zero.
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13.3 REACTIONSWITHMORETHANONE PHASE

All of the previous examples have been for reactions

completely in one phase. However, there is no restriction in

the basic equations in Chapter 12 that says that they must all

be in the same phase, as the following examples show.

13.3.1 Solubility Product

The above discussion also applies to reactions involving ions

and solids.

Example 13.7 Silver chloride is very slightly soluble in

water. The dissolution is believed to follow Eq. 13.AK:

AgClðsÞ , Agþ þ Cl� ð13:AKÞ

This suggests that there are no molecules of solid AgCl

dissolved in the water, but rather the crystalline AgCl that

does enter the liquid phase exists only in the form of these

ions. The data on solubility of slightly soluble salts suggest

that this is the case. Estimate the amount dissolved in

equilibrium with solid AgCl at 25 �C.
Using the values from Table A.8, we find

Dgo ¼ goAgþ þ goCl� � goAgCl

¼ 77:12þ ð�131:26Þ � ð�109:8Þ

¼ 55:66
kJ

mol ð13:ALÞ

K ¼ exp
�Dg�

RT

� �
¼ exp

� 55;660
J

mol

� �

8:314
J

mol K
� 298:15 K

2
664

3
775

¼ 1:77� 10�10 ¼
Agþ½ �

1 molal

� �
� Cl�½ �
1 molal

� �

aAgCl
� �

ð13:AMÞ

For solids f oi is normally taken as the fugacity of the pure

crystalline solid at the temperature of the system (see

Table 12.1). If the solid involved in the reaction is that

pure crystalline solid (which means that the other species

in the system do not dissolve in it to any significant extent at

T � and P�), then the activity of the solid¼ 1.00. This is

almost always assumed in this type of calculation, andwill be

assumed here. Then

Agþ½ �
1molal

� �
� Cl�½ �
1molal

� �
¼ 1:77�10�10¼Ksp¼ solubility

product

� �
&

ð13:ANÞ

This shows the definition of the solubility product. Ex-

tensive tables of solubility products reside in handbooks [5, p.

8–39]. The reported value there for AgCl is 1.77� 10�10.

The fact that this value and the result of the above example are

identical does not prove that they are right. Instead, it shows

that a consistent data set of some kind was used to generate

both the g� values in Table A.8 and the Ksp values in the

corresponding table, calculated exactly as shown in this

example. The point of this example is to show that solubility

product and other quantities regularly used in dilute

aqueous chemistry are computed exactly the same way as

chemical reaction equilibria. (Here we have assumed ideal

solutions of ions,gCl� ¼ gAgþ¼ 1.00. For dilute solutions this

is a good assumption, but for concentrated solutions—those

with a high “ionic strength”—these activity coefficients can

take on values much different from 1.00.)

13.3.2 Gas-Liquid Reactions

Several industrially important gases dissolve in liquids and

then react chemically in the liquids. For carbon dioxide in

water the sequence seems to be

CO2 ðin gasÞ , CO2 ðdissolved in liquidÞ ð13:AOÞ

CO2 ðdissolved in liquidÞ þ H2O , H2CO3 ð13:APÞ

H2CO3 , Hþ þ HCO�
3 ð13:AQÞ

HCO�
3 , Hþ þ CO2�

3 ð13:ARÞ

The sequence for SO2 (see Problem 13.16) seems to be

exactly the same, with all the Cs in the preceding sequence of

reactions replacedbySs. In both cases the pure, undissociated

acid, H2CO3 or H2SO3, does not exist as a pure substance. It

exists only is solution, and if we attempt to concentrate it by

removingwater,Reactions13.AOand13.AP(or their analogs

for SO2) operate in the reverse direction, giving back the gas

and water and destroying the acid. The existence of undisso-

ciated H2CO3 has been inferred by spectroscopic measure-

ments,anditsexistenceseemstobereal [6].However,because

it does not exist in a pure state, thevalues for it inTableA.8 are

based on the convention that

H2CO3ðaqÞ is the same

material as

� �
or

has the same

thermodynamic

properties as

0
@

1
AðCO2ðaqÞ þ H2OðlÞÞ ð13:ASÞ
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and correspondingly for SO2. We may see this from

Table 13.D.

We see that the values shown agree with the convention

in Eq. 13.AS and correspondingly

H2SO3ðaqÞ is the same

material as

� �
or

has the same

thermodynamic

properties as

0
@

1
AðSO2ðaqÞ þ H2OðlÞÞ ð13:ATÞ

The reason for this convention is that when we are

thinking about the gas-liquid equilibrium, we treat it by

Henry’s law, which relates the partial pressure of CO2 or

SO2 in the gas to the concentration of the same material

dissolved in the liquid, while when we are talking about the

ionization reactions we think about the dissolved CO2 or SO2

as the undissociated carbonic or sulfurous acid.

Figure 13.4 shows the overall scheme of these reactions,

without the acid H2CO3 being shown. In this formulation,

the vertical arrow represents the dissolution of CO2 in

water. This is seen as a physical equilibrium (not a chemical

one) and is described by Henry’s law. The two horizontal

arrows represent the first and the second ionizations of

carbonic acid (¼ dissolved CO2þH2O), which are seen as

chemical reactions. Ions have almost no vapor pressure;

they do not exist in the gas phase (except at flame tem-

peratures). The carbon-containing species can leave the

liquid only by forming dissolved CO2, which has a vapor

pressure.

Example 13.8 Estimate the amount of CO2 dissolved and

the concentrations of HCO3
–, CO2�

3 , and Hþ when water is

in equilibrium with atmospheric air, which contain 390 ppm

of CO2 at 1 atm and 20 �C. Assume that air behaves as an

ideal gas and that the liquid and the ions behave as ideal

solutions.

Taking the two ionizations constants from Problem 13.10

and the value of the Henry’s law constant from Table A.3

(and ignoring the difference between 20 and 25 �C), we can
write

½HCO�
3 � � Hþ½ �

½CO2ðaqÞ� ¼ ½HCO�
3 � � ½Hþ�

½H2CO3� ¼ K1 ¼ 4:5� 10�7

ð13:AUÞ

½CO2�
3 � � Hþ½ �

½HCO�
3 �

¼ K2 ¼ 4:7� 10�11 ð13:AVÞ

and

xCO2
¼ PyCO2

H
¼ 1 atm � 390� 10�6

1480 atm
ð13:ANÞ

We can solve these three equations one at a time, finding

xCO2
¼ PyCO2

H
¼ 1 atm � 390� 10�6

1480 atm
¼ 2:63� 10�7

ð13:AXÞ

This gives the mol fraction. The dissociation constants are

based onmolalities as standard states (see Problem 13.10), so

CO2ðaqÞ½ � � xCO2
� 55:6 mol

1000 g of H2O
¼ 2:63� 10�7 � 55:6

¼ 1:47� 10�5 molal ð13:AYÞ

Then we assume that almost all the Hþ comes from the dis-

sociation of dissolved CO2, so

HCO�
3

� � � ½Hþ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 � CO2ðaqÞ½ �

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:5� 10�7 � 1:47� 10�6

p
¼ 2:6� 10�6 molal ð13:AZÞ

Then we compute

CO2�
3

� � ¼ K2

HCO�
3

� �
½Hþ� � K2 ¼ 4:7� 10�11 molal &

ð13:BAÞ

Table 13.D Gibbs Energy and Enthalpy Changes of the

Formation of Carbonic and Sulfurous Acids,

Using Values from Table A.8

Gibbs Energies and Enthalpies (kJ/mol) CO2 SO2

goi (aq) �386.0 �300.7

goi water �237.1 �237.1

goi H2CO3 or H2SO3ðaqÞ �623.1 �537.9

Dg� of Reaction 13.AP or 13.CE 0.0 �0.1�0.0

hoi (aq) �413.8 �323.0

hoi water �285.8 �285.8

hoi H2CO3 or H2SO3 (aq) �699.7 �608.8

Dh� of Reaction 13.AP or 13.CE �0.1� 0.0 0.0

CO2 in gas

CO2 dissolved

Gas

Liquid

HCO3
– CO3

2–+H2O

+ H+ + H+

FIGURE 13.4 Typical representation of the CO2–water

equilibrium.
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From this example we see the following:

1. About 85% of the dissolved CO2 is in the undissociated

form (CO2(aq) or H2CO3). The ratio of

HCO�
3

� �
HCO�

3

� �þ CO2ðaqÞ½ � ¼
2:6� 10�6

2:6� 10�6 þ 1:32� 10�5
¼ 0:15

ð13:BBÞ

(See Problem 13.10.)

2. The contribution of the second dissociation to the total Hþ

concentration is negligible, (4.7� 10�11

� 2.6� 10�6).

3. We normally see the Hþ concentration expressed as

pH ¼ �logðaHþÞ � �log ðmolality ofHþÞ ð13:BCÞ
For dilute solutions, molality�molarity, which is the

way this is most often presented. In this case it is

– log(2.6� 10�6)¼ 5.59, which is the observed pH of rain-

fall (which practically comes to equilibrium with the CO2 in

the atmosphere through which it falls) in unpolluted

environments.

We can shift this equilibrium in either direction bymaking

the water acid or alkaline.

Example 13.9 Repeat Example 13.8 for water that contains

enoughalkali (NaOH) that [Hþ]¼ 10�10molal, (i.e., pH¼ 10).

OurHenry’s lawcalculations (Eqs. 13.AWand13.AX) are

independent of the subsequent fate of the dissolved CO2.

The concentration of dissolved CO2 in equilibrium with the

atomsphere is [CO2]¼ 1.47� 10�5 molal, independent of

that acidity or basicicity of the water. Then

HCO�
3

� � ¼ K1

½CO2ðaqÞ�
½Hþ� ¼ K1

½H2CO3�
½Hþ�

¼ 4:5� 10�7:
1:47� 10�5

10�10

¼ 0:066 molal ð13:BDÞ

and

CO2�
3

� �¼ K2

HCO�
3

� �
Hþ½ � ¼ 4:7� 10�11 0:066

10�10

¼ 0:0310molal & ð13:BEÞ

From this example we see that the dissolved CO2 is 68%

in the form of bicarbonate ion, 32% in the form of

carbonate ion, and 0.01% in the form of CO2(aq). The

total amount of dissolved carbonate species is � 6000

times the amount that exists as dissolved CO2, which

is� the amount that can be dissolved in pure water. This

type of equilibrium is very important industrially. In the

production of ammonia (and many other processes) it is

necessary to remove CO2 from a gas stream that is mostly

H2 (or a mixture of H2 and N2). The general scheme for

removing one component from a gas stream is shown in

Figure 13.5. The solvent used is normally water containing

FIGURE13.5 The general scheme for removing one species from a gas stream. This onlyworks if a

solvent can be found that is selective for the species to be removed. In the case of removing CO2 from a

stream that contains no other acid gases this works quite well with an aqueous solution of any weak

base as the absorbent. (From de Nevers, N. Air Pollution Control Engineering, ed. 2. New York:

McGraw–Hill, p. 362 (2000). Reproduced with permission of the McGraw-Hill Companies.)

REACTIONS WITH MORE THAN ONE PHASE 251



a weak base (monoethanol-amine or potassium carbonate),

which can form an un-ionized salt with carbonate or bicar-

bonate ion. That removes the carbonate or bicarbonate ion,

and drives the equilibria in the direction of absorption of

CO2. In the absorber the P and T are chosen to have the CO2

highly soluble in the absorbing solution. The stripper P and

T are chosen to greatly reduce the CO2 solubility, (normally

a lowerP and/or a higher T than in the absorber) drivingCO2

out of solution, regenerating the solvent and often recov-

ering CO2 as a practically pure gas.

In the scrubbing of combustion gases to remove SO2

there are two acid gases present, SO2 and CO2. The

scrubbing solution is kept acid enough (pH 4 to 6) to

prevent the unwanted absorption of CO2 but not so acid as

to exclude SO2, which forms a stronger acid than does CO2

[7, Chapter 11]. The equilibria discussed in this section

also occur with other gases which react with water.

Edwards et al. [8] show the data and calculation methods

for aqueous solutions of CO2, H2S, HCN, SO2, and NH3,

both dilute and concentrated, taking into account the

nonideal behavior of the solutions, which is ignored in

the above examples. The type of equilibrium discussed

in the previous two examples is widely presented as a plot

like Figure 13.6. Such plots are available for a variety of

systems [9, p. 508]. In Example 13.8 we computed that (at

pH¼ 5.59) HCO�
3 was about 15% of the dissolved carbon-

ate species, CO�2
3 was negligible, and thus� 85% of the

total carbonate species were dissolved CO2, which Fig-

ure 13.6 shows in the alternative form, H2CO3; these are

the values we read from Figure 13.6.

13.4 ELECTROCHEMICAL REACTIONS

Many chemical reactions have large positive Gibbs energy

changes, and hence very low values of the equilibrium

constant; for example,

Al2O3þ1:5C , 2Alþ 1:5CO2 ð13:BFÞ

for which

Dgo298:15K ¼ 2 � 0þ 1:5 � �394:4ð Þ � ð�1582:3Þ � 1:5 � 0

¼ 990:7
kJ

mol

K298:15K ¼ 2:7� 10�174 ð13:BGÞ

The�174 is not a misprint. All of the aluminum in the world

is made by this reaction (the Hall–Heroult process), using

electricity to drive it “up a Gibbs energy hill.” The opposite

side of this coin is the production of electricity by chemical

reactions, such as the reactions in dry cells, lead storage

batteries, and fuel cells, in which chemical reactions with

large decreases in Gibbs energy are used to produce or store

electricity.

Figure 13.7 shows a schematic of a steady flow, isothermal

electrochemical reactor. The steady flow first law statement

(leaving out kinetic, potential, surface, etc. energies) for this

reactor is

0 ¼
X

ð�hi _niÞin �
X

ð�hi _niÞout þ _Q� EI ð13:1Þ

H2CO3

1.0

0.8

0.6

M
O

L
 F

R
A

C
T

IO
N

0.4

0.2

0.0

pH
0             2           4             6            8            10          12           14

HCO3
– CO3

2–

FIGURE 13.6 Distribution among carbonate species in aqueous

solution as a function of pH. In this and similar plots, the vertical

axis, labeled “mol fraction” is actually the fraction by mol of the

total carbonate species, which is in each of the three forms shown.

(From Kohl, A., and R. Nielsen. Gas Purification, ed. 5. Houston,

TX: Gulf, p. 508 (1997)).

Reactants
Electrochemical
Reactor of some
kind at T = const.

Heat, Q, as needed
to keep T constant

Products

Steady-flow

Electric power,
Po = EI

FIGURE 13.7 Schematic of a steady-flow, isothermal, electro-

chemical reactor. The heat flow arrow is two-headed because heat

may flow in or out as needed to hold the temperature constant. The

electric power arrow is shown two-headed because if this is an

electrochemical cell like those that produce metallic aluminum,

then the flow is in, while if it is a fuel cell the electric energy flow is

out, and if it is a storage battery the electric energy flow is in while it

is charging and out while it is discharging. Only one arrow is shown

for reactants or products, but theremaybemultiple flows in or out, or

the flows in and out may be zero, such as for a dry cell battery.
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and the steady-flow second law statement is

0 ¼
X

ð�si _niÞin �
X

ð�si _niÞout þ
_Q

T
þ dSirreversible

dt
ð13:2Þ

If we now restrict our attention to reversible reactors (i.e.,

those that, among other things, operate at chemical equilib-

rium), then we may drop the rightmost term of Eq. 13.2, and

eliminate _Q between the two equations, finding

0 ¼
X

ð�gi _niÞin �
X

ð�gi _niÞout � EI ð 13:3Þ

Comparing this to ordinary chemical reactions we see that

if EI¼ 0, then the Gibbs energy of the outlet streams must be

the same as that of the inlet streams, or D(ni�gi)¼ 0, which we

have been using as the ordinary criterion for chemical

equilibrium. If we solve Eq. 13.3 for E, we find

E ¼
P ð�gi _niÞin �

P ð�gi _niÞout
I

¼ �Dð�gi _niÞ
I

¼ � _eDg
I

ð13:4Þ

where _e is the rate of consumption of the reactant with

v¼�1, or of production of the reactant with v¼þ1.

Next we make use of the experimental fact, demonstrated

by Michael Faraday and sometimes called Faraday’s law,

that 1.00mol of electrons (i.e., 6.02� 1023 electrons)¼
96,500 coulombs, and that I is expressed (in SI) in ampere¼
coulomb/second:

I ¼ ne

mols electrons

transfered

� �

mol reacted
� _e ðmol reactedÞ

s

� 96;500 coulombs

mol electrons
¼ ne _eF ð13:5Þ

F, called Faraday’s constant, is a simple unit conversion

factor, equal to one; we may multiply or divide any quantity

by F without changing its value. However, its use in the

formulae of electrochemistry is almost universal. It will be

used in this book, even though we all know that it is equal to

1.00. ne is the number of mols of electrons transferred for the

reaction as written.

Combining Eqs. 13.4 and 13.5 we find

E ¼
Pð�gi _niÞin �

P
�gi _nið Þout

I
¼ �D �gi _nið Þ

ne _eF
¼ �Dg

neF
ð13:6Þ

which is general for any value of Dg. If we let Dg¼Dg� then
we calculateE¼E�, whereE� is the “standard state voltage,”
corresponding toDg�, the “standardGibbs energy change.” If
we write Eq. 13.6 twice, once for any set of reactant and

product concentrations, and once for reactants and products

all in their standard states, and subtract one from the other, we

find

E � E� ¼ �ðDg� Dg�Þ
neF

¼
�RT In

avii � etc� �
Products

avii � etc� �
Reactants

neF

ð13:7Þ
which is the Nernst equation. We often see this equation

without the minus sign and with the avii � etc� �
Products

=
avii � etc� �

Reactants
term inverted. The standard state voltages are

easily calculated (see Example 13.10) and their values are

widely published. With Eq. 13.7 we can see the effect of

changing concentrations on the reversible (equilibrium)

voltage.

Example 13.10 Estimate the standard state cell voltage for

the production of aluminum (Eq. 13.BF) at 298.15K.

For that reaction aswritten ne¼ 6, and all the reactants and

products enter or leave the reactor as pure species in their

standard states (there are almost no solutions, because the

solubility of CO2 gas in molten Al or solid C is� 0, and the

vapor pressure of Al at 25 �C is� 0), soDg¼Dg� andE¼E�,
the “standard state voltage,” so

E
�
298:15K ¼ �Dg�

neF

¼
�990;700

J

mol

6
mol electrons

mol
�96;500 coulomb

mol electrons

� volt �coulomb

J
¼�1:71V & ð13:BHÞ

Industrially this reaction is carried out at 920–980 �C at

which the equilibrium voltage is �2.23V. To produce alu-

minum at commercially useful rates, voltages about twice this

equilibrium value are used. In addition to Reaction 13.BF,

there is also the reaction

Al2O3 þ 3C , 2Alþ 3CO ð13:BIÞ

which uses up twice as much carbon and has a higher

equilibrium voltage (see Problem 13.22). We would prefer

that this reaction not occur, but industrially 10 to 50% of the

gas produced is CO, balance CO2 [10]. Shreve [11] presents a

list of 35 electrochemical processes in current industrial use;

many of them are like this example, using electrical work to

overcome a large positive Gibbs energy change.

Example 13.11 Calculate the reversible voltage for some

kind of electrochemical device that would react pure lithium

with pure fluorine, producing solid LiF.
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From Table A.8 we find that Dg� ¼�587.7 kJ/mol. We

also know that ne¼ 1, because the valence state of Li and of F

change by 1, so one electron is transferred per molecule of

LiF. Thus,

E
�
298:15K ¼ �Dg�

neF

¼
� �587; 700

J

mol

� �

1
mol electrons

mol
� 96;500 coulomb

mol electrons

� volt � coulomb

J

¼ 6:09 V & ð13:BJÞ

The normal sign convention has E negative for power-

consuming cells and E positive for power-producing cells, as

shown in these two examples. This example shows the

voltage for the reaction between the pure materials to pro-

duce a pure product. In most electrochemical cells the

reactants are dissolved in an electrolyte, normally water,

and the resulting voltage is slightly different. The Li-F cell

shown here has one of the highest theoretical voltages of any

simple electrochemical cell. The ordinary 12-V storage

battery in our cars has six 2-V cells in series. If we could

make this theoretical lithium-fluorine cell a practical cell, we

could use two in series instead. The practical difficulties of

making a lithium-fluorine cell are serious.

Here we computed the voltage by computing the standard

Gibbs energy change. Handbooks [5, p. 8–20] present ex-

tensive tables of “half-cell” voltages. From those tables we

may read

F2 þ 2e , 2F� E� ¼ 2:866 V

Liþ þ e , Li E� ¼ �3:0401 V
ð13:BKÞ

Subtracting the second from the first we find a cell voltage

ofþ 5.907V. The difference between this result and the

6.09V in Example 13.11 is that 6.09V corresponds to

starting with pure materials and producing pure LiF, while

this example produces a 1 molal solution of LiF. As shown

in Problem 13.26, if we compute the Gibbs energy change

for this cell, ending with a 1 molal solution of LiF (aq),

the computed value is very close to the 5.907V shown above.

These examples were chosen to have Dg¼Dg�, making

them very simple. We can also consider cells in which the

reactants or products do not enter or leave at their standard

states, finding that they are not much more difficult. The

general approach is to use the Nernst equation (Eq. 13.7), but

the approach shown in the next example gives the same result

in a more intuitively satisfying way.

Example 13.12 A steady-flow electrolytic cell produces

hydrogen and oxygen by the reaction,

H2O ðIÞ!H2ðgÞ þ 1

2
O2ðgÞ ð13:BLÞ

The gases are discharged to their respective storage reser-

voirs at pressure P. When P¼ 1 atm and T¼ 25 �C,
the required (“standard”) equilibrium cell voltage is

E� ¼�1.229V. Estimate the equilibrium cell voltage if feed

and products are all at 100 atm. Assume that O2 and H2 are

ideal gases and that the specific volume ofwater is negligible.

Equation 13.6 applies to this reaction, but we must

compute for each material

g ¼ g� þ
ðP
P�

@g

@P

� �
T

dP ¼ g� þ
ðP
P�
vTdP ¼ g� þ vT ln

P

P�

ð13:8Þ

In the rightmost term we have replaced v by RT/P, which is

correct only for ideal gases. According to the assumption, we

can ignore the change in Gibbs energy with pressure of the

liquid water, so that

Dg ¼ Dg� þ 1:5RT ln
P

P� ð13:BMÞ

and

E ¼ �Dg
neF

¼
� Dg� þ 1:5RT ln

P

P�

� �

neF
¼ E� þ

�1:5RT ln
P

P�
neF

ð13:BNÞ

E � E� ¼
�1:5RT ln

P

P�
neF

¼
�1:5 � 8:314 J

mol K
� 298:15 K � ln P

P�

2
mol electrons

mol
� 96;500 coulomb

mol electrons

� volt � coulomb

J

¼ �0:01926 V � ln 100 atm
1 atm

¼ �0:0887 V ð13:BOÞ

and

E ¼ �1:229� 0:0887 ¼ �1:318 V &

To find the equilibrium voltage at some other temperature,

we compute the change in Dg� with temperature the same

way we did in Chapter 12 (see Problem 13.30).

We can readily show that, for any kind of constant-

pressure cell, the reversible voltage depends only on the

concentrations and pressures of the chemicals involved and
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not on whether the cell is flow or batch. In practice, all real

cells operated at commercially useful rates have voltages

different than these equilibrium voltages, lower voltages

when power is being withdrawn, and higher voltages when

power is being supplied. Normally, cell efficiencies are

defined in terms of the ratio of actual to equilibrium voltages.

13.5 CHEMICAL AND PHYSICAL EQUILIBRIUM

IN TWO PHASES

In the previous sections we have considered chemical equi-

librium in one phase, or chemical equilibrium in one phase

with simultaneous physical equilibrium with another phase,

for example, gas-liquid or liquid-solid equilibrium, with

chemical equilibrium in the liquid phase. If we had the

universal catalyst, which made all chemical reactions come

to equilibrium in all phases, what would the equilibrium

situation be? The situation is sketched in Figure 13.8.

Here for the reaction A,B (e.g., n-butane, isobutane),

we show chemical equilibrium between A and B in each of

the two phases, plus physical equilibrium between A in the

gas and A in the liquid and similarly for B. For chemical

equilibrium in any reaction in which the number of moles

does not change, we know that �ga ¼ �gb. This must be true in

each phase. Similarly, for physical equilibrium we know that

�gðliquidÞa ¼ �gðgasÞa ð13:9Þ

and that a similar relation exists for B. Thus, for the partic-

ularly simple case sketched in Figure 13.8, we would have

�gðliquidÞa ¼ �gðgasÞa ¼ �g
ðliquidÞ
b ¼ �g

ðgasÞ
b ð13:10Þ

This does not mean that the compositions are the same.

For the n-butane-isobutane example shown in Figure 12.1, in

the gas phase (assuming ideal gases and ideal solutions) we

calculated in Example 12.1 that at 25 �C, yisobutane� 0.82.

That was for an assumed pressure of 1 atm, at which the

systemwould be all gas. If wewere to isothermally compress

the gas until an equilibrium liquid formed, we would calcu-

late its composition by the temperature-specified dew-point

calculation shown in Example 8.10. If we assume that the

liquid is an ideal solution (a good assumption for this

system), then using Raoult’s law we would find

xisobutane ¼ yisobutaneP

pisobutane
ð13:BPÞ

and similarly for n-butane. We would also find that

P ¼ xisobutane � pisobutane þ xn�butane � pn�butane ð13:BQÞ

If the two vapor pressures were equal, then Eqs. 13.9

and 13.BP would predict the same mol fractions in the

liquid as in the gas. In reality, the two vapor pressures are

similar, but not the same (NBP’s are �0.6 and �10 �C);
however, Eq. 13.10 is still obeyed. We may see this by

replacing Eq. 13.10 by the same equation in terms of the

fugacities,

�gisobutane ¼ RT ln fisobutane þ g
�
isobutane

¼ yisobutanePþ g
�
isobutane

¼ xisobutanepisobutane þ g�isobutane
ð13:BRÞ

which can be solved to give Eq. 13.BP.

Why bother with this calculation? There are very few

industrial examples of reactions that come to equilibrium

simultaneously in two phases, but

1. There are some, of which one is discussed below.

2. When we discuss the phase rule (Chapter 15) we will

refer back to this example.

13.5.1 Dimerization (Association)

Several industrially important materials form dimers (or

trimers, or tetramers,. . .) reversibly, in both gas and liquid

phases. Important examples are sulfur [12]

S6 , 3S2 S8 , 4S2 ð13:BSÞ

and acetic acid, CH3COOH (abbreviated HAc), which

can form hydrogen-bonded dimers of the type shown in

Figure 13.9. For HAc, the R is the methyl group. This same

type structure has been observed in all the lower molecular

weight carboxylic acids, for example, formic, propionic, and

butyric acids [13]. This behavior is called dimerization or

association. It occurs in many hydrogen-bonding species,A(gas); g
a
(gas)–

A(liquid); g
a
(liquid)– B(liquid); g

b
(liquid)–

B(gas); g
b
(gas)

gas

liquid

–⇔

⇔

FIGURE13.8 Gas–liquid equilibriumwith chemical equilibrium

in both phases.

R C

O OH

C R

OH O

FIGURE 13.9 Structure of dimmers formed by carboxylic acids.

For HAc, R is the methyl group, CH3.
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such as water, but much more strongly in HAc and its near

chemical relatives than with most other species.

Example 13.13 Estimate the value of the compressibility

factor z for HAc at 25 �C and 11.38 torr from the measured

value of the specific volume (0.6525 L/0.04346 g of

HAc) [14] with the assumption that the HAc is all in the

form of monomer with molecular weight 60.05 g/mol.

z ¼ Pv

RT
¼

11:38

760
atm

� �
� 0:6525 L

0:04345 g

� �
� 60:05

g

mol

� �

0:08206
L � atm
mol �K � 298:15K

¼ 0:552 & ð13:BTÞ

This value, plus those at lower pressures, at 25 and at 30 �C
are shown in Figure 13.10.

The pressures in Example 13.13 and Figure 13.10 are low

enough that we would expect HAc vapor to behave practi-

cally as an ideal gas, so that if there were no dimerization, we

would expect z� 1.00. That is clearly not the case if, as

assumed in this calculation, the molecular weight is that of

the monomer. If, on the other hand, there was complete

dimerization, so that the true molecular weight of the vapor

were twice that of HAc (2 � 60.05¼ 120.1 g/mol) then we

would calculate a z twice as large, or 1.104. This is too large

for an ideal gas, and, furthermore, Figure 13.10 shows that

the computed values of z are increasing as the pressure falls,

so according to the assumption of complete dimerization the

value of z is going away from ideal gas behavior as the

pressure falls!

This strange behavior is explained [15] by assuming that

the formation of the dimer occurs in the gas phase by

2HAc , ðHAcÞ2 ð13:BUÞ

for which

K ¼ ðPyðHAcÞ2Þ
ðPyHAcÞ2

logðK � torrÞ ¼ �10:4184þ 3164K

T

ð13:BVÞ

The numerical values in Eq. 13.BV are based on fitting

experimental data like those in Figure 13.10.

Example 13.14 Estimate the mol fractions of monomer

and dimer HAc in the vapor at 25 �C and 11.38 torr, based on

Eqs. 13.BU and 13.BV.

From Eq. 13.BV,

K ¼ PyðHAcÞ2
ðPyHAcÞ2

¼ 1

torr
� 10 �10:4184þ 3164K

298:15K

� �
¼ 1:56

torr

ð13:BWÞ

yðHAcÞ2 ¼ 11:38 torr � 1:56
torr

� ðyHAcÞ2 ¼ 17:75 � ð1� yðHAcÞ2Þ2

ð13:BXÞ

which is readily solved, showing yðHAcÞ2 ¼ 0:789, and, cor-
respondingly, yHAc¼ 0.211. &

Example 13.15 Estimate the value of z for the above exam-

ple, assuming that the vapor has a molecular weight correspo-

nding to the fractional dimerization shown in Example 13.14.

The average molecular weight of the vapor is

Mavg ¼MðHAcÞ2 � yðHAcÞ2 þMHAc :yHAc

¼ 120:1
g

mol
�0:789þ60:05

g

mol
�0:211¼ 107:5

g

mol

ð13:BYÞ
and the computed value of z is the value found in Example

13.13 (0.552), which was based on a molecular weight of

60.05, times the ratio (107.5/60.05)¼ 0.988. &

This value (�1.00) shows that the vapor is indeed practically

an ideal gas, but that its true molecular weight is not that of

the monomer, but that of the above-calculated mixture of

monomer and dimer.

This dimerization complicates the interpretation of VLE

data for associating species. Figure 13.11 shows the values of

the activity coefficients for water and HAc, calculated from

the publishedVLE data [15] based on the assumption that the

HAc is present in both phases entirely as the monomer.

Clearly, the values in Figure 13.11 cannot be right: gHAc does
not approach 1.00 as xHAc approaches 1.00, nor do the slopes

of the curves agree with the Gibbs–Duhem equation. The

scatter in the data seems large, but observe the small values of

the activity coefficients: All are between 0.7 and 1.2.

0.7

0.6

25ºC

30ºC

0.5

0.4

C
om

pr
es

si
bl

ity
 f

ac
to

r, 
z

0.3

0.2

0.1

Pressure, P, torr

0
0            2            4            6             8           10          12         14

FIGURE13.10 Experimental compressibility factors of HAc as a

function of pressure at very low pressures [14].
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This industrially important VLE system has been thor-

oughly analyzed [15]. The reversible dimerization is believed

to be rapid in both phases, so that equilibrium byReaction 13.

BV is believed to exist in both phases. When we apply the

logic shown in Figure 13.9 separately to themonomer and the

dimer, taking into account that the measured vapor pressure

of the liquid is that of a mixture of monomer and dimer,

whose composition changes with temperature, and take the

dimerization equilibrium into account in each phase, we find

that the activity coefficients are of type II (Figure 8.8), with

values similar to those shown in Figure 8.8b.

13.6 SUMMARY

1. There are no new principles in this chapter, merely the

application of previously discussed principles to more

complex reactions.

2. In all chemical reactions, at equilibrium nature has

selected those chemical compositions that correspond

to the minimum Gibbs energy consistent with the

starting composition and the external constraints.

3. The basic calculation schemes introduced in Chapter

12 apply as well to sequential reactions, simultaneous

reactions, reactions involving ions, and reactions in

more than one phase.

4. Most of the examples in this chapter use extent of

reaction (e) as a computation tool. For aquatic chem-

istry, the charge-balance computation tool is often

more satisfactory.

5. Electrochemical reactions require us to expand our

definition of the equilibrium state, to take into account

the possibility of doing electrical work.

6. Association and dimerization occur often in liquids,

sometimes in gases. When they do occur (sulfur and

carboxylic acids) we would make serious errors by

ignoring them. They are best treated as chemical

reactions, by the methods shown here.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (	) on the problem number indicates that

the answers is in Appendix H.

13.1 Show the calculation of the two dissociation con-

stants for H2SO4 in Example 13.2, using the values

from Table A.8.

13.2	 Repeat Example 13.2 for 0.1mol ofH2SO4 dissolved

in 1000 g of water at 25 �C.

13.3 a. Repeat Example 13.2 for dissolving 1.00mol

SO2 (¼sulfurous acid¼H2SO3, see Eq. 13.AD)

in 1000 g of water at 25 �C, using the values from
Table A.8.

b. The values of K1 and K2 that you calculate from

TableA.8 do not always agree exactlywith values

from other handbooks. The same handbook from

which the Gibbs energy values were taken shows

in [5, p. 8–37] a table of ionization constants.

For sulfurous acid that book shows K1 and K2 at

18 �Cas0.0154and1.02E-7.Compare thosewith

the values you must calculate in part (a). How

much difference do these different ionization

constants make in the calculated equilibrium

concentrations?

c. Reference [16] shows equations forK1 andK2 as a

function of temperature. Based on them, the two

values at 18 �C are 0.0164 and 7.02� 10�8 and at

25 �C are 0.0140 and 6.83� 10�8. Are these in

good or fair agreement with the values shown

above? Do they show the same trends with tem-

perature? At the end of this set of comparisons

are you convinced that all sources are in fair

agreement on these values, but that there is still

some disagreement? Do you think the same

is likely to be the case for other dissociation

constant data?

13.4	 Show the relation between the Ks for reactions 12.E,

13.K, and 13.L.Does this result prove that these three

reactions are not independent of each other?

13.5 Show the calculation of the twovalues ofK andKf at

10 MPa and 523.15K in Example 13.3.

a. The Kf are computed from Figure A.5 or its

equivalent.

Water
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A
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Mol fraction water in liquid, xwater

0                0.2                    0.4              0.6               0.8           1

1

HAc

At P = 1.00 atm

FIGURE 13.11 Activity coefficients for water and HAc in liquid

solution at 1 atm pressure, based on the measured vapor and liquid

compositions [15] and the clearly incorrect assumption that theHAc

in both phases is present as all monomer.
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b. For reaction 12.E, [2] shows

K12:D ¼ 9:740� 10�5 � exp
"
21:225þ 9143:6

T

�7:492 ln T þ 4:076� 10�3T

� 7:161� 10�8T2

#
ð13:BZÞ

with T expressed in K, and for Reaction 13.L

K13:M ¼ exp

"
13:148� 5639:5

T
� 1:077 ln T

�5:44� 10�4T þ 1:125� 10�7T2 þ 49; 170

T2

#

ð13:CAÞ

with T expressed in K. Equation 13.BZ certainly

contains some error, because the values calculat-

ed from it are not consistent with the other

information in [2]. They are consistent with the

following equation from [1]:

Dg� ¼ �17; 835� 16:08T ln T � 0:01119T2

þ1:018� 10�6T3

þ0:0811� 10�9T4 � 48:3T ð13:CBÞ

with T expressed in K and Dg� in cal/mol.

This is mentioned here to make clear to the

reader that such equations are regularly presented

in literature with copying or typographic errors.

c. Estimate the value of K12.E at 523.15K, using the

values in Tables A.8 and A.9, and the method in

Example 12.7.

13.6 What would be the outcome in Example 13.3 if the

catalyst facilitated the conversion of CO and H2 not

only to methanol, but also to methane?

a. Estimate the value ofK andKf for Reaction 12.F,

using Tables A.8 and A.9 and Figure 7.1.

b. Write the equivalent ofEq. 13.R forReaction 12.F.

c. Extend Example 13.3 to include Reaction 12.F.

13.7 Show the solution to Eqs. 13.Z, 13.AA, 13.AC,

13.AF, 13.AH, and 13.AI (or as many of these as

interest you). Suggested procedure; Rewrite the

equations moving all the terms to the left of the

equals sign, so that the right hand term¼ 0. On a

spreadsheet in one column enter: A guess of the final

[Hþ], then the formulae for the each of the individual

terms, using the Ks, the amounts added and the

guessed value of [Hþ], and then the sum of the

terms. Then use the spreadsheet’s equation solver

(Goal Seek on Excell) to make that sum¼ 0 by

changing the values of the guess of the final [Hþ].
Once you have this debugged, you can use subse-

quent columns to solve the rest of the equations.

Do not be surprised if your solver reduces the

sum to a small value, but not to zero. The problem

is round-off error; in the solution to Eq. 13.Z the

largest term is 0.0013 and the smallest is 7� 10�12.

Spreadsheets have a hard time with equations with

that much disparity in size. Also relax if your

spreadsheet reports a small negative value for [Hþ].
Manually change that to þ, and observe that it

doesn’t change the other values materially. Again,

the difference in size of the terms is the cause of the

difficulty.

13.8 Repeat Examples 13.4, 13.5, and 13.6 (asmany parts

as you like) for the buffer solution made from

ammonia and ammonium chloride. For ammonia

NH3þH2O,NH4
þþOH�; K¼ 1.78 E–5. See the

suggestions for how to do this in Problem 13.7.

13.9 In Example 13.4, Eq. 13.Z, the Kw term is certainly

much smaller than the others. Set that equal to zero,

and determine how much it changes your answer.

If you have set up the spreadsheet recommended

in Problem 13.7, you can manually set Kw¼ 0

and your spreadsheet will solve if for you. Alter-

natively, you can note that this change makes the

equation a quadratic, easy to solve numerically or

analytically.

13.10 Using the values from Table A.8,

a. Estimate the values of the two ionization con-

stants of H2CO3.

b. Estimate the Henry’s law constant for CO2 dis-

solved in water, and compare it to the value given

in Table A.3.Hint: Pay attention to units; molal is

not the same as mol fraction!

c. The experimental determination of Henry’s law

constants is normally made by measuring the

amount of gas that goes into solution. But the

equation is written in terms of [CO2 (aq)], not

the sum of ([CO2 (aq)]þ [HCO�
3 ]þ ½CO2�

3 �). For
the values shown in Example 13.5, estimate how

different the Henry’s, law constant would be if

we based it entirely on [CO2 (aq)], and on

([CO2(aq)]þ[HCO�
3 ]þ [CO2�

3 ]).

13.11 Repeat Example 13.8, not making the assumption

that the Hþ comes all from Reaction 13.AU, but
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including that from Reaction 13.AV in the calcula-

tions. How much difference does it make?

13.12* In Example 13.9, as we addmore andmoreNaOH to

the solution, we eventually reach the solubility limit

of Na2CO3, which is 17.7 wt% in water at 20 �C.
Estimate the highest pHwe can have in that example

as we continue adding NaOH, always waiting for the

solution to come to equilibrium with the CO2 in the

atmosphere.

13.13 The scrubbers that are widely used to remove sulfur

dioxide from the exhaust gases from coal-fired pow-

er plants use a scrubbing solutionwith pH� 6,which

is maintained at that value by the addition of solid

lime or limestone. The exhaust gas from such a

power plant, which passes through the scrubber,

has� 12 mol% CO2. Assume that the pH¼ 6 solu-

tion leaving the scrubber is in equilibrium with a

vapor containing 12mol % CO2. For this solution,

estimate the concentrations of: H2CO3 (or CO2(aq)),

HCO�
3 and CO2�

3 .

