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PREFACE

This book has one single purpose: to present the development of the partial
hybrid finite element method for the stress analysis of laminated composite structures.
The reason for this presentation is because the authors believe that partial hybrid finite
element method is more efficient that the displacement based finite element method for
the stress analysis of laminated composites. In fact, the examples in chapter 5 of this
book show that the partial hybrid finite element method is about 5 times more efficient
than the displacement based finite element method. Since there is a great need for
accurate and efficient calculation of interlaminar stresses for the design using
composites, the partial hybrid finite method does provide one possible solution.

Hybrid finite method has been in existence since 1964 and a significant
amount of work has been done on the topic. However, the authors are not aware of any
systematic piece of literature that gives a detailed presentation of the method. Chapters
1 and 2 present a summary of the displacement finite element method and the evolution
of the hybrid finite element method. Hopefully, these two chapters can provide the
readers with an appreciation for the difference between the displacement finite element
method and the hybrid finite element. It also should prepare the readers for the
introduction of partial hybrid finite element method presented in chapter 3. In this
chapter, a new composite variational principle is presented along with the formulation
of the partial hybrid finite element. One of the most trouble aspect of the hybrid finite
element method is the determination of the stress modes. Section 3.4 provides three
different methods for systematic determination of the stress modes. In chapter 4, many
partial hybrid finite elements are introduced. These include the single layer finite
elements and the multilayer finite elements. Among the two groups of these elements,
there are solid element for the local region, the laminated element for the global region
and the transition element for the transition region. These elements are useful for the
application of the global/local approach used in chapter 5. Many examples to illustrate
the efficiency of the partial hybrid finite element method are presented in chapter 5.
These include problems with free edge effects such as laminate with straight edges
subject to uniaxial extension and laminates with holes and subjected to in plane tension.
These results show that the partial hybrid elements can provide accurate interlaminar
stresses with strong efficiency.

This work is the culmination of three generations of Ph.D students in the
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Chapter 1

INTRODUCTION

1.1 INTRODUCTION

When one talks about doing analysis of composites, one tends to mean the
analysis of long continuous fibre laminated composites. This is because, while other
forms of composites (such as short fiber composites) do exist and are important, they
can be adequately assumed to be isotropic for analysis purposes, and the analysis
(stress analysis, vibration, buckling) of structures made of these materials can be
proceeded in a manner similar to the case of isotropic materials. The analysis of long
continuous fiber reinforced composites, on the other hand, presents additional
complication. For example, there is the anisotropy due to fiber orientation and the
state of stress depends on the stacking sequence of the laminated composites, the
fibre orientation of each lamina as well as the material properties of the fibre and of
the matrix. Therefore, finite element method is widely used in the analysis of
structures made of long continuous fiber reinforced composites. This is due to the
power of the technigue to be able to model the laminated composite structures not
only in the planer dimensions, but also in the thickness direction. It is also due to
the availability of many commercial finite element codes such as ALGOR, ANSYS,
MSC/NASTRAN, PATRANS3, and so on. The finite element methods as discussed
in this book are restricted to the analysis of structures made of long continuous fibre
composite materials.

Analysis of structures made of composites (or for that matter of structures
made of any material) can be classified into three categories. These are the stress
analysis, vibration analysis and instability (buckling) analysis. In vibration and
buckling analyses, eigenvalues are solved, eigenvectors are extracted and engineering
quantities such as vibration frequencies and/or critical buckling loads are derived.
For these analyses, the overall stiffness of the structure is important and the analyst
may afford to model the composite structure with a small number of fairly large
elements to obtain accurate results. The purpose of stress analysis, on the other hand,
is to provide stress or strain values so that failure or residual life can be predicted.
Since failure of a structure is determined by the failure of its weakest link, it is
important to determine accurately the stresses at the critical locations in the
composite structures. These analyses may require a large number of elements and
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a fine element mesh. Different types of the analysis of composite structures therefore
require different types of finite elements and element meshes.

There are a few elements which can be chosen in the commercial finite
element programs for analysis of structures made of composites. Finite elements in
different programs are based on different theories. The power of the programs
depends essentially on the basic theory formulating the element. In general,
composite structures are modelled using one of the following two classes of
theories[1.1-1.2]:

1. Equivalent single-layer 2-D theories[1.3-1.8], in which deformable
models are based on global through-the-thickness displacement,
strain and stress approximations;

2. 3-D continuum theories[1.9-1.10], in which each of the individual
layers of a composite structure is treated as a three-dimensional
continuum.

Corresponding to two classes of theories above, the finite element models can be
classified into three classes: laminated elements based on the equivalent single-layer
2-D theories; 3-D solid elements and multilayer elements based on the 3-D
continuum theories.

Laminated Elements

The close to exact modelling of laminated composites requires the
discretization not only along the surface of the composite structure (usually plate or
shell) but also across the thickness of the structure (across the different layers). This
discretization can result in a large number of elements which translates into large
requirement in computer space and time. In addition, the aspect ratios in the
elements can become excessive. Large aspect ratios may create problems in shear
locking. Due to these problems, the detailed and thorough modelling of the
composite is usually avoided if possible. Fortunately, this can be done without much
sacrifice in accuracy in problems where the overall stiffness of the structure is
important and the detailed and accurate stresses (particularly interlaminar stresses)
at different points in the structure are not of concern. Problems such as the
determination of vibration frequencies and mode shapes, the determination of critical
buckling loads and buckling modes fall into this category. For the analysis of these
problems, the stiffness of the laminate is obtained by integration of the stiffness of
individual layers across the thickness. The thickness of each finite element is the
same as the thickness of the laminate. By smearing the thickness of the individual
layers, significant reduction in computer requirements can be achieved. This type of
elements is called as the "laminated element" [1.5]. In the laminated elements,
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therefore, the variation in fibre orientations and material properties across the
thickness is integrated to obtain a single property across the thickness. As indicated,
this element can be used for problems such as vibration or buckling but does not
provide useful results if interlaminar stresses are required.

3-D Solid Elements and Multilayer Elements

For problems where the analyst is interested in the prediction of failure of
the composite structure, it is important to know the stresses (particularly interlaminar
stresses) accurately. As such, the composite structure needs to be modelled in great
details, particularly at locations where there is suspicion of large stress gradients.
Thus, 3-D solid elements and multilayer elements are usually used for these
problems. In 3-D solid elements [1.11], no specific kinematic assumptions are
introduced regarding the behaviour of a laminated composite. Across the thickness
of the laminated composite, each layer is modelled using one or more elements. It
takes the behaviour of the individual laminae into consideration. In the multilayer
elements [1.12], the individual laminae are modeled using one or more 3-D sub-
elements. These sub-elements are then assembled through the thickness according
to the continuity conditions on displacements and stresses. In order to minimise the
problem of large aspect ratios, the planar dimensions of the elements should be kept
to be not too large compared to the thickness of the element. Because composite
laminae are very thin and a typical laminated composite may contain many laminae,
this usually results in an excessively large number of elements which means large
requirements in computer space and time.

Many problems such as delamination and splitting, which are the common
modes of failure in composites, require determination of accurate stresses,
particularly interlaminar stresses. However, the limitation of computer capacity limits
the ability of composite analysts to obtain a good handle in the prediction of failure.
The solution to this problem can be done from two directions: the development of
more powerful computers (within the affordable costs) which depends on the
capacity of computer scientists and engineers, and/or the development of more
efficient finite elements for the stress analysis of laminated composites.

The task of developing good finite elements never seems to be finished for
the stress analysis of laminated composites. Today, the majority of finite element
analysis for composite structures is using single-field finite elements that are
formulated based on displacement. This is due to the simple approach to the element
formulation provided by displacement finite element model. The displacement finite
elements work well with the stress analysis of homogenous materials. However, they
can not satisfy well the requirements in analysis of laminated composites. As an
alternate, the conventional hybrid stress elements [1.13-1.17] have been used to
analyze them. In order to show the advantages and disadvantages of displacement
elements, this chapter will briefly present the finite element method based on
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displacement formulation, and then, it will give the motivation for developing hybrid
finite elements. The basic knowledge of the theories of laminated composite is
referred to the literature [1.18-1.20].

1.2 DISPLACEMENT FINITE ELEMENT METHOD

Finite element method is an approximate technique. This means that the
continuous structure is discretized into a number of continuous elements connected
together at a number of nodes. As the number of clements increases, the
approximation of the structure becomes more and more accurate. The solution
obtained from finite element method therefore is an approximate solution. As the
number of elements increases, the general tendency is that the finite element solution
also approaches the exact solution.

The finite element procedure for stress analysis of structures is a systematic
numerical approximation which can be implemented on a computer. Its generality
fits the analysis requirements of today's complex engineering systems and designs
where closed-form solutions of governing equations are usually not available. In
general, finite element analysis of structures is performed by following six steps:
discretizing the structure, deriving element equations, assembling elements, imposing
essential boundary conditions, solving primary unknowns, and calculating secondary
quantities.

Discretizing the Structure

First of all, in order to analyze a structure using finite element method, the
structure must be discretized into a suitable number of "small" bodies, called "finite
elements"”, which are quasi-disjoint non-overlapping elements. These elements are
connected by using a set of key points, called "nodes" ( see figures 1 and 2).

How to discretize a structure or how many elements to be used depends on
the problem to be analyzed. In general, the region where large gradients of
displacements and/or stresses to be expected is discretized into many elements (fine
mesh); otherwise, the region is modeled using few elements (coarse mesh). For
example, if a structure contains a crack or a open hole, the local region near the
crack or the hole is usually divided into many "very small" elements in order to
predict accurately the response of the structure. In addition, what type of element to
be used depends on the characteristics of the continuum. For laminated composite,
plate/shell elements are commonly used to predict vibration frequencies and critical
buckling loads of structures, and 3-D solid elements and multilayer elements are
usually used to predict stresses in the structures.
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Deriving Element Equations

Once the mesh of structures is generated and the type of elements is
determined, element equations (mass matrix, stiffness matrix, nodal loading vector,
etc.) can be derived. Four methods are available to derive element matrices and
equations: the direct method, the variational method, the weighted residual method,
and the energy method. In this book, the variational method for deriving the element
equation is presented.

The variational principle is stated as 5r1p=0 [1.21] with

IL-U-[ FTudv- fs’z"'u ds (-1

Ve

where u is the displacement ueld. F and T are respectively the prescribed body
forces in the domain V, and boundary traction along the boundary S,. In the
equation, the strain energy U is

[ Llgr
va.zc [C] edV (1.2

where the strains ¢ must satisfy the compatibility equation, i.e the strain
displacement relation.
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In the finite element approach, when the domain V to be analyzed is
decomposed into a finite number of non-overlapping subdomains V, which are called
the elements, these elements will be interconnected at a finite number of points
called the nodal points. In an element, therefore, the displacement u is described by
the nodal displacement J,

1-
u-1ms, (1-3)

where [N] is the displacement shape function. Using the strain displacement relation,
the strains can then be computed in terms of the nodal displacements as,

1,5+Uj, 1) (1-4)

e=[B]8, and eij=% (u

where [B] is the geometry matrix. Substituting equations (1-2), (1-3) and (1-4) into
equation (1-1), the variational functional can be rewritten as

IL=285([ [B17IC] [B1dW) 8,
. (1-5)
8% f [N] 7F dv+ f [N] ™ dS)
Ve Sy

Denote

[kl =[ [B17[C] [B]dv
" (1-6)

£,=[ [NTF dv+ fs [N] 7T ds

where [C] is the material constant matrix, [K]_ is usually referred to as the element
stiffness matrix and f, is the equivalent nodal force vector. Thus, the governing
equation of the element is obtained by using 81'[p=0,

K], 8,1, 47

By means of this formulation, equations of all displacement elements in the finite
element model can be derived.
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Assembling Elements

Once the element equations (1-7) are established, the global equations that
define approximately the behavior of the structure can be assembled by means of the
continuity conditions between adjacent elements. For example, the displacements of
two adjacent points in the finite element model must have identical values.
Algebraically, the ranges of indices on element matrices [K], and f, can be expanded
to the total number of degrees of freedom of the structure. It is equivalent to adding
rows and columns of zeros in [K], and f, for all degrees of freedom which are not
contained in the element. Thus, the assembly of the global stiffness matrix and load
vector is accomplished by the summation of element contributions as

(K] =Y [K]§ £=Y"£7 (1-8)

where N stands for the number of elements. Finally, the global equations are
obtained and can be expressed in matrix notation as

(K] & = £ (42

a, Loading

byebiveveribbvess

Structure

Boundary
v

ALV

Figure 3 Prescrbing displacements on boundary S,
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Imposing Boundary Conditions

Boundary conditions are the physical constraints or supports that must exist
so that the structure can stand in space uniquely. These conditions are commonly
specified in terms of known values of the nodal displacements on a part of surface
or boundary S, (see figure 3). The global stiffness matrix [K] and load vector f are
modified by applying boundary conditions to produce the final global matrix [K] and
vector f. A simple way is to replace the equations for nodes on the boundary by the
prescribed nodal value and modify the other equations accordingly.

Solving Primary Unknowns

The global equations (1-9) are a set of linear algebraic equations, which can
be expressed in the form as

KUy KUy o K pUp =T
Ko Uy + Ky Up+ o o HEpUp=T
(1-10)

Ko U KU+, .+ K u =1

where, the unknown nodal displacement u, (i=1,2,..,n) are called primary unknowns
because they appear as the first quantities sought in the basic equations (1-10). There
are many methods to solve the set of equations, such as Gaussian elimination and
iterative methods. The choice of appropriate solution algorithms will affect the
overall efficiency of the computation.

Calculating Secondary Quantities
Secondary quantities must be computed from primary quantities. In solid
mechanics, such quantities can be strains and stresses. They are calculated from the

displacement by means of numerical differentiation. With the strains

e- (55, (1-11)

the stresses
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o=[Cle (1-12)

can be computed when nodal displacement §, are known. Matrix [B] is a function
of the coordinates and must be evaluated at the point where stresses are desired. In
the displacement finite element models, the displacements are guaranteed to be
continuous across the boundary of adjacent elements, but the strain and hence stress
continuity across the boundary is not guaranteed. They may take different values on
the two sides of the interface between elements. In order to satisfy the continuity
condition of stresses at the interface, hybrid elements are introduced. This will be
discussed later.

1.3 ASSUMED DISPLACEMENT FIELD

For finite element computation, the approximation space, a space of finite
dimension, is generated from element basis functions. For instance, an approximate
displacement solution can be expressed in the form,

m
u_i:E aijgj(xl.VI Z) (i=11213) (1'13)
Jj=1

where g(x,y,z) are element basis functions. Because these functions limit the infinite
degrees of freedom of the system, the properties of these functions determine the
character of the finite element approximation space. In order to ensure convergence
to the correct result, three simple requirements have to be satisfied [1.22].

Requirement 1:
The displacement function chosen should be such that, when the nodal

displacements are caused by a rigid body displacement, the element is
able to reproduce the rigid body motion.

Requirement 2:
The displacement function chosen should be such that, if nodal

displacements are compatible with a constant strain condition, the element
is able to reproduce the constant strain deformation.

Requirement 3:

The displacement function chosen should be such that the strains at the
interface between adjacent elements are finite.
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A number of mathematical functions such as trigonometric series and
exponential functions can be used as element basis functions. However, orthogonal
polynomials are more appropriate as basis functions because of the ease and
simplification they provide in the finite element formulation. The choice of
polynomial depends on the type of element used.

Compatible Elements

In the regular finite element method in solid mechanics, a compatible
(conforming) displacement field is often used as the dependent variable. In this case,
the number of terms in the polynomial must be equal to the total number of degrees
of freedom associated with the element, otherwise the polynomial may not be
unique. Thus, for a bar element with two nodes, one degree of freedom at each node
(see figure 4a), the displacement can be assumed in the form of a two-term
polynomial

U, =2a;+a, x (1-14)
For a triangular element with three nodes in a two dimensional problem,

two degrees of freedom at each node (see figure 4b), the displacement can be
assumed in the form of two three-term polynomials

U =a;,+3, X+ a;y
(1-15)

b,+bx+byy

Vi

(@) (b) (©

Figure 4 1-D and 2-D linear elements
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Furthermore, for a rectangular element with four nodes in a two dimensional
problem, two degrees of freedom at each node (see figure 4c), the displacement can
be assumed in the form of two four-term polynomials

Ly=a,+a,X+a,y+a,xy
(1-16)

b, +b,x+byy+b,xy

]

Vi

where the coefficients a, and b, are called generalized variables. For the polynomial
series, the three requirements for convergence above can be met by satisfying the
continuity and completeness conditions.

Continuity means that these functions and their derivatives, where required,
must be continuous within the element domain and across the interface between
adjacent elements. The linear function (eq. 1-14) is indeed continuous within the
elements. For compatibility, continuity condition across the interface between
adjacent elements, it is necessary that the coordinates and displacements of the
elements at the interface be the same. Because the coordinates and displacements of
an element on the interface are determined only by nodes and nodal degrees of
freedom on that interface, compatibility is satisfied if the adjacent elements have the
same nodes on the interface and the coordinates and displacements on the interface
are defined in each element by the same polynomial functions (see figure 5 a and
b).

€l €2 EL

| G

(a) Continuous displacements  (b) Discontinuous displacement

Figure 5 Compatibility condition between elements
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Completeness means that the polynomial functions must contain the
constant and linear terms so that the element nodes can be given rigid body
displacements without producing strain within the element and can always recover
state of constant strain. For instance, the linear approximation (eq. 1-14) contains the
constant term a, which allows for the rigid body displacement mode. Also, in one
dimensional problem, the linear approximation (eq. 1-14) contains linear term a,x
which guarantees that the element is able to recover the state of constant strain. This
condition implies that, when the element becomes smaller and smaller, the strain in
the element approaches a constant value.

The necessary terms for a complete polynomial are presented by Pascal's
triangle which is shown below.

X Xy y

Thus, a complete quadratic polynomial is of the form

d,t 8,X+ a3y+ a,x*+ agxy+ agy? (1-17)

and requires an element with six degrees of freedom to uniquely define a,. Moreover,
a complete cubic polynomial is of the form

a,+ a,x+ a,y+ a,x*+ a;xy+ azy? 1-18)

+ a,x3+ agx?y+ agxy?+ a, y?

and requires an element with ten degrees of freedom to uniquely define a.
Furthermore, the completeness condition also requires to use the least-order terms
in displacement basis function.
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Non-compatible Elements and the Patch Test

Compatible elements are always desired in finite element analysis. But in
some cases, there is considerable difficulty in finding displacement basis functions
for an element which guarantees that displacements are continuous on the interface
between adjacent elements. The discontinuity of displacements will cause infinite
strains at the interface. However, if a non-compatible {nonconforming) element can
pass a test, called patch test, the finite element solution will still tend to the correct
answer when the size of elements tends to be small and the element mesh of a
structure becomes very fine. The detail discussion of non-compatible elements is
beyond this book and is referred to the literature [1.22].

The patch test was first introduced by Irons [1.23]. To do a "patch test", one
assembles a small number of elements into a "patch”. The meshes suitable for patch
test calculations in 2-D patch are shown in figure 6. Then, the nodal forces
corresponding to a series of constant stress states are applied to boundary nodes of
the patch. If, computed stresses in the element always agree with expectation, the
patch test is passed. If an element passes the patch test, the solution of the finite
element model using this type of element will converge to a correct result. Today,
the patch test serves as a necessary and sufficient condition for correct convergence
of a finite element formulation.

|

Figure 6 The element meshes for patch test

Isoparametric Elements and Numerical Integration

Isoparametric elements first appeared in the literature in 1966 [1.24]. In the
displacement finite element, there are two entities that need to be approximated. The
first is physical (the displacement field) and the second is geometrical (the shape of
the element). Therefore, it must be decided whether to approximate physics and
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geometry equally or to give preference to one or the other in the element. For
isoparametric displacement elements, both element geometric shape and displacement
interpolation polynomial are required to be mapped from the global coordinate
system to the parametric coordinate system (see figure 7a and b). The term
"isoparametric”, meaning "same parameters”, follows from use of the same
interpolation polynomial to define both the geometry and the displacement field of
an element. Thus, the coordinates of a point within an element and the displacement
of the element can be expressed in the same form,

A

2 51 1(LY)
6 8, ¢
3(4-1) 7 4

Parametric space

Figure 7a Two-dimensional isoparametric element
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5,8/ 20 5(l,

Parametric space
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Figure 7b Three-dimensional isoparametric element

X=§N1(E,T|,C)Xi y=§Ni(€lﬂlc)y‘i z=§Ni(ElnIC) Z,

u=§Nz(Erﬂlc) u; V=§Ni(€,n.€) vy WzéNi(Erﬂlc) Wy

15

(1-19)
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Equation (1-19) allows elements with curved sides because the element
sides are fitted between the nodes. In standard-type element formulation, this is not
possible because the element sides are always straight regardless of any mid-nodes.
The shape functions N, for various elements can be found in the literature [1.25]. For
examples, in two dimensional problem, the shape functions of a linear element (see
figure 8) are

»
>

2 L)

v
N

3 (-1-1) 4

(a) Linear element

n
A
2 5| (L1
6 B¢
I(-L-1) 7 ¢

(b) Quadratic element

Figure 8 Two-dimensional elements
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1-20
W= (1+8,) (14my) o

in which,
. 1-21
Eo=EiE T\o:ﬂjﬂ (-1-:1’2:3,4) ( )

where &, and m, are the local co-ordinates of node i in the element parametric space.
The shape functions of a quadratic element (see figure 8) in two dimensional
problem are

Nf% (1+E,) (1+n,) (E,+n,-1) Ein3

+5 (1-€9) (14n,) (1-ED) n] (22
+2(1-n2) (1+&,) (1-n}) €3
in which,
§,=8:& mMyenim  (i=1,2,...,8) (1-23)

In three dimensional problem, the shape functions of a linear element (see
figure 9) are

Nf% (1+Ey) (1+m,) (1+¢,) (1-24)

in which,

§o=8:8 mo=nan (o=Ci{ (i=1,2,...,8) (1-25)

where &, 1, and { are the local co-ordinates of node i in the element parametric
space. The shape functions of a quadratic element (see figure 9) are
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3 2{-1, 1, 1)
o, -t 1) !
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{a) Linear element
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A
3 (10 2{-1, 4, 1)
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¢ Aa/ 20 51 i.-l)

(b) Quadratic element

Figure 9 Three-dimensional elements

Ny= (1+80) (1415) (1+0,) (Eg*n+Ce-2) EnCE
+2 (1-67) (L4mg) (1+8,) (1-ED nicd
+ 2 (1) (14,) (1+E) (1-nd) ¢33 (29
+2(1-02) (1+8,) (1+ng) (1-{) Eind

i
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in which,

E,=E,E mo=nm {,=C:{ (i=1,2,...,20)

(1-27)

In order to perform the evaluation of isoparametric element matrices, a
coordinate transformation of derivatives is required because the displacements are
given in terms of parametric coordinates & m, and {. Therefore, the Jacobian
matrices must be calculated. For two dimensional problem, the jacobian matrix is

x 3y
ot dg
= 1-28
[J] ax Oy (1-28)
on dn
The derivatives of displacements are written in the form
du; du;
0x 3
—[I1 =1, 2 (1-29)
|7 o, (i=1,2)
dy on

The element stiffness matrix is

(K] ~[ [B171C] (8] tdxdy=[" [* (B17(C] [Bldet[J] tkdn  (1-30)

where t is the thickness of the element. For three dimensional problem, the Jacobian
matrix is

x 3y oz
E OE OF
lox ay oz (1-31)
(9153 o on
ox dy 0z
4 4
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and the transformation of derivatives and stiffness matrix is similar to the two
dimensional case. The integral in equation (1-30) is evaluated numerically using
Gauss quadrature. Sampling points are required to evaluate integrals numerically by
using Gauss quadrature. The number of sampling points used to evaluate element
integrals is given in Table 1.

Table 1 Two-dimensional Gauss quadrature order

Number of nodes | Element shape Reliable Gauss | Reduced order
quadrature order
4 E x ¥ Same
2x2
A X
s | vy | [
3x3
A X XK
o | g7 | [HE
4x4

1.4 DISPLACEMENT ELEMENT FORMULATION

As mentioned above, there are three classes of displacement finite elements
for the analysis of composite structures: laminated elements, 3-D solid elements, and
multilayer elements. The element matrices and equations of these elements can be
obtained by using equations (1-6) and (1-7).

Laminated Plate/Shell Element

One way to derive element formulation for the behaviour of plate/shell is
to apply specific kinematic constraints to the full three-dimensional elasticity
equations. This 'degeneration’ of the three-dimensional elasticity equations is the
basis for many plate/shell formulations. Based on the kinematic assumptions, the
number of displacement parameters through the thickness can be significantly
reduced compared to 3-D modelling.
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A 4-node degenerated plate element (see figure 10a) is presented as follows.
Firstly, the global co-ordinates (x,y,z) of any point within the element can be
expressed in the form specified by the 'vector' connecting the upper and lower points
(see figure 10b) and the mid-surface co-ordinates as

4 1 4 4
z}=zNi(E'n) zi +EN"(E'n)h" 2V (1-32)

1=1 1=1

(a) (b)

Figure 10 A degenerated plate/shell element

where

(1-33)

and

By=(XypX15) 4+ (V10 V 15) 2+ (250~ 245) 2 (1-34)

The N,(§,n) are shape functions, & and 1 are the normalized curvilinear co-ordinates
in the middle plane of the plate/shell, { is a linear co-ordinate in the thickness
direction and only approximately normal to the mid-surface initially, and (x,, y,
z, ) are the global co-ordinates at node i. The shape functions are
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1-35
Ny=3 (1+8g) (1+1,) (139

in which,
Eo=E:E me=mim  (i=1,2,3,4) (1-36)

In the element, the displacement field is assumed as a continuous field
through the entire laminate thickness. It is also assumed that a line that is straight
and normal to the middle surface before deformation is still straight, but not
necessarily 'mormal’ to the middle surface after deformation. The displacement
throughout the element will be uniquely defined by three Cartesian components (x;,
v, and w,) of the displacement of the mid-surface node i, two rotations (a,; and
a,; ) of the nodal vector Vs about orthogonal directions normal to it, and one
transverse normal deformation ( a,; ) in the thickness direction.

il h Bxi| 0 1-37
w vt 2L 1V, -V 01y iCI0 0 g0y U7
Wy 0 821

in which, V, V,, and V; are the unit vectors of the local co-ordinate & m, O at
node i. They can be calculated as follows:

o XV i

Vi =y = Vas={ait=VyyxXVyy (1-38)
| HxVay .
1i i

If i x V, =0, i can be replaced by j. Thus, the displacement field is

U a u; c lli —12.1'. 13.i a, ;
s =Z NyjVip+—> Byl ~Mai Moy (1-39)
=W ny; ~ny; ny|@s

They can be rewritten in the form
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u 4 uy = 4
{1;’}:2 N; {Vi}+c [b;] {aﬂH= [N] .8, (1-40)
i=1 W.i az_i 1i=1

where

bll.i blzi bl3i
[b;]=|bay; baz; by =—2£ [Vig ~Vay Vy,l (1-41)
b3li b32i b33-7:

8,=[u; v; w; a, dy; @y] 7 (1-42)

N; 0 0 Ni{by,; Ny{b,,; N,{b,,;

(1-43)
[N];={0 N; O N;{b,; N;{by; Ni{b,,;
0 0 N; Ni{by,; Ni{b;,; Nyi{b,,,
The strains are
{ _@E 3
ox
v
oy
Q+iv 51
€= a;%_wax ' = (B8, = [B.B,B,5, " (1-44)
0z o,
v, ow
0z gy
ow, du
|0x 9z
where vecotr §, is shown in equation (1-42),
cix=Ni,xc+Nic,x
ciy=N_i,yc+Nic ¥ (1-45)

c.lz'—'Ni,zc-'-Nic:z
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and
Nix O 0 b,;;Cix
0 N;, O by1:Ciy
Niy Njx O DBy1;C;,+th5;:Cix
[Bi] =

0 0 N, by14Cix
0 N, Njy DpiCiptbsiiCiy

Nij,z O Nj,x D3y;Cixtby1;Ciz

(1-46)
by3:Cix b,3;Cix
by21Cyy by3iCiy
D,2:Ciy*Ba2:Cix D131C1y+D23:Cix
by,;Ciy by3;Cyx

by31C15+D325Cyy D23 1Cix*D331Cy
D32iCixtD125Ci; D33iCixtDi13:Cix

In order to calculate N;,, N, , N;, and {,, €, {, , the following vectors are
introduced:

¢ 3By 1-47)
={V,¢ =2Ni,e i +71CV31 (

Zg) I Z;

- i By (1-48)
T= M =2Ni,q i +_2£cvai

Z i=1 Z .

l" 1

Al & by 1-49
V== Ni—zivu (1-49)

then, the Jacobian matrix is

[Ji=[s TV (1 - 50)
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[JT'=[TxV VxS SxT]/ ||

| 7| = sxT-V

i, *e Ve L i,x i,x
-ilﬂ =xlﬂ ylﬂ z:ﬂ i,y =[J’] i,y
i Xe Ve 2 i,z i,Z

Now

and

0 [8x nx €y, .

1,X J'IE J'IE
1,y =E:Y n:y c,yﬁi,ﬂ =[J-] = i,M
i (€, m, |0 Vi,

in which, N; = 0. So the expression (1-54) can be rewritten as

;; = [TxV Vx8] /IJI{IA\g":}

{éi} H

The stiffness matrix can be expressed in the form

and

1,1 p1
(K= [ [ 1BI"(717[C] 7] [B] det[J] dEanal

where

25
1-51

(1-52)

(1-53)

(1-54)

(1-55)

(1-56)

(1-57)
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12 m? 1,m n? m 1, n 1

7 m 1,m, ng m n,1,
21,1, 2mm, Limp+l,m 2n,n, mn,+men, nyly+n,l,

1§ m 1m nf mn n1, (1-58)
2131y 2mymy I my+lamy 21,0, myny+man, mpli+n,l,
2131, 2mym, I,m,+1,my 20,0, myn+myng nyli+n, 1)

[T] =

[T] is the transformation matrix for the derivatives of displacements from
global co-ordinate (x, y, z) to local co-ordinate. The direction cosines of the local
co-ordinates are

4
1, Z:Nivai
V,={ft, =25t (1-59)

4
3
Y N;Vyy
i=1

1,

‘Zl
xV,
= X3 =i =VyxV,

= =_""3 (1-60)
Vi i [LxVy|

This element is known to have locking' problems due to inconsistencies in
the modelling of transverse shear energy and membrane energy [1.26-1.27]. The
locking can be avoided by using reduced integration [1.26]. Although the reduced
integration solution is the most economical way, the process allows some elements
to exhibit spurious displacement modes. In the element proposed by Barboni and
Gaudenzi [1.28], the displacement components of a higher-order element are
expanded in power series along the thickness direction. This element is found to be
less sensitive to locking. In general, the higher-order elements [1.29-1.30} are less
prone to membrane and shear locking problems. However, the transverse strains will
be continuous across the interlaminar surface in the higher-order elements. Thus,
discontinuous transverse stresses will be obtained after multiplication of
discontinuous material properties. This is the main drawback of the general higher-
order plate theories for analysis of composite structures.
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Laminated Solid Element

A special 3-D, 20-node laminated element (see in Figure 11) was developed
by Hoa et al [1.31-1.34] based on the equivalent single-layer theory [1.3]. Each
element contains all of the layers in the thickness of the composite structure which
is assumed to be in a three dimensional stress state. In the element, the displacement
field is assumed over the entire thickness,

u=[N(§,n.,{)18, (1-61)

Figure 11 20-node finite element

where
8, =083, ... 820 ]T (1-62)
§=[uyvw]" ad u=[uvw] (1-63)
[Nl =1 [N]l [N]2 ~~~~~~ [N]zo ] (1 - 64)
N,
=| N (1-65)
N,

With the origin of the co-ordinates at the centroid as in Figure 11, the N, is
expressed in the equation (1-26). The linear strain-displacement equations are
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_du du, ov
& ax Yo gyt ox
_ov av ow
iy Yy (1-69

_dw aw, du
oz Y= 5x "oz

Equation (1-66) can be put in the form:

le, €y €z Vyz Yxz ny] T=[BGI [8, 8, ... ... 820l i (1-67)

In the local co-ordinate Eng system, the elastic constant matrix [C'] can be
obtained from the matrix [C] which is in the material co-ordinate system. For ease
in integration and assembly, it is necessary to express the local co-ordinate strains
€' in terms of the global nodal displacements 8. They are obtained from

[ ou’ av! ow'| du dv Ow
ax! ox! ox! 9x Ix Ix
du’ av/ aw!|_ . .r|0u dv ow
ay! ay! ay"“‘] ay I oy|! (1-68)
du’ ov/ ow Gu dv ow
3 32! o 0z 3 0=
where
Ll=[V,V,V;] (1-69

V., V, and V, are three unit normal vectors at a point P based on the direction  as
a reference. The local co-ordinate strains can be written as

o/ =0u’ v/ a_ul v/

* ax! = oyl ox!

_ov/ v’ ow! }
¢y (1-70)
o el

¥ 9z' = ax! ozl

Above equation can be put in matrix notation as,
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(1-71)
e/61f1= [BF] 6x6069
Now the element stiffness matrix can be evaluated as
[K] e=f+1f+1f+1[BF] T[C/] [BF]det[J] dEdﬂdC (1-72)
-1d-1d-1

where [C'] is the material constant matrix in the local co-ordinate system. The
integral is evaluated by Gauss quadrature numerical integration. However, the
elasticity matrix [C'] is different from layer to layer and is not a continuous function
of {. The thickness concept is utilized in defining the elastic properties of an
individual layer to obtain the stiffness coefficients for the entire element [1.32]. This
can been achieved by splitting the integration limits through each layer. The change
of variable { is

k
c=—1+_}5 [-h (1-8,) +2Y Byl (1-73)
=1
and
h
4 =(—§)de (1-74)

where t = the overall thickness of composite structure, and hj = the thickness of the
j-th layer. Thus, the {, varies from -1 to +1 in any k-th layer and the known
coefficients of the Gaussian quadrature formula can be applied. The element stiffness
matrix takes the form

D pLlpel pal h
= T / __.k -
[K], Zﬂ: [ [ [ 1BFI7Ic] [BFldet [9] “XdEdndl, (1-75)
where n is the total number of layers within the composite structure.

3-D Solid Element

If the displacement field (eq. 1-61) is defined within a layer of laminated
composites, the laminated element formulation above becomes a 3-D solid element.
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The element stiffness matrix is expressed in the form,

+1 p+1 p+1
1] °=f—1 f—l f—l [BF]T[C'] [BF]det [J] dEdnd{ (1-76)

Usually 3-D solid elements are used to investigate the local effects in
composite structures [1.9-1.10, 1.35-1.39]. One of the earliest attempts to use a 3-D
solid element for the analysis of laminates appeared in [1.9]. For the analysis of the
free-edge effect, Lucking and Hoa [1.40-1.41] used 3-D, 20-node solid elements to
analyze the cross-ply laminate with a circular hole. Later investigations showed that
many elements are required through the thickness of one layer to obtain accurate
results. Barker et al [1.35-1.36] concluded that three linear elements were sufficient
when the free-edge effect is studied. Other researchers found that two, or even three
20-node brick elements were required through the thickness of one layer in order to
obtain accurate results[1.42].

Multilayer Element

Multilayer elements [1.43-1.50] can be derived based on 3-D continuum
theories. Robbins and Reddy [1.51] proposed multilayer elements with separable
interpolation functions. In these elements, it is assumed that the displacements,
material properties and element geometry can be approximated by a sum of
conveniently separable interpolation functions (i.e. each individual 3-D interpolation
function can be written as the product of a 2-D interpolation function and a 1-D
interpolation function). The transverse strains are assumed as a piecewise continuous
distribution through the laminate thickness. The displacement field is expressed in
the form,

u(x,y,z) =Yy, U;(x,y) H;(2)
j1

v(x,y,2) =Y, V;(x,y) H;(2) (1-77)

j=1

W(XIYI z) =E Wj (XI.Y) Hj (z)
E=d

where (U; , V;, W; ) denote the nodal values of (u, v, w), n is the number of nodes
through thickness and H; are the global interpolation functions for the discretization
of the displacements through thickness. For quadratic variation through each
numerical layer (shown in figure 12), the number of subdivisions through thickness
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will be equal to N, = ( n-1)/2 and the functions H(z) are given below:

» 9 [
4 41-5
/'_—""_ b 2~
S :
b /t/> ;_N'_1° b
S IR : .
p /‘/b ¢ 9 12
P P —_— !l
] /t/> 1
b~ ¢ 1 <

Figure 12 Multilayer element with quadratic variation
through each numerical layer

Hye o (2) =G® (2)

(1-78)
Hye(2) =G9 (2) Zyp 1 SZ<Zgp.,
Hypiy (2) =G3(k) (2)
and
G™M=(1- Z)(l——- =-{(1-0) /2
(k) _ Z z
Gy =4 (1 ) (1+{) (1-¢) (1-79)

<k>=_2 1—33 =L (1+{) /2
G hx( hx) §(1+0)/

where (k=1, 2,3, .., N,), N=(n-1)/2, h, is the thickness of the k-th layer, z =
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z - z,*, and z,* denotes the z-coordinate of bottom of the k-th numerical layer.
Furthermore, the displacement can be written as follows,

n 8

= Uy N (&, ) H; (D)

=

<

P
.
P

]

8
v= Ev N; (§,m) H;(Q)

.

U]
[\
|~l
|.A

(1-80)

¥
s
-

.
"
[t
[
L)
[y

Wiy Ny (§,n) Hy ()

where N; is the shape function and its expression is

N —— (1+E ) (1+ﬂo) (Eo+no—1) 51’]1
5 (1—52) (1+n,) (1-EDn3 (1-81)
+2(1-n2) (1+&,) (1-nD €

in which,

§,=E;& my=n;m (i=1,2,...,8) (1-82)

where & and m, are the local co-ordinate of node i in the element parametric space.
The global co-ordinates (x,y,z) of any point within the element can be written to
interpolate the local co-ordinates (§, 1, {) in order to map the element geometric
shape,

8
xeN(En)

i=1

8
y=Y, ¥; N;(€,n) (1-83)
=

z=Y z; H;({)
=
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The linear strains associated with the displacement field above are

n
€y=3, 3, Viy Ny, H; (1-84)

n
Yo=Y, Y, (U Nip Hy+Vyy Nj o Hy)

2 8 (1-85)
You=3, X, (Vg N Hy o+ Wiy Ny Hy)

Yee=), ), (Uyy Ny Hy +Wiy N; o Hy)

i,x *5

)
[
P
R
]
R

Note that the strains are generally discontinuous at the layer interfaces because of
the layerwise definition of the functions H; . The strain matrix is

d
au, v Ao
e Y, O muareB. B B~
ow (IBHA}®=B;z Biz«««««Bigly . (1-86)

ov ., ow] Asy
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in which,
51_1
2
[Bij]A157[P1; Dajev v by} - (1-87)
6,_.,
and
[N;,2; 0 0
0 N H; 0
b ]_Ni.ij N;.H;y O 5 _gij
317 137Y' 1 1-88
ij 0 0 NiHj,z J Wij ( )
0 NiHj.z Ni,ij
N;H; . 0 Ny Hj

where i=1,2,....,.8 and j=1, 2, ..., n. In order to calculate Ni,, Ni_y and ijz , the
following vectors are introduced:

8
G Eng)

X e X,
={yl ﬂ} :E N_i, q{yi} (1-90)

M) i=1
then
| 7] =1 sxTI (1-91)
[J] 2= Y "Y.E/lJl (1-92)
Xn X

Because
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{Nj,£}= i Y,:{Ni,x}=[ﬂ {Ni,x} (1-93)
Nif |%,q ¥,q|P2, Ny,
and
Nilx - -1 NiIE -
fuof= 197 -9

in the thickness direction, one has

3
_ 1-
Z,;=Y, Hj (Z; (1-95)
=
_dz .
Hj,C‘Tch.z (1-96)
dz\™1
Hj,z:(?{c‘) Hj¢ (1-97)

The stiffness matrix can be obtained using following formulations,

[K] o=y, [B] (D] [Bl dV (1-98)
where
[BI1*[D] [B] =[B;;B;z- « - Bigl *[D] [By;B;3+ « . Byl
BiDB;, BiiD,B;,  BjiD,B;, 0 0 0
BigD:.B.-u Bi§D1Bn 3501513 0 0 0
BjsD\By, BisDiBy; Bi3(Di+D;) By BiSD;By,  BiD;Bs 0
=l o 0 BiDB;y  BiDBy,  BiDBis 0 (1-99)
0 Y BisD,B;;  BisDyBy, Bis(Dy+Dy) By .
0 0 0 0
0 0 0 0 . + BipDy B;n

In which, [ D, ] is the material stiffness matrix of the k-th subdivision in the
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thickness of laminated composites.

1.5 ADVANTAGES AND DISADVANTAGES OF
DISPLACEMENT FINITE ELEMENTS

The majority of finite elements used for stress analysis of laminated
composites is based on the displacement formulation. This is due to. the simple
approach to the element formulation provided by the displacement model.

In the displacement finite element method, the displacement functions are
assumed a priori. The finite element process first calculates the displacements
(primary variables) at the nodes of the elements. The displacement field is then
obtained from these nodal displacements. The strains and stresses (second quantities),
which are more important for design purposes, are calculated by numerically
differentiating the approximate solutions, thereby introducing additional errors. For
stress analysis of homogeneous materials, the displacement finite element method
can provide accurate results efficiently. However, for laminated composites, due to
large stress gradients in the transverse directions, large computer space is usually
required if displacement finite element method is used.

In developing finite elements for stress analysis of laminated composites,
the main requirement is to satisfy the continuity conditions on displacements and
transverse stresses at interlaminar surfaces, and traction-free condition on the upper
and/or lower surfaces. The displacement element models can not satisfy these
conditions well because the stresses are the second quantities which are calculated
from approximate displacements by using numerical differentiation.

For laminated composites, the interface between layers are usually locations
of large gradients of stresses and strains due to discontinuity in material properties
as one moves from one layer to the next one. The use of displacement elements
requires fine element mesh and extensive amount of computer space and time to be
able to determine stresses and strains with any degree of accuracy. This is because
of the fact that the convergence of displacement finite element model for problems
with large gradients of stresses is slow. This excessive requirement of computer
resources has been a deterrent to accurate and efficient stress calculation in laminated
composites.

1.6 MOTIVATION FOR DEVELOPING HYBRID FINITE
ELEMENTS

For laminated composites, the problem of delamination has been a great
concern for designers and researchers from day one. Designers and stress analysts
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have been working on this problem for the past thirty years. Many numerical
techniques have been proposed, and the majority of them has been using finite
element method. However, until the present time, the problem has not been resolved
satisfactorily. The main difficulty is in the efficiency in obtaining transverse stresses
accurately. Without efficient means to obtain accurate transverse stresses, it is
difficult to predict interlaminar failure.

The development of hybrid elements is motivated by attempts to overcome
the disadvantages of displacement elements in order to provide an efficient and
accurate method for stress analysis of laminated composites. The hybrid stress finite
element formulation assumes the stresses as the independent variables at the outset.
Therefore, the degree of accuracy of the stress is the same as the degree of accuracy
of the displacement. This is due to the fact that the stresses are obtained directly
from the process of minimization and without having to go through the
differentiation of the displacements. This is the inherent advantage of the hybrid
finite element method. Furthermore, the hybrid elements can exactly satisfy the
continuity conditions on displacements and stresses at interlaminar surfaces of
laminated composites and the finite element model using these elements can
efficiently provide accurate transverse stresses.

REFERENCES

1.1 AK. Noor, 'Mechanics of anisotropic plates and shells-a new look at an old subject’, Computers &
Structures, vol. 44, no.3, 499-514(1992).

1.2 J.N. Reddy & D.H. Robbins Jr., 'Theories and computational models for composite laminates', Appl.
Mech. Rev., vol. 47, no. 6, part 1, 147-169(1994).

1.3 A.K. Noor and W.S. Burton, 'Assessment of shear deformation theories for multilayered composite
plates’, Appl. Mech. Rev., vol. 42, no. 1, 1-9(1989).

1.4 E. Reissner and Y. Stavsky, '‘Bending and stretching of certain types of heterogeneous aeroisotropic
elastic plates', J. Appl. Mech. ASME, 28, 402-408(1961).

