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Introduction

1.1 Torsional Vibration

Torsional vibration involves angular oscillations of the rotors of a
machine. For large rotating machinery the mechanical system often
consists of several rotors that are connected by relatively slender shafts
and couplings. For example, Fig. 1.1 is a photograph of the generator
rotor of a large steam turbine-generator. It has a large-diameter body
section and relatively flexible shaft extensions.

Each rotor in the system will oscillate following a torsional distur-
bance to the machine about its rotational axis, resulting in twisting in
the shafts and to a lesser extent in the large-diameter rotor bodies
themselves. For some machines involving geared rotor connections, for
example, there may be several rotor axes of rotation. The twisting
oscillations following severe torsional disturbances to a machine may
be sufficient to cause fatigue damage to the machine’s shafts and other
components.1

In the design of rotating machinery, torsional vibration analysis is
vital for ensuring reliable machine operation due to machine stimuli
that range from rarely occurring, high-level transients to continuous,
relatively low levels of excitation.

If shaft and rotating component failures occur on these large
machines as a result of shaft torsional oscillations, the consequences
can be catastrophic. In the worst case, an entire machine can be
wrecked as a result of the large unbalancing forces that can arise fol-
lowing shaft separation and turbine blade failures, and this has actu-
ally occurred. There is also potential for loss of human life. For these
reasons great attention is generally taken at the design stage to
ensure that high-speed rotating machines have the required torsional
capability.
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Following some turbine-generator torsional vibration failures in the
early 1970s, several major research, testing, and machine torsional
vibration monitoring projects were instituted to develop both improved
understanding of turbine-generator torsional vibration characteris-
tics1,2 and corrective measures. Also, several industrial committees
were established to study the problems, and these committees made
corrective-action recommendations for machine and transmission sys-
tem design and operation.

These activities resulted in significantly improved torsional vibra-
tion analysis and shaft fatigue analytical models and improved
design criteria applied in machine design. Correct application of such
practices by machine designers, and improved transmission system
design and operating practices, have now generally rendered turbine-
generators robust to the effects of stimuli emanating from the elec-
trical transmission network, or from within the generator (short
circuits or faults), or from problems or failure of the electrical equip-
ment to which the generator is connected at the power plant (e.g., the
main step-up transformer).

Machine design, of course, involves compromises such as those to
achieve performance goals (output, efficiency, etc.) and acceptable
levels of stress due to rotor centrifugal and other loads and thermal
effects, as well as torsional and lateral vibration.

In general, it is found that the amount of torsional damping in tur-
bomachinery is very low unless special provisions are made.2 For
large machines, such as turbine-generators, it is impractical and
uneconomical to employ mechanical damping devices to substantially
reduce peak vibration response levels following severe transient dis-
turbances. Hence, for these machines, it is of paramount importance
at the design phase to avoid torsional resonance (particularly at or
near the lower harmonics of machine operating speed frequency),
and to ensure that shafts and other components are suitably sized to
avoid failure or significant damage during possible severe transient
disturbances.

2 Chapter One

Figure 1.1 Generator rotor photograph. (Courtesy of General Electric.)
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1.2 Book Contents Summary

The book is divided as follows:

■ Introduction
■ Definitions and units
■ Summary of the types and nature of torsional disturbance experienced

by turbomachines and machines driven by electric motors and descrip-
tion of the resulting vibration response

■ Review of torsional damping characteristics and mechanisms
■ A description of what’s important in machinery mathematical model

creation
■ Three torsional vibration theory chapters for calculating natural fre-

quencies, mode shapes, and steady-state and transient forced response
■ A vibration theory application chapter using case studies
■ Four descriptive technical chapters dealing with

Torsional fatigue
Torsional vibration design rules
Machine modification analysis
Torsional vibration measurement, monitoring, testing, and diagnostic
procedures

■ Five appendixes
■ References

Machinery modeling, presented in Chap. 5, provides information on
how to construct torsional vibration mathematical models for rotating
machinery based on geometric and material property information. The
importance of properly accounting for abrupt diameter changes in
shafts and other types of discontinuity is discussed. The different
types of coupling used on rotating machinery are reviewed and are
subdivided into “rigid” and “flexible” categories; the latter types of cou-
pling provide additional flexibility and damping. Torsional systems
with and without gears are covered. Needed transformations for con-
verting mathematical models with several rotational velocities (due to
gears) to an equivalent single rotational velocity model are described
in detail, and an application example is given.

Torsional stiffness and inertia finite element matrices are developed
in Chap. 6 from first principles for the cases of elements having two
nodes (one at each end) and three nodes (at ends and middle). Point
inertia and distributed inertia finite elements are developed. For dis-
tributed inertia elements, the finite elements are derived for the cases
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of linear and quadratic shape functions. Chapter 6 also shows how the
global stiffness and inertia matrices are assembled from the individual
element matrices. Also provided is a table of equations for obtaining
values of polar moments of inertia, radii of gyration, torsional stiff-
ness, and torsional stresses from geometric and physical data for com-
monly occurring cylindrical and annular component configurations.
The derivations are given in App. B.

The required system equations for computing the machine torsional
natural frequencies and mode shapes are developed in Chap. 7. It
illustrates with examples the benefit of employing distributed inertia
finite elements in comparison to traditional lumped inertia represen-
tations. Orthogonality of normal modes is discussed, and a method for
systematically reducing the size of a very large eigenvalue problem is
covered (this is sometimes referred to in the literature as eigenvalue
economization).

The required matrix equations and solutions using modal analysis
theory for both steady-state and transient response are developed in
Chap. 8. The benefits of using modal analysis transformations are cov-
ered in detail.

The problem to be solved in each case is calculation of the magnitudes
of the angular responses at each model node and the corresponding
shaft response torques for given torsional inputs.

■ For steady-state response, the applied torque inputs are the ampli-
tudes and phases at each node and the frequency of the applied
torques.

■ For transient response, the applied torque inputs at each node are
the torque-time histories and the angular displacement and velocity
initial conditions.

Chapter 9 provides solutions to case studies dealing with forming
finite element global inertia and stiffness matrices, and natural fre-
quency and forced response calculations. Some of these studies are
based on calculations that actually need to be performed in the design
of large rotating machinery. The calculations range in complexity from
those that are routinely performed by design engineers to more chal-
lenging ones conducted by engineers working on new machine design
and development.

Chapter 10 gives a basic introduction to torsional fatigue and
defines a torsional fatigue estimation methodology. Several key refer-
ences are cited for those readers who wish to explore the subject of
fatigue in more depth.

Chapter 11 provides in general terms machine torsional vibration
design rules in terms of natural frequency separation margins from

4 Chapter One
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forcing frequencies and forced response criteria. The turbine-generator
class of machinery is used as an example.

Chapter 12 provides information on how to detune a rotating
machine if natural frequency separation margins are discovered to be
unacceptable for reliable performance.

Chapter 13 covers methods commonly used to measure torsional
vibration, torsional vibration monitoring, and torsional vibration test-
ing and briefly describes some of the procedures and tools used to diag-
nose vibration problems.

There are five appendixes:

■ Appendix A gives the development of a single-speed equivalent
model and associated transforms for analyzing a multispeed geared
system, and a numerical example is given for illustration.

■ Appendix B gives the mathematical derivations of equations used
for calculating moments of inertia and torsional stiffness and stress
that are used in the text.

■ Appendix C provides an introduction to vibration analysis covering
the characteristics of single-degree-of-freedom, continuous, and non-
linear torsional systems. The “exact” continuous system solutions for
uniform cylinders with various boundary conditions are derived and
are utilized in several of the case studies to define the accuracy of
the finite element-based procedures defined in the text.

■ Appendix D documents all aspects of matrix algebra that are used in
the chapters on vibration analysis.

■ Appendix E presents a computer program that was developed for use
in the case studies. The program is based directly on the vibration
analysis methods developed in Chaps. 6 through 8. It can be used to
calculate natural frequencies and mode shapes and steady-state and
transient responses from inputs of geometry, material properties,
modal damping values, and definition of torsional stimuli. For
fatigue analysis, an output option in a transient response analysis is
a listing of shaft torque reversal values. The program can be adapted
to execute on personal computers equipped with FORTRAN com-
piler software.

The reference list supplements information provided in the text.
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7

Definitions and Units

2.1 Definitions

damping coefficient The damping coefficient C, when multiplied by vibra-
tion velocity (the first time derivative of � in rad/s), produces damping torque.
The unit for the damping coefficient is lbf�in�s/rad or N�m�s/rad in U.S.
Customary and SI units, respectively.

electrical transmission system frequency The electrical transmission sys-
tem frequency in the United States is 60 Hz. In some other countries it is 50
Hz. The terms subsynchronous and supersynchronous refer to frequencies
below and above the transmission system frequency, respectively. In the appli-
cation examples in this book it is assumed that the transmission system fre-
quency is 60 Hz when using the terms subsynchronous and supersynchronous.
Subsynchronous resonance (SSR) refers to a torsional instability caused by
powerful interaction of turbine-generation torsional vibrations and current
oscillations in the electrical network and generator, at frequencies below the
transmission system frequency (60 Hz in the United States).

endurance limit The endurance limit or high cycle fatigue limit is a property
of some materials. If the alternating stress falls below this limit, in theory an
infinite number of fatigue cycles can be sustained without initiation of a
fatigue crack. High cycle fatigue is associated with cyclic strain levels for
which deformations are totally elastic. Conversely, low cycle fatigue occurs
when cyclic loads produce not only elastic strain but plastic strain as well.

imaginary number operator The symbol j is used to represent the ��1� in
several equations in the text. a � jb represents a complex number, with real
and imaginary parts of a and b, respectively.

matrix notation [B] denotes a matrix B. [M]�1 means the inverse of matrix
[M], which, of course, has meaning only if [M] is a square matrix. {V} denotes
a vector. [Y]T denotes the transpose of matrix [Y]. This book assumes that the
reader has some familiarity with matrix algebra.3 An introduction to matrix

Chapter
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algebra is given in App. D for readers who need it for reviewing the sections
on vibration theory in detail.

modal quantities of inertia, stiffness, and damping For multi-degree-of-
freedom systems, modal quantities for inertia, stiffness, and damping are
often required in analysis. In the text these are referred to as M ′rr, K ′rr, and
C′rr, respectively, where the r subscript refers to the rth mode and the deriva-
tions for the modal quantities are produced later in the text using the mode
shapes of the system.

nondimensional damping ratio The nondimensional damping ratio in the
rth-mode �r equals C′rr/(2M′rr�nr), where �nr is the undamped natural fre-
quency defined later. When �r equals unity, it is referred to as critical
damping, and free vibration in mode r will not be oscillatory (see App. C).
For �r less than unity, the free vibration response in mode r will be oscilla-
tory. The modal damping expressed in terms of the logarithmic decrement
LOG-DECr � 2��r. The modal damping expressed as a dynamic magnifica-
tion factor Qr � �/LOG-DECr.

polar moment of inertia The inertial unit in torsional vibration, the polar
moment of inertia I, is analogous to mass in transverse or lateral (rotor bend-
ing or flexure) vibration. For a given body of rotation, it equals the summation
of the products of all elements of mass of the body times the square of the per-
pendicular distance of each element of mass from the rotational axis. The unit
of polar moment of inertia is lb�in2 or kg�m2, in U.S. Customary and SI units,
respectively. In torsional vibration, “center of polar moment of inertia” is anal-
ogous to “center of mass” for mathematical modeling purposes in lateral vibra-
tion, and has units of inches and meters in U.S. Customary and SI units,
respectively.

radius of gyration The radius of gyration K is derived from the polar moment
of inertia I by the expression K � �I/m�, where m is the mass of the inertial
body. The unit of radius of gyration is inch or meter in U.S. Customary or SI
units, respectively.

rigidity modulus The rigidity modulus G is a material property which is
related to the material’s Young modulus E by its Poisson ratio 	. For isotropic
materials such as most metals E/G � 2(1 � 	). For steel 	 � 0.3, and E equals
approximately 30 
 106 lbf/in2. The rigidity modulus unit is lbf/in2 or N/m2 in
U.S. Customary or SI units, respectively. The unit for torsional stiffness is
lbf�in/rad or N�m/rad in U.S. Customary or SI units, respectively.

scientific notation AE�0X, used in some tables and figures in this book, is
scientific notation, meaning the number (integer) A times 10 raised to the
power plus X. Thus, for example, 1.05E-02 equals 0.0105.

shaft response torque The shaft response torque TR is the product of the
shaft torsional stiffness and twist. Hence TR � k�. The unit is lbf�in or N�m in
U.S. Customary or SI units, respectively. In the text TA is torque that is
applied to a rotor element. Also the rth modal applied torque T ′Ar is the trans-
pose of the rth-mode shape column vector times the applied torque vector.

8 Chapter Two
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torsional stiffness The torsional stiffness k of a shaft of axial length L, with
a rigidity modulus G and form factor F, is GF/L. The form factor of a shaft of
circular cross section equals the second polar moment area of the cross section
of the shaft. The second polar moment of area of a shaft cross section equals the
summation of the products of all elemental areas times the square of the dis-
tance of each elemental area from the rotational axis. For shafts of noncircu-
lar cross section, the form factor F can be significantly lower than the second
polar moment of area of the shaft cross section.

twist in a shaft The twist � in a shaft is the difference in the values at the
shaft ends of rotational displacement (�i�1��i), where �i�1 and �i are the
respective values of displacement in radians at each end of the shaft. The unit
of twist is radians (rad).

undamped natural frequency The undamped natural frequency in the rth-
mode �nr is derived from the fundamental relationship �nr � �K ′rr/M�′rr�. The
unit for the natural frequency is rad/s, but it is also acceptable to quote this
frequency in cycles per second by dividing �nr by 2�. In this case the unit is
cps (cycles per second) or Hz in U.S. Customary and SI units, respectively.

2.2 Units

U.S. Customary units are used in the text. Table 2.1 lists the U.S.
Customary units and their SI equivalents used for torsional vibration.

TABLE 2.1 Unit Conversions

Quantity U.S. Customary unit SI equivalent unit

Length in 2.5400E-02 m

Mass lb 4.5359E-01 kg

Force lbf 4.4482 N

Torque lbf�in 1.1298E-01 N�m

Power hp 7.4570E�02 W

Stress lbf/in2 6.8948E�03 Pa (N/m2)

Polar moment of inertia lb�in2 2.9260E-04 kg�m2

Torsional stiffness lbf�in/rad 1.1298E-01 N�m/rad

Second moment of area in4 4.1620E-07 m4

Definitions and Units 9

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Definitions and Units



Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Definitions and Units



11

Rotating Machinery 
Torsional Characteristics

3.1 Torsional Stimulus Types

Electrical turbomachinery is subject to the most varied and often most
severe torsional disturbances in comparison to other machinery
classes. In particular, turbine-generators used to develop power for
utility and industrial applications require great attention at the
design stage to torsional vibration to avoid operational problems from
electrical events that produce pulsating torques on the generator rotor
and stator. These complicated machines involve several rotors that
may include a steam turbine, a gas turbine, or both types of rotor ele-
ments coupled in tandem to the generator rotor. This book focuses on
application examples of this class of machinery because other
machines are often a simpler subset.

Figure 3.1 shows a large steam turbine-generator having several
steam turbine elements connected in tandem for driving the generator.
These machines are enormous in size, with individual rotors weighing
several hundred tons in many cases. The enormity of these assembled
machines may be judged by comparing the size of the machine to the
people in the background of this photograph.

For turbine-generators there are a wide variety of planned and
unplanned incidents that can cause electrical current oscillations in
the transmission equipment to which the generator is connected at its
terminals.4 In each case, the incidents result in an oscillating torque
applied to the generator rotor, which can stimulate twisting oscilla-
tions in the machine shafts and vibration of various rotating and non-
rotating components.

Chapter
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3.2 Transient Disturbances and Vibration
Response

Transient disturbances include malsynchronization of the generator
to the electrical network; planned or unplanned (emergency) trans-
mission line switching incidents; electrical faults in the transmission
network (including electrical circuit breaker actions) caused by
storms, for example; and generator internal electrical faults and ter-
minal short circuits.

These transients produce oscillating torques on the generator
rotor that generally include a step change in torque (impulse) and
discrete frequency torque components at the first and/or second har-
monics of the power generation frequency (60 Hz in the United
States), with generally low levels at the higher harmonics. The step
change torque component decays quite slowly (order of seconds)
while the lower harmonics of the power system frequency decay
rapidly in comparison (order of tenths of seconds).

Figure 3.2 shows by way of an example, the torque applied to the
generator rotor (the so-called airgap torque) following a simulated
transmission-line switching incident. Clearly evident is the step
change in torque at time zero with an initial value that slowly
decays in magnitude at the frequency of the average power output of
the turbine-generator relative to the power system (about 1.5 Hz in
this example). Superimposed on this low-frequency power swing
torque component is a rapidly decaying 60-Hz torque component
produced by direct-current (dc)-offset currents flowing in the stator
winding of the generator. The flux produced by these offset currents
interacts with the main rotor flux to produce an oscillating torque at
the slip frequency of 60 Hz.

12 Chapter Three

Figure 3.1 Steam turbine-generator. (Courtesy of General Electric.)
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Following transient disturbances in the electrical network to
which the generator is connected, or from generator electrical faults
at its terminals or inside the machine, the turbine-generator tor-
sional mechanical response will generally be multimodal with a slow
decay rate because of the light damping.2 This is illustrated in Fig.
3.3, which shows output from a strain-gauge rosette to measure
shaft surface torsional strain obtained during a vibration test on an
operating machine. The strain is proportional to the torque induced
in the shaft. This figure clearly shows the lightly damped and mul-
timodal nature of the torque response in a large steam turbine-gen-
erator shaft following an electrical disturbance in the transmission
network.

The frequency spectrum of shaft torsional oscillations will usually
show most response in the lower-order torsional modes, with some com-
ponents at the harmonics of electrical transmission system frequency
(the first and second harmonics generally are the most pronounced).

The fact that the damping of turbine-generator torsional modes is
very low (refer to Chap. 4) can lead to the generation of extremely
high transient torques in the machine shafts as a result of response
compounding if torsional disturbances occur in rapid succession. An

Rotating Machinery Torsional Characteristics 13

Figure 3.2 Generator applied torque waveform example. (Courtesy of
General Electric.)

Figure 3.3 Measured strain oscillations. (Courtesy of General Electric.)
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example of this is with the use of some forms of high-speed reclosing4

of transmission-line circuit breakers following electrical faults in the
network. These transmission-line faults can result from either tem-
porary or permanent electrical transients that may be produced dur-
ing storms. The terms temporary and permanent are relative here. A
temporary fault could result from an electrical lighting strike pro-
ducing a discharge that rapidly clears. A permanent fault could arise
in the case of a windstorm which causes a tree, for example, to fall
into a transmission line, causing long-term transmission-line phase-
to-phase faults and/or phase-to-ground faults.

Following any type of electrical fault in the transmission line, with
one form of high-speed reclosing, the power circuit breakers automati-
cally open after a few electrical cycles (sixtieths of seconds) to isolate
the fault and then automatically reclose after only several tenths of a
second. If the fault has cleared during this period, then no significant
shaft torque compounding occurs. However, if the fault was permanent,
then a second major torsional event will be experienced by the genera-
tor of magnitude approximately equal to that of the first one. As the
damping of the torsional modes is very light, the response amplitudes
in the shafts from the first electrical disturbance will have decayed only
slightly when the circuit breakers reclose into the fault for the second
time. If the timing of this reclosure is at its most unfavorable, the shaft
torques could approximately double as a result of response compound-
ing. In the best case, though, the shaft torques could almost counteract
one another, resulting in response cancellation.

Figure 3.4, shows a computer simulation of an unsuccessful high-
speed reclosing sequence. It is unsuccessful because the fault is perma-
nent. In this simulation the timings of the circuit breaker opening and
reclosing were selected to maximize the peak-to-peak shaft response, to
illustrate the potential for torsional response reinforcement.

The top trace in Fig. 3.4 shows the fault torque waveform that is
applied to the generator rotor. The bottom trace shows the resulting
shaft torsional response. The peak shaft response (expressed in torque
per unit of the steady-state driving torque applied to the generator
from the turbines at rated load) almost doubles following opening of
the circuit breaker (fault clearance) and then almost doubles again fol-
lowing the combined result of unsuccessful reclosure and final fault
removal. The resulting effect on the amount of shaft fatigue expendi-
ture may be much higher than the amount of torque compounding
because of the nonlinear nature of the fatigue process (see Sec. 10.1).

Following electrical faults, there are several alternate power circuit
breaker operating practices that, while often achieving needed trans-
mission system reliability objectives, substantially reduce the tor-
sional duty on turbine-generators.5 These include

14 Chapter Three
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■ Having equipment that delays reclosing by a minimum of about 10
seconds to allow decay of shaft oscillations and avoid shaft torque
compounding effects.

■ Employing sequential reclosing equipment to ensure that the
breaker reclosure occurs initially from the end of the transmission
line that is remote from the turbine-generator(s) and to block (pre-
vent) high-speed reclosing from occurring at the power station end
of the transmission line if the initiating electrical fault persists. This
is, of course, useful only for lines of significant length and where the
remote end of the line is not another generating station.