(The values in Table A.8 are for 25 �C and these

scrubbers operate at about 50 �C, but we will ignore
that difference for this problem!)

13.14* Estimate the amount of CO2 dissolved, and the

concentrations of carbonic acid, its two ions and the

hydrogen ion, and the pH, when water is in equilib-

rium with pure carbon dioxide at 1 atm pressure and

20 �C.

13.15 Table A.3 shows the Henry’s law constants for

CO2 in water at several temperatures, based on ICT,

(Vol. 3, p. 260). Edwards et al. [8] represent the

Henry’s law constant for this system by

lnH ¼ B1

T
þ B2 ln T þ B3T þ B4

B1 ¼ �6789:04; B2 ¼ �11:4518;

B3 ¼ �0:010454; B4 ¼ 94:4914

H expressed in kg � atm=mol; T in K

ð13:CCÞ

a. Compute the value according to Eq. 13.CC at

0 �C and compare it to the value in Table A.3.

(Observe the difference in units!)

b. Edwards et al. [8] show the literature sources for

their equation. As part (a) shows, the values

computed from Eq. 13.CC are about 4 to 9% less

than those in Table A.3. As a research project,

consult the original sources cited by Edwards

et al. and those cited in ICT (Vol. 3 p. 260) and

determine which is more likely to be correct and

whether the constants are defined differently, in

addition to being expressed in different units.

13.16 Examples 13.8 and 13.9 treat the carbon dioxide

water equilibrium. The corresponding problem for

SO2 is of paramount importance in air pollution

control [16]. The corresponding reactions seem to be

SO2ðgÞ , SO2ðaqÞ ð13:CDÞ

SO2ðaqÞ þ H2OðlÞ , Hþ þ HSO�
3 ð13:CEÞ

HSO�
3 , Hþ þ SO2�

3 ð13:CFÞ

for which the equilibrium relationships for dilute

solutions are

HSO2
¼ Pyso2

SO2ðaqÞ½ � ð13:CGÞ

K1 ¼
HSO�

3

� � � Hþ½ �
½SO2ðaqÞ� ð13:CHÞ

K2 ¼ ½SO2�
3 � � ½Hþ�

½HSO�
3 �

ð13:CIÞ

where, HSO2
; K1; and K2 are the Henry’s law con-

stant and the first and second ionization constants,

with dimensions atm/(mol/L), (mol/L), and (mol/L).

Reference [16] shows equations for these three equi-

librium constants (as well as others important in air

pollution control), as a function of temperature. The

values calculated from their equations for two tem-

peratures are shown in Table 13.E.

a. Henry’s law (Eq. 3.6) is most often written using

the mol fraction xi, of the dissolved gas as the

liquid concentration variable. In the above table

and in much of the air pollution scrubber litera-

ture, Henry’s law is written with the molarity

(mol/L) or mass concentration (mol/kg or lbmol/

ft3) as the liquid–phase concentration variable.

These concentration values can all be converted

Table 13.E Equilibrium Data for SO2 in Water [16]

T¼ 68�F¼ 20cC T¼ 125�F� 52�C

HSO2
[atm/(L/mol)] 0.679 1.870

K1 (mol/L) 0.0156 0.00678

K2 (mol/L) 6.86� 10�8 5.25� 10�8
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to the others, so theH for one can be converted to

the H for any of the others. Estimate the value of

the Henry’s law constant at 20 �C in the mol

fraction form (Eq. 3.6) based on the value from

the above table.

b. Estimate the values of the concentrations at 20 �C
of SO2(aq), H

þ, HSO�
3 , and SO2�

3 in a solution

that is in equilibrium with a gas at 1 atm, with

ySO2
¼ 0.001. The procedure to follow is the same

as in Example 13.8, assuming first that the SO2�
3

concentration is negligible, and so on.

c. Estimate the pH of the solution in (b).

d. The Henry’s law constant shown in Eq. 13.CG is

based on the dissolvedSO2 only, not its ionization

products. If we wrote it to take the ionization

products into account we would have

HSO2
¼ PySO2

½SO2ðaqÞ� þ ½HSO�
3 � þ ½SO2�

3 � ð13:CJÞ

For the situation in part (b), what would be the value

of HSO2
, both in atm and in atm/(mol/L)?

13.17 Kohl and Nielson [9, p. 508] present a plot similar to

Figure 13.6 for the sulfite equilibrium in water,

shown here as Figure 13.12. Compare the values

computed in parts (b) and (c) of the preceding

problem to those wewould estimate from this figure.

13.18 Perry’s [17] presents a table of the vapor pressures of

SO2 over aqueous solutions. At 20
�C, for dissolved

SO2 concentrations of 0.01, 0.1, 1, and 10 g/(100 g of

water), the reported SO2 vapor pressures are 0.07,

3.03, 58.4, and 714 torr.

a. Can these four values be represented by simple

Henry’s law, which requires that in dilute solu-

tions the vapor pressure is proportional to the

concentration?

b. Estimate the corresponding vapor pressures

using the equilibrium data in the preceding prob-

lem. Do they agree with the data from Perry’s?

c. If we wish to fit the water–SO2 equilibrium into

themold of simpleHenry’s law,withH in atm and

dissolved gas concentration in mol fraction, what

values will we use for the Henry’s law “constant”

at the above 4 concentrations?

13.19 Repeat Example 13.9 for pH¼ 1.00, provided by

adding some strong acid, such as HCl, to the water.

13.20	 Figures 13.6 and 13.12 are from the same source.

a. Are their general forms the same?

b. Do they show the changes from un-ionized to first

ionization to second ionization at the same values

of the pH?

c. Why?

13.21	 Estimate the number of kilowatt-hours of electricity

required to make a pound of aluminum metal. As

described in Section 13.4, the actual cell voltage

required is about 4V. The atomic weight of alumi-

num is 23.

13.22	 a. Repeat Example 13.10, assuming that the reac-

tion is

Al2O3 þ 3C , 2Alþ 3CO ð13:BIÞ

b. Based on your result, discuss the role of this

reaction in commercial aluminum production.

13.23 a. Repeat Example 13.10 assuming that the reaction

is

Al2O2 , 2Alþ 1:5O2 ð13:CKÞ

b. Based on your result, discuss the feasibility of

carrying out this reaction commercially.

13.24* Estimate the required equilibrium cell voltage at

298.15K for the reaction MgCl2 , MgþCl2. This

is actually carried out at a temperature high enough

for the MgCl2 and Mg to be molten, but for this

problem use the values in Table A.8, which corre-

spond to solid MgCl2, solid Mg, and gaseous Cl2.
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FIGURE 13.12 Distribution among sulfite species in aqueous

solution as a function of pH. In this and similar plots, the vertical

axis, labeled “mol fraction” is actually the fraction by mol of the

total sulfite species, which is in each of the three forms shown. (From

Kohl, A., and R. Nielsen. Gas Purification, ed. 5. Houston, TX:

Gulf, p. 508 (1997)).
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13.25 The Gibbs energy change going from solid LiF to a

1 molal solution of LiF in water at 25 �C is estimated

to beþ13.39 kJ/mol. Using that value, estimate the

reversible cell voltage for a cell that begins with pure

Li and F and produces a 1 molal solution of LiF.

Compare the result to the values shown in Eq. 13.BJ.

13.26 Repeat Example 13.12 starting with the Nernst

equation (Eq. 13.7).

13.27 In Example 13.12 we computed the effect of pres-

sure on the equilibrium cell voltage for Reaction

13.BL. Nowwewish to conduct the same operation

under conditions where the water will enter the cell

at 1 atm and the hydrogen will leave the cell at 1 atm

but the oxygen will leave the cell at 100 atm.

Everything else is exactly the same as in Example

13.12. What is the equilibrium cell voltage for this

situation?

13.28 In Example 13.12we computed the effect of pressure

on the reversible equilibrium steady-flow cell volt-

age for the Reaction 13.BL. We assumed that the

specific volume of water was negligible. This is not

rigorously true. Calculate the numerical value of

the error caused by this assumption. Assume that

vwater¼ 1.00 L/kg, independent of pressure. Present

your answer as

D
@E

@P

� �
T

¼ @E

@P

� �
T ; taking water

volume into account

8><
>:

� @E

@P

� �
T ; taking water

volume¼ 0

)
volts

atm
ð13:CLÞ

We know that the answer is small. How small?

13.29 For the reaction shown in Example 13.10 estimate

the derivative of the equilibrium cell voltage with

temperature (@E/@T)P.We know it is a small number.

How small?

a. Start with Eq. 13.6, take the derivative with

respect to temperature, finding

@E

@T
¼ �1

neF

@Dg
@T

¼ �1

neF

@ Dh� TDsð Þ
@T

¼ Ds
neF

¼ Dg� Dhð Þ
neFT

ð13:11Þ

the Gibbs–Helmhotz equation.

b. Explain why this comes out differently from the

seemingly similar problem of the change of

chemical reaction equilibrium constant with tem-

perature (Eq. 12.25).

c. Find the suitable values from Table A.8 and

Example 13.10 to compute (@E/@T)P.

13.30 a. In Example 13.12, calculate the cell voltage at 1

atm and 30 �C, using the formula you develop in

the preceding problem.

b. The following is an incorrect solution to part (a):

Incorrect Solution

DE ¼ D �Dgð Þ
neF

DG ¼ Dg2 � Dg1 ¼ Dh2 � Dh1 � ðT2Ds2 � T1Ds1Þ
ð13:CMÞ

For small values of (T2� T1) this is

DðDgÞ ¼ DTðCP; products � CP; reactantsÞ

�Tavg CP; products � DT
T

� CP; reactants � DT
T

� �

ð13:CNÞ

Take the limit of DT/T as DT goes to zero:

DðDgÞ ¼ DT CP;products � CP;reactants

� 	

� Tavg CP;products � lnT2
T1

� CP;reactants � lnT2
T1

� �

ð13:COÞ

DðDgÞ ¼ DT � Tavg � ln T2
T1

� �
� CP; products � CP; reactants

� 	

ð13:CPÞ

DE ¼
DT � Tavg � ln T2

T1

� �
� CP; products � CP; reactants

� 	
neF

??

ð13:CQÞ

You can easily show that this solution is incorrect

by inserting numerical values into Eq. 13.CQ and

comparing the result with the answer to part (a).

Here (CP,products�CP,reactants)¼ 12.0 J/mol.

What is the fundamental error in this incorrect

solution? Explain clearly what error one makes
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starting with the first equation, which is absolutely

correct, and proceeding as shown to the final

equation, which is absolutely wrong.

13.31 In Example 13.12, instead of running the cell to

produce H2 and O2 at 100 atm, we could run the cell

at 1 atm, and then compress the gases to 100 atm. If

we had reversible, isothermal compressors (which

exist only in textbook examples), what would

the work required to drive them be, compared to the

extra electrical work needed to run the cell with

the outlet pressure 100 atm?

13.32 What is the most economical way to supply 1 kg/day

of hydrogen? 1000 kg/day? 106 kg/day?

13.33 The overall reaction of a lead storage battery of the

type used in most automobiles (during discharge,

when power is being withdrawn) is

PbðsÞ þ PbO2ðsÞ þ 2H2SO4ðaqÞ
, 2PbSO4ðsÞ þ 2H2OðlÞ: ð13:CRÞ

Here two electrons per mol are transferred for the

equation as written. What is the equilibrium voltage

of this cell? (Those of you who have ever looked

under the hood of your car know the answer, but

show the calculations to support it!)

13.34 Using the data in the preceding problem, estimate the

amount of heat released or absorbed when 1 g of Pb

reacts reversibly and isothermally according the

equation shown.

13.35 In Problem 13.33 you computed the equilibrium

voltage for a single cell of a lead-acid battery. The

calculation there was for E�, the “standard cell

voltage,” which corresponds to all of the reactants

being in their standard states. For H2SO4(aq) the

standard state is an ideal solution with concentration

1 molal. How much would the calculated voltage

change if the concentration of H2SO4(aq) was 5

molal?

We know the answer is “not much.” But how

much? Which way, plus or minus? The expected

answer is the value of (E�E�). For this problem you

may assume that solutions of sulfuric acid in water

are ideal solutions (not a very good assumption, but

acceptable for this problem). Hint: Start with

Eq. 13.7, expand the term in brackets, find its nu-

merical value.

13.36* RepeatExample13.14forP¼ 1atmandT¼ 117.9 �C
(the NBP).

13.37* At 25 �C, what pressure corresponds to a

y(HAc)2 ¼ 90%?¼ 10%?

13.38 Repeat Examples 13.13 and 13.14 for 25 �C and

P¼ 3.16 torr, for which the measured specific

volume¼ (2.315 L/0.04345 g of HAc) [14].

13.39 For sulfur in the vapor phase, the equilibrium reac-

tions are reported [12] to be

S6 , 3S2 ln
K

atm2
¼ 37:4199� 33; 534 K

T

ð13:CSÞ

and

S8 , 4S2 ln
K

atm3
¼ 57:1441 � 49; 862 K

T

ð13:CTÞ

a. Using these values, estimate the mol fractions of

S2, S6, and S8 in an equilibriumvapor that ismade

up of pure sulfur at 500 �Cand 1 atm.Hint:Guess

a value of ys2 and use it to compute the values of

ys6 and ys8. Then compare the sum of the vapor-

phase mol fractions to 1.00. Adjust your guess of

ys2 and repeat until the mol fractions sum to 1.00.

This goes very quickly on a spreadsheet.

b. Compare your calculated values to the values

shown in Figure 13.13.
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14
EQUILIBRIUM WITH GRAVITY OR
CENTRIFUGAL FORCE, OSMOTIC EQUILIBRIUM,
EQUILIBRIUM WITH SURFACE TENSION

In the previous chapters we ignored the effect of gravity,

surface tension, and electrostatic or magnetic forces, and

ignored the possibility that there may be semipermeable

membranes in our system at equilibrium. There are impor-

tant equilibrium situations in which we must take all of

these into account. In this chapter we consider three ways in

which we can have equilibrium without a uniform pressure,

as a result of gravity, semipermeable membranes, or surface

forces.

14.1 EQUILIBRIUM WITH OTHER FORMS
OF ENERGY

In Section 4.1 we showed that in the absence of gravity,

surface, tensile, electrostatic, and electromagnetic forces, the

criterion of phase and chemical equilibrium was dGT ;P � 0,

with the “¼” corresponding to the equilibrium state and the

“>” corresponding to moving away from the equilibrium

state. Correspondingly, the approach to equilibrium from a

nonequilibrium state must be one for which dGT ;P < 0;

nature minimizes Gibbs energy! If we now return to Eq. 4.1,

and allow for some of these other kinds of energy, we will

have

dðUþKEþPEþ TEþEEþMEÞ ¼ dQþ dW ð14:1Þ

where KE, PE, TE, EE, and ME represent the kinetic,

potential, tensile, electrostatic, and magnetic energies of the

system. In this case we must also expand the work term to

dW ¼ �PdV þ terms for other kinds of work;
e:g: electrostatic; magnetic; etc:

� �

ð14:2Þ

If we restrict our attention to systems that can only exchange

heat and PdV work with the surroundings, then we can

drop the rightmost term of Eq. 14.2, and substitute Eq. 14.1

for Eq. 4.1. If we then follow the derivation through to the

analog of Eq. 4.9, we find

dðGþKEþPEþ TEþEEþMEÞsystem � 0 ð14:3Þ

with the “¼” corresponding to the equilibrium state and the

“>” corresponding to a change that takes us away from the

equilibrium state. Equation 14.3 leads rapidly to the conclu-

sion (see below) that we can have physical or chemical

equilibrium in a system that is not at a constant pressure,

if that pressure is balanced by gravity, surface forces,

semipermeable membranes, and so on. We will also see that

omitting that from consideration has not caused significant

errors in the calculations in the previous chapters. Equa-

tion 14.3 does not in anyway change the statement in Chapter

3 that any system at physical or chemical equilibrium is an

isothermal system.

Intuitively, we may consider that these other forms of

energy can, in principle, be reversibly converted one to the

other or to Gibbs energy, so that if there are changes in one

of them at equilibrium, there must be a corresponding

change in one of the others or in the Gibbs energy for our

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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system to remain at the minimum, which corresponds to

equilibrium.

14.2 EQUILIBRIUM IN THE PRESENCE

OF GRAVITY

This subject is of relatively little practical significance. The

more practical case is equilibrium in centrifuges, which have

significant changes in equilibrium composition over short

distances due to strong centrifugal force fields. However, the

gravity case is more intuitively comfortable and simpler

mathematically. Once we have mastered it, the extension to

the centrifugal force fields is fairly straightforward.

Consider some long, thin columnof amixture of species in

a container at constant temperature and with the pressure

fixed at the top, as sketched in Figure 14.1. Amodel might be

a natural gaswell, which had been “shut in” for a long enough

time to be at equilibrium. (Real natural gas wells always have

a temperature gradient, because the center of the earth is

hotter than the surface; but for this problem we ignore that

and assume constant temperature.) In this system, we now

withdraw dni mols of substance i at z1, and insert it at z2.

The change of Gibbs energy plus potential energy for this

transaction must be

dðGþPEÞSystem¼ � d

dni
ðGþPEÞat z1þ

d

dni
ðGþPEÞat z2

� �
dni

ð14:4Þ

If this is to be an equilibrium change then d(G þ PE)systern
must be zero. We know that the derivatives are partial molar

derivatives (see Chapter 6), and that

d

dni
PE¼Migz ð14:5Þ

so that

�gi2��gi1¼RT ln
fi2

fi1
¼�Migðz2�z1Þ ð14:6Þ

or

fi2

fi1
¼ exp

�Migðz2�z1Þ
RT

ð14:7Þ

The derivation of Eq. 14.7 is straightforward, but it has little

intuitive content.Wemay form an approximate intuitive idea

of why nature behaves that way by considering the forces

acting on a single molecule. The diffusional force, which

tries to make the concentration the same everywhere, is

roughly the same for each molecule, independent of its

molecular weight, because in their multiple collisions with

all the other molecules in the gas, the individual gas mole-

cules will all take up the same temperature and thus more or

less the samevelocity. (If gasmolecules all had the same size,

this would be exactly true; gas molecules don’t all have the

same sizes, but the differences in sizes is generally less than

the difference in molecular weights.) The gravity force on

each molecule depends on its molecular weight. So at

equilibrium, gravity is trying to arrange the molecules, with

a layer of the highestmolecularweight species on the bottom,

the next higher molecular weight on top of it, and so on.

Diffusion is trying to make the concentration uniform

throughout the container. Equation 14.7 shows the outcome

of these two competing forces. Under most circumstances

(with gravity notmuch different from that at the surface of the

earth) diffusion wins almost completely.

All the discussion and equations in this chapter up to this

point apply to solids, liquids, or gases. The rest of this section

is restricted to ideal solutions of ideal gases for which we can

replace the fugacities by partial pressures, fi ¼ yiP.

Example 14.1 A natural gas well (Figure 14.1) is at

constant temperature of 300K and in thermodynamic

z 
po

si
tiv

e 
up

w
ar

d

z1

z2

FIGURE 14.1 Deep well at a constant temperature.
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equilibrium. At the surface the gas is 85mol% methane,

10mol% ethane, balance propane, and the pressure is

2MPa. At this temperature and pressure the gas mixture

may be assumed to be an ideal solution of ideal gases.

Estimate the concentrations at a depth of 1000m.

For methane we solve Eq. 14.7:

fmethane; 2

fmethane; 1
¼ exp�

16
g

mol
� 9:81m

s2
� ð�1000 mÞ

8:314
J

mol K
� 300 K

� J s2

kg m2
� kg

1000 g
¼ exp 0:0629 ¼ 1:065 ð14:AÞ

For ethane M,¼ 30 g/mol, so

fethane; 2

fethane; 1
¼ exp 0:0629 � 30

16

� �
¼ 1:125 ð14:BÞ

and for propane, M¼ 44 g/mol, so

fpropane; 2

fpropane; 1
¼ exp 0:0629 � 44

16

� �
¼ 1:189 ð14:CÞ

For the assumption of an ideal solution of ideal gases, the

fugacities can be replaced by the partial pressures, so that at

the surface

fmethane; 1 ¼ 0:85 � 2MPa ¼ 1:7MPa

fethane; 1 ¼ 0:2MPa fpropane; 1 ¼ 0:1MPa
ð14:DÞ

and at the bottom

fmethane; 2 ¼ ymethane; 2 P2 ¼ 1:7MPa � 1:065 ¼ 1:811MPa

ð14:EÞ

and

fethane; 2 ¼ yethane; 2 P2 ¼ 0:2MPa � 1:125 ¼ 0:225MPa

ð14:FÞ

fpropane; 2 ¼ ypropane; 2 P2 ¼ 0:1MPa � 1:189 ¼ 0:119MPa

ð14:GÞ

P2 ¼ P2ðymethane; 2 þ yethane; 2 þ ypropane; 2Þ

¼ 1:811þ 0:225þ 0:119 ¼ 2:155MPa ð14:HÞ

ymethane; 2 ¼ 1:811MPa

2:155MPa
¼ 0:840

yethane; 2 ¼ 0:225MPa

2:155MPa
¼ 0:105

ypropane; 2 ¼ 0:119MPa

2:155MPa
¼ 0:055 ð14:IÞ

The equilibrium mol fractions at a depth of 1000m are up to

10% different from those at the surface. The mol fraction of

the two higher molecular weight species have increased,

while that of the lowest molecular weight species has de-

creased. Gravity has partially sorted bymolecularweight, but

mostly diffusion has won, and the mol fractions are only

slightly different from top to bottom of the well. &

The calculation scheme shown in Example 14.1 is applicable

to any number of species, as long as the ideal-solution-of-

ideal-gases assumption is applicable. For the special case of

an ideal solution of ideal gases with only two species, this

result (see Problem 14.4) can be simplified to

yi2

yi1
¼ 1

yi1 þ yj1=a
where a ¼ exp �ðMi�MjÞ gðz2�z1Þ

RT

� �

ð14:8Þ
Subsequent examples show the convenience of this

formulation.

The calculation method in Example 14.1 is applicable in

principle to the atmosphere. However, the real atmosphere is

far from equilibrium, because atmospheric winds and tur-

bulence keep the atmosphere well-mixed.

Example 14.2 Estimate the nitrogen concentration that

would exist at the top of the atmosphere, if the winds stopped

mixing the atmosphere and it came to equilibrium. For this

calculation only, replace the real atmosphere, which is quite

complex, with an isothermal atmosphere with T¼ 288K and

thickness (from the ground up) of 15 km. Assume that the

nitrogen mol fraction at the surface is 0.79 and the rest of the

atmosphere is O2.

From Eq. 14.8, taking 1 at the surface and 2 at z¼ 15 km,

a¼ exp �ð28�32Þ g

mol
�
9:81

m

s2
� ð15;000m�0 Þ

8:314
J

molK
�288K

2
64

� J s2

kgm2
� kg

1000 g

3
75¼ 1:28

(14.J)

yi2

yi1
¼ 1

0:79þ0:21=1:28
¼ 1:05 & ð14:KÞ
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Without the winds to mix the nitrogen and oxygen, the

concentration of nitrogen at the top of the atmosphere would

be�5%greater than at the surface. In the real atmosphere the

wind mixing is strong enough that this difference is unde-

tectably small.

If Eqs. 14.7 and 14.8 apply over distance of thousands of

meters, do they also apply in industrial-sized equipment?

Obviously, they must. We have ignored the effect of gravity

in all our previous discussions, because we asserted that it

was negligible. These equations allow us to see how large an

error we made by neglecting them.

Example 14.3 Most industrial reactors have a vertical

dimension less than 10m (32.8 ft). Repeat Example 14.2,

for an elevation change from top to bottom of the reactor of

10m.

a ¼ exp �ð28� 32Þ g

mol
�
9:81

m

s2
� ð10 m� 0Þ

8:314
J

mol K
� 288 K

2
64

� J s2

kg m2
� kg

1000 g

3
75 ¼ 1:00016 (14.L)

yi2

yi1
¼ 1

0:79þ 0:21=1:00016
¼ 1:00003 & ð14:MÞ

Based on this calculationwe see that if there is nomechanical

mixing we make an error of 0.003% in the equilibrium

concentration of nitrogen at the top of the reactor by ignoring

the effect of gravity. We seldom have data precise enough to

justify worrying about this small an error, so the calculations

we made in the preceding chapters are not seriously in error

because we ignored gravity.

14.2.1 Centrifuges

We can make the gravity effects computed above occur over

short distances if we replace gravity with centrifugal force.

We know from basic mechanics that the centrifugal force is a

pseudo-force,which results fromNewton’s lawofmotion that

all bodies in motion continue to move in a straight line unless

acted on by an external force. To use this idea we simply

replace the g in the above equationswith�v2r, wherev is the

angular velocity. (The minus sign appears because gravity

points in the �z direction and centrifugal force points in the

þ r direction.) Integrating from r1 to r2 is the equivalent

of replacing gDz with �0:5v2ðr22 � r21Þ, so the centrifugal

equivalent of Eq. 14.8 becomes

yi2

yi1
¼ 1

yi1 þ yj1=a
where a ¼ exp ðMi �MjÞv

2ðr22 � r21Þ
2RT

� �

ð14:9Þ

The only current industrial application of centrifugal

separation of gases known to the author is the separation of

uranium isotopes. Natural uranium is about 0.7% 235U,

balance 238U. The uranium enrichment process increases

the 235U content to about 2 to 3% for electric power reactors

and to about 90% for nuclear weapons, (There are several

types of uranium enrichment processes [1], of which only the

centrifuge process is discussed here.) All enrichment pro-

cesses currently in use convert the uranium to uranium

hexafluoride, UF6, which sublimes to a gas (as does solid

carbon dioxide, “dry ice”) at one atmosphere and 56.5�C.
The resulting gas is 0.7mol% 235UF6 (M¼ 349 g/mol) and

99.3mol% 238UF6 (M¼ 352 g/mol). Enrichment processes

use this small difference in molecular weights to produce

enriched uranium, which has more than 0.7mol% 235UF6
rejecting the depleted uranium, which hasmuch less than this

amount of 235U. Then the enriched hexafluoride gas is

converted to uranium metal or uranium oxide for peaceful

or military purposes.

Example 14.4 A uranium enrichment centrifuge has ex-

ternal radius 10 cm and internal radius 2 cm, and rotates at

800 revolutions/s (¼48,000 rpm). The feed is a natural mix-

ture of uranium hexafluoridewith 0.7mol% 235UF6 at 300K.

Estimate the ratio of the mol fraction of 235UF6 at the 2-cm

radius to that at the 10-cm radius, at a state of thermodynamic

equilibrium.

FromEq. 14.9, taking i to be 235UF6 and assuming an ideal

solution of ideal gases,

a ¼ exp

"
ð349� 352Þ g

mol
� ð2p � 800=sÞ

2 � ð102 � 22Þcm2

2 � 8:314 J

mol K
� 300 K

� J s2

1000 g m2
� m2

104 cm2

#
¼ 0:864 (14.N)

yi2

yi1
¼ 1

0:007þ 0:993=0:864
¼ 0:865 or

yi1

yi2
¼ 1:156&

ð14:OÞ

This shows that at equilibrium (for an assumed ideal solution

of ideal gases) we would expect the gas at the 2-cm radius

would contain about 16mol% more 235UF6 than that at the

10-cm radius. If we put the feed in at 10 cm radius and

withdraw the product at 2 cm radius, then we increase the
235U concentration from 0.7 to 0.8mol%. The commercial

plants that perform this operation use about 11 stages of such

separation to produce uranium enriched to 3% [2]. There are

formidable mechanical engineering challenges in building

thousands of small (20-cm-diameter) centrifuges that will
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operate at 48,000 rpm without shutting down for many years.

But the economic advantages of this method of uranium

enrichment are great enough that there are several plants in

the world that enrich uranium this way and this is apparently

the least technically-challenging and least-expensive route to

a nuclear weapon. Figure 14.2 shows a simplified cross-

sectional view of such a centrifuge [1]. In it a countercurrent

flow along the axis is induced by the two takeoff scoops, the

lower ofwhich is in themain body of the rotor,while the upper

is shielded from it by a baffle. This causes the enrichment

process to occur as the gas circulates from top to bottom,

producing a higher separationof 235UF6 at the top from
238UF6

at the bottom than could be produced in one equilibrium stage.

14.3 SEMIPERMEABLE MEMBRANES

Asemipermeablemembrane allows the free passage of one or

more species in a solution and forbids the passage of others.

The perfect semipermeable membrane would offer no resis-

tance to the transferred species and allow no leakage of any

nontransferred species. No perfect semipermeable mem-

branes are known, but there are several examples of indus-

trially useful membranes that are practically semipermeable.

These include hot palladium metal, which pass hydrogen

but not other gases [3]; some glasses, which pass helium but

not othergases; and cellophane,whichpasseswater, urea, and

somesaltsbutnotproteins inartificialkidneys.Mostof thecell

walls in living things are semipermeable membranes, such as

the membranes in our lungs, which let oxygen and carbon

dioxidediffuseacross,butdonot letbloodleakout,or thewalls

of our red blood corpuscles, which let oxygen pass freely, but

hold in thehemoglobin.Thesemembranes arenot the“perfect

semipermeable membranes” of thermodynamics texts, but

they make life possible.

Figure 14.3 shows another of our piston-and-cylinder

containers, in which two phases are in equilibrium, separated

by a semipermeable membrane. Each of these phases is an

equilibrium phase, completely internally mixed. The phases

could be gas, liquid or solid; most often the two phases are

either both liquids or both gases (but not in the case of our

lungs). We assume that each of the phases consists of two

chemical species, i and j.

Unlike the other piston-and-cylinders we have used, for

exampleFigure4.1, this figure shows twopistonsandcylinders.

The reason is that if phases 1 and2 are bothmixtures andare not

chemically identical, and if the semipermeable membrane

allows the passage of one or more of the chemical species

present but not one or more other species, then, at equilibrium,

the two parts of the device will be at different pressures. The

pressure difference can be large, as shown in the next example.

In industrial devices the membrane is often quite thin; clever

mechanical devices support the membrane so that the pressure

difference does not rupture it, while blocking as little of the

membrane surface as possible.

If the membrane is only permeable to i but not to j, then at

equilibrium

m
ð1Þ
i ¼ m

ð2Þ
i ð14:10Þ

but there is no corresponding relation for j. m
ð1Þ
j and m

ð2Þ
j can

take on any values. We can arbitrarily change one of them,

FIGURE 14.2 Cross section of a single-stage gas centrifuge for

uranium enrichment. (From Benedict, M., T. H. Pigford, and H. W.

Levi. Nuclear Chemical Engineering, ed. 2. New York: McGraw–

Hill, pp. 847–876 (1981). Reproduced by permission of the

McGraw-Hill Companies.)

Phase 1

P1 P2

Phase 2

Semipermeable
membrane

FIGURE 14.3 Two phases in equilibrium, separated by a semi-

permeable membrane.
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without changing the other. If we restate this in terms of the

fugacities

f
ð1Þ
i ¼ f

ð2Þ
i ð14:11Þ

but f
ð1Þ
j and f

ð2Þ
j can take on any values.

14.3.1 Osmotic Pressure

Example 14.5 In Figure 14.3, phase 1 is seawater and

phase 2 is freshwater, both at 40�F. The two phases are

separated by a membrane permeable to water but not to salts.

If they are at equilibrium, what is the pressure difference

between them?

Seawater varies from time to time and place to place, and

contains at least trace amounts of all the elements of the

periodic table. It is approximately 3wt% dissolved solids,

mostly NaCl, Na2SO4, MgCl2, and KCl, which, if they are

totally ionized, lead to a water mol fraction �0.98 [4]. To

estimate the two fugacities in Eq. 14.11, we return to

Example 7.3, which shows the effect of pressure on fugacity

of liquids, and combine that with Eq. 7.27 to find

fi ¼ xi gi p � exp
ðP
p

�v

RT
dP ð14:12Þ

(This a Raoult’s law-type fugacity statement with the Poynt-

ing factor included.) We write this equation twice, once for

pure water and once for the water in the ocean water, and

equate the fugacities, finding

xi gi p � exp
ðP
p

�v

RT
dP

� �
pure water

¼ xi gi p � exp
ðP
p

�v

RT
dP

� �
water in solution

ð14:13Þ

This is very similar to the boiling-point elevation and

freezing-point depression cases we considered in Section

8.10. In both of those cases the solute was inactive, either

because its vapor pressure was �0.00 in those cases or

because its permeability through the membrane is �0.00 in

this case. The behavior of the solvent, which is close to pure,

can be estimated by Raoult’s law in all three cases. For the

pure water, xi and gi are unity, and for the water in

the solution, with mol fraction 0.98, Raoult’s law is certain

to be practically obeyed, so that gi is certain to be practically
unity. The partial molar volume of water in pure water is

practically the same as that in dilute solutions, sowemay take

the ln of both sides and combine the two integrals, noting that

the pressure of the salt water is greater than that of the

freshwater, finding

�ln x
ðin salt waterÞ
water ¼

ðPsalt water

Ppure water

�v
ðin salt waterÞ
water

RT
dP

¼ �v
ðin salt waterÞ
water

RT
ðPsalt water�Ppure waterÞ

ð14:14Þ

ðPsalt water�Ppure waterÞ ¼ DPosmotic

¼ ð�RT ln x
ðin salt waterÞ
water Þ

�v
ðin salt waterÞ
water

¼

"
�
 
ð10:73 psi ft3
lbmoloR

!
� ð500oRÞ � ðln 0:98Þ

�
18

62:4

�
ft3

lbmol

#

¼ 375 psi & (14.15)

This quantity, called the osmotic pressureDPosmotic, depends

on themol fraction and specific volume of the solvent, but not

on the identity of the solute (or mixture of solutes). Referring

back to Section 8.10, we recall that boiling-point elevation,

freezing-point depression, and osmotic pressure are called

the colligative properties of solutions. All three describe

the situation in which, in a dilute solution, the solute has

negligible vapor pressure for boiling-point elevation or

freezing-point depression, or negligible permeability

through a membrane for osmotic pressure, and the solvent

practically obeys Raoult’s law.

The experimental value of the osmotic pressure of the

ocean �340 psi, indicating that some of the simplifications

used here are not exactly correct. (See Problem 14.18.) This

says that if ocean water and freshwater are separated by a

membrane (Figure 14.3), permeable only to water, and if

there is to be equilibrium, with no flow of water in either

direction, then the ocean water must be at a pressure 340 psi

higher than the freshwater. If the ocean pressure is more than

340 psia greater than that of the freshwater, then water will

flow through the membrane from the ocean side to the

freshwater side, leaving its salts behind. This is the reverse

osmosis method of water desalination, which is economical

for some brackish waters (waters with less salt than the

ocean, but too salty for drinking water) in some locations.

It is not currently economical for preparing freshwater from

ocean water. (The U. S. Army regularly uses it to prepare

emergency drinking water from seawater when that is need-

ed.) If the pressure difference is less than 340 psi, freshwater

will flow through the membrane into the ocean water. Car

washes and building humidifiers need water with practically

zero dissolved solids; many find that reverse osmosis of city

water is the cheapest way to obtain it. See also [5].

As a simple example of the importance of osmotic equi-

libria, consider the various ways humans have developed to
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preserve food. Before the invention of canning and freezing,

we preserved food by salting, with sugar or honey (jams and

jellies), in alcohol or vinegar (pickles and sauerkraut), and by

air, sun, or oven drying. All of these methods rely on the fact

that the bacteria, yeasts, and other organisms that spoil foods

need a fairly high water content to live and multiply. That air,

sun, or oven drying deprives them of water is fairly obvious.

The other methods all work by causing the bacteria and

yeasts, whose cell walls are practically semipermeablemem-

branes, to try to come to osmotic equilibrium with their

surroundingswhosewater concentrations are lower than their

own, and thus to lose somuchwater that they die. Our distant

ancestors who discovered these food preservation methods

did not know about bacteria or osmotic equilibrium, but they

found ways to “osmose the little rascals to death.” These

relations are sketched in Figure 14.4.

14.4 SMALL IS INTERESTING!
EQUILIBRIUM WITH SURFACE TENSION

Gas–liquid interfaces exert forces due to the surface tension

of the liquid. For most systems of engineering importance,

these forces are negligible. However, for small bubbles and

drops, surface forces are very important, as shown here.

Several other situations in which surface tension is important

are not considered here, such as emulsions, coatings, candle

wicks, sweat solder fittings,multiphase flow in porousmedia,

and ink-jet printers [6, Chapter 14].

14.4.1 Bubbles, Drops, and Nucleation

A small liquid droplet is surrounded by pure vapor of the

same material at the same temperature (e.g., a water droplet

surrounded by steam) (see Figure 14.5). The drop falls due to

gravity, but very small drops fall very slowly, so we may

ignore the gravity settling of the drop.

What is the criterion of equilibrium in this situation? From

any elementary fluid mechanics book or from a simple force

balance around the droplet (see Figure 14.6) we can find that

Pinside ¼ Poutside þ 4s

D
ð14:16Þ

(the Young–La Place equation), where s is the surface

tension.

Example 14.6 Estimate the difference in pressure between

inside and outside of a droplet of water suspended in steam at

100�C, with Poutside¼ 1 atm, for various drop diameters.

The metric steam table [7, p. 267] (see Problem 14.22)

gives the surface tension between steam and water at 100�C
as 0.05892N/m, so for a 1-mm drop

Salt water

If (P salt – P fresh) > ΔPosmotic
water flows from salt
to fresh sides, in
Reverse osmosis.

If (P salt – P fresh) < ΔPosmotic
water flows from fresh
to salt sides, in salt
preservation of foods.

If (P salt – P fresh) = ΔPosmotic
we have osmotic
equilibrium and
there is no flow.

Fresh water

m
em

br
an

e

P salt P fresh

FIGURE 14.4 Osmotic flow directions as a function of

ðPsalt � PfreshÞ and DPosmotic.

Vapor

Isothermal
container

Liquid drop
with diameter D

Frictionless
piston

FIGURE 14.5 A small drop of liquid suspended in a vapor of the

same chemical species. We ignore the very slow gravity settling of

the drop.

Pressure difference force = — D2ΔP

Surface force = πDσ

π
4

FIGURE 14.6 Sketch for force balance around a small droplet,

cut in half. The surface force, acting on the cut surface and the

pressure force acting on the cut projected area are equal andopposite,

leading to Eq. l4.16. (From de Nevers, N. Fluid Mechanics for

Chemical Engineers, ed. 2. New York: McGraw–Hill, p. 490

(1991). Reproduced by permission of theMcGraw-Hill Companies.)
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Pinside � Poutside ¼ 4 �0:05892N=m
0:001m

¼ 235:7Pa¼ 0:00233 atm

ð14:PÞ

which is certainly negligible. However, if we reduce the

diameter to 10�6m¼ lmm, a common drop size in sprays,

then the calculated pressure is 2.33 atm, and if we reduce it to

0.01mm (about the smallest sized drop that is likely to exist,

see Problem 14.28), then the calculated pressure difference is

233 atm¼ 3240 psig! &

The surface of the drop acts like a semipermeablemembrane,

preventing the contained liquid from expanding, but not

preventing the liquid in the drop and the gas outside the

drop from being in thermodynamic equilibrium. This means

that the Gibbs energies (or fugacities) of the liquid inside the

drop and the vapor outside it must be equal. In this case (for a

pure species instead of a mixture) it seems simpler to work

directly with the Gibbs energies, as shown below.

The practical problem of interest is the stability of small

drops or bubbles. In these problems the condensation or

evaporation normally begins on some small solid particle.

Thismay be a very small dust particle in the atmosphere, a

chemical particle generated in a cloud-seeding operation in

the atmosphere, or a very small impurity particle present in

gas or liquid. Such particles quickly form equivalent bubbles

or drops by adsorbing molecules of the water on their solid

surfaces, so that they become “artificial drops” or “artificial

bubbles” of practically constant size.

Example 14.7 Steam at 1 atm and 100�C is being slowly

compressed isothermally. There is no liquid present and the

distance from the nearest solid walls is so large that con-

densation on them is unimportant. The condensation nuclei

present in the steam (due to impurity particles) have dia-

meters of 0.01mm (¼10�8m¼ 3.94� 10�7 inches). At what

pressurewill the steam begin to condense on these nuclei and

therefore convert the all-gaseous system to a two-phase

mixture?