1.5 K.H. Lo, R.M. Christensen and E.M.Wu, 'A higher-order theory of plate deformation: Part 1,
Homogeneous plates; Part 2, Laminated plates’, J. Appl. Mech. ASME, 44, 663-676(1977).

1.6 J.N. Reddy, 'A simple higher-order theory for laminated composite plates', J. Appl. Mech. ASME,
51,745-752(1984).

1.7 J.N. Reddy, 'A refined nonlinear theory of plates with transverse shear deformation', Int. J. Solids
Struct., 20, 881-896(1984).

1.8 J.M. Whitney and C.T. Sun, 'A higher order theory for extensional motion of laminated composites',
J. Sound Vib., vol. 30, 85-97(1973).

1.9 EF. Rybicki, 'Approximate three-dimensional solution for symmetric laminates under in-plane

loading’, J. Compo. Mater., vol. 5, p354(1971).

1.10 L.B. Lessard, M.M. Shokrieh & A.S. Schmidt, '3-D stress analysis of composite plates with or
without stress concentrations', Composites Modelling and Processing Science, III, ICCM/9, Ed.
Antonio Miravete, Woodhead Publishing Limited, (1993).

1.11 R.M. Barker, F.T. Lin and J.R. Dana, '3-D finite element analysis of laminated composites’,
Computers & Structures, vol.2, 1013-1029(1972).

1.12 M. Epstein and H.P.Huttelmaier, 'A finite element formulation for multilayered and thick plates’,
Comp. Struct., 16, 645-650(1983).

1.13 S.T. Mauy, P. Tong and T.H.H. Pian, 'Finite element solutions for laminated thick plates’, J.



38 STRESS ANALYSIS OF COMPOSITES

Composite Materials, vol.6, 304-311(1972).

1.14 R.L. Spilker, S.C. Chou and O. Orringer, 'Alternate hybrid-stress elements for analysis of multilayer
composite plates', J. Composite Materials, vol.11, 51-70(1977).

1.15 R L. Spilker, ‘A hybrid stress finite element formulation for thick multilayer laminates', Computers
& Structures, vol. 11, 507-514(1980).

1.16 R.L. Spilker, 'Hybrid-stress eight-node elements for thin and thick multilayer laminated plates', Int.
J. Numer. Methods Engrg, vol.18, 801-828(1982).

1.17 W.-J. Liou & C.T. Sun, 'A three dimensional hybrid stress isoparametric element for the analysis of
laminated composited plates', Computers & Structures, vol. 25, no. 2, 241-249(1987).

1.18 S.W. Tasi and H.T. Hahn, Introduction to Composite Materials, Technomic, 1980.

1.19 R.M. Jones, Mechanics of Composite Materials, McGraw-Hill, New York, 1975.

1.20 S.V. Hoa, Analysis for Design of Fiber Reinforced Plastic Vessels and Pipings, Technomic, 1991.

1.21 T.H.H. Pian, 'Variational principles for finite element methods in solid mechanics', ed. Z.-M. Zheng,
Applied Mechanics, International Academic Publishers, Beijing, 34-42(1989).

1.22 O.C. Zienkiewicz, The Finite Element Method, 3rd Ed., Mcgraw-Hill, New York, 1977.

1.23 B. Irons and M. Loikkanen, 'An engineers'defence of the patch test, Int. J. Numer. Methods Eng.,
vol.19, 1391-1401(1983).

1.24 B.M. Irons, 'Engineering applications of numerical integration in stiffness methods', AIAA J., vol.
4, 2035-2037(1966).

1.25 R.D. Cook, 'Finite elements based on displacement fields', in Finite Element Handbook, eds., H.
Kardestuncer and D.H. Norrie, McGraw-Hill, New York, 1987.

1.26 O.C. Zienkiewicz, R.L. Taylor and J.M. Too, 'Reduced integration techniques in general analysis of
plates and shells', Int. J. Numer. Methods Eng., 3, 275-290(1971).

1.27 T. Belytschko, C.S. Tsay and W.K. Liu, ‘A stabilization matrix for the bi-linear Mindlin plate
element’, Comp. Methods Appl. Mech. Eng., 29, 313-327(1981).

1.28 R. Barboni and P. Gaudenzi, 'Higher order finite element analysis of laminated composites', Proc.
7th Int. Conf. on Composite Materials, eds.,Y.-S. Wu, Z.-L. Gu, and R.-J. Wu, Academic Press,
Beijing, 1989.

1.29 P.R. Heyliger and J.N.Reddy, 'A higher-order beam finite-element for bending and vibration
problems', J. Sound Vib., 126,309-326(1988).

1.30 1.N. Reddy, 'A simple higher-order theory for laminated composite plates’, J. Appl. Mech., vol. 51,
745-752(1984).

1.31 S.V. Hoa, C.W. Yu and T.S. Sankar, 'Analysis of filament wound vessel using finite elements',
Composite Structures, vol. 3, 1-18(1985).

1.32 R. Natarajan, S.V. Hoa and T.S. Sankar, 'Stress analysis of filament wound tanks using 3-D finite
elements’, Int. J. Numer. Methods Engrg, vol. 23, 623-633(1986).

1.33 S.V. Hoa, B.H. Journeaux and L. Di Lalla, '‘Computer aided design for composite structures', Proc.
7th Int. Conf. on Composite Materials, (eds. Y-S. Wu et al.), 383- 390(1989).

1.34 J. Daoust, Interlaminar Stresses in Tapered Laminates, Ph. D. Thesis, Concordia University,
Montreal, Quebec, Canada, 1989.

1.35 R.M. Barker, F.T. Lin and J.R. Dana, 'Three-dimensional finite element analysis of laminated
composites’, Computers & Structures, vol. 2, 1013-1029.

1.36 R.M. Barker, J.R. Dana and C.W. Pryor, 'Stress concentrations near holes in laminates', J. Eng.
Mech. Div., ASME, 477-488(1974).

1.37 D. Van Gemert and F. Norree, 'Finite element analysis of interlaminar stress singularities at a free
edge in composite laminates', Computer Aided Design in Composite Material Technology, eds. C.A.
Brebbia, et al., 1988.

1.38 M.S. Weinmann, G. Steinmetz, F.J. Arendts and C. Hansel, 'Numerical and experimental 3-D
delamination behaviour of an anisotropic layered plate under compression loading', Composites
Properties and Applications, ICCM/9, ed. A. Miravete, Woodhead Publishing Limited, 1993.

1.39 C.D. Maydom, A.C. Grag and M.L. Scott, 'Finite element analysis of terminating plies in advanced
fibre composite panels', Advanced Composites '93, eds. T. Chandra and A K. Dhingra, The Minerals,
Metals and Materials Society, 1993.



INTRODUCTION 39

1.40 W.M. Lucking, Analysis of Edge Problems in Statically-Loaded Fiber-reinforced Laminated Plates
by Linear Elastic Theory, Ph. D. Thesis, Concordia University, Montreal, Quebec, Canada, 1989.

1.41 W.M. Lucking, S.V. Hoa and T.S. Sankar, 'The effect of geometry on interlaminar stresses of [0/90]s
composite laminates with circular holes', J. Composite Materials, vol.17, 188-198(1984).

1.42 O. Hayden Griffin, Jr. 'The use of computers in the evaluation of three dimensional stress effects in
composite materials products', Composite Material Design and Analysis, eds., W.P.de Wilde and
W.R.Blain, Springer-Verlag, (1990).

1.43 S. Srinivas, 'A refined analysis of composite laminates', J. Sound & Vib., vol.30, no.4, 495-
507(1973).

1.44 M. Di Sciuva, 'An improved shear-deformation theory for moderately thick multilayered anisotropic
shells and plates', J. Appl. Mech., vol. 54, 589-596(1987).

1.45 D.R.J. Owen & Z.H. Li, 'A refined analysis of laminated plates by finite element displacement
methods - I. fundamental and static analysis', Computers & Structures, vol.26, no. 6, 907-914(1987).

1.46 K. Bhaskar & T K. Varadan, 'Refinement of higher-order laminated plate theories', AIAA ], vol. 27,
no. 12, 1830-1832(1989).

1.47 C.-Y. Lee, D. Liu, and X.Q. Lu, 'Static and vibration analysis of laminated composite beams with
an interlaminar shear stress continuity theory', Int. J. Numer. Methods Eng., vol. 33, 409-424(1992).

1.48 C.Y. Lee and D. Liu, 'An interlaminar stress continuity theory for laminated composite analysis',
Computers & Structures, vol.42, no.1, 69-78(1992).

1.49 A.V.K. Murty and S. Vellaichamy, 'Finite element estimation of interlaminar stresses in laminated
composite', Computer Aided Design in Composite Material Technology, eds., C.A.Brebbia, W.P.de
Wilde and W.R. Blain, Springer-verlag, (1988).

1.50 S. Botello, E. Onate and J. Miquel, 'A layer wise finite element model for analysis of composite
plates and shells’, Composite Modelling and Processing Science, vol. II, ICCM/9, ed. A. Miravete,
Woodhea Publishing Limited, 1993.

1.51 D.H. Robbins, Jr. and J.N. Reddy, 'Modelling of thick composites using a layer-wise laminate
theory', Int. J. Numer. Methods Eng., vol.36, 655-677(1993).



Chapter 2

THE HYBRID FINITE ELEMENT
METHOD

2.1 INTRODUCTION

In structural and solid mechanics, finite element practice was based
primarily on single-field formulations of element properties [2.1-2.7] in the early
1960s. During this period, two major types of finite elements developed were the
compatible element and the equilibrium element based, respectively, on the
principles of minimum potential energy and complementary energy. For compatible
finite element model, the assumed displacements are compatible both within the
element and along the interelement boundary. For equilibrium finite element model,
the stresses are equilibrating within the element and the tractions are balancing along
the interelement boundary. These single-field finite element models provide the
simplest approaches to the element formulation. However, in the compatible model,
the primary variables (displacements) are first computed and then second quantities
(stresses), which are more important for design purposes, are calculated by
numerically differentiating the approximate solutions. The numerical differentiation
results in additional errors. On the other hand, the equilibrium models have found
limited use in general-purpose computer codes because they behave as mechanisms
without a judicious choice of basis functions. Therefore, multifield finite elements
have been developed to overcome the shortcomings of the single-field finite
elements. In 1964, a multifield finite element was formulated first by Pian {2.8-2.9]
by using Lagrange multipliers to enforce the constraint conditions along the
interelement boundary.

Since 1964, a great number of multifield finite elements have been
presented and a number of hybrid and mixed element models have been proposed
[2.10-2.14]. Most of these are based on the character of the variational principle and
the constraints used in the element development. For example, the mixed element
was defined as the element which is based on a multifield variational functional, and
the hybrid element was defined as the element which is based on the introduction
of Lagrange multipliers to enforce the constraint conditions along the inter-element
boundary. However, under this definition, these two types of element are not
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mutually exclusive. Therefore, the terms kybrid and mixed were to be redefined. In
order to make hybrid and mixed elements mutually exclusive, later on, the definition
is placed on the character of the variational principle and the nature of the resulting
discrete algebraic equations. Thus, the term mixed element is defined as the one
which is formulated by multifield variational functional and contains more than one
field variable in the resulting matrix equations; the term hybrid element is defined
as the one which is formulated by multifield variational functional, yet the resulting
matrix equations consist of only the nodal values of displacements as unknown.
Today, this definition has become popular and many authors use it to classify the
multifield finite elements [2.15-2.18]. In this book, the term hybrid element is used
under this definition. In governing equations, only displacements appear.

For analysis of composite structures, the majority of finite element analysis
still uses single-field displacement elements. This is due to the simplicity in element
formulation provided by displacement finite element model. It is also due to the
availability of many commercial finite element codes. However, the single-field
displacement finite elements suffer from inefficiency in analysis of composite
structures. The disadvantages of the single-field displacement element have been
discussed in the section 1.5, chapter 1. In order to overcome these disadvantages, as
an alternate, the hybrid elements {2.19-2.22] have drawn more and more attention
from engineers and designers of composite structures.

A hybrid element can be formulated by many different techniques. Although
most of the successful finite elements were initially based on intuitive insight rather
than rigorous variational principles, researchers are always keen on devising
variational bases for the new clements. Variational bases are considered to be
important not only for legitimacy but also for the confidence of the element users.
Therefore, in this book, variational principles will be used to formulate hybrid finite
elements. In this chapter, we will firstly introduce a few new variational functionals,
and then, they will be used to formulate the hybrid finite elements.

2.2 FORMULATION OF THE VARIATIONAL FUNCTIONAL

In structural and solid mechanics, there are two basic variational principles:
the principle of minimum potential energy and the principle of minimum
complementary energy. They can be derived from the principle of virtual work [2.23-
2.24]. As mentioned above, the compatible elements are derived from the principle
of minimum potential energy, which has the equilibrium conditions and the traction
boundary conditions as its Euler equations, and the equilibrium elements are derived
from the principle of minimum complementary energy, which has the compatibility
equations and the displacement boundary conditions as its Euler equations. Due to
the fact that the two basic variational principles can be generalized by the
introduction of Lagrange multipliers to impose the constraint conditions, a lot of
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different finite elements can be developed. In an approximate solution, a generalized
variational principle corresponds to a relaxation such that the constraint conditions

are satisfied only in the variational sense. Now, let us describe an elasticity problem
first.

Elasticity Problem

Consider a linear elastic body under static loading. The body occupies the
volume V and is bounded by the surface S, which is decomposed into S: S,US,.
Displacements are prescribed on S, , whereas surface tractions are prescribed on
S, The outward unit normal on S is denoted by n. The following relations between

three fields: stress ¢ , strain €, and displacement u in the volume have to be
satisfied.

1. the strain-displacement equations:

2-1
e=Du @D
or
2-1)'
°u=%(ui.j+uj.i) in v b
in which,
' ;
5 0 0
d
> 0
d
.. 0 0
0o 9 @
dz oy
d d
2z 0 ox
Jd 0
o = O
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2. the stress-strain equations (constitutive equations):

o=[Cle or e=[Slo @-2)
or
01-_.,-=C_ijk18k1 in vV 22
and
OA(e) _ 0B(g) e
TG, 4 %% Tag, t4 @2y

in which, A(g) is the strain energy function, and B(oc) is the
complementary energy function.

3. the equilibrium equations:

2-3
D¥o=F @-3)

or

in which, F is the body force in V.

Moreover, there are two sets of boundary conditions for the displacement
field and stress field:

4. the traction boundary conditions:

2-4)
¢ ' n=T, and T,-=T
or
2-4)'
0;;n;=Ty; and T,;=T; on S, @9

in which, T is the prescribed surface force on S,.
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5. the displacement boundary conditions:

u=4d @-5)

or

u.=d. (2-5)

i i on Sd

in which, d is the prescribed displacement on S,.

Principle of Minimum Potential Energy
In order to present the variational principle, it is assumed that the strain
energy function A is a positive definite function of the strain components, and the

body forces and surface forces are derivable from potential functions Q(u) and ¥(u)
such that

-8Q (u) =F*8u 2-6)
-8% (u) =T*0u
Then, the principle of minimum potential energy [2.23] states

Among all the admissible displacement fields, the actual displacement field
makes the total potential energy

I-[ a(w) av-[ FTuav-[ r7u ds e2)

an absolute minimum, i.e., 8I1,=0.
In this principle, equations (2-1), (2-2), and (2-5) are constraint conditions

satisfied a priori, whereas equations (2-3) and (2-4) are Euler equations [2.24]. For
the linear elastic body, the strain energy function can be expressed as

Ae) =%c"[c‘] e 2-8)

It can be modified to
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Amh%wwﬁdww -8y

In which, [C] is the stiffness matrix of materials.
Principle of Minimum Complementary Energy

For the principle of minimum complementary energy, it is assumed that the
complementary energy function B is a positive definite function of the stress
components. The principle [2.23] states

Among all the admissible stress fields, the actual stress field makes the total
complementary energy

I [ B(e) dv- fs r7d ds 2-9)

an absolute minimum, i.e., 811 =0.

In this principle, equations (2-2), (2-3), and (2-4) are constraint conditions
satisfied a priori, whereas equations (2-1) and (2-5) are Euler equations [2.24]. For
the linear elastic body, the complementary energy function can be expressed in the
form

BWH%HWM 2-10)

where [S] is the material compliance matrix.
Generalized Variational Principles

The generalized variational principles can be derived from the principles of
minimum potential energy and minimum complementary energy. A systematic
procedure for the derivation is to impose the constraint conditions by introducing
Lagrange multipliers in the variational expression. For example, the strain-
displacement equations (2-1) and the displacement boundary conditions (2-5) are
constraint conditions satisfied a priori in the principle of minimum potential energy.
By means of introducing Lagrange multiplers q and p defined in V and S, a
generalized variational principle can be derived as follows:
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The actual solution can be given by the stationary conditions of the
functional I1, defined as

I[I=fv[A(c) ~g*(e-Du) -F%u) dV

@-11)
—f Ty ds—f p*(u-d)ds
S, 383
in which,
@7=1qy1 Ty D33 Tos Ta1 Do)
P*=1p, D, D5l 2-12)

In the functional (2-11), the Lagrange muitiplers q and p must be identified by
means of the stationary conditions.

The number of the independent quantities subject to variation in the
functional (2-11) are eighteen. These are six components in the strain g, three
components in the displacement u, six components in the Lagrange multiplers q and
three components in the Lagrange muitiplers p. By taking variations with respect to
these quantities and applying divergence theorem, the expression (2-11) becomes

0a ,
3L, = fv{( es, -g;,) de- (e-Du) T8 g- (D *q+F) "duldv 213

+ fﬁ[ (gn) -T] "duds- de(u—d) T8 pdS+ fsd[ (gn) -p] *duds
in which,

8 . ) (OB g ) (. o
('E; q_ij) [(aexx ) (asyy Qaz) - (aexy qlz)]

By means of the stationary conditions, the Lagrange multiplers q and p are identified
as follows,
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oA
Qi i==—=0
Y ooe;; M (2-14)
D;=d;;1

All equations: the strain-displacement relations (2-1), the equilibrium equations (2-3),
the traction boundary conditions (2-4), and the displacement boundary conditions (2-
5), are the Euler equations. Substituting equations (2-14) into the generalized
functional (2-11), a three-field variational principle ( u, €, 0 ) is resulted in

I,,- f [-%e"[c] -0 (e-Du) -FTu] dv
v (2-15)
-[ r*a ds- f X (u-d) ds

This generalized variational principle is well known as the Hu-Washizu
principle in structural and solid mechanics. In view of mathematics [2.24], the stress-
strain relations are constraint conditions in this variational principle because they are
used for identifying the Lagrange multiplers q in equations (2-14). However, in view
of the fact that the stresses O are used as the Lagrange multiplers at beginning and
they do not have to be identified, the stress-strain relations can be considered as the
Euler equations of the variational principle [2.25-2.26]. Therefore, the variational
principle (2-11) is a three-field variational principle ( u, €, q ) with the stress-strain
relations as constraint conditions satisfied a priori because of the fact that the
Lagrange multiplers q need to be identified, whereas the variational principle (2-15)
is a three-field variational principle ( u, € © ) without any constraint conditions.

By means of the stress-strain relations and divergence theorem, a two-field
variational principle ( u, 6 ) that is well known as the Hellinger-Reissner variational
principle [2.27-2.28] can be derived from the Hu-Washizu functional (2-15) through
eliminating the strain variable. Its expression can be written as

HIII=_fv[%°’[S] o+ (D%g) Tu+FTu) dV 216

—m T x
+ fs,(T" T) Ty ds+ fsdT"ddS

If the equilibrium equations (2-3) and the traction boundary conditions (2-4)
are satisfied, the functional (2-16) is reduced to the complementary energy functional
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(2-9). Moreover, by eliminating the stress variable in the three-field variational
functional (2-15), another two-field variational functional ( w, € ) is obtained as
follows [2.18,2.24],

L= [-2efICle+(Cle)(Du) -Ful dV

. 2-17)
—f pry ds—f 7T (u-d) ds
Sg Sq

The Hellinger-Reissner variational principle {2.27-2.28] can be also derived
from the principle of minimum complementary energy if the conditions of stress
equilibrium are introduced as a posteriori constraint condition using Lagrange
multiplers. Based on the Hellinger-Reissner variational principle, another three-field
variational principle ( u, €, ¢ ) can be derived by high-order Lagrange multipliers
[2.29]. The resulting functional is expressed in the form

I,--[ [+ 6%5] a+(D%a) 7u+F*usA (A+B-e%0) | 4V

(2-18)
—m T, T
+ fs,(T" T) Tu dS+ der, dds

in which, A is a constant, A is the strain energy function, and B is the
complementary energy function. Recently, Felippa [2.30] proposed the parametrized
variational principles for deriving different variational principles. A review of these
principles has been given in the literature [2.31].

2.3 EVOLUTION OF THE HYBRID FINITE ELEMENT METHOD

Originally, the hybrid stress finite elements were formulated based on the
principle of the minimum complementary energy and the introduction of Lagrange
multiplers to enforce the constraint conditions along the inter-element boundary [2.8].
In this element formulation, the assumed stress field in the element must satisfy
equilibrium equations a priori. It causes difficulty to assume an optimal stress field
for the hybrid elements. Later on, it was realized that the equilibrium conditions can
be relaxed if the hybrid element formulation is based on the generalized variational
principles such as Hellinger-Reissner variational principle and Hu-Washizu
variational principle. The stress field may satisfy the equilibrium equations only in
a variational sense. Thus, the stress field can be described in the isoparametric co-
ordinate system of the element, which would make the element less sensitive to
mesh distortion. In this book, the hybrid finite elements will be formulated using
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isoparametric co-ordinate system.

For a hybrid element, the displacement field has to be assumed firstly. It
is usually described by the nodal displacements as follows,

8,

5,
. (2-19)
8,

u=[N N ... N,]

=[N] 8,

where N, is the shape function and [N] is the shape function matrix; §, is nodal
displacement vector. The discussion about the assumed displacement field in the
element has been given in section 1.3, chapter 1.

In the hybrid stress formulation, then, a stress field must be assumed
independently as follows,

o=[P] B (2-20)

For example, for a 2-D, 4-node plane element, one of the assumed stress fields is

{ox} 1100 ¢ gi (2-21)
o,b=[1L-10-q 0]{.
Oxy 001Enp'

5

and one of the assumed stress fields for a 3-D, 8-node solid element is

o, 11-1000¢0n ¢ 0 n 00 0 nfo O

o, 1-1-1000CE0-(& 000 o0 ot ofijPs (2-22)
ol |10 20000En0-E-n00 0 0 0 En|)Pa

o] 10 0 01000000 0 0¢¢ ¢ 000

:yx 00 00100000 0 0 &-E -5 0 0 0fPas

=) oo 000100000 0n0-2000 0

This can be expressed in the form
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B,

B2
o=[o0,0, ... 0,]4. (2-23)

Ba
=[PIP

In which, vectors G, are stress modes which are functions of the isoparametric co-
ordinates, the parameters P, are the corresponding stress parameters, and [P] is the
stress matrix.

In the hybrid stress/strain formulation, furthermore, a strain field is also
assumed independently. The assumed strain field can be expressed as follows,

e=[e e ...e,11. (2-24)

=[0la

in which, vectors €, are strain modes which are functions of the isoparametric co-
ordinates, the parameters o, are the corresponding strain parameters, and [Q] is the
strain matrix. Thus, various hybrid finite elements can be formulated using the
generalized variational principles.

Hybrid Stress Element

The Hellinger-Reissner variational principle contains two fields:
displacement field and stress field. Satisfying the displacement boundary conditions
(2-5) a priori, the variational functional (2-16) can be modified as follows,

Wyr=[ [~ 0%1S] 0+0® (Du) ~F*u] V- ¥%u as (2:25)

Within the element, the assumed displacement field and the assumed stress
field have been given in equation (2-19) and (2-20). Thus,
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Du=[B] 8 (2-26)

where {B] is the geometry matrix. Substituting equations (2-19), (2-20), and (2-26)
into the functional (2-25), it is transformed to

O,.,=- p'(f [P]T[S] [P] dV) p+p’(f [P]7[B] dV) 8,

2-27)
_aT T T
6.(fv[1v:| de+fsc[N] T ds)
Denote
[H] '"‘fv“’] T[8] [P] dV
[6] =f [P]T[B] dv (2-28)

£,= fv [N] 7F dv+ fs [N] 7T ds

where [H] is the flexibility matrix, [G] is the leverage matrix, and f, is the equivalent
nodal force vector. Thus, the functional (2-27) can be rewritten in the form,

o,.= B’[HJ B+p*ic] 8, B’f (2-29)

In this variational functional, there are two independent variables [ and 8, subject
to variation. From the partial stationary condition with respect to J,

=0 (2-30)

the relation between stress parameters 8 and nodal displacements J_ is obtained,
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[H]B=1G18, (2-31)

By means of this relation, then, the functional (2-29) becomes
I~ 83161 7[H] *[6]) 8,-8%%, 232)
It can be rewritten as
I~ 85 1K1 8,-83F, (2-33)

in which, [K] is the element stiffness matrix. It can be expressed in the form,
[K] =[G T[H] *[G] (2-34)

From the partial stationary condition with respect to 8, the governing equation of
the element is obtained,

(K] 8,-£, (2-35)

When the element equations are obtained, the global equations of the hybrid finite
element model for analysis of structures can be established. The procedure is the
same as that in the single-field displacement finite element model discussed in the
section 1.2, chapter 1.

Hybrid Strain Element

The two-field variational functional (2-17) is different from the Hellinger-
Reissner variational principle. The two fields in the functional are displacement field
and strain field. Satisfying the displacement boundary conditions (2-5) a priori, the
variational functional (2-17) can be modified to the form,
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[ [-eICle+([Cle)"(ou) -Fouldv-[ xfuds O30

Within the element, the assumed displacement field and the assumed strain

field have been given in equation (2-19) and (2-24). Thus,

Du-[5] 8, (2-26)

Substituting equations (2-19), (2-24), and (2-26) into the functional (2-36), it is
transformed to

I,=~3e%([ [017[c] []av) a+a®([ [0]7IC] [B]aW) 3,

2-37)
o 14 T T
8 (wr dV+fst[N] T ds)
Denote
[z1=[ [0171c] [0]av
M = fV[o] T[¢] [B] dV (2-38)
- T T
£, fv[m F dV+fSC [N] 7T dS
Thus, the functional (2-37) can be rewritten in the form,
I=-+a* (L] a+a”(¥] 8,-8%, (2-39)

In this functional, there are two independent variables subject to variation. This is
the same as that in hybrid stress element. From the partial stationary condition with
respect to 0,
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all,,

= 2-40
3 0 (2-40)

the relation between strain parameters o and nodal displacements §, is obtained,

[L]@=[M]®, (2-41)

Using this relation, the functional (2-39) becomes
285 ([M7(L] 7 [M]) 8,-8}F, @42

It can be rewritten as
1ar L J 2-43
=87k 8,-83F, (2-43)
in which, [K] is the element stiffness matrix and it can be expressed in the form

[2.32],

[K] = [M]T[L]*[M] (2-44)

From the partial stationary condition with respect to 8,, the governing equation of
the element is obtained,

(K] 8,-£, (2-45)

Hybrid Stress / Strain Element - 1

By means of generalized variational principles, we can formulate not only
two-field hybrid elements, but also three-field hybrid elements. The Hu-Washizu
variational principle is a three-field generalized variational principle. It contains three
fields: displacement field, stress field, and strain field. Satisfying the displacement
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boundary conditions (2-5) a priori, the variational functional (2-15) can be modified
as follows,

o= f v[%e"[C’] e-o”(e-Du) -FTu] dv- fscT fu ds (2-46)

Within the element, the assumed displacement field, the assumed stress
field, and assumed strain field have been given in equations (2-19), (2-20), and (2-
24). Thus,

Du- (5] 8, 226

Substituting equations (2-19), (2-20), (2-24) and (2-26) into the functional (2-46), it
is transformed to

nﬂ=%¢f(fvto:|T[c1 [0] dv) @-a([ [0]7(P]dV) B

+B([ [P171B1 V) 8,-83(f [N F dv+[_ [N]F ds) =
Denote
[z1=[ [Q171c] [Q]dv
(W =[ [Q171P]av "

[6] =fv“°] T[B] dv

£,= f N 7F v fs [N] T dS

Thus, the functional (2-47) can be rewritten in the form,
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n11=%¢r[L] a-a*[W] p+PTLG] 6’_6£f. (2-49)

In this variational, there are three independent sets of variables ( o, B and 3, )
subject to variation. From the partial stationary condition with respect to o,

A,

2-50
3a (2-50)

the relation between strain parameters @ and stress parameters B is obtained as
follows,

[L]a=[#] P (-3
Using this relation, the functional (2-49) becomes
I,=-1 B*(IW17[L]  [W] ) B+B*[C] 8,-8%, (2-52)
It can be rewritten as
-~ p71M B+B*1c1 8,83, 259
In which,
2-54
[M] = [W] 7[L] [ W] @54
From the partial stationary condition with respect to B,
oll
LI =0 (2-55)
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the relation between stress parameters 3 and nodal displacements d, are obtained,

[M] B=[G1 8, (2-56)

Using this relation, the functional (2-53) becomes
=285 1617 (M [6]) 8,83, @37

It can be rewritten as

]III=_;:' 8¢ [K]8,-8.1, 2-38)

where [K] is the element stiffness matrix. It can be expressed in the form,
(K] =[G]*[M] (6] (2-59)

From the partial stationary condition with respect to 8,, the governing equation of
the element is obtained,

(K] 8,-%, (2-60)

Substituting equation (2-54) into the equation (2-59), the element stiffness matrix can
be expressed in the form [2.32-2.33],

(K] =[G) 7 [W] X [L] [W] *[G] (2-61)

Hybrid Stress / Strain Element - 2

Here, we present a general hybrid element formulation using another
variational functional proposed by Chien [2.24]. It also contains three fields:
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displacement field, stress field, and strain field. Satisfying the displacement boundary
conditions (2-5) a priori, the variational functional (2.18) is expressed in the form,

Hv=fv[%s’[C'] e-o” (e-Du) -F*u

(2-62)
~A (A+B-eTg) ] dV- f 7%y ds

Se

in which, A is constant, A is the strain energy function (2-8), and B is the
complementary energy function (2-10). Within the element, the assumed
displacement field, the assumed stress field, and assumed strain field have been
given in equations (2-19), (2-20), and (2-24). Thus,

Du-[5]3, @2-26)

Substituting equations (2-19), (2-20); (2-24) and (2-26) into the functional (2-62), it
is transformed to

m,~22ar([ [0171C) 1] dV) a-2p=([ [P1 7S] [P1av) B
2 v 2 v

~(1-A) ¢"(fv[Q] T[P] dV) p+pf(fV[P] T[B] dV) 8,

—az(fv[zv] 0y dV+fS [N] T dS)

(2-63)
Denote
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(z1=[ 10171¢] [0l av

(1 =[ [PI71s] [P]av

(w1 =[ 1017 1P1dv (2-64)
[e1=[ [P171B]aV

£,= fv[M T dv+ fs [N] 7T dsS

Thus, the functional (2-63) can be rewritten in the form,

I,-1-2ar0) -2 p7 (81 B- (1-1) a” w1 B+p=161 8,82,

(2-65)

Also, there are three independent variables subject to variation in this variational.
From the partial stationary condition with respect to ¢,

oL,

2-66
FP (2-66)

The relation between strain parameter o and stress parameters J are derived,

[L] a=[W] B (2-67)

Then, the functional (2-65) becomes

I,=2 B* {-AL[H] - (1-A) (W] 7[L]  [W]}P .

+p*1618,-83F,
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It can be rewritten as

I,=-> B~ (M B+B*(G] 8,-87F, 2-69)
In which,
[M] =A [H] +(1-A) [W] *[L] W] @70
From the partial stationary condition with respect to f3,
al-I"=o (2-71)
B

the relation between stress parameters P and nodal displacements 9, is obtained,

M B=1G] 8, 2-72)

Substituting this equation into the functional (2-69), it becomes
0,=285([617[¥] 7 [6]) 8,-83F, @-73)
It can be rewritten as
231K 8,-83, @-74)

where [K] is the element stiffness matrix. It can be expressed in the form,
[K] =[G T[M] *[C] (2-75)

From the partial stationary condition with respect to §,, the governing equation of
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the element is obtained,
[K] 6,= f’ (2-76)

Substituting equation (2-70) into the equation (2-75), the element stiffness matrix can
be expressed in the form,

[K] =[G1T {\[H] +(1-A) [W] T[L] * [W]} 2@l Q-17)

This stiffness matrix formulation is a general form of the stiffness matrix
for hybrid elements. It can be reduced to one (2-34) based on the Hellinger-Reissner
variational principle when A=1 and one (2-61) based on the Hu-Washizu variational
principle when A=0 [2.24,2.29]. In the formulation, the constant A is bounded
between 0 and 1 so as to ensure that the stiffness matrix [K] is semi-positive. There
are some approaches such as perturbation, energy balance and locking alleviation
[2.34-2.38] for determination of the constant A. For example, the constant A can be
determined in such a way that the energy stored inside the element is close to the
analytically-derived energy under a typical deformation of the element.

Although there are many different types of the hybrid finite elements such
as hybrid stress, hybrid strain, and hybrid stress/strain elements, the discussion in this
book will be restricted on the hybrid stress method due to the fact that the hybrid
stress element has been widely used in the structural and solid mechanics. Before we
present the new hybrid element techniques for stress analysis of composite structures,
the assumed stress field has to be discussed further because the advantages and
disadvantages of hybrid stress elements are effected by introduction of the assumed
stress field.

2.4 ASSUMED STRESS FIELD

For the hybrid stress element, the physical fields that must be independently
assumed within the element at the beginning are not only displacement field, but also
stress field. An assumed stress field consists of a set of stress modes and a set of the
corresponding stress parameters. Although a number of mathematical functions such
as trigonometric series and exponential functions can be used as stress mode
functions, orthogonal polynomials are more appropriate as stress mode functions due
to their ease and simplification. It is similar to the basis functions in the assumed
displacement field. However, while the displacement polynomial is constrained by
the number of displacement nodal degrees of freedom in the element, the stress
polynomials have no such constraint. If an assumed stress field does not contain
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enough stress modes, the rank of the element stiffness matrix will be less than the
total degrees of deformation freedom and the numerical solution of the finite element
model will be unstable. In that case, there may be kinematic deformation modes. It
is possible to suppress kinematic deformation modes by adding stress modes of
higher order term, but this can not guarantee that all kinematic deformation modes
are suppressed. Moreover, each extra term will add more stiffness[2.39] and overuse
of stress modes will cost more computational time because the calculation of element
stiffness matrix requires inversion of the flexibility matrix. The lack of a rational
way for deriving the optimal assumed stress modes has obstructed the development
of the hybrid finite element method.

2.4.1 Stability Condition

Some mathematical basis for the stability of the numerical solution of the
hybrid finite element model has been established and a number of approaches for
obtaining the optimal stress modes have been proposed. A necessary condition to
avoid kinematic deformation modes [2.12, 2.40] is

The total number of stress modes in an assumed stress field must be
equal to or larger than the total number of nodal displacements minus the
number of rigid body modes in an element.

or
m2n-r (2-78)

in which, m is the total number of stress modes in an assumed stress field, n is the
total number of nodal displacements, and r is the number of rigid body modes in an
element.

Brezzi [2.41), Babuska, Oden and Lee [2.42] presented necessary and
sufficient conditions for stability and convergence of a hybrid element by means of
functional analysis. However this can be used only as a posteriori check on a
formulation. Fraeijs de Veubeke {2.43] presented a limitation principle for hybrid
elements based on the Hellinger-Reissner variational principle. This work was
extended to the hybrid stress/strain elements based on the Hu-Washizu variational
principle [2.44]. The limitation principle [2.43] states that a hybrid element would
be equivalent to its displacement counterpart if a stress space consisted of all the
displacement-derived stress modes is a subspace of the assumed stress. This means
that a hybrid element would be no different to a displacement element when the
assumed stress field contains all stress modes derived from the assumed
displacement field. Because the displacement element is always free from any
spurious kinematic deformation modes, for a hybrid element to avoid spurious
kinematic deformation modes, a sufficient condition is that the assumed stress field
contains all displacement-derived stress modes.
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For 2-D plane elements and 3-D brick elements, in an assumed
displacement field, the polynomial terms used for interpolation are the least-order
polynomial terms and usually same for every component of displacement. For
example, in the assumed displacement field of a 2-D, 4-node rectangular element,
every component of displacement contains four, least-order polynomial terms (see
equation (1-16)). Due to the fact that the order of the polynomial terms in
displacement-derived stress field is always equal to or less than that of polynomial
terms in displacement field, all stress modes derived from the displacement field will
be included in an assumed stress field if the polynomial terms in every stress
component of the stress field are the same as those in every displacement
component. Therefore, a sufficient condition to avoid spurious kinematic deformation
modes in 2-D and 3-D elements is

If every stress component of an assumed stress field contains the
same polynomial terms as those in every displacement component of the
displacement field, the resulting hybrid element is free from any kinematic
deformation modes.

Using this sufficient condition, an assumed stress field termed sufficient stress field
can be established based on the assumed displacement field of a hybrid element.

2.4.2 Approaches to Obtain An Assumed Stress Field

There are a few approaches for determining an assumed stress field. Using
group theory, Punch and Atluri [2.45,2.46] established a set of least-order stable
invariant stress selections for three-dimensional brick elements and two-dimensional
rectangular elements. Pian and Chen [2.47] used the product {c}™ {e}, the
deformation energy due to the assumed stresses and displacements, to determine the
necessary assumed stress modes. Pian and Tong [2.48] introduced the internal
displacement parameters to relax the stress equilibrium condition and used
isoparametric interpolation to construct hybrid element. Pian and Wu [2.49-2.50]
introduced incompatible displacements to maintain completeness of the polynomials.
The initial choice of stress terms are unconstrained and complete polynomials. The
additional displacements are used as Lagrange multipliers to enforce the stress
equilibrium constraint. Chen et al [2.51-2.52] constrained the stress by setting the
inner product of the non-constant stress modes with the deformation derived from
the incompatible displacement to zero. Sze [2.53-2.55] used orthogonal lower- and
higher-order stress modes to construct hybrid element. It allows the partition of the
element stiffness matrix into a lower- and a higher-order stiffness matrix. When the
lower-order stiffness turns out to be identical to the sub-integrated element, the
higher-order stiffness matrix plays the role of stabilization matrix. Other methods for
determining the assumed stress field are referred to the literature [2.49-2.55]. In this
section, three approaches for determining the assumed stress field are presented.
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a) Sufficient Stress Field

The sufficient condition above indicates that if every stress component uses
the same polynomial terms which are used for every displacement component, its
resulting hybrid element is free from any spurious kinematic deformatiom modes.

Thus, an assumed stress field can be established through the assumed displacement
field.

1, 2-D. 3- i n
For this element, a displacement field is usually assumed in the form,

u=a,+a,§+a,n

v=b,+b,§+b,n

(2-79)

The polynomial terms used in every displacement component are same. They are the
three, least-order polynomial terms

[1E7n] (2-80)

According to the sufficient condition, every stress component uses the same terms
as follows,

0,=P,+BE+B,m
0,=B,+Bs&+Pqn (2-81)
0,y =B3+BE+P,m
Using this assumed stress field, the resulting hybrid element is free from any
kinematic deformation modes.

D, 4- 0

For this element, the number of degrees of freedom is eight and assumed
displacement field usually has eight parameters. It can be expressed in the form,

u=a,+ta,f+a,n+ayin

v=b,+b;§+b,n+by&n

(2-82)
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Every displacement component uses the same least-order polynomial terms. They are

[1En En] (2-83)

According to the sufficient condition, similarly, every stress component uses the
same terms as follows,

0,=P,+P.E+B,n+P kN
0,~B,+BsE+Pgn+P1.En (2-84)
0,y=B3+BsE+Byn+P,8N

3. 3-D. 8-node Brick Element
For a 3-D, 8-node hybrid element, the displacement field is assumed in the

form,

u=a,+a,§+an+a,{+afn+a;E{+agn{+a,En{
v=Dby+b § +bn +b;{ +b &n +b;E{+ben{+b,En{ (2-85)

v=ggte E+en+ey{+ekn+osEl+cgnl+c,End

The eight, least-order polynomial terms used in every displacement component are

[1E&En {&nnClEEnC] (2-86)

According to the sufficient condition, similarly, every stress component uses the
same terms as follows,

0,=B+BE+B M +BoC+P1 8N +B.en{+P1sCE+P2aENC
0,=B,+PBsE+Ben +P11{+P 1 ENn+B1 M T+B2{E+P2sEN{ (2-87)
Oy =B3+Pe&+Bon+P 120 +P15EN +P1gnC+B2. CE+P2uENT
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Using this way to establish assumed stress field, the advantage is the ease
in selection of terms, but the number of terms used in assumed stress field is large.
This disadvantage will affect the efficiency of the finite element model of structures.
Moreover, it can be used only for these elements whose polynomial terms used for
interpolation are same for every component of displacement.

b) Equilibrating Stress Field

An assumed stress field can be derived from a complete polynomial by
means of equilibrium equations. Two examples are given here.

1. 2-D, 4-node Rectangular Element

For two dimensional problems, the assumed stress field for a 4-node hybrid
element is firstly expressed in complete linear terms in the co-ordinates & and n. It
is

0,=P,+B,E+B3n
0y=ﬂ4+555+35'ﬂ
Txy=p7 +Bg€+Pym

(2-88)

Substituting the stress components (2-88) into the equilibrium equations (2-3), the
relations between stress parameters are obtained,

Bs=—Bs and Bs=—B, (2-89)

The assumed stress field (2-88) is modified as follows,

o, [L Enoo oo g;
{oy}=o 0 01E&En o (2-90)
Oxy O—nOOO-Elp'

7

This assumed stress field for the hybrid element satisfies the equilibrium
condition a priori. However the resulting hybrid element may have kinematic
deformation modes.
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2. Plate/shell Element

For plate and shell, it is more complicated to assume an equilibrating stress
field within a hybrid element. First of all, the equilibrium equations (2-3) should be
modified by introducing the normalized transverse co-ordinate { as follows,

ox dy t I
90yy, 99y, 1 8% (2-91)
ox dy t o
90y _Z.ao z+i&=o
dx dy t I

where t is the half-thickness of plate. Then, the in-plane stresses are assumed to be
complete cubic polynomials and the expression of the transverse stresses are
obtained by using the equilibrium equations (2-91) as follows [2.56-2.57],

0= (B +Byx+ Byy+Box ™+ By +By 4B, 22+ Byxy+ By 2+ Bygy ) (2-922)

By #Baax+Pasy+ By X?+BysXy+Pasy?+ B3y X34 P 3 X2y + Py Xy 2+, 07°)

0= (P11 #P1a X+ Biay+Pag X2+ Py Xy +B sV 2 +P 1y X3+ P 1 X2V + Py Xy 2+ Py ) (2-92b)

+C (BerBuaX Py Bou X+ XY+ By +B oy X3+P g X2y +B 5 Xy 45,7 2)

0= (Bay+PaaX#Pasy+BauX?+BasXy+ By 2+ Pay X2+ Bag X2y + B oy Xy 3+, v°) (2-92¢)

+{ Byt BsaX* Bsay+PseX?+ P55 Xy +Bssy  +Bsy X2 +Psg Xy +Psg Xy 2+ Pgyy)

do, 9
°xz=t{( Bo1*BeaXx*Besy+Pecx?+Besxy+Pesy?) "f(%;‘!""%;!) dC} (2-92d)
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Oyx™ L{( Ber+BseXx*PgsyProXx?+Bry Xy +Bqsy?) "f ( % *‘%(—;‘,!) dC} (2-92¢)
o 0
o.=r{t(p7,+p"x+pvsv) [T dc} (2-926)

This assumed stress field can be written as
o=[P] B (2-93)

This field contains 75 stress parameters . The number of the stress parameters can
be reduced to 67 in order to avoid excessive element stiffening (locking) in the thin
plate limit [2.56]. The remaining 67 stress field can be expressed in the form (after
a complete renumbering of the stress parameters),

0g=Bugt (3 (By=Byy) ~Bagl X+Byryt [ (B5-Byy) =3 Bagl X?
+ [% (B3-Bss) 2Bl xy+B 1y 2+ [% (Bs—Pse) '%‘ Pa,l x
+ [% (B5—Bsy) =Byl X2y +Pygy 3+ [";‘ (Bg—Bss) ~3P3s] xy*
+{{B3y+Basx+ Pasy+Pay x?+B 32y +P3ey?
+ ['% (Bay=-Bas+Bs+Psy+2B1a+2Bse) 1 X7y + Py o2y

(2-94a)

0,=Bag*Basx* [ 5 (B, ~Bss) ~Bas] y+BayX™+ [ (By=Beo) -2y 1 v
+12 (Bg=Bey) =3 Bapl y*+Bayx+ [ (Big-Bea) -3P3e] X%
+ [% (Baa—Bes) ~PBsa] X2+ [%‘ (B12~Bed) "%‘pn] y? (2-94b)
+{{Bay ¥ aaX+B Y +B X+ B 527+ B oY+ By Xy
¥ [_% (Bes~Bua*2B+2Pss+Bas+Bgs) 1 2%

0y =PagtPast Pyt Payx? +Pagxy+ Bagy? +By0x3 + 5, x 2y 2-94
+Byaxy 2+, (2-94¢)
+{{B g+ Basx+Psoy+Ps X3+ ["% (Bes—Bas*Ba+Bse+Bo+Pey)
= (Bar*Bus) 127 +P5 v
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Oyt (1-0) (By+Bex+Byox?+B1ay?) +3 (1-0) (1-30) Byy
+% (1-0) (-1-30) pux}’*‘% (148) (Bsg*Bsox+Peax?+Pear?)