■ Employing equipment that senses the type of electrical fault that
has occurred and blocks high-speed reclosing for especially severe
types of faults that could potentially damage the turbine-genera-
tor(s). A high percentage of severe multiphase faults are permanent,
and thus may not benefit from high-speed reclosing. With this
approach, high-speed reclosing would be employed only on less
severe single line-to-ground faults, for example, which are perma-
nent less often.5

Transmission lines are taken out of service periodically for many
reasons. When they are put back in service, care must be exercised
to ensure that when a power circuit breaker is closed in the vicinity
of a power station, the torque pulsations felt by the generator do not

Rotating Machinery Torsional Characteristics 15

Figure 3.4 Torsional response reinforcement. (Courtesy of General Electric.)
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damage the shafts or other components. For planned line-switching
incidents, guidelines exist5 for power system planners to use, on the
level of a step change in power or current seen by a machine that
generally is undamaging and avoids the need for a special screening
study. For emergency line-switching cases, for which it is necessary
to maintain the integrity of a complete transmission network, the
turbine-generators may be exposed to damaging levels of torsional
vibration, and this is unavoidable.

Synchronizing a turbine-generator to the transmission network dur-
ing the start-up sequence results in a torsional disturbance to the
machine unless it is done perfectly. Malsynchronization produces
mainly impulsive and 60-Hz torque components. Equipment is com-
monly used to automatically synchronize a generator by matching the
phase angle difference between the generator and the system voltage
to minimize the disturbance. A phase angle of 10° or less generally
results in vibration responses that can be sustained by the machine for
an infinite number of times, and synchronizing in this window is prac-
tical. Mistakes have occurred, though, resulting in synchronization at
close to the worst possible angle. This has occurred when manual oper-
ation was performed incorrectly or when automated equipment was
either operated incorrectly or improperly connected, resulting in
machine damage.

3.3 Continuous Low-Level Stimuli

Certain conditions in the electrical network can cause a relatively low
but continuously acting torsional stimulus to the generator rotor
(caused, e.g., by untransposed transmission lines and/or unbalanced
loads). The resulting alternating stresses in the turbine-generator
shafts and other components need to be below the fatigue endurance
limit of the materials involved. This is because of the very high num-
ber of stress cycles that will be experienced over the life of the machine
as the cycles are being accumulated continuously whenever the
machine is delivering power.

Most commonly under these conditions, the dominant frequency at
which the generator rotor stimulates the turbine-generator rotor/shaft
system is at twice the electrical transmission system frequency. This
frequency is high enough to stimulate relatively high-order turbine-
generator shaft torsional and turbine blade system modes.

These modes are complex and need sophisticated vibration models
(coupled rotor and turbine blade dynamic models in the case of long
slender turbine blades with relatively low bending natural frequen-
cies). Such models permit, for example, simulation of the dynamic
effects of bending vibration of low-frequency latter-stage turbine

16 Chapter Three
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blades that vibrate in unison with the low-pressure turbine rotor tor-
sional motion.

3.4 Torsional Instabilities

There is the potential for torsional instability to exist on machines
that are connected to electrical networks that have series-capacitor-
compensated lines to reduce power transmission losses [termed sub-
synchronous resonance (SSR)].6 Machines connected to direct current
transmission lines can also be affected, with instability in this case
due, for example, to incorrect operation or maladjustment of rectifier
and inverter control equipment.

For both these transmission system configurations, powerful inter-
actions between current oscillations in the network and torsional
vibration of the turbine-generator can cause machine mechanical
oscillations to grow steadily to shaft fatigue failure levels. Such 
turbine-generator shaft failures have occurred, resulting in long peri-
ods of lost power generation6 while the machines were repaired.

SSR is a transmission-system-based problem that may adversely
affect turbine-generator sets on that system. Some power companies
are faced with the need to transmit large blocks of power over long dis-
tances to main population centers. This is particularly true in the
western United States, where the distances between some relatively
inexpensive sources of coal (and therefore close to some power plant
locations) and major cities (the main load centers) are very large. The
long transmission lines that resulted would normally have had very
high inductive reactance, which would have limited the amount of
power that could be transmitted and would have experienced high
electrical losses.

The transmission system designer can overcome these problems by
adding a parallel transmission line or lines (a very expensive option),
or by installing series-compensating capacitors in the line. These
capacitors lower the effective inductive reactance between the genera-
tion and the load. If they are not correctly applied, however, these
series-compensating capacitors, which are used to solve power system
transmission problems, may result in turbine-generator SSR problems.

For example, for the simple case of a single transmission line con-
necting a turbine-generator to a load center, the line that normally
would be represented by inductors and resistors now has capacitors
added. Hence an RLC (resistance � inductance � capacitance) cir-
cuit is developed that introduces an electrical resonance frequency
for the current flowing in the transmission line. The electrical reso-
nance frequency for this simple line configuration is inversely pro-
portional to the square root of the product of the series capacitance
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and inductance. The frequency of the resonant oscillating current in
the transmission line is typically below the frequency of the power
produced by the generator, which is 60 Hz in the United States, and
thus the term subsynchronous resonance or SSR for short.

The turbine-generator set is a mechanical system that typically
has several resonant frequencies below 60 Hz. Currents that enter
the generator armature windings from the transmission line electri-
cally couple the turbine-generator rotor system and the transmission
system. This arises because the magnetic field, resulting from the
subsynchronous currents flowing in the transmission line and then
into the generator armature winding, interacts with the main mag-
netic field produced by the generator rotor (the field). Torque pulsa-
tions are thereby produced on the generator rotor at the slip
(difference) frequency between these two interacting and rotating
magnetic fields.

In general, these torque pulsations do not cause any harm unless
their frequency coincides with, or is close to, one of the torsional nat-
ural frequencies of the turbine-generator shaft system. For example, if
the line resonant frequency were 20 Hz resulting from the addition of
series capacitors, potential SSR problems could arise if the turbine-
generator had a torsional mode in which the generator rotor would be
torsionally responsive at or close to 40 (60 � 20) Hz. Under these con-
ditions the shaft response torques could build up to extremely high lev-
els under steady-state or transient conditions.

Following some shaft failures from the SSR problem, corrective
actions were developed which included installation of large filters to
remove the harmful current frequency components from entering the
generator, installing electrical damping devices, and addition of pro-
tective monitoring and relaying equipment.

3.5 Harmonic Torques

3.5.1 Turbine-generators

Rotating machinery is sometimes subjected to significant high-order
harmonic currents entering the armature of a generator or a motor.
This can arise in the case of turbine-generators when the power they
develop is transmitted across high-voltage direct-current (hvdc) trans-
mission lines and/or supplies large nonlinear electrical loads (e.g.,
major facilities using solid-state variable-speed motor drives, rectifier
and inverter installations, large welders, and arc furnaces).

In the case of hvdc transmission, a large power rectifier installation
is required to convert the alternating currents produced by turbine-
generators to direct current for power transport, and at the other end
of the transmission line a large power inverter installation is required
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to perform the opposite operation. The rectifiers and inverters feed
into the network significant harmonics of the fundamental power sys-
tem frequency in the alternating current waveform. Electric power
transmission with hvdc is generally used only when long transmis-
sion distances are required because hvdc lines have lower cost per
unit of length for the same operational reliability because intrinsi-
cally they have fewer conductors and smaller tower sizes. However,
the system requires expensive converters at each end of the line for
rectification and inversion, which cost several times more than trans-
former installations needed on high-voltage alternating-current
(hvac) systems. Long transmission distances are therefore generally
required for hvdc, to get beyond an economic break-even length.
Other advantages of hvdc are less corona and radio interference and
uniform current density in the conductors, enabling better material
utilization, and the length of a dc link is not governed by power sys-
tem transient stability.

On the power generation side, some gas turbine-generators use the
generator like an induction motor (static starting; see Case Study
9.4.8) to produce the torque to get the machine to a speed necessary for
the gas turbine to be fired. The gas turbine is then able to produce the
torque to drive the machine the rest of the way to the rated speed prior
to synchronization of the generator to the electrical transmission net-
work. Under static start conditions, the power electronics equipment
needed to feed current to the generator armature at variable frequency
as the machine accelerates, provides current waveforms that are rich
in harmonic content.

Hence there is power delivery as well as power generation possibili-
ties for producing significant harmonic currents that can flow in trans-
mission system circuits and machine armatures. The usual concerns
relate to interference in telephone circuits, data communications,
clocks and digital controls, and also overheating of transformers and
possible failure of power factor control capacitors.

However, harmonic currents that enter the armatures of generators
or motors will also produce pulsating torques on the rotors, causing
torsional vibration. In three-phase systems the harmonics current fre-
quencies are at 5, 7, 11, 13, 17, 19, and higher odd multiples of the 
60-Hz fundamental power system frequency. The series is given by 
(6n � 1). Harmonic currents 5, 11, 17, … (6n � 1) produce rotating flux
waves in the armature. These waves rotate in the direction opposite to
the main flux from the rotor field. The pulsating torques they develop
at the generator or motor rotors are at the slip frequencies of these two
rotating flux waves and are therefore at 6, 12, 18 … (6n) harmonic fre-
quency. Harmonic currents 7, 13, 19 … (6n � 1) also produce rotating
flux waves in the armature, but in this case they rotate in the same
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direction as the main flux from the rotor magnetic field. The slip fre-
quencies and hence harmonic torque frequencies are therefore also
equal to 6, 12, 18, … (6n).

From a torsional vibration standpoint, these harmonic torques
would be of concern only if they became resonant with a machine sys-
tem torsional natural frequency. The lowest harmonic torque fre-
quency and the one that generally has the highest amplitude is the
sixth harmonic (360 Hz). Torsional vibration modes of a large machine
in the vicinity of 360 Hz and higher would generally be complex sys-
tem modes, possibly involving rotor vibration coupled with vibration of
turbine blades and/or other flexibly mounted rotor system compo-
nents. The natural frequencies of these high-order torsional vibration
modes are extremely difficult to predict accurately. Fortunately for
these modes, the amount of relative motion that occurs at the main
rotors (including the generator rotor, which is the location of the pul-
sating torques) is usually very low, making the modes very hard to
stimulate. Also, these modes are particularly lightly damped and will
be detuned if off resonance by a very small amount (fractions of 1 Hz).
High-order harmonic torques are therefore rarely of concern for turbo-
machinery. This may not be the case for electric-motor-driven systems,
which are addressed next.

3.5.2 Induction motors

Certain harmonic effects arise when an induction motor is started.
Usually the main concern is with torque dips, which affect the motor’s
ability to reach full speed, but there are some effects that can result in
torque pulsations. These are due to interactions between various
sources of harmonics in the machine’s magnetomotive force (mmf) and
fluxes. The main sources of harmonics are

■ The distributed nature of the stator winding produces a stator wind-
ing mmf that contains space harmonics, just as it does in a synchro-
nous generator or motor.

■ The distributed nature of the rotor currents also produces a rotor
mmf wave that contains harmonics.

■ The slotting on the stator (or rotor) produces a permeance variation
at slot pitch frequency, which, when acting on the mmf ’s, produces
another set of flux harmonics.

■ Depending on the number of rotor slots as compared to the number
of stator slots, a pulsation of the main flux can occur because the
average permeance of the airgap fluctuates as the rotor moves rela-
tive to the stator, and the lineup of rotor and stator teeth varies.
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The interactions between all these different harmonic sources can pro-
duce steady torques that rise and fall with speed, sometimes accelerat-
ing the shaft, sometimes slowing down the shaft, and these torques are
the main design and application concern, as the machine torque must, of
course, never fall below the torque needed to accelerate the load.
However, any fields that have the same number of harmonic poles, but
which rotate at different speeds, can produce torque pulsations whose
frequency will depend on the relative speed of the two fields. The fre-
quency will vary as the machine speed changes. The presence or absence
of these torques and their magnitudes depends on the relative number of
stator and rotor slots, the use of open or closed slots, the rotor slot skew,
and the machine reactances and resistances. A well-designed machine
will have these variables chosen in such a way as to minimize the har-
monic torques and losses, consistent with the desired overall perfor-
mance. There have been reported cases of torques large enough to cause
chatter and damage to gearboxes and other equipment in the drivetrain.

3.5.3 Variable-frequency electric drives

High-speed electric drives are becoming increasingly common for large
compressor, pump, blower, process, pipeline, and test stand applica-
tions. High-speed motor experience goes up to the order of 40 MW for
synchronous machines and 15 MW for induction machines. Maximum
rotational speeds for machines in service are about 6400 and 20,000
rpm (revolutions per minute), respectively. Below these peak ratings
that are trending upward, variable-frequency electric drive technology,
when used with large induction and synchronous motors, has advan-
tages over mechanical drivers in several areas:

■ Improved efficiency and avoidance of gearboxes in many cases
■ Reduced initial equipment and installation costs
■ Ability to adjust machine power output and speed to meet process

demand changes, thereby reducing operating costs and providing
additional operational flexibility

■ Reduced maintenance costs
■ Reduced noise and environmental issues often resulting in shorter

site permitting times
■ Machine output that is virtually independent of external air tem-

perature

A variable-frequency drive (VFD) controls the speed and torque of the
motor. It does this by varying the frequency and amplitude of the alter-
nating current waveform being delivered to the motor armature.
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The basic components of a VFD are an input section, which draws
alternating-current (ac) power from the utility electrical network; a
rectifier section, which converts the ac into direct-current (dc) power;
and an inverter section, which converts the dc back into a controllable
(frequency and magnitude) ac output for the armature current. The
inverter converts the ac power to a series of dc voltages, then varies
the frequency of the dc pulses to approximate a sinusoidal waveform
at the desired frequency. The ac waveform produced by this process is
rich in harmonics because the fast switching creates voltage spikes.

As for the power electronics discussed earlier under hvdc transmis-
sion of power, the VFD feeds extraneous high-order harmonic currents
into the motor armature. This results in application of high-order har-
monic torques to the motor rotor, which in turn can produce torsional
vibration in this class of coupled industrial machine. The driven equip-
ment may be a compressor, pump, fan, blower, or other component that
is directly coupled to the motor.

The potential for mechanical damage to the machine shafts and other
systems is in this case much higher than for the impact of hvdc trans-
mission on turbine-generators. This is because during the frequent
runups and rundowns in rotational speeds of machines driven by elec-
tric motors, and the large number of potential operating speeds and hold
points, there is significant risk of the development of resonant mechan-
ical responses. At low rotational speeds the frequency of the harmonic
torques will also be low and could coincide with some of the lower-order
and responsive torsional modes of the coupled machine.

It is therefore important in the design of these coupled electrical
machines that the torsional natural frequencies be calculated and
modified as required to avoid the development of high-resonance-type
response levels at part load/speed conditions and during speed excur-
sions. Operational strategies include rapid acceleration through
defined critical speeds and avoidance of operation hold points near
critical speeds. This important topic is illustrated in Case Study 9.4.8.
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Torsional Damping
Characteristics

It is widely recognized that the rate of free decay of turbine-generator
torsional oscillations following removal of all stimuli (forcing func-
tions) is very small. Torsional damping for turbomachinery is gener-
ally very low in comparison to that of bending vibration because
significant damping for the latter is obtained through bearing journal
radial motion that compresses the bearing oil film, and this radial
motion is practically nonexistent for torsional vibration.

Modal damping values have been measured on several turbine-
generator designs in service, confirming in each case extremely low
modal damping.6,7 Figure 4.1 shows measured values of torsional
mechanical response at each end of a turbine-generator following a tran-
sient electrical disturbance to the generator. It is seen that there is a very
low decay rate of the response envelopes over about a 2-second time
interval following the disturbance. The mechanical signals in this case
are from toothed wheels with magnetic sensors that detect variations in
the rotational velocity of the machine from its steady-state value.

Modal damping values (either estimated or measured) can be used
directly in vibration analysis by writing the forced response equations
in modal form. Fortunately, using modal transformation, it is unnec-
essary to try to deduce from measured data the values of discrete
dashpot constants between shaft spans and from rotors to ground.
Modal transformation is illustrated in detail later in Chap. 8.

Most modern vibration programs are structured to handle modal
damping inputs directly. The modal transformation results in the
equations to be solved being uncoupled, significantly improving com-
putational efficiency and providing additional insight into the nature

Chapter
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of the vibration behavior by supplying modal participation informa-
tion. Complete uncoupling of the equations requires that the modal
damping matrix has no off-diagonal terms, which is generally untrue,
but usually making this assumption results in negligible inaccuracies
in response predictions.

It has been observed in turbine-generator tests at power stations or
industrial plants that the modal damping values are functions of the
turbine-generator power output6,7 and the transmission network con-
figuration. The modal damping values increase substantially as the
load on the turbine is increased as clearly shown in Fig. 4.2, presum-
ably because the aerodynamic damping forces on the turbine blades
increase as the machine power output (and steam flow rates) rise.

In addition, it has been found that there is a high degree of vari-
ability between the damping values measured on different turbine-
generator designs. Surprisingly, the modal damping values have also
been observed to be slightly different on nominally identical turbine-
generator designs under the same operating conditions. This occurs
presumably because of manufacturing tolerances.

The modal damping that is measured by observing the mechanical
response (filtered into separate modal components) is made up of several
constituents. The magnitude of the modal damping varies greatly with
the mode number. In the author’s experience the modal damping in the
subsynchronous (less than electrical transmission system frequency)
modes of a turbine-generator ranges from a logarithmic decrement (see
Chap. 2 and Sec. 13.4.1) of 0.0004 to 0.05, depending particularly on the
turbine-generator load, mode number, and turbine-generator rotor con-
figuration. Most of the individual damping mechanisms are complex and
are not accurately predictable at the design stage.

Some of the more significant damping mechanisms are

■ Steam forces on turbine blades and seals and windage forces on
rotor surfaces

24 Chapter Four

Figure 4.1 Measured speed oscillations. (Courtesy of General Electric.)
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■ Shaft material hysteresis, particularly at high levels of oscillating
strain

■ Energy dissipation from coupling slippage (friction) during high tor-
sional oscillations

■ Generator and shaft-driven alternator electrical damping
■ Electrical damping or undamping components emanating from the

transmission network and control equipment
■ Bearing oil film losses (generally low in comparison to other items

listed).
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Figure 4.2 Measured torsional damping. (Courtesy of General Electric.)
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Attempts at predicting the values of the discrete dashpot values prior
to a test, corresponding to each of the mechanisms listed previously,
and then determining the equivalent modal damping values by use of
the calculated mode shapes, are generally unsuccessful.

Estimates of the damping levels are sometimes made on untested
units by extrapolating from station test data on other units. Matching
the mode shapes of the untested unit to those previously tested is an
important factor in the damping estimation process. If the preliminary
results using estimated lower-bound values of damping indicate a prob-
lem, then a station test may be warranted to measure the actual values.

The peak mechanical response torques following brief electrical
transients are practically independent of the modal damping levels as
these damping levels are very low, and the peak response torques in
the various shaft spans occur quickly and hence before any apprecia-
ble damping energy dissipation has had a chance to occur. However,
following a system disturbance, accurate knowledge of the amount of
modal damping present is crucial for determining the number of dam-
aging fatigue cycles experienced by the various shaft spans. This is
because the magnitude of the damping directly controls the decay rate
of the oscillations and hence the number of cycles that are experi-
enced before the vibration amplitudes fall below the high cycle fatigue
or endurance level of the shaft material, corresponding to the thresh-
old at which no further fatigue damage accumulates. Depending on
the severity of the disturbance, the oscillations may persist in excess
of the shaft endurance level for many seconds. Under transient con-
ditions, the shaft fatigue life expenditure estimates may therefore be
dramatically affected by the damping assumption.
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Torsional Vibration 
Mathematical Modeling

5.1 Machine Construction

Rotating turbomachinery usually consists of several rotors that are
connected in tandem by couplings. Usually the rotors are made from
steel forgings with circular cross sections of varying diameters that are
either solid cylindrical or hollow annular in shape.

Generally the main-body regions of an individual rotor have signifi-
cantly larger-diameter sections than do the rotor extensions at each
end. These shaft extensions often contain the seals and bearing jour-
nals and may terminate with integral or shrunk-on couplings.

Some rotors may have rings or wheels that are shrunk on to the
rotors for supporting components such as fans, or in the case of most
large generators, retaining rings that support electrical conductors
and insulation at each end of the main body of the generator. On some
machines the wheels or rings (not the retaining rings) may be integral
parts of the rotor forgings and are produced by machining operations.
This may result in large, abrupt diameter changes to produce, for
example, integral rings for turbine blade attachment purposes, cou-
plings, and so on. Figure 5.1 schematically illustrates some of these
features on a generator rotor.

For some rotors, the cross sections of the main body or shaft exten-
sion may not be either cylindrical or annular. A prime example would
be the cross section of the main body of a large generator rotor which
has deep slots machined axially down the length of the rotor as shown
in Fig. 5.2 in order to contain the rotor winding assembly. Another
example arises from the presence of axial keyways machined in rotor
shafts for locking shrunk-on couplings or other shrunk-on components.

Chapter
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5.2 Development of Vibration Analytical
Model

To achieve good accuracy in analytical results, the required number
and distribution of elements along the axial length of the machine are
often gained through experience with modeling of a particular class of
machine. Considerations include the vibration response frequency
range of interest, the number of locations that have distinctly different
diameters and other geometric discontinuities, and the relative values
of stiffness and inertia for discrete spans of the rotor.