At equilibrium the Gibbs energy per pound will be the

same inside and outside the drops. From Example 14.6 we

know that the (Pinside�Poutside)¼ 4s/D¼ 233 atm¼ 235.7

bar. Taking the Gibbs energy per pound at the normal boiling

point (the same in gas and liquid) as gNBP we have

gsmall drop equilibrium ¼ gNBP þ
ðPgas

PNBP

v
ðgasÞ
waterdP

¼ gNBP þ
ðPgas þ 4s=D

PNBP

v
ðliquidÞ
water dP

ð14:17Þ

If we assume that the specific volume of the liquid is a

constant, independent of pressure, and that the volume of the

vapor is given by the ideal gas law, then we can perform the

integrations and cancel the gNBP terms, finding the Kelvin

equation:

RT ln
Pgas

PNBP

¼ v
ðliquidÞ
water � Pgas þ 4s

D
� PNBP

� �
ð14:18Þ

It has no analytic solution, but can be solved numerically.

However, for very small drops

ðPgas � PNBPÞ � 4s

D
ð14:19Þ

so that we can write it approximately as

Pgas

PNBP

� exp
v
ðliquidÞ
water � 4s=D

RT

 !
ð14:20Þ

which is also called the Kelvin equation. Inserting the values

corresponding to the normal boiling point gives

Pgas

PNBP

� exp

m3

958:39kg
� 4 �0:05892N=m

10�8m
� bar

105Pa
� 0:018 kg

mol

0:08314
L �bar
mol �K � m3

1000L
373:15K

0
BBBB@

1
CCCCA

¼ exp 0:1427¼ 1:1534 (14.Q)

Pgas � PNBP ¼ 1:1534�1¼ 0:1534 atm¼ 0:1554 bar

¼ 2:25psi (14.R)

At equilibrium, the pressure in the gas is 2.25 psia above

the normal boiling pressure at this temperature, and the

pressure inside the drop is 3420 psi greater than the pressure

in the gas. &

This says that if all the foreign particles present have dia-

meters of 	 0:01 mmð¼ 10�8 m ¼ 3:94� 10�7 inchesÞ,
then the steam can be compressed by 2.25 psi above its

normal boiling point pressure before it will begin to con-

dense.When it does begin to condense, as each drop grows its

D increases so that it no longer requires as high a pressure for

moisture to condense on it, and itwill grow as rapidly as it can

reject the heat of condensation.

Example 14.8 Adrop ofwaterwith temperature 100�Cand

a diameter of 0:01 mmð¼ 10�8 m ¼ 3:94� 10�7 inchesÞ is
suspended in steam at a temperature of 100�C and gauge

pressure 0.15 bar. Will this drop grow by condensation?
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Shrink by evaporation?Or remain at its present size because it

is in equilibrium with its surroundings?

This is the same size drop and the same temperature as in

Example 14.7, so the calculation of the pressure difference

from inside to outside is the same. We begin with Eq. 14.17

and solve for the specific Gibbs energy of the liquid and then

that of the gas. For the liquid

g
ðliquidÞ
water �gNBP ¼

ðPgas þ 4s=D

PNBP

v
ðliquidÞ
water dP

¼ v
ðliquidÞ
water �

 
P�PNBP þ 4s

D

!

¼ 0:018

0:95839

L

mol

0
@

1
A � ð0:15þ 235:7Þ bar

� 105N

m2 � bar �
m3

1000 L
� J

N �m ¼ 442:64
J

mol

ð14:SÞ

and for the gas, again using Eq. 14.17,

g
ðgasÞ
water � gNBP ¼

ðPgas

PNBP

v
ðgasÞ
water dP ¼ RT ln

Pgas

PNBP

¼ 8:314
J

mol �K � 373:15 K

� ln ð1:013þ 0:15Þ bar
1:013 bar

¼ 428:39
J

mol

ð14:TÞ

g
ðliquidÞ
water � g

ðgasÞ
water ¼ 442:64 � 428:39 ¼ 14:25

J

mol
ð14:UÞ

The liquid can lower its Gibbs energy 14.25 J/mol by

changing to a gas, so that even at 0.15 bar above the normal

boiling point, a drop this small is unstable and will quickly

evaporate. &

The relations between theGibbs energies of the liquid and the

gas at a constant 373.15K and a constant drop diameter of

0.01mmare sketched in Figure 14.7; the individual values are

calculated exactly as in Example 14.8. The liquid line

appears to be horizontal, but actually increases by a negli-

gible amount as the gas pressure increases. Because of its

much larger specific volume, the Gibbs energy of the gas

increases muchmore rapidlywith increasing pressure and, as

shown, the two curves cross at the equilibrium gauge pres-

sure, 0.155 bar.

We can see that for any particular relation between pres-

sure and temperature in any gas that is unstablewith regard to

condensation, there is one size of drop that is stable, and that

those smaller than it can lower their Gibbs energy by evap-

orating,while those larger than that size can lower theirGibbs

energy by increasing in size. As a practical matter, we see the

terrific instability of a small drop (if it is not fixed in size by

forming around a solid particle). If a drop is at equilibrium

with its surroundings at the equilibrium Gibbs energy shown

in Figure 14.7 and there is an infinitesimal increase in

pressure, then g
ðgasÞ
water > g

ðliquidÞ
water and the gas will spontaneously

condense onto the drop. As the drop’s size increases its

internal pressure falls and so its Gibbs energy falls, making

the gas condense onto it more rapidly, increasing its size even

more, and so forth.Conversely, if the drop is at equilibrium, as

shown on Figure 14.7, and the gas pressure falls slightly, then

g
ðgasÞ
water < g

ðliquidÞ
water and liquid will evaporate off the drop, de-

creasing its diameter, raising its internal pressure and thus its

Gibbs energy, causing it to evaporate more rapidly and lower

its size rapidly. Referring to Figure 1.5, this situation is the

Liquid
500

400

300

g
-g

N
B

P,
 J

/m
ol

200

100

0
0                         0.05                       0.1                        0.15                       0.2

Vapor

Pgas-PNBP, bar

Constant 373.15 K
Constant drop diameter
= 0.01 μm

FIGURE14.7 Computed ðg�gNBPÞ forwater as a function ofPgas�PNBP at 100
�C¼ 373.15K, for a

fixed drop diameter of 0.01mm.
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unstable case,with the ball resting on the top of a very narrow,

steep-sided peak.

Thus, this will be a highly irreversible, spontaneous

process. This kind of equilibrium, when it exists, is meta-

stable. This is of prime significance in the whole area of

nucleation [8]. If we have a superheated liquid or a subcooled

vapor and introduce nuclei that are larger than the stability

limit calculated this way, they will grow and cause boiling or

condensation. We can easily calculate the required nucleus

diameter for the nucleus to be effective. That calculation

guides thewhole field of nucleation. A nucleus larger than the

diameter calculated above, if introduced into a supersaturat-

ed system, will grow rapidly, causing rapid, sometimes

explosive conversion to the stable state. A smaller nucleus

will do nothing. The same ideas presented here apply to cloud

seeding, crystallization, and other nucleation phenomena.

Example 14.9 Pure liquid water is at 400 psia and at

the exact saturation temperature for that pressure

(444.70�F¼ 904.7�R). We now reduce the pressure on the

liquid, at constant temperature. There is no free surface, so

boiling can begin only around the boiling nuclei in the liquid

(generally submicroscopic solid particles), which have a

diameter of 10�5 inch. At what liquid pressure will these

boiling nuclei (which may be considered the equivalent of

small bubbles of steam) begin to grow and thus initiate

boiling? At 444.70�F, swater � 1:76� 10�4 lbf/inch.

This is practically the same as the growing drop problem,

except that in this case the gas is inside the bubble, at a

pressure much higher than that of the surrounding liquid.

Again, the criterion of equilibrium is that the Gibbs energy of

the gas inside the bubblemust be the same as that of the liquid

outside the bubble. We can rewrite Eq. 14.17 as

gsmall bubble equilibrium ¼ gNBP þ
ðPliquid þ 4s=D

PNBP

v
ðgasÞ
water dP

¼ gNBP þ
ðPliquid

PNBP

v
ðliquidÞ
water dP ð14:22Þ

and again set these equal and assume that the liquid has

practically constant density and that the gas behaves as an

ideal gas (which becomes a poor assumption as the gas

pressure rises), to find

RT ln
Pliquid þ 4s=D

PNBP

¼ v
ðliquidÞ
water Pliquid � PNBP

� � ð14:22Þ

This equation has no analytical solution, but can be easily

solved numerically for Pliquid. First we evaluate

4s

D
¼

4 � 1:76� 104 lbf
in

1� 10�5in
¼ 70:4

lbf

in2
ð14:VÞ

then in Eq. 14.22

10:73
psi � ft3
lbmol �R � 904:7oR � ln Pliquid þ 70:4 psia

� �
400 psia

¼ 18 � 0:01934 ft3

lbmol

0
@

1
A � 400 psia � Pliquid

� �
(14.W)

or

27; 885 psia � ln ðPliquid þ 70:4 psiaÞ
400 psia

¼ ð400 psia � PliquidÞ
ð14:XÞ

for which the numerical solution is 328.6 psia. At this

external pressure, the pressure inside the bubble is

399.0 psia. &

The pressure-Gibbs energy relations in Example 14.9 are

sketched in Figure 14.8, which is very similar to Figure 14.7,

but has the equilibrium P below the ordinary boiling-point

pressure instead of above because the gas is atPliquid þ 4s=D,
while in Figure 14.7 the liquid was at Pgas þ 4s=D. We may

easily show that for smaller bubbles the gas curve is shifted to

the left, and for larger bubbles it is shifted to the right.

Again, we see the extreme instability of small bubbles and

drops. If the liquid pressure falls slightly below the equilib-

rium pressure, then g
ðliquidÞ
water > g

ðgasÞ
water, so the bubble will

expand, increasing its diameter and shifting the vapor curve

to the right, causing rapid bubble growth. If the liquid

pressure rises slightly from the equilibrium value, then

g
ðliquidÞ
water < g

ðgasÞ
water, so the babble will contract, shifting the
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FIGURE 14.8 Calculated values for Example 14.9. The Gibbs

energy of the liquid changes only slightly with decreasing liquid

pressure (at constant temperature) because of its small specific

volume.
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vapor curve to the left and leading to rapid bubble contraction

and collapse. If the bubble is stabilized against such collapse

by being formed around some kind of solid particle, then it

will remain in place and maintain its diameter as long as the

pressure is higher than the equilibrium pressure.

14.4.2 Capillary Condensation

Porous solids often contain pores of the same sizes as

the bubbles and drops in the previous section, or smaller.

Figure 14.9 shows a simplified view of such a pore, which

extends a long way into the solid.

The hemispherical-shaped-interface-in-a-cylindrical-tube

is the simplest mathematically of the possible geometries. For

itwe can useEquation14.16 to find that the pressure inside the

fluid is less than the pressure of thegasor vapor at themouthof

the pore by 4s/D. From Example 14.6 we know that for

ordinary sized holes this difference is negligible, but for

microscopic ones it becomes quite large. If we repeat Exam-

ple 14.7 for this geometry (D¼ 0.01m case only), we find

almost the same numbers, but with different meanings. As

before the pressure difference across the hemispherical 0.01m
gas-liquid interface must be 3420 psi, but in this case that

makes the pressure in the column of fluid inside the

pore¼�3240 psig!

This is certainly a surprise, but in this situation the

negative pressure simply indicates that the trapped liquid is

in tension. An ordinary liquid under tension will boil and

convert to a gas-liquid mixture, but at this extremely small

size the needed bubble cannot form, so the liquid under

tension is quite stable.

Example 14.10 Estimate the vapor pressure of the liquid

water held in place in theD¼ 0.01m pore in Figure 14.9, if, as
in Example 14.7 the vapor above the pore is pure steam at

100�C, and the liquid in the pore is at 100�C.

Returning to Equation 14.17 we see that the pressure we

are seeking is that at which the liquid in the pore is in

equilibriumwith the external gas, sowe seek the surrounding

steam’s pressure. The only change is in the upper integration

limit on the right term, which changes from Pgas þ 4s/D to

Pgas� 4s/D. If we then follow the rest of that examplewe see

that the sign change affects all the calculations in a minor

way, and finally Pgas¼ 0.867 atm &

From this example we see:

1. Liquid water can exist at its NPB and a pressure of

0.867 atm if it is constrained by the surface forces in an

0.01 m pore. This behavior, called capillary condensa-

tion plays a significant role in adsorption.

2. The simple cylindrical pore sketched in Figure 14.9

would not produce the bizarre hysteresis behavior

shown in Figure 11.27. But a pore shaped like a bottle

with a narrow neck (called an ink bottle pore in the

adsorption literature) would [10]. If such a pore was

filled up to the top of its neck with water at 100�C and

the external steam pressure were gradually lowered, at

a pressure of 0.867 atm the liquid would be in equi-

librium with the vapor, and begin to evaporate. As the

interface receded through the neck, the liquid’s vapor

pressure would remain constant. But when the neck

emptied and the interface moved into the larger part of

the pore, D would increase, 4s/D would decrease, and

the vapor pressure of the remaining liquid would

increase, producing the behavior shown in Figure

11.27.

3. Here we have used the Poynting Factor (Section 7.4.2)

to show the change in vapor pressure for decrease in

system pressure. That is uncommon, but correct. The

result is the Kelvin equation (14.20) with a minus sign

inserted in the argument of the exponent (also called

the Kelvin equation.)

4. This simple explanation shows how the hysteresis loop

in Figure 11.27 could occur. The adsorption litera-

ture [10] shows that real experimental systems are

more complex than what is described here.

14.5 SUMMARY

1. If we take into account the effects of gravity, magnetic,

tensile, or electrostatic energies we find that the crite-

rion of equilibrium is expanded, as shown in Eq. 14.3.

2. This equation shows that we can have systems in

equilibrium with different pressures in different parts

of the system, if those pressure differences are balanced

by gravity, and so forth. That equation does not change

our previous statement that any system at physical or

chemical equilibrium is an isothermal system.

T = 100 ºC
D = 0.01μ

Vapor

Solid

L
iq

ui
d

FIGURE 14.9 A practically-cylindrical pore of diameter D in a

solid. The pore is partially filled with liquid, which wets the sides of

the pore, so that surface tension pulls the interface into a

hemisphere.
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3. A mixture of two substances with different molecular

weights will have a change in chemical composition

with depth at equilibrium in a gravity field or with

radius in a centrifugal force field. For ordinary situa-

tions this is negligible, but not for high speed

centrifuges.

4. An ideal semipermeable membrane allows equality of

the chemical potentials for one or more species of a

mixture, but not for others.Many realmembranes, such

as those in our lungs, come close to this ideal.

5. A semipermeablemembranewith solutions of different

compositions on either side at equilibrium produces an

osmotic pressure. By adjusting the real pressure dif-

ferencewe can cause the flow of the transferred species

in either direction across such a membrane.

6. In very small droplets and bubbles there is a substantial

pressure difference between the inside and the outside

at equilibrium, due to surface tension. This plays an

important role in small bubble and drop behavior. The

same kind of forces, acting on liquids inside of very

small pores in solids can produce capillary condensa-

tion, which complicates adsorption processes.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (
) on the problem number indicates that

the answer is in Appendix H.

14.1 In Example 14.1, the calculated pressure at the

bottom of the well is 2.155MPa. What pressure

would we calculate for that depth using the basic

equation of fluid statics (barometric equation) and

assuming that the average molecular weight of the

gas in the well was the same as at that the top?

Assume isothermal, ideal gas behavior.

14.2 Repeat Example 14.1 for a difference in elevation

from top to bottom of 1m. Are we justified in

normally ignoring such differences?

14.3
 Repeat Example 14.1 for a well of 5000m depth.

14.4 ShowthederivationofEq.14.8.WriteEq.14.7 twice,

once for species i and once for species j. Divide one

equationby theother (thuseliminating thepressureat

the bottom of the well). Then replace the yj2 with

(1� yi2), and perform the necessary algebra.

14.5
 There is a slow but steady leakage of helium (pro-

duced by radioactive decay of uranium) out of the

ground into our atmosphere. But the concentration in

the atmosphere is only �5 ppm. With this steady

inflow from the earth, over geologic time we

would expect a large value. It is suggested that over

geological time the atmosphere loses light gases

(hydrogen and helium) from its top and that,

although the winds stir the atmosphere, there is a

concentration gradient that carries helium up to

the top, where it can escape. To test this idea,

compute the equilibrium ratio of helium concentra-

tion at the top of the atmosphere to that at the bottom.

For this calculation only, replace the real atmo-

sphere, which is quite complex, with an isothermal

atmosphere with T¼ 288K, average molecular

weight 29g/mol, and thickness (from the ground up)

of 15 km. Assume that the heliummol fraction at the

surface is 5� 10�6.

This calculated result only partly explains the

scarcity of helium. It is easier for a light molecule,

like helium to get enough kinetic energy to escape

from the earth’s gravity than for a heavier molecule

like nitrogen. That combines with this effect to

remove light gases from the atmosphere.

14.6 Equations 14.7 and 14.8 seem to be simply a balance

ofmechanical effects, but the temperature appears in

these equations. Why? Give a physical, intuitively

satisfying answer. No calculations are needed.

14.7
 In Example 14.4 the outlet concentration of 235UF6
is 1.16 times the inlet value, which is assumed to be

0.007mol fraction.

a. If we repeated the process 11 times, what would

the concentration be?

b. Howmany times would we have to repeat it to get

weapons-grade (90mol%) 235UF6?

14.8 The feed to a uranium enrichment plant is contam-

inated with nitrogen, at a concentration of 0.001mol

fraction. What will be the ratio at equilibrium of

nitrogen at a radius of 2 cm to that at a radius of

10 cm, in the centrifuge discussed in Example 14.4?

14.9 For a gas centrifugewith the dimensions and angular

velocity shown in Example 14.4, estimate the ratio

of the pressure at the outer wall to that at the inner

wall.

14.10 Explain how the scoop arrangement shown in Fig-

ure 14.2 induces the circulating flow shown in that

figure. Hint: Observe that the baffle between the

upper scoop and the main chamber has holes both at

the periphery and near the center.

14.11 It is often asked how it is possible for a tall tree to get

liquid (sap) to the top. One answer regularly given is

that it is done by osmotic pressure. Is that possible?

The tallest trees in theworld are the redwood trees in

California of which the tallest one measured to date

is 367 feet tall.
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a. Assuming that the fluid inside the tree has the

density of pure water, what is the pressure dif-

ference that must be overcome to get water from

its roots (assumed at atmospheric pressure at the

base) to the top?

b. Assuming that this is done by osmotic pressure

using plant cell walls that are totally permeable to

water but not permeable to salts and sugars, what

mol fraction of dissolved salts and sugars would

have to exist in the sap?

c. Another explanation that is sometimes ad-

vanced is capillarity. Is that plausible? Here

assume that inside the trees are small, cylindri-

cal, open tubes of wood, in which the water rises

by capillary action. Assume that there is a

hemispherical air–water interface inside these

tubes at the top, and that swater¼ 4.2� 10�4 lbf/

in. Assume that at the top of the tree the pressure

of the air opposite the hemispherical interface is

1 atm. Estimate the tube diameter that would be

needed to get the water to the top of a 367-ft-

high tree.

d. Comment on the feasibility of this approach for

bringing water to the top of the trees.

14.12 Wewish to design a reverse osmosis plant to prepare

drinking water from water with too high a salt

content to drink. If the maximum pressure we can

afford is 100 psig, what is the highest salt content in

the water we can tolerate and still produce pure

drinking water? Assume that the salt is all sodium

chloride, that it is 100% ionized, and that it forms an

ideal solution.

14.13 The army uses portable reverse osmosis equipment

driven by diesel engines to make emergency fresh-

water from seawater. Estimate how many pounds of

freshwater we can make per pound of diesel fuel

consumed in such a device. Assume the following:
. The required pressure difference is as shown in

Example 14.5.

. The power required to run a reverse osmosis

device is given by Po¼QDP, where Po is the

power, Q is the volumetric flow rate of fluid

pumped to the pressure of the reverse osmosis

cell, and DP is the pressure increase from ambient

to the inlet of that cell.

. We must pump twice as much saltwater into the

cell as we get freshwater out, so that the other half

can carry away all the salts (at a concentration �
twice that at the inlet).

. Diesel fuel has a heat of combustion of

19,000Btu/lb.

. The overall efficiency of the motor-pump combi-

nation is 30%, that is, 30% of the combustion

energy of the fuel goes into the work of compres-

sing the fluid.

14.14 Show the details of the derivation of Eq. 14.14 from

Eq. 14.13.

14.15 Pure hydrogen is produced commercially from im-

pure hydrogen streams using palladiummetal at 575

to 750�F as a semipermeable membrane [3]. If we

have a gas stream that is 10mol% hydrogen, and the

hydrogen activity coefficient in this stream is

ghydrogen¼ 0.95, what total pressure must we supply

on the impure hydrogen side so that there will be

physical equilibrium with pure hydrogen at 1 atm on

the other side?

14.16 Why does the temperature appear in the equation for

the osmotic pressure? This would seem to be simply

a balance of mechanical effects. But the temperature

appears in the equations. Give a physical, intuitively

satisfying answer. No calculations are needed.

14.17
 One hundred grams of a substance of unknown

molecular weight was dissolved in 1 kg of purewater

at 20�C and the osmotic pressure of the resulting

solution, relative to pure water, was measured as

100 psi. Estimate the molecular weight of this sub-

stance on the assumption that this substance does not

ionize in solution in water.

14.18 Example 14.15 computes the osmotic pressure of

seawater as 375 psia, based on an estimated water

mol fraction x
ðin salt waterÞ
water ¼ 0:98. What value must

we use for this mol fraction to have the computed

pressure match the observed value of 340 psia at

40�F?

14.19 Equation 14.15 for the osmotic pressure is written on

the assumption that the dilute solvent has practically

ideal solution behavior. As the concentration of

solute increases (and that of solvent decreases) this

assumption becomes unreliable.

a. Rewrite Eq. 14.15, taking liquid phase nonide-

ality into account.

b. Solve the resulting equation for the activity co-

efficient of the solvent.

c. Discuss the pros and cons of using this method to

measure the activity coefficient of solvents with

various solutes [9,p. 173].

14.20 In Example 14.7 we assumed that Pgas�PNBP was

negligible compared to the pressure difference from

inside to outside of the drop (Eq. 14.19). How much

difference does that simplification make in our
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answer? Repeat that example, not making that

simplification.

14.21 Estimate the pressure at which steam will be in

equilibrium with water droplets with diameters of

10�5, 10�6, and 10�7 inches, at 212�F, for which

swater � 3:3� 10�4 lbf/inch.

14.22
 In the cgs system of units, surface tensions are

expressed in dyn/cm, and in the SI system they are

expressed in N/m. If a fluid has a surface tension of

60 dyn/cm (a typical value), what is its surface

tension in N/m? The reported values of the surface

tension in [7] are high by a factor of 1000. Comment

on the probable origin of the values shown there.

14.23 Steam (gaseous water) is at 212.000�F¼ 100.00�C
and a pressure of 14.8 psia¼ 0.10 psig. What is the

diameter of the smallest drop of liquidwater that will

spontaneously growwhen placed in contact with this

steam? At this temperature swater � 3:3� 10�4 lbf/

inch.

14.24 Liquid water at 1 atm and 212�F¼ 100�C is being

slowly heated at constant pressure in a closed, con-

stant pressure container with no free surface. There

are tiny impurities in the water with diameter 10 mm
(¼ 3.97� 10�4 inch), which are coated with gas, so

they behave as tiny gas bubbles of that diameter.How

much must the temperature of the water be raised

before these bubbles begin to grow? Assume that

steam is an ideal gas, and that at 212�F
swater � 3:3� 10�4 lbf/in.

14.25 When cold beer is placed in a clean, clear drinking

glass, we observe that streams of bubbles form as

certain sites on thewall of the glass and flow steadily

upward, while practically no other bubbles appear.

Explain this observation in terms of the ideas in this

chapter.

14.26 When air bubbles with diameters smaller than a few

microns are introduced into purewater, they collapse

rapidly. Explain this observation in terms of the ideas

in this chapter.

14.27 Sketch adesorption curve like the one inFigure 11.27

for the assumption that all the adsorbed material was

inside a single pore, whose opening to the surround-

ings had a diameter of 0.01m and whose vapor liquid

interfacewas at the end of the pore, for assumed pore

geometriesof: (a) cylinder, (b) a cone open at the end

with the interface, and (c) an “ink bottle pore” with

an 0.01m neck and an 0.1m main body.

14.28 a. Several places in this chapter it says that the

smallest bubble or drop is likely to have a diameter

of about 0.01m. If such a drop is a sphere, contain-
ingwater at its NPB (r¼ 958 kg/m3), what are the

volume, mass and number of water molecules in

the drop?

b. Repeat part (a) for a drop diameter of 0.001 m.
Would such a drop have enough water molecules

to hold together?
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15
THE PHASE RULE

15.1 HOW MANY PHASES CAN COEXIST IN

A GIVEN EQUILIBRIUM SITUATION?

Weare all aware thatwater can exist in the formof gas, liquid,

and solid (called steam, water, and ice). We also know that

water and steam can coexist over a finite range of pressures

and temperatures (as described by the vapor-pressure curve,

Figure 1.8). Most of us are less aware that ice and water can

coexist over a range of temperatures and pressures (the

“freezing-point curve”), because we have less experience

with that. Most of us have heard that solid, liquid, and vapor

water can coexist only at one specific temperature and

pressure, called the triple point (Figure 1.9).

Could all three phases of water coexist over some finite

range of temperatures? Could the vapor–liquid equilibrium

exist over a range of pressures at one temperature, instead of

at just one pressure for any given temperature? We have all

been told, in previous courses, that the answer is no. But how

would you prove that? The answer is that we would use

the phase rule, often called Gibbs’ phase rule after Josiah

Willard Gibbs (1790–1861).

For the simple case of asking whether three phases of

a single pure substance can coexist over a finite range

of pressures, it is instructive to study the problem by

Clapeyron’s equation before we take up the phase rule.

Consider the possibility of three phases of some single pure

substance (like water or propane) coexisting over some finite

range of temperature and pressure. For the three combina-

tions of two phases each we can write Clapeyron’s equation

(Eq. 5.5) three times for the three binary equilibria (1¼ solid,

2¼ liquid, 3¼ gas)

dP

dT

� �
1�2

¼ Ds1�2

Dv1�2

ð15:1Þ

dP

dT

� �
1�3

¼ Ds1�3

Dv1�3

ð15:2Þ

dP

dT

� �
2�3

¼ Ds2�3

Dv2�3

ð15:3Þ

But if the three phases coexist over some finite range of

temperatures, then dP/dT must be the same for the three

combinations indicated above, or

ðs2 � s1Þ
ðv2�v1Þ ¼ ðs3 � s1Þ

ðv3 � v1Þ ¼
ðs3 � s2Þ
ðv3 � v2Þ ð15:4Þ

which can be satisfied only if the three phases lie on a straight

line on an entropy–volume diagram, as sketched on

Figure 15.1.

This is certainly conceivable, but very unlikely. No

substance is known for which this is true. For example,

the entropies and volumes per pound for the three phases

of water at a triple point, 32.018�F, 0.08866 psia,

from [1] are shown in Table 15.1 and sketched in Figure

15.2. We might think that we need to use absolute

entropies here, instead of steam table entropies. How-

ever, that would merely shift all the values on Figure

15.2 upward by an equal amount, and not change the

shape of the figure.

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

279



From this figure and the arguments in Eqs. 15.1 to 15.3, we

can show from Clapeyron’s equation alone that, for the

system water–ice–steam, the three phases cannot coexist

over any finite range of pressures and temperatures. In this

case we did not need Gibbs’ phase rule. But for more

complicated cases it is much harder to settle such questions

by Clapeyron’s equation alone; the more complex cases are

easier to settle by Gibbs’ phase rule.

15.2 WHAT DOES THE PHASE RULE TELL US?

WHAT DOES IT NOT TELL US?

The phase rule provides no numerical values of temperatures,

pressures, mol fractions, relative masses of phases, or other

quantitativevalues. Thevariables it discusses are all intensive

variables, normally T, P, and mol fractions. It does not deal

with extensive variables like system volume, mass, enthalpy,

or entropy, or with the number of mols of any species in any

phase of any system. It only answers questions of a yes or

no variety, or questions whose answers are dimensionless

integers. We will illustrate its application by starting an

example here and finishing it later.

Example 15.1 A constant-volume, isothermal, transparent

container contains a gas phase (mostly carbon dioxide, some

water vapor), one liquid phase (mostly water, some dissolved

carbon dioxide, some ions), and two solid phases, at some

specified temperature T. The two solid phases are practically

pure NaOH and practically pure solid H2O (ice). In this

container there is a good mixer, and diffusion and chemical

reactions are so fast that we always have thermodynamic

equilibrium.We nowbegin to steadily introduceCO2 gas into

the container. This leads to the conversion of NaOH to

NaHCO3. Eventually, all the solid NaOH will be gone and

there will be solid NaHCO3. The piece of solid ice is large

enough that it may shrink, but it cannot disappear before the

piece of NaOH does.

If we watch the container we can determine whether the

solidNaOHdisappears completely before any solidNaHCO3

appears, whether one solid phase disappears at exactly the

same moment the other solid phase begins to appear, or

whether there is some significant period when only one solid

phase (mostly ice) is present in the container. During the

entire process the liquid will contain dissolved NaOH,

NaHCO3, CO2, and various ions. These three possibilities

are sketched in Figure 15.3.

We could answer this question by conducting the exper-

iment, but we don’t have to. Based on the phase rule alonewe

can find the answer.Wewill reopen Example 15.1 later in this

chapter and show how that answer is found. &

15.3 WHAT IS A PHASE?

The nature of a phase is discussed in detail in Section 1.8.

There can be only one gas phase, because all gases are

miscible with each other. There can be several liquid

phases in equilibrium, although more than three is un-

common. There can be any number of solid phases in

equilibrium. There is seldom any problem in identifying

the proper number of phases or telling one from the

other.
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FIGURE 15.1 Required relation between entropies and volumes

of the three individual phases for three phases of one pure substance

to coexist over some finite range of T and P.

Table 15.1 Properties at the Water Triple Point

Phase v (ft3/lbm) s [Btu/(lbm � �R)]
Solid (ice) 0.01747 �0.292

Liquid 0.016022 0 (definition)

Gas 3302 2.1869
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FIGURE 15.2 Properties of the three coexisting phases at the

triple point of water, shown on semilogarithmic s-v coordinates.
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15.4 THE PHASE RULE IS SIMPLY

COUNTING VARIABLES

The phase rule is obtained by counting the variables that

nature allows us to arbitrarily specify.We begin by imagining

that we wish to confine within a piston and cylinder (Fig-

ure 15.4) a single phase of some mixture of N identifiable

chemical species (e.g., N2, H2, NH3; in this case, N¼ 3). We

can arbitarily set the temperture of the system by placing the

whole piston and cylinder in a thermostated oven, and within

limits (e.g., no condensation or vaporization) we can set the

pressure by moving the piston in or out. (To avoid forming a

second phase we must stay above the condensation temper-

ature if the phase is a gas, or below the melting point if the

phase is a solid, etc.)

The phase rule does not deal with the amounts of each of

the materials we put into the piston and cylinder, but it does

deal with concentrations. For the purposes of this discussion

we will assume that all concentrations are specified in mol

fractions. The same arguments can be made for molalities

(lbm/ft3 of species i, etc.) But it is easiest to see for mol

fractions. In making up this piston and cylinder with N

species, we can set (N� 1) mol fractions. We know that the

sum of the mol fractions must be one, so after we set (N� 1)

of the mol fractions the remaining one is fixed. Since we can

arbitrarily set T and P, we can arbitrarily set (2 þ (N� 1))

variables in making up such a piston and cylinder. (Here we

have assumed that there are no magnetic, surface, electro-

static, or gravity effects.) Try the “thought experiment” of

finding any way to modify the properties of a phase without

changing the values of T, P or the number of mols of each

species. Once you agree that you cannot, then the rest of this

argument will feel comfortable.

Having made up one such phase in a piston and cylinder,

we now make up additional phases, each in its own cylinder,

until we have a total of M such piston and cylinders, each

containing onephasewithN identifiable chemical species.We

further specify that the M piston and cylinders each contain

different phases; for example one contains a gas, another one

liquid, another a solid, another some other solid, and so on.

Next we place all the pistons and cylinders together in a

pile and surround them by an adiabatic, constant-volume

cover. In making up this pile of pistons and cylinders we have

been able to arbitrarily set M[2 þ (N� 1)] variables.

Now suppose that we wish to make up this pile in such a

way that, after we have assembled it, we can remove the

pistons and cylinders and find that the phases are all already

in a state of chemical and physical equilibrium with all the

other phases they will contact when the pistons and cylinders

are removed. In this case, howmany of theseM[2 þ (N� 1)]

variables can we arbitrarily set? The answer must be

M [2 þ (N� 1)] minus the number of relations that must

exist among the phases if they are to be at equilibrium. We

know that for these phases to be in physical equilibrium

T ð1Þ ¼ Tð2Þ ¼ T ð3Þ ¼ � � � ¼ TðMÞ ð15:5Þ

Pð1Þ ¼ Pð2Þ ¼ Pð3Þ ¼ � � � ¼ PðMÞ ð15:6Þ

m
ð1Þ
i ¼ m

ð2Þ
i ¼ m

ð3Þ
i ¼ � � � ¼ m

ðMÞ
i ð15:7Þ

m
ð1Þ
j ¼ m

ð2Þ
j ¼ m

ð3Þ
j ¼ � � � ¼ m

ðMÞ
j ð15:8Þ

m
ð1Þ
N ¼ m

ð2Þ
N ¼ m

ð3Þ
N ¼ � � � ¼ m

ðMÞ
N ð15:9Þ
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FIGURE 15.3 Possible outcomes of the experiment in Example

15.1. The NaHCO3 solid phase may begin to form before the NaOH

phase disappears, exactly when it disappears, or after it disappears.

This figure intentionally shows no numerical values of anykind. The

curves are drawn as straight lines, but that is a simple admission of

ignorance of the true behavior. The phase rule tells us nothing about

numerical values on this figure or about the shape of the curves. But

it does tell uswhich is the correct choice among the three “volume of

NaHCO3” curves shown.
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FIGURE 15.4 Another of our piston and cylinder arrangements,

showing how we make up some phase.
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Each of these rows is (M� 1) equations, and there are

(2 þ N) rows. Thus, there are (M� 1)�(2 þ N) independent

relations among the (M� 1)[2 þ (N� 1)] variables, which

must be satisfied if we are to have physical equilibrium

among all the phases. Therefore, we could set

M½2þðN�1Þ��ðM�1Þð2þNÞ
¼ 2MþMN�M�2M�MN þ 2þN

¼ 2þN�M ð15:10Þ

variables. But so far we have not taken into account the

possibility of chemical reactions among the N chemical

species present. Suppose, for example, we have in the gas

phase NH3, N2, and H2. Then we can have the reaction

N2 þ 3H2 , 2NH3 ð12:AÞ

If there is such an equilibrium, thenwe know fromChapter 12

that

�mN2
� 3mH2

þ 2mNH3
¼ 0 ð12:6Þ

We know that the mS are functions of mol fraction, temper-

ature, and pressure, so this is a restriction on our ability to

arbitrarily set those values. Thus, this is an additional re-

striction to the compositions we can arbitrarily set, shown

above. There is one such restriction for each balanced,

independent equation we can write among the species pres-

ent. Is there a separate one for each phase?Here, if these three

kinds of molecules are in equilibrium in the gas phase, they

are certainly in equilibrium in the liquid phase also, if one

exists. However, from Eqs. 15.8 to 15.9 we know that by

physical equilibrium the ms are the same for any species in

all phases present, so although Eq. 12.6 is obeyed indepen-

dently in each of the phases, it represents only one restriction

(see Section 13.5).

Let us call the number of such balanced independent

equations we can write Q. Then the remaining number of

variables V under our independent control (if we want

physical and chemical equilibrium) is

V ¼ 2þN�Q�M ð15:11Þ

Now let (N�Q)¼C, the number of components, andM¼P,

the number of phases (not to be confused with P, the

pressure), so this is

V ¼ Cþ 2�P ð15:12Þ

which is Gibbs’ phase rule. Remember what it tells us: V is

the number of variables that we can arbitrarily select (also

called degrees of freedom) when we assemble P phases of C

components and still guarantee that therewill be physical and

chemical equilibrium.

15.5 MORE ON COMPONENTS

In applying the phase rule, there is seldom any argument

about the number of phases or what we mean by degrees

of freedom; we can generally agree on these with little

trouble. The difficulty almost always comes with finding

the right number of components. Above we said that the

number of components is the number of identifiable

chemical species minus the number of independent bal-

anced chemical equations among them. We will see below

that there are two additional items. However, let us begin

by calculating the number of components for a few

examples.

Example 15.2 Suppose we have a system that contains C,

O2, CO2, and CO. This is a system with four identifiable

chemical species. The balanced equations we can write

among them are

Cþ 0:5O2 , CO ð15:AÞ

CþO2 , CO2 ð15:BÞ

COþ 0:5O2 , CO2 ð15:CÞ

CO2 þC , 2CO ð15:DÞ

Thus, there are four relations, but they are not independent. If

we add Eqs. 15.A and 15.C and cancel like terms, we obtain

Eq. 15.B. Thus, if this is to be a list of independent chemical

equilibria we must delete Eq. 15.C above. If it bothers you to

delete one, remember that each chemical equilibrium is

really a relation among the ms and if we already have an

equilibrium relation among the some subset of the ms we

cannot have an additional independent one among the same

ms.
Now, if we reverse the direction of Eq. 15.B and add it to

Eq. 15.A, we see that Eq. 15.D is also not independent. Thus,

there are only two independent relations among these four

species and

C ¼ 4�2 ¼ 2

Thus, this is a two-component system. &

Example 15.3 Suppose that the system we are considering

has three species: H2, N2, and NH3 (N¼ 3). From Eq. 12.A
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we know that there is one balanced chemical reaction among

these species so

C ¼ N �Q ¼ 3� 1 ¼ 2 ð15:13Þ

Now consider the possibility that we made up the system by

starting with pure ammonia, and dissociating it over a

catalyst. Further, assume that all of the species are in the

gas phase. In this case all the hydrogen and all the nitrogen in

the system have come from the ammonia that was dissoci-

ated. Theirmolar ratiomust be 3 : 1.We canwrite an equation

among their mol fractions, viz:

yH2
¼ 3yN2

ð15:EÞ

This is another restriction on the number of variables we

can arbitrarily set, independent of all the ones introduced so

far. It is called a stoichiometric restriction, and it reduces the

number of degrees of freedom by one. We might modify the

phase rule to put in another symbol for stoichiometric

restrictions, but the common usage is to write that

Components¼species� independent

reactions

 !
� stoichiometric

restrictions

 !

ðpreliminaryÞ
C¼N�Q�SR¼3�1�1¼1 &

Stoichiometric restrictions seem to be a permanent prob-

lem for students (and for textbook authors, as one of the

problems shows), so some more discussion on them seems

warranted. Figure 15.5 shows a triangular diagram,which is a

common way of representing compositions of ternary mix-

tures. The three pure components are shown at the three

vertices. Any point on the surface of the triangle represents

some composition (either in weight or mol fractions); the

sum of the weight or mol fractions is always unity.