+2 (1+) (1430) Bguy+3 (1+0) (-1430) Beyxy+ 3 (1-0){(Bys (2-944)
+Bus) + (Bes*2Bsy) X+ [~ (Bes=B1+By*Bse) * (BugPByr) 17
+By %7+ [-3 (Bog=Bas) =3 (By*Bss) 1378
0=t (1-0) (B +Bay+Bx®+Bey?) +4 (1-0) (1-30) Box
+2(1-0) (-1-30) By + 5 (140) (Boy*Basy+Bagx™+Boey™)
(2-94¢)

+2 (140) (1430) Bgexr3 (1+0) (-1430) By xy
""%" (1~¢) {(Bys#Bs,) + ["'% (Bes—B1s+Bo+Bss) + (Bay—Bes) 1x
+(Bag+2P5,) v+ [’% (Bgr=Bas) =3 (B1a*Bes) 1 xy+P oyt

a.=t={% (1-0)2(2+8) (Byy+PyeX*Bysy) +% (1+8)2(2-0) (Bgs*BeeX*Bery)
=% (102 (1) [(B;+By) + (2B, +yy) x+ (B5+2P1) ¥] (2-94D)
"'% (1-0) (1+0) 2 [(Ps+Pe) + (2P +Pes) X+ (P,r,-;“zﬂ“)}']}

This assumed stress field satisfies the equilibrium equations, but the number of the
stress parameters in the field is very large. Furthermore, the resulting element may
be not free from kinematic deformation modes.

c) Stress Modes Matched with Strain Modes

In the equilibrating stress field above, the complete linear or cubic
polynomials are used. It usually causes the overabundance of stress parameters. On
the other hand, reducing the number of stress parameters may cause spurious
kinematic deformation modes in the hybrid element. One procedure to suppress any
spurious kinematic deformation modes is to match one stress mode individually with
one strain mode which represents a basic deformation mode such that the strain
energy caused by each strain mode is not zero [2.47].

Within an element with n degrees of freedom and r rigid body modes, the
displacement distribution in the element can be represented by n-r basic deformation
modes and r rigid body modes. If the basic deformation modes of the element are
expressed in the form
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u1= [E] .‘l i=1' 2, I 1 4 (2_95)

the individual basic strain modes can be expressed as

—_— _— . 2-96
¢1= [D] [Nl] ¢_.l l=1,2, [ ¢ il 4 ( )

Moreover, if the individual stress mode is expressed in the form
o0,=[o;]1 B, 2-97)

Then, it is assumed that, for each deformation mode, there is one stress mode such
that the strain energy

1,=B7 {/,l0,17(ID] [N}])dV} e, (2-98)

is non-zero.

1, 2-D. 4-n Pl Element

Within a 4-node plane element, the assumed displacement field (2-82) is

u=a,+a,§+a,n+a&n

v=b,+b,§+b,n+bEn

(2-99)

There are eight displacement degrees of freedom (n=8) and three rigid body
modes (r=3). Therefore, there are five basic deformation modes (n-r=5).
Corresponding to the basic deformation modes, the basic strains are

Bx=0 e, M
e,=0, 0§ (2-100)

B,y =20,
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In which, each o is associated with a distinct strain mode. It can be written as

follows,
1 0 0 0
8=a1{0}+a2{1}+a3{(2)}+u4{8}+¢5{£} (2-101)
0 0 0 0

The deformation energy due to assumed stress modes and basic deformation modes
is calculated by

1,=*1* oie,dEdn (2-102)
Using the energy constraint, I, # 0, the corresponding stress modes can be found,

1 0 0 n 0
0 0 0 0

This assumed stress field can be written in the form,

p
o) [L00no]lg
g, =l0100 E|{. (2-104)
Ox 0010 0f|[q

Ps

2. 3-D, 8-node Brick Element

This method can be also used to determine stress modes for three
dimensional 8-node brick element. Within the element, there are twenty-four
displacement degrees of freedom (n=24) and six rigid body modes (r=6). Therefore,
there are eighteen basic deformation modes (n-r=18). They are [2.47]
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u=a,§ +% o.M +% asC o, En+a (l+ainf+a, ng

2-105
Vzazﬂ+%‘“4E+%“5c+aloeﬂ+a11ﬂc+“125ﬂc+“17ce ( )
W=a3C+—:2L-a5n+%a55+a13nC+a14CE+a15€nC+alaEn

in which, each o is associated with a basic deformation mode. The deformation
energy due to assumed stresses modes and basic deformation modes is calculated by

I,= 1% 05 [DN,] @ dEdnd{ (2-106)

Using the energy constraint again, L # 0, the stress modes corresponding to the basic
deformation modes can be found and the assumed stress field can be expressed in
the form,

1 00000n¢{n{00O0O0O0O0 OO O
010000000 E{(E00 0 00O
loo100000 0000 nEé&nooofp,
“1oo0100000000000 0°¢O0|:- (2-107)
000010000000 000 00 E|Bas
000001000000 O00O0 100

Using this method, the assumed stress field contains minimum number of stress
modes (or stress parameters), and the resulting element is free from any kinematic
deformation modes. But, in this procedure, the basic deformation modes of the
element must be first found, and then the stress modes can be obtained by checking
if deformation energy is equal to zero. For many elements, it is difficult to find the
basic deformation modes at first. Therefore, the use of the method is limited.

2.5 DIFFICULTIES WITH THE HYBRID FINITE ELEMENT
METHOD

In general, the hybrid stress element has two important disadvantages: the
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presence of spurious kinematic deformation modes and the inversion of the flexibility
matrix [H].

Because the assumed stress field of the conventional hybrid elements
contains six stress components, there always exist a large number of stress
parameters in the stress field. So, the inversion of the flexibility matrix is the most
costly operation. For instance, an assumed stress field may contain more than fifty
stress parameters for the stress analysis of 3-D structures and hundreds of stress
parameters for the analysis of composite structure [2.56]. It suggests a poor
performance in terms of computing time when compared with the single-field
displacement models. However, this limitation can be overcome by reducing the
number of stress components in the assumed stress field of conventional hybrid
elements for the analysis of composite structures.

For analysis of composite structures, it is not necessary to introduce all
components of stresses into an assumed stress field. Although all components of
displacement, strain and stress must be continuous within each layer of a laminated
composite, only the in-plane derivatives €, , €, , ¥,, and transverse stresses G, ,
7., T, must be continuous at the layer interface with prefect bonding. Therefore, the
main requirement in developing finite element is to satisfy all of the continuity
conditions on displacements and transverse stresses at interlaminar surfaces and
traction-free condition on the upper and lower surfaces. In order to enforce the
transverse stress continuity, it is needed only to introduce three transverse stresses
into the assumed stress field [2.58]. This motivates researchers to develop new
variational principle for new types of hybrid elements.

In view of the efficiency of finite element model, on the one hand, the
number of the stress parameters (or stress modes) in assumed stress field should be
reduced to as small as possible. According to the necessary condition (2-78), the
minimum number of stress parameters (or stress modes) may equal m (=n -r). On
the other hand, there are many examples indicating that there are spurious kinematic
deformation modes in the hybrid elements when the requirement (2-78) is satisfied.
In order to suppress these kinematic deformation modes, it is proposed to add stress
modes of high order terms in the assumed stress field. This means to increase the
number of stress parameters in the stress field. Therefore, the question is that how
many and what kind of stress modes must be introduced into the assumed stress
field. An ideal situation is that an assumed stress field contains m (=n-r) least-order
stress modes and its resulting element is free from kinematic deformation modes.
This kind of assumed stress fields is considered to be best and is optimal with
respect to computer resources. The procedure to derive this optimal stress field is
presented in Chapter 3.

In this chapter, it is also shown that the assumed stress field of a hybrid
stress element can be constructed by various approaches. Thus, a hybrid stress
element may have many different assumed stress fields. However the relationship



HYBRID ELEMENT METHOD 75

among them has not been revealed due to the fact that the nature of the assumed
stress field has not been investigated sufficiently. In order to develop a rational way
for deriving the optimal assumed stress field, it will be necessary further to study the
stress modes in the assumed stress field. This will be presented also in Chapter 3.
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Chapter 3

DEVELOPMENT OF
HYBRID ELEMENT TECHNIQUE
FOR ANALYSIS OF COMPOSITES

3.1 INTRODUCTION

The previous two chapters presented a brief overview of the displacement
finite element formulation and the hybrid finite element formulation. These finite
element formulations have been used for the analysis of structures made of isotropic
materials. They also have been used for the analysis of laminated composite
structures. However, the results for laminated composite structures need improvement
due to the fact that there are many levels of discontinuities in the laminated
composites. These discontinuities give rise to many regions of high stress gradients.
On the microstructural level, there is discontinuity in material properties as one
moves from fiber to matrix or vice versa. For the purpose of calculation at the
lamina level, the fiber and matrix properties are averaged over an effective unit cell
and the effective modulus approach is used for macromechanics. The average
properties of individual lamina are usually obtained based on this assumption.
Moreover, when many laminae are stacked to form laminates, due to the variation
in fiber orientation from lamina to lamina, the interlaminar stresses occur near the
interfaces between the laminae. The interlaminar failure modes caused by the
interlaminar stresses are major failure modes in laminates because interlaminar
strengths are usually orders of magnitude smaller than intralaminar strengths. This
problem has been with designers and researchers for the past thirty years. Many
numerical techniques have been proposed, the majority of them using the finite
element method [3.1]. However until the present time, the problem has not been
resolved satisfactorily. The main difficulty is in the efficiency in obtaining transverse
stresses accurately. Without efficient means to obtain accurate transverse stresses, it
is difficult to obtain efficient ways to predict interlaminar failure.

In finite element method, the conventional displacement finite elements
work well with the stress analysis of homogenous materials. However, they have
an inherent disadvantage that differentiation has to be performed on the
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approximated displacements to obtain strains and subsequently stresses. The accuracy
will deteriorate because the numerical differentiation of approximate quantities tend
to magnify the errors. In addition, the convergence of displacement finite element
model for problems with high stress gradients is slow. For composite laminates, the
interfaces between layers are usually locations of high gradients of stress due to
discontinuity in material properties as one moves from one layer to the next.
Therefore, the use of displacement finite element model requires fine element mesh
and extensive amount of computer space and time to be able to determine stresses
with any degree of accuracy. This excessive requirement of computer resources has
been a deterrent to accurate and efficient stress calculation in composite laminates.
Furthermore, the displacement elements can not satisfy well the requirements in
analysis of composites. The main requirement in developing finite element for the
analysis of composite is to satisfy all of the continuity conditions of displacements
and transverse stresses at interlaminar surfaces, and traction-free condition on the
upper and/or lower surfaces. As an alternate, the conventional hybrid stress elements
[3.2-3.3] have been used to analyze composite structures.

The conventional hybrid elements have the ability to satisfy these conditions
exactly. The hybrid element formulation assumes the stress field directly from the
beginning. Therefore in hybrid finite element formulation, no differentiation on the
approximated values has to be carried out and the degree of accuracy of the stresses
is the same as that of the displacements. This is the inherent advantage of the hybrid
finite element method. However, the conventional hybrid elements contain six stress
components. This will require much computer CPU time due to the presence of
many stress parameters [3 in assumed stress fields and the inversion of the flexibility
matrix [H]. In fact, it is not necessary to introduce all components of stresses into
an assumed stress field for analysis of composite structures. In order to satisfy the
continuity condition of stresses at interlaminar surfaces, three transverse stresses are
only needed in the assumed stress field. Therefore, new hybrid finite element
techniques have been developed for the stress analysis of composites [3.4-3.15].

3.2 COMPOSITE VARIATIONAL PRINCIPLE

In the development of the partial hybrid finite elements for analysis of
composites, the first thing is the identification of globally continuous variables and
locally continuous variables. Usually, the lamina plane is denoted by the Cartesian
co-ordinates x, y, and the through thickness direction by z (shown in figure 13). In
the composite laminates, all components of displacement, strain, and stress are
continuous within each layer. At the layer interface with perfect bonding, the
displacements are also continuous due to the compatibility condition. As a result,



DEVELOPMENT OF HYBRID ELEMENT TECHNIQUE 81

the in-plane derivatives (three inplane strains) €,, €,, €, are continuous across the
thickness. On the other hand, the reaction forces give rise to transverse stresses
(interlaminar stresses) 6,, G,,, G, and they are also continuous across the thickness
because of the equilibrium condition. This means, along the thickness of composites,
the in-plane strains ( €, €, €,) and transverse stresses ( O,, G, O,) are globally
continuous variables. The other components of strain and stress (transverse strains
€, &, &, and in-plane stresses O,, O,, O,,) are not necessarily continuous across
the interfaces between different layers. They are cofitinuous within each layer and
are locally continuous variables. Therefore, the globally continuous variables are
those that are continuous not only within the plane of the laminate but they are also
continuous across the interface from one layer to the next. This is the result of
consideration for compatibility and equilibrium. The locally continuous variables are
those that are continuous only within the plane of the lamina but are not necessarily
continuous across the interface from one lamina to the next.

£

/ o
T3y

Figure 13 Composite structure and its co-ordinate system

By classifying the variables into these two groups, the stress ¢ and strain
e can be divided into the in-plane and transverse parts,

o,=[0,0,7,1" ad o, =[0,1,1T,]
(3-1)

e, = [ e, zy 'ny ]T and e = [ e, Yzy Yax ]T

Combining the globally continuous variables in composites, the globally continuous
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vector is defined as

e 3-2
e o

Similarly, combining the locally continuous variables, the locally continuous vector

is defined as
10, (3-3)
%)

in which the negative sign is introduced to ensure the symmetry of the combined
constitutive relation which is

p=[R]q (3-4)

{OL}= B B {eg} 3.4y
&1 |RF R,|O% (3-4)

where [ R ] is called the combined constitutive matrix. Because the constitutive
relation can be expressed in the form,
g (3-5)
Z3

or

0} Cl CZ
g |cf ¢

o=[Cle or {0

where [C] is the stiffness matrix of materials, and

Sl SZ
e=[Sle or {eg}= T

SR
Ug

where [S] is the compliance matrix of materials, the matrix [R] can be expressed as

€
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[R] | Rl R2 | Cl_C2C3_1CZT C2C3-1 (3-6)
R, R, aled -Gy
and
B R | S0 ! -5;'5, (3-6)'
(Rl . - To-1 oTea-1
RZ R3 "'Sz Sl Sz Sl 52"33

Due to the fact that the matrices [C] and [S] are symmetric matrices, the matrix [R]
can be proven to be a symmetric matrix. It can be shown that

3-7
[R] T=[R] e

Thus, an elasticity problem for composite structures can be described.

Elasticity Problem for Composite Structures

Consider a linear anisotropic elastic body under static loading. The body
occupies the volume V and is bounded by the surface S, which is decomposed into
S: S4U8,. Boundary displacements are prescribed on S, , whereas surface tractions
are prescribed on S,. The outward unit normal on S is denoted by n. The following
relations between three fields: globally continuous vector q, locally continuous vector
p, and displacement u in the volume have to be satisfied.

1. the partial strain-displacement equations:

g..= (3-8)

ij (Ui'j+u-'i) i,j=1,2

J

N[

or

e,~Du G-8)
g
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2. the partial strain-displacement relations:

e1=5 (g, +uy, ) i=1,2,3 j=3 G2
or
&, u G2
3. the stress-strain equations (constitutive equations):
p=[R]gq (3-10)
4. the equilibrium equations:
oij,j+Fi=0 (3-11)

in which, F is the body force in V.

Moreover, there are three sets of boundary conditions for the displacement
field and stress field.

5. the traction boundary conditions:

(3-12)
o'n=T, and T,=T

or

3-12)'

0;;n;=Tp; and Tp;=T; on S, G-12

in which, T is the prescribed surface force on S,.
6. the displacement boundary conditions:

(3-13)

u-=d

or
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(3-13)
ui=di on Sd
in which, d is the prescribed displacement on S,.
7. the conjunction conditions at interlayer surfaces:
k_ kil .
u;=u 1=1,2,3
1o e (3-14)
k k+1
0i3=0_i3 k=1’2'--l,N

where N is the number of layers along the thickness of composite structures.
Composite Energy

For an elastic body, the potential energy can be expressed as a quadratic
form of strains,

au)=Ze*(Cle (3-15)
and the complementary energy can be expressed as a quadratic form of stresses,

B(u) =%of[5] o (3-16)

Similarly, one can define a new energy, named composite energy, as a quadratic
form of the globally continuous variables due to the fact that the constitutive matrix
[R] is symmetric matrix (3-7),

E(q) =%q"[R] q (3-17)

or
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6 6
1
i=1 j=1

Thus, the constitutive equations (3-10) can be written in the form,

OE(Q) (3-10)
dg; P;

Composite Energy Functional

The variational functional based on the composite energy can be derived
through different ways. Huang [3.5] established the variational functional by
weighted residual method, Reissner [3.17-3.18] developed it using Lagrange
multiplier and 'partial' Legendre transformation method, and Moriya [3.19] developed
it through the Hu-Washizu variational principle. Lately, Pian [3.13] used the
Hellinger-Reissner variational principle to obtain the functional. In view of
simplicity, the variational functional, termed composite energy functional, is
presented by means of the Hellinger-Reissner variational principle, and their
difference is revealed.

The Hellinger-Reissner variational principle (see chapter 2) contains two
fields: displacement field and stress field. The constraint conditions are constitutive
equations (2-2) and displacement boundary conditions (2-5) only. The strain-
displacement equations (2-1), equilibrium equations (2-3), and traction boundary
conditions (2-4) are only satisfied a posteriori. Satisfying the displacement boundary
conditions (2-5) a priori, the variational functional (2-25) can be expressed as
follows,

0= f v[—%o"[S] o+g” (Du) -F Tu] dv- fsta' Tu ds (2-23)

By means of the definition (3-1), (3-8), and (3-9), one has
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_10r, _gu )
0"{0,} and Du= :u} (3-19)

Substituting them into the (2-25), the functional is written in the form,

) v[—% [of o] [S] {::}+ [oF o5] {g::}

-F¥ul dv- . ¥y ds
t

(3-20)

Using the constitutive equations (3-6)' and (3-4)' to eliminate the in-plane stress o,
the first term in the functional becomes

[ -1l a7 15 {::}dv= [ (-SeER g5+ 2 0] 1R @) OV

(3-21)
and the second term becomes after adding and subtracting c," €,
r o WUl T T, T T,
[ o} o] {ghu}dv f (e7IR,] e 0f IR, e, 322
T J
+0y, (Dju-e,) +0 Du) dV
Substituting them into the functional (3-20), it is modified to
= 1 r r r
o,,,= f [5g*[R] g+o}(Dyu-e,) +ozD;u
v (3-23)

-FTyu] dv- f Ty ds

S

If the partial strain-displacement equations (3-8) are satisfied a priori, a new
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functional is obtained as follows [3.5],
o= f [E(q) +ogDu~F Tu] dV- f T*u ds (3-24)
v St

In this new variational functional, there are two fields: displacement field
and partial stress field. The constraint conditions are the constitutive equations (3-
10), partial strain-displacement equations (3-8), and displacement boundary
conditions (3-13). This new variational functional is named by composite energy
functional. 1t is different from the Hellinger-Reissner variational functional because
the partial strain-displacement equations (3-8) become constraint conditions in the
new functional.

Variational Principle of Composite Energy

In order to present variational principle, it is assumed that the composite
energy function E is a positive definite function of the components of globally
continuous vector, and the body forces and surface forces are derivable from
potential functions Q(u) and W(u) (2-6). Thus, the principle of composite energy
states

Among all the admissible displacement fields and partial stress (transverse
stress) fields, which satisfy the partial strain-displacement equations (3-8),
constitutive equations (3-10), and prescribed displacement boundary conditions (3-
13), the actual displacement field and partial stress field make the total composite
energy

.= [E(q) +a}D,u-F7u] dv- fStT’u ds (3-24)

an absolute minimum 8I1,=0.
In this principle, the partial strain-displacement equations (3-9), equilibrium
equations (3-11), prescribed traction boundary conditions (3-12) are Euler equations.

For composites, the conjunction conditions at interlayer surface must be satisfied a
priori.

3.3 FORMULATION OF PARTIAL HYBRID ELEMENT

By means of the variational principle of composite energy, one can
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formulate many new hybrid elements. The term partial hybrid element is used to
name these new hybrid elements due to the fact that three transverse stresses are
only introduced in the assumed stress fields. Within a partial hybrid element, the
displacement field is assumed firstly. It is usually described by the nodal
displacements as follows,

u =[N 8, (3-25)

where [N] is defined as [N] = [ N, N,, ... ,N.] and [N;] are vectors of the
displacement shape functions. The vector &, is nodal displacement vector and n is
the number of nodes in the element. The assumed displacement fields in finite
elements have been discussed in Chapter 1 and some examples of the displacement
shape function [N] will be presented in the next chapter. Then, by means of the
partial strain-displacement equations (3-8), the derivatives of the displacements can
be expressed as

D,u=[B.] §,=¢, (3-26)

D,u=[B,]18,

Because the partial strain-displacement equations (3-8) are satisfied a priori, the
inplane strains can be expressed in the form of the derivatives of the displacements.
On the other hand, the transverse strains can not be expressed in that form due to
the fact that the partial strain-displacement relations (3-9) are only satisfied a
posteriori. In the element, a partial stress field is also assumed independently as
follows,

og:[ ay aﬂ e (!.] . (3-27)

=[2,]P

in which, vectors ©; are stress modes which are functions of the co-ordinates, the
parameters }; are the corresponding stress parameters, and [P] is the stress matrix.
Using the definition (3-17), (3-6) and (3-2), the composite energy functional can be
written as



90 STRESS ANALYSIS OF COMPOSITES

11c0=fv[%e§[R1] c,+%0§[R3] o +0g[R,] e, (3-28)

+agDu~F Tu] dv-  TTuds
t

Substituting the equations (3-25)-(3-27) into the equation (3-28), the functional
becomes

1

I,=583[ [B,]7IR] [BdV 8,
+ 287 [P17IR,] [P)dV B

+p* , LBl T([BL] +[R,17[B,])dV &,

-8 [N TFdv —6."’fs [N] Trds

(3-29)

Denote

(H] =-1,[P,1T[R,] [P,] AV
[6] =l [P]T([B,]+[R,]7[B,])dV

(K, =/, [B,1TIR,] [B,] dvV (3-30)

£= fv[m TFAV + f [N] TrdsS

S

Thus, the functional is expressed as

I~ 2851k, 8,2 B*[H] p+B7Lc18,-83¢ 7P

In this variational functional, there are two independent variables subject to variation.
From the partial stationary condition with respect to j,
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aII::o
= 3-32
3B 0 (3-32)

the relation between stress parameters f and nodal displacements J, is obtained,
[#] B=1G18, (3-33)

By means of this relation, then, the functional (3-31) becomes

- 85[K,) 8,+ 2 85([617[H 2 [¢1)8,-8%, O3
Denote
[Kx] =[G1T[H] 2 [G] and (K] o= [Kg] + [ K] (3-35)

Then, equation (3-34) can be rewritten as
_1lar T 3-36
L= 85Kl 8,-83%, (3-36)

From the partial stationary condition with respect to §,, the governing equation of
the element is obtained,

(K], 8,°£, G0

in which, [K], is the element stiffness matrix. For the partial hybrid element, the
element stiffness matrix consists of a displacement-formulated stiffness matrix [K,]
and a hybrid-formulated stiffness matrix [K,].

3.4 DETERMINATION OF STRESS MODES

For hybrid stress elements, there have been problems with the determination
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of the stress polynomials. While the displacement polynomials are constrained by the
number of displacement nodal degrees of freedom in the element, the stress
polynomials have no such constraint. However, if not enough polynomial terms are
introduced into the stress field, then there may exist spurious kinematic deformation
modes in the stiffness matrix which make it singular. One possible way to remedy
this problem is to add more terms into the stress polynomials. But there is no
guarantee that the additional terms will resolve the singularity problem. Also, the
more terms there are in the stress polynomials, the larger the matrices [H] and [G]
will become and the more computer resources will be required. In addition, if there
are too many terms in the stress polynomials, the resulting element model will be
over-rigid. Furthermore, overuse of the terms in the stress polynomials will cause
locking in some elements such as plate/shell elements. Although there are several
approaches to determine the optimal assumed stress field [3.20-3.28], the problem
has been not solved completely. In order to solve these problems, this section
presents the eigenfunction method [3.5], the iso-function method [3.7], and the
classification method [3.16] for determination of stress polynomials. For simplicity,
the discussion is restricted to the conventional hybrid elements based on the
Hellinger-Reissner variational principle. However, these techniques can also be
applied to partial hybrid elements. Once the displacement polynomials for an element
are determined, by means of these techniques, the stress polynomials will be
constrained by optimal condition of the stress field.

3.4.1 Eigenfunction Method

A finite element has a finite number of degrees of freedom. For instance,
a 2-D, 4-node displacement element has (n=) 8 degrees of freedom, and a 3-D, 8-
node displacement element has (n=) 24 degrees of freedom. Therefore, the
displacement field of an element can be described by n nodal displacements. It can
also be described by n-r independent deformation modes and r rigid body modes.
Thus, it can be assumed that there exist m (=n-r) natural deformation modes and r
rigid body modes in the element. The displacement distribution in the element can
be represented by them.

In finite element method, for both single-field displacement formulation and
multifield hybrid formulation, the governing equation of nodal displacements has the
same form as follows,

K 8., 9

If the nodal force vector is proportional to the nodal displacement vector, the
equilibrium equation (3-38) becomes a eigenvalue equation. It can be expressed as
follows
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( [K]l-AlLI] )8,=0 (3-39)

where [K], is a nxn element stiffness matrix. This equation will give (n-r) non-zero
eigenvalues and r zero eigenvalues, and (n-r) eigenvectors corresponding to the (n-r)
non-zero eigenvalues. If vectors {§;} (i=1,2,...m) are the eigenvectors of the stiffness
matrix [K],, they must satisfy the orthogonal condition:

18,1718 }=0 i
{8,708 }=1 i

(3-40)

Natural Deformation Mode

In the single-field displacement element, the stiffness matrix can be
expressed in the form (see chapter 1),

(k] =/, [BIT[C] [B] dV (1-6)

In which, [C] is the material constant matrix and [B] is the geometry matrix of the
element. Therefore, the eigenvalues and eigenvectors only depend on the material
properties and geometry of the element. Due to the fact that the (n-r) eigenvectors
{8}; (i=1,2,3, ... m) are unique, they can be considered as the natural deformation
modes of the element with a special shape and material constants [3.5, 3.29].

These natural deformation modes are independent from each other and are
the basic deformation modes of the element. Any deformation in the element can be
described by the linear combination of these basic deformation modes and the energy
of the element is decomposable into these orthogonal modes.

Natural Stress Mode

In the hybrid element based on the Hellinger-Reissner variational principle,
the stiffness matrix can be expressed in the form (see chapter 2),
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[K] =[G] T[H] *[G]

(Hl=| [PIT[S][PldV
Ve (2-28)

[6] =fv [P]T(B] dv

where [H] is the flexibility matrix, [G] is the leverage matrix, [S] is the material
constant matrix, and [P] is the stress matrix. Because of the existence of the matrix
[P], the eigenvalues and eigenvectors of the element will not only depend on the
material properties and the geometric shape of the element, but also be sensitive to
the stress modes in the assumed stress field.

In hybrid elements, an assumed stress matrix [P] may contain zero-energy
stress modes and its resulting stiffness matrix may have spurious kinematic
deformation modes. The zero-energy stress modes are such stress modes that do not
produce deformation energy. The eigenvalues of the element stiffness matrix
corresponding to these stress modes equal zero, and these stress modes correspond
to rigid body modes. The kinematic deformation modes are these deformation modes
corresponding to spurious zero stiffness. They may be caused by unsuitable
numerical integration technique or unsuitable assumed stress fields. In this book, the
numerical integration technique is not discussed. The selection of stress modes will
be only discussed here. Therefore, non-zero-energy tress modes should correspond
to the natural deformation modes [3.5,3.29]. Thus, it can be stated that;

There are m (=n-1) natural stress modes in a hybrid element with n degrees
of freedom and r rigid body modes. These natural stress modes correspond to m
natural deformation modes which are orthogonal and independent from each other,
and the energy of the hybrid element is decomposable into these orthogonal modes.

Postulate ]

If and only if the elastic energy of the structure with finite degrees
of freedom is decomposable, the eigenvalues obtained from separate stress
mode equations

([K;]1,~A[11)8,=0 (3-41)

are equal to the eigenvalues obtained from the total stress mode equation
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([K] ,~A[I1)8,=0 (5-42)

where i=1,2, ... , m. The stiffness matrix [K] is defined by equations (2-28)
and (2-34). It is
[K] = [G]T[H] ]G]
(] =/, [P 78] [PldV (2-34)
[G1=/, [P1T[B]dv

The matrix [K ] is defined as follows,

[K_i] e~ [Gi] T[H_i] -1 [Gi]
[#,] =/, {o " [S]o v

(3-43)
[G;] =[v°{°_i}r [Blav
in which
[Pl=[o,} {0} {og} ...... {ogd 1
[G,] (3-44)
_ [G,]
[Gp)

This postulate [3.5,3.29] can be stated as a theorem:
Theorem 1
For a hybrid element with n degrees of freedom and r rigid body

modes, if and only if the matrix [H] is a diagonal matrix, the stiffness matrix
satisfies the superposition principle:

[K] =Y [K;], (3-45)
i=1
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where the matrices [K], and [K ], are defined in the equations (2-34)" and (3-
43).

Proof [3.5]. Assume [H] to be a diagonal matrix and denote:
(3-46)
Ci= 1
H;;

The inversion of the diagonal matrix [H] can be written in the form,

c 0 ... ... 0

0 G vvv v00 O
[H] 7, . . (3-47)

and

[H,] "= [c,]

Thus, by means of equations (2-34)' and (3-44), the element stiffness matrix is
expressed as follows,

c; 0 ... ... O [GJ.]
0 ¢ ... ... 0f][G,]

[Kl=I [G]1T [G]T ... [GIT]1|. . . (3-48)

0o . . . c Gl

Then,



DEVELOPMENT OF HYBRID ELEMENT TECHNIQUE 97

[K] =Y 16,17 [c,] [6,]
P RCARICY (3-49)

=i [Ki] e

n

Due to the fact that the matrix [H] is a diagonal matrix if the related stress
matrix [P} consists of the natural stress modes of an element, equation (3-49) shows
that the natural modes are independent from each other and the elastic energy of the
element is decomposable into these natural modes.

Determination of Natural Stress Modes

In order to get the natural stress modes from the natural deformation modes,
the relation (2-31) between stress parameters B and nodal displacements J, is used.
It is

[H]1B=1G18, (2-3)

For simplicity, the subscript e of the nodal displacement vector in the
equation (2-31) will be omitted in the following text. If the vectors §, (1=1,2,...,m)
are the eigenvectors of the stiffness matrix of the single-field displacement element,
they are considered as the natural deformation modes of its hybrid counterpart
because they do not depend on the stress modes. Thus, in eigenfunction method, a
set of initial stress modes can be assumed. Subsequently, these initial stress modes
can be modified by means of iterative process as follows

p1= [Hi] -1 [Gi] 51

. 50
o1"=[pi] p? -5

in which, superscript i represents the i-th step of the iterative process. Details of the
iterative process are shown in the following pages. This process continues until the
matrix [H] becomes diagonal and the stress matrix [P] is stationary. The resulting
stress modes from this process are considered as the natural stress modes
corresponding to the natural deformation modes. Theoretically, the natural stress
modes of an element can be found by using the eigenfunction method. However, in
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the case of multiple eigenvalues, modification of the eigenvectors has to be made in
numerical iterative process.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

The procedure of the eigenfunction method is as follows [3.5, 3.29],

Calculate the eigenvectors of the element stiffness matrix of the
displacement element having the same displacement field as that by a
hybrid element:

3-51
8, 1=1,2,...,m (3-5D)

Assume a complete set of the stress field modes as follows,
[P =[af @ ... o}] (3-52)

where L >= m (=n-r).
For i = 1,2,3,...,k, where k is the number of iteration, run the iterative steps
4 - 6 until the matrix [H] becomes diagonal and the stress matrix [P] is

stationary.

Calculate the matrices

(1] =], [P*]17[S] [Pi]dV (3-53)

[6i]1=[, [P*]T[B]dV
Modify m stress modes in the matrix [P']

oi=[pPi] [H1]1[G1]}, (3-54)
where 1=1,2,...,m.

Normalize the stress modes
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.i+1 i+
=07/ \/ 01

i+

ol B (3-55)
max([w®], (w2 ..., (w2

[P1+1] = [°1+1 1+1 L o:-l-l]

If the matrix [H] becomes diagonal, the stress modes in the stress matrix
{P] are the natural stress modes of the hybrid element. One caution needs to be
considered. In the eigenvalue analysis, there may exist multiple eigenvalues. In this
case, there are a lot of choices for the directions of the corresponding eigenvectors.
However, it is not guaranteed that every choice can result in a stress mode which
gives a diagonal matrix [H] and makes element stiffness matrix [K]
superpositionable. Therefore, for multiple eigenvalues, the orthogonal displacement
eigenvectors may or may not result in orthogonal stress modes.

Examples of Stress Matrix Determined by Eigenfunction Method

In the hybrid element with isotropic elastic material and rectangular shape,
the number of the degrees of freedom is eight (n=8), and the number of rigid body
modes is three (r=3). Therefore, the number of stress modes in the assumed stress
field must be larger than five (m=n-r=5). For two different sets of initial stress
modes, the stress matrices [P!] in the iterative process are given as follows [3.5,3.29],

Example 1.

Step 1. Calculate the eigenvectors (§, , 3, , 8, , J,, & ) of the stiffness
matrix [K] of the displacement element.

Step 2. Assume a stress matrix,

11 0n0 0 -§
[P°] =]1 -1 00 & -n O (3-56)
00100 E n
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Step 3. Run the iterative steps 4 - 6 fori = 1,2,3, ...

-1 0.045f 0 1 -1
[P] =|0.0457 - 0 -1 -1 (3-57)
-0.045€ -0.045n 1 0 O
-1 0.0026 0 1 -1
[P2] =]0.0027 4 0 -1 -1 (3-58)
-0.002¢ -0.002n1 1 0 O
-1 4x10SE 0 1 -1
[P3] =|4x1075q - 0 -1 -1 (3-59)
-4x107% -4x10°n 1 0 O
-1 2x10™E 0 1 -1
[P4] =|2x10711q -§ 0 -1 -1 (3-60)

-2x10™1§ -2x10'p 1 0 0

-n 0 01 -1
[PS] =10 -§ 0 -1 -1 (3-61)
0 010 O

When i=5, the matrix [H] becomes diagonal. Therefore, the final stress
matrix is obtained.

Example 2:

Step 1. Calculate the eigenvectors (§, , 8, , d, , §,, 8, ) of the stiffness
matrix [K] of the displacement element.
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Step 2. Assume a stress matrix,

11 0E00nM00
[P] =|1 -1 00E00mn0O
0 0100E00HRn

Step 3. Run the iterative steps 4 - 6 for i = 1,2,3,

-1 0.09¢ 0 1 -1
[P'] =]0.097 -£ 0 -1 -1
-0.12 -0.12n 1 0 O

- -0.0088 0 1
[P?2] =|-0.0087 - 0 -1
-0.015¢ -0.0151 1 O

-1 -6x1073§
[P3] =|-6x1075n -E -1
-2x10™E -2x107*n 1 0

o O
[

-n -4x107°¢ 0 1
[P*] =|-4x107%7 - -1
-5x1078¢ -5x107%n 0

R O

-1
-1
0

-1
-1
0

-1
-1
0

101

(3-62)

(3-63)

(3-64)

(3-65)

(3-66)
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-n 0 0 1 -1
[P’] =|0 -§ 0 -1 -1 (3-67)
0 010 O

When i=7, the matrix [H] becomes diagonal. Therefore, the final stress
matrix is obtained.

It can be seen that the final stress matrices [P] are the same although they
start from the different initial stress modes.

3-D. 8-node Hybrid Element

In 3-D, 8-node hybrid solid element with isotropic elastic material, the
number of the degrees of freedom equals twenty four (n=24), and the number of
rigid body modes equals six (r=6). Therefore, the number of stress modes in the
assumed stress field must be larger than eighteen (m=n-r=18). Similar to the 2-D
case above, the natural stress modes are obtained by Huang [3.5,3.29]. They are

Tension and compressive modes,

1 1 -1
1 -1 -1

fo={ 31 o= Ot flog}={ 2 (3-68)
0 0 0
0 0 0

Pure shear modes,

0 0 0
0 0 0

fod<{ 21 logd={ 0t fog= g (3-69)
0 1 0
0 0 1



DEVELOPMENT OF HYBRID ELEMENT TECHNIQUE 103

Symmetric bending modes,

¢ ¢ ;
E 0
fot={} fog={ 3t fog<{ ] (3-70)
0 0 0
0 0 0
Anti-symmetric bending modes,
¢ 0 1
~¢ £ 0
0 Z - (3-71)
fog={ 9 b Hogd{ F 1 fod{
0 0 0
0 0 0
Torsion modes,
0 0 0
0 0 0
lo={ 2t oyt § 1 fogd=f 2 (3-72)
E % :
n 0 -2n
Saddle distributed modes,
n¢ 0 0
0 44 0
0 0 (3-73)
fogd=f 9 fot={ O b o ={ &1
0 0 0
0 0 0

These stress modes can formulate a diagonal matrix [H] for the hybrid
element, and resulting stiffness matrix [K] satisfies the superposition principle.
Therefore, the energy of the hybrid element is decomposable. Moreover, the
eigenvalues of the stiffness matrix [K] (2-34)' is equal to that of the stiffness matrix
(K] (3-43).

3.4.2 Iso-function Method

The eigenfunction method can not be used to derive partial stress field for
partial hybrid element due to the existence of multiple eigenvalues. In order to
assume a partial stress field without zero energy modes, a new method termed iso-
Sfunction method is presented [3.6-3.7]. The method presents an easy way to form a
stress field although the formulated stress field may not be better than others [3.21-
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3.28].
Iso-function Stress M atrix

Within a hybrid finite element based on the Hellinger-Reissner variational
principle, a displacement field is assumed in the form,

u=[D]a (3-714)

where [ @ ] is defined as [ D@ ] = [ @, @, ... @, ], and {D,} are vectors of
displacement interpolation functions. They only depend on the element geometry and
have no relation with the material properties of the element. a=[ a, a, ... a, 1" is the
displacement parameter vector, and the subscript n is the total number of degrees of
freedom of the element. By means of strain-displacement relation (2-1), then, the
strain field is derived from the displacement field as follows,

¢ =[D]Ju=[W¥Y]a (3-75)

where [ D ] is the derivative operator matrix and [¥] = [D][®]. The displacement-
derived stress field can be obtained using the constitutive relation (2-2),

— (3-76)
o=[Cle=[C] [TP]a

The expression can be rewritten in the form

— 3-77)
o=[6]y

where [ © ] is a function of co-ordinates and <y is a vector of stress parameters
which are the products of material constants C;; and displacement parameters a,.
Therefore, the stress parameters depend on the geometry, material properties, and
displacement parameters of the element. On the other hand, the stress field in the
conventional hybrid element is independently assumed as

o=[F] P (3-78)

where [ P ] is a stress matrix which is functions of co-ordinates, and P is a vector
of stress parameters which depends on the geometry, material properties, and
displacement parameters of the element. If the number of stress parameters in the
two stress fields (3-77) and (3-78) is same, the difference between them is only that
the stress parameters (3-77) are not basic variables and depend on the displacement
variables, whereas the stress parameters (3-78) are basic variables. However, the two
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stress fields represent the same field in an element. If the assumed displacement field
(3-74) does exactly describe the deformation of the element and the assumed stress
field (3-78) does exactly represent the stress distribution in the element, in the case
of n —eo, the displacement-derived stress field and the assumed stress field must be
same. That is

(3-79)
[(PI1B=[6]Y
Therefore, without loss of generality, it is assumed that
[P]1=[©] (3-80)

In this relation, the stress matrix [P] is assumed to be the same as the
displacement-derived stress matrix. Thus, the matrix [P] is called iso-function stress
matrix and the method to establish an assumed stress field is called iso-function
method.

Iso-function Partial Stress Matrix

For a partial hybrid element based on the variational principle of composite
energy, the displacement-derived stress field (3-77) can be split to two parts as
follows,

Og =[gg] Y (3-81)

and a partial stress field is independently assumed in the form,

L [ pg] B (3-82)

Similarly, in the case of n—eo, the assumed partial stress field (3-82) should be
equivalent to the displacement-derived partial stress field (3-81) if they do represent
the real stress distribution for the same element. Therefore, it is assumed that the
assumed partial stress matrix is equal to the displacement-derived partial stress
matrix. That is

[Pyl =16,] 83

Using this various partial stress fields can be derived for the different partial
hybrid elements. However, one question remains. That is the possibility that there
are zero-energy stress modes which may cause spurious kinematic deformation
modes in the element. Before answering this question, the relationship between the
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convention displacement element and hybrid element constructed by iso-function
stress matrix should be discussed.

Equivalence Between Hybrid Element and Displacement Element

In the process of deriving iso-function stress matrix, it is assumed that n
—oo, In practice, n is a finite number. The assumed displacement field is only an
approximation of the actual deformation state of an element. Thus, the problem
becomes: Is it possible that an assumed stress field for a hybrid element is exactly
equivalent to its displacement-derived stress field when n is a finite number ? The
answer is YES. The proof is as follows.

In Chapter 2, it has been indicated that there are the limitation principles
[3.30-3.31] which establish the relationship between hybrid elements and
displacement elements. For hybrid elements based on the Hellinger-Reissner
variational principle, it states

A hybrid element would be equivalent to its displacement counterpart if the
displacement-derived stress space is a subspace of the assumed stress.

This means that a hybrid element based on the Hellinger-Reissner
variational principle would be no different from a displacement element when the
assumed stress field contains all stress modes derived from the assumed
displacement field. Due to the fact that the iso-function stress matrix is directly
derived from the displacement field, the assumed stress field constructed by iso-
function stress matrix will absolutely contain all stress modes which can be derived
from the displacement field. Therefore, the hybrid element constructed by iso-
function method is equivalent to its displacement counterpart. As a result, the
assumed stress field is the same as the displacement-derived stress field. Because a
displacement element does not have any kinematic deformation mode, the equivalent
hybrid element does not have any kinematic deformation mode and assumed stress
field does not contain any zero-energy mode.

For the partial hybrid element, the works on the limitation principle were
extended to the partial hybrid plate/shell element [3.32,3.14]. Similarly, one also can
extend the limitation principles to the partial hybrid elements based on the variational
principle of composite energy.

Limitation principle. A partial hybrid element would be equivalent to its
displacement counterpart if the displacement-derived partial stress space is a
subspace of the assumed partial stress.

By means of this limitation principle, it is clear that the partial hybrid
element using iso-function method is equivalent to its displacement counterpart
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because the iso-function partial stress matrix contains all displacement-derived stress
modes. Therefore, similar to the conventional hybrid element, the assumed partial
stress field is equivalent to the displacement-derived partial stress field and is free
from any zero-energy mode.
Examples of Iso-function Stress Matrix

Iso-function method can be used to establish the assumed stress fields and
assumed partial stress fields for hybrid elements and partial hybrid elements. Here
are some examples.

