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PREFACE 

This book has one single purpose: to present the development of the partial 
hybrid finite element method for the stress analysis of laminated composite structures. 
The reason for this presentation is because the authors believe that partial hybrid finite 
element method is more efficient that the displacement based finite element method for 
the stress analysis oflaminated composites. In fact, the examples in chapter 5 of this 
book show that the partial hybrid finite element method is about 5 times more efficient 
than the displacement based finite element method. Since there is a great need for 
accurate and efficient calculation of interlaminar stresses for the design using 
composites, the partial hybrid finite method does provide one possible solution. 

Hybrid finite method has been in existence since 1964 and a significant 
amount of work has been done on the topic. However, the authors are not aware of any 
systematic piece of literature that gives a detailed presentation of the method. Chapters 
1 and 2 present a sununary of the displacement finite element method and the evolution 
of the hybrid finite element method. Hopefully, these two chapters can provide the 
readers with an appreciation for the difference between the displacement finite element 
method and the hybrid finite element. It also should prepare the readers for the 
introduction of partial hybrid finite element method presented in chapter 3. In this 
chapter, a new composite variational principle is presented along with the formulation 
of the partial hybrid finite element. One of the most trouble aspect of the hybrid finite 
element method is the determination of the stress modes. Section 3.4 provides three 
different methods for systematic determination of the stress modes. In chapter 4, many 
partial hybrid finite elements are introduced. These include the single layer finite 
elements and the multilayer finite elements. Among the two groups of these elements, 
there are solid element for the local region, the laminated element for the global region 
and the transition element for the transition region. These elements are useful for the 
application of the globa1/local approach used in chapter 5. Many examples to illustrate 
the efficiency of the partial hybrid finite element method are presented in chapter 5. 
These include problems with free edge effects such as laminate with straight edges 
subject to uniaxial extension and laminates with holes and subjected to in plane tension. 
These results show that the partial hybrid elements can provide accurate interlaminar 
stresses with strong efficiency. 

This work is the culmination of three generations of Ph.D students in the 
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Chapter 1 

INTRODUCTION 

1.1 INTRODUCTION 

When one talks about doing analysis of composites, one tends to mean the 
analysis of long continuous fibre laminated composites. This is because, while other 
forms of composites (such as short fiber composites) do exist and are important, they 
can be adequately assumed to be isotropic for analysis purposes, and the analysis 
(stress analysis, vibration, buckling) of structures made of these materials can be 
proceeded in a manner similar to the case of isotropic materials. The analysis of long 
continuous fiber reinforced composites, on the other hand, presents additional 
complication. For example, there is the anisotropy due to fiber orientation and the 
state of stress depends on the stacking sequence of the laminated composites, the 
fibre orientation of each lamina as well as the material properties of the fibre and of 
the matrix. Therefore, finite element method is widely used in the analysis of 
structures made of long continuous fiber reinforced composites. This is due to the 
power of the technique to be able to model the laminated composite structures not 
only in the planer dimensions, but also in the thickness direction. It is also due to 
the availability of many commercial finite element codes such as ALGOR, ANSYS, 
MSCINASTRAN, PATRAN3, and so on. The finite element methods as discussed 
in this book are restricted to the analysis of structures made of long continuous fibre 
composite materials. 

Analysis of structures made of composites (or for that matter of structures 
made of any material) can be classified into three categories. These are the stress 
analysis, vibration analysis and instability (buckling) analysis. In vibration and 
buckling analyses, eigenvalues are solved, eigenvectors are extracted and engineering 
quantities such as vibration frequencies andlor critical buckling loads are derived. 
For these analyses, the overall stiffness of the structure is important and the analyst 
may afford to model the composite structure with a small number of fairly large 
elements to obtain accurate results. The purpose of stress analysis, on the other hand, 
is to provide stress or strain values so that failure or residual life can be predicted. 
Since failure of a structure is determined by the failure of its weakest link, it is 
important to determine accurately the stresses at the critical locations in the 
composite structures. These analyses may require a large number of elements and 
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a fine element mesh. Different types of the analysis of composite structures therefore 
require different types of finite elements and element meshes. 

There are a few elements which can be chosen in the commercial finite 
element programs for analysis of structures made of composites. Finite elements in 
different programs are based on different theories. The power of the programs 
depends essentially on the basic theory formulating the element. In general, 
composite structures are modelled using one of the following two classes of 
theories[1.1-1.2]: 

1. Equivalent single-layer 2-D theories[1.3-1.8], in which deformable 
models are based on global through-the-thickness displacement, 
strain and stress approximations; 

2. 3-D continuum theories[1.9-1.10], in which each of the individual 
layers of a composite structure is treated as a three-dimensional 
continuum. 

Corresponding to two classes of theories above, the finite element models can be 
classified into three classes: laminated elements based on the equivalent single-layer 
2-D theories; 3-D solid elements and multilayer elements based on the 3-D 
continuum theories. 

Laminated Elements 

The close to exact modelling of laminated composites requires the 
discretization not only along the surface of the composite structure (usually plate or 
shell) but also across the thickness of the structure (across the different layers). This 
discretization can result in a large number of elements which translates into large 
requirement in computer space and time. In addition, the aspect ratios in the 
elements can become excessive. Large aspect ratios may create problems in shear 
locking. Due to these problems, the detailed and thorough modelling of the 
composite is usually avoided if possible. Fortunately, this can be done without much 
sacrifice in accuracy in problems where the overall stiffness of the structure is 
important and the detailed and accurate stresses (particularly interlaminar stresses) 
at different points in the structure are not of concern. Problems such as the 
determination of vibration frequencies and mode shapes, the determination of critical 
buckling loads and buckling modes fall into this category. For the analysis of these 
problems, the stiffness of the laminate is obtained by integration of the stiffness of 
individual layers across the thickness. The thickness of each finite element is the 
same as the thickness of the laminate. By smearing the thickness of the individual 
layers, significant reduction in computer requirements can be achieved. This type of 
elements is called as the "laminated element" [1.5]. In the laminated elements, 
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therefore, the variation in fibre orientations and material properties across the 
thickness is integrated to obtain a single property across the thickness. As indicated, 
this element can be used for problems such as vibration or buckling but does not 
provide useful results if interlaminar stresses are required. 

3-D Solid Elements and Multilayer Elements 

For problems where the analyst is interested in the prediction of failure of 
the composite structure, it is important to know the stresses (particularly interlaminar 
stresses) accurately. As such, the composite structure needs to be modelled in great 
details, particularly at locations where there is suspicion of large stress gradients. 
Thus, 3-D solid elements and multilayer elements are usually used for these 
problems. In 3-D solid elements [1.11], no specific kinematic assumptions are 
introduced regarding the behaviour of a laminated composite. Across the thickness 
of the laminated composite, each layer is modelled using one or more elements. It 
takes the behaviour of the individual laminae into consideration. In the multilayer 
elements [1.12], the individual laminae are modeled using one or more 3-D sub­
elements. These sub-elements are then assembled through the thickness according 
to the continuity conditions on displacements and stresses. In order to minimise the 
problem of large aspect ratios, the planar dimensions of the elements should be kept 
to be not too large compared to the thickness of the element. Because composite 
laminae are very thin and a typical laminated composite may contain many laminae, 
this usually results in an excessively large number of elements which means large 
requirements in computer space and time. 

Many problems such as delamination and splitting, which are the common 
modes of failure in composites, require determination of accurate stresses, 
particularly interlaminar stresses. However, the limitation of computer capacity limits 
the ability of composite analysts to obtain a good handle in the prediction of failure. 
The solution to this problem can be done from two directions: the development of 
more powerful computers (within the affordable costs) which depends on the 
capacity of computer scientists and engineers, and/or the development of more 
efficient finite elements for the stress analysis of laminated composites. 

The task of developing good finite elements never seems to be finished for 
the stress analysis of laminated composites. Today, the majority of finite element 
analysis for composite structures is using single-field finite elements that are 
formulated based on displacement. This is due to the simple approach to the element 
formulation provided by displacement finite element model. The displacement finite 
elements work well with the stress analysis of homogenous materials. However, they 
can not satisfy well the requirements in analysis of laminated composites. As an 
alternate, the conventional hybrid stress elements [1.13-1.17] have been used to 
analyze them. In order to show the advantages and disadvantages of displacement 
elements, this chapter will briefly present the finite element method based on 
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displacement formulation, and then, it will give the motivation for developing hybrid 
finite elements. The basic knowledge of the theories of laminated composite is 
referred to the literature [1.18-1.20]. 

1.2 DISPLACEMENT FINITE ELEMENT METHOD 

Finite element method is an approximate technique. This means that the 
continuous structure is discretized into a number of continuous elements connected 
together at a number of nodes. As the number of elements increases, the 
approximation of the structure becomes more and more accurate. The solution 
obtained from finite element method therefore is an approximate solution. As the 
number of elements increases, the general tendency is that the finite element solution 
also approaches the exact solution. 

The finite element procedure for stress analysis of structures is a systematic 
numerical approximation which can be implemented on a computer. Its generality 
fits the analysis requirements of today's complex engineering systems and designs 
where closed-form solutions of governing equations are usually not available. In 
general, finite element analysis of structures is performed by following six steps: 
discretizing the structure, deriving element equations, assembling elements, imposing 
essential boundary conditions, solving primary unknowns, and calculating secondary 
quantities. 

Discretizing the Structure 

First of all, in order to analyze a structure using finite element method, the 
structure must be discretized into a suitable number of "small" bodies, called "finite 
elements", which are quasi-disjoint non-overlapping elements. These elements are 
connected by using a set of key points, called "nodes" ( see figures 1 and 2). 

How to discretize a structure or how many elements to be used depends on 
the problem to be analyzed. In general, the region where large gradients of 
displacements and/or stresses to be expected is discretized into many elements (fine 
mesh); otherwise, the region is modeled using few elements (coarse mesh). For 
example, if a structure contains a crack or a open hole, the local region near the 
crack or the hole is usually divided into many "very small" elements in order to 
predict accurately the response of the structure. In addition, what type of element to 
be used depends on the characteristics of the continuum. For laminated composite, 
plate/shell elements are commonly used to predict vibration frequencies and critical 
buckling loads of structures, and 3-D solid elements and multilayer elements are 
usually used to predict stresses in the structures. 
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Figure 1 Plane stress problem Figure 2 A plate with a hole 

Deriving Element Equations 

Once the mesh of structures is generated and the type of elements is 
determined, element equations (mass matrix, stiffness matrix, nodal loading vector, 
etc.) can be derived. Four methods are available to derive element matrices and 
equations: the direct method, the variational method, the weighted residual method, 
and the energy method. In this book, the variational method for deriving the element 
equation is presented. 

The variational principle is stated as I5I\=O [1.21] with 

(1-1) 

where u is the displacement ueld. F and T are respectively the prescribed body 
forces in the domain Vo and boundary traction along the boundary So. In the 
equation, the strain energy U is 

(1-2: 

where the strains E must satisfy the compatibility equation, i.e the strain 
displacement relation. 
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In the finite element approach, when the domain V to be analyzed is 
decomposed into a finite number of non-overlapping subdomains Ve which are called 
the elements, these elements will be interconnected at a finite number of points 
called the nodal points. In an element, therefore, the displacement u is described by 
the nodal displacement Oe 

u = [NJ 6. 
(1-3) 

where [N] is the displacement shape function. Using the strain displacement relation, 
the strains can then be computed in terms of the nodal displacements as, 

e= [B] 6. and 1 e .. =- (u· ·+u· .) 
~] 2 ~,] ],~ (1-4) 

where [B] is the geometry matrix. Substituting equations (1-2), (1-3) and (1-4) into 
equation (1-1), the variational functional can be rewritten as 

IIp= ; 6;{fv .. [B] T[C] [B] dV) 6. 
(1-5) 

-6; (r [NJ TF dV+ r [NJ T'l' dS) 
Jvo JSg 

Denote 

[KJ e= J, [B] T [C] [B] dV 
Vo 

(1-6) 

r.= J, [NJ TF dV+ f [NJ T'l' dS 
Vo Sg 

where [C] is the material constant matrix, [K]e is usually referred to as the element 
stiffness matrix and f. is the equivalent nodal force vector. Thus, the governing 
equation of the element is obtained by using 01\=0, 

(1-7) 

By means of this formulation, equations of all displacement elements in the finite 
element model can be derived. 
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Assembling Elements 

Once the element equations (1-7) are established, the global equations that 
define approximately the behavior of the structure can be assembled by means of the 
continuity conditions between adjacent elements. For example, the displacements of 
two adjacent points in the finite element model must have identical values. 
Algebraically, the ranges of indices on element matrices [K]e and fe can be expanded 
to the total number of degrees of freedom of the structure. It is equivalent to adding 
rows and columns of zeros in [K]e and fe for all degrees of freedom which are not 
contained in the element. Thus, the assembly of the global stiffness matrix and load 
vector is accomplished by the summation of element contributions as 

N 

.t=:E .tt 
~=1 

(1-8) 

where N stands for the number of elements. Finally, the global equations are 
obtained and can be expressed in matrix notation as 

[K] a = .t 
(1-9) 

Loading 

Structure 

Figure 3 Prescrbing displacements on boundary Sl 
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Imposing Boundary Conditions 

Boundary conditions are the physical constraints or supports that must exist 
so that the structure can stand in space uniquely. These conditions are commonly 
specified in terms of known values of the nodal displacements on a part of surface 
or boundary SI (see figure 3). The global stiffness matrix [K] and load vector f are 
modified by applying boundary conditions to produce the final global matrix [K] and 
vector f. A simple way is to replace the equations for nodes on the boundary by the 
prescribed nodal value and modify the other equations accordingly. 

Solving Primary Unknowns 

The global equations (1-9) are a set of linear algebraic equations, which can 
be expressed in the form as 

~lUl+~2U2+" .+K1nun;f1 

K:UUl +K22~+' •• +K2nUn;f2 

(1-10) 

where, the unknown nodal displacement ui (i=1,2, .. ,n) are called primary unknowns 
because they appear as the first quantities sought in the basic equations (1-10). There 
are many methods to solve the set of equations, such as Gaussian elimination and 
iterative methods. The choice of appropriate solution algorithms will affect the 
overall efficiency of the computation. 

Calculating Secondary Quantities 

Secondary quantities must be computed from primary quantities. In solid 
mechanics, such quantities can be strains and stresses. They are calculated from the 
displacement by means of numerical differentiation. With the strains 

8= [B] I. 
(1-11) 

the stresses 
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CJ= [C] 8 
(1-12) 

can be computed when nodal displacement Oe are known. Matrix [B) is a function 
of the coordinates and must be evaluated at the point where stresses are desired. In 
the displacement finite element models, the displacements are guaranteed to be 
continuous across the boundary of adjacent elements, but the strain and hence stress 
continuity across the boundary is not guaranteed. They may take different values on 
the two sides of the interface between elements. In order to satisfy the continuity 
condition of stresses at the interface, hybrid elements are introduced. This will be 
discussed later. 

1.3 ASSUMED DISPLACEMENT FIELD 

For finite element computation, the approximation space, a space of finite 
dimension, is generated from element basis functions. For instance, an approximate 
displacement solution can be expressed in the form, 

m 

ui=E aijgj (X,y, z) 
]=1 

(i=l,2,3) (1-13) 

where gj(x,y,z) are element basis functions. Because these functions limit the infinite 
degrees of freedom of the system, the properties of these functions determine the 
character of the finite element approximation space. In order to ensure convergence 
to the correct result, three simple requirements have to be satisfied [1.22]. 

Requirement 1: 

The displacement function chosen should be such that, when the nodal 
displacements are caused by a rigid body displacement, the element is 
able to reproduce the rigid body motion. 

Requirement 2: 

The displacement function chosen should be such that, if nodal 
displacements are compatible with a constant strain condition, the element 
is able to reproduce the constant strain deformation. 

Requirement 3: 

The displacement function chosen should be such that the strains at the 
interface between adjacent elements are finite. 
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A number of mathematical functions such as trigonometric series and 
exponential functions can be used as element basis functions. However, orthogonal 
polynomials are more appropriate as basis functions because of the ease and 
simplification they provide in the finite element formulation. The choice of 
polynomial depends on the type of element used. 

Compatible Elements 

In the regular finite element method in solid mechanics, a compatible 
(conforming) displacement field is often used as the dependent variable. In this case, 
the number of terms in the polynomial must be equal to the total number of degrees 
of freedom associated with the element, otherwise the polynomial may not be 
unique. Thus, for a bar element with two nodes, one degree of freedom at each node 
(see figure 4a), the displacement can be assumed in the form of a two-term 
polynomial 

(1 - 14) 

For a triangular element with three nodes in a two dimensional problem, 
two degrees of freedom at each node (see figure 4b), the displacement can be 
assumed in the form of two three-term polynomials 

(1 - 15) 

2 3 2 

• • 60 2 1 

3 1 4 1 

(a) (b) (c) 

Figure 4 I-D and 2-D linear elements 



INTRODUCTION 11 

Furthermore, for a rectangular element with four nodes in a two dimensional 
problem, two degrees of freedom at each node (see figure 4c), the displacement can 
be assumed in the form of two four-term polynomials 

(1 - 16) 

where the coefficients II; and bi are called generalized variables. For the polynomial 
series, the three requirements for convergence above can be met by satisfying the 
continuity and completeness conditions. 

Continuity means that these functions and their derivatives, where required, 
must be continuous within the element domain and across the interface between 
adjacent elements. The linear function (eq. 1-14) is indeed continuous within the 
elements. For compatibility, continuity condition across the interface between 
adjacent elements, it is necessary that the coordinates and displacements of the 
elements at the interface be the same. Because the coordinates and displacements of 
an element on the interface are determined only by nodes and nodal degrees of 
freedom on that interface, compatibility is satisfied if the adjacent elements have the 
same nodes on the interface and the coordinates and displacements on the interface 
are defined in each element by the same polynomial functions (see figure 5 a and 
b). 

.-

/ 
El E2 E3 0 

\ .-

(a) Continuous displacements (b) Discontinuous displacement 

Figure 5 Compatibility condition between elements 
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Completeness means that the polynomial functions must contain the 
constant and linear terms so that the element nodes can be given rigid body 
displacements without producing strain within the element and can always recover 
state of constant strain. For instance, the linear approximation (eq. 1-14) contains the 
constant term a1 which allows for the rigid body displacement mode. Also, in one 
dimensional problem, the linear approximation (eq. 1-14) contains linear term a2x 
which guarantees that the element is able to recover the state of constant strain. This 
condition implies that, when the element becomes smaller and smaller, the strain in 
the element approaches a constant value. 

The necessary terms for a complete polynomial are presented by Pascal's 
triangle which is shown below. 

1 

x Y 

x2 xy y2 

x3 x2y xy2 l 
X4 x3y x2y2 xl y4 

Thus, a complete quadratic polynomial is of the form 

(1-17) 

and requires an element with six degrees of freedom to uniquely define 3.;. Moreover, 
a complete cubic polynomial is of the form 

a1 + a2x+ a3y+ a,x2 + asxy+ a6y2 

+ ~X3 + aax2 y+ agxy2 + a1oy3 

(1-18) 

and requires an element with ten degrees of freedom to uniquely define 3.;. 

Furthermore, the completeness condition also requires to use the least-order terms 
in displacement basis function. 
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Non-compatible Elements and the Patch Test 

Compatible elements are always desired in finite element analysis. But in 
some cases, there is considerable difficulty in finding displacement basis functions 
for an element which guarantees that displacements are continuous on the interface 
between adjacent elements. The discontinuity of displacements will cause infinite 
strains at the interface. However, if a non-compatible (nonconforming) element can 
pass a test, called patch test, the finite element solution will still tend to the correct 
answer when the size of elements tends to be small and the element mesh of a 
structure becomes very fine. The detail discussion of non-compatible elements is 
beyond this book and is referred to the literature [1.22]. 

The patch test was first introduced by Irons [1.23]. To do a "patch test", one 
assembles a small number of elements into a "patch". The meshes suitable for patch 
test calculations in 2-D patch are shown in figure 6. Then, the nodal forces 
corresponding to a series of constant stress states are applied to boundary nodes of 
the patch. If, computed stresses in the element always agree with expectation, the 
patch test is passed. If an element passes the patch test, the solution of the finite 
element model using this type of element will converge to a correct result. Today, 
the patch test serves as a necessary and sufficient condition for correct convergence 
of a finite element formulation. 

Figure 6 The element meshes for patch test 

Isoparametric Elements and Numerical Integration 

Isoparametric elements first appeared in the literature in 1966 [1.24]. In the 
displacement finite element, there are two entities that need to be approximated. The 
first is physical (the displacement field) and the second is geometrical (the shape of 
the element). Therefore, it must be decided whether to approximate physics and 
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geometry equally or to give preference to one or the other in the element. For 
isoparametric displacement elements, both element geometric shape and displacement 
interpolation polynomial are required to be mapped from the global coordinate 
system to the parametric coordinate system (see figure 7a and b). The term 
"is oparametric " , meaning "same parameters", follows from use of the same 
interpolation polynomial to define both the geometry and the displacement field of 
an element. Thus, the coordinates of a point within an element and the displacement 
of the element can be expressed in the same form, 

~ 2&1) 
6 8 ~ 

3 (-1,-1) 7 4 

Parametric space 

n 
y 

~ 2 4 
6 7 

3 X 

Z Cartesian space 

Figure 7a Two-dimensional isoparametric element 
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11 3~ __ 2 (-I. I. 1) 

• (1. -I, 1) 9 14 
16 
8 17 6 

5 (I, 1,-1) 

Parametric space 

y 

8 
x 

Cartesian space 

Figure 7b Three-dimensional isoparametric element 

m m m 

X=fuNi<e,'!,C)Xi Y=fuNi<e,'!,C)Yi Z=kNi<e,'!,C)Zi 
(1-19) 
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Equation (1-19) allows elements with curved sides because the element 
sides are fitted between the nodes. In standard-type element formulation, this is not 
possible because the element sides are always straight regardless of any mid-nodes. 
The shape functions Ni for various elements can be found in the literature [1.25). For 
examples, in two dimensional problem, the shape functions of a linear element (see 
figure 8) are 

~ 

2 1 ( I. 1) 

3 (-1.-1) • 

(a) Linear element 

~ 

2 5 1 ( I. 1) 

6 
8 ~ 

3 (-i,-I) 7 4 

(b) Quadratic element 

Figure 8 Two-dimensional elements 
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(1-20) 

in which, 
(1-21) 

where ~, and Tli are the local co-ordinates of node i in the element parametric space. 
The shape functions of a quadratic element (see figure 8) in two dimensional 
problem are 

in which, 

Ni = ! (l+~o) (l+"o) (~o+"o-l) ~~,,~ 

+ ; (1-~2) (l+"o) {1-~~),,~ 

+ ; (1-,,2) (l+~o) (1-,,~) ~~ 

(i=1,2, ... ,8) 

(1-22) 

(1-23) 

In three dimensional problem, the shape functions of a linear element (see 
figure 9) are 

(1-24) 

in which, 

(i=1,2, ... ,8) (1-25) 

where ~, Tli and ~ are the local co-ordinates of node i in the element parametric 
space. The shape functions of a quadratic element (see figure 9) are 
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3 2 (-1. 1. 1) 

4 (I. -I. I) ~.L....f-!:,r 
->-+--+-- ~ 

(a) linear element 

11 3 10 2 (-1. I. 1) 

4 (1. -1. 1) ~-:,-+-o.r 
16 7 LL-::t=:-±-:---- ~ 

8~-.y 

(b) Quadratic element 

Figure 9 Three-dimensional elements 

Ni = ~ (1+~0) (1+T)0) (1+{0) (~0+T)0+{0-2) ~~T)~{~ 

+ ! (1-~2) (1+T)0) (1+{0) (1-~~) T)~{~ 

+ ! (1-T)2) (1+{0) (1+~0) (1-T)~) {~~~ 

+ ! (1-{2) (1+~0) (1+T)0) (1-{~) ~~T)~ 

(1-26) 
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in which, 
(1-27) 

(i=1,2, ... ,20) 

In order to perform the evaluation of isoparametric element matrices, a 
coordinate transformation of derivatives is required because the displacements are 
given in terms of parametric coordinates ;, 11, and ,. Therefore, the Jacobian 
matrices must be calculated. For two dimensional problem, the jacobian matrix is 

(1-28) 

The derivatives of displacements are written in the form 

(i=1,2) (1-29) 

The element stiffness matrix is 

[IC] e=/v [B] T[C] [B] tdxdy=r:r: [B] T[C] [B] det[J] tdedTt (1-30) 
• 

where t is the thickness of the element. For three dimensional problem, the Jacobian 
matrix is 

ax ay az 
a~ a~ ae 
ax ay az (1-31) 

[J] = mt mt mt 
ax ay az 
a{ a{ a{ 
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and the transformation of derivatives and stiffness matrix is similar to the two 
dimensional case. The integral in equation (1-30) is evaluated numerically using 
Gauss quadrature. Sampling points are required to evaluate integrals numerically by 
using Gauss quadrature. The number of sampling points used to evaluate element 
integrals is given in Table 1. 

Table 1 Two-dimensional Gauss quadrature order 

Number of nodes Element shape Reliable Gauss Reduced order 
quadrature order 

4 L 7 [ill Same a • 

2x2 

'\ .. ~ I: - ~: I 8 Il Jl 2x2 a Il 

3x3 

l.:7 I_ a HI 
to " "" 12 -..... 3x3 lC Ii • a 

4x4 

1.4 DISPLACEMENT ELEMENT FORMULATION 

As mentioned above, there are three classes of displacement finite elements 
for the analysis of composite structures: laminated elements, 3-D solid elements, and 
multilayer elements. The element matrices and equations of these elements can be 
obtained by using equations (1-6) and (1-7). 

Laminated Plate/Shell Element 

One way to derive element formulation for the behaviour of plate/shell is 
to apply specific kinematic constraints to the full three-dimensional elasticity 
equations. This 'degeneration' of the three-dimensional elasticity equations is the 
basis for many plate/shell formulations. Based on the kinematic assumptions, the 
number of displacement parameters through the thickness can be significantly 
reduced compared to 3-D modelling. 
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A 4-node degenerated plate element (see figure lOa) is presented as follows. 
Firstly, the global co-ordinates (x,y,z) of any point within the element can be 
expressed in the form specified by the 'vector' connecting the upper and lower points 
(see figure lOb) and the mid-surface co-ordinates as 

(1-32) 

(a) (b) 

Figure 10 A degenerated plate/shell element 

where 

(1-33) 

and 

(1-34) 

The Ni(I;,11) are shape functions, I; and 11 are the normalized curvilinear co-ordinates 
in the middle plane of the plate/shell, ~ is a linear co-ordinate in the thickness 
direction and only approximately normal to the mid-surface initially, and (X;, Yi' 
z; ) are the global co-ordinates at node i. The shape functions are 
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(1-35) 

in which, 

(i=1,2,3,4) (1-36) 

In the element, the displacement field is assumed as a continuous field 
through the entire laminate thickness. It is also assumed that a line that is straight 
and normal to the middle surface before deformation is still straight, but not 
necessarily 'normal' to the middle surface after deformation. The displacement 
throughout the element will be uniquely defined by three Cartesian components (Ui, 

Vi and Wi) of the displacement of the mid-surface node i, two rotations (axi and 
a yi ) of the nodal vector V 3i about orthogonal directions normal to it, and one 
transverse normal deformation (aZi ) in the thickness direction. 

(1-37) 

in which, V Ii' V 2i and V 3i are the unit vectors of the local co-ordinate (I;, 11, ~) at 
node i. They can be calculated as follows: 

J~li} 
V11=~~~ 

If i x V 3i = 0, i can be replaced by j. Thus, the displacement field is 

They can be rewritten in the form 

(1-38) 

(1-39) 
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where 

b lli 

[bi] = b:i!1i 

bUi 

Ni 0 0 Ni{blli Ni {b12i Ni {b13i] 

[.NJ i= 0 Ni 0 Ni{~li Ni {b22i Ni{~3i 

o 0 Ni Ni{~li Ni {b32i Ni{~3i 

The strains are 

E = 

where vecotr 5i is shown in equation (1-42), 
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(1-40) 

(1-41) 

(1-42) 

(1-43) 

(1-44) 

(1-45) 
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and 

Ni,x 0 0 blliCix 

o Ni,y 0 b21iCiy 

Ni,y Ni,x 0 blliCiy +~liCix 

b 12iCix b 13i Cix 

~2iCiY b23iCiy 

~2iCiY +~2iCix b13iCiy +~3iCix 

~2iCiz b 33i Ciz 

b22iCiz+~2iCiY b23iCiz+~3iCiy 

~2iCix+~2iCiz b33iCix+~3iCiz 

(1-46) 

In order to calculate Ni,x' Ni,y' Ni,z and ~,x' ~,y' ~,z , the following vectors are 
introduced: 

(1-47) 

(1-48) 

~,e} 4. h 
V= ,e =E Ni ---2:. V31 

z,e ~=1 2 

(1-49) 

then, the Jacobian matrix is 

[ J ] = [S T V ]T (1 - 50) 
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Now 

and 

[ 1]-1 = [TxV VxS SxT] I I J I 

I J I = SxT·V 

in which, N i.~ = O. So the expression (1-54) can be rewritten as 

and 

The stiffness matrix can be expressed in the form 

[K] ,,=1-:1-:1-: [B] T[:r]T[C] [:r] [B] det[17J d~dlJd' 

where 

25 

(1 - 51) 

(1 - 52) 

(1-53) 

(1-54) 

(1-55) 

(1-56) 

(1-57) 
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1; m; 111llt n; 1llt~ ~11 

1; m: 1:aIna n; Inan:a n:a1:a 

[TJ = 2111:a 21lltlll:a 11ll1:a + 1:a1llt 2~n:a 1lltn:a+llI:a~ ~12+n:a11 

1; m; 13m, n; m,~ n313 (1-58) 

21:a13 2Inam, 1:am,+13ll1:a 2n:a~ llI:a~ +m,n:a n:a13 +n31:a 

21311 2m,1llt 131llt + 11m3 2~n1 m,~ +1llt~ ~11 +~13 

[T] is the transformation matrix for the derivatives of displacements from 
global co-ordinate (x, y, z) to local co-ordinate. The direction cosines of the local 
co-ordinates are 

(1-59) 

~1} 1xV: V. - - I 
1- 1 -11xV31 

(1-60) 

This element is known to have 'locking' problems due to inconsistencies in 
the modelling of transverse shear energy and membrane energy [1.26-1.27]. The 
locking can be avoided by using reduced integration [1.26]. Although the reduced 
integration solution is the most economical way, the process allows some elements 
to exhibit spurious displacement modes. In the element proposed by Barboni and 
Gaudenzi [1.28], the displacement components of a higher-order element are 
expanded in power series along the thickness direction. This element is found to be 
less sensitive to locking. In general, the higher-order elements [1.29-1.30] are less 
prone to membrane and shear locking problems. However, the transverse strains will 
be continuous across the interlaminar surface in the higher-order elements. Thus, 
discontinuous transverse stresses will be obtained after multiplication of 
discontinuous material properties. This is the main drawback of the general higher­
order plate theories for analysis of composite structures. 
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Laminated Solid Element 

A special 3-D, 20-node laminated element (see in Figure 11) was developed 
by Hoa et al [1.31-1.34] based on the equivalent single-layer theory [1.3]. Each 
element contains all of the layers in the thickness of the composite structure which 
is assumed to be in a three dimensional stress state. In the element, the displacement 
field is assumed over the entire thickness, 

(1-61) 

5 

Figure 11 20-node finite element 

where 
(l - 62) 

(1 - 63) 

[N] = [ [N]l [Nh ...... [Nho ] (1 - 64) 

[N.1 i= 
(1-65) 

With the origin of the co-ordinates at the centroid as in Figure 11, the Ni is 
expressed in the equation (1-26). The linear strain-displacement equations are 
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£ = au 
x ax 

£ = av 
Y ay 

£ = aw 
• az 

y = au+ av 
xy ay ax 

_av+aw 
YY.- az ay 
Y = aw + au 

xz ax az 

Equation (1-66) can be put in the form: 

(1-66) 

In the local co-ordinate ~T\' system, the elastic constant matrix [C'] can be 
obtained from the matrix [C] which is in the material co-ordinate system. For ease 
in integration and assembly, it is necessary to express the local co-ordinate strains 
e' in terms of the global nodal displacements o. They are obtained from 

au' av' aw' au av aw 
ax' ax' ax' ax ax ax 
au' av' aw' =[L]T au av aw [L] ay' ay' ay' ay ay ay (1-68) 

au' av' aw' au av aw 
az' az' az' az az az 

where 
[L]=[V,V2 V3 ] (1 - 69) 

V" V 2 and V 3 are three unit normal vectors at a point P based on the direction ~ as 
a reference. The local co-ordinate strains can be written as 

£' = au' 
x ax' 
, av' 

£ =-Yay' 
£' = aw' 
• az' 

, au' av' 
Y xy= ay' + ax' 
, av' aw' 

Y Y.= az' + ay' 

y' = aw' + au' 
X1It ax' az' 

Above equation can be put in matrix notation as, 

(1-70) 
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(1-71) 

Now the element stiffness matrix can be evaluated as 

/
+1/+1/+1 [K] e= -1 -1 -1 [BF] T[C'] [BF] det [J'] dedTtd{ (1-72) 

where [C'] is the material constant matrix in the local co-ordinate system. The 
integral is evaluated by Gauss quadrature numerical integration. However, the 
elasticity matrix [C'] is different from layer to layer and is not a continuous function 
of ~. The thickness concept is utilized in defining the elastic properties of an 
individual layer to obtain the stiffness coefficients for the entire element [1.32]. This 
can been achieved by splitting the integration limits through each layer. The change 
of variable ~ is 

(1-73) 

and 

(1-74) 

where t = the overall thickness of composite structure, and hj = the thickness of the 
j-th layer. Thus, the ~k varies from -1 to +1 in any k-th layer and the known 
coefficients of the Gaussian quadrature formula can be applied. The element stiffness 
matrix takes the form 

n f+1f+1f+1 h 
[K] e=~ -1 -1 -1 [BF] T[c/] [BF] det [J] ;dedrJdCk (1-75) 

where n is the total number of layers within the composite structure. 

3-D Solid Element 

If the displacement field (eq. 1-61) is defined within a layer of laminated 
composites, the laminated element formulation above becomes a 3-D solid element. 
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The element stiffness matrix is expressed in the form, 

f +1f+1f+1 
[I(] fI= -1 -1 -1 [BF] T [ell [BF] det [J] d~ ciT) de (1-76) 

Usually 3-D solid elements are used to investigate the local effects in 
composite structures [1.9-1.10, 1.35-1.39]. One of the earliest attempts to use a 3-D 
solid element for the analysis of laminates appeared in [1.9]. For the analysis of the 
free-edge effect, Lucking and Hoa [1.40-1.41] used 3-D, 20-node solid elements to 
analyze the cross-ply laminate with a circular hole. Later investigations showed that 
many elements are required through the thickness of one layer to obtain accurate 
results. Barker et al [1.35-1.36] concluded that three linear elements were sufficient 
when the free-edge effect is studied. Other researchers found that two, or even three 
20-node brick elements were required through the thickness of one layer in order to 
obtain accurate resuits[1.42]. 

Multilayer Element 

Multilayer elements [1.43-1.50] can be derived based on 3-D continuum 
theories. Robbins and Reddy [1.51] proposed multilayer elements with separable 
interpolation functions. In these elements, it is assumed that the displacements, 
material properties and element geometry can be approximated by a sum of 
conveniently separable interpolation functions (Le. each individual 3-D interpolation 
function can be written as the product of a 2-D interpolation function and a I-D 
interpolation function). The transverse strains are assumed as a piecewise continuous 
distribution through the laminate thickness. The displacement field is expressed in 
the form, 

n 
u(x,y,z) =~ Uj(x,y) Hj(Z) 

~ 
.12 

v(x,y,z) =~ Vj(x,y)Hj(Z) 
M 
n 

w(x,y, z) =1:; Wj (x,y) Hj (z) 
]~1 

(1-77) 

where (Ui ' Vi ' Wi ) denote the nodal values of (u, v, w), n is the number of nodes 
through thickness and Hi are the global interpolation functions for the discretization 
of the displacements through thickness. For quadratic variation through each 
numerical layer (shown in figure 12), the number of subdivisions through thickness 
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will be equal to N. = ( n-1)/2 and the functions Hj(z) are given below: 

and 

----...... ---_D 
1-1 
1-2 

3 
2 
1 

Figure 12 Multilayer element with quadratic variation 
through each numerical layer 

H2Jc--l (z) =a,.IJc) (z) 

H2Jc (z) =~IJc) (z) 

HU+l (z) =~Ilc) (z) 

G:t1lc) =(1- z) (1- 2Z )=-C(1-C)/2 
hlc hlc 

~Ilc) =4 Z (1- Z ) = (l+C) (l-C) 
hlc hlc 

~(lc) =_ Z (1- 2z) ={ (1+{) /2 
hJc hJc 
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(1-78) 

(1-79) 

where (k = 1,2,3, ... ,N.), N.= (n-1)/2, hk is the thickness of the k-th layer, z = 
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z - z..k, and Zbk denotes the z-coordinate of bottom of the k-th numerical layer. 
Furthermore, the displacement can be written as follows, 

1I B 

v= 1:; 1:; Vij Ni (e , 'I ) H j (C) 
]=1 ~=1 

1I B 
iF 1:; 1:; Wij Ni (e , 'I ) H j ( C) 

]=1 ~=1 

where N; is the shape function and its expression is 

in which, 

Ni = ! (l+eo) (1+'10) (eo+'10-1 ) e~'1~ 

+ ~ (1-e2 ) (1+'10) (l-e~) '1~ 

+ ~ (1-'1 2 ) (l+eo) (1-'1~) e~ 

(1-80) 

(1-81) 

(1-82) 

where S;. and 11; are the local co-ordinate of node i in the element parametric space. 
The global co-ordinates (x,y,z) of any point within the element can be written to 
interpolate the local co-ordinates (1;, 11, ') in order to map the element geometric 
shape, 

8 

X= E Xi Ni (e , 'I ) 
~=1 

B 

y=E Yi Ni (e, 'I) 
i=l 

1I 

z=E Zj Hj(C) 
j=l 

(1-83) 
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The linear strains associated with the displacement field above are 

11 B 

Byy= E I; Vij Ni,yllj 
i=l ~=1 

11 B 

Bzz=I; I; Wij Ni Hj,Z 
,7=1 ~=1 

11 B 

yy.=E E (Vii Ni Hi,z+Wii Ni,y Hi) 
j=l i=l 

11 B 

YX'z=I; I; (Uij Ni Hj,z+Wij Ni,X' Hj ) 
,7"'1 ~=1 

(1-84) 

(1-85) 

Note that the strains are generally discontinuous at the layer interfaces because of 
the layerwise definition of the functions Hj • The strain matrix is 

(1-86) 
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in which, 

(1-87) 

and 

(1-88) 

where i=I,2, .... ,8 and j=l, 2, ... , n. In order to calculate Ni •x' Ni .y and Hi .z ' the 
following vectors are introduced: 

(1-89) 

(1-90) 

then 
I J I = I SxT I (1 - 91) 

(1-92) 

Because 



INTRODUCTION 

{~1'C}=[X,C Y'Cl{~i'%}= [J1 {~'%} 
1,11 X,1I Y,1I 1,y. ~,y. 

and 

in the thickness direction, one has 

3 

z '=~H. ,Z. ,.. ],.. ] 
=1 

The stiffness matrix can be obtained using following formulations, 

where 

[KJ ,,=fv: [B] T[n] [B] dV 
• 

BltD,.Bi,1 BJD,.Bl3 BliD,.B.i3 

BJ;D,.Bll BJ;D,.Bl3 BJ;D,.Bl3 

0 0 BIABl3 

0 0 B~B.i3 
0 0 0 

0 0 0 

o 
o 

B.i~:u' 

o 
o 

Bl~Bl5 

B~Bl' B~(~+D,)B.i5 
0 

0 

o 
o 

0 

B£,p •• Bi.D, 
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(1-93) 

(1-94) 

(1-95) 

(1-96) 

(1-97) 

(1-98) 

(1-99) 

In which, [ Dk ] is the material stiffness matrix of the k-th subdivision in the 
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thickness of laminated composites. 

1.5 ADVANTAGES AND DISADVANTAGES OF 
DISPLACEMENT FINITE ELEMENTS 

The majority of finite elements used for stress analysis of laminated 
composites is based on the displacement formulation. This is due to the simple 
approach to the element formulation provided by the displacement model. 

In the displacement finite element method, the displacement functions are 
assumed a priori. The finite element process first calculates the displacements 
(primary variables) at the nodes of the elements. The displacement field is then 
obtained from these nodal displacements. The strains and stresses (second quantities), 
which are more important for design purposes, are calculated by numerically 
differentiating the approximate solutions, thereby introducing additional errors. For 
stress analysis of homogeneous materials, the displacement 'finite element method 
can provide accurate results efficiently. However, for laminated composites, due to 
large stress gradients in the transverse directions, large computer space is usually 
required if displacement finite element method is used. 

In developing finite elements for stress analysis of laminated composites, 
the main requirement is to satisfy the continuity conditions on displacements and 
transverse stresses at interlaminar surfaces, and traction-free condition on the upper 
and/or lower surfaces. The displacement element models can not satisfy these 
conditions well because the stresses are the second quantities which are calculated 
from approximate displacements by using numerical differentiation. 

For laminated composites, the interface between layers are usually locations 
of large gradients of stresses and strains due to discontinuity in material properties 
as one moves from one layer to the next one. The use of displacement elements 
requires fine element mesh and extensive amount of computer space and time to be 
able to determine stresses and strains with any degree of accuracy. This is because 
of the fact that the convergence of displacement finite element model for problems 
with large gradients of stresses is slow. This excessive requirement of computer 
resources has been a deterrent to accurate and efficient stress calculation in laminated 
composites. 