If we are making up a sample of H2, N2, and NH3 in the

laboratory, using lecture bottles of the pure species, we can

obviously make up any possible combination of weight or

mol fractions (which sums to unity), so we can get to any

point on this diagram. This is true independent of the

temperature and pressure. Now suppose we introduce a

catalyst, which causes the Reaction 12.A to go to equilibri-

um. If we assume ideal gas behavior (not really true at the

high pressures normally used for this reaction, but a satis-

factory assumption for this example), then we will have

yNH3
P½ �2

yN2
P½ � � yH2

P½ �3 ¼ K ð12:BHÞ

where K is an equilibrium constant that depends on temper-

ature only. This sets some limits on where on Figure 15.5 we

can be at equilibrium. For example, we can never have zero

values of yH2
or yN2

. But we can make one of those values

arbitrarily small, by making the other large (i.e., if we use a

100 : 1 hydrogen : nitrogen ratio, yN2
at equilibrium will be

very small).We canmake yNH3
large by increasingK or small

by lowering K, so the chemical equilibrium relation places

little restriction of where we can go in Figure 15.5 (if we are

free to manipulate T, P, and the ratio of the three species

introduced).

However, for the case in Example 15.3, the stoichiometric

restriction says that we can never get to any point in Fig-

ure 15.5 that is not on the line yH2
¼ 3yN2

, which is sketched

in Figure 15.5. So we see that the stoichiometric restriction

converts our range of possible compositions from an area

(two dimensional) to a line (one dimensional). This is a

graphical confirmation of the loss of one degree of freedom,

due to the stoichiometric restriction.

However, there is more to it than that. Let us suppose that

we have the system in Example 15.3, all made up by

dissociating ammonia, and that we have a catalyst that will

maintain chemical equilibrium at all temperatures. (Real

catalysts won’t carry out this reaction at low temperatures;

commercially, the reaction is carried out at 350 to 520�C, but
in thermodynamics texts we assume the existence of such

catalysts. If you can invent and patent a low-temperature

catalyst for this reaction you will become rich beyond your

wildest dreams!) Now we begin to cool the system, holding

the pressure constant. The first species to condense is am-

monia. That does not change the ratio of yH2
¼ 3yN2

until it

becomes cold enough that some of the hydrogen or nitrogen

dissolves in the liquid. If they dissolved in the ratio 3 : 1 that

they have in the gas phase, then Eq. 15.E will still be correct,

and wewill still have a one component system. If they do not

dissolve in this ratio, then Eq. 15.E is no longer observed,

and this has become a two-component system. In all the

NH3

75%  H2

y
H2

 = 3y
N2

25%  N2

N2
H2

FIGURE 15.5 A ternary mol fraction diagram for Eq. 12.A,

showing the stoichiometric restriction that occurs if the mixture is

made up by dissociating pure ammonia.

(15.F)
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stoichiometric restriction examples I know of, the restriction

applies to the ratio of mol fractions in one phase. If there is a

stoichiometric restriction, then it is possible to write an

equation among mol fractions in one phase, like

yH2
¼ 3yN2

. If we cannot write such an equation, then there

is no stoichiometric restriction.

Adding another phase (into which one of the species can

dissolve) removes the restriction, and thus increases the

number of components. This is perhaps made clear by the

next example.

Example 15.4 A sample of pure solid CaCO3 is placed in

an evacuated test tube and heated. It dissociates according to

the reaction

CaCO3ðsÞ , CaOðsÞþCO2ðgÞ ð15:GÞ

How many components are present?

Here we have three species and one balanced chemical

reaction between them. One might be tempted to look for a

stoichiometric restriction based on the ratio of CaO to CO2;

but since CO2 will mostly be in the gas phase and CaCO3 and

CaO will each form separate solid phases, there is no

equation we can write among the mol fractions in any of

the phases. Hence, there is no stoichiometric restriction, and

the number of components is C¼ 3� l¼ 2 &

Example 15.5 In the preceding example it is asserted that

the thermal decomposition of CaCO3 (Eq. 15.G) leads to a

two-component system. If this is a two-component system,

and if solid CaO and CaCO3 form two separate phases, then

(a) How many phases are present?

(b) How many degrees of freedom are there?

(c) If we place a sample of pure CaCO3 in an evacuated

container and heat it, will we find a unique P-T curve?

The CaCO3 and CaO form separate solid phases, so we

have three phases, two solid and one gas. From the phase rule

V ¼ Cþ 2�P ¼ 2þ 2� 3 ¼ 1 ð15:HÞ

If there is only one degree of freedom, then the system

should have a unique P-T curve. Findlay et al. [2, p. 214]

shows the data to draw such a curve, which can be well

represented by

ln
p

torr

� �
¼ 23:6193� 19;827 K

T
& ð15:IÞ

In this example the gas phase is certain to be practically

pure CO2, yCO2
� 1:00. This is not a stoichiometric restric-

tion; all of the stoichiometric restriction examples known to

the author involve ratios of mol fractions. This example also

shows that the number of components may be more than the

number of pure species originally introduced into the system.

If more than one phase is present, this is a common occur-

rence. Some textbooks give the “rule” that the number of

components is the minimum number of pure species that

must be introduced to make up the system. This example

shows that “rule” is not correct.

Another complicating factor in computing the number of

components is illustrated by the next example.

Example 15.6 Suppose our system consists of H2O, HCl,

Hþ , OH�, and Cl�. Here we have five species and two

chemical relations:

H2O , Hþ þOH� ð15:JÞ

HCl , Hþ þCl� ð15:KÞ

In addition we have electroneutrality, which says that at

equilibrium the total number of positive charges on ions in

the solution must be the same as the total number of negative

charges on ions, or

Hþ½ � ¼ OH�½ � þ Cl�½ � ð15:LÞ

Here [Hþ ] stands for the molality of hydrogen ion. This is

convertible (at least in principle) to a relation among the ms;
hence, it is an additional restriction and the number of

components is

C ¼ 5� 2� 1 ¼ 2 &

This does not include the possibility that the system we are

considering is one plate of a charged capacitor, or a highly

charged part of a thundercloud, neither of which are

electroneutral. If we are dealing with charged systems,

we must reconsider this restriction; for most systems of

interest it applies, because most systems of interest are

eiectroneutral.

Sometimes we do not know whether some compound

really exists. This causes no problem in selecting the number

of components.

Example 15.7 Our system consists of Au and H2O. If no

compounds are formed, then we have C¼ 2� 0¼ 2.

However, if there is also the chemical reaction

AuþH2O , AuH2O ð??Þ ð15:MÞ

we have C¼ 3� 1¼ 2. The number of components is inde-

pendent of the existence or nonexistence of such compounds

of questionable existence. &
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Hence, our final working rule is

Components ¼ species� independent

reactions

� �

� stoichiometric

restrictions

� �
�

1; if ionic
species are

present

0
@

1
A

ð15:14Þ

15.5.1 A Formal Way to Find the Number
of Independent Equations

In the previous examples we have found the number of

independent chemical equations by intuition or knowledge

of the system. This works well for simple systems, but is

harder and more unreliable for complex ones. Of the various

algorithms for doing this, the simplest reliable one seems to

be the following:

1. Write the formulas for the formation of all the com-

pounds in the species list from the elements.

2. Algebraically eliminate those elements that do not

appear in the species list.

The following example shows how this is done.

Example 15.8 Determine the maximum number of bal-

anced chemical equations that exist amongCaCO3, CaO, and

CO2.

This set of species, the subject of Examples 15.4 and 15.5

is chosen here to illustrate the process. First we write

CaþCþ 1:5O2 , CaCO3 ð15:NÞ

Caþ 0:5O2 , CaO ð15:OÞ

CþO2 , CO2 ð15:PÞ

Then we observe that Ca, C, and O2 do not appear on the

species list, so we must eliminate them from these three

equations. If we solve Eq. 15.P for C and substitute that in

Eq. 15.N, we find

CaþCO2 �O2 þ 1:5O2 , CaCO3 ð15:QÞ

We then add Eq. 15.Q to Eq. 15.O, finding

CO2 , �CaOþCaCO3 ð15:RÞ

which we can rearrange to Eq. 15.G. This is the only

independent balanced chemical reaction between the species

on the species list. It includes all of them and does not include

any of the elements. The same procedure is reliable for more

complex systems. The final list of equations need not contain

all the materials on the species list. If we added N2 to the

species list in this example the number of balanced equations

among the species would still be one. &

15.6 THE PHASE RULE FOR ONE- AND

TWO-COMPONENT SYSTEMS

For a one-component system, V ¼ Cþ 2�P ¼ 3�P. So if

P¼ 1 V¼ 2

2 1

3 0

Thus, for one phase (e.g., gas) we can arbitrarily set two

variables, such as T and P, T and h, or u and s. For two phases

we can arbitrarily select one variable, such as T, or the value

of h or s in one of the two phases, but then everything else is

set for us. For three phases we can select none, since that will

be a fixed point. We can only observe under what conditions

this set of phases coexist. Four phases cannot coexist. This is

easily seen in Figure 1.9, theP-T diagram for water, reprinted

here as Figure 15.6. We see in it that one phase (G, L, or S)

corresponds to an area, two phases (G-L, S-L, or S-G)

correspond to a curve, and three phases (G-L-S) correspond

to a point. In an area we can move in two perpendicular

directions without leaving the area, hence V¼ 2. On a curve

we can move in one direction (up and down along the curve,

but not off it), hence V¼ 1. At a point we cannot move in any

direction without leaving the point, so V¼ 0.

We normally think of a substance having only one triple

point. Figure 1.10, the very high-pressure P-T diagram for

water, shows six triple points, in addition to the one we are

familiar with, which is lost into the horizontal axis. If we

measured the very high-pressure diagram for other sub-

stances, we would probably observe similar behavior. Nor-

mally when we use the term “triple point” we are speaking

about the G-L-S triple point, of which any pure substance can

have only one. But we must keep our minds open to the other

possibilities shown in Figure 1.10.

For a two-component mixture we can repeat the above

table, finding

P¼ 1 V¼ 3

2 2

3 1

4 0

Consider a binary like benzene-toluene (Figure 8.7d). For

one phase (e.g., gas) we can set three independent variables,

such as, P, T, and one mol fraction (but not the other because

for a binary solution, setting one xi sets the other). For two

phases (e.g., gas and liquid) we can set two independent
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variables, such as, P and T, but then the mol fractions of both

phases are fixed. For three phases (e.g., gas, liquid, and solid)

we can set one variable, such asT, and then the corresponding

P and mol fractions are fixed. For four phases in equilibrium

we can set none of the variables. Five phases cannot coexist.

If we fix the pressure, then we have given up one degree of

freedom and, as shown in Figure 15.7, in a one-phase area

(either vapor or liquid) we have two degrees of freedom; we

can independently change both T and the mol fraction of

benzene. In the two-phase region we have only one degree of

freedom; at any specified T, both phase mol fractions are

fixed.

One more example and the completion of Example 15.1

will show how the phase rule answers some engineering

questions.

Example 15.9 In systems involving the oxidation and

reduction of iron ores, the following species may occur: Fe,

O2, FeO, Fe2O3, Fe3O4. We now place pure solid iron (Fe)

and pure gaseous oxygen in a piston and cylinder arrange-

ment with a pressure gage and slowly decrease the volume, at

constant temperature.

Sketch a P-V diagram for this system under the following

assumptions:

1. Isothermal

2. Physical and chemical equilibrium at all times

3. Gas phase is always present

4. No liquid phase is ever present

5. Fe, FeO, Fe2O3, and Fe3O4 do not form solid solutions

with each other.

In each region of the P-V diagram (see Fig. 15.8), indicate

which phases are present.
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FIGURE 15.6 This is a repeat of Figure 1.9, showing that in the area corresponding to the solid (or

the liquid or the vapor) we can move in two perpendicular directions and stay within the area, so we

have two degrees of freedom. Along the solid–vapor curve (or the solid—liquid or vapor—liquid

curves) we must stay on the curve, so that we have one degree of freedom. At the triple point, we have

no degrees of freedom.
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FIGURE 15.7 This is a replot of Figure 3.12, a T-x diagram for

benzene-toluene at 1 atm. As shown, in the single-phase regions

(vapor and liquid)we have two degrees of freedom,while in the two-

phase (vapor–liquid) region we have only one.
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Here we have five species and three equations among

them

Feþ 0:5O2 , FeO ð15:SÞ

2Feþ 1:5O2 , Fe2O3 ð15:TÞ

3Feþ 2O2 , Fe3O4 ð15:UÞ

so that the number of components is C¼ 5� 3¼ 2. We have

used up one degree of freedom by specifying the temperature

so that the remaining degrees of freedom are V¼ 2 þ 2�
P� 1¼ 3�P. Thus, when two phases are present we will

have one degree of freedom, when three phases are present

we will have no degrees of freedom, and there can never be

four phases at this fixed T. If we start with pure Fe and pure

O2, we have two phases and one degree of freedom, so

lowering the volume will cause the pressure to increase.

When we reach the pressure at which Reaction 15.S will

occur, FeO will begin to form, so three phases will be present

until all the Fe is consumed. Thus, the pressure must remain

constant, and we must have a horizontal part of the P-V

diagram. Then when all the Fe is gone, we will again have

only two phases present. The pressurewill rise until we reach

the pressure at which the reaction

3FeOþ 1
2
O2 , Fe3O4 ð15:VÞ

occurs. Again we will have a constant pressure until all the

FeO disappears. The same situation will occur for the

other transition, so the whole diagram is as sketched in

Figure 15.8. &

This example illustrates the great utility of the phase rule.

Here, without benefit of any experimental data, we can

consider an equilibrium process and know for certain what

combinations of phases can be present at any time. We learn

from the phase rule alone. (In deciding in what order the

phases appear, we used either our intuition or Le Chatelier’s

rule, which could be restated to say that the iron phases

appear in order of increasing O/Fe ratio.) The phase rule does

not tell us any of the pressures or volumes in Figure 15.8, only

the correct shape of the curve.

Example 15.1 continued. In the first part of Example 15.1

we posed the question of when the NaHCO3 phase would

appear. For this system the species are H2O, OH
�, Naþ ,

NaOH, CO2, HCO3
�, NaHCO3, N¼ 7. The balanced chem-

ical reactions are

NaOH , Naþ þOH� ð15:WÞ

CO2 þOH� , HCO�
3 ð15:XÞ

Naþ þHCO�
3 , NaHCO3 ð15:YÞ

We also have electroneutrality, so the number of components

is C¼ 7� 3� 1¼ 3. The maximum number of phases that

can coexist in equilibrium (for V¼ 0) is C þ 2¼ 5. Here we

have used up one degree of freedom by specifying the

temperature, so the maximum number of phases that can

coexist is four.

The container originally contains four phases, so the

system is invariant. At equilibrium, adding CO2 cannot

change the pressure or the chemical composition of any

phase. As we add CO2 it will mostly dissolve in the liquid.

Some of theNaOHmust also dissolve to keep the ratios of the

mol fractions of all dissolved species constant. Some of the

ice must also melt to keep the concentrations of dissolved

species constant. As long as both solids are present they can

keep the liquid composition constant while we add CO2 with

vigorous mixing. Eventually one of the solids is used up, and
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FIGURE 15.8 Qualitative P-V diagram for Example 15.9.
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for this examplewe have specified that there ismuchmore ice

than NaOH, so the NaOH will disappear first.

When that happens, we have only three phases, sowe have

one degree of freedom. The pressure can rise, and the gas and

liquid mol fractions can change. Eventually we reach a high

enough pressure (and/or a high enough concentration of

NaHCO3 in the liquid) that solid NaHCO3 will begin to

appear. Then the system becomes invariant again until some

phase (probably the ice) disappears. So the answer to the

question raised in the first part of this example is that the two

curves in Figure 15.3 do not cross, but that there is a gap

between them, and the rightmost line on Figure 15.3 is

correct. &

This example shows the power and the limitations of the

phase rule. It does not tell us howmany mols of CO2 must be

admitted, the pressure or any of the phase compositions. It

does not tell us if the solid that actually appears is NaHCO3 or

one of its hydrates, such as sodium sesquicarbonate (Na2CO3

�NaHCO3 � 2H2O). But it does tell us, without benefit of any

experiment, what is possible in this system and what is not.

Often that is of great value.

15.7 HARDER PHASE RULE PROBLEMS

In the previous parts of this chapter the phases have been

solid, liquid or gas, and perfectly intuitive. But nature is more

complex than that, as illustrated by applying the phase rule to

simple adsorption of a pure gas onto an adsorbent solid, for

example the adsorption of N2 on silica gel in Figure 11.24.

1. How shall we count components? Are there 2, N2 and

silica gel? Or does the silica gel play no more role than

the walls of the glassware in which we conduct other

experiments, in which we do not count the surface of

the glass as participating in the reaction? In that case

there is only one component, N2.

2. How many phases are there? There is certainly a gas

phase, and some other phase. Normally people see the

second phase as consisting of the N2 adsorbed on the

solid so P¼ 2. If C¼ 1 and P¼ 2, then by Eq. 15.12,

V¼ 1. This is the same answer we would get for vapor

and liquid (P¼ 2) in equilibrium for one component

(e.g., N2). But we see that in Figure 11.24 one must

set two variables (T and P) to uniquely determine the

absorbed concentration, meaning that experimentally

V¼ 2.

3. If we decide that the silica gel is a component and also a

separate phase, that increases C and P each by 1, so V

remains unchanged at 1.

4. If we decide that the silica gel is a component, but that

the adsorbed N2 and the silica gel on which it is

adsorbed are together only one phase, then C¼ 2 and

P¼ 2, and by Eq. 15.12, V¼ 2, which matches what

we see on Figure 11.24.

5. Most of those who have analyzed this problem [6, 7]

have rejected the idea [4] and insisted that the adsorbed

material is itself a phase. If it is a separate phase, then

how can the amount of it adsorbed on the solid (mmol/g

on Figure 11.24) be a phase rule variable? Phase rule

variable are always intensive properties, (T, P and mol

fractions or their equivalent). At the low-pressure end

of Figure 11.24 the coverage is less than a monolayer,

so that we could consider the fractional coverage u as

equivalent to a mol fraction. But as we move to higher

values ofP/P0,multiple layers occur (u> 1??).AsP/P0

approaches 1.0, the uppermost layers change from

adsorbed to liquid-like (see section 14.4.2), requiring

some other description. If we double the thickness of

the solid layers making up the adsorbent, without

changing the surface in any way, that will divide the

values of (mmol adsorbed/gm adsorbent) by a factor of

2, making it harder to think of (mmol adsorbed/gm

adsorbent) as an intensive phase rule variable.

Those who have analyzed this problem [6, 7] have not

been looking to the phase rule for guidance as to what

nature does, but rather trying to adjust the phase rule to

agree with the experimental results. You are invited to

read their explanations and judge for yourself how plau-

sible they are.

One rarely sees the phase rule even mentioned in books

and articles on biochemistry. The main reason is that the

phase rule deals with systems at physical and chemical

equilibrium, and biological systems are almost never at

or very near to physical and chemical equilibrium, (See

Figure 1.4). In addition, the phases in biological systems

are mostly even more complex physically and chemically

than the adsorption case considered here. For clear, simple

and well-defined phases and ordinary chemical reactions,

the phase rule has explanatory and predictive power. For

complex phases and complex biochemical reactions (see

Chapter 16) it apparently has less such power.

15.8 SUMMARY

1. The phase rule relates only to intensive variables; it

makes no statements about the relative amounts of

individual phases. It makes no statements about the

values of the intensive variables, but only uses them to

count phases.

2. The phase rule is derived by counting the variables we

can specify for an individual phase, and then subtracting

the number of relations that must exist between those
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variables at equilibrium.The algebraic sumof these lists

leads directly to the phase rule.

3. There is seldom much difficulty in counting phases or

degrees of freedom. Determining the number of com-

ponents seems to cause the most trouble.

4. The only quantitative information supplied by the

phase rule is the number of phases or the number of

degrees of freedom at equilibrium.

PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (�) on the problem number indicates that

the answers is in Appendix H.

15.1 We place 3 lbm of water at the triple-point temper-

ature and pressure (32.018�F, 0.08866 psia) in a

piston and cylinder container. We adjust the propor-

tions so that there is 1 lbm of solid (ice), 1 lbm of

liquid (water), and 1 lbm of gas (steam).

a. Now we reversibly, adiabatically expand the

mixture. Which phase disappears first? Which

phase disappears second? What would the an-

swers be if we adiabatically compressed instead

of expanding the mixture?

b. Instead of adiabatically expanding the mixture

we cool it at constant volume. Which phase

disappears first? Which phase disappears sec-

ond? What would the answers be if we heated

instead of cooling the mixture at constant

volume?

c. In part (a) there is some initial relation of the

masses of ice, water, and steam (different from

1 : 1 : 1) for which adiabatic compression will

lead to the simultaneous disappearance of two

phases. What is that relation?

15.2� An all-gas system consists of CH4, H2O, CO, CO2,

and H2. It is made up by mixing 2mols of CH4 and

3mols of H2O, and then bringing the system to

thermodynaic equilibrium over a catalyst at about

1500�F. (This is the actual current industrial process
used to make hydrogen in large quantities, called

“methane reforming.”)

a. Howmany phase rule componentsC are there for

this system, made up this way?

b. Now consider the possibility that we could find a

negative catalyst (perfect reaction inhibitor) that

would prevent all reactions except

2CH4 þ 3H2O , CO2 þ 7H2 þCO ð15:ZÞ

No other reactions occur. The entire system is in the

gas phase. How many phase rule components C are

in this system?

There is no known “negative catalyst,” and theory

suggests that there cannot be. However, if all pos-

sible reactions are very slow at low temperatures and

we find a catalyst that is active at low temperatures

for just one reaction, then the effect is the same as if

therewere a negative catalyst for all the others.Many

industrial processes are of this type.

15.3� For a system containing the following identifiable

chemical species, H2O, H2S, NH3, Hþ , OH�,
NH4

þ , HS�, NH4OH,

c. What is the maximum number of phases that can

coexist at equilibrium?

d. If you wished to determine some kind of P-T

curve for gas–liquid equilibrium, howmany con-

centration variables would you have to hold

constant?

15.4� a. What is the number of components in the system

containing CO2, CaO, CaCO3, H2O, Ca2þ ,
CO3

2�, HCO3
�?

b. What is the number of components in the above

system if we add to the list OH�, Hþ?

15.5� Repeat Example 15.8 for the system consisting of

CO, CO2, H2, H2O, and CH4 (a system of great

industrial interest in the production of hydrogen).

How many independent balanced chemical equa-

tions exist between these 5 species?

15.6 For the system consisting of two liquid phases and

one gas phase and containing H2O, H2S, NH3,

NH4OH, NH4SH, and C2H6, howmany independent

variables must be specified before the state of the

system is specified? Give one possible such list of

fixed variables.

15.7 At 1 atm pressure and 70�F, how many phases can

coexist at equilibrium in a system containing the

following identifiable chemical species? H2O, H
þ ,

OH�, BaCl2, Ba
2þ , Cl�, Ba(OH)2, HCl.

15.8 At 1 atm pressure, how many phases can coexist in

equilibrium in a system that contains the following

identifiable chemical species? H2O, HCl, H
þ , Cl�,

NH4
þ , NH3, NH4Cl.

15.9� Iron pyrite, FeS2, is roasted with pure oxygen in a

furnace. The plausible materials that might be pres-

ent in the equilibrium system are the feed materials

plus SO2, SO3, FeO, Fe2O3, Fe3O4, FeSO4. Assum-

ing that no liquid phases are present, that we have

physical and chemical equilibrium at all times, that

none of the iron compounds are present as a gas, and
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that they do not form solid solutions in each other,

howmany of the above list of iron compounds would

we expect to find present at an arbitrarily selected

temperature, pressure, andmol fraction of SO2 in the

gas phase?

15.10 One mole each of CO2 and O2 are placed in an

evacuated container. A catalyst causes equilibrium

in Reaction 15.C to occur. Only the gas phase is

present. Is there a stoichiometric restriction in the

application of the phase rule to this system? Are

there more than one? If there is (are) write the

appropriate equation(s) of the restriction(s), and

sketch it (them) on an appropriate triangular com-

position diagram.

15.11 Ten grams of pure, solid ammonium carbonate

[(NH4)2CO3 � H2O] are placed in an evacuated 20-

mL flask, and the flask is sealed. A little of the solid

vaporizes and forms a gas phase according to the

reaction

½ðNH4Þ2CO3 �H2O�ðsÞ,
2NH3ðgÞþ2H2OðgÞþCO2ðgÞ

ð15:AAÞ

a. Is there a stoichiometric restriction in the appli-

cation of the phase rule to this system? Are there

more than one? If there is (are) write the appro-

priate equation(s) of the restriction(s), and sketch

it (them) on an appropriate triangular composi-

tion diagram.

b. Is this system univariant, that is, does fixing the

temperature fix the pressure? Give a complete

phase rule analysis to support your answer.

c. Same as (b) except that the flask instead of being

initially evacuated is initially full of pure nitrogen

gas.

15.12 Asmall sample of sodiumsesquicarbonate (Na2CO3 �
NaHCO3 � 2H2O) is placed in an evacuated container

and heated. When a high enough temperature is

reached, this can be expected to decompose. The

species thatmay possibly be present in addition to the

startingmaterial are Na2CO3, NaHCO3,NaOH,H2O,

and CO2. What is the maximum number of phases

that can ever be present in this system?

15.13 In one process for the production of zinc, pure ZnO

and pure C are placed in an evacuated reactor and

heated. The species present are ZnO, C, Zn, CO, and

CO2.

a. Below 1292K no liquid is zinc present. How

many components are there? What is the

maximumnumber of phases possible?Howmany

degrees of freedom are there?

b. Above 1293K liquid zinc is present. How many

components are there? What is the maximum

number of phases possible? How many degrees

of freedom are there?

This is a worked example in [3, p. 1054]. The

phase rule discussion there is puzzling. The

discussion in [4] is much clearer.

15.14� At a constant temperature of 20�C,we drop a piece of
pure solid tin into a closed container full of an

aqueous solution of HC1. The reaction that occurs is

2HClþ Sn , H2 þ SnCl2 ð15:ABÞ

The hydrogen comes out of solution, forming a

separate gas phase. By moving a piston up or down,

we can adjust the system pressure. Will solid tin and

solid SnCl2 (as well as gas and liquid phases) be

present at equilibrium at this temperature,

c. Not at any pressure?

d. At only one pressure?

e. Over some range of pressures?

15.15 The following quote is from a thermodynamics

book [5]. Is the application of the phase rule there

correct? If not, what errors exist, and what is the

correct analysis?

ILLUSTRATION 7-2

What are the degrees of freedom for the reaction of tin and

aqueous hydrochloric acid to produce solid stannous

chloride and hydrogen?

Solution
There are five chemical species, that is, Sn, HCl, H2O, H2,

SnCl2

C ¼ 5

There is one independent reaction:

SnðsÞ þ 2HClðaqÞ ¼ SnCl2ðsÞ þH2ðgÞ

therefore, R¼ 1.

But the total pressure on the system is a function of the

partial pressures, and

PH2
¼ f ðPHClÞ

so that

R0 ¼ 1
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and

N ¼ 5�1�1 ¼ 3

The number of phases is three, so that

p ¼ 3

and

D ¼ 3þ 2�3 ¼ 2

Or two degrees of freedom are available, that is, we could

select, say, temperature and total pressure to fix the

equilibrium condition.

15.16 For a one-component system, on a P-T plot, zero

degrees of freedom corresponds to a triple point, from

which three curves leave. Each of them represents

the equilibrium of two phases. The space between the

curves represent single phases.

What is the corresponding situation for two- and

three-component systems? If we make a P-T plot for

them, howmany lines join at an invariant point?What

do the lines represent? What do the spaces between

them represent?

15.17 Example 15.1 assumes that all the CO2 introduced

into the system is present as either gaseous or dis-

solved CO2 or as HCO3
� or NaHCO3. As discussed

in Chapter 13, there will most likely be some CO3
2�

and some Na2CO3 also present, and we do not know

(without some study) whether the first new solid that

appears is the NaCHCO3 assumed there or is sodium

sesquicarbonate (Na2CO3 � NaHCO3 � 2H2O) or

perhaps Na2CO3 7H2O.

Repeat that example, with the assumption that

CO3
2� andNa2CO3 are also present. Howmuch is the

answer changed?

15.18 Example 15.1 starts with CO2 already present and at

equilibrium in the system. Suppose that instead we

started with only H2O and NaOH, and then added

CO2? Initially the container would still have four

phases: gas, liquid, and two solids. How many

components are there? How many degrees of free-

dom? Can we arbitrarily specify the temperature for

this equilibrium? When we add some CO2, how do

the answers to the above questions change?
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16
EQUILBRIUM IN BIOCHEMICAL REACTIONS

Everything we said about equilibrium in chemical reactions

in Chapters 12 and 13 is true for biochemical reactions, those

that occur in living things. The following example suggests

that while this is true, it is generally not very useful.

16.1 AN EXAMPLE, THE PRODUCTION OF

ETHANOL FROM SUGAR

Example 16.1 Estimate the equilibrium constant for the

conversion of sugar (sucrose) to ethanol at 25�C¼ 298.15K.

The overall reaction is

C12H22O11ðsÞþH2Oð1Þ!
Sucrose

4C2H5OHð1Þþ 4CO2ðgÞ
Ethanol

ð16:AÞ
Dg� ¼ 4g�CO2

þ 4g�ethanol�g�sucrose�g�water

¼ 4ð�394:4Þþ 4ð�178:4Þ�ð�1553:7Þ�ð�237:1Þ
¼ �486

kJ

mol
ð16:BÞ

K ¼ exp

��Dg�

RT

�
¼ exp

�
�
�486; 000

J

mol

�

8:314
J

mol K
� 298:15 K

0
BBBB@

1
CCCCA

¼ 1:4 � 1085 ¼ aethanol½ �4 � aCO2
½ �4

asucrose½ � � aH2O½ � & ð16:CÞ

The extreme value (K¼ 1085) suggests that if you dropped

some water in your sugar bowl and equilibrium occurred in

this reaction, you would be left with a bowl of almost pure

ethanol and a cloud of CO2! You can try that experiment at

home and discover that this is not a description ofwhat nature

does. Why?

Eq.l6.A is the correct overall chemical description of a

reaction that is carried out on a massive industrial scale to

make ethanol for motor fuels (Brazil produces about 25

billion pounds a year), and on a small scale in thousand of

breweries, wineries, moonshine operations and home beer

and wine operations (most often using cheaper impure sugar

or starch sources, like grapes, barley or corn). But we only

know how to carry it out in aqueous solution, with the aid of

living cells (mostly yeasts in commercial practice, some

others in laboratory settings). Any reaction with K¼ 1085

is practically irreversible, so this calculation tells us that it

should be possible to conduct the reaction (which most of us

already knew) but little else.

16.2 ORGANIC AND BIOCHEMICAL REACTIONS

Most ofmodern industrial organic chemistry (plastics, fibers,

fuels, fertilizers, pharmaceuticals, agricultural chemicals,

explosives, paints and coatings) is based onmaterials derived

from petroleum. All the organic compounds listed in

Table A.8 meet that description. Petroleum is ultimately

derived from the fats in the microscopic bodies of living

organisms (biochemical materials), transformed by heat and

pressure in the ground over geological time, by what we

would call organic reactions, not biochemical reactions,

because after the bodies were buried, their further processing

did not require living organisms, as do biochemical reactions.

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
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The same is true of coal (starting with vegetable rather than

animal debris).

Comparing biochemical reactions (and equilibrium in

them) to the reactions discussed in Chapters 12 and 13, we

see the following major differences:

1. The sizes of the molecules are very different. Sucrose

has 45 atoms and M¼ 342.3. Ethyl acetate has the

most atoms (13) of any of the substances in Chapters

12 and 13; PbSO4 has the highest molecular weight,

(303, mostly due to the high atomic weight of lead,

207). Of the organic compounds listed in Table A.8

methyl-cyclohexane has the most atoms, 21. The

increase in complexity between a 21-atom compound

and a 45-atom compound is major. Furthermore,

many of the important molecules in biochemistry

(enzymes, proteins) have hundreds or thousands of

atoms, and molecular weights ranging to millions of

Daltons (g/mol).

2. The phases are different. Almost all biochemical reac-

tions occur in aqueous media at temperatures between

the freezing and boiling points of water, while many

reactions discussed in Chapters 12 and 13 occur in the

gas phase, many at high temperatures (e.g., ammonia

synthesis). Many industrial chemical reactions (e.g.,

hydrogenations, most petroleum refining reactions)

involve gases dissolved in liquids. Most biochemical

reactants and products do not exist as gases because

their Tdecomposition is lower than their Tvaporization. Few

exist in nature as solids (although we can crystallize

many of them, e.g., sucrose).

3. The catalysts for modern industrial chemical (non-

biochemical) reactions are mostly very porous solids

with small amounts ofmetals (e.g., platinum) dispersed

on their surfaces, produced by inorganic chemistry.

The catalysts for biochemical reactions are mostly

enzymes, high-molecular weight, water-soluble pro-

teins produced biochemically by living cells. Much of

human, animal and plant DNA directs the synthesis of

these enzymes that then regulate the chemistry of life.

4. The equilibrium in industrial reactions involving gases

can be shifted dramatically by changing the pressure

(NH3), or in other reactions by applying an external

voltage (Al). Almost all biochemical reactions occur at

1 atm, and without external voltages. (At the molecule

level charges on one part of a molecule, balanced by

opposite charges elsewhere in the same molecule can

play a significant role, but that is not the same as the

electrochemical production of aluminum.)

5. The living organisms (yeasts, bacteria, molds) that

facilitate biochemical reactions have their own energy

and nutrient needs, and often consume some of the raw

material intended to be converted to product, that is, the

yeasts that ferment sugar or starch to alcohol consume

about 13% of the sugar or starch. Their reaction mix

must include sugar, water, yeast and the other materials

that the yeasts need. Some of the nutrients they use

are for simply living; others are for growth in numbers.

The sugar-to-ethanol process is a net producer of

yeast cells.

6. Many compounds can be produced organically from

petroleum, or produced biochemically from biological

raw materials. For example, ethanol is regularly pro-

duced by catalyzed gas-phase hydrogenation of ethyl-

ene, Example 12.4, and also produced biochemically

from sugar (or starch), Example 16.1. The resulting

ethanol is the same from either source (except in the

eyes of the US laws that subsidize corn-based ethanol

motor fuels but not hydrocarbon-based ethanol.)

7. In most industrial chemistry (e.g., ammonia produc-

tion) the chemical reaction on the surface of the

catalyst probably has several steps, but the intermedi-

ate products do not exist separately as pure chemicals,

but only as short-lived intermediates (often free radi-

cals or charged complexes). In contrast, biochemical

reactions like the fermentation of sucrose to make

ethanol go through several steps in which easily–iden-

tified chemicals are produced. One suggested list of

intermediate, identifiable products for Eq. 16.A [1] is

glucose, fructose-biphosphate, triose phosphate, phos-

phoglyceric acid, pyruvic acid (acetaldehyde and

CO2), and finally ethanol. Each of those steps has its

own decrease in Gibbs energy; their sum is the change

of Gibbs energy shown above.

8. The organisms that conduct the reaction are sensitive

to the concentrations of reactants and products. Most

of the yeasts that will conduct Reaction 16.A stop

workingwhen the ethanol concentration in the solution

reaches 10–14%; this limits the “strength” of beers and

wines (but not of distilled spirits, which rely on dis-

tillation, Chapter 8 to get around this limitation.)

16.3 TWO MORE SWEET EXAMPLES

Example 16.2 Estimate the equilibrium constant for the

hydrolysis of sucrose to make “invert sugar,” an equimolar

mixture of glucose and fructose.

The reaction is

C12H22O11ðaqÞþH2ðOÞðIÞ
Sucrose

! C6H12O6ðaqÞþ
glucose

C6H12O6ðaqÞ
fructose

ð16:DÞ

Glucose and fructose have the same overall formula, but

different structures (glucose is an oxygen-containing

6-membered ring with one �CH2OH group, fructose is a
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5-membered oxygen-containing ring with two such groups).

The Gibbs energy change of this reaction is given in [2] as

�29.64 kJ/mol, so that

K ¼ exp

��Dg�

RT

�
¼ exp

�
�
�29;640

J

mol

�

8:314
J

molK
�298:15K

2
66664

3
77775

¼ 1:6 �105 ¼ aglucosel
� � � afructose½ �

asucrose½ � � aH2O½ � & ð16:EÞ

The high value of K shows that this reaction should go to

virtual completion, which it does. It is interesting because:

1. The reaction can be performed chemically; adding

simple acids to the sugar solution drives the reaction

toward equilibrium. Our stomach acids perform it as

the first step in our digestion of sugar. It can also be

done biologically, using an enzyme catalyst, invertase.

That is the first of many steps summarized by the

overall reaction Eq. 16.A.

2. The product, “invert sugar” is sweeter than its sucrose

raw material, because while glucose is only 60% as

sweet (per lbm or kg) as sucrose, fructose is roughly

170% as sweet and the mix about 115% as sweet.

3. This reaction is performed on a large scale industrially,

mostly by acid hydrolysis. Food processors prefer

invert sugar to sucrose, because of its greater sweetness

(per pound and thus per dollar) and because it has some

other desirable properties in food production.

Example 16.3 Corn syrup, a practically pure solution of

glucose (also called dextrose) in water, is made by the

enzyme-catalyzed hydrolysis (two step, two different en-

zymes) of cornstarch. It is then isomerized (with the glucose

isomeraze enzyme) to make fructose by the reaction

C6H12O6ðaqÞ
glucose

, C6H12O6ðaqÞ
fructose

ð16:FÞ

The reported K for this reaction [3] is �0.865 so that

K ¼ afrusctose

aglucose
� xfrusctose

xglucose
¼ 0:865 :

xfrusctose ¼ K

Kþ 1
¼ 0:865

1:865
¼ 0:46: & ð16:GÞ

The typical industrial reactor output (dry basis) is 42%

fructose, 53% glucose and 5% higher sugar byproducts.

The fructose is concentrated by chromatography to 90%

(dry basis) and then blended with the above 42% mix to

make a 55% fructose (dry basis) syrup, sold as “high fructose

corn syrup” [4]. It is widely used in soft drinks, and other

foods because it is much cheaper than sugar (on an equal

sweetness basis).

This is an unusual biochemical reaction, because it truly

operates near to equilibrium, catalyzed by a biochemical

enzyme that will promote the reaction in either direction.

16.4 THERMOCHEMICAL DATA FOR
BIOCHEMICAL REACTIONS

A chemical engineer trying to estimate the equilibrium in a

biochemical reaction is normally frustrated to find that books

titled “Thermochemistry . . . Organic.” [5, 6] have large

tables of hoformation but nothing on the goformation that the

engineer needs to calculate the K of the reaction. The

handbook tables of thermochemical properties [7] (from

which Table A.8 is a brief excerpt) give values of both

enthalpy and Gibbs energy of formation for inorganic com-

pounds and simple organics, but only hoformation for the com-

pounds of biochemical interest. The reason (suggested by [5],

page 18), is that for biochemical reactions TDsoreaction is much

smaller than Dhoreaction and the uncertainty in the computed

value of K is mostly caused by uncertainty in Dhoreaction and
very little is caused by uncertainty in Dsoreaction. Thus, if one
has values of the much more easily-measured Dhoreaction one
can make a good estimate of K without knowing the much

more difficult-to-measure value of Dsoreaction or the resulting
Dgoreaction ¼ Dhoreaction�TDsoreaction.

Example 16.4 Estimate the value of K for Examples 16.1,

16.2, and 16.3 from the simplifying assumption that

Dgoreaction � Dhoreaction. Some enthalpies of formation from the

elements are in Table A.8. The others we need are: sucrose,

glucose, fructose (all in kJ/mol): �2225.5, �1266.8, and

�1264.4 [8].