Iso- ion Str i -D, 3-n n
Within this element, there are six degrees of freedom and the assumed

displacement field has six parameters. It can be expressed in the form,

u=a,+a,§ +a,n 584)
v=Db, +b1E +b,m

Using strain-displacement relation, the strains are derived as follows,

e, o =b, (3-85)

For linear elastic body, the material stiffness matrix is

€13 Ci3 Cyi3
[C] ={Ca1 €23 Cay (3-86)
Ci1 C3z Ci;

Using the constitutive relation (3-76), the displacement-derived stress field is
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0g=a,Cy; +b,C 5+ (3,+D;) €13=Y,

0,=8;Cy1+D,Cpp+ (83+D;) C33=Y (3-87)
Oy =8,C3, %Dy C3+ (8, +D;) C33=Y;
It can be written in the matrix form (3-77),
100
001

where [ © ] is the function of co-ordinates and 7y is the vector of the stress
parameters Y, which are the products of material constants C; and displacement
parameters a,. Therefore, the stress parameters depend on the geometry, material
properties, and displacement parameters of the element. By means of iso-function
relation

[P]1=[©] (3-80)

The stress matrix [P] is obtained. It is

100
[Pl=l0 1 0 (3-89)
001

Therefore, the assumed stress field is

100
o=[PIPp=lo 1 o|p (3-90)
001

in which, stress parameters are basic variables in variational functional and are
determined by the variational principle.
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Iso-function Matrix for 2-D. 4-n Element

For this element, the number of degrees of freedom is eight and assumed
displacement field has eight parameters. It can be expressed in the form,

u=ayta,§+a,n+a,fn

(3-91)
v=b,+b,§+b,n+bEn
Using strain-displacement relation, the strains are derived as follows,
du
€= gF ~3 "N
_ ov =h. + E
"= Pt (3-92)

Using the constitutive relation (3-76) and the stiffness matrix (3-86), the
displacement-derived stress field is

a=[0]y (3-93)
In which,
100E£00mn00
[@]=(0 1 00 E 00N O (3-94)
00100E00n

and
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Y1=C1181+C1b,+Cy38,+C1 by
Y.=C12bytCr38;
¥7=C1183+Cy3b;
¥2=Cp18;+Caab, +Cp38,+Co3 by
¥5=Cz22D3tCz38, (3-93)
Ye=Ca183+Cz3b;
¥3=C318;1+C30,+Cy38,+Cy3b,
Y6=Ca2D3 tC338,

¥9=C3183+C33b,
In which, [ © ] is the function of co-ordinates and ¥ is the vector of the stress
parameters which are the products of material constants C, and displacement

parameters a,. By means of iso-function relation (3-80), the stress matrix [P} is
obtained and the assumed stress field is

o=[P] B=

o O B
o r» o
K O O
O O ¥w
O ¢ O

0
0
§

o o 3
o3 o

0
olp (3-96)
n

In which, stress parameters are basic variables in variational functional and are
determined by the variational principle.

3 _Iso-function Stress Matrix for 3-D. 8-node Element

For a 3-D, 8-node hybrid element, the displacement field is assumed in the
form,

u=a,+a,k+a;n+a{+a,kn+af{+an{+a,n{
v=by+b,E+b,M +by{+b,En +b§{+bn{+b,En{ (3-97)

v=cptc §tente{+e En+eEl+cnl+c,Enl

Using strain-displacement relation, the strains are derived as follows,
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eg=a, +an+as{+a;n{
e,=b,+b,E +bs{ +b,§{
e;=Cy+csE+cgn+cEn
gy = (ay+b,) +a,E+bn+(ag+bs) {+a,E{+b,n{
eq=(Cathy) +(c +bs) §+bgn +cg{+b En+c &

ere= (C1*ay) +ask+ (o +ag) n+esl+a,fn+ond

For linear elasticity body, the material stiffness matrix is

[cl

111

(3-98)

(3-99)

Using the constitutive relation (3-76), the displacement-derived stress field can be

obtained,

0=[0] Y=

In which,

[6.1=[1&n { &n n{ (&l

18,1

0
[6,]

0
0
[, ]

Y (3-100)

(3-101)

Using iso-function relation (3-80), an assumed stress field is obtained,
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(8] o o o o o

0o [6] o 0 0 0

0 o [6,] o ] 0
=[P B=[6] B (3-102)
o=[FIB=I61PF7 o 4 o (8] o o P

0 0 0 o [6,] o

| o 0 0 0 0o [6,]

Within the matrix [0] (3-101), there are seven least-order polynomial terms.
Therefore, the assumed stress field (3-102) contains forty two stress parameters.
These stress parameters are basic variables in the variational functional and are
determined by the variational principle.

For partial hybrid element, the displacement-derived partial stress field is

[6,] o (]
o[,y 0 [6,] 0 ly (3-103)
o o0 [6]

Using iso-function relation (3--83), an assumed partial stress field can be obtained
as follows,

[6,] o 0
o,=[P1Pp=[6,1p=| 0 [6,] o0 |p (3-104)
o 0 [6]

In this partial stress field, there are twenty one stress parameters only. Comparing
to the assumed stress field (3-102), the number of stress parameters is greatly
reduced. For analysis of composite structures, it will greatly improve the efficiency
of finite element models of the structures.

The eigenvalue examination shows that conventional hybrid element and
partial hybrid element have the same eigenvalue property as their displacement
counterpart. This result can be expected according to the limitation principle [3.30-
3.32] for hybrid elements and partial hybrid elements presented above.
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3.4.3 Classification Method

Although the iso-function method [3.6-3.7] is used easily for establishing
assumed stress fields, there are a great number of unnecessary stress parameters and
stress modes in the stress fields. Due to the inversion of the flexibility matrix [H],
unnecessary stress modes will require more and unnecessary computer resources and
the efficiency of finite element model is reduced. On the other hand, eigenfunction
method [3.5, 3.29] can establish an assumed stress field which only contains
minimum number of stress modes. But, using this method, multiple eigenvalues will
cause difficulty. In the eigenfunction method, theoretically, there should be a unique
set of natural stress modes in a hybrid element. In practice, it is difficult to find
them due to existence of multiple eigenvalues. When multiple eigenvalues exist,
there will be many choices for the directions of the corresponding eigenvectors and
the resulting stress modes by the eigenvectors are not unique. Therefore, the
assumption in eigenfunction method has to be modified. In this section, a
classification method [3.16] is presented to establish assumed stress fields based on
the iso-function method and the eigenfunction method.

Classification of Stress Modes

Since Pian [3.33] formulated a hybrid element in 1964, a lot of different
hybrid elements have been presented. However, a hybrid element may have many
different assumed stress fields. For example, there are many assumed stress fields
for 2-D, 4-node plane element and 3-D, 8-node solid element. Pian [3.22] proposed
an assumed stress field for 2-D, 4-node plane element and another for 3-D, 8-node
solid element. Punch and Atluri [3.34-3.35] gave two assumed stress fields for 2-D,
4-node plane element, and eight assumed stress fields for 3-D, 8-node solid element.
Huang [3.5] presented an assumed stress field for 3-D, 8-node solid element.
Although each of these assumed stress fields may contain the same number of stress
modes, the stress modes in these fields are different. In order to determine the
optimal stress modes for an assumed stress field, it is necessary to study the
relationship between different stress modes.

In section 3.4.1, it is assumed that a finite element has (n-r) natural
deformation modes and r rigid body modes, and the displacement distribution in the
element can be represented by them. It is also assumed that there exists a unique set
of natural stress modes in an element, and they can be determined by (n-r) natural
deformation modes. Therefore, the eigenfunction method is used to search these
natural stress modes. Although the eigenfunction method may fail to find the natural
stress modes in the case of multiple eigenvalues, it can be modified to classify stress
modes that appeared in various assumed stress fields.

In a hybrid element, if various stress modes can be classified, at least m
stress mode groups must exist because the stiffness matrix of hybrid element must
have m non-zero eigenvalues, except zero-energy stress mode group. Otherwise, the
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hybrid element will contain kinematic deformation modes. On the other hand, no
matter how many stress modes there are in a stress matrix [P}, the maximum number
of non-zero eigenvalues of an element stiffness matrix is always equal to or less than
m. Therefore, the number of stress mode groups is equal to or less than m. Thus, it
can be considered that there exist and only exist m stress mode groups except zero-
energy modes for a hybrid element.

In addition, the eigenvectors and eigenvalues of the stiffness matrix will be
sensitive to the assumed stress modes. The eigenvalue examination will give r zero
eigenvalues corresponding to rigid body modes and m (= n-r) non-zero eigenvalues
corresponding to natural deformation modes if the assumed stress field is suitable.
Therefore, m stress mode groups must be related to m natural deformation modes
and the zero-energy stress mode group must be corresponding to rigid body modes.
Thus, all stress modes in various assumed stress matrices can be classified into the
m+1 stress mode groups.

Postulate 2

There exist and only exist m (=n-r) natural deformation modes in a
hybrid element. All stress modes in assumed stress field can be classified into
m stress mode groups corresponding to m natural deformation modes and a
zero energy mode group corresponding to rigid body modes of the element
which has n degrees of freedom and r rigid body modes.

Based on this postulate, it can be considered that an assumed stress field
can be represented by stress modes in the m stress mode groups related to m natural
deformation modes. This can be expressed as follows,

B,
B m
{a=1P1{B}=o.}, fo}, ... Ao 1{./}=¥ [P,1B} (3-105)
. i=1
Ba

where [P,] and {B;} (i=1,2,...m) are the stress matrices and stress-coefficient vectors
related to the i-th stress mode group which corresponds to the i-th natural
deformation mode. They are

[p;1=[{o} ... {o},{o;}, {0} ... {oO}] (3-106)
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and

{Bt=l0...0PB;0...0I" (3-107)

The stress mode which belongs to the i-th stress mode group can be expressed in the
form,

o} = P18} (109

Therefore, the vector {P,} corresponds the i-th stress mode group which corresponds
to the natural deformation mode {3,} (i=1,2,..m). Using equation (2-31), we have

[H] B=1G] 8} (3-109)

If the stress matrix [P] does not contain any stress mode which belongs to
the i-th stress mode group, the value of P, in the vector {B;} should be equal to
zero. Then, one can add a new stress mode into the stress matrix [P]. The new stress
mode will be classified by m natural deformation modes. Corresponding to the i-th
natural deformation mode {Si}, the condition to check whether the new stress mode
belongs to the i-th stress mode group can be expressed in the form,

B, =0 if new stress mode does not belong to i-th stress mode group

B,# 0 if new stress mode belongs to i-th stress mode group

Using equations (3-39), (3-40), and (3-109), the eigenvalues are obtained as follows,

A, =(8 )7 k148 }={p }7[H1 1B } (3-110)

Because all of the diagonal elements in the flexibility matrix [H] may not be equal
to zero, the classification condition above becomes

A, =0 if new stress mode does not belong to i-th stress mode group
A, # 0 if new stress mode belongs to i-th stress mode group

Thus, using eigenvalue examination, the stress modes can be classified into m+1
stress mode groups.

Expression of Classification Condition of Stress Modes



116 STRESS ANALYSIS OF COMPOSITES

A hybrid element stiffness matrix [K] can be formulated using equations (2-
28) and (2-34). Its eigenvalues and eigenvectors are calculated from equation (3-42).
The eigenvectors {3} (i=1,2,...m) satisfy the condition (3-40). Thus, the eigenvalue
equation (3-42) is changed to

A, =18 }7 (k118 } (3-111)

For any stress mode {0;} among m stress modes {0, Gy, ..., G}, the stiffness matrix
[K;] can be derived using equations (3-43) and (3-44). Corresponding to the i-th
natural deformation mode, one has

=8, 171K,1{8 } (3-112)

According to the classification condition of stress modes, if the stress mode
{o;} belongs to the i-th stress mode group corresponding to the natural deformation
mode {8}, the eigenvalue A, is a non-zero value; otherwise, the eigenvalue A,
equals zero. This condition can be expressed in the form,

;=8 17 [K,;1{8 }#0 i=7 (3-113)

If the stress mode {0, } is a zero-energy stress mode, all eigenvalues A, (i=1,2,...,m)
equal zero.

In the section 3.4.1, there is a postulate 1. This postulate can be stated as
a theorem as follows.

Theorem 2

If and only if the flexibility matrix [H] is a diagonal matrix, the
eigenvalues obtained from the separate stress mode equations

([k;1-A[1]){8}=0, i=1,2,...,m (3-114)

are equal to the eigenvalues obtained from the total stress mode equation

( (K] -A[T]){8}=0 (3-115)

in which, the matrices [K,] and [K] are defined in equations (2-28), (2-34),
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(3-43), and (3-44).

Proof:

From the equations (3-111), (2-28) and (3-109), one has

3-116
A=08 JT 1K1 6 }=(p 7 1K1 (B} G110

Because the matrix [H] is a diagonal matrix, one has
(] =37 (] Gt

Thus, using equations (3-106), (3-107) and (3-43), the eigenvalue of the matrix [K]
becomes

"=i By a1 I=p J"1H,11{B } (3-118)
Jj=1

Furthermore, using equations (3-109) and (3-113), this equation becomes

A=(B J7E, 1B }=18 J7 [ K,1 {6 }=A, (3-119)

End of proof.
By means of the theorem 1, it has ben proven that if the flexibility matrix
{H] is a diagonal matrix, the energy of the element is decomposable. Therefore, the

theorem 2 is equivalent to the postulate 1.

Theorem 3

If and only if the flexibility matrix [H] is a diagonal matrix, the
classification of stress modes is unique.

Proof:

If a stress mode among m stress modes that form the stress matrix [P]
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appears in more than one stress mode group, one of the m stress mode groups must
contain two stress modes. Assume that a stress mode {o;} in the j-th stress mode
group also appears in the i-th stress mode group. Thus, at least two stress modes
{c,} and {o;} will belong to the i-th stress mode group corresponding to the natural
deformation modes {8,}. Therefore, one has

1.1. {6 }T [Ki] {6} and ). —{6 }T [K]{b} (3-120)

Corresponding to the natural deformation mode {§,}, one can obtain the
eigenvalue of the stiffness matrix {K] formulated by m stress modes as follows,

A=(8,}7 [k]{8} (3-121)

Because the flexibility matrix [H] is diagonal, the energy of the element is
decomposable and the stiffness matrix satisfies the superposition principle. From
equations (3-45) and (3-120), we obtain

A=(B,07 [KI(8,3=3" 8,77 [K,1(8,0=A 4, (3-122)
=1

using theorem 2, one has
A=A (3-123)

u

From the equation (3-122) and (3-123), we obtain
Xij =0 (3-124)

According to the condition of classification, the stress modes {o;} does not
belong to the i-th stress mode group. Therefore, the i-th stress mode group only
contains {0;} and the stress modes {0;} can not appear in two stress mode groups.
Thus, if the matrix [H] is diagonal, the classification of m stress modes is unique.

End of proof
Determination of Optimal Stress M atrix

Before classifying stress modes, one can find a number of initial stress
modes since there are many approaches to derive assumed stress matrices for a
hybrid element. For example, Pian and Chen [3.22] used the product {6}"{€} to
determine the necessary assumed stress modes. Punch and Atluri [3.34-3.35] used
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group theory to obtain assumed stress matrices. One can also derive an assumed
stress matrix using iso-function method.

In order to present a systematic procedure for classifying stress modes and
constructing assumed stress fields, the iso-function method is used to derive initial
stress modes to be classified in this work. This is because the hybrid element
constructed by the iso-function stress matrix has the same eigenvalues and
eigenvectors as its conventional displacement counterpart. Also, the method using
iso-function is straightforward and can be followed easily. After obtaining initial
stress modes, one can use eigenvalue examination to find m representative stress
modes that represent m stress mode groups corresponding to m natural deformation
modes. The stress matrix consisted of the m representative stress modes is an
optimal stress matrix. Then, all existing stress modes can be classified into m+1
stress mode groups. Its detail is presented as follows,

Step 1:

Derive an initial stress matrix [P], by iso-function method. The number of
initial stress modes in the matrix is always larger than m (=n-r). In order to
select m necessary stress modes, these initial stress modes have to be
classified into (n-r) stress mode groups.

Step 2:

Select stress modes in the order from low order term to high order term. Now
select a stress mode from the existing stress matrix [P],, and form an
assumed stress matrix [P;]. The element stiffness matrix [K] corresponding
to stress matrix [P,] can be obtained by using equations (2-28) and (2-34).
If the eigenvalue examination gives a non-zero eigenvalue, the stress mode
is a non-zero-energy stress mode; otherwise, it is a zero-energy stress mode.
Repeating the eigenvalue examination to check whether a stress mode is a
zero-energy stress mode for all stress modes in the existing stress matrix
[Pl

Take all zero-energy stress modes out and keep non-zero-energy
stress modes in the matrix [P],,,. All zero-energy stress modes form a zero-
energy stress mode group.

Step 3:
Take a non-zero-energy stress mode from the existing stress matrix [P],,, and
form an assumed stress matrix [P,]. The stress mode {o,} is the

representative stress mode which represents group 1 of stress modes.

Step 4:
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Add another stress mode selected in the existing stress matrix [P]. into the
assumed stress matrix [P,] and form a new stress matrix [P,],

[P,] = [Ho,} {o,}] (3-125)

Step 5:

The eigenvalue examination gives the eigenvalues of the stiffness matrix. If
there is only one non-zero eigenvalue, continue to step 6. If there are two
non-zero eigenvalues, go to step 7.

Step 6:
In this case, the added stress mode belongs to group 1 of stress modes. Take

the second stress mode out and put it in group 1 of stress modes. Then, go
back to step 4.

Step 7:
The two stress modes belong to two different groups of stress modes. The
second stress mode {0,} is the representative stress mode which represents
group 2 of stress modes.

Step 8:

Add another stress mode selected from the matrix [P],, into the assumed
stress matrix [P,] and form a new stress matrix [P,],

[P] = [lo,} {o,} o)} (3-126)

Step 9:
The element stiffness matrix [K] and its eigenvalues are calculated. If there
are only two non-zero eigenvalues, continue to step 10, If there are three non-
zero eigenvalues, go to step 11.

Step 10:

In this case, the new stress mode {0} belongs to one of the two stress mode
groups. Construct the matrices [P',] and [P",] as follows,



DEVELOPMENT OF HYBRID ELEMENT TECHNIQUE 121

[B] = Hod{o,] or [B] = [o,} {o,}] (3-127)

If the stiffness matrix corresponding to the stress matrix [P,'] has two
non-zero eigenvalues, the stress mode {0,} belongs to the group 2 of stress
modes. Otherwise, the stress mode {0} belongs to the group 1 of stress
modes. Put the stress mode {0} into the corresponding stress mode group,
and go back to step 8.

Step 11:

In this case, the three stress modes belong to three different stress mode
groups. The added stress mode {0} is the representative stress mode which
represents group 3 of stress modes.

Step 12:

Add one more stress mode selected from the matrix [P],, into the matrix [P,]
and form a new stress matrix [P,],

[P,] = [{o,}{o,} {03} {o,}] (3-128)

and so on. Repeating the same process until m representative stress modes
that represent m stress mode groups are obtained. The m(=n-r) representative
stress modes correspond to m natural deformation modes and form a optimal
stress matrix [P],, from the existing stress matrix [P],.

Classification of Other Stress Modes
Step 13:

After m representative stress modes are obtained, other initial stress
modes that remain in the existing stress matrix [P],,, can be classified into the
m stress mode groups. Many other stress modes derived by different methods
also can be classified into the m stress mode groups corresponding to m
natural deformation modes and the zero-energy stress mode group
corresponding to rigid body modes.

Based on the optimal stress matrix [P],,, any remaining stress mode
in [P],, can be classified by using it to replace each and every stress mode
in the matrix [P],, in order. Once the eigenvalue examination results in m
non-zero eigenvalues, the representative stress mode which is replaced and
the one which replaces it belong to the same stress mode group. Put the
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remaining stress mode into the corresponding stress mode group and recover
the optimal stress matrix [P],,,. Then, classify another remaining stress mode.

Step 14:

Repeating the same process until all remaining stress modes are
classified. Thus, all existing stress modes are classified into m+1 different
mode groups. Every stress mode group contains many interchangeable stress
modes. For a stress mode derived by other method, if eigenvalue examination
always give m-1 non-zero eigenvalues when this stress mode replaces each
and every stress mode in the matrix [P]_,, this stress mode is a zero-energy
stress mode.

opt?

Illustration for the Classification of Stress Modes

As an illustration for the above procedure, the stress modes presented in ref.
[3.5,3.22,3.34-3.35] and those derived by iso-function method are classified.

2-D, 4- i 1
1. Determination of optimal stress matrix

The 2-D, 4-node plane element has (n=) 8 degrees of freedom and (r=) 3
rigid body modes. So it has (m=n-r=) 5 natural deformation modes. Firstly, an
assumed stress matrix can be derived from the assumed displacement field of the
element by the iso-function method,

100xy00O00O0
[P,] =01 000xy 00 (3-129)
0010000xy

The number of stress modes in the stress matrix is larger than m (=5). The stress
matrix derived by iso-function method contains a few unnecessary stress modes. The
eigenvalue examination indicates that the eigenvalues and eigenvectors of the hybrid
element stiffness matrix constructed by the assumed stress matrix [P|] are the same
as that of displacement element stiffness matrix. Therefore, the stress modes in the
stress matrix are taken as initial stress modes to be classified. There are nine stress
modes in the matrix [P(],
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1 0 0
{o,}=40 {o,}=11 {o,}=40
0 0 1

0 (3-130)
{o}= 8 {o )= 8 {og}= x
0 0 0
{o.,}= y {ogt=10 {og}=10

It will save computation time for calculating element stiffness matrix if the
number of the stress modes can be reduced to m (=n-r). In order to do it, the initial
stress modes in the existing stress matrix have to be classified into m stress mode
groups. First of all, one must find m representative stress modes corresponding to
m natural deformation modes. Following step 2 - step 12 in the procedure of the
classification method given in the above section, one can obtain 5 representative
stress modes {G, G, O, G5 G} corresponding to (m=) 5 natural deformation modes
and the zero-energy stress modes {0,} and {G,} corresponding to rigid body modes.
The eigenvalues of the stiffness matrix related to {0, 0, 0, G5 G} are not equal to
zero, and the eigenvalue of stiffness matrix related to {0,} or {0;} is equal to zero.
The 5 representative stress modes form an optimal stress matrix [Py] from the
existing stress matrix [P(],

100y0
[P;]=[0, 6,0, 0;0,]=({0100 x (3-131)
00100

The stress matrix is the same as that given by Pian [3.22].
2. Classification of other stress modes

After obtaining the optimal stress matrix, one can classify stress modes in
the existing stress matrix [P;] into (m+1=) 6 stress mode groups by following step

13 to step 14 in the procedure,

Tension mode (Group 1): {o}
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Tension mode (Group 2): {o,}
Shear mode (Group 3): {o,}
Bending mode (Group 4): {os), {0}
Bending mode (Group 5): {os ), {0}
Zero-energy stress mode (Group 6): (o, }, {0}

The first 5 stress mode groups correspond to 5 natural deformation modes
and the zero- energy stress mode group corresponds to rigid body modes.

There are many methods to derive initial stress modes. For example, in the
two assumed stress matrices derived by means of group theory[3.34,3.35] for the

same finite element, there are 4 stress modes that are different from stress modes
{o,}-{0,}above:

1 1 0 _
{010}={1} {011}={~1} {012}={—y} {013}={ OX} (3-132)
0 0 X y

Moreover, one may want to introduce some stress modes of high order term into the
assumed stress matrix [P] in order to describe special stress distribution in a local
region of a structure to be solved. For example,

2 0 0
{014}={)6 } {015}={x2} {015}={£ }
0 0 2
2 0 0
{017}={}£) } {018}= 2 {019}={’? } (3-133)
0 0 2

0 0
{o,,}= 8 {o,,}= 2 {o,,}=1 0

According to the steps 13 - 14 in the procedure of classification method,
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these new stress modes {0,,}-{Cy,} can also be classified into the 6 stress mode
groups above,

Tension mode (Group 1): {6, }, { G }, (O }, { O }

Tension mode (Group 2): {6, }, {6, }, { G5}, { O }

Shear mode (Group 3): {0}, {06} {Op}
Bending mode (Group 4): {os), {0}, (o)
Bending mode (Group 5): {os), {0}, {015}
Zero-energy stress mode (Group 6): {o,}, {0, }, {0}, {0y}, {Oy)

More high-order stress modes can be classified into the 6 stress mode
groups above by using the classification method. If the flexibility matrix [H] is a
diagonal matrix, the classification of the stress modes is unique.

-D. 8-node Solid Hybrid Element

1. Determination of optimal stress matrix

The 3-D, 8-node solid element has (n=) 24 degrees of freedom and (r=) 6
rigid body modes. So it has (m=n-r=) 18 natural deformation modes. By means of
iso-function method, an initial stress matrix [P] can be derived from the assumed
displacement field of the element as follows

100000x00000y00000=200000
0100000x00000y000002=2z0000
(] =00100000x00000y00000zooo
30 " 100 0100000x00000y000002=200
0000100000x00000y00000=20
00000100000x00000y00000 =z
xy 0 0 0 0yz0O O 0 O 2zx 0 0 0 O
0 xy 0 0 0 0yz0 0 0 0=2z2x0 020
0 0xy 0 0 0 0yz0 0 0 O02x20 0 (3-134)
0 0 00O 0O 00O Oyz00O0 0 =2zx20
0 0 0xx 0 0 0 O 0 O 0 O 0 0 zx
0 0 0 0xyx0 0 0 Oyz0 00 O O
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There are 39 stress modes to be classified in the stress matrix. The number
of stress modes is larger than m (=18). The eigenvalue examination shows that the
eigenvalues and eigenvectors of the hybrid element stiffness matrix formulated by
the assumed stress matrix [P], are the same as that of displacement element
stiffness matrix. The stress modes in the matrix [Pl , are taken as initial stress
modes to be classified. The 39 stress modes in the matrix [Pl;;, are numbered as
follows:

{o, 0, 0; 0, 05 o5} =1 (3-135)

OO O oo opRr

O O 0O Pr o

O o0 ok oo

O O Fr OOOo

o +H OO0 O0Oo

P O OO OO
-

00000
x0000
0xooo’
00x00
000x0
0000 x|

{o, 04 0, 0,y 0, 0, =1 (1-136)

O OO0 OO X

{013 014 O15 T3 919 °1a} = (1-137)

O oo o0 o\-
O 0o o-« o
o oo« oo
oo« o oo

o oo oo
“ oo o oo
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z000O0O

0z0000

{0,y .0 0,, Tgq Tyy O _00z0001
19 20 21 22 23 24 0002z00
0000=z0

00000 z|

(xy 0 0 0 0 ]

0 xy 0 0 O

{oa5 056 027 025 025} = 0 0 x 00
0 0 0 0 O

0 0 0 xy O

| 0 0 0 0 xv |

(yz 0 0 0 0 |

0 yz 0 0 O

{oyg 03, 05, 033 0, =1 g g};z ;)Zg }
0 0 0 0 O

L 0 0 0 0 yz |

(zx 0 0 0 0 )

0 zx 0 0 O
{a3oooa}=4oozxoo>
5 T35 037 O35 O3 0 0 0 zx O
0 0 0 0 =zx

l 0 0o 0 0 0 |
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(1-138)

(1-139)

(1-140)

(1-141)

These stress modes are classified one by one in the order from low order
term to high order term. Following step 2 - step 12 in the procedure of the
classification, one can obtain (m=) 18 representative stress modes { 6, ©, G, G, O
Oz Oz O, G, Oy O;5 O3 Oy Oy G, Oy Oy Oy } corresponding to 18 natural
deformation modes. These representative stress modes form an optimal stress matrix

[P,] from the existing stress matrix [P],, as follows:



128 STRESS ANALYSIS OF COMPOSITES

[P,]=[0, 6; 05 0, O35 G5 013 Gz O 019 Og Oy

(1-142)
G332 0y; O35 Oyp O35 O]
1 00000y002z00000yz 0 O]
01000002z00x0000 0 zx 0
[p]=00100000x00y0000 0 xv
" 10001000000002z000 0 O (1-143)
0000100000000x00 O O
00000100000000y 0 0 O)

This stress matrix is the same as that proposed by Pian [3.22].
2. Classification of other stress modes

Following steps 13 - step 14 in the procedure, other stress modes that
remain in the existing stress matrix [P, can be classified into m+1 (=19) stress
mode groups as follows:

Tension and compression modes (3 groups): [{0, }g1s (G2 }aar {Os }asl
Pure shear modes (3 groups): ({0, }Yosr (Os}as {06 }asl

Bending modes (6 groups) [{0; 616}67r {09 Oy las {013 Orolaor
{615 6236100 {015 O13 Y11 (G20 O17 }aad

Torsion modes (3 groups): {0 }ois {Ois}cie (O2)ais]

Saddle modes (3 groups): [{0, O3 O3 }gi6:{025 O33 Os¢ Jauins
{07 O3 Oy Jaim

Zero-energy stress modes (1 group): [{0; G Cyys Oys, Oue Osps
O3 O35 Oy }giol

The first 18 stress mode groups correspond to (m=n-r=) 18 natural
deformation modes and the last group corresponds to rigid body modes. Similar to
the 2-D case, there are many other ways to derive initial stress modes. For example,
in the assumed stress matrix presented in ref. [3.5], there are 12 stress modes that
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are different from stress modes {G,}-{0;}. These stress modes can be expressed
as follows,

Tension and compression modes,

1 1 -1
1 -1 -1
1 0 2 -
{o,={ & {o,,={ § {od 2 (3-144)
0 0 0
0 0 0
Symmetric bending modes,
z 0 y
z b 4 0
0 X -
{o,5={ 3 {o,0={ X lot={ Y (3-145)
0 0 0
0 0 0
Anti-symmetric bending modes,
z 0 y
-z x 0
lo = 8 {o,.}= —é‘ {o,¢= —(')y (3-146)
0 0 0
0 0 0
Torsion modes,
0 0 0
0 0 0
0 0 0 -
{o,q1= O {ogl{ 2 fogh © (3-147)
x -X x
y 0 -2y

In the stress matrices derived by means of the symmetric group
theory[3.34,3.35], there are eleven stress modes that are different from stress modes
{0,}-{05,}. They can be expressed in the form,
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Tension and compressive mode,

{og,)= (3-148)

I
OOOHI—‘O

Torsion modes,

{o,}= (3-149)

w*oooo

Bending modes,

(2x 0 0 )
0 2y 0
0 O Zz> (3-150)
-y x 0
0 -z -y
|-z 0 -X |

log, 055 055}=‘

and

log; 055 055}~ (3-151)
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Saddle modes,

[0 0 0 ]
0 0 0
0 0 0
foge 051 g6l ~2xz -2yz xP+y? | (3-152)
y3+z2 -2xy -2xz
| —2xy x2%+z2 -2yz

Other stress modes may be also needed in an assumed stress matrix in order
to describe special stress distribution in a local region of a structure to be analyzed.
For instance,

Bending modes,

z X y
z X y
3-153
a2} fogd= Xt oY (3-133)
0 0 0]
0 0 0
Saddle modes,
yz zx xy
yz zx Xy
{ogel={ 5 log, =) ¢ {oge=| 5 (3-154)
0 0 0
0 0 0
Tension and compression mode,
ZZ
ZZ
={ 0
logsl=) o (3-155)
0
0

According to the steps 13 -14 in the proposed procedure of classification,
the 30 new stress modes {G,;}-{O4) can be classified into different stress mode
groups above as follows,
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Tension and compression modes (3 groups): ({0} O Ogslars {6y Oulao
G O4 Osylasl

Pure shear modes (3 groups): [{6,; }our {Os}as {O¢ }oel

Bending modes (6 groups): [{Og Ois» Cusss Oss» Osalary  {G9s Onss O47s Ozl
{G13, O1p» Ous, Oss, Ogstasr {Ois Oazs Ougs Osgloros
{G19) O3 O3, Osg, O3 g11s {Oa0r O175 Ougs Osol 1ol

Torsion modes (3 groups): [{O115 Ouo}c13 {O1sr Osolrar {Oa2s Osps Os3}us)

Saddle modes (3 groups): [{6,9, O30, O35, Ogg Ogolgis » {Oas O33: O30 Oen
Osi}c11 {027, Oy O3gr Ogs O}l

Zero-energy stress modes (1 group): [{0;, Ol Oy Ousy, On Ospy Ogyy O,
637}619]

More stress modes can be classified into the stress mode groups above. If
the flexibility matrix [H] is a diagonal matrix, the stress modes are uncoupled and
the classification of the stress modes is unique (see theorem 3). Otherwise, some
stress modes may appear in more than one group.

3.4.4 Construction of Assumed Stress Matrix

As shown above, by means of the proposed procedure for the classification
of stress mode, stress modes can be classified into m (=n-r) stress mode groups
corresponding to m natural deformation modes and a zero emergy mode group
corresponding to rigid body modes. Each natural deformation mode is related to a
stress mode group except zero energy mode group, and each stress mode group may
contain many different stress modes that are interchangeable in the stress matrix [P].
Thus, based on the iso-function stress matrix and classified stress mode groups, the
method can be established for determining the assumed stress matrix of a hybrid
clement.

Assumed Stress Matrix of Hybrid Element

The classification of stress modes reveals the relationship among the
different stress modes that are used in the different stress matrices for any type of
hybrid element proposed by different researchers. In order to avoid kinematic
deformation mode, the stress matrix [P] must contain m stress modes at least. No
matter how many stress modes there are in the stress matrix [P}, the order of the
stiffness matrix is equal to or less than m. Therefore, m stress modes is necessary
and sufficient to form a stress matrix for avoiding kinematic deformation modes in
the hybrid element. Moreover, in view of the classification of stress modes, the m
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stress modes in the stress matrix [P] must come from m different stress mode groups
except zero energy mode group. Thus, for a hybrid element to be free from
kinematic deformation mode,

one has the necessary and sufficient condition:

The number of stress modes in an assumed stress matrix must be
equal to or more than m (= n-r) and at least m stress modes in the
stress matrix [P] must be chosen from m different stress mode groups
corresponding to m natural deformation modes of an element which
has n degrees of freedom and r rigid body modes.

In this statement, the necessary condition is that the number of stress modes
for a hybrid element must be equal to or more than m {(=n-r). It was presented by
F. Veubeke [3.36] and Pian [3.37]. The sufficient condition is that the stress matrix
[P] must contain m stress modes chosen from m different stress mode groups
corresponding to m natural deformation modes. This condition explains why in some
examples there exist kinematic deformation modes even when the necessary
condition (m' > n-r) is satisfied. In these examples, the stress modes in the stress
matrix [P] do not come from m different stress mode groups except the zero energy
mode group.

For a hybrid element, an assumed stress field, its stress matrix contains m
(=n-r) least-order stress modes and its resulting finite element is free from kinematic
deformation modes, is considered to be best and is optimal with respect to computer
resources [3.38,3.34] because overuse of stress modes will result in over-rigid
element [3.38], and the calculation of element stiffness matrix requires an inversion
of the flexibility matrix [H]. By means of the m classified stress mode groups and
the necessary and sufficient condition, this kind of stress matrices can be
constructed. Furthermore, it is convenient to construct an assumed stress matrix
according to the problem to be solved because there are many stress modes in every
stress mode group for choice. The procedure of constructing stress matrix is
presented as follows,

Step 1

Using the iso-function method, one can derive a number of initial stress
modes to be classified.

Step 2

One may put the initial stress modes one by one into stress matrix [P] in
the order from low order term to high order term. By means of the
classification method, one can obtain m representative stress modes
corresponding to m natural deformation modes. These representative stress
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modes form a optimal stress matrix [P]
[Plis-

opt from the existing stress matrix

Step 3

One may obtain other initial stress modes derived by different methods.
Following the steps 13 - 14 in the procedure of the classification, one can
classify all initial stress modes into m+1 different stress mode groups.

Step 4

By means of the m+1 classified stress mode groups and the necessary and
sufficient condition above, many stress matrices [P] can be constructed
according to the problem to be solved. It is necessary to choose one stress
mode at least from each group except the zero energy mode group in order
to avoid kinematic deformation modes.

The necessary steps have been illustrated in the section above. The
following gives some examples to illustrate the procedure for constructing a stress
matrix [P] which has minimum number of stress modes.

2-D. 4-node plane hybrid element

By means of the m+1 stress mode groups classified above and the necessary
and sufficient condition for avoiding kinematic deformation modes, one can choose
one stress mode from each stress mode group except zero energy mode group to
form a stress matrix. For example,

1 1 0 0 —x
[Pyl =[059 045 05 0,5 055151 -1 0 -y

001 x y (3-156)
and
11 0y0
[P]=[0,, 0,; 0 0, 0,]=(1 -1 0 0 x (3-157)
00100

Five stress modes in each stress matrix come from five different stress
mode groups corresponding to five natural deformation modes. The two stress
matrices are the same as that proposed by Atluri[3.34,3.35]. More stress matrices can
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be constructed on purpose. For example,

11 0y-x
[Pyl =[0,, 0,, 0, 0, 0,,]=(1 -1 00 0 (3-158)
0 0 10y
and

x2 1 00 -x
[P,]=[0,, 0, 6 0,, 0;53]5{0 -1 0 -y O (3-159)
0 0 1 x ¥y

The eigenvalue examination shows that the hybrid element constructed by
[P;] - [Py;] are free from kinematic deformation modes as shown in Table 2. In the
last column of the table, the eigenvalues of displacement element stiffness matrix are
given. If stress modes in a stress matrix [P] come from m, (<m) stress mode groups,
the hybrid element will have kinematic deformation modes even if the number of
stress modes is larger than m. This is why a hybrid element contains kinematic
deformation modes when the necessary condition (m' > n-r) is satisfied. A stress
matrix [P] must have m stress modes corresponding to m natural deformation modes
of an element.

Table 2 Eigenvalues of stiffness matrices (2-D, 4-node plane element, v=0.3)

(P (Py] [Py (Py] (Py] (Py,] Disp.
0.4945 0.3333 0.09259 | 0.3333 0.09259 | 0.09259 | 0.4945

1 0.4945 0.3333 0.09259 | 0.3333 0.3333 0.09259 | 0.4945
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 0.7692

0.7692 0.7692 0.7692 0.7692 0.7692 0.7692 0.7692

1.4290 1.4290 1.4290 1.4290 1.4290 1.4290 1.4290

 ——————
]

3-D. 8-node solid hybrid element

Using the same way as the 2-D case, one can choose m stress modes from
m classified stress mode groups except zero energy mode group above to form the
eight stress matrices [P,] - [P,] proposed by Atluri et al [3.34-3.35] as follows,
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[P] =04 04y 043 O, O5 05 049 O5q 053 Ogy Ogz Ogs Oy Oy Oy Ogp Ogy Oyl

11 000
1-1100
10 -100
“loo 010
00 0O01
00 000

[Pl =[0g 04

CcoopRr B R
1
OOOOHH

and

[P ]=[o,
[P,1=[0,
[Ps]=[04
[Pl =log
[Pl =[0,

[Pgl = [o‘u

000 02x 0 0 0 O
000 O 02y 0 0 O
000 0 O 022z 0 O
0z 2 0 -y-x0 y Xx
0x-x-x 0 -z-y 0 -z
1y 0 y -2z 0 -x-2z 0

0 0 0 0
0 0 0 0
0 0 0 0
0 -2xz -2yz Xx3+y?

-y y2+z? -2xy -2xz
X =-2xy x3+z? -2yz

(3-160)

G4 Oy 05 O Oy 05y Ogy Og, Og5 Ogg Oy O5g Ogg Ogy Oy O3]

0 2x 0
0 0 2y
0 0 0 2z
0 -y-x 0
0 -z -y
-z 0 ~x

0
0

coo Lro
corooo
ocoHrOOOO
Hooooo
N ¥ N O OO

N © 0O

042 05 Tg 0,9 O5p 055

Oz 05 Og Ugy O5p O3

042 U5 Og Oy 05 O35

042 05 Og 049 U5 055

042 05 Tg Og9 059 Os3

04 05 Og Oy9 O5p 05y

056 055

O5¢ O35

Oy5 O4q

Oy5 Ogq

Ogs Oge

045 O4a

0o 0
0 0
0 0
X

o O 0O

y
0 -z
-z 0

(3-161)

U5 U4g 947 O46 Uso Ug1 Ugal

O55 049 Ogy Ogg Oz O3 O3]

043 Og7 O35 O59 Ogg Oy O]

043 05 O35y Os9 Oy O35 Oy

O3 U4 04y Ogg g0 Us1 Ugal

043 04 Og7 Oy Oy O3 O3l

(3-162)

The assumed stress matrix given by Huang [3.5] also can be formed the

same way,
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[Pl =104y 04 043 04 05 Og G4y Oy Oy5 Oy Oyy Tgg Gy Osp Oy Opy O35 O3]

11-1000z0y 2z 0 y0O O yzo0 0
1-1-1000zx0-zx 000 0 0 =2zx 0
j* 0 2 0000xy 0 -x-y0 0 0 0 0 xy
00 0D10000O0O0 O 0 2z2 2z 0 0 0
00 00100000 O0 OX-x-x 0 0 O
00 00010000 O Oy O -2y 0 0 O

(3-163)

Moreover, many stress matrices [P] can be constructed on purpose. Three
new stress matrices are given as follows,

[P] = [04 043 043 0, O5 05 Ogy G54 U5 O4s Uay U4 Ogg Ogg U5y Ogg Ogy Ol

11 -1000zxy 2z 0 y 00 0 yzxzxy
1-1-1000zxy-zx 000 0 yzxzxy
T 0 2 000zxy 0 -x-y0 0 0 yzxzxy
00 01000000 0 O0O=2z2 2 0 0 O
00 00100000 O0O OX-x-x 0 0 O
00 00010000 O Oy 0 -2y 0 0 O

(3-164)

-
[P3] =104 0,1 043 0, 05 0 0,3 0y Oy5 05y 05 055 0y, 051 015 O3 O35 Ogy)

100000z0y 0 O O 0O0O0yz 0 O
010000zx00 O 00000 xz 0
/0010000xy 0 O 0000 0 0 xy
000100000y x 0 2000 0 0
0000100000 -z-y0x0 0 0 O
000001000-z0 x00y 0 0 O

(3-165)
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[P]1 = [0y 04y Og3 O O5 Og Ogy Ogg Ogs 04 Oy Ugq G4 Osp U5y Ogg Tgy Tgel

z2 1 -1000zxy z 0 y 00 0 yzxzxy
22 -1-1000zxy-zx 000 0 yzxzxy
JO0O 0 2 000zxy 0 -x-y0 0 0 yzxzxy
0 0 01000000 O0O O=2z2z =z 0 0 O
0 0 00100000 O0 O Xx-x-x 0 0 0
0 0 00010000 O OyO0 -2y 0 0 0

(1-166)

The results of eigenvalue examination are given in Table 3. It shows that
each of the stiffness matrices constructed by the assumed stress matrices [P,] - [P,],
[P,*], [P,*], and [P,*] has m non-zero eigenvalues. The resulting hybrid elements do
not have any kinematic deformation modes.

More assumed stress matrices can also be constructed by means of this
method. If one stress mode group is missed except the zero energy mode group in
the process of choosing stress modes, the hybrid element will contain kinematic
deformation modes. In the previous work, it is proposed to suppress kinematic
deformation modes by adding stress modes of high order term. Actually, it can not
guarantee that all kinematic deformation modes are suppressed. If the high order
stress modes do not belong to the stress mode groups which are missed in the
construction of the assumed stress matrix except the zero energy mode group, adding
stress modes of high order term can not improve the hybrid element any more.
Moreover, overuse of stress modes will result in over-rigid elements[3.38].
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Table 3  Eigenvalues of stiffness matrices (3-D, 8-node solid element, v=0.3)

_——— -
(P,] (P,] (P,], [Po], | [P, [P*] [P,*] [P3*]
(Pyo]
0.07123 0.07123 0.1111 0.1111 0.09259 0.09259
0.07123 0.07123 0.1111 0.1111 0.09259 0.09259
0.07123 0.07123 0.1111 0.1111 0.09259 0.09259
0.1282 0.2564 0.2564 0.1282 0.2564 0.2564
0.1282 0.2564 0.2564 0.1282 0.2564 0.2564
“» 0.1282 0.2564 0.2564 0.1282 0.2564 0.2564
0.1282 0.1282 0.1282 0.1282 0.1282 0.1282
0.1282 0.1282 0.1282 0.1282 0.1282 0.1282
0.07246 0.07264 0.4762 0.4762 0.5556 0.5556
0.07246 0.07264 0.4762 0.4762 0.5556 0.5556
0.07246 0.07264 0.4762 0.4762 0.5556 0.5556
0.5128 0.5128 05128 0.5128 05128 05128
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
0.7692 0.7692 0.7692 0.7692 0.7692 0.7692
2.5000 2.5000 2.5000 2.5000 2.5000 0.8065

Therefore, an ideal situation is to choose m (=n-r) least-order stress modes, but with
the suppression of all kinematic deformation modes. Thus, an assumed stress matrix
[P] can be constructed by choosing m stress modes from m stress mode groups that
correspond to m natural deformation modes.