1.6 MOTIVATION FOR DEVELOPING HYBRID FINITE 
ELEMENTS 

For laminated composites, the problem of delamination has been a great 
concern for designers and researchers from day one. Designers and stress analysts 
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have been working on this problem for the past thirty years. Many numerical 
techniques have been proposed, and the majority of them has been using finite 
element method. However, until the present time, the problem has not been resolved 
satisfactorily. The main difficulty is in the efficiency in obtaining transverse stresses 
accurately. Without efficient means to obtain accurate transverse stresses, it is 
difficult to predict interlaminar failure. 

The development of hybrid elements is motivated by attempts to overcome 
the disadvantages of displacement elements in order to provide an efficient and 
accurate method for stress analysis of laminated composites. The hybrid stress finite 
element formulation assumes the stresses as the independent variables at the outset. 
Therefore, the degree of accuracy of the stress is the same as the degree of accuracy 
of the displacement. This is due to the fact that the stresses are obtained directly 
from the process of minimization and without having to go through the 
differentiation of the displacements. This is the inherent advantage of the hybrid 
finite element method. Furthermore, the hybrid elements can exactly satisfy the 
continuity conditions on displacements and stresses at interlaminar surfaces of 
laminated composites and the finite element model using these elements can 
efficiently provide accurate transverse stresses. 
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Chapter 2 

THE HYBRID FINITE ELEMENT 
METHOD 

2.1 INTRODUCTION 

In structural and solid mechanics, finite element practice was based 
primarily on single-field formulations of element properties [2.l-2.7] in the early 
1960s. During this period, two major types of finite elements developed were the 
compatible element and the equilibrium element based, respectively, on the 
principles of minimum potential energy and complementary energy. For compatible 
finite element model, the assumed displacements are compatible both within the 
element and along the interelement boundary. For equilibrium finite element model, 
the stresses are equilibrating within the element and the tractions are balancing along 
the interelement boundary. These single-field finite element models provide the 
simplest approaches to the element formulation. However, in the compatible model, 
the primary variables (displacements) are first computed and then second quantities 
(stresses), which are more important for design purposes, are calculated by 
numerically differentiating the approximate solutions. The numerical differentiation 
results in additional errors. On the other hand, the eqUilibrium models have found 
limited use in general-purpose computer codes because they behave as mechanisms 
without a judicious choice of basis functions. Therefore, multifield finite elements 
have been developed to overcome the shortcomings of the single-field finite 
elements. In 1964, a multifield finite element was formulated first by Pian [2.8-2.9] 
by using Lagrange multipliers to enforce the constraint conditions along the 
interelement boundary. 

Since 1964, a great number of multifield finite elements have been 
presented and a number of hybrid and mixed element models have been proposed 
[2.l0-2.14]. Most of these are based on the character of the variational principle and 
the constraints used in the element development. For example, the mixed element 
was defined as the element which is based on a multifield variational functional, and 
the hybrid element was defined as the element which is based on the introduction 
of Lagrange multipliers to enforce the constraint conditions along the inter-element 
boundary. However, under this definition, these two types of element are not 
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mutually exclusive. Therefore, the terms hybrid and mixed were to be redefined. In 
order to make hybrid and mixed elements mutually exclusive, later on, the definition 
is placed on the character of the variational principle and the nature of the resulting 
discrete algebraic equations. Thus, the term mixed element is defined as the one 
which is formulated by multifield variational functional and contains more than one 
field variable in the resulting matrix equations; the term hybrid element is defined 
as the one which is formulated by multifield variational functional, yet the resulting 
matrix equations consist of only the nodal values of displacements as unknown. 
Today, this definition has become popular and many authors use it to classify the 
multifield finite elements [2.15-2.18]. In this book, the term hybrid element is used 
under this definition. In governing equations, only displacements appear. 

For analysis of composite structures, the majority of finite element analysis 
still uses single-field displacement elements. This is due to the simplicity in element 
formulation provided by displacement finite element model. It is also due to the 
availability of many commercial finite element codes. However, the single-field 
displacement finite elements suffer from inefficiency in analysis of composite 
structures. The disadvantages of the single-field displacement element have been 
discussed in the section 1.5, chapter 1. In order to overcome these disadvantages, as 
an alternate, the hybrid elements [2.19-2.22] have drawn more and more attention 
from engineers and designers of composite structures. 

A hybrid element can be formulated by many different techniques. Although 
most of the successful finite elements were initially based on intuitive insight rather 
than rigorous variational principles, researchers are always keen on devising 
variational bases for the new elements. Variational bases are considered to be 
important not only for legitimacy but also for the confidence of the element users. 
Therefore, in this book, variational principles will be used to formulate hybrid finite 
elements. In this chapter, we will firstly introduce a few new variational functionals, 
and then, they will be used to formulate the hybrid finite elements. 

2.2 FORMULATION OF THE V ARIA TIONAL FUNCTIONAL 

In structural and solid mechanics, there are two basic variational principles: 
the principle of minimum potential energy and the principle of minimum 
complementary energy. They can be derived from the principle of virtual work [2.23-
2.24]. As mentioned above, the compatible elements are derived from the principle 
of minimum potential energy, which has the equilibrium conditions and the traction 
boundary conditions as its Euler equations, and the equilibrium elements are derived 
from the principle of minimum complementary energy, which has the compatibility 
equations and the displacement boundary conditions as its Euler equations. Due to 
the fact that the two basic variational principles can be generalized by the 
introduction of Lagrange multipliers to impose the constraint conditions, a lot of 
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different finite elements can be developed. In an approximate solution, a generalized 
variational principle corresponds to a relaxation such that the constraint conditions 
are satisfied only in the variational sense. Now, let us describe an elasticity problem 
first. 

Elasticity Problem 

Consider a linear elastic body under static loading. The body occupies the 
volume V and is bounded by the surface S, which is decomposed into S: SdVSt. 
Displacements are prescribed on Sd' whereas surface tractions are prescribed on 
St. The outward unit normal on S is denoted by n. The following relations between 
three fields: stress (J , strain e, and displacement u in the volume have to be 
satisfied. 

1. the strain-displacement equations: 

a=Du 
(2-1) 

or 

_1 
£1j-- (u. j+U' i) 2 ~, ], in V 

(2-1)' 

in which, 

a 0 0 ax 
a a a ay 
a a a 

az 
D= a a a Tz ay 

a a a 
az ax 
a a 0 ay ax 
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2. the stress-strain equations (constitutive equations): 

0= [C] B or B= [S] 0 
(2-2) 

or 

in V 
(2-2)' 

and 

or (2-2)" 

in which, A(e) is the strain energy function, and B(o) is the 
complementary energy function. 

3. the equilibrium equations: 

(2-3) 

or 

in V (2-3)' 

in which, F is the body force in V. 

Moreover, there are two sets of boundary conditions for the displacement 
field and stress field: 

4. the traction boundary conditions: 

o . 12 = 2'za and 
(2-4) 

or 

on Sf; 
(2-4)' 

in which, T is the prescribed surface force on St. 
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S. the displacement boundary conditions: 

u=d 
(2-5) 

or 
(2-5) 

in which, d is the prescribed displacement on Sd' 

Principle of Minimum Potential Energy 

In order to present the variational principle, it is assumed that the strain 
energy function A is a positive definite function of the strain components, and the 
body forces and surface forces are derivable from potential functions n(u) and 'P(u) 
such that 

-~c (u) =.rl'~u (2-6) 

-~1J.' (u) =2'I'~u 

Then, the principle of minimum potential energy [2.23] states 

Among all the admissible displacementfields, the actual displacement field 
makes the total potential energy 

IIp=J A (U) dV-J ;rl'udv- ( 7.'I'U dS 
v v JSt 

(2-7) 

an absolute minimum, i.e., OIIp=O. 

In this principle, equations (2-1), (2-2), and (2-5) are constraint conditions 
satisfied a priori, whereas equations (2-3) and (2-4) are Euler equations [2.24]. For 
the linear elastic body, the strain energy function can be expressed as 

(2-8) 

It can be modified to 
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A(U)=~ (Du)T[C] (Du) (2-8)' 

In which, [C] is the stiffness matrix of materials. 

Principle of Minimum Complementary Energy 

For the principle of minimum complementary energy, it is assumed that the 
complementary energy function B is a positive definite function of the stress 
components. The principle [2.23] states 

A mong all the admissible stress fields, the actual stress field makes the total 
complementary energy 

(2-9) 

an absolute minimum, i.e., 5TIc=O. 

In this principle, equations (2-2), (2-3), and (2-4) are constraint conditions 
satisfied a priori, whereas equations (2-1) and (2-5) are Euler equations [2.24]. For 
the linear elastic body, the complementary energy function can be expressed in the 
form 

(2-10) 

where [S] is the material compliance matrix. 

Genemlized Variational Principles 

The generalized variational principles can be derived from the principles of 
minimum potential energy and minimum complementary energy. A systematic 
procedure for the derivation is to impose the constraint conditions by introducing 
Lagrange multipliers in the variational expression. For example, the strain­
displacement equations (2-1) and the displacement boundary conditions (2-5) are 
constraint conditions satisfied a priori in the principle of minimum potential energy. 
By means of introducing Lagrange multiplers q and p defined in V and Sd' a 
generalized variational principle can be derived as follows: 
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The actual solution can be given by the stationary conditions of the 
functional III defined as 

in which, 

nz;;;:!)A(B) -q!'(B-Du) -Ji"!'U] dV 

_f !'!'u dS- f p!'(u-d) dS 
JSt JSd 

q2'= [qll q22 %3 q23 q31 q12] 

P 2'= [Pl P2 P3] 

(2-11) 

(2-12) 

In the functional (2-11), the Lagrange multiplers q and p must be identified by 
means of the stationary conditions. 

The number of the independent quantities subject to varIatIOn in the 
functional (2-11) are eighteen. These are six components in the strain E, three 
components in the displacement n, six components in the Lagrange multiplers q and 
three components in the Lagrange multiplers p. By taking variations with respect to 
these quantities and applying divergence theorem, the expression (2-11) becomes 

6Hz= fy a~~. -qij) 6a- (a-Du) T6q- (Dl'q+.r) T6wdV 
~J (2-13) 

+ r [( q"12) -!l'] T6 udS- r (u-d) T6pdS+ r [( q"12) -p] T6 udS 
J~ J~ J~ 

in which, 

By means of the stationary conditions, the Lagrange mu1tiplers q and p are identified 
as follows, 
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(2-14) 

All equations: the strain-displacement relations (2-1), the equilibrium equations (2-3), 
the traction boundary conditions (2-4), and the displacement boundary conditions (2-
5), are the Euler equations. Substituting equations (2-14) into the generalized 
functional (2-11), a three-field variational principle ( u, E, cr) is resulted in 

nII= I) ~ B!"[C] B-a!"(B-Du) -.r!"u] dV 

- r r!"u dS- r r:(u-d) dS 
JSt JSd 

(2-15) 

This generalized variational principle is well known as the Hu-Washizu 
principle in structural and solid mechanics. In view of mathematics [2.24], the stress­
strain relations are constraint conditions in this variational principle because they are 
used for identifying the Lagrange multiplers q in equations (2-14). However, in view 
of the fact that the stresses crij are used as the Lagrange multiplers at beginning and 
they do not have to be identified, the stress-strain relations can be considered as the 
Euler equations of the variational principle [2.25-2.26]. Therefore, the variational 
principle (2-11) is a three-field variational principle ( u, E, q ) with the stress-strain 
relations as constraint conditions satisfied a priori because of the fact that the 
Lagrange multiplers q need to be identified, whereas the variational principle (2-15) 
is a three-field variational principle ( u, E, cr ) without any constraint conditions. 

By means of the stress-strain relations and divergence theorem, a two-field 
variational principle ( u, cr ) that is well known as the Hellinger-Reissner variational 
principle [2.27-2.28] can be derived from the Hu-Washizu functional (2-15) through 
eliminating the strain variable. Its expression can be written as 

nIZZ=-Iv [ ~ a!"[S] a+ (D!"a) TU+.r!"U] dV 

+ r (J'II-2') TU dS+ r r:ddS JSt JSd 

(2-16) 

If the equilibrium equations (2-3) and the traction boundary conditions (2-4) 
are satisfied, the functional (2-16) is reduced to the complementary energy functional 
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(2-9). Moreover, by eliminating the stress variable in the three-field variational 
functional (2-15), another two-field variational functional ( u, e ) is obtained as 
follows [2.18,2.24], 

nzv= f) -~ BI'[C] B+ ( [C] B) T{DU) -.rl'uJ dV 

- r 21 I'U dS- r 21: (U-d.) dS 
JSt JSd 

(2-17) 

The Hellinger-Reissner variational principle [2.27-2.28] can be also derived 
from the principle of minimum complementary energy if the conditions of stress 
equilibrium are introduced as a posteriori constraint condition using Lagrange 
multiplers. Based on the Hellinger-Reissner variational principle, another three-field 
variational principle ( u, Eo (J ) can be derived by high-order Lagrange multipliers 
[2.29]. The resulting functional is expressed in the form 

+ r (!rll-!r) TU dS+ r !r:ddS 
Jsc JSd 

(2-18) 

in which, A. is a constant, A is the strain energy function, and B is the 
complementary energy function. Recently, Felippa [2.30] proposed the parametrized 
variational principles for deriving different variational principles. A review of these 
principles has been given in the literature [2.31]. 

2.3 EV OLUTION OF THE HYBRID FINITE ELEMENT METHOD 

Originally, the hybrid stress finite elements were formulated based on the 
principle of the minimum complementary energy and the introduction of Lagrange 
multiplers to enforce the constraint conditions along the inter-element boundary [2.8]. 
In this element formulation, the assumed stress field in the element must satisfy 
equilibrium equations a priori. It causes difficulty to assume an optimal stress field 
for the hybrid elements. Later on, it was realized that the equilibrium conditions can 
be relaxed if the hybrid element formulation is based on the generalized variational 
principles such as Hellinger-Reissner variational principle and Hu-Washizu 
variational principle. The stress field may satisfy the equilibrium equations only in 
a variational sense. Thus, the stress field can be described in the isoparametric co­
ordinate system of the element, which would make the element less sensitive to 
mesh distortion. In this book, the hybrid finite elements will be formulated using 
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isoparametric co-ordinate system. 

For a hybrid element, the displacement field has to be assumed firstly. It 
is usually described by the nodal displacements as follows, 

u • [N, ~ ••• ND 1 U:. } (2-19) 

= [N] 6. 

where Ni is the shape function and [N] is the shape function matrix; Oe is nodal 
displacement vector. The discussion about the assumed displacement field in the 
element has been given in section 1.3, chapter 1. 

In the hybrid stress formulation, then, a stress field must be assumed 
independently as follows, 

a=[P]p (2-20) 

For example, for a 2-D, 4-node plane element, one of the assumed stress fields is 

o [1 1 0 0 -~l {~1} {O;} = 1 -1 0 -'1'1 0 .2 
Oxy 0 0 1 ~ '1'1 • 

Jis 

(2-21) 

and one of the assumed stress fields for a 3-D, 8-node solid element is 

~~ 
1 1 -1 0 0 0 e 0 'I e 0 'I 0 0 0 'Ie 0 0 

°7 1 -1 -1 0 0 0 e C 0 -e C 000 0 o ec 0 

,t} 
(2-22) 

0. _ 1 0 20000C'l O-C-1J O 0 0 0 0 C'I 
o 0 0100000 0 0 o e e e 0 0 0 

:: o 0 0010000 0 0 o C -C -C 0 0 0 
o 0 0001000 0 0 o 'I 0 -2'1 0 0 0 

This can be expressed in the form 
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(2-23) 

= [p] p 

In which, vectors (Ji are stress modes which are functions of the isoparametric co­
ordinates, the parameters ~i are the corresponding stress parameters, and [P] is the 
stress matrix. 

In the hybrid stress/strain formulation, furthermore, a strain field is also 
assumed independently. The assumed strain field can be expressed as follows, 

(2-24) 

= [0] «I 

in which, vectors Ei are strain modes which are functions of the isoparametric co­
ordinates, the parameters ~ are the corresponding strain parameters, and [Q] is the 
strain matrix. Thus, various hybrid finite elements can be formulated using the 
generalized variational principles. 

Hybrid Stress Element 

The Hellinger-Reissner variational principle contains two fields: 
displacement field and stress field. Satisfying the displacement boundary conditions 
(2-5) a priori, the variational functional (2-16) can be modified as follows, 

(2-25) 

Within the element, the assumed displacement field and the assumed stress 
field have been given in equation (2-19) and (2-20). Thus, 
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Du= [B] 6. 
(2-26) 

where [B] is the geometry matrix. Substituting equations (2-19), (2-20), and (2-26) 
into the functional (2-25), it is transformed to 

nIII=- ~ P"'(/v[P] T[S] [p] dV) P+P"'(/}P] T[B] dV) a. 

-a; (/ [NJ Tp' dV+ r [NJ T'}! dS) 
v JSt 

Denote 

[H] =/v[P] T[S] [p] dV 

[G] =/v[P] T[B] dV 

£.=/ [NJ Tp' dV+ r [NJ T'}! dS 
v JSt 

(2-27) 

(2-28) 

where [H] is the flexibility matrix, [G] is the leverage matrix, and f. is the equivalent 
nodal force vector. Thus, the functional (2-27) can be rewritten in the form, 

(2-29) 

In this variational functional, there are two independent variables ~ and o. subject 
to variation. From the partial stationary condition with respect to ~, 

aIIIII 
ap =0 (2-30) 

the relation between stress parameters ~ and nodal displacements Oe is obtained, 
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[H] 11= [G] 6. (2-31) 

By means of this relation, then, the functional (2-29) becomes 

(2-32) 

It can be rewritten as 

(2-33) 

in which, [K] is the element stiffness matrix. It can be expressed in the form, 

(2-34) 

From the partial stationary condition with respect to 0., the governing equation of 
the element is obtained, 

(2-35) 

When the element equations are obtained, the global equations of the hybrid finite 
element model for analysis of structures can be established. The procedure is the 
same as that in the single-field displacement finite element model discussed in the 
section 1.2, chapter 1. 

Hybrid Strain Element 

The two-field variational functional (2-17) is different from the Hellinger­
Reissner variational principle. The two fields in the functional are displacement field 
and strain field. Satisfying the displacement boundary conditions (2-5) a priori, the 
variational functional (2-17) can be modified to the form, 
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nIV=f [-.!81'[C] 8+ ( [C] 8) T{Du) -.rI'U] dV- r 2'I'U dS 
v 2 Jsc 

(2-36) 

Within the element, the assumed displacement field and the assumed strain 
field have been given in equation (2-19) and (2-24). Thus, 

Du=[B] I. 
(2-26) 

Substituting equations (2-19), (2-24), and (2-26) into the functional (2-36), it is 
transformed to 

nIV=- ~ .I'{J}O] T[C] [0] dV) .+.I'{Jv [0] T[C] [B] dV) I. 

Denote 

-I: (f [NJ T:r dV+ r [NJ T2' dS) 
v Jsc 

[L] =Jv[O] T[C] [0] dV 

[Mj =Jv[O] T[C] [B] dV 

:£.=f [NJ T.r dV+ r [NJ T2' dS 
v Jsc 

Thus, the functional (2-37) can be rewritten in the form, 

(2-37) 

(2-38) 

(2-39) 

In this functional, there are two independent variables subject to variation. This is 
the same as that in hybrid stress element. From the partial stationary condition with 
respect to a., 
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aIIxv _ 
---0 a. 
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(2-40) 

the relation between strain parameters a and nodal displacements Be is obtained, 

[L] .= [M'] I. 
(2-41) 

Using this relation, the functional (2-39) becomes 

(2-42) 

It can be rewritten as 

(2-43) 

in which, [K] is the element stiffness matrix and it can be expressed in the form 
[2.32], 

[IC] = [M'] T[L] -1 [M'] (2-44) 

From the partial stationary condition with respect to Be' the governing equation of 
the element is obtained, 

[K] 1.=:£. (2-45) 

Hybrid Stress I Strain Element - 1 

By means of generalized variational principles, we can formulate not only 
two-field hybrid elements, but also three-field hybrid elements. The Hu-Washizu 
variational principle is a three-field generalized variational principle. It contains three 
fields: displacement field, stress field, and strain field. Satisfying the displacement 
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boundary conditions (2-5) a priori, the variational functional (2-15) can be modified 
as follows, 

n =f [.!S"[C] S-o"(S-Du) -JI""U] dV-l 'j'''U dS 
II v 2 Bt (2-46) 

Within the element, the assumed displacement field, the assumed stress 
field, and assumed strain field have been given in equations (2-19), (2-20), and (2-
24). Thus, 

Du=[B]&. (2-26) 

Substituting equations (2-19), (2-20), (2-24) and (2-26) into the functional (2-46), it 
is transformed to 

nII= ~ fI"(/)O] T[C] [0] dV) fI-fl"(/v[O] T[p] dV) P 

+ P" (f [P] T [B] dV) a.-a: (f [NJ T, dV+l [NJ T'j' dS) 
v v Bt 

Denote 

[L] =/v[O] T[C] [0] dV 

[W'J = f v [0] T [P] dV 

[G] =/v[P] T[B] dV 

f.=f [NJ T, dv+l [NJ T'j' dS 
v Bt 

Thus, the functional (2-47) can be rewritten in the form, 

(2-47) 

(2-48) 
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(2-49) 

In this variational, there are three independent sets of variables ( (1, ~ and 8. ) 
subject to variation. From the partial stationary condition with respect to (1, 

aIIu 
--=0 a. (2-50) 

the relation between strain parameters (1 and stress parameters ~ is obtained as 
follows, 

[L] ,,= [W'] p 

Using this relation, the functional (2-49) becomes 

It can be rewritten as 

In which, 

From the partial stationary condition with respect to ~, 

aIIII 
--=0 ap 

(2-51) 

(2-52) 

(2-53) 

(2-54) 

(2-55) 
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the relation between stress parameters ~ and nodal displacements 6. are obtained, 

[MJ p= [G] I. (2-56) 

Using this relation, the functional (2-53) becomes 

(2-57) 

It can be rewritten as 

(2-58) 

where [K] is the element stiffness matrix. It can be expressed in the form, 

[I(] = [G] T[MJ -1 [G] (2-59) 

From the partial stationary condition with respect to 6., the governing equation of 
the element is obtained, 

(2-60) 

Substituting equation (2-54) into the equation (2-59), the element stiffness matrix can 
be expressed in the form [2.32-2.33], 

[K] = [G] T[WJ -1 [L] [WJ -1 [G] (2-61) 

Hybrid Stress I Strain Element - 2 

Here, we present a general hybrid element formulation using another 
variational functional proposed by Chien [2.24]. It also contains three fields: 
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displacement field, stress field, and strain field. Satisfying the displacement boundary 
conditions (2-5) a priori, the variational functional (2.18) is expressed in the form, 

(2-62) 

in which, A. is constant, A is the strain energy function (2-8), and B is the 
complementary energy function (2-10). Within the element, the assumed 
displacement field, the assumed stress field, and assumed strain field have been 
given in equations (2-19), (2-20), and (2-24). Thus, 

Du=[B]&. (2-26) 

Substituting equations (2-19), (2-20); (2-24) and (2-26) into the functional (2-62), it 
is transformed to 

lly=: 1;1 fir </ v [OJ T [C,] [OJ dV) fI- ; IIr </ v [PJ T [8J [PJ dV) II 

- <1-1) fir <Iv [OJ T[pJ dV) 1I+lIr <Iv [p] T [B] dV) a. 

-a: </ [N'.] T:r dv+l [N'.] T'l' d8) 
v Bt 

( 2 - 63 ) 
Denote 
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[L] ::;:J)O] T[C] [0] dV 

[H] ::;:J)P] T[S] [p] dV 

[W'.] ::;:J)O] T[p] dV 

[G] ::;:J)P] T[B] dV 

f.::;:/ [N] TF dV+ r [N] Tr dS 
v JSt 

(2-64) 

Thus, the functional (2-63) can be rewritten in the form, 

n ::;: l-A 111'[£] II-.!P!'[H] p- (l-A) II!'[W'.] p+P!'[G] 6 -6!'f 
v 2 2 • •• 

( 2 - 65 ) 

Also, there are three independent variables subject to variation in this variational. 
From the partial stationary condition with respect to (J., 

aTIII --::;:0 a. (2-66) 

The relation between strain parameter (J. and stress parameters P are derived, 

[L] II::;: [W'.] p 
(2-67) 

Then, the functional (2-65) becomes 

(2-68) 

+p!'[G] 6.-6;:t. 



HYBRID ELEMENT METHOD 61 

It can be rewritten as 

(2-69) 

In which, 

[M'] =l [BJ + {i-l} [W'] T[L] -1 [W'] 
(2-70) 

From the partial stationary condition with respect to ~, 

aIIv 
-=0 ap (2-71) 

the relation between stress parameters ~ and nodal displacements 0. is obtained, 

[M'] p= [G] I. (2-72) 

Substituting this equation into the functional (2-69), it becomes 

(2-73) 

It can be rewritten as 

(2-74) 

where [K] is the element stiffness matrix. It can be expressed in the form, 

[.K'] = [G] T[M'] -1 [G] (2-75) 

From the partial stationary condition with respect to 0., the governing equation of 



62 STRESS ANALYSIS OF COMPOSI1ES 

the element is obtained, 

[K] a.=:t. (2-76) 

Substituting equation (2-70) into the equation (2-75), the element stiffness matrix can 
be expressed in the form, 

[KJ = [G] T {A [RJ + (l-A) [W] T[L] -1 [W] }-1 [G] (2-77) 

This stiffness matrix formulation is a general form of the stiffness matrix 
for hybrid elements. It can be reduced to one (2-34) based on the Hellinger-Reissner 
variational principle when A.=l and one (2-61) based on the Hu-Washizu variational 
principle when A=O [2.24,2.29]. In the formulation, the constant A. is bounded 
between 0 and 1 so as to ensure that the stiffness matrix [K] is semi-positive. There 
are some approaches such as perturbation, energy balance and locking alleviation 
[2.34-2.38] for determination of the constant A.. For example, the constant A. can be 
determined in such a way that the energy stored inside the element is close to the 
analytically-derived energy under a typical deformation of the element. 

Although there are many different types of the hybrid finite elements such 
as hybrid stress, hybrid strain, and hybrid stress/strain elements, the discussion in this 
book will be restricted on the hybrid stress method due to the fact that the hybrid 
stress element has been widely used in the structural and solid mechanics. Before we 
present the new hybrid element techniques for stress analysis of composite structures, 
the assumed stress field has to be discussed further because the advantages and 
disadvantages of hybrid stress elements are effected by introduction of the assumed 
stress field. 

2.4 ASSUMED STRESS FIELD 

For the hybrid stress element, the physical fields that must be independently 
assumed within the element at the beginning are not only displacement field, but also 
stress field. An assumed stress field consists of a set of stress modes and a set of the 
corresponding stress parameters. Although a number of mathematical functions such 
as trigonometric series and exponential functions can be used as stress mode 
functions, orthogonal polynomials are more appropriate as stress mode functions due 
to their ease and simplification. It is similar to the basis functions in the assumed 
displacement field. However, while the displacement polynomial is constrained by 
the number of displacement nodal degrees of freedom in the element, the stress 
polynomials have no such constraint. If an assumed stress field does not contain 
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enough stress modes, the rank of the element stiffness matrix will be less than the 
total degrees of deformation freedom and the numerical solution of the finite element 
model will be unstable. In that case, there may be kinematic deformation modes. It 
is possible to suppress kinematic deformation modes by adding stress modes of 
higher order term, but this can not guarantee that all kinematic deformation modes 
are suppressed. Moreover, each extra term will add more stiffness[2.39] and overuse 
of stress modes will cost more computational time because the calculation of element 
stiffness matrix requires inversion of the flexibility matrix. The lack of a rational 
way for deriving the optimal assumed stress modes has obstructed the development 
of the hybrid finite element method. 

2.4.1 Stability Condition 

Some mathematical basis for the stability of the numeric&! solution of the 
hybrid finite element model has been established and a number of approaches for 
obtaining the optimal stress modes have been proposed. A necessary condition to 
avoid kinematic deformation modes [2.12, 2.40] is 

or 

The total number of stress modes in an assumed stress field must be 
equal to or larger than the total number of nodal displacements minus the 
number of rigid body modes in an element. 

m ~ n - r (2-78) 

in which, m is the total number of stress modes in an assumed stress field, n is the 
total number of nodal displacements, and r is the number of rigid body modes in an 
element. 

Brezzi [2.41], Babuska, Oden and Lee [2.42] presented necessary and 
sufficient conditions for stability and convergence of a hybrid element by means of 
functional analysis. However this can be used only as a posteriori check on a 
formulation. Fraeijs de Veubeke [2.43] presented a limitation principle for hybrid 
elements based on the Hellinger-Reissner variational principle. This work was 
extended to the hybrid stress/strain elements based on the Hu-Washizu variational 
principle [2.44]. The limitation principle [2.43] states that a hybrid element would 
be equivalent to its displacement counterpart if a stress space consisted of all the 
displacement-derived stress modes is a subspace of the assumed stress. This means 
that a hybrid element would be no different to a displacement element when the 
assumed stress field contains all stress modes derived from the assumed 
displacement field. Because the displacement element is always free from any 
spurious kinematic deformation modes, for a hybrid element to avoid spurious 
kinematic deformation modes, a sufficient condition is that the assumed stress field 
contains all displacement-derived stress modes. 
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For 2-D plane elements and 3-D brick elements, in an assumed 
displacement field, the polynomial terms used for interpolation are the least-order 
polynomial terms and usually same for every component of displacement. For 
example, in the assumed displacement field of a 2-D, 4-node rectangular element, 
every component of displacement contains four, least-order polynomial terms (see 
equation (1-16)). Due to the fact that the order of the polynomial terms in 
displacement-derived stress field is always equal to or less than that of polynomial 
terms in displacement field, all stress modes derived from the displacement field will 
be included in an assumed stress field if the polynomial terms in every stress 
component of the stress field are the same as those in every displacement 
component. Therefore, a sufficient condition to avoid spurious kinematic deformation 
modes in 2-D and 3-D elements is 

If every stress component of an assumed stress field contains the 
same polynomial terms as those in every displacement component of the 
displacement field, the resulting hybrid element is free from any kinematic 
deformation modes. 

Using this sufficient condition, an assumed stress field termed sufficient stress field 
can be established based on the assumed displacement field of a hybrid element. 

2.4.2 Approaches to Obtain An Assumed Stress Field 

There are a few approaches for determining an assumed stress field. Using 
group theory, Punch and AtIuri [2.45,2.46] established a set of least-order stable 
invariant stress selections for three-dimensional brick elements and two-dimensional 
rectangular elements. Pian and Chen [2.47] used the product {a}T Ie}, the 
deformation energy due to the assumed stresses and displacements, to determine the 
necessary assumed stress modes. Pian and Tong [2.48] introduced the internal 
displacement parameters to relax the stress eqUilibrium condition and used 
isoparametric interpolation to construct hybrid element. Pian and Wu [2.49-2.50] 
introduced incompatible displacements to maintain completeness of the polynomials. 
The initial choice of stress terms are unconstrained and complete polynomials. The 
additional displacements are used as Lagrange multipliers to enforce the stress 
equilibrium constraint. Chen et al [2.51-2.52] constrained the stress by setting the 
inner product of the non-constant stress modes with the deformation derived from 
the incompatible displacement to zero. Sze [2.53-2.55] used orthogonal lower- and 
higher-order stress modes to construct hybrid element. It allows the partition of the 
element stiffness matrix into a lower- and a higher-order stiffness matrix. When the 
lower-order stiffness turns out to be identical to the sub-integrated element, the 
higher-order stiffness matrix plays the role of stabilization matrix. Other methods for 
determining the assumed stress field are referred to the literature [2.49-2.55]. In this 
section, three approaches for determining the assumed stress field are presented. 
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a) Sufficient Stress Field 

The sufficient condition above indicates that if every stress component uses 
the same polynomial terms which are used for every displacement component, its 
resulting hybrid element is free from any spurious kinematic deformatiom modes. 
Thus, an assumed stress field can be established through the assumed displacement 
field. 

L 2-D. 3-node Triangular Element 

For this element, a displacement field is usually assumed in the form, 

u=ao +a1 e +a2" 

:v=bo +b1 e +b2" 

(2-79) 

The polynomial terms used in every displacement component are same. They are the 
three, least-order polynomial terms 

(2-80) 

According to the sufficient condition, every stress component uses the same terms 
as follows, 

OX=P 1 +p,e +P7" 
0y=P2 +pse +P a" 

o.xy=P3 +P6e +p g" 

(2-81) 

Using this assumed stress field, the resulting hybrid element is free from any 
kinematic deformation modes. 

2. 2-D. 4-node Rectangular Element 

For this element, the number of degrees of freedom is eight and assumed 
displacement field usually has eight parameters. It can be expressed in the form, 

u=aO+a1 e +a2" +a3e" 

V=bo+b1e +b2" +b3e" 

(2-82) 
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Every displacement component uses the same least-order polynomial terms. They are 

[ 1 ~ Tt ~Tt ] 
(2-83) 

According to the sufficient condition, similarly, every stress component uses the 
same terms as follows, 

OX=Pl +P4~ +P7'1 +P10~'1 

0y=P2+PS~ +Ps'1 +Pll ~'1 

0xy=P3 +P6~ +Pg'1 +P12~'1 

(2-84) 

3. 3-D. 8-node Brick Element 

form, 
For a 3-~, 8-node hybrid element, the displacement field is assumed in the 

u=aO+al~ +a.aTJ +a3C +a4.~TJ +a5~C +a,TJ C +a,~TJ C 

v=bo+~~ +b.aTJ +~C +b,~TJ +b,~' +b,TJ' +~~TJ' 

V=CO+Cl~ +c.aTJ +c3, +C4.~TJ +C5~' +c,TJ' +c.,~TJ' 

(2-85) 

The eight, least-order polynomial terms used in every displacement component are 

(2-86) 

According to the sufficient condition, similarly, every stress component uses the 
same terms as follows, 

0X=P1 +p,e +P7'1 +P10C +P13eTl +P16Tl C +P19ce +P22 eTl C 
Oy=Pa+pse +PaTl +Pll C +P14eTl +P17Tl C +P20ce +Pa3 eTl C (2-87) 

oJg"=P3+P6e +P9Tl +PlaC +PlseTl +PlBTlC +P21 ce +P2,eTl C 
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Using this way to establish assumed stress field, the advantage is the ease 
in selection of terms, but the number of terms used in assumed stress field is large. 
This disadvantage will affect the efficiency of the finite element model of structures. 
Moreover, it can be used only for these elements whose polynomial terms used for 
interpolation are same for every component of displacement. 

b) Equilibrating Stress Field 

An assumed stress field can be derived from a complete polynomial by 
means of equilibrium equations. Two examples are given here. 

1. 2-D. 4-node Rectangular Element 

For two dimensional problems, the assumed stress field for a 4-node hybrid 
element is firstly expressed in complete linear terms in the co-ordinates ~ and Tl. It 
is 

OX=Pl +P2~ +P3TJ 

Oy=P, +P5~ +p&TJ 

txy=P7+P8~ +pgTJ 

(2-88) 

Substituting the stress components (2-88) into the equilibrium equations (2-3), the 
relations between stress parameters are obtained, 

and (2-89) 

The assumed stress field (2-88) is modified as follows, 

(2-90) 

This assumed stress field for the hybrid element satisfies the equilibrium 
condition a priori. However the resulting hybrid element may have kinematic 
deformation modes. 
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2. Plate/shell Element 

For plate and shell, it is more complicated to assume an equilibrating stress 
field within a hybrid element. First of all, the equilibrium equations (2-3) should be 
modified by introducing the normalized transverse co-ordinate ~ as follows, 

OOx + oOxy +1:. OOXg =0 
ox oy toe 

oOxy + OOy +1:. OOyg =0 
ox oy toe 

(2-91) 

OOXg + OOyg +1:. OOg =0 
ox oy t oe 

where t is the half-thickness of plate. Then, the in-plane stresses are assumed to be 
complete cubic polynomials and the expression of the transverse stresses are 
obtained by using the equilibrium equations (2-91) as follows [2.56-2.57], 

0",= (/Jl +/J2x+/J;,Y+/J4X2+/JsX)'+/J,.y2+/J7X3+/Jax2y+/J,xy2+/JlI)Y'3) 

+C (/Jll. +/J3aX+/J3;,Y+/J34X2+/J35X)'+/J36y2+/J37X3+/J38x2y+/J3,X)'2+/J41)Y'3) 

Oy= ( /Jll +/J12X+ /Jl;,Y+/J14X2 +/J15X)'+/J16y2 +/J17X3 +/JlIX2y+/Jl,xy2+/J21)Y'3) 

+C (/J41 +/J42X+/J4;,Y+/Jux2+/J4SX)'+/J4,.y2+/Jnx3+/Jux2Y+/JuX)'2+/JsI)Y'3) 

01<7= (/J21 +/J22X+/J2JY+/J24X2+/J2sXJ'+/J2,.y2+/J27X3+/J2ax2Y+/JuX)'2+/J31)Y'3) 

+C (/JSl +/JsaX+/Js;,Y+/Js,x2+/JsSX)'+/J56y2+/JS7X3+/Jsax2y+/Js,X)'2+/J61)Y'3) 

(2-92a) 

(2-92b) 

(2-92c) 

(2-92d) 
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(2-92e) 

(2-921) 

This assumed stress field can be written as 

CJ= [p] II (2-93) 

This field contains 75 stress parameters ~. The number of the stress parameters can 
be reduced to 67 in order to avoid excessive element stiffening (locking) in the thin 
plate limit [2.56]. The remaining 67~ stress field can be expressed in the form (after 
a complete renumbering of the stress parameters), 

GZ ='1I+ [~('1-'") -'2,]x+'17Y+ [i ('a-'5&) -i 'a.] x 2 

+ [~('3-'58) -2'2.].xy+'18ya+ rj ('40-'5') -j '31] x' 

+ [i ('.-'.7) -'32] X2Y+'lIy3+ [~( '.-',,) -3',,] xy2 

+C{'3&+'3&X+'3.Y+'37Xa+'3,.xy+'3,y2 

+ r -j ('.7-'15+'5+'57+2'12+2P .. )] x 2Y+'Uxy2} 

G7 ='20+'21x+ [~('7-'1t) -'as] Y+'22X2 + [~ ("-'10) -2'27] xy 

+ ri ("-'11) -~'2'] y2 + '23X3 + ri ('10-'.a) -3'30] x 2y 

+ [i ('1l-P'3) -'31]xya+ [i ('12-''') -~P'2]y3 
+C{'11 +'&aX+",y+'Ux2+'fosJo/+',eY2+,,,xay 

+ r -j ('"-'1fo+2 'fo+2 'S,+'11+PI3)] xy2} 

G:q='2fo+1l2Sx+'xY+'27X2+'a,.xy+'aty2+1l3oX'+'31x2y 
+1l3a"Y2+',,y3 

+C{' .. +'nx +llsgy+'51x2 + [-j ('u-Il13+'a+'5&+Il'+P&1) 

- (1137+'40.)] .xy+'saY2} 

(2-94a) 

(2-94b) 

(2-94c) 
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o7ll'=tti (l-C) (P7+P.x+PlaX3+P1aY3) +~ (l-C) (1-3{) PtY 

+i (l-C) (-1-3C) PllXJ1'+i (l+C) (PS,+PIOX+PUX3+Puy3) 

+~ (l+C) (1+3C) PIi~i (l+C) (-1+3C) PI3XY+i (1-CI ){(P'3 

+p,,) + (Pc.s+2 P51)x+ [-1 (P65-P13+PI+PS') + (P,,-P37)] y 

+P"xl + [-% (PII-PlI) -3 (P,+PSI) ].xy}} 

o .... =tti (l-C) (Pl+P,y+p,X3+PaYl ) +~ (l-C) (1-3{) PIX 

+i (l-C) (-1-3C) PsXJI'+i (l+C) (PS3+PSsY+PSIXI+PSsYI ) 

+.! (1+{) (1+3{) p"x+.! (l+C) (-1+3C) P57XJ1' 
8 4 

+i (l-ca) {(P3S+PSO) + [-1 (PIS-P13+P,+PI1) + (P37-P,,)] X 

+ (P38+2 PSI)Y+ [-% (P'7-P15) -3 (Pll+P,,) ]xy+puyln 

o.=tati (1-Cl I (2+C) (P13+PlIX+PuY) +i (1+C) 1 (2-C) (PI5+P"X+PI7Y) 

-i (l-C) 3 (l+C) [(P3+P,) + (2P,+Pll) X+ (Ps+2Pu) Y] 

+i (l-C) (l+C)3 [(PS'+P&1) + (2P5'+PI3)X+ (P57-a P .. )yJ) 

(2-94d) 

(2-94e) 

(2-94f) 

This assumed stress field satisfies the equilibrium equations, but the number of the 
stress parameters in the field is very large. Furthermore, the resulting element may 
be not free from kinematic deformation modes. 

c) Stress Modes Matched with Strain Modes 

In the equilibrating stress field above, the complete linear or cubic 
polynomials are used. It usually causes the overabundance of stress parameters. On 
the other hand, reducing the number of stress parameters may cause spurious 
kinematic deformation modes in the hybrid element. One procedure to suppress any 
spurious kinematic deformation modes is to match one stress mode individually with 
one strain mode which represents a basic deformation mode such that the strain 
energy caused by each strain mode is not zero [2.47]. 

Within an element with n degrees of freedom and r rigid body modes, the 
displacement distribution in the element can be represented by n-r basic deformation 
modes and r rigid body modes. If the basic deformation modes of the element are 
expressed in the form 
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i=l, 2, .. . n-r (2-95) 

the individual basic strain modes can be expressed as 

i=1,2, ... n-r 
(2-96) 

Moreover, if the individual stress mode is expressed in the form 

(2-97) 

Then, it is assumed that, for each deformation mode, there is one stress mode such 
that the strain energy 

(2-98) 

is non-zero. 