As an example, for a large turbine-generator in which the shaft tor-
sional response needs to be estimated following a transient distur-
bance, the model is strongly influenced by the fact that the shaft
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Figure 5.1 Generator rotor schematic. (Courtesy of General Electric.)

Figure 5.2 Deep axial slots in
generator rotor. (Courtesy of
General Electric.)
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response is primarily in the lower-order modes of vibration (less than
60 Hz). Recognizing also that the main-body parts of the rotors are
much stiffer than the shaft extensions, it is important that the flexibil-
ity in the shaft spans be accurately defined. The rotor bodies contain
most of the machine’s polar moments of inertia, and these inertia val-
ues must be accurately computed and apportioned to one or two nodes
in each rotor. The body sections are so stiff in comparison to the shaft
extensions that only one or two nodes are generally required to enable
the rotor inertia and body stiffness to be adequately represented.
Figure 5.3 illustrates such a model, where a total of 13 nodes are placed
at the centers of inertia of each main rotor (in this case five turbines, a
generator, and a shaft-driven alternator rotor) and at the six couplings.

With the high computing power and memory of modern computers, it
is no longer necessary in general to be frugal in selecting the number
of nodes and corresponding degrees of freedom for constructing vibra-
tion models. Most machine designers have at their disposal automated
machine modeling programs that output inertia and stiffness proper-
ties at any defined number of locations along the length of the rotor sys-
tem, and these programs often provide direct input to the vibration
analysis programs. If required, some neighboring sections can be com-
bined to give equivalent properties over the combined length to reduce
the number of elements in the model.

In the case of the turbine-generator example above, if a mathemati-
cal model were used with more nodes and degrees of freedom, there
would be little improvement in the accuracy of the subsynchronous nat-
ural frequencies (less than 60 Hz) and shaft forced response predictions
(most shaft response is in the lower-order modes). The only benefit
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would be significantly improved accuracy in the higher-frequency mode
characteristics, which would be of benefit, for example, for studying
rotor torsional vibration and turbine blade bending vibration interac-
tions that usually occur at supersynchronous frequencies.

The inertial properties of a rotor system can be very accurately
defined because they depend only on geometry and the density of mate-
rials that are used in the rotor construction. For turbine-generator
shaft response and subsynchronous natural frequency calculations, the
inertia of components such as blades can be added to the inertia of the
rotor that supports them (rigid connection). However, for accurate cal-
culation of the supersynchronous modes in the vicinity of twice the elec-
trical transmission system frequency, it is generally necessary to
flexibly couple the inertia of the more flexible steam turbine blades to the
rotor that supports them. These branched, coupled models are outside
the scope of this book, because the book focuses on shaft response for
which the subsynchronous modes generally dominate.

The stiffness properties of shaft sections that are solid cylindrical or
annular in shape can also be accurately computed, in this case depend-
ing only on section lengths and diameters and the rigidity modulus
material property. The overall flexibility of a shaft span composed of
several sections of different diameters and lengths can be obtained by
addition of the individual section flexibilities (the inverse of individual
section stiffnesses). The overall span stiffness is the inverse of the
overall span flexibility. In this process adjustments should be made to
account for abrupt diameter changes, otherwise the total span stiff-
ness will be overestimated. This topic is covered in more depth in Sec.
5.3 and Case Study 9.1.3. In the case of noncylindrical shaft sections,
the form factor (see definition of torsional stiffness in Sec. 2.1) must be
carefully estimated using such approaches as correlations from struc-
tural finite element analysis, modeling handbooks, or test programs.
This is particularly important for the deeply slotted portion of a gen-
erator rotor body whose cross sections do not remain planar during
twisting (the warping effect). This results in a form factor much lower
than the second polar moment of area of the cross section. In addition,
for rotors that contain materials embedded in slots or cavities (e.g., a
generator rotor winding), the stiffness of the rotor may be a function of
the rotor speed due to centrifugal stiffening effects. Rotating torsional
shaker tests performed by some manufacturers have provided them
with information that quantifies this effect, which is difficult to deter-
mine analytically.

The damping properties for the vibration model, as addressed earlier,
are difficult to estimate accurately and in general need to be estimated
on the basis of test data and experience or by the use of conservative
lower-bound values.
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The forcing function properties in torsional vibration for a turbine-
generator are primarily the generator airgap torque. This torque time
history applied to a machine can be quite accurately calculated using
electromagnetic mathematical models8,9 that simulate as required the
generator, control systems, auxiliary equipment (e.g., transformers),
and the transmission network and loads. In general, the calculation of
the electrical torque on the generator can be uncoupled from the vibra-
tion analysis of the machine.2 The main exception to this rule is the
analysis of torsional instabilities such as subsynchronous resonance,6,7

for which there is strong cross-coupling between the machine torsional
vibration response and current oscillations in the electrical network
which affect the generator airgap torque stimulus.

5.3 Accounting for Abrupt Shaft Diameter
Changes

In rotating machinery abrupt changes often occur in the shaft diame-
ters. Examples are coupling flanges, rings for supporting fans or
blades, and step-downs in diameter from the main body of a rotor to
shaft extensions that may contain the bearing journals and couplings.
These abrupt changes reduce the shaft system stiffness to a value less
than that obtained by using traditional stiffness formulas based on
nominal dimensions. This would be expected because stress contours
have difficulty making the rapid changes in directions that result from
abrupt changes in shaft geometry, including axially short and high
protrusions such as couplings and component support rings. This sub-
ject was first investigated in depth by the British Internal Combustion
Engine Research Association,10 and information such as presented in
Fig. 5.4 is provided in this reference for quantifying the effect based on
a substantial model testing program in a laboratory environment.
These and other stiffness-reducing shaft features, including the effects
of shaft axial keyways and shrunk-on components, are often analyzed
these days using finite element structural models to quantify stiffness
reduction factors for use in vibration evaluations. This avoids the need
for performing more expensive model tests.

Figure 5.4 shows how the equivalent length of the junction (addi-
tional flexibility) can be estimated in terms of the abruptness of the
transition between two sections of a shaft of differing diameters. It is
seen that the additional flexibility is a function of the shaft diameter
ratio D2/D1 and the ratio of the fillet radius to the radius of the smaller-
diameter shaft r/R1. The additional flexibility shown in Fig. 5.4 is
expressed in terms of a fictitious extra length of shaft with a diameter
equal to that of the smaller shaft D1. The results can be processed to
define instead an equivalent stiffness diameter or length of any given
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section in the shaft span or the equivalent length of any specified con-
stant-diameter span.

In the case of a coupling, the results would show that its effective
stiffness diameter is significantly lower than the outside diameter,
particularly if the fillet radius is small (low r/R1 ratio). A coupling
example is given in Case Study 9.1.3. For a well-designed coupling
with a generous fillet radius, the effective stiffness diameter is of the
order of 80 to 90 percent of the coupling outer diameter. It is common
practice to assume for a very short component support ring that it
adds no incremental stiffness to the shaft from which it emanates.

5.4 Couplings

There are two main classes of couplings used on rotating machinery,
which may be referred to as “rigid” and “flexible.” Whereas there is no
true rigid coupling, because all components have some degree of flex-
ibility, this category is intended to include those couplings that by
design have no features added to produce a controlled amount of flex-
ibility or damping into a shaft span of a machine. Most couplings of
large steam turbine-generator sets fall into this “rigid” definition.
Each coupling half may be an integral part of each rotor that contains
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Figure 5.4 Junction effects for cylindrical shafts. (Courtesy of BICERA Research
Laboratory.)
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it, or one or both halves may be shrunk onto the ends of the respec-
tive rotor shafts. If a coupling is shrunk onto a shaft, it is important
that the shrink fit be adequate after accounting for centrifugal and
thermal effects to prevent slippage under steady-state conditions and
frequently occurring transient torque incidents. Most shrunk-on cou-
plings are keyed to the shaft to prevent gross slippage under the most
severe transient shocks to the machine. The coupling halves are
bolted together using several bolts on a bolt circle diameter. For
machines that may be exposed to high levels of transient torque, it is
important that bolts be fitted in the coupling bolt holes with a clear-
ance tolerance sufficiently tight to ensure that all bolts take an
approximately equal shear load during transient conditions.
Otherwise, one or a few of the bolts may take the brunt of the tran-
sient load, which could damage the affected bolts and the coupling.
This could make subsequent coupling bolt removal difficult, and also
there would be potential for coupling slippage and deformation, pos-
sibly resulting in the need for a machine rebalancing operation.

There are many types of flexible coupling, such as diaphragm, elas-
tomeric, gear, grid, and quill shaft couplings. The type that is selected
in a given application depends on the rotational speed and the mag-
nitude of the steady-state and peak torque that needs to be transmit-
ted. Selection is also based on the coupling’s ability to accommodate
the following:

■ Misalignment (angular, radial and axial)
■ Vibration and shock
■ Axial expansion of rotors
■ Axial loads
■ Ease of rotor maintenance operations

Coupling selection may also be influenced by the ability of the coupling
to provide

■ Nonlinear stiffness
■ Damping
■ Required bending and torsional stiffness values
■ Specified values for coupling moment of inertia and mass

For some machines there may be substantial changes in alignment
from cold conditions at standstill to hot conditions when the machine
is operating at its full rating. For these machines, to minimize shaft
bending stress and to prevent unloading of bearings (giving potential
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for machine lateral vibration stability problems), a flexible coupling
design is often utilized that is tolerant to alignment changes and
transfers low bending moments. For this reason, large nuclear steam
turbine-generator sets with shaft-driven exciter rotors are candidates
for flexible coupling in the generator-exciter shaft span, particularly
because the shaft sizes and bearing sizes and clearances are very dif-
ferent on either side of the coupling. For these applications care must
be taken to evaluate the flexible coupling torsional stiffness in the
machine torsional system design evaluations.

As discussed previously, many classes of rotating machinery are
subject to severe pulsating torques during start-up and during opera-
tion that require flexible couplings between the driver and the driven
equipment to minimize shaft torsional duty. Some of these machines
may be driven by electric motors with variable-frequency drives. The
motors supply torque to equipment such as compressors, pumps, fans,
and blowers for a wide variety of industrial applications. The pulsat-
ing torques may emanate from the driver, the driven equipment, or
both. For some of these machines it is necessary to specify a flexible
coupling with a defined stiffness range and in other cases, a coupling
that has defined nonlinear stiffness properties and provides damping.
The benefits of coupling stiffness nonlinearity are briefly evaluated
under “Nonlinear Vibration” in App. C.

5.5 Modeling of Geared Rotor Systems

Many types of rotating machines have gear systems for achieving dif-
fering rotational speeds for some of the machine elements. This
requirement arises because the optimum rotational speeds for the
machine driver elements such as turbines and motors may need to be
different from those of the driven elements such as generators, pumps,
and compressors, for performance and mechanical design reasons. It is
common practice in modeling and analyzing such machines to create
an equivalent mathematical model for which the rotational velocity is
the same for all the machine rotor elements.

This is often achieved in modeling by selecting the rotational veloc-
ity of the first rotor in the system as the reference velocity. The next
step is to divide each rotor angular velocity in the machine by the ref-
erence velocity, thereby defining velocity ratios N for each machine ele-
ment. The velocity ratio of the first rotor will therefore be 1 and for the
others, a number equal to or greater or less than 1. Velocity ratios are
often negative, as would arise for the case of a simple gear system in
which rotors on either side of the speed reduction gears turn in oppo-
site directions.
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An equivalent single angular velocity mathematical model is
derived in App. A that will provide the same natural frequencies, and
after back substitutions, the correct mode shapes and forced response
results. The results are summarized here:

■ The equivalent inertia of each element is its actual value times its
velocity ratio squared. The equivalent stiffness of each shaft span is
obtained in the same way.

■ At a gear cluster the equivalent gear inertias are now summed to
produce one equivalent gear inertia.

■ The new rotational displacement variables at each model node are
the actual variable divided by the appropriate velocity ratio.

■ Each applied torque is modified to equal its actual value times the
velocity ratio at the rotor node to which the torque is applied.

■ After calculating mode shapes and forced response rotational dis-
placement values, the actual values at each original model node and
for individual gears are obtained by back substitution. This process
is fully illustrated using a simple example in App. A.
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37

Torsional Vibration 
Finite Elements

This chapter and the next two use linear matrix algebra in the analy-
sis. Appendix D gives a brief introduction to matrix algebra for those
readers who may have lost and need to regain familiarity with the sub-
ject. This chapter develops from first principles all the required finite
element stiffness and inertia matrices required for calculating natural
frequencies and mode shapes, sinusoidal forced response, and tran-
sient response to any defined sets of applied torque histories (input of
torques as a function of time). The finite elements are defined in terms
of geometric and material property information.

Inertia matrices are produced using both linear and quadratic shape
functions. In the former case each element has 2 degrees of freedom
corresponding to rotational motion at each end of the element, and in
the latter case each element has 3 degrees of freedom by including an
additional one at the element midspan. In each case the inertia matri-
ces are banded and more powerful than the traditional diagonal iner-
tia matrices. Equivalent stiffness matrix derivations are provided.

The creation of the global inertia and stiffness matrices from the
individual element matrices is demonstrated using conventional finite
element assembly methodology.

6.1 Formation of Traditional Inertia Matrix

Traditionally the inertia matrix is diagonal (all nondiagonal terms are
zero). Figure 6.1 depicts a rotor system with n uniform elements and
(n � 1) nodes with element polar moments of inertia I1, I2, …, In for the
n elements, respectively.

Chapter

6

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Source: Torsional Vibration of Turbomachinery



For each element, half of its total inertia would typically be appor-
tioned to the node at each end, giving the following global inertia matrix:

Improved accuracy in analysis results can be achieved by formulat-
ing energy-distributed inertia matrices for each element. These
matrices are generally fully populated with nonzero values. Diagonal
inertia matrices (with nonzero values only on the main diagonal) are
based on allocating inertias to better approximate the dynamic forces
acting on the system, whereas the energy-distributed inertia matri-
ces better approximate the kinetic energy of the system.

6.2 Development of Distributed Inertia
Matrices

This section gives the formulation of two energy-distributed inertia
matrices using linear and quadratic shape functions, respectively. Use
of higher-order shape functions provides little added benefit and has
computational efficiency disadvantages.

0 0 . . . 0 0

0 0 . . . . 0

0 0 . .
. . .
. . .
. . 0

. 0

0 . . . . 0 0 In�
2

In � 1�In�
2

I1 � I2�
2

I1�
2
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Figure 6.1 Simple rotor mathematical model.
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6.2.1 Using a linear shape function

The kinetic energy (KE) of the element shown in Fig. 6.2 that has a
uniform cross section with nodes 1 and 2 at the ends is given by

KE � � �AK2�2 �L

0
�2(x) dx (6.1)

where � � element material density
A � element cross-sectional area
x � position of elemental slice from left end of element

�(x) � vibration rotational displacement at axial location x
� � frequency of vibration
L � element length
K � element radius of gyration

As a linear shape function is being used

�(x) � ax � b (6.2)

By definition

At x � 0 �(x) � �1

At x � L �(x) � �2

�1 and �2 are the rotational displacement values at the element nodes.
Therefore from Eq. (6.2), �1 � b and �2 � aL � b. Therefore

[a] � [ ] [�1 ]b 1 0 �2

(6.3)
1
�
L

�1
�
L

�
�
2
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x 	x
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Figure 6.2 Inertia element with two nodes.
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Also, by putting Eq. (6.2) in matrix form,

�(x) � [x 1] � � (6.4)

Substituting (6.3) into (6.4) yields

�(x) � [x 1] [ ] [�1]1 0 �2

Thus

�(x) � � � 1 � � �
Substituting into (6.1) gives

where I by definition is the element polar moment of inertia.
Hence the energy distributed inertia matrix is

[ ]I
�
3

I
�
6

I
�
6

I
�
3

� �2 [�1 �2] [ ] [�1]�2
I
�
3

I
�
6

I
�
6

I
�
31

�
2

� AK2L�2 [�1 �2] [ ] [�1]�2
1
�
3

1
�
6

1
�
6

1
�
3�

�
2

� AK2�2 �L

0
[�1 �2][� �2

� 2� � � 1 �� �2
� � �  �1

dx

�� �2
� � � � �2

�2
x
�
L

x
�
L

x
�
L

x
�
L

x
�
L

x
�
L

x
�
L�

�
2

KE � AK2�2 �L

0
[�1 �2] � 1 � � 1 � � � dx

x
�
L

�1

�2

x
�
L

�x
�
L

�x
�
L

�
�
2

�1

�2

x
�
L

�x
�
L

1
�
L

�1
�
L

a
b
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It will be noted that this is fully populated and symmetric.
The global inertia matrix for the model in Fig. 6.1 involves first set-

ting all array values to zero and then entering the individual inertia
element matrices into the global matrix array and summing the ele-
ment values at nodes common to each element. For example, element
2 in the global matrix that follows has ingredients for node 2 from
rotor elements 1 and 2. It is seen that the global inertia matrix is
banded with two codiagonals and is symmetric.

6.2.2 Using a quadratic shape function

In this case

�(x) � ax2 � bx � c (6.5)

As there are three constants the number of nodes in the element must
be increased to 3. In this formulation the three nodes are at each end
of the element and at midspan as shown in Fig. 6.3.

By definition

�(x) � �1 at x � 0

�(x) � �2 at x �

�(x) � �3 at x � L

Therefore, using Eq. (6.5) produces

�1 � c �2 � a� �
2

� � c �3 � aL2 � bL � cbL
�
2

L
�
2

L
�
2

0 0 … 0

0

. �
� .

. 0

0 ... 0 In�
3

In�
6

In�
6

In � 1�In�
3

I2 � I3�
3

I2�
6

I2�
6

I1 � I2�
3

I1�
6

I1�
6

I1�
3
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Thus

�1 0 0 1 a

�2 � 1 b

�3 L2 L 1 c

Multiplying by the inverse of the 3 
 3 matrix gives

Writing Eq. (6.5) in matrix form yields

a
�(x) � [x2 x 1] �b� (6.7)

c

a �1 �1

b � L �2 (6.6)

c 0 0 �3
L2
�
4

�L
�

4
�3L
�

4
4

�
L2

1
�
2

1
�
2

L
�
2

L2
�
4
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Figure 6.3 Inertia element with three nodes.
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Substituting Eq. (6.6) into Eq. (6.7) and performing matrix multiplica-
tion gives

�1

�(x) � �� � � � (�x2 � Lx) � � �� ��2� (6.8)
�3

It is easily seen that this equation satisfies the boundary conditions at
x � 0, L/2, and L, respectively. Now define

[�] � �� � � � (�x2 � Lx) � � ��
Then from Eq. (6.8) we obtain

�1

�(x) � [�] ��2� (6.9)
�3

Substituting Eq. (6.9) into Eq. (6.1) gives the following equation for the
element kinetic energy:

�1

KE � AK2�2 �L

0
[�1 … �3] [�]T [�] �� � dx

�3

Conducting the matrix multiplication and integration using the same
process as for the linear shape function example yields

The 3 
 3 matrix in the kinetic energy matrix equation is the energy-
distributed inertia matrix, and it is again seen to be fully populated
and symmetric.

The global inertia matrix is formed from the element 3 
 3 matrices
as for the linear shape function example using the normal finite ele-
ment matrix assembly rules.

�1

KE � [�1 �2 �3] �2

�3
2I
�
15

I
�
15

�I
�
30

I
�
15

8I
�
15

I
�
15
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�
2
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�
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�
15
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�
15

�
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2
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�
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6.3 Formation of Rotor Shaft Stiffness
Matrices

A simple torsional spring representation is generally adequate. In this
section the element and global stiffness matrices will be developed for
the cases of elements having only nodes at each end of the element and
for an element that has a node in the middle as well as at each end. It
is assumed that the cross-sectional dimensions and material proper-
ties are constant along the length of the element.

The element stiffness k can be obtained from the geometric and
material properties presented in the torsional stiffness definition in
Sec. 2.1.

6.3.1 Stiffness element with nodes at 
ends only

Figure 6.4 shows the stiffness element free-body diagram with nodal
displacements �1 and �2 and nodal torques T1 and T2. This element
would be used in conjunction with the two-node inertia element devel-
oped in Sec. 6.2.1. The stiffness between nodes 1 and 2 is k.

For equilibrium of the element

T1 � T2 � 0

For nodal deflections

�2 � �1 �

Solving these equations for T1 and T2 in terms of the nodal displace-
ments gives the following equation in matrix form:

� � � � � � ��1

�2

�k
k

k
�k

T1

T2

T2�
k
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Figure 6.4 Stiffness element with two nodes.
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The 2 
 2 square matrix is by definition the stiffness matrix. It is seen
to be symmetric. It is also singular (zero determinant) because the ele-
ment is unconstrained, which means physically that the element
would move by an infinite amount under the influence of an applied
torque because that element is completely free to move.

The global stiffness matrix for the model shown in Fig. 6.1 is derived
using the same element assembly method as for the inertia matrices:

6.3.2 Stiffness element with nodes in
middle and at ends

Figure 6.5 defines the stiffness element nodes and nodal variables.
This element would be used in conjunction with the three-node inertia
element developed in Sec. 6.2.2. As this element has a stiffness k from
one end of the element to the other (nodes 1 to 3), the stiffnesses of
subelements 1-2 and 2-3 are 2k.

