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Editorial Foreword 

The books in the Thermodynamics and Fluid Mechanics Series a re a planned set of 

short texts each covering specific topics . They a r e now well established text-books 

for many Engineering Degree Courses and they also serve as introductory reading 

and updating mater ial for Engineers in Industry. 

The present volume is a new venture in the Series and the objective is to provide 

more self-help for the r eade r . This is part icularly relevant at the present t ime 

with the increasing use of SI units and rapid technological change. 

W.A.W. 
February, 1975. 
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Preface 

This book is a companion volume to Fluid Mechanics, Thermodynamics of 

Turbomachinery, Second Edition (FMTT2) and is pr imar i ly concerned with the 

detailed solutions of the unworked problems set in that volume. In most 

engineering courses there is usually only a limited amount of time available to deal 

with the technique of problem solving. In turbomachinery courses it is vital for the 

student not only to understand the theoretical development of the various expressions 

he meets but to learn to apply them to the numerical solution of problems. Some 

students, in fact, become better acquainted with the analytical aspects of their 

courses after a close study of the numerical applications of the relevant formulae. 

In FMTT2 about a dozen worked examples were included in the text but these were, 

necessari ly, ra ther simple applications of the theoretical t reatment . In the present 

text the problems solved a r e of a standard comparable to, and in some cases harder 

than, those set in examinations for an Honours Degree in Mechanical Engineering and 

should be an invaluable aid to students sitting this or similar examinations. 

I have confined the number of theoretical derivations to a minimum and have referred 

fairly frequently to equations already derived in FMTT2. On a point of clarification 

and to avoid repetition, I have used roman numerals for referencing equations 

derived in the worked solutions but have used arabic numerals when citing 

equations given in FMTT2 (e .g . eqn. (2.1) ) . 

In order to obtain numerical precision and to avoid the forward propagation of e r r o r s 

all the calculations have been done with an electronic calculator. The use of this 

increasingly popular aid revealed a number of discrepancies in the answers given in 

FMTT2 which were previously evaluated with a standard (ten inch) slide ru l e . 

Calculations of the type involving the small difference of two numbers , part icularly 

when one or both of these numbers had been determined by the process of 

exponentiation, a re a common source of e r ro r in the ari thmetical solution of turbo-

machinery problems but, fortunately, readily avoided by recent advances in 

inexpensive solid-state c i rcui t ry! All the intermediate and final resul ts a r e shown 
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rounded up to four significant figures which is adequate in engineering calculations of 

this type. 

A number of problems refer to the use of a Mollier chart for steam and to steam 

tables . The data refer red to was obtained from, 

(i) Enthalpy-Entropy Diagram for Steam (SI Units), prepared by 

D . C . Hickson and F . R . Taylor , (Blackwell), 

(ii) Thermodynamic and Transport Properties of Fluids (SI Units), 

arranged by Y.R. Mayhew and G . F . C . Rogers, Second Edition, 

1967, (Blackwell). 

I am grateful to Mr . John Blackburn, B.Eng., for carefully checking the manuscript 

and numerical working to M r s . Avril Bevan for her meticulous care with the typing 

of the "camera ready" copy and to Dr. William Woods for his general encouragement 

and useful suggestions during the preparation of the book. Last but by no means 

least I thank my wife, Rosaleen, for her patience with me and skill in keeping the 

younger generation under control while I worked. 

S .L . DDCON 
LIVERPOOL, 1975. 
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Chapter i 

Dimensional Analysis, Similitude 

1.1 A fan operating at 1750 rev/min at a volume flow rate of 4.25 m^/s develops a 

head of 153 mm measured on a water-filled U-tube manometer. It is required to 

build a larger, geometrically similar fan which will deliver the same head at the 

same efficiency as the existing fan, but at a speed of 1440 rev/min. Calculate the 

volume flow rate of the larger fan. 

Solution. For geometrically similar fans the dependent variables gH (the net energy 

transfer) and the efficiency 7 are expressed in terms of two functional relationships 

of the independent variables, 

gH = ί ^ , Ν , ϋ , ρ , μ ) 

y= f2(Q,N,D,p^) 

where Q is the volume flow rate, D is a characteristic diameter of a fan, N is the 

rotational speed, μ the dynamic viscosity of the fluid and p the fluid density. Using 

either the formal procedure of dimensional analysis or the less formal but more 

direct process of dimensional elimination (see Q.I.4) with p, N, D as common 

factors, the dimensionless groups are 

JÉL = , ( _3_ END.2) 
N V ' ND3' μ 

v = f ( J 2 - , ^L) 

2 
The group pND /μ defines a flow Reynolds number Re based upon blade speed and 

fan diameter. It is assumed for the purpose of this problem that the effects of 

changes in Re are small and can be ignored. Thus, the performance character-

istics are reduced to 

-EL = f,_2_, 
N V l - 3 f , ( ^ ö ) (i) 

ND 

y= f ? ( _ 2 3 > ( i i ) 
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For the two fans to have the same efficiency it follows from eqn. (ii) that the volume 
3 

flow coefficient Q/(ND ) must be the same. Thus, the volume flow ra te of the 

second fan is 

Q2 = Q ^ / N p C D ^ ) 3 (iii) 
2 

Likewise, for the two fans to deliver the same head, then gH/(ND) must be the 
3 

same which follows from eqn. (i) and the fact that Q/(ND ) is fixed. Hence, with 

Ηχ = H t then 

N1D1 = N2D2 (iv) 

Substituting eqn. (iv) into eqn. (iii) 

Q 2 = Q ^ / N / 

= 4.25(1750/1440)2 

= 6.277 m 3 / s 

It will be observed that the numerical value of the head developed is not actually used 

in solving this problem. 

1.2. An axial flow fan 1.83 m diameter is designed to run at a speed of 1400 r e v / 

min with an average axial air velocity of 12.2 m / s . A quarter scale model has been 

built to obtain a check on the design and the rotational speed of the model fan is 4200 

r ev /min . Determine the axial a i r velocity of the model so that dynamical similarity 

with the full-scale fan is preserved . The effects of Reynolds number change may be 

neglected. 

A sufficiently large p res su re vessel becomes available in which the complete model 

can be placed and tested under conditions of complete s imilar i ty . The viscosity of 

the air is independent of p ressure and the temperature is maintained constant. At 

what p re s su re must the model be tested? 

2 
Solution. The volume flow ra te Q = c Accc D where c is the axial velocity. 
— — ■ — — X » X X 

Thus, the volume flow coefficient Q/(ND ) can be replaced with c /(ND). For 

dynamical similari ty and ignoring changes in Reynolds number the axial velocity of 

the model is 
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N D 
c = c x ^ m = 1 2 . 2 x 4 2 0 0 / ( 1 4 0 0 x 4 ) 
xm xp N D ' 

P P 
= 9.15 m / s 

For complete similari ty the Reynolds number of the model must equal that of the 

prototype. Thus, 

Re = Re 
m p 
2 2 

p N D p N D 1 m m m _ p p p 

m p 
(i) 

As the temperature remains constant μ = μ and, from the gas law, peep. Thus, 

eqn. (i) becomes 

2 2 
p N D = p N D m m m p p p 

Λ P = P (N / N )(D /D ) 2 

·* m *px p m ' p m 

= 1 x (1400/4200)42 

= 5.33 a tm. 

1.3. A water turbine is to be designed to produce 27 MW when running at 93.7 r e v / 

min under a head of 16.5 m . A model turbine with an output of 37.5 kW is to be 

tested under dynamically similar conditions with a head of 4 .9 m . Calculate the 

model speed and scale r a t i o . Assuming a model efficiency of 88%, estimate the 

volume flow ra te through the model. 

It is estimated that the force on the thrust bearing of the full-size machine will be 

7.0 GN. For what thrust must the model bearing be designed? 

Solution. For geometrically similar hydraulic turbines the dependent variables a r e 

the power output P, the efficiency y and the volume flow ra te Q. The independent 

variables a re the speed of rotation N, the character is t ic diameter D, the useful head 

H, the dynamic viscosity μ and the density p . The functional dependences a r e 

written as 

P , ^ , Q = f ( p , N , D , g H ^ ) 

By the application of dimensional analysis the following non-dimensional groups a r e 
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formed using p, Nand D as the common dimensional factors to eliminate the 

dimensions of the other variables (see Q . I . 4 ) , 

2 

D N V ' ND3 N2^ P1 

A remarkable feature of dimensional analysis is the ability to form a new non-

dimensional group from any other two such groups provided that the total number of 

groups in the functional relationship(s) remains the s ame . Thus, by combining the 

power coefficient with the head coefficent to eliminate the diameter (which is not 

given in the problem) a new non-dimensional group, the power specific speed is 

formed, i . e . 

P / N V V ' 5
 = P^D5

 = PN2 

X13^5 \ gH / K3-5, u x 2 . 5 , 1JX2.5 
>ΝΊ0 ö ' plSTD (gH) p(gH) 

Taking the square root of the above expression, the power specific speed is , 

1 /2 / / l /> 5/4) 
N = NP 

sp 
2/(P\H)/4) 

Assuming that changes in Reynolds number have negligible effect upon the 

performance, the model (m) and prototype (p) will have the same N when 
sp 

operating under dynamically similar conditions. Thus, 
V2 l/2 

N P N P m m _ p p 

m p 
V2 5/4 

Λ N = N (P /P ) ' ( H / H ) ' 

m p p m m p 

= 9 3 . 7 ( 2 7 x 1 0 / 3 7 . 5 x 1 0 ) (4 .9/16.5) 
= 551.2 rev /min 

The scale ratio is determined from the head coefficient which is the same for model 

and prototype, i . e . 

m JL 
(N D ) 2 (N D ) 2 

m m P P 
Λ D / D = <H / Η ) Λ Ν / Ν = ( 4 . 9 / 1 6 . 5 ) / 2 93.7/551.2 

m p m p p m 
= 0.09264 
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i . e . the prototype is 10.8 t imes bigger than the model . 

The turbine efficiency is defined as 

7 = P/(pgQH) 

hence, the volume flow ra te of the model turbine is 

Q = P /(pgH ") ) m m x r ö m / m 

= 37.5 x 1 0 3 / ( 1 0 3 x 9.81 x 4 . 9 x 0 . 8 8 ) 
3 

= 0.8865 m / s 

The thrust force X is a new variable which can be related dimensionally to the other 

known var iab les . As force is the product of p ressu re pgH and area which is 
2 proportional to D , then a force coefficient can be defined as 

X = X/(PgHD2) 

For dynamical s imilari ty this will be the same for both model and prototype, hence 

X = X (H /H )(D /D ) 2 

m px m p m p 

= 7 x 109(4.9/16.5)(0.09264)2 

= 17.84 MN 

1.4. Derive the non-dimensional groups that a re normally used in the testing of gas 

turbines and compresso r s . 

A compressor has been designed for normal atmospheric conditions (101.3 kPa and 

15 C) . In order to economise on the power required it is being tested with a 

throttle in the entry duct to reduce the entry p r e s s u r e . The character is t ic curve for 

its normal design speed of 4000 rev /min is being obtained on a day when the ambient 

temperature is 20 C. At what speed should the compressor be run? At the point 

on the character is t ic curve at which the mass flow would normally be 58 kg/s the 

entry p res su re is 55 kPa. Calculate the actual ra te of mass flow during the t e s t . 

Describe the relationship between geometry and specific speed for pumps. 

Solution. As the fluid density p can change very appreciably ac ross compressors 

and gas turbines of large p res su re rat io it is necessary to employ compressible 

fluid re la t ions . For a compressor of a given configuration and size represented by 
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a diameter D, operating at rotational speed N and mass flow ra te m and at specified 

inlet stagnation conditions (p , T , ) , the dependent performance parameters a re the 

outlet stagnation p re s su re p , the efficiency y and the overall stagnation 

temperature r i s e Δ Τ . Other dependent parameters may also be used ( c f . eqn. 

(1.13) ) . The dependent variables can be expressed in the form of three unknown 

functional relationships as 

\v y Δ Τ = ί ( Ν , ϋ , ι η , ρ ο 1 , Τ ο 1 , γ , μ ) 

where μ is the dynamic viscosity and y = C /C . 

The dependent variables can be made dimensionless without difficulty by writing 

Ρ ο 2 / Ρ ο 1 ' 7 ' Δ Τ ο / Τ ο 1 = f < N . D , m , p o l . a o l , Y ^ ) 

where, for convenience, p _ and T . have been replaced by p , = p , / (RT ,) and 

a = (yRT , ) . The most convenient and least formal method of finding the 

remaining dimensionless groups is to take one variable of interest and reduce its 

dimensions to zero by repeated multiplication with several other var iables . To do 

this, three of the most easily measured variables p _, Nand D a re selected. These -3 -f 
variables have the respective dimensions ML , T and L. Considering in detail 
the reduction of m to a dimensionless group by repeated multiplication, 

Variable 

m 

ώ / Ρ ο 1 

riV<PolD3) 

m/ (p o l ND 3 ) 

Dimensions 

MT" 1 

LV1 

T - 1 

0 

Eliminating 

M 

L 

T 

The same process is used to reduce the remaining dimensional variables a (= LT ) 

a.nd μ(Έ.ML· T ) result ing in 

_o2 
Δ Τ 

ol 

/ m P Q I ^ ND \ 

The group p ND /μ is a Reynolds number Re based upon blade speed (ccND) and 

compressor s i ze . The group ND/a0 i is a blade Mach number M. The group 
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m/(p NTH) is not very convenient for compressor testing but may be easily t r an s -

formed into normal form as follows:-

V2 
ART . m / ( R T .) , a Jy 

m ol " ol / o r T 

\ (ND) / 

/
 l

/2 \ I
 l

/2 \ 

as the group (a /(NDy ) ) = ( l / (Mv ) ) is a combination of dimensionless 

variables which have already appeared as separate independent groups it can be 

simply deleted from the above group. Thus, the final non-dimensional form of the 

compressor functional relationships is 

Vi 
P„o Δ Τ m(RT .) 

-2 i , 7 , _ 2 = f( ψ_ Re> M) γ)

 (i) 
P o l ol p ΌΖ 

ol 

For a given compressor of a given size and handling a specific gas it has become the 

custom in pract ice to drop γ , R and D from the above set of dimensionless groups. 

The result ing relationships a r e then 

. V2 
P o Δ Τ m T _ M 

° 2 ^ o r / ol N _ .

 . . . 

ol 
which a r e no longer dimensionless. 

In the case of a turbine, the dependent variables a re usuall

y

 regarded as m, y and 

Δ T so that the dimensional functiona

l

 relationships
 a r e 

ι ή , 7 , Δ Τ ο = f ( p o l ) p o 2 ( T o l , N , D ) V ^ > 

By a process of reasoning similar to that used for a compressor the variables a r e 
reduced to a smaller number of non-dimensional groups, i . e . 

V2 
m ( R T o l > „ Δ Τ ο „ N D P o l m , 

p , D ol ol *o2 
ol 
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Referring to F ig . 1.9, and ignoring any effects due to changes in Re, the design point 
1/2 

of a compressor is uniquely represented by one value of N/T , and one value of 
1/2 ° m T Ί /p . . At the intersection of these two curves there is but one value for each ol ol 

of the dependent variables, p /p , , y and Δ Τ / T . Under normal atmospheric 

conditions, p = 101.3 kPa and T , = 288 K, the compressor design speed N is 

4000 rev /min and the mass flow ra te m is 58 k g / s . Design point conditions still 

obtain for the new entry conditions p ' =55 kPa, T = 293 K by adjusting the speed 
. 1/2 1/2 

and mass flow ra te to maintain the design point values o f m T /p and N/T 
Thus, 

I/o I/o 
N ' = N(T ^/T ) = 4000(293/288) 

= 4035 rev /min 

A' = ^oi/Pol^ol^oV172^ = (55/101.3)(288/293)1/2x 58 

= 31.22 kg/s 

For a pump specific speed is defined, eqn. (1.8), by 
l/2 3/4 

Ns = NQ /(gH) 

where N is the speed of rotation, Q the volume flow ra te and H the head r i s e . For a 

given speed N, high specific speed would be obtained in a pump of small head r i s e and 

large volume flow ra te , e . g . an axial flow pump. Conversely, a low specific speed 

pump would be typified by a radial flow machine of relatively small flow ra te and a 

high head r i s e . 
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Chapter 2 

Thermodynamics 

2 . 1 . For the adiabatic expansion of a perfect gas through a turbine, show that the 

overall efficiency rj and small stage efficiency ΎΊ a r e related by 

yt = ( ΐ - ε 7 ρ )/(ΐ -ε) 

where £ = r , and r is the expansion p ressure ra t io , y is the rat io of 

specific hea ts . 

An axial flow turbine has a small stage efficiency of 86%, an overall p ressure ratio 

of 4.5 to 1 and a mean value of y equal to 1.333. Calculate the overall turbine 

efficiency. 

Solution. The overall efficiency of a turbine is assumed to mean the total to total 

efficiency defined, eqn. (2.21), by 

7t = (h . h 0 ) / (h - h ) ol o2 ol o2s 

For a perfect gas , h = C T, so that 

7t (T ol T )/(T - T ) o 2 ' M ol o2s ' 

»■ν.ι^-ν^ 

The overall total pressure ratio is 
Γ = P0l / Po2 = fl'ol'W 

Λ ε = T 

. . . (i) 

Y/<V-i) 
02 s 

fc / T = rd-Y)/Y 
02s7 ol 

Consider a small par t of the expansion process as shown 

in the sketch. This expansion is best imagined as a 

small stage with an enthalpy drop dh and corresponding 

p re s su re drop dp . The small stage efficiency is 

defined as 

i 

OS 

: 

(ü) 

> y 

1 

' 

\ dho 

\ ^° 

l> ■ ' 
dh /dh o' os (iii) 
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Now an elementary change in specific entropy can be related, using the laws of 

thermodynamics, to the elementary changes in other proper t ies . From eqn. (2.18) 

Tds = dh - dp/p 

which is applicable to both revers ible and i r revers ible processes on a pure substance. 

For a constant entropy process it follows that 

dh = dp / p os o r o 

Substituting this resul t and the perfect gas relat ions, p /p = RT and dh = C dT 
ö ö o r o o o p o 

into eqn. (iii) 

fp ' o ~p ~o' _ i r o η = p ^ C ^ d T ^ / d p ^ = ( p n / R T J yR/(yl)dTJap^ 

where C = γ Ι Ι / ( γ -1 ) . After rearranging the above equation 

«^«Λ, = C p̂<V-l>/v 1 dpo/po 

Integrating and putting in the l imits for the overall process , 

T / T = (p /p ^ ( Y - 1 ) / ^ 
o2 ' ol φ ο 2 / ρ ο Γ 

= r % d - Y ) / Y = t \ ( i v ) 

Substituting eqns. (ii) and (iv) into eqn. (i), the required relation is obtained, 

yt = (i - ε7Ρ)/(ΐ - ε ) 

With r = 4 . 5 , γ = 1.333 and η = 0 . 8 6 , 

£ = r » - ^ = 1 / 4 . 5 0 · 2 4 9 8 = 1/1.456 = 0.6868. 

ε^Ρ = 0 . 6 8 6 8 0 · 8 6 = 0.7239 

ψ\ η = (1 -0 .7239) / (1-0 .6868) 

= 88.16 per cent 

2 .2 . Air is expanded in a multi-stage axial flow turbine, the p ressu re drop across 

each stage being very smal l . Assuming that air behaves as a perfect gas with ratio 

of specific heats γ , derive pre s sure- temperature relationships for the following 

processes : 

(i) revers ib le adiabatic expansion; 

(ii) i r revers ib le adiabatic expansion, with small stage efficiency V', 
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(iii) revers ib le expansion in which the heat loss in each stage is a constant 

fraction k of the enthalpy drop in that stage; 

(iv) revers ib le expansion in which the heat loss is proportional to the 

absolute temperature T . 

Sketch the first three processes on a T, s d iagram. 

If the entry temperature is 1100 K, and the p res su re rat io ac ross the turbine is 6 to 

1, calculate the exhaust temperatures in each of these three ca se s . Assume that y 

is 1.333, that *) = 0 .85, and that k = 0 . 1 . 
/p 

Solution, (i) For a revers ible adiabatic expansion the entropy does not change. 

From eqn. (2.18), with ds = 0, 

Tds = dh - (l/p)dp = 0 

Λ dh =C dT = (l/p)dp = RTdp/p 

Λ άΤ/Ύ =(R/C p )dp/p - [ ( Y - l ) / v ] d p / p 

Integrating this resul t between l imits, denoted by an initial state 1 and a final state 2, 

yields 

^noy^) = [(γ-ΐ)/γ] hlp^pj 

Λ v r 2 - ö y p ^ ' 1 ^ (i) 

(ii) It has already been shown in the solution of Q .2 .1 for an i r revers ib le adiabatic 

expansion with small stage efficiency η , that 

Τ 1 ^ 2 = < P i / P 2 ) 7 p ( Y " 1 ) / V <"> 

It is a consequence of the Second Law of Thermodynamics that the entropy of a 

substance ( i . e . a system) undergoing an i r revers ible adiabatic process must 

increase . The magnitude of the entropy increase can be formulated from eqn. (2.18) 

as follows :-

Tds = dh - dp/p = C dT - RTdp/p 

Λ ds = C dT/T - R dp/p 

Integrating and inserting l imits , the entropy increase is 
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82 - Sl = Cp ^ W - R /n(P2
/Pl> 

= R {/nfej/p^ - [γ / (γ -1) ] ^ / T ^ } 

Substituting for Ύ /Ύ from eqn. (ii), and simplifying 

s 2 - 3λ = R(l - y) ^n(p 1 /p 2 ) (iia) 

(iii) From the Second Law of Thermodynamics, when an element of heat dQ is 

t ransferred reversibly from the surroundings to a unit mass of a substance at an 

absolute temperature T, the specific entropy increases by an amount 

ds = d Q R / T 

Thus, a revers ible heat transfer from the substance to the surroundings (dQ < 0) 
R 

will cause the specific entropy to dec rease . In the revers ib le expansion through the 
turbine with revers ib le heat loss the signs of the three elements ds, dh and dp in the 

expression dQ = Tds = dh - dp/p a re all negative. Writing dQ = kdh, eqn. (2.18) R R 
gives 

Tds = kdh = dh - dp/p 

:. ( l -k )C p dT = dp/p = RTdp/p 

Λ dT/T = (dp /p ) (Y- l ) / [ Y ( l -k ) ] 

Integrating and inserting limits as before, 

Additionally, it is easy to determine the magnitude of the corresponding specific 

entropy change, as follows:-

ds = kC dT/T 
P 

/ . s 2 - S ; L = - k C p Ιη(Τλ/Τ2) = - k C ^ Y - l V ^ a - k J j ^ n ^ / p ^ 

= - Z n û y p ^ k R / a - k ) (iiia) 

(iv) The heat loss in each elementary stage is revers ible and proportional to T . 