1. 2-D. 4-node Plane Element 

Within a 4-node plane element, the assumed displacement field (2-82) is 

u=aO+a1 ~ +a211 +a3~11 

v=bo +b1 ~ +b211 +b3~11 
(2-99) 

There are eight displacement degrees of freedom (n=8) and three rigid body 
modes (r=3). Therefore, there are five basic deformation modes (n-r=5). 
Corresponding to the basic deformation modes, the basic strains are 

Ex=CZ1 +CZ 4 11 

Ey=CZ2+CZ5~ 

Exy=2CZ 3 

(2-100) 
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In which, each ~ is associated with a distinct strain mode. It can be written as 
follows, 

(2-101) 

The deformation energy due to assumed stress modes and basic deformation modes 
is calculated by 

(2-102) 

Using the energy constraint, 1; "* 0, the corresponding stress modes can be found, 

This assumed stress field can be written in the form, 

00" 
1 0 0 
010 

2. 3-D. 8-node Brick Element 

(2-103) 

(2-104) 

This method can be also used to determine stress modes for three 
dimensional 8-node brick element. Within the element, there are twenty-four 
displacement degrees of freedom (n=24) and six rigid body modes (r=6). Therefore, 
there are eighteen basic deformation modes (n-r=18). They are [2.47] 
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in which, each <l;. is associated with a basic deformation mode. The deformation 
energy due to assumed stresses modes and basic deformation modes is calculated by 

(2-106) 

Using the energy constraint again, I; :;t: 0, the stress modes corresponding to the basic 
deformation modes can be found and the assumed stress field can be expressed in 
the form, 

1 000 0 o " C "c o 0 0 0 o 0 0 0 0 
0 1 0 0 0 0 0 0 0 ~ , C~ 0 o 0 0 o 0 

~:J 0 0 1 0 0 0 0 0 o 0 0 0 " ~ ~" 0 o 0 
G-

O 0 C 0 
(2-107) 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 o ~ 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 " 0 0 

Using this method, the assumed stress field contains minimum number of stress 
modes (or stress parameters), and the resulting element is free from any kinematic 
deformation modes. But, in this procedure, the basic deformation modes of the 
element must be first found, and then the stress modes can be obtained by checking 
if deformation energy is equal to zero. For many elements, it is difficult to find the 
basic deformation modes at first. Therefore, the use of the method is limited. 

2.S DIFFICULTIES WITH THE HYBRID FINITE ELEMENT 
METHOD 

In general, the hybrid stress element has two important disadvantages: the 
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presence of spurious kinematic deformation modes and the inversion of the flexibility 
matrix [H]. 

Because the assumed stress field of the conventional hybrid elements 
contains six stress components, there always exist a large number of stress 
parameters in the stress field. So, the inversion of the flexibility matrix is the most 
costly operation. For instance, an assumed stress field may contain more than fifty 
stress parameters for the stress analysis of 3-D structures and hundreds of stress 
parameters for the analysis of composite structure [2.56]. It suggests a poor 
performance in terms of computing time when compared with the single-field 
displacement models. However, this limitation can be overcome by reducing the 
number of stress components in the assumed stress field of conventional hybrid 
elements for the analysis of composite structures. 

For analysis of composite structures, it is not necessary to introduce all 
components of stresses into an assumed stress field. Although all components of 
displacement, strain and stress must be continuous within each layer of a laminated 
composite, only the in-plane derivatives Ex ' Ey , 'Yxy and transverse stresses (Jz , 

'txz ,'tyz must be continuous at the layer interface with prefect bonding. Therefore, the 
main requirement in developing finite element is to satisfy all of the continuity 
conditions on displacements and transverse stresses at interlaminar surfaces and 
traction-free condition on the upper and lower surfaces. In order to enforce the 
transverse stress continuity, it is needed only to introduce three transverse stresses 
into the assumed stress field [2.58]. This motivates researchers to develop new 
variational principle for new types of hybrid elements. 

In view of the efficiency of finite element model, on the one hand, the 
number of the stress parameters (or stress modes) in assumed stress field should be 
reduced to as small as possible. According to the necessary condition (2-78), the 
minimum number of stress parameters (or stress modes) may equal m (= n - r). On 
the other hand, there are many examples indicating that there are spurious kinematic 
deformation modes in the hybrid elements when the requirement (2-78) is satisfied. 
In order to suppress these kinematic deformation modes, it is proposed to add stress 
modes of high order terms in the assumed stress field. This means to increase the 
number of stress parameters in the stress field. Therefore, the question is that how 
many and what kind of stress modes must be introduced into the assumed stress 
field. An ideal situation is that an assumed stress field contains m (=n-r) least-order 
stress modes and its resulting element is free from kinematic deformation modes. 
This kind of assumed stress fields is considered to be best and is optimal with 
respect to computer resources. The procedure to derive this optimal stress field is 
presented in Chapter 3. 

In this chapter, it is also shown that the assumed stress field of a hybrid 
stress element can be constructed by various approaches. Thus, a hybrid stress 
element may have many different assumed stress fields. However the relationship 
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among them has not been revealed due to the fact that the nature of the assumed 
stress field has not been investigated sufficiently. In order to develop a rational way 
for deriving the optimal assumed stress field, it will be necessary further to study the 
stress modes in the assumed stress field. This will be presented also in Chapter 3. 
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Chapter 3 

DEVELOPMENT OF 
HYBRID ELEMENT TECHNIQUE 

FOR ANALYSIS OF COMPOSITES 

3.1 INTRODUCTION 

The previous two chapters presented a brief overview of the displacement 
finite element formulation and the hybrid finite element formulation. These finite 
element formulations have been used for the analysis of structures made of isotropic 
materials. They also have been used for the analysis of laminated composite 
structures. However, the results for laminated composite structures need improvement 
due to the fact that there are many levels of discontinuities in the laminated 
composites. These discontinuities give rise to many regions of high stress gradients. 
On the microstructural level, there is discontinuity in material properties as one 
moves from fiber to matrix or vice versa. For the purpose of calculation at the 
lamina level, the fiber and matrix properties are averaged over an effective unit cell 
and the effective modulus approach is used for macromechanics. The average 
properties of individual lamina are usually obtained based on this assumption. 
Moreover, when many laminae are stacked to form laminates, due to the variation 
in fiber orientation from lamina to lamina, the interlaminar stresses occur near the 
interfaces between the laminae. The interlaminar failure modes caused by the 
interlaminar stresses are major failure modes in laminates because interlaminar 
strengths are usually orders of magnitude smaller than intralaminar strengths. This 
problem has been with designers and researchers for the past thirty years. Many 
numerical techniques have been proposed, the majority of them using the finite 
element method [3.1]. However until the present time, the problem has not been 
resolved satisfactorily. The main difficulty is in the efficiency in obtaining transverse 
stresses accurately. Without efficient means to obtain accurate transverse stresses, it 
is difficult to obtain efficient ways to predict interlaminar failure. 

In finite element method, the conventional displacement finite elements 
work well with the stress analysis of homogenous materials. However, they have 
an inherent disadvantage that differentiation has to be performed on the 
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approximated displacements to obtain strains and subsequently stresses. The accuracy 
will deteriorate because the numerical differentiation of approximate quantities tend 
to magnify the errors. In addition, the convergence of displacement finite element 
model for problems with high stress gradients is slow. For composite laminates, the 
interfaces between layers are usually locations of high gradients of stress due to 
discontinuity in material properties as one moves from one layer to the next. 
Therefore, the use of displacement finite element model requires fine element mesh 
and extensive amount of computer space and time to be able to determine stresses 
with any degree of accuracy. This excessive requirement of computer resources has 
been a deterrent to accurate and efficient stress calculation in composite laminates. 
Furthermore, the displacement elements can not satisfy well the requirements in 
analysis of composites. The main requirement in developing finite element for the 
analysis of composite is to satisfy all of the continuity conditions of displacements 
and transverse stresses at interlaminar surfaces, and traction-free condition on the 
upper and/or lower surfaces. As an alternate, the conventional hybrid stress elements 
[3.2-3.3] have been used to analyze composite structures. 

The conventional hybrid elements have the ability to satisfy these conditions 
exactly. The hybrid element formulation assumes the stress field directly from the 
beginning. Therefore in hybrid finite element formulation, no differentiation on the 
approximated values has to be carried out and the degree of accuracy of the stresses 
is the same as that of the displacements. This is the inherent advantage of the hybrid 
finite element method. However, the conventional hybrid elements contain six stress 
components. This will require much computer CPU time due to the presence of 
many stress parameters ~ in assumed stress fields and the inversion of the flexibility 
matrix [H]. In fact, it is not necessary to introduce all components of stresses into 
an assumed stress field for analysis of composite structures. In order to satisfy the 
continuity condition of stresses at interlaminar surfaces, three transverse stresses are 
only needed in the assumed stress field. Therefore, new hybrid finite element 
techniques have been developed for the stress analysis of composites [3.4-3.15]. 

3.2 COMPOSITE VARIATIONAL PRINCIPLE 

In the development of the partial hybrid finite elements for analysis of 
composites, the first thing is the identification of globally continuous variables and 
locally continuous variables. Usually, the lamina plane is denoted by the Cartesian 
co-ordinates x, y, and the through thickness direction by z (shown in figure 13). In 
the composite laminates, all components of displacement, strain, and stress are 
continuous within each layer. At the layer interface with perfect bonding, the 
displacements are also continuous due to the compatibility condition. As a result, 
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the in-plane derivatives (three inplane strains) Ex, Ey' Exy are continuous across the 
thickness. On the other hand, the reaction forces give rise to transverse stresses 
(interlaminar stresses) a z, azx' a~, and they are also continuous across the thickness 
because of the equilibrium condition. This means, along the thickness of composites, 
the in-plane strains ( Ex' Ey, Exy) and transverse stresses ( a z' azx' a%)') are globally 
continuous variables. The other components of strain and stress (transverse strains 
~, ~, Ezy and in-plane stresses ax' a y' a XY) are not necessarily continuous across 
the interfaces between different layers. They are cotitinuous within each layer and 
are locally continuous variables. Therefore, the globally continuous variables are 
those that are continuous not only within the plane of the laminate but they are also 
continuous across the interface from one layer to the next. This is the result of 
consideration for compatibility and equilibrium. The locally continuous variables are 
those that are continuous only within the plane of the lamina but are not necessarily 
continuous across the interface from one lamina to the next. 

y 

Figure 13 Composite structure and its co-ordinate system 

By classifying the variables into these two groups, the stress a and strain 
8 can be divided into the in-plane and transverse parts, 

and 
( 3 - 1 ) 

Combining the globally continuous variables in composites, the globally continuous 
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vector is defined as 

(3-2) 

Similarly, combining the locally continuous variables, the locally continuous vector 
is defined as 

(3-3) 

in which the negative sign is introduced to ensure the symmetry of the combined 
constitutive relation which is 

p=[R]q ( 3 - 4 ) 

or 

(3-4)' 

where [ R ] is called the combined constitutive matrix. Because the constitutive 
relation can be expressed in the form, 

CJ= [C] C ox (3-5) 

where [C] is the stiffness matrix of materials, and 

C= [8] CJ ox (3-5)' 

where [S] is the compliance matrix of materials, the matrix [R] can be expressed as 
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(3-6) 

and 

(3-6)' 

Due to the fact that the matrices [C] and [S] are symmetric matrices, the matrix [R] 
can be proven to be a symmetric matrix. It can be shown that 

[R] T= [R] 
(3-7) 

Thus, an elasticity problem for composite structures can be described. 

Elasticity Problem for Composite Structures 

Consider a linear anisotropic elastic body under static loading. The body 
occupies the volume V and is bounded by the surface S, which is decomposed into 
S: SdUSt. Boundary displacements are prescribed on Sd' whereas surface tractions 
are prescribed on St. The outward unit normal on S is denoted by n. The following 
relations between three fields: globally continuous vector q, locally continuous vector 
p, and displacement u in the volume have to be satisfied. 

1. the partial strain-displacement equations: 

_1 
£ .. -- (Ui j+U. i) 
~J 2 ' J, 

i,j=l,2 
(3-8) 

or 

(3-8)' 
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2. the partial strain-displacement relations: 

£ .. =1. (Ui j+U . . ) 
J.] 2 ' ], J. 

i=1,2,3 j=3 
(3-9) 

or 

(3-9) 

3. the stress-strain equations (constitutive equations): 

p=[R]q ( 3 - 10 ) 

4. the equilibrium equations: 

(3-11) 

in which, F is the body force in V. 

Moreover, there are three sets of boundary conditions for the displacement 
field and stress field. 

S. the traction boundary conditions: 

CJ • Zl = 2'11 and 
(3-12) 

or 
(3-12)' 

in which, T is the prescribed surface force on St. 

6. the displacement boundary conditions: 

u=d 
(3-13) 

or 
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(3-13)' 

in which, d is the prescribed displacement on Sd' 

7. the conjunction conditions at interlayer surfaces: 

i=1,2,3 
(3-14) 

k k+l 
°i3=Oi3 k=l, 2, ... , N 

where N is the number of layers along the thickness of composite structures. 

Composite Energy 

For an elastic body, the potential energy can be expressed as a quadratic 
form of strains, 

(3-15) 

and the complementary energy can be expressed as a quadratic form of stresses, 

(3-16) 

Similarly, one can define a new energy, named composite energy, as a quadratic 
form of the globally continuous variables due to the fact that the constitutive matrix 
[R] is symmetric matrix (3-7), 

(3-17) 

or 
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(3-18) 

Thus, the constitutive equations (3-10) can be written in the form, 

(3-10) 

Composite Energy Functional 

The variational functional based on the composite energy can be derived 
through different ways. Huang [3.5] established the variational functional by 
weighted residual method, Reissner [3.17-3.18] developed it using Lagrange 
multiplier and 'partial' Legendre transformation method, and Moriya [3.19] developed 
it through the Hu-Washizu variational principle. Lately, Pian [3.13] used the 
Hellinger-Reissner variational principle to obtain the functional. In view of 
simplicity, the variational functional, termed composite energy functional, is 
presented by means of the Hellinger-Reissner variational principle, and their 
difference is revealed. 

The Hellinger-Reissner variational principle (see chapter 2) contains two 
fields: displacement field and stress field. The constraint conditions are constitutive 
equations (2-2) and displacement boundary conditions (2-5) only. The strain­
displacement equations (2-1), equilibrium equations (2-3), and traction boundary 
conditions (2-4) are only satisfied a posteriori. Satisfying the displacement boundary 
conditions (2-5) a priori, the variational functional (2-25) can be expressed as 
follows, 

(2-25) 

By means of the definition (3-1), (3-8), and (3-9), one has 
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(3-19) 

Substituting them into the (2-25), the functional is written in the form, 

I1III=Iv[- ~ [oi 0:] [S]{:~+[oi o:]{~::} 

- F S'u] dV- r 2' S'u dS 
JSt 

(3-20) 

Using the constitutive equations (3-6)' and (3-4)' to eliminate the in-plane stress O'L' 

the first term in the functional becomes 

and the second term becomes after adding and subtracting O'L T tg 

Iv [oi 0;] ~::}dV= Iv {r:;[R1] Tr:g+0;[R2] Tr:g 

+oi {DgU-Bg } +O:DLU} dV 
Substituting them into the functional (3-20), it is modified to 

I1III= Iv [ ~ qS'[R] q+oi (DgIl-r:g) +O:DLU 

-FS'u] dV- r 2'S'u dS 
JSt 

( 3 - 21 ) 

(3-22) 

(3-23) 

If the partial strain-displacement equations (3-8) are satisfied a priori, a new 
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functional is obtained as follows [3.5], 

(3-24) 

In this new variational functional, there are two fields: displacement field 
and partial stress field. The constraint conditions are the constitutive equations (3-
10), partial strain-displacement equations (3-8), and displacement boundary 
conditions (3-13). This new variational functional is named by composite energy 
functional. It is different from the Hellinger-Reissner variational functional because 
the partial strain-displacement equations (3-8) become constraint conditions in the 
new functional. 

Variational Principle of Composite EneIgY 

In order to present variational principle, it is assumed that the composite 
energy function E is a positive definite function of the components of globally 
continuous vector, and the body forces and surface forces are derivable from 
potential functions Q(u) and 'P(u) (2-6). Thus, the principle of composite energy 
states 

Among all the admissible displacementfields and partial stress (transverse 
stress) fields, which satisfy the partial strain-displacement equations (3-8), 
constitutive equations (3-10), and prescribed displacem ent boundary conditions (3-
13), the actual displacement field and partial stress field make the total composite 
energy 

(3-24) 

an absolute minimum 5TIco=O. 

In this principle, the partial strain-displacement equations (3-9), equilibrium 
equations (3-11), prescribed traction boundary conditions (3-12) are Euler equations. 
For composites, the conjunction conditions at interlayer surface must be satisfied a 
priori. 

3.3 FORMULATION OF PARTIAL HYBRID ELEMENT 

By means of the variational principle of composite energy, one can 
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formulate many new hybrid elements. The term partial hybrid element is used to 
name these new hybrid elements due to the fact that three transverse stresses are 
only introduced in the assumed stress fields. Within a partial hybrid element, the 
displacement field is assumed firstly. It is usually described by the nodal 
displacements as follows, 

u = [N] I. (3-25) 

where [N] is defined as [N] = [ NI, N2, ••• ,Nn] and [Ni] are vectors of the 
displacement shape functions. The vector 0. is nodal displacement vector and n is 
the number of nodes in the element. The assumed displacement fields in finite 
elements have been discussed in Chapter 1 and some examples of the displacement 
shape function [N] will be presented in the next chapter. Then, by means of the 
partial strain-displacement equations (3-8), the derivatives of the displacements can 
be expressed as 

D"u= [Bgl I.=B" 

Dz,U= [BLl I. 

(3-26) 

Because the partial strain-displacement equations (3-8) are satisfied a priori, the 
inplane strains can be expressed in the form of the derivatives of the displacements. 
On the other hand, the transverse strains can not be expressed in that form due to 
the fact that the partial strain-displacement relations (3-9) are only satisfied a 
posteriori. In the element, a partial stress field is also assumed independently as 
follows, 

(3-27) 

in which, vectors (JI are stress modes which are functions of the co-ordinates, the 
parameters ~i are the corresponding stress parameters, and [P] is the stress matrix. 
Using the definition (3-17), (3-6) and (3-2), the composite energy functional can be 
written as 
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nco=!} ~ &:[R1 ] &.+ ~ O':[~] O'.+O':[~] T&. 

+O':Oz,u-,I'u] dV-!St!l! I'u dS 

(3-28) 

Substituting the equations (3-25)-(3-27) into the equation (3-28), the functional 
becomes 

Denote 

IIco= ~ I:!v [Bg] T[~] [Bg] dV I. 

+ ~ IIf'Iv [P g] T [R3l [P gl dV II 

+1I"'Jv [Pgl T( [BLl + [R2 l T[Bgl ) dV I. 

-I: r [N] T1!'dV -I: r [N] T7!dS 
1v 1St 

[H] =-fv[Pgl T[R3l [Pgl dV 

[G] =fv[Pgl T( [BLl + [R2 l T[Bgl ) dV 

[Kd] =fv[Bg] T[~] [Bg] dV 

£=/ [N] T,dV + r [N] T!'dS 
v JSt 

Thus, the functional is expressed as 

(3-29) 

(3-30) 

(3-31) 

In this variational functional, there are two independent variables subject to variation. 
From the partial stationary condition with respect to ~, 
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aIIco=o 
all 
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(3-32) 

the relation between stress parameters P and nodal displacements Oc is obtained, 

[H] 11= [G] I. (3-33) 

By means of this relation, then, the functional (3-31) becomes 

(3-34) 

Denote 

and (3-35) 

Then, equation (3-34) can be rewritten as 

(3-36) 

From the partial stationary condition with respect to Oc' the governing equation of 
the element is obtained, 

[I(] e 1.=:£. (3-37) 

in which, [K]c is the element stiffness matrix. For the partial hybrid element, the 
element stiffness matrix consists of a displacement-formulated stiffness matrix [Kd] 

and a hybrid-formulated stiffness matrix [Kh]. 

3.4 DETERMINATION OF STRESS MODES 

For hybrid stress elements, there have been problems with the determination 
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of the stress polynomials. While the displacement polynomials are constrained by the 
number of displacement nodal degrees of freedom in the element, the stress 
polynomials have no such constraint. However, if not enough polynomial terms are 
introduced into the stress field, then there may exist spurious kinematic deformation 
modes in the stiffness matrix which make it singular. One possible way to remedy 
this problem is to add more terms into the stress polynomials. But there is no 
guarantee that the additional terms will resolve the singularity problem. Also, the 
more terms there are in the stress polynomials, the larger the matrices [H] and [G] 
will become and the more computer resources will be required. In addition, if there 
are too many terms in the stress polynomials, the resulting element model will be 
over-rigid. Furthermore, overuse of the terms in the stress polynomials will cause 
locking in some elements such as plate/shell elements. Although there are several 
approaches to determine the optimal assumed stress field [3.20-3.28], the problem 
has been not solved completely. In order to solve these problems, this section 
presents the eigenfunction method [3.5], the iso-function method [3.7], and the 
classification method [3.16] for determination of stress polynomials. For simplicity, 
the discussion is restricted to the conventional hybrid elements based on the 
Hellinger-Reissner variational principle. However, these techniques can also be 
applied to partial hybrid elements. Once the displacement polynomials for an element 
are determined, by means of these techniques, the stress polynomials will be 
constrained by optimal condition of the stress field. 

3.4.1 Eigenfunction Method 

A finite element has a finite number of degrees of freedom. For instance, 
a 2-D, 4-node displacement element has (n=) 8 degrees of freedom, and a 3-D, 8-
node displacement element has (n=) 24 degrees of freedom. Therefore, the 
displacement field of an element can be described by n nodal displacements. It can 
also be described by n-r independent deformation modes and r rigid body modes. 
Thus, it can be assumed that there exist m (=n-r) natural deformation modes and r 
rigid body modes in the element. The displacement distribution in the element can 
be represented by them. 

In finite element method, for both single-field displacement formulation and 
multifield hybrid formulation, the governing equation of nodal displacements has the 
same form as follows, 

(3-38) 

If the nodal force vector is proportional to the nodal displacement vector, the 
equilibrium equation (3-38) becomes a eigenvalue equation. It can be expressed as 
follows 
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(3-39) 

where [K]c is a nxn element stiffness matrix. This equation will give (n-r) non-zero 
eigenvalues and r zero eigenvalues, and (n-r) eigenvectors corresponding to the (n-r) 
non-zero eigenvalues. If vectors {OJ (i= 1 ,2, ... m) are the eigenvectors of the stiffness 
matrix [K]c' they must satisfy the orthogonal condition: 

H;i}71~}=O 

{~ .}71~ .}=1 
~ J 

Natural Deformation Mode 

i:l=j 

i=j 
(3-40) 

In the single-field displacement element, the stiffness matrix can be 
expressed in the form (see chapter 1), 

[I(] e=fv [B] T[C] [B] dV 
" 

(1-6) 

In which, [C) is the material constant matrix and [B) is the geometry matrix of the 
element. Therefore, the eigenvalues and eigenvectors only depend on the material 
properties and geometry of the element. Due to the fact that the (n-r) eigenvectors 
{Oh (i=1,2,3, ... m) are unique, they can be considered as the natural deformation 
modes of the element with a special shape and material constants [3.5, 3.29]. 

These natural deformation modes are independent from each other and are 
the basic deformation modes of the element. Any deformation in the element can be 
described by the linear combination of these basic deformation modes and the energy 
of the element is decomposable into these orthogonal modes. 

Natural Stress Mode 

In the hybrid element based on the Hellinger-Reissner variational principle, 
the stiffness matrix can be expressed in the form (see chapter 2), 
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[K'] e= [G] T[H] -1 [G] 

[H] = f [P] T[S] [P] dV 
v" (2-28) 

[G] =fv" [P] T[B] dV 

where [H] is the flexibility matrix, [G] is the leverage matrix, [S] is the material 
constant matrix, and [P] is the stress matrix. Because of the existence of the matrix 
[P], the eigenvalues and eigenvectors of the element will not only depend on the 
material properties and the geometric shape of the element, but also be sensitive to 
the stress modes in the assumed stress field. 

In hybrid elements, an assumed stress matrix [P] may contain zero-energy 
stress modes and its resulting stiffness matrix may have spurious kinematic 
deformation modes. The zero-energy stress modes are such stress modes that do not 
produce deformation energy. The eigenvalues of the element stiffness matrix 
corresponding to these stress modes equal zero, and these stress modes correspond 
to rigid body modes. The kinematic deformation modes are these deformation modes 
corresponding to spurious zero stiffness. They may be caused by unsuitable 
numerical integration technique or unsuitable assumed stress fields. In this book, the 
numerical integration technique is not discussed. The selection of stress modes will 
be only discussed here. Therefore, non-zero-energy tress modes should correspond 
to the natural deformation modes [3.5,3.29]. Thus, it can be stated that: 

There are m (=n-r) natural stress modes in a hybrid element with n degrees 
of freedom and r rigid body modes. These natural stress modes correspond to m 
natural deformation modes which are orthogonal and independent from each other, 
and the energy of the hybrid element is decomposable into these orthogonal modes. 

Postulate 1 

If and only if the elastic energy of the structure with finite degrees 
of freedom is decomposable, the eigenvalues obtained from separate stress 
mode equations 

(3-41) 

are equal to the eigenvalues obtained from the total stress mode equation 
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( [K'] e -j. [I] ) 6.=0 
(3-42) 

where i=1,2, '" , m. The stiffness matrix [KJ is defined by equations (2-28) 
and (2-34). lt is 

[I(1 e= [G] T[H] -1 [G] 

[H] =lv [P]T[S] [P] dV 
" 

[G] =lv [P] T[B] dV 
" 

The matrix [KJ is defined as follows, 

in which 

[Ki ] e= [Gi ] T[Hi ] -1 [Gi ] 

[Hi] =Iv}o i}T [8] {O i}dV 

[Gi ] =lv {Oi}T[B] dV 
" 

This postulate [3.5,3.29] can be stated as a theorem: 

Theorem 1 

(2-34)' 

(3-43) 

(3-44) 

For a hybrid element with n degrees of freedom and r rigid body 
modes, if and only if the matrix [HJ is a diagonal matrix, the stiffness matrix 
satisfies the superposition principle: 

m 

[K'] e= E [Ki ] e (3-45) 
i=l 
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where the matrices [Kl. and [KJe are defined in the equations (2-34)' and (3-
43). 

Proof [3.5]. Assume [H] to be a diagonal matrix and denote: 

1 c·=­
~ Hii 

The inversion of the diagonal matrix [H] can be written in the form, 

C1 0 0 

0 ca 0 
[H] -1= 

0 cm 

and 

[H) -1= [Ci] 

(3-46) 

(3-47) 

Thus, by means of equations (2-34)' and (3-44), the element stiffness matrix is 
expressed as follows, 

C1 0 0 [G1 ] 

0 Ca 0 [Ga] 

[K] e= [ [G1 ] T [GaF ••• [Gm] T ] (3-48) 

0 C 
[Gm] 

Then, 
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.m 

[I(] e=},: [Gi ] T[Ci ] [Gi ] 
~ 

.m 
=},: [Gi ] T[Hi ] -1 [Gi ] 

~ 

(3-49) 

• 
Due to the fact that the matrix [H] is a diagonal matrix if the related stress 

matrix [P] consists of the natural stress modes of an element, equation (3-49) shows 
that the natural modes are independent from each other and the elastic energy of the 
element is decomposable into these natural modes. 

Determination of Natural Stress Modes 

In order to get the natural stress modes from the natural deformation modes, 
the relation (2-31) between stress parameters ~ and nodal displacements Oe is used. 
It is 

[H'] p= [G] I. (2-31) 

For simplicity, the subscript e of the nodal displacement vector in the 
equation (2-31) will be omitted in the following text. If the vectors O. (l=1,2, ... ,m) 
are the eigenvectors of the stiffness matrix of the single-field displacement element, 
they are considered as the natural deformation modes of its hybrid counterpart 
because they do not depend on the stress modes. Thus, in eigenfunction method, a 
set of initial stress modes can be assumed. Subsequently, these initial stress modes 
can be modified by means of iterative process as follows 

p1= [Hi] -1 [G i ] Il 

Of+1= [pi] pi (3-50) 

in which, superscript i represents the i-th step of the iterative process. Details of the 
iterative process are shown in the following pages. This process continues until the 
matrix [H] becomes diagonal and the stress matrix [P] is stationary. The resulting 
stress modes from this process are considered as the natural stress modes 
corresponding to the natural deformation modes. Theoretically, the natural stress 
modes of an element can be found by using the eigenfunction method. However, in 
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the case of multiple eigenvalues, modification of the eigenvectors has to be made in 
numerical iterative process. 

The procedure of the eigenfunction method is as follows [3.5, 3.29], 

Step 1. Calculate the eigenvectors of the element stiffness matrix of the 
displacement element having the same displacement field as that by a 
hybrid element: 

1=1,2, ... ,m (3-51) 

Step 2. Assume a complete set of the stress field modes as follows, 

(3-52) 

where L >= m (=n-r). 

Step 3. For i = 1,2,3, ... ,k, where k is the number of iteration, run the iterative steps 
4 - 6 until the matrix [H] becomes diagonal and the stress matrix [P] is 
stationary. 

Step 4. Calculate the matrices 

(3-53) 

Step 5. Modify m stress modes in the matrix [pi] 

(3-54) 

where 1=1,2, ... ,m. 

Step 6. Normalize the stress modes 
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(3-55) 

If the matrix [H] becomes diagonal, the stress modes in the stress matrix 
[P] are the natural stress modes of the hybrid element. One caution needs to be 
considered. In the eigenvalue analysis, there may exist multiple eigenvalues. In this 
case, there are a lot of choices for the directions of the corresponding eigenvectors. 
However, it is not guaranteed that every choice can result in a stress mode which 
gives a diagonal matrix [H] and makes element stiffness matrix [K] 
superposition able. Therefore, for multiple eigenvalues, the orthogonal displacement 
eigenvectors mayor may not result in orthogonal stress modes. 

Examples of Stress Matrix Determined by Eigenfunction Method 

2-D. 4-node Hybrid Element 

In the hybrid element with isotropic elastic material and rectangular shape, 
the number of the degrees of freedom is eight (n=8), and the number of rigid body 
modes is three (r=3). Therefore, the number of stress modes in the assumed stress 
field must be larger than five (m=n-r=5). For two different sets of initial stress 
modes, the stress matrices [pi] in the iterative process are given as follows [3.5,3.29], 

Example 1: 

Step 1. Calculate the eigenvectors (01 , 01 , 03 ' 04 , 05 ) of the stiffness 
matrix [K] of the displacement element. 

Step 2. Assume a stress matrix, 

1 0 TJ 0 

-1 0 0 e 
o 1 0 0 

(3-56) 
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Step 3. Run the iterative steps 4 - 6 for i = 1,2,3, ... 

[ 
-" O. 045~ 0 

[pl] = O. 045" -~ 0 

-0.045e -0.045" 1 

1 -1] 
-1 -1 

o 0 

[ -" 
[p2] = 0.002" 

-0.002e 

o . 002 ~ 0 1 -1] 
-~ 0 -1 -1 

-0.002" 1 0 0 

4x10-6~ 0 1 -1 

-~ 0 -1 -1 

-4x10-6" 1 0 0 

2x10-11~ 0 1 

-e 0-1 

-2x10-11" 1 0 

-lj 
-1 

o 

[-" 0 0 1 -1] 
[pS] = 0 -~ 0 -1 -1 

o 0 1 0 0 

(3-57) 

(3-58) 

(3-59) 

(3-60) 

(3-61) 

When i=5, the matrix [H] becomes diagonal. Therefore, the final stress 
matrix is obtained. 

Example 2: 

Step 1. Calculate the eigenvectors (01 , O2 , 03 , 04 , Os ) of the stiffness 
matrix [K] of the displacement element. 
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Step 2. Assume a stress matrix, 

[
11 O~O 

[pO] = 1 -1 0 0 ~ 

o 0 1 0 0 

o " 0 0] 
o 0 " 0 

~ 0 0 " 

Step 3. Run the iterative steps 4 - 6 for i = 1,2,3, ... 

[ 
-" O. 09~ 0 

[pl] = O. 09" -~ 0 

-0.12~ -0.12" 1 

1 -1] 
-1 -1 

o 0 

- 0 . 00 8 ~ 0 1 -1] 
-~ 0 -1 -1 

-0.015" 1 0 0 

-" -6x10-s~ 0 1 -1 

101 

(3-62) 

(3-63) 

(3-64) 

[p3] = -6 x10-s" -~ 0 -1 -1 (3-65) 

-2x10-4~ -2x10-4" 1 0 0 

-" -4x10-9~ 0 

= -4x10-9" -~ 0 (3-66) 

-5x10-s~ -5x10-s" 1 
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(3-67) 

When i=7, the matrix [H) becomes diagonal. Therefore, the final stress 
matrix is obtained. 

It can be seen that the final stress matrices [P] are the same although they 
start from the different initial stress modes. 

3-D. 8-node Hybrid Element 

In 3-D, 8-node hybrid solid element with isotropic elastic material, the 
number of the degrees of freedom equals twenty four (n=24), and the number of 
rigid body modes equals six (r=6). Therefore, the number of stress modes in the 
assumed stress field must be larger than eighteen (m=n-r=18). Similar to the 2-D 
case above, the natural stress modes are obtained by Huang [3.5,3.29]. They are 

Tension and compressive modes, 

(3-68) 

Pure shear modes, 

(3-69) 
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Symmetric bending modes, 

(3-70) 

Anti-symmetric bending modes, 

(3-71) 

Torsion modes, 

(3-72) 

Saddle distributed modes, 

(3-73) 

These stress modes can formulate a diagonal matrix [H] for the hybrid 
element, and resulting stiffness matrix [K] satisfies the superposition principle. 
Therefore, the energy of the hybrid element is decomposable. Moreover, the 
eigenvalues of the stiffness matrix [K] (2-34), is equal to that of the stiffness matrix 
[K;] (3-43). 

3.4.2 Iso-function Method 

The eigenfunction method can not be used to derive partial stress field for 
partial hybrid element due to the existence of multiple eigenvalues. In order to 
assume a partial stress field without zero energy modes, a new method termed iso­
function method is presented [3.6-3.7]. The method presents an easy way to form a 
stress field although the formulated stress field may not be better than others [3.21-
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3.28]. 

Iso-function Stress Matrix 

Within a hybrid finite element based on the Hellinger-Reissner variational 
principle, a displacement field is assumed in the form, 

u = [«I> ] a ( 3-74 ) 

where [ «I> ] is defined as [ «I> ] = [ «1>1 «1>2 ... «I>n ], and {«I>J are vectors of 
displacement interpolation functions. They only depend on the element geometry and 
have no relation with the material properties of the element. a = [ al ~ ... ~ ]T is the 
displacement parameter vector, and the subscript n is the total number of degrees of 
freedom of the element. By means of strain-displacement relation (2-1), then, the 
strain field is derived from the displacement field as follows, 

£ =[D]u= ['I']a (3-75) 

where [ D ] is the derivative operator matrix and ['I'] = [0][«1>]. The displacement­
derived stress field can be obtained using the constitutive relation (2-2), 

o=[C]a=[C] [lP]a 
(3-76) 

The expression can be rewritten in the form 

0= [8] y 
(3-77) 

where [ E> ] is a function of co-ordinates and 'Y is a vector of stress parameters 
which are the products of material constants Cjj and displacement parameters ak' 
Therefore, the stress parameters depend on the geometry, material properties, and 
displacement parameters of the element. On the other hand, the stress field in the 
conventional hybrid element is independently assumed as 

0= [P] P (3-78) 

where [ P ] is a stress matrix which is functions of co-ordinates, and p is a vector 
of stress parameters which depends on the geometry, material properties, and 
displacement parameters of the element. If the number of stress parameters in the 
two stress fields (3-77) and (3-78) is same, the difference between them is only that 
the stress parameters (3-77) are not basic variables and depend on the displacement 
variables, whereas the stress parameters (3-78) are basic variables. However, the two 
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stress fields represent the same field in an element. If the assumed displacement field 
(3-74) does exactly describe the deformation of the element and the assumed stress 
field (3-78) does exactly represent the stress distribution in the element, in the case 
of n ~oo, the displacement-derived stress field and the assumed stress field must be 
same. That is 

[P] 11= [8] y 
(3-79) 

Therefore, without loss of generality, it is assumed that 

[P]=[6] ( 3 - 80 ) 

In this relation, the stress matrix [P] is assumed to be the same as the 
displacement-derived stress matrix. Thus, the matrix [P] is called iso-function stress 
matrix and the method to establish an assumed stress field is called iso-function 
method. 

I so-function Partial S tre ss Matrix 

For a partial hybrid element based on the variational principle of composite 
energy, the displacement-derived stress field (3-77) can be split to two parts as 
follows, 

(3-81) 

and a partial stress field is independently assumed in the form, 

(3-82) 

Similarly, in the case of n~oo, the assumed partial stress field (3-82) should be 
equivalent to the displacement-derived partial stress field (3-81) if they do represent 
the real stress distribution for the same element. Therefore, it is assumed that the 
assumed partial stress matrix is equal to the displacement-derived partial stress 
matrix. That is 

(3-83) 

Using this various partial stress fields can be derived for the different partial 
hybrid elements. However, one question remains. That is the possibility that there 
are zero-energy stress modes which may cause spurious kinematic deformation 
modes in the element. Before answering this question, the relationship between the 
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convention displacement element and hybrid element constructed by iso-function 
stress matrix should be discussed. 

Equivalence Between Hybrid Element and Displacement Element 

In the process of deriving iso-function stress matrix, it is assumed that n 
~oo. In practice, n is a finite number. The assumed displacement field is only an 
approximation of the actual deformation state of an element. Thus, the problem 
becomes: Is it possible that an assumed stress field for a hybrid element is exactly 
equivalent to its displacement-derived stress field when n is a finite number? The 
answer is YES. The proof is as follows. 

In Chapter 2, it has been indicated that there are the limitation principles 
[3.30-3.31] which establish the relationship between hybrid elements and 
displacement elements. For hybrid elements based on the Hellinger-Reissner 
variational principle, it states 

A hybrid element would be equivalent to its displacement counterparl if the 
displacement-derived stress space is a subspace of the assumed stress. 

This means that a hybrid element based on the Hellinger-Reissner 
variational principle would be no different from a displacement element when the 
assumed stress field contains all stress modes derived from the assumed 
displacement field. Due to the fact that the iso-function stress matrix is directly 
derived from the displacement field, the assumed stress field constructed by iso­
function stress matrix will absolutely contain all stress modes which can be derived 
from the displacement field. Therefore, the hybrid element constructed by iso­
function method is equivalent to its displacement counterpart. As a result, the 
assumed stress field is the same as the displacement-derived stress field. Because a 
displacement element does not have any kinematic deformation mode, the equivalent 
hybrid element does not have any kinematic deformation mode and assumed stress 
field does not contain any zero-energy mode. 

For the partial hybrid element, the works on the limitation principle were 
extended to the partial hybrid plate/shell element [3.32,3.14]. Similarly, one also can 
extend the limitation principles to the partial hybrid elements based on the variational 
principle of composite energy. 

Limitation principle. A parlial hybrid element would be equivalent to its 
displacement counterparl if the displacement-derived parlial stress space is a 
subspace of the assumed parlial stress. 

By means of this limitation principle, it is clear that the partial hybrid 
element using iso-function method is equivalent to its displacement counterpart 



DEVELOPMENT OF HYBRID ELEMENT TECHNIQUE 107 

because the iso-function partial stress matrix contains all displacement-derived stress 
modes. Therefore, similar to the conventional hybrid element, the assumed partial 
stress field is equivalent to the displacement-derived partial stress field and is free 
from any zero-energy mode. 

Examples of Iso-function Stress Matrix 

Iso-function method can be used to establish the assumed stress fields and 
assumed partial stress fields for hybrid elements and partial hybrid elements. Here 
are some examples. 

1 Iso-function Stress Matrix for 2-D. 3-node Element 

Within this element, there are six degrees of freedom and the assumed 
displacement field has six parameters. It can be expressed in the form, 

u=ao +a1 ~ +a21') 

v=bo +b1 ~ +b21') 

Using strain-displacement relation, the strains are derived as follows, 

_ au_ 
EC a~ -a1 

E!J= ~ =~ 
au av 

E~!J= en, + a~ =a2 +b1 

For linear elastic body, the material stiffness matrix is 

°11 °12 013] 

[C] = 021 022 023 

031 032 0 33 

(3-84) 

(3-85) 

(3-86) 

Using the constitutive relation (3-76), the displacement-derived stress field is 
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0C=a1 cll +b:a c12 + (a2 +b1 ) C13 =Y1 

o,,=a1 c21 +b:aC22 + (aa+~) ca3 =Ya 

0C" =a1c31 +b:ac3a + (aa+b1) C33 =Y3 

It can be written in the matrix form (3-77), 

(3-87) 

(3-88) 

where [ e ] is the function of co-ordinates and y is the vector of the stress 
parameters /'; which are the products of material constants Cij and displacement 
parameters lit. Therefore, the stress parameters depend on the geometry, material 
properties, and displacement parameters of the element. By means of iso-function 
relation 

[P]=[8] ( 3 - 80 ) 

The stress matrix [P] is obtained. It is 

(3-89) 

Therefore, the assumed stress field is 

[
1 0 0] 

0= [p] II = 0 1 0 II 
001 

(3-90) 

in which, stress parameters are basic variables in variational functional and are 
determined by the variational principle. 
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2 Iso-function Stress Matrix for 2-D. 4-node Element 

For this element, the number of degrees of freedom is eight and assumed 
displacement field has eight parameters. It can be expressed in the form, 

u=aO+a1 ~ +a2" +a3~" 

v=bo+bl~ +b2" +b3~" 

Using strain-displacement relation, the strains are derived as follows, 

Be= ~e =a1 +a311 

B,,= ~=~+~e 
_au av_ ~ 

Bh- a" + ae -a2+bl+a3 .. +~11 

(3-91) 

(3-92) 

Using the constitutive relation (3-76) and the stiffness matrix (3-86), the 
displacement-derived stress field is 

0=[8]y (3-93) 

In which, 

[811~ 
0 0 ~ 0 0 " 0 

~l 1 0 0 ~ 0 0 " 0 1 0 0 ~ 0 0 

(3-94) 

and 
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Y 1 = Cll a1 + c1ab a + C13 aa + C13~ 

Y 4 =C12b 3 +c13 a3 

Y7 =c11a3 +C13b 3 

Ya=c21a1 +Caaba+C23aa+Ca3bl 

YS=Caab3+Ca3a3 

Y8=Cala3+c23~ 

Y3=c31a1 +C32b2+c33a2+c33bl 

Y 6 =C32b 3 +c33 a3 

Y9=c31a3+c33~ 

(3-95) 

In which, [ e ] is the function of co-ordinates and 'Y is the vector of the stress 
parameters which are the products of material constants Cij and displacement 
parameters ak• By means of iso-function relation (3-80), the stress matrix [P] is 
obtained and the assumed stress field is 

[
1 0 0 ~ 0 0 " 0 0] 

0= [P] p= 0 1 0 0 ~ 0 0 " 0 p 
00100 ~ 0 0 " 

(3-96) 

In which, stress parameters are basic variables in variational functional and are 
determined by the variational principle. 