For Example 16.1

Dho¼ 4hoCO2
þ 4hoethanol�hosucrose�howater

¼ 4ð�393:5Þþ 4ð�277:7Þ�ð�2225:5Þ�ð�285:5Þ

¼ �173:5
kJ

mol
ð16:HÞ

and

K �?? exp
�Dho

RT

� �
¼ exp

� �173; 500
J

mol

� �

8:314
J

mol K
� 298:15 K

0
BB@

1
CCA

¼ 2:45 � 1030 ð16:IÞ
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For Example 16.2

Dho¼ hoglucose þ hofructose�hosucrose�howater

¼ ð�1266:8Þþ ð�1264:4Þ�ð�2225:5Þ�ð�285:8Þ

¼ �305:7
kJ

mol
ð16:JÞ

and

K �?? exp
�Dho

RT

� �
¼ exp

� �305; 700
J

mol

� �

8:314
J

mol K
� 298:15 K

0
BB@

1
CCA

¼ 3:85 � 1053 ð16:KÞ

For Example 16.3

Dho ¼ hofructose�hoglucose ¼ð�1264:4Þ�ð�1266:8Þ

¼ 2:34
kJ

mol

K�?? exp
��Dho

RT

�
¼ exp

�
�
�2;340

J

mol

�

8:314
J

mol K
�298:15 K

0
BBBB@

1
CCCCA¼ 0:46

ð16:LÞ

The results of all three of these estimates are compared to the

values from the examples in Table 16.A.

We see that the values based on Dgoreaction � Dhoreactionare
not very good matches to those based on Dgoreaction. But they
do show that the first two reactions have practically infinite

values of K, and that for the third the two values K agree

within a factor of 2. Thus, this widely-used approximation

seems useful, but hardly quantitative. &

In 1957, Krebs and Kornberg [9] published the (apparently)

first table of Gibbs energies of formation of biochemical

compounds. Others have mostly not followed their example;

such tables are rare.

16.5 THERMODYNAMIC EQUILIBRIUM IN

LARGE SCALE BIOCHEMISTRY

The three reactions examined above are all large-scale indus-

trial processes; many chemical engineers work in those in-

dustries. Austin [10] lists 14 food products, 6 vitamins, 9

industrial enzymes, 28 industrial chemicals and 33 antibiotics

produced by biochemical means. In theWorldWar II effort to

move penicillin from lab glassware to industrial scale produc-

tion the technical directors assigned a chemical engineer and a

microbiologist towork together on eachaspect of theproblem,

because neither working separately had much chance of

getting it right [11]. Engineerswhowork in this industry today

all become pretty good microbiologists, who know how to

select, feedandnurturethemicroorganismsthatworkforthem.

The biochemists who work on the thermodynamics of

biochemistry see the world quite differently than chemical

engineers do, and would rarely express biochemical equi-

librium the way it is shown the first three examples above.

The main reasons for this are:

1. For inorganic and organic chemistry we can find the

values of goi formost or all of the reactants and products

in our reactions from short tables like Table A. 8 or the

much more extensive tables in [12] or the NIST web

site [13]. But those sites rarely if ever show the pure

species goi for biochemical materials, such as sucrose

(see Problem 16.1).

2. Because the reactions of interest to biochemists almost

all occur in aqueous solutions, they are rarely con-

cernedwith pure reactants or products. Their published

goi values are for the materials in solution, at specified

values of the pH and/or the concentrations of various

metallic ions.

3. If the necessary goi values are known, the computation

of the equilibriumK is worthwhile, giving some idea of

the feasibility of the reaction. But for most industrial

biochemistry (e.g., the fermentation route to ethanol)

other factors, like the life story of the yeasts, play a

muchmore important role in decidingwhat can be done

and how to do it than does the equilibrium K.

16.6 TRANSLATING BETWEEN BIOCHEMICAL

AND CHEMICAL ENGINEERING EQUILIBRIUM

EXPRESSIONS

This short chapter will not teach you biochemistry, but I hope

it will help you understand the biochemical literature when it

Table 16.A Results of Example 16.4

Example Number K in example

K based on

Dgoreaction � Dh�reaction
16.1 1.4� 1085 2.56� 1030

16.2 1.6� 106 3.84� 1053

16.3 0.865 0.46
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talks about biochemical equilibrium. This translation of

biochemical to chemical language and nomenclature is based

on Lehninger [14].

16.6.1 Chemical and Biochemical Equations

One of the key energy-transfer reactions inside the cells of all

living things is described as

ATPþH2O ¼ ADPþ Pi ð16:MÞ

where ATP stands for adenosine tri phosphate, ADP stands

for adenosine di phosphate and Pi stands for a liberated

phosphate ion (PO3�
4 ). This is the recommended biological

equation. It does not list all the species involved, nor does it

balance atoms, nor indicate charged species. In this equa-

tion ATP stands for the equilibrium mixture of ATP4�,
HATP3�, H2ATP

2�, MgATP2�, MgHATP and Mg2ATP all

at the specified pH and pMg (which is analogous to pH,

pMg¼�log(Mg2þ ) with Mg2þ expressed as molarity),

and similarly for the other species. The corresponding

chemical equation is

ATP4� þH2O ¼ ADP3� þHPO2�
4 þHþ ð16:NÞ

which does balance atoms and balance charge.

16.6.2 Equilibrium Constants

The standard chemical equilibrium constant (Chapter 12) for

reaction 16.N would be

K ¼ exp
�Dgo

RT

� �
¼ ADP3�

� �
HPO4

2�� �
Hþ½ �

ATP4�
� �

H2O½ � ð16:OÞ

where the terms in brackets [] are the activities of the species.

Since activities are dimensionless, this K is always dimen-

sionless; its value depends only on the g�i of the reactants and
products in their pure states at the temperature of the reaction.

By biological convention this same chemical equilibrium is

written

Kc ¼
ADP3�
� �

HPO4
2�� �

Hþ½ �
ATP4�
� �

coð Þ2 ð16:PÞ

where now the terms in brackets are concentrations, not

activities, expressed as molarities and coð Þ2 ¼ ð1 molarÞ2is
inserted to make Kc be dimensionless. Kc depends on the g

�
i

of the reactants and products not necessarily in their pure

states, and also on the pH and the ionic strength discussed

below.

Biochemists define a apparent equilibrium constant, K0

for biochemical reactions as (for Equation 16.P)

K 0 ¼ ADP½ � Pi½ �
ATP½ �co ð16:QÞ

where the terms in brackets representing the molar concen-

trations, andADP, Pi andATP are shorthand for the sum of all

the ADP, ATP and P compounds present, and co is inserted to

make the dimensions come out right.

To maintain parallelism with Chapter 12, they define

Dfg
0�ðiÞ ¼ transformed standard Gibbs

energy of formation of species i

� �
ð16:1Þ

with which

K 0 ¼ exp
�Drg

0�

RT

� �
ð16:2Þ

where the r subscript stands for reaction.

The equilibrium constants in common biochemical use

have the following symbols, Kx, Km, and Kc with concentra-

tions expressed in mol fraction, molality and molarity [15].

One also sees Ka representing concentrations shown as

activities, such as the K in Chapter 12.

Example 16.5 The hypothetical reaction

AðaqÞ , BðaqÞ þ CðaqÞ ð16:RÞ

has the following equilibrium constant we are familiar with

from Chapters 12 and 13

KChapter12 ¼Kactivities ¼ 2:00¼ ab �ac
aa

¼ xbgb �xcgc

xaga

ð16:SÞ

What are the values of Kx, Km and Kc?

For this reaction, Kx is defined as

Kx ¼ xb � xc
xa

¼ Ka

ga

gb � gc

ð16:TÞ

If the activity coefficients are all¼ 1.00, then the rightmost

term is 1.0 andKx¼Ka. But suppose that they are all¼ 1.50?

In that case

Kx ¼ xb � xc
xa

¼ Ka

ga

gb � gc

¼ Ka

1:5

1:52
¼ Ka

1:5
¼ 2

1:5
¼ 1:333

ð16:UÞ

Both Ka and Kx are dimensionless, (because x and g
are dimensionless), so these two equilibrium constants are
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dimensionless,¼ 2 and 1.333. The equilibrium constant

based on molalities

Km ¼ mb �mc

ma

ð16:VÞ

has the dimension of molality (mols substance/kg solvent).

To find its numerical value, we start with Kx and observe that

xa ¼ mols A

mols Aþmols Bþmols Cþmols H2O
¼ mols AP

mols

ð16:WÞ

so that

Kx ¼ mols Bð Þ � mols Cð Þ
ðmols AÞ � 1P

mols

¼ mb � kgsolventð Þ � mb � kgsolventð Þ
ðma � kgsolventÞ

� 1P
mols

¼ Km � kgsolventP
mols

ð16:XÞ

or

Km ¼ Kx

P
mols

kgsolvent
ð16:YÞ

For dilute solutions in water

X
mols ¼ mols Aþmols Bþmols C

þmols H2O � mols H2O
ð16:ZÞ

and

mols H2O

kg
¼ 1000 g=kg

18 g=mol
¼ 55:5

mol

kg
ð16:AAÞ

so that

Km ¼ Kx

P
mols

kgsolvent
� 1:333 � 55:5mol

kg
¼ 74:0

mol

kg
ð16:ABÞ

Similar calculations, again restricted to dilute solutions,

lead to

Kc ¼ 74:0
mol

liter
& ð16:ACÞ

Chemical engineers who are comfortable with K¼ exp

(�Dgo/RT) in which K is dimensionless and determined by

the Gibbs energies of formation of the pure reactants and

products (in their appropriate standard states at tempera-

ture T) are uncomfortable (I am!) with Ks that have

dimensions and whose values depend on the concentra-

tions in the solution. But that is the normal definition of

equilibrium constants in biochemistry.

16.6.3 pH and Buffers

In Chapters 12 and 13 the hydrogen ion (Hþ ) is taken as a

reactant (See Example 13.1). In biochemical equilibrium

calculations it is generally not so shown. Instead the pH is

specified and the aqueous solution is expected to provide or

accept these ions as needed, without appearing in the

biochemical equation. Buffers (Section 13.2.3) are very

important in biochemistry; almost all biochemical equilib-

rium calculations specify the pH at which the equilibrium

exists.

16.6.4 Ionic Strength

The ionic strength is defined by

I ¼ ionic

strength

� �
¼ 1

2

Xn
i¼1

ciz
2
i ð16:3Þ

where ci is the concentration of the ion (normally in molarity,

sometimes in molalilty) and zi is charge on that ion.

Example 16.5 Estimate the ionic strength of a 100%

ionized, 0.05 molar solution of Na2SO4 in water. The two

ions are Naþ and SO4
2�. There must also be Hþ and OH�

but these are normally in small enough concentrations to

ignore.

I ¼ 1

2
ð2� 0:05� 12Þþ ð1� 0:05� 22Þ� �

¼ 1

2
0:10ð Þþ 0:20ð Þ½ � ¼ 0:15

mol

liter
& ð16:ADÞ

The goformation of Mg2þ is shown in ([14] p 1647) as�455.30

(kJ/mol) at I¼ 0 and �458.54 at I¼ 0.25, Chemical engi-

neers would show that change as a change in activity

coefficient, keeping goformation and K independent of concen-

trations and of pH. Biochemists take those changes into the

values of goformation and K.

16.7 EQUILIBRIUM IN BIOCHEMICAL

SEPARATIONS

The fermentation of sugars (and starches) to ethanol is

presumably the oldest known example of humans domesti-
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cating a micro-organism to produce a product we wanted,

known from Egyptian hieroglyphics. (Perhaps the organisms

chose us, doing our work in return for us caring for them, as

cats and dogs apparently have.) The basic pattern is that some

organism grows in a prepared nutrient soup (possibly grape

juice was the first) producing a byproduct we like. We then

separate the organism from the soup (mostly by sedimenta-

tion or filtration in the ethanol case). In the ethanol case, the

clear liquid (beer, wine, mead or pulque) is used as is, as a

beverage. Later we learned to separate the part wewanted by

distillation to produce distilled spirits and even later, indus-

trial alcohol.

Starting in the 19 th century we began to use similar

processes with other organisms to produce chemicals we

wanted. Starting about 1940 we made the first large-scale

pharmaceutical thatway, penicillin. Since thenwe havemade

dozens of biologically active materials by the same general

approach: some organism (bacterium, yeast, mold) is found

and/or biochemically engineered to produce (internally or

externally) the product we want. (In the recent past we have

learned to do the same with mammalian cells growing in

similar media.) We then grow the organism in a highly-

engineered soup of nutrients, normally in a batch mode until

we reach the peak concentration of what we want. Then we

stop the reaction, and separate the desired product from the

reaction mix.

The production of penicillin shows the classic example of

producing a high value biochemical by biochemical means.

In a very well-managed soup of nutrients, a mold grows and

excretes the antibiotic product we want. When the mold will

produce nomore, the concentration of penicillin in the soup is

about 1% (1 part penicillin to 99 parts ofwaste products). The

two challenges in the process are first, to get the mold to

produce as much as possible, as quickly as possible, and

second to separate the pure (easily destroyed) penicillin away

from the waste products at an acceptable cost.

Chemical equilibrium plays little if any role in the growth

step, but physical equilibrium is very important in the

separation steps. In industrial organic chemistry the separa-

tion tools (distillation, crystallization, extraction) all depend

on using differences in equilibrium concentration to enrich

one species in a mixture relative to the others. The same is

true in industrial biochemistry. The main differences are

1. The starting concentrations of biochemical products

are generally much smaller than in industrial organic

chemistry. Biochemical processes often start the sep-

aration with much less than 1% of the desired product

in the mix. Industrial organic chemistry rarely does.

2. The desired product is often very unstable. Penicillin is

destroyed by heating, and by long exposure to acids or

bases. The same is not true of most industrial organic

chemicals.

3. The products purity requirements for materials that are

injected into human bodies are much stricter than those

for other materials.

The separation scheme for penicillin starts with the broth

from the reactor, which is chilled to reduce the rate of natural

decomposition of the desired product, and then filtered

to remove the solids. From there to the finished product the

steps are:

1. Extraction from aqueous to an organic phase, with the

pH adjusted to 2.5 to make the penicillin more soluble

in organic than in water.

2. Charcoal adsorption of the organic phase (see Chapter

11) to remove those contaminants that will adsorb on

charcoal.

3. Extraction from the organic phase back to an aqueous

one, with the pH adjusted to 7.5 to make the penicillin

more soluble in water than in organic.

4. Precipitation from the aqueous phase as a crude salt by

any of several techniques, all designed to shift the

equilibrium from soluble penicillin to insoluble, fol-

lowed by final cleanup.

In each of these steps the product is moved from the phase

in which penicillin is present in low concentration to one in

which its concentration is much higher, mostly by adjusting

pH, sometimes by changing the solvent. For more complex

separations various kinds of chromatography are used. All of

these steps obey the thermodynamic equilibrium relations

shown in the previous chapters.

16.8 SUMMARY

1. All of biochemistry obeys the general principle that

nature minimizes Gibbs energy.

2. The application of this principle in biochemistry gen-

erally does not take the same forms as in the preceding

chapters.

3. The symbols and notation in biochemistry are often

quite different from those we are familiar with in

chemical engineering.

4. This chapter has said nothing about the biochemical

reactions inside individual cells. Those are more com-

plex that the simple examples shown here.

5. The study of the thermodynamics of chemical reac-

tions within cells is now called Bioenergetics; for a

lucid introduction, see [14]. For help translating be-

tween chemical engineering and biochemical notation

see [15].

SUMMARY 299



PROBLEMS

See the Common Units and Values for Problems and Ex-

amples. An asterisk (�) on the problem number indicates that

the answer is in Appendix H.

16.1 a. Estimate g� of formation from the elements of

sucrose at 298.15K. The reported h� of formation

is �2221.2 kJ/mol and s� (absolute, not of forma-

tion) is reported as 392.4 J/mol K [17]. The stan-

dard absolute entropies of elemental C, O2 and H2

at 298.15 ([18] page 992), all in kJ/mol K, are

0.00569, 0.2050 and 0.1306.

b. Compare this value to the �1551.8 kJ/mol (aq)

reported by [9], and the values of�1557.6 kJ/mol

(cr) and �1564.7 kJ/mol (aq) reported by [2].

16.2 In example 16.3 replace Equation 16.F with

C6H12O6ðaqÞ ,
glucose

C6H12O6ðaqÞ
fructose

þ higher molecular

weight sugars ðaqÞ
� �

ð16:AEÞ

Assume that we start with pure glucose, and that in the

equilibriummix the mol fraction of dissolved higher-

molecular-weight sugars is 0.05. Repeat the calcula-

tion in Equation 16.G for this assumption.

16.3 Example 16.3 shows that after glucose and fructose

are brought to chemical equilibrium, the fructose can

be mostly removed from the glucose-fructose-water

solution by chromatography. Sketch a flow diagram

for a process that receives a glucose-water solution

and delivers a practically pure fructose-water solu-

tion, using up practically all the glucose. Then sketch a

similar flow diagram for n-butane and i-butane. See

Example 4.3 and the observation that the tallest

distillation tower in a typical modern oil refinery is

making the separation between n-butane and i-butane.

16.4� Tewari and Goldberg [3] determined the K for the

isomerization of glucose to fructose by measuring the

equilibrium concentrations, coming both ways, from

pure glucose (aq) to equilibrium and from pure fruc-

tose (aq) to equilibrium, finding Kx¼ 0.865. Krebs

and Kornberg [9] report the following values for the

g�(aq) for glucose and fructose as �917.24 and

�915.40 kJ/mol.

a. Does the K for the isomerization computed from

these two g�(aq) s agree with the experimentalKx?

b. What would the equilibrium conversion of glucose

tofructosebeforthevalueofKxcomputedinpart(a)?

16.5 For the hypothetical reaction in Example 16.4, assume

that we add 0.1mol of A to one kg of water. The

activity coefficients are all ¼ 1.5 as in that example,

and the volume of the resulting solution is 1.01 L.

Estimate the equilibrium activities, mol fractions,

molalities and molarities of A, B and C. Compare

those values to the four equilibrium constants in that

example.

16.6 Krebs and Kornberg ([9], Table 11) report the Gibbs

energy change for the reaction:

glucoseðaqÞ , 2ðethanolðaqÞþCO2ðgÞÞ ð16:AFÞ

as �234.72 kJ/mol.

a. Reaction 16. A consists of twice this reaction, plus

Reaction 16.D. Combining the Dg� s for these

reactions, estimate the Dg� for reaction 16.A and

compare it with the value shown in Example 16.1.

b. Putnam and Boreiro-Goates [2] show that the

publicly-accepted value before 1993 of Dg� for

sucrose was 10.2 kJ/mol more negative than their

experimental results. Does adding this correction

make the calculated value match Example 16.1

better?
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APPENDIX A

USEFUL TABLES AND CHARTS

A.1 USEFUL PROPERTY DATA FOR

CORRESPONDING STATES ESTIMATES

The values given in Table A.1 are useful in “corresponding

states” estimates of thermodynamic properties.

Bar¼ 0.987 atm.

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

Table A.1 Property Data for Corresponding States Estimates

Molar Mass

(¼ Molecular Weight) M (g/mol) v Tc(K) Pc (bar) zc

Methane 16.043 0.012 190.6 45.99 0.286

Ethane 30.07 0.1 305.3 48.72 0.279

Propane 44.097 0.152 369.8 42.48 0.276

n-Butane 58.123 0.2 425.1 37.96 0.274

n-Pentane 72.15 0.252 469.7 33.7 0.27

n-Hexane 86.177 0.301 507.6 30.25 0.266

n-Heptane 100.204 0.35 540.2 27.4 0.261

n-Octane 114.231 0.4 568.7 24.9 0.256

n-Nonane 128.258 0.444 594.6 22.9 0.252

n-Decane 142.285 0.492 617.7 21.1 0.247

Isobutane 58.123 0.181 408.1 36.48 0.282

Isooctane 114.231 0.302 544 25.68 0.266

Cyclopentane 70.134 0.196 511.8 45.02 0.273

Cyclohexane 84.161 0.21 533.6 40.73 0.273

Methylcyclopentane 84.161 0.23 532.8 37.85 0.272

Methylcyclohexane 98.188 0.235 572.2 34.71 0.269

Ethylene 28.054 0.087 282.3 50.4 0.281

Propylene 42.081 0.14 365.6 46.65 0.289

1-Butene 56.108 0.191 420 40.43 0.277

cis-2-Butene 56.108 0.205 435.6 42.43 0.273

trans-2-Butene 56.108 0.218 428.6 41 0.275

1-Hexene 84.161 0.28 504 31.4 0.265

Isobutylene 56.108 0.194 417.9 40 0.275

1,3-Butadiene 54.092 0.19 425.2 42.77 0.267

Cyclohexene 82.145 0.212 560.4 43.5 0.272

(continued )
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Table A.1 (Continued)

Molar Mass

(¼ Molecular Weight) M (g/mol) v Tc(K) Pc (bar) zc

Acetylene 26.038 0.187 308.3 61.39 0.271

Benzene 78.114 0.21 562.2 48.98 0.271

Toluene 92.141 0.262 591.8 41.06 0.264

Ethylbenzene 106.167 0.303 617.2 36.06 0.263

Cumene 120.194 0.326 631.1 32.09 0.261

o-Xylene 106.167 0.31 630.3 37.34 0.263

m-Xylene 160.167 0.326 617.1 35.36 0.259

p-Xylene 160.167 0.322 616.2 35.11 0.26

Styrene 104.152 0.297 636 38.4 0.256

Naphthalene 128.174 0.302 748.4 40.51 0.269

Biphenyl 154.211 0.365 789.3 38.5 0.295

Formadlehyde 30.026 0.282 408 65.9 0.223

Acetaldehyde 44.053 0.291 466 55.5 0.221

Methyl acetate 74.079 0.331 506.6 47.5 0.257

Ethyl acetate 88.106 0.366 523.3 38.8 0.255

Acetone 58.08 0.307 508.2 47.01 0.233

Methyl ethyl ketone 72.107 0.323 535.5 41.5 0.249

Diethyl ether 74.123 0.281 466.7 36.4 0.263

Methyl tert-butyl ether 88.15 0.266 497.1 34.3 0.273

Methanol 32.042 0.564 512.6 80.97 0.224

Ethanol 46.069 0.645 513.9 61.48 0.24

1-Propanol 60.096 0.622 536.8 51.75 0.254

1-Butanol 74.123 0.594 563.1 44.23 0.26

1-Hexanol 102.177 0.579 611.4 35.1 0.263

2-Propanol 60.096 0.668 508.3 47.62 0.248

Phenol 94.113 0.444 694.3 61.3 0.243

Ethylene glycol 62.068 0.487 719.7 77 0.246

Acetic acid 60.053 0.467 592 57.86 0.211

n-Butyric acid 88.106 0.681 615.7 40.64 0.232

Benzoic acid 122.123 0.603 751 44.7 0.246

Acetonitrile 41.053 0.338 545.5 48.3 0.184

Methylamine 31.057 0.281 430.1 74.6 0.321

Ethylamine 45.084 0.285 456.2 56.2 0.307

Nitromethane 61.04 0.348 588.2 63.1 0.223

Carbon tetrachloride 153.822 0.193 556.4 45.6 0.272

Chloroform 119.377 0.222 536.4 54.72 0.293

Dichloromethane 84.932 0.199 510 60.8 0.265

Methyl chloride 50.488 0.153 416.3 66.8 0.276

Ethyl chloride 64.514 0.19 460.4 52.7 0.275

Chlorobenzene 112.558 0.25 632.4 45.2 0.265

Neon 14.0099 0 44.4 27.6 0.311

Argon 39.948 0 150.9 48.98 0.291

Krypton 83.8 0 209.4 55.02 0.288

Xenon 165.03 0 289.7 58.4 0.286

Helium 4 4.003 �0.39 5.2 2.28 0.302

Hydrogen 2.016 �0.216 33.19 13.13 0.305

Oxygen 31.999 0.022 154.6 50.43 0.288

Nitrogen 28.014 0.038 126.2 34 0.289

Chlorine 70.905 0.069 417.2 77.1 0.265

Carbon monoxide 28.01 0.048 132.9 34.99 0.299

Carbon dioxide 44.01 0.224 304.2 73.83 0.274

Carbon disulfide 76.143 0.111 552 79 0.275

Hydrogen sulfide 34.082 0.094 373.5 89.63 0.284

Sulfur dioxide 64.065 0.245 430.8 78.84 0.269

(continued )
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A.2 VAPOR-PRESSURE EQUATION CONSTANTS

Table A.2 gives the Antoine equation constants for

log p ¼ A� B

T þC
; p in mmHg; T in �C ðA:1Þ

We often see this equation as

log p ¼ A� B

T�C
; p in mmHg; T in K ðA:2Þ

TheC in Eq. A.2 is [273.15minus theC in Eq. A.1]; theA and

B are not changed.We also see it with ln p instead of log p and

with p expressed in psia, bar, or atm. Changing from one of

those forms to the other requires simple multiplication of

A and B by suitable constants.

The original sources often give temperature ranges

over which these constants should be used. However, we

can normally extrapolate beyond those ranges, with only

modest loss of accuracy. Most of these constants reproduce

the temperature region near the NBP very well, tempera-

tures far above and below the NBP not as well (see

Figure 5.5).

Table A.2 Antoine Equation Constants

Substance Formula A B C

Acetaldehyde C2H4O 7.05648 1070.60 236

Acetic acid C2H4O2 7.29964 1479.02 216.81

Acetone C3H6O 7.02447 1161 224

Acetylene C2H2 7.09990 711.00 253.38

Ammonia NH3 7.36048 926.13 240.17

Argon Ar 6.61562 304.2283 267.31

Benzene C6H6 6.90565 1211.033 220.79

n-Butane C4H10 6.80897 935.86 238.73

n-Butanol C4H10O 7.838 1558.190 196.881

Carbon dioxide, solid CO2(s) 9.81064 1347.788 272.99

Carbon dioxide, liquid CO2(l) 7.5788 863.35 273.15

Carbon monoxide, CO 6.24021 230.272 260

Carbon tetrachloride CCl4 6.9339 1242.43 230

Chlorine Cl2 6.9317 859.17 246.14

Chlorobenzene C6H5Cl 6.9781 1431.06 217.55

Chloroform CHCl3 6.9547 1170.97 226.23

Cyclohexane C6H12 6.84132 1201.53 222.65

Ethane C2H6 6.80267 656.4028 255.99

Ethyl acetate C4H8O2 7.01457 1211.90 216

(continued )

Table A.1 (Continued)

Molar Mass

(¼ Molecular Weight) M (g/mol) v Tc(K) Pc (bar) zc

Sulfur trioxide 80.064 0.424 490.9 82.1 0.255

Nitric oxide (NO) 30.006 0.583 180.2 64.8 0.251

Nitrous oxide (N2O) 44.013 0.141 309.6 72.45 0.274

Hydrogen chloride 36.461 0.132 324.7 83.1 0.249

Hydrogen cyanide 27.026 0.41 456.7 53.9 0.197

Water 18.015 0.345 647.1 220.55 0.229

Ammonia 17.031 0.253 405.7 112.8 0.0242

Nitric acid 63.013 0.714 520 68.9 0.231

Sulfuric acid 98.08 ���� 924 64 0.147

Source: From Smith, J. M., H. C. van Ness, andM.M. Abbot, Introduction to Chemical Engineering Thermodynamics, ed. 5. New York:

McGraw-Hill (1996). Reproduced with permission of the McGraw-Hill Companies.
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A.3 HENRY’S LAW CONSTANTS

Henry’s law

yi ¼ xi �Hi

P
ð3:6Þ

is quite useful for gases well above their critical tempera-

tures, dissolved in liquids. It is less applicable for gases at or

near their critical temperatures like ethane or CO2, and more

reliable for gases that do not ionize in the liquid, like oxygen

in water, than for those that do ionize, like carbon dioxide in

water. It is applicable for gases dissolved in any liquid, but

most of the published Henry’s law constants are for gases in

water. A high value ofHi indicates a low solubility of the gas.

Henry’s law is introduced in Chapter 3 and discussed inmore

detail in Chapter 9.

Table A.3 gives the reported values of the Henry’s law

constant H for a variety of gases dissolved in water at

common temperatures. All values are in atmospheres

� 104; that is, the Henry’s law constant for oxygen at

0�C¼ 2.55� 104 atm¼ 25,500 atm.

To make life hard for the student and the working engi-

neer, Henry’s law is expressed in a variety of ways, with a

variety of dimensions. We can rewrite Eq. 3.6 as

yi ¼ Hi

P
� concentration of dissolved

gas; in some set of units

� �
ðA:3Þ

If the concentration is expressed inmol fraction, then Eq. A.3

is the same as Eq. 3.6. But we regularly see g/L, mol/L, g/kg,

mol/kg, lb/ft3, and lbmol/ft3 as the concentration units. For

dilute aqueous solutions, for which

r � 1:00
kg

L
and rmolar; solvent �

1000 g=L

18:015 g=mol
¼ 55:5

mol

L

ðA:AÞ

Table A.2 (Continued)

Substance Formula A B C

Ethyl alcohol C2H6O 8.04494 1554.3 222.65

Ethylbenzene C8H10 6.95719 1424.255 213.206

Ethylene C2H4 6.74756 585.00 255

Fluorine F2 6.80540 310.130 267.15

Helium He 5.32072 14.6500 274.94

Hydrogen H2 5.92088 71.6153 276.34

Hydrogen chloride HCl 7.16761 744.490 258.7

Isopropyl alcohol C3H8O 8.11822 1580.92 219.61

Isopentane C5H12 6.78967 1020.012 233.097

Lead Pb 7.827 9845.4 273.15

Mercury Hg 7.8887 3148.0 273.15

Methane CH4 6.61184 389.9278 265.99

Methyl alcohol CH4O 8.07247 1574.99 238.86

Methyl ethyl ketone C4H8O 6.97421 1209.6 216

n-Decane C10H22 6.95367 1501.2724 194.48

n-Heptane C7H16 6.9024 1268.115 216.9

n-Hexane C6H14 6.87776 1171.53 224.366

n-Pentane C5H12 6.85221 1064.63 232

Neon Ne 6.08443 78.37729 270.54

Nitric oxide NO 8.74295 682.9382 268.27

Nitrogen N2 6.49454 255.6784 266.55

Nitrogen dioxide NO2 8.91717 1798.543 276.8

Oxygen O2 6.69147 319.0117 266.7

Ozone O3 6.83670 552.5020 250.99

Propane C3H8 6.82970 813.2008 247.99

Styrene C8H8 6.92409 1420 206

Toluene C7H8 6.95334 1343.943 219.377

Water H2O 7.94917 1657.462 227.02

o-Xylene C8H10 6.99893 1474.68 213.69

Source. These values are taken from a variety of sources. Longer lists are in Dean, J. A. Lange’s Handbook of Chemistry, ed. 12. New York. McGraw–Hill,

pp. 10–29 to 10–54 (1979); Reid, R. C., J. M. Prausnitz, and T. K. Sherwood. The Properties of Liquids and Gases, ed. 3. New York: McGraw-Hill, Appendix A

(1977); and Lide, D. R., ed. CRC Handbook of Chemistry and Physics, ed. 71. Boca Raton, FL: CRC Press, pp. 6–70 (1990).
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Table A.3 Henry’s Law Constants for Common Gases in Water

T (�C)

0 10 20 30 40 50

Acetylene 0.072 0.096 0.121 0.146

Carbon dioxide 0.073 0.105 0.148 0.194 0.251 0.321

Ethane 1.26 1.89 2.63 3.42 4.23 5.00

Helium 12.9 12.6 12.5 12.4 12.1 11.5

Hydrogen 5.79 6.36 6.83 7.29 7.51 7.65

Hydrogen sulfide 0.0268 0.0367 0.0483 0.0609 0.0745 0.0884

Methane 2.24 2.97 3.76 4.49 5.20 5.77

Nitrogen 5.29 6.687 8.04 9.24 10.4 11.3

Oxygen 2.55 3.27 4.01 4.75 5.35 5.88

Ozone 0.194 0.248 0.376 0.598 1.20 2.74

Source:Henry’s law values (not all in the same units) are found in various editions of Perry’s Chemical Engineers’ Handbook, McGraw-Hill and The Handbook

of Chemistry and Physics, CRC Press.

the concentration of dissolved gas is

ci ¼ xi � 55:5mol

L

so that

HEq:A:3 ¼ 55:5
mol

L
�HEq:3:6 ðA:BÞ

Chemists regularly write Henry’s law as

xi ¼ a different kind of Henry0s
law constant

� �
�Pyi ðA:CÞ

This Henry’s law constant is the reciprocal of the one used in

this book.

A.4 COMPRESSIBILITY FACTOR CHART

(z CHART)

The basic idea of the theorem of corresponding states is that

this plot (Figure A.4) must be the same for all gases. That is

only approximately true. Much more accurate ways of

estimating fluid densities are available in our computers.

But the classic compressibility factor chart (used with the

values in Table A.1) allows us to make a very quick estimate

of the departure from ideal gas behavior, and it gives some

insight into the form of that departure.

Here

z ¼ compressibility

factor

� �
¼ Pv

RT

For a ideal gas, z¼ 1.

A.5 FUGACITY COEFFICIENT CHARTS

According to the theorem of corresponding states this plot

(Figure A.5, both forms) must be the same for all gases.

That is only approximately true.Much more accurate ways

of estimating pure-component fugacity coefficients are

available in our computers. But the classic fugacity coef-

ficient charts (used with the values in Table A.1) allow us to

make a very quick estimate of the departure from ideal gas

behavior, and give some insight into the form of this

function.
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A.6 AZEOTROPES

Tables A.6.1 and A.6.2 are excerpts from the longer tables

in Perry’s Chemical Engineers’ Handbook. More exten-

sive tables can be found in CRC Handbook of Chemistry

and Physics, and in Horsley, Advances in Chemistry

Series. ed. 6, Washington, DC: American Chemical

Society (1952).

FIGUREA.4 Compressibility factor chart. (From Hougen, O. A., K. M.Watson, and R. A. Ragatz,

Chemical Process Principles, Part II: Thermodynamics, ed. 2.�1959. NewYork:Wiley. Reprinted by

permission of the estate of O. A. Hougen.)
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FIGURE A.5 Fugacity coefficient chart. (From Hougen, O. A., K. M. Watson, and R. A. Ragatz,

Chemical Process Principles, Part II: Thermodynamics, ed. 2.� 1959.NewYork:Wiley. Reprinted by

permission of the estate of O. A. Hougen.)
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Table A.6.1 Minimum Boiling Binary Azeotropes at 760 torr

System

A B Mol% A Temperature (�C)

Water Ethanol 10.57 78.15

Allyl alcohol 54.5 88.2

Propionic acid 94.7 99.98

Propyl alcohol 56.83 87.72

Isopropyl alcohol 31.46 80.37

Methyl ethyl ketone 33 73.45

Isobutyric acid 94.5 99.3

Ethyl acetate (2 phase) 24 70.4

Ethyl ether (2 phase) 5 34.15

n- Butyl alcohol (2 phase) 75 92.25

Isobutyl alcohol 67.14 89.92

sec-Butyl alcohol 66 88.5

tert-Butyl alcohol 35.41 79.91

Isoamyl alcohol (2 phase) 82.79 95.15

Amyl alcohol (tert) (2 phase) 65 87

Benzene (2 phase) 29.6 69.25

Toluene (2 phase) 55.6 84.1

Carbon tetrachloride Methanol 44.5 55.7

Ethanol 61.3 64.95

Allyl alcohol

n-Propyl alcohol

73 72.32

75 72.8

Ethyl acetate 43 74.75

Carbon disulfide Methanol 72 37.65

Ethanol 86 42.4

Acetone 61 39.25

Methyl acetate 69.5 40.15

Chloroform Methanol 65 53.5

Ethanol 84 59.3

Isopropyl alcohol 92 60.8

n-Butyl alcohol Cyclohexane 11 79.8

Toluene 37 105.5

Isobutyl alcohol Isoamyl bromide 60 103.8

Benzene 10 79.84

Toluene 50 101.15

n-Amyl alcohol i-Amyl acetate 96.4 131.3

i-Butyl propionate 85 130.5

Isoamyl alcohol Chlorobenzene 42 124.3

o-Xylene 64 128

m-Xylene 58 127

p-Xylene 56 126.8

Nitrobenzene Benzyl alcohol 39 204.3

Phenol p-Bromotoluene 58 176.2

Acetic acid Chlorobenzene 72.5 114.65

Benzene 2.5 80.05

Toluene 62.7 105.4

m-Xylene 40 115.38

Ethyl alcohol Methyl ethyl ketone 45 74.8

Ethyl acetate 46 71.8

Methyl propionate 67.5 73.2

n-Propyl formate 72 73.5

Benzene 44.8 68.24

Cyclohexane 44.5 64.9

n-Hexane 33.2 58.68

Toluene 81 76.65

n-Heptane 67 72

(continued )
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Table A.6.2 Maximum Boiling Binary Azeotropes at 760 torr

System

A B Mol% A Temperature (�C)

Water Hydrofluoric acid 65.4 120

Hydrochloric acid 88.9 110

Perchloric acid 32 203

Hydrobromic acid 83.1 126

Hydriodic acid 84.3 127

Nitric acid 62.2 120.5

Formic acid 43.3 107.1

Chloroform Acetone 65.5 64.5

Formic acid Diethyl ketone 48 105.4

Methyl propyl ketone 47 105.3

Phenol Cyclohexanol 90 182.45

Benzaldehyde 54 185.6

Benzyl alcohol 8 206

o- Cresol Acetophenone 24 203.7

Phenyl acetate 42.5 198.6

Methyl hexyl ketone 97 191.5

Isoamyl butyrate 80 192

m-Cresol Acetophenone 54 209

Isoamyl lactate 60 207.6

p–Cresol Benzyl alcohol 38 207

Acetophenone 52 208.45

Source: Taken from Perry R. H., and D. W. Green, eds. Perry’s Chemical Engineer’s Handbook, ed. 6, pp. 13–59 and 13–50, McGraw-Hill (2003).

Table A.6.1 (Continued)

System

A B Mol% A Temperature (�C)

Allyl alcohol Benzene 22.2 76.75

Cyclohexane 26.6 74

n- Hexane 6.5 65.5

Toluene 61.5 92.4

Acetone Methyl acetate 61 56.1

Isobutyl chloride 81 55.8

Diethylamine 43.5 51.5

n-Propyl alcohol Ethyl propionate 64 93.4

Benzene 20.9 77.12

n-Hexane 6 65.65

Toluene 60 92.6

Isopropyl alcohol Ethyl acetate 30.5 74.8

Benzene 39.3 71.92

n-Hexane 29 61

Toluene 77 80.6

Tetrachloroethylene Ethanol 6 77.95

Allyl alcohol 27 94

Propionic acid 81 118.95

n-Propyl alcohol 24 94

Isopropyl alcohol 8 81.7

n-Butyl alcohol 47 110

Isobutyl alcohol 40 103.05

Source: Taken from Perry R. H., and D. W. Green, eds. Perry’s Chemical Engineer’s Handbook, ed. 6, pp. 13–59 and 13–50, McGraw-Hill (2003).
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A.7 VAN LAAR EQUATION CONSTANTS

Table A.7 is an excerpt from a much longer table taken from

Holmes and Van Winkle, which gives the original literature

citations and the corresponding constants for several other

equations. The traditional form is

log g1 ¼
Ax22�

A

B
x1 þ x2

�2
log g2 ¼

Bx21�
x1 þ B

A
x2

�2

ð8:12Þ

For programming our computers the following form is

simpler

log g1 ¼
B2Ax22

ðAx1 þBx2Þ2
log g2 ¼ A2Bx21

ðAx1 þBx2Þ2
ð8:LÞ

These are in the log form. We also often see this equation in

the ln form (ln g1¼ etc.) for which the constants A and B are

2.303 times as large as those shown here. We must always

check to seewhich form the reported constants correspond to.

Most of the values in this table are for data at a constant

pressure of 760 torr. Some are constant temperatures, as

shown. As discussed in Chapter 9, there should not be much

difference between the constants obtained either way, which

is observed for most of the pairs in this table for which both

forms are shown.

Some pairs, such as acetone–water, are shown twice, once

with acetone as component 1 and once with water as com-

ponent 1. The reader may check to see that this simply

interchanges the values of A and B.