This condition is satisfied by 

dQ_ = Tds = dh - dp/p 
R 

(iii) 
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Λ ds = C dT/T - R dp/p 

Λ ( s 2 - S l ) / R = i n f e ^ ) - [ v / i Y - l t f / a C T / r ^ 

After rear ranging and exponentiating, 

PI/P2 = (τ,/τ/^-'Κ exp[(s2-Sl)/R] (iv) 

The sketch shows the way the entropy changes as 

the air is expanded from the initial state 1 to the 

final state 2 corresponding to the first three 

p rocesses . The final temperatures (and 

specific entropy changes) a r e easily determined 

from the preceding equations. 

With T = 1100 K, p / p = 6 , η = 0 . 8 5 , 

y = 1.333 a n d k = 0 . 1 , 

From eqn. (i), 

T 2 . = 1 1 0 0 / 6 0 · 2 4 9 8 = 703.1 K 

From eqn. (ii) 

T 2 i i = 1 1 0 0 / 6 , 
0.2123 751.9 K 

and the corresponding entropy increase is,from eqn. (iia) 

( s ^ . - s V R = 0.15 in 6 = 0.2688 2n 1 

From eqn. (iii) 

T 2iii 1 1 0 0 / 6 0 · 2 7 7 6 = 669.0 K 

and the corresponding entropy change is from eqn. (iiia) 

( s 2 i i i " S l ) / R = - ( O · 1 / 0 · 9 ) ^ 1 1 6 = - ° · 2 

2 . 3 . A multi-stage high-pressure steam turbine is supplied with steam at a 

stagnation p re s su re of 7 MPa a b s . and a stagnation temperature of 500 C. The 

corresponding specific enthalpy is 3410 kj/kg. The steam exhausts from the 

turbine at a stagnation p res su re of 0.7 MPa a b s . , the steam having been in a super-
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heated condition throughout the expansion. It can be assumed that the steam behaves 

like a perfect gas over the range of the expansion and that γ = 1 . 3 . Given that the 

turbine flow process has a small-s tage efficiency of 0.82, determine 

(i) the temperature and specific volume at the end of the expansion; 

(ii) the reheat factor. 

The specific volume of superheated steam is represented by pv = 0.231(h -1943), 
3 

where p is in kPa, v is in m /kg and h is in kj/kg. 

Solution, (i) In the notation of Q.2 .1 the actual temperature rat io across the turbine, 

from eqn. (2.37), is 

Τ„Λ2 - K^J^"Vy 

where η ( γ - 1 ) / γ = 0 . 8 2 x 0 . 3 / 1 . 3 = 0.1892 and p /p = 10 

... τ / τ = 1 00·1892 = 
οΐ ο2 

The inlet stagnation temperature T = 500 + 273 = 773 K, hence the outlet 

stagnation temperature is 

T o 2 = 7 73/1 .546l = 500 K 

The specific volume v corresponding to stagnation conditions at outlet is 

determined with the superheated steam relation pv = 0.231(h -1943) and the perfect 

gas law pv = RT. Combining these two equations, 

(3410-1943)500/773 

T o 2 / T o J 

\ h 0 - 1943 
ΟΔ 

■■■ h o 2 

·'· Vo2 

= (h o 2 -1943) / (h Q l -1943) 

= ( h o l - 1 9 4 3 ) T o 2 / T o l = 

= 948.9 

= 2891.9 kj/kg 

= 0 .231x948 .9 /700 

= 0.3131 m 3 / kg 

(ii) The reheat factor is defined, eqn. (2.39), as 

RH = V% 
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where the overall or total to total efficiency is 

Vt - ^ o l - To2>/<Tol - To2s> 

^ - T o ^ o l ^ - ^ e ^ o P = ^"W 

ï-wJ^i o2 '*ol 

= ( 1 - 1 / 1 . 5 4 6 1 ) / ( 1 - 1 / 1 0 ° · 2 3 0 8 ) 

= 0.5461 x 1.7013/(1.5461 x 0.7013) 

= 0.8568 

Λ R u = 0.8568/0.82 = 1.045 

2 .4 . A 20 MW back-pressure turbine receives steam at 4 MPa and 300 C, 

exhausting from the last stage at 0.35 MPa. The stage efficiency is 0.85, the 

reheat factor 1.04 and the external losses 2% of the isentropic enthalpy drop. 

Determine the ra te of steam flow. 

At the exit from the first stage nozzles the steam velocity is 244 m / s , specific 
3 

volume 68.6 dm /kg, mean diameter 762 mm and steam exit angle 76 deg measured 

from the axial direction. Determine the nozzle exit height of this s tage. 

Solution. From the definition of reheat factor, eqn. (2.39), the turbine total to 

total efficiency can be immediately determined:-

y\ = η RTT = 0 . 8 5 x 1 . 0 4 = 0.884 
/ t / p H 

Using the notation given in Q . 2 . 1 the isentropic stagnation enthalpy drop^h - h 

can be determined using steam tables or, less accurately but more quickly, using a 

Mollier diagram for s team. From steam tables at p = 4 MPa (40 bar) and 

T = 300 C the initial steam condition is superheated (about 50 C of superheat) with 

h = 2963 kj/kg and s = 6.364 kj/kg C) . Inspection of the tables shows that at 

p =0 .35 MPa (3.5 bar) the vapour saturation value of specific entropy s > s 

This means the isentropic state point o2s is in the liquid-vapour phase . The 

dryness fraction q can be evaluated for point o2s, 

q = ( So2 - Sfo2>/<Sgo2 " 8fo2> 
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= (6.364 -1 .727) /5 .214 = 0.8893 

Hence, the specific stagnation enthalpy at point o2s is 

h = h . + q(h _ - h ) 
o2s fo2 n go2 fo2 

= 584 + 0.8893 x 2148 = 2494 kj/kg 

Thus, the isentropic stagnation enthalpy drop is 

h . - h 0 = 2963 - 2494 = 469 kj/kg ol o2s J / 6 

As the total to total efficiency is known the actual stagnation enthalpy drop can be 

found, i . e . 

h o l - h o 2 = 7 t < h o r h o 2 s ) = ° - 8 8 4 * 4 6 9 = 414.6 kj/kg 

and this is the specific work done by the steam, AW, The actual specific work 

delivered at the output shaft is less than this because of the mechanical l o s se s . The 

shaft power delivered is 

W = 17 m AW t / m 

where -n is the mechanical efficiency. Thus, the ra te of mass flow 

m = W t / ( 7 m £W) 

= 20 x 10 6 / (0 .98x 414.6 x 103) 

= 49.22 kg/s 

From the equation of continuity and assuming uniform flow at all radii , 

m ~ p A c = pTTd h c cos a x m 

Hence, the blade height is 

h = m ν/(ΤΓ d c cos α,) m 1 

= 49.22 x 0.0686/(1Γ x 0.762 x 244 x .2419) = 0.0239 mm 

= 23.9 mm 

2 . 5 . Steam is supplied to the first stage of a five stage pressure-compounded steam 

turbine at a stagnation p res su re of 1.5 MPa and a stagnation temperature of 350 C . 

The steam leaves the last stage at a stagnation p ressu re of 7.0 kPa with a c o r r e s -
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ponding dryness fraction of 0 .95 . By using a Mollier chart for steam and assuming 

that the stagnation state point locus is a straight line joining the initial and final 

s tates , determine 

(i) the overall total to total efficiency and total to static efficiency 

assuming the steam enters the condenser with a velocity of 200 m / s , 

(ii) the stagnation conditions between each stage assuming that each stage 

does the same amount of work, 

(iii) the total to total efficiency of each stage, 

(iv) the reheat factor based upon stagnation conditions. 

Solution. In this problem it is more accurate to use steam tables to determine the 

overall conditions as the final p re s su re is specified. For the interstage 

calculations where the p ressu res a r e not specified, the solutions required a r e 

greatly facilitated by the use of a Mollier chart for steam with only a small loss in 

accuracy. 

(i) From the tables at p , = 1 . 5 MPa (15 bar) and T = 350 C the stagnation enthalpy 

h = 3148 kj/kg and the stagnation entropy s = 7.102 kj/(kg C) . Referring to 

the sketch of the Mollier diagram, the exhaust total condition is the state point 06. 

The exhaust stagnation enthalpy is 

ho6 = hfo6 + q ( h g o 6 " h f o 6 ) 

= 1 6 3 + 0 . 9 5 x 2 4 0 9 = 2451.6 kj/kg 

where h , and h , a r e the liquid and vapour saturation enthalpies at p = 7 kPa. 

Hence, the actual specific work done ac ross the whole turbine is , 

£ W = h . - h , = 3148 - 2451.6 ol 06 

= 696.4 kj/kg 

The corresponding isentropic stagnation enthalpy h , at the exhaust p re s su re p 

is obtained by determining the dryness fraction q . 

% = ( S o r S f o 6 > / ( S g o 6 " S f o 6 ) = (7.102 -0 .559 ) /7 .715 

= 0.8481 

."* h L = ^ , + q (h , - h . ,) = 163 + 0 .8481x2409 ·* o6ss fo6 n s go6 fo6' 
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= 2206kJ/kg 

(ii) and (iii) The specific work is divided equally between the five stages so that the 

specific work done per stage is 

A h = AW/5 = 139.3 kj/kg 

A straight line is drawn on the Mollier chart between state points 01 and 06 and the 

intermediate stage state points determined. The following table shows the 

stagnation p r e s su re s , stagnation temperatures or dryness fractions, the actual and 

isentropic stagnation enthalpies for each s tage. The individual isentropic 

stagnation enthalpy drops for each stage a r e shown ( Δ h ) and the stage total to 

total efficiencies determined from η^ = Δη / Δ h . 
/ tt o os 

It should be noted that the values of h shown in the table a re obtained from the 
OS 

intersection of the isentrope at the beginning of a stage with the isobar,at the end of 

that s tage. The reason the stage efficiencies increase as the flow proceeds through 

the turbine is because of the reduced slope of the constant p re s su re lines at the lower 

p ressures (and lower temperatures) causing A h to reduce . 

Hence, the overall isentropic stagnation enthalpy drop which is also the overall ideal 

specific work is 

4W = h Ί - h , = 3148 - 2206 = 942 kj/kg 
max ol o6ss J / 6 

The overall total to total efficiency is , eqn. (2.21), 

The overall total to static efficiency is , eqn. (2.22), 

where it is assumed that c = 20kJ/kg 
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State 
point 

Po 
(kPa) (•C) 

LLo u os 
(kj/kg) (kj/kg) 

Ah, OS Stage 
effic. % 

01 
02 
03 
04 
05 
06 

1500 
620 
240 

85 
26 

7 

350 
274 
200 
125 
-
-

-
-
-
-

0.988 
0.95 

3148 
3008.7 
2869.4 
2730.1 
2590.8 
2451.5 

-
2923 
2796 
2670 
2537 
2405 

225.0 
212.7 
199.4 
193.1 
185.8 

61.9 
65.5 
69.9 
72.1 
75.0 

i 

h 
i 1 1 

Ol 

/02s< 

V/02____ 

A 

\ ^ 

D3s 
C^4s 

\03 

To, 

Jp2 

Ιθ3 
Λ ο " 

Τθ4 
\Ö~4 <*Φ 

. / O 5 s 

- - - ^06 ss 

r < ^ 

6s ^ ^ ^ ̂ q=0-95 

(iv) The reheat factor in a turbine is defined for a finite number of stages by 

R n = [ ( h - h J + (h -h J + ] /(h . -h , ) 
H L N ol o2s ' o2 o3s ' J / x ol o6ss7 

^ os ' " max 

;m R = (225 + 212.7 + 1 9 9 . 4 + 1 9 3 . 1 + 185.8)/942 H 

= 1.078 
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Chapter 3 

Two-dimensional Cascades 

3 . 1 . Experimental compressor cascade resul ts suggest that the stalling lift 

coefficient of a cascade blade may be expressed as 

3 

■® carJ =2 · 2 

where c and c ? a re the entry and exit velocit ies. Find the stalling inlet angle for a 

compressor cascade of space-chord rat io unity if the outlet a i r angle is 30 deg. 

Solution. The lift coefficient C of a cascade blade is defined, eqn. (3.l6a)^as the 

force L per unit blade length acting in the direction normal to the average velocity 

c divided by the product of the average dynamic p res su re and blade chord I . i . e . 

C L = L / < | e C m 2 * > 

where c = c /cos a and tan a = — (tan a, + tan ci ) . For a compressor blade m x m m i 1 2 
cascade CT can be expressed, eqn. (3.18), in t e rms of the inlet flow angle α , the 

outlet flow angle a9 the space/chord rat io s/t and the drag coefficient C , as 

CT = 2 ( s / £ ) c o s a ( t a n a - tan a0) - C ^ t a n a (i) 
L m 1 2 D m 

It is assumed in this problem that C n = 0 and that 

c is constant. From the velocity tr iangles, 

c = c, cos a, = c n cos a x 1 1 2 2 

Thus, with eqns . (i) and (ii) and the given 

expression for stalling, 

3 3 C (c / c ) = 2(s/l) cos a ( t ana - tan a )(cos a /cos a ) = 2.2 
J_# J. Zi 1 11 -i. £ Zi JL 

(iii) 

With s/l = 1 . 0 and a = 30 deg, only a remains unknown in eqn. (iii). Although it 

is possible to produce a polynomial equation in tan a, from eqn. (iii) it is far less 
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trouble to solve the equation numerical ly. The procedure used is to select several 

values of αΊ and calculate the numerical values of a e tc . until a value of αΊ 1 m l 
satisfies the equation, 

3 3 cos a ( t ana , - tan a n ) /cos a, = 1.1/cos a = 1.6936 (iv) m v 1 2 1 ' 2 x ' 
3 

where tan a = 0.5774, cos a = 0.6495. 

af 

tan a 

tan a m 
0 a m 

cos a m 
LHS eqn. (iv) 

45 

1.0000 

0.7887 

38.26 

0.7852 

0.9387 

47.5 

1.0913 

0.8343 

39.84 

0.7679 

1.280 

49 

1.1504 

0.8639 

40.82 

0.7567 

1.5356 

50 

1.1918 

0.8846 

41.49 

0.7490 

1.7320 

By graphical interpolation the inlet flow stalling angle is 

a = 49.81 deg. 

3 . 2 . Show, for a turbine cascade, using the angle notation of F ig . 3.24, that the lift 

coefficient is 

CT = 2(s /£ )(tan a. + tan a0) cos a + C^tan a L 1 l m u m 

1 1 2 where tan a = — (tan Λ - tan a , ) and C ^ = Drag/(— pc £ ) m 2 2 Γ D ö 2 r m '* 

A cascade of turbine nozzle vanes has a blade inlet angle a = 0 deg, a blade outlet 

angle a ' of 65.5 deg, a chord length t of 45 mm and an axial chord b of 32 m m . 

The flow entering the blades is to have zero incidence and an estimate of the 

deviation angle based upon similar cascades is that £ will be about 1.5 deg at low 

outlet Mach number . If the blade load rat io -ψ defined by eqn. (3.51) is to be 0.85, 

estimate a suitable space/chord rat io for the cascade. 

Determine the drag and lift coefficients for the cascade given that the profile loss 

coefficient 

A = Δ Ρ Ο / ( | Ρ Ο 2
2 ) 0.035. 



22 S . L . DDCON 

Solution. The figure shows par t of a turbine blade cascade, the velocity triangle 

assuming: c is x 
constant and the 

force diagram. 

From the 

velocity triangle 

the mean flow 
direction a is m 
defined by tan 

v4( t a n a2-
tan α,) so that 

c = c /cos a m x m Referring to unit depth 

(span) of blade, the lift force L acting on the 

blade is perpendicular to c and the drag 
m 

force D acting on the blade is parallel to c . m 

The resultant force R has components X and Y 

in the axial and 'tangential' directions respectively. Resolving forces, 

L = Y cos α + Χ sin a m m 

D X cos a - Y sin a m m 

(i) 

(ϋ) 

With constant c the axial force acting on one blade is 

x = (P X -P 2 ) S (iii) 

The tangential force acting on one blade is , from the momentum equation, 

Y = p s c (c 0 + c . ) = p s c (tan an + tan a j r x y2 yl r x 2 1 (iv) 

where p is a mean density through the cascade. With the ' incompressible ' flow 
1 2 

approximation (for simplicity), p = p + — pc , then the total p re s su re loss across 

the cascade is , 

Δ Ρ ο = Pol-po2 = P r P 2 + P ( V C 2 2 ) 

Λ Ρ 1 - ρ 2 = Δ Ρ ο 4 P < C 1 2 - C 2 2 ) (v) 
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Substituting eqn. (v) into eqn. ( i i i ) , 

1 2 2 2 
X = s ^ p + 7 pc (sec a - sec cOs 

1 2 2 2 
= s A p + r p c (tan a - tan a )s 

2 = s Λ p + p s c tan a (tan a0 + tan a, ) (vi) o x m 2 1 

After using eqns . (iv) and (vi) in eqns. (i) and (ii) it follows that 

D = s Δ ρ cos a o m 

2 
L = p s c sec a (tan a0 + tan a j + s 4 p sin a r x mN 2 Γ *o m 

1 9 1 9 
With the definitions C T = L / ( - p c t ) and Π = D / ( - p c £ ), L i m D 2 m 

C T = 2(s/£ ) cos a (tan α + t a n a J + C ^ tan a (vii) 
L * ' / m \ 2 I ' D m 

o 

C D = 2 ( s / / ) cos a m [ ^ P o / ( p c m ) ] (viii) 

The blade load rat io , eqn. (3.51), is 

2 
Y T = 2(s/b) cos a 2 (tan ^ + tan αχ) 

At cascade exit the flow angle a is less than the blade outlet angle a9 by the amount 

of the deviation. 

a ? = a - S - 65.5 - 1.5 = 64 deg 

At cascade inlet the blade angle a is zero, the flow incidence is zero so that the 

flow angle a. = 0. Thus, with a = 0, the space/chord rat io is 

8/1 = ( b / t ) ( s / b ) = ( b / É ) - y / T / s i n 2 a 2 

= (32/45)0.85/sin(2x 64°) = 0.767 

From the velocity tr iangles, c = c^cos an = c cos a , then c = r cos cu/cos J ö x 2 2 m m m 2 2/ 

a and tan a = — tan a 0 . Thus, a = 45 .71° . Using this expression in eqn. m m 2 2 m Ö *- -i 
(viii) the drag coefficient becomes 
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2 
/ ΔΡ \ / cos α \ 

C n = (s/*> cos a [ T - U ( 2 ) 
D m i l 2 / \ cos a0 / 

2 p C 2 ' 2 / 

3 2 = ( s / O A cos a /cos a0 m z 

= 0.767 x 0.035 x cos 3 45 .71° /cos 2 64° 

= 0.0476 

From eqn. (vii) the lift coefficient can now be calculated 

CT = 2 x 0.767 x cos 45.71° x tan 6 4 ° + 0.0476 x tan 45.71° 
Li 

= 2.196 + 0.049 = 2.245 

N.B. In a turbine cascade with a > 0, the drag slightly increases the lift which is 

the converse of what occurs in a compressor cascade. 

3 . 3 . A compressor cascade is to be designed for the following conditions: 

Nominal fluid outlet angle 

Cascade camber angle 

Pitch/chord rat io 

Using Ho well* s curves and his formula for nominal deviation, determine the nominal 

incidence, the actual deviation for an incidence of + 2 . 7 deg and the approximate lift 

coefficient at this incidence. 

Solution. The nominal deviation angle, eqn. (3.39) is 

V2 
g* = m9(s/i) 

where, from eqn. (3.40a), the coefficient m is 

m = 0 . 2 3 ( 2 a / ^ ) 2 + α2*/500 

Assuming a circular a rc camber line, a./£ = 0 . 5 , and 

m = 0.23 + 30/500 = 0.29 

/ . £* = 0.29 x 30 x 1 = 8.7 deg. 

Referring to the notation given in the sketch, the blade angles a r e , 

°2* 
Θ 

s/l 

= 

= 

= 

30 deg 

30 deg 

1.0 
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*2
 = a

2* " £ * = 3 0 - 8 · 7 = 2 1 · 3 d e g 

αχ' = a2' + Θ = 2 1 . 3 + 3 0 = 51.3 deg 

The nominal flow inlet angle can be obtained from the tangent difference approxi-

mation, eqn. (3.38), or less precisely from Fig. 3.16, 

tan a l * = t a n a - 2 * + i - S S / E 1 + 1 .5(s /e>] 

= tan 30° + 1.55/2.5 = 1.197 

50.13 deg and C a l " a 2 20.13 deg 

The nominal incidence is 

50.13 • 51.3 = - 1 . 1 7 deg 

For i = 2 . 7 deg, ( i - i * ) / £ * = (2.7 + 1.7)/20.13 = 0 .190. From Howell's curve 

of relat ive deflection £ / £ * against relat ive incidence ( i - i * ) / e * , F ig . 3.17, the value 

of £ / ε * = 1.15. Hence, the actual deflection ε = 1.15 x 20.13 = 23.15 deg. The 

actual inlet flow angle i s a ^ a j + i = 51.3 + 2.7 = 54 deg. The actual outlet flow 

angle is ^ = αχ - ε = 54 - 23.15 = 30.85 deg. Thus, the actual deviation angle 

for an incidence of 2.7 deg, is 

a2 - a 2 = 30.85 - 21.3 

= 9.55 deg 

The approximate lift coefficient, eqn. (3.17), is 

25 
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CT = 2(s /^) cos a (tan a, - tan a j L m 1 2 ' m 

where it is assumed that C is negligible. The mean flow angle is 

1 1 o ° t a n a = - (tan a + tan a ) = - (tan 54 + tan 30.85) = 0.9868 
III JL JL Zd Δ· 

• a = 44.62 deg 

/ . C = 2 x cos 44.62° (tan 54° - tan 30.85°) 

= 1.109 

3 .4 . A compressor cascade is built with blades of circular a rc camber line, a 

space/chord rat io of 1.1 and blade angles of 48 and 21 deg at inlet and outlet. Test 

data taken from the cascade shows that at zero incidence (i = 0) the deviation c — 1 2 

o = 8 . 2 deg and the total p res su re loss coefficient to = Δ ρ / (—pc ) = 0.015. At 

positive incidence over a limited range (0 ^ i ^" 6 ) the variation of both S and cJ 

for this particular cascade can be represented with sufficient accuracy by linear 

approximations, viz. 