Optimal Stress Matrix for Partial Hybrid Element
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The classification method can be used to determine an optimal stress matrix
for a hybrid element, and it is also available to determine an optimal partial stress
matrix for a partial hybrid element. The difference is the number of stress mode
groups. For partial hybrid element, the number of stress modes groups is equal to

m=n-r-ng, (3-167)

Where n and r is the same as that in conventional hybrid elements. In section 3.3,
it has been shown that the stiffness matrix of a partial hybrid element (3-35) consists
of two parts: the displacement-formulated stiffness matrix and the hybrid-formulated
stiffness matrix. In equation (3-167), n, is the rank of the displacement-formulated
stiffness matrix. Therefore, it is necessary to calculate the rank of the displacement-
formulated stiffness matrix to determine an optimal stress matrix for a partial hybrid
element. The necessary and sufficient condition for partial hybrid elements becomes

The necessary and sufficient condition.

The number of stress modes in an assumed partial stress matrix must
be equal to or more than m (= n-r-n,) and at least m stress modes in
the partial stress matrix [P] must be chosen from m different stress
mode groups corresponding to m natural deformation modes of an
element which has n degrees of freedom, r rigid body modes, and n,
order displacement-formulated stiffness matrix .

The procedure to construct an optimal partial stress matrix for a partial
hybrid element becomes

Step 1

Examine the rank of the displacement-formulated stiffness matrix of a
partial hybrid element.

Step 2

Using the iso-function method, one can derive a number of initial stress
modes to be classified.

Step 3

One may put the initial stress modes one by one into partial stress matrix
[P] in the order from low order term to high order term. By means of the
classification method, one can obtain m representative stress modes
corresponding to m natural deformation modes. These representative stress
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modes form an optimal partial stress matrix [P,]
stress matrix [P,

opt from the existing partial

Following this procedure, an optimal assumed partial stress field can be
determined. Some examples will be given in chapter 4.

The classification method presented in this chapter can be applied to any
type of hybrid elements. Usually, it is used for two purposes:

1. Determine the optimal stress matrix from the existing stress matrix [P],,, or any
other stress matrix [P] derived using other methods, and classify stress modes into
m different stress mode groups;

2. Construct many new assumed stress matrices by using minimum number of stress
modes according to the problems to be analyzed. These stress matrices are without
zero-energy stress modes, and the resulting element stiffness matrices are free from
kinematic deformation modes.

The classification of stress modes reveals the relationship among the
different assumed stress fields for any type of hybrid element proposed by different
researchers. An assumed stress matrix {P], which consists of m (=n-r) least-order
stress modes and results in the element stiffness matrix without kinematic
deformation modes, is considered to be best and is optimal with respect to computer
resources.

REFERENCES

3.1 S. V. Hoa and W. Feng, Finite Elements for Analysis of Composite Structures', in Ed., S.V. Hoa,
Computer-Aided Design of Polymer-Matrix Composite Structures, Marcel Dekker, Inc., 1995.

3.2 R. L. Spilker, 'Hybrid-stress eight-node elements for thin and thick multilayer laminated plates’, Int.
J. Numer. Methods Engrg, vol.18, 801-828(1982).

3.3 W.J.Liou & C.T. Sun, 'A three dimensional hybrid stress isoparametric element for the analysis of
laminated composite plates', Computers & Structures, vol. 25, no. 2, 241-249 (1987).

3.4 Q. Huang, S.V. Hoa and T.S. Sankar, 'Three Dimensional Finite Element Formulation for Stress
Analysis of Anisotropic Laminated Structures', in Eds., W.P.de Wilde and W.R. Blain, Composite
Material Design and Analysis, Computational Mechanics Publisher, 1990.

3.5 Q. Huang, 'Three Dimensional Composite Finite Element for Stress Analysis of Anisotropic Laminate
Structures', Ph. D. Dissertation, Concordia University, Montreal, Canada (1989).

3.6 J. Han, 'Three dimensional multilayer composite finite element for stress analysis of composite
laminates', Ph.D. Dissertation, Concordia University, Montreal, Canada, (1994).

3.7 J. Han. and S.V. Hoa, 'A three-dimensional multilayer composite finite element for stress analysis
of composite laminates’, Int. J. Numer. Methods Engrg., vol.36, 3903- 3914(1993).

3.8 W.Feng and S.V. Hoa, 'A partial hybrid degenerated plate/shell element for the analysis of laminated
composites', Int. J. Numer. Methods Eng., vol. 39, 3625-3639(1996).

3.9 W.Feng and S.V. Hoa, '3-D transition element formulation for the global-local analysis of laminated
structures’, Int. Conf. on Design and Manufacturing Using Composites, Montreal, Canada (1994).

3.10 W. Feng and S.V. Hoa, 'A 3-D partial hybrid laminated element for analysis of thick laminates',

Third Int. Conf. on Composites Engineering, New Orleans, USA (1996).
3.11 W.Feng and S.V. Hoa, 'A multilayer element with partial assumed stress field for analysis of



142

3.12
3.13
3.14

3.15

3.16
3.17
3.18

3.19

3.20

3.21
3.22
3.23
324

3.25

3.26
327
3.28

3.29

3.30
3.31
332
3.33

3.34

STRESS ANALYSIS OF COMPOSITES

laminated structures', The 16th Canadian Congress of Applied Mechanics CANCAM 97, Quebec,
Canada (1997).

V. Hoa and W. Feng, 'Application of a global/local finite element model to composite laminates’,
Science and Engineering of Composite Materials, vol. 5, 151-168(1996).

T. H. H. Pian and M.-S. Li, 'Stress analysis of laminated composites by hybrid finite elements', in
Discretization Methods in Structural Mechanics (Ed. Kuhn, G. and Mang, H.), 1989.

H.S. Jing & M.-L. Liao, 'Partial hybrid stress element for the analysis of thick laminated composite
plates', Int. J. Numer. Methods Eng., vol. 28, 2813-2827(1989).

C. Y. Wang and H.-K. Ching, 'A modified partial hybrid stress finite element method for the
aminated composite plate analysis', Composites Modelling and Processing Science, ICCM/9, vol.
II1, ed., Antonio Miravete, Woodhead Publishing Limited(1993).

W.Feng, S.V. Hoa, and Q. Huang, 'Classification of stress modes in assumed stress fields of hybrid
finite elements’, Int. J. for Numer. Methods in Eng., (Accepted).

E. Reissner, 'On a certain mixed variational theorem and a proposed application’, Int. J. Numer.
Methods Eng., vol. 20, 1366-1368(1984).

E. Reissner, 'On a mixed variational theorem and on shear deformable plate theory', Int. J. Numer.
Methods Eng., vol. 23, 193-198(1986).

K. Moriya, 'Laminated plate and shell elements for finite element analysis of advanced fibre
reinforced composite structures (Japanese), Trans. Japan Soc. Mech. Eng. (series A), 52, no. 478,
1600-1607(1986).

S. Ahmad and B.M. Irons, 'An assumed stress approach to refined isoparametric finite elements in
three dimensions’, Finite Element Method in Engineering, University of New South Wales, 85-
100(1974).

R. Rubinstein, E.F. Punch and S.N. Atluri, Computer Methods in Applied Mechanics and
Engineering, vol. 38, 63-92(1983).

T.H.H. Pian and D.P. Chen, ' On the suppression of zero energy deformation modes', International
Journal for Numerical Methods in Engineering, vol. 19, 1741-1752(1983).

T.H.H. Pian and P. Tong, ' Relations between incompatible displacement model and hybrid stress
model', Int. J. Numer. Methods Eng., vol.22, 173-181(1986).

T.H.H. Pian and C.C. Wu, ' A rational approach for choosing stress terms for hybrid finite element
formulations', Int. J. Numer. Methods Eng., vol.26, 2331-2343(1988).

K.Y. Sze, C.L. Chow and W.J. Chen, ' A rational formulation of iso-parametric hybrid stress
element for three dimensional stress analysis', Finite Elements Analysis and Design, vol. 7, 61-
72(1990).

W.J. Chen and Y K. Cheung, ' Three-dimensional 8-node and 20-node refined hybrid isoparametric
elements', International Journal for Numerical Methods in Engineering, vol.35, 1871-1889(1992).
K.Y. Sze, ' Control of spurious mechanisms for 20-node and transition sub-integrated hexahedral
elements', International Journal for Numerical Methods in Engineering, vol.37, 2235-2250(1994).
C.C. Wu and Y K. Cheung, 'On optimization approaches of hybrid stress elements', Finite Elements
in Analysis and Design, vol. 21, 111-128(1995).

Q. Huang, Modal Analysis of Deformable Bodies with Finite degrees of Deformation Freedom,
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Technical Report,
1990.

B. Fraeijs de Veubeke, 'Displacement and equilibrium models in the finite element methods', in: O.
C. Zienkiewicz and G. S. Holister, (eds.), Stress Analysis, John Wiley, London, 1965.

H. Stolarski and T. Belytschko, 'Limitation principles for mixed finite elements based on the Hu-
Washizu variational formulation', Comput. Meth. Appl. Mech. Engng. vol. 60, 195-216(1987)
H. S. Jing, 'On the limitation principles for partial hybrid stress model', Computers & Structures,
vol. 38, no. 1 113-117(1991).

T.H.H. Pian, 'Derivation of element stiffness matrices by assumed stress distribution’, AIAA J.,

vol.2, no. 7, 1333-1336(1964).

E.F. Punch and S.N. Atluri, ' Development and testing of stable, invariant, isoparametric curvilinear
2- and 3-D hybrid- stress elements', Computer Methods in Applied Mechanics and Engineering,
vol.47, 331-356(1984).



DEVELOPMENT OF HYBRID ELEMENT TECHNIQUE 143

3.35 R. Rubinstein, E.F. Punch and S.N. Atluri, 'An analysis of, and remedies for, kinematic models in
hybrid-stress finite elements: selection of stable, invariant stress fields', Computer Methods in
Applied Mechanics and Engineering, vol. 38, 63-92(1983).

3.36 B.M. Fraeijs de Veubeke, 'Bending and stretching of plates -- special models for upper and lower
bounds' Proceeding of the Conference on Matrix Methods in Structure Mechanics, AFFDL-TR-66-
80, 863-886(1965).

3.37 T.H.H. Pian and P. Tong, ' Basis of finite element methods for solid continua’, International Journal
for Numerical Methods in Engineering, vol. 1, 3-28(1969).

3.38 R.D. Henshell, 'On hybrid finite elements', Proceeding of the Brunel University Conference of the
Institute of Math and Its Applications, April, 1972.



Chapter 4

PARTIAL HYBRID ELEMENTS FOR
ANALYSIS OF COMPOSITE
LAMINATES

4.1 INTRODUCTION

A composite structure is usually made of hundreds of orthotropic laminae
with different fibre orientations. The finite element analysis for composite structures
is more difficult than that for structures made of isotropic materials. Due to the
complex nature of composites, there are many different approaches to model them.
In general, the finite elements for analysis of composites can be classified into three
classes: 3-D solid elements, laminated elements, and multilayer elements [4.1]. They
are formulated using two classes of composite structure models[4.2-4.3] as follows:

1. 3-D continuum models[4.4-4.6], in which each of the individual layers of
a composite structure is treated as a three-dimensional continuum. Due to
simplicity and efficiency, a special 3-D model, layer-wise models [4.13-4.16],
is often used, in which displacement models are based on piecewise
approximations of the response quantities in the thickness direction.

2. Equivalent single-layer plate/shell models[4.7-4.12], in which deformable
models are based on global through-the-thickness displacement, strain and
stress approximations;

In 3-D solid elements based on 3-D continuum models[4.4-4.6], no specific
kinematic assumptions are introduced regarding the behaviour of a laminate. It takes
the behaviour of the individual laminae into consideration. Therefore, the 3-D solid
elements are used to accurately determine stresses in composite structures near
discontinuities. However each layer in the laminate needs at least one element along
the thickness of the structure. The number of unknowns in a finite element model
will depend on the number of layers. Near the free edge of composite laminates,
three or more elements along the thickness will be needed within a layer in order to
accurately determine the transverse stresses with large gradient near interlaminar



146 STRESS ANALYSIS OF COMPOSITES

surfaces. In addition, 3-D solid elements show numerical instability under bending
deformation when the aspect ratio is large. The aspect ratio is the ratio between the
in-plane dimension and thickness dimension of the element. Usually, the thickness
of a layer in a composite laminate is very small. So a fine finite element mesh in the
in-plane dimensions is necessary because it not only needs to measure interlaminar
stresses with large gradient, but also needs to maintain low aspect ratios. Thus, a full
3-D finite element modelling is computationally expensive and will quickly exhaust
the computer space capacity.

In the laminated elements based on equivalent single-layer 2-D models[4.7-
4.12], the variation in fiber orientations and material properties across the thickness
is integrated to obtain a single property across the thickness. Therefore, in the finite
element models, the number of unknowns through the thickness of a structure is
independent of the number of layers in the composite. The laminated elements can
be used to model the overall behaviour of composite structures reasonably well in
problems such as vibration or buckling, but these may not provide useful results if
interlaminar stresses are required.

In the multilayer elements based on layer-wise models {4.13-4.16], the 3-D
discretization of a composite structure is separated into 2-D (in-plane) discretization
and 1-D (thickness) discretization. Thus, the individual laminae are taken as 2-D
layers or modeled by 3-D sub-elements. These layers and sub-elements are then
assembled through the thickness. The layerwise models have the advantages over the
previous models in that the data structure is 2-D and the number of degrees of
freedom is less than that of a 3-D model. But, in these finite element models, the
number of degrees of freedom is dependent on the number of layers in composite
structures. A typical composite structure may have many layers, each of which
requires one 2-D layer or one sub-clement through the thickness. The number of
degrees of freedom in the element is directly proportional to the number of layers
in a laminate. Therefore, the number of unknowns in a finite element model is very
large for laminates with many layers.

Finite elements can be classified not only in view of the composite structure
models, but also in view of the assumption of the displacement and stress fields. In
view of the assumption of displacement and stress within elements along the
thickness of composite structures, finite elements can be divided into two categories:
single-layer elements and multi-layer elements [4.17-4.18].

The single-layer element assumes a displacement field and/or a stress field
over the element along the thickness direction. The number of displacement degrees
of freedom in the element is independent of the number of material layers within the
element. If the element contains only one material layer, it is a 3-D solid element;
if the element contains more than one material layer along the thickness direction,
the equivalent single-layer two-dimensional model must be used to obtain single
properties across the thickness of the element, and it becomes a laminated element.
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On the other hand, the multi-layer element assumes many displacement
fields and/or stress fields within the element. Each displacement/stress field is related
to a layer along the thickness of a composite laminate. The element matrices are
assembled through the thickness by means of continuity conditions at the interfaces
between different layers. The number of displacement degrees of freedom depends
on the number of material layers in composite structures.

In this chapter, a series of partial hybrid finite elements will be developed
using the composite variational principle. The general formulation of the partial
hybrid element was given in chapter 3.

4.2 SINGLE-LAYER FINITE ELEMENTS

The single-layer finite elements include 3-D solids elements and laminated
elements. Their element matrices can be formulated by means of the composite
variational principle and expressed in a general form.

4.2.1 Formulation of Partial Hybrid Single-Layer Element

The composite variation principle has been presented in the section 3.2,

chapter 3. The variational functional is

I_- fv[ E(q) +05Du-FTu] dv- fst'r"u ds @-1)

in which, the composite energy is

E(q) =%q’[R] q @-2)

and the vector of global variables includes in-plane strains and transverse stresses,

e 4-3)
o

and the layer material matrix [R] is
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[R Rg| | st -S1'S, (4-4)
R | _aTal aTa-1
R, Ry| |-SfS;* 8,75:S,-S,
or
(] - R, R |6-GCG GGY a4y
Ry R, sale N -Gyt

where [S] is the compliance matrix of layer materials and [C] is the stiffness matrix
of layer materials. Substituting equations (4-2)-(4-4) into equation (4-1), the
functional becomes

o= v[%Q:[Rﬂ ¢F+%°:[R3] °ﬂ+°:[R2] Tg, 4-5)

+azD u-¥ Tu] dv-  TTuds
t

Within a single-layer finite element (see figure 14), a displacement field is
assumed along the thickness of the element. It is usually described by the nodal
displacement §,

== N Material Layers

Figure 14 A Single-layer element
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=[N] 8 (4-6)

where [N] is the matrix of shape functions. Thus, the partial strains are

_).x [du odv au av1T_
€ :y =D u [ax 3y’ 3y aX] [B,]d 4-7)
xy,

and the partial derivatives are

aw 6W+6v aw dui”?

9z’ oy oz’ Ox 9z| bl ® “-8)

Dz,u"[

in which, [B,] is a partial geometry matrix and [B,] is a partial derivative matrix.
Along the thickness of composites, a partial stress field is also assumed
independently as

B,

9= B (4-9)
o= gyz =[Pyl B=[0410,;. . .0,11.
ZX

B,

where [Px] is an assumed stress matrix, O are the partial stress modes, and Bj are
the corresponding stress parameters. If the composite structure consists of N material
layers, substituting equations (4-6)-(4-9) into the composite energy functional (4-5),
the functional becomes
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N .
<Y (587, (3, 71R1 (51 av 8

+%pr 2] T[R;] [P,1dV B

_ (4-10)
+pT , [2] T([B.] +[R;'17[B,])dV 8 }
-8%| [NM)"Fidv -87 , ] Trids
Denote
N .
[B] ==Y [, [P]T[Ry] [PldV
i=1
N .
= T i1T
[G] “Z; [JIPAT([B]+[R;'17[B,]) dV @1

N I}
[k, =Y [,[BT[R'] [B,]dV
i=1

f=i fv [N TFidv + fs [N] TP ids

Note that, when the number of material layers is more than one, the variation in
fibre orientations and material properties across the thickness of the element is
integrated to obtain a single property across the thickness. Therefore, the size of the
element matrices does not depend on the number of material layers in the element.
Then, the functional can be expressed as

4-12
I,-18%(x, 8- L1pim popricia-ane

In this variational functional, there are two independent variables subject to variation.
From the two partial stationary conditions with respect to  and & as follows,
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aHCO_. aHC'O._
3P =0 and 3 =0 (4-13)

the relation between stress parameters B and nodal displacements  is obtained,

[H] B=1C] 8 @19
and
(K, 8+ [C] TB=£ (4-15)
Eliminating P in the equation (4-14) and (4-15), one obtains
([K ] +[GIT[H] *[G])B=£ (4-16)
Denote
[Ky] =[G1T[H] 2 [G]
@4-17)

[K] = [K4] + [Kp]

in which, the semi-stiffness matrix [K,] is a displacement-formulated stiffness matrix
based on the globally continuous strains, and the semi-stiffness matrix [K,] is a
hybrid-formulated stiffness matrix based on the globally continuous stresses. Then,
the governing equation of the element is obtained,

(K] 8=£ (4-18)

where [K] is the element stiffness matrix. For the partial hybrid element, the element
stiffness matrix consists of a displacement-formulated stiffness matrix [K,] and a
hybrid-formulated stiffness matrix [K,]. In the single-layer element, the size of the
element matrix [K] is not related to the number of material layers within the
element. If there are more then one material layers, the single-layer element is a
laminated element; if there is only one layer in the element, the element becomes a
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3-D solid element.
After obtaining the nodal displacement § of the elements in a finite element
model, the displacement field, stress field, and strain field can be obtained using the

following equations:

1. Displacement field

u
u={ﬁ =[N] 8 (4-6)

2. Partial globally continuous strains

ex
€;=)Ey [ =Dgu=[By] 8 -7

€xy,

3. Partial globally continuous stresses

4-14
P=[&][61 8 @-14)
02
0,~{9yzp=[P,] B=[P,] [H] *[G] (4-9)
on
4. Partial locally continuous stresses within i-th layer
8 . '
o.'li':= Oy p= [Rll] €t [Rzl] L
O, (4-19)

={[R{] [B,] +[R;'] [P,] [K] *[G]}8
={[s17[B,] + 1G] [G'12[2,] [H] G118
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5. Partial locally continuous strains within i-th layer

ez
ei={€, .= [R;] Te,~ (R3] o,

eZX

={-[R/17[B,] - [R'] [P,] [H] *[G]}®

={[51718/1 Bl + [ 1 [P,] [H] 2 [G1}8

For convenience, all element matrices are given here again,

[K] = [K4] + [Kp)
N .
[K,] =2; IyIBJ TIR] [Bgl dV
[Ky] =[G T[H] *[G]
N .
[&] =_§ I,[P17IR{1 [Pl dV

N .
[6] =3 PG "([B,] + [R{17[B,]) v

N

£=3 [ N TFav +f [N *rids

i=1

4.2.2 3-D Partial Hybrid Solid Element

153

(4-20)

4-11)
and

4-17)

In the element formulation above, when N=1, the single-layer element
becomes a 3-D solid element because the element only contains a material layer.
Many 3-D solid elements can be derived using the general formulation above. In this

section, 3-D, 8-node and 20-node solid elements are presented.

a) 3-D, 8-node Partial Hybrid Solid Element

The 3-D, 8-node element (shown in figure 15) is a simplest finite element
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for 3-D analysis of structures. Therefore, it is firstly presented to show the
formulation procedure of partial hybrid finite elements [4.19-4.21].

8 7
}_ _____
/
1 2

Figure 15 3-D, 8-node partial hybrid element

Geometry of Element

To map the element geometric shape, the global co-ordinates (x,y,z) of any
point within the element can be written to interpolate the local co-ordinates & n,
{) as follow:

8 8
X= Nixi y=2 Ni i Z=E Nizi (4-21)
=1 =

where (x; y; z; ) are the global co-ordinates of the i-th node (i=1,2,...,8), and N; are
the shape functions which can be expressed as follows:

1 (4-22)
Ny=3 (1+&) (1mg) (1+C,)

in which,
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§o=8:& memnm §o=(iC (4-23)

where &, 1, and { are the local co-ordinates of node i in the element parametric
space.

Displacement Field

Within the element, a displacement field is assumed independently as
follows:

8 8 8
u=§ Niui V=; Nivi W=§ NiWi (4-24)

where (u; v, w; ) are the i-th nodal displacements in the global co-ordinates system
(i=1,2,...,8), and N, are still the shape functions which are the same as that in the
geometry formulation of the element (4-22)-(4-23). In the matrix form, the
displacement field can be expressed as

3,
u= [N 8=[N,I N,T ... N,z]{ % @25)
58
in which, [I] is a 3x3 unit matrix and the nodal displacement vector is
uy
8,={v; i=1,2,...,8 (4-26)
14

Within the partial hybrid element, a partial strain field can be derived
directly from the displacement field. It is
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{ E b
e ox
e b-pu-{ 9 lipis
)y (P _ay [P (4-27)
. Ou, ov]
[0y 9x
and
— 4-28
[Bs]o(Bgz Bz + + + By @29
and
Nixy 0 O
[B]5| 0 Niy O (4-29)
N;, N; . 0

Due to the fact that the partial strain-displacement relation (3-9) is satisfied
a posterior, the locally continuous strains can not be derived directly and will be
calculated using equation (4-20) after the nodal displacements having been obtained.
But the partial derivatives of displacement field can be obtained as follows,

{ —a_V{ 9
d aza
=] 9V, ow
Du=15z" oy
ow, du

—_—t

| dx 0z

+=[B;]8 (4-30)

in which,
[Br]9[Brs Bra - -+ Big] (4-31)

and



PARTIAL HYBRID ELEMENTS 157

i,z
[Bels| O Mix Niy @32
Ni,z 0 Ni,x

where i=1,2,....,8. To map the derivatives from global co-ordinate system to local co-
ordinate system, one can write

X 4
Nire IE y:E IE Ni,x Ni,x 433
Niq|=|%q Yin Z4q Ny, y|=[T Ny, y (4-33)
Nit) |x¢ v 2, Med) Wis
where
8 8
X’E=; Nl-’EXi, xuox Z’c=E Ni’czi (4-34)
=1 i=1
The equation (4-33) can be rewritten
N1 x N; JE
N,y |17 N, (4-35)
Ni,z N.z,C
in which
1 E SE (1+T|0) (1+c0
Ny p=m; (1+E,) (1+,)
=g (14, 0 (4-36)

Ny =583 (1+,) (141,)

For mapping the derivatives, it is convenient to introduce a radius vector
and its derivatives:
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X X,
Z Z,
X n X, (4-38)
=r'1|= y'“ V=I.C= y'c
z,n Z.t
Then
(4-39)
=8 r vi*
and
4-4
[J[=8-TxV (4-40)
and
[J] =[xV V&8 SxT|\J| (4-41)
Partial S Field

Within the element, a partial stress field is also assumed independently as
follows,

B,

g, pz
0,={0yzb=[P,] B=[0,10,5- - - 05]1 . “9)

zZX "y

B,

Using iso-function method (see section 3.4.2 in the chapter 3), an iso-
function partial stress matrix can be derived from the displacement field (4-24) as
follows [4.20],
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100£00n00(00En 0 0 n{ 0 £ O
[PJ<f0100E00n00¢00E& 0 0 0 o g “42
00100E00nM00( 0 0En 0 ni o0 O

In this partial stress matrix, there are 19 stress modes and some of them are not
necessary. The unnecessary stress modes can be deleted by means of the
classification method (see section 3.4.3 in the chapter 3).

Examination of Partial Hybrid Element

A major disadvantage of the hybrid stress finite element is the presence of
spurious kinematic deformation modes. Therefore, a new hybrid element has to be
examined. The stiffness matrix of a partial hybrid element is in the form,

[K]= [K,] + [K,] 4-17)

There are two parts: a displacement-formulated stiffness matrix and a hybrid-
formulated stiffness matrix. In order to avoid any kinematic deformation modes, the
number of the stress modes in the assumed partial stress matrix [P} must satisfy the
following necessary condition

(4-43)

in which, n is the total degrees of freedom of the element, r is the number of rigid
body motions, and n, is the rank of the displacement-formulated stiffness matrix
[K,]. The limitation principle indicates that a partial hybrid element is equivalent to
its displacement counterpart if its partial stress field contains all displacement-derived
stress modes. Due to the fact that iso-function stress matrix contains all
displacement-derived stress modes (see discussion in the section 3.4.2, chapter 3) and
conventional displacement element never has any kinematic deformation modes, the
partial hybrid element using the iso-function partial stress matrix (4-42) is equivalent
to its displacement counterpart. Eigenvalue examination of the element shows that
the partial hybrid element has the same eigenvalues as its displacement counterpart
and does not have any kinematic deformation modes. Therefore, the sufficient
condition to avoid spurious kinematic deformation modes can be that the stress
modes in the partial stress matrix are the same as that in the iso-function partial
stress matrix. But there are a great number of unnecessary stress modes in the iso-
function stress matrix. So, the classification method of stress modes (see discussion
in the section 3.4.3, chapter 3) has to be used to take unnecessary stress modes out.
Thus, a necessary and sufficient condition for guaranteeing the absence of kinematic
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deformation modes at the element level can be expressed as follows,

(4-44)
I.lh =n-r "l'ld

In the 3-D, 8-node element, there are (n=) 24 degrees of freedom and (r=)
6 degrees of the rigid body motion because each node has three components of
displacements. Thus, the element has (n-r=) 18 natural deformation modes. By
means of eigenvalue examination of the element, the rank of the partial stiffness
matrix [K,] can be determined. Because the partial stiffness matrix [K,] gives 10
non-zero eigenvalues, the rank of the matrix [K,] is (n;=) 10 and the matrix [K;]
represents 10 natural deformation modes of the element. In order to avoid any
kinematic deformation modes, another partial stiffness matrix [K,] must give 8 non-
zero eigenvalues and represent 8 natural deformation modes. According to the
equation (4-44), the number of necessary stress modes is equal to 8. For this
element, a partial stress matrix determined by the eigenfunction method {4.19] is

100&En0 0 &
[Pl =l01000¢E& -§ 0O (4-45)
00100mn 1 O

This partial stress matrix only contains minimum number of stress modes.
The examination of element shows that there is not any kinematic deformation
modes.

b) 3-D, 20-node Partial Hybrid Solid Element

A 3-D, 20-node element [4.21] is shown in figure 16. It also can be
obtained using the general formulation of single-layer element.

Geometry of Element
Firstly, the global co-ordinates (x,y,z) of any point within the element can

be expressed in the form as follows:

20 20 20
x=Y N;x; y=Y. Ny; 2=y Nz, (4-46)
= = =
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8 15 7
16 /320 _ 1:1_ 14119
5 124}3 6 3
17 184/ 10
1 9 2

Figure 16 3-D, 20-node partial hybrid element

where (x; y; z; ) are the global co-ordinates of the i-th node (i=1,2,...,20), and N, are
the shape functions which are the functions of the local co-ordinates (£, 1, §) as
follows:

Nf% (1+E,) (1+n,) (1+{,) (Eo+n,+{,-2) E2n3L3

+% (1-E2) (1+n,) (1+,) (1-E3) 033

(4-47)
+ 7 (1m2) (1+4,) (1+48,) (1-n}) C3E3
+% (1-02) (1+E,) (1+n,) (1-¢2) En?
in which,
Eo=E:6  moe=nm  {,=CuL (4-48)

where &, 1, and  are the local co-ordinates of node i in the element parametric
space.
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Displacement Field

Within the element, a displacement field is assumed independently as
follows:

20 20 20
u=y_ N;u, V=E N,v; W=E N,w; (4-49)
Ers] =1 =1

where (u; v, w; ) are the i-th nodal displacements in the global co-ordinates system
(i=1,2,...,20), and N; are the shape functions (4-47)-(4-48). In the matrix form, the
displacement field can be expressed as

8,

u=[N 8=[NI N,T ... N1]{ %2 (4-50)

in which, [I] is a 3x3 unit matrix and the nodal displacement vector is

i=1,2,...,20 (4-51)

Within the partial hybrid element, similar to the 8-node element above, a
partial strain field can be derived directly from the displacement field (4-49). It is

4 —a_ll. 3
¢ o (4-52)
X V -
&=\ 8y (“0e¥) By t =[Bg]8
Caxy du, v
|0y 0x]
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and
- 4-53
[B1Bgz Bz -+ Boa] @9
and
Ni,x 0 0
(By]q 0 Ny, 0 (4-54)
Ni,y Ni,x 0

Because the partial strain-displacement relation (3-9) is satisfied a posteriori,
the partial derivatives of displacement field only can be derived from the
displacement field as follows,

( ow )
d aza
={ 9V, oWl _ (4-55)
D, u=5 az"' ay) [BL]5
o, du
| dx Oz
in which,
[Br]™[Br1 Bra -+ -+ Brag] (4-56)
and
0 0 N; .,
[Bri]= 0 Niy Ny (4-57)
Ni,z 0 Ni,x

where i=1,2,....,20. To map the derivatives from global co-ordinate system to local
co-ordinate system, the following equations are used.
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Ni,E 'E yE Z'E N:Lx Ni,x
Nz‘.n x,,, yﬂ Zq N.Y =[J] Ni.y
Nd) |x,0 v,0 2, Mes Loz

where

20

20
X'E=Z Nilgxi, " x o Z'c=; Ni'czi
i=1 =1

The equation (4-58) can be rewritten as

Ni x N JE
Ni z Ni,c

where

=“‘E (1+T]g) (1+C0) (2Eo+no+CQ 1)E TIJ.Ci

—_:ZL_E (1+n,) (1+{,) (1-E9) n33
+_3:5.(1—n2) (1+{,) (1-n?) {3E3
+_5 (1-¢?) (1+n,) (1-¢3) Ein?

Ny q=511 (1+80) (1+0) (Bg+2ng+8o-1) Ednicd

+20;(1-67) (1+8,) (1-ED) il
-%n (1+,) (1+E,) (1-n%) (2E2
+2m,; (1-0) (1+6g) (1-(3) Eind

(4-58)

(4-59)

(4-60)

(4-61)

(4-62)
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Ny ¢= 85 (1+8,) (1#mg) (Eg+mg+2ly1) EiniE
+%Ci(1-52) (1+ny) (1-E) 033 (4-63)
+22,(1-n%) (1+E,) (1-n3) {3Ed
-1 (14E) (1m,) (1€ Eln]

For mapping the derivatives, a radius vector and its derivatives defined by
equations (4-37)-(4-41) also can be used.

Partial Stress Fi

Within the element, a partial stress field is assumed independently as
follows,

B,
o, B,
o,= oyz = [Pg] p= [og'.‘log'z' b og’l] . 4-9)
g, .
B,

Using iso-function method, an iso-function partial stress matrix can be
derived from the displacement field (4-49) as follows [4.20],

3
0
0

<%

0
14
o &

0 0 (20 0 Eq
n 0 0(20 O
Oon*o0o0¢ o0

§n ©
0 &n
0 0 &n

0 0
[P,l= 0 0

oop
o Rr o
»r oo
© O ¥
o ¥ O
™Mo o
o o3
o3 o
3 o o
o O Y
O v~ O
~ O O

n¢ 0 0 En{ o o0 E2 0 0 n?

n
0onf o o0 Etn{ o o0¢E 0 0
001](0 051]{00{20

0 0 E3 0 En* 0 0 1% o £{* o0 n{® O
E>n 0 o0 E*¢ 0 En? o 0 o0 O E* o o
0 t2n 0 0 0 o0 En2 0 n?2¢ o o o0 n¢

(4-64)
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In this partial stress matrix, there are 47 stress modes. The examination of
element will indicate that there are many unnecessary stress modes in this iso-
function stress matrix.

Examination of Partial Hybrid Element

In the element, there are 20 nodes and each node has three components of
displacements. Therefore, the element has (n=) 60 degrees of freedom. The degrees
of the rigid displacement are equal to (r=) 6. Thus, the element has (n-r=) 54 natural
deformation modes. The examination of the partial stiffness matrix [K,] gives 31
non-zero eigenvalues. So the rank of the partial stiffness matrix [K,] is (n,=) 31 and
it represents 31 natural deformation modes of the element. Another partial stiffness
matrix [K,] must give 23 non-zero eigenvalues and represent 23 natural deformation
modes in order to avoid any kinematic deformation modes mode. According to the
equation (4-44), the assumed stress matrix must contain at least 23 stress modes.

In the iso-function stress matrix (4-64), there are 47 stress modes. It is more

than double the number of necessary stress modes. The stress matrix (4-64) can be
expressed in the form

[Pl=[0, 0,0, ... O; ... Oy ] (4-65)

Based on this iso-function stress matrix, the classification method gives an
optimal stress matrix as follows,

100E00n00(0O0ER 0 0 EL O O
[P]l=l02100E00n00C0 0 &Y 0 0 E; O
00100E00nO00C 0 O En 0 0 EL

n¢ 0 g¢n{ 0 O
0ny 0 &n{ O
0 0 0 o0 Eng

(4-66)

or

[Pl=[0, 0, G5 ... 03 Oy ... Gy, ] (4-66)
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Using this assumed partial stress matrix, two stiffness matrices of the 3-D,
20-node partial hybrid elements are examined. One is for isotropic material (see table
4); another is for anisotropic material (see table 5). In the tables,

Ap;
A; = -;;h— (4-67)

ui

where A, is the eigenvalue of the partial hybrid element; A ; is the eigenvalue of the
conventional displacement element. In tables 4 and 5, there are not any spurious zero
eigenvalues. So the elements do not have any spurious kinematic deformation modes.
From the results in tables 4 and 5, it can be concluded that if an assumed partial
stress field can be used to construct a partial hybrid elements without kinematic
deformation modes for the isotropic materials, it also can be used to construct the
elements for anisotropic materials.

In order to study the effect of extra stress modes on the stiffness of
elements, the assumed partial stress field consisted of the first 33 stress modes in
iso-function stress matrix is examined. The results of the eigenvalue analysis are
presented in table 6. Comparing the A, in the table 4 and in the table 6, it is shown
that the eigenvalue ), of the element using 33 stress modes is larger than that using
23 stress modes. Therefore, the added stress modes stiffen the elements. One can
examine a series of partial hybrid elements using different number of stress modes
in assumed stress matrix. The examination will show that the more stress modes
there are, the more stiffening the element is. If the number of added stress modes
in the assumed stress matrix is increased sufficiently, the stiffness of the partial
hybrid element will be equal to its conventional displacement counterpart. Such
partial hybrid element has been presented by Han [4.20].
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Table 4 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node Element
with 23 stress modes and isotropic materials: E=1100 GPa, v=0.1

No. A No. A No. A
1 0.3822 19 0.9066 37 0.9594
2 0.3822 20 0.9106 38 0.9654
3 0.4759 21 0.9235 39 0.9694
4 0.5549 22 0.9272 40 0.9694
5 0.6403 23 0.9277 41 0.9694
6 0.6445 24 0.9296 42 0.9730
7 0.6846 25 0.9296 43 0.9782
8 0.7257 26 0.9366 44 0.9782
9 0.7257 27 0.9366 45 0.9782
10 0.7293 28 0.9376 46 0.9797
11 0.7679 29 0.9376 47 0.9881
12 0.7858 30 0.9389 48 0.9983
13 0.8467 31 0.9559 49 0.9983
14 0.8550 32 0.9559 50 0.9988
15 0.8657 33 0.9568 51 0.9989
16 0.8801 34 0.9573 52 1.0000
17 0.9001 35 0.9575 53 1.0000
18 0.9011 36 0.9575 54 1.0000 I
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Table 5 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node Element
with 23 stress modes and anisotropic materials: E;=174.6 GPa,
E=7.0 GPa, G ;=3.5 GPa, G=1.4 GPa, v,,=V,;=v,,=0.25

"7 No. A No. A No. A
" 1 0.5357 19 0.9641 37 0.9314
iL 2 0.5888 20 0.9675 38 0.9994
u 3 0.5497 21 0.9206 39 0.9729
" 4 0.5013 22 0.9511 40 0.9593
" 5 0.6031 23 0.9316 41 0.9631
“ 6 0.8726 24 0.8770 42 0.9807
7 0.7696 25 0.9044 43 0.9931

8 0.8002 26 0.9672 44 0.9442

9 0.9358 27 0.9759 45 1.0000

“ 10 0.8494 28 0.9371 46 1.0000
11 0.5934 29 0.8017 47 0.9971

12 0.8294 30 0.8755 48 0.9975

13 0.8994 31 0.9618 49 0.9996

14 0.8053 32 0.9837 50 0.9961

15 0.8532 33 0.9952 51 0.9958

16 0.7674 34 0.9972 52 0.9975

17 0.7128 35 0.9974 53 0.9992

18 9.8_763 36 0.9921 54 1.0000
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Table 6 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node Element
with 33 stress modes and isotropic materials: E=1100 GPa, v=0.1

l No. A No. A No. A
1 0.4685 19 0.9971 37 1.0000
2 0.4685 20 0.9971 38 1.0000
3 0.7293 21 0.9981 39 1.0000
4 0.8803 22 0.9983 40 1.0000
5 0.9014 23 0.9983 41 1.0000
[ 6 0.9014 24 0.9988 42 1.0000
7 0.9277 25 1.0000 43 1.0000
8 0.9296 26 1.0000 44 1.0000
9 0.9296 27 1.0000 45 1.0000
10 0.9389 28 1.0000 46 1.0000
11 0.9497 29 1.0000 47 1.0000
12 0.9556 30 1.0000 48 1.0000
13 0.9573 31 1.0000 49 1.0000
14 0.9575 32 1.0000 50 1.0000
I 15 0.9575 33 1.0000 51 1.0000
16 0.9730 34 1.0000 52 1.0000
17 0.9782 35 1.0000 53 1.0000
18 0.9878 36 1.0000 54 1.0000



PARTIAL HYBRID ELEMENTS 171

4.2.3 Partial Hybrid Laminated Element

In the general formulation of single-layer element above, when N>1, the
element will contain more than one material layer and the single-layer element will
become a laminated element.

a) 3-D, 20-node Partial Hybrid Laminated Element

The formulation of a 3-D, 20-node laminated element (see figure 17) is the
same as that of 3-D, 20-node partial hybrid solid element (4-46)-(4-66). But the
variation in fibre orientations and material properties across the thickness of the

== N Material Layers

Figure 17 3-D, 20-node laminated element

element must be integrated in order to obtain a single property, and element matrices
are calculated by equation (4-11). Using the assumed stress matrix (4-66), a
laminated element with fibre orientation [90, 0, 90] is examined. The results of the
examination of the element is given in table 7. The results show that the element
does not have any kinematic deformation modes.
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Table 7 Eigenvalue Analysis of Stiffness Matrix for the 3-D, 20-Node
Laminated Element [90, 0,90] with 23 stress modes and materials:
E,=174.6 GPa, E;=7.0 GPa, G;;=3.5 GPa, G;=1.4 GPa, v,,=v,;=v,;=0.25

" No. A No. A No. A
1 0.4166 19 0.9312 37 0.9274
2 0.4103 20 0.9271 38 0.9993
3 0.4816 21 0.9425 39 0.9171
4 0.4492 22 0.9026 40 0.9443
5 0.6359 23 0.9213 41 0.9353
6 0.6520 24 0.8665 42 0.9221
| 7 0.6492 25 0.8663 43 0.9753
8 0.5950 26 0.9470 44 1.0000
9 0.8048 27 0.9141 45 0.9993
10 0.7801 28 0.8579 46 0.9930
11 0.7075 29 0.8483 47 0.9958
12 0.6489 30 0.9318 48 0.9974
| 13 0.9784 31 0.9251 49 0.9994
14 0.7856 32 0.9448 50 0.9995
15 0.8342 33 0.9778 51 0.9939
16 0.9216 34 0.9442 52 0.9991
" 17 0.8371 35 0.9889 53 10000
18 0.8981 36 1.0000 54 1.0000
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b) 4-node Partial Hybrid Degenerated Plate Element

The degenerated plate element was originally introduced by Ahead, Irons
and Zienkiewicz [4.22] for the linear analysis of moderately thick and thin shells.
Chao and Reddy [4.23] presented a degenerated element based on the total
Lagrangian description of the motion of a layered anisotropic composite medium. In
chapter 1, a 4-node degenerated plate element has been presented using displacement
element formulation. But similar to the plate/shell elements based on the 2-D
plate/shell theories, for analysis of composites, the degenerated plate/shell elements
using conventional displacement element formulation suffer from a common
deficiency: constitutive equations lead to discontinuous interlaminar stresses.
Equilibrium equations have been often used in recovering the interlaminar stresses.
Regardless of the controversy and complexity, the use of equilibrium equations will
reduce the accuracy of the stresses owing to the numerical differentiation. However,
partial hybrid elements formulation can overcome the stress continuity limitations of
single-layer models due to the fact that a partial stress field is assumed
independently. Here, the 4-node degenerated plate element is presented again using
partial hybrid element formulation. Its number of degrees of freedom per node is
also independent from the number of layers in a composite structure.