Table A.7 Van Laar Equation Constants

Component 1 Component 2 A B Pressure (torr) Temperature (�C)

Acetone Benzene 0.2039 0.1563 760

Carbon tetrachloride 0.3889 0.3301 760

Chloroform �0.3045 �0.2709 760

2,3-Dimethylbutane 0.6345 0.6358 760

Ethanol 0.2574 0.2879 760

Methanol 0.2635 0.2801 760

0.2763 0.2878 55

n-Pentane 0.7403 0.6364 760

2-Propanol 0.2186 0.269 760

0.3158 0.2495 55

Water 0.9972 0.6105 760

Acetonitrile Water 1.068 0.8207 760

Benzene Acetone 0.1563 0.2039 760

1-Butanol 0.3594 0.5865 760

Carbon tetrachloride 0.036 0.0509 760

Chloroform �0.0858 �0.0556 760

Cyclohexane 0.1466 0.1646 760

Cyclopentane 0.1655 0.1302 760

Ethanol 0.5804 0.7969 760

n-Heptane 0.0985 0.2135 760

0.1072 0.2361 75

n-Hexane 0.1457 0.2063 760

Methanol 0.7518 0.8975 760

Methyl acetate 0.1292 0.0919 760

Methylcyclohexane 0.091 0.1901 760

Methylcyclopentane 0.136 0.1605 760

1-Propanol 0.3772 0.7703 760

0.4508 0.7564 75

2-Propanol 0.4638 0.6723 760

0.5455 0.7716 500

1-Butanol Benzene 0.5865 0.3594 760

Toluene 0.543 0.3841 760

(continued )
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A.8 ENTHALPIES AND GIBBS ENERGIES OF

FORMATION FROM THE ELEMENTS IN THE

STANDARD STATES, AT T ¼ 298.15 K ¼ 25�C,
AND P ¼ 1.00 BAR

The standard states in Table A.8 are (g), pure ideal gas at

1 bar; (l) and (s), the normal state of that substance at 1 bar

and 25�C; (aq), an ideal 1-molal solution of that substance in

water at 1 bar and 25�C. For several substances, such as

water, values are shown for two standard states, (1) and (g).

The relation between these is shown in Example 12.7.

Table A.8 Enthalpies and Gibbs Energies of Formation from the Elements

Chemical Species Formula State

h� of Formation from

the Elements (kJ/mol)

g� of Formation from

the Elements (kJ/mol)

PARAFFINIC HYDROCARBONS

Methane CH4 (g) �74.5 �50.5

Ethane C2H6 (g) �83.8 �31.9

Propane C3Hg (g) �104.7 �24.3

n-Butane C4H10 (g) �125.8 �17.2

Isobutane C4H10 (g) �134.5 �20.9

n-Pentane C5H12 (g) �146.8 �8.7

n-Pentane C5H12 (1) �173.1 9.2

n-Hexane C6H14 (l) �166.9 0.2

n-Heptane C7H16 (g) �187.8 8.3

n-Octane C8H18 (g) �208.8 16.3

n-Octane C8H18 (I) �255.1

UNSATURATED HYDROCARBONS

Acetylene C2H2 (g) 227.5 210.0

Ethylene C2H4 (g) 52.5 68.5

Propylene C3H6 (g) 19.7 62.2

1-Butene C4H8 (g) 1.2 70.3

1-Pentene C5H10 (g) �21.3 78.4

1-Hexene C6H12 (g) �42.0 86.8

1-Heptene C7H14 (g) �62.3 95.8

1,3-Butadiene C4H6 (g) 109.2 149.8

(continued )

Table A.7 (Continued)

Component 1 Component 2 A B Pressure (torr) Temperature (�C)

Carbon tetrachloride Acetone 0.3301 0.3889 760

Benzene 0.0509 0.036 760

2-Propanol 0.4918 0.7868 760

Chloroform Acetone �0.2709 �0.3045 760

Benzene �0.0556 �0.0858 760

2,3-Dimethylbutane 0.1736 0.279 760

Ethyl acetate �0.2868 �0.4478 760

Methanol 0.4104 0.8263 760

Methyl acetate �0.2249 �0.3343 760

Methyl ethyl ketone �0.299 �0.3486 760

Water Acetone 0.6105 0.9972 760

Acetonitrile 0.8207 1.0680 760

Ethanol 0.4104 0.7292 760

Methanol 0.2439 0.3861 760

1-Propanol 0.5037 1.1433 760

0.5305 1.2315 40

0.5224 1.1879 60

2-Propanol 0.4750 1.0728 760

n-butanol 0.5531 1.7269 760

Source: Taken from Holmes, M. J., and M. van Winkle, Prediction of ternary vapor-liquid from binary data. Ind. Eng. Chem. 62:21–31 (1970).
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Table A.8 (Continued)

Chemical Species Formula State

h� of Formation from

the Elements (kJ/mol)

g� of Formation from

the Elements (kJ/mol)

AROMATIC HYDROCARBONS

Benzene C6H6 (g) 82.9 129.7

Benzene C6H6 (l) 49.1 124.5

Ethylbenzene C8H10 (g) 29.9 130.9

Naphthalene C10H8 (g) 1501.0 223.6

Styrene C8H8 (g) 147.4 213.9

Toluene C7H8 (g) 50.2 122.1

Toluene C7H8 (1) 12.2 113.6

CYCLIC HYDROCARBONS

Cyclohexane C6H12 (g) �123.1 31.9

Cyclohexane C6H12 (l) �156.2 26.9

Cyclopropane C3H6 (g) 53.3 104.5

methyl-Cyclohexane C7H14 (g) �154.8 27.5

methyl-Cyclohexane C7H14 (1) �190.2 20.6

Cyclohexene C6H10 (g) �5.4 106.9

OXYGENATED HYDROCARBONS

Acetaldehyde C2H4O (g) �166.2 �128.9

Acetic acid CH3COOH (l) �484.5 �389.9

Acetic acid CH3COOH (aq) �486.1 �396.5

1,2-Ethanediol (ethylene glycol) C2H6O2 (1) �454.8 �323.1

Ethanol C2H6O (g) �235.1 �168.5

Ethanol C2H6O (l) �277.7 �174.8

Ethyl acetate CH3COOC2H5 (l) �463.3 �318.4

Ethylene oxide C2H4O (g) �52.6 �13.0

Formaldehyde CH2O (g) �108.6 102.5

Formic acid HCOOH (l) �424.7 �361.4

Methanol CH4O (g) �200.7 �162.0

Methanol CH4O (1) 238.7 �166.3

Phenol C6H5OH (g) �165.0 �50.9

INORGANIC COMPOUNDS

Aluminum oxide Al2O3 (s, a) �1675.7 �1582.3

Aluminum chloride AlCl3 (s) �704.2 �628.8

Ammonia NH3 (g) �46.1 �16.5

Ammonia NH3 (aq) �80.3 �26.6

Ammonium nitrate NH4NO3 (s) �365.6 �183.9

Ammonium chloride NH4Cl (s) �314.4 �202.9

Barium oxide BaO (s) �553.5 �525.1

Barium chloride BaCl2 (s) �856.6 �810.4

Bromine Br2 (l) 0 0

Bromine Br2 (g) 30.9 3.1

Calcium carbide CaC2 (s) �59.8 �64.9

Calcium carbonate CaCO3 (s) �1206.9 �1128.8

Calcium chloride CaCl2 (s) �795.8 �748.1

Calcium chloride CaCl2 (aq) �8101.9

Calcium chloride hexahydrate CaCl2 � 6H2O (s) �2607.9

Calcium hydroxide Ca(OH)2 (s) �986.1 �898.5

Calcium hydroxide Ca(OH)2 (aq) �1002.82 �868.1

Calcium oxide CaO (s) �635.1 �604.0

Carbon (graphite) C (s) 0 0

Carbon (diamond) C (s) 1.9 2.9

Carbon dioxide CO2 (g) � 393.5 �394.4

Carbon dioxide CO2 (aq) �413.8 �386.0

Carbon disulfide CS2 (l) 89.7 65.3

(continued )
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Table A.8 (Continued)

Chemical Species Formula State

h� of Formation from

the Elements (kJ/mol)

g� of Formation from

the Elements (kJ/mol)

Carbon monoxide CO (g) �110.5 �137.2

Carbon tetrachloride CCl4 (l) �135.4 �65.2

Carbonic acid H2CO3 (aq) �699.7 623.1

Hydrochloric acid HCl (g) �92.3 �95.3

Hydrochloric acid HC1 (aq) �167.2 �131.2

Hydrogen bromide HBr (g) �36.4 �53.5

Hydrogen cyanide HCN (g) 135.1 124.7

Hydrogen cyanide HCN (l) 108.9 125.0

Hydrogen fluoride HF (g) �271.1 �273.2

Hydrogen iodide HI (g) 26.5 1.7

Hydrogen peroxide H2O2 (l) �187.8 �120.4

Hydrogen sulfide H2S (g) �20.6 �33.6

Hydrogen sulfide H2S (aq) �39.7 �27.8

Iodine I2 (g) 62.3 19.8

Iodine I2 (s) 0 0

Iron (II) oxide FeO (s) �272.0

Iron (III) oxide (hematite) Fe2O3 (s) �824.2 �742.2

Iron (II) sulfide FeS (s, /) �100.0 �100.4

Iron sulfide (pyrite) FeS2 (s) 178.2 166.9

Lead oxide PbO (s, yellow) �217.3 �187.9

Lead oxide PbO (s, red) �219.0 �188.9

Lead dioxide PbO2 (s) �277.4 �217.3

Lead sulfate PbSO4 (s) �919.9 �813.2

Lithium chloride LiCl (s) �408.6 �216.7

Lithium chloride LiCl �H2O (s) �712.6 �631.8

Lithium chloride LiCl � 2H2O (s) �1012.7

Lithium chloride LiCl � 3H2O (s) �1311.3

Lithium fluoride LiF (s) �615.96 587.7

Magnesium oxide MgO (s) �601.7 �569.4

Magnesium carbonate MgCO3 (s) �1095.8 �1012.1

Magnesium chloride MgCl2 (s) �641.3 �591.8

Mercury (I) chloride Hg2Cl2 (s) �265.2 �210.8

Mercury (II) chloride HgCl2 (s) �224.3 �178.6

Nitric Acid HNO3 (l) �174.1 �80.7

Nitric Acid HNO3 (aq) �207.4 �111.3

Nitric oxide NO (g) 90.3 86.6

Nitrogen dioxide NO2 (g) 33.2 51.3

Nitrous oxide N2O (g) 82.1 104.2

Nitrogen tetroxide N2O4 (g) 9.2 97.9

Potassium chloride KCl (s) �436.8 �409.1

Silicon dioxide SiO2 (s, a) �910.9 �856.6

Silver bromide AgBr (s) �100.4 �96.9

Silver chloride AgCl (s) �127.1 �109.8

Silver nitrate AgNO3 (s) �124.4 �33.4

Sodium bicarbonate NaHCO3 (s) �945.6 �847.9

Sodium carbonate Na2CO3 (s) �1130.7 �1044.4

Sodium carbonate decahydrate Na2CO3 � 10H2O (s) �4081.3 �3428,2

Sodium chloride NaCl (s) �411.2 �384.1

Sodium chloride NaCl (aq) �393.1

Sodium hydroxide NaOH (s) �425.6 �379.5

Sodium hydroxide NaOH (aq) �419.2

Sodium sulfate Na2SO4 (s) �1382.8 �1265.2

Sodium sulfate decahydrate Na2SO4 � 10H2O (s) �4322.5 �3642.3

(continued )
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Table A.8 (Continued)

Chemical Species Formula State

h� of Formation from

the Elements (kJ/mol)

g� of Formation from

the Elements (kJ/mol)

Sulfur S2 (g) 129.8 81.0

Sulfur S2 (l) 1.1 0.3

Sulfur S2 (s) 0 0

Sulfur dioxide SO2 (g) �296.8 �300.2

Sulfur dioxide SO2 (aq) �323.0 �300.7

Sulfur trioxide SO3 (g) �395.73 �371.1

Sulfur trioxide SO3 (1) �441.0 �368.4

Sulfuric acid H2SO4 (l) �814.0 �690.0

Sulfuric acid H2SO4 (aq) �909.3 �744.5

Sulfurous acid H2SO3 (aq) �608.8 537.9

Water H2O (g) 241.8 �228.6

Water H2O (l) �285.8 �237.1

Zinc oxide ZnO (s) �348.3 �318.3

IONS

Hydrogen Hþ (aq) 0 0

Aluminum Al3þ (aq) �531.37 �485.34

Ammonium NHþ
4 (aq) �132.51 � 79.37

Calcium Ca2þ (aq) �542.83 �553.54

Cupric Cu2þ (aq) 64.77 65.52

Cuprous Cuþ (aq) 71.67 50.00

Ferric Fe3þ (aq) �48.53 �4.60

Ferrous Fe2þ (aq) �89.12 �78.87

Lead Pb2þ (aq) �1.67 � 24.39

Lithium Liþ (aq) �278.49 � 293.3

Magnesium Mg2þ (aq) �466.85 �454.80

Potassium Kþ (aq) �252.38 �283.26

Silver Agþ (aq) 105.57 77.12

Sodium Naþ (aq) �240.12 �261.66

Zinc Zn2þ (aq) �153.89 �147.03

Bicarbonate HCO�
3 (aq) �691.99 �586.85

Bisulfate HSO�
4 (aq) �887.34 �756.01

Bisulfide HS� (aq) �17.7 12.6

Bisulfite HSO�
3 (aq) 626.2 �527.8

Bromide Br� (aq) �121.54 �103.97

Carbonate CO2�
3 (aq) �677.14 �527.89

Chloride Cl� (aq) �167.16 �131.26

Fluoride F� (aq) �332.63 �278.82

Hydroxyl OH� (aq) �229.99 �157.29

Iodide I� (aq) �55.19 �51.59

Nitrate NO�
3 (aq) �207.36 �111.34

Perchlorate ClO�
4 (aq) �10.8

Sulfate SO2�
4 (aq) �909.3 �744.62

Sulfide S2� (aq) þ 30.1 þ 79.5

Sufite SO2�
3 (aq) �635.5 �486.6

Sources: Taken from Perry R. H., and D.W. Green, eds. Perry’s Chemical Engineer’s Handbook, ed. 6, pp. 13–59 and 13–50, McGraw-Hill (2003); D. R. Lide,

CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press.
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A.9 HEAT CAPACITIES OF GASES IN THE
IDEAL GAS STATE

For ideal gases, CP is independent of pressure; for real

gases at modest pressures it is almost independent of

pressure. Table A.9 shows the constants in the equation

CP/R¼ aþ bTþ cT2þ dT�2; T in K, up to Tmax.

Table A.9 Heat Capacity Equation Constants

Chemical Species Formula Tmax a 103b 106c 10�5d

PARAFFINS

Methane CH4 1500 1.702 9.081 �2.164

Ethane C2H6 1500 1.131 19.225 �5.561

Propane C3H8 1500 1.213 28.785 �8.824

n-Butane C4H10 1500 1.935 36.915 �11.402

Isobutane C4H10 1500 1.677 37.853 �11.945

n-Pentane C5H12 1500 2.464 45.351 �14.111

n-Hexane C6H14 1500 3.025 53.722 �16.791

n-Heptane C7H16 1500 3.570 62.127 �19.486

n-Octane C8H18 1500 8.163 70.567 �22.208

1-ALKENES

Ethylene C2H4 1500 1.424 14.394 �4.392

Propylene C3H6 1500 1.637 22.706 6.915

1-Butene C4H8 1500 1.967 31.630 �9.873

1-Pentene C5H10 1500 2.691 39.753 �12.447

1-Hexene C6H12 1500 3.220 48.189 �15.157

1-Heptene C7H14 1500 3.768 56.588 �17.847

MISCELLANEOUS ORGANICS

Acetaldehyde C2H4O 1000 1.693 17.978 �6.158

Acetylene C2H2 1500 6.132 1.952 �1.299

Benzene C6H6 1500 �0.206 39.064 �13.301

1,3-Butadiene C4H6 1500 2.734 26.786 �8.882

Cyclohexane C6H12 1500 �3.876 63.249 �20.928

Ethanol C2H6O 1500 3.518 20.001 �6.002

Ethylbenzene C8H10 1500 1.124 55.380 �18.476

Formaldehyde CH2O 1500 2.264 7.022 �1.877

Methanol CH4O 1500 2.211 12.216 �3.450

Toluene C7H8 1500 0.290 47.052 �15.716

Styrene C8H8 1500 2.050 50.192 �16.662

MISCELLANEOUS INORGANICS

Air 2000 3.355 0.575 �0.016

Ammonia NH3 1800 3.578 3.020 �0.186

Bromine Br2 3000 4.493 0.056 �0.154

Carbon monoxide CO 2500 3.376 0.557 �0.031

Carbon dioxide CO2 2000 5.457 1.045 �1.157

Carbon disulfide CS2 1800 6.311 0.805 �0.906

Chlorine Cl2 3000 4.442 0.089 0.344

Hydrogen H2 3000 3.249 0.422 0.083

Hydrogen sulfide H2S 2300 3.931 1.490 �0.232

Hydrogen chloride HCl 2000 3.156 0.623 0.151

Hydrogen cyanide HCN 2500 4.736 1.359 0.725

Nitrogen N2 2000 3.280 0.593 0.040

Nitrous oxide N2O 2000 5.328 1.214 �0.928

Nitric oxide NO 2000 3.387 0.629 0.014

Nitrogen dioxide NO2 2000 4.982 1.195 �0.792

Oxygen O2 2000 3.639 0.506 �0.227

Sulfur dioxide SO2 2000 5.699 0.801 �1.015

Water H2O 2000 3.470 1.450 0.121

Sources: Taken from Smith, J. M., H. C. van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, ed. 5. New York: McGraw-Hill

(1996) based onH.M. Spencer, Ind. Eng. Chem. 40: 2152–2154 (1948),K.K.Kelly,U.S. Bur.Mines Bull. 584 (1960) and L.B. Pankratz,U.S. Bur.Mines Bull. 672

(1982).
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APPENDIX B

EQUILIBRIUM WITH OTHER RESTRAINTS,
OTHER APPROACHES TO EQUILIBRIUM

The discussion in Chapter 4 deals with equilibria in which

the system was constrained to remain at one temperature and

pressure. These were externally specified by placing the

system in a constant temperature bath and subjecting it to

some fixed external pressure through a moveable piston

(see Figure 4.1). However, it is interesting to consider some

other systems of restraint. Consider, for example, a mixture

of hydrogen and oxygen placed in a perfectly insulated,

perfectly rigid container. If we choose the mixture as our

system, then any process it undergoes must be an adiabatic,

constant-volume one. This system is not at equilibrium

(except a metastable equilibrium) because it can undergo

a spontaneous chemical reaction. If that reaction is started by

introducing an infinitesimal electric spark, what will the

situation be when equilibrium is reached?

When equilibrium is reached, no further spontaneous

process can occur in the system. Considering the three

criteria of equilibrium as stated in Section 3.1, we see first

that the temperature must be uniform throughout the system

so that there can be no spontaneous heat flow. In the cases we

have previously considered, the temperature was externally

imposed on the system; here it is a variable that the system

will ultimately find for itself. However, when the system has

found its final temperature, the temperature will be uniform

throughout the system. By entirely similar arguments, the

final equilibrium pressure must be the same throughout the

system unless there are counteracting forces like gravity,

surface, or tensile forces. For this system there is no

possibility of electrical potential differences but, in general,

the criteria about equality of electrical potentials or their

balancing by other potentials or by perfect resistors must

apply, regardless of the direction from which we approach

equilibrium.

Consider the problem of phase equilibrium as shown in

Figure 3.5. For the hydrogen-oxygen system described

above, we probably have only one phase, but we can consider

other systems in which more phases are present in which we

have replaced the constant temperature and pressure con-

straints of Figure 3.5 with adiabatic, constant-volume re-

strains. The analogous situation would be Figure 3.5 with the

piston firmly fixed in place and the walls of the container

changed to perfect insulators.

We first choose as our system the entire contents of the

container. The first law statement for this system reduces to

dU ¼ 0 ðB:1Þ

because there can be no flow in or out, no heat transfer, and no

work. The second law statement at equilibrium reduces to

dS ¼ 0 ½at equilibrium� ðB:2Þ

just as it did in Chapter 3. There is a difference between Eqs.

B.1 and B.2: Equation B.1 applies to the whole process of

going from the starting state to the equilibrium state, whereas

Eq. B.2 applies only at the equilibrium state. The process of

going from the starting state to equilibrium state is a spon-

taneous process for which

dS � 0 ½for the process of coming to equilibrium�
ðB:3Þ
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But at the equilibrium state, Eq. B.3 becomes Eq. B.2. The

constant-volume restriction is that

dV ¼ 0 ðB:4Þ

Now, if wewrite the total differential of the energy of each of

the two phases for a small transfer of material by diffusion

from phase 1 to phase 2, taking V, S, and the ni as the

independent variables, we find

dUð1Þ ¼ @U

@V

� �ð1Þ
dV ð1Þ þ @U

@S

� �ð1Þ
dSð1Þ þ @U

@na

� �ð1Þ
dnð1Þa

þ @U

@nb

� �ð1Þ
dn

ð1Þ
b þ � � � ðB:5Þ

dUð2Þ ¼ @U

@V

� �ð2Þ
dV ð2Þ þ @U

@S

� �ð2Þ
dSð2Þ þ @U

@na

� �ð2Þ
dnð2Þa

þ @U

@nb

� �ð2Þ
dn

ð2Þ
b þ � � � ðB:6Þ

We note as we did in Section 4.2 that the material balance

allows us to replace dn
ð2Þ
a and dn

ð2Þ
b with minus dn

ð1Þ
a and

dn
ð1Þ
b : We can also note that ð@U=@VÞS;na; etc: ¼ �P, and

ð@U=@SÞV ;na; etc: ¼ T ; making these substitutions in Eqs.

B.5 and B.6, noting that at equilibrium Pð1Þ ¼ Pð2Þ and

Tð1Þ ¼ T ð2Þ we add these two equations and find

dU ¼ 0 ¼ dUð1Þ þ dUð2Þ

¼ �PðdV ð1Þ þ dV ð2ÞÞ þ TðdSð1Þ þ dSð2ÞÞ

þ
" 

@U

@na

!ð1Þ
�
 

@U

@na

!ð2Þ#
dnð1Þa

þ
" 

@U

@nb

!ð1Þ
�
 

@U

@nb

!ð2Þ#
dn

ð1Þ
b þ � � �

ðB:7Þ

Since we know that dU, dV, and dS are all zero for this

change, we can see that this equation can only be satisfied for

@U

@na

� �ð1Þ
¼ @U

@na

� �ð2Þ
ðB:8Þ

@U

@nb

� �ð1Þ
¼ @U

@nb

� �ð2Þ
; etc: ðB:9Þ

Equations B.8 and B.9 are obviously similar to Eqs. 4.15 and

4.16. However, here we have @U=@nað ÞS;V ;nb;etc:, whereas
before we had @G=@nað ÞT ;P;nb;etc:. What is the relation be-

tween these sets of quantities?

We know in general that

dG ¼ dUþ dðPVÞ�dðTSÞ ðB:10Þ

If we now write out the values of dU from Eq. B.5 (substi-

tuting T and Pwhere needed) and expand the two derivatives

on the right, we find

dG ¼ �P dV þ T dSþ
 
@U

@na

!
S;V ;nb;etc:

dna

þ
 
@U

@nb

!
S;V ;na;etc:

dnb

þP dV þV dP�S dT�T dS

ðB:11Þ

Four of the terms of the right cancel each other. Dropping

those and dividing by dna while holding P, T, and nb
constant (which makes three more terms on the right zero)

leads to

@G

@na

� �
T ;P;nb

¼ @U

@na

� �
S;V ;nb

ðB:12Þ

which indicates that the criterion for equilibrium in this

system at constant volume and entropy is exactly the same

as the criterion for equilibrium at constant temperature and

pressure, namely equality of the chemical potentials be-

tween phases, and, by analogy, equality of the chemical

potentials for any possible chemical reaction. If we repeat

the same kind of derivation for an isothermal constant-

volume process and an adiabatic constant-pressure process,

we will find that Eq. B.12 becomes

@G

@na

� �
T ;P;nb

¼ @U

@na

� �
S;V;nb

¼ @H

@na

� �
S;P;nb

¼ @A

@na

� �
T ;V ;nb

ðB:13Þ

whereH is the enthalpy andA is theHelmholz energy (U–TS).

Thus, for any combination of conditions of restraint, the

criteria of equilibrium are the same, namely equality of the

chemical potentials between phases and no change of Gibbs

energy for a differential chemical reaction.

At first this may appear startling, but on reflection it is

obvious. For the various kinds of restraints, the direction of

approach to equilibriumwill be different; but when we arrive

at an equilibrium state, that statewill be the samewhether the

state was arrived at along a constant pressure path or a
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constant volume path, etc. Climbers have reached the top of

Mt. Everest from the west, the east, and the north. The

summit is the same, regardless of the route taken to reach it.

Thus, we may conclude that for interphase equilibrium

under any condition of restraints, each species will have the

same chemical potential in each phase, and the potentials will

be balanced for any possible chemical reaction. We can also

see from Eq. B.13 that the chemical potential is equal to any

of the four derivatives shown in that equation, since they are

all the same.
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APPENDIX C

THE MATHEMATICS OF FUGACITY, IDEAL SOLUTIONS,
ACTIVITY AND ACTIVITY COEFFICIENTS

The derivation of the various relations involving fugacity,

ideal solutions, activity, and activity coefficients covers

several pages with mathematics. Professors and graduate

students enjoy that, but most undergraduates do not. For that

reasonmost of thatmathematics is placed in this appendix, so

that the discussion in Chapter 7 can flow more easily. The

pertinent results of that mathematics are transferred from

here to Chapter 7.

C.1 THE FUGACITY OF PURE SUBSTANCES

For a pure substance Eq. 7.1 reduces to

g ¼ RT ln f þ g�ðTÞ ð7:5Þ

If we now take the total differential of Eq. 7.5 and substitute

the total differential of the Gibbs energy of a pure substance

(Eq. 4.30) we find

dg ¼ �sdT þ vdP ¼ Rðln f dT þ Td ln f Þþ dg� ðC:1Þ

Now if we restrict ourselves for the moment to constant

temperatures (for which dg�ðTÞT ¼ 0) we can rearrange

Eq. C.1 to

@ ln f

@P

� �
T

¼ v

RT
ð7:6Þ

For a ideal gas, we know that

v

RT

� �
¼ 1

P
¼ @ ln f

@P

� �
T

ðC:2Þ�

(Here we use the asterisk (�) to indicate that this equation is

limited to ideal gases. In the remainder of this appendix we

will use the asterisk (�) on a symbol to denote a ideal

gas property; e.g., h� is the enthalpy of a ideal gas at the

T and P in question.) Thus, for an ideal gas

@ ln f

@P

� �
T

¼ @ ln P

@P

� �
T

ðC:3Þ�

Multiplying through by dP and integrating we find

ln f ¼ ln Pþ some constant of integration;

which may depend on T ðC:4Þ�

This constant is not defined so far, and we could really

make many choices of its value. However, the most sensible

choice is zero, so that for ideal gases we have

f ¼ P ðC:5Þ�

For any real gas, as P approaches zero the behavior of real

gases approaches ideal gas behavior, so we can say that for

any material in the gas state

lim
P! 0

f

P

� �
¼ 1 ð7:7Þ

Equation 7.6 shows the most useful derivative of the

fugacity. The other one regularly seen is ð@ ln f=@TÞP. In
principle, we could begin with Eq. C.1 and divide by dT,

holdingP constant, but that approach leads to amathematical

mess because the derivative of g� appears. Therefore, the
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more practical approach is to write out the value of g from

Eq. 7.5 twice, once for some general state and once for the

same temperature, but a pressure so low that the material

behaves as a ideal gas. We subtract the second equation

from the first and see that the two g� terms (which depend on

T only) cancel and

g� g* ¼ RT ln f � RT ln f * ¼ RT ln
f

f *
ðC:6Þ

Now we differentiate Eq. C.6 with respect to T at constant P,

finding

@g

@T

� �
P

� @g*

@T

� �
P

¼R ln
f

f *
þRT

@ ln f

@T

� �
P

�RT
@ ln f *

@T

� �
P

ðC:7Þ

But for a ideal gas f � ¼P, so the last term in Eq. C.7 is

ð@ ln f *ÞP ¼ð@ lnPÞP ¼ 0 ðC:8Þ

and it may be dropped. Then we note that

R ln
f

f *
¼ðg�g*Þ

T
¼ h

T
�h*

T
� s� s* ðC:9Þ

and

@g

@T

� �
P

¼�s;
@g*

@T

� �
P

¼�s* ðC:10Þ

Substituting Eqs. C.9 and C.10 into Eq. C.7 we find

�sþs* ¼ðh�h*Þ
T

� sþs*þRT
@ ln f

@T

� �
P

ðC:11Þ

or finally

@ ln f

@T

� �
P

¼ðh*�hÞ
RT2

ð7:8Þ

Tomake up f/P¼f charts like Figure 7.1 and Appendix A.5,

we define a new convenience property called the “volume

residual”:

a¼ volume residual¼RT

P
� v¼RT

P
ð1� zÞ ðC:12Þ

Solving this for v we find

v¼RT

P
�a ðC:13Þ

Now we substitute this value of v in Eq. 7.6 and find

@ ln f

@P

� �
T

¼ 1

P
� a

RT
¼ 1

P
�ð1� zÞ

P
ðC:14Þ

Multiplying through by dP and noting that dP/P¼ dlnP,

we get

ð@ ln f ÞT ¼ð@ lnPÞT �a
dP

RT
¼ð@ lnPÞT �

ð1� zÞdP
P

ðC:15Þ
Moving the@ lnP term to the left, reversing terms to eliminate

a minus sign, and combining terms, we have

�
@ ln

f

P

�
T

¼�adP

RT
¼ðz�1ÞdP

P
ðC:16Þ

Integrating this between P¼ 0 and P¼P, we find

ln
f

P

� �P
0

¼� 1

RT

ðP
0

adP¼
ðP
0

ðz�1ÞdP
P

ðC:17Þ

At the lower limit of the term on the left we have f/P¼ 1

because any material with a finite vapor pressure is practi-

cally a idea gas atP¼ 0. Hence, the left term is simply ln f/P .

Taking exponentials of both sides we have, finally

f

P
¼f¼ exp

�1

RT

ðP
0

adP¼ exp

ðP
0

ðz�1ÞdP
P

ð7:9Þ

which is the formula that is actually used to make up the

f /P charts like Figure 7.1. Note that the integral is eval-

uated at a constant temperature, the temperature of the

state for which we wish to know f /P . We show two forms

in Eq. 7.9 (and its mixture analog 7.17) because the first

integral on the right is most convenient if we are working

from a table of PvT data, while the second is most

convenient if we are working from an EOS.

Equations 7.5 to 7.9 are the whole story on the fugacity of

pure substances. They are derived here and copied into the

main text.

C.2 FUGACITIES OF COMPONENTS

OF MIXTURES

Now let us return to themore interesting case ofmixtures.We

need the equivalents of Eqs. 7.5 to 7.9 for individual com-

ponents of mixtures.

We already have the equivalent of Eq. 7.5 inEq. 7.1,which

defines the fugacity. We can easily obtain the analog of

Eq. 7.6 by differentiating Eq. 7.5 at constant T and noting that

d�gi ¼ ��sidT þ�vidP ðC:18Þ
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so

ð@�giÞT ¼ �vi@PT ¼ ðRT @ ln fiÞT ðC:19Þ

from which it follows that for mixtures

@ ln fi

@P

� �
T

¼ �vi
RT

ð7:14Þ

To find the analog of Eq. 7.7 we multiply both sides of

Eq. 7.14 by P:

@ ln fi

@ ln P

� �
T

¼ P�vi
RT

ðC:20Þ

Wewish to find the relation between fi andP asP ! 0. In that

case thematerialmust behave as a ideal gas, sowe can use the

ideal gas value of �vi:

�v*i ¼
@V*

@ni

� �
T ;P;nj

¼ @ðnT�v*Þ
@ni

� �
T ;P;nj

¼ RT

P
ðC:21Þ�

Thus,

lim
P! 0

@ ln fi

@ ln P

� �
T

¼ P�v*

RT
¼ 1 ðC:22Þ

Separating variables and integrating we have

lim
P! 0

ln fi ¼ ln Pþ lnðconstant of integrationÞ ðC:23Þ

or

lim
P! 0

fi ¼ P � ðconstant of integrationÞ ðC:24Þ

What value ought we assign to this constant of integra-

tion? We know that the constant must be dimensionless and

that to make Eq. C.24 agreewith Eq. 7.5 for the case of a pure

component, the constant must be 1.0 for a pure component.

Similarly, we know that if the concentration of component i is

0, then its fugacity must be 0 so that as the concentration of a

component approaches 0 this constant of integration must

approach 0. The logical choice to make here is the mol

fraction, which is dimensionless and has both of the above

properties. If wemake this choice, it will conveniently lead to

the properties of ideal solutions, which we discuss below and

which will be consistent with the previous definitions. Rec-

ognize, however, thatwe could havemade some other choice,

whichwould havemade everything that follows different and

much more complicated and difficult.

Thus, we may write the analog of Eq. 7.7 as

lim
P! 0

fi

Pxi

� �
¼ lim

P! 0
f̂i ¼ 1 ð7:15Þ

To find the mixture equivalent of Eq. 7.8, we repeat

derivation from Eqs. C.7 to C.11, replacing all of the gs

with �gis and all of the fs with fis. This is the equivalent of

substituting Eq. 7.1 for Eq. 7.5. If we then follow the

derivation straight through to Eq. 7.8, we see that the

result is

@ ln fi

@T

� �
P

¼ ð�h*i � �hiÞ
RT2

ðC:25Þ

However, as will be shown later, for an ideal gas �h
*

i is the

same as hi
� because for ideal gases partial molar enthalpies

are the same as pure component enthalpies. Thus, the final

analog of Eq. 7.8 is

@ ln fi

@T

� �
P

¼ ðh*i � �hiÞ
RT2

ð7:16Þ

To find the analog of Eq. 7.9 we use basically the same

procedure we used to get Eq. 7.9. First we define

�ai ¼ @

@ni T ; P; nj

�
nRT

P
� V

�
¼ RT

P
� �vi

¼ @

@ni T ; P; nj

�
nRT

P
� z

nRT

P

�
¼ RT

P
ð1� �ziÞ

ðC:26Þ

This is a rare example of a partial molar derivative of an

intensive property �zi. However, we see that it is the logical
result of representing an extensive property V by the

number of mols and a set of intensive properties. This

causes no difficulties, and the resulting equation is widely

used.

Then we substitute from Eq. C.26 in Eq. C.20:

@ ln fi

@P

� �
T

¼ 1

RT

RT

P
� �ai

� �
¼ 1

RT

RT

P
� RT

P
ð1� �ziÞ

� �

¼ 1

P
� 1

P
ð1� �ziÞ ðC:27Þ

Multiplying by @P and rearranging gives

ð@ ln fiÞT ¼ @P

P
� �ai

RT
@P ¼ @P

P
� ð1� �ziÞ@P

P
ðC:28Þ

Noting that (@P)/P is (@ ln P)T, we move it to the left,

rearrange terms to eliminate a minus sign, and combine

terms

@ ln
fi

P

� �
T

¼ � �ai

RT
@PT ¼ �zi � 1

P
@PT ðC:29Þ
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and integrate

ln
fi

P

� �P¼P

P¼0

¼ �1

RT

ðP¼P

P¼0

�aidPT ¼
ðP¼P

P¼0

�zi � 1

P
dPT ðC:30Þ

In deriving Eq. 7.9 for a pure component we showed that the

lower limit on the left was ln 1¼ 0. Here, from Eq. 7.14, we

see it is ln( fi /P)¼ ln xi, so

ln
fi

P
� ln xi ¼ ln

fi

Pxi
¼ � 1

RT

ðP¼P

P¼0

�aidPT ¼
ðP¼P

P¼0

�zi � 1

P
dPT

ð7:17Þ
which is the mixture analog of Eq. 7.9.

The equations for calculating the fugacity of any com-

ponent in a mixture and its derivatives are Eqs. 7.1 and 7.14

to 7.17, derived here and copied to the main text.

C.3 THE CONSEQUENCES OF THE IDEAL

SOLUTION DEFINITION

See Sections 7.7 and 7.8 for an introduction to ideal solutions.

If we substitute Eq. 7.21, which defines an ideal solution, into

the definition of the fugacity, we find

�gi ¼ RT ln fi þ g�i ðTÞ ¼ RT ln f �i xi þ g�i ðTÞ
¼ RTðln f �i þ ln xiÞ ¼ g�i ðTÞ

ðC:31Þ†

(Here we put an † on an equation to show that it applies only

to ideal solutions.) Now let us write this equation twice, once

as shown above and once for pure component i at the same

temperature and pressure. In this case it becomes

g�i ¼ RTðln f �i Þþ g�i ðTÞ ðC:32Þ†

Here the ln xi term has dropped out, because xi¼ 1 and

ln 1¼ 0. The f �i term in Eq. C.32 is the same as in Eq. C.31,

because both equations arewritten for the same component at

the same temperature and pressure. Subtracting Eq. C.32

from Eq. C.31 we find

�gi � g�i ¼ RT ln xi ð7:23Þ†

Now we differentiate both sides of Eq. 7.23 with respect to P

at constant T and constant xi, finding

@�gi
@P

� �
T ; xi

� @g�i
@P

� �
T ; xi

¼ 0 ðC:33Þ†

But we know that these two derivatives can be written as v,

and v�i, so it follows that for an ideal solution

�vi � v�i ¼ 0 ð7:24Þ†

This relation is an inescapable consequence of the defi-

nition of an ideal solution and depends on no further

assumptions.

Returning to Eq. 7.23 we can now differentiate it with

respect to temperature at constant pressure and xi, finding

@�gi
@T

� �
P; xi

� @g�i
@T

� �
P; xi

¼ R ln xi ðC:34Þ†

But we know the values of these two derivatives, so we may

substitute them, finding

�si � s�i ¼ RT ln xi ð7:25Þ†

Now we return to Eq. 7.23 and expand it to

�gi � g�i ¼ �RT ln xi ¼ �hi � h�i � Tð�si � s�i Þ ðC:35Þ†

Now we substitute Eq. 7.25 into Eq. C.35 and simplify,

finding

�hi � h�i ¼ 0 ð7:26Þ†

This is also an inescapable consequence of the definition of

an ideal solution with no further assumptions.

Thus, ideal solutions are defined by Eq. 7.22; their im-

portant properties, derived here and transferred to Chapter 7,

are Eqs. 7.23 to 7.26.

C.4 THE MATHEMATICS OF ACTIVITY

COEFFICIENTS

See Section 7.10, where activity and activity coefficients

are defined. If we take the logarithm of both sides of

Eq. 7.27 we find

ln gi ¼ ln fi � lnf �i � ln xi ðC:36Þ

Nowwe differentiate this with respect to P at constant T and

constant xi, and find

@ ln gi

@P

� �
T ; xi

¼ @ ln fi

@P

� �
T ; xi

� @ ln f �i
@P

� �
T ; xi

� 0 ðC:37Þ

Substituting the knownvalues of these derivativeswe obtain

@ ln gi

@P

� �
T ; xi

¼ �vi � v�i
RT

ð7:31Þ

Similarly, if we differentiate Eq. C.36 with respect to T at

constant P and xi, we find
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@ ln gi

@T

� �
P; xi

¼ @ ln fi

@T

� �
P; xi

� @ ln f �1
@P

� �
T ; xi

� 0

ðC:38Þ

Substituting the known values of the derivatives in Eq. C.38

we find

@ ln gi

@T

� �
P; xi

¼ ð�h*i � �hiÞ
RT2

� ðho*i � h�i Þ
RT2

ðC:39Þ

But for ideal gases

�h
*

i ¼ ðh�i Þ* ¼ h* ðC:40Þ

so we may simplify Eq. C.39 to

@ ln gi

@P

� �
P; xi

¼ ðh�i � �hiÞ
RT2

ð7:32Þ
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APPENDIX D

EQUATIONS OF STATE FOR LIQUIDS AND SOLIDS
WELL BELOW THEIR CRITICAL TEMPERATURES

EOSs for gases begin with the ideal gas law and add terms to

correct for nonideal behavior. At lowP and high T (relative to

the critical values) all EOSs for gases approach the ideal gas

law.With the ideal gas law, we need only know themolecular

weight of the gas tomake quite useful estimates of its density.