M = 0.06, ^ = 0.001 

di di 

where i is in degrees . 

For a flow incidence of 5.0 deg determine 

(i) the flow angles at inlet and outlet; 

(ii) the diffuser efficiency of the cascade; 

(iii) the static p ressu re r i s e of a i r with a velocity 50 m / s normal to the 

plane of the cascade. 
3 

Assume the density of air is 1.2 kg/m . 

Solution, (i) At zero incidence, i = 0, the deviation & = £ = 8 . 2 deg and the total 

p ressure loss coefficient CJ = ÖJ = 0.015. At i = 5 deg, 

$> = S +(dS/d i ) i = 8 . 2 + 0 . 0 6 x 5 = 8.5 deg 

uo = ώ +(dê3/di)i = 0.015 + 0 . 0 0 1 x 5 = 0 . 0 2 . o 

The flow angles at 5 deg incidence a re 
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a = a ' + i = 4 8 + 5 = 53 deg 

a = a ' +S = 2 1 + 8 . 5 = 29.5 deg 

(ii) The compressor cascade decelerates the flow between inlet and outlet and the 

efficiency of the process , assuming incompressible flow, can be expressed by the 

diffuser efficiency, eqn. (2.48), 

7D = ÖVPp/f ip^-c/) ] 

As P 2 " P l = P o 2 " P o l + ï p ( c i 2 " C 2 2 ) = * A P 0 + I P ( C 1 2 " C 2 2 ) ' t h e n 

= 1 - A p Q / [ - p c 1 (1 - cos c^/cos a 2 ) ] 

- 2 2 
= 1 - ^V( l " c o s a. / cos a ) 

- 1 2 
where Co = Ap / (—pc ) and c cos a = c cos a = c a r e used. 

Q £ x -L ± Zi Δι X 

Substituting values for α , a and <ϋ>, 

η = 1 - 0.02/(1 - cos 2 53° /cos 2 29.5°) 

= 0.962 

(iii) The static p ressu re r i s e is 

P 2 " P 1 = 7 D P ( C 1 2 " C 2 2 ) / 2 = 7D
pCx2(SeC \ - s e c \ ) / 2 

2 2 2 
= 7 D pCx ( tan α1 " ^η α 2 ) / 2 

= 0.962 x 1 . 2 x 5 0 2 ( t a n 2 5 3 ° - tan2 29.5°)/2 

= 2.079 kPa 

3.5.(a) A cascade of compressor blades is to be designed to give an outlet air angle 

a9 of 30 deg for an inlet a i r angle a, of 50 deg measured from the normal to the 

plane of the cascade. The blades a re to have a parabolic a rc camber line with 

a/£ = 0 . 4 ( i . e . the fractional distance along the chord to the point of maximum 

camber) . Determine the space/chord rat io and blade outlet angle if the cascade is 

to operate at zero incidence and nominal conditions. You may assume the linear 
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approximation for nominal deflection of Howell's cascade correlation: 

£* = ( l 6 - 0 . 2 a 2 * ) ( 3 -s/l) deg 

as well as the formula for nominal deviation: 

«•-Mr)2 ♦£] ·£-
(b) The space/chord ra t io is now changed to 0 .8 , but the blade angles remain as they 

a r e in par t (a) above. Determine the lift coefficient when the incidence of the flow is 

2.0 deg. Assume that there is a linear relationship between £/£* and ( i - i* ) /£* 

over a limited region, viz. at ( i - i * ) /£* = 0 . 2 , £ /£* = 1.15 and at i = i*, £/£* = 1. 

In this region take C = 0 .02 . 

Solution, (a) As the cascade is designed to operate at the 'nominal' condition, then 

the air angles given a r e also the nominal flow angles, i . e . a, = a * =50 deg and 

a2 = a * = 30 deg. Thus, the nominal deflection is 

ε * = α χ * - α 2 * = ( l 6 - 0 . 2 a 2 * ) ( 3 - s / O = 20 deg 

Λ 20 = (16 - 0.2 x 30)(3 - s/l) = 10(3 - s/l) 

Λ s/l = 1.0 

The nominal deviation is 

? Vo 
*S= [ 0 . 2 3 ( 2 a / i r + a 2 * / 5 0 0 ] 9 ( s / ^ ) 

= [ 0.23 x 0.64 + 30/500 ] θ = 0.2072Θ 

As the incidence is zero the blade inlet angle a ' = a * = 50 deg. The nominal 

deflection is used again to solve for the blade camber, i . e . 

£* = α ^ - α ^ = αχ' - α^ - £ * = θ - £* = 9 ( 1 - 0 . 2 0 7 2 ) 

/„ θ = 2 0 / ( 1 - 0 . 2 0 7 2 ) = 25.2 deg 

Hence, the blade outlet angle is obtained from 

a2 = α 1 " θ = 5 ° " 2 5 , 2 

= 24.8 deg 

(b) The change to a smaller space/chord rat io will affect the nominal deviation and 
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nominal flow outlet angles . The new nominal deviation is 

V2 
g* = (0.23 x 0.64 + a */500) 25.2(0 .8) 

= 3.318 +0.04508 a2* 

and the new nominal outlet angle is obtained from 

a* = a2' + S* = 24.8 + 3.318 + 0.04508 a* 

.; a * = 28.12/0.9549 = 29.45 deg 

The new nominal deflection is 

£* = ( 1 6 - 0 . 2 x 2 9 . 4 5 ) ( 3 - 0 . 8 ) = 22.24 deg 

Thus, the corresponding nominal inlet angle is 

a* = a* + ε* = 29.45 + 22.24 = 51.69 deg 

and the nominal incidence is obtained, 

i* = a* - a ' = 51.69 - 50 = 1.69 deg 

The linear relationship between deflection and incidence is in the form, 

£/ε* - 1 = k ( i - i* ) / e* 

which satisfies the initial condition, i . e . ε = ε * when i = i*. With €/£* = 1.15 at 

(i - ί * ) / ε* = 0 .2 , the value of k is found to be 0 .75 . Thus, at i = 2 deg, the actual 

fluid deflection is 

ε = ε * + 0 . 7 5 ( i - i * ) 

= 22.24 + 0 . 7 5 ( 2 - 1 . 6 9 ) = 22.47 deg 

The actual outlet angle is 

a 2 = a l " ε = αι + i - & = 50 + 2 - 22.47 = 29.53 deg 

The lift coefficient is determined using eqn. (3.18), 

CT = 2 ( s / i ) cos a ( t a n a , - tan αΛ) - C ^ tan a L m 1 z D m 

tan a = Tr(tan a, + tan a0) = x(tan 52° + tan 29.53°) m z 1 λ λ 
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= i (1.280 + 0.5665) = 0.9232 

• a = 42.71 deg and cos a = 0.7348 
' ' m m 
t\ C = 2 x 0.8 x 0.7348(1.280 - 0.5665) - 0.02 x 0.9232 

= 0.820 

1 2 3 .6 . (a) Show that the p ressu re r i s e coefficient C = A p / ( r p c ) of a compressor 

cascade is related to the diffuser efficiency ^ and the total p ressure loss coefficient 

3 by the following expressions: 

2 2 2 2 
C = ^ D ( l - sec a / s ec a ) = 1 - ( sec cu + £ ) /sec a 

where η^ = A p / (\ Ρ ( ο / - c / ) ) 

Σ =Apo/(ipcx
2) 

a , a = flow angles at cascade inlet and outlet. 

(b) Determine a suitable maximum inlet flow angle of a compressor cascade having 

a space/chord rat io 0.8 and a0 = 30 deg when the diffusion factor D is limited to 
2 F 

0 .6 . The definition of diffusion factor which should be used is the early Lieblein 

formula, 

, cos αΊ . . cos a 

(c) The stagnation p ressure loss derived from flow measurements on the above 

cascade is 149 Pa when the inlet velocity c is 100 m / s at an air density p of 
3 1.2 kg/m . Determine the values of 

(i) p ressu re r i s e ; 

(ii) diffuser efficiency; 

(iii) drag and lift coefficients. 

Solution, (a) The loss in total p ressure across a compressor cascade due to 

i r revers ible processes i s , for an incompressible flow, 

Δ ρ ο = P o l - p o 2 = < P l - P 2 ) + I p ( c i 2 - C 2 2 ) 
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= - Δ Ρ + jpcx
2[ i -(«yep2] 

where Δρ = P 9 - p , , is the static p re s su re r i s e across the cascade. With c cos a, 

= c cos a ? = c = constant 

1 2 1 2 2 2 
Δ ρ ο ^ 2 " ρ 0 1 * = " Δ Ρ / ^ Ρ 0 ! ) +(λ ~ c o s ^ / c o s a2) 

1 2 2 2 
.'. C = 1 " ^ P 0 / ( 2 " P C

1 ) " c o s a^/cos a2 

2 2 2 
= 1 - J c o s a - cos a /cos a 

2 2 
= 1 - ( I + sec a ) /sec a (i) 

From the definition of diffuser efficiency 

ΔΡ = | P ^ / - c2
2) 7 D 

2 2 2 2 
''' Cp = 7D(1 " C2 /C1 * = 7D( 1 " S6C a2/ S 6 C V (Ü) 

(b) For a compressor cascade of specified geometry the diffusion factor D 
r 

increases rapidly with increasing inlet flow angle as the positive stall "point" is 
approached. With a = 30 deg, s /£ = 0 . 8 and D = 0 . 6 substituted in the Lieblein 2 F 
formula :-

0.6 = 1 - cos a /0 .866 + 0.4(sin a - 0.5774 cos a ) 

2 X/2 Putting x = cos a , ( 1 - x ) = sin a and rearranging, 

x ( l /0 .866 + 0.4 x 0.5774) = 0 . 4 [ ΐ + ( 1 - χ 2 ) 2 J 

Λ (3.464x - l ) 2 = 1 -x 2 

.', 13x2 - 6.928x + l = 1 

.'. x = cos a = 6.928/13 = 0.5329 

Thus, the maximum inlet flow angle ( i . e . for positive stall) to give a diffusion 

factor D^ = 0.6 is F 

a = 57.8 deg 

(c) With c = c , cos a, = 100 x cos 57.8 =53 .29 m / s , the total p r e s su re loss 
x 1 1 ^ 

coefficient is immediately found, i . e . 
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Using eqn. (i), 

£ = A p / ( j p c 2 ) = 1 4 9 / ( | x 1 . 2 x 5 3 . 2 9 2 ) = 0.0875 

C = 1 - (0.0875 + s e c 2 3 0 ° ) / s e c 2 5 7 . 8 ° 
P 

= 1 - (0 .0875+ 1.3333) x 0.53292 

= 0.5965 

The p ressure r i s e is , 

1 2 1 4 
Δρ = P 2 " P i = 2C p C l = 2X ° · 5 9 6 5 χ 1 · 2 χ 1 0 

= 3.579 kPa 

From eqn. (ii) the diffuser efficiency is , 

2 2 
7 D = C / ( l - cos Qj/cos a2) 

= 0.5965/(1 - 0 . 5 3 2 9 2 / 0 . 8 6 6 2 ) =0 .5965 /0 .6213 

= 0.96 

The drag coefficient is defined, eqns . (3.16b) and (3.17), as 

CD = 0 / Φ ε π ^ > = s A P o C O S a m / ( 7P C m^> 
= X (s/£ ) cos a 

v» m 

where t a n a = - ( t a n a. + tan a ) = - ( t an 57.8° + tan 30°) = 1.0827 

• a = 47.27 deg 

.·. C = 0.0875 x 0.8 x cos3 47.27° 

= 0.0219 

The lift coefficient is defined for a compressor cascade, eqn. (3.18), as 

CT = 2 ( s / O c o s a (tan a, - tan aj - C ^ tan a L m l 2 D m 

= 2 x 0.8 x cos 47.27°(tan 57.8° - tan 30°) - 0.0219 x 1.0827 

= 1.0972 - 0 . 0 2 3 7 

= 1.074 
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Chapter 4 

Axial Flow Turbines 

4 . 1 . Show, for an axial flow turbine stage, that the relative stagnation enthalpy 

across the rotor row does not change. Draw an enthalpy-entropy diagram for the 

stage labelling all salient points . 

Stage reaction for a turbine is defined as the rat io of the static enthalpy drop in the 

rotor to that in the s tage. Derive expressions for the reaction in te rms of the flow 

angles and draw velocity triangles for reactions of zero, 0.5 and 1.0. 

Solution. It is assumed that the axial velocity through the stage is constant, i . e . 

c = c = c = c , that the absolute velocity at inlet to the stage c, equals the x l x2 x3 x 1 
absolute velocity at outlet c and that the flow is adiabatic. Referring to the o 

velocity diagram, F ig . 4 . 1 , and enthalpy-entropy diagram, Fig. 4 .2 , the specific 

work done by the stage, which causes the specific stagnation enthalpy of the fluid to 

decrease , eqn. (4.2), is 

* W = h o l - h o 3 = U<Cy2+Cy3> « 

As the nozzle flow is adiabatic and the nozzle does no work, then 

h o l = ho2 <U> 

From the velocity tr iangles, using the Cosine Rule, 

w2
2 = U2 + c2

2 - 2Uc2 cos( t r /2 - a 2 ) = U2 + c ^ - 2Uc 2 (iii) 

w3
2 = U2 + c3

2 - 2Uc3 cos(Tr/2 + a3) = U2 + c ^ + 2Uc 3 (iv) 

Subtracting eqn. (iii) from eqn. (iv) and re-arranging, 

υ ( ° Υ 2 + ν = i ( C 2 2 - C 3 2 + W 3 2 - W 2 2 ) 

1 2 Combining eqns. (i), (ii) and (iii), noting that h = h + — c , 

ho2 ■ ho3 = ( h 2 * h3> + \ ( C22 - C 3 2 ) = \ (°2 ' °3 +W3 _ W
2

2 ) 
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" h 2 + 2 W 2 = h 3 + 2 W 3 ( V 1 ) 

1 2 The relative stagnation enthalpy is defined as h = h +—w and eqn. (vi) shows 

that it is equal at inlet and outlet of the turbine rotor from which it is deduced that it 

must be constant through the ro to r . 

The stage reaction, eqn. (4.17), is 

noting that c = c q for a "normal" s tage. After substituting for (h - h ) from eqn. 
J. o OJ. Oo 

(i) and (h - h ) from eqn. (vi), 

2 2 
W3 " W 2 

R = 2U(c _ + c J <VÜ> 
y2 y3 

The numerator is factorised as follows, 

W 3 2 " W 2 2 = (Wy32 + C x 2 ) - ( W y2 2 + Cx2) = (Wy3 " Wy2)(Wy3 + V 

A s w _ + w 0 = c 0 + Co> e Q n · (v i i ) reduces to y3 y2 y3 y2 

R = ( W y3" W y2 ) / ( 2 U ) = ( t a n P 3 - t a n P 2 > C x / ( 2 U ) ( v i Ü ) 

Alternatively, with w = U + c from the velocity diagram, 

R = (U + c y 3 - Wy2)/(2U = | + ( t a n a 3 - t a n ß 2 ) c x / ( 2 U ) (ix) 

and, with w . = c 0 - U, y2 y2 

R = (2U + Cy 3 - C y 2 ) / ( 2 U ) = l + ( t a n a 3 - t a n a 2 ) c x / ( 2 U ) (x) 

The velocity and simplified Mollier diagrams for the three reactions R = 0 , 0.5 and 

1.0 for a rb i t ra ry but constant values of flow coefficient c / U and stage loading 

factor (c 0 + c 0 ) /U a r e shown below. y2 y3 

(i) R = 0, eqn. (viii) gives p = ß , hence w = w and h = h . 
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7 3 

U s 

(ii) R = 0 .5 , eqn. (ix) gives α3 = b^ hence c 3 = w^ c^ = w^ and t^ - h = h 2 - h 

I S^\ T 

-2 \r t 

(iii) R = 1.0, eqn. (x) fives a = a , hence c = c and h = h . 

h 

U s 

4 . 2 . In a Parsons ' reaction turbine the rotor blades a r e similar to the stator blades 

but with the angles measured in the opposite direction. The efflux angle relative to 

each row of blades is 70 deg from the axial direction, the exit velocity of steam from 

the stator blades is 160 m / s , the blade speed is 152.5 m / s and the axial velocity is 

constant. Determine the specific work done by the steam per s tage. 

A turbine of 80% internal efficiency consists of ten such stages as described above 

and receives steam from the stop valve at 1.5 MPa and 300 C . Determine, with the 

aid of a Mollier chart, the condition of the steam at outlet from the last s tage. 
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Solution. The velocity diagram for the stage can be readily constructed from the 

data supplied and the specific work obtained from a scale drawing or, more 

accurately, by calculation. It will be noticed that as the efflux angle relative to 

each blade row is equal, i . e . a ? = ßq =70 deg, the velocity triangles a re similar and 

the reaction is 50 per cent. The specific work per stage is 

ÛW = U(cy 2 + c y 3 ) 

Solving for the unknown swirl velocities using the usual sign convention 

c _ = c^ sin cu = 160 sin 70 y2 2 2 

= 150.4 m / s 

Cy3 = W 3 S i n p3 " U = C 2 S Ü 1 α2 - U 

= 150.4 - 152.5 = - 2 . 1 m / s 

Λ AW = 152.5(150.4 - 2.1) 

= 22.62 kj/kg 

This stage is ra ther lightly loaded and the stage loading factor is 

Y>= 4W/U2 = (c 2 + c 3 ) /U = 148.3/152.5 

= 0.9725 

A turbine with ten similar stages to the one above will produce a specific work of 

226.2 kj/kg and this is equal to the change in stagnation enthalpy of the steam 

h A - h „ between turbine inlet (A) and turbine exhaust (B), i . e . oA oB 

h o A - h o B = 2 2 6 - 2 k J / k g 

It is implied that the "internal" efficiency is the total to total efficiency, defined as 

> = ^ Α Λ Β > / < Η Ο Α Λ Β 3 > 

%\ h A - h „ = 226.2 /0 .8 = 282.8 kj/kg oA oBs J 6 

From steam tables or Mollier chart at p = 1 . 5 MPa (15 bar) and T . = 300 C 

h o A = 3039kJ/kg 

. \ h _ = 3 0 3 9 - 2 2 6 . 2 = 2812.8 kj/kg oB 
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oBs 
2756.2 kj/kg 

The less laborious method of determining 

the exhaust steam condition is by plotting 

these specific enthalpies on a large scale 

Mollier chart for s team. From such a 

plot the exhaust steam condition is 

p = 420 kPa (4.2 bar); 

T „ = 177°C oB 

i . e . the steam is still superheated at 

exhaust. 

4 . 3 . Values of p res su re (kPa) measured at various stations of a zero-react ion gas 

turbine stage, all at the mean blade height, a r e shown in the table given below. 

Stagnation p res su re 

Nozzle entry 414 

Nozzle exit 400 

Static p res su re 

Nozzle exit 207 

Rotor exit 200 

The mean blade speed is 291 m / s , inlet stagnation temperature 1100 K, and the flow 

angle at nozzle exit is 70 measured from the axial direction. Assuming the 

magnitude and direction of the velocities at entry and exit of the stage a r e the same, 

determine the total to total efficiency of the s tage. Assume a perfect gas with 

C =1 .148 kJ/(kg°C) and γ = 1.333. 

Solution. The total to total efficiency of a turbine stage is defined, in the usual 

notation, as 

7tt 
h o l " h o 3 
h , - h . ol o3ss 

With c = c this can be rewri t ten as 

7« = Vfl+V'^/Vhg)] 
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·. 7rt= ^t^V^ss^VV] 
with the perfect gas assumption. In order to 

determine the efficiency of the stage the velocity 

diagram must first be solved. 