Geometry of Element

Firstly, consider a typical thick plate element in figure 18. The co-ordinates
of a typical point in the element can be written as

1 Vo
I
aﬁq&zé;,.v“
Ui
(@ (b)

Figure 18 A degenerated plate element



174 STRESS ANALYSIS OF COMPOSITES

i
Fi} (4-48)
Zi bottom

where Ny(§m) are shape functions, & and n are the normalized curvilinear co-
ordinates in the middle plane of the plate, { is a linear co-ordinate in the thickness
direction and only approximately normal to the middle surface, and (x,, y,, z ) are
the global co-ordinates at node i. The shape functions are

_y 1+ oy 1-¢
E}ém(e.n) 71 LA

L} top

4-69
Nfi- (1+E,) (1+1,) (@09

in which,
E,=E:6 mne=mm  (1=1,2,3,4) (4-70)

This equation can be rewritten in the form specified by the 'vector'
connecting the upper and lower points (shown in figure 18) and the mid-surface co-
ordinates as

4 il s
{;}=2Ni(ﬁ.n) AS AR ALY ¢-71)
z] =1 z;| =1
where
'13.1' 1 i i
Vag={lait=—4-|Vip Vi (4-72)
31 1 Zi T ZJ. B
and




PARTIAL HYBRID ELEMENTS 175

Displacement Field

In the element, the displacement field is assumed as a continuous field
through the entire thickness of a composite structure. Although there are numerous
plate theories which include transverse shear deformations in the literature, the
transverse normal stress is always not taken into account. Actually, the hypothesis
e, = 0 (or an equivalent hypothesis) should not be used [4.24] in order to construct
the consistent high-order theory. For analysis of composite, the first-order shear
deformation theory has to be improved. For this element, the following displacement
field is assumed [4.25-4.26],

u=u,+za,
V=V, +za, “4-74)
W=W,+2Za,

In this displacement field, it is assumed that a line that is straight and
normal to the middle surface before deformation is still straight, but not necessarily
'normal’ to the middle surface after deformation. Thus, the displacement throughout
the element will be uniquely defined by three Cartesian components («, v; and
w, ) of the displacement at the mid-surface node i, two rotations (a,, and a,; ) of the
nodal vector V; about orthogonal directions normal to it, and one transverse normal
deformation ( @,; ) in the thickness direction. Based on this assumption, the i-th
nodal displacement can be expressed as

Uil p, @xi| B, 0 4-75
u Vit S Wy =V O1{a,ut+ 010 0 T40 7

in which, V,, V,, and V, are the unit vectors of the local co-ordinate (§, n, {) at
node i. They can be calculated as follows:

lli ixvsi lzi
Vi ={Mhi =|ixV, y 21=2i =V XV (4-76)
14 i

If i x V5 =0, i can be replaced by j. Thus, the displacement field is

'ZlJ. _lzi 13i a, ;
{ ZN V +-2 1'1 my; ~Mp; Myi[8y; 4-77)
azi

g ~Ig; Iy
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They can be rewritten in the form

ul o || Ci| | & (4-78)
vi=Y Njqvit+{ [b;148yip (=Y. [N] ;8
i=1 i=1

W ai

where
byy; bipy biys h
[b;] ={Pay; Baa; bra; =7i [Viy ~Vag Va4l (4-79)
by;; bypy byyy
8,=[u; v; w; ay; ay; a,l T (4-80)
Ni 0 0 Nicblli Nicblzi Nicbl3i (4‘81)
[NM] ;5|0 N; O Ni{by,; N{b,; Nilbyy;
0 0 N; Ni{by,; Ni{byy; Ni{bys;
Parti train Field and Partial Derivatives of the Displacement Field

The partial globally continuous strains can be derived from the displacement
field as follows,

( @ 9
ox
©x ov
A “Du={ o (Bgd (4-82)
xy, du , dv
[y " 34

in which,

_ 4-83
[Bg]Bs Bz - -+ Ba @89
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and

3=[8, 5, 8, 8,17

The partial geometric matrix at the i-th node is,

N, 0 0 by,
N; y N 0 b111C b 21:Cix
blZch.x b13ic.1.x
b;3:Ciy b33:Ciy
b,5;CiytD;3iCiy D133Ciy Da3;:Cix

where

c.zx Ni xc+N'c

CN
Ciz CNC

177

(4-84)

(4-85)

(4-86)

The partial derivatives of displacement field can be also derived from the

displacement field as follows,

Dyu={ = +="4[B;]8

in which,

and

(4-87)

(4-88)
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0 0 N, by1;:Cis
[B;1=] O Njp Niy Da13CipthysiCyy

Nz’.,z 0 N.i,x b311'c.ix+b111'.ciz (4-89)

byy;Cyy by3;C,
byz:Ci2*tP325Ciy D23iCi2tD33:C;y
by25Cix*D121Ciz D33:Cix+D13:Csz

In order to calculate N, N, , N;, and Lo C‘y, €, , the following vectors
are introduced:

4l e i by 4-90
8=y =2Ni.i( i +TICV31] (4-90)
Z.g) Zi
| < 3 by 4-91
T= ,n}=2 Nin{ 1 +71CV31] #-90
VA i=1 Z .
M 1
L 4 h )
V={.cp=Y, N Vay “-92)
Z t i=1
then, the Jacobian matrix is
[J1=[S T V] 4 -93)
[JT'=[TxV VxS SxT1/ |7 | (4 - 94)

| 7| = sxT-V 4 -95
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Because

Xe Ve 2
i ’ ! 4 i,x i,x
it =% Yon ZoaWVi,yt=[J14NV:, 5 (4-96)
i, Xe Ve 2 iz i,z

the derivatives of shape function with respect to global co-ordinates are

. E,x ﬂ,x c,x . .

1,X J-IE J'IE

i,y =E,y n,y c,y i, =[J] B i, 4-97)
iz E,z N,z C’z i,¢ i,¢

Due to N, = 0, the expression (4-97) can be rewritten as

i,x N, _
1vp= [TV V8] /il @99
i,z Ni'“
and
| 8SxT (4-99)
¢4 M

7

The geometric matrix [B'] in the local co-ordinate system can be obtained
by means of transformation matrix [T],

/
[B/] ={Z ,i}= [ T3] {gi} (4-100)

and
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2 m  Lm 2 ma oAl |
13 m; L,m, ng m,n, 0,1,
21,1; 2mm, 1,my+l.m 2nyn, mny+mn, nyl,+n,l,
12 mf 1,m, n? myn, n,1,
21,1y 2mymy 1ymy+lym, 20,0, mpny+myn, nply+n,l,
2131, 2mym Iym+1;my 2030, myn +mn, 0,1 +n, 1,

[Tp] = (4-101)

[Tg] is the transformation matrix for the derivatives of displacements from
global co-ordinate (x, y, z) to local co-ordinate. The direction cosines of the local
co-ordinates are

4
1) Y NiVys
_ 4=

Vy={T, . (4-102)
? ENivu‘
i=1
and
1, 1
S AxV, AL (4-103)

Assumed Partial Stress Field

In the element, the partial stress field is assumed independently as
continuous functions along the thickness of a composite structure.

o B,

z

0, ~\tyzp= [Pl B=(T] [P] B=[T] [0, 0,...0,] 22 (4-104)

m

tzx

where, P is the stress parameter vector. The matrix [T] is a multiplying matrix and
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is determined by the traction conditions on the top and bottom surfaces of the
structure. For example, if there is a distributed normal load on the upper surface, the
transverse shear stresses must be equal to zero on both surfaces of top and bottom,
and the transverse normal stress must be equal to zero on the bottom surface and be
equal to the distributed load on the top surface. Therefore, the multiplying matrix has
to be assumed as

1+{ O 0
(7 o 1-¢2 o (4-105)
0 0 1-{2

The matrix [P] consists of a group of stress modes which can be derived
directly from the assumed displacement field using the iso-function method. The iso-
function partial stress matrix of the element is

100E00n00CO00En 0 0N, 0 EL O
[PI§0 100E00n00¢0O0¢ER 0 0 0 0 E
00100E00n00C 0 O0¢Eh 0n{o0 O

(4-106)

Examination of Partial Hybrid Element

In the element, there are (n=) 24 degrees of freedom and (r=) 6 degrees of
the rigid displacement. The element has (n-r=) 18 natural deformation modes. The
eigenvalue examination of the stiffness matrix [K,] gives 10 non-zero eigenvalues.
So the rank of the partial stiffness matrix [K,] is (n,=) 10. Thus, 10 natural
deformation modes of the element can be represented by the partial stiffness matrix
(K., and (n-r-n;=) 8 natural deformation modes must be represented by another
partial stiffness matrix [K,] in order to avoid any kinematic deformation modes.
According to the equation (4-44), the assumed stress matrix must contain at least 8
stress modes.

Based on the iso-function partial stress matrix (4-106), when the multiplying
matrix [T] is an unit matrix [I], the classification method gives an optimal stress
matrix as follows,

o
=3

[P] = 4-107)

o o B
o BB O
R O O
O O ow
s O O
o o3
o3 o
o o
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Using this assumed partial stress matrix, the partial hybrid degenerated plate
element is examined. The results of eigenvalue examination are given in Table 8. In
the table, A, is the eigenvalue of the elements.

Table 8§ Eigenvalue of Stiffness Matrix for 4-node Degenerated Hybrid Element
with 8 stress modes and E=1100 GPa, v=0.3

No. A (*10°) No. A (*10% No. A (*10%)
1 0.2821 7 0.6822 13 1.6920
2 0.2821 8 0.6822 14 1.6920
3 0.3291 9 1.0480 15 1.6920
4 0.3626 10 1.1280 16 1.6920
5 0.3626 11 1.5740 17 1.6920
6 0.5641 12 1.5740 18 5.5000

On the free-traction surface, the transverse stresses must be zero in order
to satisfy the boundary condition. In this case, the multiplying matrix is not a unit
matrix. For example, if free traction condition is applied on both top and bottom
surfaces, the multiplying matrix is

1-2 0 0
[T,]4 0 1-¢2 o (4-108)
o o0 1-2

The eigenvalues of the element are given in table 9. If the free traction condition is
only applied on bottom surface, then the multiplying matrix becomes

1+ 0 0
[T,] = .;- 0 1+{ O (4-109)
0 0 1+{

The results of eigenvalue examination are given in Table 10.
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Table 9 Eigenvalue of Stiffness Matrix for 4-node Degenerated Hybrid Element
with multiplying matrix [T,] and E=1100 GPa, v=0.3

“ No. A, (¥10% No. A, (*10% No. A, (*10%)
1 0.2350 7 0.6214 13 1.4100
2 0.2637 8 0.6214 14 1.4100
3 0.2742 9 1.0060 15 1.5670
4 03626 10 1.0480 16 1.6920
5 03626 11 1.4100 17 1.6920
6 0.5641 12 1.4100 18 4.9510

Table 10 Eigenvalue of Stiffness Matrix for 4-node Degenerated Hybrid Element
with multiplying matrix [T,] and E=1100 GPa, v=0.3

No. A (*10°) No. A (*10°) No. A (*10°)
1 0.1838 7 0.5668 13 1.5220
2 02115 8 0.5668 14 1.5220
3 0.3262 9 0.9530 15 1.6160
“ 4 0.3441 10 0.9826 16 1.6920
5 0.3441 11 1.2480 17 1.6920
" 6 0.5641 12 1.2480 18 4.7500

The examination of the element shows that there are not any kinematic
deformation modes when the assumed partial stress matrices (4-107)-(4-109) are
used.

c¢) 8-node Partial Hybrid Degenerated Plate Element

An 8-node degenerated plate element [4.25-4.26] is also presented here
using partial hybrid element formulation.
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Geometry of Element

Firstly, the global co-ordinates (x,y,z) of any point within the element are
expressed in the form specified by the 'vector' connecting the upper and lower points

(see figure 19) and the mid-surface co-ordinates as

2=1

9 1] 8
{Z}TNME'M 4 LAGLIES v,

T

A -

Y e s

l—

Iy Yy
a5 Vs
i %' Vi
i

(a) (b)

Figure 19  An 8-node degenerated plate element

(4-110)

where (x,, y,, z,) are the global co-ordinates of the i-th node. The shape functions

Ni(En) are
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Nf% (1+E,) (1+ng) (Eo+mo-1) Ein?

+2 (1-82) (1+n,) (1-E3) n}

+% (1-12) (1+E,) (1-12) &2

in which,
E,=8;€ 1ne=n,n (i=1,2,...,8)

The vector connecting the upper and lower points is

'131 1 i
V V= 1 , — .
347} 3R L .

34 NWEir Bi)p

and the parameter b, is

h; =\/ (X;07X35) 2+ (V107Yip) *+ (237~ Z;5)

Displacement Field

185

(4-111)

(4-112)

(4-113)

(4-114)

Similar to the 4-node degenerated element, it is assumed that a line that is
straight and normal to the middle surface of the element before deformation is still
straight, but not necessarily mormal' to the middle surface after deformation.

Therefore, a displacement field is assumed as

ul 8 u; ¢ Ayi
vi=Y N;{v: +§hi[vu Va1 Va4li8y:
i=1 | |W; 85

(4-115)
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in which, V,;, V,, and V; are the unit vectors of the local co-ordinate (§, M, §) at
node i. They can be calculated as follows:

_ lli _ iXVu _ 12i _
Vli— it~ Vzi‘— i _Vaixvli (4'116)
| HXxVyy .
1i i

The displacement field can be rewritten in the same form as that for the 4-node
degenerated plate element,

ul B8 Uy Aui|| 8
{:;}: N, |{Vi}+{ [b;148y: -_—E [N .8, 4-117)
i=1 W.i azi i=1

where

byy; bia; bias

[b;] =|ba1; Daz; Paa; =-7i [V ~Vag V34l (4-118)
by;; bya; D3y

8y=[u; vi w; @y ay; @517 (4-119)

N; 0 0 Ni{b,; Ni{b,;; Ni{biy;
[N],50 N; 0 N{b,,; N{bs; Ni{bss;
0 0 N; Ni{by,; Ni{by;; N;{bs;;

(4-120)

Partial Strain Field and Partial Derivatives of the Displacement Field

The partial globally continuous strains can be derived from the displacement
field by means of partial strain-displacement relation as follows,
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r @ W
e ox
Xl L) dv | 3
Gg— ey "‘D’.u—'* Ty }'—[Bg.] (4_121)
o du, 3v,
| dy 0x]
in which,
= 4-122
[Bg]=[Bgz Bga -« -+ Bga) ( )
and
(4-123)

3=18, 8, ... 8,17

The expression of the partial geometric matrix at the i-th node [B,] is the same as
that of the 4-node degenerated plate element (4-85)-(4-86).

The partial derivatives of displacement field can be also derived from the
displacement field as follows,

4 -a_-W A

0z
v, dw
dz Jdy
ow _ du

—_—t==

| dx 0z

DI'u =4 }:[BL]b 4-124)

in which,

[Br]=[Br: Bra -+ - Brg) (4-125)
The expression of the partial geometric matrix at the i-th node [B,,] is the same as

that of the 4-node degenerated plate element (4-89).

In order to calculate N, , N; , N;, and {,, {, C, , the following vectors
are introduced:
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Bl . 4-126
8={V,gt=Y N; o{Vi "'chu (4-126)
Z.e i
M@ h; 4-127
T={,af=) Ni,of {1 +71CV31 ( )
ZI'I i=1 ZJ.
(4-128)

L 8 h.
V=¢y/.¢ =2Ni71Vu
Z c i=1

Thus, the Jacobian matrix, the derivatives of the shape functions, and the geometric
matrix [B'] in the local co-ordinate system can be obtained using equations (4-93)-(4-
103).

Assumed Partial Stress Field

In the element, the partial stress field is assumed independently as
continuous functions along the thickness of a composite structure.

o

Oy 17yzz =[P, 1 p=[T] [P1B (4-129)

th

where the multiplying matrix [T] is determined by the traction conditions on the top
and bottom surfaces of the structure. The matrix [P] is derived directly from the
assumed displacement field using the iso-function method. The iso-function partial
stress matrix of the element is
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100E00no00¢0O0En 0 0 EL 0 O
[Pl=lo100E00n00¢0O0¢En o0 0FELO

00100E00n00¢ 0 O En 0 0 EL

n{ 0 0 &n{ o 0 §* 0 01 0 0 §&n

on{ o o &g 0 0E 0 0MN20 O (4-130)

0 on o o En{ 0 0E>0 01N2 0

0 0 E{ o0 En? o 0 n¥ o
En 0 o0 E 0 En2 0 0 O
0 §8n 0 0 0 0 §&n* 0 n*

There are 40 stress modes in the iso-function partial stress matrix.

ination of

In the element, there are 8 nodes and each node has six components of
displacements. Therefore, the element has (n=) 48 degrees of freedom. For a 3-D
elastic body, the degrees of the rigid displacement are equal to (r=) 6. Thus, the
element has (n-r=) 42 natural deformation modes. The eigenvalue examination
indicates that the partial stiffness matrix [K,] has 26 non-zero eigenvalues. So the
rank of the partial stiffness matrix [K,] is (n;=) 26 and the matrix [K,] represents 26
natural deformation modes. Thus, another partial stiffness matrix [K;] must represent
16 natural deformation modes of the element and the assumed partial stress matrix
must contain at least 16 stress modes.

Based on the iso-function partial stress matrix (4-130), when the multiplying
matrix [T] is a unit matrix [I], the classification method gives an optimal stress
matrix as follows,

100£00n00Eh 0 0 0 0 0 O
[Fl<{f0 1 00E00n0 0 &n 0 E{ 0 En{ 0 | “13D
00100E00n 0 0 En 0n{ 0 En¢

The degenerated plate elements with three types of materials are examined.
The first is for isotropic material (see Table 11); the second is for anisotropic
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material (see Table 12); The third is for the composite structure with fibre orientation
[90, 0, 90] (see Table 13). In the tables,

Ay
A; = -ﬁ (4-132)

ui

where A, is the eigenvalue of the hybrid element; A, is the eigenvalue of the
conventional displacement element. There are not any spurious zero eigenvalues.
Therefore, the elements do not have any kinematic deformation modes.

Table 11 Eigenvalue Analysis of Stiffness Matrix for the Degenerated Element
with 16 stress modes and isotropic materials: E=1100 GPa, v=0.3

“ No. A No. A, No. A
1 0.7355 15 0.9253 29 0.9276
2 0.9392 16 0.9253 30 0.8042
3 0.7040 17 0.9241 31 1.0000
4 0.6753 18 0.7388 32 0.9966
5 0.8229 19 0.9190 33 0.9994
6 0.5870 20 0.9762 34 0.9994
7 0.6636 21 0.9790 35 0.9817
8 0.6092 22 0.8131 36 0.9841
9 0.7219 23 0.7528 37 0.8384
| 10 0.8699 24 0.7375 38 0.8432
11 0.8197 25 0.8694 39 0.9995
12 0.8974 26 0.8120 40 09114
13 0.8793 27 0.8195 41 1.0000
14 0.8793 28 0.8195 42 1.0000
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Table 12 Eigenvalue Analysis of Stiffness Matrix for the Degenerated Element
with 16 stress modes and anisotropic materials: E;=174.6 GPa,
E,=7.0 GPa, G;;=3.5 GPa, G;=1.4 GPa, v,,=V,;=V,;=0.25

II No. A No. A No. A “

1 0.9474 15 0.9094 29 0.9766 ||

2 0.4623 16 0.8548 30 1.0000 “

3 0.5917 17 0.7773 31 0.9993 “
" 4 0.7961 18 0.7797 32 0.8925
|| 5 0.8069 19 0.9696 33 0.9897
|| 6 0.7233 20 0.8894 34 0.9968

“ 7 0.7416 21 0.9453 35 0.9998 |
II 8 0.7526 22 0.9086 36 1.0000
Il 9 0.8614 23 0.9842 37 0.9940
“ 10 0.8387 24 0.8846 38 0.9918
|| 11 0.8810 25 0.9896 39 0.9995
12 0.8917 26 0.9820 40 1.0000
13 0.9025 27 0.9996 41 0.9916

14 0.9138 | 28 0.9496 _ 42 1.0000 _l
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Table 13 Eigenvalue Analysis of Stiffness Matrix for the Degenerated Element
with fibre orientation [90, 0,90], 16 stress modes and materials:
E, =174.6 GPa, E;=7.0 GPa, G.;=3.5 GPa, G=1.4 GPa, v,=v,,=V,,=0.25

[ No. A No. A No. A
1 0.6746 15 0.8201 29 | 09094
2 0.5697 16 0.7790 30 | 09506
3 0.5951 17 0.7862 31 | 0.9982
4 0.7661 18 0.9046 2 | 1.0000
I 5 0.8326 19 0.9080 33 [ 09999
I 6 0.7248 20 0.8470 34 | 09899
| 7 0.6863 21 0.8440 35 | 09915
| 8 0.6293 2 07805 36 | 09986
I 9 0.7808 23 09788 37 | 1.0000
10 0.8043 24 1.0000 38 | 09993
11 0.8668 25 09470 39 | 1.0000
12 0.7016 26 09717 40 | 0989
13 0.8314 27 0.8866 a1 | 09998
14 0.8170 28 0.8840 42 | 09999
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4.2.4 Partial Hybrid Transition Element

In practical applications, a number of the so-call 'global/local’ solution
method have been proposed [4.27] in order to determine the stress state in composite
structures efficiently and accurately using 3-D finite element model. In the global-
local analysis, the treatment of interfaces between global and local regions is one of
the key elements. One of the commonly-used approaches for maintaining
displacement compatibility and traction reciprocity at the interfaces is a special
transition element. The major advantage of the transition element is to eliminate the
constraint equations at these transition regions[4.28-4.30]. Two partial hybrid
transition elements are presented here [4.31-4.36]. They will be used to connect the
3-D partial hybrid solid elements in local region with the partial hybrid degenerated
plate elements in global region for the global/local analysis of composite structures
as presented in chapter 5.

a) 6-node Partial Hybrid Transition Element

This transition element is used to connect partial hybrid degenerated plate
elements and 3-D partial hybrid solid elements. It has two line of nodes{4.37] where
it meets the degenerated plate element and four point nodes on the remaining
boundaries where it meets the 3-D solid element (see Figure 20). The line of nodes
can accommodate any function along the thickness, allowing it to admit the any-
order polynomials over the entire thickness from degenerated plate element, while
the point nodes have the same polynomial shape functions as those used for the 3-D
solid element. Once the shape functions of the transition element are established, the
definitions of geometry and displacements for the element follow a similar path to
those of the hybrid elements.

e
o\lli:a

Figure 20 6-node partial hybrid transition element
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The Shane Functi ¢ Different El

In the formulation of a typical 3-D element as shown in figure 21(a), shape
functions dictate the form of any field, e.g. displacement fields. It is clear that if two
adjacent elements have identical shape functions and nodal locations on the interface,
the continuity of any field between the elements is achieved and the elements are
compatible. Otherwise, the compatibility of elements will not be satisfied.

Suppose that a transition element in Figure 21(b) is used to connect a solid
element (Fig. 21a) to a plate element (Fig. 21c) in the transition region of a
global/local finite element model. On the left side, it meets with a solid element; on
the right side, it meets a plate element. Thus, the transition element must have the
same shape functions and nodal locations on its left side as that of solid element, and
on its right side as that of plate/shell element.

Take a solid element as an "original" element for developing the transition
element. Obviously, the shape functions on the left side do not need to be modified.
But, on the right side, new shape functions for satisfying continuity are required. For
a general case, this amounts to developing a set of shape functions which can
accommodate any arbitrary curve specified by the adjacent right-side element along
the { axis (thickness) on the interface between elements. Before attempting to
generate such shape functions, it is instructive to examine shape functions for a solid
clement.

(a) solid element (b) transition element (c) plate element

Figure 21. Three types of element



PARTIAL HYBRID ELEMENTS 195

In figure 21(a), a typical linear solid element is shown with the local
curvilinear co-ordinates § n and (. Its shape functions can be found
elsewhere[4.38-4.39]. For developing a transition element, of particular interest are
the shape functions for the nodes on the right side of this element, node 5-8:

N (1E8) (Trmgm) (L+40) (4139

The transition element in Fig. 21(b) is similar to the solid element in Fig
21(a) except for the nodes on its right face (5,6,7,8). Special treatment has to be
done to these nodes so that their displacements can be compatible to those of the
plate element in figure 21(c). Consider a function,

Q(&,n,0)=Q,(&,n,{)+Q,(& n,{) (4-134)

in which,

Qa (Eln ’ C) =a5N5+a3N8
Qb(Eln ’ C) =a6N5+a7N7

(4-135)

where 0 is the value of €2 at the node i of the solid element. Note that the function
€ can have the meaning of displacement function for the right face of the transition
element in Fig. 21(b). Functions Q, and £, can be of any degree (linear, quadratic
etc.) between the two nodes 5-8 or 6-7 respectively. For a regular brick element, 0.
and oy would represent the displacements at the node 5 and 8 respectively.
Normally, the displacements at node 5 and 8 are independent from each other.
However, if the displacements at nodes 5 and 8 are constrained such that each of
them is equal to a specific value of a function B({'), then one can write:

as= B(C5)
oy = Py

(4 - 136)
where {5 and {'; are the global coordinates in the thickness direction of nodes 5
and 8 respectively.

Now consider the shape functions of the degenerated plate element. A
middle surface of a degenerated plate element is shown with the local curvilinear co-
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ordinates & and M (in Figure 21(c)). The shape functions for the nodes on the left
boundary of this element, nodes 1 and 4 are:

W=(1-€) (1-n) /4

4-137)
=(1-£) (1+n) /4
Consider another function meantime,
I, ¢) =L (§,m, &) +IL, (B, O (@-138)
in which
I, (€, 1, ) 4B, (VTG )

I, (§,n,¢) =48, ({ I,

and IT represents the displacements at the left face of the plate element. Note that
the function IT can be considered to be the displacements of points lying on a plane
normal to the middle surface of the plate element at edge 1-4. I, can be considered
to be the displacements at all points on the normal to the initial middle surface of
the undeformed plate element at node 1 and II, can be considered likewise to be the
displacements at all points on the normal to the initial middle surface of the
undeformed plate element at node 4. Let us consider the composition of IT; in detail.
The composition of I1, follows.

In I1, , N, represents the shape function in the plane E-1. A, represents the
nodal displacement at the node 1 on the middle surface of the plate element. f3,(£)
represents the variation of the displacement in the undeformed state of any point
initially lying on the line normal to the middle surface of the plate element. If only
one plate element is used for the whole laminate thickness, B((") is a linear function
of C\.

Matching the Two Shape Functions

From figure 21(b), Q represents the displacement of the transition element
at the interface. From figure 21(c), IT represents the displacement of the plate
element at the interface. In order to satisfy the compatibility of displacement fields
at the interface between the transition element and plate element, Q and ITmust be
the same.
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Function € consists of two functions Q, and £, and function ITconsists of
another two functions IT, and IL,. At the interface, Q, and Q, will need to match IT,
and II,, respectively. If €, and II can be matched exactly, compatibility of
displacement fields at the interface will be satisfied. At the interface, {' is a function
of {. In the interval {e [-1,1] which corresponds to {' € [{), £',,], one has

1- 1+ (4-140)
r'= zcc/1+ ZCC/ML

Note that ' is the global thickness coordinate for the plate element while
€ is the smaller thickness coordinate for the solid or transition element. Using
equation (4-133), the function €, in equation (4-135) can be rewritten as follows:

(4-141)

Q,=L (1+E) (1-1) [(1-0) &g+ (1+) @]

o[k

In this expression, the function Q, is split into two parts N,(§n) and o,({) that are

Na(Eln)=% (1+E) (1_1]) (4_142)
@, ({) =% [(1-0) ag+ (1+0) @]

Thus,

Q,= a,N, (4-143)

In order to accommodate any arbitrary curve B,({") specified by the
adjoining plate element, a line of nodes connecting nodes 5-8 and a moving node
which moves along this line are defined. At every point {' occupied by the moving
node, the nodal value @, is made to be equal to the value of the specified curve at
the point, A,B,({). Thus,

a,=A B, (&N

(4-144)
Q.= 4,8, ()N, (E,n)



198 STRESS ANALYSIS OF COMPOSITES

Because the contribution of line 5-8 to the displacement field of the
transition element is represented by the function ,, this line is called as line of
nodes "a" in order to use the standard word "node" in finite element method. Now,
comparing functions Q, and IT, (4-139) and (4-144) at the interface, one can see that
the functions Q, and IT, are the same (note that N,=N, at the interface). The Q, and
IT, are matched exactly. In the same way as the functions €, and IT, , The £, and
II, can also be matched. The new shape functions and nodal values are defined by

%,=A,B, () 1

Np=(1+E) (1+n) /4

Thus

Q,=a,N,=2,B, ({)N,(E,n) (4-146)

The functions €, and £, of two lines of nodes "a" and "b" determine the
displacements of the transition element at interface. Similarly, the functions I1, and
I1, of two nodes 1 and 4 determine the displacements of the plate element at the
interface. Because the functions Q, and Q, are the same as the functions IT; and II,
at the interface respectively, the function € is subsequently same as the function II.
Therefore, the displacements are compatible at the interface between the transition
element and plate element.

These two new shape functions N, and N, along with the other four shape
functions as given in Reference [4.38-4.39] form a complete set of shape functions
for the transition element.

Geometry of the Element

A transition element is shown in Figure 22. The global co-ordinate (x, y,
z) of any point in the element may be related to the non-dimensional co-ordinates
by

4 1 ] i
4-147
P2 AB AT 14
4 1 Z; 5 Z,

in which, x, , y; and z are the co-ordinates of node i. Because the point nodes 5-8
are replaced by two lines of node a and b as follows,
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0
Y NYip=Y Ny (it Vi) (4-148)

where, x, y; and z° (i=a,b) are the co-ordinates of the lines "a" and "b" at the
middle surface of the composite structure, one has

0
4 il b 10 c/ i
=) Vi) N; (i p+ =87 sp) (4-149)
Z 1 Z 4 a ZJ? Zi

Moreover, it can be rewritten in the form,

0
4 i b 16 /
=E Niyi +2 N; (i +EhiVu) (4-150)
where
l3i 1 1 i
Vai={hi =F it Vi (4-113)
33 W\WEi) r Bi) g
and
4-114
hi:J(x-iT—x.iB) 2+ (.V_iT_y_iB) 2+ (ZiT—Z.i.B) 2 ( )
The shape function N, can be expressed as follows:
4-151)

Ni=% (1+E,) (1+1,) (1+{,)

in which



200 STRESS ANALYSIS OF COMPOSITES

. 4-152
E,=8;8 mo=mim =0 i=1-4 (4-152)

and

N,=(1+E) (1-1) /4

4-153)
N)_-,: (1+E) (1"'1]) /4

Note that coordinate {' is the global thickness coordinate for the plate
element and coordinate { is the smaller thickness coordinate for the transition
element. The relationship between coordinate {' and coordinate { is expressed in
the equation (4-140). The values ', and (), represent the values of co-ordinate {'
at the lower and upper surfaces of a layer while {=-1 and {=+1, respectively.

Displacement Field

In the element, the displacements (see figure 22) are expressed as follows:

0

uy -
{ EN V1 +EN Vf +{/[b;1{¥y1 (4-154)
W_1 zi
z
Transition element Y
o | L
A e
W v
1
| ¥ 0
‘ ) ¢ Yi
¥i Y 0o b hi H
et i
ook ode i 16i-pein of (be i-1h ne of modes

Figure 22 Nodal displacements in a transition sub-element
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where
blli blZi b13.i
b b. b h; (4-118)
[D;] ={D21; Pazi Da3i = (Vi -V V3l
b3li ‘b32.i b33.i
and

lli ixvai 121’
V= b =[1XV31| Vas= 1 =V31XVyy (4-116)
11 1

in which, the displacement components u; , v; and w, are the nodal displacements at
point nodes 1,2,3 and 4. The displacement components u’, v’ and w,° are the
displacements of the line "a" and "b" at the middle surface of the composite
structure, ,; and ; are two rotations of the nodal vector V, about orthogonal
directions normal to it, and y,, is a transverse normal deformation in the thickness
direction.

Partial Strain Field and Partial Derivatives of the Displacement Field

The partial strain field is

([ du )
o 2
ov 62
{eg}=4 ?}; }=[Bg]6=[Bnggz ..... Bgs] . (4-155)
8u, 8v J
9y ox °

r -a_,W. A 6
oz X
3 .
ov, ow 2 *-159
D,_.,u= .a_z.+-§;>=[BL]6={BLlBL2. « s 'BLG] .
9w, ou d
| 0x 0z °
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For nodesi=1 - 4,

N,, 0 0
_ 4-157
[Bg]q © Ny, 0 (4-157)
Ni,y Ni, x 0
and
0 0 N,
[Bra]7| O Niz Niy (4-158)
N.z,z 0 Ni X
and
ul
8;={v (4-159)
W
For nodes i = a and b,
Nix 0 0 byy8:x byzi8ix By
[Byl4 0 N, 0 by 485y byas8,y baas84y (4-160)
Nj,y Ny x O byy,8y,%Dyy18;y Di3g83y+Dag381, Di3s@yy+thaasd
and
0 0 N, by,s8,, byiay, by3i8y,
[B;15 O N, Nj, byyi8;,%D5158;, Dagi@iptbazi8sy Daysdi,ths3;8;y
Ny, O Nj, by 8,,+053485; D3zy85xtDig;85, Dyys@ixthyasy,
(4-161)
and
4-162)

_ 0 0 0
8,=[u; vi wi Uyy ¥y ¥pil”

and
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aix=Ni,xc/+Nic/,x
aiy:Ni.ycl+NiCl,y
aiz=Ni, zcl+NiC/, z

203

(4-163)

In order to calculate N;, N, , N;, and ', £, (', , the following vectors

are introduced:

X X,
Tyl S5 |V
Z%

lﬂ r
=r'1|= y'ﬂ V=rlc= y’c
Z, Z

Then

[J]=9[8 T V|T and |J=8TxV

and

[I] =[PV VX8 SxTIAJ

One can obtain

.i,x ilE
i,y0= [TV VxS SxT] /[J[ i
.i,Z i:C
and
| _ 8xT
¢l

1 Z

(4-164)

(4-165)

(4-166)

(4-167)

(4-168)
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Assumed Partial Stress Field

In the element, the partial stress field is also assumed independently.

02
0,={Tyzt=[P,] B (4-169)

tZX

where the stress parameters 3, are the internal parameters. In some cases, it is
convenient to use surface stress parameters o.. For example, an assumed stress field
can be assumed in the form,

o,~[P,] p=[P] %{(1+C) &yt (1-0) @g) (4-170)

where o and oy, are the surface stress parameters corresponding to upper and lower
surfaces of the element, respectively. In this expression, a stress mode o; in the
matrix [P] is related to both surfaces (upper and lower surfaces o and o ) and
corresponds two stress modes 0.5*(1+{)*c; and 0.5*(1-0)*c, in the assumed stress
matrix [PE]. The stress matrix [P] can be derived directly from the assumed
displacement field using the iso-function method. The iso-function partial stress
matrix of the element is

100E00n00C¢00E&n 0 0 n 0 EL O

[P]f0100E00n00(00 & 0 0 0 0 §

00100E00n00¢( 0 O0¢Eno0n¢ooO
(4-171)

There are 19 stress modes in the stress matrix.

Examination of Partial Hybrid Transition El

In this element, there are four point nodes and two lines of nodes. Each
point node has three components of displacements and each line of nodes has six
components. Therefore, the element has (n=) 24 degrees of freedom. Because the
degrees of the rigid body motion are equal to (r=) 6, the element has (n-r=) 18
natural deformation modes. The eigenvalue examination indicates that the rank of
the partial stiffness matrix [K,] for the element is (n;=) 10. Therefore, the partial
stiffness matrix [K,] represents 10 natural deformation modes of the element.
Another partial stiffness matrix [K,] must represent § natural deformation modes of
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the element and the assumed stress matrix [P,] must contain at least 8 stress modes.
Due to the fact that a stress mode in the matrix [P] corresponds two stress modes
in the assumed stress matrix [Ps], the stress matrix [P] must have at least 4 stress
modes.

Based on the iso-function partial stress matrix (4-171), the classification
method gives an optimal stress matrix as follows,

[P] =

o O r
o B O
B O O
o 9 O

0
0 (4-172)
n

The examination of the element shows that there are not any kinematic
deformation modes. The results of eigenvalue examination are given in Table 14. In
the table, A, are the eigenvalues of the element.

Table 14 Eigenvalues of Stiffness Matrix for Hybrid Transition Element
with 10 stress modes and isotropic materials: E=1100 GPa, v=0.3

No. | A (*10% No. | A (*10% No. | A (*109

1 0.1088 7 0.2923 13 1282

2 0.1621 8 0.4328 14 1.373

3 0.1850 9 0.6554 15 1.398

4 02115 10 0.7126 16 1.398

5 0.2209 11 0.7264 17 1418

6 0.2438 12 0.9706 18 4.171

_——e—s———————————————l
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b) 15-node Partial Hybrid Transition Element

In order to connect 8-node partial hybrid degenerated plate elements and 3-
D, 20-node partial hybrid solid elements, a 15-node transition element is presented.
It has three lines of nodes [4.37] where they meet the degenerated plate/shell element
and four point nodes on the remaining boundaries (see Figure 23). The line of nodes
can accommodate any function along the thickness, allowing it to admit the any-
order polynomials over the entire thickness from degenerated plate element, while
the point nodes have the same polynomial shape functions as those used for the 3-D
solid element.

Point nodes L

A

NN

Lines of nodes

Figure 23 15-node partial hybrid transition element

The Shane Func ¢ Different EJ

Suppose that the 15-node transition element in Figure 24(b) is used to
connect a 20-node solid sub-element (Fig. 24a) to a 8-node plate element (Fig. 24c)
in the transition region of a global/local finite element model. On the left side, it
meets with a solid element; on the right side, it meets a plate element.

Similar to the case in developing 6-node transition element, take a solid
element as an "original" element for developing the transition element. Obviously,
the shape functions on the left side do not need to be modified. But, on the right
side, new shape functions for satisfying continuity are required.
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Moving nodes 9,12,13,14

Lines of nodes a,b,c

(a) solid element (b) transition element (c) plate element
Figure 24 Three types of element
In Figure 24(a), a typical quadratic solid element is shown with the local
curvilinear co-ordinates & m and { Its shape functions can be found

elsewhere[4.38-4.39]. For developing a transition element, of particular interest are
the shape functions for the nodes on the right side of this element, node 1-4, 9, 12-

14:

N.i=% (1+E°) (1+T|°) (1+c0) (Eo+no+CQ_2) E§n§Ci
+2 (1-8%) (1+mg) (1+¢,) (1-ED m¥cd @-173)
+% (1-12) (1+{,) (1+E,) (1-n2) {2E2

+% (1-¢2) (1+E,) (1+n,) (1-¢2) En?

in which,
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Eo=E:& mo=nm  {o=(i{ (4-174)

where & , 1, and { are the local co-ordinates of node i in the element parametric
space.

The transition element in Fig. 24(b) is similar to the solid element in Fig
24(a) except for the nodes on its right face (1,2,3,4,9,12,13,14). Special treatment has
to be done to these nodes so that their displacements can be compatible to those of
the plate element in figure 24(c). Consider a function,

Q(E,n,0=0_(E,n,{+Q,(E,n,{)+Q(E,n,{) @175

in which,

Q,(E,n,Q) =a, N, +a,N,+a, N,
Q,(8,n,{) =aN;+a N, (4-176)
Q.(E,n,{) =N+, N, +a,,N,,

where 0o, is the value of Q at the node i of the solid element. Note that the function
Q can have the meaning of displacement function for the right face of the transition
element in Fig. 24(b). Functions Q,, €, and _ can be of any degree (linear,
quadratic etc.) between the two nodes 1-2, 13-14, or 3-4 respectively. For a regular
solid element, o, 0, and ¢, would represent the displacements at the node 1, 9 and
2 respectively. Normally, the displacements at node 1, 9 and 2 are independent from
each other. However, if the displacements at nodes 1, 9 and 2 are constrained such
that each of them is equal to a specific value of a function B({'), then one can write:

a, = B
a, = B(C) 4 -177)
a, = By

where (', 'y and ', are the global coordinates in the thickness direction of nodes
1, 9 and 2 respectively.
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Now consider the shape functions of the degenerated plate element. A
middle surface of a degenerated plate element is shown with the local curvilinear co-

ordinates & and m (in Figure 24(c)). The shape functions for the nodes on the left
boundary of this element, nodes 3, 7 and 4 are:

N;=-- (1+E,) (1+1m,) (§,+no-1) Ein?
+% (1-E2) (1+n,) (1-E3)n3 4-178)

+% (1-n2) (1+E,) (1-12) &2

B R

in which,

E,=€;& mno=n;n (4-179)

Consider another function meantime,

IO(E,n, ) =I,(E,n, ) +IL, (€, n, ) +10, (E, 0, ) (4180)
in which

O, (§,n,{) =2,,({NF,
n-;(el‘l'l:c/) =A7[57(C/)-1\77_ (4-181)
o, (¢,n, &) =A,B, (C/)E

Note that the function IT can be considered to be the displacements of points lying
on a plane normal to the middle plane of the plate/shell element at edge 3-4. I1, can
be considered to be the displacements at all points on the normal to the initial mid
surface of the undeformed plate element at node 3. I, and I, also can be considered
likewise to be the displacements at all points on the normal to the initial middle
surface of the undeformed plate element at node 7 and 4 respectively. Let us
consider the composition of I1; in detail. The compositions of IT, and IT, follow.

In I, , N, represents the shape function in the plane E-n. A, represents the
nodal displacement at the node 3 on the middle surface of the plate element. B,(C")
represents the variation of the displacement in the undeformed state of any point
initially lying on the line normal to the middle surface of the plate element. If only
one plate element is used for the whole laminate thickness, B((') is a linear function
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of {.

Matching the Two Shape Functions

From figure 24(b), Q represents the displacement of the transition element
at the interface. From figure 24(c), II represents the displacement of the plate
element at the interface. In order to satisfy the compatibility of displacement fields
at the interface between the transition element and plate element, £ and ITmust be
the same.

Function Q consists of three functions Q, , €, and Q_, and function IT
consists of another three functions I1;, IT; and IT, . At the interface, Q,, , and Q,
will need to match IT;, I1; and I1,, respectively. If ), and IT, can be matched exactly,
compatibility of displacement fields at the interface will be satisfied. At the interface,
{' is a function of {. In the interval {e [-1,1] which corresponds to {' € [(),
'..), one has

1- 1+ (4-140)
R

Note that (' is the global thickness coordinate for the plate element while
€ is the smaller thickness coordinate for the solid or transition element.

Without losing generality, the function €2, is examined as an example along
the line 'a' of nodes 1, 2 and 9. It can be rewritten as follows:

Q,=a, (1+§) (1+1n) (1-{) (E+n-1) /8
+a, (1+E) (1+n) (1+() (E+n-1)/8

“1;“2)(1+5)(1+n)(1—c2)/4

(4-182)

+(0tg—

It shows that the function 2, may be separated into two parts: (1) the
contribution of the corner nodes which varies linearly along the { direction and
quadratically along the & and m directions; and (2) the contribution of the mid-side
node which is quadratic in the { direction and linear along & and 1 shown in figure
25(a). If the quadratic function

(4-183)
(ag—fﬁgfé)<1—C%
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can be replaced by a arbitrary function

a,p, (g -7 % S o

shown in figure 25(b), then Q, will be exactly equal to the II,

a,

! Ay B5(0)-05((1-O)a +(1+8)ay]
Figure 25 Variation of physical field on the line 'a’ of nodes

In order to accommodate any arbitrary curve B,({') specified by the
adjoining plate element, a line of nodes connecting nodes 1-2 and a moving node 9
which moves along this line are defined (see figure 24). At every point {' occupied
by the moving node, the nodal value ¢, is made to be equal to the value of the
specified curve at that point, A,B,({') (see equation (4-181). Taking o, and o, as
A,B,(L'(-1)) and A,B,(L'(+1)), respectively, the new shape functions and the nodal
value are defined by

N’;=(1+E) (1+q) (1-¢) (E+n-1)/8
N'y=(1+E) (1+n) (1+{) (E+n-1)/8
N'g=(1+E) (1+n) /4

(1-0)a,+(1+0) a,
2

(4-185)

a';=4,B, ({) -

Thus
(4-186)
= N ! ol NI

Q,=a, N +a, N, +a' N

The equations (4-185) and (4-186) above can be transformed into the most
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convenient form as follows:

N =(1+E) (1+n) (1-{) (E+n-2) /8
N',=(1+E) (1+n) (1+{) (E+n-2)/8
N'y=(1+E) (1+n) /4

“g=A3 B, (¢

—q. N )
Q,=a,N" +a, N, +agN"y

(4-187)

and

Q,=A, B3 (/)N (§,m,8) +B3 ({/1.) N7, (8,1, §) +B5 (I N (B, 1) ]
(4-188)

Thus, the Q, and II, are matched exactly at the interface. Note that the

nodes 1, 2 and 9 are not independent nodes. They become sub-nodes on the line of

node 'a'. Because the contribution of line 1-9-2 to the displacement field of the
transition element is represented by the function €2, , this line is called as line of

nodes "a".

In the same way as the functions €, and I1,, the Q, and Q_ can also be
converted to match Il, and II,. The new shape functions and nodal values are
defined by

N y=N" ,=(1+E) (1-n?) /4
«,5=0,,=4,0, (¢ (4-189)

_ , I
Q=0 N", 3 +e, N7y
and

Qb=A7 [[57 (C') N”13 (EI n) +p7 (C/) N”14 (E:TI) 1 (4-190)

and
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N =(1+§) (1-1) (1+{) (E-n-2) /8
N =(1+E) (1-1) (1-0) (E-n-2) /8
N" ,=(1+§) (1-n) /4 (4-191)

“ilz =A,B, (9!