The same is not true for liquids or solids. There is no

corresponding “ideal” EOS for liquids or solids. We have

useful theories and correlations, but we do not have any

simple EOS for liquids and solids that would allow us to start

with the molecular weight, or even with a structural formula,

and write out comparably useful estimates of the density. We

can surely say that almost all hydrocarbon liquids and solids

have densities in the range of 0.7 to 1.0 g/cm3 at 20�C and

make similar statements for minerals of various kinds, but

these estimates have a high% uncertainty. Thus, the working

equations for the density of liquids and solids begin with

some measured value of the density at some reference state,

most often 20�C or 25�C and 1 atm, and use the approach

shown below to estimate the changes in density from that

reference state.

D.1 THE TAYLOR SERIES EOS AND ITS

SHORT FORM

For any material (liquid, solid, or gas), the density can be

written as a Taylor series:

r ¼ r0þ
@r

@T
ðT�T0Þþ @r

@P
ðP�P0Þ

þ 1

2!

�
@2r

@T2
ðT�T0Þ2þ2

@2r

@P@T
ðP�P0ÞðT�T0Þþ @2r

@P2
ðP�P0Þ2

�

þ 1

3!

�
@3r

@T3
ðT�T0Þ3þ3

@3r

@P2@T
ðP�P0Þ2ðT�T0Þþ ���

�

where r0, P0, and T0 are the density, pressure, and temper-

ature at a suitable reference state and the derivatives are all

taken at that state. This EOS is correct for all conditions, if we

use an infinite series of terms. For gases we normally do not

use this form; instead, we use those shown in Chapter 2. For

liquids near the critical temperature, and in the preparation of

tables like the steam tables, we use one EOS for both liquid

and gas. However, for liquids at temperatures well below the

critical temperature (say, 100�F below the critical), and also

for solids, we may generally neglect all but the first three

terms on the right and write the equation as

r � r0

�
1þ 1

r0

�
@r

@T

�
ðT�T0Þþ 1

r0

�
@r

@P

�
ðP�P0Þ

�

� r0 1þaðT�T0ÞþbðP�P0Þ½ �
ðD:2Þ
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where

a¼� 1

r0

@r

@T

� �
¼coefficient of volume thermal expansion

ðD:3Þ

with dimension of (1/T), and

b¼ 1

r0

@r

@P

� �
¼ isothermal compressibility

¼1=bulkmodulus

ðD:4Þ

with dimension (1/P).

For solids, handbooksmost often present the coefficient of

linear thermal expansion. If we write the expression for the

volume of any regular solid, take the logarithms, and differ-

entiate, we find

dV

V
¼ 3

dL

L
ðD:5Þ

Thus, the coefficient of volume thermal expansion is� three

times the linear thermal expansion coefficient. Values of the

density, isothermal compressibility, and coefficient of vol-

ume thermal expansion for some common fluids at 20�C or

25�C are listed in Table D.1 (plus another column to be

explained later).

D.2 EFFECT OF TEMPERATURE ON DENSITY

Figure D.1 shows the experimental values of the changes in

density of ethanol with changes of temperature at various

pressures. If Eq. D.2 were absolutely correct (instead of

being only a useful approximation), then the effects of

increasing pressure and increasing temperature would be

completely independent of each other and the curves for

various pressures in Figure D.1 would be parallel straight

lines. They are close to being parallel and close to being

straight, but are neither exactly parallel nor exactly

straight.

Table D.1 Isothermal Compressibilities and Coefficients of Thermal Expansion, for Some Liquids and Solids

Substance
r20�C
g=cm3

b25�C � 104 atm
b1000 atm

b1 atm

� �
25�C

a20�C � 103 �C

LIQUIDS

Acetic acid 1.049 0.92 1.071

Acetone 0.792 1.26 0.49 1.487

Analine 1.022 0.47 0.69

Benzene 0.879 0.98 0.52 1.237

Carbon disulfide 1.263 1.218

Carbon tetrachloride 1.595 1.08 0.50 1.236

n-Hexane 0.659 1.69 0.40

Ethanol 0.789 1.13 1.12

Mercury 13.546 0.04 (20�C) 0.98

Methanol 0.792 1.23

Methylene chloride 1.336 0.99 0.55

n-Octane 0.703 1.40

Toluene 0.866 0.91 (20�C)
Water 1.00 0.46 0.76 0.207

m-Xylene 0.861 0.86

SOLIDS

Wood �0.9 to 1.0 �0.15

Graphite 2.29 0.0030

Diamond 3.51 0.00016 0.00354

Glass �2.7 0.021 to 0.028

Ice 0.95 0.1125

Rock salt 2.163 0.112

Sulfur 1.96 to 2.07 0.223

Copper 8.92 0.05

Steel 7.85 0.0064 0.011

Aluminum 2.71 0.015 0.022

Limestone 2–7 to 2.9 0.027

Paraffin wax �0.9 0.39
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Example D.1 Compare the effect of temperature shown in

Figure D.1 to Eq. D.2. For the 1-atm curve we can compute

the slope of the (almost straight) line from its end values

a ¼ � 1

r0

@r

@T

� �
� � 1

r0

Dr
DT

� �
¼ �Dðr=r0Þ

DT

¼ � 0:916�1:00

80�C
¼ 0:00105

�C

ðD:AÞ

This is the average value of a between 0 and 80�C. Table D.1
shows that at 20�C, a¼ 0.00112/�C, which is in reasonable

but far from perfect agreement with the above result. &

From Figure D.1 we see that the various curves are slightly

concave downward, indicating that a increases slightly with

increasing temperatures. Many sources [2, p. 2–131] present

values of �ð1=r0Þð@r=@TÞ½ � not as a constant (as in

Table D.1) but as a second- or third-order polynomial equa-

tion, for example,

r ¼ r0 1þaðT�T0ÞþbðT�T0Þ2 þ gðT�T0Þ3
h i

P¼const:

ðD:6Þ

where a is minus the a in Eq. D.3, but b and g are additional

terms in this representation of thermal expansion, with

dimensions (1/T 2) and (1/T 3).

Comparing Eq. D.6 to Eq. D.1, we see that

bEq:D:6 ¼
1

2r0
� @

2r

@T2

� �
Eq:D:1

ðD:7Þ

and

gEq:D:6 ¼
1

6r0
� @

3r

@T3

� �
Eq:D:1

ðD:8Þ

When data are available in the form of Eq. D.6 they probably

lead to better estimates of the effect of temperature change on

density than does Eq. D.2.

D.3 EFFECT OF PRESSURE ON DENSITY

Figures D.2 and D.3 show the experimental values of the

changes in density of ethanol with changes of pressure at

various temperatures.

If Eq. D.2 were absolutely correct (instead of being only

a useful approximation), then the effects of increasing

pressure and temperature would be independent of each

other and the curves for various pressures in Figures D.2

and D.3 would be parallel straight lines. They are close to

being parallel but show substantial curvature, mostly in the

low-pressure range.
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Example D.2 Compare the effect of pressure change in

Figure D.3 to Eq. D.2. As Figure D.2 makes clear, above

about 5000 atm the curves are much closer to being straight

than below that pressure. Ignoring this for the moment, for

the 20�C curve we may estimate from Figure D.3:

b ¼ 1

r0

@r

@P

� �
� 1

r0

Dr
DP

� �
¼ �Dðr=r0Þ

DP

¼ 1:08�0:98

1500 atm
¼ 0:67� 10�4

atm

ðD:BÞ

In Table D.1 this value is reported as 1.13� 10�4/atm.

Looking back at Figure D.3 we see that if we draw a tangent

to the 20�C curve at 1 atm (�0) we will read its intercept on

the right-hand axis as �1.16, and compute a value of

b ¼ 1

r0

@r

@P

� �
� 1

r0

Dr
DP

� �
¼ �Dðr=r0Þ

DP

¼ 1:16�0:98

1500 atm
¼ 1:2� 10�4

atm

ðD:CÞ

close to, but not identical to the value in Table D.1 &

This example (and Figures D.2 and D.3) show that a

power series representation of b as a function of P is

probably better justified than that for a in Eq. D.6. Common

handbooks rarely show this formulation or present the data

needed to use it. (In our common experience we encounter

changes of hundreds of �C in our kitchens and thousands of
�C in our furnaces, but we rarely encounter pressures over a

few hundred psia, so this shortage of high-pressure data in

handbooks should not surprise us.) The high-pressure phys-

ics literature [3, 4] reports several competing EOSs. It also

shows that the best first-step improvement over b¼ con-

stant is

b ¼ b0 þ
db

dP

� �
T ; measured at P¼0

� ðP�P0Þ ðD:9Þ

where

db

dP

� �
T ; measured at P¼0

¼ 1

2r0

@2r

@P2

� �
Eq: D:1

is always small and negative. This equation shows the

density as a parabolic function of P, as do the data shown

in Figures D.2 and D.3.

Example D.3 Using the values in Example D.2,

estimate the value of (db/dP)T, measured at p ¼ 0 for ethanol

at 20�C.
To save writing, we let (db/dP)T, measured at p¼0¼ a. Then,

taking P0� 0, we have

ðr
r0

dr ¼ r0

ðP
0

b0 þ aPð ÞdP ðD:10Þ

r�r0 ¼ r0 � b0Pþ a
P2

2

� �
ðD:11Þ

a ¼
r

r0
�1�b0P

P2

2

¼
1:08

0:98
�1� 1:2� 10�4

atm
1500 atm

1500 atmð Þ2
2

¼ �6:9� 10�8

atm2
& ðD:DÞ

Table D.1 shows the values of (b1000 atm/b1 atm)25�c for

many of the substances represented.

Example D.4 Estimate the value of (b1000 atm/b1 atm)25�C
for ethanol from the results in the previous example.

From Eq. D.9 we find

b1000 atm

b0

¼ 1þ aP

b0

¼ 1þ
�6:9� 10�8

atm2
� 1000 atm

1:2� 10�4

atm

¼ 1�0:575 ¼ 0:425 &

ðD:EÞ
Table D.1 shows that for water this is 0.76 and for most

organic compounds it is 0.4 to 0.7. Thus, the value calculated

here is plausible.

D.4 SUMMARY

From these examples and an examination of the tables and

figures we can see the following:

1. The simple linear formulation in Eq. D.3, with the

effects of temperature and pressure independent of

each other and of T and P is a reasonable approxima-

tion, but should not be used for large changes in T and

P. We can make better estimates if we retain more

terms in Eq. D.1, at the expense of greater mathemat-

ical complexity and greater difficulty in finding pub-

lished values of the higher derivatives beyond a and b.
2. Formost liquids, an increase of 1% indensity corresponds

to about �10�C or about þ 150 atm. For solids, the cor-

responding values are about �200�C or 103 to 104 atm.

Formore complete sets ofvalues that include the effect

of increasing temperature on a, see Forsythe [5],

Lange [6], Reid et al. [7, Chapter 3], and Lide [8,

p. 6–94]. The behavior of liquids near their critical states

can be best estimated from an appropriate EOS or

Appendix A.4.
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APPENDIX E

GIBBS ENERGY OF FORMATION VALUES

In Chapters 12 and 13we used the Gibbs energy and enthalpy

of formation values in Table A.8, without explaining

how those values were determined. This appendix discusses

that.

E.1 VALUES “FROM THE ELEMENTS”

As discussed in Section 12.6, any such compilation can only

show the values of changes from one state to another. All

energy values are relative to some arbitrary datum (see

Section 2.7). For chemical reactions the simplest, most

satisfactory, and almost universally used convention is to

assign values of

ðhelements ¼ gelements ¼ 0Þat the standard state
T and P; in the normal
phase at that condition

ðE:1Þ

at some appropriate standard state, normally 298.15K and

1.00 bar. Then all values for compounds are the values of the

changes in h and g in going from the elements to that

compound, at the standard state. This requires us to say

which form of the element is the standard one, e.g.

graphite (pure carbon), not diamond (also pure

carbon) for which helemental carbon as diamond¼ 1.9 kJ/mol and

gelemental carbon as diamond¼ 2.9 kJ/mol at the standard state.

Since no element can be made from another (by chemical

means), we can safely apply Eq. E.1 separately to each

element, without any chance of difficulty.

E.2 CHANGES IN ENTHALPY, ENTROPY,

AND GIBBS ENERGY

We have no way of determining changes in Gibbs energy

directly. Instead, we compute them from

ðDg ¼ Dh�TDsÞT¼constant ðE:2Þ

finding the values of Dh and Ds separately.

E.2.1 Enthalpy Changes

We can directlymeasure changes in enthalpy, in a calorimeter

(see Section 2.9). For example, if we place onemol of pure H2

in a calorimeter with a surplus ofO2, and initiate the oxidation

reactionwith an infinitesimal spark, the temperature of the gas

will rise, explosively. If we then cool themixture to its starting

temperature by letting it transfer heat to a largemass of water,

we can measure the temperature increase of the water, from

which we can compute the amount of heat released by this

reaction. The measured quantity is the molar heat of com-

bustion of H2. It is also the negative of the heat of formation

(enthalpy change of formation from the elements) of H2O,

which is listed in Table A.8 as �285.8 kJ/mol at 25�C.
We can use simple calorimetry, starting from the elements

for many simple compounds, but not for complex ones. For

example, we cannot begin with C and Cl2 and produce pure

CCl4 in a calorimeter, as we did with H2O. However, if we

have some reaction of the form A þ B ! C þ D, for which

we can experimentally measure the enthalpy change and for

which we know the enthalpies of formation from the

Physical and Chemical Equilibrium for Chemical Engineers, Second Edition. Noel de Nevers.
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elements of all but one of the four species listed, then we can

compute the enthalpy of formation of the one unknown

species from that measured enthalpy change of the reaction

and our table of already-known enthalpies of formation. In

this way we can build up a table of enthalpies of formation,

one compound at a time, until we have a fairly complete table.

The enthalpy of formation values in Table A.8 are a combi-

nation of some measured directly, like that for H2O, and

many measured indirectly as shown here.

E.2.2 Entropy Changes

There is no correspondingly direct way of measuring the

entropy changes of chemical reactions. There is no experi-

mental device like a calorimeter that provides such infor-

mation. However, if for some reaction A þ B ! C þ Dwe

can measure the equilibrium constant (by measuring the

concentrations of all four species at equilibrium), then from

Eq. 12.15 we can compute Dg� for the reaction, at some

known temperature T. If we have the enthalpy data to

compute Dh� for the reaction, then we can compute

Ds� ¼ Dh��Dg�

T
ðE:3Þ

If this were a reaction involving the elements and only one

compound, then we could use this information to find the

entropy change of formation of that compound. However,

equilibrium measurements are much more difficult and

unreliable than calorimetric measurements, so this is not a

very satisfactorymethod. Nonetheless, it has been carried out

enough to discover that for almost all the reactions studied, as

the reaction temperature approached 0K, the numerical

value of Dso approached 0.00.

This was a new fundamental discovery in thermodynam-

ics, not demonstrable or predictable from previously known

thermodynamic principles. It says that as we approach 0K,

the entropies of all known species (elements and com-

pounds) approach the same value. It doesn’t make much

difference what that value is, as long as it is the same per

mol of atoms, because the number of mols of atoms is

conserved in any chemical reaction. The universally

adopted convention is to make that value zero. (Other

choices would have been correct, but would lead to much

nastier mathematics.) This is called the third law of ther-

modynamics, stated formally as follows: The entropy of any

pure crystalline substance at 0K is zero. The “pure crystal-

line” is explained below. The entropy based on this state-

ment is called the absolute entropy, which means entropy

relative to that of a pure crystalline substance at 0K. It is not

the same as steam table entropies, which are relative to an

arbitrarily chosen datum (see Section 2.7). Steam table

entropies can be positive or negative. Absolute entropies

are always positive or zero.

If we can measure the heat capacity C of some pure

species (element or compound) from 0 to 298.15K, then we

can compute its absolute entropy at 298.15K from the

general relationship

sat T ¼ sat T¼0 K þ
ðT¼298:15 K

T¼0 K

C
dT

T
ðE:4Þ

which is true whether the third law is correct or not. If the

third law is correct, then the sat T¼0 K term¼ 0.00. Here we

have not specified whether the heat capacity is at constant

pressure, constant volume, or some other condition. For

solids and liquids they are practically the same. For gases

we must specify whether the integration is at constant

pressure or constant volume. Such calorimetric measure-

ments have been carried out for the elements and for many

compounds, so from them we can compute the Dso of

formation, which we can then combine with the Dho values
to make up our tables of Dg� , which we then use to estimate

equilibrium constants. Most of the values in Table A.8 were

found that way. If there is a phase change between 0 and

298.15K (e.g., melting or vaporization or change of crystal

form), then we must add to Eq. E.4 a term of the form

Dsphase change ¼ Dhphase change=T , which uses the experimen-

tally measured enthalpy change of melting, vaporization, or

change of crystal form.

When such tables becamewidely available theywere used

to compute equilibrium constants for reactions whose equi-

librium constants were known experimentally. Most agreed

very well, but there were some discrepancies, indicating that

for some substances sat T¼0 K was not 0.00, but some small but

significant value. Analysis of this problem led to the con-

clusion that for the substances that formed perfectly regular

crystals at 0 K, sat T¼0 K was indeed 0.00, but for substances

that could have some randomness in the crystal it was not.

The easiest example to visualize is CO. This is a linear

molecule, with the atoms at either end more or less the same

size. In a perfect crystal the molecules would be all lined up

head to tail, i.e., CO–CO–CO–. However, the difference

between the two ends is small enough that when CO freezes

there is some randomness in the orientation, for example,

CO–CO–OC–CO–OC–CO–OC. This introduces random-

ness—imperfection—into the crystal, so that its entropy at

0K> 0.

At the same time that this calorimetric approachwas being

developed, the theory of statistical thermodynamics showed

that for a pure ideal gas, we could calculate the absolute

entropy, if we knew some details about the gas molecule’s
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internal vibrations. Entropies calculated that way were com-

pared with those based on calorimetry, generally with agree-

ment within the levels of experimental uncertainty. Based on

this comparison, the entropy of CO as a crystal at 0K� 1.1

cal/mol K. If the arrangement of the molecules in the crystal

were perfectly random the value would be 1.38 cal/molK.

This indicates that the true situation is somewhere between

perfect crystal (no randomness) and perfectly random align-

ment of the molecules. The other materials for which this

measurable entropy at 0K has been found are H2, H2O, and

N2O. For each of these species the randomness in the crystals

at 0K has been explained theoretically. For all the other

substances that have been studied, the entropy in the crys-

talline form at 0K appears to be 0.00.

E.3 IONS

The calorimetric and/or statistical thermodynamic approach

described above cannot be easily applied to ions. However,

as shown in Section 13.1, the equilibrium voltage of an

electrochemical cell can be directly calculated from its Dg� .

The converse is true; from the measured voltage we may

calculate the Dg� of the reaction. Most ions can form a cell

with a standard hydrogen electrode, so that if we assign a

value of g� ¼ 0 to a standard hydrogen electrode, we can

then use equilibrium voltage measurements to compute g�

values for other ions, relative to this standard hydrogen

datum. The values of the Dg� of formation from the elements

for ions in Table A.8 are all measured that way. The values

of Dh� of formation of ions can be determined experimen-

tally, by carrying out electrochemical reactions in a

calorimeter.

E.4 PRESENTING THESE DATA

From the above it is clear that the experimental measure-

ments are

1. Calorimetric heats of reaction or combustion

2. Calorimetric heat capacity and enthalpy change of

phase change

3. Electrochemical cell voltages

In addition, there are statistical mechanical calculations for

gases, for which the molecules’ internal vibration frequen-

cies must be determined spectroscopically. Finally, for some

substances that exist only at a limited range of conditions,

equilibrium constant measurements can be used.

Tables like Table A.8 are produced based on these mea-

surements. The form of Table A.8 is currently the most

widely used form. In earlier times, we regularly saw tables

of absolute entropies, to be used with tables of heats of

reaction [1, p. 992]. That form is now seldom seen. This is an

inactive research topic in thermodynamics; we have reliable

tables likeTableA.8, for all common species. The history and

theory of this topic is in [2].
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APPENDIX F

CALCULATION OF FUGACITIES FROM
PRESSURE-EXPLICIT EOSs

F.1 PRESSURE-EXPLICIT AND

VOLUME-EXPLICIT EOSs

In Examples 7.1 and 9.9 we calculated the fugacities of pure

species and of species inmixtures using the little EOS in Eqs.

7.9 and 7.16. That required solving an integral of the form

ð
RT

P
� v

� �
dPT or

ð
RT

P
� �v

� �
dPT ðF:1Þ

The little EOS is volume-explicit, meaning that it can

solved for v, in a form like v ¼ f ðP; TÞ; that leads to easy

solution of the above integrals. Unfortunately, no one has

devised a volume-explicit EOS that will represent experi-

mental PvT data well except at low pressures and high

temperatures (i.e., near the ideal gas limit). All of the EOSs

that will represent the experimental data far from the ideal-

gas state are pressure-explicit, that is, have the form

P ¼ f ðv; TÞ. For example, the BWR EOS (Eq. 2.46) shows

P as a function of v to powers 1, 2, 3, . . ., 6. There is noway it
can be easily solved for v for substitution into Eq. F.1.

(We can perform the integration numerically, but that is

awkward and slow.)

F.2 f/P OF PURE SPECIES BASED ON

PRESSURE-EXPLICIT EOSs

The general approach to calculating fugacities from

pressure-explicit EOSs is to use integration by parts to

replace the vdP integral,

ðP¼P

P¼0

v dP ¼ ½Pv�PvðPvÞ0 �
ðv
v¼1

P dv ðF:2Þ

When this is substituted in Eq. 7.9, and we observe that at

the lower limit the ideal gas law applies, then we have

RT ln
f

P
¼ Pv� RT �

ðv
v¼1

Pdv� RT

ðP¼P

P¼0

dP

P

� �
ðF:3Þ

To perform the integration (and simplify the problem of

lower integration limits of zero and infinity), we add and

subtract
Ð v
v¼1ðRT=vÞdv to the right-hand side of Eq. F.3 and

factor to

RT ln
f

P
¼ Pv� RT �

ðv
v¼1

P� RT

v

� �
dv

�

�
ðv
v¼1

RT

v

� �
dv� RT

ðP¼P

P¼0

dP

P

�
ðF:4Þ

Then we note that

ðv
v¼1

�
RT

v

�
dv� RT

ðP¼P

P¼0

dP

P

¼ RT

�
ln

v

RT
þ ln P

�P;v
P¼0;v¼1

¼ RT

�
ln

Pv

RT

�P;v
P¼0;v¼1

¼ RT ln
z

1

ðF:5Þ
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We then substitute this back into Eq. F.4 and divide by RT

to find

ln
f

P
¼ �1

RT

ðP
P¼0

RT

P
� v

� �
dP

¼ z� 1� ln z� 1

RT

ðv
v¼1

P� RT

v

� �
dv

Equation F.6 is applicable to any EOS. The two left terms

are exactly Eq. 7.9, suitable for use with a volume-explicit

EOS. The right term is the exact equivalent of the middle

term. It shows the same integration as Eq. 7.9, which is a v dP

integration; by suitable algebra we have found a form of that

integration that works with P-explicit EOSs.

Example F.1 Show the form that Eq. F.6 takes for the van

der Waals (vdW) EOS

P ¼ RT

ðv� bÞ �
a

v2
ð2:40Þ

First we solve for z,

z ¼ Pv

RT
¼ v

v� b
� a

RTv
ðF:7Þ

and for

1

RT

ðv
v¼1

�
P�RT

v

�
dv ¼ 1

RT

ðv
v¼1

�
RT

ðv�bÞ�
a

v2
�RT

v

�
dv

¼ 1

RT

�
RT lnðv�bÞ��a

v
�RT lnv

�v
v¼1

¼ 1

RT

�
RT ln

ðv�bÞ
v

þa

v

�v
v¼1

¼
�
ln
ðv�bÞ

v
þ a

RTv

�v
v¼1

at the lower limit of integration the first term approaches

ln (1.00)¼ 0.00 and the second term approaches 1/1¼ 0.00,

so we may drop the lower limits and substitute back into

Eq. F.6, finding

ln
f

P
¼ z�1�lnz�

�
ln
ðv�bÞ

v
þ a

RTv

�

¼ z�1� a

RTv
�ln

�
z� ðv�bÞ

v

�
&

This shows that if we know the values of a and b we can

solve for z and then use a, b, and z to find f/P. We will

illustrate this process below.

F.3 CUBIC EQUATIONS OF STATE

Figure 10.8 shows that the BWR EOS, which contains the

specific volume to the sixth power, calculates an isotherm on

P-v coordinates that has one maximum and one minimum,

and that can be used to calculate thePvT behavior of both gas

and liquid (but not directly the behavior in the two-phase

region). The same result can be obtained with any EOS that

has the volume to the third or higher power. Complex EOSs

like the BWR can represent experimental PvT data more

accurately than cubic equations, which have the volume only

to the third power, but the latter aremuch easier to use in high-

pressure VLE calculations and are more widely used. The

cubic EOSs of interest are as follows:

1. The van der Waals (vdW) EOS

P ¼ RT

v� b
� a

v2
ð2:40Þ

which is now only of historic interest, but which has

played a major role in the development of this field and

is used in some examples in this chapter because of its

simplicity.

2. The Redlich and Kwong (RK) EOS

P ¼ RT

v� b
� affiffiffiffi

T
p

vðvþ bÞ ðF:10Þ

which is obviously a fairly minor modification of the

vdW EOS, but which fits experimental PvT data much

better. It is now principally of historic interest.

3. The Soave or Soave–Redlich–Kwong (SRK) EOS

P ¼ RT

v� b
� aa

vðvþ bÞ ðF:11Þ

is a modified RK EOS, which has largely replaced the

RK EOS and is now probably the most widely used

EOS of this type.

4. The Peng–Robinson (PR) EOS

P ¼ RT

v� b
� aa

v2 þ 2bv� b2
ðF:12Þ

which is similar to the others and is considered superior

for some applications. In all of these EOSs the con-

stants a, b, and a are specified in terms of Pr, Tr, and v.
The formulation of these constants are generally a mix

of theory and data fitting. (In the vdW EOS they were

(F.8)

(F.6)

(F.9)
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based on theory alone; the others, which adjusted

theory to much experiement, are much more accurate.)

The details of these EOSs are summarized in various

texts. For the remainder of this appendix we will

consider only the vdW, which is the simplest, and the

SRK, which seems to be the most widely used.

Example F.2 Using the SRK EOS, estimate f/P¼f for

pure propane at 100�F and 188.32 psia (see Figure 10.8).

As shown in Problems F.3, F.4, and F.5, it is common to

rewrite all the cubic EOSs in z form, and then to redefine

the constants, as shown below. For the SRK EOS the

forms [1] are

z3 � z2 þ zðA� B� B2Þ � AB ¼ 0 ðF:13Þ

A ¼ aaP

R2T2
¼ 0:42747 � ½1þð0:480þ 1:574v� 0:176v2Þ

� ð1� T0:5
r Þ�2 Pr

T2
r

ðF:14Þ

and

B ¼ bP

RT
¼ 0:08664

Pr

Tr
ðF:15Þ

in which a, b, and a are those in Eq. F.11. For this EOS the

equivalent of Eq. F.9 is

ln
f

P
¼ z� 1� lnðz� BÞ � A

B
ln

z� B

z

� �
ðF:16Þ

Table F.1 shows the preliminary steps for this solution.

From Figure 10.8 we see that this temperature and pressure

correspond to a point on the vapor–liquid equilibrium curve

for propane, so we should look for three solutions to

Eq. F.13. Table F.2 shows all of those. The procedure is to

guess a value of z, and then numerically solve Eq. F.13

(using “goal seek” on a spreadsheet or any other suitable

numerical method) for the value of z that makes the sum of

the terms on the left of Eq. F.13 equal 0.00. To find all three

solutions, we begin with an initial guess larger than the

expected vapor z, one smaller than the expected liquid z, and

then one about halfway between the two results found for

the liquid and the vapor. Convergence is rapid. Simple

insertion of the values in Table F.2 into Eq. F.16 leads to

the values of f/P shown in Table F.2. The lower lines in

Table F.2 are discussed below. &

At the end of this example we observe the following:

1. There is only little interest in computing pure species

f/P from cubic EOSs. As in Chapter 7, we make this

calculation only as a preliminary step to the more

interesting and useful fi /yiP for individual species in

mixtures and for textbook illustrations.

2. As discussed in Chapter 10 (see Figure 10.8) we

expected and found three solutions, corresponding to

liquid, vapor, and unstable two-phase mixture.

3. We could compare the values found here with those we

would find in Figure 10.8, if we could read that figure

accurately enough. Instead,we read thevalues from [2],

which are identical to those in Figure 10.8 and much

easier to read. We see that the calculated vapor volume

in this example is 2.3% more than that in [2], and the

calculated liquid volume is 11% more. The additional

terms in the BWR EOS used in [2] are mostly there to

give a more accurate estimate of the liquid specific

volume.

4. We see that the calculated values of f/P for vapor and

liquid, which should be equal for two phases in equilib-

rium, differ from each other by 0.8%� 0.00, indicating

that in this case the SRK EOS does a good job of

representing the values of f/P. The calculated values are

�2%morethanthosecalculatedbytheBWREOSin[2].

Wemay show that the calculated values of z and f/P agree

reasonablywith FiguresA.4 and 7.1. Thus, if wewerewriting

a computer program, for which we wished the computer

equivalents of those plots, we could program the results of

Example F.2, and find those equivalent results.

Table F.2 The Three Solutions to Example F.2

Unstable Liquid–Vapor

Liquid Mixture Vapor

z (Eq. F.13) 0.0519 0.159 0.789

f/P (Eq. F.16) 0.838 1.030 0.826

v (ft3/lbm) 0.0377 0.115 0.572

v (ft3/lbm from [2]) 0.0339 0.559

f/P (from [2]) 0.8152 0.8152

Table F.1 Preliminary Steps in Example F.2

T (�F) 100

T (K) 311.11

P (psia) 188.32

P (bar) 12.977

R (L bar/mol K) 0.08314

Tc (K, Table A.1) 369.8

Pc (bar. Table A.1) 42.48

v (Table A.1) 0.152

Tr 0.841

Pr 0.3055

A (Eq. F.14) 0.2071

B (Eq. F.15) 0.3146
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F.4 fi /Pyi FOR INDIVIDUAL SPECIES
IN MIXTURES, BASED ON

PRESSURE-EXPLICIT EOSs

In principle, we should be able to begin with Eq. F.6, take the

partial derivatives with respect to yi, and use the method of

tangent intercepts to find fi /yiP. In practice, this is very

difficult, because it is very difficult towrite out the derivatives

of z from a pressure-explicit EOS. Instead, we begin with

Eq. 7.l5, rewritten as

RT d ln fi ¼ �vidPT ¼ @ðnTvÞ
@ni

� �
dPT ðF:17Þ

all at a constant T (this is the method of tangent slopes, see

Section 6.3). Next we eliminate the dP by noting that (at

constant T) P ¼ f ðni; nTvÞ, where ðnTvÞ ¼ V , the total vol-

ume.We retain the nTv form because it makes the subsequent

mathematics easier. Next we write the “chain-rule” deriva-

tives as

@P

@ðnTvÞ
� �

� @ni
@P

� �
� @ðnTvÞ

@ni

� �
¼ �1 ðF:18Þ

from which

@ðnTvÞ
@ni

� �
dP ¼ � @P

@ni

� �
� @ðnTvÞ ðF:19Þ

The ð@P=@niÞ is a strange-looking derivative. Remember

that we have taken nTv ¼ V as one of the independent

variables, so this is the increase in P when we add 1mol of

i at constant V, T, and nj.

Next we substitute Eq. F.19 in Eq. F.17 and add

RT d lnðv=RTÞ to both sides and factor to

RT d ln
fiv

RT
¼ � @P

@ni

� �
� @nTvþRT d ln

v

RT
ðF:20Þ

We multiply the argument of the ln in the rightmost term

by nT/nT and carry out the differentiation, finding

RT d ln
nTv

nTRT
¼ RT

1

nTv=nTRT
� dðnTvÞ
nTRT

¼ RT

nTv
dðnTvÞ

ðF:21Þ

We substitute Eq. F.21 into Eq. F.20 and factor to

RT d ln
fiv

RT
¼ � @P

@ni

� �
þ RT

nTv

� �
� @ðnTvÞ ðF:22Þ

Next we integrate both sides from v ¼ 1 to v ¼ v, finding

RT ln
fiv

RT

����
v

v¼1
¼

ðv
v¼1

� @P

@ni

� �
þ RT

nTv

� �
� @ðnTvÞ ðF:23Þ

At the lower limit on the left we have ideal gas behavior

for which fi ¼ yiP and RT/v¼P so that

RT ln
fiv

RT

����
v

v¼1
¼ RT ln

fiv=RT

yiP=P
¼ RT ln

fi

yi
þRT ln

v

RT

ðF:24Þ

Substituting Eq. F.24 in Eq. F.23 and subtracting

RT ln P from both sides, we rearrange to

RT ln
fi

yiP
¼ RT ln f̂i

¼
ðv
v¼1

� @P

@ni

� �
þ RT

nTv

� �
� @ðnTvÞ � RT ln z

ðF:25Þ

This is the final form we are seeking. It shows

RT lnðfi=yiPÞ ¼ RT ln f̂i in terms of P derivatives, z, and

nTv but not its derivative! This is exactly the same as Eq. 7.18,

but written out (with considerable effort!) in terms suitable

for using with any pressure-explicit EOS.

Example F.3 Evaluate Eq. F.25 for the vdW EOS.

We observe first that we must evaluate ð@P=@niÞT ;V; nj for
the vdW EOS (Eq. 2.40). We write the EOS and replace v

(the volume per mol) wherever it appears with V/nT, where V

is the total volume, and nT is the total number of mols. So

we need

�
@P

@ni

�
T ;V ; nj

¼
�

@

@ni

�
T ;V ; nj

�
nTRT

ðV � nTbÞ �
n2Ta

V2

�

¼ RT

ðV � nTbÞ þ
nTRT

ðV � nTbÞ2
�
�
@ðnTbÞ
@ni

�
� 1

V2

�
�
@ðn2TaÞ
@ni

�

ðF:26Þ

Here we have taken advantage of the fact that

ð@nT=@niÞnj ¼ 1:00. We then substitute Eq. F.26 in Eq.

F.25, finding

RT ln
fi

yiP
¼

ðv
v¼1

�
�
�

RT

ðV � nTbÞ þ
nTRT

ðV � nTbÞ2

�
�
@ðnTbÞ
@ni

�
� 1

V2
�
�
@ðn2TaÞ
@ni

�	
þ RT

V

�
dV � RT ln z

ðF:27Þ

342 APPENDIX F: CALCULATION OF FUGACITIES FROM PRESSURE-EXPLICIT EOSs



This formidable-looking integral is quite easy, because the

two derivatives in the integrand are not functions of V, so we

may integrate, finding

RT ln
fi

yiP
¼

�
�
�
RT lnðV � nTbÞþ nTRT

ðV � nTbÞ2
�
�
@ðnTbÞ
@ni

�

þ 1

V
�
�
@ðn2TaÞ
@ni

�	
þRT lnV

�v

v¼1
� RT ln z

ðF:28Þ
which simplifies to

RT ln
fi

yiP
¼ RT ln

V

V � nTb
� RT ln z

� nTRT

ðV � nTbÞ �
@ðnTbÞ
@ni

� �
þ 1

V
� @ðn2TaÞ

@ni

� �� 	

ðF:29Þ

Here we have dropped the lower integration limit,

because all of terms on the right in Eq. F.29 are zero at

v ¼ 1. Equation F.29 is correct for the vdW EOS for

any set of mixing rules for determining the mixture values

of a and b. &

F.5 MIXING RULES FOR CUBIC EOSs

Please reviewSections 7.12 and 9.7,which present the idea of

mixing rules, and show a simple example. To use any cubic

EOS for mixtures, wemust use some set of mixing rules. The

study of mixing rules for such EOSs is an active area of

research [3]; formulating a set of rules that are simpler and

more accurate than those in common usewill bring the author

(temporary) fame!

Example F.4 Show the form of Eq. F.29 for the following

commonly used mixing rules for the vdW EOS (similar to

those in Section 9.7):

a ¼
X

yi
ffiffiffiffi
ai

p
 �2

¼
X ni

nT

ffiffiffiffi
ai

p� �2

ðF:30Þ

and

b ¼
X

yibi ¼
X ni

nT
bi ðF:31Þ

so that

�
@ðn2TaÞ
@ni

�
¼

@

�
n2T

��P ni

nT

ffiffiffiffi
ai

p �2�	

@ni

0
BBBB@

1
CCCCA

¼2
P

ni
ffiffiffiffi
ai

p�  ffiffiffiffi
ai

p ¼2nT
ffiffiffiffiffiffiffi
aai

p

¼@
P

ni
ffiffiffiffi
ai

p� 2
@ni

ðF:32Þ

and

@ðnTbÞ
@ni

� �
¼

@ nT
P ni

nT
bi

� �

@ni

0
BB@

1
CCA¼@ðnibiÞ

@ni
¼bi ðF:33Þ

Substituting these two derivatives into Eq. F.29, we find

RT ln
fi

yiP
¼ RT ln

V

V � nTb
� RT ln z

� nTRT

ðV � nTbÞ � bi þ
2nT

ffiffiffiffiffiffiffi
aai

p
V

� � ðF:34Þ

Dividing out the nTs to get back to the specific volume v,

we find

RT ln
fi

yiP
¼ RT ln f̂i

¼ RT ln
v

v� b
� RT ln z�

�
RTbi

ðv� bÞ þ
2

ffiffiffiffiffiffiffi
aai

p
v

�

ðF:35Þ
This form is correct only for the arbitrary mixing rules

shown in Eqs. F.30 and F.31 (which are the most widely

used rules for the vdW EOS). &

These two exampleswere shown for thevdWEOS, because it

is the simplest of the cubic EOSs and leads to the simplest

algebra. We now return to the SRK EOS, for which the

“standard”mixing rule for b is the same asEq. F.31 above, but

for which the other mixing rule is

A ¼
XX

yiyjAij ðF:36Þ

where the expansion is exactly the same as in Section 9.7 and

the cross-coefficient

Aij ¼ ð1� kijÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
Ai �Aj

p ðF:37Þ

This is the same kij defined in Section 9.7. (If kij¼ 0,

which is often assumed, then this mixing rule is the same as

Eq. F.30, see Problem F.10.)

Making these substitutions into the SRK EOS, for kij¼ 0

we find

ln
fi

yiP
¼ ln f̂i

¼ Bi

B
ðz� 1Þ � lnðz� BÞ � A

B
�
�
2

ffiffiffiffiffi
Ai

A

r
� Bi

B

�
ln

�
1� B

Z

�

ðF:38Þ

whereA andB are the values for themixture, andAi andBi are

those for the pure individual species in the mixture.
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F.6 VLE CALCULATIONS WITH A CUBIC EOS

We now have all the tools to make VLE calculations using

a cubic EOS to represent both vapor and liquid (see

Section 10.3.3).

Example F.5/10.3 Repeat Example 10.2, using the SKR

EOS. This example is started in Chapter 10 as Example 10.3

and the results are discussed there. However, the solution

requires the application of Eq. F.38, four times, so the

solution is shown here.

Herewewish to find the bubble-point temperature and the

dew-point composition for a liquid mixture with 60 mol%

ethane, balance n-heptane, at 800 psia, to compare with the

experimental values in Figure 10.7. This problem involves

nested trial and error solutions. We begin by assuming that

the bubble-point temperature is 200� F and that the vapor is

90 mol% ethane. (We could make better starting guesses

based on reading Figure 10.7, but these guesses are more

illustrative of the process.) The preliminary calculations are

shown in Table F.3, with the assumption that kij¼ 0.

Nextwe compute theA andB of themixture for each of the

two phases, using the liquid composition in the problem

statement and the assumed composition of the equilibrium

vapor. The results are shown in Table F.4.