3 Iso-function Stress Matrix for 3-D. 8-node Element 

For a 3-D, 8-node hybrid element, the displacement field is assumed in the 
form, 

u=aO+a1e +aa" +a3C +a4 e" +aSec+a6"C +~e"c 

v=bo+~e +ba" +~C +b4e" +bseC +b6"C +b.,e"C 

V=CO+c1e +ca" +C3C +C4~" +cs~C +c6"C +c7 e"c 

Using strain-displacement relation, the strains are derived as follows, 

(3-97) 
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IC:::a l +a4TJ +asC +a,TJC 

1~:::b2+b4~+bfiC+b7~C 

le:::C3+Cs~ +CfiTJ +C7~TJ 

IC~::: (a2+~) +a4~ +b4TJ + (afi+.bs) C +a,~C+b7TJC 

l'Ie'" (C2+~) + (c4+.bs) ~+bfiTJ+CfiC+b7~TJ+G7~C 

ICC::: (C1 +a3) +as~ + (C4 +ai;) TJ +csC+a,~TJ +C7TJC 

For linear elasticity body, the material stiffness matrix is 

Cu C1a C13 Cu C1S Cu 

Cu C22 C23 C24 C2S C2fi 

[C] ::: 
Cll C32 C33 C34 C3S C3fi 

Cu Cu Cu Cu C4S Cu 

CS1 CS2 CS3 CS4 CSS CSfi 

Cn Cfi2 Cu Cu CfiS Cu 

111 

(3-98) 

(3-99) 

Using the constitutive relation (3-76), the displacement-derived stress field can be 
obtained, 

[811 a 0 a 0 a 
a [811 0 a 0 a 
0 a [811 a 0 a 

u"'[81y 
0 a 0 [811 0 a y (3-100) 

0 0 0 a [811 a 
0 0 0 0 0 [811 

In which, 

[81 ] = [ 1 ~ " C ~ " "c c ~ ] (3-101) 

Using iso-function relation (3-80), an assumed stress field is obtained, 
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[81 ] 0 0 0 0 0 

0 [81 ] 0 0 0 0 

0 0 [81 ] 0 0 0 (3-102) CJ= [P] 11= [8] 11= 
0 0 0 [81 ] 0 0 II 

0 0 0 0 [81 ] 0 

0 0 0 0 0 [81 ] 

Within the matrix [8] (3-101), there are seven least-order polynomial terms. 
Therefore, the assumed stress field (3-102) contains forty two stress parameters. 
These stress parameters are basic variables in the variational functional and are 
determined by the variational principle. 

For partial hybrid element, the displacement-derived partial stress field is 

[81 ] 

0 11= [8g ] y= 0 

o 
(3-103) 

Using iso-function relation (3--83), an assumed partial stress field can be obtained 
as follows, 

[81 ] 

o = [p ] R= [8 ] R= 0 
11 g" g" 

o 
(3-104) 

In this partial stress field, there are twenty one stress parameters only. Comparing 
to the assumed stress field (3-102), the number of stress parameters is greatly 
reduced. For analysis of composite structures, it will greatly improve the efficiency 
of finite element models of the structures. 

The eigenvalue examination shows that conventional hybrid element and 
partial hybrid element have the same eigenvalue property as their displacement 
counterpart. This result can be expected according to the limitation principle [3.30-
3.32] for hybrid elements and partial hybrid elements presented above. 
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3.4.3 Classification Method 

Although the iso-function method [3.6-3.7] is used easily for establishing 
assumed stress fields, there are a great number of unnecessary stress parameters and 
stress modes in the stress fields. Due to the inversion of the flexibility matrix [H], 
unnecessary stress modes will require more and unnecessary computer resources and 
the efficiency of finite element model is reduced. On the other hand, eigenfunction 
method [3.5, 3.29] can establish an assumed stress field which only contains 
minimum number of stress modes. But, using this method, multiple eigenvalues will 
cause difficulty. In the eigenfunction method, theoretically, there should be a unique 
set of natural stress modes in a hybrid element. In practice, it is difficult to find 
them due to existence of multiple eigenvalues. When multiple eigenvalues exist, 
there will be many choices for the directions of the corresponding eigenvectors and 
the resulting stress modes by the eigenvectors are not unique. Therefore, the 
assumption in eigenfunction method has to be modified. In this section, a 
classification method [3.16] is presented to establish assumed stress fields based on 
the iso-function method and the eigenfunction method. 

Classification of Stress Modes 

Since Pian [3.33] formulated a hybrid element in 1964, a lot of different 
hybrid elements have been presented. However, a hybrid element may have many 
different assumed stress fields. For example, there are many assumed stress fields 
for 2-D, 4-node plane element and 3-D, 8-node solid element. Pian [3.22] proposed 
an assumed stress field for 2-D, 4-node plane element and another for 3-D, 8-node 
solid element. Punch and Atluri [3.34-3.35] gave two assumed stress fields for 2-D, 
4-node plane element, and eight assumed stress fields for 3-D, 8-node solid element. 
Huang [3.5] presented an assumed stress field for 3-D, 8-node solid element. 
Although each of these assumed stress fields may contain the same number of stress 
modes, the stress modes in these fields are different. In order to determine the 
optimal stress modes for an assumed stress field, it is necessary to study the 
relationship between different stress modes. 

In section 3.4.1, it is assumed that a finite element has (n-r) natural 
deformation modes and r rigid body modes, and the displacement distribution in the 
element can be represented by them. It is also assumed that there exists a unique set 
of natural stress modes in an element, and they can be determined by (n-r) natural 
deformation modes. Therefore, the eigenfunction method is used to search these 
natural stress modes. Although the eigenfunction method may fail to find the natural 
stress modes in the case of multiple eigenvalues, it can be modified to classify stress 
modes that appeared in various assumed stress fields. 

In a hybrid element, if various stress modes can be classified, at least m 
stress mode groups must exist because the stiffness matrix of hybrid element must 
have m non-zero eigenvalues, except zero-energy stress mode group. Otherwise, the 
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hybrid element will contain kinematic deformation modes. On the other hand, no 
matter how many stress modes there are in a stress matrix [P], the maximum number 
of non-zero eigenvalues of an element stiffness matrix is always equal to or less than 
m. Therefore, the number of stress mode groups is equal to or less than m. Thus, it 
can be considered that there exist and only exist m stress mode groups except zero­
energy modes for a hybrid element. 

In addition, the eigenvectors and eigenvalues of the stiffness matrix will be 
sensitive to the assumed stress modes. The eigenvalue examination will give r zero 
eigenvalues corresponding to rigid body modes and m (= n-r) non-zero eigenvalues 
corresponding to natural deformation modes if the assumed stress field is suitable. 
Therefore, m stress mode groups must be related to m natural deformation modes 
and the zero-energy stress mode group must be corresponding to rigid body modes. 
Thus, all stress modes in various assumed stress matrices can be classified into the 
m+1 stress mode groups. 

Postulate 2 

There exist and only exist m (=n-r) natural deformation modes in a 
hybrid element. All stress modes in assumed stress field can be classified into 
m stress mode groups co"esponding to m natural deformation modes and a 
zero energy mode group co"esponding to rigid body modes of the element 
which has n degrees of freedom and r rigid body modes. 

Based on this postulate, it can be considered that an assumed stress field 
can be represented by stress modes in the m stress mode groups related to m natural 
deformation modes. This can be expressed as follows, 

(3-105) 

where [Pi] and {~;} (i=1,2, ... m) are the stress matrices and stress-coefficient vectors 
related to the i-th stress mode group which corresponds to the i-th natural 
deformation mode. They are 

[Pi] = [{a} ..• {O},{o),{O} ... {oll (3-106) 
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and 

(3-107) 

The stress mode which belongs to the i-th stress mode group can be expressed in the 
form, 

(3-108) 

Therefore, the vector {~;l corresponds the i-th stress mode group which corresponds 
to the natural deformation mode {B;l (i=I,2, ... m). Using equation (2-31), we have 

(3-109) 

If the stress matrix [P] does not contain any stress mode which belongs to 
the i-th stress mode group, the value of ~i in the vector {~;l should be equal to 
zero. Then, one can add a new stress mode into the stress matrix [Pl. The new stress 
mode will be classified by m natural deformation modes. Corresponding to the i-th 
natural deformation mode {B;}' the condition to check whether the new stress mode 
belongs to the i-th stress mode group can be expressed in the form, 

~i = 0 if new stress mode does not belong to i-th stress mode group 

~i * 0 if new stress mode belongs to i-th stress mode group 

Using equations (3-39), (3-40), and (3-109), the eigenvalues are obtained as follows, 

(3-110) 

Because all of the diagonal elements in the flexibility matrix [H] may not be equal 
to zero, the classification condition above becomes 

A; = 0 if new stress mode does not belong to i-th stress mode group 

A; * 0 if new stress mode belongs to i-th stress mode group 

Thus, using eigenvalue examination, the stress modes can be classified into m+ 1 
stress mode groups. 

Expression of Clrusification Condition of Stress Modes 
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A hybrid element stiffness matrix [K] can be formulated using equations (2-
28) and (2-34). Its eigenvalues and eigenvectors are calculated from equation (3-42). 
The eigenvectors {oil (i=1,2, ... m) satisfy the condition (3-40). Thus, the eigenvalue 
equation (3-42) is changed to 

(3-111) 

For any stress mode {o) among m stress modes {crl , cr2, ••• , crm}, the stiffness matrix 
[~] can be derived using equations (3-43) and (3-44). Corresponding to the i-th 
natural deformation mode, one has 

(3-112) 

According to the classification condition of stress modes, if the stress mode 
{crj } belongs to the i-th stress mode group corresponding to the natural deformation 
mode {oJ, the eigenvalue 1..; is a non-zero value; otherwise, the eigenvalue 1..; 
equals zero. This condition can be expressed in the form, 

i=j 
(3-113) 

If the stress mode {crj } is a zero-energy stress mode, all eigenvalues 1..; (i=1,2, ... ,m) 
equal zero. 

In the section 3.4.1, there is a postulate 1. This postulate can be stated as 
a theorem as follows. 

Theorem 2 

If and only if the flexibility matrix [H] is a diagonal matrix, the 
eigenvalues obtained from the separate stress mode equations 

i=1,2, ... ,m (3-114) 

are equal to the eigenvalues obtained from the total stress mode equation 

( [I(] -A [I] ) {~}=O 
(3-115) 

in which, the matrices [Kd and [K] are defined in equations (2-28), (2-34), 
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(3-43), and (3-44). 

Proof: 

From the equations (3-111), (2-28) and (3-109), one has 

(3-116) 

Because the matrix [H] is a diagonal matrix, one has 

(3-117) 

Thus, using equations (3-106), (3-107) and (3-43), the eigenvalue of the matrix [K] 
becomes 

m 
A=E {Pi}T[Hjl {Pi}={PiT[Hi ] {Pi} 

j=l 

Furthermore, using equations (3-109) and (3-113), this equation becomes 

End of proof. 

(3-118) 

(3-119) 

By means of the theorem 1, it has ben proven that if the flexibility matrix 
[H] is a diagonal matrix, the energy of the element is decomposable. Therefore, the 
theorem 2 is equivalent to the postulate 1. 

Theorem 3 

If and only if the flexibility matrix [HI is a diagonal matrix, the 
classification of stress modes is unique. 

Proof: 

If a stress mode among m stress modes that form the stress matrix [P] 
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appears in more than one stress mode group, one of the m stress mode groups must 
contain two stress modes. Assume that a stress mode {o) in the j-th stress mode 
group also appears in the i-th stress mode group. Thus, at least two stress modes 
{crJ and {cr) will belong to the i-th stress mode group corresponding to the natural 
deformation modes {8J. Therefore, one has 

(3-120) 

Corresponding to the natural deformation mode {8J, one can obtain the 
eigenvalue of the stiffness matrix [K] formulated by m stress modes as follows, 

(3-121) 

Because the flexibility matrix [H] is diagonal, the energy of the element is 
decomposable and the stiffness matrix satisfies the superposition principle. From 
equations (3-45) and (3-120), we obtain 

m 
A={6 i }T [I(] {6 i }=E {6)T [Kk ] {6 i }=Aii +Aij 

(3-122) 

k=l 

using theorem 2, one has 
(3-123) 

From the equation (3-122) and (3-123), we obtain 

(3-124) 

According to the condition of classification, the stress modes {cr) does not 
belong to the i-th stress mode group. Therefore, the i-th stress mode group only 
contains {crJ and the stress modes {cr) can not appear in two stress mode groups. 
Thus, if the matrix [H] is diagonal, the classification of m stress modes is unique. 

End of proof 

Determination of Optimal Stress Matrix 

Before classifying stress modes, one can find a number of initial stress 
modes since there are many approaches to derive assumed stress matrices for a 
hybrid element. For example, Pian and Chen [3.22] used the product {cr}T{E} to 
determine the necessary assumed stress modes. Punch and Atluri [3.34-3.35] used 
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group theory to obtain assumed stress matrices. One can also derive an assumed 
stress matrix using iso-function method. 

In order to present a systematic procedure for classifying stress modes and 
constructing assumed stress fields, the iso-function method is used to derive initial 
stress modes to be classified in this work. This is because the hybrid element 
constructed by the iso-function stress matrix has the same eigenvalues and 
eigenvectors as its conventional displacement counterpart. Also, the method using 
iso-function is straightforward and can be followed easily. After obtaining initial 
stress modes, one can use eigenvalue examination to find m representative stress 
modes that represent m stress mode groups corresponding to m natural deformation 
modes. The stress matrix consisted of the m representative stress modes is an 
optimal stress matrix. Then, all existing stress modes can be classified into m+ 1 
stress mode groups. Its detail is presented as follows, 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Derive an initial stress matrix [Plso by iso-function method. The number of 
initial stress modes in the matrix is always larger than m (=n-r). In order to 
select m necessary stress modes, these initial stress modes have to be 
classified into (n-r) stress mode groups. 

Select stress modes in the order from low order term to high order term. Now 
select a stress mode from the existing stress matrix [P)iso and form an 
assumed stress matrix [Pd. The element stiffness matrix [K] corresponding 
to stress matrix [Pd can be obtained by using equations (2-28) and (2-34). 
If the eigenvalue examination gives a non-zero eigenvalue, the stress mode 
is a non-zero-energy stress mode; otherwise, it is a zero-energy stress mode. 
Repeating the eigenvalue examination to check whether a stress mode is a 
zero-energy stress mode for all stress modes in the existing stress matrix 
[Pl.". 

Take all zero-energy stress modes out and keep non-zero-energy 
stress modes in the matrix [Pl90 • All zero-energy stress modes form a zero­
energy stress mode group. 

Take a non-zero-energy stress mode from the existing stress matrix [Plso and 
form an assumed stress matrix [Pd. The stress mode (O")} is the 
representative stress mode which represents group 1 of stress modes. 
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Step 5: 

Step 6: 

Step 7: 

Step 8: 

Step 9: 

STRESS ANALYSIS OF COMPOSITES 

Add another stress mode selected in the existing stress matrix [Ptso into the 
assumed stress matrix [PI] and form a new stress matrix [P2], 

(3-125) 

The eigenvalue examination gives the eigenvalues of the stiffness matrix. If 
there is only one non-zero eigenvalue, continue to step 6. If there are two 
non-zero eigenvalues, go to step 7. 

In this case, the added stress mode belongs to group 1 of stress modes. Take 
the second stress mode out and put it in group I of stress modes. Then, go 
back to step 4. 

The two stress modes belong to two different groups of stress modes. The 
second stress mode {(J2} is the representative stress mode which represents 
group 2 of stress modes. 

Add another stress mode selected from the matrix [Ptso into the assumed 
stress matrix [P2] and form a new stress matrix [P3], 

(3-126) 

The element stiffness matrix [K] and its eigenvalues are calculated. If there 
are only two non-zero eigenvalues, continue to step 10. If there are three non­
zero eigenvalues, go to step 11. 

Step 10: 

In this case, the new stress mode {(J3} belongs to one of the two stress mode 
groups. Construct the matrices [P'2] and [P"2] as follows, 
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(3-127) 

If the stiffness matrix corresponding to the stress matrix [P 2'] has two 
non-zero eigenvalues, the stress mode {0'3l belongs to the group 2 of stress 
modes. Otherwise, the stress mode {0'3l belongs to the group 1 of stress 
modes. Put the stress mode {0'3l into the corresponding stress mode group, 
and go back to step 8. 

Step 11: 

In this case, the three stress modes belong to three different stress mode 
groups. The added stress mode {0'3l is the representative stress mode which 
represents group 3 of stress modes. 

Step 12: 

Add one more stress mode selected from the matrix [P]iao into the matrix [P3] 

and form a new stress matrix [P4], 

(3-128) 

and so on. Repeating the same process until m representative stress modes 
that represent m stress mode groups are obtained. The m(=n-r) representative 
stress modes correspond to m natural deformation modes and form a optimal 
stress matrix [Plop! from the existing stress matrix [P]iao' 

Classification of Other Stress Modes 

Step 13: 

After m representative stress modes are obtained, other initial stress 
modes that remain in the existing stress matrix [Pliao can be classified into the 
m stress mode groups. Many other stress modes derived by different methods 
also can be classified into the m stress mode groups corresponding to m 
natural deformation modes and the zero-energy stress mode group 
corresponding to rigid body modes. 

Based on the optimal stress matrix [PloPI' any remaining stress mode 
in [Pliao can be classified by using it to replace each and every stress mode 
in the matrix [PloP! in order. Once the eigenvalue examination results in m 
non-zero eigenvalues, the representative stress mode which is replaced and 
the one which replaces it belong to the same stress mode group. Put the 
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remaining stress mode into the corresponding stress mode group and recover 
the optimal stress matrix [P]opt. Then, classify another remaining stress mode. 

Step 14: 

Repeating the same process until all remaining stress modes are 
classified. Thus, all existing stress modes are classified into m+ 1 different 
mode groups. Every stress mode group contains many interchangeable stress 
modes. For a stress mode derived by other method, if eigenvalue examination 
always give m-l non-zero eigenvalues when this stress mode replaces each 
and every stress mode in the matrix [P]opt, this stress mode is a zero-energy 
stress mode. 

Illustration for the Classification of Stress Modes 

As an illustration for the above procedure, the stress modes presented in ref. 
[3.5,3.22,3.34-3.35] and those derived by iso-function method are classified. 

2-D. 4-node Plane Hybrid Element 

1. Determination of optimal stress matrix 

The 2-D, 4-node plane element has (n=) 8 degrees of freedom and (r=) 3 
rigid body modes. So it has (m=n-r=) 5 natural deformation modes. Firstly, an 
assumed stress matrix can be derived from the assumed displacement field of the 
element by the iso-function method, 

[
1 0 0 x y 0 0 0 0] 

[PI] = 0 1 0 0 0 x y 0 0 

001 0 0 0 0 x y 

(3-129) 

The number of stress modes in the stress matrix is larger than m (=5). The stress 
matrix derived by iso-function method contains a few unnecessary stress modes. The 
eigenvalue examination indicates that the eigenvalues and eigenvectors of the hybrid 
element stiffness matrix constructed by the assumed stress matrix [Pd are the same 
as that of displacement element stiffness matrix. Therefore, the stress modes in the 
stress matrix are taken as initial stress modes to be classified. There are nine stress 
modes in the matrix [Pd, 
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{a11={g} {a,11n {a,11} 

{a.l=~} {a 51 =f} {a,li} (3-130) 

{a71=t} {aeli} {a,li} 
It will save computation time for calculating element stiffness matrix if the 

number of the stress modes can be reduced to m (=n-r). In order to do it, the initial 
stress modes in the existing stress matrix have to be classified into m stress mode 
groups. First of all, one must find m representative stress modes corresponding to 
m natural deformation modes. Following step 2 - step 12 in the procedure of the 
classification method given in the above section, one can obtain 5 representative 
stress modes {O' 1 0'2 0'3 0'5 0'6} corresponding to (m=) 5 natural deformation modes 
and the zero-energy stress modes {0'4} and {0'7} corresponding to rigid body modes. 
The eigenvalues of the stiffness matrix related to {0'1 0'2 0'3 0'5 0'6} are not equal to 
zero, and the eigenvalue of stiffness matrix related to {0'4} or {0'7} is equal to zero. 
The 5 representative stress modes form an optimal stress matrix [PII] from the 
existing stress matrix [PI]' 

(3-131) 

The stress matrix is the same as that given by Pian [3.22]. 

2. Classification of other stress modes 

After obtaining the optimal stress matrix, one can classify stress modes in 
the existing stress matrix [PI] into (m+1=) 6 stress mode groups by following step 
13 to step 14 in the procedure, 

Tension mode (Group 1): 
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Tension mode (Group 2): { 0"2 } 

Shear mode (Group 3): 

Bending mode (Group 4): { O"s }, { 0"8 } 

Bending mode (Group 5): 

Zero-energy stress mode (Group 6): 

The first 5 stress mode groups correspond to 5 natural deformation modes 
and the zero- energy stress mode group corresponds to rigid body modes. 

There are many methods to derive initial stress modes. For example, in the 
two assumed stress matrices derived by means of group theory[3.34,3.35] for the 
same finite element, there are 4 stress modes that are different from stress modes 
{0"1 }-{ 0"9}above: 

(3-132) 

Moreover, one may want to introduce some stress modes of high order term into the 
assumed stress matrix [P] in order to describe special stress distribution in a local 
region of a structure to be solved. For example, 

{01.11J2} 

{018I=¥o2} {o"I~2} (3-133) 

{0221={l} 
According to the steps 13 - 14 in the procedure of classification method, 
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these new stress modes {0'1O}-{0'22} can also be classified into the 6 stress mode 
groups above, 

Tension mode (Group 1): { 0'1 }, { 0'10 }, { 0'14 }, { 0'17 } 

Tension mode (Group 2): { 0'2 }, { 0'11 }, { 0'15 }, { 0'18 } 

Shear mode (Group 3): 

Bending mode (Group 4): { 0'5 }, { 0'8 }, { 0'12 } 

Bending mode (Group 5): 

Zero-energy stress mode (Group 6): 

More high-order stress modes can be classified into the 6 stress mode 
groups above by using the classification method. If the flexibility matrix [H] is a 
diagonal matrix, the classification of the stress modes is unique. 

3-D. 8-node Solid Hybrid Element 

1. Detennination of optimal stress matrix 

The 3-D, 8-node solid element has (n=) 24 degrees of freedom and (r=) 6 
rigid body modes. So it has (m=n-r=) 18 natural deformation modes. By means of 
iso-function method, an initial stress matrix [P] can be derived from the assumed 
displacement field of the element as follows 

1 0 0 0 0 o x 0 0 0 0 o y 0 o 0 0 0 zOO 0 0 0 

0 1 0 0 0 o 0 x 0 0 0 0 o y 0 0 0 0 0 zOO 0 0 

[P} ISO = 
0 0 1 0 0 0 0 0 xO 0 0 o 0 y 0 0 0 o 0 z 0 0 0 

0 0 0 1 0 0 000 xO 0 0 0 o y 0 0 0 o 0 z 0 0 

0 0 0 0 1 0 0 o 0 0 x 0 0 0 0 o y 0 0 000 z 0 

0 0 0 0 0 1 o 0 0 0 0 x 0 0 o 0 0 y 0 o 0 0 0 z 

xy 0 0 0 0 yz 0 0 0 0 zx 0 0 0 0 

0 xy 0 0 0 0 yz 0 0 0 0 zx 0 0 0 

0 0 xy 0 0 0 0 yz 0 0 0 0 zx 0 0 (3-134) 
0 0 0 0 0 0 0 o yz 0 0 0 0 zx 0 

0 0 0 xy 0 0 0 0 0 0 0 0 0 0 zx 

0 0 0 o xy 0 0 0 o yz 0 0 0 0 0 
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There are 39 stress modes to be classified in the stress matrix. The number 
of stress modes is larger than m (=18). The eigenvalue examination shows that the 
eigenvalues and eigenvectors of the hybrid element stiffness matrix formulated by 
the assumed stress matrix [P]ISO are the same as that of displacement element 
stiffness matrix. The stress modes in the matrix [P]ISO are taken as initial stress 
modes to be classified. The 39 stress modes in the matrix [Pbo are numbered as 
follows: 

1 0 0 0 0 0 
0 1 0 0 0 0 

{01 02 03 0, 05 06} = 
0 0 1 0 0 0 (3-135) 
0 0 0 1 0 0 
0 0 0 0 1 0 

0 0 0 0 0 1 

x 0 0 0 o 0 
o x 0 0 o 0 

{07 08 0, 010 011 012} = 
o 0 xO o 0 

(1-136) 
0 0 0 x 0 0 
0 o 0 0 xO 
0 000 0 x 

y 0 0 0 0 0 
o y 0 0 0 0 

{013 01' 015 016 017 0lB} = 
o 0 y 0 0 0 (1-137) 
o 0 o y 0 0 
o 0 o 0 y 0 

o 0 o 0 0 y 
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zoo 0 0 0 

0 zoo 0 0 

{019 020 021 022 023 02'} = 
o 0 z 0 0 0 (1-138) 
0 o 0 z 0 0 

0 o 0 0 Z 0 

0 o 0 o 0 z 

xy 0 0 0 0 

0 xyO 0 0 

{025 026 0,17 0u 029} = 
0 0 xy 0 0 (1-139) 
0 0 0 0 0 

0 0 0 xy 0 

0 0 0 0 xy 

yz 0 0 0 0 

0 yz 0 0 0 

{03D 031 032 033 03'} = 
0 0 yz 0 0 (1-140) 
0 0 0 yz 0 

0 0 0 0 0 
0 0 0 0 yz 

zx 0 0 0 0 

0 ZX 0 0 0 

{035 036 037 038 039} = 
0 0 ZX 0 0 (1-141) 
0 0 0 ZX 0 

0 0 0 0 ZX 

0 0 0 0 0 

These stress modes are classified one by one in the order from low order 
term to high order term. Following step 2 - step 12 in the procedure of the 
classification, one can obtain (m=) 18 representative stress modes { °1 02 0 3 04 05 

0 6 0 8 0 9 011 013 °15 °18 °19 020 022 027 0 30 0 36 } corresponding to 18 natural 
deformation modes. These representative stress modes form an optimal stress matrix 
[PI] from the existing stress matrix [P1;90 as follows: 
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[P1] = [01 03 03 0, 05 06 013 0 30 09 019 08 015 

033 011 018 030 036 037] 

1 o 0 o 0 o y 0 0 zOO 0 0 0 yz 0 
0 1 0 o 0 0 0 zooxOO 0 0 0 zx 

[P11 = 
o 0 1 o 0 0 0 OxOOyO 0 0 0 0 
o 0 0 1 0 0 0 0 o 0 0 0 z 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 xO 0 0 

o 0 0 0 0 1 0 0 000 0 o 0 y 0 0 

0 
0 

xy 
0 
0 

0 

This stress matrix is the same as that proposed by Pian [3.22]. 

2. Classification of other stress modes 

(1-142) 

(1-143) 

Following steps 13 - step 14 in the procedure, other stress modes that 
remain in the existing stress matrix [P]iso can be classified into m+ 1 (= 19) stress 
mode groups as follows: 

Tension and compression modes (3 groups): [{O'I lGI' {0'2 1m, {0'3 1m] 

Pure shear modes (3 groups): 

Bending modes (6 groups) 

Torsion modes (3 groups): 

Saddle modes (3 groups): 

[{ O's O'ldG7' {0'9 0'241GS' {0'13 0'101G9' 

{0'15 0'231GlO' {0'19 0'12 lGll' {0'20 0'17 lGl2] 

[ {0'29 0'30 0'38 1 Gl6' {0'2S 0'33 0'36 1 Gl77 

{0'27 0'34 0'39 1 GlS~ 

Zero-energy stress modes (1 group): [{ 0'7' O'w 0'217 0'25' 0'26' 0'31' 

0'32' 0'35' 0'371 Gl9] 

The first 18 stress mode groups correspond to (m=n-r=) 18 natural 
deformation modes and the last group corresponds to rigid body modes. Similar to 
the 2-D case, there are many other ways to derive initial stress modes. For example, 
in the assumed stress matrix presented in ref. [3.5], there are 12 stress modes that 
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are different from stress modes {O'd-{0'39l. These stress modes can be expressed 
as follows, 

Tension and compression modes, 

(3-144) 

Symmetric bending modes, 

(3-145) 

Anti-symmetric bending modes, 

(3-146) 

Torsion modes, 

(3-147) 

In the stress matrices derived by means of the symmetric group 
theory[3.34,3.35], there are eleven stress modes that are different from stress modes 
{O'll-{O'Sll. They can be expressed in the form, 
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Tension and compressive mode, 

lu,)=/11 } 
(3-148) 

Torsion modes, 

lU"}11 } (3-149) 

Bending modes, 

2x 0 0 
0 2y 0 

{a 54. a55 a56}= 
0 0 2z (3-150) 
-y -x 0 

0 -z -y 
-z 0 -x 

and 

0 0 0 
0 0 0 

{aS7 aSB aS9}= 
0 0 0 
y x 0 (3-151) 
0 -z -y 

-z 0 x 
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Saddle modes, 

0 0 0 
0 0 0 

0 0 0 
{O'iO 0'61 O'U}= -2xz -2yz Xll+yll (3-152) 

yll+Zll -2xy -2xz 

-2xy Xll+Zll -2yz 

Other stress modes may be also needed in an assumed stress matrix in order 
to describe special stress distribution in a local region of a structure to be analyzed. 
For instance, 

Bending modes, 

(3-153) 

Saddle modes, 

(3-154) 

Tension and compression mode, 

(3-155) 

According to the steps 13 -14 in the proposed procedure of classification, 
the 30 new stress modes {0'40}-{ 0'69} can be classified into different stress mode 
groups above as follows, 
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Tension and compression modes (3 groups): [{O"I' 0"40' 0"69}GI' {0"2' 0"41}G2' 

0"3' 0"42' O"S2}G3) 

Pure shear modes (3 groups): 

Bending modes (6 groups): 

Torsion modes (3 groups): 

Saddle modes (3 groups): 

[{ 0"8' 0"16> 0"44' O"S4' 0"64}G7' {0"9' 0"24> 0"47' 0"S7 IG8' 

{0"13' 0"10' 0"4S' O"SS' 0"6S1G9' {O"IS' 0"23' 0"48' O"s81G10' 

{0"19' 0"12' 0"43' O"S6' 0"631G11' {0"20' 0"17' 0"46> O"s91G12) 

[{ 0"29' 0"30' 0"38' 0"66' 0"60}G16' {0"28' 0"33' 0"36' 0"67' 

0"611G17' {0"27' O"w 0"39' 0"68' 0"621G18) 

Zero-energy stress modes (1 group): [{ 0"7' 0"14> O"w 0"2S' 0"26> 0"31' 0"32' O"w 

0"37 IG19) 

More stress modes can be classified into the stress mode groups above. If 
the flexibility matrix [H) is a diagonal matrix, the stress modes are uncoupled and 
the classification of the stre.ss modes is unique (see theorem 3). Otherwise, some 
stress modes may appear in more than one group. 

3.4.4 Construction of Assumed Stress Matrix 

As shown above, by means of the proposed procedure for the classification 
of stress mode, stress modes can be classified into m (=n-r) stress mode groups 
corresponding to m natural deformation modes and a zero energy mode group 
corresponding to rigid body modes. Each natural deformation mode is related to a 
stress mode group except zero energy mode group, and each stress mode group may 
contain many different stress modes that are interchangeable in the stress matrix [Pl. 
Thus, based on the iso-function stress matrix and classified stress mode groups, the 
method can be established for determining the assumed stress matrix of a hybrid 
element. 

Assumed Stress Matrix of Hybrid Element 

The classification of stress modes reveals the relationship among the 
different stress modes that are used in the different stress matrices for any type of 
hybrid element proposed by different researchers. In order to avoid kinematic 
deformation mode, the stress matrix [P) must contain m stress modes at least. No 
matter how many stress modes there are in the stress matrix [P), the order of the 
stiffness matrix is equal to or less than m. Therefore, m stress modes is necessary 
and sufficient to form a stress matrix for avoiding kinematic deformation modes in 
the hybrid element. Moreover, in view of the classification of stress modes, the m 
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stress modes in the stress matrix [P] must come from m different stress mode groups 
except zero energy mode group. Thus, for a hybrid element to be free from 
kinematic deformation mode, 

one has the necessary and sufficient condition: 

The number of stress modes in an assumed stress matrix must be 
equal to or more than m (= n-r) and at least m stress modes in the 
stress matrix [Pi must be chosen from m different stress mode groups 
co"esponding to m natural deformation modes of an element which 
has n degrees of freedom and r rigid body modes. 

In this statement, the necessary condition is that the number of stress modes 
for a hybrid element must be equal to or more than m (=n-r). It was presented by 
F. Veubeke [3.36] and Pian [3.37]. The sufficient condition is that the stress matrix 
[P] must contain m stress modes chosen from m different stress mode groups 
corresponding to m natural deformation modes. This condition explains why in some 
examples there exist kinematic deformation modes even when the necessary 
condition (mt > n-r) is satisfied. In these examples, the stress modes in the stress 
matrix [P] do not come from m different stress mode groups except the zero energy 
mode group. 

For a hybrid element, an assumed stress field, its stress matrix contains m 
(=n-r) least-order stress modes and its resulting finite element is free from kinematic 
deformation modes, is considered to be best and is optimal with respect to computer 
resources [3.38,3.34] because overuse of stress modes will result in over-rigid 
element [3.38], and the calculation of element stiffness matrix requires an inversion 
of the flexibility matrix [H]. By means of the m classified stress mode groups and 
the necessary and sufficient condition, this kind of stress matrices can be 
constructed. Furthermore, it is convenient to construct an assumed stress matrix 
according to the problem to be solved because there are many stress modes in every 
stress mode group for choice. The procedure of constructing stress matrix is 
presented as follows, 

Step 1 

Step 2 

Using the iso-function method, one can derive a number of initial stress 
modes to be classified. 

One may put the initial stress modes one by one into stress matrix [P] in 
the order from low order term to high order term. By means of the 
classification method, one can obtain m representative stress modes 
corresponding to m natural deformation modes. These representative stress 
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Step 3 

Step 4 

STRESS ANALYSIS OF COMPOSITES 

modes form a optimal stress matrix [P]oPt from the existing stress matrix 
[PL.,· 

One may obtain other initial stress modes derived by different methods. 
Following the steps 13 - 14 in the procedure of the classification, one can 
classify all initial stress modes into m+ 1 different stress mode groups. 

By means of the m+ 1 classified stress mode groups and the necessary and 
sufficient condition above, many stress matrices [P] can be constructed 
according to the problem to be solved. It is necessary to choose one stress 
mode at least from each group except the zero energy mode group in order 
to avoid kinematic deformation modes. 

The necessary steps have been illustrated in the section above. The 
following gives some examples to illustrate the procedure for constructing a stress 
matrix [P] which has minimum number of stress modes. 

2-D. 4-node plane hybrid element 

By means of the m+ 1 stress mode groups classified above and the necessary 
and sufficient condition for avoiding kinematic deformation modes, one can choose 
one stress mode from each stress mode group except zero energy mode group to 
form a stress matrix. For example, 

1 1 0 0 

Tl [PIII] = [010 all 0 3 0 12 0 13 ] = 1 -1 0 -y 

0 0 1 x (3-156) 

and 

0511~ 
1 o Y 0] 

[PIV] = [010 011 03 0 7 -1 o 0 X (3-157) 

0 100 

Five stress modes in each stress matrix come from five different stress 
mode groups corresponding to five natural deformation modes. The two stress 
matrices are the same as that proposed by Atluri[3.34,3.35]. More stress matrices can 
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be constructed on purpose. For example, 

[Pvl = [0" 0" 0, 0, 01ll1~ 
and 

lay 

-1 a a 
a 1 a 
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r] (3-158) 

r] (3-159) 

The eigenvalue examination shows that the hybrid element constructed by 
[PI] - [Pyl] are free from kinematic deformation modes as shown in Table 2. In the 
last column of the table, the eigenvalues of displacement element stiffness matrix are 
given. If stress modes in a stress matrix [P] come from m! «m) stress mode groups, 
the hybrid element will have kinematic deformation modes even if the number of 
stress modes is larger than m. This is why a hybrid element contains kinematic 
deformation modes when the necessary condition (m' > n-r) is satisfied. A stress 
matrix [P] must have m stress modes corresponding to m natural deformation modes 
of an element. 

Table 2 Eigenvalues of stiffness matrices (2-D, 4-node plane element, v=0.3) 

[PI] [PII] [PIlI] [PlY] [Py] [pya Disp. 

0.4945 0.3333 0.09259 0.3333 0.09259 0.09259 0.4945 

0.4945 0.3333 0.09259 0.3333 0.3333 0.09259 0.4945 

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 

1.4290 1.4290 1.4290 1.4290 1.4290 1.4290 1.4290 

3-D. 8-node solid hybrid element 

Using the same way as the 2-D case, one can choose m stress modes from 
m classified stress mode groups except zero energy mode group above to form the 
eight stress matrices [P2] - [P9] proposed by Atluri et al [3.34-3.35] as follows, 
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[Pal" [Gao G&1 Gu G, Gs G, G" Gsa GS3 G5& GSS G5I GS7 GSI Gs, GIO Gil Gla] 

1 1 0 o 0 0 0 0 0 2x 0 0 0 0 0 0 0 0 
1 -1 1 0 0 o 0 0 0 0 2y 0 0 0 0 0 0 0 
1 0 -1 0 0 o 0 0 0 0 0 2z 0 0 0 0 0 0 

0 0 0 1 0 o z z 0 -y -x 0 y x 0 -2xz -2yz xa+ya 

0 0 0 o 1 o x -x-x 0 -z -y 0 -z -y ya+za -2X}" -2xz 

0 0 0 o 0 1 Y 0 Y -z 0 -x -z 0 x -2X}" xa+za -2yz 

(3-160) 

1 1 0 000 0 0 0 2x 0 0 0 0 0 0 0 yz 
1 -1 1 0 0 0 0 0 0 0 2y 0 0 0 0 0 xz 0 
1 0 -1 0 o 0 0 0 0 0 0 2z 0 0 0 X}" 0 0 
0 0 0 1 o 0 z z 0 -y -x 0 y x 0 0 0 0 
0 0 0 0 1 o x -x -x 0 -z -y 0 -z -y 0 0 0 
0 0 0 0 o 1 Y 0 Y -z 0 -x -z 0 x 0 0 0 

(3-161) 
and 

(3-162) 

The assumed stress matrix given by Huang [3.5] also can be formed the 
same way, 
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[P10] = [0'0 0&1 0u 0, 05 °6 0u 0" 0'5 0u 0" 0" 0" 050 051 037 036 030] 

1 1 -1 0 0 0 z 0 y z 0 y 0 0 0 yz 0 0 
1 -1 -1 0 0 0 Z X 0 -z X 0 0 0 0 0 ZX 0 
1 0 2 0 0 0 0 xy 0 -X -y 0 0 0 0 0 xy 
0 0 0 1 0 0 000 0 0 0 Z Z Z 0 0 0 
0 0 0 0 1 0 000 0 0 0 X -X -X 0 0 0 
0 0 0 o 0 1 o 0 0 0 0 0 y 0 -2y 0 0 0 

(3-163) 

Moreover, many stress matrices [P] can be constructed on purpose. Three 
new stress matrices are given as follows, 

1 1 -1 0 0 0 z X y Z 0 Y 0 0 0 yz XZ xy 
1 -1 -1 0 0 0 z X y-z X 0 0 0 0 yz xz xy 
1 0 2 0 0 Ozxy 0 -X -y 0 0 0 yz xz xy 
0 0 0 1 0 o 0 0 0 0 0 0 z z z 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 X -X -X 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 y 0 -2y 0 0 0 

(3-164) 

[P;] = [0'0 0'1 0'3 0, 05 0. 0u 0" 0" 057 0 s • 0" 023 011 018 030 0 36 037] 

1 0 0 0 0 0 zOy 0 0 0 0 0 o yz 0 0 
0 1 0 0 0 0 zxo 0 0 0 0 0 0 0 xz 0 
0 0 1 0 0 0 oxy 0 0 0 0 0 0 0 0 xy 
0 0 o 1 0 0 000 y X 0 Z 0 0 0 0 0 
0 0 001 0 o 0 0 0 -z -y 0 X 0 0 0 0 
0 0 000 1 o 0 0 -z 0 X 0 0 y 0 0 0 

(3-165) 
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Z3 1 -1 0 o 0 z X y Z 0 Y 0 0 0 yz Xz xy 
Z3 -1 -1 0 o 0 Z X Y -Z X 0 0 0 0 yz xz xy 
0 0 2 0 o 0 zxy 0 -X -y 0 0 0 yz xz xy 
0 0 0 1 o 0 000 0 0 0 Z Z Z 0 0 0 
0 0 0 0 1 0 0 o 0 0 0 0 X -X -X 0 0 0 
0 0 0 0 o 1 0 0 0 0 0 0 y 0 -2y 0 0 0 

(1-166) 

The results of eigenvalue examination are given in Table 3. It shows that 
each of the stiffness matrices constructed by the assumed stress matrices [PI] - [PIO]' 
[PI *], [P2 *], and [P3 *] has m non-zero eigenvalues. The resulting hybrid elements do 
not have any kinematic deformation modes. 