The stiffness matrix of each subelement is

� �
The stiffness matrix of the element is obtained by assembling the two
subelements using the normal assembly rules of adding the subele-
ment nodal values at common nodes (two in this case):

�2k
2k

2k
�2k

k1 �k1 0 0 0 0 0 0
�k1 k1 � k2 �k2

0 �k2 k2 � k3

0 .
0 .
0 .
0 kn � 1 � kn �kn

0 �kn kn
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NODES

Figure 6.5 Stiffness element with three nodes.
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2k �2k 0[�2k 4k �2k]0 �2k 2k

By again using normal finite element assembly rules, the global
stiffness matrix for the model shown in Fig. 6.6 is

The polar moment of inertia I, radius of gyration K, and torsional
stiffness k for several common machine shaft configurations are given
in Table 6.1, for use in the inertia and stiffness matrices that have
been developed. For completeness, the maximum shear stress for a
given torque T is also provided in the table, and this maximum stress
occurs on the outer surface. The derivations of these and other tor-
sional analysis formulas are given in App. B.

The material density and rigidity modulus are � and G, respective-
ly. L is the axial length, and D1 and D2 are the internal and external
diameters, respectively. D is the external diameter of a thin annular
ring or a solid cylinder. The thickness in the radial direction of the thin
ring is 	.

The free vibration equations using the global matrices are developed
in Chap. 7, leading to the classical eigenvalue problem for obtaining
the rotor system natural frequencies and mode shapes. The power of

2k1 �2k1 0 0 0 . . . 0
�2k1 4k1 �2k1 0 0 . . . 0

0 �2k1 2(k1 � k2) �2k2 0
0 0 �2k2 4k2 �2k2

0 0 0 �2k2 2(k2 � k3)

kn
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Figure 6.6 Rotor stiffness model example.
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using distributed rotor elements (having a fully populated inertia
matrix) over more traditional point inertia elements (having nonzero
terms only on the diagonal of the inertia matrix) is demonstrated by
showing, by an example, greatly improved accuracy for the same num-
ber of model elements. A method of improving computational efficien-
cy (sometimes referred to as eigenvalue economization in the
literature) is formulated and demonstrated in Sec. 7.3.
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TABLE 6.1 Torsional Analysis Formulas

Polar moment Radius of Torsional Maximum
Geometry of inertia I gyration K stiffness k surface stress

Solid

Annulus � �
1/2

Thin ring

2T
�
�	�D � �

2
	

��2

�G�D � �
2
	

��3
	

�4L

�D � �
2
	

��
�2

��L�D � �
2
	

��3
	

�4

�G(D2
4

� D1
4)

��
32L

D2
2

� D1
2

��
8

��L(D2
4

� D1
4)

��
32

16T
�
�D3

�GD4
�
32L

D
�
23/2

��LD4
�

32cylinder

16TD2��
�(D2

4 � D1
4)
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Torsional Natural Frequencies
and Mode Shapes

A torsional natural frequency of a mechanical system is a frequency at
which the inertia and stiffness torques are completely in balance (see
App. C). In the absence of damping in the system, forcing the mechan-
ical system at this frequency would generally result in a theoretical
infinite vibration response. An exception to this would be if the modal
applied torque (see shaft response torque definition in Sec. 2.1) is zero;
an example is a stimulus applied at a nodal point for the mode corre-
sponding to the natural frequency.

When a mechanical system is responding purely at one natural fre-
quency in the steady state, its deflection pattern will have a unique
shape called the mode shape or eigenvector. Mode shapes are normal-
ized and frequently to a maximum value of 1, but in reality the maxi-
mum value selected is arbitrary. Only the shapes have significance.
This is because the system is unforced and so the mode shapes define
only the deflection patterns for which the inertia and stiffness forces
are completely in balance. For example, for a simple rotor system with
three equal point inertias (located at the middle and ends of the rotor,
respectively) connected by two springs of equal stiffness, the shapes of
its three modes are as shown in Fig. 7.1.

The mode shapes show the relative rotational displacements on the
vertical axis (ordinate) with the node number on the horizontal axis
(abscissa). The first mode represents the rotor moving torsionally as a
rigid body at zero frequency, so it is somewhat academic. This is a result
of the rotor being completely ungrounded and free to move in rotation.
The second mode shows each half of the rotor twisting by the same
amount but in opposite directions, so there is a node midway in the rotor

Chapter
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span at node 2. The maximum displacement values (antinodes) are at
each end of the rotor. The third mode shows each end of the rotor twist-
ing the same amount and in the same direction but in opposite direction
to the middle of the rotor, which is twisting twice as much as the ends.
The antinode is at midspan (node 2).

7.1 Setting up the Free Vibration Matrix
Equations

The general matrix equation for free vibration in the absence of damp-
ing for a mechanical system with n degrees of freedom is

�̈1 �1� M � � � � � �� K � �� �
�̈n �n

where [M] and [K] are the global n � n inertia and stiffness matrices
respectively, and as shown in Chap. 6, they are generally symmetric
and banded.

For harmonic response at frequency �, we obtain

�̈1 �1� � � � ��2 � � �
�̈n �n

Thus

�1 �1

�2 � M � � � � � � K � � � �
�n �n
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Figure 7.1 Mode shapes for a simple system.
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Multiplying each side of this equation by the inverse of the inertia
matrix gives

�1 �1

�2 � � � � � M �
�1

� K � � � ��n �n

For convenience, define

� A � � � M �
�1

� K �
The [A] matrix is sometimes referred to as the system dynamic matrix.
Thus

�1 �1

�2 � � � � � A � � � ��n �n

This equation is the classical eigenvalue problem, which has n solu-
tions for the eigenvalues (�i

2, i � 1,n) with n corresponding eigenvec-
tors, which are the mode shapes. The natural frequencies of the
mechanical system are therefore the square roots of the eigenvalues.

Numerous computer subroutines are available for solving the eigen-
value problem for inputs of the [A] matrix or the [K] and [M] matrices
specified separately. Even for small models, calculation of the eigen-
values and eigenvectors by hand is tedious although straightforward.

The eigenvalue problem can be generally stated as

[A]{v} � �{v}

This indicates which number (the eigenvalue � �) times a vector {v}
equals the n � n matrix [A] times the same vector {v}. It turns out
there are n solutions (n eigenvalues), each having a unique eigenvec-
tor {v} associated with it.

If the [A] matrix is formed from the product of two symmetric matri-
ces that are positive-definite (see Ref. 3 or App. D), then the eigenval-
ues will be real and greather than or equal to zero. This is frequently
the case in mechanical vibration analyses. In this case, the vibration
modes are generally orthogonal, which means mathematically that
{vj}T[M]{vi} � 0, where {vi} and {vj} are any different (i ≠ j) eigenvectors
(mode shapes) of the system.

This is easily proved as shown below, where �i and �j are the ith and
jth eigenvalues, respectively, and �i � �i

2 in the prior derivations:
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�i[M]{vi} � [K]{vi} (7.1)

�j[M]{vj} � [K]{vj} (7.2)

Multiplying Eqs. (7.1) and (7.2) by {vj}T and {vi}T, respectively, yields

�i{vj}T[M]{vi} � {vj}T[K]{vi} (7.3)

�j{vi}T[M]{vj} � {vi}T[K]{vj} (7.4)

Transposing Eq. (7.4) gives

�j{vj}T[M]T{vi} � {vj}T[K]T{vi}

As [M] and [K] are symmetric, this equation becomes

�j{vj}T[M]{vi} � {vj}T[K]{vi} (7.5)

Subtracting Eq. (7.5) from Eq. (7.3) gives

(�i � �j){vj}T[M]{vi} � 0

For �i not equal to �j, then {vj}T[M]{vi} � 0, which is the desired result.
An example of the orthogonality of normal modes follows with a sim-

ple example of a free-free, 3-degree-of-freedom torsional system as
shown in Fig. 7.2.

The mode shapes (eigenvectors) for this system were calculated by
setting up the matrix equations of motion and solving the eigenvalue
problem and are

{v1}T � [1.0000 1.0000 1.0000] rigid-body mode (0.000 Hz)

{v2}T � [1.0000 0.4343 �0.6228] one-node mode (2.353 Hz)

{v3}T � [1.0000 �0.7676 0.1784] two-node mode (4.159 Hz)
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k1

I1

I1 = 1.0 lb.in2 I2 = 2.0 lb.in2 I3 = 3.0 lb.in2

k1 = 1.0 lbf.in/rad k2 = 1.0 lbf.in/rad

I2 I3

k2

Figure 7.2 Mathematical model.
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Substituting the mode shapes into the orthogonality equation gives

1.0 0.0 0.0 1.0�1.0 1.0 1.0� �0.0 2.0 0.0� � 0.4343� � 0.0
0.0 0.0 3.0 �0.6228

1.0 0.0 0.0 1.0�1.0 1.0 1.0� �0.0 2.0 0.0� ��0.7676� � 0.0
0.0 0.0 3.0 0.1784

1.0 0.0 0.0 1.0�1.0 0.4343 �0.6228 � �0.0 2.0 0.0 � ��0.7626� � 0.0
0.0 0.0 3.0 0.1784

This demonstrates that the calculated normal modes are orthogonal to
each other as the matrix multiplication result is zero for each pairing
of different mode shapes.

Some vibration texts state the orthogonality principle as {vj}T{vi} �
0. This is true only if the mode shapes are scaled in a special way.

7.2 Comparison of Natural Frequency
Results

A comparison is shown in Table 7.1 of the accuracy of torsional natur-
al frequency results for a free-free rotor of uniform cross section (for
which there is an exact closed-form analytical solution) with finite ele-
ment results from the computer program developed in this book using
diagonal and energy-distributed inertia matrices, respectively. For the
case of the energy-distributed matrix approach, both two- and three-
node elements were used and are formulated in Secs. 6.2 and 6.3,
respectively.

The exact analytical solution for the torsional natural frequencies of
a free-free rotor of uniform cross section that has a total polar moment
of inertia of 10.0 lb�in2 and torsional stiffness from end to end of 0.1
lbf�in/rad is given by Fi � 0.9829(i � 1) Hz, where i is the mode num-
ber. The formulation of the frequency equation for a free-free cylinder
is developed in App. C under the heading “Continuous Systems.” The
“exact” natural frequency is seen to be given by Fi � [(i � 1)/2L] �G/��
Hz (noting the change in units from rad/s to Hz). From the stated val-
ues of the torsional stiffness and polar moment of inertia and using the
formulas in Table 7.1, it is easy to show in this example that (1/L)
�G/�� � 1.9657. Therefore, F1 � 0, and this is the rigid-body mode.
Then, F2 � 0.9829 Hz and has a node at midspan with each half of the
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rotor moving in opposite directions (180° out of phase). Successive
modes have additional node points with mode shapes that are the
shape of cosine curves of varying wavelengths.

For the finite element calculation, the point inertia element model
representation shown in Fig. 7.3 has a diagonal inertia matrix. The
model has 11 degrees of freedom corresponding to nodes at the 11 point
inertias that are shown by crosses (X).

The energy-distributed element model representation is shown in
Fig. 7.4. The model has 11 degrees of freedom with 10 distributed iner-
tia elements if two-node elements are used (ignore the Xs in Fig. 7.4).
The model has 21 degrees of freedom with 10 distributed inertia ele-
ments if the three-node elements are used (Xs and dots in Fig. 7.4).

It is seen from Table 7.1 that the three-node energy-distributed iner-
tia matrix formulation gives by far the best accuracy for the torsional
natural frequencies, and in fact the highest error in the first 20 modes
that were calculated was only 12.1 percent.

The point inertia and two-node distributed inertia element
approaches have about the same accuracy in the lower modes, but
the two-node distributed inertia element is more accurate in the
higher modes.

7.3 Reducing the Size of the Eigenvalue
Problem

Before the advent of computers with very large and inexpensive
memory, strategies were commonly employed to systematically
reduce the size of eigenvalue analyses without significant loss of
accuracy in the calculated natural frequencies. Even today this is
done in the case of extremely large mathematical models.
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The inertia and stiffness of each of the ten elements equals 1.0. "x" represents
internal nodes in the case of 3-node elements.

Figure 7.3 Point inertia element model.

Figure 7.4 Distributed inertia element model.
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The approach is to define nodes in the mathematical model that are
“leaders” and those that can be considered “followers.” The latter, by
definition, are those nodes that can be related to the former nodes by
some assumed relationship. The challenge, of course, is to establish
the optimum relationship in the mathematical formulation and also
make the best judgment as to which are follower and leader nodes.

The next section develops the necessary analysis, provides an exam-
ple, and gives some general guidance on how to select node types.

7.3.1 Eigenvalue analysis model size
reduction

If the stiffness moments are expressed in matrix terms as

[TA] � [K] [�]

where [K] is the stiffness matrix and [TA] and [�] are the vectors of
applied torque and angular displacement, respectively, then this
matrix equation can be reordered and partitioned so that all the fol-
lower variables F are preceded by all the leader L variables as follows:

� � � � � � � (7.6)

In this equation, for example, {�L} is the vector of leader rotational dis-
placements and [KLF] is a partition of the original stiffness matrix [K]
having L rows and F columns.

If it is assumed, according to the manner in which the leader and fol-
lower nodes are selected, that at the follower nodes there are insignif-
icant inertia torques (and therefore at the natural frequencies,
insignificant stiffness torques) in comparison to those at the leader
nodes, then approximately

�L

�F

KLF

KFF

KLL

KFL

TAL

TAF
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TABLE 7.1 Calculation Accuracy for Different Types of Elements

Percent error in natural frequency for mode

Element type 1 2 3 4 5 6 7 8 9 10

Point inertia 0.00 0.41 1.64 3.66 6.45 9.97 14.16 19.97 24.32 30.13

Energy 0.00 0.41 1.65 3.72 6.62 10.26 14.33 18.10 20.11 18.14
distributed
(two-node)

Energy 0.00 0.14 0.52 1.12 1.85 2.67 3.49 4.35 5.41 7.38
distributed
(three-node)
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[TAF] � [0]

With this assumption and using Eq. (7.6), we obtain

[KFL][�L] 	 [KFF][�F] � [0] thus [�F] � �[KFF]�1[KFL][�L]

Now define for convenience

[H] � �[KFF]�1[KFL]

Thus

In shorthand this matrix equation can be written as

� � � [T] [�L] (7.7)

Now recall that the equations of motion for free vibration with har-
monic response in matrix notation are

�2[M] � � � [K] � � (7.8)

Substituting Eq. (7.7) into Eq. (7.8) gives

�2 [M] [T] [�L] � [K] [T] [�L]

After the matrix multiplications are performed, [M][T] and [K][T] are
the reduced-order inertia and stiffness matrices, respectively. Hence
the size of the eigenvalue problem to be solved has been reduced from
matrices of size (L 	 F) � (L 	 F) to size L � L, where L is the num-
ber of leader nodes selected and L 	 F is the total number of nodes in
the original model.

The reduced-order eigenvalue problem can now be solved to produce
L eigenvalues and eigenvectors. The eigenvectors (mode shapes) can

�L

�F

�L

�F

�L

�F

�L1

�

�LL

�F1

�
�FF

�L1

�

�LL

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

H11 … H1L

� �
HF1 … HFL

T11 … T1L

� .. . �

TL	F,1 … TL	F,L

�L1

�

�LL

��
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then be expanded by using Eq. (7.7) to give values at all the original 
L 	 F model nodes.

7.3.2 Selection of nodal variables

As a general guideline, select follower nodes that have significantly
lower inertias associated with them than at other nodes in the model.

The example that follows is a torsional frequency analysis of a ficti-
tious large steam turbine tandem compound generator set shown in
Fig. 7.5 that has five large steam turbine rotor elements, a large gen-
erator rotor element, and a shaft-driven alternator element for pro-
viding direct electric current to the generator field winding. HP, IP,
LPA, LPB, LPC, GEN, and ALT refer to the high-pressure, intermedi-
ate pressure, low-pressure A, B, and C turbines and the generator and
alternator rotors.

Also included in the model are inertias that represent the couplings
between each of the rotor elements. As these couplings (at nodes 2, 4,
6, 8, 10, and 12) have significantly lower polar moments of inertia than
do the main rotor elements, they are selected in the example to be fol-
lower nodes (see Fig. 7.5 and Table 7.2).

The calculated torsional natural frequencies are shown in Table 7.3
for the case of no nodal reduction (the benchmark), nodal reduction
with follower nodes at each of the couplings, and a model where the
coupling nodes (and inertias) are eliminated altogether.

It can be seen by comparing the second and third rows in Table 7.3
that there is negligible difference in the results when the number of
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HP IP LPA LPB LPC GEN ALT

COUPLING

1 2 3 4 5 6 7 8 9 10 11 12 13

NODES

Figure 7.5 Turbine-generator model.
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degrees of freedom in the model has been reduced by almost a factor
of 2 using the model reduction approach defined in this section. It can
also be seen that the approach of reducing the model to eliminate the
couplings (row 4) results in significant inaccuracies, with an inaccu-
racy of 3.1 percent in the first nonzero mode.
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TABLE 7.2 Turbine-Generator Inertia and Stiffness Values

Node number Inertia, lb�in2 Shaft span nodes Stiffness, lbf�in/rad

1 2.0E7 1-2 4.0E9

2 2.0E6 2-3 4.0E9

3 2.0E7 3-4 4.0E9

4 2.5E6 4-5 4.0E9

5 3.0E7 5-6 4.0E9

6 3.25E6 6-7 4.0E9

7 3.5E7 7-8 4.0E9

8 3.5E6 8-9 4.0E9

9 3.5E7 9-10 4.0E9

10 3.75E6 10-11 4.0E9

11 4.0E7 11-12 4.0E8

12 4.0E5 12-13 4.0E8

13 4.0E6

TABLE 7.3 Torsional Natural Frequency Results

Number of “leader”
nodes (model degrees

Case of freedom) Torsional natural frequencies, Hz

No reduction 13 0, 12.95, 21.64, 25.75, 35.62,
43.59, 53.66, 141.8, 147.5, 153.4,
159.5, 181.5, 203.1

Reduction with “follower” 7 0, 12.96, 21.65, 25.76, 35.64, 
nodes at couplings 43.61, 53.69

Coupling nodes and 7 0, 13.36, 22.04, 26.27, 36.20, 
inertias eliminated 43.90, 53.99
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Forced Response Analyses

Forced response analysis generally falls into two main areas: steady-
state response to sinusoidal stimuli and transient response to any
defined applied torque-time history. In general, in either case different
stimuli can be applied at all the nodes in the mathematical model.

For steady-state and transient forced response analysis, the matrix
equations of motion can be approximately uncoupled using modal
transformation, and the power of this approach is demonstrated in the
case studies in Chap. 9 with several application examples. For steady-
state response, the set of second-order differential equations are solved
in closed form. For transient response, each equation is evaluated
using numerical integration.

The general equation of motion for forced response is

[M] [�̈] � [C] [
.
�] � [K] [�] � [TA] (8.1)

where [M], [C], and [K] are square matrices of order n � n (n � num-
ber of nodes in model) and are the inertia, damping, and stiffness
matrices, respectively. The other � matrices in the equation are vectors
of order n representing the rotational acceleration, velocity, and dis-
placement, and [TA] is the applied torque vector.

It is common practice for solving Eq. (8.1) to change variables from
the actual response physical values [�1...�n] to the modal coordinates
[q1...qm], where n is the number of nodes in the model and m is the
number of modal coordinates to be employed.

The modal transformation is

�1 R11 ... R1m q1��  � � � � � � � �� (8.2)
�n Rn1 ... Rnm qm

Chapter
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[R] in Eq. (8.2) is a matrix containing m predefined mode shapes
(arranged in columns) computed in a prior natural frequency analysis.
This transformation converts the displacement vector [�] into a new
vector [q]. The new vector [q] when premultiplied by the mode shape
matrix [R] produces the same displacement pattern [�] at any instant
of time. The elements of the [q] vector can be thought of as modal par-
ticipation factors. For example, at any instant of time the elements
would convey the relative participation of each of the modes in [R] in
the vibration response.

If all n mode shapes are used in the analysis, then m � n and the
modal analysis will give exactly the same results as those from not
using the transformation, and solving Eq. (8.1) directly. If only select-
ed mode shapes are used, then m � n and the results will not be
exactly equal to those not using the transformation. However, with
judicious selection of the m modes, the results are practically the
same, as will be demonstrated with examples later.

The benefits from using the modal transformation are

1. The matrix equations to be solved are reduced in size from n � n to
m � m.

2. The output gives direct information on which modes are responding
most, which is important for machine modification analysis pur-
poses if this is required.

3. Tested values of modal damping can be used directly in the analy-
sis, as will be demonstrated later.

4. If modal damping values are used in the analysis (implying no
damping cross-coupling), then the modal equations of motion
uncouple, and each can be solved independently. This results in
substantial computational savings for response analyses using
large models (and particularly for transient analyses).