The stage reaction is defined as R = (h - h )/(h - h ) 
z o 1 o 

so that zero reaction means h equals h . The 
1 2 relative stagnation enthalpy h = h + _ w is 

1 2 2 1 2 constant in the rotor^then h + —w = h +—w 
ZJ 2t ^ o A o 

and, therefore w = w . The velocity at nozzle 

exit c must be determined to complete the velocity d iagram. At nozzle exit, 

x(Y-l)/Y 
2 

2 

To2(P2/Po2> 

1100(207/400)' 0.2498 933.1 K 

2C ( T Q 2 - T 2 ) = 2x1148(1100-933 .1) 

619.1 m / s 

383,200 

Referring to the velocity diagram, c = c cos a9 = 619.1 cos 70 = 211.8 m / s 

y2 

Λ w o 
·· y2 

c 2 sin a = 619.1 sin 70 

> 2 
U = 581.8 - 291 

= 581.8 m / s 

290.8 m / s 

An important point to note is that w „ = w n (w0 = w n ) . Thus, 
y3 y2 3 2 

y3 y3 

= - 0 . 2 m / s 

w 0 - U = 290.8 - 291 
y2 

i . e . the flow leaving the stage is very nearly axial in direction with a small angle of 

swirl aQ = t a i T V 0 . 2 / 2 1 1 . 8 ) = -0 .05 deg. Effectively c = c = c = 211.8 m / s . 
o o 1 X 

Thus, with T 0 = T = 933.1 K and T t = T 0 = 1100 K 3 2 ol o i 

T, - T = = T o l - C l /< 2 C p } ■ T 3 

1100 - 211.82/(2 x 1148) - 933.1 

= 147.4 C 
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211-8 m/s 

U = 29l m / s 
Using the isentropic relation between temperature and p ressu re 

T 3 s s = T o l ( p 3 / p o l ) ( Y " 1 ) / Y = 1 1 0 0 ( 2 0 ° / 4 1 4 ) 0 · 2 4 9 8 = 917.1 K 

; . T - L = 9 3 3 . 1 - 9 1 7 . 1 = 16.0°C 3 3ss 

7« 1/ 1 + 16/147.4 = 90.2% 

4 . 4 . In a certain axial flow turbine stage the axial velocity c is constant. The 

absolute velocities entering and leaving the stage a re in the axial direction. If the 

flow coefficient c / U is 0.6 and the gas leaves the stator blades at 68.2 deg from the 

axial direction, calculate: 

(i) the stage loading factor, AW/LT; 

(ii) the flow angles relat ive to the rotor blades; 

(iii) the degree of reaction; 

(iv) the total to total and total to static efficiencies. 

The Soderberg loss correlation, eqn. (4.12) should be used. 

Solution, (i) The stage loading factor is 

Y = AW/U2 = c /U, as c = 0 yz yd 

= ( c x / U ) t a n a 2 

= 0 . 6 x tan 68.2° = 1.50 

(ii) From the velocity diagram 

tan p = U/c = 1/0.6 = 1.667 

/ . ß 3 = 59.04 deg 
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tan ß„ = tan a - U/c = 2 . 5 - 1 . 6 6 7 2 2 x 

Λ ß2 = 39.81 deg 

(iii) The stage reaction, eqn. (4.22a), is 

R = ( t a n ß 3 - t a n ß 2 ) c x / ( 2 U ) 

= 0 .3(1 .667-0.8335) = 0.25 

0.8335 

a =68-2° 

ß; 

(iv) The total to total efficiency of a normal stage (c = c ) is, 

Vu = ^ o l - V ^ o l - ^ e s ) = ( h l - h 3 ) / ( h r h 3 + V h 3 S s > 

= 1 / [ 1 + 0 1 3 ^ 3 ^ / ^ ^ 3 ) ] 

Referring to Fig . 4 .2 , the enthalpy difference h - h , equal to (h - h )(TQ/T ), 
O S o S S Δι AS ο A 

is usually simplified to h - h with only a small loss in accuracy in determining 

efficiency. 

•••7« - [^V^+VV/VV]"1 

The enthalpy differences h - h and h - h representing the effects of i r reversible 
A ZiS ό öS 

flow in the nozzle and the rotor respectively, can be expressed in te rms of loss 

coefficients 7 . , and J , 

h 2 " h 2s " 2 "2 I N 
1 2 y 

h 3 " h 3s 2 "3 i R 
1 2 7 

Thus, the total to total efficiency becomes, eqn. (4 .9a) , 



Axial flow turbines 41 

7tt 1 + Î R W 3 _ + Î N C 2 lu 2 
2<Vh3> 

The total to static efficiency, defined as 

7tS 

(i) 

(h - h )/(h . -h„ ) 
ol o3 ol 3ss 

= ^V^ss^ l^V^ 
1 2 

is used when the exhaust kinetic energy — c is wasted. This efficiency is most 

useful in the form, 

7 ts 
1 + 

IR
W3 + ?NC2~+C 

2<hl "h3> 

2 . 2 _ - l 
1 

(Ü ) 

The enthalpy loss coefficients can be expressed, eqn. (4.12), in t e rms of the fluid 

deflection ε (deg) of each blade row, that is , 

| = 0.04 [ l + 1.5(S/100)2] 

where, for the nozzle, £ = £ = a + a ? = 68.2 deg ( i . e . cu = 0) and, for the rotor 

row, ε = I = ß2 + ß = 39.81 + 59.04 = 98.85 deg. Thus, J N = 0.06791 and 

7 = 0.09863 after using the above equation. 
•J R 

From eqn. (i), with w = c sec ß , c = c sec a and h - h = Uc tan a 
o X O ^ X A J L O X A 

1 - ■ [-

[1 + o 

J R s e c 2 ß 3 + J N S e c 2 a 2 - _ 1 

( 2 t a n a 2 ) / 0 

,09863/0.51442 + 0 .06791/0.371421 _ 1 

2x 2.5/0.6 

Γ, 0 . 8 6 5 1 " 1 

= [1 + 03lJ 
: . 7 t t = 90.6% 

From eqn. (ii), with c = c 

% = [ 1 + (0.865 + l ) /8 .334 -1 = 81.7% 

4 . 5 . A gas turbine stage develops 3.36 MW for a mass flow ra te of 27.2 k g / s . The 



42 S .L . DDCON 

stagnation p ressure and stagnation temperature at stage entry a re 772 kPa and 1000K. 

The axial velocity is constant throughout the stage, the gases entering and leaving the 

stage without any absolute swi r l . At nozzle exit the static p ressu re is 482 kPa and 

the flow direction is at 18 deg to the plane of the wheel. Determine the axial 

velocity and degree of reaction for the stage given that the entropy increase in the 

nozzles is 12.9 J/(kg °C). 

Assume that the specific heat at constant p ressure of the gas is 1.148 kj/(kg C) and 

the gas constant is 0.287 kj/(kg C). 

Determine also the total to total efficiency of the stage given that the increase in 

entropy of the gas across the rotor is 2.7 J/(kg C). 

Solution. Referring to the Mollier diagram the nozzle exit velocity c is solved by 

determining T from the isentropic tempera ture-pressure relationship and then 

estimating the temperature difference T - T 9 from the entropy increase across the 

nozzle. Thus, 

TV = T^JpA 
(Y- l ) /v 

2s ο 1 ^ 2 " ο 1 ' 

= 1000(482/772) 0.25 888.9K 

Using the relation Tds = dh - dp/p, at 

constant p res su re , T A s ^ Ah, 

h 2 - h 2s * 

= 

••VT2s 

.' T 

2 
C2 

·*· c o 

T2s<VS2S> = 

1J 

= 

= 

= 

= 

= 

= 

L.47kJ/kg 

<Vh2s>/Cp 

11.47/1.148 

10°C 

10 + 888.9 = 

2Cp<TorT2> 

481.6 m / s 

. 9 x 1 2 . 9 

^ 

898.9K 

2x1148(1000-898 .9) = 2 3 . 2 1 x 1 0 

The axial velocity is easily obtained, 

c = c„ cos a . = 481.6 cos (90-18) 
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= 148.9 m / s 

The stage reaction is defined, eqn. (4.22c), as 

R = 1 - (tan a - t an a )c /(2U) 

which, with a = 0, becomes 

R = 1 - (c /2U) tan a 

The blade speed U is still not determined but can be found from the equation for 

specific work, v iz . , 

AW = Uc _ = Uc tan n y2 x 2 

Λ U = AW/(c tan a ) = (W/m)/(c tan aj 

= 3.36 x 10 / (27.2 x 148.9 x tan 72°) = 269.5 m / s 

/. R = 1 - 148.9 x tan 72°/(2 x 269.5) = 1 - 0.850 

= 0.150 

The total to total efficiency of the stage is 

7« * v [ i + <h2-h2s + h 3 - V / (h o l -h o 3 >] 

The temperature difference T - T = T (s - s )/C and requires the evaluation of 
o öS O O öS p 

T . Now 

1 2 
A W = h o r h o 3 = h

0 r h 3 - 2 C x ' ( a S C 3 = C l = C x > 

• · Τ 3 = T o l - ( A W + | C x 2 > / C p 

= 1000 - (123.5 x 1 0 3 + j x 148.9 2 ) / 1 1 48 = 1 0 0 0 - 1 1 7 . 2 

= 882.8K 

T - T = 8 8 2 . 8 x 2 . 7 / 1 1 4 8 = 2.08°C 
O J S 

• ^ = l / [ l +1.148(10 + 2 . 0 8 ) / 1 2 3 . 5 ] = 1 / ( l +0.1123) 

= 89.9% 

4 . 6 . Derive an approximate expression for the total to total efficiency of a turbine 

stage in t e rms of the enthalpy loss coefficients for the stator and rotor when the 
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absolute velocities at inlet and outlet a re not equal. 

A steam turbine stage of high hub/tip rat io is to receive steam at a stagnation 

p ressu re and temperature of 1.5 MPa and 325 C respect ively. It is designed for a 

blade speed of 200 m / s and the following blade geometry was selected: 

Inlet angle, deg 

Outlet angle, deg 

Space/chord rat io, s/i 

Blade length/axial chord rat io, 

Max. thickness/blade chord 

H/b 

Nozzles 

0 

70.0 

0.42 

2.0 

0.2 

Rotor 

48 

56.25 

-

2.1 

0.2 

The deviation angle of the flow from the rotor row is known to be 3 deg on the 

evidence of cascade tests at the design condition. In the absence of cascade data for 

the nozzle row, the designer estimated the deviation angle from the approximation 

0.19ds/l where Θ is the blade camber in degrees . Assuming the incidence onto the 

nozzles is zero, the incidence onto the rotor 1.04 deg and the axial velocity across 

the stage is constant, determine: 

(i) the axial velocity; 

(ii) the stage reaction and loading factor; 

(iii) the approximate total to total stage efficiency on the basis of Soderberg's 

loss correlation, assuming Reynolds number effects can be ignored; 

(iv) by means of a large steam chart (Mollier diagram) the stagnation 

temperature and p res su re at stage exit. 

Solution. The total to total efficiency of a turbine stage, applicable to the case c 

not equal to c„, is 

7 t t = ^ r h o 3 > / ( h o r h o 3 s s > = AW/(AW + " losses") 

= Vtl+drf-W/Aw] 
Employing the approximations h - h = hQ -h Q ( i . e . this assumes c Q = c ) 

Οό O O S S o o S S O O S S 
and h0 -h Q 3s 3ss h 2 _ h 2 s ' t h e n 
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7tt = 1 / [ l + (h 2 -h 2 e + h3.h 3 e ) /Aw] 

Defining the enthalpy loss coefficients, eqns. (4.8a) and (4.8b), 

h2 ■ h2s = 1 c2 I N 

for the nozzle ( i . e . stator) row, and 

1 2 r 
h 3 - h 3 s = 2 W 3 ^ R 

for the rotor row, the required expression for the efficiency is 

7tt = [̂ «ίΝ^+Γκ^Η"1 (i) 

where AW = h , - h . = U(c . + c 0 ) . ol o3 y2 y3 

(i) The flow directions at inlet and exit of the nozzle and rotor blades a re obtained 

from the blade angles with suitable corrections for the incidence i and deviation S of 

each blade row. At nozzle exit the deviation is 

ξ = 0.19 Qs/i 

= 0 . 1 9 x 7 0 x 0 . 4 2 = 5 . 6 d e g 

Thus, the nozzle exit flow angle is 

a 2 = a 2 " *>N = 7 0 " 5 · 6 = 6 4 - 4 d e S 

For the ro tor , the relat ive flow exit angle is 

β 3 = β 3 " ^R = 5 6 · 2 5 " 3 = 53.25 deg 

and the relat ive flow inlet angle is 

P2 = p 2 + i = 48 + 1.04 = 49.04 deg 

From the velocity diagram, U = c (tan a ? - tan β ), therefore, 

c x = c = U / ( t a n a 2 - t a n β ) = 200/(tan 6 4 . 4 - t a n 49.04) 

= 213.9 m / s 

(ii) The stage reaction is defined, eqn. (4.22a), as 
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R = ( c x / 2 U ) ( t a n ß 3 - t a n ß 2 ) 

= (213.9/400)(tan 53.25 - t a n 49.04) 

= (213.9/400)(l.3392 -1 .1520) 

= 0.10 

The stage loading factor is 

->//= Δνν/U2 = ( w + w J / U = (c /U)(tan β + tan p ) 
y2 y3 ' ' * x' 

(1.152 + 1.3392)213.9/200 

2.664 

= 644° 

βζ= 53-25° 

U= 200 m/s 

(iii) The total to total efficiency of the stage for the case when c , is not equal to c 

is given by eqn. (i) above. The enthalpy loss coefficients for the nozzle and rotor 

a r e evaluated using the analytical simplification of Soderberg's loss correlation, 
9 

eqn. (4.12), Ί£* = 0.04 £ l + 1.5(8/100) J and making suitable corrections for 

blade aspect rat io in each ca se . 

For the nozzle row, at the nominal aspect ratio H/b = 3.0, 

7 * = 0.04 [ l + 1 . 5 x O . 6 4 4 2 ] = 0.06488 

as the flow deflection in the nozzle row, £ = a9 ( i . e . a = 0). 

At aspect rat ios other than the nominal, the enthalpy loss coefficient ζ for nozzles 

-an be found, eqn. (4.13a), 

1 + INI = (1 + Ϊ Ν * ) ( 0 · 9 9 3 + ° · 0 2 1 b/H) 

= (1.06488)(0.993+0.021/2) = 1.06861 
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.·. INI = ° · 0 6 8 6 1 

For the rotor row, at H/b = 3.0, 

Γ * = 0.04 [ l + 1 . 5 x 1.0232] = 0 . 1 0 2 8 

where the flow deflection in the rotor , £ = ß + ß = 102.3 deg. The correction 

for the aspect rat io in the case of a rotor row, eqn. (4.13b), is 

l + 3 R i = ( l + i R * ) ( 0 . 9 7 5 + 0.075 b/H) 

= 1 .1028(0.975+0.075/2 .1) = 1.1146 

·'■ Ï R 1 = ° · 1 1 4 6 

The quantities in eqn. (i) a r e evaluated separately for convenience, i . e . 

c = c sec a = 213.9 sec 64.4° = 495.0 m / s 

/. J c2
2 = 0.06861 x 4 9 5 2 = 16.8 x 103 m 2 / s 2 = 16.8 kj/kg 

w = c sec ß = 213.9 x sec 53.25° = 357.5 m / s 

' T r . - . w 2 = 0 . 1 1 4 6 x 3 5 7 . 5 2 = 14.65 x 103 m 2 / s 2 = 14.65 kj/kg 
" J R 1 3 ° 

AW = y u 2 = 2 . 6 6 4 x 2 0 0 2 = 106.6 kj/kg 

Using eqn. (i), 

η = h +(14 .65 + 16 .8 ) / (2x 106.6)1 " 1 = 1.475"1 

= 87.15% 

(iv) At p = 1 . 5 MPa (15 bar) , T = 325°C, the stagnation enthalpy at entry 

h = 3093.5 kj/kg is obtained (tables). Now 

h o l - h o 3 s s = K r W V t t = A W / 7 « = !°6 .6 /0 .8715 

= 122.3 kj/kg 

; , h 0 = 3093.5 - 122.3 = 2971.2 kj/kg o3ss J / ö 

From the Mollier chart , p = 0.9 MPa (9.0 ba r ) . 

hQ 3 = 3 0 9 3 . 5 - 1 0 6 . 6 = 2986.9 kj/kg 

/ T 0 = 269°C 
• o3 
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Chapter 5 

Axial Flow Compressors 

Note. In problems 5.1 to 5.4 assume that the gas constant R = 287 J/(kg C) and that 

y = 1 . 4 . 

5 . 1 . An axial flow compressor is required to deliver 50 kg/s of air at a stagnation 

p ressu re of 500 kPa. At inlet to the first stage the stagnation p res su re is 100 kPa 

and the stagnation temperature is 23 C. The hub and tip diameters at this location 

a re 0.436 m and 0.728 m . At the mean radius, which is constant through all stages 

of the compressor , the reaction is 0.50 and the absolute air angle at stator exit is 

28.8 deg for all s tages . The speed of the rotor is 8000 r e v / m i n . Determine the 

number of similar stages needed assuming that the polytropic efficiency is 0.89 and 

that the axial velocity at the mean radius is constant through the stages and equal to 

1.05 times the average axial velocity. 

Solution. The number of stages is determined from the stagnation temperature r i s e 

per stage Δ Τ , obtained from the specific work done equation and velocity diagram, 

and the overall stagnation temperature r i se through the compressor , T - T A, 

obtained from the overall stagnation pressure ra t io , p /p . , together with the 

polytropic efficiency, ""H . The number of identical compressor stages, n, is 

obtained to the neares t integer from 

Π = <ToB - Τ ο Α > / Δ Τ ο « 

The specific work done by the rotor on the a i r , eqn. (5.1), is 

AW = h - h Λ = C A T = U(c - c . ) (ii) 
o2 ol p o x y2 y r x ' 

Referring to the mean radius velocity diagram and noticing the velocity triangles a re 

symmetrical for a reaction of 0.5 ( i . e . β = α ), 

c ^ - c Ί = U - 2 c tan a, y2 y l x 1 

and, from eqn. (ii) 
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ΔΤ = U(U - 2c tan a, )/C o x x 1 " r (iii) 

The average axial velocity c is obtained from equation of continuity, m = p A c , 

the density being determined with the incompressible flow approximation 

P = P o i = p o i / ( R T o i > · T h u s ' 
P o l = P o l ^ ^ l ^ = 105/(287 x 296) = 1.177 kg /m 3 

c x = 4 m / [ P o l K ( d t l
2 - d h l

2 ) ] 

= 4 x 5 0 / [ r r x 1.177(0.7282 - 0 . 4 3 6 2 ) ] 

= 1 5 9 . 1 m / s 

The axial velocity at the mean radius is 

c = 1.05 x c" = 167.1 m / s x x 

The mean blade speed is 

U = ?TNd /60 = 1TN(cL _ + d J / 1 2 0 m hl t l 

= t r x 8000(0.436+0.728)/120 = 243.8 m / s 

Mean radius 
velocity diagram 

U =243-8 m / s 

Polytropic efficiency for a small compressor stage is defined, eqn. (2.31), as 

y = dh . s /dh = v d p / C p d T = <Y- l )Td / ( γ ρ α Τ ) 

after using the perfect gas relat ions, pv = RT and C = V R / ( Y - 1). 

.'. T = constant x p ' Y " ''^Vp (iv) 

As the stages a r e s imilar with identical velocities, stagnation conditions can be used 
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in eqn. (iv). Thus, ac ross the whole 

compressor , 

T / T = (p /p / Y " 1 ) / ^ 
OB' oA ψ ο Β / Ρ ο Α ; 

1 / ( 3 . 5 x 0 . 8 9 ) 

1/3.115 
= 1.6764 

0 .6764x 296 

= 200.2°C 

# T - T "· oB oA 

rOB 

O B s ^ 

j 
H"i. 

Î 

/ 1 
/ dh 

! 

OA 

From eqn. (iii), 

ΔΤ ο = 2 4 3 . 8 ( 2 4 3 . 8 - 2 x 1 6 7 . 1 

x tan 28.8°) 

= 14.57°C 

Using eqn. (i) 

n = 200.2/14.57 = 13.74 

Λ The number of stages required is 14. 

5 .2 . Derive an expression for the degree of reaction of an axial compressor stage 

in te rms of the flow angles relat ive to the rotor and the flow coefficient. 

Data obtained from early cascade tes ts suggested that the limit of efficient working 

of an axial-flow compressor stage occurred when 

(i) a relat ive Mach number of 0.7 onto the rotor is reached; 

(ii) the flow coefficient is 0 .5 ; 

(iii) the relat ive flow angle at rotor outlet is 30 deg measured from the axial 

direction; 

(iv) the stage reaction is 50%. 

Find the limiting stagnation temperature r i s e which would be obtained in the first 

stage of an axial compressor working under the above conditions and compressing air 

at an inlet stagnation temperature of 289 K. Assume the axial velocity is constant 

across the s tage. 

Solution. The degree of reaction of an axial flow compressor stage is defined as the 
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static enthalpy r i s e in the rotor divided by the static enthalpy r i s e in the stage, i . e . 

R = (h^hp/^-hp (i) 

As the relat ive stagnation enthalpy is constant in the rotor , then 

h - h = — (w - w ) 
2 1 2 V 1 2 ' 

Assuming a normal stage ( i . e . c = c ), then 
JL o 

V h i h - h . = AW = U(c 0 - c . ) o3 ol y2 y l ' 

Substituting into eqn. (i) 

R = ( w ^ - w ^ / ^ U i c ^ - c ^ ) ] 

= (w y l + w y 2 ) ( w y l - W y 2 ) / [ 2 U ( c y 2 - c y l ) ] (ii) 

where it is assumed that c is constant across the s tage. From the velocity 

triangles for the compressor stage, c = U - w 0 and c , = U - w , so that 
y2 y2 y l yl 

Cy2 " C yl = Wyl " Wy2# S ^ P ^ f y ^ g e c l n · (ü)> 

R = (w y l + Wy2)/(2U) = P i t a n ß ^ t a n ß ^ (iii) 

where the flow coefficient 0 = c / U . 
x 

The data given in the problem enables the velocity diagram shape to be drawn 

Ar 30' 

immediately. The magnitudes of the velocity vectors must be calculated from the 

information concerning maximum relat ive Mach number. From the velocity 

diagram the maximum relative velocity is wi and the corresponding relat ive Mach 
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number 

v2 
M r l = W i / ( Y R T ! ) ( iv) 

2 
where the static temperature T = T - c / (2C ). It is most convenient to solve in 

te rms of the axial velocity c . Writing w = c / cos ß and c = c /cos a 
X -L X J- J. X J. 