More assumed stress matrices can also be constructed by means of this 
method. If one stress mode group is missed except the zero energy mode group in 
the process of choosing stress modes, the hybrid element will contain kinematic 
deformation modes. In the previous work, it is proposed to suppress kinematic 
deformation modes by adding stress modes of high order term. Actually, it can not 
guarantee that all kinematic deformation modes are suppressed. If the high order 
stress modes do not belong to the stress mode groups which are missed in the 
construction of the assumed stress matrix except the zero energy mode group, adding 
stress modes of high order term can not improve the hybrid element any more. 
Moreover, overuse of stress modes will result in over-rigid elements[3.38]. 
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Table 3 Eigenvalues of stiffness matrices (3-D, 8-node solid element, v=O.3) 

[Pz] [P4] [PI]' [P9], [P7], [Pz*] [PI*] [P/] 
[P1O] 

0.07123 0.07123 0.1111 0.1111 0.09259 0.09259 

0.07123 0.07123 0.1111 0.1111 0.09259 0.09259 

0.07123 0.07123 0.1111 0.1111 0.09259 0.09259 

0.1282 0.2564 0.2564 0.1282 0.2564 0.2564 

0.1282 0.2564 0.2564 0.1282 0.2564 0.2564 

0.1282 0.2564 0.2564 0.1282 0.2564 0.2564 

0.1282 0.1282 0.1282 0.1282 0.1282 0.1282 

0.1282 0.1282 0.1282 0.1282 0.1282 0.1282 

0.07246 0.07264 0.4762 0.4762 0.5556 0.5556 

0.07246 0.07264 0.4762 0.4762 0.5556 0.5556 

0.07246 0.07264 0.4762 0.4762 0.5556 0.5556 

0.5128 0.5128 0.5128 0.5128 0.5128 0.5128 

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 

2.5000 2.5000 2.5000 2.5000 2.5000 0.8065 

Therefore, an ideal situation is to choose m (=n-r) least-order stress modes, but with 
the suppression of all kinematic deformation modes. Thus, an assumed stress matrix 
[P] can be constructed by choosing m stress modes from m stress mode groups that 
correspond to m natural deformation modes. 

Optimal Stress Matrix for Partial Hybrid Element 
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The classification method can be used to determine an optimal stress matrix 
for a hybrid element, and it is also available to determine an optimal partial stress 
matrix for a partial hybrid element. The difference is the number of stress mode 
groups. For partial hybrid element, the number of stress modes groups is equal to 

m=n-r-nd (3-167) 

Where n and r is the same as that in conventional hybrid elements. In section 3.3, 
it has been shown that the stiffness matrix of a partial hybrid element (3-35) consists 
of two parts: the displacement-formulated stiffness matrix and the hybrid-formulated 
stiffness matrix. In equation (3-167), nd is the rank of the displacement-formulated 
stiffness matrix. Therefore, it is necessary to calculate the rank of the displacement­
formulated stiffness matrix to determine an optimal stress matrix for a partial hybrid 
element. The necessary and sufficient condition for partial hybrid elements becomes 

The necessary and sufficient condition. 

The number of stress modes in an assumed parlial stress matrix must 
be equal to or more than m (= n-r-n~ and at least m stress modes in 
the parlial stress matrix [PI must be chosen from m different stress 
mode groups co"esponding to m natural deformation modes of an 
element which has n degrees of freedom, r rigid body modes, and nd 
order displacement-/ormulated stiffness matrix. 

The procedure to construct an optimal partial stress matrix for a partial 
hybrid element becomes 

Step 1 

Step 2 

Step 3 

Examine the rank of the displacement-formulated stiffness matrix of a 
partial hybrid element. 

Using the iso-function method, one can derive a number of initial stress 
modes to be classified. 

One may put the initial stress modes one by one into partial stress matrix 
[P] in the order from low order term to high order term. By means of the 
classification method, one can obtain m representative stress modes 
corresponding to m natural deformation modes. These representative stress 
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modes form an optimal partial stress matrix [Pg]opt from the existing partial 
stress matrix [Pg]iso' 

Following this procedure, an optimal assumed partial stress field can be 
determined. Some examples will be given in chapter 4. 

The classification method presented in this chapter can be applied to any 
type of hybrid elements. Usually, it is used for two purposes: 

1. Determine the optimal stress matrix from the existing stress matrix [P]iso or any 
other stress matrix [P] derived using other methods, and classify stress modes into 
m different stress mode groups; 

2. Construct many new assumed stress matrices by using minimum number of stress 
modes according to the problems to be analyzed. These stress matrices are without 
zero-energy stress modes, and the resulting element stiffness matrices are free from 
kinematic deformation modes. 

The classification of stress modes reveals the relationship among the 
different assumed stress fields for any type of hybrid element proposed by different 
researchers. An assumed stress matrix [P], which consists of m (=n-r) least-order 
stress modes and results in the element stiffness matrix without kinematic 
deformation modes, is considered to be best and is optimal with respect to computer 
resources. 
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Chapter 4 

PARTIAL HYBRID ELEMENTS FOR 
ANALYSIS OF COMPOSITE 

LAMINATES 

4.1 INTRODUCTION 

A composite structure is usually made of hundreds of orthotropic laminae 
with different fibre orientations. The finite element analysis for composite structures 
is more difficult than that for structures made of isotropic materials. Due to the 
complex nature of composites, there are many different approaches to model them. 
In general, the finite elements for analysis of composites can be classified into three 
classes: 3-D solid elements, laminated elements, and multilayer elements [4.1]. They 
are formulated using two classes of composite structure models[4.2-4.3] as follows: 

1. 3-D continuum models[4.4-4.6], in which each of the individual layers of 
a composite structure is treated as a three-dimensional continuum. Due to 
simplicity and efficiency, a special 3-D model, layer-wise models [4.13-4.16], 
is often used, in which displacement models are based on piecewise 
approximations of the response quantities in the thickness direction. 

2. Equivalent single-layer plate/shell models[4.7-4.12], in which deformable 
models are based on global through-the-thickness displacement, strain and 
stress approximations; 

In 3-D solid elements based on 3-D continuum models [4.4-4.6], no specific 
kinematic assumptions are introduced regarding the behaviour of a laminate. It takes 
the behaviour of the individual laminae into consideration. Therefore, the 3-D solid 
elements are used to accurately determine stresses in composite structures near 
discontinuities. However each layer in the laminate needs at least one element along 
the thickness of the structure. The number of unknowns in a finite element model 
will depend on the number of layers. Near the free edge of composite laminates, 
three or more elements along the thickness will be needed within a layer in order to 
accurately determine the transverse stresses with large gradient near interlaminar 
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surfaces. In addition, 3-D solid elements show numerical instability under bending 
deformation when the aspect ratio is large. The aspect ratio is the ratio between the 
in-plane dimension and thickness dimension of the element. Usually, the thickness 
of a layer in a composite laminate is very small. So a fine finite element mesh in the 
in-plane dimensions is necessary because it not only needs to measure interlaminar 
stresses with large gradient, but also needs to maintain low aspect ratios. Thus, a full 
3-D finite element modelling is computationally expensive and will quickly exhaust 
the computer space capacity. 

In the laminated elements based on equivalent single-layer 2-D models[4.7-
4.12], the variation in fiber orientations and material properties across the thickness 
is integrated to obtain a single property across the thickness. Therefore, in the finite 
element models, the number of unknowns through the thickness of a structure is 
independent of the number of layers in the composite. The laminated elements can 
be used to model the overall behaviour of composite structures reasonably well in 
problems such as vibration or buckling, but these may not provide useful results if 
interlaminar stresses are required. 

In the multilayer elements based on layer-wise models [4.13-4.16], the 3-D 
discretization of a composite structure is separated into 2-D (in-plane) discretization 
and I-D (thickness) discretization. Thus, the individual laminae are taken as 2-D 
layers or modeled by 3-D sub-elements. These layers and sub-elements are then 
assembled through the thickness. The layerwise models have the advantages over the 
previous models in that the data structure is 2-D and the number of degrees of 
freedom is less than that of a 3-D model. But, in these finite element models, the 
number of degrees of freedom is dependent on the number of layers in composite 
structures. A typical composite structure may have many layers, each of which 
requires one 2-D layer or one sub-element through the thickness. The number of 
degrees of freedom in the element is directly proportional to the number of layers 
in a laminate. Therefore, the number of unknowns in a finite element model is very 
large for laminates with many layers. 

Finite elements can be classified not only in view of the composite structure 
models, but also in view of the assumption of the displacement and stress fields. In 
view of the assumption of displacement and stress within elements along the 
thickness of composite structures, finite elements can be divided into two categories: 
single-layer elements and multi-layer elements [4.17-4.18]. 

The single-layer element assumes a displacement field and/or a stress field 
over the element along the thickness direction. The number of displacement degrees 
of freedom in the element is independent of the number of material layers within the 
element. If the element contains only one material layer, it is a 3-D solid element; 
if the element contains more than one material layer along the thickness direction, 
the equivalent single-layer two-dimensional model must be used to obtain single 
properties across the thickness of the element, and it becomes a laminated element. 
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On the other hand, the multi-layer element assumes many displacement 
fields and/or stress fields within the element. Each displacement/stress field is related 
to a layer along the thickness of a composite laminate. The element matrices are 
assembled through the thickness by means of continuity conditions at the interfaces 
between different layers. The number of displacement degrees of freedom depends 
on the number of material layers in composite structures. 

In this chapter, a series of partial hybrid finite elements will be developed 
using the composite variational principle. The general formulation of the partial 
hybrid element was given in chapter 3. 

4.2 SINGLE-LAYER FINITE ELEMENTS 

The single-layer finite elements include 3-D solids elements and laminated 
elements. Their element matrices can be formulated by means of the composite 
variational principle and expressed in a general form. 

4.2.1 Fonnulation of Partial Hybrid Single-Layer Element 

The composite variation principle has been presented in the section 3.2, 
chapter 3. The variational functional is 

(4-1) 

in which, the composite energy is 

(4-2) 

and the vector of global variables includes in-plane strains and transverse stresses, 

(4-3) 

and the layer material matrix [R] is 
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(4-4) 

or 

(4-4)' 

where [S] is the compliance matrix of layer materials and [C] is the stiffness matrix 
of layer materials. Substituting equations (4-2)-(4-4) into equation (4-1), the 
functional becomes 

nco= J) ; C:[R1 ] Cg+ ; CJ:[~] CJg+CJ:[Ra] TCg 

+CJ:aLU-.rI'U] dV-!St7.'I'U dS 

(4-5) 

Within a single-layer finite element (see figure 14), a displacement field is 
assumed along the thickness of the element. It is usually described by the nodal 
displacement 0, 

N Material Layers 

Figure 14 A Single-layer element 



PARTIAL HYBRID ELEMENTS 149 

(4-6) 

where [N] is the matrix of shape functions. Thus, the partial strains are 

(4-7) 

and the partial derivatives are 

D u=[ aw, aw + av, aw + au] T = [B ] 6 
L az ay az ax az L (4-8) 

in which, [Bg] is a partial geometry matrix and [Bd is a partial derivative matrix. 
Along the thickness of composites, a partial stress field is also assumed 
independently as 

(4-9) 

where [Pg] is an assumed stress matrix, 0gJ are the partial stress modes, and ~j are 
the corresponding stress parameters. If the composite structure consists of N material 
layers, substituting equations (4-6)-(4-9) into the composite energy functional (4-5), 
the functional becomes 
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N 

IIco=~ {~ II'Jv [Bg] T[R/] [Bg] dV I 

+ ~ ISI'Jv [Pg] T[Rl] [Pg] dV IS 

+ISI'Jv [Pg] T( [BL ] + [Rl] T[Bg] ) dV I } 

-II'Jv [NJ T,1dV -II'Js [NJ T!,1dS 

N 

[R'] =-E Iv [Pg] T[Rl] [Pg] dV 
i=l 

N 

[G] =1; Iv[Pg] T( [BL ] + [R:/] T[Bg] ) dV 
~=1 

N 

[Kd ] =E Iv [Bg] T[R!] [Bg] dV 
i=l 

(4-10) 

(4-11) 

Note that, when the number of material layers is more than one, the variation in 
fibre orientations and material properties across the thickness of the element is 
integrated to obtain a single property across the thickness. Therefore, the size of the 
element matrices does not depend on the number of material layers in the element. 
Then, the functional can be expressed as 

(4-12) 

In this variational functional, there are two independent variables subject to variation. 
From the two partial stationary conditions with respect to ~ and ~ as follows, 
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(4-13) 

the relation between stress parameters P and nodal displacements 0 is obtained, 

[HJ IS= [G]" 

and 

Eliminating P in the equation (4-14) and (4-15), one obtains 

Denote 

[K/l] = [G] T[HJ -1 [G] 

[I(I = [Kd] + [K/l] 

(4-14) 

(4-15) 

(4-16) 

(4-17) 

in which, the semi-stiffness matrix [Kd] is a displacement-formulated stiffness matrix 
based on the globally continuous strains, and the semi-stiffness matrix [Kh] is a 
hybrid-formulated stiffness matrix based on the globally continuous stresses. Then, 
the governing equation of the element is obtained, 

[I(I"=f 
(4-18) 

where [K] is the element stiffness matrix. For the partial hybrid element, the element 
stiffness matrix consists of a displacement-formulated stiffness matrix [Kd] and a 
hybrid-formulated stiffness matrix [Kb]. In the single-layer element, the size of the 
element matrix [K] is not related to the number of material layers within the 
element. If there are more then one material layers, the single-layer element is a 
laminated element; if there is only one layer in the element, the element becomes a 
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3-D solid element. 

After obtaining the nodal displacement 0 of the elements in a finite element 
model, the displacement field, stress field, and strain field can be obtained using the 
following equations: 

1. Displacement field 

U={~=[N] I (4-6) 

2. Partial globally continuous strains 

(4-7) 

3. Partial globally continuous stresses 

(4-14) 

(4-9) 

4. Partial locally continuous stresses within i-th layer 

1 {ax} i i 
GL= :;.. = [R1 ] Bg+ [R2 ] Gg 

(4-19) 

={ [Rl] [Eg] + [Rl] [Pg] [RJ -1 [G]}6 

={[sl] -1 [Eg] + [cl] [cl] -1 [Pg] [RJ -1 [G]}6 
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5. Partial locally continuous strains within i-th layer 

1. ~E z} i i BL= Eyz =- [R2 ] TBg - [R3 ] "g 
Ezx 

(4-20) 

={- [Rl] T[Bg] - [Rl] [Pg] [H] -1 [G]}6 

={ [s/] T [Sl] -1 [Bg] + [Cl] -1 [p g] [H] -1 [G] }6 

For convenience, all element matrices are given here again, 

N 

[Kd] =E Iv [Bg] T[Rli] [Bg] dV 
~=l 

(4-11) 

N 

[H] =-E Iv [Pg] T[Rl] LPg] dV 
~=l 

and 

N 
(4-17) 

[G] =E Iv [Pg] T( [BL ] + [R:/] T[Bg] ) dV 
~=l 

4.2.2 3-D Partial Hybrid Solid Element 

In the element formulation above, when N=I, the single-layer element 
becomes a 3-D solid element because the element only contains a material layer. 
Many 3-D solid elements can be derived using the general formulation above. In this 
section, 3-D, 8-node and 20-node solid elements are presented. 

a) 3-D, 8-node Partial Hybrid Solid Element 

The 3-D, 8-node element (shown in figure 15) is a simplest finite element 
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for 3-D analysis of structures. Therefore, it is firstly presented to show the 
formulation procedure of partial hybrid finite elements [4.19-4.21]. 

It-_____ .... 7 

}-;-----
/46 

5 .-.~---___ 

1 2 

3 

Figure 15 3-D, 8-node partial hybrid element 

Geometry of Element 

To map the element geometric shape, the global co-ordinates (x,y,z) of any 
point within the element can be written to interpolate the local co-ordinates (~, 1'\, 
~) as follow: 

B 

y=ENiYi (4-21) 

i=l 

where (Xj Yi Zi ) are the global co-ordinates of the i-th node (i=I,2, ... ,8), and Ni are 
the shape functions which can be expressed as follows: 

(4-22) 

in which, 
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(4-23) 

where ~ , 11i and t;; are the local co-ordinates of node i in the element parametric 
space. 

Displacement Field 

Within the element, a displacement field is assumed independently as 
follows: 

(4-24) 

where (ll; Vi Wi ) are the i-th nodal displacements in the global co-ordinates system 
(i=1,2, ... ,8), and Ni are still the shape functions which are the same as that in the 
geometry formulation of the element (4-22)-(4-23). In the matrix form, the 
displacement field can be expressed as 

(4-25) 

in which, [I] is a 3x3 unit matrix and the nodal displacement vector is 

i=l,2, ... ,8 (4-26) 

Partial Strain Field and Partial Deriyatiyes of the Displacement Field 

Within the partial hybrid element, a partial strain field can be derived 
directly from the displacement field. It is 
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(4-27) 

and 

(4-28) 

and 

(4-29) 

Due to the fact that the partial strain-displacement relation (3-9) is satisfied 
a posterior, the locally continuous strains can not be derived directly and will be 
calculated using equation (4-20) after the nodal displacements having been obtained. 
But the partial derivatives of displacement field can be obtained as follows, 

in which, 

and 

aw 
aZ 

DLU- aV +2- =[B]6 az ay L 

aw+ au 
ax az 

(4-30) 

(4-31) 
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(4-32) 

where i=I.2 •....• 8. To map the derivatives from global co-ordinate system to local co­
ordinate system. one can write 

(Ni' c) [X, c Y, C 
N· =X It" ," Y,,, 

i,C x,C Y,C 

Z'Cl(Ni'X~ (Ni'X~ Z," ~i'Y =[J] ~i,y 
z,C i,z i,z 

(4-33) 

where 

8 8 

X II=~N. IIX·, ,ta ~," ~ 
=1 

Z '=~N. ,Z· ,.. ~,.. ~ 

=1 

(4-34) 

The equation (4-33) can be rewritten 

(4-35) 

in which 

1 
Ni,C=aei (1+110) (1+'0) 

1 
Ni'''=a11i (l+eo) (1+'0) (4-36) 

1 
Ni,C=a'i (l+eo) (1+110) 

For mapping the derivatives. it is convenient to introduce a radius vector 
and its derivatives: 
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(4-37) 

'l'=r =(;'~] .11 ,11 
Z,~ 

(X,'] 
v=r.C=l~:~ 

(4-38) 

Then 

[ J] =[ B '1' VJ T 
(4-39) 

and 

IJl=B''l'xV 
(4-40) 

and 

[J]-l=['l'xV VXB Bx~~Jl (4-41) 

Partial Stress Field 

Within the element, a partial stress field is also assumed independently as 
follows, 

(4-9) 

Using iso-function method (see section 3.4.2 in the chapter 3), an iso­
function partial stress matrix can be derived from the displacement field (4-24) as 
follows [4.20], 
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[Pgl 0 1 0 0 e 0 0 T) 0 0 , 0 0 eT) 0 0 0 0 e, (4-42) 11 0 0 e 0 0 T) 0 0 , 0 0 eT) 0 0 T)' 0 e, 0 1 

o 0 1 0 0 e 0 0 T) 0 0 , 0 0 eT) 0 T)' 0 0 

In this partial stress matrix, there are 19 stress modes and some of them are not 
necessary. The unnecessary stress modes can be deleted by means of the 
classification method (see section 3.4.3 in the chapter 3). 

Examination of Partial Hybrid Element 

A major disadvantage of the hybrid stress finite element is the presence of 
spurious kinematic deformation modes. Therefore, a new hybrid element has to be 
examined. The stiffness matrix of a partial hybrid element is in the form, 

(4-17) 

There are two parts: a displacement-formulated stiffness matrix and a hybrid­
formulated stiffness matrix. In order to avoid any kinematic deformation modes, the 
number of the stress modes in the assumed partial stress matrix [P gl must satisfy the 
following necessary condition 

(4-43) 

in which, n is the total degrees of freedom of the element, r is the number of rigid 
body motions, and nd is the rank of the displacement-formulated stiffness matrix 
[Kdl. The limitation principle indicates that a partial hybrid element is equivalent to 
its displacement counterpart if its partial stress field contains all displacement-derived 
stress modes. Due to the fact that iso-function stress matrix contains all 
displacement-derived stress modes (see discussion in the section 3.4.2, chapter 3) and 
conventional displacement element never has any kinematic deformation modes, the 
partial hybrid element using the iso-function partial stress matrix (4-42) is equivalent 
to its displacement counterpart. Eigenvalue examination of the element shows that 
the partial hybrid element has the same eigenvalues as its displacement counterpart 
and does not have any kinematic deformation modes. Therefore, the sufficient 
condition to avoid spurious kinematic deformation modes can be that the stress 
modes in the partial stress matrix are the same as that in the iso-function partial 
stress matrix. But there are a great number of unnecessary stress modes in the iso­
function stress matrix. So, the classification method of stress modes (see discussion 
in the section 3.4.3, chapter 3) has to be used to take unnecessary stress modes out. 
Thus, a necessary and sufficient condition for guaranteeing the absence of kinematic 
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deformation modes at the element level can be expressed as follows, 

(4-44) 

In the 3-D, 8-node element, there are (n=) 24 degrees of freedom and (r=) 
6 degrees of the rigid body motion because each node has three components of 
displacements. Thus, the element has (n-r=) 18 natural deformation modes. By 
means of eigenvalue examination of the element, the rank of the partial stiffness 
matrix [Kd] can be determined. Because the partial stiffness matrix [Kd] gives 10 
non-zero eigenvalues, the rank of the matrix [Kd] is (nd=) 10 and the matrix [Kd] 
represents 10 natural deformation modes of the element. In order to avoid any 
kinematic deformation modes, another partial stiffness matrix [Kh] must give 8 non­
zero eigenvalues and represent 8 natural deformation modes. According to the 
equation (4-44), the number of necessary stress modes is equal to 8. For this 
element, a partial stress matrix determined by the eigenfunction method [4.19] is 

[
1 0 0 ~ 11 0 0 ~111 

[Pg ] = 0 1 0 0 0 ~ -~ 0 

001001111 0 

(4-45) 

This partial stress matrix only contains minimum number of stress modes. 
The examination of element shows that there is not any kinematic deformation 
modes. 

b) 3-D, 20-node Partial Hybrid Solid Element 

A 3-D, 20-node element [4.21] is shown in figure 16. It also can be 
obtained using the general formulation of single-layer element. 

Geometry of Element 

Firstly, the global co-ordinates (x,y,z) of any point within the element can 
be expressed in the form as follows: 

20 

x=ENiXi 
i=l 

20 

z=E Nizi 
i=l 

(4-46) 
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Figure 16 3-D, 20-node partial hybrid element 

where (X; Yi Zi ) are the global co-ordinates of the i-th node (i=1,2, ... ,20), and Ni are 
the shape functions which are the functions of the local co-ordinates (1;, T1, ~) as 
follows: 

N i = ~ (1+~0) (1+'10) (1+'0) (~0+'1o+'0-2) ~~'1~'~ 

+ ! (1-~2) (1+'10) (1+'0) (1-~~) '1~'~ 

+ ! (1-'1 2 ) (1+'0) (1+~0) (1-'1~) ,~~~ 

+! (1-,2) (1+~0) (1+'10) (1-'~) ~~'1~ 

in which, 

(4-47) 

(4-48) 

where I;. , T1i and S; are the local co-ordinates of node i in the element parametric 
space. 
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Displacement Field 

Within the element, a displacement field is assumed independently as 
follows: 

20 

w=ENiWi 
i"'l 

(4-49) 

where (Il; Vi Wi ) are the i-th nodal displacements in the global co-ordinates system 
(i=I,2, ... ,20), and Ni are the shape functions (4-47)-(4-48). In the matrix form, the 
displacement field can be expressed as 

(4-50) 

in which, [I] is a 3x3 unit matrix and the nodal displacement vector is 

i=1,2, ... ,20 (4-51) 

Partial Strain Field and Partial Derivatives of the Displacement Field 

Within the partial hybrid element, similar to the 8-node element above, a 
partial strain field can be derived directly from the displacement field (4-49). It is 

(4-52) 
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and 

(4-53) 

and 

(4-54) 

Because the partial strain-displacement relation (3-9) is satisfied a posteriori, 
the partial derivatives of displacement field only can be derived from the 
displacement field as follows, 

in which, 

and 

aw 
az 

DLU= aV +~ =[B J6 az ay L 

aw+ aU 
ax az 

o Ni,z 

Ni,z Ni,y 

o Ni,x 

(4-55) 

(4-56) 

(4-57) 

where i=1,2, .... ,20. To map the derivatives from global co-ordinate system to local 
co-ordinate system, the following equations are used. 
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where 

(
Ni,e) X,e Y,e Z,e (Ni'X

J 
(Ni'X

J N· =X Z N· = N· 11''1 ,1) Y,1) ,1) N~'Y [J] N~'Y 
i,C X,C Y,C Z,C i,z i,z 

20 

X .=~ N· .x., , .. ~ ~, .. ~ 
~=1 

20 

Z C=~N. CZ . , ~, ~ 

=1 

The equation (4-58) can be rewritten as 

where 

Ni,e= ~ ~i (1+110) (1+'0) (2~0+110+'0-1) ~~11~'~ 

- ~ ~ (1+110) (1+'0) (1-~~) 11~'~ 

+ ! ~i (1-112) (1+'0) (1-11~) ,~~~ 

+ ! ~i (1-,2) (1+110) (1-'~) ~~11~ 

Ni ,1)= ~11i (1+~0) (1+'0) (~0+2110+'0-1) ~~11~'~ 
+ !11i(1-~2) (1+'0) (1-~~)11~'~ 

- ~11 (1+'0) (1+~0) (1-11~) '1~1 

+ !11i (1-,2) (1+~0) (1-'1) ~1111 

(4-58) 

(4-59) 

(4-60) 

(4-61) 

(4-62) 
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Ni,C= ~ Ci (1+~0) (1+110) (~0+110+2Co-1) ~1111C1 

+.!Ci(1-~2) (1+110) (1-e1) 111C1 
4 

+.!Ci (1-11 2 ) (1+~0) (1-11~) ,~~~ 
4 

- ~, (l+e o) (1+110) (1-'1) e1111 

165 

(4-63) 

For mapping the derivatives, a radius vector and its derivatives defined by 
equations (4-37)-(4-41) also can be used. 

Partial Stress Field 

Within the element, a partial stress field is assumed independently as 
follows, 

(4-9) 

Using iso-function method, an iso-function partial stress matrix can be 
derived from the displacement field (4-49) as follows [4.20], 

1 0 0 e 0 o T) 0 0 { 0 0 eT) 0 0 e{ 0 0 
[Pg ] = 0 1 0 o e 0 0 T) 0 0 { 0 0 eT) 0 0 e{ 0 

0 0 1 0 0 e 0 0 T) 0 o { 0 0 eT) 0 o e{ 

T){ 0 0 eT){ 0 0 e2 0 o T)2 0 0 {a 0 0 e2T) 
0 T){ 0 0 eT){ 0 0 e2 0 0 T)2 0 0 {2 0 0 

(4-64) 
0 o T){ 0 0 eT){ 0 0 ea 0 o T)2 0 0 {2 0 

0 0 ea{ 0 eT)a 0 0 T)2{ 0 e{a 0 T){a 0 

eaT) 0 0 e2{ 0 eT)a 0 0 0 0 e{2 0 0 

0 e2T) 0 0 0 0 eT)2 0 T)2{ 0 0 0 T){2 
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In this partial stress matrix, there are 47 stress modes. The examination of 
element will indicate that there are many unnecessary stress modes in this iso­
function stress matrix. 

Examination of Partial Hybrid Element 

In the element, there are 20 nodes and each node has three components of 
displacements. Therefore, the element has (n=) 60 degrees of freedom. The degrees 
of the rigid displacement are equal to (r=) 6. Thus, the element has (n-r=) 54 natural 
deformation modes. The examination of the partial stiffness matrix [Kd1 gives 31 
non-zero eigenvalues. So the rank of the partial stiffness matrix [Kd1 is (nd=) 31 and 
it represents 31 natural deformation modes of the element. Another partial stiffness 
matrix [Kh1 must give 23 non-zero eigenvalues and represent 23 natural deformation 
modes in order to avoid any kinematic deformation modes mode. According to the 
equation (4-44), the assumed stress matrix must contain at least 23 stress modes. 

In the iso-function stress matrix (4-64), there are 47 stress modes. It is more 
than double the number of necessary stress modes. The stress matrix (4-64) can be 
expressed in the form 

(4-65) 

Based on this iso-function stress matrix, the classification method gives an 
optimal stress matrix as follows, 

or 

1 0 0 e 0 0 TI 0 0 , 0 0 el1 0 0 e, 0 0 
[Pgl = 0 1 0 0 e 0 0 'I 0 0 , 0 0 eTJ 0 0 e, 0 

o 0 1 0 0 e 0 0 'I 0 0 , 0 0 eTl 0 0 e, 

11' 0 el1' 0 0 
0 'I' 0 eTJ' 0 
0 0 0 0 eTl' 

[Pg ] = [01 02 03 ••• 020 022 ••• 024 ] 

(4-66) 

(4-66)' 
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Using this assumed partial stress matrix, two stiffness matrices of the 3-D, 
20-node partial hybrid elements are examined. One is for isotropic material (see table 
4); another is for anisotropic material (see table 5). In the tables, 

(4-67) 

where A..i is the eigenvalue of the partial hybrid element; Aui is the eigenvalue of the 
conventional displacement element. In tables 4 and 5, there are not any spurious zero 
eigenvalues. So the elements do not have any spurious kinematic deformation modes. 
From the results in tables 4 and 5, it can be concluded that if an assumed partial 
stress field can be used to construct a partial hybrid elements without kinematic 
deformation modes for the isotropic materials, it also can be used to construct the 
elements for anisotropic materials. 

In order to study the effect of extra stress modes on the stiffness of 
elements, the assumed partial stress field consisted of the first 33 stress modes in 
iso-function stress matrix is examined. The results of the eigenvalue analysis are 
presented in table 6. Comparing the A in the table 4 and in the table 6, it is shown 
that the eigenvalue A of the element using 33 stress modes is larger than that using 
23 stress modes. Therefore, the added stress modes stiffen the elements. One can 
examine a series of partial hybrid elements using different number of stress modes 
in assumed stress matrix. The examination will show that the more stress modes 
there are, the more stiffening the element is. If the number of added stress modes 
in the assumed stress matrix is increased sufficiently, the stiffness of the partial 
hybrid element will be equal to its conventional displacement counterpart. Such 
partial hybrid element has been presented by Han [4.20]. 
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Table 4 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node Element 
with 23 stress modes and isotropic materials: E=l100 GPa, v=O.1 

No. A No. A No. A 
1 0.3822 19 0.9066 37 0.9594 

2 0.3822 20 0.9106 38 0.9654 

3 0.4759 21 0.9235 39 0.9694 

4 0.5549 22 0.9272 40 0.9694 

5 0.6403 23 0.9277 41 0.9694 

6 0.6445 24 0.9296 42 0.9730 

7 0.6846 25 0.9296 43 0.9782 

8 0.7257 26 0.9366 44 0.9782 

9 0.7257 27 0.9366 45 0.9782 

10 0.7293 28 0.9376 46 0.9797 

11 0.7679 29 0.9376 47 0.9881 

12 0.7858 30 0.9389 48 0.9983 

13 0.8467 31 0.9559 49 0.9983 

14 0.8550 32 0.9559 50 0.9988 

15 0.8657 33 0.9568 51 0.9989 

16 0.8801 34 0.9573 52 1.0000 

17 0.9001 35 0.9575 53 1.0000 

18 0.9011 36 0.9575 54 1.0000 
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Table 5 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node Element 
with 23 stress modes and anisotropic materials: EL=174.6 GPa, 

Er=7.0 GPa, GLT=3.5 GPa, Grr=l.4 GPa, V12=V13=V23=0.25 

No. A No. t.; No. A 
1 0.5357 19 0.9641 37 0.9314 

2 0.5888 20 0.9675 38 0.9994 

3 0.5497 21 0.9206 39 0.9729 

4 0.5013 22 0.9511 40 0.9593 

5 0.6031 23 0.9316 41 0.9631 

6 0.8726 24 0.8770 42 0.9807 

7 0.7696 25 0.9044 43 0.9931 

8 0.8002 26 0.9672 44 0.9442 

9 0.9358 27 0.9759 45 1.0000 

10 0.8494 28 0.9371 46 1.0000 

11 0.5934 29 0.8017 47 0.9971 

12 0.8294 30 0.8755 48 0.9975 

13 0.8994 31 0.9618 49 0.9996 

14 0.8053 32 0.9837 50 0.9961 

~5 0.8532 33 0.9952 51 0.9958 

16 0.7674 34 0.9972 52 0.9975 

17 0.7128 35 0.9974 53 0.9992 

18 0.8763 36 0.9991 54 1.0000 
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Table 6 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node Element 
with 33 stress modes and isotropic materials: E=1100 GPa, v=O.l 

No. A No. A No. A 
1 0.4685 19 0.9971 37 1.0000 

2 0.4685 20 0.9971 38 1.0000 

3 0.7293 21 0.9981 39 1.0000 

4 0.8803 22 0.9983 40 1.0000 

5 0.9014 23 0.9983 41 1.0000 

6 0.9014 24 0.9988 42 1.0000 

7 0.9277 25 1.0000 43 1.0000 

8 0.9296 26 1.0000 44 1.0000 

9 0.9296 27 1.0000 45 1.0000 

10 0.9389 28 1.0000 46 1.0000 

11 0.9497 29 1.0000 47 1.0000 

12 0.9556 30 1.0000 48 1.0000 

13 0.9573 31 1.0000 49 1.0000 

14 0.9575 32 1.0000 50 1.0000 

15 0.9575 33 1.0000 51 1.0000 

16 0.9730 34 1.0000 52 1.0000 

17 0.9782 35 1.0000 53 1.0000 

18 0.9878 36 1.0000 54 1.0000 
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4.2.3 Partial Hybrid Laminated Element 

In the general formulation of single-layer element above, when N>I, the 
element will contain more than one material layer and the single-layer element will 
become a laminated element. 

a) 3-D, 20-node Partial Hybrid Laminated Element 

The formulation of a 3-D, 20-node laminated element (see figure 17) is the 
same as that of 3-D, 20-node partial hybrid solid element (4-46)-(4-66). But the 
variation in fibre orientations and material properties across the thickness of the 

N Material Layers 

Figure 17 3-D, 20-node laminated element 

element must be integrated in order to obtain a single property, and element matrices 
are calculated by equation (4-11). Using the assumed stress matrix (4-66), a 
laminated element with fibre orientation [90, 0, 90] is examined. The results of the 
examination of the element is given in table 7. The results show that the element 
does not have any kinematic deformation modes. 
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Table 7 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node 
Laminated Element [90, 0,90] with 23 stress modes and materials: 

EL=174.6 GPa, Er=7.0 GPa, GLr=3.5 GPa, Grr=1.4 GPa, V12=V13=V23=0.25 

No. A No. A No. A 
1 0.4166 19 0.9312 37 0.9274 

2 0.4103 20 0.9271 38 0.9993 

3 0.4816 21 0.9425 39 0.9171 

4 0.4492 22 0.9026 40 0.9443 

5 0.6359 23 0.9213 41 0.9353 

6 0.6520 24 0.8665 42 0.9221 

7 0.6492 25 0.8663 43 0.9753 

8 0.5950 26 0.9470 44 1.0000 

9 0.8048 27 0.9141 45 0.9993 

10 0.7801 28 0.8579 46 0.9930 

11 0.7075 29 0.8483 47 0.9958 

12 0.6489 30 0.9318 48 0.9974 

13 0.9784 31 0.9251 49 0.9994 

14 0.7856 32 0.9448 50 0.9995 

15 0.8342 33 0.9778 51 0.9939 

16 0.9216 34 0.9442 52 0.9991 

17 0.8371 35 0.9889 53 1.0000 

18 0.8981 36 1.0000 54 1.0000 
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b) 4-node Panial Hybrid Degenerated Plate Element 

The degenerated plate element was originally introduced by Ahead, Irons 
and Zienkiewicz [4.22] for the linear analysis of moderately thick and thin shells. 
Chao and Reddy [4.23] presented a degenerated element based on the total 
Lagrangian description of the motion of a layered anisotropic composite medium. In 
chapter 1, a 4-node degenerated plate element has been presented using displacement 
element formulation. But similar to the plate/shell elements based on the 2-D 
plate/shell theories, for analysis of composites, the degenerated plate/shell elements 
using conventional displacement element formulation suffer from a common 
deficiency: constitutive equations lead to discontinuous interlaminar stresses. 
Equilibrium equations have been often used in recovering the interlaminar stresses. 
Regardless of the controversy and complexity, the use of equilibrium equations will 
reduce the accuracy of the stresses owing to the numerical differentiation. However, 
partial hybrid elements formulation can overcome the stress continuity limitations of 
single-layer models due to the fact that a partial stress field is assumed 
independently. Here, the 4-node degenerated plate element is presented again using 
partial hybrid element formulation. Its number of degrees of freedom per node is 
also independent from the number of layers in a composite structure. 

Geometry of Element 

Firstly, consider a typical thick plate element in figure 18. The co-ordinates 
of a typical point in the element can be written as 

2 

(a) (b) 

Figure 18 A degenerated plate element 
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(4-48) 

where Ni(l;,1'\) are shape functions, ; and 1'\ are the normalized curvilinear co­
ordinates in the middle plane of the plate, ~ is a linear co-ordinate in the thickness 
direction and only approximately normal to the middle surface, and (~, Yi' Z; ) are 
the global co-ordinates at node i. The shape functions are 

(4-69) 

in which, 

(i=1, 2,3, 4) (4-70) 

This equation can be rewritten in the form specified by the 'vector' 
connecting the upper and lower points (shown in figure 18) and the mid-surface co­
ordinates as 

(4-71) 

where 

(4-72) 

and 

(4-73) 
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Displacement Field 

In the element, the displacement field is assumed as a continuous field 
through the entire thickness of a composite structure. Although there are numerous 
plate theories which include transverse shear deformations in the literature, the 
transverse normal stress is always not taken into account. Actually, the hypothesis 
Bz = ° (or an equivalent hypothesis) should not be used [4.24] in order to construct 
the consistent high-order theory. For analysis of composite, the first-order shear 
deformation theory has to be improved. For this element, the following displacement 
field is assumed [4.25-4.26], 

u=uo+za" 
v = vo + z iIy 

w = wo + Z a" 
(4 - 74 ) 

In this displacement field, it is assumed that a line that is straight and 
normal to the middle surface before deformation is still straight, but not necessarily 
'normal' to the middle surface after deformation. Thus, the displacement throughout 
the element will be uniquely defined by three Cartesian components (U i, Vi and 
Wi) of the displacement at the mid-surface node i, two rotations (axi and Gyi ) of the 
nodal vector V 3i about orthogonal directions normal to it, and one transverse normal 
deformation (aZi ) in the thickness direction. Based on this assumption, the i-th 
nodal displacement can be expressed as 

(4-75) 

in which, V Ii' V 2i and V 3i are the unit vectors of the local co-ordinate (/;, n, ~) at 
node i. They can be calculated as follows: 

(4-76) 

If i x V 3i = 0, i can be replaced by j. Thus, the displacement field is 

(4-77) 
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They can be rewritten in the form 

where 

[
Ni a a NiCb~H NiCb~2i NiCb~3il 

[N] i= a Ni a NiC~~i Ni Cb22i NiC~3i 

a a Ni NiC~~i Ni Cb32i NiC~3i 

(4-78) 

(4-79) 

(4-80) 

(4-81) 

Partial Strain Field and Partial Derivatives of the Displacement Field 

The partial globally continuous strains can be derived from the displacement 
field as follows, 

in which, 

au 
ax 
av =[B 16 ay gJ 

au+L 
ay ax 

(4-82) 

(4-83) 
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and 

The partial geometric matrix at the i-th node is, 

Ni,x 

[Bgi ] = 0 

Ni,y 

where 

0 0 

Ni,y 0 

Ni,x 0 

b lli Cix 

b 21i Ciy 

blliCiy +b21i Cix 

b12iCix 

b22iCiy 

b13iCix 

b23iCiy 

177 

(4-84) 

(4-85) 

(4-86) 

The partial derivatives of displacement field can be also derived from the 
displacement field as follows, 

in which, 

and 

aw 
az 

DLU= av +~ =[B 16 az ay LJ 

aw+ au 
ax az 

(4-87) 

(4-88) 
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o 0 Ni,z ~liCiz 

[BLi ] = 0 Ni,z Ni,y l>aliCiz+b31iCiy 

Ni,z 0 Ni,x ~liCix+blliCiz 

b32iCiz b 33iCiz 

b22iCiz +~2iCiY l>a3i Ciz +~3iCiy 

b32iCix +b12iCiz ~3iCix +~3iCiz 

(4-89) 

In order to calculate Ni,x' Ni,y' Ni.z and ~,x' ~,y' ~.z ' the following vectors 
are introduced: 

then, the Jacobian matrix is 

[ J ] = [S T V ]T 

[ J r1 = [TxV VxS SxT] I I J I 

I J I = SxT,V 

(4-90) 

(4-91) 

(4-92) 

(4 - 93) 

(4 - 94) 

(4 - 95) 
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Because 

~i'C} [X,C Y,C Z'C*i,X} ~i'X} 
~,,! = x,,! Y,'I Z,'! ~'Y = [J1 ~'Y 
~,c X,C Y,C Z,C ~,. ~,. 

(4-96) 

the derivatives of shape function with respect to global co-ordinates are 

(4-97) 

Due to N i.~ = 0, the expression (4-97) can be rewritten as 

(4-98) 

and 

(4-99) 

The geometric matrix [B'] in the local co-ordinate system can be obtained 
by means of transformation matrix [T], 

(4-100) 

and 
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1; m; 11n2:J. n; n2:J.~ ~11 

1; m: 12lD-.! n; lD-.!~ ~12 

[Ts] = 
21112 2n2:J.lD-.! 11lD-.! + 12n2:J. 2~~ n2:J.~+lD-.!nl ~12+~11 

(4-101) 
1: m: 13~ n: ~~ ~13 

21213 2~ 1A+13lD-.! 2~~ lD-.!~+~~ ~13+~12 

21311 2~n2:J. 13n2:J. +11~ 2~~ ~~ +n2:J.n3 ~11 +~13 

[TB] is the transformation matrix for the derivatives of displacements from 
global co-ordinate (x, y, z) to local co-ordinate. The direction cosines of the local 
co-ordinates are 

(4-102) 

and 

(4-103) 

Assumed Partial Stress Field 

In the element, the partial stress field is assumed independently as 
continuous functions along the thickness of a composite structure. 