Substituting Eq. (8.2) into Eq. (8.1) and multiplying the resulting
equation by [R]T, which is the transpose of the mode shape matrix,
yields

q̈1
.q1 q1 TA1 TA1′

[M′] � � � � [C′] � � � � [K′] � � � � [R]T� �  � � � � � (8.3)
q̈m

.qm qm TAn TAm′

where [M′], [C′], and [K′] are the modal inertia, modal damping, and
modal stiffness matrices, respectively. The dimensions of these matrices
are m � m, where m is the number of modes selected for the modal
analysis. In addition, the modal inertia and stiffness matrices are diago-
nal because the normal modes are orthogonal. Tested or estimated val-
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ues for modal damping are usually entered into the diagonal of the modal
damping matrix where all off-diagonal terms are set to zero. With this
damping assumption, the modal equations of motion uncouple, meaning
that they can be solved independently. [TA′] is the modal applied torque
vector with, of course, m elements. The next subsections will show how
Eq. (8.3) is solved for steady-state and transient responses.

8.1 Steady-State Sinusoidal Forced
Response

The problem to be solved is for a given applied torque vector (in terms
of amplitude and phase at each of the model nodes and a specified
stimulus frequency) to determine what is the steady-state response at
each node (rotational displacement amplitudes and phases). As this is
the steady-state solution, the response and stimulus frequencies are
the same.

The inputs to the problem are the rotor vibration mathematical
model, including damping properties, and the applied torque magni-
tudes and phases at each node and the forcing frequency �. In this
case the applied torque vector elements TAi are of the form: Tej(�t��),
where j � �� 1�. In general, the torques applied at the nodes of the
model will have different magnitudes T and phases (	) In addition to
specifying the amplitudes and phases of the applied torques, the forc-
ing frequency � must be supplied.

As each equation in matrix equation (8.3) is uncoupled as described
earlier, each may be solved independently. The rth modal equation is

M′rr q̈r � C′rr
.qr � K′rrqr � T′re j (�t � 	r) (8.4)

Dividing Eq. (8.4) throughout by M′rr gives

q̈r � 2
r�nr
.qr � �2

nqr � � T″r e j (�t � 	r) (8.5)

In Eq. (8.5) �nr and 
r are the undamped natural frequency and the
nondimensional damping ratio for the rth mode, respectively.

Adopting a steady-state sinusoidal response solution of the form
qre j�t produces the following result:

��2qr � 2
r�nrj�qr � �2
nqr � Tr″e j 	r

Thus

qr � � (A � jB)r
Tr″e j 	r

���
(�n

2��2)�j2��nr
r

T′re j (�t � 	r)
��

Mrr′
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where Ar and Br are the real and imaginary parts of qr, respectively.
The magnitude of the modal response in the rth mode is therefore
�Ar

2 ��Br
2�, and the corresponding phase angle is tan�1 (Br / Ar).

Each of the r equations is solved in the same way, giving:

q1 A1�jB1� � � �� �       � (8.6)
qm Am � jBm

Inspecting the magnitudes of the elements in the {q} vector of Eq. (8.6)
can be very revealing in a response analysis because it gives direct
information on which modes are responding most to the harmonic
input frequency �.

Equation (8.6) may now be back-substituted into Eq. (8.2) to give the
forced response solutions in terms of the rotational displacement
amplitude and phase for each of the n nodes in the model.

The response torque in each rotor span is produced by multiplying
the element stiffness by its corresponding twist. For example, TR1 �
k1(�2 � �1), where for span 1, TR1 is the response torque (�2 � �1) is the
twist, and k1 the stiffness. TR1, �2, and �1 are complex quantities, and
so after the complex number multiplications, the response torque mag-
nitudes and phases are determined in the same manner as for the
modal responses shown previously.

8.2 Transient Response Analysis

The problem to be solved in this case is to compute the time history
responses (values as a function of time with output generally tabular
or graphical) in terms of rotational displacements and torques for given
applied torque histories applied to the model nodes.

The inputs to the problem are the rotor vibration mathematical
model, including damping properties, and the applied torque histo-
ries at the model nodes. In addition, the initial conditions for vibra-
tion displacement and velocity must be specified at each node in the
model. Generally in computer software for solving this type of prob-
lem, the applied torque histories can be supplied either in a data file
of torques as a function of time or in analytical expressions relating
torque to time.

Each modal equation to be solved has the following form:

q̈r � 2
r�nr
.qr � �2

n qr � (8.7)

where Tr′(t) is the rth modal applied torque function of time t and Mrr′
is the rth modal inertia.

Tr′(t)�
Mrr′
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Equation (8.7) is generally solved using numerical integration rou-
tines after the second-order differential equation is reduced to two
first-order differential equations as follows. Let

Y1r � qr Y2r �
.qr

Thus
.
Y1r � Y2r (8.8)

Substituting Eq. (8.8) into Eq. (8.7) gives

.
Y2r � � 2
r�nrY2r � �n

2 Y1r (8.9)

For the numerical integration to be performed the initial conditions for
qr and its first derivative .qr must be provided [Y1r(0) and Y2r(0)]. These
can be obtained from the initial conditions for the rotational displace-
ment and velocity vectors that have been specified by using the fol-
lowing transformation. From Eq. (8.2), we obtain

�1(0) q1(0)� �   � � [R] � �   �
�n(0) qm(0)

The vector on the left-hand side of this equation contains the n speci-
fied rotational displacement initial conditions (at time zero), and the
vector on the right-hand side contains the m desired modal displace-
ment initial conditions. Therefore

�1(0) q1(0)
[R]T� �   � � [R]T [R] � �    �

�n(0) qm(0)

For convenience, define [S] � [R]T [R], where [S] is an m � m matrix,
so it can be inverted. Also define the {�} column vector with m ele-
ments:

�1 �1(0)� � � � [R]T� �   �
�m �n(0)

Therefore

q1(0) �1

[S] � �   � � � �  �qm(0) �m

Tr′(t)�
Mrr′
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q1(0) �1� �   � � [S]�1� �  �qm(0) �m

Similarly for the modal velocity initial conditions
.q1(0) .

�1� �   � � [S]�1� �  �.qm(0) .
�m

The simultaneous first-order differential equations (8.8) and (8.9), now
with the initial conditions specified at each node for q and its first
derivative, can be solved at each integration time step using numerical
techniques such as Runge-Kutta-Verner fifth- and sixth-order methods,
which are available in numerical analysis subroutine libraries.

In using such routines, the user must specify in general a problem-
dependent numerical integration time step which is small enough to
keep the solution stable. The integration time step should be of the
order of a quarter of the periodic time of the highest-frequency compo-
nent used in the analysis.

An alternative formulation for obtaining the modal displacement
initial conditions from given rotational displacement initial conditions
at the model nodes is to use the unreduced mode shape matrix where
now m � n:

�1 q1� � � � [R]� � �
�n qn

As [R] is now a square matrix because m � n, it can be inverted:

q1 �1� � � � [R]�1� � �qn �n

Similarly
.q1

.
�1� � � � [R]�1� � �.qn

.
�n

In the subsequent response analysis using only m modes with m � n,
only the chosen m values for the modal displacements and velocities
are used by extracting the appropriate m elements from the vectors of
length n.
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8.3 Accuracy of Transient Response
Calculations

The transient response torques of the turbine-generator shaft can be
calculated with very high accuracy using the methods defined in Sec.
8.2, and this has been confirmed in many testing programs on operat-
ing turbine-generators in which measured shaft transient strain wave-
forms, after being converted to shaft torque waveforms, are compared
with calculated values.

This is clearly illustrated by Fig. 8.1, which shows excellent correla-
tion between the measured and calculated results in both magnitude
and waveform for a shaft span in the machine that had strain gauges.
The error in the maximum response was only 0.8 percent. For this
comparison the measured airgap torque following an electrical distur-
bance in the transmission network was digitized and used as input to
the shaft transient response torque simulation. Also, the modal damp-
ing values used in the simulation were known from measurements on
the tested machine.
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Figure 8.1 Comparison of measured and calculated responses.
(Courtesy of General Electric.)
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Application Case Studies

Case studies given in this section relate to actual types of turboma-
chinery calculations performed in industry. They follow directly
from the theoretical sections to permit the reader to immediately see
how the tools can be applied to address rotating machinery torsional
vibration calculations and problems. Some readers may prefer to
bypass this section on the first run-through of the book and return
to it later after reviewing the remaining more descriptive sections.

It is impractical to solve realistic turbomachinery vibration prob-
lems without the use of computers. Hence, the methodologies defined
in Chaps. 6 through 8 were coded into a computer program that is doc-
umented in App. E, and this program was used as required in the stud-
ies. Interpretation of all the computer-generated results is given.

The case studies in this chapter can be used in the following ways:

■ To evaluate how turbomachines are modeled and how calculations
are performed for torsional vibration analysis and get an apprecia-
tion for what the results mean. It is not necessary to replicate the
computer simulations.

■ To confirm the case study results with other computer software
available to the reader, make comparisons, and evaluate different
modeling assumptions.

■ As examples for use in classroom or training workshop environments.

The case studies start with relatively simple ones and progress to
quite complex ones associated with rotating machinery transient
vibration evaluations. The case studies are covered as follows:

Chapter

9
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■ Section 9.1 deals with assembly of vibration models and global
matrices and relates to Chaps. 5 and 6.

■ Section 9.2 addresses torsional natural frequency calculations and
relates to Chap. 7.

■ Section 9.3 deals with steady-state sinusoidal forced response and
relates to Sec. 8.1.

■ Section 9.4 covers transient response and relates to Sec. 8.2.

9.1 Assembly of Vibration Model Case
Studies

9.1.1 Case study: Moment-of-inertia
calculations

A steel coupling that resembles a short thick-walled tube has a thick-
ness of 6 in and inner and outer diameters of 12 and 30 in, respectively.
The material density is 0.283 lb/in3. The coupling has 8 bolt holes that
are 3 in in diameter on a bolt circle diameter of 25 in. A gear ring of
width equal to the coupling length and of an equivalent solid radial
thickness of 1 in is shrunk onto the coupling outer diameter (OD). The
equivalent density of the gear is 0.2 lb/in3. What is the polar moment
of inertia of the coupling without coupling bolts installed, expressed in
both U.S. Customary and SI units? How precisely can such inertia cal-
culations be made?

Solution to Case Study 9.1.1. The calculation is performed in three steps
using the formulas given in Table 6.1. The polar moment of inertia of
an annulus is first calculated to represent a solid coupling (no bolt
holes). To this is added the polar moment of inertia of another annulus
to represent the shrunk-on gear. The formula for a thin ring in Table
6.1 could be used in this step, but the result would be approximate and
has no computational advantage over the annulus formula. In this
case, using the thin-ring formula would overestimate the ring’s polar
moment of inertia by 4.8 percent. Finally, the polar moment of each
“filled coupling hole” is calculated, and because the coupling was
assumed to be solid in the first step, these results are subtracted from
the prior total.

The results are as follows, where I1, I2, and I3 are the polar moments
of inertia of the solid coupling, gear ring, and “filled coupling holes,”
respectively. Note in calculating I3 that the moment of inertia of a
point mass m at a radius r from the rotational axis is mr2.

I1 � � 1.3157 � 105 lb�in2�(0.283)(6.0)(304 � 124)
���

32

68 Chapter Nine

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Application Case Studies



I2 � � 2.8107 � 104 lb�in2

I3 � � � �(6.0)(0.283) (12.52)(8) � 1.5003 � 104 lb�in2

The total moment of inertia � I1 � I2 � I3 � 1.4467 � 105 lb�in2. In SI
units by using the conversion factors in Table 2.1, the moment of iner-
tia � (1.4467 � 105)(2.926 � 10�4) kg�m2 � 42.3323 kg�m2.

Inertia calculations can be made precisely and to an accuracy limited
only by the diligence of the analyst. This is because values depend only
on component geometry and material density. It should be recognized,
though, that it is counterproductive to be too precise in this area
because other quantities required in vibration analysis are much less
certain (e.g., stiffness, damping, forcing functions).

9.1.2 Case study: Consolidating rotor
sections

Figure 9.1 shows a section of a solid cylindrical machine shaft that has
three sections having different diameters and lengths. What are the iner-
tia Ie and stiffness ke of a single equivalent shaft section, and the inertia
and stiffness matrices for that section using three-node finite elements?
For this case study, neglect abrupt diameter change effects on torsional
stiffness as this will be treated in Case Study 9.1.3. In general, how pre-
cisely can stiffness properties be calculated?

For this example, use the following material properties and
dimensions:

Density � � 0.283 lb/in3

D1 � 10 in D2 � 15 in D3�12 in

L1 � 10 in L2 � 20 in L3 � 25 in

Rigidity modulus G � 11.54 � 106 lbf/in2

Solution to case study 9.1.2. Using the formulas for a solid cylinder giv-
en in Table 6.1 and where k1 � k3 and I1 � I3 are the section stiffness
and inertia values, respectively, we obtain

k1 � � 1.1329 � 109 lbf�in/rad

k2 � � 2.8677 � 109 lbf�in/rad
G�D2

4

�
32L2

G�D1
4

�
32L1

32
�
4

�(0.2)(6.0)(324 � 304)
���

32
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k3 � � 9.3970 � 108 lbf�in/rad

I1 � � 2.7783 � 103 lb�in2

I2 � � 2.8131 � 104 lb�in2

I3 � � 1.4403 � 104 lb�in2

Noting that

� � �

Ie � I1 � I2 � I3

it follows that

ke � 4.3563 � 108 lbf�in/rad

Ie � 4.5312 � 104 lb�in2

Using the three-node inertia and stiffness matrix derivations given in
Secs. 6.2.2 and 6.3.2, respectively, the inertia I and stiffness matrices
K corresponding to the equivalent element are

6,042 3,021 �1,510
[I] � � 3,021 24,167 3,021 �

�1,510 3,021 6,042

1
�
k3

1
�
k2

1
�
k1

1
�
ke

��L3D3
4

�
32

��L2D2
4

�
32

��L1D1
4

�
32

G�D3
4

�
32L3
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Figure 9.1 Rotor segment geometry.
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8.713 � 108 �8.713 � 108 0
[K] � ��8.713 � 108 1.743 � 109 �8.713 � 108�0 �8.713 � 108 8.713 � 108

In response to the second question, stiffness properties can be accu-
rately and easily calculated for subsystems having simple shapes and
lacking geometric discontinuities. Stiffness is a function of geometry
and material properties. For complicated component shapes the stiff-
ness values can still be accurately estimated with results often guided
by information in handbooks for similar configurations derived from
model tests and/or finite element structural evaluations.

9.1.3 Case study: Accounting for abrupt
changes in shaft diameter

Figure 9.2 shows the geometry of a section of a rotor shaft that termi-
nates with a coupling flange.

1. For L1 � 10, L2 � 1.0, D1 � 6.0, D2 � 12.0, and accounting for the
effects of the abrupt diameter change at the coupling with a zero fil-
let radius r/R1 � 0, what would be the length of an equivalent con-
stant diameter cylinder if it is 6.0 in in diameter?

Application Case Studies 71

Figure 9.2 Shaft/coupling configuration.
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2. Estimate the equivalent stiffness diameter of the coupling for the
case of r/R1 ratios of 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

Solution to Case Study 9.1.3

1. Referring to Fig. 5.4, the value of the equivalent length of junc-
tion Lj /diameter of smaller diameter shaft D1 equals 0.13 for r/R1 � 0.
Therefore Lj � 6.00 � 0.13 � 0.78. The effective length of the 6-in-
diameter shaft is now L1 � Lj � 10.78, which corresponds to its phys-
ical length plus the increment that accounts for the flexibility of the
abrupt junction at the coupling flange. As noted in Sec. 5.2, the flexi-
bilities for shaft segments in tandem (series) are additive. Noting that
the flexibility of a uniform shaft of diameter D and length L is propor-
tional to L/D4, then the total length of the equivalent system (Le) with
a uniform diameter of 6 in specified in the problem is given by Le/6.004

� 10.78/6.004 � 1.00/12.004. Therefore Le � 10.84 in.
2. Addressing first the case with r/R1 � 0.5, it is seen from Fig. 5.4

that for D2/D1 � 12.00/6.00 � 2.00, the junction factor is 0.007.
Therefore Lj � D1 � 0.007 � 6.00 � 0.007 � 0.042 in, where Lj is the
equivalent length of a cylinder of diameter D1 that gives the same
incremental flexibility as the effect of the junction. Recognizing that
the torsional stiffness of a cylinder is proportional to D4/L, then, to
maintain the same stiffness, Lj (at 12 in diameter) � Lj (at 6 in diam-
eter) � (12/6)4 � 0.042 � 16 � 0.672. Hence the effective coupling
length � L2 � 0.672 � 1.672 in. Therefore the equivalent coupling
stiffness diameter (Dec), based on its physical length of L1 (1.00 in), is
given by D4

ec/L1 � D4
2/1.672. Therefore Dec � 12.00(1.00/1.672)0.25 �

10.552 in. Hence the effective coupling stiffness diameter as a per-
centage of its outside diameter is (10.552/12.00) � 100 � 88 percent.

This calculation is repeated for the five other r/R1 ratios specified in
the case study. The results are summarized in Fig. 9.3. It is seen
that the effective stiffness diameter ratio drops to about 52 percent
for the case of a coupling with a zero fillet radius.

This case study demonstrates the importance in stiffness calcula-
tions of properly accounting for geometric discontinuities for which
standard textbook formulas can give inaccurate results.

9.1.4 Case study: Global finite element
matrix assembly

Figure 9.4 shows a model having two uniform shaft sections with
nodes 1 to 3 and 3 to 5, respectively. There are point inertias at nodes
3 and 5 as indicated by the large dots.
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Using one distributed finite element, having three nodes per element,
to represent each uniform shaft section, construct the global inertia and
stiffness matrices for the system. If node 1 were to be grounded to sim-
ulate a built-in condition, how would this be handled in the model?

The total polar moments of inertia of shafts 1 to 3 and 3 to 5 are 30
and 60 lb�in2, respectively, with corresponding shaft stiffnesses of 1
and 2 lbf�in/rad. The point inertias at nodes 3 and 5 are 10 and 20
lb�in2, respectively.

Solution to Case Study 9.1.4. Considering first the construction of the
global inertia matrix, note that the system has five nodes and hence
the global matrix will by 5 � 5 in size. Start by setting all 25 element
values to zero. Next assemble the first shaft element matrix into the
global matrix using the finite element values derived in Sec. 6.2.2 and
noting for the first element that I � 30.

4 2 �1 0 0
2 16 2 0 0��1 2 4 0 0�0 0 0 0 0
0 0 0 0 0

Next assemble the second shaft element having I � 60. Note the nodes
for this element are 3 through 5, so the nine matrix elements in the
square block 3,3 through 5,5 will be populated. Both shaft elements
share matrix element 3,3, so the values at that node are additive and
matrix element 3,3 becomes 4 � 2(60/15) � 12.

Application Case Studies 73

Figure 9.3 Coupling effective stiffness diameter.
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Hence, after assembling both shaft elements, the global matrix
becomes

4 2 �1 0 0
2 16 2 0 0��1 2 12 4 �2�0 0 4 32 4
0 0 �2 4 8

The final step is to add into the global matrix the point inertia values
of 10 and 20 at matrix element positions 3,3 and 5,5 and add these to
values already at these positions. Hence matrix element 3,3 becomes
12 � 10 � 22 and 5,5 becomes 8 � 20 � 28.

Hence the global inertia matrix, which is symmetric, is

4 2 �1 0 0
2 16 2 0 0��1 2 22 4 �2�0 0 4 32 4
0 0 �2 4 28

The same assembly process is used for the global stiffness matrix
using the 3 � 3 element stiffness matrix developed in Sec. 6.3.2 with
the following result for the global stiffness matrix:

2 �2 0 0 0
�2 4 �2 0 0� 0 �2 6 �4 0 �0 0 �4 8 �4

0 0 0 �4 4

This example is for matrix assembly illustrative purposes only. In
practice, a model would normally have several elements representing
each shaft span and not just one as used in this simple example.

If the system shown in Fig. 9.4 were grounded at node 1 (to simulate
a built-in condition, for example), this could be accommodated for
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1 2 3 4 5

Figure 9.4 Rotor model with two uniform shafts.
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vibration analysis in two ways. The first way is to add to the model a
very large and artificial value of polar moment of inertia at node 1. The
second way is to eliminate the first row and column from both the glob-
al inertia and stiffness matrices prior to performing natural frequency
and response analyzes.

9.2 Torsional Natural Frequency Calculation
Case Studies

9.2.1 Case study: Model creation and
model adequacy

A uniform solid-steel shaft of cylindrical cross section is built in at one
end and has a very short steel impeller at the other end, which has a
polar moment of inertia of 1000 lb�in2. The steel shaft is 100 in in
length and 5 in in diameter. The density and rigidity modulus of steel
for this example are 0.283 lb/in3 and 1.1538 � 107 lbf/in2, respectively.

1. How should this system be best modeled to determine its first five
torsional natural frequencies using the finite elements defined in
this book?