= c /0 .866 , eqn. (iv) gives, 

2 2 
w. = v R M , T , 1 r l 1 

= v R M r l
2 [ T o l - C l

2 / ( 2 C p ) ] 

c x
2 = v R M r l

2 [ T o l - C x
2 / ( 1 . 5 C p ) ] c o s 2

P l (v) 

Using the equation (iii), ß can be determined as follows, 

tan ß = 2 R / 0 - t a n ß 

= 2 - t a n 30° = 1.4227 

.·. p = 54.9 deg 

Substituting values into eqn. (v), 

c 
X 

'„ C 

= 1 . 4 x 2 0 7 x 1 

= 1.882x 104 

= 134.3 m / s 

J.49 289 - c 

- 0.0432 c 2 

X 

The stagnation temperature r i s e in the stage Δ Τ can now be immediately 

determined using the equation for the specific work, 

AW = C A T = U(c - c ,) = U(w . -w J p o y2 yl yl y2 

= c x ( t a n ß ^ t a n ß ^ / ß 

Λ Δ Τ ο = c ^ t a n ß ^ t a n ß ^ A ß C p ) 

= 134.32(tan 54.9° - tan 30°)/(0·5 x 1005) 

= 30.35°C 

5 . 3 . Each stage of an axial flow compressor is of 0.5 reaction, has the same mean 

blade speed and the same flow outlet angle of 30 deg relative to the blades. The 
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mean flow coefficient is constant for all stages at 0 . 5 . At entry to the first stage 

the stagnation temperature is 278 K, the stagnation p ressure 101.3 kPa, the static 
2 

p res su re is 87.3 kPa and the flow area 0.372 m . Using compressible flow analysis 

determine the axial velocity and the mass flow r a t e . 

Determine also the shaft power needed to drive the compressor when there a re 6 

stages and the mechanical efficiency is 0 .99. 

Solution. It is tactitly assumed that the flow preceding the first stage is deflected by 

inlet guide vanes to give an absolute flow angle a of 30 deg, the same as all the 

other s tages . The absolute inlet flow velocity c is determined from the stagnation 

enthalpy definition 
1 2 

h o l = h l + 2 C l 

• • c i 2 = 2 ν τ ο Γ τ ι > 
where C = v R / ( y - l ) , and the isentropic tempera ture -pressure relationship, 

V T o l = <? ΐ /Ρο1> ( Ύ " 1 ) Α 

= (87.3/101.3)1/3·5 = 0.9584 

.*. c , 2 = 2C T α - T / T ,) = 2 x 1 0 0 5 x 2 7 8 ( 1 - 0 . 9 5 8 4 ) 1 p ol 1 ol 

= 2.325 x 104 

c = 152.5 m / s 

Thus, the axial velocity is 

c = c, cos αΊ = 152.5 cos 30 x 1 1 

= 132.1 m / s 

Using the equation of continuity, the mass flow ra te is 

m = p, A_ c r l 1 x 

where p = p /(RT^) = 87.3 x 103/(287 x 0.9584 x 278) 

= 1.1417 kg /m 3 

Λ m = 1.1417 x 0.372 x 132.1 

= 56.1 kg/s 
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The specific work done on the gas per stage is 

AW = U(c 0 - c .) = U(U-2c t a n a j y2 y l ' x Γ 

= U2(l - 2 0 t a n a ) 

as the velocity triangles a re similar for a reaction of 0 . 5 . 

.*. AW = (2 x 132.1)2 (1 - tan 30°) 

= 29.5 kj/kg 

The shaft power needed to drive the compressor (including mechanical losses) is 

W = nm ÄW/w 

where n is the number of stages and Ύ) the mechanical efficiency. Thus, 

W = 6 x 56.1 x 29.5 x 103 /0 .99 c 

= 10.03 MW 

5.4 . A sixteen-stage axial flow compressor is to have a p ressure ratio of 6 .3 . 

Tests have shown that a stage total to total efficiency of 0.9 can be obtained for each 

of the first six stages and 0.89 for each of the remaining ten s tages . Assuming 

constant work done in each stage and similar stages find the compressor overall 

total to total efficiency. For a mass flow ra te of 40 kg/s determine the power 

required by the compressor . Assume an inlet total temperature of 288 K. 

Solution. The sketch shows the overall 

compressor process in the form of a Mollier 

diagram. The overall stagnation pressure 

rat io, p „/p , , is the product of the pressure 
oB ol 

ratio for the first six stages, p A /p , , and the b *oA *ol 
p ressure ratio for the remaining ten stages, 

PoB/ PoA· Le-

PoB/ Pol = <PoA/Pol)(PoB/PoA> = 6 " 3 « 

It is convenient to assume that the respective 

stage efficiencies of these two groups of 

OBss 

OAs 
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stages is equal to the polytropic ( i . e . infinites imally small stage) efficiency of each 

group. Using eqn. (2.33), the stagnation p ressure rat ios in t e rms of the actual 

stagnation temperatures and polytropic efficiencies a re 

P A / P I = <T J T
 Λ)^Ρ/(Ί'λ) = (T . / T J 3 ' 1 5 (ii) 

^oA'^ol oA ol oA ol 
with η = 0 . 9 and γ = 1 . 4 , and 

POB/POA = ( W V ^ " 1 ' = <ΤοΒ/ΤοΛ>3·115 (iii) 

with y = 0.89 and y = 1 . 4 . 

The work done in each stage is assumed to be constant so that the stagnation 

temperature r i s e for each stage Δ Τ is constant (C is constant). For convenience 

put x = Δ Τ / T . The two temperature ra t ios can now be written as 

T o A / T o l 

T o B / T o A 

6 ΔΤ / T , + 1 = 1 + 6x o ol 

io Δ Τ / T A + i 
o oA 

1 + 10x/( l+6x) 

Substituting eqns. (ii) and (iii) into eqn. (i) and using the above temperature ra t ios , 

6.3 = (l + 6 x ) 3 , 1 5 . [ l + 1 0 x / ( l + 6 x ) ] 3 · 1 1 5 

= (1 + 6 x ) 3 · 1 5 . [(1 + I6x)/(1+ 6x)] 3 · 1 1 5 

= (1 + 16x) . (1+ 6x) 

The unknown x cannot be solved explicitly but can be determined quite easily by a 

process of t r ia l and e r r o r , i . e . 

X 

(l + 1 6 x ) 3 · 1 1 5 

( l + 6 x ) 0 · 0 3 5 

RHS 

0.049 

6.0687 

1.0091 

6.1237 

0.050 

6.2398 

1.0092 

6.2974 

0.051 

6.4142 

1.0094 

6.4744 

By plotting these values the correc t value of x = 0.05002 corresponding to a p ressure 

rat io of 6 .3 . 

Referring again to the Mollier diagram, the overall total to total efficiency of the 

compressor is 
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7tt ( T o B s s - T o l > / ( T o B - T o l > 
x(Y-l)/Y 

■'IV^OR-V oB o r 

where T _ - T . oB ol 

= ΚΒ
/Ρο1> 

16 Δ Τ = I6x T 

.·.?« = KB/P„/" I ) / Y -0 /<^) 
= [ 6 . 3 1 / 3 ' 5 - l ] / ( l 6 x 0.05002) 

= 0.6919/0.8003 = 86.45% 

The power required by the compressor (excluding mechanical losses) is given by, 

W m C (T _ - T , ) p oB ol 

m C η Δ Τ 
P o 

= m C n x T . p ol 

= 4 0 x 1 0 0 5 x 1 6 x 0 . 0 5 0 0 2 x 2 8 8 

= 9.266 MW 

5 . 5 . At a particular operating condition an axial flow compressor has a reaction of 
2 

0.6, a flow coefficient of 0.5 and a stage loading, defined as A h /U of 0 .35 . If 

the flow exit angles for each blade row may be assumed to remain unchanged when 

the mass flow is throttled, determine the reaction of the stage and the stage loading 

when the air flow is reduced by 10% at constant blade speed. Sketch the velocity 

triangles for the two conditions. 

Comment upon the likely behaviour of the flow when further reductions in air mass 

flow a re made. 

Solution. The velocity diagram shows 

the velocity vectors for the two 

conditions (the broken lines denoting 

the reduced mass flow condition). It 

is important to notice that it is the flow 

angle relative to each blade row of the 

stage which is assumed to remain the 

same . Cascade test measurements 

of compressor blade rows indicate that 

this assumption is only approximately 
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correc t for lightly loaded blades with a small space/chord r a t io . 

The stage loading factor is 

Y = Aho/U
2 = AW/U2 = ( c y 2 - c y l ) / U = (w y l - w y 2 ) / U 

= 0 ( t a n ß 1 " t a n ß 2 ) (i) 

The stage reaction ratio is defined, eqn. (5.11), as 

R = 0 tan p = 0(tan ß + tan (3 )/2 (ii) 

Solving eqns. (i) and (ii) for tan β and tan β 

t a n ß 2 = ( R + V / 2 ) / 0 

t a n ß 2 = (R - V / 2 ) / ( ï 

At the initial flow coefficient, 0 = 0 .5 , and with R = 0.6, 'ψ- 0 .35, the relat ive flow 

angles a re 

- l i β = tan" [ (0 .6 + 0 .175) /0 .5 ] = 57.17 deg 

β = ίαη^Γ ίΟ.ύ - 0 .175) /0 .5 ] = 40.36 deg 

From the velocity triangles 

tan a = 1/0 - tan ß (iii) 

t a n a 2 = 1/β - tan ß 2 (iv) 

and, at the initial flow coefficient, the absolute flow angles a r e 

-If a = tan" ["2 - 1.55] = 24.22 deg 

a = tan" 1 [ 2 - Ο.85] = 49.0 deg 

The flow angles a and ß a re assumed to be constant with variation of the flow 

coefficient. Setting the stage loading factor and reaction in t e rms of these fixed 

angles, eqn. (i) can be rewrit ten 

ψ= 1 - 0(tan a + tan β ) = 1 - 0 ( 0 . 4 5 + 0 . 8 5 ) 

= 1 - 1.3 0 
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and eqn. (ii) becomes 

R = 0.5 - 0 ( t a n a - tan ß )/2 = 0.5(1 + 0.40) 

after using eqns. (iii) and (iv). Thus, at the reduced flow ra t e , 0 = 0 . 9 x 0.5 = 0 . 4 5 

and 

R = 0.59, V = 0.415 

Further reduction of the flow ra te would eventually lead to the condition of blade 

stall , probably in the rotor row as this is more heavily loaded than the stator 

( i . e . R > 0.5), with a rapid increase in total p ressure losses as stall is approached. 

The assumption regarding constant flow angle relat ive to each blade row would also 

fail to hold as stall implies flow separation off the blade suction surface. 

5 .6 . The proposed design of a compressor rotor blade row is for 59 blades with a 

circular a rc camber l ine. At the mean radius of 0.254 m the blades a re specified 

with a camber of 30 deg, a stagger of 40 deg and a chord length of 30 mm. 

Determine, using Howell's correlation method, the nominal outlet angle, the 

nominal deviation and the nominal inlet angle. The tangent difference approximation, 

proposed by Howell for nominal conditions (0 ^ a * ^ 40 ), can be used: 

tan a* - tan a * = 1.55/(1 + 1.5 s/l). 

Determine the nominal lift coefficient given that the blade drag coefficient C = 0.017. 

Using the data for relat ive deflection given in Fig. 3.17 determine the flow outlet 

angle and lift coefficient when the incidence i = 1.8 deg. Assume that the drag 

coefficient is unchanged from the previous value. . 

Solution. The nominal deviation £ * can be determined directly from the blade 

geometry and space/chord rat io sß using eqns. (3.39) and (3.40), v iz . , 
l/2 

S* = m 9 ( s / / ) 

where Θ = a ' - a ' is the blade camber, m = 0.23 + a */500, a ' , a ' a re the blade 

inlet and outlet angles respectively and a * = a ' +8 * i s the nominal flow outlet angle. 

For blades with a circular a rc camber line the blade angles a re 

α ' = ξ + 9/2 = 40 + 30/2 = 55 deg 
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α = ξ - 9/2 = 40 - 30/2 = 25 deg 

where ξ is the stagger angle. 

The space/chord rat io at the mean radius is , 

8/1 = 2 i r r / ( Z i ) 

= 2TTx 0 . 2 5 4 / ( 5 9 x 0 . 0 3 ) 

= 0.9017 

59 

N.B. Stator blade 
notation 

Hence, using Howell's correlation, the nominal flow outlet angle is 

a 2 ' + S * 25 + (0.23 + a */500)30(0.9017) 72 

= 2 5 + 6.552 + 0 . 0 5 7 a * 

/ # a * = 31.55/0.943 = 33.46 deg 

S* = *2* - a 2 ' = 3 3 . 4 6 - 2 5 

= 8.46 deg 

Using Howell's tangent difference approximation 

tan a * = tan a* + 1.55/(1 + 1.5 s/i ) 

= 0.6609 + 1.55/(1 + 1 .5x0 .9017) 

= 1.320 

= 52.85 deg 

Thus, the nominal incidence and nominal deflection angles a r e 

i* = a * - ^ ' = 5 2 . 8 5 - 5 5 = -2.15 deg 

£* = α χ * - α 2 * = 5 2 . 8 5 - 3 3 . 4 6 = 19.39 deg 

From eqn. (3.18), the lift coefficient at the nominal condition is 

CT = 2 (s /£ )cos a * (tan a * - t a n a * ) - C ^ tan a * L m 1 2 ' D m 

tan am* = (tan a * + tan a * ) / 2 = (1.32 + 0.6609)/2 = 0.9905 

a * = 44.73 deg m ö 

cos a * = 0.7105 
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* C, 2 x 0.9017 x 0.7105 x 0.659 - 0.017 x 0.9905 

= 0 . 8 4 4 4 - 0 . 0 1 6 8 = 0.8276 

In Fig. 3.17 (see sketch) the relative deflection e/ε 

is expressed as a function of the relat ive incidence 

( i - i * ) / £ * . Using this curve the deflection ε at 

any arbi t rary incidence i (within certain limits) can 

be found provided i* and ε * a re known. At the 

given incidence i = 1.8 deg, 

( i - i*) /6* = (1.8 + 2.15)/19.39 = 0.2037 

. ' .£/€* = 1 . 1 5 so that ε = α - a = 22.3 deg 

Hence, the flow directions a re 

a = i + a ' = 1 . 8 + 5 5 = 56.8 deg 

a = a - £ = 56.8 - 22.3 = 34.5 deg 

and the deviation angle 

£ = α 2 ~ α 2 = 3 4 . 5 - 2 5 = 9.5 deg ( c f . S* = 8.46 deg) 

The lift coefficient at i = 1.8 deg can now be calculated with tan a = 1.5282, 

t a n a =0 .6873 , t a n a =1.1077, a = 47.93 deg and cos a = 0 . 6 7 0 1 . 2 m m & m 

.'. C = 2 x 0 . 9 0 1 x 0 . 6 7 0 1 x 0 . 8 4 0 9 - 0 . 0 1 7 x 1 . 1 0 7 7 

= 0.9974 

5 .7 . The preliminary design of an axial flow compressor is to be based upon a 

simplified consideration of the mean diameter conditions. Suppose that the stage 

character is t ics of a repeating stage of such a design a re as follows: 

Stagnation temperature 

Reaction rat io 

Flow coefficient 

Blade speed 

r i s e 25°C 

0.6 

0.5 

275 m / s 

The gas compressed is a i r with a specific heat at constant p ressu re of 1.005 k j / 
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(kg C). Assuming constant axial velocity ac ross the stage and equal absolute 

velocities at inlet and outlet, determine the relat ive flow angles for the ro to r . 

Physical limitations for this compressor dictate that the space/chord rat io is unity 

at the mean diameter . Using Howell's correlation method, determine a suitable 

camber at the mid-height of the rotor blades given that the incidence angle is ze ro . 

Use the tangent difference approximation 

tan ß * - t a n ß * = 1.55/(1 + 1.5 s / £ ) 

for nominal conditions and the data of Fig . 3.17 for finding the design deflection. 

(Hint. Use several t r ial values of Θ to complete the solution.) 

Solution. It is usually most convenient to solve the rotor relat ive flow angles ß and 

ß in t e rms of the stage loading factor γ», the stage reaction R and the flow coefficient 

0. The stage loading factor is defined, eqn. (5.14a), as 

- y = A W / u 2 = c (T - T ) / u 2 

p oo ol P 
= 1 0 0 5 x 2 5 / 2 7 5 2 = 0.3322 (i) 

Referring to the velocity diagram, Fig. 5.2 (or see ear l ie r solutions), and with 

AW = U ( c y 2 - c y l ) = U<w y l -wy 2 >, 

<ψ = ( w y l - W y 2 ) / U = P i t a n ß j - t a n ß ^ (ia) 

where 0 = c / U . 

x 

The reaction of a compressor stage, eqn. (5.11), is 

R = 0 t a n ß m = ß ( t a n ß 1 + t a n ß 2 ) / 2 (ii) 
Combining eqns. (ia) and (ii) 

tan ß = ( R + v / 2 ) / 0 = (0.6 + 0.3322/2)/0.5 = 1.532 

Thus, 

tan ß 2 = (R - V / 2 ) / 0 = (0.6 - 0 .3322/2)/0.5 = 0.8678 

ß = 56.87 deg, ß2 = 40.95 deg 

At zero incidence the blade inlet angle β ' = β =56 .87 . The blade camber 
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9 = P l " P2 = ß l " ( ( 3 2 + S ^ = £ + * ' W h e r e £ = P l " β 2 = 1 5 # 9 2 d 6 g i S t h e Ü U i d 

deflection and S is the deviation angle. Thus, as S> 0, then θ > £ =15.92 deg. 

A suitable value for the camber angle Θ may be obtained by a process of t r ial and 

e r ro r in which several values of Θ a re selected and corresponding values of ε a re 

determined. Values of £ can be found from Howell*s curve of relative deflection 

ε /ε* against relative incidence ( i - i * ) / s * , Fig . 3.17, and this means that values of 

£* and i* must be estimated for each value of Θ used. 

To simplify the calculation procedure values of the nominal deviation have been 
1/2 

estimated from Howell's expression S* = m 0 ( s / £ ) with m = constant = 0.26 

ra ther than the more complicated form of m, eqn. (3.40a), used in the solution of the 

previous problem. Noting that s// is unity, 

6* = P x * -P 2 * = P l '^2+6*^ = Q~S* = 9 " 0 · 2 6 9 

= 0.74Θ 

ΛΡ2* = P2* -e * = p - 0.74Θ = 56.87 - 0.74Θ 

Using the tangent difference approximation, 

tan p * = tan p2* + 1 . 5 5 / 2 . 5 = tan(56.87 - 0.74Θ) + 0.62. 

A tabular form of solution is desirable as follows: 

9° 

S* = 0 . 2 6 θ 

*2 = β 1 - θ 

P2* =ß2' + Γ 
tan p2* 

tan p * 

ß l* 
i* = Px* - ß / 

ε* = ßf - P2* 

(i-i*)/£* 
S/S* (graph) 1 

20 

5.2 

36.87 

42.07 

0.9026 

1.5226 

56.7 

-0.166 

14.63 

0.0113 

1.009 

22.5 

5.85 

34.37 

40.22 

0.8457 

1.4657 

55.7 

-1.174 

15.48 

0.0758 

1.060 

25 

6.5 

31.37 

38.37 

0.7917 

1.4117 

54.69 

-2.182 

16.32 

0.1337 

1.105 
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θ 

ε 

20 22.5 25 

14.76 16.4 18.03 

By plotting values of Θ against ε (or by numerical interpolation), at £ = 15.92 deg 

the camber is 

Θ = 21.76 deg 

It is worth commenting that Howell recommended Θ to lie in the range 

1.2E* < Θ < 1.8£* 

which for £* ^ 15 deg gives 

18° ^ Θ < 27° 

i . e . the value of Θ determined is satisfactory. 
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Chapter 6 

Three-dimensional Flows in Axial Turbomachines 

6 . 1 . Derive the radial equilibrium equation for an incompressible fluid flowing with 

axisymmetric swirl through an annular duct. 

Air leaves the inlet guide vanes of an axial flow compressor in radial equilibrium 

and with a free-vortex tangential velocity distribution. The absolute static p ressure 

and static temperature at the hub, radius 0.3 m, a re 94.5 kPa and 293 K respectively. 

At the casing, radius 0.4 m, the absolute static p res su re is 96.5 kPa. Calculate the 

flow angles at exit from the vanes at the hub and casing when the inlet absolute 

stagnation p res su re is 101.3 kPa. Assume the fluid to be inviscid and incompress-

ible. (Take R = 0.287 kJ/(kg°C) for a i r . ) 

Solution. A detailed derivation of the radial equilibrium equation is presented in 

FMTT2 and so only a brief outline of the important equations (for an incompressible 

flow) is given h e r e . 