(4-104) 

where, P is the stress parameter vector. The matrix [T] is a multiplying matrix and 
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is determined by the traction conditions on the top and bottom surfaces of the 
structure. For example, if there is a distributed normal load on the upper surface, the 
transverse shear stresses must be equal to zero on both surfaces of top and bottom, 
and the transverse normal stress must be equal to zero on the bottom surface and be 
equal to the distributed load on the top surface. Therefore, the multiplying matrix has 
to be assumed as 

1+{ 0 

[T] = 0 1-{2 

a o 

(4-105) 

The matrix [Pl consists of a group of stress modes which can be derived 
directly from the assumed displacement field using the iso-function method. The iso­
function partial stress matrix of the element is 

[' 0 

0 , 0 0 TJ 0 0 C 0 0 'TJ 0 0 TJC o tc 0 1 
[P] = 0 1 0 0 , 0 0 TJ 0 0 C 0 0 'TJ 0 0 o 0 " 

o 0 1 0 0 , 0 0 TJ 0 0 C 0 0 'TJ 0 TJC 0 0 

(4-106) 

Examination of Partial H~brid Element 

In the element, there are (n=) 24 degrees of freedom and (r=) 6 degrees of 
the rigid displacement. The element has (n-r=) 18 natural deformation modes. The 
eigenvalue examination of the stiffness matrix [Kdl gives 10 non-zero eigenvalues. 
So the rank of the partial stiffness matrix [Kdl is (nd=) 10. Thus, 10 natural 
deformation modes of the element can be represented by the partial stiffness matrix 
[Kdl, and (n-r-nd=) 8 natural deformation modes must be represented by another 
partial stiffness matrix [Khl in order to avoid any kinematic deformation modes. 
According to the equation (4-44), the assumed stress matrix must contain at least 8 
stress modes. 

Based on the iso-function partial stress matrix (4-106), when the multiplying 
matrix [Tl is an unit matrix [I], the classification method gives an optimal stress 
matrix as follows, 

ooeo"o 
1 0 0 0 0 " 
010 e 0 a 

(4-107) 



182 STRESS ANALYSIS OF COMPOSITES 

Using this assumed partial stress matrix, the partial hybrid degenerated plate 
element is examined. The results of eigenvalue examination are given in Table 8. In 
the table, A.; is the eigenvalue of the elements. 

Table 8 Eigenvalue of Stiffness Matrix for 4-node Degenerated Hybrid Element 
with 8 stress modes and E=l100 GPa, v=O.3 

No. A.; (*103) No. A.; (*103) No. A.; (*103) 

1 0.2821 7 0.6822 13 1.6920 

2 0.2821 8 0.6822 14 1.6920 

3 0.3291 9 1.0480 15 1.6920 

4 0.3626 10 1.1280 16 1.6920 

5 0.3626 11 1.5740 17 1.6920 

6 0.5641 12 1.5740 18 5.5000 

On the free-traction surface, the transverse stresses must be zero in order 
to satisfy the boundary condition. In this case, the multiplying matrix is not a unit 
matrix. For example, if free traction condition is applied on both top and bottom 
surfaces, the multiplying matrix is 

1-{2 0 

[T1 ] = 0 1-{2 

o 0 

(4-108) 

The eigenvalues of the element are given in table 9. If the free traction condition is 
only applied on bottom surface, then the multiplying matrix becomes 

(4-109) 

The results of eigenvalue examination are given in Table 10. 
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Table 9 Eigenvalue of Stiffness Matrix for 4-node Degenerated Hybrid Element 
with multiplying matrix [Ttl and E=1100 GPa, v=O.3 

No. A; (*103) No. Ai (*103) No. A; (*103) 

1 0.2350 7 0.6214 13 1.4100 

2 0.2637 8 0.6214 14 1.4100 

3 0.2742 9 1.0060 15 1.5670 

4 0.3626 10 1.0480 16 1.6920 

5 0.3626 11 1.4100 17 1.6920 

6 0.5641 12 1.4100 18 4.9510 

Table 10 Eigenvalue of Stiffness Matrix for 4-node Degenerated Hybrid Element 
with multiplying matrix [T2] and E=1100 GPa, v=O.3 

No. Ai (*103) No. A; (*103) No. Ai (*103) 

1 0.1838 7 0.5668 13 1.5220 

2 0.2115 8 0.5668 14 1.5220 

3 0.3262 9 0.9530 15 1.6160 

4 0.3441 10 0.9826 16 1.6920 

5 0.3441 11 1.2480 17 1.6920 

6 0.5641 12 1.2480 18 4.7500 

The examination of the element shows that there are not any kinematic 
deformation modes when the assumed partial stress matrices (4-107)-(4-109) are 
used. 

c) 8-node Partial Hybrid Degenerated Plate Element 

An 8-node degenerated plate element [4.25-4.26] is also presented here 
using partial hybrid element formulation. 
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GeometlY of Element 

Firstly, the global co-ordinates (x,y,z) of any point within the element are 
expressed in the form specified by the 'vector' connecting the upper and lower points 
(see figure 19) and the mid-surface co-ordinates as 

(4-110) 

s 

2 

(a) (b) 

Figure 19 An 8-node degenerated plate element 

where (x" Yi' Zi ) are the global co-ordinates of the i-th node. The shape functions 
Ni(~,l1) are 
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in which, 

Ni =:! (l+e o) (l+TJo) (e o+TJo-1) e~TJ~ 
4 

+ ~ (1-e2) (l+TJo) (1-e1) TJ1 

+ ~ (1-TJ2) (l+eo) (l-TJ~) e~ 

The vector connecting the upper and lower points is 

and the parameter hi is 

Displacement Field 

185 

(4-111) 

(4-112) 

(4-113) 

(4-114) 

Similar to the 4-node degenerated element, it is assumed that a line that is 
straight and normal to the middle surface of the element before deformation is still 
straight, but not necessarily 'normal' to the middle surface after deformation. 
Therefore, a displacement field is assumed as 

(4-115) 
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in which, V Ii' V 2i and V 3i are the unit vectors of the local co-ordinate (/;, 11, ~) at 
node i. They can be calculated as follows: 

(4-116) 

The displacement field can be rewritten in the same form as that for the 4-node 
degenerated plate element, 

where 

b lli b 12i b 13i] 
[bil ::;;: b 21i b 22i b 23i ::;;: ~i [Vu -V21 V31] 

~li ~2i b 33i 

Ni a a NiCblli Ni Cb12i Ni Cb13i 

[NJ i::;;: a Ni 0 NiC~li Ni Cb22i NiC~3i 

a 0 Ni NiC~li Ni Cb32i NiC~3i 

(4-117) 

(4-118) 

(4-119) 

(4-120) 

Partial Strain Field and Partial Derivatives of the Displacement Field 

The partial globally continuous strains can be derived from the displacement 
field by means of partial strain-displacement relation as follows, 
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(4-121) 

in which, 

(4-122) 

and 

(4-123) 

The expression of the partial geometric matrix at the i-th node [Bgi] is the same as 
that of the 4-node degenerated plate element (4-85)-(4-86). 

The partial derivatives of displacement field can be also derived from the 
displacement field as follows, 

in which, 

aw 
az 

D .. u= av +L =[B 11 .. az ay LJ 

aw+au 
aX az 

(4-124) 

(4-125) 

The expression of the partial geometric matrix at the i-th node [BLi] is the same as 
that of the 4-node degenerated plate element (4-89). 

In order to calculate Ni.x' Ni.y, Ni.z and ~.x' ~.y' ~.z ' the following vectors 
are introduced: 
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(4-126) 

(4-127) 

~,e} B h 
V= ,e =E Ni ---.!:. V31 

z,e i=l 2 

(4-128) 

Thus, the Jacobian matrix, the derivatives of the shape functions, and the geometric 
matrix [B'] in the local co-ordinate system can be obtained using equations (4-93)-(4-
103). 

Assumed Partial Stress Field 

In the element, the partial stress field is assumed independently as 
continuous functions along the thickness of a composite structure. 

(4-129) 

where the multiplying matrix [T] is determined by the traction conditions on the top 
and bottom surfaces of the structure. The matrix [P] is derived directly from the 
assumed displacement field using the iso-function method. The iso-function partial 
stress matrix of the element is 
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1 o 0 ~ 0 0 " 0 0 , 0 0 ~" 0 0 ~, 0 0 

[P] == 0 1 o 0 ~ o 0 " 0 0 , 0 0 ~" 0 0 ~, 0 

0 0 1 0 0 ~ 0 0 " 0 0 , 0 0 ~" 0 o ~e 

"e 0 0 ~"e 0 0 ~2 0 0 ,,2 0 0 ~2" 

0 ,,' 0 0 ~,,' 0 0 ~2 0 0 ,,2 0 a (4-130) 

0 0 ,,' 0 a ~,,' 0 o ~2 0 a ,,2 a 

a 0 ~2' a ~,,2 a 0 ,,2, 0 

~2" 0 0 ~2' 0 ~,,2 0 0 0 

0 ~2" 0 0 0 0 ~,,2 0 ,,2e 

There are 40 stress modes in the iso-function partial stress matrix. 

Examination of Partial Hybrid Element 

In the element, there are 8 nodes and each node has six components of 
displacements. Therefore, the element has (n=) 48 degrees of freedom. For a 3-D 
elastic body, the degrees of the rigid displacement are equal to (r=) 6. Thus, the 
element has (n-r=) 42 natural deformation modes. The eigenvalue examination 
indicates that the partial stiffness matrix [Kd] has 26 non-zero eigenvalues. So the 
rank of the partial stiffness matrix [Kd] is (nd=) 26 and the matrix [Kd] represents 26 
natural deformation modes. Thus, another partial stiffness matrix [Kh] must represent 
16 natural deformation modes of the element and the assumed partial stress matrix 
must contain at least 16 stress modes. 

Based on the iso-function partial stress matrix (4-130), when the multiplying 
matrix [T] is a unit matrix [I], the classification method gives an optimal stress 
matrix as follows, 

a a ~ a a TJ 

100 ~ a a 
a 1 a a ~ a 

a a 
TJ a 
a TJ 

(4-131) 

The degenerated plate elements with three types of materials are examined. 
The first is for isotropic material (see Table 11); the second is for anisotropic 
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material (see Table 12); The third is for the composite structure with fibre orientation 
[90, 0, 90] (see Table 13). In the tables, 

(4-132) 

where Am is the eigenvalue of the hybrid element; A.i is the eigenvalue of the 
conventional displacement element. There are not any spurious zero eigenvalues. 
Therefore, the elements do not have any kinematic deformation modes. 

Table 11 Eigenvalue Analysis of Stiffness Matrix for the Degenerated Element 
with 16 stress modes and isotropic materials: E=1100 GPa, v=O.3 

No. A; No. A; No. A; 

1 0.7355 15 0.9253 29 0.9276 

2 0.9392 16 0.9253 30 0.8042 

3 0.7040 17 0.9241 31 1.0000 

4 0.6753 18 0.7388 32 0.9966 

5 0.8229 19 0.9190 33 0.9994 

6 0.5870 20 0.9762 34 0.9994 

7 0.6636 21 0.9790 35 0.9817 

8 0.6092 22 0.8131 36 0.9841 

9 0.7219 23 0.7528 37 0.8384 

10 0.8699 24 0.7375 38 0.8432 

11 0.8197 25 0.8694 39 0.9995 

12 0.8974 26 0.8120 40 0.9114 

13 0.8793 27 0.8195 41 1.0000 

14 0.8793 28 0.8195 42 1.0000 
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Table 12 Eigenvalue Analysis of Stiffness Matrix for the Degenerated Element 
with 16 stress modes and anisotropic materials: EL =174.6 GPa, 

Er=7.0 GPa, GLT=3.5 GPa, Grr=1.4 GPa, V12=V13=V23=0.25 

No. Ai No. ~ No. ~ 

1 0.9474 15 0.9094 29 0.9766 

2 0.4623 16 0.8548 30 1.0000 

3 0.5917 17 0.7773 31 0.9993 

4 0.7961 18 0.7797 32 0.8925 

5 0.8069 19 0.9696 33 0.9897 

6 0.7233 20 0.8894 34 0.9968 

7 0.7416 21 0.9453 35 0.9998 

8 0.7526 22 0.9086 36 1.0000 

9 0.8614 23 0.9842 37 0.9940 

10 0.8387 24 0.8846 38 0.9918 

11 0.8810 25 0.9896 39 0.9995 

12 0.8917 26 0.9820 40 1.0000 

13 0.9025 27 0.9996 41 0.9916 

14 0.9138 28 0.9496 42 1.0000 
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Table 13 Eigenvalue Analysis of Stiffness Matrix for the Degenerated Element 
with fibre orientation [90, 0,90], 16 stress modes and materials: 

EL=174.6 GPa, Er=7.0 GPa, GLl.=3.5 GPa, Grr=1.4 GPa, V12=V13=V23=O.25 

No. ~ No. ~ No. ~ 

1 0.6746 15 0.8201 29 0.9094 

2 0.5697 16 0.7790 30 0.9506 

3 0.5951 17 0.7862 31 0.9982 

4 0.7661 18 0.9046 32 1.0000 

5 0.8326 19 0.9080 33 0.9999 

6 0.7248 20 0.8470 34 0.9899 

7 0.6863 21 0.8440 35 0.9915 

8 0.6293 22 0.7805 36 0.9986 

9 0.7808 23 0.9788 37 1.0000 

10 0.8043 24 1.0000 38 0.9993 

11 0.8668 25 0.9470 39 1.0000 

12 0.7016 26 0.9717 40 0.9896 

13 0.8314 27 0.8866 41 0.9998 

14 0.8170 28 0.8840 42 0.9999 
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4.2.4 Partial Hybrid Transition Element 

In practical applications, a number of the so-call 'gioballlocal' solution 
method have been proposed [4.27] in order to determine the stress state in composite 
structures efficiently and accurately using 3-D finite element model. In the global­
local analysis, the treatment of interfaces between global and local regions is one of 
the key elements. One of the commonly-used approach(!s for maintaining 
displacement compatibility and traction reciprocity at the interfaces is a special 
transition element. The major advantage of the transition element is to eliminate the 
constraint equations at these transition regions[4.28-4.30]. Two partial hybrid 
transition elements are presented here [4.31-4.36]. They will be used to connect the 
3-D partial hybrid solid elements in local region with the partial hybrid degenerated 
plate elements in global region for the globalllocal analysis of composite structures 
as presented in chapter 5. 

a) 6-node Partial Hybrid Transition Element 

This transition element is used to connect partial hybrid degenerated plate 
elements and 3-D partial hybrid solid elements. It has two line of nodes [ 4.37] where 
it meets the degenerated plate element and four point nodes on the remaining 
boundaries where it meets the 3-D solid element (see Figure 20). The line of nodes 
can accommodate any function along the thickness, allowing it to admit the any­
order polynomials over the entire thickness from degenerated plate element, while 
the point nodes have the same polynomial shape functions as those used for the 3-D 
solid element. Once the shape functions of the transition element are established, the 
definitions of geometry and displacements for the element follow a similar path to 
those of the hybrid elements. 

b 
o 

Figure 20 6-node partial hybrid transition element 
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The Shape Functions of Different Elements 

In the formulation of a typical 3-D element as shown in figure 21(a), shape 
functions dictate the form of any field, e.g. displacement fields. It is clear that if two 
adjacent elements have identical shape functions and nodal locations on the interface, 
the continuity of any field between the elements is achieved and the elements are 
compatible. Otherwise, the compatibility of elements will not be satisfied. 

Suppose that a transition element in Figure 21(b) is used to connect a solid 
element (Fig. 21a) to a plate element (Fig. 21c) in the transition region of a 
globallIocal finite element model. On the left side, it meets with a solid element; on 
the right side, it meets a plate element. Thus, the transition element must have the 
same shape functions and nodal locations on its left side as that of solid element, and 
on its right side as that of plate/shell element. 

Take a solid element as an "original" element for developing the transition 
element. Obviously, the shape functions on the left side do not need to be modified. 
But, on the right side, new shape functions for satisfying continuity are required. For 
a general case, this amounts to developing a set of shape functions which can 
accommodate any arbitrary curve specified by the adjacent right-side element along 
the ~ axis (thickness) on the interface between elements. Before attempting to 
generate such shape functions, it is instructive to examine shape functions for a solid 
element. 

2 

Q 

(a) solid element (b) transition element (c) plate element 

Figure 21. Three types of element 
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In figure 21(a), a typical linear solid element is shown with the local 
curvilinear co-ordinates ;, 1\ and ~. Its shape functions can be found 
elsewhere[4.38-4.39]. For developing a transition element, of particular interest are 
the shape functions for the nodes on the right side of this element, node 5-8: 

(4-133) 

The transition element in Fig. 21(b) is similar to the solid element in Fig 
21(a) except for the nodes on its right face (5,6,7,8). Special treatment has to be 
done to these nodes so that their displacements can be compatible to those of the 
plate element in figure 21(c). Consider a function, 

in which, 

Do1I(~,11,C) =CZSNs+CZBNB 

Db (~, 11, C) =CZ 6N6 +cz7N7 

(4-134) 

(4-135) 

where ex; is the value of n at the node i of the solid element. Note that the function 
n can have the meaning of displacement function for the right face of the transition 
element in Fig. 21(b). Functions n. and n., can be of any degree (linear, quadratic 
etc.) between the two nodes 5-8 or 6-7 respectively. For a regular brick element, as 
and as would represent the displacements at the node 5 and 8 respectively. 
Normally, the displacements at node 5 and 8 are independent from each other. 
However, if the displacements at nodes 5 and 8 are constrained such that each of 
them is equal to a specific value of a function ~(~'), then one can write: 

(4 - 136) 

where ~'s and ~'s are the global coordinates in the thickness direction of nodes 5 
and 8 respectively. 

Now consider the shape functions of the degenerated plate element. A 
middle surface of a degenerated plate element is shown with the local curvilinear co-
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ordinates ~ and 11 (in Figure 21(c». The shape functions for the nodes on the left 
boundary of this element, nodes I and 4 are: 

Nl = (l-e > (1-'11 > /4 

N,= (l-e> (1+'11> /4 

Consider another function meantime, 

in which 

II (e , '11 , {I> =lll {~ , '11 , {I> +ll, {~, '11 , {I> 

III {~, '11 , {I> =A:tPl {{'> Nl 

ll, {e, '11, {I> =A,p, ({'> N, 

(4-137) 

(4-138) 

(4-139) 

and II represents the displacements at the left face of the plate element. Note that 
the function II can be considered to be the displacements of points lying on a plane 
normal to the middle surface of the plate element at edge 1-4. III can be considered 
to be the displacements at all points on the normal to the initial middle surface of 
the undeformed plate element at node I and II4 can be considered likewise to be the 
displacements at all points on the normal to the initial middle surface of the 
undeformed plate element at node 4. Let us consider the composition of III in detail. 
The composition of II4 follows. 

In III' NI represents the shape function in the plane ~-11. AI represents the 
nodal displacement at the node I on the middle surface of the plate element. ~I(") 
represents the variation of the displacement in the undeformed state of any point 
initially lying on the line normal to the middle surface of the plate element. If only 
one plate element is used for the whole laminate thickness, ~(") is a linear function 

of ". 

Matching the Two Shape Functions 

From figure 21(b), n represents the displacement of the transition element 
at the interface. From figure 21(c), II represents the displacement of the plate 
element at the interface. In order to satisfy the compatibility of displacement fields 
at the interface between the transition element and plate element, n and II must be 
the same. 
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Function n consists of two functions n. and ~, and function II consists of 
another two functions III and II4 . At the interface, n. and ~ will need to match III 
and II4 , respectively. If Q i and ~ can be matched exactly, compatibility of 
displacement fields at the interface will be satisfied. At the interface, ~' is a function 
of ~. In the interval ~E [-1,1] which corresponds to ~' E [~\, ~\+d, one has 

rl= 1-C 1'1 + l+C rl 
~ 2 ~ 1 2 ~ 1+1 

(4-140) 

Note that ~' is the global thickness coordinate for the plate element while 
~ is the smaller thickness coordinate for the solid or transition element. Using 
equation (4-133), the function n. in equation (4-135) can be rewritten as follows: 

(4-141) 

In this expression, the function n. is split into two parts N.(S,Tl) and a.(~) that are 

Na (~ I 1')) = ! (1 +~) (1-1')) (4-142) 

ua (C) = ~ [(i-C) u5 + (l+C) Us] 

Thus, 

(4-143) 

In order to accommodate any arbitrary curve ~I(~') specified by the 
adjoining plate element, a line of nodes connecting nodes 5-8 and a moving node 
which moves along this line are defined. At every point ~' occupied by the moving 
node, the nodal value a. is made to be equal to the value of the specified curve at 
the point, AI~I(~')' Thus, 

(4-144) 
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Because the contribution of line 5-8 to the displacement field of the 
transition element is represented by the function n., this line is called as line of 
nodes "a" in order to use the standard word "node" in finite element method. Now, 
comparing functions n. and ITI (4-139) and (4-144) at the interface, one can see that 
the functions n. and ITI are the same (note that N.=N l at the interface). The n. and 
ITI are matched exactly. In the same way as the functions n. and ITI , The n., and 
IT4 can also be matched. The new shape functions and nodal values are defined by 

(4-145) 

Thus 

(4-146) 

The functions n. and n., of two lines of nodes "a" and "b" determine the 
displacements of the transition element at interface. Similarly, the functions ITI and 
IT4 of two nodes 1 and 4 determine the displacements of the plate element at the 
interface. Because the functions n. and n., are the same as the functions ITI and IT4 
at the interface respectively, the function n is subsequently same as the function IT. 
Therefore, the displacements are compatible at the interface between the transition 
element and plate element. 

These two new shape functions N. and Nb along with the other four shape 
functions as given in Reference [4.38-4.39] form a complete set of shape functions 
for the transition element. 

Geometry of the Element 

A transition element is shown in Figure 22. The global co-ordinate (x, y, 
z) of any point in the element may be related to the non-dimensional co-ordinates 
by 

(4-147) 

in which, X; , Yi and Z;. are the co-ordinates of node i. Because the point nodes 5-8 
are replaced by two lines of node a and b as follows, 
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(4-148) 

where, X.0, Yio and Zio (i=a,b) are the co-ordinates of the lines "a" and "b" at the 
middle surface of the composite structure, one has 

(4-149) 

Moreover, it can be rewritten in the form, 

(4-150) 

where 

(4-113) 

and 

(4-114) 

The shape function Ni can be expressed as follows: 

(4-151) 

in which 
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Nil = (1 + e) (1-11) /4 

Nb=(l+e) (1+11)/4 

i=1-4 
(4-152) 

(4-153) 

Note that coordinate ~' is the global thickness coordinate for the plate 
element and coordinate ~ is the smaller thickness coordinate for the transition 
element. The relationship between coordinate~' and coordinate ~ is expressed in 
the equation (4-140). The values ~'I and ~'I+I represent the values of co-ordinate ~' 
at the lower and upper surfaces of a layer while ~=-1 and ~=+1, respectively. 

Displacement Field 

In the element, the displacements (see figure 22) are expressed as follows: 

(4-154) 

TnDsiUOD elemenl 

Figure 22 Nodal displacements in a transition sub-element 
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where 

and 

b1li b 12i 

[bi ] = b21i b22i 

b31i b32i 
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(4-118) 

(4-116) 

in which, the displacement components ui , Vi and Wi are the nodal displacements at 
point nodes 1,2,3 and 4. The displacement components uio, Via and wio are the 
displacements of the line "a" and "b" at the middle surface of the composite 
structure, 'lfxi and 'lfyi are two rotations of the nodal vector V 3i about orthogonal 
directions normal to it, and 'lfzi is a transverse normal deformation in the thickness 
direction. 

Partial Strain Field and Partial Derivatives of the Displacement Field 

The partial strain field is 

ou 
ox 
ov 
oy 

ou+E..­oy ox 

(4-155) 

where Os = O. and 06 = ~ . The partial derivatives of the displacement are 

(4-156) 



202 STRESS ANALYSIS OF COMPOSITES 

For nodes i = 1 - 4, 

(4-157) 

and 

0 Ni,z 

Ni,z Ni,y (4-158) 

0 Ni,x 

and 

(4-159) 

For nodes i = a and b, 

(4-160) 

and 

(4-161) 
and 

61= [uJ vJ wJ ,I. ,I. ,I. ] T 
• • • 'I' xi 'I' yi 'I' zi 

(4-162) 

and 
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aix=Ni ,xe'+Nie',x 
aiy=Ni,ye'+Nie',y 

aiz=Ni , ze' + Nie', z 
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(4-163) 

In order to calculate Ni,x' Ni,y' Ni.z and ~',x' ~',y' ~',z , the following vectors 
are introduced: 

(x,e] 
S=r.C= ~:: 

(4-164) 

'}!=r =(~'~] .11 ,~ 

z,~ 
(X,'] 

V=r.C= ~:~ 

Then 

[J] =[S '}! VJ T and IJI=So'J!xV 
(4-165) 

and 

[J]-l=['1!xV VXS Sx~~JI 
(4-166) 

One can obtain 

~i'X} ~i,e} ~'y = ['1!xV VXS Sx'J!] fiJi ~'~ 
~,z ~" 

(4-167) 

and 

i,x} Sx'}! e,y =13[ 
e,z 

(4-168) 
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Assumed Partial Stress Field 

In the element, the partial stress field is also assumed independently. 

(4-169) 

where the stress parameters ~i are the internal parameters. In some cases, it is 
convenient to use surface stress parameters a. For example, an assumed stress field 
can be assumed in the form, 

(4-170) 

where ay and as are the surface stress parameters corresponding to upper and lower 
surfaces of the element, respectively. In this expression, a stress mode Cfi in the 
matrix [P] is related to both surfaces (upper and lower surfaces ay and as ) and 
corresponds two stress modes 0.5*(I+~)*Cfi and O.5*(I-~)*Cfi in the assumed stress 
matrix [Pg]. The stress matrix [P] can be derived directly from the assumed 
displacement field using the iso-function method. The iso-function partial stress 
matrix of the element is 

1'0 a ~ a a TJ a a e a a ~TJ a a TJe a ~e 

~'l [PgJ-O 1 a a ~ a a TJ a a e a a ~TJ a a 0 a 
a a 1 a a ~ a a TJ a a e a a ~TJ a TJe a 

(4-171) 
There are 19 stress modes in the stress matrix. 

ExaminatiQn Qf fartial H~lujd TransiUQn El~m~nt 

In this element, there are four point nodes and two lines of nodes. Each 
point node has three components of displacements and each line of nodes has six 
components. Therefore, the element has (n=) 24 degrees of freedom. Because the 
degrees of the rigid body motion are equal to (r=) 6, the element has (n-r=) 18 
natural deformation modes. The eigenvalue examination indicates that the rank of 
the partial stiffness matrix [Kd] for the element is (nd=) 10. Therefore, the partial 
stiffness matrix [Kd] represents 10 natural deformation modes of the element. 
Another partial stiffness matrix [Kh] must represent 8 natural deformation modes of 
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the element and the assumed stress matrix [P g] must contain at least 8 stress modes. 
Due to the fact that a stress mode in the matrix [P] corresponds two stress modes 
in the assumed stress matrix [Pg]' the stress matrix [P] must have at least 4 stress 
modes. 

Based on the iso-function partial stress matrix (4-171), the classification 
method gives an optimal stress matrix as follows, 

[
1 0 0 0 0] 

[P] = 0 1 0 ~ 0 

o 0 1011 
(4-172) 

The examination of the element shows that there are not any kinematic 
deformation modes. The results of eigenvalue examination are given in Table 14. In 
the table, ~ are the eigenvalues of the element. 

Table 14 Eigenvalues of Stiffness Matrix for Hybrid Transition Element 
with 10 stress modes and isotropic materials: E=1100 OPa, v=O.3 

No. ~ (*103) No. ~ (*103) No. ~ (*103) 

1 0.1088 7 0.2923 13 1.282 

2 0.1621 8 0.4328 14 1.373 

3 0.1850 9 0.6554 15 1.398 

4 0.2115 10 0.7126 16 1.398 

5 0.2209 11 0.7264 17 1.418 

6 0.2438 12 0.9706 18 4.171 
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b) i5-node Pal1ial Hybrid Transition Element 

In order to connect 8-node partial hybrid degenerated plate elements and 3-
D, 20-node partial hybrid solid elements, a IS-node transition element is presented. 
It has three lines of nodes [4.37] where they meet the degenerated plate/shell element 
and four point nodes on the remaining boundaries (see Figure 23). The line of nodes 
can accommodate any function along the thickness, allowing it to admit the any­
order polynomials over the entire thickness from degenerated plate element, while 
the point nodes have the same polynomial shape functions as those used for the 3-D 
solid element. 

Point nodes 

Lines of nodes 

Figure 23 IS-node partial hybrid transition element 

The Shape Functions of Different Elements 

Suppose that the IS-node transition element in Figure 24(b) is used to 
connect a 20-node solid sub-element (Fig. 24a) to a 8-node plate element (Fig. 24c) 
in the transition region of a globa1/local finite element model. On the left side, it 
meets with a solid element; on the right side, it meets a plate element. 

Similar to the case in developing 6-node transition element, take a solid 
element as an "original" element for developing the transition element. Obviously, 
the shape functions on the left side do not need to be modified. But, on the right 
side, new shape functions for satisfying continuity are required. 
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Lines of nodes a,b,c 
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(a) solid element (b) transition element (c) plate element 

Figure 24 Three types of element 

In Figure 24(a), a typical quadratic solid element is shown with the local 
curvilinear co-ordinates S, Tl and ~. Its shape functions can be found 
elsewhere[4.38-4.39]. For developing a transition element, of particular interest are 
the shape functions for the nodes on the right side of this element, node 1-4, 9, 12-
14: 

Ni = ~ (l+e o) (1+1)0) (l+Co) (eo+1)0+Co-2) e~1)~C~ 

+ ! (1-e 2 ) (1+1)0) (l+Co) (l-e~) 1)~C~ 

+ ! (1-1)2) (l+Co) (l+e o) (1-1)~) c~e~ 

+ ! (1-C2) (l+eo) (1+1)0) (l-C~) e~,,~ 

in which, 

(4-173) 
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(4-174) 

where 1; , 11i and ~ are the local co-ordinates of node i in the element parametric 
space. 

The transition element in Fig. 24(b) is similar to the solid element in Fig 
24(a) except for the nodes on its right face (1,2,3,4,9,12,13,14). Special treatment has 
to be done to these nodes so that their displacements can be compatible to those of 
the plate element in figure 24(c). Consider a function, 

in which, 

Oa (~, 1') I C) =a.1N1 +a.2N2+a. gNg 

o b (~ I T) I ') =a. 13N13 +a.14N14. 

OC (~, T) I C) =a. 3N3 +a.4N4 +a.12N12 

(4-175) 

(4-176) 

where o.i is the value of n at the node i of the solid element. Note that the function 
n can have the meaning of displacement function for the right face of the transition 
element in Fig. 24(b). Functions na, ~ and nc can be of any degree (linear, 
quadratic etc.) between the two nodes 1-2, 13-14, or 3-4 respectively. For a regular 
solid element, 0.1' ~ and ~ would represent the displacements at the node 1, 9 and 
2 respectively. Normally, the displacements at node 1, 9 and 2 are independent from 
each other. However, if the displacements at nodes 1, 9 and 2 are constrained such 
that each of them is equal to a specific value of a function ~(~'), then one can write: 

~ = ~(~'9) 

~ = ~(~'2) 

(4 - 177) 

where ~\, ~'9 and ~'2 are the global coordinates in the thickness direction of nodes 
1, 9 and 2 respectively. 
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Now consider the shape functions of the degenerated plate element. A 
middle surface of a degenerated plate element is shown with the local curvilinear co­
ordinates ~ and Tl (in Figure 24(c)). The shape functions for the nodes on the left 
boundary of this element, nodes 3, 7 and 4 are: 

in which, 

Ni =.! (1+~0) (l+Tto) (~0+Tto-1) ~1Tt1 
4 

+ ; (1-~2) (l+Tto) (1-~1) Tt1 

+ ; (1-Tt 2 ) (1+~0) (1-Tt1) ~1 

Consider another function meantime, 

IT (~, Tt I {I) =IT3 (~, Tt I {I) +~ (~, Tt I {I) +IT4 (~, Tt I {I) 

in which 

IT3 (~, Tt I {I) =~P3 ({') N3 

~ (~, Tt, {I) =~P7 ({') N7 

IT4 (~, Tt, {I) =A4P4 ({') N4 

(4-178) 

(4-179) 

(4-180) 

(4-181) 

Note that the function II can be considered to be the displacements of points lying 
on a plane normal to the middle plane of the plate/shell element at edge 3-4. II3 can 
be considered to be the displacements at all points on the normal to the initial mid 
surface of the undeformed plate element at node 3. II7 and II4 also can be considered 
likewise to be the displacements at all points on the normal to the initial middle 
surface of the un deformed plate element at node 7 and 4 respectively. Let us 
consider the composition of II3 in detail. The compositions of II7 and II4 follow. 

In II3 , N3 represents the shape function in the plane ~-Tl. A3 represents the 
nodal displacement at the node 3 on the middle surface of the plate element. ~3(~') 
represents the variation of the displacement in the undeformed state of any point 
initially lying on the line normal to the middle surface of the plate element. If only 
one plate element is used for the whole laminate thickness, ~(~') is a linear function 
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of ~'. 

Matching the Two Shape Functions 

From figure 24(b), n represents the displacement of the transition element 
at the interface. From figure 24(c), II represents the displacement of the plate 
element at the interface. In order to satisfy the compatibility of displacement fields 
at the interface between the transition element and plate element, n and II must be 
the same. 

Function n consists of three functions n.., ~ and no' and function II 
consists of another three functions II3, II7 and II4 . At the interface, n., ~ and no 
will need to match II3, II7 and II4, respectively. If ~ and I1; can be matched exactly, 
compatibility of displacement fields at the interface will be satisfied. At the interface, 
~' is a function of ~. In the interval ~E [-1,1] which corresponds to ~' E [~\, 

~'I+d, one has 

1'/=1-{1'/ +1+{1'/ 
.. 2" 1 2" 1+1 

(4-140) 

Note that ~' is the global thickness coordinate for the plate element while 
~ is the smaller thickness coordinate for the solid or transition element. 

Without losing generality, the function n.. is examined as an example along 
the line 'a' of nodes 1, 2 and 9. It can be rewritten as follows: 

(4-182) 

It shows that the function n.. may be separated into two parts: (1) the 
contribution of the corner nodes which varies linearly along the ~ direction and 
quadratically along the 1; and 1'\ directions; and (2) the contribution of the mid-side 
node which is quadratic in the ~ direction and linear along 1; and 1'\ shown in figure 
2S(a). If the quadratic function 

(4-183) 
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can be replaced by a arbitrary function 

(4-184) 

shown in figure 25(b), then n. will be exactly equal to the il3. 

Figure 25 Variation of physical field on the line 'a' of nodes 

In order to accommodate any arbitrary curve Pi~') specified by the 
adjoining plate element, a line of nodes connecting nodes 1-2 and a moving node 9 
which moves along this line are defined (see figure 24). At every point ~' occupied 
by the moving node, the nodal value CXg is made to be equal to the value of the 
specified curve at that point, A3P3(~') (see equation (4-181). Taking <XI and a.,. as 
A3P3(~'(-I» and A3P3(~'(+I», respectively, the new shape functions and the nodal 
value are defined by 

Thus 

N'l=(l+~) (1+1'1) (l-C) (~+1'I-1)/8 
N'2=(1+~) (1+1'1) (l+C) (~+1'I-1)/8 
N lg = (1 +~) (1 +1'1 ) /4 

CI/g=~P3 (C/) - (l-C) Cl l ; (l+C) Cl2 

(4-185) 

(4-186) 

The equations (4-185) and (4-186) above can be transformed into the most 
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convenient form as follows: 

and 

N"l={l+~) (l+,,) (l-e) (~+,,-2) /8 
NI/2={1+~) (l+,,) (l+e) (~+,,-2) /8 
N"g= (l+~) (l+,,) /4 

(I:=~P3 {e'l 

o =N NI/ +N N" +(lI/NI/ a ~1 1 ~2 2 9 9 

(4-187) 

(4-188) 

Thus, the n. and II3 are matched exactly at the interface. Note that the 
nodes 1,2 and 9 are not independent nodes. They become sub-nodes on the line of 
node 'a'. Because the contribution of line 1-9-2 to the displacement field of the 
transition element is represented by the function n., this line is called as line of 
nodes "a". 

In the same way as the functions n. and II3, the ~ and no can also be 
converted to match II? and II4• The new shape functions and nodal values are 
defined by 

and 

and 

NI/13 =N1/14 = (l +~) (1-,,2) /4 

(In =(114 =A, P7 (e') 

0b=(l13N I/13 +(l14NI/14 

(4-189) 

(4-190) 
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and 

N"3 = (l+~) (l-TJ) (l+C) (~-TJ-2) /8 
N"4={1+~) (l-TJ) (l-C) {~-TJ-2)/8 
N"12 = (l+~) (l-TJ) /4 

U~2=A4P4 (C/) 

C =u Nil +u Nil +u" Nil c 3 3 4 4 12 12 
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(4-191) 

Qc=A., [P, (e'l) NI/, (e, TJ, e) +p, (e'l+1) NI/3 (e, TJ, e) +p, (e') NI/12 (e, TJ) ] 

(4-192) 

The f nctions n () and n of three lines of nodes "a" "b"and "c" U a , .~ c ' 

determine the displacements of the transition element at interface. Similarly, the 
functions Il3' Il7 and Il4 of three nodes 3, 7 and 4 determine the displacements of 
the plate element at the interface. Because the functions na, n., and nc are the same 
as the functions Il3' Il7 and Il4 at the interface respectively, the function n is 
subsequently same as the function II. Therefore, the displacements are compatible 
at the interface between the transition element and plate element. 

These eight new shape functions (4-187), (4-189) and (4-191) along with 
the other twelve shape functions as given in Reference [4.38-4.39] form a complete 
set of shape functions for the transition element. 

Geometry of the Element 

Renumbering the nodes, a transition element is shown in Figure 26. The 
global co-ordinate (x, y, z) of any point in the element may be related to the non­
dimensional co-ordinates by 

~} 12 ~i} 18,20 {~i 17,19 {~i =ENi i + E N ll i Yi + E N"i Yi 
Z 1 Zi 13,15 z: 14,16 Z 

~ i moving 

(4-193) 

in which, the expression of (x, y, z) is dependent on the assumptions used in the 
adjoining plate element. 
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Figure 26 Transition element 

When the adjoining element is a degenerated plate element, the equation is 
written as 

12 i 18,20 i C' Xi 17,19 i 1'1 Xi 

[to} ~ °l] itO} ~ O}] =ENi i + E Ni f +_i yf + E N f +.:1.. yf ~, ~J ''"'. z! 2 Jl.z! u... z! 2 Jl.z! 
(4-194) 

in which, X; , Yi and z; (i=I,2, .. 12) are the co-ordinates of node i. X;o, Yio and Z;O 
(i=13,14, .. 20) are the co-ordinates of the lines of node "a", "b", and "c" at the middle 
surface of the composite structure. The expression (4-194) can be rewritten as 
follows, 
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(4-195) 

In the simplified form, 

to} {A O} 12 :l. c j - Xj ~}=L N)~i}+ L (Nj 'j + ~j Ay'j ) 
~. 1 ~~ lJ,b Z'j Az'j 

(4-196) 

Note that coordinate " is the global thickness coordinate for the plate/shell 
element and coordinate , is the smaller thickness coordinate for the transition 
element. Note that the co-ordinate " of the moving node varies along the line as 
follow 

"= 1-{" + 1+{" 
.. 2" 1 2" 1+1 

(4-140) 

where the values "I and "1+1 represent the values of global co-ordinate " at the 
lower and upper surfaces of a layer while '=-1 and '=+1, respectively. Denote 

N =N" +N" +N" • 18 19 20 

then 

N =" N" +"N" +" N" =N" IJ .. 18 18" 19" 20 20 a" 
Also, one can obtain 

N: =N" +N" b 16 17 

N: ="(N" +N" ). =N: " b" 16 17 b" 

N =N" +N" +N" c 13 14 15 
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N =J" Nil +J"N" +J" Nil =N J" c .. 13 13" 14" 15 15 c .. 

Thus, the co-ordinates can be expressed as in simple form, 

where N; is the shape function which can be expressed as follows: 

Ni = ~ (1+~0) (1+110) (l+Co) (~0+110+Co-2) ~1111C1 

+.! (1-~2) (1+110) (l+Co) (1-~1) ,,1C1 
4 

+ ! (1-,,2) (l+Co) (1+~0) (1-,,1) C1~1 

+ ! (1-C2 ) (1+~0) (1+"0) (1-C1) ~1"1 

in which 

and 

i=1-12 

Na=(l+~) (1+11) (~+11-1) /4 
Nb=(l+~) (1-11 2 )/2 
Nc={l+~) (1-,,) (~-,,-1)/4 

(4-197) 

(4-198) 

(4-199) 

(4-200) 

(4-201) 

It can be seen that Na, Nb and Nc are same as the shape functions used in 
the degenerated plate element. Furthermore, The expression (4-198) can be rewritten 
in the form, 

(4-202) 

and 
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(4-203) 

and 

(4-204) 

Displacement Field 

In the element, the displacements (see figure 27) are expressed as follows: 

Transition elemenl 

I' 
t 1 _ 'i 
~Ui 

Point node i 

z 

k\ 
o 

Mid-surface of laminate 
o 

Ii 

~~lj ,~ 
'Ii u~ 1 

'ri 

(4-205) 

Mid-poinl ot the i-th line ot nodes 

Figure 27 Nodal displacements in a transition element 
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where 

(4-118) 

and 

v: - - U ~li} 1xV: 
11- l~ -11xV3~ (4-116) 

in which, the displacement components ui , Vi and Wi are the nodal displacements at 
point nodes 1-12. The components uio, Via and wio are the displacements of the line 
"a", "b" and "c" at the middle surface of the composite structure, 'Vxi and 'Vyi are 
two rotations of the nodal vector V 3i about orthogonal directions normal to it, and 
'Vzi is a transverse normal deformation in the thickness direction. 