2. How can the adequacy of the model be confirmed?

3. What are the natural frequencies?

4. If a new material was used for the shaft and the impeller, how
would the frequencies change?

Solution to Case Study 9.2.1

1. The shaft should be modeled as a series of distributed finite ele-
ments (preferably with three nodes per element), and a point inertia
should be used to represent the short impeller. The fixed-end condition
can be simulated by placing an artificial point inertia of very high val-
ue relative to the total inertia of the system (e.g., 108 lb�in2). In this case
the rigid-body mode calculated at 0 Hz is fictitious. All other modes will
have virtually zero displacement at the fixed end, representing a nodal
point for the simulated built-in end condition. The torsional stiffness of
the shaft equals 7.0796 � 106 lbf�in/rad. This is obtained by using the
appropriate formula from Table 6.1. If finite elements with three nodes
are used to represent the shaft, then 10 elements (21 degrees of free-
dom for the model) should intuitively be sufficient to give good accura-
cy (within 3 percent) for the first five modes. If 10 equal distributed
elements are in fact used, the torsional stiffness for each one will be 10
times the total shaft value, each equaling 7.0796 � 107 lbf�in/rad. The
polar moment of inertia of each shaft element will equal one-tenth the
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value for the complete shaft, and each will equal 173.646 lb�in2 using
the appropriate formula from Table 6.1.

2. The adequacy of the model can be determined by increasing the
number of elements (degrees of freedom in the model) and confirming
small and progressive improvements in the torsional natural frequency
results (convergence testing—see Case Study 9.2.2). For this simple sys-
tem it should also be noted that there is a closed-form analytical solution.

3. Table 9.1 compares the first five torsional natural frequency results
of the finite element solutions with 10 and 20 finite elements, respec-
tively, with the exact analytical solution derived using the continuous
system approach detailed in App. C. It is seen that both finite element
modeling solutions give very accurate results for the first five modes.
Although accuracy is improved with the 20-shaft-element representa-
tion, it is seen from the table that the 10-element representation is ade-
quate for giving results with reasonable accuracy for the first five modes.

4. The natural frequencies are proportional to �G/��, where G is the
rigidity modulus and � the density.

9.2.2 Case study: Convergence of finite
element solution

For a rotor that resembles a uniform cylinder and that is uncon-
strained, compare the convergence of the finite element model results
to the exact results for torsional natural frequencies as the number of
finite elements in the model is increased. An exact analytical solution
exists for this simple configuration (see continuous systems analysis in
App. C). Investigate solution convergence for a model using the three-
node finite elements developed in Secs. 6.2.2 and 6.3.2 for the inertia
and stiffness elements, respectively.

1. Considering the first five flexible torsional modes (modes 2 through
6), how many finite elements are required to achieve calculation
accuracy errors of less than 3 percent?
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TABLE 9.1 Torsional Natural Frequency Summary

Exact 10-element Percent 20-element Percent
result, Hz result, Hz error result, Hz error

206.51 206.52 0.00 206.52 0.003

717.52 716.52 0.14 717.28 0.03

1306.92 1300.20 0.51 1305.2 0.13

1918.52 1897.20 1.11 1912.7 0.30

2537.52 2490.90 1.84 2524.2 0.52
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2. As the number of elements used is increased for examining conver-
gence of torsional natural frequency results, is the solution accura-
cy trend a smooth or an irregular curve?

3. For a turbomachine that has multiple rotors and approximately five
subsynchronous flexible torsional natural frequencies, estimate, on
the basis of this case study, the minimum number of finite elements
that should be used, assuming that the maximum error for these
modes is also less than about 3 percent.

Solution to Case Study 9.2.2

1. The first step is to obtain the exact torsional natural frequency
results for the uniform cylinder that is unconstrained, using the fre-
quency equation derived in App. C. For a simple cylinder the torsional
natural frequencies are a function only of the length of the cylinder and
its material properties (density and rigidity modulus). The torsional
natural frequencies are inversely proportional to the cylinder length.
Also, flexible mode n has n times the frequency of flexible mode 1. The
first flexible mode has one node at midspan, and flexible mode n has n
nodes distributed along the length of the cylinder. The mode shapes are
in the form of cosine curves of varying wavelengths.

2. Figure 9.5 summarizes the finite element results. It shows that
in order to have errors in all first five torsional natural frequencies of
less than 3 percent, a minimum of 10 elements is required in the model.
As expected, the highest error is in the highest mode studied (mode 6,
which is the fifth flexible mode) because it has the most complex mode
shape pattern with five nodes. It is seen in Fig. 9.5 that the conver-
gence to the exact solution for each mode is very smooth and progres-
sive, which is obviously a desired characteristic.

3. The number of elements required should at least equal those
required for the idealized rotor used in this case study. Real machines
have many sections of differing geometry, but it is not necessary or
desirable to make each of these regions a separate finite element in the
machine model. The inertias and stiffnesses of each region of different
geometry and/or material properties need to be calculated. Many of
these adjoining sections can be combined to produce a single equiva-
lent element as demonstrated previously. Inertias are simply summed
to give the equivalent inertia, and the equivalent stiffness is obtained
by taking the reciprocal of the sum of the reciprocals of the individual
section stiffnesses.

A turbine-generator with multiple rotors connected in tandem, each
having many sections with different dimensions, can usually be mod-
eled with a total number of finite elements of only about a dozen for

Application Case Studies 77

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Application Case Studies



accurate calculation of the turbine-generator’s subsynchronous tor-
sional natural frequencies.

For example, Fig. 7.5 shows such a model, which has 13 nodes and
12 elements representing a large steam turbine-generator. Such mod-
els have consistently yielded calculation errors of less than about 3
percent in the subsynchronous modes for these complex machines. To
illustrate this, Table 9.2 compares the measured and calculated tor-
sional natural frequencies for a turbine-generator having four turbine
rotors, a generator, and an alternator rotor connected in tandem. The
calculated results used a mathematical model with 11 nodes and 10
rotor elements to represent the machine. It is seen from the table that
the errors in the calculated subsynchronous modes that could be mea-
sured in a test was less than 3 percent.

9.2.3 Turbomachine modification analysis

For the turbine-generator preliminary design defined in Fig. 7.5 and
Table 7.2, the chief engineer wants assurance that modes 7 and 8,
which are closest to the primary stimulus frequencies of 60 and 120
Hz, respectively, will not cause vibration response problems during
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Figure 9.5 Torsional natural frequency convergence. Number of elements needed.
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service. The chief engineer would like a calculated natural frequency
separation margin of at least 20 percent from 60 and 120 Hz. How
should the system design engineer address this issue?

Solution to Case Study 9.2.3. The first step to be taken by the system
design engineer is to calculate the torsional natural frequencies and
mode shapes and then carefully examine mode shapes 7 and 8. The
natural frequencies are given in Table 7.3, and the two mode shapes of
interest are shown in Fig. 9.6.

It is seen in this figure that mode 7 is a coupled turbine rotor mode
with significant relative motion at nodes 1, 3, and 5, which correspond
to the high pressure, intermediate pressure, and low pressure turbine,
respectively. Of particular importance to this investigation is that there
is negligible relative motion at the generator (node 11) where the
torsional stimulus is applied. This indicates that it may be very diffi-
cult to excite this mode from this location, which is analogous to some-
one trying to close a door by pushing at the hinge rather than the
handle. The engineer should confirm this by performing a steady-state
forced response analysis with a stimulus frequency set to the seventh
torsional natural frequency and then at 60 Hz. This process is illus-
trated in Case Study 9.3.3. Alternatively, a transient analysis could be
performed. An analysis of this type is performed in Case Study 9.4.6
and demonstrates for Case 1 in this study that no dynamic amplifica-
tion occurs for a fault torque waveform that has a high 60-Hz compo-
nent. Hence for this mode the system engineer could justifiably argue
to the chief engineer that it is not necessary to meet the desired 20 per-
cent frequency separation margin. If the chief engineer is insistent,
though, then increasing the inertias of the first two turbine-coupling
inertias (nodes 2 and 4) may be an effective strategy in reducing the
natural frequency because there is significant relative motion at these
locations as shown in Fig. 9.6. Coupling changes should be relatively
easy to design in comparison to more major turbine rotor shaft geom-
etry changes.
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TABLE 9.2 Accuracy of Frequency Calculations

Event Mode 1 Mode 2 Mode 3 Mode 4

Turning gear jog 16.0 20.4 26.4 33.2

Synchronization 15.8 20.2 26.0 33.2

Sinusoidal stimulus 15.8 20.2 25.9 33.2

Calculated 15.8 20.3 25.8 33.9

Percent error 0.4 0.2 1.2 2.1

SOURCE: General Electric.
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It is also seen from Fig. 9.6 that mode 8 is a localized coupling mode
between the generator and the alternator rotors (node 12). There is vir-
tually no modal participation at any other node in the model, including
the generator. So again for this mode, it should be very difficult to
excite it from a generator rotor torsional stimulus. This should be con-
firmed by a forced response analysis using a 120-Hz stimulus and
demonstrating in particular that the response in the shaft span
between the generator and alternator rotors is acceptable. If a design
change on this basis is warranted, or to satisfy the chief engineer’s fre-
quency separation requirement, the mode shape indicates that changes
to this coupling inertia or the connecting spindles on either side should
be effective in tuning this frequency and reducing torsional response.

9.3 Steady-State Forced Response Case
Studies

9.3.1 Case study: Mode responsiveness

For the simple free-free (unconstrained) torsional mathematical mod-
el used at the beginning of Chap. 7, having three equal point polar
moments of inertia of 1.0 lb�in2 connected by two torsional springs of
stiffness 1.0 lbf�in/rad and having the mode shapes shown in Fig. 7.1,
and assuming modal damping values of 0.01 (	) in each of the three
modes:

1. What are the undamped torsional natural frequencies?

2. For a stimulus of 1.0 lbf�in applied at node 2 at the natural fre-
quency of mode 2, which modes will respond most? To help explain
your answer, calculate the modal applied torque vector [T ′A] [see
Eq. (8.3)].
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Figure 9.6 Turbine-generator mode shapes.
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3. Why isn’t the maximum response in mode 2, as the stimulus fre-
quency equals the natural frequency in this mode?

4. If torques of 1.0 lbf�in are applied at nodes 1 and 3, 180° out of
phase at the natural frequency of mode 3, why is the response in
mode 3 zero?

5. If a torque of 1.0 lbf�in is applied at node 2 at the mode 3 natural
frequency, which mode will respond most, and why? What are the
torques in the two springs, and are they in phase? What happens to
the response torques if the modal damping values are increased by
a factor of 2?

6. For a torque of 1.0 lbf�in applied at node 1 at a frequency of 75 per-
cent of the mode 2 torsional natural frequency, which mode would
you expect to respond most, and why? If the modal damping values
are reduced by a factor of 2, what is the effect on the response?

Solution to Case Study 9.3.1

1. The torsional natural frequencies are 0, 3.129, and 5.419 Hz. As
the system is free-free, the first mode must be a rigid-body mode at
zero frequency. In addition, as this system has three nodes and 3
degrees of freedom, there are only three natural frequencies.

2. There are virtually equal responses in modes 1 and 3 (but in
antiphase) and zero response in mode 2. This results from the values
of the modal applied torque vector, which is derived from [R]T[TA].
Therefore

T′A1 1 1 1 0 1�T′A2� � �1 0 �1 � �1� � � 0 �    (9.1)
T′A3 0.5 �1 0.5 0 �1

3. Even though the forcing frequency equals the mode 2 natural fre-
quency, there is no response in this mode because the point of applica-
tion of the stimulus (node 2) is a nodal point for this mode. The second
modal applied torque T′A2 is zero, as shown in Eq. (9.1), and therefore
the second modal response will also be zero.

4. Referring to mode 3 in Fig. 7.1, it can be seen that nodes 1 and 3 at
each end of the model have equal displacements and are in phase. With
stimuli at the same nodes but 180° out of phase, the third modal applied
torque will be zero as shown in Eq. (9.2), and hence the response in mode
3 will be zero. The modal applied torque vector in this case is

T′A1 1 1 1 1 0�T′A2� � � 1 0 �1 � � 0� � �2�    (9.2)
T′A3 0.5 �1 0.5 �1 0
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5. Mode 3 will respond most as it is on resonance (because the forc-
ing and natural frequencies are equal) and the point of application of
the stimulus is an antinode (node 2 for this mode) and therefore is a
very effective location for stimulating this mode. The response in mode
2 is 0, as discussed previously, and the response in mode 1 computes
to be 1 percent that of mode 3. The torques in the two springs are
16.667 lbf�in (and are 180° out of phase, as can be deduced from mode
shape 3). If the modal damping is increased by a factor of 2, the
response will be reduced by about a factor of 2 because the dominant
mode 3 is on resonance. Recall from elementary vibration theory using
a single-degree-of-freedom system that the magnitude of resonant
response is inversely proportional to the amount of damping present.
Conversely, the response is virtually independent of the damping lev-
el when the rotor system is significantly off resonance.

6. As node 1 is an effective location for stimulating all three modes,
the mode that is closest to resonance would be expected to respond
most, and this is mode 2 in this example. Calculations show that the
response in mode 2 is about 1.9 times higher than for mode 1 and
about 8.4 times higher than for mode 3. Halving the modal damping
has virtually no effect on the response magnitudes because for this
example no mode is close to being on resonance.

9.3.2 Case study: Effect of applied torque
phase angle changes

For the same vibration model as in Case Study 9.3.1 and with the
same modal damping values (	 � 0.01), examine the effect of varying
the applied torque phase angles on the steady-state torque response in
span 1-2 under the following conditions. Torques are to be applied only
at nodes 1 and 3 and the phase angle of the torque applied at node 3
relative to node 1 is to be varied in 45° increments from 45 to 360°.
Evaluate how the response torque varies in span 1-2 for

■ The excitation frequency being at the natural frequency of mode 2
(3.1295 Hz).

■ The excitation frequency being at the natural frequency of mode 3
(5.419 Hz).

Note that mode 1 is the rigid-body mode at zero frequency.

1. What would be the phase angle difference at nodes 1 and 3 to
achieve maximum and minimum vibration response in each case?

2. What do you use to determine this most easily?
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3. Why are the response versus phase angle difference plots not quite
symmetric about 180°?

Solution to Case Study 9.3.2

1. The first step is to examine the mode shapes for the system as
shown in Fig. 7.1. As the applied torque frequency is to be set first at
the mode 2 natural frequency and the damping is light, the vibration
response will be mainly in mode 2. For mode 2 it is seen at nodes 1 and
3, where torques are to be applied, that the normalized rotational dis-
placements are of opposite sign—meaning that they are 180° out of
phase. Hence, to maximize the response in mode 2, apply torques 180°
out of phase at nodes 1 and 3. Conversely, to minimize (to a value of
zero) the mode 2 response, apply torques that are in phase. Using the
same approach for the second case for which the applied torque fre-
quency is set to the mode 3 natural frequency, the applied torques at
nodes 1 and 3 need to be in phase and 180° out of phase to maximize
and minimize the mode 3 response torques, respectively. Figure 9.7 is
a graphical summary of the calculated results produced by using the
methods defined in Sec. 8.1.

2. It should now be clear from the previous answer that inspection
of the system mode shapes gives a large amount of insight. Vibration
analysts, in solving and addressing vibration problems, always strive
to view calculated or measured mode shapes as early as possible in an
investigation. A vibration problem is never truly understood without
having good mode shape and natural frequency information for the
frequency range of interest. The modal applied torque vector method
demonstrated in Case Study 9.3.1 is another good approach for
addressing problems of this type, and this method also requires mode
shape information.

3. The plots shown in Fig. 9.7 are actually not quite symmetric
because the vibration responses generally have contributions from all
the system modes even when the applied torque frequency is coincident
with a natural frequency. For example, for the case of an applied torque
frequency at the mode 2 natural frequency, the response torques in span
1-2 are 18.672 lbf�in and 19.596 lbf�in for phase difference angles of 45
and 315°, respectively.

9.3.3 Case study: Turbine-generator
frequency response

For the turbine-generator specified in Fig. 7.5 and Table 7.2, develop a
frequency response chart and make conclusions based on the results. The
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sinusoidal stimulus torque is to be applied at node 11 (the generator
rotor). The response torque amplitude and phase in shaft 10-11 are to be
plotted as a function of the applied torque frequency in the range of 0 to
60 Hz. Phase angle in this context means the phase angle of the shaft
response torque relative to the applied torque. The modal damping (	) in
all the subsynchronous modes is assumed to equal 0.001 for this study.

1. Why don’t response resonance peaks appear for each of the subsyn-
chronous flexible torsional modes, and specifically for modes 3 and
7 having natural frequencies of 21.64 and 53.66 Hz?

2. Why aren’t the total phase angle changes equal to 180° as each nat-
ural frequency is traversed?

Solution to Case Study 9.3.3. The natural frequencies of the turbine-gen-
erator are given in Table 7.3. There are six flexible torsional modes less
than 60 Hz (modes 2 to 7). The first mode is a rigid-body mode at zero fre-
quency for which, by definition, there are no shaft-twisting deformations.

The frequency response chart is produced by performing steady-state
sinusoidal forced response calculations (using the equations developed in
Sec. 8.1) at a number of applied torque frequency steps between 0 and 60
Hz. There needs to be a concentration of data points near the natural fre-
quencies as the response amplitude and phase angle values change dra-
matically in these regions. This is because of the sharp resonant peaks
arising from the low modal damping selection specified in this case.
Figure 9.8 shows the frequency response chart that was developed
through the use of the computer program that was developed for this
book. The calculations are too laborious to be performed manually.

1. Response peaks do not, of course, appear for those modes that are
unable to be stimulated significantly from torques applied at the gen-
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Figure 9.7 Effect of applied torque phase angles.
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erator rotor (node 11). These nonresponsive modes can be predicted by
inspecting the mode shapes and finding those for which the motion at
node 11 is very small compared to unity. Note that the mode shapes
are normalized to a maximum value of unity, which means that for
each mode the node that has the highest relative motion has a value
of unity and other nodal displacements are scaled accordingly. Column
3 in Table 9.3 shows that mode 3 or 7 is unlikely to be stimulated by
torques applied at the generator because the relative displacements
values are very low relative to unity. Resonance peaks for these modes
are therefore noticeably absent in the frequency response chart of Fig.
9.8. Column 4 helps characterize each mode by defining the rotor ele-
ment that has the highest relative rotational displacement value.
Figure 9.6 contains a plot of mode shape 7 and provides a visual
impression of the lack of relative motion at the generator (node 11).

2. A phase angle shift of 180° strictly occurs only in the case of a
single-degree-of-freedom system as the forcing frequency is incre-
mented through the natural frequency generating a resonance peak.
For multi-degree-of-freedom systems that are required to represent
machinery, phase shafts close to 180° do, however, occur for modes
that are responsive and not distorted by the effects of other modes if
they are close in natural frequency. This effect is demonstrated in Fig.
9.8, which shows approximately 180° phase changes for modes 2, 4, 5,
and 6. It is noteworthy also that small phase angle changes are
detectable for modes 3 and 7 even though resonance peaks are not dis-
cernable. This phase angle sensitivity is often utilized in testing pro-
grams to help identify natural frequencies of unresponsive modes.

9.3.4 Case study: Quantifying accuracy of
forced response calculation

For a simple cylinder that is built in at one end and has a sinusoidal
torque applied at the other end, calculate the forced response torsional
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Figure 9.8 Turbine-generator frequency response.
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deflections as a function of position along the length of the cylinder. The
modal damping 	 is to be assumed to equal zero in each mode. The ampli-
tude of the applied torque is 1000 lbf�in, and the frequency is first to be
set at 100 Hz and then to 200 Hz.

In this case study, compare the finite element results with the exact
analytical solution results determined from the formulas for continu-
ous systems given in App. C. Comment on the shape of the displace-
ment response pattern as a function of axial position for each of the
two specified applied torque frequencies.

The cylinder is defined as follows. Outside diameter equals 10 in,
and length is 300 in. The rigidity modulus is 11.538 � 106 lbf/in2, and
the material density � 0.283 lb/in3.

For the computer finite element simulation, use 10 identical, three-
node finite elements to represent the inertial and stiffness properties
of the cylinder.

Solution to Case Study 9.3.4. The first step is calculation of the natural
frequencies and mode shapes that are required for interpreting the
forced response results needed for this case study. The exact frequencies
are given in Table 9.4 using the frequency equation derived in App. C.

The finite element solution gave results within 5 percent of the exact
values for the first eight torsional modes as shown in Fig. 9.9; the accu-
racy for the first three modes is within 1 percent.

For the first calculation, the applied torque frequency is 100 Hz, which
is close to the first torsional natural frequency of this system of 104.6 Hz.
The forced response shape would therefore be expected to closely resem-
ble that of mode shape 1 (first quadrant of a sine wave). This is seen to
be the case by comparing mode shape 1 to the 100-Hz forced response
shape results shown in Figs. 9.10 and 9.11, respectively.

The finite element solutions for the vibration response values shown
in Fig. 9.11 were virtually identical to those produced with the exact
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TABLE 9.3 Turbine-Generator Mode Descriptions

Mode Natural Relative displacement Node with maximum
number frequency, Hz at node 11 displacement

2 12.95 0.6430 13—alternator

3 21.64 0.0178 13—alternator

4 25.75 0.3767 13—alternator

5 35.62 0.6306 5—LPA turbine

6 43.59 0.3614 7—LPB turbine

7 53.66 0.0158 3—IP turbine
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solution, so only the finite element results are plotted. The maximum
error in the displacement values was less than 0.8 percent.