For a fluid element which is in radial equilibrium (c = 0), rotating about an axis at 

radius r with a tangential velocity component cQ, the static p res su re gradient is 
2 W 

dp °9 
d ? = p — W 

The total p res su re p in an incompressible fluid flow is 

p o = ρ + | ρ ° 2 = p + i p ( c
x

2 + c
e

2 ) ( i i ) 

where c is the axial component of the velocity c . Differentiating eqn. (ii) with 

respect to r and combining the resul t with eqn. (i), the required form of the radial 

equilibrium equation is found, v iz . , 

i Φ d c d cû CÛ
 d c CÛ A 

- - — = c - — + c„ - — + — = c - — + — — (rc„) (m) p dr x dr Θ dr r x d r r dr Θ' 

The inlet guide vanes of the axial flow compressor deflect the incoming axial flow 

away from the meridional plane imparting a free-vortex swirl to the flow. For a 

free-vortex, rcn = K = constant. Substituting for CQ in eqn. (i), 
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1 dp K2 

p d 7 = - ( 1 V ) 

r r 

After integrating eqn. (iv) and putting limits at the hub and tip, 

FVÎV = Tp2 -A) (v) 

r
h

 r
t 

The boundary values given a re that at 

r = r = 0.4 m, p = p = 96.5 kPa, and at 
r = r u = 0.3 m, p = p u = 94.5 kPa, T = T u = 293 K. h h n 

Solving for p and K 

p = P h / (RT h ) = 94.5 x 10 3 / (287x 293) = 1.124 kg /m 3 

K2 = I ^ t ' P ^ = 2 ( 9 6 . 5 - 9 4 . 5 ) x l 0 3
 = ? 3 2 χ 

p (l/rh
2-l/rt

2) 1 A U ( l / 0 . 3 2 - l / 0 . 4 2 ) 

.'. K = r e = 27.06 m 2 / s 

Thus, for any radius r the magnitude of c can be found. To determine the flow 

angles, c is needed and this can be found with eqn. (ii), 

c x
2 = 2 ( p o - p ) / p - ( K / r ) 2 

= 2(101.3 - 94.5) x 103/1.124 - 7 3 2 . 1 / 0 . 3 2 = 3 9 6 5 

• c = 62.97 m / s = constant for all radi i . . χ / 

t a n a h : 

tan a t 

- Ü2Ü. : 
c 

X 

c 
X 

27.06 
62.97 x 0.3 

27.06 
62.97 x 0.4 

= 1.432 

= 1.074 

Thus, the flow angles at the hub and tip a r e , respectively, 

o ,„ ^ o 
t 

CL = 55.08 , α̂  = 47.05 

6 .2 . A gas turbine stage has an initial absolute p ressu re of 350 kPa and a 
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temperature of 565°C with negligible initial velocity. At the mean radius, 0.36 m, 

conditions a r e as follows: 

Nozzle exit flow angle 68 deg 

Nozzle exit absolute static p ressu re 207 kPa 

Stage reaction 0.2 

Determine the flow coefficient and stage loading factor at the mean radius and the 

reaction at the hub, radius 0.31 m, at the design speed of 8000 rev/min, given that 

the stage is to have a free vortex swirl at this speed. You may assume that losses 

a re absent. Comment upon the resul ts you obtain. 

(Take C =1 .148 kJ/(kg°C) and γ = 1.33) 

Solution. Sufficient data a r e given to solve the mean radius velocity triangles from 

which the flow coefficient and stage loading factors a re obtained. 

At r = r = 0.36 m, a0 = 68 deg, p 0 = 207 kPa, R = 0.2, T - = T 0 = 838 K and m 2 ö ^2 ol o2 
p = p =350 kPa, assuming adiabatic frictionless nozzle flow. Since 

h o 2 = h 2 + I C 2 2 > 

C22 = 2 C p ( T o 2 - T 2 > 

2 x 1148 x 838 [l - ( 20 7 /3 5 0 ) 0 , 2 4 8 ] = 23.51 x 104 

c = 484.9 m / s 

The mean blade speed is 

U = (2trN/60)r = (2 ΤΓ x 8000/60)0.36 

= 301.6 m / s 

Hence, the mean flow coefficient is 

φ = c /U = c 0 cos aJU 
m x m 2 2 m 

= 484.9 x cos 68°/301.6 

0 = 0.6023 
m 

The stage reaction is defined as 
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R = 

1 - R = 

V h 3 
V h 3 

h 2 - h 3 
h - h ol o3 

(if C j = c3) 

h - h - h + h ol o3 2 3 
h i " h Q ol o3 

2 2 
C2 " C 3 

2 U ( c ö 2 + c Q 3 ) 

c — c 
Θ2 °Θ3 

2U (i) 

At the mean radius, 

c n - c n o = 2U ( 1 - R ) = 2 x 3 0 1 . 6 x 0 . 8 = 482.6 m / s , Θ2 Θ3 m m 

c = c sin a = 484.9 x sin 68 = 449.6 m / s 

~Θ3 
-33.0 m / s 

The stage loading factor at the mean radius is 

2 
m ' m 

1.381 

V m = * W / U
m ~ = < C 9 2 + C 9 3 ) / U m = ( 4 4 9 . 6 - 3 3 ) / 3 0 1 . 6 

■·■£ m 

From eqn. (i) above, the reaction lV^*2= 6 8 

at any radius is 

R = i-fcw-'W*21» 

where, for a free-vortex, 

C02 = K 2 ^ r ' °Θ3 = K3/ÎT a n d t h e 

blade speed U = J l r . 

Substituting for cQ , cQ and U 

R = 1 - k / ( r / r ) m 
Velocity triangles at mean radius 

where k = (K - K0)/(2 Λ r ) 
2 3 m 

Solving for k with R = 0 . 2 a t r = r 

R - 1 - 0 . 8 / ( r / r ) 2 

The reaction at the hub, r = r , = 0 . 3 1 m, is 
h 

Ru = 1 - 0 .8 /0 .861 h 
- - 0 . 0 7 9 
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The negative reaction would imply that diffusion of the flow occurs in the rotor row 

( i . e . w < w ) at the root . For a turbine blade row, flow diffusion resul ts in poor 

efficiency caused by large total p ressu re lo s ses . A poor flow distribution will 

resul t and this can adversely affect the performance of any subsequent s tages . 

Turbine designers always aim for a positive root reaction to avoid this problem. 

6 . 3 . Gas enters the nozzles of an axial flow turbine stage with uniform total 

p ressu re at a uniform velocity c in the axial direction and leaves the nozzles at a 

constant flow angle a to the axial direction. The absolute flow leaving the rotor c 

is completely axial at all r ad i i . 

Using radial equilibrium theory and assuming no losses in total p ressure show that 

V rrr < C 3 2 - C 1 2 ) / 2 = U m C 9 m 2 

2 cos a η 

where U is the mean blade speed m ^ 
cft ? is the tangential velocity component at nozzle exit at the mean radius 

r = r m 

(Note: The approximation c = c at r = r is used to derive the above expression.) 

Solution. This problem and the one following a r e both examples of the so-called 

'direct problem' in which the flow angle is specified as some function of radius and 

the velocity component distributions c (r) and c (r) a r e to be solved. 
X H 

In this question the essential idea to grasp is that as a resul t of the specific work 

variation with radius , the total p ressu re at stage outlet p „ is also non-uniform. 

The equation for specific work done by a turbine stage, eqn. (4.2), applied to an 

incompressible, frictionless flow is 

A W = ( Po2-Po3>/P = frol-P«^«» = U C 92 ( i ) 

where p , = p , U p c , 2 and p , = P , + i p c 2 Noting that with no swirl in the ol 1 2 1 οό ό 2 3 

flow at stage inlet and outlet, dp/dr = 0, and both p and p have constant values . 

Thus, from eqn. (i), 

U C 9 2 = ! < C l 2 - C 3 2 > + k < U ) 
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where k = (p - p Q ) / p . From eqn. (6.22) 

c 92 / r \ - S Ü l 2 a 2 
c 9m2 "(ζ)" 

(a similar derivation of this equation is given in the solution of Q.6 .4) , 

(iii) • U C S2 = _r_ ^ Θ 2 _ / _ ^ \ C O S 

m 0m2 m Θπι2 V m / 

2 
Q2 

Substituting eqn. (iii) into eqn. (ii), 

c o s a T O O 

u c μ_) 2 = i ( C l
2 - . 2 ) + k 

m 0m2 \ r y 2 1 3 v m7 

Noting that c, = c„ at r = r , the constant k = U οΛ 0 . 0 1 3 m m 9m2 

9 9 Γ / \ C 0 S Q9l 

< c 3 - c > = Umcem2 l·" ( f 
L x m7 J 

Hence, 

6 .4 . Gas leaves an untwisted turbine nozzle at an angle a to the axial direction and 

in radial equilibrium. Show that the variation in axial velocity from root to tip, 

assuming total p res su re is constant, is given by 
. 2 sin a _ _ c r = constant. x 

Determine the axial velocity at a radius of 0.6 m when the axial velocity is 100 m / s 

at a radius of 0.3 m . The outlet angle a is 45 deg. 

1 2 Solution. In an incompressible flow the total p ressu re i s p = p + — p c . 

Differentiating this expression with respect to r and noting that p is assumed to be 

constant 

1 dp x dc 
- -r*- + C — = 0 (l) 
p dr dr v ' 

For a swirling flow in radial equilibrium 
2 

1 dp C0 
— A = (U) 

p dr r x ' 

Combining equations (i) and (ii), 
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2 

° θ M d c n / x 
+ c — = 0 (m) 

r dr ' 
which is another form of the radial equilibrium equation. Noting that c = c tan a 

H X 

and c = c sec a, substitution into eqn. (iii) gives, 

2 c dc x 2 x 2 tan a + c —— sec a = 0 r x dr 

After some simplification and re-ar rangement to separate the variables, 

d C x . 2 dr = - s i n a — c r 
x 

which, for constant flow angle a, can be immediately integrated to give 
. 2 sin a c r = constant x 

The numerical par t is easily solved by direct substitution. At r = 0.6 m and with 

sin a = 0.5 

c = 100 (0 .3 /0 .6 ) 0 , 5 

= 70.7 m / s 

6 .5 . The flow at the entrance and exit of an axial flow compressor rotor is in radial 

equilibrium. The distributions of the tangential components of absolute velocity 

with radius a r e : 

c = ar - b / r , before the rotor, 

c = ar + b / r , after the rotor , 

where a and b a re constants. What is the variation of work done with radius? 

Deduce expressions for the axial velocity distributions before and after the rotor , 

assuming incompressible flow theory and that the radial gradient of stagnation 

p re s su re is z e r o . 

2 
At the mean radius , r = 0.3 m, the stage loading coefficient, ιμ = AW/U is 0 .3 , 

the reaction rat io is 0.5 and the mean axial velocity is 150 m / s . The rotor speed is 

7640 r ev /min . Determine the rotor flow inlet and outlet angles at a radius of 0 .24m 

given that the hub/tip rat io is 0 . 5 . Assume that at the mean radius the axial velocity 
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remains unchanged (c = c at r = 0.3 m) . 

(Note: AW is the specific work and U the blade tip speed.) 

Solution. The specific work done on the gas, from eqn. (5.1), is 

A W = U < c 92 - C
e i> 

Substituting for the blade speed U = i i r and the tangential velocity components 

AW = A r ( 2 b / r ) = 2bSl = constant. 

Thus, the work done is constant with rad ius . Note that for a uniform stagnation 

p re s su re at ro tor inlet and AW = constant, the stagnation p res su re after the rotor 

will be constant provided that the flow is either frictionless or that losses a r e 

distributed uniformly with r ad ius . 

From the radial equilibrium equation, eqn. (6.8), with p = constant 

c 
A ( c

2
/ 2 ) + JL / - ( r c j = 0 

dr x r dr Θ 

Considering the whirl distribution at rotor inlet, then 

2 

^ ( - f L ) + ( a - b / r 2 ) 2 a r = 0 

Integrating this equation 

2 
p 

, 2 a b ~ 2 v , 0 1 / 2 2 , /rk 

I ( 2a r ) d r = 2 a b X n r - a r + k , / 2 
r 1 

Cxl 

Thus, the distributions in axial velocity at inlet and outlet of the rotor a r e , 

respectively, 

c x l
2 = k2 - 2 a 2 [ r 2 - (2b/a) £ n r ] (i) 

c x 2
2 = ko - 2 a" I r~ + (2 b /a) Jtn r | (ii) = k - 2 a 2 | " r 2 + (2b/a) A n r l 

where k and k a re a rb i t ra ry constants. 

In order to determine the flow angles at any radius r it is necessary first of all to 

solve the four constants a, b, k and k . The stage loading factor, which is 
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constant for all radii because AW is constant, is defined as 

2b 2b v = ^ = ■ 

,'. b = Ο . Ι δ Λ τ ' 

( C92-C91>t 
U t r t U t Sir 

= 0.3 

(iii) 

The reaction rat io is defined, eqn. (5.11), as 

R = ( ^ ( t a n ß j + t a n p p / ^ U ) 

= 1 · <C91 + C92>/<2U> 

At the mean radius r the reaction rat io is 0 .5 , hence m 

(Cûo + c m ) = u = 2 a r Θ2 ΘΙ'ΙΉ m m (iv) 

after using the swirl equations given in the problem. Hence, with U = Sir , 

a = J l / 2 (iva) 

The angular velocity, SI = 2 ιτΝ/60 = 2ττχ 7640/60 = 800 r a d / s . The mean radius 

r is the ari thmetic mean (other definitions of 'mean' a r e sometimes usedl), i . e . m 
r = — (r + r. ), hence m 2 v t h ' 

r = 2 r / ( 1 + r / r ) t m n t 

= 2 x 0.3/(1 + 0.5) 

= 0.4 m 

Thus, using eqns. (iva) and (iii), a = 400 and b = 19 .2 . 

From eqns. (i) and (ii), with c = c = 150 m / s at r = r = 0.3 m, 
X -L Λ..Ζ. I l l 

k = c 2 + 2a2 | r 2 - 2 (b/a) In r l 

= 1502 + 2 x 4002 

k = 1502 + 2 x 4002 

0.3 - 0.096 In 0 .3 

0 . 3 2 + 0 . 0 9 6 < n 0 , 3 

8 .829x 10 

1.431x 10 

Hence, at r = 0.24 m ? 

2 
Cxl : 8.829 x 10 - 32 

2.601 x 104 

x 104 Γθ. 24 - 0.096 I. n 0 . 2 4 | 
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Cxl 
2 

Cx2 

= 

= 

— 

161.3 

1.431 

3.972 

m / s 

x 104 

x 104 

• c 0 = 199.3 m / s 
• · x2 

From the swirl distribution equations, at r = 0.24 m 

c = a r - b / r = 4 0 0 x 0 . 2 4 - 1 9 . 2 / 0 . 2 4 = 16 m / s 

c Q 2 = a r + b / r = 4 0 0 x 0 . 2 4 + 19.2/0 .24 = 176 m / s 

For the axial compressor stage, the velocity triangles (Fig. 5.2) yield, at r = 0 .24m 

t a n ß = ( J l r - c 9 1 ) / c x l = (800 x 0.24 - 16)/161.3 = 1.091 
t a n ß 2 = ( Ä r - C Q 2 ) / C

x 2
 = (800x 0.24 - 176)/199.3 = 0.0803 

The relat ive flow angles at rotor inlet and outlet at r = 0.24 m a r e , respectively, 

p = 47.5 deg, (3 = 4.59 deg 

6 .6 . An axial flow turbine stage is to be designed for free-vortex conditions at exit 

from the nozzle row and for zero swirl at exit from the ro to r . The gas entering the 

stage has a stagnation temperature of 1000 K, the mass flow ra te is 32 kg /s , the root 

and tip diameters a r e 0.56 m and 0.76 m respectively, and the rotor speed is 8000 

r ev /min . At the rotor tip the stage reaction is 50% and the axial velocity is 

constant at 183 m / s . The velocity of the gas entering the stage is equal to that 

leaving. 

Determine: 

(i) the maximum velocity leaving the nozzles; 

(ii) the maximum absolute Mach number in the stage; 

(iii) the root section reaction; 

(iv) the power output of the stage; 

(v) the stagnation and static temperatures at stage exit . 

(Take R = 0.287 kj/(kg°C) and C = 1.147 kj/(kg°C) 

Solution. A simplifying assumption which has been employed in deriving answers is 

that the axial velocity is constant both across the stage and radial ly . 
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(i) At nozzle exit, as r c Q = K = constant, the velocity will be largest at the hub, 

radius r = r, = 0.28 m . 
h 

Now at the tip, radius r = r = 0.38 m, the reaction R = 0.5 

(velocity triangles a r e symmetrical) and the leaving absolute velocity c = c = 183 

m / s . With & = 2TTN/60 = ΤΓ x 8000/30 = 837.8 r a d / s , the blade tip speed 

U = Sir = 3 1 8 . 4 m / s . The tip section velocity diagram obtained from this data is 

shown below, 

W0 

Ut = 318-4 m / s 

It is seen from the tip section velocity diagram that c = U . Hence, 
W Z L L 

cQ = c r / r = 318.4 x 0 .38/0 .28 = 432.1 m / s . The maximum velocity at wzn yzt t n 
nozzle exit i s , 

1/2 V 2 
C2h = < C 92h 2 + C x 2 ) = (432.1 2

 + 1832) 

= 469.3 m / s 

(ii) The maximum absolute Mach number in the stage also occurs at nozzle exit at 

r = r, and is determined from h 

M 2 Max c 2 h / ( Y R T 2 h ) 

where T = T , - col_2/(2C ) = 1000 - 469.32/(2 x 1147) = 904.0 K 2h ol zh p 
and y = C /(C - R) = 1147/(1147-287) = 1.334 

p p v2 Λ MOXir = 4 6 9 . 3 / ( 1 . 3 3 4 x 2 8 7 x 9 0 4 ) 2 Max 

= 0.798 

(iii) Fcr a normal axial turbine stage ( i . e . with c = c ) the degree of reaction, eqn. 

(4.22c), is 

R = 1 + ( c g 3 - c 9 2 ) / ( 2 U ) 
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With c = 0 ( i . e . axial exit flow), U = Sir and cQ = K/r 

Λ R = 1 - K / ( 2 j î r 2 ) = 1 - k / r 2 

2 
At the t i p r = r , R = R = 0 . 5 , hence k = 0.5 r . Hence, the root section reaction 

^ t t t 

is 

Rh = 1 - 0 . 5 ( r t / r h ) 2 = 1 - 0.5 (0 .38/0 .28) 2 

= 0.079 

(iv) For a free-vortex turbine stage the specific work done is constant with rad ius . 
2 At the tip radius cQ = 0, c = U and AW = U . Thus, the power developed by the 

stage is 

W = m AW = m C (T Λ - T 0) = m U 2 = 32 x 318.4 2 
t " p x ol o3 ' t 

= 3.244 MW 

(v) The stagnation and static temperatures at stage exit a re 

T 0 = T - AW/C = T Ί - U 2 / C = 1000 - 318.42/1147 o3 ol p ol t p 

= 1000 - 88.39 

= 911.6 K 

T 0 = T - c 2 / 2 C = 911.6 - 183 2 / (2x 1147) 3 o3 3 p 

= 897.0 K 

6.7 . The rotor blades of an axial flow turbine stage a re 100 mm long and a re 

designed to receive gas at an incidence of 3 deg from a nozzle row. A free-vortex 

whirl distribution is to be maintained between nozzle exit and rotor entry. At rotor 

exit the absolute velocity is 150 m / s in the axial direction at all r ad i i . The 

deviation is 5 deg for the rotor blades and zero for the nozzle blades at all r ad i i . 

At the hub, radius 200 mm, the conditions a re as follows: 

Nozzle outlet angle 70 deg 

Rotor blade speed 180 m / s 

Gas speed at nozzle exit 450 m / s 

Assuming that the axial velocity of the gas is constant across the stage, determine 

(i) the nozzle outlet angle at the tip; 
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(ii) the rotor blade inlet angles at hub and tip; 

(iii) the rotor blade outlet angles at hub and tip; 

(iv) the degree of reaction at root and t ip . 

Why is it essential to have a positive reaction in a turbine stage? 

Solution. The gas flow angles a re determined first from the velocity diagrams at the 

hub and the tip, then the blade angles a re found by suitably correcting the flow angles 

for the incidence and deviation angles given. The velocity diagram for the hub is 

shown below :-

\ c_= c =150 m/s 
1 3 x3 

Sign convention for turbine rotor flow angles and 

blade angles with positive incidence, i = ß - ß ' 

and positive deviation, S = ß - ß . 
o o 

(i) The absolute tangential velocity at the hub is , 

o 
C-, sin a.. = 450 sin 70 zn zn 

422.9 m / s 

"Θ2η 

For the free-vortex flow, r c t ^92t r h C02h 

• • c 0 2 t = C 9 2 h V r t = 4 2 2 . 9 x 2 / 3 = 281.9 m / s 

t a n a = c / c = 281.9/150 = 1.879 2t Θ2Γ x 

Λ\ a = a ' = 62 deg, as there is zero nozzle deviation. 

(ii) Referring to the velocity diagram, at the hub, 
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t a n ß 2 h = ( c
9 2 h " U h ) / C x = < 4 2 2 · 9 " 1 8 0 ) / 1 5 0 = χ · 6 1 9 

• \ ß 2 h = 58.3 deg. 

The rotor blade inlet angle at the hub i s , 

K = P ^ - 1 = 5 8 · 3 " 3 

= 55.3 d e g . 

Similarly, at the rotor tip, 

tan ß = (c - U ) / c = (281.9 - 180 x 3/2)/150 = 0.0793 

. \ ß 2 t = 4.54 deg 

Λ β ' = 4 . 5 4 - 3 = 1.54 deg 

(iii) Again, from the velocity diagram, at the hub t 

tan ßOL = l l / c = 180/150 = 1 . 2 r 3h h x 

/ . ß 3 h = 50.19 deg 

Λ β 3 ; = ß 3 h + S = 55.19 deg 

Similarly, at the tip 

tan ß0 = U / c = 1 .5x180 /150 = 1.8 3t t x 

ß 3 t = 60.95 deg 

/. ß3
7

t = 65.95 deg 

(iv) For a normal turbine stage ( i . e . c = c ) with constant axial velocity across it, 

reaction is defined, eqn. (4.20), as 

R = cx(tan ß 3 - tan ß2)/(2U) 

At the hub, 

At the tip, 

R = 150(1.2 - 1.619)/360 = -0 .175 h 

R = 150(1.8 - 0.079)/540 = 0.478 
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A positive degree of reaction in a turbine stage is necessary to avoid large total 

p ressure losses caused by diffusion of the relative flow in the ro to r . 

N.B. There is a slight anomaly in the data given for this problem. At nozzle exit 

the axial velocity c = c cos a = 450 cos 70 = 153.9 m / s (at the hub) whereas the 

axial velocity is given as 150 m / s . This anomaly only slightly affects the numerical 

answers . 

6 .8 . The rotor and stator of an isolated stage in an axial-flow turbomachine a re to 

be represented by two actuator discs located at axial positions x = 0 and x = S 

respectively. The hub and tip diameters a re constant and the hub/tip radius rat io 

r / r is 0 . 5 . The rotor disc considered on its own has an axial velocity of 100 m / s 

far upstream and 150 m / s downstream at a constant radius r = 0.75 r . The stator 

disc in isolation has an axial velocity of 150 m / s far upstream and 100 m / s far 

downstream at radius r = 0.75 r . Calculate and plot the axial velocity variation 

between - 0 . 5 ^ x / r ^ 0.6 at the given radius for each actuator disc in isolation and 

for the combined discs when 

S/r = 0 . 1 , 0.25 and 1.0. 