- 1! 1 Il
Q. =a,N";+a, N +a, N ,

and

Q=A B (DN (8, ) +B ({1 ) N5 (o m, §) +B (T N5 (E,m) ]

(4-192)

The functions Q, , Q, and Q_ of three lines of nodes "a", "b"and "c"
determine the displacements of the transition element at interface. Similarly, the
functions IT,, II, and I, of three nodes 3, 7 and 4 determine the displacements of
the plate element at the interface. Because the functions £, Q, and Q, are the same
as the functions I1,, II, and II, at the interface respectively, the function Q is
subsequently same as the function I1. Therefore, the displacements are compatible
at the interface between the transition element and plate element.

These eight new shape functions (4-187), (4-189) and (4-191) along with
the other twelve shape functions as given in Reference [4.38-4.39] form a complete
set of shape functions for the transition element.

Geometry of the Element

Renumbering the nodes, a transition element is shown in Figure 26. The
global co-ordinate (%, y, z) of any point in the element may be related to the non-
dimensional co-ordinates by

17,19
N//
14,16 zZ

(4-193)

1) moving

in which, the expression of (X, §, Z) is dependent on the assumptions used in the
adjoining plate element.
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3 ( 19
6 17 Moving nodes 14,16,17,19

2 '7L
9 1

1

1

Figure 26 Transition element

When the adjoining element is a degenerated plate element, the equation is
written as

12 3] 18,20 7 ¢ AxD) | 17,10 ‘' , Ax?
SNy 30 Njyste Ayt 30 el daySh @190
1 Zy 13,15 zf A zf 14,16 z‘g A z.io

in which, x; , y; and z (i=1,2,..12) are the co-ordinates of node i. x, y;’ and %’
(i=13,14,..20) are the co-ordinates of the lines of node "a", "b", and "c" at the middle
surface of the composite structure. The expression (4-194) can be rewritten as

follows,

0 (A +0
A x,

12 o a|l ot al LpINt Pl N 2

{;} p2 N1F1}+ (N7 + N5+ 20) {yap+ Ciel u+“; Skl Aya

LI 20 Az?

+ ( N”16 + N"l—, ) (

Sobtrobo
+
ppry
o
g
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0 Axo
c !l Ingll ! apll J c
+(N”13+N”14+N”15) g + 13V 13"'“\; 14+C 15N 15 Ayg (4-195)
za Azl
In the simplified form,
0 AXO
= v AU N (4-196)
=Y NVap+y (Niyjp+ =LA y;h)
Z 1 Z.i a,b Z; AZ;

Note that coordinate {' is the global thickness coordinate for the plate/shell
element and coordinate { is the smaller thickness coordinate for the transition
element. Note that the co-ordinate {' of the moving node varies along the line as
follow

p (4-140)

=il B,

where the values £ and ), represent the values of global co-ordinate {' at the
lower and upper surfaces of a layer while {=-1 and {=+1, respectively. Denote
=pl! 11 ]
No=N"1g+N";g+N 5
then
= 1/ Inrll / = /
N,=C 1N 1+ N g+ 5N 50 =N,
Also, one can obtain
=ny/! 1!
Np=N"16+N",

F}fcl (N ”16 +N ”17 ) =Nbcl

=nrll /4 1/
Nc"N 13+N 14+N 15
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ﬁ;=(’13N ”13 +{'N ”14 +C'15N ”15 =Ncc/

4-197)
Thus, the co-ordinates can be expressed as in simple form,
0 0
12 i| ¢ J ¢! Ax; 4.198
=Y NAvip+ Y Ny ( J‘-’+3Ay;-’) (4-198)
Z 1 Z a,b 0 0
i Z ] Az ]

where N; is the shape function which can be expressed as follows:

N—-—(1+E ) (14m,) (1+L,) (Eg+ny+{,—2) Eanics
+ L (1-82) (1+1,) (1+{,) (1-E2) 203

+2 (107 (1+,) (1+E,) (1) (€S (4-199)
e (107 (148 (14m,) (10 Eomd
in which
Eo=€:& me=nm (=0 i=1-12 (4-200)
and
Na=(1+5) (1+m) (§+n-1) /4
(4-201)

Np=(1+§) (1-1%) /2
N_=(1+§) (1-1) (§-1-1) /4

It can be seen that N,, N, and N, are same as the shape functions used in
the degenerated plate element. Furthermore, The expression (4-198) can be rewritten

in the form,

12 .i
y =;N i +EN ( J +—.h V,j) (4-202)
.'i

and
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a3 11} J 4-203
Vas={Past =4 |Vt P4 (4-203)
33 I\ &5 r @ilg
and
: 4-204
hy=/(Xy7=%15) 2+ (V37 18) “+ (Z50-Z45) (4209
Displacement Field

In the element, the displacements (see figure 27) are expressed as follows:

0
ul 12 [Ui] e Ui xi
V=Y NgVip+y Nyj{vi+{ (b1, (4-205)
1 W_i a,b WJ? %1
{ Mid-surface of laminate

Transition element

/W v
v; ’zi

o
i
fxi v?
lé; 0
u.
L o
L kY

Y  Mid-point of the i-th line of nodes

Point node i 0

Figure 27  Nodal displacements in a transition element
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where
byy; bipy by
[b;] =\Da11 Dazi Dai =7i [V, ~Vay Vayl (4-118)
by1; byp; by
and

_ lli _ iXVu _ lzi _
Vyg=yhip= Vas={Taip=VayxVyy (4-116)
| HxVay )
11 1

in which, the displacement components u, , v, and w; are the nodal displacements at
point nodes 1-12. The components u,’, v;” and w;° are the displacements of the line
"a", "b" and "c¢" at the middle surface of the composite structure, Y and y; are
two rotations of the nodal vector V, about orthogonal directions normal to it, and
Y, is a transverse normal deformation in the thickness direction.

Partial Strain Field and Partial Derivatives of the Displacement Field

The partial strain field is

( —a—u 3 6
1
i ox . 8, (4-206)
&g}~ By t=[Bg|8=[Bg1Bgz- - - - - Bgus]
@+i‘{ 6-
{ ay aX‘ 15

where 8= 8, 6,= 8, and §,,= &, . The partial derivatives of the displacement
are

r -a_v’ A 6
1
avazaw 3, (4-207)
D u= 6_z+a—y>=[BL]5= BpyBrae++ -« Byl -
9w, du J
| 0x 0z "
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For nodesi=1 - 12,

Ni,x 0
[By]s O Ny, O (4-208)
Ni,y Ni,x
and
0 0 Nl,z
[Buld O Nis Ny (209
N.i,z 0 Nl,x
and
u;
8,=(v; (4-210)
Wi
For nodesi=a, bandc,
N;,x 0 O byys8;s bygidiy byj;a;,
[B;15 0 Ny, O by1181y by218yy by, (4-211)

Ni,y Nix 0 biyja5,+Dy 485, Bipi8yy+Dag 84y Di3y84y+Dyoy58

and

0 0 N, by 48, b4, by3i84,
[Byl= O Nj, Niy Daij@;,+D3585, Dagi@i,tDya;8;, Dayi@iytbys;a;,
Niz 0 Ny, by,585,4011485; Dipi@iytDipi85; Dyyi85,thisias,

4-212)
and

(4-213)
] ] ]
61= [ui Vi Wi q’xi ll’yi wzi] T

and
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a;,=N; &'+N; ¢/ |
aiy:Ni.yc/+Nicl,y
aiz=Ni, zc/+Nic/, z

(4-214)

In order to calculate N, ,, N; , N, and {',, ', {', , the equation (4-164)-
(4-168) for the 6-node transition element are also used.

Assumed Partial Stress Field

In the element, the partial stress field is also assumed independently.

0,

0= :yz = [Pg] p

4-215)
ZX
where the stress matrix [P,] is derived directly from the assumed displacement field

' using the iso-function method. The iso-function partial stress matrix of the element
is

100§f00n00¢00¢§n 0 0§ 0 0
[Pl=l0200§00n00¢0O0¢& 0 0FEk O
00100§00n00¢ 0 0%n 0 0 &

n{ 0 0%l o o0 & 0 o0mn*o0 0¢*0 0 &n
on¢ 0o o Enl 0o 0 0 0mNn20 o0¢o0 O (4-216)
0 onl o o0 Enf o o€ 0 0n200¢ o0

0 0 § 0 En* o o 0% o &% o n{*® o
E2n o0 0 Ef{ 0 En% o 0 0 0o E? o 0
0 En 0 0 0 0 En* 0 7% 0 0 o0 n¢g?

There are 47 stress modes in the stress matrix.
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Examination of Partial Hybrid Transition Element

In the element, there are twelve point nodes and three lines of nodes. The
total number of degrees of freedom equals (n=) 54. The number of the rigid body
motions are equal to (r=) 6. Thus, the element has 48 natural deformation modes.
Because the rank of the partial stiffness matrix [K,] equals (n=) 30, the matrix [K,]
can represent 30 natural deformation modes of the element. Other 18 natural
deformation modes of the element should be represented by the partial stiffness
matrix [K,]. Therefore, the assumed stress matrix [P,] must contain at least 18 stress
modes. Based on the iso-function partial stress matrix (4-216), the classification
method gives an optimal stress matrix as follows,

100E00n00¢C&N 0 0 0n¢ o0 o 0
(Pl=0 100§ 00n00 0 &N 0 0 0 n{&ni o
00100800n00 0¢E¥nEL O O 0 En
4-217)

The examination of the element shows that there are not any kinematic
deformation modes. Three groups of materials are examined. The first is for isotropic
material (see Table 15); the second is for anisotropic material (see Table 16); The
third is for the composite structure with fibre orientation [90, 0, 90] (see Table 17).
In the tables,

Ay

i

(4-218)

ui

where A,; is the eigenvalue of the hybrid element; A is the eigenvalue of the
conventional displacement element.
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Table 15 Eigenvalue of the Transition Element with 18 stress modes
and isotropic materials: E=1100 GPa, v=0.1

| No. A No. A, No. A

| 1 0.2071 17 0.8250 33 0.8731
2 0.4803 18 0.7449 34 0.8561
3 0.5921 19 0.8366 35 0.9672
4 0.6132 20 0.8215 36 0.9512
5 0.4749 21 0.8065 37 0.9352
6 0.5130 22 0.7871 38 0.9484
7 0.7002 23 0.8718 39 0.8896
8 0.6885 24 0.9215 40 0.9528
9 0.6687 25 0.7803 41 0.9070

I 10 0.6114 26 0.7887 42 0.9457
11 0.6351 27 0.8238 43 0.9157
12 0.7420 28 0.8160 44 0.9341
13 0.6695 29 0.8189 45 0.9163

l 14 0.6840 30 0.8569 46 09117

| 15 0.7370 31 0.7724 47 0.9821

|l 16 0.9066 32 0.7929__ 48 0.9937




PARTIAL HYBRID ELEMENTS 223

Table 16 Eigenvalue of the Transition Element with 18 stress modes and
anisotropic materials: E;=174.6 GPa, E;=7.0 GPa, G;;=3.5 GPa,
Gr=1.4 GPa, v,,=v,;=v,,=0.25

No. A No. A No. A
1 0.5415 17 0.8292 33 0.9141
2 0.5238 18 0.9127 34 0.9506
3 0.5200 19 0.8954 35 0.9509
4 0.6377 20 0.7824 36 0.8810 I
5 0.6938 21 0.8598 37 0.8568
| 6 0.6149 22 0.8410 38 0.8714
7 0.7558 23 0.9131 39 0.9966
8 0.7858 24 0.8118 40 0.9768
9 0.6984 25 0.9484 41 0.9976
10 0.5825 26 0.8229 42 0.9977
11 0.6447 27 0.8601 43 0.9921
12 0.7881 28 0.8674 44 0.9961
13 0.8234 29 1.0000 45 0.9907
14 0.8774 30 0.9756 46 0.9993
15 0.9520 31 0.9746 47 0.9959
16 0.8757 32 ] 0.9410 48 0.9993
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Table 17 Eigenvalue of the Transition Element with fibre orientation
[90°, 0°,90°], 18 stress modes and materials: E,=174.6 GPa,
E=7.0 GPa, G;=3.5 GPa, G=1.4 GPa, v,,=v,5=V,;=0.25

No. A No A No. A
1 0.1828 17 0.7402 33 0.9464
|| 2 0.4224 18 0.8149 34 0.8900
I 3 0.3981 19 0.7365 35 0.8766
4 0.4885 20 0.8655 36 0.9078
5 03759 21 0.7400 37 0.9665
I 6 0.5307 22 0.7757 38 0.9945
H 7 0.5726 23 0.7921 39 0.9928
“ 8 0.8220 24 0.8156 40 | 09990
|| 9 0.5805 25 0.7856 41 0.9913
" 10 0.6928 26 0.8156 42 0.9991
11 0.6623 27 0.8038 43 0.9951
12 0.7036 28 0.9790 44 0.9989
13 0.6086 29 0.9930 45 0.9961
14 0.5536 30 0.9130 46 0.9987
| 15 0.8042 31 0.9350 47 0.9937
I 16 0.8358 kY) 0.8143 48 0.9996
| A B
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4.3 MULTILAYER FINITE ELEMENTS

The multilayer finite elements have been widely used for stress analysis of
composite structures. Usually, a multilayer element consists of a stack of sub-
elements. According to the distribution of the material layers, a composite structure
is divided into many sub-layers along the thickness and each sub-layer is modeled
by a sub-element. When the matrices of sub-elements are formulated, they are
assembled through the thickness using continuity conditions at the interfaces between
different sub-elements, and then the multilayer element matrices are obtained.
Therefore, there are two steps to obtain a multilayer element matrix: the first is to
formulate the sub-element matrices and the second is to assemble them to form a
multilayer element matrix. In this section, two multilayer elements [4.40-4.41] are
presented.

4.3.1 Formulation of Partial Hybrid Multilayer Element

In section 4.2.1, the composite variational functional has been expressed in
the form,

- 1_» 1. r r
nco_ V[Ec' [Rl] 3,’*“2— o,[R:g] 0,'*‘0, [RZ] TG,

4-5)
+oDu-Frul dv-[ T7u ds
t

in which, the layer material matrix [R] is

(B B | st -si's (4-4)

[Rl = p B Ta-1 oTa-1
R2 R3 _Sz Sl Sz Sl 52 _53
or
4 Bl GGG GG (4-4y
RZT R3 CsnlczT ‘C3~1

where [S] is the compliance matrix of layer materials and [C] is the stiffness matrix
of layer materials. If a composite structure contains N different material layers, the
multilayer element will consist of N sub-elements (see figure 28). Therefore, the
variational functional becomes
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N
I3 [ 13es (w1 6 S0y IR oo 12017
(4-219)
+0:"Dyui-FTul] dv- fsa' fui gs

N

NN
~\
W e e -
|

»

N-th sub-element

R

N

*

2nd sub-element

N
~

1st sub-element

P
N
N

Figure 28 A multilayer element

Sub-Element Matrices

In multilayer element, the displacement field and the partial stress field must
be assumed within each sub-element. Suppose the displacement fields in different
sub-elements have the same expression form. Similarly, assume that the partial stress
fields in different sub-elements have the same expression form. Thus, for the i-th
sub-element, the displacement field is assumed as

u i
ui={vir=[N] §* (4-220)
WJ.

where [N] is the matrix of shape functions. Then, the partial strains are
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€x .
1} il_p 2 0u? Ovi dui évi|i_ i
ey eiy D u [ax '3y oy + ax] [B,18 (4-221)
Exy
and the partial derivatives are
i aW‘i aWi aVi aWi aui T= 1 _
Dyu [ dz ' dy Yoz "Tax | az] (5,18 (4-222)

in which, [B,] is a partial geometry matrix and [B,] is a partial derivative matrix.
Along the thickness of the sub-element, a partial stress field is also assumed
independently as

{ i‘

ol [51.

z Bl

1 i 2

05=10%s( = [Pg] B*=lo,; 0. ..0,419. ¢ (4-223)

1

0 zx .i

B

where [P,] is an assumed stress matrix, {0} are partial stress modes, and Bj‘ are
stress parameters. Substituting equations (4-220)-(4-223) into the composite energy
functional (4-219), the functional becomes

L5 2807, 87181 (3,07
+‘21'51va1 [B,17[Rs'] [P1dV B
+p”fV, [P,17([B,] +[Ri17[B,]1)dvV 8 } 4-224)
-84 MRV -847[ (N]"Tds

ti

Denote
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[H1]=-f, [P 7[RS] [Pl dV

[6%1=ly, [PI17 (B +[R;17[B,]) dV (4-225)

[k41=ly [BgIT[R(] [BS] dV

£i= f [N] TRV + fs [N] TrdS
vy tl

The matrices in the equation (4-225) are the sub-element matrices. They will be
assembled using continuity conditions at the interfaces between different sub-
clements.

Multilayer Matrices

Using the expression (4-225), the variational functional (4-224) can be
expressed as

co™ 4 2 d 2
=1 (4-226)
+piT[Gi] 6i~61Tf1)

In this variation functional, the stress parameters are not independent and
they must be replaced by independent parameters using continuity conditions at
interfaces between different sub-clements. There are three ways to formulate
multilayer matrices.

) Laminate S p

In general, the stress parameters Bji in equation (4-223) are internal
parameters, called layer stress parameters. They are not independent and the sub-
element matrices can not be assembled based on these layer stress parameters. The
constraint of interlaminar surface traction continuity must be used. This constraint
requires that o,,, 0,, and G, be continuous at interlaminar surfaces. Therefore,
stresses at the lower surface ({=-1) of sub-element i+1 must be equal to those at the
upper surface ({=+1) of sub-element i as follows:
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Ui:l Ic-—1= ofu lc-+1

1+1 - 1
oy; l(--l- 0yx|¢-+1 4-227)

0z == o; lgasa

Substituting the assumed partial stress field (4-223) into the continuity
condition (4-227), the relationships between B, and B can be obtained and some
dependent stress parameters can be eliminated. Suppose the parameter vector B
contains m independent stress parameters, called laminate stress parameters [4.42-
4.43]. Thus, the internal layer stress parameters B' can be replaced by the laminate
stress parameter B. Corresponding to the interface continuity conditions (4-227),
internal layer stress parameters P and nodal displacements & can be related to the
laminate stress parameters P and nodal displacements 3 , respectively, in the form;

pi=[cli p (4-228)
3=[C1i 8

where [C}, and [C}, are assembling matrices. Therefore, the summation over the
layers can be taken inside and the multilayer element matrix defined as:

N
(K] =;; [c1iTIkd] [l
=1
N )
[H] =?: [aiT[e] [}
=1 (4-229)
N
[G] =;; [C1¥7I6%] [}
=1

N
£=Y" [C1¥7£1
;_; d

These operations are analogous to element ‘assembly’ operations; a set of
layer-to-laminate stress parameter 'pointers' and nodal displacement 'pointers’ can be
used to locate (and add in) sub-element matrix contributions in the multilayer
element matrices. Now the variational functional (4-226) becomes
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I,=5 871K, 8-> B71H] B+B7[G] 8-87F (4-230)

ii) Internal Stress P ter_an rf; tre rameter

In the equation (4-228), the internal layer stress parameters f3' are transferred
to laminate stress parameters . On the other hand, they also can be transferred to
another kind of stress parameters ., called surface stress parameters [4.20,4.40]. The
continuous conditions are expressed in the form

pie (01 %o} b

where « is related to the lower surface of the i-th sub-element and oi*' to the upper
surface. The matrix [U] transfers internal stress parameters §' (i=1,2, ... N) to surface
stress parameters o (i=1,2, ... N+1). The assumed stress field is expressed in terms
of surface stress parameters,

i (4-232)

1 [ 4

og=[P] ;U] {¢1+1}
For convenience, it is rewritten as

. (4-233)

o= [F] g a’

where
- . 1 (4-234)
- i_l &
(Bl~lel o @)

Thus, the matrices [H'] and [G'] in the equation (4-225) become
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1l=_f [P1TIRI1 T
[H1]/=-1,, [P1 T [Rs'] [Pl dV (4-235)

[64]/=], [P17([B] +[R;17[B,]) dV

Then, the variational functional takes the form
1 - 1=3T; Tr i
I~y (58*[k;18¢-=al [Hi]/al+a"[¢7]/8*-8%7 £1)
&~ 2 2
(4-236)

In order to assemble all the sub-elements in the multilayer element from 1
to N, define the assembling rule as

N (4-237)
8=Y 8i=[d* d* ... d™]7
i=1
where d* is the nodal displacement vector at the k-th surface, and
N
a=) a'=[a* a* ... a™]7 (4-238)
Ii=1

Applying these assembling rules, the multilayer element matrices are obtained by

N . N ]
[Klg=) [Kq]  [H]I=Y [H1]
i=1 i=1

(4-239)
N . N
[61=Y (6]’ £=Y £1
i=1 i=1
Now, the variational functional (4-226) becomes
I[co=%6T[Kd] 6—%¢T[H’_l a+a?[G] 5-87F (4-230y

iii) Surface Stress Parameter
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In the two approaches above, it is necessary to transfer internal stress
parameters (or layer stress parameters) to surface stress parameters (or laminate
stress parameters). However, if surface stress parameters are used directly in
assumed partial stress field (4-223), the transformation will be not necessary. One
can assume a partial stress field in the following form,

03=[P,] &%= [P] Z{(1+¢) ai+ (1-() o3} (4-240)

where o, and o' are the surface stress parameters corresponding to upper and lower
surfaces of the i-th sub-element, respectively. In this expression, a stress mode o; in
the matrix [P] is related to both of upper and lower surfaces o and o' and
corresponds two stress modes 0.5*(1+{)*c; and 0.5*(1-0)*o; in the assumed stress
matrix [P,]. The matrix [P] is determined by displacement polynomials, iso-function
method, and classification method. At the interface between the sub-element i and
i+1, the surface stress parameters @.; is the same as 0y'*' . This means:

. (4-241)
ar=oz"

Furthermore, the continuity condition at interface of the laminated structure can be
expressed as:
i _ Il
Oglpi-1=0g" |gins (4-242)
Thus, one can obtain the condition

4-243
[P] Ici=+1= [P] |c1+1=_1 ( )

Therefore, the matrix [P] must be a function consisted of even order terms of the
coordinate {. In order to assemble all the sub-elements in the multilayer element,
define the assembling rule as

N (4-237)
8=Y 8=[d* d? ... d¥]”
i1

where d* is the nodal displacement vector at the k-th surface, and
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N
=) al=[a’ a® ... a™]” (4-244)
i=1

Applying these assembling rules, the multilayer element matrices are obtained by

N ) N _
(K ~Y (K31 [H=Y [H4]
=1 =1

(4-239)
N N
[61=Y [61] £=Y £
i=1 i=
Now, the variational functional (4-226) becomes
0= 287[K,]8- @7 [H] @+@7[q]8-87F (4249

Using three different approaches, the final expression form of the variational
functional (4-230), (4-230)', and (4-245) are the same. After obtaining multilayer
element matrices, the variational functional can be written in general form,

=287 [K,] 8-~ p7[H] p+B*[C] 8-87¢ @12

Then, similar to single-layer element, the stiffness matrix of the multilayer element
can be derived using the variational principle of composite energy,

[K] = [K,] + K]

4-17)
[K,] =[G T[H] * [€]

in which, [K] is the element stiffness matrix, the semi-stiffness matrix K] is a
displacement-formulated stiffness matrix based on the globally continuous strains,
and the semi-stiffness matrix [K,] is a hybrid-formulated stiffness matrix based on
the globally continuous stresses. Then, the governing equation of the multilayer
element is
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[K] 8=£

(4-18)

After obtaining the nodal displacement & by means of system equations, the
displacement field, stress field, and strain field can be obtained using the following

equations:
1. Displacement field
u i
ui={vit=[N] 8
Wi
2. Partial globally continuous strains
ex
1_J i\_ 1_ 1

1
Exy

3. Partial globally continuous stresses

p=[H[G]
o3

0g={07=1= [Pl B*
Ox

4, Partial locally continuous stresses within i-th layer

oi={al}= [R] ej+ [R;] o}

(4-246)

(4-247)

(4-14)

(4-248)

(4-249)
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5. Partial locally continuous strains within i-th layer

e;
: , , (4-250)
ei= eyzp=—[R; ] Tzé— [Ry'] of,
i
8zx

4.3.2 Multlayer Solid Element

Partial hybrid multilayer elements consist of a stack of partial hybrid sub-
elements. So the elements formulated by the variational principle of composite
energy can be used as sub-elements. For examples, 3-D, §-node partial hybrid solid
element and 3-D, 20-node partial hybrid solid element can be used to construct
partial hybrid multilayer solid elements. For simplicity, a multilayer element based
on 3-D, 8-node solid elements is presented.

Sub-Element Matrices

The multilayer solid element consists of a stack of 3-D, 8-node solid
elements (see figure 29). For the i-th sub-element, the assumed displacement field
is the same as that for 3-D, 8-node solid element in section 4.2.2. It is in the form,

4'N+4 4*N+3
_____________ 4*(N-1)+3
4*N+2
L LA LAY 4i+3
/ - -
4 (N-1)+1 7, N-th sub-element / 4%(i-1)+3
#irl : - 7
7/ s i-th sub-element
A(i-1)+1 s - 3
/ 4 : 6
> 17 Ist sub-element
1 2

Figure 29 Multilayer solid element
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L
61

ulf=[N] 8'= [N I N, T ... NpT]{ ™2 (4-251)
LH

in which, [I} is a 3%3 unit matrix, N, is the shape functions, and the nodal
displacement vector is

4
85={vy j=1,2,...,8 (4-252)

Wji

The nodal dispalcement vector of the i-th sub-element can be written in another
form,

61= [di d1+:|.]

1 1 o1 o4 i+ 1+ 1+ i+1 (4-253)
=4 di' & & & & dy™ &

where d' is the nodal displacement vectors related to the lower surface of the sub-
element, and d™' is the nodal displacement vectors related to the upper surface of the
sub-element. Within the sub-element, the the partial stress field is assumed in the
form

o3
0;'; oi’z =[p,] &= [P %{(1+C) a;-,+ (1-0) a};} (4-254)
ozx

where o, and 0" are the surface stress parameters corresponding to upper and lower
surfaces of the i-th sub-element, respectively. When the matrix [P] is a function
consisted of even order terms of the coordinate {, the continuity condition at
interfaces will be automatically satisfied. Using the equations (4-11) and (4-21)-(4-
41), the sub-element matrices can be obtained as follows,
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(53] =-f, [P]7[RS] [B] dV

[6#] =/, [P17([B,] +[R;1T[B,])dV

(%311, [B,17IR (B,1dV @229
£1= fv [N] TFdV + fs [N] TTds
1 ”
Multilayer Matrices
Applying the assembling rules (4-237) and (4-244),
Ao s (4-237)
6=;16=[d d2 ... d¥i]
and
N
o=) al=[a’ a? ... a™]T (4-244)
=

the sub-element matrices from the 1st layer to N-th layer are added to form the
multilayer matrices,

N _ N _

[X] d=; [Kj] [H] =§ [H*]
(4-239)

N ' N s

[61=)_ [G*] £=Y £

Then, the stiffness matrix of the multilayer element can be calculated using equation
4-17),
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[K] = [K,] + [ K]

4-17)
[Ky] =[G T[H] * [6]

Examination of the Element

For a single-layer element, a necessary and sufficient condition for
guaranteeing the absence of kinematic deformation modes at the element level is,

(4-44)
Ilb =11~I"'ﬂd

But, for a multilayer element, the minimum number of stress modes in an assumed
stress matrix varies with the number of sub-elements in the multilayer elements.
Using eigenvalue examination of matrices, the rank n, of the displacement-formulated
stiffness matrix [K,] can be calculated for different multilayer elements with different
number of sub-elements. The minimum number n, of stress modes in an assumed
partial stress matrix is given in table 18. In the table, N is the total number of sub-
elements in the multilayer element; n is the total degrees of freedom of the
multilayer element; r is the number of rigid body motions.

Table 18 Minimum number of stress modes in the matrix [P,]

m
I N n T ny n,
“ 1 24 6 10 8
2 36 6 15 15
3 48 6 20 22
10 132 6 55 71
——._————_—l

From table 18, it is observed that the rank of semi-stiffness matrix [K,]
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increases by 5 when the multilayer element increases a surface. For example, there
are two surfaces in a fundamental multilayer element consisted of one sub-element,
and the rank of semi-stiffness matrix equals 10. There is one increased surface in the
multilayer element consisted of two sub-elements, and the rank of matrix [K,] equals
15. Furthermore, there are eleven surfaces in the multilayer element consisted of ten
sub-elements, and the rank of matrix [K,] is equal to 55. Thus, each increased
surface in a multilayer element corresponds to 5 deformation modes related to semi-
stiffness matrix [K,]. Meanwhile, each added surface will increase four point nodes
which correspond 12 degrees of freedom in the multilayer element. Thus, if a
multilayer element contains N layers, it will have N+1 surfaces and one has

n =12 * (N+1) ng=5*N+1) r=6 (4-255)

Define that m' is the number of stress modes in matrix [P] related to a surface.
Thus, the total number of stress modes for the multilayer element is

m= (N+1) m' (4-256)

The necessary and sufficient condition (4-44) for avoiding kinematic deformation
modes is

(N+1) m' = 12*(N+1) -5*(N+1) - 6 4-257)
Therefore, one obtains minimum number of stress modes in the matrix [P] related

to each surface for the multilayer element as follows,

/= 5__6 (4-258)
m' =7
N+1

Using this formulation, one can calculate the number of stress modes related to each
surface for multilayer element consisted of different number of sub-elements.

ZZZZ2ZZ
i

> NV VO e
II—II-

NS = = VS

B BB BBBS
I

....................

Therefore, the number of stress modes needed in the stress matrix [P] in order to
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avoid kinematic deformation modes is different for different N.
Sub-Element Stiffness Matrix and Kinematic Deformation M

When N=1, the multilayer element becomes a sub-element. The sub-element
has (n=) 24 degrees of freedom and (r=) 6 degrees of the rigid displacement. Thus,
the sub-element has 18 natural deformation modes. The eigenvalue examination
indicates that the rank of the partial stiffness matrix [K,] for the sub-element is (n,=)
10. Therefore, the partial stiffness matrix [K,] represents 10 natural deformation
modes of the element, and another partial stiffness matrix [K,] represents 8 natural
deformation modes. Therefore, the minimum number of the stress modes in the
assumed stress field [P,] is equal to 8. Since a stress mode o; in the stress matrix [P]
represents two stress modes 0.5*(1+§)"‘(5j and 0.5*(1-§)*c>'j in the stress matrix [P,],
the minimum number of stress modes in stress matrix [P] is equal to (n,/2=) 4.
Using iso-function method, the initial stress matrix [P] is derived directly from the
assumed displacement field. It is

100E00n00(fO0O0EN O 0 nf 0 EC O (4-259)
[PI§50 1 00£00n00C¢0O0¢EO0 O 0 0 &
00100E00n00( 0 0E§no0n{ooO

Then, by means of the classification method of stress modes, one obtains

(4-260)
[P] =

o O B
o R O
PR O O
O 9 O

0
4]
n
In the stress matrix [P], there are 5 stress modes. The result of eigenvalue

examination show that there are not any kinematic deformation modes. The
eigenvalues A, of the element are given in the Table 19.
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Table 19 Eigenvalue of Stiffness Matrix for the 3-D, 8-node Hybrid Element
with 10 stress modes and isotropic materials: E=1100 GPa, v=0.3

No. | A (*10% No. | A (*10% No. | A (*109

1 0.09402 7 0.1813 13 0.8462

2 0.1410 8 0.2821 14 0.8462

3 0.1410 9 0.5440 15 0.8462

4 0.1410 10 0.5440 16 0.8462

5 0.1410 11 0.5641 17 0.8462
L 0.1813 12 0.7051 18 27500

Multilayer Element Stiffness Matrix

When N>2, the stress matrix [P] (4-260) can not be used to formulate the
multilayer element because it does not contain enough stress modes. According to
equation (4-258), a stress matrix [P] should contain 7 stress modes at least for a
general multilayer element. In this case, the iso-function partial stress matrix (4-259)
does not contain enough necessary stress modes. Therefore, more polynomial terms
have to be added into the stress matrix for examining. For instance, the quadratic
terms should be included. Using the classification method, the following stress
matrix [P] is obtained

10000¢E&n 0 0
[Pl=50 1 0 E 0 0 (2 0 (4-261)
00101n 0 0 ¢

Using this stress matrix, the examination of the element indictes that the multilayer
element, which consists of different sub-elements from N=1 to N=50, does not have
any kinematic deformation modes.

4.3.3 Multilayer Transition Element

The 6-node partial hybrid transition elements also can be used to formulate
a multilayer transition element which may connect a multilayer solid element with



242 STRESS ANALYSIS OF COMPOSITES

a degenerated plate element.
Sub-Element Matrices
The multilayer transition element consists of a stack of 6-node transition

element (see figure 30). For the i-th sub-element, the assumed displacement field is
the same as that for 6-node transition element in section 4.2.2. It is in the form,

, i ]
wil &AL I (4-262)
iy = ) ITh. -
L4 i : .
W_7 WJ zj
2°N+2
*2_:(§—1)+2 N-th sub-element
2‘N+l 1/ N
AL . _
29(N-1)+1 k.74 i-th sub-element
7Ty +— Mid-surface
2%+l [——4 ' suboel
29(i-1)+1 /JF Ist sub-element
/7 2
3 g b

1

Figure 30 Multilayer transition element

The nodal dispalcement vector of the i-th sub-element can be written in the
form,

51__. [di d.i+1 do]

=[d11 dgi dii-o-:l. dgiﬂ' d: d,°] (4-263)
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where d' and d"* are the nodal displacement vectors related to the lower and upper
surfaces of the sub-element, and d° is the nodel displacement vector related to the
line of nodes. Within the sub-element, the partial stress field is assumed in the form,

i

o}
0g={oyst= [Pl #1=[F] Z{(1+0)ape (1-0)ad} (o0

OZX

where the stress matrix [P] is a function consisted of even order terms of the
coordinate {. Using the equations (4-11) and (4-147)-(4-171), the sub-element
matrices can be obtained as follows,

[H3] ==, [P, T[R{] [P,]dV
[¢#]=f, [P17([B,] +[R17[B,])dV
(4-225)

[k31=ly, [BS1T[R(] [B,] dV

£i= f [N] TFdV + fs [N] TrdS
Vi ti

Multilayer Matrices
Applying the assembling rules (4-237) and (4-244),
N (4-237)
8=Y 8!=[d* d* ... d¥]”

i=1

and

N
=) a'=[a’ a® ... a™]7 (4-244)
=1

the sub-element matrices from the 1lst layer to N-th layer are added into the
multilayer matrices,
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N ) N _
(K1 ~Y) [KF] [H=Y (8]
i=1 i=1

(4-239)
N . N
[61=Y [G1] £=y £1
i=1 i=1

Then, the stiffness matrix of the multilayer element can be calculated using equation
4-17),

[K] = [Kd] + [Kb]

(4-17)
[K,] =[G T[H] 6]

Examination of the Element

Similar to the multilayer solid element, the minimum number of stress
modes in an assumed stress matrix for a multilayer transition element varies with the
number of sub-elements in the multilayer elements. Using eigenvalue examination
method, the rank of the displacement-formulated stiffness matrix [K,] is given for
different multilayer elements with different number of sub-elements. The minimum
number of stress modes in an assumed partial stress matrix is given in table 20.

Table 20 Minimum number of stress modes in the matrix (P,]

—————— —— —|
I N n r ny n,

“ 1 24 6 10 8
l 2 30 6 14 10
3 36 6 18 12

10 78 6 46 26
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The results of eigenvalue examination shows that the rank of semi-stiffness
matrix [K,] increases by 4 when the multilayer element increases a surface. For
example, there are two surfaces in a fundamental multilayer element consisted of a
sub-element, and the rank of semi-stiffness matrix equals 10. There is one increased
surface in the multilayer element consisted of two sub-elements, and the rank of
matrix [K,] equals 14. Furthermore, there are eleven surfaces in the multilayer
element consisted of ten sub-elements, and the rank of matrix [K,] is equal to 46.
Thus, each increased surface in a multilayer element corresponds 4 deformation
modes related to semi-stiffness matrix [K,]. Meanwhile, each added surface will
increase two point nodes which correspond 6 degrees of freedom in the multilayer
element. Thus, if a multilayer element contains N layers, it will have N+1 surfaces
and one has

n = 12+6 * (N+1) n, = 2+4 * (N+1) r=6 (4-264)

Define that m' is the number of stress modes in matrix [P] related to a surface.
Thus, the total number of stress modes is

m= (N+1) m' (4-256)

The necessary and sufficient condition (4-44) for avoiding kinematic deformation
modes is

(N+1) m' = 1246*(N+1) -2 -4*(N+1) - 6 (4-265)
Thus, one obtains minimum number of stress modes in the matrix [P] related to each

surface for the multilayer element as follows,

m =2+ 2 (4-266)
N+1

Using this formulation, one can calculate the number of stress modes in the stress
matrix [P] related to each surface for multilayer element consisted of different
number of sub-elements.

ZZ2Z2Z2ZZ
]
OV E WL~
8 BB B BB
LI}
W W WWhs o
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N =100 m=3

Therefore, the number of stress modes needed in a sub-element in order to avoid
kinematic deformation modes is different for different N.

Sub-Element Stiffness Matrix and Kinematic Deformation Modes

When N=1, the multilayer element becomes a sub-element. The sub-element
is a 6-node partial hybrid transition element. The examination of the element has
been given in section 4.2.4. For completeness, the analysis is given here again. The
sub-element has (n=) 24 degrees of freedom and (r=) 6 degrees of rigid motion.
Thus, the sub-element has 18 natural deformation modes. The eigenvalue
examination indicates that the partial stiffness matrix [K,] gives 10 non-zero
eigenvalues and represents 10 natural deformation modes of the element. Therefore,
another partial stiffness matrix [K,] must give 8 non-zero eigenvalues and represent
8 natural deformation modes. Thus, the minimum number of the stress modes in the
assumed stress field [P,] is equal to 8. Due to the fact that a stress mode ; in the
stress matrix [P] represents two stress modes in the stress matrix [Pg], the minumum
number of stress modes in stress matrix [P] is equal to (n,/2=) 4. Using iso-function
method, the initial stress matrix [P] is derived directly from the assumed
displacement field. It is

100§00n 00008k 0 0 0y 0 & 0] (4r47
[Fll0o L00EO0OO0ONnNOO,0O0OZEn 0 0 0 0 E
00100E00n00¢ 0 O0En 0N o0 0

Then, by means of the classification method of stress modes, one obtains an optimal
stress matrix,

(4-268)
[P] =

o O B
o B O
P O O
O ¥ O

0
0
n

In the stress matrix [P], there are 5 stress modes. The result of eigenvalue
examination show that there are not any kinematic deformation modes.

Multilaver El Stiffness Matrix and Lockine Pt

When N=2, the stress matrix [P] (4-268) can be used to formulate the
multilayer element. But when N2>3, the stress matrices [P] can not be used to
formulate a multilayer transition element due to the fact that the locking phenomenon
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appears.

The locking means that the solution becomes zero when the plate element
becomes thin. This phenomenon appears in C° finite element because the Kirchhoff
constraint can not be satisfied when plate element becomes thin. In the multilayer
transition element, the sub-element will become thin when their number within a
fixed thickness multilayer element increases. For the multilayer transition element,
equal order interpolation is used for lines of nodes which are used to meet with plate
elements. Therefore, when sub-element becomes thinner and thinner, two spurious
constraints produce the locking action on ¥ and ¥, . In order to remove the
locking phenomenon, several methods can be used such as unequal order
interpolation, reduced integration, assumed strain approach, additional incompatible
modes, field-redistribution, and so on [4.44]. In this work, the advantage of hybrid
stress finite element is used to overcome locking phenomenon in the element as
follows:

By calculating m' (4-266), it has been shown that the minimum number of
stress modes in the stress matrix [P] decreases to 3. Therefore, there are unnecessary
stress modes in the matrix [P] (4-268) for multilayer transition elements (N > 3) and
the extra stress modes in the stress matrix [P] results in over-stiffness and lead to
locking phenomenon. The classification method gives following stress matrix that
can be used to avoid locking phenomenon are

(4-269)
[P] =

o o K
o P O
r O O

The results of the eigenvalue examination for the multilayer element with 3 sub-
elements are given in the table 21.

Other multilayer elements with different number of sub-elements also can
be examined. The examination of the multilayer elements shows that there is no
spurious constraints in the multilayer element when the stress matrix [P] (4-269) is
used.
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Table 21 Eigenvalue of Stiffness Matrix for Hybrid Multilayer Element with 3
sub-elements and isotropic materials: E=1100 GPa, v=0.3

No. [ 109 No. | A (x109 No. | A (*109
1 0.00060 11 0.1602 21 | 09849
2 0.00141 12 02971 22 | 1019
3 0.00186 13 0.3059 23 | L1640
4 0.00239 14 0.4109 24 | 12140
5 0.00967 15 0.5011 25 | 13130
6 0.03671 16 0.5534 26 | 15580
7 0.04086 17 0.6002 27 | 16150
8 0.08544 18 0.6734 28 | 2.0050
9 0.1077 19 0.7466 29 | 2.9820
I 10 | 0139 20 | osi 30 | 42070 |
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Chapter 5

NUMERICAL EXAMPLES OF
FINITE ELEMENT ANALYSIS AND
GLOBAL/LOCAL APPROACH

5.1 INTRODUCTION

Finite element method has been widely used in the analysis of structures
because of the power of the technique and also because of the availability of many
commercial finite element programs. Finite element analysis is a numerical analysis
of the mathematical models used to represent the behaviour of engineering structures.
Therefore, mathematical assumptions concerning the representation of the geometry
and behaviour of the structures have to be made in finite element models. In order
to efficiently and accurately perform the finite element analysis of a composite
structure, it is necessary to have a qualitative knowledge of the structure behaviour
and its finite element model.

To perform a finite element analysis of a structure, as mentioned in chapter
1, the structure must be discretized into a set of elements, which are quasi-disjoint
non-overlapping elements. These elements are connected by a set of nodes. The
collection of nodes and elements forms a finite element mesh. A variety of element
types are available today. The analyst or designer can mix element types to solve
one problem. It should be noted that the choice of element types and element mesh
is problem-dependent. The number of nodes and the type of elements to be used in
a finite element model is a matter of engineering judgment. As a general rule, the
larger is the number of nodes and elements, the more accurate is the finite element
solution, but also the more expensive the solution is. More memory space is needed
to store the finite element model, and more computer time is needed to obtain the
solution.

In practice, most composite laminates contain local regions where thick
conditions prevail throughout. For example, the presence of an open hole in a
laminate introduces significant transverse stresses which create a very complicated
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3-D stress field in the vicinity of the hole. This complex state of stress depends on
the stacking sequence of the laminate, the fibre orientation of each lamina, and the
material properties of the fibre and of the matrix. In order to obtain the stress fields
in these localities, a detail 3-D finite element analysis is required. However, a
detailed full 3-D analysis of these laminates to obtain accurate stresses may require
a huge number of nodes and elements. They may exhaust the computer resources.

In order to keep the number of nodes and elements down, one way is to
classify the domain of the structure to be analyzed into different regions. In different
regions, mesh densities and element types vary [5.1-5.3]. In general, the region
where large gradients of displacements and/or stresses to be expected is discretized
into many elements (fine mesh); otherwise, the region is modeled using few elements
(coarse mesh). For example, if a structure contains a crack, the local region near the
crack is usually divided into many "very small" elements in order to predict
accurately stress distribution and other region is discretized into "large" elements to
model the response of the structure (see figure 31).

b demel.
+

sudl chmarl

Figure 31 An element mesh with different mesh densities

Generation of element meshes with single element type is relatively easy
due to the compatibility of elements with the same degree of freedom. The element
mesh for the stress analysis of a structure can be refined using two approaches: h-
version and p-version refinement scheme [5.4-5.6]. The h-version scheme is to
subdivide a selected element into a number of smaller elements of the same type.
The discretization is improved by reducing the element size. The p-version scheme
is to replace a selected element by an element of higher order. The discretization is
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improved by increasing the polynomial order of an existing element.