For the second calculation with an applied torque frequency of 200
Hz, which is about midway between the first two natural frequencies,
the displacement pattern would be expected to show features of both
modes 1 and 2, and this is seen to be the case by again inspecting Figs.
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TABLE 9.4 Exact Calculation Results

Mode number Torsional natural frequency, Hz

1 104.6

2 313.8

3 523.0

4 732.2

5 941.4

6 1151

7 1360

8 1569

Figure 9.9 Accuracy of natural frequency calculations for modes 1 to 8.

Figure 9.10 Plots of mode shapes 1 and 2.
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9.10 and 9.11. Also, as the forcing frequency is now well separated
from any natural frequency of the system, considerable reduction of
the response magnitude from the prior case would be expected. This is
confirmed by the results shown in Fig. 9.11, noting that the scales for
the two plots are different by a factor of 20 :1.

9.3.5 Case study: Torsional test
measurement plane selection

It may be helpful to the reader to review Sec. 13.4, dealing with tor-
sional vibration testing, before starting this case study.

For the turbine-generator defined in Fig. 7.5 and Table 7.2, suppose
that it is a contractual obligation to perform a torsional vibration test
following start-up of the unit. The purpose is to measure as many of
the subsynchronous torsional natural frequencies and modal damping
values as possible that can be stimulated by torques emanating from
the generator rotor. Also suppose that it is cost-effective to use only
toothed wheels and magnetic pickups to measure the speed oscilla-
tions following planned disturbances to the machine to determine the
required torsional parameters. This may be because toothed wheels
and magnetic pickups are hardware already planned to be supplied for
use in control system equipment.

The questions to be answered are:

■ Is measuring at one or both locations adequate to meet the test
objectives? If only one measurement is to be taken, which turbine-
generator end would be best?

■ What other torsional vibration calculations should be performed to
provide added assurance of meeting test objectives?
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Figure 9.11 Calculated deflection pattern for forced response magnitude.
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Solution to Case Study 9.3.5. The first step is to calculate the subsyn-
chronous torsional natural frequencies and mode shapes. The mode
shapes provide easy-to-obtain information that defines on a relative
basis how responsive the modes are at all nodal positions, including in
this case the proposed measurement locations.

The subsynchronous natural frequencies shown in Table 9.3 indicate
that there are six “flexible” modes, modes 2 through 7. Mode 1 is the
zero-frequency rigid-body mode. Modes 3 and 7 can be eliminated from
the test program objectives because they cannot be stimulated to any
significant extent by torques applied at the generator as shown by the
forced response chart in Fig. 9.8.

Figure 9.12 shows the calculated mode shapes for the remaining
modes 2, 4, 5, and 6. It shows that if only one of the two measurement
planes at the machine ends is to be used, then measurements at the
node 1 “left-hand end” should be taken. This is because all modes have
relative amplitudes of about 0.5 or higher. For the node 13 “right-hand
end,” mode 6 has a low relative displacement value and therefore there
is a risk that measurement signal levels at that location could be too
low. It is desirable, however, to use both measurement planes because
this at least gives a measurement backup plane and some limited
information about the mode shapes and provides a double-check on
modal frequency and damping measurements.

Regarding the second question, forced response calculations should
be based on the test method to provide information to the measure-
ments engineer on expected signal levels for planning data acquisition
and recording systems.

If sinusoidal sweep testing is planned, to measure the natural fre-
quencies and modal damping values, then it is also desirable to devel-
op forced response charts such as the one shown in Fig. 9.8. However,
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Figure 9.12 Torsional mode shapes.
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the plots in this case should be rotational displacement responses at
each end of the turbine-generator with torque applied at the generator
rotor location. With this type of testing, it should be possible to quan-
tify the approximate magnitude of the torque produced at the genera-
tor. Hence, by calculation, it should be possible to estimate the
magnitudes of the response at the toothed wheel locations to be sure
that the test instrumentation has the required sensitivity.

If only transient response tests are to be performed (e.g., taking data
after malsynchronizing the generator to the system by a small-angle,
line switching disturbances, sudden load rejection), then these inci-
dents could be simulated with transient response calculations to define
transients that are undamaging to the machine yet large enough to be
measurable.

9.4 Transient Response Case Studies

9.4.1 Case study: Transient and steady-
state responses

For this case study, use the simple free-free torsional mathematical
model defined in Chap. 7, having three equal point polar moments of
inertia of 1 lb�in2 connected by two shafts, each having zero inertia and
torsional stiffness of 1 lbf�in/rad. The model has the mode shapes
shown in Fig. 7.1.

For this case study, show that the transient response torque in shaft
1 settles down under the influence of damping to the same steady-state
response solution that would be calculated in a steady-state analysis.
The sinusoidal applied torque at node 1 for this study is 10 sin (2� �
5t). The applied torques at the other nodes are to be set to zero.

Assume modal damping values 	 of 0.5 in each of the three modes.
The modal damping has been intentionally set high so that the tran-
sient vibration response builds up to the steady-state levels quickly.
The initial conditions t � 0 for rotational displacement and velocity at
all the nodes are to be set to zero.

Solution to Case Study 9.4.1. Table 9.5 gives the computer program
output for the sinusoidal steady-state response for the given condi-
tions. Looking at the shaft torque amplitude line, it is seen that the
steady-state torque in shaft 1 equals 3.6035 lbf�in.

The transient response solution for shaft 1 is shown in Fig. 9.13. The
dominant frequency in the waveform is seen to be 5.0 Hz, which, as
expected, equals the forcing frequency. The highest-frequency compo-
nent in this analysis is the mode 3 natural frequency, so the integra-
tion time step in seconds needs to be less than about quarter of the
periodic time of mode 3 (1/5.4188) to keep the solution stable.
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From the tabular program output (not shown here), it was found
that the peak transient response torque in shaft 1 was �4.4427 lbf�in,
and occurred after 0.1050 seconds. After approximately an additional
second, the transient response settled down to a steady-state ampli-
tude of 3.6035, which is identical to the steady-state response result.
If lower modal damping values were used, it would take longer for the
response to settle down to the steady state (see Case Study 9.4.3).

9.4.2 Case study: Shaft response following
release of applied torques

For the same model as in Case Study 9.4.1, describe the nature of the
transient response if

Up to time 0.1 second the system is in equilibrium with torques
acting on the model nodes so that the torsional system has initial
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TABLE 9.5 Steady-State Response Output

Angular Displacement Response

Node 1 2 3

Amplitude, rad 2.641 1.189 1.947

Phase, degrees �123.000 99.148 31.623

Shaft Torque Response

Shaft number 1 2

Amplitude, lbf�in 3.6035 1.0535

Phase, degrees 69.191 �4.726

Figure 9.13 Transient response output (torque history).

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Application Case Studies



displacements of 1.0 and �1.0 radians at nodes 1 and 3, respec-
tively, and 0.0 radian at node 2.

The torques that produced these initial displacements are then
instantaneously removed. This means that up to 0.1 seconds,
torques of 1.0, 0.0, and �1.0 lbf�in are applied to nodes 1, 2, and 3,
respectively, and become zero thereafter.

The modal damping (	) in modes 1, 2, and 3 is to be 0.1 for this case
study.

Solution to Case Study 9.4.2. As the shaft-inertia system is initially
twisted in a shape exactly like vibration mode 2 in Fig. 7.1, the sys-
tem will oscillate after the applied torques are removed with free
decay in mode 2 from 1.0 radian as shown by the transient response
simulation plotted in Fig. 9.14 for node 1. The response at node 2 will
be zero at all instants of time, because it is a node in mode 2. The
response at node 3 will be equal to and opposite that at node 1, con-
sistent with mode shape 2.

The decay rate will correspond to a logarithmic decrement of 2�	 �
0.2� � 0.6283.

9.4.3 Case study: Effect of damping on
transient response

Investigate the nature of the transient response of a simple system that
has a single shaft with negligible inertia, grounded at one end, and hav-
ing a point inertia at the other end. The stiffness of the shaft is 1.0
lbf�in/rad, and the size of the point inertia is 1.0 lb�in2. A sinusoidal
torque, with a value of zero at time zero, is applied to the point inertia
and has an amplitude of unity and frequency equal to the natural fre-
quency of the system. Therefore a resonant response will develop.
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Figure 9.14 Mode 2 transient response free decay.
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1. How does the transient response waveform change in shape as the
modal damping 	 is increased from 0.05 to 0.1?

2. How does the magnitude of the steady-state response change with
the increase in damping from 0.05 to 0.1?

Solution to Case Study 9.4.3. The natural frequency of this single-
degree-of-freedom system is 3.1285 Hz, which, as stated in the case
study description, is the frequency of the torque to be applied to the
point inertia. The equation for the applied torque is therefore: TA � 1
sin(2� � 3.1285t).

Figures 9.15 and 9.16 show the transient response waveforms that
were computed for modal damping values of 0.05 and 0.1, respective-
ly. In each case it is seen that there is growth in the shaft response
torque level from zero to the steady-state value.

1. The frequency content of the waveforms shown in Figs. 9.15 and
9.16 having different damping assumptions is the same. In this case
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Figure 9.15 Resonant response waveforms for transient response 	 � 0.05.

Figure 9.16 Resonant response waveform for transient response 	 � 0.1.
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the only frequency present is the forcing frequency, which equals the
natural frequency. However, the rate at which the steady-state
response is achieved is seen to be very different in each case. This is
because the higher the damping in the system, the more quickly the
full resonant response will be realized. In the 0.05 damping case,
steady-state response levels were achieved in about 4 seconds, where-
as in the 0.1 damping case the time was about 2 seconds.

2. The magnitude of the resonant steady-state response in this case
is known exactly from single-degree-of-freedom system vibration theory
(see App. C). The steady-state resonant response level equals 1/(2	).
Hence, the waveform in Fig. 9.15 shows a steady-state sinusoidal
torque level of 10 and for Fig. 9.16, a level of 5.

9.4.4 Case study: Vibration response beat
phenomenon

Investigate the nature of the transient response waveform for a tor-
sional model that has two natural frequencies that are almost equal,
following application of a step change in torque. The mathematical
model is defined as follows:

■ A free-free torsional system having five point inertias and four
shafts connecting them. The polar moments of inertia from left to
right are 0.1, 2, 3, 6, and 0.5 lb�in2. The shaft torsional stiffnesses
from left to right are 1, 1, 1, and 0.5 lbf�in/rad. The five modal damp-
ing 	 values for modes 1 to 5 are 0.1, 0.1, 0.001, 0.001, and 0.1.

■ A torque of 1.0 lbf�in is applied to the fifth inertia at time zero and
remains constant thereafter. Hence there is an abrupt step change
in torque at time zero.

■ The transient response torque waveform in the fourth shaft span is
to be evaluated.

Solution to Case Study 9.4.4. The first steps that should be taken to
explain the nature of the response are the first calculation of the nat-
ural frequencies and mode shapes, and these results are shown in Fig.
9.17. Mode 1 is not shown as it is the zero-frequency rigid-body mode
having relative displacement values of unity at all nodal positions.

In this case a finite element model having two nodes to represent
each shaft was used. It is seen from Fig. 9.17 that only 0.22 Hz sepa-
rates modes 3 and 4 in frequency. The corresponding mode shapes
show that the point of application of the applied torques (node 5)
should strongly stimulate these modes as node 5 has the highest rela-
tive motion in each case. In addition, for each of these modes there is
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high relative twist in span 4, unlike those for modes 2 and 5. One
would therefore expect to find dominant responses in modes 3 and 4 in
the transient torque waveform for shaft 4.

Figure 9.18 shows this to be true and provides the transient
response torque waveform for the first 15 seconds following applica-
tion of the step change in torque at node 5. The envelope of the wave-
form shows the classical beating pattern that is observed when two
modes of almost the same frequency interact. The beat maxima and
minima correspond to instants in time when the two modes both
reinforce and act against each other, respectively. A waveform of this
type is said to be amplitude-modulated and the boundary of the
waveform is referred to as its “envelope.”

By counting cycles in the waveform of Fig. 9.18, the cyclic fre-
quency is found to be about 33 cycles in 10 seconds or about 3.3 Hz.
This, as expected, is close to the natural frequencies of modes 3 and
4. The frequency of the beats is seen to equal about 3 in 14 seconds
or about 0.2 Hz, and this corresponds to the difference in frequency
of modes 3 and 4. This type of beating response is quite often
observed in rotating machinery testing programs when two respon-
sive modes are close together in frequency. A real-life example is
shown in Fig. 8.1.

The beating phenomenon can also be observed:

■ When a sinusoidal stimulus frequency is close to one of the mechan-
ical system natural frequencies and for this case the beat frequency
equals the difference between the natural frequency and the forcing
frequency.

■ When two harmonic motions are impressed on a mechanical system
at slightly different frequencies. The beat frequency will be the dif-
ference between the two stimulus frequencies.
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Figure 9.17 Mode shapes (2 to 5) and natural frequencies.
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9.4.5 Case study: Full-load rejection
transient response

For the turbine-generator model defined in Fig. 7.5 and Table 7.2,
determine the torsional natural frequencies and peak response
torques in each shaft span following a full-load rejection on the unit. A
full-load rejection means for this example that the turbines abruptly
stop delivering driving torque to the unit and the generator and alter-
nator rotors instantaneously stop generating electrical power and cor-
responding load torques. In practice this is achieved by abruptly
closing the steam inlet valves to the turbines and almost simultane-
ously opening the generator circuit breaker.

The following conditions apply:

■ The turbine-generator operating speed is 3600 rpm.
■ The total power output from the turbines at full load is 1000 MW,

with 10 and 15 percent delivered by the HP and IP turbines, respec-
tively and 25 percent from each LP turbine. Also, 97 percent of the
load torque comes from the generator and 3 percent from the shaft
driven alternator.

■ The modal damping in all modes remains constant at 0.002 regard-
less of the magnitude of the response (time).

Recognizing that the response in modes with frequencies above 60 Hz
should be negligible in comparison to the subsynchronous modes:

1. First, in the modal transformation, select only those lower-frequency
modes and calculate the response torques.

2. Then demonstrate a negligible change in the response torque
results if all the system modes are used in the modal analysis.

3. Show from any torque history plot that most response is in mode 2,
and explain why.
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Figure 9.18 Beating phenomenon illustration.
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Solution to Case Study 9.4.5. The torsional natural frequencies are
given in Table 7.3. As there are 13 nodes and therefore 13 degrees of
freedom in this model, there are 13 natural frequencies of the sys-
tem in total, including the zero-frequency rigid-body mode. The
highest subsynchronous frequency natural frequency is 53.66 Hz
(mode 7).

The rated torque output of all the turbines is equal to the total tur-
bine power output divided by the rotational speed with appropriate
scaling for units. Therefore, the rated torque in this case is

� � � � � 2.3468 � 107 lbf�in

Hence, on the basis of the specified torque fractions, the applied
torques are as shown in Table 9.6.

The initial conditions for displacements (which in this case are
nonzero because of the initial steady-state applied torques) are also
shown in Table 9.6 and can be derived from the applied initial torques
by two methods. The first method is to use a beam statics program.
The second method which was adopted here, is to run the transient
response program using all 13 modes in the modal analysis, and with
the applied torques specified in Table 9.6 for all instants of time in the
simulation and with the modal damping values set to 1.0 (critical
damping). The steady-state responses at each node (which occur very

550�60�12
��

2� � 746
1000�106
��

3600
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TABLE 9.6 Turbine-Generator Initial Conditions

Applied torque, 
Inertia Node number lbf�in Initial displacement, rad

HP turbine 1 2.347E�06 0.013521

Coupling 2 0.000E�00 0.012934

IP turbine 3 3.521E�06 0.012347

Coupling 4 0.000E�00 0.010880

LPA turbine 5 5.868E�06 0.0094132

Coupling 6 0.000E�00 0.0064792

LPB turbine 7 5.868E�06 0.0035452

Coupling 8 0.000E�00 �0.00085578

LPC turbine 9 5.868E�06 �0.0052568

Coupling 10 0.000E�00 �0.011125

Generator 11 �22.768E�06 �0.016993

Coupling 12 0.000E�00 �0.018753

Alternator 13 �7.040E�05 �0.020513
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rapidly because of the critical damping selection) are now the required
initial displacements to be used in the load rejection transient analy-
sis. It is important to include the sign (plus or minus) when entering
the initial conditions into the transient response input. The initial con-
ditions for angular vibration velocity (superimposed on the 3600 rpm
shaft speed) are zero.

As the highest-frequency component to be used in the first part of
this case study is the response frequency of the highest subsynchronous
mode, which in this case is mode 7 (53.66 Hz) and there are no oscilla-
tory forcing frequency components, the required integration time step
should be less than 1/(53.66 � 4). The value actually used in the analy-
sis was 0.001 second, which is therefore conservative. The second part
of the case study requires that simulation be conducted using all 13
modes of the system, to demonstrate negligible change in results in
comparison to using only the 7 subsynchronous modes. In this case the
highest modal frequency is 203 Hz, so an integration time step of 0.001,
which is still acceptable for numerical stability, was used.

The transient response analysis results are summarized in Table
9.7. The second column gives the magnitudes of the initial steady-state
levels of torque in each shaft span prior to the load rejection event. The
third column gives the calculated peak transient response torque in
each shaft span occurring at the times given in the sixth column after
initiation of the load rejection event. It should be noted in the sixth col-
umn that the times of the peak response in the shaft spans vary
because the response is multimodal. It should also be noted that the
response torques in spans on either side of a coupling are very similar,
and this would be expected in this case where the coupling polar
moments of inertia are substantially less than the inertias of the main
rotors (see Table 7.2).

The fourth column in Table 9.7 demonstrates very clearly the need
to design shaft spans to carry much more torque than would be
required to accommodate only the steady-state full-load torques. For
example, in shaft span 1-2, the torque arising from the full-load rejec-
tion is about 6 times higher than the steady-state torque in this span,
and the situation is even worse for span 12-13. The fifth column gives
the peak torques in each shaft span normalized to the rated torque
output of all the turbines, which is the torque that drives the genera-
tor and alternator rotors.

Inspection of column 7 confirms that there are only small differences
in the response torques obtained by using only the 7 subsynchronous
modes in comparison to using all 13 in the modal analysis.

Figure 9.19 shows the torque time history in the first shaft span (1-
2). The load rejection commenced at 0.05 second from the start of the
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simulation at time zero. The plot shows that the dominant frequency
component is in mode 2 at 12.95 Hz. This is the mode with one node in
which each end of the turbine-generator is moving out of phase. This
mode is excited the highest because its shape resembles most closely
the twisting up of the turbine-generator shaft train under the influ-
ence of the steady-state torques that are suddenly released. Hence,
when the full-load rejection occurs, the release of these torques strongly
stimulates the first antiphase mode of the system (mode 2).

9.4.6 Case study: Shaft response after generator electrical fault

Using the same turbine-generator model as in Case Study 9.4.5,
determine the peak torque in each shaft span during the first second
following a generator terminal three-phase short circuit that lasts for
0.1 second with the turbine-generator at zero load. The applied
torque/turbine-generator rated torque TA as a function of time is giv-
en by the following equations from Ref. 9:

TA � 10FA sin(2� � 60t) � 0.2F2 � 4A2

F � 0.286e�t/13 � 0.634e�t/280 � 0.080

A � e�t/50

From the information in the case study, these equations apply for 0.1
second and after that time, TA � 0.0.

The applied torque waveform, shown graphically in Fig. 9.20, dis-
plays an abrupt step change in the applied torque at the generator at
time zero followed by a very slowly decaying oscillation at 60 Hz. In
this case the integration time step should be based on 60 Hz—the
highest forcing frequency component—as by definition it exceeds all
subsynchronous mode frequencies to be used in the modal analysis. A

100 Chapter Nine

Figure 9.19 Load rejection response torque history for shaft span 1-2.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Application Case Studies



conservative integration time step of 0.001 second was used in the sim-
ulation [
(1/(60 � 4)].

As the turbine-generator is at zero load at the time of the fault, the
applied torques at all other machine nodes are zero. Also the initial
conditions for displacement and velocity at all nodes are zero.

For the second part of this case study, adjust the stiffnesses of the
shaft spans 9-10 and 10-11 between the generator and the LPC turbine
to 1.227 � 1010 lbf�in/rad so that the natural frequency of mode 7
equals 60 Hz, and demonstrate a significantly increased level of the
shaft response torques and explain why.

Solution to Case Study 9.4.6. The applied torque equations were
entered into the transient response equation coding using the for-
mulas that were supplied. The results of the transient response
analysis are summarized in Table 9.8. Case 1 in this table represents
the nominal shaft properties and Case 2, the shaft properties adjust-
ed to make the natural frequency of mode 7 equal to 60 Hz. Columns
2 and 4 show the corresponding peak shaft response torque values
and columns 3 and 5, these values divided by the summation of the
rated torque of all the turbines (giving the per unit values).