Partial Strain Field and Partial Derivatives of the Displacement Field 

The partial strain field is 

au 
ax 
av 
ay 

au+L 
ay ax 

(4-206) 

where 013= Oa' 014= ~ and 015= Oe . The partial derivatives of the displacement 
are 

(4-207) 
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For nodes i = 1 - 12, 

and 

0 0 Ni,z 

[BLi] = 0 Ni,z Ni,y 

Ni,z 0 Ni,x 

and 

For nodes i = a , band c, 

and 

and 

11= [u~ v~ w~ t .1. .1. ] T • • • xi "yi ., zi 

and 

219 

(4-208) 

(4-209) 

(4-210) 

(4-211) 

(4-212) 

(4-213) 
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aiX=Ni,xC'+NiC',x 
aiy=Ni,yC'+NiC',y 
aiz=Ni,zC'+NiC',z 

(4-214) 

In order to calculate Ni,x' Ni,y' Ni,z and ~I,X' ~I,y' ~I,z , the equation (4-164)­
(4-168) for the 6-node transition element are also used. 

Assumed Partial Stress Field 

In the element, the partial stress field is also assumed independently. 

(4-215) 

. where the stress matrix [Pg] is derived directly from the assumed displacement field 
using the iso-function method. The iso-function partial stress matrix of the element 
is 

1 0 0 ~ 0 o 'I 0 0 C 0 0 ~TJ 0 0 ~C 0 0 
[P ] = g 0 1 0 0 ~ o 0 'I 0 0 , 0 0 ~TJ 0 0 ~, 0 

0 0 1 0 0 ~ 0 0 'I 0 0 C 0 0 ~TJ 0 0 ~, 

'I' 0 0 ~TJC 0 0 ~2 0 0 '12 0 0 ,2 0 0 ~2TJ 

0 TJC 0 0 ~TJ' 0 0 ~2 0 0 '12 0 0 C2 0 0 (4-216) 

0 0 TJC 0 0 ~TJC 0 0 ~2 0 0 '12 0 0 C2 0 

0 0 ~2C 0 ~TJ2 0 0 TJ 2C 0 ~C2 0 TJC2 0 

~21J 0 0 ~2' 0 ~TJ2 0 0 0 0 ~C2 0 0 

0 ~2TJ 0 0 0 0 ~TJ2 0 '1 2, 0 0 0 TJC2 

There are 47 stress modes in the stress matrix. 
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Examination of Partial Hybrid Transition Element 

In the element, there are twelve point nodes and three lines of nodes. The 
total number of degrees of freedom equals (n=) 54. The number of the rigid body 
motions are equal to (r=) 6. Thus, the element has 48 natural deformation modes. 
Because the rank of the partial stiffness matrix [Kd] equals (nd=) 30, the matrix [Kd] 
can represent 30 natural deformation modes of the element. Other 18 natural 
deformation modes of the element should be represented by the partial stiffness 
matrix [Kh]. Therefore, the assumed stress matrix [PI] must contain at least 18 stress 
modes. Based on the iso-function partial stress matrix (4-216), the classification 
method gives an optimal stress matrix as follows, 

o 0 ~ 0 0 'I 0 0 C ~'1 0 
1 0 0 ~ 0 0 'I 0 0 0 ~'1 

0100~OO'lOO 0 

o 0 '1C 0 0 0 1 
o 0 0 '1C ~'1C 0 

~'1 ~C 0 0 0 ~'1C 

(4-217) 

The examination of the element shows that there are not any kinematic 
deformation modes. Three groups of materials are examined. The first is for isotropic 
material (see Table 15); the second is for anisotropic material (see Table 16); The 
third is for the composite structure with fibre orientation [90, 0, 90] (see Table 17). 
In the tables, 

(4-218) 

where ~i is the eigenvalue of the hybrid element; Am is the eigenvalue of the 
conventional displacement element. 
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Table 15 Eigenvalue of the Transition Element with 18 stress modes 
and isotropic materials: £=1100 GPa, v=O.1 

No. ~ No. ~ No. ~ 

1 0.2071 17 0.8250 33 0.8731 

2 0.4803 18 0.7449 34 0.8561 

3 0.5921 19 0.8366 35 0.9672 

4 0.6132 20 0.8215 36 0.9512 

5 0.4749 21 0.8065 37 0.9352 

6 0.5130 22 0.7871 38 0.9484 

7 0.7002 23 0.8718 39 0.8896 

8 0.6885 24 0.9215 40 0.9528 

9 0.6687 25 0.7803 41 0.9070 

10 0.6114 26 0.7887 42 0.9457 

11 0.6351 27 0.8238 43 0.9157 

12 0.7420 28 0.8160 44 0.9341 

13 0.6695 29 0.8189 45 0.9163 

14 0.6840 30 0.8569 46 0.9117 

15 0.7370 31 0.7724 47 0.9821 

16 0.9066 32 0.7999 48 0.9937 
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Table 16 Eigenvalue of the Transition Element with 18 stress modes and 
anisotropic materials: EL=174.6 GPa, Er=7.0 GPa, GL1.=3.5 GPa, 
G".=1.4 GPa, V12=V\3=V23=0.25 

No. ~ No. ~ No. ~ 

1 0.5415 17 0.8292 33 0.9141 

2 0.5238 18 0.9127 34 0.9506 

3 0.5200 19 0.8954 35 0.9509 

4 0.6377 20 0.7824 36 0.8810 

5 0.6938 21 0.8598 37 0.8568 

6 0.6149 22 0.8410 38 0.8714 

7 0.7558 23 0.9131 39 0.9966 

8 0.7858 24 0.8118 40 0.9768 

9 0.6984 25 0.9484 41 0.9976 

10 0.5825 26 0.8229 42 0.9977 

11 0.6447 27 0.8601 43 0.9921 

12 0.7881 28 0.8674 44 0.9961 

13 0.8234 29 1.0000 45 0.9907 

14 0.8774 30 0.9756 46 0.9993 

15 0.9520 31 0.9746 47 0.9959 

16 0.8757 32 0.9410 48 0.9993 
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Table 17 Eigenvalue of the Transition Element with fibre orientation 
[90°,0°,90°], 18 stress modes and materials: EL=174.6 GPa, 
E,.=7.0 GPa, Gu =3.5 GPa, Grr=1.4 GPa, VI2=VI3=V23=0.25 

No. ~ No ~ No. ~ 

1 0.1828 17 0.7402 33 0.9464 

2 0.4224 18 0.8149 34 0.8900 

3 0.3981 19 0.7365 35 0.8766 

4 0.4885 20 0.8655 36 0.9078 

5 0.3759 21 0.7400 37 0.9665 

6 0.5307 22 0.7757 38 0.9945 

7 0.5726 23 0.7921 39 0.9928 

8 0.8220 24 0.8156 40 0.9990 

9 0.5805 25 0.7856 41 0.9913 

10 0.6928 26 0.8156 42 0.9991 

11 0.6623 27 0.8038 43 0.9951 

12 0.7036 28 0.9790 44 0.9989 

13 0.6086 29 0.9930 45 0.9961 

14 0.5536 30 0.9130 46 0.9987 

15 0.8042 31 0.9350 47 0.9937 

16 0.8358 32 0.8143 48 0.9996 
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4.3 MULTILAYER FINITE ELEMENTS 

The multilayer finite elements have been widely used for stress analysis of 
composite structures. Usually, a multilayer element consists of a stack of sub­
elements. According to the distribution of the material layers, a composite structure 
is divided into many sub-layers along the thickness and each sub-layer is modeled 
by a sub-element. When the matrices of sub-elements are formulated, they are 
assembled through the thickness using continuity conditions at the interfaces between 
different sub-elements, and then the multilayer element matrices are obtained. 
Therefore, there are two steps to obtain a multilayer element matrix: the first is to 
formulate the sub-element matrices and the second is to assemble them to form a 
multilayer element matrix. In this section, two multilayer elements [4.40-4.41] are 
presented. 

4.3.1 Fonnulation of Partial Hybrid Multilayer Element 

In section 4.2.1, the composite variational functional has been expressed in 
the form, 

Ileo= f} ~ B;[R1 ] Bv+ ~ 0; [R3 ] 0v+ O;[R2 ] TBV 

+Ogl)LU-.rI'U] dV- fstTI'U dS 

in which, the layer material matrix [R] is 

or 

(4-5) 

(4-4) 

(4-4)' 

where [S] is the compliance matrix of layer materials and [C] is the stiffness matrix 
of layer materials. If a composite structure contains N different material layers, the 
multilayer element will consist of N sub-elements (see figure 28). Therefore, the 
variational functional becomes 



226 STRESS ANALYSIS OF COMPOSIlES 

(4-219) 

N-th sub-element 

/ / 2nd sub-element 

/ 1st sub-element 

Figure 28 A multilayer element 

S ub-Elem ent Matrices 

In multilayer element, the displacement field and the partial stress field must 
be assumed within each sub-element. Suppose the displacement fields in different 
sub-elements have the same expression form. Similarly, assume that the partial stress 
fields in different sub-elements have the same expression form. Thus, for the i-th 
sub-element, the displacement field is assumed as 

(4-220) 

where [N] is the matrix of shape functions. Then, the partial strains are 
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(4-221) 

and the partial derivatives are 

. • • . • T 
D U1=[aW~ , aw~ + av~ , aw~ + aU~] = [B ] 61 L az ay az ax az L (4-222) 

in which, [Bg] is a partial geometry matrix and [Bd is a partial derivative matrix. 
Along the thickness of the sub-element, a partial stress field is also assumed 
independently as 

(4-223) 

where LPg] is an assumed stress matrix, {crgj } are partial stress modes, and ~ji are 
stress parameters. Substituting equations (4-220)-(4-223) into the composite energy 
functional (4-219), the functional becomes 

N 

llco=k {; 61TJV1 [Bgl T[Rll [Bgl dV I 

+ ; (JiTJV1 [Pgl T[Rll [Pgl dV (J 

+(JiTJ, [Pgl T( [BLl + [Rll T[Bgl ) dV 6 } 
V1 

(4-224) 

_11 T( LN.I TFdV -1:l.T( [.N.] T'1'dS 
JV1 JSt1 

Denote 
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[Hi] =-IVt [Pgl T[Rll [Pgl dV 

[G:Ll =Ivt [Pgl T( [BLl + [R:/l T[Bgl ) dV 

[Kefl =Ivt [BglT[Rll IBgl dV 

:E t=!, [N] T:rdV + r [N] T'MS 
Vj JSC1 

(4-225) 

The matrices in the equation (4-225) are the sub-element matrices. They will be 
assembled using continuity conditions at the interfaces between different sub­
elements. 

Multilayer Matrices 

Using the expression (4-225), the variational functional (4-224) can be 
expressed as 

(4-226) 

In this variation functional, the stress parameters are not independent and 
they must be replaced by independent parameters using continuity conditions at 
interfaces between different sub-elements. There are three ways to formulate 
multilayer matrices. 

j) Laminate Stress Parameters 

In general, the stress parameters ~/ in equation (4-223) are internal 
parameters, called layer stress parameters. They are not independent and the sub­
element matrices can not be assembled based on these layer stress parameters. The 
constraint of interlaminar surface traction continuity must be used. This constraint 
requires that 0'", O'yz and O'z be continuous at interlaminar surfaces. Therefore, 
stresses at the lower surface (,=-1) of sub-element i+l must be equal to those at the 
upper surface (,=+1) of sub-element i as follows: 
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.i+1/ .i / aD C--1 = aD C-+1 

1+1/ 1 / a". C--1 = a". C-+1 (4-227) 

1+1/ 1 / a. C--1 = a. C-+1 

Substituting the assumed partial stress field (4-223) into the continuity 
condition (4-227), the relationships between Pl and pr can be obtained and some 
dependeDt stress paramctezs can be eliminated. Suppose the parametC2' vector p 
contains m independent stress paramctezs, called laminate stress parametC2'S [4.42-
4.43]. Thus, the intemallayer stress parameters pi can be replaced by the laminate 
stress parameter p. Corresponding to the interface continuity conditions (4-227), 
intC2'nal layer stress parameters ~ and nodal displacements fi can be related to the 
laminate stress parameters p and nodal displacements S , respectively, in the form; 

11"= [C]; II 
1"=[C]~ I 

(4-228) 

where [C]i. and [C]i" are assembling matrices. Therefore, the summation over the 
layers can be taken inside and the multilayer element matrix defined as: 

N 

[B] =~ [CJ ;T[H.i] [CJ; 
t.:f. 
N 

[G] =~ [CJ ;T[G1] [CJ ~ 
t.:! 

N 

:t=~ [CJ ~T.f" 
t.:f. 

(4-229) 

These operations are analogous to element 'assembly' operations; a set of 
layer-to-Iaminate stress parameter 'pointers' and nodal displacement 'pointers' can be 
used to locate (and add in) sub-element matrix contributions in the multilayer 
element matrices. Now the variational functional (4-226) becomes 
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(4-230) 

ij) Internal Stress Parameter and Surface Stress parameter 

In the equation (4-228), the internal layer stress parameters Ware transferred 
to laminate stress parameters ~. On the other hand, they also can be transferred to 
another kind of stress parameters (X, called surface stress parameters [4.20,4.40]. The 
continuous conditions are expressed in the form 

(4-231) 

where (Xi is related to the lower surface of the i-th sub-element and (Xi+l to the upper 
surface. The matrix [U] transfers internal stress parameters ~i (i=1,2, ... N) to surface 
stress parameters ci (i=1,2, ... N+1). The assumed stress field is expressed in terms 
of surface stress parameters, 

1 {.1} GI1= [P] g [U'] .1+1 (4-232) 

For convenience, it is rewritten as 

(4-233) 

where 

[P] g= [P] g [U'] 
(4-234) 

Thus, the matrices [Hi] and [G] in the equation (4-225) become 
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[Hi] '=-fVj [Pg ] T[Rl] [Pg ] dV 
(4-235) 

[G i ] '=fvj [Pg] T( [BL ] + [R2i] T[Bg] ) dV 

Then, the variational functional takes the form 

(4-236) 

In order to assemble all the sub-elements in the multilayer element from 1 
to N, define the assembling rule as 

N 

6=E 61= [d1 da ... d·+1 ] T 

i=l 

where dk is the nodal displacement vector at the k-th surface, and 

N .=E .1= [.1 .a ..... +1] T 

i=l 

(4-237) 

(4-238) 

Applying these assembling rules, the multilayer element matrices are obtained by 

N N 

[K] d=E [Kj] 
i=l 

[H] =E [Hi]' 
i=l 

(4-239) 
N 

[G] =E [G i ]' 
i=l 

Now, the variational functional (4-226) becomes 

(4-230)' 

iii) Surface Stress Parameter 
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In the two approaches above, it is necessary to transfer internal stress 
parameters (or layer stress parameters) to surface stress parameters (or laminate 
stress parameters). However, if surface stress parameters are used directly in 
assumed partial stress field (4-223), the transformation will be not necessary. One 
can assume a partial stress field in the following form, 

(4-240) 

where U-ri and flsi are the surface stress parameters corresponding to upper and lower 
surfaces of the i-th sub-element, respectively. In this expression, a stress mode O"j in 
the matrix [P] is related to both of upper and lower surfaces U-ri and flsi and 
corresponds two stress modes O.5*(1+~)*O"j and O.5*(1-~)*O"j in the assumed stress 
matrix [P ,]. The matrix [P] is determined by displacement polynomials, iso-function 
method, and classification method. At the interface between the sub-element i and 
i+l, the surface stress parameters U-ri is the same as flsi+l. This means: 

(4-241) 

Furthermore, the continuity condition at interface of the laminated structure can be 
expressed as: 

(4-242) 

Thus, one can obtain the condition 

(4-243) 

Therefore, the matrix [P] must be a function consisted of even order terms of the 
coordinate ~. In order to assemble all the sub-elements in the multilayer element, 
define the assembling rule as 

(4-237) 

where dk is the nodal displacement vector at the k-th surface, and 
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N .= E .1= [.1 .2 ... .. +1] T 

i:l 

233 

(4-244) 

Applying these assembling rules, the multilayer element matrices are obtained by 

N 

[I(] d= E [Kl] 
i:l 

(4-239) 
N 

[G] =E [G i ] 
i:l 

Now, the variational functional (4-226) becomes 

(4-245) 

Using three different approaches, the final expression form of the variational 
functional (4-230), (4-230)', and (4-245) are the same. After obtaining multilayer 
element matrices, the variational functional can be written in general form, 

(4-12) 

Then, similar to single-layer element, the stiffness matrix of the multilayer element 
can be derived using the variational principle of composite energy, 

[I(] ::: [Kd] + [Kb ] 

[Kb] ::: [G] T[BJ -1 [G] 
(4-17) 

in which, [K] is the element stiffness matrix, the semi-stiffness matrix [Kd] is a 
displacement-formulated stiffness matrix based on the globally continuous strains, 
and the semi-stiffness matrix [Kh] is a hybrid-formulated stiffness matrix based on 
the globally continuous stresses. Then, the governing equation of the multilayer 
element is 
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[KJ 6=.f (4-18) 

After obtaining the nodal displacement 8 by means of system equations, the 
displacement field, stress field, and strain field can be obtained using the following 
equations: 

1. Displacement field 

(4-246) 

2. Partial globally continuous strains 

(4-247) 

3. Partial globally continuous stresses 

(4-14) 

(4-248) 

4. Partial locally continuous stresses within i-th layer 

(4-249) 
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5. Partial locally continuous strains within i-th layer 

(4-250) 

4.3.2 Multilayer Solid Element 

Partial hybrid multilayer elements consist of a stack of partial hybrid sub­
elements. So the elements formulated by the variational principle of composite 
energy can be used as sub-elements. For examples, 3-D, 8-node partial hybrid solid 
element and 3-D, 20-node partial hybrid solid element can be used to construct 
partial hybrid multilayer solid elements. For simplicity, a multilayer element based 
on 3-D, 8-node solid elements is presented. 

Sub-Element Matrices 

The multilayer solid element consists of a stack of 3-D, 8-node solid 
elements (see figure 29). For the i-th sub-element, the assumed displacement field 
is the same as that for 3-D, 8-node solid element in section 4.2.2. It is in the form, 

.·NH "'·N+3 

"·(N-l)+3 
.*N+1 4·i+3 

.·(N-1}+l 
N-th sub-element 

"'·(i-l)+3 

.·i+1 8 7 
i -th sub-element 

4·(i-l)+1 

" 
3 

/ / 6 
5 

/ 1st sub-element 

Figure 29 Multilayer solid element 
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I 6~) 
U'= rm 11'= [N, I N,I ••• NaIll::. (4-251) 

in which, [I] is a 3x3 unit matrix, Ni is the shape functions, and the nodal 
displacement vector is 

fUll II~[:} j =1,2, ... ,8 (4-252) 

The nodal dispalcement vector of the i-th sub-element can be written in another 
form, 

61= [d 1 d 1+1 ] 

= [cf:s.1 da1 d/ tJ...1 at+1 tIi+1 di+1 tJi+l] 
(4-253) 

where d i is the nodal displacement vectors related to the lower surface of the sub­
element, and d;"l is the nodal displacement vectors related to the upper surface of the 
sub-element. Within the SUb-element, the the partial stress field is assumed in the 
form 

{Oi} a!=:t = [P.,J t'= [pj ~ { (1 +C) II}. (l-C) IIi} (4-254) 

where CL,:i and Clsi are the surface stress parameters corresponding to upper and lower 
surfaces of the i-th sub-element, respectively. When the matrix [P] is a function 
consisted of even order terms of the coordinate " the continuity condition at 
interfaces will be automatically satisfied. Using the equations (4-11) and (4-21)-(4-
41), the sub-element matrices can be obtained as follows, 
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[Hi] =-fVj [Pg ] T[Rl] [Pg ] dV 

[G i ] =fVj [Pg] T( [BL ] + [Rl] T[Bg] ) dV 

[Kl] =fVj [Bg] T[Rl] [Bg] dV 

r 1= r [N] T,dV + r [N] T7.'dS 
JVj J SCj 

Multilayer Matrices 

Applying the assembling rules (4-237) and (4-244), 

and 

N 

'f=I; .1= [.1 .2 ... "+1] T 

~=1 

237 

(4-225) 

(4-237) 

(4-244) 

the sub-element matrices from the 1st layer to N-th layer are added to form the 
multilayer matrices, 

N 

[I(] d= E [Kj] 
i=l 

(4-239) 

Then, the stiffness matrix of the multilayer element can be calculated using equation 
(4-17), 
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[I(] = [Kef] + [Kh ] 

[Kh ] = [G] T [B] -1 [G] 
(4-17) 

Examination of the Element 

For a single-layer element, a necessary and sufficient condition for 
guaranteeing the absence of kinematic deformation modes at the element level is, 

(4-44) 

But, for a multilayer element, the minimum number of stress modes in an assumed 
stress matrix varies with the number of sub-elements in the multilayer elements. 
Using eigenvalue examination of matrices, the rank nd of the displacement-formulated 
stiffness matrix [Kdl can be calculated for different multilayer elements with different 
number of sub-elements. The minimum number nh of stress modes in an assumed 
partial stress matrix is given in table 18. In the table, N is the total number of sub­
elements in the multilayer element; n is the total degrees of freedom of the 
multilayer element; r is the number of rigid body motions. 

Table 18 Minimum number of stress modes in the matrix [P gl 

N n r nd nh 

1 24 6 10 8 

2 36 6 15 15 

3 48 6 20 22 

10 132 6 55 71 

From table 18, it is observed that the rank of semi-stiffness matrix [Kdl 
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increases by 5 when the multilayer element increases a surface. For example, there 
are two surfaces in a fundamental multilayer element consisted of one sub-element, 
and the rank of semi-stiffness matrix equals 10. There is one increased surface in the 
multilayer element consisted of two sub-elements, and the rank of matrix [Kd] equals 
15. Furthermore, there are eleven surfaces in the multilayer element consisted of ten 
sub-elements, and the rank of matrix [Kd] is equal to 55. Thus, each increased 
surface in a multilayer element corresponds to 5 deformation modes related to semi­
stiffness matrix [Kd]. Meanwhile, each added surface will increase four point nodes 
which correspond 12 degrees of freedom in the multilayer element. Thus, if a 
multilayer element contains N layers, it will have N+ 1 surfaces and one has 

n = 12 * (N+1) (4-255) 

Define that m' is the number of stress modes in matrix [P] related to a surface. 
Thus, the total number of stress modes for the multilayer element is 

m = (N+1) m' (4-256) 

The necessary and sufficient condition (4-44) for avoiding kinematic deformation 
modes is 

(N+1) m' = 12*(N+1) -5*(N+1) - 6 (4-257) 

Therefore, one obtains minimum number of stress modes in the matrix [P] related 
to each surface for the multilayer element as follows, 

m' = 7-_6_ 
N+l 

(4-258) 

Using this formulation, one can calculate the number of stress modes related to each 
surface for multilayer element consisted of different number of sub-elements. 

N = 1 m'=4 
N=2 m'=5 
N= 3 m'=6 
N=4 m' =6 
N=5 m'=6 
N=6 m'=7 

N = 100 m'=7 

Therefore, the number of stress modes needed in the stress matrix [P] in order to 
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avoid kinematic deformation modes is different for different N. 

Sub-Element Stiffness Matrix and Kinematic Deformation Modes 

When N=l, the multilayer element becomes a sub-element. The sub-element 
has (n=) 24 degrees of freedom and (r=) 6 degrees of the rigid displacement. Thus, 
the sub-element has 18 natural deformation modes. The eigenvalue examination 
indicates that the rank of the partial stiffness matrix [Kd] for the sub-element is (nd=) 
10. Therefore, the partial stiffness matrix [Kd] represents 10 natural deformation 
modes of the element, and another partial stiffness matrix [Kh] represents 8 natural 
deformation modes. Therefore, the minimum number of the stress modes in the 
assumed stress field [Pg] is equal to 8. Since a stress mode OJ in the stress matrix [P] 
represents two stress modes O.5*(1+~)*Oj and 0.5*(1-~)*Oj in the stress matrix [Pg], 

the minimum number of stress modes in stress matrix [P] is equal to (n/2=) 4. 
Using iso-function method, the initial stress matrix [P] is derived directly from the 
assumed displacement field. It is 

[
1 0 0 ~ 0 0 'I 0 0 , 0 0 ~'I 0 0 'I' 0 ~, 01 

[P] = 0 1 0 0 ~ 0 0 'I 0 0 , 0 0 ~'I 0 0 0 0 ~, 

o 0 1 0 0 ~ 0 0 'I 0 0 , 0 0 ~'I 0 'I' 0 0 

Then, by means of the classification method of stress modes, one obtains 

[
1 0 0 0 0] 

[p] = 0 1 0 ~ 0 

o 0 10'11 

(4-259) 

(4-260) 

In the stress matrix [P], there are 5 stress modes. The result of eigenvalue 
examination show that there are not any kinematic deformation modes. The 
eigenvalues ~ of the element are given in the Table 19. 
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Table 19 Eigenvalue of Stiffness Matrix for the 3-D, 8-node Hybrid Element 
with 10 stress modes and isotropic materials: E=1100 GPa, v=O.3 

No. Ai (* 103) No. Ai (*103) No. Ai (* 103) 

1 0.09402 7 0.1813 13 0.8462 

2 0.1410 8 0.2821 14 0.8462 

3 0.1410 9 0.5440 15 0.8462 

4 0.1410 10 0.5440 16 0.8462 

5 0.1410 11 0.5641 17 0.8462 

6 0.1813 12 0.7051 18 2.7500 

Multilayer Element Stiffness Matrix 
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When N>2, the stress matrix [P] (4-260) can not be used to formulate the 
multilayer element because it does not contain enough stress modes. According to 
equation (4-258), a stress matrix [P] should contain 7 stress modes at least for a 
general multilayer element. In this case, the iso-function partial stress matrix (4-259) 
does not contain enough necessary stress modes. Therefore, more polynomial terms 
have to be added into the stress matrix for examining. For instance, the quadratic 
terms should be included. Using the classification method, the following stress 
matrix [P] is obtained 

1 0 0 0 0 en 0 0] 
[p] = 0 1 0 e 0 0 {2 0 

o 0 1 0 n 0 0 {2 

(4-261) 

Using this stress matrix, the examination of the element indictes that the multilayer 
element, which consists of different sub-elements from N=1 to N=50, does not have 
any kinematic deformation modes. 

4.3.3 Multilayer Transition Element 

The 6-node partial hybrid transition elements also can be used to formulate 
a multilayer transition element which may connect a multilayer solid element with 
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a degenerated plate element. 

S ub-Elem ent Matrices 

The multilayer transition element consists of a stack of 6-node transition 
element (see figure 30). For the i-th sub-element, the assumed displacement field is 
the same as that for 6-node transition element in section 4.2.2. It is in the form, 

(4-262) 

zeN+Z 

N-th sub-element 

2*N+l 

Z·(N-l)+l 
i-th sub-element 

• Mid-surface 
2·i+l 

2·(i-l)+ 1 
1st sub-element 

I I 2 
3 

I 

1 a 

Figure 30 Multilayer transition element 

The nodal dispalcement vector of the i-th sub-element can be written in the 
form, 

6.f=[d.f d.f+1 dO] 

= [dl ~.f tJi+1 a;+1 ~ a:] (4-263) 



DEVELOPMENT OF HYBRID ELEMENT TECHNIQUE 243 

where di and di+l are the nodal displacement vectors related to the lower and upper 
surfaces of the sub-element, and dO is the nodel displacement vector related to the 
line of nodes. Within the sub-element, the partial stress field is assumed in the form, 

(4-264) 

where the stress matrix [P] is a function consisted of even order terms of the 
coordinate ~. Using the equations (4-11) and (4-147)-(4-171), the sub-element 
matrices can be obtained as follows, 

[Hi] =-fVj [Pg ] T[Rl] [Pg ] dV 

[G i ] =fVj [Pg] T( [BL ] + [Rl] T[Bg] ) dV 

[Kl] =fVj [Bg] T[Rl] [Bg] dV 

£ 1=/ [N] Trdv + r [N] T7!dS 
Vj J Stj 

Multilayer Matrices 

and 

Applying the assembling rules (4-237) and (4-244), 

N .=E .1= [.1 .2 ... •• +1] T 

i=l 

(4-225) 

(4-237) 

(4-244) 

the sub-element matrices from the 1st layer to N-th layer are added into the 
multilayer matrices, 
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N N 

[I(] d=E [Kl] 
i=l 

[H] =E [Hi] 
i=l 

(4-239) 
N N 

[G] =L [G i ] £=L £J. 
i"l i"l 

Then, the stiffness matrix of the multilayer element can be calculated using equation 
( 4-17), 

[KJ :;:: [Kd] + [Kh ] 

[Kh] :;:: [G] T[BJ -1 [G] 

Examination of the Element 

( 4-17) 

Similar to the multilayer solid element, the minimum number of stress 
modes in an assumed stress matrix for a multilayer transition element varies with the 
number of sub-elements in the multilayer elements. Using eigenvalue examination 
method, the rank of the displacement-formulated stiffness matrix [Kdl is given for 
different multilayer elements with different number of sub-elements. The minimum 
number of stress modes in an assumed partial stress matrix is given in table 20. 

Table 20 Minimum number of stress modes in the matrix [Pgl 

N n r nd nh 

1 24 6 10 8 

2 30 6 14 10 

3 36 6 18 12 

10 78 6 46 26 
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The results of eigenvalue examination shows that the rank of semi-stiffness 
matrix [Kdl increases by 4 when the multilayer element increases a surface. For 
example, there are two surfaces in a fundamental multilayer element consisted of a 
sub-element, and the rank of semi-stiffness matrix equals 10. There is one increased 
surface in the multilayer element consisted of two sub-elements, and the rank of 
matrix [Kdl equals 14. Furthermore, there are eleven surfaces in the multilayer 
element consisted of ten sub-elements, and the rank of matrix [Kdl is equal to 46. 
Thus, each increased surface in a multilayer element corresponds 4 deformation 
modes related to semi-stiffness matrix [Kd]. Meanwhile, each added surface will 
increase two point nodes which correspond 6 degrees of freedom in the multilayer 
element. Thus, if a multilayer element contains N layers, it will have N+ 1 surfaces 
and one has 

n = 12+6 * (N+l) nd = 2+4 * (N+l) r=6 (4-264) 

Define that m' is the number of stress modes in matrix [P] related to a surface. 
Thus, the total number of stress modes is 

m = (N+l) m' (4-256) 

The necessary and sufficient condition (4-44) for avoiding kinematic deformation 
modes is 

(N+l) m' = 12+6*(N+l) -2 -4*(N+l) - 6 (4-265) 

Thus, one obtains minimum number of stress modes in the matrix [Pl related to each 
surface for the multilayer element as follows, 

m' = 2+_4_ 
N+l 

(4-266) 

Using this formUlation, one can calculate the number of stress modes in the stress 
matrix [P] related to each surface for multilayer element consisted of different 
number of sub-elements. 

N = 1 m' =4 
N=2 m' =4 
N=3 m'=3 
N=4 m'=3 
N= 5 m' = 3 
N=6 m'=3 
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N= 100 mt=3 

Therefore, the number of stress modes needed in a sub-element in order to avoid 
kinematic deformation modes is different for different N. 

Sub-Element Stiffness Matrix and Kinematic Deformation Modes 

When N=l, the multilayer element becomes a sub-element. The sub-element 
is a 6-node partial hybrid transition element. The examination of the element has 
been given in section 4.2.4. For completeness, the analysis is given here again. The 
sub-element has (n=) 24 degrees of freedom and (r=) 6 degrees of rigid motion. 
Thus, the sub-element has 18 natural deformation modes. The eigenvalue 
examination indicates that the partial stiffness matrix [Kd] gives 10 non-zero 
eigenvalues and represents 10 natural deformation modes of the element. Therefore, 
another partial stiffness matrix [Kh] must give 8 non-zero eigenvalues and represent 
8 natural deformation modes. Thus, the minimum number of the stress modes in the 
assumed stress field [Pg] is equal to 8. Due to the fact that a stress mode OJ in the 
stress matrix [P] represents two stress modes in the stress matrix [Pg]' the minumum 
number of stress modes in stress matrix [P] is equal to (n/2=) 4. Using iso-function 
method, the initial stress matrix [P] is derived directly from the assumed 
displacement field. It is 

[
1 0 0 ~ 0 0 TI 0 0 COO ~TI 0 

[P] = 0 1 0 0 ~ 0 0 TI 0 0 COO ~TI 

00100~OO'lOOC 00 

o '1C 0 ~C 01 
o 0 0 0 ~c 

~'1 0 TIC 0 0 

(4-267) 

Then, by means of the classification method of stress modes, one obtains an optimal 
stress matrix, 

[
1 0 0 0 0] 

[p] = 0 1 0 ~ 0 

o 0 1 0 1) 

(4-268) 

In the stress matrix [P], there are 5 stress modes. The result of eigenvalue 
examination show that there are not any kinematic deformation modes. 

Multilayer Element Stiffness Matrix and Locking Phenomenon 

When N=2, the stress matrix [P] (4-268) can be used to formulate the 
multilayer element. But when N~3, the stress matrices [P] can not be used to 
formulate a multilayer transition element due to the fact that the locking phenomenon 
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appears. 

The locking means that the solution becomes zero when the plate element 
becomes thin. This phenomenon appears in CO finite element because the Kirchhoff 
constraint can not be satisfied when plate element becomes thin. In the multilayer 
transition element, the sub-element will become thin when their number within a 
fixed thickness multilayer element increases. For the multilayer transition element, 
equal order interpolation is used for lines of nodes which are used to meet with plate 
elements. Therefore, when sub-element becomes thinner and thinner, two spurious 
constraints produce the locking action on '¥ xi and '¥ yi • In order to remove the 
locking phenomenon, several methods can be used such as unequal order 
interpolation, reduced integration, assumed strain approach, additional incompatible 
modes, field-redistribution, and so on [4.44]. In this work, the advantage of hybrid 
stress finite element is used to overcome locking phenomenon in the element as 
follows: 

By calculating m' (4-266), it has been shown that the minimum number of 
stress modes in the stress matrix [P] decreases to 3. Therefore, there are unnecessary 
stress modes in the matrix [P] (4-268) for multilayer transition elements (N ~ 3) and 
the extra stress modes in the stress matrix [P] results in over-stiffness and lead to 
locking phenomenon. The classification method gives following stress matrix that 
can be used to avoid locking phenomenon are 

[
1 0 0] 

[p] = 0 1 0 

001 

(4-269) 

The results of the eigenvalue examination for the multilayer element with 3 sub­
elements are given in the table 21. 

Other multilayer elements with different number of sub-elements also can 
be examined. The examination of the multilayer elements shows that there is no 
spurious constraints in the multilayer element when the stress matrix [P] (4-269) is 
used. 



248 STRESS ANALYSIS OF COMPOSITES 

Table 21 Eigenvalue of Stiffness Matrix for Hybrid Multilayer Element with 3 
sub-elements and isotropic materials: E=1100 GPa, v=O.3 

No. Ai (*103) No. /..; (*103) No. Ai (*103) 

1 0.00060 11 0.1602 21 0.9849 

2 0.00141 12 0.2971 22 1.0190 

3 0.00186 13 0.3059 23 1.1640 

4 0.00239 14 0.4109 24 1.2140 

5 0.00967 15 0.5011 25 1.3130 

6 0.03671 16 0.5534 26 1.5580 

7 0.04086 17 0.6002 27 1.6150 

8 0.08544 18 0.6734 28 2.0050 

9 0.1077 19 0.7466 29 2.9820 

10 0.1393 20 0.8111 30 4.2070 
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Chapter 5 

NUMERICAL EXAMPLES OF 
FINITE ELEMENT ANALYSIS AND 

GLOBAL/LOCAL APPROACH 

5.1 INTRODUCTION 

Finite element method has been widely used in the analysis of structures 
because of the power of the technique and also because of the availability of many 
commercial finite element programs. Finite element analysis is a numerical analysis 
of the mathematical models used to represent the behaviour of engineering structures. 
Therefore, mathematical assumptions concerning the representation of the geometry 
and behaviour of the structures have to be made in finite element models. In order 
to efficiently and accurately perform the finite element analysis of a composite 
structure, it is necessary to have a qualitative knowledge of the structure behaviour 
and its finite element model. 

To perform a finite element analysis of a structure, as mentioned in chapter 
1, the structure must be discretized into a set of elements, which are quasi-disjoint 
non-overlapping elements. These elements are connected by a set of nodes. The 
collection of nodes and elements forms a finite element mesh. A variety of element 
types are available today. The analyst or designer can mix element types to solve 
one problem. It should be noted that the choice of element types and element mesh 
is problem-dependent. The number of nodes and the type of elements to be used in 
a finite element model is a matter of engineering judgment. As a general rule, the 
larger is the number of nodes and elements, the more accurate is the finite element 
solution, but also the more expensive the solution is. More memory space is needed 
to store the finite element model, and more computer time is needed to obtain the 
solution. 

In practice, most composite laminates contain local regions where thick 
conditions prevail throughout. For example, the presence of an open hole in a 
laminate introduces significant transverse stresses which create a very complicated 
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3-D stress field in the vicinity of the hole. This complex state of stress depends on 
the stacking sequence of the laminate, the fibre orientation of each lamina, and the 
material properties of the fibre and of the matrix. In order to obtain the stress fields 
in these localities, a detail 3-D finite element analysis is required. However, a 
detailed full 3-D analysis of these laminates to obtain accurate stresses may require 
a huge number of nodes and elements. They may exhaust the computer resources. 

In order to keep the number of nodes and elements down, one way is to 
classify the domain of the structure to be analyzed into different regions. In different 
regions, mesh densities and element types vary [5.1-5.3]. In general, the region 
where large gradients of displacements and/or stresses to be expected is discretized 
into many elements (fine mesh); otherwise, the region is modeled using few elements 
(coarse mesh). For example, if a structure contains a crack, the local region near the 
crack is usually divided into many "very small" elements in order to predict 
accurately stress distribution and other region is discretized into "large" elements to 
model the response of the structure (see figure 31). 

I 

I 
I 

'\ 

\ nitip 

Figure 31 An element mesh with different mesh densities 

Generation of element meshes with single element type is relatively easy 
due to the compatibility of elements with the same degree of freedom. The element 
mesh for the stress analysis of a structure can be refined using two approaches: h­
version and p-version refinement scheme [5.4-5.6]. The h-version scheme is to 
subdivide a selected element into a number of smaller elements of the same type. 
The discretization is improved by reducing the element size. The p-version scheme 
is to replace a selected element by an element of higher order. The discretization is 
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improved by increasing the polynomial order of an existing element. 

For stress analysis of composite laminates, analysts and designers have to 
use different element types to solve a practical problem due to the complex nature 
of composite laminates. In finite element method, the stress analysis of composite 
laminates is done using three techniques: 3-D solid modelling, layerwise modelling 
and equivalent single layer with smeared properties. In 3-D solid modelling [5.7], 
no specific kinematic assumptions are introduced regarding the behaviour of the 
structure. It takes the behaviour of the individual laminae into consideration. 
However, since the composite laminae are usually very thin, the 3-D element usually 
runs into problem due to the large aspect ratios of the elements. In addition, refining 
the finite element mesh can quickly exhaust the computer storage. In the layer-wise 
modelling [5.8], the individual laminae are taken as 2-D layers. These layers are then 
assembled through the thickness. Its advantage is that it requires only 2-D finite 
element mesh, and the element aspect ratio is restricted to 2-D considerations. In 
practice, a typical composite may have many layers, each of which requires one 2-D 
layer through the thickness. The number of degrees of freedom per node is directly 
proportional to the number of layers in a laminate. This increases drastically the 
number of unknowns in a finite element model. Hence, this type of modelling is also 
computationally expensive. In the equivalent single layer models [5.9], the variations 
in orientation and properties across the thickness are integrated to obtain single 
properties across the thickness. This element can be used for problems such as 
vibration or buckling but do not provide useful results if interlaminar stresses are 
required. Therefore, the finite element model using same element type is not efficient 
for stress analysis of composite laminates. It is necessary to combine elements of 
different types in one finite element model to solve a problem. This kind of finite 
element model is referred to as a global/local finite element model. 

A wide variety of globaVlocal models have been proposed [5.1, 5.10-5.11]. 
In general, the global/local finite element models can be classified into two classes: 
sequential and simultaneous globalllocal models. The main difficulty with these 
models is the maintenance of displacement continuity along boundaries separating 
regions. In the sequential globa1l1ocal model, the domain of the structure to be 
analyzed is classified into two regions: local and global. The first step in performing 
a globa1l1ocal analysis is to set up an economical, yet adequate model by using a 
coarse mesh to determine the structural response. Then, the resulting displacements 
or stresses are imposed on the boundary of the local region for a subsequent local 
analysis by using a finer mesh. In order to take account of the effect of the local 
region on the global region, the iterative methods have to be used to establish 
equilibrium or compatibility along the global/local boundary. It requires much 
computing time. In the simultaneous globalllocal model, the domain of the structure 
to be analyzed is classified into three regions: local, global, and transition as shown 
in Figure 32. Each region requires an appropriate type of element for modelling the 
structure. This model does not require reanalysis and saves computer time. But in 
transition region it is necessary to use a special transition element which has 
different number of nodes on different sides of the element. For example, a special 
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element is needed (see figure 33) to connect a 2-D linear element with a 2-D 
quadratic element. 