For stress analysis of composite laminates, analysts and designers have to
use different element types to solve a practical problem due to the complex nature
of composite laminates. In finite element method, the stress analysis of composite
laminates is done using three techniques: 3-D solid modelling, layerwise modelling
and equivalent single layer with smeared properties. In 3-D solid modelling [5.7],
no specific kinematic assumptions are introduced regarding the behaviour of the
structure. It takes the behaviour of the individual laminae into consideration.
However, since the composite laminae are usually very thin, the 3-D element usually
runs into problem due to the large aspect ratios of the elements. In addition, refining
the finite element mesh can quickly exhaust the computer storage. In the layer-wise
modelling [5.8], the individual laminae are taken as 2-D layers. These layers are then
assembled through the thickness. Its advantage is that it requires only 2-D finite
element mesh, and the element aspect ratio is restricted to 2-D considerations. In
practice, a typical composite may have many layers, each of which requires one 2-D
layer through the thickness. The number of degrees of freedom per node is directly
proportional to the number of layers in a laminate. This increases drastically the
number of unknowns in a finite element model. Hence, this type of modelling is also
computationally expensive. In the equivalent single layer models [5.9], the variations
in orientation and properties across the thickness are integrated to obtain single
properties across the thickness. This element can be used for problems such as
vibration or buckling but do not provide useful results if interlaminar stresses are
required. Therefore, the finite element model using same element type is not efficient
for stress analysis of composite laminates. It is necessary to combine elements of
different types in one finite element model to solve a problem. This kind of finite
element model is referred to as a global/local finite element model.

A wide variety of global/local models have been proposed [5.1, 5.10-5.11].
In general, the global/local finite element models can be classified into two classes:
sequential and simultaneous global/local models. The main difficulty with these
models is the maintenance of displacement continuity along boundaries separating
regions. In the sequential global/local model, the domain of the structure to be
analyzed is classified into two regions: local and global. The first step in performing
a global/local analysis is to set up an economical, yet adequate model by using a
coarse mesh to determine the structural response. Then, the resulting displacements
or stresses are imposed on the boundary of the local region for a subsequent local
analysis by using a finer mesh. In order to take account of the effect of the local
region on the global region, the iterative methods have to be used to establish
equilibrium or compatibility along the global/local boundary. It requires much
computing time. In the simultaneous global/local model, the domain of the structure
to be analyzed is classified into three regions: local, global, and transition as shown
in Figure 32. Each region requires an appropriate type of element for modelling the
structure. This model does not require reanalysis and saves computer time. But in
transition region it is necessary to use a special transition element which has
different number of nodes on different sides of the element. For example, a special
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element is needed (see figure 33) to connect a 2-D linear element with a 2-D
quadratic element.

N

L Local region

2. Transition region

3. Global region

Figure 32 Global/local finite element model

Two nodes Three nodes
X v
[ ] [ ]
Ji o\

/ |

linear element Quadratic element

Special element

Figure 33 A special element between linear and quadratic elements
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In this chapter, the partial hybrid elements presented in chapter 4 are used
to establish finite element models of composite laminates and develop simultaneous
global/local finite element approaches for stress analysis of composite laminates.

5.2 FINITE ELEMENT ANALYSIS USING DEGENERATED
PLATE ELEMENT [5.12-5.13]

The accuracy of the finite element model using partial hybrid degenerated
plate elements is demonstrated by studying the behaviour of a square laminated plate
and a long laminated strip. The two laminates are ideal structures to verify the
degenerated element since closed-form elasticity solutions are available. Once the
accuracy of the element is verified, the element can be used to develop global/local
models for stress analysis of composite laminates.

Example 1. Deflection of a Square Laminate Subjected to Uniform
Loading

A three-ply square laminate with ideuucal top and bottom plies is analyzed
by using the 8-node degenerated element. Each layer in the laminate is idealized as
a homogeneous orthotropic material. The relative values of the moduli in the
principal material coordinate system are the same in all the plies as follows,

E, / E, = 0.525000 E,/E, = 0.569399

Gy, / E, = 0.292813 G,, / B, = 0297133 (5-1)
G, / E, = 0.178088 v, = 0.440462

v, = 0.180666 vy, = -0.061321

An uniform loading g, acts on the top of the simply supported laminate. The
dimensions of the plate are a, b (=a) and thickness H (= 0.1a). The thickness of the
top and bottom plies h, is equal to 0.1H, and the thickness of the middle ply h, is
equal to 0.8H. By means of the symmetry of the problem, only one quadrant of the
plate is modeled (O<x<a/2, O<y<b/2, 0<z<H). The computational domain is modeled
using 2x2 uniform meshes (see figure 34). For this particular problem, a 3-D exact
solution was presented by Srinivas and Rao [5.14]. The results of the deflection w
at the centre of the laminate are given in the Table 22. In the Table, E,, is the
modulus of the top and bottom plies and E, is the modulus of the middle ply. E_,
is a parameter which can be calculated from the material constants of the middle ply.
In the calculation, E, is equal to 0.8979495x10°, and then E,, is equal to 10°. The
present solutions of the centre deflection are close to the 3-D elasticity solutions.
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b2

Figure 34 2x2 uniform mesh of a quadrant of the laminate

Table 22 Deflection of the simply supported laminate subjected to uniform loading

e —

E,/E 1 5 10 15 20

1m

Exact
wE,, Solution 688.58 258.97 159.38 121.72 ---

Hg, Present
Solution 693.91 261.36 162.27 123.78 102.98
_— ]|

Example 2. Bending of a Square Laminate

The degenerated element is also used to analyze a square, simply supported,
laminated plate with the {0,90,0] layers of equal thickness. Each layer of the
laminated plate is also idealized as a homogeneous orthotropic material with the
following material coefficients in the principal material coordinate system:

E,=172.4 GPa E=6.90 GPa v =u=0.25

G,;=3.45GPa  Gp=1.38 GPa (5-2)
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The upward transverse load is distributed on the top surface,

g(x,y) =qosin(-rg—‘) sin(“—g’) (5-3)

The dimensions of the plate are a, b and thickness H. The ratio S is defined as a/H.
Due to the symmetry of the problem, only one quadrant of the plate is modeled
(0<x<a/2, O<y<b/2, O<z<H). The computational domain is modeled using 2x2
uniform meshes. For this particular problem, the solution exists using 3-D elasticity
theory[5.15] and classical laminate theory (denoted CLT). The CLT solution for t,,
was found by the equations of equilibrium as discussed in [5.16]. The solutions for
thick plate S=4 are given in figures 35-36. Each function is plotted along the vertical
line on which it assumes its maximum value. The following normalized quantities
are defined,

— 1 — 1 = 100Ew (5.3
T,,) = —— (T T, -——T W= ——
( xy) osz( xy) Xz qos Xz quS4

0.6 T T T T 4

0.4} .

0.2 .

O Present element

~-0.2} @ Elasticity -
v CLT

0.4 - -

-0.8 1 | 1 1 1

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
Normalized shear stress (0,b/2,3)

Figure 35 Normalized transverse shear stress T,, distribution (a=b)
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0.8 T T T T T T T
0.4 O Present element ]
@ Elasticity
0.2 = v CLT
8 oo} -
™
-0.2 } -
S=4
_0‘4 - ~
- 1 1 1 1 1 ! 1

.6
-0.08-0.06-0.04—-0.02 0.00 0.02 0.04 0.06 0.08
Normalized shear stress (0,0.x)

Figure 36 Normalized in-plane shear stress T,, distribution (a=b)

The performance of finite element analysis only takes 2.03 seconds CPU
time on VAX 6510 Computer by using the degenerated element. The degenerated
finite element solutions are close to the exact three-dimensional elasticity solutions
shown in figures 35-36 for the shear stresses.

Example 3. Cylindrical Bending o A Laminated Strip

Two infinitely long laminated strips with layers of equal thickness are
simply supported along the two edges and is subjected to sinusoidal transverse load
of intensity q,

q(x) =q°sin(ﬁli‘ ) (5-5)

The lamina material properties are the same as in example 2. Because the
laminate is quite long in y direction, the displacement gradients can be neglected
with respect to the y coordinate. Hence, a slice which is taken out from the structure
was modeled. Because of symmetry, numerical analysis is carried out over one half
of the slice and it is subdivided into 2 equal elements. This problem has an elasticity
solution[5.16] and a CLT solution. Pian and Li[5.17] also calculated stresses for this
problem using a 14 DOF, 2-D partial hybrid element. For 3-layer laminate [0,90,0],
the maximum central deflection as a function of span-to-depth ratio is plotted in
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figure 37. The result is in agreement with the elasticity solution. It takes 1.55
seconds CPU time to solve the problem on the VAX 6510 computer. For the 20-
layer laminate [90,0],4r, the result of the transverse shear stress which is normalized
by the applied load q, is also in agreement with the elasticity solution as shown in
fig. 38.

4.0 T T T T T
3.5
3.0
235
2.0
1.5
1.0
0.5

0.0 L L L L L
0 10 20 30 40 50 60

Span—to—depth ratio S

T

O Present element -
@ Elasticity -
v CLT

Normalized deflection w(L/2,0)

Figure 37 Maximum central deflection as function of span-to-depth ratio

o
'S
T

o
)
T

O Present element
@ Elasticity
-0.2 v Pian

s/H

Figure 38 Shear stress distribution at edge of 20-layer [90,0],,; laminate
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In the examples, it has been shown that finite models using the degenerated
element is computationally most efficient for the stress analysis of composite
laminates. It can provide accurate solutions for the deflection of laminates. It also
can predict stresses accurately in the laminates with large number of layers. However
it can not be used to evaluate stress concentration because of the limitations of
assumed displacement field over the whole thickness. Therefore, the element can
adequately describe the global region in the global/local stress approach which will
be presented in this chapter.

5.3 FINITE ELEMENT ANALYSIS USING SOLID ELEMENT [5.18-
5.20]

In order to predict stress distribution accurately in the local region where
high stress gradient exists, 3-D solid element or multilayer element is needed. In this
section, a long laminated strip subjected to bending loads is investigated using 3-D,
8-node element to verify the efficiency and accuracy of the partial hybrid solid
element.

The three-layer laminated strip with fibre orientation [0,90,0] is supposed
to be infinitely long in the y direction and simply supported along the two edges x=0
and 1 (see figure 39). On the top surface, it is subjected to sinusoidal transverse load
of intensity q,. The loading function is given in equation (5-5).

q(r) = —qusin(rz/!l)

Figure 39 The cross section of infinitely long laminated strip [0,90,0] subjected to
distributed transverse loading
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The lamina material properties in the principle material direction are

E, =171 GPa E=3.42 GPa U =V=0.25

G ;=3.42 GPa G=1.37 GPa (5-6)

Similar to the example 3 in section 5.2, a slice was taken out from the
laminated strip for establishing the finite element model. Because of symmetry, finite
element analysis is carried out over half of the slice. There are ten uniform elements
in the half length along the x-direction, one element in the y direction, and two, four,
eight elements in each layer for three finite element meshes which has a total of 60,
120 and 240 elements, respectively. The numerical results are presented in terms of
normalized values which are defined as

~ ox - Xz
o = — T - ————

x o Xz Q@

(5-7
e 100Eh%u
qL*
2 A
0.5 1 s

exact solution ——
02 240 CFE -—
120 CFE €&—
60 CFE &—

a"

Figure 40 Stress T,, (x=0) obtaiued from partial hybrid element model
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The distribution of transverse stress T, is shown in figure 40, which
compares the results calculated with 60, 120, and 240 partial hybrid elements and
the results of Pagano's elasticity solution [5.16]. The comparison of stress G, and
G, are also shown in figure 41 and figure 42, respectively. The distribution of
displacement u is shown in figure 43.

0.5
0.4
0.3
0.2
0.1

exact solution ——
120 CFE &—
60 CFE &

-0.1.
-0.2
0.3
04
-0.5

1.5 2

Figure 41 Stress O, (x=1/2) obtained from partial hybrid element model

03 T T T T T T T
0.4 exact solution ——

120 CFE &~
03 - 60 CFE &~

0.2
0.1~

3\

-0.1
-0.2
-0.3
0.4

25 -20 -15 -10 -5 0 H] 10 15 2 28

Figure 42 Stress G, (x=1/2) obtained from partial hybrid element model
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T T T T T T T

exact solution ——
120 CFE &~
60 CFE &~

-03
-04
-0.5 - L L

Figure 43 Displacement U (x=0) obtained from partial hybrid element model

This problem has been solved by using 432 3-D, 20-node displacement
elements [5.21]. The results of the shear stress 7T, obtained from the 240 8-node
partial hybrid elements and 432 20-node displacement elements are given in figure
44, compared with the result of Pagano's elasticity solution.

exact solution ——

0.2+ 240 CFE —~— 4
432 disp.elem. —

0.1 CLT +--- -
o -
-0.1 .
-0.2 -
-0.3 -
4 -

-0.5¢ " = Ose
0 0.5 1 1.5 2

Figure 44 Stress T_, (x=0) obtained from different finite element models
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The results in figure 40 indicates that the shear stress T,, calculated by the
partial hybrid finite element method quickly converges to the exact elasticity solution
as the number of elements increases. Figure 44 shows the partial hybrid element
solution is in better agreement with the exact Pagano's elasticity solution, although
it used only 240 8-node elements while the displacement element solution uses 432
20-node elements. The CPU time consumed for 240 8-node partial hybrid elements
is 2 minutes and 58.94 seconds and that for 432 20-node displacement elements is
18 minutes and 2.87 seconds on the VAX 6510 computer. Therefore, partial hybrid
solid element is accurate and more efficient for stress analysis of composite
laminates.

5.4 FINITE ELEMENT ANALYSIS USING MULTILAYER
ELEMENT [5.19, 5.22-.23]

The accuracy of the partial hybrid multilayer element is demonstrated by
calculating the stress state in a rectangular laminated plate subjected to a distributed
loading and a laminated strip subjected to a bending load. These cases are selected
because there are elasticity exact solutions of these problems for comparison with
finite element solutions.

Example 1. Bending of a Rectangular Laminated Plate

The problem to be solved is a rectangular, simply supported, laminated plate
with the [0,90,0] layers of equal thickness (see figure 45). Each layer of the
laminated plate is also idealized as a homogeneous orthotropic material with the
following material coefficients in the principal material coordinate system:

E,=174.6 GPa E=7GPa Vy=077=0.25
G=35GPa  Gp= 14 GPa 5 -8)

where L refer to the direction parallel to the fibres and T is the transverse direction.
The upward transverse load is distributed on the top surface. The loading function
is given by equation (5-3).

The dimensions of the laminate are a, b and thickness H. The ratio S is
defined as a/H. Due to the symmetry of the problem, only one quadrant of the plate
is modeled (0<x<a/2, 0<y<b/2, 0<z<H). The computational domain is modeled with
4x4 uniform meshes. Each multilayer element consists of twelve 3-D, 8-node sub-
elements through the thickness of the laminate. This particular problem has been
investigated by Pagano using 3-D anisotropic elasticity theory[5.15], by Reddy using
higher order shear deformation theory [5.24], and by Liou and Sun using hybrid
finite element method [5.25]. The results of the analysis are presented in Tables 23



NUMERICAL EXAMPLES

and 24. The normalized quantities are defined as

(0,r 0, T)=(0,, 0,,7,)/(qS?)

(Tyzr Txa) =(Tyzr Txz) 7/ (@,S)

— 100E.w -
W=7 z=z/H S=a/H
q,HS*
y
T ,
b
L :
P B |
- 2 ! | 2 7
(a) Top view (b) Side view

Figure 45 Bending of a simply supported rectangular laminated plate

265

(5-9)

In the tables 23 and 24, the results show that the present multilayer element
provides stresses and deflection accurately. The CLT solution is accurate only for
thin plate. When the span-to-thickness ratio S becomes small, the disagreement is

significant.
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Table 23 Normalized deflection and stresses in a square laminate (b=a)

S Source G, (a/2, G,(a/2, 7,0, T,(a/2, w(al2,
b/2, b/2, b/2, 0, b/2,
+h/2) +h/2) 0) 0 0
Pagano 0.801 0.534 0.256 0217 -
-0.755 -0.556
4 Hybrid 0.717 0.517 0.263 0.221 2.020
-0.679 -0.541
Reddy 0.7346 0.1832 1.9218
Present 0.806 0.538 0.262 0.220 2.044
-0.760 -0.561
Pagano 0.590 0.285 0.357 0.1228 -
-0.590 -0.288
10 Hybrid 0.580 0.285 0.367 0.127 0.7548
-0.580 -0.289
Reddy 0.5684 0.1033 0.7125
Present 0.590 0.283 0.360 0.126 0.7592
-0.589 -0.287
Pagano | +0.552 +0.210 0.385 0.0938 -
20 Hybrid +0.553 +0.210 0.395 0.0998 0.5170
Present | +0.552 +0.210 0.385 0.0971 0.5167
CLT +0.539 +0.180 0.395 0.0823

Pagano: elasticity exact solution [5.15].

Hybrid: hybrid finite element method [5.25].

Reddy: high order shear deformation theory [5.24].
Present: partial hybrid multilayer element method.

CLT

classical lamination theory
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Table 24 Normalized deflection and stresses in a rectangular laminate (b=3a)

S Source | G, (a/2, G,(a/2, 7.0, T(a2, | w(al2,
b/2, b/2, b/2, 0, b/2,
+h/2) +h/2) 0) 0) 0)
Pagano 1.14 0.109 0.351 0.0334 2.82
-1.10 -0.119
4 Hybrid 1.717 0.108 0.360 0.0326 2.828
-0.975 -0.118
Reddy 1.0356 0.1028 0.2724 0.0348 2.6411
Present 1.13 0.106 0.350 0.0325 2.829
-1.08 -0.121
Pagano 0.726 0.0418 0.420 0.0152 0.919
-0.725 -0.0435
10 Hybrid 0.709 0.0429 0.428 0.0151 0.921
-0.707 -0.0448
Reddy 0.6924 0.0398 0.2859 0.0170 0.8622
Present 0.718 0.0410 0417 0.0151 0.917
-0.717 -0.0435
Pagano 0.650 0.0294 0.434 0.0119 0.610
-0.650 -0.0299
20 Hybrid 0.653 0.0298 0.450 0.0118 0.611
-0.646 -0.0304
Reddy 0.6407 0.0289 0.2880 0.0139 0.5937

Present 0.647 0.0291 0.431 0.0119 0.607

-0.647 -0.0298

CLT +0.623 +0.0252 | 0.440 0.0108 0.503
———_=

ha————————————————————————————————————————————
—
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Example 2. Bending of a Long Laminated Strip

The three-layer laminated strip with fibre orientation {0,90,0] is analyzed
again to verify the accuracy of partial hybrid multilayer element. Similarly, the strip
is supposed to be infinitely long in the y direction and simply supported along the
two edges x=0 and L (see figure 46). It is subjected to sinusoidal transverse load on
the top surface

q(x) =q°sin(l‘Li‘ ) (5-10)

The lamina material properties are the same as that of example 1 in this section.
They are given by equation (5-8).

z gosin(wz/L)

ERRRN

o
— DN W
fy

Figure 46 The cross section of infinitely long laminated strip [0,90,0] subjected to
distribution transverse loading

A slice was taken out from the laminated strip for establishing the finite
element model. Due to the symmetry, finite element analysis is carried out over the
half of the slice. There are ten uniform multilayer elements in the haif along the x-
direction and one element in the y direction. Each multilayer element is composed
of 12 3-D, 8-node sub-elements. The numerical results are presented in terms of
normalized values which are defined as
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(5-11)

Table 25 Maximum transverse central deflection w

S No. Exact Hybrid Present CLT
4 3.023 3.022 3.029 0.510
4 3 2925 2.931 2.923 0.510
2 2.864 2.868 2.862 0.510
1 2.839 2.849 2.838 0.510
4 0.934 0.933 0.933 0.510
10 3 0.933 0.9332 0.932 0.510
2 0.931 0.931 0.930 0.510
1 0.929 0.927 0.929 0.510
4 0.527 0.527 0.527 0510
50 3 0.527 0.527 0.527 0510
2 0.527 0.527 0.527 0.510
1 0.527 0.527 0.527 0.510
No.: interface number.
Exact:  Pagano's elasticity solution {5.16].
Hybrid: hybrid finite element method [5.25].
Present: current partial hybrid multilayer element.
CLT: classical lamination theory.
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The maximum central transverse deflection W with respect to S is shown
in table 25, where the surface number indicates the location of each interface of the
laminate. The distribution of transverse stress T_, and in-plane stress G, through the
thickness are shown in figures 47 and 48, respectively. The results of Pagano's
elasticity solution [5.16] are also given in the figures. From the figures, excellent
agreement with exact solution is found for partial hybrid multilayer element method.
The results of classical lamination theory are accurate only for the thin plate.

&83
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-0.1
-0.2
03
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(b) S=10

Figure 47 Stress 7T, (x=0) along the thickness
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Figure 48 Stress G, (x=1/2) along the thickness

The performance of finite element analysis costs 2 minutes 57.54 seconds
by multilayer element solution and uses 1452 DOF, and 24 minutes 2.87 seconds by
conventional displacement element solution which use 15279 DOF on VAX 6510
computer.
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5.5 FINITE ELEMENT MODELS WITH DIFFERENT MESH
DENSITIES

Example 1. Free Edge Effects in An Angle-ply Laminated Strip [5.19]

In the analysis of engineering structures, the state of stress within each
lamina of a laminate is assumed to be planar, wherein the interlaminar stress
components is neglected. However, the interlaminar stresses will appear near the free
edge of a laminate and will cause delamination in the laminate. In this example, the
free edge effect in an angle-ply laminated strip will be investigated.

/
Free edge [ Interfaces
\ T // , Free edge
_ ] _w/ Y
; -
~ l » N,
Fibre orientation
1,
Y
V
Ny

Figure 49 The laminated strip subjected to axial loading

The laminated strip to be analyzed is a finite width symmetric angle-ply
laminate [45,-45], subjected to axial tension load in plane. The loading is simulated
by prescribed uniform in-plane normal strain €,. The elastic material properties with
respect to principal material axes of each layer are

E,=137.93 GPa E,=14.48 GPa V7 =0r=0.21

Gy;=G;=5.86 GPa (5-12)
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The geometry of a sample is shown in figure 49. The thickness of each
layer is denoted by h,, the total thickness of the laminate is 4h,, and the width is 2b.
The ratio of the width to thickness of the laminate is b=8h,. The finite element mesh
is shown in figure 50. The partial hybrid multilayer elements are used to establish
the finite element model. In this model, each multilayer element consists of 16 sub-
elements. Due to the high stress gradient to be expected near free edge, the local
region near free edge is discretized using fine mesh. Three different finite element
meshes are used to investigate the stress distributions in the laminate in order to
verify the accuracy of the finite element models.

Iy = 0.6b, I3 = 0.34b, I3 = 0.06b

—— i ——— o

n) elements in region 1 n, elements nj elements
mesh 1: ny =3, n, =4, n; =2
mesh 2: ny =3,n3=6,n3 =4
mesh 3: n; =3,n =8, n3 =10

Figure 50 Finite element mesh for study of free edge effect

The results of stress distributions at the mid-plane (z=0) and at the interface
(z=h,) are shown in figures 51 and 52, respectively. At the mid-plane, the stresses
predicted by three different meshes are the same. At the interface, the stresses
obtained from three meshes are different only in the vicinity of traction free edge of
the laminate.
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Figure 51 Stress distribution at the mid-plane z=0
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At the interface, the in-plane stresses G, o,, T,, show a moderate "rise" as
y/b approaches 1, but decrease to some finite value at y/b=1. The maximum value
of o, amounts to about 10% over the average o, and the maximum value of T
amounts to about 15% over the average T, at the interface of z=h,. At the free edge
y/b=1, a high stress concentration of interlaminar stress T,, and a singular behaviour

of interlaminar stress ©, appear.

At the interface z=h,, it is verified that the self-equilibrium conditions

36, (v, hy) dy=0 (5-13)

I8%,, (¥, hy) dy=0

are satisfied.
At free edge y/b=1, the traction-free-edge conditions are

(5-14)
o,(b, z) =0 Ty (D, 2) =0 Tyz (D, 2) =0

From the figure 52, it is clear that the first and third conditions are satisfied exactly.
Although the second condition can not be satisfied exactly at the corner (z=h, ,
y=b ), it can be satisfied on the average as follows

fﬁgj: T,y (¥=b, z) dz=0 (5-15)

in which, € is an infinite small quantity. This is because at the corner, there are two
non-zero shear stresses T,, with same magnitude but opposite sign in the two
different sides of interface z=h,.

Example 2. Free Edge Effects in A Cross-ply Laminated Strip [5.19]

The finite element model in example 1 can also be applied to analyze free
edge effect in a cross-ply laminated strip. The laminates to be analyzed have the
stacking sequences of four identical layers [0,90], and [90,0],. The results of stress
distributions ©,, 7, and o©, along the interface (z=h,) are given in figures 53-55,
respectively. These three stresses show high stress gradients in the vicinity of free
edge at interface. Other three stresses are similar to those predicted with classical
lamination theory ( Ty= T =0, O, is almost a constant in a layer ).
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Figure 54 Interlaminar stress at the interface z=h,
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Figure 55 In-plane stress at the interface z=h,

Figure 53 shows that stress O, rises sharply toward the free edge in a
possible singular behaviour in the laminate. In figure 54, the stress T, also increases
in the vicinity of the free edge, achieves the maximum value at y/b=0.988 and then
decreases to zero quickly. In figure 55, the in-plane stress ©, rises sharply in a
possible singular behaviour near free edge.

In this problem, the traction-free-edge conditions at y=b

(5-14)
o,(b, z) =0 Txy (D, 2) =0 T,z (b, Z) =0

also must be satisfied. It can be verified that the second and third conditions are
satisfied exactly in the finite element model. At the corner (z=h,, y=b), there are two
non-zero in-plane stresses G, with same magnitude but opposite sign at two different
sides of the interface. Thus, the first condition can be satisfied on average meaning,

fﬁ:t: °y(Y=b, z)dz=0 (5-16)
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5.6 GLOBAL/LOCAL APPROACH FOR STRESS ANALYSIS OF
COMPOSITE LAMINATES [5.26-5.32]

As shown above, the number of degrees of freedom in a finite element
model using single element type increases drastically in order to investigate stress
distribution near the free edge of a laminate. In practical engineering, most
composite laminates contain local regions where stress gradient is large. For
example, the presence of a hole and/or free edge in laminates introduces significant
transverse stresses which create a very complicated 3-D stress field in the vicinity
of the hole and/or free edge. Resolution of the stress fields in these localities requires
a detail 3-D finite element analysis. However, a detailed full 3-D finite element
analysis of the whole laminate to obtain accurate stresses may require huge computer
resources.

One way to solve these problems is to set up a global/local finite element
model using different element types in different regions. It will take advantage of the
properties of different elements and keep the computer storage requirement down.
In chapter 4, a series of partial hybrid elements have been presented. These elements
can be used in different regions in a global/local finite element model. For instance,
the domain of a structure to be analyzed can be divided into three regions: local
region, global region and transition region as shown in Figure 32. In the local region,
3-D solid element or multilayer element can be used to accurately determine the ply
stresses in the laminate near discontinuities such as open hole, ply drop-offs, layer
interface, and so on. In the global region, degenerated element can be used to predict
the entire response of the structure, and the laminate is modelled as an equivalent
single-layer with the smeared laminate properties. The degenerated elements are
used due to simplicity and low cost. Between the global region and local region,
transition elements or multilayer transition elements are used to guarantee the
continuity and compatibility of displacement fields in different regions.

In this section, the effectiveness of the global/local finite element model
using different element types is demonstrated by obtaining the interlaminar stresses
for a laminated strip with free edge and a laminated plate with a hole.' All numerical
studies were performed on a VAX 6510 computer. The computational effort of each
analysis is quantified by the number of degrees of freedom used in the finite element
model and the computational time required to perform a stress analysis. The
computational time is measured in central processing unit (CPU) time.

Example 1. Global/local Approach Using 3-D Solid Element and
Transition Elements and Degenerated Elements for Analysis of Free
Edge Effect

Free edge problem is an important problem in the analysis of composite
laminate. The interlaminar stresses generated around the free edges and interlaminar
surfaces are recognized to be the primary sources of delamination of composite
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laminates. Many approaches have been proposed to solve this problem. It is an ideal
example to verify the efficiency and accuracy of various approaches. In this example,
the global/local finite element model built by partial hybrid solid element, transition
element, and degenerated clement is presented to solve this problem.

The laminate with free edges to be analyzed is an angle-ply laminated strip
with the [45/-45/-45/45] sequence subjected to uniaxial extension (X-direction). The
laminate (shown in figure 49) has length of 2L (X-direction), width 2b (Y-direction),
and thickness 4h; (W=8hy). Each layer in the laminate is also idealized as a
homogeneous orthotropic material. The material properties are same as the example
1 in section 5.5. They are given by equation (5-12).

Because the strip is infinitely long in x direction, the displacement gradient
with respect to x coordinate can be neglected and stress and strain states are
independent of x coordinate. Therefore, the length of the sample to be analyzed in
x direction does not affect the results of stress analysis. Thus, a slice can be taken
out from the laminate to establish a finite element model. Furthermore, it can be
assumed that stress distributions are symmetric about the mid-plane because the
geometry, material properties, and loading are symmetric. Thus, a quarter of the slice
only is needed to be analyzed.

T 7 X
45 3-D
T element
-45
I % o §

Transition element

Figure 56 Global/local finite element mesh for study of free edge
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The domain of the strip to be analyzed is divided into three areas: local
region, global region, and transition region. The finite element mesh used for
analysis is shown in figure 56. In the local region, the high stress gradient is
expected. Forty eight 3-D, 20-node solid elements are used: 8 elements in thickness
direction, 6 elements in y direction, and 1 element in x direction. In the central
region of the laminate, five 8-node degenerated elements are used: 1 element in the
thickness direction, 5 elements in y direction, and 1 element in x direction. At the
transition region, eight transition elements are used to connect eight solid elements
with one degenerated element. The width of the elements decreases as the free edge
is approached. The problem is also analyzed by the layerwise model [5.1,5.8] and
conventional 3-D displacement model. The mesh on the X-Y plane for the two finite
element models is same as that for the global/local model.

0.2 , - :
g 0.0 - -
E -0.2 } i
= —04r @ Layerwise model .
0.6 and 3—-D model
v Global/local model i
-0.8 - .
£ o L - :
0.6 0.8 1.0
Y/ w

Figure 57 Interlaminar stress G, along interlaminar surface

The results of interlaminar stresses 6, and T,, are shown in figures 57-58.
The stress in the figures has been non-dimensionalized by multiplying it by the
factor 20/(E_ ¢,), where €, is the nominal applied axial strain of uy/(2L). The
global/local model only takes 62.09 seconds CPU time on VAX 6510 Computer to
solve the problem. The layerwise finite element model takes 204.40 seconds CPU
time and the 3-D conventional displacement element model takes 287.06 seconds
CPU time on the same computer. For the analysis, the present global/local model
uses 1154 active degrees of freedom totally, the layerwise model uses 2441 active
degrees of freedom, and 3-D model uses 2849 active degrees of freedom. This shows
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that the present global/local model takes less time and uses less active degrees of
freedom than other models to solve the same problem and to get the same degree
of accuracy.

i

—i—- Layerwise model
and 3-D mode; =

)
1

—@-- Global/local model

Transverse Shear Stress xz
1

)
w
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06 0.7 0.8 09 1.0 1.1
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Figure 58 Interlaminar stress T,, along interlaminar surface

Example 2. Global/local Approach Using Multilayer Elements and
Multilayer Transition Elements and Degenerated Elements for
Analysis of Free Edge Effect

A global/local model built by 3-D solid element, transition element, and
degenerated element can predict interlaminar stresses accurately. However, it is a
labour intensive task to make 3-D element mesh in the local region. In this example,
3-D solid element and 3-D transition element are replaced by multilayer elements.
A global/local model built by multilayer element, multilayer transition element, and
degenerated element is used to analyze the free edge problem again.

The problem to be solved is same as example 1 in this section. The domain
of the strip along the Y-direction is also divided into three regions: local, global, and
transition regions. The element mesh used for analysis is shown in figure 59. In the
vicinity of free edge (local region), twelve multilayer elements are used along the
Y-direction and each multilayer element contains 16 8-node sub-elements in the
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thickness of the laminate. In the central part (global region), ten 4-node degenerated
elements are used in y direction. In the transition region, one multilayer transition
element is used to connect the multilayer element with the degenerated element.
Along the X-direction, the strip is modelled by using two elements and all elements
have the same length (=L). The results of interlaminar stresses ¢, and T,, are shown
in figures 60 and 61. The stresses in the figures have been non-dimensionalized by
multiplying it by the factor 20/(E_ €,), where &, is the nominal applied axial strain
of uy/(2L).

? Transition region
¢, }

-

< e
Global region Local region

Figure 59 Element mesh for free edge problem

The problem is also analyzed by a full 3-D finite element model using 3-D,
20-node solid displacement element and a previous global/local finite element model
using 20-node solid elements, 8-node degenerated elements, and transition solid
elements. The results of interlaminar stresses G, and T, calculated by the two models
are also shown in figure 60 and 61. In the figures, the "previous global/local model”
indicates the finite element model in example 1, and the "current global/local model"
indicates the finite element model in this example. The difference of the results
obtained from three finite element models is not significant. However, the computer
CPU time required by three models for performance is quite different.
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Figure 61 Stress T at interlaminar surface along y direction

.
- o
1 1

Transverse Stress xz

.
N
1

—a—- Current gioballocal mode!
—@— Previous giobal/local model
—&— Full 3-D displacement element

-3
0.2

¥ T l

I
06 07 08 09
YW

T T ¥

03 n4 05

1.0

1.1



NUMERICAL EXAMPLES 285

For the performance of the finite element analysis, the current global/local
model takes 100.45 seconds CPU time, the previous global/local finite element
model takes 62.09 seconds CPU time, and the full 3-D finite element model takes
287.06 seconds CPU time on VAX 6510 Computer. Therefor, the current
global/local model takes about one-third computer CPU time used by the full 3-D
finite element model, and the previous global/local finite element model takes about
one-fifth computer CPU time used by the full 3-D finite element model. The current
global/local model takes more CPU time than the previous global/local model for
calculation due to the fact that during the calculation of element stiffness matrix, the
current global/local model using multilayer elements must invert the matrix [H]
whose size is larger than that of solid element used in the previous global/local
model. In spite of that, the current global/local model is still more efficient than the
full 3-D finite element model. Furthermore, the current global/local model has 2-D
data structure in the finite element mesh. This is very beneficial to set up a
global/local finite element model.

Example 3. Global/local Approach Using 3-D Solid Element and
Transition Elements and Degenerated Elements For Analysis of A
Square Laminate with An Open Hole

A square laminate [45,-45], with an open hole is also an ideal structure to
verify the efficiency of the global/local model. The stress analysis of the laminate
is performed under uniaxial loading (Y-direction). The radius of the hole is R. The
laminate (shown in figure 62) has length of 2L (=8R) and thickness 2h (=R). The
material constants in the principal material coordinate system are given in equation
(5-12).

e g

~o

==

Figure 62 An angle-ply laminate with an open hole
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Due to symmetry of geometry and loading in this problem, the domain to
be analyzed may be reduced to one eighth portion of the laminate. In the global/local
model, the domain is divided into three areas: local region, global region, and
transition region (shown in Figure 63). In the local region, forty 3-D, 20-node
elements are used as there is high stress gradient near the hole edge. Each layer is
modeled by two 3-D, 20-node elements along the thickness. In the global region, a
few degenerated elements are used. One element is used along the thickness.
Between them, twenty transition elements are used to connect them. Along the
thickness of the laminate, four transition elements are used to connect four 3-D solid
elements with one degenerated element. The problem is also calculated by the
layerwise model based on layerwise theory [5.1,5.8] and conventional 3-D
displacement element model. The mesh on the X-Y plane in the two models is same
as that in the global/local model.

7
lobal L
Go&i\ . B T .y (Y=0)
| Global/local Model
Local —¢
Ty,

Z
Transition L
o LS L (v=0)

Full 3-D Model

Figure 63 Finite Element Mesh for Analysis

The results of interlaminar stresses G, , T,, and T, are shown in figure 64-
66. The stress in the figures has been non-dimensionalized by multiplying it by the
factor ¢ /0,, where O, is the applied axial stress. The global/local model only takes
61.29 seconds CPU time on VAX 6510 Computer to solve the problem. The
layerwise model takes 198.31 seconds CPU time and the 3-D model takes 291.17
seconds CPU time on the same computer. For the analysis, the global/local model

uses 1051 active degrees of freedom totally, the layerwise model uses 2298 active
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degrees of freedom, and 3-D model uses 2948 active degrees of freedom. This
shows that the global/local model takes less time and uses less active degrees of
freedom than other models to solve the same problem and to get the same degree

of accuracy.
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Figure 64 Interlaminar stress G, along interlaminar surface
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Figure 65 Interlaminar stress T, along interlaminar surface
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Figure 66  Interlaminar stress T_, along interlaminar surface

5.7 CONCLUSION

In this chapter, the accuracy and efficiency of the finite element models
built by partial hybrid elements have been verified. The results of the analysis show
that partial hybrid elements can predict accurate stresses more efficiently than
displacement elements for composite laminates. The global/local finite element
approach using partial hybrid elements is more efficient than other finite element
models. Once the accuracy of the finite element models built by partial hybrid
elements is established, they can be applied to more general problems.
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8-node partial hybrid degenerated plate element, 183
elasticity problem, 43, 83
strain-displacement equation, 43
stress-strain equation, 44, 84
equilibrium equation, 44, 84
traction boundary condition, 44, 84
displacement boundary condition, 45, 84
elasticity problem for composite structures, 83
elasticity solution, 255, 262, 266, 269
element, 4, 6
element basis functions, 9, 10
element matrix, 153
element stiffness matrix, 6, 19, 29, 53, 55, 58, 62
equilibrium element, 41, 42
equivalent nodal force vector, 6, 52
equivalent single layer modelling, 253

15-node partial hybrid transition element, 206
fine mesh, 4, 252
finite element, 4, 6
finite element analysis, 251, 255, 260, 272
finite element method, 4
displacement finite element method, 4
hybrid finite element method
partial hybrid element method
finite element model, 2
laminated element, 2
multilayer element, 2, 3
3-D solid element, 2, 3
finite element procedure, 4
assembling elements, 7
calculating secondary quantities, 8
deriving element equations, 5
discretizing the structure, 4
imposing essential boundary conditions, 8
solving primary unknowns, 8
flexibility matrix, 52
formulation of partial hybrid element, 88
4-node partial hybrid degenerated plate element, 174
free edge, 272, 276, 279, 282
free-traction surface, 182
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Gauss quadrature, 20, 29

generalized variational principle, 43, 46
geometric shape, 14

geometry matrix, 6, 52

geometry of element, 154

global/local approach, 279, 282, 285
global/local finite element models, 253
globally continuous variables, §1
global co-ordinate system, 14, 163
global region, 279

governing equation, 6, 53, 92

Hellinger-Reissner variational principle, 48, 51, 86
high-order Lagrange multiplier, 49
higher-order element, 26

higher order shear deformation theory, 264
Hu-Washizu principle, 48

h-version scheme, 252

hybrid element technique, 79

hybrid finite element method, 41, 49
hybrid-formulated stiffness matrix, 151, 159
hybrid strain element, 53

hybrid stress element, 51, 74

hybrid stress/strain element, 55, 58

initial stress modes, 97, 119, 124, 125
in-plane strains, 81

in-plane stresses, 81

interlaminar stresses, 81

internal parameters, 228
interpolation function, 30
iso-function method, 103
iso-function partial stress matrix, 105
iso-function stress matrix, 104, 107
isoparametric element, 13

iterative process, 97

Jacobian matrix, 19, 24
kinematic deformation modes, 63, 94, 240, 246

Lagrange multipler, 42, 46, 47
laminate stress parameters, 228, 229
laminated element, 2

laminated plate/shell element, 20
laminated solid element, 27
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laminated strip, 258, 268, 272, 276
layer stress parameters, 228
layer-wise modelling, 253
least-order polynomial terms, 65, 66
leverage matrix, 52, 94

limitation principle, 63, 106

line of nodes, 198, 210

linear element, 16, 17

linear strain-displacement equation, 26
local co-ordinate system, 163

local region, 279

locally continuous variables, 81
locking, 2, 26, 247

lower surfaces, 232

mesh density, 252, 272

minimum number of stress modes, 239, 244

moving node, 197, 211

mode of failure, 3

multifield finite element, 41
mixed element, 41, 42
hybrid element, 41, 42

multilayer element, 3, 30, 146

multilayer element matrices, 228

multilayer solid element, 235

multilayer transition element, 241

multiplying matrix, 181, 182, 243

natural deformation modes, 92, 93

natural stress modes, 93, 94, 97

necessary and sufficient condition, 13, 63, 133, 140
necessary condition, 63

nodal displacement vector, 50, 89

nodal displacement, §, 2

node, 4,6

non-compatible element, 13

numerical integration, 13

one-dimensional element, 10
optimal stress matrix, 118, 123, 127, 139
orthogonal condition, 93

parametric coordinate system, 14

partial derivatives of the displacement field, 154
partial globally continuous strains, 152, 234
partial globally continuous stresses, 152, 234
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partial hybrid element, 88, 89

partial hybrid laminated element,

partial hybrid multilayer element, 225

partial hybrid single-layer element, 147

partial hybrid transition element, 193

partial locally continuous strains, 153, 235
partial locally continuous stresses, 152, 234
partial stationary condition, 52, 54, 57, 61, 90
partial strain-displacement equations, 83, 84, 87
partial stress field, 89

Pascal's triangle, 12

patch test, 13

plate/shell element, 68

polynomials, 10

postulate, 94, 114

potential energy, 45, 85

principle of minimum complementary energy, 42, 46
principle of minimum potential energy, 42, 45
pure shear modes, 102

p-version scheme, 252

quadratic element, 17

rank of the matrix, 160
rectangular element, 11, 64, 65, 67
rectangular laminated plate, 264

saddle distributed modes, 103
semi-stiffness matrix, 151
sequential global/local models, 253
shape function, 16, 17, 21, 32, 154
simultaneous global/local models, 253
single-field displacement finite element, 42
single-field finite element, 3
single-field formulation, 41
single-layer element, 146, 147
single property across the thickness, 3
sinusoidal transverse load, 258
6-node partial hybrid transition element, 193
span-to-depth ratio, 258
spurious kinematic deformation mode, 74
square laminate, 255, 256
square laminate with an open hole, 285
stability condition, 63

necessary condition, 63

sufficient condition, 63, 64
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stationary condition, 47

stiffness matrix of materials, 82

strain, 6, 8, 23

strain-displacement equation, 27

strain energy function, 45, 49

strain field, 51, 152

strain mode, 51, 70, 72

strain parameter, 51, 55

stress, 8

stress analysis, 1

stress field, 50, 152

stress matrix, 89, 94, 134, 136

stress mode, 51, 70, 72, 89, 91, 112, 113
stress mode groups, 113, 123, 125, 128, 132
stress parameter, 51, 89, 104

stress polynomials, 92

sub-element, 225

sub-element matrices, 226, 235, 242
sub-layer, 225

sufficient condition, 63, 64
superposition principle, 95

surface stress parameters, 204, 230, 231
symmetric bending modes, 103

tension and compressive modes, 102
theorem, 95, 116, 117
thickness direction, 208
three-dimensional element, 14, 17
3-D anisotropic elasticity theory, 264
3-D continuum models, 145
3-D, 8-node brick element, 66, 72
3-D, 8-node hybrid element, 102, 110
3-D, 8-node partial hybrid solid element, 153
displacement field, 155
geometry of element, 154
partial derivatives, 155
partial strain field, 155
partial stress field, 158
3-D, 8-node solid hybrid element, 125, 135
3-D partial hybrid solid element, 153
3-D solid element, 3, 29
3-D solid modelling, 253
3-D, 20-node laminated element, 27
3-D, 20-node partial hybrid laminated element, 171
3-D, 20-node partial hybrid solid element, 160
three-field variational principle, 48, 49
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torsion modes, 103

traction conditions, 181
transformation matrix, 26, 180
transition region, 279

transverse strains, 81

transverse stresses, 81

triangular element, 10, 65
two-dimensional element, 10, 14, 16
2-D, 4-node element, 109

2-D, 4-node hybrid element, 99

2-D, 4-node plane hybrid element, 122, 134
2-D, 3-node element, 107

two-field variational principle, 48, 49

unit vector, 22
upper surface, 232

variational functional, 6, 42

variational principle, 5, 42

variational principle of composite energy, 88
vibration and buckling analysis, 1

zero-energy stress modes, 94, 119
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