The only trial-and-error procedure involved in Table F.4 is

the solution of the Eq. F.13 for z, twice, one for liquid and one

for vapor. The many blanks in the table correspond to values

that we need not calculate.

From this result we see that the calculated yis do not

correspond to the assumed values and do not sum to 1.00. The

next step is to substitute the calculated yethane from the next to

last row into the top row as the assumed yethane. This changes

the calculated values of Amix and Bmix, and leads to a new

trial-and-error solution for zvapor. Then that value is substi-

tuted into Eq. F.38, leading to new estimates of all the values

below it in the table. This is repeated until the new computed

yethane at the bottom of the table is practically the same as the

assumed value at the top of the table. This trial-and-error

procedure leads to a converged value of yethane¼ 0.906, and

of ðyethane þ yn-heptane ¼ 0:967Þ, which indicates that we have
guessed too low a temperature. A new temperature must be

selected and the whole process repeated, converging on a

temperature of 210�F for which the calculated

ðyethane þ yn-heptaneÞ ¼ 1:00. The summary of the results is

shown in Chapter 10, Example 10.3. &

This example is slow and tedious with a spreadsheet, because

the multiple trial and error calculations must be done one at a

time. It is shown that way because it is clear what is

happening. The calculation is much easier in a Fortran

program with nested DO loops.

Table F.3 Preliminary Steps in Example F.5

T (�F) 200

T (K) 366.67

P (psia) 800

P (bar) 55.13

R (L bar/mol K) 0.08314

FOR ETHANE FOR n-HEPTANE

Tc (K, Table A.1) 305.3 540.2

Pc (bar, Table A.1) 48.72 27.4

v (Table A.1) 0.1 0.35

Tr 1.201 0.679

Pr 1.315 2.012

A (Eq. F.14) 0.2957 2.5895

B (Eq. F.15) 0.0816 0.2568

Table F.4 Calculated Values of Liquid and Vapor Properties for the First assumed Temperature and

Vapor Composition in Example F.5

Ethane in Liquid n-Heptane in Liquid Ethane in Vapor n-Heptane in Vapor

Assumed mol

fraction, xi or yi

xethane¼ 0.6 xn-heptane ¼ 1� xethane ¼ 0:4 assumed yethane¼ 0.9 yn-heptane ¼ 1� yethane ¼ 0:1

Amixture (Eq. F.30) 0.9408 0.4229

Bmixture (Eq. F.31) 0.1517 0.09915

zmixture (Eq. F.13) zliquid¼ 0.2458 zvapor¼ 0.5867

fi

yiP
¼ f̂i (Eq. F.38) 1.24451 0.0233 0.8291 0.1461

Ki ¼ f̂i; liquid

f̂i; vapor
1.502 0.1595

yi ¼ Kixi 0.901 0.0638

y1 þ y2 0.965
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F.7 SUMMARY

1. Volume-explicit EOSs, like the little EOS, are

useful for vapors whose behavior is close to ideal gas

behavior. They are not useful for gases far from the

ideal gas state.

2. Pressure-explicit EOSs can represent both liquid and

vapor and behavior near the critical state with fair

accuracy for simple EOSs (like cubic EOSs) and

very good accuracy for more complex EOSs, like the

BWR EOS.

3. With suitable mixing rules, these pressure-explicit

EOSs can make good-to-excellent estimates of high-

pressure VLE. They are very widely used for that

purpose.

4. This appendix has more mathematics than seems ap-

propriate in the main text.

PROBLEMS

See the Common Units and Values for Problems and

Examples.

F.1 Sketch on P-v coordinates an arbitrary smooth func-

tion (P¼ f(v)) from P1v1 to P2v2. Then show on the

sketch which areas correspond to the three terms in

Eq. F.2.

F.2 In going from Eq. F.3 to F.4 we wrote

ð
RT

dP

P
¼ RT ln P and

ð
RT

dv

v
¼ RT ln

v

RT

Is this correct? Show the appropriate mathematics to

support these choices.

F.3 The vdW EOS (Eq. 2.40) may be cleared of fractions

by multiplying by v2 � ðv� bÞ to find

P � v2 � ðv� bÞ ¼ RTv2 � aðv� bÞ ðF:39Þ
This may be multiplied out and grouped as

v3 �Pþ v2 � ð�Pb� RTÞþ va� b ¼ 0 ðF:40Þ
and put in the standard cubic form

v3 þ v2 �
�
� b� RT

P

�
þ v

a

P
� b

P
¼ 0 ðF:41Þ

Show the equivalent derivations for

a. The RK EOS.

b. The SRK EOS.

c. The PR EOS.

F.4 Equation F.41 may be multiplied through by (P/RT)3

to find

z3 � z2
�
bP

RT
þ 1

�
þ z

aP

ðRTÞ2 �
bP2

ðRTÞ3 ¼ 0 ðF:42Þ

in which all of the terms are dimensionless. Show the

equivalent derivations for

a. The RK EOS.

b. The SRK EOS.

c. The PR EOS.

F.5 If we define

B ¼ bP

RT
and A ¼ aP

ðRTÞ2 ðF:43Þ

which are both dimensionless, and substitute into Eq.

F.42, we find

z3 � z2ðBþ 1Þþ zA� AB ¼ 0 ðF:44Þ

which is the form most often used for computing z in

the vdW EOS. Show the equivalent derivations for

a. The RK EOS.

b. The SRK EOS.

c. The PR EOS.

Observe that the definitions of A and B for the RK,

SRK, and PR EOSs are similar to those in Eq. F.43,

but not identical to them. From the results of Problem

F.4, the choice of values ofA andBwill seem obvious.

F.6 Show the pure species equations for f/P for the

following EOSs:

d. Beattie–Bridgeman (Eqs. 2.42–2.45).

e. BWR (Eq. 2.46).

F.7 Show the numerical solutions for the 3 values of z in

Table F.2.

F.8 Compare the values of z and f/P found in Example

F.2 to those we would read from Appendixes A.4 and

A.5. Do they agree to within chart-reading accuracy?

Should they?

F.9 Show the difficulty of attempting the integration of

Eq. F.l for the vdW EOS, which is one of the simplest

pressure-explicit EOSs.

F.10 Show that if kij¼ 0, then Eq. F.37 leads to the same

mixing rule as Eq. F.30.

F.11 Show the calculations leading to Tables F.3 and F.4.

F.12 Show the calculations that change the final value of

yethane in Table F.4 to match its assumed initial value.

F.13 Show the calculations leading to y1 þ y2 ¼ 1:00 and a
bubble point of 210�F in Example F.5/10.3.
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APPENDIX G

THERMODYNAMIC PROPERTY DERIVATIVES
AND THE BRIDGMAN TABLE

In Section 2.10 and Table 2.2 we showed the five useful

equations for calculating the changes in common thermo-

dynamic properties with changes in T and P. Those five

satisfy the needs of most undergraduates and most working

engineers. However some uncommon problems require other

mathematical relations among thermodynamic properties;

those can be found using the methods in this appendix.

These relations can all be derived starting with the prop-

erty equation (Eq. 2.32), and the definitions of h, g, a, CP and

CV. The derivations are shown in many thermodynamics

books and form a favorite exercise in differential calculus for

graduate students. All 168 of the possible relations between

the variables u, h, s, g, a, v,P, andT can beworked out quickly

and easily using a Bridgman table, Table G.1 (thus missing

out on all that fun calculus and algebra).

For any of the properties u, h, s, g, and a we can write a

two-term Taylor series expansion of the derivative. For

example, for s as a function of T and P,

ds ¼ @s

@T

� �
P

dT þ @s

@P

� �
T

dP ðG:1Þ

Comparing this to Eq. 2.35

ds ¼ CP

T
dT� dv

dT

� �
P

dP ð2:35Þ

We see that these are the same if

@s

@T

� �
P

¼ CP

T
and

@s

@P

� �
T

¼ � dv

dT

� �
P

ðG:2Þ

The first of these comes from the definition of the entropy; the

second comes from one of the Maxwell relations. Many

thermodynamics texts spend considerable effort showing

how these come about and how to derive any of the other

derivatives of this type we might need. These derivatives are

all of the form @a=@bð Þc where a, b, and c are any of the

following variables, T, P, v, u, h, s, g, and a. Taking 3

variables at a time from a list of 8 allows for 336 combina-

tions, and thus 336 such derivatives, but half of those are the

reciprocals of others so there are only 168 such derivatives

among this list of variables. Of these 168 the most useful 10

are shown in Table 2.2. But some of the others are sometimes

useful; they are easily found from Table G.1

Example G.1 Show the construction of the first six deri-

vatives in Table 2.2 from the Bridgman table.

@u

@T

� �
P

¼ ð@uÞP
@Tð ÞP

¼ ½Eq:BT:4�
½Eq:BT:2�

¼ CP�Pð@v=@TÞP
1

¼ CP�Pð@v=@TÞP

ðG:3Þ

@u

@P

� �
T

¼ ð@uÞT
@Pð ÞT

¼ ½Eq:BT:101�
�½Eq:BT:2� ¼

Tð@v=@TÞP þ Pð@v=@PÞT
�1

¼ �½Tð@v=@TÞP þ Pð@v=@PÞT � ðG:4Þ

@h

@T

� �
P

¼ ð@hÞP
@Tð ÞP

¼ ½Eq:BT:5�
½Eq:BT:2� ¼

CP

1
¼ CP ðG:5Þ
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@h

@P

� �
T

¼ ð@hÞT
@Pð ÞT

¼ ½Eq:BT:11�
�½Eq:BT:2�

¼ �vþ Tð@v=@TÞP
�1

¼ v�Tð@v=@TÞP ðG:6Þ

@s

@T

� �
P

¼ ð@sÞP
@Tð ÞP

¼ ½Eq:BT:3�
½Eq:BT:2� ¼

CP=T

1
¼ CP=T ðG:7Þ

@s

@P

� �
T

¼ ð@sÞT
@Pð ÞT

¼ ½Eq:BT:9�
�½Eq:BT:2� ¼

ð@v=@TÞP
�1

¼ �ð@v=@TÞP

ðG:8Þ

These were easy, because the denominators were all ¼ � 1.

The following example shows a more complex derivative

taken from a practical problem.

Example G.2 A rigid container is filled completely with

saturated liquid propane at 100 psia. We now transfer heat to

it, allowing time for perfect thermal mixing, and ask how fast

does the pressure rise as we introduce heat. From the first law

we know that for a closed system at constant volume dU¼
mdu¼ dQ, so we are asking for ð@P=@uÞV. This is one of the
168 derivatives derivable fromTableG.1 but not one of the 10

most often used. This example is a very simplified version of

the problem addressed in [1].

From Table G.1

@P

@u

� �
V

¼ ð@PÞV
@uð ÞV

¼ �½Eq:BT:1�
½Eq:BT:15� ¼

�ð@v=@TÞP
CPð@v=@PÞTþTð@v=@TÞ2P

¼ �1

CP

ð@v=@PÞT
ð@v=@TÞP

þ Tð@v=@TÞP
ðG:9Þ

Taking values from [2],

T� 55�F¼ 515�R; CP � 0:6
Btu

lbm�F
;

@v

@P

� �
T

� �10�6 ft
3=lbm

psi

and

@v

@T

� �
P

� 3:9 � 10�5 ft
3=lbm
�F

.

Thus

@P

@u

� �
V

¼

¼ �1

0:6
Btu

lbm�F

�10�6 ft
3=lbm

psi

3:9 � 10�5 ft
3=lbm
�F

þ 515�R 3:9 � 10�5 ft
3=lbm
�F

� �

ðG:AÞ

The first term in the denominator, after simple cancellation of

units becomes

0:6
Btu

lbm psi

�10�6

3:9 � 10�5
¼ �0:01538

Btu

lbm psi
;

while the second becomes

515�R 3:9 � 10�5 ft
3=lbm
�F

� �
� Btu

778 ft lbf

� �
� 144 lbf=ft2

psi

� �

¼ 0:00372
Btu

lbm psi

and

@P

@u

� �
V

¼ �1

ð�0:01538þ 0:00371ÞBtu=lbm
psi

¼ 85:7
psi

Btu=lbm
¼ 253

kPa

kJ=kg
ðG:BÞ

which shows that heating liquids in closed containers leads to

rapid pressure rises. &

PROBLEMS

See theCommonUnits andValues for Problems andExamples.

G.1 Show the derivation of the P and T derivatives of g and

a using Table G.1 and compare them to the values in

Table 2.2.

G.2 Estimate the change in enthalpy, h, of liquid propane at

55�F, as it is isothermally compressed from 100 psia

to 1000 psia, using values from Example G.2. Over

this pressure range for liquid propane, v is practically

constant� 0.0304 ft3/lbm. Compare the result with the

interpolated value of 1.75Btu/lbm from [2].

G.3 Show the forms that the five equations in Table 2.2 take

for an ideal gas.

G.4 To convince yourself of the utility of Table G.1, derive

the formula for @P=@uð ÞV without using Table G.1.
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TABLE G.1 BRIDGMAN TABLE

This version, presented by Hougen et al. [3], is much more

compact than the original by Bridgman [4]. Its use is illus-

trated in Examples G.1 and G.2.

1. Pressure Constant and Pressure Variable

ð@vÞP ¼ �ð@PÞV ¼ ð@v=@TÞP ðBT:lÞ

ð@TÞP ¼ �ð@PÞT ¼ 1 ðBT:2Þ

ð@sÞP ¼ �ð@PÞS ¼ CP=T ðBT:3Þ

ð@uÞP ¼ �ð@PÞU ¼ CP�Pð@v=@TÞP ðBT:4Þ

ð@hÞP ¼ �ð@PÞH ¼ CP ðBT:5Þ

ð@aÞP ¼ �ð@PÞA ¼ �½sþ Pð@v=@TÞP� ðBT:6Þ

ð@gÞP ¼ �ð@PÞG ¼ �s ðBT:7Þ

2. Temperature Constant and Temperature Variable

ð@vÞT ¼ �ð@TÞV ¼ �ð@v=@PÞT ðBT:8Þ

ð@sÞT ¼ �ð@TÞS ¼ ð@v=@TÞP ðBT:9Þ

ð@uÞT ¼ �ð@TÞU ¼ Tð@v=@TÞP þ Pð@v=@PÞT ðBT:10Þ

ð@hÞT ¼ �ð@TÞH ¼ �vþ Tð@v=@TÞP ðBT:11Þ

ð@aÞT ¼ �ð@TÞA ¼ Pð@v=@PÞT ðBT:12Þ

ð@gÞT ¼ �ð@TÞG ¼ �v ðBT:13Þ

3. Volume Constant and Volume Variable

ð@sÞV ¼ �ð@vÞS ¼ ð1=TÞ½CPð@v=@PÞT þ Tð@v=@TÞ2P�
ðBT:14Þ

ð@uÞV ¼ �ð@vÞU ¼ CPð@v=@PÞT þ Tð@v=@TÞ2P
ðBT:15Þ

ð@hÞV ¼ �ð@vÞH ¼ CPð@v=@PÞT þ Tð@v=@TÞ2P
�vð@v=@TÞP

ðBT:16Þ

ð@aÞV ¼ �ð@vÞA ¼ �sð@v=@PÞT ðBT:17Þ

ð@gÞV ¼ �ð@vÞG ¼ �½vð@v=@TÞP þ sð@v=@PÞT � ðBT:18Þ

4. Entropy Constant and Entropy Variable

ð@uÞS ¼ �ð@sÞU ¼ ðP=TÞ½CPð@v=@PÞT þ Tð@v=@TÞ2P�
ðBT:19Þ

ð@hÞS ¼ �ð@sÞH ¼ �ðvCP=TÞ ðBT:20Þ

ð@aÞS ¼ �ð@sÞA ¼ ð1=TÞ½Pð@v=@PÞT þ Tð@v=@TÞ2P�
þsTð@v=@TÞPg ðBT:21Þ

ð@gÞS ¼ �ð@sÞG ¼ �ð1=TÞ½vCP�sTð@v=@TÞP�
ðBT:22Þ

5. Internal Energy Constant and Internal Energy

Variable

ð@hÞU ¼�ð@uÞH ¼ v½CP�Pð@v=@TÞP�
�P½CPð@v=@PÞT þTð@v=@TÞ2P�

ðBT:23Þ

ð@aÞU ¼�ð@uÞA ¼ P½CPð@v=@PÞT þTð@v=@TÞ2P�
þs½Tð@v=@TÞPþPð@v=@PÞT �

ðBT:24Þ

ð@gÞU ¼�ð@uÞG ¼ v½CP�Pð@v=@PÞT �
þs½Tð@v=@TÞPþPð@v=@PÞT �

ðBT:25Þ

6. Enthalpy Constant and Enthalpy Variable

ð@aÞH ¼�ð@hÞA ¼�½sþPð@v=@TÞP� � ½v�Tð@v=@TÞP�
þPCPð@v=@TÞP ðBT:26Þ

ð@gÞH ¼�ð@hÞG ¼�vðCPþ sÞþTsð@v=@TÞP ðBT:27Þ
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7. Helmholz Energy Constant and Helmholz Energy
Variable

ð@aÞG ¼ �ð@gÞA ¼ �s½vþ Pð@v=@PÞT ��Pvð@v=@TÞP
ðBT:28Þ

Comments on the Bridgman Table

1. Making up your own Bridgman table is harder than it

looks (and it looks pretty hard!). According to Hougen

et al. [3] Nobel Prize physicist Percy Bridgman, who

invented it, had 2 errors in the first one he published

in [5].

2. The properties v, u, h, s, g, and a are all shown lower

case, indicating that they apply to one lbm or one kg or

one mol or lbmol. One can convert them to properties

for some specified mass or number of mots by multi-

plying them by m or n.

3. These use only the constant-pressure heat capacity,

the most commonly-used heat capacity, (see Table

A.9).

4. The derivative ð@v=@PÞT can be derived in algebraic

form with either a v-explicit EOS or (as its reciprocal)

from a P- explicit EOS. But ð@v=@TÞP cannot be easily
derived algebraically with a P-explicit EOS. All the

commonly used EOSs (see section 2.11 and Appendix

F) are P-explicit, and cannot be solved to give simple

algebraic expressions for ð@v=@TÞP. For liquids and

solids these two derivatives are equal to the coefficient

of thermal expansion and the isothermal compressibil-

ity, (see Appendix D). Various numerical techniques

approximate ð@v=@TÞP; if all else fails, one can eval-

uate it by

@v

@T

� �
P

¼ �ð@P=@TÞV
ð@P=@vÞT

ðBT:30Þ

which can be computed algebraically from aP- explicit

EOS.

5. The derivatives that incorporate v cannot be easily

programmed using P-explicit equations of state.

6. If you must derive thermodynamic relations without

the Bridgman table, you will use the historically

important Maxwell Relations; ð@T@vÞs ¼ ð@P@sÞv : ð@T@PÞs ¼
�ð@v@SÞP :ð@S@vÞT ¼ ð@P@TÞv and ð@S@PÞT ¼�ð@v@TÞP. If you have
a Bridgman table you need never use these, but as a

student of thermodynamic history you should know

about them.
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APPENDIX H

ANSWERS TO SELECTED PROBLEMS

The answers shown here are for problems marked by an

asterisk (�) in the individual chapters.

1.3 0.026 mol%, 0.01468 molality, 5.089 g/L,

0.0149mol/L

2.2 1.12� l014 Btu/h; 2.9 lbm/h

2.5 9500 ft/s¼ 6500mi/h. Collision of the earth with a

stationary object in space.

2.12 �1.69� l05 kJ

3.1 26.1 times, 29/1, 0.0018

3.2 1.58 ppm, 0.0132 g/m3, 528, 0.056 g/(8 h)

3.6 mol fraction¼ 37� 10�6

3.12 0.00134

4.2 Dh¼ 889.2 Btu/lbm, Ds¼ 1.1290 Btu/lbm��R,
Dg� 0.00

5.2 2.23 psia, 384�F
5.4 � 60 psia

5.8 1.14� 10�18 psia

5.15 1085 psia

5.21 �211 J/mol

5.24 (a) �3.37� 103 kPa/K, (b)þ1.73� 103 kPa/K, (c)

b is plausible, a is not.

6.2 �2.28, 0.79, and 3.50 cm3/mol

6.5 (a) 1.197,1.180, 1.166, 1.154, 1.144, 1.135,

1.114 cm3/g, (b) 0.052 L/mol

6.8 19.0 cm3/mol

6.10 �18, �43, �376Btu/lbm

7.1 a ¼ �RT
dz

dP

� �
T

7.8 1.54 psia

8.1 Kacetone¼ 1.013, Kwater¼ 0.746, a¼ 1.358

8.2 (a) gacetone¼ 4.881, gwater¼ 1–039,

(b) T ¼ 93.0�C, yacetone¼ 0.303

8.6 ya¼ 0.270, P¼ 445 torr

8.9 ga¼ 0.889, gb¼ 0.715

8.11 xa¼ 0.2373, P¼ 12.8 atm

8.15 T� 117�C, xwater� 0.02

8.30 xethane� 0.8� 10�4, up to the vapor pressure of

ethane at this temperature, 23 atm.

8.33 (a) 0.00223074 (b) 0.0023071 (c) 0.0023244.

These show more digits than the data justifies, in

order to show how large the changes are between

the three parts.

8.34 (a) practically pure benzene and practically pure

toluene, (b)� 70 mol% isopropanol, practically

purewater, (c) practically pure acetone,� 34.5 mol

% acetone, (d)� 73mol% water, practically pure

n-butanol

8.47 From the van Laar equation, the gs are 2.2951 and
1.0066.

8.48 C¼ 2.00

8.55 Tboiling¼ 100.255
�
C

8.61 gwater¼ 0.92

9.7 (a) 1.024 and 2.43, (b) 1.025 and 2.44

9.9 (a) 1.00, (b) 1.155

9.10 (a) 9.93, (b) 4.08

9.11 (a) 11.92, (b) 1.127
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9.38 vs; 0.982, 0.988, gs; 0.9984, 0.99997

9.42 6� l010 and l52

10.1 (a) Curves 2, 3, 4, 5, and barely 6. (b) Curves 5 and

6, and possibly 4. Curves 2 and 3 also show another

kind of retrograde behavior that does not have a

common name. If we heat a sample with the

composition of curve 2 at a constant 900 psia, we

cross the dew-point curve twice, which is clearly

retrograde behavior of some kind.

10.4 T� 190�F, yethanc� 0.90, somewhat better than

Raoult’s law.

10.7 T: (a) 80�F, (b) 65 �F, (c) 59�F, yethane; (a) 0.99,
(b) 0.995, (c) 0.989

11.1 14 drops

11.2 b in w, 0.00176, w in b 0.00074

11.5 nleft¼ 0.473, nright,¼ 0.527

11.7 xethanol¼ 0.34, nethanol¼ 3.4 mol

11.10 gheptane¼ 1.11� 105; gwater¼ 3570

11.14 (d), 0.0707 and 0.9293

11.18 A¼ 3.40; B 5¼ 2.52

11.25 61.9%

11.38 The two gs are 1.08 and 1.29.

12.3 �21.4, �4.2, �0.52, all kJ/mol

12.5 � 3500 ppm

12.7 2.57� 10�18, 29.6

12.16 g
�
i ðvapÞ�g

�
i ðliqÞ ¼ 6:3 kJ=mol

12.21 (a) 42.5 kJ/mol, (b) 43.2 kJ/mol

12.25 (a) 0.0195, 0.0128, 0.0026

12.31 (a) 0.0909, 0.5, 0.909, (b) 0.023, 0.5, 0.976

13.2 Molalities of H2SO4;HSO
�
4 ; SO

2�
4 ;Hþ ;

9:5� 10�5; 0:091; 0:0085; 0:108,

13.4 K13.L¼K13.K/K12.E

13.12 pH� 10.9

13.14 Molalities of H2CO3; HCO
�
3 ; CO2�

3 ; Hþ ;
0:0376; 1:27� 10�4; 4:7� 10�11;
1:27� 10�4; pH ¼ 3:895:

13.19 Molalities of H2CO3;HCO
�
3 ;CO

2�
3 ;

1:32� 10�5; 5:9� 10�11; 2:8� 10�20

13.21 6.3 kWh/lbm

13.24 �3.07V

13.36 ydimer¼ 0.972

13.37 57.7 torr, 6226 torr

14.3 P¼ 2.9270 MPa, xi; 0.7956, 0.1233, 0.0811

14.7 (a) 3.41%, (b) 47 stages

14.9 P2/P1� 27 million

14.12 0.8 wt% NaCl

14.13 � 2800 lb water/lb diesel fuel

14.17 354 g/mol (� that of sucrose)

15.2 (a) 1 component, (b) 1 component

15.3 (a) 5 phases, (b) 2 concentrations

15.4 3, 3

15.5 2 independent equations

15.9 1 gas phase and 2 solid phases

15.14 (c), there is a range of pressures at which four

phases exist at equilibrium.

16.4 (a) K¼ 0.476 (b) conversion¼ 0.323
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Accentric factor, 26, 64, 66

Activity, 98, 222

at infinite dilution, 150

liquid phase, 145

Activity coefficient, 96, 98,

148, 326

Raoult’s law type, 122

Activity coefficient equations

Margules, 149

three suffix, 149

NRTL, 150

Scatchard-Hildebrand, 150

symmetrical, 141, 149, 189

van Laar, 126, 190

constants, 312

Wilson, 150

Adsorption, gas-solid or vapor-solid, 204

BET theory, 207

BET method, 208

heat of, 209

hysteresis, 210, 275

ink-bottle pore, 275

Langmuir theory, 207

Ammonia, 1

synthesis plant, 2

equilibrium, 217

Antoine equation, 66

constants, 305

Availability function, 31

Azeotrope, 99, 117, 308

maximum boiling, 116

minimum boiling, 114

Bends, 46

Binary interaction parameter, 156

Binodal curves, 184

Biochemical reactions, 293

apparent equilibrium constants, 297

chemical and biological

equations, 297

enzyme catalyzed, 295

equilibrium in large scale, 296

thermodynamic data

for, 295

Boiling point elevation, 132

molal constant, 134

Brines, 197

Bridgman table, 24, 347

British thermal unit, 22

Bubble point, 114, 171

curve, 114

pressure specified, 128

temperature specified, 127

Bubbles, drops and nucleation, 271

Buffers, 246

Bulk modulus, 330

Calorie, 22

Calorimeter, 23

Capillary condensation, 210, 275

Catalysts, 219

selective, 220

Centrifuges, 268

Chao-Seader correlation, 175

Chemical potential, 53, 82
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Chemical reaction equilibrium, 3, 217

charge-balance calculation method, 246

constant, K, 222

dissociation, 244

ionization, 244

effect of nonideal solutions, nonideal gases, 236

effect of pressure, 234

effect of temperature, 229

electrochemical, 252

gas-liquid, 249

in two phases, 255

involving ions, 243

multiple, 244

sequential, 244

simultaneous, 245

Chemical reaction rate, 4

Chemical vapor deposition, 203

Clapeyron equation, 62, 279

Clausius-Clapeyron equation, 63, 69

Closed system, 16

Cohesive energy density, 159

Colligative properties of solutions, 136, 270

Combined first and second law statement, 29

Compressibility factor, 25, 90

chart, 307

Conservation and accounting, 13

Conservation equation, 13

Conservation of energy, 15

Conservation of mass, 14

Consolute temperature, 186

Continuity equation, 14

Control volume, 13

Convenience properties, 19, 50

Convergence pressure, 175

Corresponding states, 26, 307

Cosolvent, 185

Cricondenbar, 171

Cricondentherm, 171

Criterion of equilibrium, 49

Critical

compressibility factor, 26

condensation pressure, 172

condensation temperature, 171

locus, 172

phenomena of mixtures, 170

phenomena of pure species, 169

pressure, 26

solution temperature, upper, lower, 186, 187

state of mixtures, 169

temperature, 26

Cross-coefficient, 156

Data for corresponding states estimates, 303

Datums and reference states, 21

Dense fluid, 170

Departure functions, 28

enthalpy, 28

entropy, 28

Dew point, 114, 171

curve, 114

pressure specified, 129

temperature specified, 129

Dimerization (association), 255

Dissociation constant, 244

Distillation, 107

bottoms product, 122

fractional, 121

overhead product, 122

Distribution coefficient, 194

Electroneutrality (phase rule), 284

Energy balances, 1, 15

Enhancement factor, 204

Enthalpy, 19

of formation, table, 313

-concentration diagram, 81

Entropy, 18

absolute, 21, 336

balance, 18

of mixing, 97

steam table, 336

Equation of state, (EOS), 24

Beattie-Bridgeman (BB), 25

Benedict-Webb-Rubin (BWR), 26, 93, 339

cubic, 175, 340, 344

for liquids and solids, 329

ideal gas law, 25

little, 27, 92, 103, 157, 174

Peng-Robinson (PR), 158, 340

pressure explicit, 339

Redlich-Kwong (RK), 340

Soave-Redlich-Kwong (SRK), 158, 340

Taylor series, 329

van der Walls (vdW), 25, 340

virial, 25, 155

two-term, pressure explicit, 104

volume explicit, 339

Equilibrium, 1

approaches to, 319

constants, 222

for chemical reaction, 222

criterion of, 320

for distillation, 110

general statements about, 35

mechanical, 36

metastable, 5

neutral, 5

physical, 282

stable, 4

unstable, 5

with gravity or centrifugal force, 266

with surface tension, 271

Equilibrium flash vaporizations, 126

Equilibrium flashes, 126

Equilibrium relations, 1

Eutectic, 197
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Exergy, 31

Extensive properties, 73

Extraction, 181

Faraday’s law, Faraday’s constant, 253

First law of thermodynamics, 15

chemist’s version, 16

Fixed nitrogen, 1

Flashes, 126

adiabatic, 131

isothermal, 130

Flow work, 16

Freezing point depression, 135

molal constant, 135

Fugacity, 40, 84, 89

coefficient, 90, 91, 100

charts, 309

of liquids from VLE, 104

of pure gases, 91

of pure liquids and solids, 94

of pure substances, 323

of species in mixtures, 95, 324

standard (or reference) state, 96

use of, 90

Gas, 37

Gas hydrates (clathrates), 199

Gas, ideal solubility of, 162

Gas-liquid equilibrium, 122

Gas-solid equilibrium, 181, 202

at low pressures, 202

at high pressures, 203

General balance equation, 13

Gibbs free energy, 6

Gibbs energy, 5, 19, 30, 49

change, of reaction, standard, 222

change on mixing, 97

diagrams for chemical reactions, 57, 218

diagrams, 54

direct minimization of, 219

excess, 148

hill, 252

of formation, 335

table, 313

tables, 223

Gibbs, Josiah Willard, 279

Gibbs-Duhem equation, 82, 147

Gibbs-Helmholz equation, 261

Gram mol, 6

Graphite-diamond equilibrium, 56

Hardness (water), 196

Heat, 22

capacities, table, 317

of combustion, 335

of formation, 335

of mixing, 77

differential and integral, 80, 81

of reaction, 223

Helmholz energy, 31, 49, 59, 320

Henry’s law, 39, 41, 122, 160

constant, 41

constants, 306

Heteroazeotropes, 118

High pressure phase behavior cell, 171

Hildebrand, Hildebrand parameter, 159

Ice storm, 69

Ideal gas 25

mixtures of, 95

mixtures of, fugacity, 95

Ideal solubility curve (solid-liquid), 201

Ideal solution, 95, 114, 326

negative deviations from, 115

positive deviations from, 114

Injection energy, injection work, 16

Instability, thermodynamic and mechanical, 176

Intensive properties, 73

Internal energy, 16

Ionic strength, 298

Ionization constant, 244

Irreversible process, 17, 18

Irreversible thermodynamics, 35

Irreversibility, 17

Isothermal compressibility, 330

JANAF tables, 240

K-factor, K-value, 110

DePriester chart, 133

traditional methods, 132

Kelvin equation, 272, 275

Kiloton, 32

Lambda point, 59

Law of mass action, 222

Le Chatelier’s principle, 58

Lee and Kessler tables, 27

Lewis and Randall (L-R) fugacity rule, 102, 154, 173

Liquid-liquid equilibrium, 181

effect of pressure, 190

effect of temperature, 191

elementary theory, 187

ternary, 184

Liquid pairs, 183

miscible, 183

partially soluble, 183

practically insoluble, 183

Liquid phase activity coefficients, 151

effect of pressure and temperature, 151

for ternary mixtures, 154

Liquid-solid equilibrium, 181, 195

elementary thermodynamics of, 200

Mass action law, 219, 222

Mass concentration, 7

Mass fraction, 7

Mass transfer rates, 4
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Material balances, 1

Maxwell relations, 347, 350

McCabe-Thiele, 109

Measurable and immeasurable properties, 22

Mechanical equivalent of heat, 22

Meta-stable state, 51

Methane reforming, 289

Mixing rules, 102, 156

for cubic EOSs, 343

Mixtures, properties of, 28

Molality, 7, 75

Molar volume, 25

Molarity, 7

Mol fraction, 6

Mol, 14

Molecular mass, molecular weight, 6

Nernst equation, 253

Nerve gases, 217

Nonideal behavior, 145

Normal boiling point (NBP), 45, 61

Osmotic pressure, 270

Othmer still, 109

Partial

mass properties, 80

molar derivative, 52

molal derivative, 52

molar enthalpy, 76

molar equation, 74

molar Gibbs energy, 75

molar properties, 52, 73

molar volume, 74

pressure, 39

properties, 73

vapor pressure, 39

Parts per billion, 7

Parts per million, 6

Phase diagram, 8, 9

Phase equilibrium, 3

Phase rule, 279

components, 282

counting variables, 281

degrees of freedom, 282, 286

for one-and two-component systems, 285

Gibbs’, 279, 282

harder problems, 288

independent equations, 285

stoichiometric restriction, 283

Phase, 8, 280

Pitzer-type equations, 26

Plait point, 184

Pound mass, 6

Pound mol, 6, 14

Poynting factor or Poynting correction factor, 95, 237

Power, 16

Property equation, 24

Raoult’s law, 39. 111, 132, 173

Rate equations, 1, 3, 13

Reaction coordinate, 224, 225

Reaction inhibitors, 220

Reaction rates, energy barriers, catalysis, 219

Reality and equations, 8

Reduced pressure, 26

Reduced temperature, 26

Reference states, 21

Regular solution theory, 159

Relative humidity, 38

Relative volatility, 110

Reservoir temperature, 29

Retrograde condensation, 171

Retrograde vaporization, 171

Reverse osmosis, 270

Reversible and irreversible chemical reactions, 227

Reversible process, 17

Reversible work, 29

Reversibility, 17

Saturation concentration, 41

Second law of thermodynamics, 1, 17

Semipermeable membranes, 269

Simple fluid, 66

Solid solutions, 9

Solubility

curves, inverted, 196

diagram, 186

of gases in liquids, 160

parameter, 158

product, 196, 249

Solute, 132

Solvent, 132

Spreadsheet, 127

Stability and equilibrium, 4

Stable equilibrium, 4

Standard states, 124, 221, 227

hypothetical, 125

unsymmetrical, 125

State function, 24

Steady state, 35

Steam distillation, 120

Stoichiometric coefficients, 218, 225

Sucrose, 132, 293

Supercritical extraction, 174, 204

Surroundings, 13

System, 13

Tangent intercepts, 78

Tangent slopes, 75

Thermal expansion, coefficient of, 330

Third law of thermodynamics, 21, 336

Thermodynamics, basic, 13

mechanical engineering, 13

Tie line, 184

Triangular diagram, 185

Triple point, 201
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Units, Conversion Factors, 6

Uranium enrichment, enriched uranium, depleted uranium, 268

van’t Hoff equation, 229, 232

Vapor deposition, 203

Vapor phase non-ideality, 155

Vapor, 37

Vapor pressure, 61

curve, 37

of mixtures, 69

of solids, 69

Vapor-liquid equilibrium (VLE)

at high pressures, 169, 174

at low pressures, 107

calculations from cubic EOSs, 176, 344

effect of modest pressures, 122

from EOS, 158

measurement of, 107

non-ideal, 145

of solids, 69

phi-gamma representation, 111

presenting experimental data, 110

ternary and multi-species, 153

Vaporization equilibrium ratio, 110

Virial coefficients, 25

Volume fraction, 159

Volume residual, 90

Water and oil don’t mix, 182

Water vapor, 37

Weight fraction, 7

Work, 22

Young-La Place equation, 271

Zero solubility, 120
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Common Units and Values for Problems and Examples

For all problems and examples in this book, unless it is stated explicitly to the contrary,

assume that

The acceleration of gravity is g¼ 32.17 ft/s2¼ 9.81m/s2

The surrounding atmospheric pressure is the “standard atmospheric pressure,” Psurroundings¼Patmospheric¼ 1

atm¼ 14.696� 14.7 lbf/in2¼ 33.89 ft ofwater¼ 10.33m ofwater¼ 29.92 inches ofmercury¼ 760mmofmercury¼
760 torr¼ 101.3 kilopascal¼ 1.013 bar¼ 1.033 kgf/cm2

If the fluid in the problem or example is water, then it is water at 1 atm pressure and 20�C¼ 68�F¼ 293.15K¼
528�R, for which

r ¼ 62:3 lbm=ft3 ¼ 998:2 kg=m3 ¼ 3:46 lbmol=ft3 ¼ 55:5 kgmol=m3 ¼ 55:5 mol=L

m ¼ 1:002 centipoise ¼ 1:002 � 10�3Pa � s ¼ 6:73 � 10�4lbm=ft � s ¼ 2:09 � 10�5lbf � s=ft2
n ¼ m=r ¼ 1:004 � 10�6m2=s ¼ 1:004 centistoke ¼ 1:077 � 10�5 ft2=s

If the fluid in the problem or example is air, then it is air at 1 atm pressure and 20�C¼ 68 �F¼ 293.15K¼ 528�R,
for which

r ¼ 0:075 lbm=ft3 ¼ 1:20 kg=m3 ¼ 2:59 � 10�3 lbmol=ft3 ¼ 41:6 mol=m3

m ¼ 0:018 centipoise ¼ 1:8 � 10�5Pa � s
n ¼ m=r ¼ 14:9 centistoke ¼ 1:613 � 10�4 ft2=s ¼ 1:488 � 10�5m2=s

CP ¼ 3:5R ¼ 6:95 Btu=lbmol � �R ¼ 6:95 cal=mol �K
Any unspecified gas will be assumed to have the properties of air at 1 atm and 20�C shown above. Standard

temperature and pressure (stp) means 1 atm and 20 �C¼ 68�F.

Air is assumed to be an ideal gaswithM¼ 28.964� 29 g/mol,with a chemical composition, on a dry basis, expressed

as mol fraction of 78.08%N2, 20.95%O2, 0.93%Ar, 0.03%CO2, all others less than 0.01%. Because argon behaves

in most situations (e.g., combustion) the same way as nitrogen, this is normally simplified and rounded to 79% N2,

21%O2. Although the values are normally given on a dry basis, it is often important to know thewater content of the

atmosphere. At 20�C and a relative humidity of 50%, air contains 0.0116mol water/mol air¼ 0.0072 lb water/lb air.

For any ideal gas, the volume per mol is given by v¼RT/P. Wherever R appears in this book it is the universal gas

constant, shown below. For real gases at 1 atm pressure this is an excellent approximation.

Values of the Universal Gas Constant

R ¼ 10:73ðlbf=in2Þft3
lbmol � �R ¼ 0:7302atm � ft3

lbmol � �R

¼ 8:314m3 � Pa
mol �K ¼ 0:08206L � atm

mol �K ¼ 0:08314L � bar
mol �K

¼ 1:987Btu

lbmol � �R ¼ 1:987 cal

mol �K ¼ 1:987 kcal

kgmol �K ¼ 8:314J

mol �K

Chemical engineers normally work with the universal gas constant R. Several other branches of engineering use

separate values of R for each gas. These are defined by Rindividual¼Runiversal/M, so that, for example,

Rair ¼ Runiversal

Mair

¼
10:73

ðlbf=in2Þft3
lbmol � �R

28:96
lb

lbmol

¼ 0:3705
ðlbf=in2Þft3

lb � �R ¼ 53:35
ft � lbf
lb � �R
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