J 

1. Loc:a.l "~glOn 

2. T,.a.nsltlon ,.eglon 

3. Gobell ,.eglOn 

Figure 32 GlobaUlocal finite element model 

Two nodes 
" 

/ 

Three nodes 
/ 

I \ 

linear element S . I II t Quadratic elemenl 
pecla e emen 

Figure 33 A special element between linear and quadratic elements 
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In this chapter, the partial hybrid elements presented in chapter 4 are used 
to establish finite element models of composite laminates and develop simultaneous 
global/local finite element approaches for stress analysis of composite laminates. 

S.2 FINITE ELEMENT ANALYSIS USING DEGENERATED 
PLA TE ELEMENT [5.12-5.13] 

The accuracy of the finite element model using partial hybrid degenerated 
plate elements is demonstrated by studying the behaviour of a square laminated plate 
and a long laminated strip. The two laminates are ideal structures to verify the 
degenerated element since closed-form elasticity solutions are available. Once the 
accuracy of the element is verified, the element can be used to develop globaVlocal 
models for stress analysis of composite laminates. 

Example 1. Deflection of a Square Laminate Subjected to Unifonn 
Loading 

A three-ply square laminate with idellucal top and bottom plies is analyzed 
by using the 8-node degenerated element. Each layer in the laminate is idealized as 
a homogeneous orthotropic material. The relative values of the moduli in the 
principal material coordinate system are the same in all the plies as follows, 

E2 / EI = 0.525000 

GI2 / EI = 0.292813 

G13 / EI = 0.178088 

U 23 = 0.180666 

E3 / EI = 0.569399 

G23 / EI = 0.297133 

UI2 = 0.440462 

u 13 = -0.061321 

( 5 - 1 ) 

An uniform loading qo acts on the top of the simply supported laminate. The 
dimensions of the plate are a, b (=a) and thickness H (= O.1a). The thickness of the 
top and bottom plies hi is equal to 0.1H, and the thickness of the middle ply h2 is 
equal to 0.8H. By means of the symmetry of the problem, only one quadrant of the 
plate is modeled (O<x<al2, O<y<b/2, O<z<H). The computational domain is modeled 
using 2x2 uniform meshes (see figure 34). For this particular problem, a 3-D exact 
solution was presented by Srinivas and Rao [5.14]. The results of the deflection w 
at the centre of the laminate are given in the Table 22. In the Table, Eit is the 
modulus of the top and bottom plies and Elm is the modulus of the middle ply. Eoa 
is a parameter which can be calculated from the material constants of the middle ply. 
In the calculation, EI is equal to 0.8979495xI06, and then Eoa is equal to 106• The 
present solutions of the centre deflection are close to the 3-D elasticity solutions. 
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~ ~ 

~ ~ 
-o a/2 x 

Figure 34 2x2 uniform mesh of a quadrant of the laminate 

Table 22 Deflection of the simply supported laminate subjected to uniform loading 

Ell fE lm 1 5 10 15 20 

Exact 
wEx2 Solution 688.58 258.97 159.38 121.72 ---
-- Present Hqo 

Solution 693.91 261.36 162.27 123.78 102.98 

Example 2. Bending of a Square Laminate 

The degenerated element is also used to analyze a square, simply supported, 
laminated plate with the [0,90,0] layers of equal thickness. Each layer of the 
laminated plate is also idealized as a homogeneous orthotropic material with the 
following material coefficients in the principal material coordinate system: 

Er=6.90 GPa 

GLT=3.45 GPa G".=1.38 GPa ( 5 - 2 ) 
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The upward transverse load is distributed on the top surface, 

q(x,y) =qosin( reax) sin( ret) (5-3) 

The dimensions of the plate are a, b and thickness H. The ratio S is defined as a/H. 
Due to the symmetry of the problem, only one quadrant of the plate is modeled 
(O<x<al2, O<y<bl2, O<z<H). The computational domain is modeled using 2x2 
uniform meshes. For this particular problem, the solution exists using 3-D elasticity 
theory[5.15] and classical1aminate theory (denoted CLT). The CLT solution for'txz 

was found by the equations of equilibrium as discussed in [5.16]. The solutions for 
thick plate S=4 are given in figures 35-36. Each function is plotted along the vertical 
line on which it assumes its maximum value. The following normalized quantities 
are defined, 

0.6 

0 .... 

0.2 

~ 0.0 

-0.2 

-0.4 

-0.6 
-0.1 

- 1 
,; xz= qoS'; xz 

S=4 

o Pre.ent element 
• Elut1cl.ty 
V CLT 

0.0 0.1 0.2 

Mormallsecl maar .ue.. 
0.3 0.4 0.5 

(0.b/2.s) 

Figure 35 Normalized transverse shear stress ~ distribution (a=b) 

(5-3) 
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Horman ... 8hear .a.. (0.0 .• ) 

Figure 36 Normalized in-plane shear stress txy distribution (a=b) 

The performance of finite element analysis only takes 2.03 seconds CPU 
time on VAX 6S1O Computer by using the degenerated element. The degenerated 
finite element solutions are close to the exact three-dimensional elasticity solutions 
shown in figures 3S-36 for the shear stresses. 

Example 3. Cylindrical Bending o~: A Laminated Strip 

Two infinitely long laminated strips with layers of equal thickness are 
simply supported along the two edges and is subjected to sinusoidal transverse load 
of intensity qo 

(S-S) 

The lamina material properties are the same as in example 2. Because the 
laminate is quite long in y direction, the displacement gradients can be neglected 
with respect to the y coordinate. Hence, a slice which is taken out from the structure 
was modeled. Because of symmetry, numerical analysis is carried out over one half 
of the slice and it is subdivided into 2 equal elements. This problem has an elasticity 
solution[S.16] and a CLT solution. Pian and Li[S.17] also calculated stresses for this 
problem using a 14 DOF, 2-D partial hybrid element. For 3-layer laminate [0,90,0], 
the maximum central deflection as a function of span-to-depth ratio is plotted in 
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figure 37. The result is in agreement with the elasticity solution. It takes 1.55 
seconds CPU time to solve the problem on the V AX 6510 computer. For the 20-
layer laminate [90,OlIOT' the result of the transverse shear stress which is normalized 
by the applied load qo is also in agreement with the elasticity solution as shown in 
fig. 38. 

-0 
N 4.0 
::t 3.5 0 Present element l' 
c:I 3.0 • Elasticity 

:! 2.5 V CLT 

I 2.0 

1.5 
8=.(. 

-.::I 
1.0 G 

~ 0.5 
! 0.0 0 a 10 20 30 40 50 60 lI: 

Span-to-depth raUo 8 

Figure 37 Maximum central deflection as function of span-to-depth ratio 
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0.0 0.5 1.0 1.5 2.0 

Figure 38 Shear stress distribution at edge of 20-layer [90,OlIOT laminate 



260 STRESS ANALYSIS OF COMPOSITES 

In the examples, it has been shown that finite models using the degenerated 
element is computationally most efficient for the stress analysis of composite 
laminates. It can provide accurate solutions for the deflection of laminates. It also 
can predict stresses accurately in the laminates with large number of layers. However 
it can not be used to evaluate stress concentration because of the limitations of 
assumed displacement field over the whole thickness. Therefore, the element can 
adequately describe the global region in the global/local stress approach which will 
be presented in this chapter. 

5.3 FINITE ELEMENT ANALYSIS USING SOLID ELEMENT [5.18-
5.20] 

In order to predict stress distribution accurately in the local region where 
high stress gradient exists, 3-D solid element or multilayer element is needed. In this 
section, a long laminated strip subjected to bending loads is investigated using 3-D, 
8-node element to verify the efficiency and accuracy of the partial hybrid solid 
element. 

The three-layer laminated strip with fibre orientation [0,90,0] is supposed 
to be infinitely long in the y direction and simply supported along the two edges x=o 
and I (see figure 39). On the top surface, it is subjected to sinusoidal transverse load 
of intensity qo. The loading function is given in equation (5-5). 

z 
q(.r) = -qosin(;rx/l) 

1 1 
h 

1 l 
x 

0 /"-

/- I -/ 

Figure 39 The cross section of infinitely long laminated strip [0,90,0] subjected to 
distributed transverse loading 
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The lamina material properties in the principle material direction are 

Er=3.42 GPa 

GTI= 1.37 GPa (5 - 6) 

Similar to the example 3 in section 5.2, a slice was taken out from the 
laminated strip for establishing the finite element model. Because of symmetry, finite 
element analysis is carried out over half of the slice. There are ten uniform elements 
in the half length along the x-direction, one element in the y direction, and two, four, 
eight elements in each layer for three finite element meshes which has a total of 60, 
120 and 240 elements, respectively. The numerical results are presented in terms of 
normalized values which are defined as 

(5-7) 

Z 
0.5 

0.4 

0.3 exac~ 101u~ioD -
0.2 240CFE -

120 cn -e-
0.1 60 CFE A-

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 Ci •• 
0 0.5 1.5 2 

Figure 40 Stress 'f"" (x=O) obta111ed from partial hybrid element model 
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The distribution of transverse stress 'tu is shown in figure 40, which 
compares the results calculated with 60, 120, and 240 partial hybrid elements and 
the results of Pagano's elasticity solution [5.16]. The comparison of stress cr. and 
cr. are also shown in figure 41 and figure 42, respectively. The distribution of 
displacement u is shown in figure 43. 

I 
0.5 

0.4 

0.3 exact solution -
120 eFE e-

0.2 60 eFE 8-

0.1 

0 

-0.1. 

-0.2 

-0.3 

-0.4 

-0.5 it. 
0 0.5 1.5 2 

Figure 41 Stress cr. (x=ll2) obtained from partial hybrid element model 
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60 eFE 8-
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Figure 42 Stress cr. (x=1I2) obtained from partial hybrid element model 
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Figure 43 Displacement u (x=O) obtained from partial hybrid element model 

This problem has been solved by using 432 3-D, 20-node displacement 
elements [5.21]. The results of the shear stress 't"" obtained from the 240 8-node 
partial hybrid elements and 432 20-node displacement elements are given in figure 
44, compared with the result of Pagano's elasticity solution. 

O.5r~~:;::=-r---~ 
O,~" 

0.3 

0.2 

0.1 

o 
-0.1 

-0.2 

-0.3 

exact solution -
240 CFE -

432 di.sp.elem. -
CLT .... 

-O.4t~-=~~:t::::~~::==~ ____ ~ ________ ~ -0.5 ii •• 
o 0.5 1.5 2 

Figure 44 Stress 't"" (x=O) obtained from different finite element models 
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The results in figure 40 indicates that the shear stress 'txz calculated by the 
partial hybrid finite element method quickly converges to the exact elasticity solution 
as the number of elements increases. Figure 44 shows the partial hybrid element 
solution is in better agreement with the exact Pagano's elasticity solution, although 
it used only 240 8-node elements while the displacement element solution uses 432 
20-node elements. The CPU time consumed for 240 8-node partial hybrid elements 
is 2 minutes and 58.94 seconds and that for 432 20-node displacement elements is 
18 minutes and 2.87 seconds on the VAX 6510 computer. Therefore, partial hybrid 
solid element is accurate and more efficient for stress analysis of composite 
laminates. 

5.4 FINITE ELEMENT ANALYSIS USING MULTILAYER 
ELEMENT [5.19, 5.22-.23] 

The accuracy of the partial hybrid multilayer element is demonstrated by 
calculating the stress state in a rectangular laminated plate subjected to a distributed 
loading and a laminated strip subjected to a bending load. These cases are selected 
because there are elasticity exact solutions of these problems for comparison with 
finite element solutions. 

Example 1. Bending of a Rectangular Laminated Plate 

The problem to be solved is a rectangular, simply supported, laminated plate 
with the [0,90,0] layers of equal thickness (see figure 45). Each layer of the 
laminated plate is also idealized as a homogeneous orthotropic material with the 
following material coefficients in the principal material coordinate system: 

Er= 7 GPa 

GLT= 3.5 GPa Gn = 1.4 GPa (5 - 8) 

where L refer to the direction parallel to the fibres and T is the transverse direction. 
The upward transverse load is distributed on the top surface. The loading function 
is given by equation (5-3). 

The dimensions of the laminate are a, b and thickness H. The ratio S is 
defined as aIH. Due to the symmetry of the problem, only one quadrant of the plate 
is modeled (0<x<aJ2, 0<y<b/2, 0<z<H). The computational domain is modeled with 
4x4 uniform meshes. Each multilayer element consists of twelve 3-D, 8-node sub­
elements through the thickness of the laminate. This particular problem has been 
investigated by Pagano using 3-D anisotropic elasticity theory[5.15], by Reddy using 
higher order shear deformation theory [5.24], and by Liou and Sun using hybrid 
finite element method [5.25]. The results of the analysis are presented in Tables 23 
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and 24. The normalized quantities are defined as 

(5-9) 

z=z/H S=a/H 

II 

T 
b 

1,-------,--- z 

f--a --j f-a ---1 
(a) Top view (b) Side view 

Figure 45 Bending of a simply supported rectangular laminated plate 

In the tables 23 and 24, the results show that the present multilayer element 
provides stresses and deflection accurately. The CL T solution is accurate only for 
thin plate. When the span-to-thickness ratio S becomes small, the disagreement is 
significant. 
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Table 23 Normalized deflection and stresses in a square laminate (b=a) 

S Source crx(aJ2, criaJ2, txz(O, 
b/2, b/2, b/2, 

±b/2) ±b/2) 0) 

Pagano 0.801 0.534 0.256 

-0.755 -0.556 

Hybrid 0.717 0.517 0.263 
4 

-0.679 -0.541 

Reddy 0.7346 

Present 0.806 0.538 0.262 

-0.760 -0.561 

Pagano 0.590 0.285 0.357 

-0.590 -0.288 

Hybrid 0.580 0.285 0.367 
10 

-0.580 -0.289 

Reddy 0.5684 

Present 0.590 0.283 0.360 

-0.589 -0.287 

Pagano ±0.552 ±0.21O 0.385 
20 

Hybrid ±0.553 ±0.21O 0.395 

Present ±0.552 ±0.21O 0.385 

CLT ±O.539 ±0.180 0.395 

Pagano: elasticity exact solution [5.15]. 
Hybrid: hybrid finite element method [5.25]. 
Reddy: high order shear deformation theory [5.24]. 
Present: partial hybrid multilayer element method. 
CLT classical lamination theory 

~z(aJ2, w(aJ2, 
0, b/2, 
0) 0) 

0.217 -

0.221 2.020 

0.1832 1.9218 

0.220 2.044 

0.1228 -

0.127 0.7548 

0.1033 0.7125 

0.126 0.7592 

0.0938 -

0.0998 0.5170 

0.0971 0.5167 

0.0823 
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Table 24 Normalized deflection and stresses in a rectangular laminate (b=3a) 

S Source crx(aJ2, criaJ2, txz(O, tyiaJ2, w(aJ2, 
b/2, b/2, b/2, 0, b/2, 

±h/2) ±hI2) 0) 0) 0) 

Pagano 1.14 0.109 0.351 0.0334 2.82 

-1.10 -0.119 

Hybrid 1.717 0.108 0.360 0.0326 2.828 
4 

-0.975 -0.118 

Reddy 1.0356 0.1028 0.2724 0.0348 2.6411 

Present 1.13 0.106 0.350 0.0325 2.829 

-1.08 -0.121 

Pagano 0.726 0.0418 0.420 0.0152 0.919 

-0.725 -0.0435 

Hybrid 0.709 0.0429 0.428 0.0151 0.921 
10 

-0.707 -0.0448 

Reddy 0.6924 0.0398 0.2859 0.0170 0.8622 

Present 0.718 0.0410 0.417 0.0151 0.917 

-0.717 -0.0435 

Pagano 0.650 0.0294 0.434 0.0119 0.610 

-0.650 -0.0299 

Hybrid 0.653 0.0298 0.450 0.0118 0.611 
20 

-0.646 -0.0304 

Reddy 0.6407 0.0289 0.2880 0.0139 0.5937 

Present 0.647 0.0291 0.431 0.0119 0.607 

-0.647 -0.0298 

CLT ±O.623 ±O.0252 0.440 0,0108 0.503 
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Example 2. Bending of a Long Laminated Strip 

The three-layer laminated strip with fibre orientation [0,90,0] is analyzed 
again to verify the accuracy of partial hybrid multilayer element. Similarly, the strip 
is supposed to be infinitely long in the y direction and simply supported along the 
two edges x=O and L (see figure 46). It is subjected to sinusoidal transverse load on 
the top surface 

q(x) =qosin ( n:) (5-10) 

The lamina material properties are the same as that of example 1 in this section. 
They are given by equation (5-8). 

z qosin( 7rX / L) 

4 
l ! 1 ! l 

3 x 
2 

1/\ ~ 

r-- L -----i 

Figure 46 The cross section of infinitely long laminated strip [0,90,0] subjected to 
distribution transverse loading 

A slice was taken out from the laminated strip for establishing the finite 
element model. Due to the symmetry, finite element analysis is carried out over the 
half of the slice. There are ten uniform multilayer elements in the half along the x­
direction and one element in the y direction. Each multilayer element is composed 
of 12 3-D, 8-node sub-elements. The numerical results are presented in terms of 
normalized values which are defined as 



NUMERICAL EXAMPLES 

S 

4 

10 

50 

- Z Z=-
h 

Table 25 Maximum transverse central deflection w 

No. 

4 

3 

2 

1 

4 

3 

2 

1 

4 

3 

2 

1 

No. : 
Exact: 
Hybrid: 
Present: 
CLT: 

Exact Hybrid Present CLT 

3.023 3.022 3.029 0.510 

2.925 2.931 2.923 0.510 

2.864 2.868 2.862 0.510 

2.839 2.849 2.838 0.510 

0.934 0.933 0.933 0.510 

0.933 0.9332 0.932 0.510 

0.931 0.931 0.930 0.510 

0.929 0.927 0.929 0.510 

0.527 0.527 0.527 0.510 

0.527 0.527 0.527 0.510 

0.527 0.527 0.527 0.510 

0.527 0.527 0.527 0.510 

interface number. 
Pagano's elasticity solution [5.16]. 
hybrid finite element method [5.25]. 
current partial hybrid multilayer element. 
classical lamination theory. 
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(5-11) 
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The maximum central transverse det1ection Vi with respect to S is shown 
in table 25, where the surface number indicates the location of each interface of the 
laminate. The distribution of transverse stress tu and in-plane stress crx through the 
thickness are shown in figures 47 and 48, respectively. The results of Pagano's 
elasticity solution [5.16] are also given in the figures. From the figures, excellent 
agreement with exact solution is found for partial hybrid multilayer element method. 
The results of classical lamination theory are accurate only for the thin plate. 
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Figure 47 Stress txz (x=O) along the thickness 
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Figure 48 Stress <J. (x=I12) along the thickness 
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iJ. 

iJ. 

The performance of finite element analysis costs 2 minutes 57.54 seconds 
by multilayer element solution and uses 1452 OaF, and 24 minutes 2.87 seconds by 
conventional displacement element solution which use 15279 OaF on VAX 6510 
computer. 
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5.5 FINITE ELEMENT MODELS WITH DIFFERENT MESH 
DENSITIES 

Example 1. Free Edge Effects in An Angle-ply Laminated Strip [5.19] 

In the analysis of engineering structures, the state of stress within each 
lamina of a laminate is assumed to be planar, wherein the interlaminar stress 
components is neglected. However, the interlaminar stresses will appear near the free 
edge of a laminate and will cause delamination in the laminate. In this example, the 
free edge effect in an angle-ply laminated strip will be investigated. 

Fibre orientation 

N~X 
x 

Figure 49 The laminated strip subjected to axial loading 

The laminated strip to be analyzed is a finite width symmetric angle-ply 
laminate [45,-45], subjected to axial tension load in plane. The loading is simulated 
by prescribed uniform in-plane normal strain E •. The elastic material properties with 
respect to principal material axes of each layer are 

Er=14.48 GPa 

(5 -12 ) 
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The geometry of a sample is shown in figure 49. The thickness of each 
layer is denoted by ho, the total thickness of the laminate is 4ho' and the width is 2b. 
The ratio of the width to thickness of the laminate is b=8ho. The finite element mesh 
is shown in figure 50. The partial hybrid multilayer elements are used to establish 
the finite element model. In this model, each multilayer element consists of 16 sub­
elements. Due to the high stress gradient to be expected near free edge, the local 
region near free edge is discretized using fine mesh. Three different finite element 
meshes are used to investigate the stress distributions in the laminate in order to 
verify the accuracy of the finite element models. 

11 = 0.66, '2 = O.34i, '3 = O.06b 

Tr---------------~ 
4~~------------------------~---y 
JLr---------------~ 

/. It ---1--- I, ---1/3 f-
nl elements in region 1 n, elements n3 elements 

mesh 1: nl = 3, n, = 4, n3 = 2 

mesh 2: nl = 3, n3 = 6, n3 = 4 
mesh 3: nl = 3, n2 = 8, n3 = 10 

Figure 50 Finite element mesh for study of free edge effect 

The results of stress distributions at the mid-plane (z=O) and at the interface 
(z=ho) are shown in figures 51 and 52, respectively. At the mid-plane, the stresses 
predicted by three different meshes are the same. At the interface, the stresses 
obtained from three meshes are different only in the vicinity of traction free edge of 

the laminate. 
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Figure 51 Stress distribution at the mid-plane z=O 
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At the interface, the in-plane stresses O'x' O'y' 'txy show a moderate "rise" as 
ylb approaches 1, but decrease to some finite value at ylb=1. The maximum value 
of O'x amounts to about 10% over the average O'x and the maximum value of 'txy 
amounts to about 15% over the average 'txy at the interface of z=ho. At the free edge 
ylb=l, a high stress concentration of interlaminar stress 'txz and a singular behaviour 
of interlaminar stress 0'. appear. 

At the interface z=ho, it is verified that the self-equilibrium conditions 

are satisfied. 

fgoz(y,ho) dy=O 

fgtyz(y,ho) dy=O 

At free edge ylb=l, the traction-free-edge conditions are 

txy(b, z) =0 tyz(b, z) =0 

(5-13) 

(5-14) 

From the figure 52, it is clear that the first and third conditions are satisfied exactly. 
Although the second condition can not be satisfied exactly at the corner (z=ho , 
y=b ), it can be satisfied on the average as follows 

IJlo+a _ _ 
ho-a txy(y-b, z) dz-O (5-15) 

in which, e is an infinite small quantity. This is because at the corner, there are two 
non-zero shear stresses 'txz with same magnitude but opposite sign in the two 
different sides of interface z=ho. 

Example 2. Free Edge Effects in A Cross-ply Laminated Strip [5.19] 

The finite element model in example 1 can also be applied to analyze free 
edge effect in a cross-ply laminated strip. The laminates to be analyzed have the 
stacking sequences of four identical layers [0,90]. and [90,0] •. The results of stress 
distributions 0'., 'ty• and O'y along the interface (z=ho) are given in figures 53-55, 
respectively. These three stresses show high stress gradients in the vicinity of free 
edge at interface. Other three stresses are similar to those predicted with classical 
lamination theory ( 'txy= 'txz =0, O'x is almost a constant in a layer ). 
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Figure 53 shows that stress O'z rises sharply toward the free edge in a 
possible singular behaviour in the laminate. In figure 54, the stress tyz also increases 
in the vicinity of the free edge, achieves the maximum value at ylb=O.988 and then 
decreases to zero quickly. In figure 55, the in-plane stress O'y rises sharply in a 
possible singular behaviour near free edge. 

In this problem, the traction-free-edge conditions at y=b 

't.xy{b, z) =0 
(5-14)' 

also must be satisfied. It can be verified that the second and third conditions are 
satisfied exactly in the finite element model. At the corner (z=ho, y=b), there are two 
non-zero in-plane stresses O'y with same magnitude but opposite sign at two different 
sides of the interface. Thus, the first condition can be satisfied on average meaning, 

(5-16) 



NUMERICAL EXAMPLES 279 

5.6 GLOBAL/LOCAL APPROACH FOR STRESS ANALYSIS OF 
COMPOSITE LAMINA TES [5.26-5.32] 

As shown above, the number of degrees of freedom in a finite element 
model using single element type increases drastically in order to investigate stress 
distribution near the free edge of a laminate. In practical engineering, most 
composite laminates contain local regions where stress gradient is large. For 
example, the presence of a hole and/or free edge in laminates introduces significant 
transverse stresses which create a very complicated 3-D stress field in the vicinity 
of the hole and/or free edge. Resolution of the stress fields in these localities requires 
a detail 3-D finite element analysis. However, a detailed full 3-D finite element 
analysis of the whole laminate to obtain accurate stresses may require huge computer 
resources. 

One way to solve these problems is to set up a globalllocal finite element 
model using different element types in different regions. It will take advantage of the 
properties of different elements and keep the computer storage requirement down. 
In chapter 4, a series of partial hybrid elements have been presented. These elements 
can be used in different regions in a globalllocal finite element model. For instance, 
the domain of a structure to be analyzed can be divided into three regions: local 
region, global region and transition region as shown in Figure 32. In the local region, 
3-D solid element or multilayer element can be used to accurately determine the ply 
stresses in the laminate near discontinuities such as open hole, ply drop-offs, layer 
interface, and so on. In the global region, degenerated element can be used to predict 
the entire response of the structure, and the laminate is modelled as an equivalent 
single-layer with the smeared laminate properties. The degenerated elements are 
used due to simplicity and low cost. Between the global region and local region, 
transition elements or multilayer transition elements are used to guarantee the 
continuity and compatibility of displacement fields in different regions. 

In this section, the effectiveness of the globalllocal finite element model 
using different element types is demonstrated by obtaining the interlaminar stresses 
for a laminated strip with free edge and a laminated plate with a hole.' All numerical 
studies were performed on a VAX 6510 computer. The computational effort of each 
analysis is quantified by the number of degrees of freedom used in the finite element 
model and the computational time required to perform a stress analysis. The 
computational time is measured in central processing unit (CPU) time. 

Example 1. Globa1llocal Approach Using 3-D Solid Element and 
Transition Elements and Degenerated Elements for Analysis of Free 
Edge Effect 

Free edge problem is an important problem in the analysis of composite 
laminate. The interlaminar stresses generated around the free edges and interlaminar 
surfaces are recognized to be the primary sources of delamination of composite 
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laminates. Many approaches have been proposed to solve this problem. It is an ideal 
example to verify the efficiency and accuracy of various approaches. In this example, 
the globaUlocal finite element model built by partial hybrid solid element, transition 
element, and degenerated element is presented to solve this problem. 

The laminate with free edges to be analyzed is an angle-ply laminated strip 
with the [45/-45/-45/45] sequence subjected to uniaxial extension (X-direction). The 
laminate (shown in figure 49) has length of 2L (X-direction), width 2b (Y -direction), 
and thickness 4ho (W=8ho). Each layer in the laminate is also idealized as a 
homogeneous orthotropic material. The material properties are same as the example 
1 in section 5.5. They are given by equation (5-12). 

Because the strip is infinitely long in x direction, the displacement gradient 
with respect to x coordinate can be neglected and stress and strain states are 
independent of x coordinate. Therefore, the length of the sample to be analyzed in 
x direction does not affect the results of stress analysis. Thus, a slice can be taken 
out from the laminate to establish a finite element model. Furthermore, it can be 
assumed that stress distributions are symmetric about the mid-plane because the 
geometry, material properties, and loading are symmetric. Thus, a quarter of the slice 
only is needed to be analyzed. 

Z 1~Q.ted ~nt 
I , 

I 
I 

3 -D 
efltent ~l 

y 

Figure 56 GlobaUlocal finite element mesh for study of free edge 
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The domain of the strip to be analyzed is divided into three areas: local 
region, global region, and transition region. The finite element mesh used for 
analysis is shown in figure 56. In the local region, the high stress gradient is 
expected. Forty eight 3-D, 20-node solid elements are used: 8 elements in thickness 
direction, 6 elements in y direction, and 1 element in x direction. In the central 
region of the laminate, five 8-node degenerated elements are used: 1 element in the 
thickness direction, 5 elements in y direction, and 1 element in x direction. At the 
transition region, eight transition elements are used to connect eight solid elements 
with one degenerated element. The width of the elements decreases as the free edge 
is approached. The problem is also analyzed by the layerwise model [5.1,5.8] and 
conventional 3-D displacement model. The mesh on the X-Y plane for the two finite 
element models is same as that for the globa1llocal model. 

J 
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-0.'" lI: • r..~e model 
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auCi 3-D model 

V Global/looal model 
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Figure 57 Interlaminar stress crz along interlaminar surface 

The results of interlaminar stresses crz and 't"" are shown in figures 57-58. 
The stress in the figures has been non-dimensionalized by multiplying it by the 
factor 20/(EL £0)' where £0 is the nominal applied axial strain of uol(2L). The 
globa1llocal model only takes 62.09 seconds CPU time on VAX 6510 Computer to 
solve the problem. The layerwise finite element model takes 204.40 seconds CPU 
time and the 3-D conventional displacement element model takes 287.06 seconds 
CPU time on the same computer. For the analysis, the present global/local model 
uses 1154 active degrees of freedom totally, the layerwise model uses 2441 active 
degrees of freedom, and 3-D model uses 2849 active degrees of freedom. This shows 
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that the present globaVlocal model takes less time and uses less active degrees of 
freedom than other models to solve the same problem and to get the same degree 
of accuracy. 

~ 
:I 0 • • • u\ i • ~ -1 
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Figure 58 Interlaminar stress 'txz along interlaminar surface 

Example 2. Global/local Approach Using Multilayer Elements and 
Multilayer Transition Elements and Degenemted Elements for 
Analysis of Free Edge Effect 

A globaVlocal model built by 3-D solid element, transition element, and 
degenerated element can predict interlaminar stresses accurately. However, it is a 
labour intensive task to make 3-D element mesh in the local region. In this example, 
3-D solid element and 3-D transition element are replaced by multilayer elements. 
A global/local model built by multilayer element, multilayer transition element, and 
degenerated element is used to analyze the free edge problem again. 

The problem to be solved is same as example I in this section. The domain 
of the strip along the Y -direction is also divided into three regions: local, global, and 
transition regions. The element mesh used for analysis is shown in figure 59. In the 
vicinity of free edge (local region), twelve multilayer elements are used along the 
Y -direction and each multilayer element contains 16 8-node sub-elements in the 
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thickness of the laminate. In the central part (global region), ten 4-node degenerated 
elements are used in y direction. In the transition region, one multilayer transition 
element is used to connect the multilayer element with the degenerated element. 
Along the X-direction, the strip is modelled by using two elements and all elements 
have the same length (=L). The results of interlaminar stresses crz and 'txz are shown 
in figures 60 and 61. The stresses in the figures have been non-dimensionalized by 
multiplying it by the factor 20/(EL eo), where eo is the nominal applied axial strain 
of uJ(2L). 

z 
~ 

Transition region 
\ 
I 

" :.- '\ 

"- '\ y o 
Global re~on weal region 

Figure 59 Element mesh for free edge problem 

The problem is also analyzed by a full 3-D finite element model using 3-D, 
20-node solid displacement element and a previous global/local finite element model 
using 20-node solid elements, 8-node degenerated elements, and transition solid 
elements. The results of interlaminar stresses crz and 7f'xz calculated by the two models 
are also shown in figure 60 and 61. In the figures, the "previous global/local model" 
indicates the finite element model in example 1, and the "current global/local model" 
indkates the finite element model in this example. The difference of the results 
obtained from three finite element models is not significant. However, the computer 
CPU time required by three models for performance is quite different. 
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For the performance of the finite element analysis, the current globalllocal 
model takes 100.45 seconds CPU time, the previous global/local finite element 
model takes 62.09 seconds CPU time, and the full 3-D finite element model takes 
287.06 seconds CPU time on VAX 6510 Computer. Therefor, the current 
globalllocal model takes about one-third computer CPU time used by the full 3-D 
finite element model, and the previous global/local finite element model takes about 
one-fifth computer CPU time used by the full 3-D finite element model. The current 
globalllocal model takes more CPU_time than the previous global/local model for 
calculation due to the fact that during the calculation of element stiffness matrix, the 
current global/local model using multilayer elements must invert the matrix [H] 
whose size is larger than that of solid. element used in the previous globalllocal 
model. In spite of that, the current globalllocal model is still more efficient than the 
full 3-D finite element model. Furthermore, the current global/local model has 2-D 
data structure in the finite element mesh. This is very beneficial to set up a 
globalllocal finite element model. 

Example 3. Global/local Approach Using 3·D Solid Element and 
Transition Elements and Degenemted Elements For Analysis of A 
Square Laminate with An Open Hole 

A square laminate [45,-45]. with an open hole is also an ideal structure to 
verify the efficiency of the globalllocal model. The stress analysis of the laminate 
is performed under uniaxial loading (Y-direction). The radius of the hole is R. The 
laminate (shown in figure 62) has length of 2L (=8R) and thickness 2h (=R). The 
material constants in the principal material coordinate system are given in equation 
(5-12). 

y 

Figure 62 An angle-ply laminate with an open hole 
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Due to symmetry of geometry and loading in this problem, the domain to 
be analyzed may be reduced to one eighth portion of the laminate. In the globa1llocal 
model, the domain is divided into three areas: local region, global region, and 
transition region (shown in Figure 63). In the local region, forty 3-D, 20-node 
elements are used as there is high stress gradient near the hole edge. Each layer is 
modeled by two 3-D, 20-node elements along the thickness. In the global region, a 
few degenerated elements are used. One element is used along the thickness. 
Between them, twenty transition elements are used to connect them. Along the 
thickness of the laminate, four transition elements are used to connect four 3-D solid 
elements with one degenerated element. The problem is also calculated by the 
layerwise model based on layerwise theory [5.1,5.8] and conventional 3-D 
displacement element model. The mesh on the X-Y plane in the two models is same 
as that in the globa1llocal model. 
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Figure 63 Finite Element Mesh for Analysis 

The results of interlaminar stresses <1z ' 'tyz and 't"" are shown in figure 64-
66. The stress in the figures has been non-dimensionalized by multiplying it by the 
factor <11<10, where <10 is the applied axial stress. The global/local model only takes 
6l.29 seconds CPU time on VAX 6510 Computer to solve the problem. The 
layerwise model takes 198.31 seconds CPU time and the 3-D model takes 291.17 
seconds CPU time on the same computer. For the analysis, the global/local model 
uses 1051 active degrees of freedom totally, the layerwise model uses 2298 active 
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degrees of freedom, and 3-D model uses 2948 active degrees of freedom. This 
shows that the global/local model takes less time and uses less active degrees of 
freedom than other models to solve the same problem and to get the same degree 
of accuracy. 
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Figure 64 Interlaminar stress CSz along interlaminar surface 
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Figure 66 Interlaminar stress 'txz along interlaminar surface 

5.7 CONCLUSION 

In this chapter, the accuracy and efficiency of the finite element models 
built by partial hybrid elements have been verified. The results of the analysis show 
that partial hybrid elements can predict accurate stresses more efficiently than 
displacement elements for composite laminates. The global/local finite element 
approach using partial hybrid elements is more efficient than other finite element 
models. Once the accuracy of the finite element models built by partial hybrid 
elements is established, they can be applied to more general problems. 
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finite element, 4, 6 
finite element analysis, 251, 255, 260, 272 
finite element method, 4 

displacement finite element method, 4 
hybrid finite element method 
partial hybrid element method 

finite element model, 2 
laminated element, 2 
multilayer element, 2, 3 
3-D solid element, 2, 3 

finite element procedure, 4 
assembling elements, 7 
calculating secondary quantities, 8 
deriving element equations, 5 
discretizing the structure, 4 
imposing essential boundary conditions, 8 
solving primary unknowns, 8 

flexibility matrix, 52 
formulation of partial hybrid element, 88 
4-node partial hybrid degenerated plate element, 174 
free edge, 272, 276, 279, 282 
free-traction surface, 182 
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Gauss quadrature, 20, 29 
generalized variational principle, 43, 46 
geometric shape, 14 
geometry matrix, 6, 52 
geometry of element, 154 
globalJ1ocal approach, 279, 282, 285 
globaVlocal finite element models, 253 
globally continuous variables, 81 
global co-ordinate system, 14, 163 
global region, 279 
governing equation, 6, 53, 92 
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Hellinger-Reissner variational principle, 48, 51, 86 
high-order Lagrange multiplier, 49 
higher-order element, 26 
higher order shear deformation theory, 264 
Hu-Washizu principle, 48 
h-version scheme, 252 
hybrid element technique, 79 
hybrid finite element method, 41, 49 
hybrid-formulated stiffness matrix, 151, 159 
hybrid strain element, 53 
hybrid stress element, 51, 74 
hybrid stress/strain element, 55, 58 

initial stress modes, 97, 119, 124, 125 
in-plane strains, 81 
in-plane stresses, 81 
interlaminar stresses, 81 
internal parameters, 228 
interpolation function, 30 
iso-function method, 103 
iso-function partial stress matrix, 105 
iso-function stress matrix, 104, 107 
isoparametric element, 13 
iterative process, 97 

Jacobian matrix, 19, 24 

kinematic deformation modes, 63, 94, 240, 246 

Lagrange multipler, 42, 46, 47 
laminate stress parameters, 228, 229 
laminated element, 2 
laminated plate/shell element, 20 
laminated solid element, 27 
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laminated strip, 258, 268, 272, 276 
layer stress parameters, 228 
layer-wise modelling, 253 
least-order polynomial terms, 65, 66 
leverage matrix, 52, 94 
limitation principle, 63, 106 
line of nodes, 198, 210 
linear element, 16, 17 
linear strain-displacement equation, 26 
local co-ordinate system, 163 
local region, 279 
locally continuous variables, 81 
locking, 2, 26, 247 
lower surfaces, 232 

mesh density, 252,272 
minimum number of stress modes, 239,244 
moving node, 197,211 
mode of failure, 3 
multifield finite element, 41 

mixed element, 41, 42 
hybrid element, 41, 42 

multilayer element, 3, 30, 146 
multilayer element matrices, 228 
multilayer solid element, 235 
multilayer transition element, 241 
multiplying matrix, 181, 182, 243 

natural deformation modes, 92, 93 
natural stress modes, 93, 94, 97 
necessary and sufficient condition, l3, 63, 133, 140 
necessary condition, 63 
nodal displacement vector, 50, 89 
nodal displacement, 8, ~ 
node, 4,6 
non-compatible element, 13 
numerical integration, l3 

one-dimensional element, 10 
optimal stress matrix, 118, 123, 127, 139 
orthogonal condition, 93 

parametric coordinate system, 14 
partial derivatives of the displacement field, 154 
partial globally continuous strains, 152, 234 
partial globally continuous stresses, 152, 234 
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partial hybrid element, 88, 89 
partial hybrid laminated element, 
partial hybrid multilayer element, 225 
partial hybrid single-layer element, 147 
partial hybrid transition element, 193 
partial locally continuous strains, 153, 235 
partial locally continuous stresses, 152, 234 
partial stationary condition, 52, 54, 57, 61, 90 
partial strain-displacement equations, 83, 84, 87 
partial stress field, 89 
Pascal's triangle, 12 
patch test, 13 
plate/shell element, 68 
polynomials, 10 
postulate, 94, 114 
potential energy, 45, 85 
principle of minimum complementary energy, 42,46 
principle of minimum potential energy, 42, 45 
pure shear modes, 102 
p-version scheme, 252 

quadratic element, 17 

rank of the matrix, 160 
rectangular element, 11, 64, 65, 67 
rectangular laminated plate, 264 

saddle distributed modes, 103 
semi-stiffness matrix, 151 
sequential globalllocal models, 253 
shape function, 16, 17,21,32, 154 
simultaneous globa1l1ocal models, 253 
single-field displacement finite element, 42 
single-field finite element, 3 
single-field formulation, 41 
single-layer element, 146, 147 
single property across the thickness, 3 
sinusoidal transverse load, 258 
6-node partial hybrid transition element, 193 
span-to-depth ratio, 258 
spurious kinematic deformation mode, 74 
square laminate, 255, 256 
square laminate with an open hole, 285 
stability condition, 63 

necessary condition, 63 
sufficient condition, 63, 64 
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stationary condition, 47 
stiffness matrix of materials, 82 
strain, 6, 8, 23 
strain-displacement equation, 27 
strain energy function, 45, 49 
strain field, 51, 152 
strain mode, 51, 70, 72 
strain parameter, 51, 55 
stress, 8 
stress analysis, 1 
stress field, 50, 152 
stress matrix, 89, 94, 134, 136 
stress mode, 51, 70, 72, 89, 91, 112, 113 
stress mode groups, 113, 123, 125, 128, 132 
stress parameter, 51, 89, 104 
stress polynomials, 92 
sub-element, 225 
sub-element matrices, 226, 235, 242 
sub-layer, 225 
sufficient condition, 63, 64 
superposition principle, 95 
surface stress parameters, 204, 230, 231 
symmetric bending modes, 103 

tension and compressive modes, 102 
theorem, 95, 116, 117 
thickness direction, 208 
three-dimensional element, 14, 17 
3-D anisotropic elasticity theory, 264 
3-D continuum models, 145 
3-D, 8-node brick element, 66, 72 
3-D, 8-node hybrid element, 102, 110 
3-D, 8-node partial hybrid solid element, 153 

displacement field, 155 
geometry of element, 154 
partial derivatives, 155 
partial strain field, 155 
partial stress field, 158 

3-D, 8-node solid hybrid element, 125, 135 
3-D partial hybrid solid element, 153 
3-D solid element, 3, 29 
3-D solid modelling, 253 
3-D, 20-node laminated element, 27 
3-D, 20-node partial hybrid laminated element, 171 
3-D, 20-node partial hybrid solid element, 160 
three-field variational principle, 48, 49 

297 



298 

torsion modes, 103 
traction conditions, 181 
transformation matrix, 26, 180 
transition region, 279 
transverse strains, 81 
transverse stresses, 81 
triangular element, 10, 65 
two-dimensional element, 10, 14, 16 
2-D, 4-node element, 109 
2-D, 4-node hybrid element, 99 
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2-D, 4-node plane hybrid element, 122, 134 
2-D, 3-node element, 107 
two-field variational principle, 48, 49 

unit vector, 22 
upper surface, 232 

variational functional, 6, 42 
variational prinCiple, 5, 42 
variational principle of composite energy, 88 
vibration and buckling analysis, 1 

zero-energy stress modes, 94, 119 
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