Solution. The variation in axial velocity c with axial distance x away from an 

isolated actuator disc (located at x = 0 inside a cylindrical annulus) for a constant 

radial distance r is , eqn. (6.43), given to a first approximation by, 

c = c , - - T ( C - C ) exp ffrx/(r - r j \ , x ^ 0 (i) x xool 2 xool X0o2 \ t h y 

c = c 0 + T ( C Λ - C ) exp ( - t rx/ ( r - r )) , x > 0 (ii) x xoo2 2 xool xoc?2 \ t h / 

where c , , c _ a r e the axial velocities far upstream and far downstream xool xooz 
respectively of the d isc . For the rotor , c = 100 m / s , c = 150 m / s at 

r / r = 0 . 7 5 when r / r = 0 . 5 . Substituting these values into the above equations 

c = 100 + 25 exp (21T x / r ), x ^ 0 

c = 150 - 25 exp (- 2-rfx/r ), x > 0 

Values of c a r e shown in tabular form below and graphically in Fig . Q.6 .8(a) : -
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x / r 
/ t 

c m / s 
X 

-0 .5 

101.1 

-0 .3 

103.8 

-0 .2 

107 

-0 .1 

113.4 

0 

125 

0.1 

136.7 

0.2 

143 

0.3 

146.2 

0.5 

148.9 

The resul ts for the isolated stator a r e not shown as they a re merely the mi r ro r 

image of those for the rotor with the origin shifted according to the s ta tor ' s location. 

When two actuator discs a re in close proximity to one another, flow interference will 

occur, the magnitude of the effect being dependent upon the respect ive values of c 

and c for each d isc . In the problem,the second disc represent ing the stator 

blade row is located at x = S . The far upstream axial velocity at r / r =0 .75 is the 

same as the far downstream axial velocity and is labelled c . Similarly, the far 

downstream axial velocity of the stator disc at r / r =0 .75 is the same as the far 

upstream axial velocity of the rotor disc and is labelled c . The axial velocity 

for the second disc in isolation is 

c
v
 = c

v 9 " 7<c 9 " c
v l ) e x P [Tr (x " * )/(*> ' r j ] (iü> x Xoo2 2 xoo2 Xool L t h J 

for x £ S , and 

cx = ̂ i+K^-^P^pI-^^-^/^t-V] (iv) 

for x > 8 . Substituting values for c , , c _ and r, / r 
xool xoo2 h t 

c x = 150 - 2 5 exp [2TT(x-S) / r ] , x <8 

c = 100 + 25 exp f -2TT(x-S) / r J , x > S 

The axial velocity variation for the two discs in combination appropriate to each 

region, from eqns. (6.48), (6.49) and (6.50) a r e , 

c = 100 + 25 [exp (2-ΓΓx/r ) - exp (2ττ(χ - £ ) / r )] , x ^ 0 

c x = 150 - 25 [exp(-21Tx/r ) + β χ ρ ( 2 π ( χ - δ ) Α )] , O ^ x ^ S 

c = 100 + 25 [exp (-2TT(x - 6 ) / r ) - exp (-2TTx/r )] , £ £ x 

From the equations the variation in axial velocity for the three values of S / r = 0 . 1 , 

0.25 and 1.0 have been calculated and a r e shown graphically. 



80 S.L . DIXON 
I50r 

(a) Variation in axial velocity with axial distance from an isolated 
actuator disc located at x = 0, for r / r =0 .75 

150 

x / r t 

(b) Variation in axial velocity with axial distance from two actuator 
discs separated by a distance S , one disc being located 

at the origin. 
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Chapter 7 
Centrifugal Compressors and Pumps 

Note. In problems 7.1 to 7.5 assume that the gas constant R = 287 J/(kg°C) and that 

Y = 1.4. For problems 7.1 to 7.4 the stagnation p ressu re and stagnation temper-

ature at compressor entry a r e assumed to be 101.3 kPa and 288 K respect ively. 

7 . 1 . The air entering the impeller of a centrifugal compressor has an absolute axial 

velocity of 100 m / s . At rotor exit the relat ive air angle measured from the radial. 

direction is 26 36', the radial component of velocity is 120 m / s and the tip speed of 

the radial vanes is 500 m / s . Determine the power required to drive the compressor 

when the air flow ra te is 2.5 kg/s and the mechanical efficiency is 95%. If the 

radius ra t io of the impeller eye is 0 .3 , calculate a suitable inlet diameter assuming 

the inlet flow is incompressible. Determine the overall total p res su re rat io of the 

compressor when the total-to-total efficiency is 80%, assuming the velocity at exit 

from the diffuser is negligible. 

Solution. The specific work required to compress the air is AW = h - h = o3 ol 
U c , the flow being without swirl at impeller entry . It follows from the velocit

y 
triangle at the impeller exit (see sketch) that 

"Θ2 
= U2 * Cr2 t a n h 

= 500 - 120 x tan 26.6 

= 440 m / s 

;. AW = 440 x 500 - 220 kj/kg 

The theoretical power needed ( i . e . 

ignoring mechanical losses) is 

W = m AW ; c 

= 550 kW 

Hence, the actual power needed is 

2.5 x 220 

P = W h, 550/0.95 
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= 578.9 kW 

The equation of continuity, with c = c , is 

m = P l A l C l = T r P l ( r s l
2 - r h l

2 ) C l 

= T rPici rsi2 t1 - ( rhi / r s i ) 2 ] 

With the assumption that the flow at entry is incompressible, the density p can be 

determined from the stagnation p ressu re and temperature, 

P l = p o l = Pol/^P = L 0 1 3 * 1 0 ^ 2 8 7 * 2 8 8 ) 

= 1.226 kg /m 3 

2 ' tr Γ, , , v2 

•*rsl m/ltrp^Jl-^/r^) ]} 
= 2.5/(TTx 1.226 x 100 x 0.91) 

= 0.7135 x 1 0 ' 2 

* d , = 1 6 9 mm ' · s i 

The total to total efficiency of the compressor (eqn. 7.20) is 

o3ss ol 
'c ~ h -h _ 

o3 ol 

!£3 .t^hg. 
P i V C T i ol \ p ol 

= 1.6083·5 

= 5.273 

= C T . 
p ol 

Y/(Y-D 

L] /AW 

„ 3 . 5 
. 0.8 x 220 x 10 
1 + 1005 x 288 

7 .2 . A centrifugal compressor has an impeller tip speed of 366 m / s . Determine 

the absolute Mach number of the flow leaving the radial vanes of the impeller when the 

radial component of velocity at impeller exit is 30.5 m / s and the slip factor is 0 .90. 
2 

Given that the flow area at impeller exit is 0.1 m and the total-to-total efficiency of 

the impeller is 90%, determine the mass flow r a t e . 

Solution. The absolute Mach number at impeller exit (eqn. 7.24) is 

M 2 = C 2 / a 2 = C 2 / ^ R T 2 > 1 / 2 
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so that c and T need to be determined. From the velocity triangle at impeller 

exit 

C22 = C922 + C r2 2 = ( ^ s U 2 > 2 + C r2 2 = (0-9 x 366)2
 + 3 0 . 5 2 

= 1.094 x 105 

From the definitions of specific work (eqn. 7.1) and slip factor 

AW = ^ υ 2
2 = h o 2 - h o l = c p ( T o 2 - T o l ) 

- C p ( T 2 * T o l ) + I C 2 2 

\ T 0 = T , + <r Un
2/C = 288 + 0 . 9 x 3 6 6 2 / 1 0 0 5 = 408 K o2 ol s 2 p 

Λ T 0 = T 0 - i c 0
2 / C - 408 - i x 1.094 x 105/1005 = 353.5 K 2 oz 2 2 p 2 

Thus, 

[ l . 0 9 4 x 10 5 / (1 .4 x 2 8 7 x 3 5 3 . 5 ) ] 2 = (U 

3.5 
= 3.047 

The ra te of mass flow is m= p A c 9 where the density is p = p /(RT ) . The 

static p ressu re p must be determined by first solving for the impeller total p ressure 

rat io p /p and then relating p t o p by means of the isentropic tempera ture -
U Z U l L· O id 

pressure equation. Thus, the impeller total to total efficiency is 

T , - T . (p,/p , Λ - 1 ^ - ! 
η _ o2s ol _ o2 * ο ! 
' i ~ T - T . ~ T / T . - 1 o2 ol o2 ol 

_ τ Ύ / ( Ύ - Ι ) O S 
2 f 2 \ ,353.5, . . . . . . 3 . 5 . . . . . . 

TZ = \~J = (^ö8-} = 7 = 7 

o2 \ o2 / 
P 2 P ° 2 3 · 0 4 7 i n 5 i o , z: , „ 

. . p = — - . - — . p = -7-rrr x 10 = 184.6 kPa 2 P o P , ol 1.651 
o2 *ol 

m = P 2 A 2 c 2 / (RT ) = 184.6 x 103 x 0.1 x 30.5/(287 x 353.5) 

= 5.550 kg/s 

7 . 3 . The eye of a centrifugal compressor has a hub/tip radius rat io of 0.4, a maxi-
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mum relat ive flow Mach number of 0.9 and an absolute flow which is uniform and 

completely axial . Determine the optimum speed of rotation for the condition of 

maximum mass flow given that the mass flow ra te is 4.536 k g / s . Also, determine 

the outside diameter of the eye and the rat io of axial velocity/blade speed at the eye 

t ip . Figure 7.4 may be used to ass i s t the calculations. 

Solution. The compressible flow relation between mass flow ra te , speed of rotation 

and the flow parameters at the eye tip is given by eqn. (7.11), 

2 2 
Q · 0 2 M . sin ß cos ß 

0 . 6 5 9 8 x l O " 8 m ^ L = __£!_ s l P s l 
(1 + 0 . 2 M 2 cos 2 β J 4 

r l s l 

when y = 1.4, R = 287 J/(kg°C), p = 101.3 kPa and T = 288 K. Now rather than 

using the appropriate curve in Fig . 7.4 to determine the maximum mass flow 

condition, greater accuracy is obtained by differentiating the RHS of the above 

equation with respect of cos β and setting the resul t to z e r o . Putting x = cos β , 

M = 0 . 9 and differentiating e t c . , the following equation is found, 

(1 + 0.162 x 2 ) ( l - 3x 2 ) = 1 . 2 9 6 x 2 ( l - x 2 ) 

.\ 0 .81x 4 - 4 .134x 2 + l = 0 

Solving this quadratic equation, the only valid root is 

= U.Zb4b 

0.5046 cos 

·*· 

x 

Pel 

Pel 

= o.: 

-Jo 

= 59 

2546 

.2546 

.7 deg 

Hence, 

Λ 
2 0.729 x 108 x s in 2 59.7°x cos 59.7°x 0.84 

0.6598 x 4.536(1 + 0.162 x cos 2 59.7) 4 

= 6.547 x 10 6 ( rad /s ) 2 

.\ Sl = 2559 r a d / s = 24,430 rev /min 

From the equation of continuity, the ra te of mass flow is 

m = p_ A_ c . = TTp, k r . c . r l 1 x l r l s l x l 
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where k = 1 - 0.4 = 0 . 8 4 and ρ (at the relatively high Mach number prevailing) is 

sought from compressible flow theory. From the 

inlet velocity triangle (see sketch), 

s i 
c , sec ß . x l s i 

Also M - = w , / a i and M, = c . / a , r l s i 1 l x l l 

Λ M, = M , cos ß = 0.9 x 0.5046 1 r l s i 

= 0.4541 

Thus, using the compressible flow relation, 

1 
T / T . = 1 + - ( γ - 1 ) Μ _ = 1 + 0 . 2 x 0 . 4 5 4 1 = 1.0412 

ol 

"xl 

1 

M i a i = M I V ( Y R T I ) 

1 
= 0 . 4 5 4 1 ( 1 . 4 x 2 8 7 x 2 8 8 / 1 . 0 4 1 2 ) 
= 151.4 m / s 

li 

Thus, 

P l = " o l f r A l ) 1 / ( r l ) = Pol(V1.0412)2·5 = pol/l.l06 

mRT , x 1.106 
2 _ m __ ol 

Csl " t r P l k c x l " f T P o l k c x l 

4.536 x 287 x 288 x 1.106 

rr x 1.013 x 105 x 0.84 x 151.4 

d , = 202.4 mm s i 

= 1.024x 10 

The rat io of axial velocity to blade tip speed at the eye is 

c , / U Ί = cot β . = 0.5844 x l s i s i 

7 .4 . An experimental centrifugal compressor is fitted with free-vortex guide vanes 

in order to reduce the relat ive air speed at inlet to the impel ler . At the outer radius 

of the eye, a i r leaving the guide-vanes has a velocity of 91.5 m / s at 20 deg to the 

axial direction. Determine the inlet relative Mach number, assuming frictionless 

flow through the guide vanes, and the impeller total-to-total efficiency. 
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Other details of the compressor and its operating conditions a re : 

Impeller entry tip diameter, 0.457 m 

Impeller exit tip diamter, 0.762 m 

Slip factor 0.9 

Radial component of velocity at impeller exit, 53.4 m / s 

Rotational speed of impeller, 11,000 rev /min 

Static p ressu re at impeller exit, 223 kPa (abs.) 

Solution. The inlet guide vanes reduce the inlet relative velocity w by deflecting the 

absolute flow through an angle a-, producing a tangential velocity cQ1 in the same 

direction as the blade motion (see sketch of velocity triangle at inlet). The required 

relative Mach number, which will be greatest at the shroud, is defined as , 

M. . = w / a l r e l 1 1 

where, from the inlet velocity triangle 

2 ? 2 2 

T l = T o l - | C l 2 / C p 

= 288 -■» x 91.52/1005 

= 283.8 K 

/. a = (1.4 x 287 x 283.8) 

= 337.7 m / s 

The inlet blade tip speed is 

U 

V2 

^ α ^ 

\ßy 

w, 

cv 

°l^] 
1 

c0, 
i L 

. u„ 

s l 

"Θ1 

Sir = 11000 x (1T/30)x 0.457/2 

263.2 m / s 

c sin a 

31.3 m / s 

91.5 x sin 20 

V2 2 21 
U i - 2 U i c m + c i s l s l 01 1 J 

263.2 2 - 2 x 263.2 x 31.3 + 9 1 . 5 2 ] 
V2 
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= 247.3 m / s 

Λ M, π = 247.3/337.7 = 0.7324 l r e l 

The impeller total to total efficiency is (see Sol. Q.7 .2) 

, w ' Y - 1 ) / v -
/ i T / T - 1 

o2 ol 
From eqn. (7.1) the specific work is 

ÛW = β ρ σ ο 2 -τ ο 1 > = u 2 c 9 2 - u l C 9 1 

T o 2 ^ U 2 2 " U 1 C 9 1 
Λ T ^ " 1 = C T ' U2 = ( r 2 / r s l ) U s l = ( ° · 7 6 2 / 0 . 4 5 7 ) 2 6 3 . 2 

ol p ol 

= 438.9 m / s 

= (0.9 x 438.9 2 - 263.2 x 31.3)/(1005 x 288) 

= 0.5704 

The impeller total p ressure ratio is 

^ -ïi. pj* -h. T^/{y'l) 

P o l P o l ' P2 P o l T 2 

N o w T o 2 = T 2 + i c 2
2 / C p 

• ' • V T o 2 = l - C 2 2 / ( 2 C p T o 2 > = 1 - ^ 2 + C r2 2 >/ ( 2 C p T o2> 

c = o-U = 0.9 x 438.9 = 395 m / s 

T 0 = 1.5704 x 288 =452 .3 K o i 

ΛΤ / T 2 = 1 - (3952 + 53.42) / (2 x 1005 x 452.3) = 0.8252 

< Τ ο 2 / Τ
2 >< Ρ 2/ Ρ ο1> ( Υ " 1 ) / Ύ - 1 

^ " T o 2 / T o l - * 

_ ( l / 0 .8252 ) (223 /101 .3 ) 1 / 3 · 5 - 1 _ 
0^754 - ^ 5 1 

7 . 5 . A centrifugal compressor has an impeller with 21 vanes, which a re radial at 

exit, a vaneless diffuser and no inlet guide vanes. At inlet the stagnation p res su re 
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is 100 kPa abs . and the stagnation temperature is 300 K. 

(i) Given that the mass flow ra te is 2.3 kg/s , the impeller tip speed is 500 m / s 

and the mechanical efficiency is 96%, determine the driving power on the shaft. Use 

eqn. (7.18a) for the slip factor. 

(ii) Determine the total and static p ressures at diffuser exit when the velocity 

at that position is 100 m / s . The total to total efficiency is 82%. 

(iii) The reaction, which may be defined as for an axial flow compressor by eqn. 

(5.10b), is 0 .5 , the absolute flow speed at impeller entry is 150 m / s and the diffuser 

efficiency is 84%. Determine the total and static p r e s su re s , absolute Mach number 

and radial component of velocity at the impeller exit. 

(iv) Determine the total-to-total efficiency for the impeller . 

(v) Estimate the inlet/outlet radius rat io for the diffuser assuming the 

conservation of angular momentum. 

(vi) Find a suitable rotational speed for the impeller given an impeller tip width 

of 6 mm. 

Solution, (i) For a radial vaned impeller, ß ' = 0 and the slip factor (eqn. 7.18a) is 

^ = 1 - 0.631T/21 = 0.9057 

The shaft power, P = W /17 = m(h _ - h Λ)/<η c / m o3 ol /m 

h o 3 - h o l = U 2 C 92 = °*A = ° - * > 5 7 x 5 0 0 2 = 226.4 kj/kg 

.'. P = 2 . 3 x 2 2 6 . 4 / 0 . 9 6 = 542.5 kW 

(ii) The total to total efficiency of the centrifugal compressor is 

h Q ~ h 1 C T .(T Q O O/T . - 1 ) 
_ o3ss ol _ p olv o322 ol 

' c h o " h i " ^ Γ Τ 2 

o3 ol (7- U0 
S I 

(Υ-1)/Ύ 2 T / p n\ a o3ss / o3 \ _ m ol o3ss = / P o 3 \ 
Γ ο1 \PoJ 

c T , . 
p ol v -1 

I Y/(Y-1) 

ul+(Y-l)7 c<^sU2
2/ao l

2j 
o l r 5 l 3 · 5 

Γ 0.4 x 0.82 x 2.264 x 10 
[ 1 . 4 x 2 8 7 x 3 0 0 J 
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.'. P. o3 

= 5.365 

= 536.5 kPa 

Ü2i (J2*\ 
?3 V T 3 / 

■[ 

γ/(ν- ΐ ) 

o3 

o3 

To3-C3/<2VJ 

Y/ (Y - I ) 

Y / ( Y - I ) 

|3.5 

= Vfl-Cg^h^)] 
= (h - h J + h _ o3 ol ol 

= (226.4 + 1 .005x300)10 

= 527.9 kj/kg 

= 536.5 [ l - 100 2 / (2x 52.79 x 104)]V = 518.9 kPa 

I 02s, 
03SS, 

2 s i 
O M 

02 , 

i>s 

j 
I 
1 

3 

1,^ 
Γ 

/ - - v 

(iii) At impeller exit the absolute Mach number M? = c ? / a where the speed of 

sound a = ^{(γ - l ) n
9 \ · The enthalpy h and velocity c a r e evaluated as follows. 

From the definition of reaction R = (h - h )/(h - h ) = 0.5 and 

Thus, 

Vhi 

h 2 " h l 

Now h 

M„ 

h o 3 - h o l + I ( c l 2 - C 3 2 ) = [ 2 2 . 6 4 + i ( 2 . 2 5 - l ) ] x l O 4 

= 232.7 kj/kg 

= j O i g - h p = 116.4 kj/kg 

(301.5 - 11.25 +116 .4 ) x 10 

406.7 kj/kg 

2 ( h o 3 - h 2 ) since h o 2 = h o 3 

= 2K3-hol> + <horh2>] 
= 2 [ 2 2 6 . 4 + 301.5 - 4 0 6 . 7 ] x 103 = 242.4 x 103 

Γ Λ1/2 
[242.4/(0.4 x 406.7) J = U 221 

The diffuser efficiency is defined (eqn. 5.10b) as 
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7« 
_ hJs^2 _ h2<T3s/T2 - *> _ h2 h/P2>( Y"1 ) / Y - 0 

h 3 - h 2 h 3 - h 2 h 3 ' h 2 

[i + 7d(h3-h2)/h2] Y/(Y-1) 

= [ l + 0 . 8 4 x 1 1 6 . 4 / 4 0 6 . 7 J 3 ' 5 = 2.126 

= 518.9/2.126 = 244.1 kPa 

Y/iY-1) 
122. (l2l\ _o3 

Y/(Y"1) 
[527.91 
I 406.7J 

3.5 
= 2.492 

Ko2 
608.2 kPa 

From the impeller tip velocity triangle, 

r2 = C2 - C92 2 = C 2 2 - ^ s U 2 ) 2 

- 2 4 2 . 4 x 1 0 - ( 0 . 9 0 5 7 x 5 0 0 ) = 3 7 . 3 3 x 1 0 ^ 

(iv) For the impeller, the total to total efficiency is 

h , - h . h . [(p ,/p /Υ-^/Ύ . i ] 
o2s ol _ ol L ^ o 2 / r o l / J 7i = h - h o2 ol h - h . o3 ol 

= 3 0 1 . 5 ( 6 . 0 8 2 1 / 3 · 5 - l ) /226.4 

= 0.899 

(v) Assuming angular momentum is conserved, r e = constant, and 

ΊΪ3 
:Θ2 

100 

' *-sU2 0.9057 x 500 0.2208 

(vi) The angular velocity of the impeller is Si = U /(2TTr ) . The impeller tip 

radius is found from the equation of continuity,m = p A c , where A = 2rrr b , 
Ζ> L· JL Z ZJ Zd Zd 

and the equation of s ta te . Thus, 
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2 2 3.5 x 244.1 x 10 o mi i / 3 

p2 = ΨΓ = ίν-nh = 3 — = 2 · 1 0 1 k g / m 

2 RT 2 (Y l>h2 406.7 x l O J 

SI = U p b e / m = 5 0 0 x 2 . 1 0 1 x 0 . 0 0 6 x 1 9 3 . 2 / 2 . 3 

= 529.5 r e v / s 

= 31,770 rev /min 

7 .6 . A centrifugal pump is used to r a i se water against a static head of 18.0 m . 

The suction and delivery pipes, both 0.15 m diameter, have respectively, friction 

head losses amounting to 2.25 and 7.5 t imes the dynamic head. The impeller, which 

rotates at 1450 rev/min , is 0.25 m diameter with 8 vanes, radius rat io 0.45, inclined 

backwards at ß ' = 60 deg. The axial width of the impeller is designed so as to give 

constant radial velocity at all radii and is 20 mm at impeller exit. Assuming an 

hydraulic efficiency of 0.82 and an overall efficiency of 0.72, determine 

(i) the volume flow ra te ; 

(ii) the slip factor using Busemann's method; 

(iii) the impeller vane inlet angle required for zero incidence angle; 

(iv) the power required to drive the pump. 

Solution, (i) The actual head H which is delivered by the pump is defined as the 

difference in head measured between the outlet and inlet flanges of the pump. It is 

equal to the static head H , defined as the difference in level between the two open 

r e se rvo i r s , plus all external head lo s se s . The external losses comprise the 

friction losses in the suction and delivery pipes together with the kinetic energy 

leaving the delivery pipe. Thus, 

H = H + ( 2 . 2 5 + 7 . 5 + l ) c 2 / (2g ) 

where the average velocity in the pipes, both of diameter d, is 

c = 4Q/(TTd2) = 4Q/(1Tx 0.152) = 56.59Q m / s 

Λ H = 18 + 1 0 . 7 5 x ( 5 6 . 5 9 Q ) 2 / 1 9 . 6 2 = 18 + 1 7 5 5 Q 2 m 

Now the ideal head H. = U c / g and the hydraulic efficiency of the pump is defined 

as 



92 S .L . DDCON 

π = ü gH 
7h = H. = U2ce2 

JÜL 
U2 ^B ( C 92 / U 2> 

The Busemann slip factor <v favoured in most pump design calculations, is 
B 

O-T, °Θ2/0Θ2 
(A - W2 tan ß 2 ) / ( l - P2 tan ß2 ) 

where A and B a re constants determined by the geometry of a particular pump, ß ' 

is the impeller vane outlet angle and φ = c / U . The vane tip speed U is 

U = TTND /60 = 1Tx 1450 x 0.25/60 = 18.98 m / s 

.'. P2 = Q/(TTD2b2U2) = 4Q/(1TX 0.02 x 18.98) = 3.351 Q 

\ 

Cr2 

-

ß'z 

w2 

1 

u2 

°Θ2 

°Θ2 

For this pump the radius rat io r / r = 2.222 is sufficiently large ( i . e . > exponential 

(2tr cos β ' /Z ) = 1.481, see eqn. 7.17c) for B to be assumed equal to unity and A can 

be found by interpolating from the graph Q.g 

shown, which was obtained from Fig . 7 .10 . 

Thus, at β ' = 60 deg and Z = 8 the value of 

B = 0.818 with sufficient accuracy. After 

substitution 0-8 

gH 

U2 (0.818 - 1.732 j ^ ) 

H y U (0.818 - 3.351 x 1.732Q)/g 
0-7 

18 + 1755Q2 = 0 . 8 2 x l 8 . 9 8 2 x 

(0.818 - 5.804Q)/9.81 

After simplifying, 
0-6 

4 6 8 10 

Blade number, Z 
Q + 0.0996Q - 0.00378 = 0 
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Λ Q = 0.02932 m 3 /s 

= 29.32 dm3/s 

(ii) With the volumetric flow rate solved the Busemann slip factor is easily obtained. 

Now 9 = 3.351 x 0.0293 = 0.09825 

Λ 0-D = (0.818 - 0.09825 x 1.732)/(1 - 0.09825 x 1.732) B 
= 0.6478/0.8298 

= 0.7807 

(iii) The impeller vane inlet angle ß ' for zero flow incidence is obtained from 

cot pj = c r l / U l = ( c ^ / U ^ / r p = h r2/rx 

= 0.09825/0.45 = 0.2183 

as c , = c _ = c for this pump. Thus, r l r2 r 

ß ' = 77.68 deg 

(iv) The power required is 

wp = p Q g H / ? h 

PQg(18 + 1755Q2)/7h 

29.32x9.81x19.51/0.72 = 7.794 kW 
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Chapter 8 

Radial Flow Turbines 

8 . 1 . A small inward flow radial gas turbine, comprising a r ing of nozzle blades, a 

radial vaned impeller and an axial diffuser, operates at its design point with a total 

to total efficiency of 0 .90 . At turbine entry the stagnation p ressu re and 

temperature of the gas is 400 kPa and 1,140 K. The flow leaving the turbine is 

diffused to a p ressure of 100 kPa and has negligible final velocity. Given that the 

flow is just choked at nozzle exit, determine the impeller peripheral speed and the 

flow outlet angle from the nozzles. 

For the gas assume y = 1.333 and R = 287 J / (kg°C). 

Solution. The figure below shows a meridional section of a 90 deg inward flow radial 

turbine and diffuser together with the design 

point velocity triangles at rotor inlet and 

rotor outlet. At this condition the relative 

velocity w at rotor inlet is in the radial 

direction and at rotor outlet the absolute 

velocity c~ is in the axial direction ( i . e . 

c = U and c = 0). Thus, the specific 

work, eqn. (8.4), is 

A W = h o r h o 3 

= U 2 C 9 2 - U 3 C 9 3 υΛ 

Shroud 

Diffuser 

(a) 
Referring to the simplified Mollier diagram 

shown below, the total to total efficiency of the combined turbine stage and diffuser is 

m = (h - h J / ( h , - h A ) = (h - - h 0) /(h Ί - h , ) / t t v ol o4' x ol o4ss ' x ol o 3 " v ol o4ss ' 

= u 0
2 / j c T , (i - T A / T _)1 

2 |_ p o l x o4ss oV J 

After transposing and substituting for the isentropic temperature T / T in te rms 

of the p ressu re rat io, 



Radial flow turbines 95 

u22-7ttV-[1-*-^>(Y"Wï] 
= 0.9 x 1149 x 1140 [ l - ( 1 0 0 / 4 0 0 ) 0 , 2 4 9 8 ] 

= 1.179 x 106(1 - 0.7073) = 0.3451 x 106 

Hence, the blade tip speed is 

LL 587.4 m / s . 

At nozzle exit the absolute flow Mach number is 

M 2 = C 2 / a 2 

= ( u
2 / a 2 ^ c o s e c a

2 (i) 

In eqn. (i) the values of both a and a9 a re 

unknown and another condition must be used to 

solve the flow angle a . Across the nozzle the 

stagnation enthalpy remains constant, i . e . 

ol 

. \C T . p ol 

o2 

- C p T 2 + I C 2 2 C T + T IT cosec a p 2 2 2 2 

After rearranging, 

T / T 
T ol 

where 

= 1 - | U 2
2 cosec 2 a 2 / ( C p T o l ) 

1 2 2 
= 1 - 2 (Y - 1 ) ( u

2 / a o l ^ C 0 S e C a2 

CpTol - yRTol^-l) ^ o l ^ - 1 ) 

(ii) 

Using eqn. (i) 

T 2 / T o l =(a2/ aol>2 = U 2 2 c ° S e C V< M 2 a o l> 2 (iii) 

Combining eqns. (ii) and (iii) and rearranging 

( * · 

v2 
<U2/ aol> 2 ( ^ - 1 ) + 1 / M 2 (iv) 

Substituting values, 

v2 v2 
a = ( Y R T Q 1 ) = ( 1 . 3 3 3 x 2 8 7 x 1 1 4 0 ) 
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660.4 m / s 

s i n a 2 = (587.4/660.4) [ 1+0 .1665] 2 = 0.9607 I 1 + 0.1665) 

Hence, the nozzle flow outlet angle is 

a = 73.88° 

8 .2 . The mass flow ra te of gas through the turbine given in Problem 8.1 is 3.1 kg/s , 

the rat io of the impeller axial width/imp el 1er tip radius (b / r ) is 0.1 and the nozzle 

isentropic velocity rat io (0?) is 0 .96 . Assuming that the space between nozzle exit 

and impeller entry is negligible and ignoring the effects of blade blockage, determine: 

(i) the static p ressu re and static temperature at nozzle exit; 

(ii) the impeller tip diameter and rotational speed; 

(iii) the power transmitted assuming a mechanical efficiency of 93 .5%. 

Solution, (i) The static temperature T at nozzle exit can be obtained immediately 

from either eqn. (ii) or eqn. (iii) in the solution of Problem 8 . 1 . Using eqn. (iii), 

T 2 = T o l U 2 2 / ( M 2 % 1 S i n * / 

= 1140x587 .4 2 / (660 .4x 0.9607)2 

= 977.2 K 

The static p ressure p at nozzle exit may be found using the nozzle isentropic 

velocity ra t io , eqn. (8.17), 

h = C2/C2s 

to determine the isentropic temperature rat io T / T as follows : -

i, t, l 2 u l 2 

hol_h2s = 2 C 2 s ' h o l ' h 2 = 2 ° 2 

·'· »I - <hol " h2>/frol - h2s> = <Tol - T 2 ) / ( T o l " T2s> 
After some rearranging, 

T 2 s / T o l = X " ( 1 " T 2 / T o l ) / ß 2 2 = l ' ( 1 " 9 7 7 - 2 / H 4 0 ) / 0 . 9 6 2 

= 0.8450 
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;# p = 0 . 5 0 9 6 x 4 0 0 

= 203.8 kPa 

(ii) Applying the equation of continuity at nozzle exit 

™ = P 2
A 2 C r 2 

where, from the design point velocity triangle, 

C r2 = U 2 C O t Q 2 

and the flow area is 

A 2 = 2 < r r 2 b 2 . 

Hence, using the gas law, 

2 =
 m R T 2 t a n a 2 = 3.1 x 287 x 977.2 x tan 73.88° 

2 2 t r p 2 U 2 ( b 2 / r 2 ) 2 / ? r x 2 0 3 β 8 χ ι ο 3 χ 5 8 7 . 4 x 0 . 1 

= 0.03999 

;t r = 0.20 m 

·"· The impeller tip diameter is 40 cm. 

The speed of rotation is 

N = 6 0 U / ( 1 T D ) = 60x 587.4/( t r x 0.4) 

= 28, 050 rev /min 

(iii) The power transmitted taking into account the mechanical losses is 

W = Ύ) m AW = Ό mLL2 = 0.935 x 3.1 x 587 .4 2 
t /m / m 2 

= 1,000 kW 

8 . 3 . A radial turbine is proposed as the gas expansion element of a nuclear 

powered Brayton cycle space power sys tem. The p res su re and temperature 

conditions through the stage at the design point a r e to be as follows: 

Upstream of nozzles, p Ί = 699 kPa, T , = 1,145 K; ol ol 
Nozzle exit, p 2 = 527.2 kPa, T = 1,029 K; 

97 
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Rotor exit, p 0 = 384.7 kPa, T = 914.5 K, T 0 = 924.7 K. 

The rat io of rotor exit mean diameter to rotor inlet tip diameter is chosen as 0.49 

and the required rotational speed as 24, 000 r ev /min . Assuming the relative flow at 

rotor inlet is radial and the absolute flow at rotor exit is axial, determine: 

(i) the total to static efficiency of the turbine; 

(ii) the rotor diameter; 

(iii) the implied enthalpy loss coefficients for the nozzles and rotor row. 

The gas employed in this cycle is a mixture of helium and xenon with a molecular 

weight of 39.94 and a rat io of specific heats of 5 / 3 . The Universal gas constant is, 

R =8 .314 kJ/(kg-mol K). 

Solution, (i) The total to static efficiency of a radial flow turbine is defined, eqn. 

(8.6), as 

m = (h . - h J / ( h , - h_ ) / t s ol o 3 " ol 3 s s ' 

= » - Wo?"1 - T3ss
/T.l> 

= (1 - 924 .7 /1145) / [ l - (384.7/699)°*4] 

- (1 - 0.8076)/(l - 0.7875) 

= 0.9054 

(ii) At the design condition the relative flow at ro tor inlet is radial and, from the 

velocity triangle (Fig. 8.3), c = U . As the absolute flow at rotor exit is axial, 
WZ Z ry 

c = 0, and the specific work AW = U . 

• \ U0
2 = h - h = C (T _ - T Q) (i) 

2 ol o3 p ol o3 

The Universal gas constant R = Rm where m is the molecular 'weight' of the gas 

mixture . Thus, 

R = R / m = 8314/39.94 = 208.2 J/(kg°C) 

C = Y R / 0 Y - 1 ) = 2 . 5 x 2 0 8 . 2 = 520.5 J/(kg°C) 

; . U 2
2 = 520 .5 (1145-924 .7 ) = 11.47 x l O 4 
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U = 338.6 m/s 

Hence, the rotor tip diameter is 

D = 60U/(TTN) = 60x 338.6/(rrx 2.4x 104) 

= 0.2694 m 

(iii) The enthalpy loss coefficient for the nozzles, eqn. (8.16), is determined as 

follows : -

ÎN = <h2-h2s>/<iC22 ) = < Τ 2 - Τ 2 3 > / ^ ο 1 - Τ 2 > 

= [ Τ 2 " ( Τ 2 5 / Τ ο 1 ) Τ ο ΐ ] / ( Τ ο Γ Τ 2 > 

= [ Τ 2 - Τ ο 1 < Ρ
2 / Ρ ο 1 > ( Υ " 1 ) / Υ ] ^ ο Γ Τ 2 > 

= [l029 - 1145(527.2/699)0#4]/(1145 - 1029) 

= (1029 - 1022.8) /(1145 - 1029) 

= 0.05316 

The enthalpy loss coefficient for the rotor is defined, eqn. (8.20), as 

ÏR = ( h 3" h 3s>/ ( | W 3 2 > <U> 

The enthalpy loss h - h is determined using the specified static pressures and 

temperatures, 

V h 3 s = S ^ - ^ f f i ] = C p [ T 3 - T 2 < P 3 / P 2 > ( Y " 1 ) / Y ] 
= 520.5 [914.5 - 1029(384.7/527.2)0·4] 
= 3.831 kj/kg 

From the rotor exit velocity triangle 
2 2 2 

W3 - C3 + U 3 

where LL = U (r_/r .) and cQ = 2 C (T - TQ). Hence, o 2 6 2 0 p o o o 

W32 = 2 C p ( T o 3 " T 3 > + U 2 2 ( V r
2 > 2 

2 
Substituting for U using eqn. (i), the relative kinetic energy at rotor exit is, 

I W 3 2 = [ C p T o 3 - T 3 + l ( V r 2 > 2 ( T o l " T o 3 ) ] 
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= 520.5 [924 .7 - 914.5 + j x 0 .49 2(H45 - 924.7) ] 

= 19.07 kj/kg 

Substituting these values into eqn. (ii), 

7 = 3.831/19.07 = 0.2009 

8 .4 . A film-cooled radial inflow turbine is to be used in a high performance open 

Brayton cycle gas turbine. The rotor is made of a material able to withstand a 

temperature of 1145 K at a tip speed of 600 m / s for short periods of operation. 

Cooling a i r is supplied by the compressor which operates at a stagnation p ressure 

rat io of 4 to 1, with an adiabatic efficiency of 80%, when air is admitted to the 

compressor at a stagnation temperature of 288 K. Assuming that the effectiveness 

of the film cooling is 0.30 and the cooling air temperature at turbine entry is the same 

as that at compressor exit, determine the maximum permissible gas temperature at 

entry to the turbine. 

Take γ = 1 . 4 for the a i r . Take 7 = 1.333 for the gas entering the turbine. Assume 

R = 287 J/(kg K) in both c a s e s . 

Solution. The sketch shows a Brayton gas turbine cycle 

in the form of a Mollier d iagram. The compressor 

r a i ses the stagnation p res su re of the air from p to 

p at an adiabatic (total to total) efficiency y of 0 .80 . 

From the definition of efficiency, eqn. (2.28a), 

h 

(h o2s h o l > / * o 2 - b o l > 

Τ ο ΐ σ ο2Α>ΐ ' W^-V 
τ0 1Κ2/ρ0 1> ( ν - 1 ) / γ"] / 
^02 " V 

02 s 

Hence, the actual stagnation temperature at compressor exit i s , 

= 288 [ l + ( 4 1 / 3 , 5 - l ) / 0 . 8 ] = 288 [ l + 0 . 4 8 6 / 0 . 8 ] 
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= 463.0 K 

The cooling effectiveness ε , eqn. (8.41), in the present notation is 

6 = [ T o 3 " T m - ^ / ( 2 0 ρ ) ] / [ τ ο 3 - Τ ο 2 - AW/(2C p ) ] 

where T is the maximum permissible temperature of the rotor mater ia l and £JV is 

the specific work done, assumed to be equal to U . Hence, after some r e a r r a n g e -

ment 

00 m oz 2 p 

where C = Y R / ( Y - 1 ) = 4 . 0 0 3 x 2 8 7 = 1149 J/(kg °C) 
P 

Lo3 
T 0 = (1145 - 0.3 x 463)/0.7 + 6002/(2 x 1149) 

= 1594 K 

2 
The specific work done by the turbine, AW = U =360 kj/kg of gas admitted to the 

radial turbine. The specific work required by the compressor , AW = C (T - T ) 

= 175.9 kj/kg of a i r compressed ( i . e . only about half of AW ) . This is feasible if it 

is considered that the ra te of mass flow through the compressor is about twice that 

which flows through the turbine, the excess compressed air being used for other 

purposes . Only about 10% of this diverted compressed air would be needed for film 

cooling. At outlet from the turbine the hot gases would still have a stagnation 

p ressure p in excess of p . Assuming the turbine has an adiabatic efficiency of 

0.9 it is easy to show that p 0 / p A - 2.682 and, therefore, p Vp . is 1.492. This J *o2'*o4 *o4 ol 
excess p res su re rat io would be expanded through a second turbine stage to provide a 

net power output. 

8.5 . The radial inflow turbine in Problem 8.3 is designed for a specific speed SI of 

0.55 (rad). Determine, 

(i) the volume flow ra te at rotor exit and hence obtain the turbine power output, 

(ii) the rotor exit hub and tip diameters , 

(iii) the nozzle exit flow angle and the rotor inlet passage width/diameter ratio, 

VD2· 

Solution, (i) Specific speed is defined, c.f. eqn. (8.33), as 
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l / 9 3 / 
•il = AQ3

 / 2/Aho s 

where Q is the volume flow ra te at rotor exit, (m / s ) , fl is the angular speed of 

the rotor ( rad/s) and A h is the isentropic enthalpy drop between inlet stagnation 

conditions and exhaust static conditions, h - h0 . This last definition conforms 
ol 3ss 

with the use of total to static efficiency in Problem 8 . 3 . Thus, 

Δ η = i - c 2 = h _ - h = C (T _ - T Q ) 
os 2 o ol 3ss p ol 3 s s ' 

= 520.5 x 1145 [ l - (384 .7 /699) 0 ' 4 ] = 126.6 kj/kg 

SI = 2TTN/60 = 800π = 2513 r a d / s 

Hence, from the specific speed definition, 

V 2 3 / 4 4 3 / 4 
Q 3 = (ils/Sl) A h = (0.55/2513) (12.66 x 10 ) 4 = 1.469 

/ . Q = 2.159 m 3 / s 

o The turbine power is 

W = m AW = mU2
2 = P 3 Q 3 U 2

2 

p = P 3 / (RT ) = 384.7 x 103/(208.2 x 914.5) = 2.021 kg /m 3 

.'. m = p Q = 2 . 0 2 1 x 2 . 1 5 9 = 4.363 kg/s 

Λ W = 4.363 x 338.6 2 = 500 kW 
t 

<Ü> % - A3C3 = ^ / W ' ^ h 2 ) ^ = ' lr/2>D
3m

Hc3 

where, 

H = D 3 t - D 3 h ' D m = ( D 3 t + D 3 h ) / 2 = ° ' 4 9 X D 2 = ° ' 1 3 2 m 

c 2 = 2C (T 0 - T 0 ) = 2 x 5 2 0 . 5 ( 9 2 4 . 7 - 9 1 4 . 5 ) = 10620 3 p o3 3 

. c = 103 m / s 

Hence, the rotor exit blade height is 

H = 2Q /(TTD c j = 2 x 2.159/(1T x 0.132 x 103) o m 3 
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= 0 .1011m 

. \ D01 = D0 - H / 2 = 0 . 1 3 2 - 0 . 0 5 0 6 = 0 .0814m 
3h 3m 

. \ D0 = D0 + H / 2 = 0.1826 m 3t 3m 

The rotor exit hub / t ip rat io D01 / D 0 = 0.4458 and the rat io D0 / D 0 = 0 .678. j n ot 3t z 

(iii) As h = h , then 

c 2 = 2C (T - T ) = 2 x 5 2 0 . 5 ( 1 1 4 5 - 1 0 2 9 ) = 12.08 x 104 

2C (T Ί p ol "2 px ol 2 

The nozzle exit velocity is 

c = 347.5 m / s 

From the inlet velocity triangle 

sin a = U / c = 338.6/347.5 = 0.97439 

.'. a2 = 77.0° 

From the equation of continuity, 

ώ = p 2 A 2 Cr2 = ^ P 2
( b 2 / D 2 ) Ό2 U2 C O t a 2 

Λ b 2 / D 2 = ( m R T 2 tan a 2 ) / ( r r p 2 D 2 UJ 

4.363 x 208.2 x 1029 x tan 77° 

π x 527.2 x 103 x 0.26942 x 338.6 

0.0995 