With the nominal shaft stiffness values, for which no mode is close
to 60 Hz, it is seen from the Case 1 results in Table 9.8 that the peak
torques in the two shaft spans between the LPC turbine and the gen-
erator are almost 9 times the steady-state torque in those shaft spans
corresponding to full-load turbine-generator output. This occurs
because the maximum applied torque on the generator during the
fault equals about 14 per unit (see Fig. 9.20) and dynamic amplifica-
tion does not occur because of the separation of the torsional natural
frequencies from 60 Hz.
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Figure 9.20 Applied torque waveform for three-phase short circuit.
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If, however, the turbine-generator had been poorly designed, with its
seventh natural frequency at 60 Hz (a mode with significant generator
motion), then it is seen from the Case 2 results in Table 9.8 that the
peak shaft torque is greatly amplified to about 64 per unit. This sub-
stantial increase is because the applied torque is rich in a 60-Hz com-
ponent and resonates with the turbine-generator 60-Hz vibration
mode. This increase in response for Case 2 relative to Case 1 is shown
graphically in Fig. 9.21.

9.4.7 Case study: Application of a flexible
coupling

The chief engineer, in reviewing the Case Study 9.4.6 shaft response
results in Table 9.8, concluded that the peak transient torque for the
Case 1 configuration in the generator-alternator shaft span is exces-
sive and decided that a flexible coupling should be installed to reduce
the peak torque in that span by at least 20 percent. The polar moment
of inertia of the coupling is to remain the same, and the torques in the
other machine shafts should not significantly increase (viz., by more
than 5 percent). The chief engineer explains that the torque needs to
be reduced in the generator-to-alternator span because the alternator
shaft diameter is relatively small and there are radial holes in the
shaft for making electrical connections that impose a high stress con-
centration factor. The chief engineer proposes a flexible coupling stiff-

102 Chapter Nine

TABLE 9.8 Peak Response Torque Summary

Peak torque, Torque, per Peak torque, Torque, per
Shaft span lbf�in Case 1 unit Case 1 lbf�in Case 2 unit Case 2

1-2 1.35E�08 5.74 1.29E�08 5.51

2-3 1.41E�08 6.02 1.29E�08 5.50

3-4 1.55E�08 6.62 1.75E�08 7.47

4-5 1.55E�08 6.60 1.77E�08 7.54

5-6 1.96E�08 8.36 2.17E�08 9.26

6-7 1.95E�08 8.30 2.03E�08 8.67

7-8 1.97E�08 8.38 4.97E�08 21.18

8-9 1.93E�08 8.21 4.23E�08 18.02

9-10 2.09E�08 8.87 1.48E�09 63.06

10-11 2.06E�08 8.77 1.50E�09 63.91

11-12 3.35E�07 1.43 3.18E�07 1.35

12-13 3.24E�07 1.38 3.78E�07 1.61

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Application Case Studies



ness of 6.0 � 108 lbf�in/rad that would reduce the overall stiffness of
the generator-alternator span by 25 percent (to 1.5 � 108 lbf�in/rad).

The questions to be answered are:

1. Will a flexible coupling of the stiffness proposed by the chief engi-
neer meet the stated objectives?

2. What is a more suitable stiffness value if the objectives are not met?

3. Are the machine torsional natural frequencies still well separated
from 60 and 120 Hz?

4. Why not increase the lengths of the shafts between the generator
and the alternator to add flexibility instead of employing a flexible
coupling?

5. What additional benefits could there be in employing a flexible
coupling?

Solution to Case Study 9.4.7. It will be assumed that in the original
model the stiffness of the coupling is very high in comparison to the
shaft stiffnesses in the span. The flexible coupling will be modeled as
two point inertias connected by a spring that represents the flexible
coupling stiffness. Each point inertia will equal half of the total cou-
pling inertia. Hence the new turbine-generator model has on addi-
tional node and corresponding degree of freedom.

1. The peak torque values from the computer simulation are given
in Table 9.9 for each shaft span, and comparisons with the original
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Figure 9.21 Case 1 and 2 shaft torque waveforms for span 9-10.
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“rigid coupling” values are shown. The results are all expressed in per
unit of the full-load rated torque applied by all the turbines to the gen-
erator (2.3468 � 107 lbf�in). In the span description column, “C” refers
to a coupling and “C-C” refers to the flexible coupling spring. It is seen
by inspecting columns 3 and 4 that the peak response torque in the
generator to alternator shaft spans of interest are dramatically
reduced by the use of the flexible coupling; however, in some other
spans there are significant increases. Hence the criteria established by
the chief engineer are not satisfied.

2. After several iterations the design engineer selects a coupling
stiffness of 1.8 � 109 lbf�in/rad that reduces the overall stiffness of the
generator to alternator shaft span by 10 percent (to 1.8 � 108

lbf�in/rad). The results of this iteration are shown in column 5 of Table
9.9 and essentially meet the criteria specified by the chief engineer.
The changes in peak response were noted in the iteration process to
not behave in a linear fashion, with flexible coupling stiffness exhibit-
ing different trends in the various shaft spans. This made obtaining an
optimum machine solution laborious.

3. Table 9.10 shows the comparison between the torsional natural
frequencies of the turbine-generator with the rigid and initial and
final stiffnesses of the flexible coupling, respectively. It is seen that the

104 Chapter Nine

TABLE 9.9 Effect of Coupling Stiffness on Response

Peak shaft response torques, per unit

Shaft Span Rigid Flexible coupling, Flexible coupling,
span description coupling 1.5 � 108 lbf�in/rad 1.8 � 109 lbf�in/rad

1-2 HP-C 5.74 5.94 5.61

2-3 C-IP 6.02 6.24 5.90

3-4 IP-C 6.62 7.08 6.97

4-5 C-LPA 6.60 7.03 6.96

5-6 LPA-C 8.36 8.44 8.53

6-7 C-LPB 8.30 8.31 8.42

7-8 LPB-C 8.38 8.32 8.19

8-9 C-LPC 8.21 8.21 8.04

9-10 LPC-C 8.87 9.35 9.14

10-11 C-GEN 8.77 9.27 9.04

11-12 GEN-C 1.43 1.02 1.17

12-13 C-C N/A 1.00 1.16

13-14 C-ALT 1.38 0.97 1.15
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natural frequency values are not much affected by the coupling change
and that the natural frequencies closest to 60 and 120 Hz are 53.66
and 141.8 Hz, respectively, representing good separation margins.

4. For large machines like turbine-generators, minimizing the
length of a machine normally has a major financial benefit due to
reducing the length of the foundation, building sizes, and other vari-
ables. Usually increasing flexibility in a shaft span can be achieved
with less machine axial length by utilizing a flexible coupling in com-
parison to increasing turbine-generator shaft length. However, it is
important to recognize that for these large machines flexible cou-
plings may be feasible only for shaft spans that carry relatively low
torque such as between the generator and alternator rotors.

5. Flexible couplings generally provide incremental mechanical
damping to the torsional system that can help reduce the number of
vibration cycles following a major disturbance that are above the high
cycle fatigue limit of the machine shafts.

9.4.8 Case study: Response during
acceleration through a critical speed

A gas-turbine-driven generator has been furnished with static
starting provisions. This means, in this case study, that the generator
is to be used during the start-up process as a motor to bring the
machine speed up to a point where the gas turbine can be fired for
producing the driving torque to take the machine to service speed in
preparation for electrical synchronization to the power grid. For the
generator to operate as a motor during the turbine-generator runup
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TABLE 9.10 Effect of Coupling Flexibility on Natural Frequencies

Torsional natural frequency, Hz

Flexible coupling, Flexible coupling,
Mode number Rigid coupling 1.5 � 108 lbf�in/rad 1.8 � 109 lbf�in/rad

1 0.00 0.00 0.00

2 12.95 12.89 12.93

3 21.64 19.28 20.81

4 25.75 25.20 25.47

5 35.62 35.55 35.59

6 43.59 43.58 43.59

7 53.66 53.66 53.66

8 141.80 141.80 141.80
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in speed, power electronics deliver electricity to the generator’s ter-
minals at the required variable frequency to smoothly and safely
accelerate the rotor train. One consequence is that the currents enter-
ing the armature of the generator are usually rich in harmonic con-
tent as a result of the power electronic frequency conversion process.
It is typical that as a result there will be significant oscillating
torques applied to the generator rotor as it accelerates at frequencies
corresponding to 6 and 12 times the instantaneous rotor speed fre-
quency (6 per revolution and 12 per revoltion forcing). Some higher
harmonic torques are also usually present. The magnitudes of the
sixth and twelfth harmonic torques can be of the order of several per-
cent of the rated torque of the motor-generator.

Figure 9.22 shows for this case study some simplified mechanical
details of the machine. For this evaluation it is required to investigate
only the magnitude of the 6/rev. induced response torque in shaft 2-3
as the machine passes through its first flexible torsional critical speed,
with the results expressed in:

■ Per unit of the applied torque amplitude acting on the generator–
motor rotor.

■ Per unit of the steady-state response torque level in span 2-3 under
resonant conditions (simulating dwelling at the critical speed).

The system design engineer, aware that the response torques should
be reduced if the critical speed is traversed quickly, would also like to
investigate the effect of increasing the value of the acceleration of the
machine on the peak torque level. In addition, the sensitivity of results
to the damping level assumption needs to be evaluated.

For this study, first assume that the modal damping (	) in each mode
is 0.01, and then repeat the evaluations with 0.001. Also assume that
the nominal rotor system acceleration A is 1/60 (cycle/s2) and remains

106 Chapter Nine

Figure 9.22 Gas turbine–generator model.
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constant during the start-up process, and the rated speed of the tur-
bine-generator is 3600 rpm. The expression to be used for the sixth
harmonic torque acting on the generator (node 3 in the model) is giv-
en by TA � T sin(�nAt2).

This produces a constant applied torque amplitude T at a frequency
that starts at zero at time and rotor speed zero, and increases uni-
formly with time and rotor speed at a rate of (nA) (cycle/s2). This is
illustrated in Fig. 9.23 for the first 10 seconds and with T � 1.0.

For the 6 per revolution (6/rev.) stimulus under study, n � 6. T is set
to 1.0 as the shaft response torque magnitudes are to be expressed in
values per unit of the amplitude of the torque applied to the generator.
It should be noted for this case study that it is assumed that the mag-
nitude of I does not change with acceleration rate. In reality, it is likely
that when higher acceleration rates of the machine are achieved, then
the oscillating torque amplitude T would increase somewhat.

Solution to Case Study 9.4.8. The first step is to calculate the torsional
natural frequencies of the machine; they are determined to equal 0.00,
18.76, and 36.89 Hz in this case. The nominal rate of acceleration of the
machine for this case study is 1/60 cycle/s2 (equivalent to reaching the
rated speed of 3600 rpm in one hour) and as the stimulus being investi-
gated is at 6/rev., the forcing frequency is changing at a rate of 0.1 Hz/s.

The rotor critical speed corresponding to the intersection of the
6/rev. forcing frequency line with the first flexural critical speed of this
machine (18.76 Hz) is 187.6 rpm. This is shown graphically in the
Campbell diagram in Fig. 9.24.

In general, all the vibration modes and forcing frequency “spoke
lines” of significance are shown on such a diagram which identifies
all the critical speeds from the intersections of the forcing frequency
lines with the natural frequency lines. The vibration response at
steady-state conditions has peaks at each critical speed because of
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Figure 9.23 Applied torque waveform at 6 per revolution forcing.
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resonant-type behavior. There are eight critical speeds shown in Fig.
9.24 corresponding to the intersections of the four forcing frequency
lines with the two natural frequency-versus-rotational speed lines.
Usually the natural frequency lines are not horizontal and straight
on such a diagram because natural frequencies change with rotor
rpm. This is especially true for rotor lateral vibration. For torsional
vibration the natural frequency-versus-speed lines are usually very
close to being horizontal for the subsynchronous torsional modes.
Figure 9.24 shows horizontal lines corresponding to the first two
flexible torsional modes of this machine. The time to reach the 6/rev.
and first torsional mode intersection under investigation here, fol-
lowing the start of the rotor acceleration, will equal 18.76 Hz divided
by 6 times the rotor acceleration, and this equals 187.6 seconds in
this case.

Figure 9.25 shows the result of the computer simulation that was
performed. It shows the mechanical response torque envelope in shaft
2-3 as the gas turbine-generator accelerates through its first critical
speed. It should be noted that the envelope is not symmetric on each
side of the maximum response value. This is a direct consequence of
the ramping up of the applied torque frequency with time.

The peak transient response was calculated to be 20.34 per unit of
the applied torque amplitude using the procedures defined in Sec. 8.2,
and occurred after 188.9 seconds as shown in Fig. 9.25. The steady-
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Figure 9.24 Campbell diagram.
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state sinusoidal forced response level was separately calculated at
21.60 per unit for modal damping values of 0.01, using the procedures
defined in Sec. 8.1. Hence the maximum shaft transient torque
response is 94.2 percent of the steady-state forced response value
based on a sinusoidal, constant forcing frequency of 18.76 Hz.

Figure 9.26 shows a 1-second expanded view of Fig. 9.25 for both the
applied torque and shaft response torque waveforms and illustrates
that the applied and shaft response torques are in unison, as would be
expected. The 1-second interval is centered about the time at which
the maximum shaft response occurs.

Figure 9.27 summarizes the simulation results for the peak torque
response in shaft 2-3 as the rate of acceleration is changed in several
steps ranging from a value corresponding to reaching rated speed
(3600 rpm) in one hour to getting to rated speed in 2.5 minutes. The
points shown at a rate of acceleration of zero, of course, correspond
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Figure 9.25 Response torque envelope (180 to 200 seconds).

Figure 9.26 Expanded view of Fig. 9.25.
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to the steady-state resonant response levels. The other data points
are for acceleration rates of 1/60, 1/30, 1/15, 0.2, and 0.4 cycle/s2,
respectively.

The results show that in the case of a damping ratio of 0.001, which
is of the right order of magnitude for turbine-generators at no load, the
acceleration rate has a profound effect on the peak response magni-
tude up to a rate of about 0.1 cycle/s2. This arises because with a very
low rate of acceleration the vibration levels are able to develop to a sig-
nificant fraction of the steady-state value. The steady-state torque
response level is high (216 per unit of the applied torque) as a result
of the light damping. Figure 9.27 also shows that when the modal
damping is increased to 0.01, the peak transient response is not affect-
ed as much by the acceleration rate. This is because as damping
increases, the rate at which vibration levels grow at stimulus frequen-
cies near resonance also increases.

Figure 9.28 shows the peak shaft response torque results plotted in
per unit of the steady-state response torque in shaft 2-3. By defini-
tion the results at each damping level are unity for an acceleration
rate of zero. The response ratio is also seen to drop substantially as
the acceleration rate is increased to approximately 0.1 cycle/s2 in the
case of 0.001 damping ratio, with much smaller reductions for the
0.01 modal damping case. For both damping assumptions the reduc-
tions in the response ratio are seen to be modest for acceleration
rates above 0.2 cycle/s2.

These types of analyses are very important for the rotor system
design engineer to perform because the magnitudes of applied and
shaft response torques in traversing the critical speeds can be very
high, as illustrated in this case study. The results show that response
torques can be reduced substantially by proper sizing and design of the
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Figure 9.27 Effect of acceleration and damping on shaft 2-3 peak response.
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static start system. Therefore, it is important in defining the turbine-
generator starting sequence and for specifying needed hold points dur-
ing the acceleration to rated speed, that dwelling at critical speeds
that can be stimulated significantly be avoided. Also, the critical
speeds of concern need to be traversed at an optimum rate that bal-
ances benefit with cost and practicality.
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Figure 9.28 Effect of acceleration and damping on shaft 2-3 peak response.
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Torsional Fatigue

Following calculation of the transient torque responses in the machine
shafts, it is often necessary to estimate the amount of fatigue life
expenditure in the shafts (if any) as a result of the torsional distur-
bance being analyzed. Generally the shaft torsional response is a com-
plex waveform made up of several frequency components as illustrated
in the case studies in Sec. 9.4.

Fatigue is a complex subject and an imprecise science. This chapter
gives only a very brief introduction to this topic. References are cited
for those readers wishing to study this subject in more detail.

10.1 Introduction

Fatigue is the tendency of materials to crack and then finally fracture
under repetitions of stress or strain at a level considerably less than
the ultimate static strength of the material. Fatigue is an important
subject because it is the largest cause of failures in metals. Fatigue
failures are often catastrophic and often occur suddenly and without
warning. The fracture surface is usually brittle-like in form even in
ductile materials and is often characterized by striations or beach-
marks that are formed during crack growth. The applied cyclic stress
state may be axial (tension-compression), flexural (bending), torsional
(twisting), or a combination of these. The cyclic stress may alternate
with a zero mean level, alternate about a mean level, or vary quite
randomly with amplitude and frequency. For an applied tensile stress,
the fracture surface is generally perpendicular to the direction of the
applied force. A fatigue crack will generally initiate on a free surface
at a location of stress concentration. Part of the fatigue life of a com-
ponent is associated with the number of strain cycles to initiate the
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crack. Another part of the fatigue life is the number of cycles needed
to grow this crack to a critical size that leads to gross failure of the
component. Fracture mechanics is the science used to estimate the
residual life of a component after a crack has been initiated.

At the design stage the fatigue life of critical components is often con-
servatively considered to be the number of cycles required to develop
(initiate) a crack that can be detected by simple nondestructive tests.
The fatigue life estimation methodology defined later in this chapter is
based on crack initiation as the criterion for 100 percent loss of fatigue
life and neglects the life that remains for growing the crack to a criti-
cal size. For this reason fracture mechanics is not covered.

For many years the fatigue properties and methods for estimating
fatigue life expenditure have been available for tensile and bending
stress states for steel shafts, and this is well documented in the liter-
ature. It was not, however, until the 1970s that such information
became available for torsional fatigue analysis, based on testing and
research projects,1 following several serious turbine-generator shaft
torsional fatigue failures.

Many low-alloy steels used in the construction of rotating machinery
exhibit a fatigue property that is usually referred to as the endurance
limit or the high cycle fatigue limit. For alternating stress cycles below
this limit, the material by definition of this property can withstand an
infinite number of fatigue cycles without failure. Failure in this con-
text means the initiation of a fatigue crack that can be detected by eye
or with simple nondestructive tests (e.g., liquid penetrant tests). It
should also be noted that many metals and materials do not exhibit an
endurance limit and hence will eventually fail under application of any
level of cyclic stress.

The endurance limit, if it exists for the material of an actual compo-
nent, will generally be much less than that of a test specimen in ideal
laboratory conditions. Hence adjustments need to be made to account,
for example, for environmental, component processing (surface treat-
ments, quality of machining operations, etc.), “size effect,”11,12 and ini-
tial and periodic overstrain effects.13 The so-called size effect refers to
the observation that when shafts or specimens are tested at the same
nominal surface stress, larger diameter items often fail after a signif-
icantly lower number of fatigue cycles. This effect is more prevalent for
nominal sections of a shaft that experience a significant stress gradi-
ent such as from bending or torsional loads as opposed to a more uni-
form state of stress from a tensile load.

When components are subjected to stress cycles above the endurance
limit of the material, fatigue loss of life is experienced which is cumu-
lative. It is as though the component has memory, so subsequent dam-
aging cycles add to fatigue loss of life experienced earlier.
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It should be noted that the estimation of shaft fatigue life consump-
tion is not an exact science. This is illustrated by the fact that a fatigue
analyst using state-of-the-art methods would consider that predicting
the fatigue life of a component within a factor of 2 to 3 of the actual
value would be favorable.1 The primary reason for this is the large
scatter in fatigue properties that is typical from specimen test results
in a laboratory environment taken from a single batch of material. For
critical machine components, the lower bound of fatigue properties
from repeated tests on specimens is often used to be conservative in
component life or component loss of fatigue life calculations. Statistical
methods are also becoming increasingly common, enabling estimated
fatigue lives to be specified in terms of their probability.

Fatigue cracks will generally initiate at points of maximum stress
on a surface, commonly referred to as “notches.” Discontinuities in
geometry such as abrupt changes in diameter in a shaft, keyways,
threads, or holes in shafts (e.g., for electrical winding connection pur-
poses) are locations of reduced fatigue strength. Other factors which
may further reduce fatigue strength at notches arise from poor surface
finish; scratches, dents, and some machining operations; initial and
periodic overstrains; and a variety of environmental effects.

The state of stress will also affect the fatigue strength. The local
notch stress may be either uniaxial (tensile) or shear, despite the fact
that shaft may be carrying only torque. For example, for a hollow shaft
in torsion with a radial round hole the principal stress is tensile.
Therefore, the appropriate uniaxial or torsional fatigue model must be
employed depending on the geometry and configuration of the limiting
notch in each machine shaft span.

For uniaxial fatigue a mean stress superimposed on the alternating
stress will reduce the fatigue strength.14 It should be noted that mean
stresses can exist only under conditions where significant plastic defor-
mation does not arise corresponding to the high cycle fatigue regime of
a material. For low cycle fatigue, plasticity wipes out the mean stress.

Goodman or Gerber diagrams are often employed to define fatigue
capability when mean and alternating stresses are both present. Mean
stress seldom affects fatigue capability when the stress state is shear.15

The so-called modified Goodman diagram is shown in Fig. 10.1. Points
of alternating stress and mean stress falling above the sloped line
denote fatigue failure and for those below the line, nonfailure.

The extreme points for the line intersection with the axes signify that:

■ If the mean stress equals the ultimate strength of the material,
there would be zero fatigue capability.

■ If the mean stress is zero, then the fatigue capability would equal
the endurance limit.
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An equation that is commonly used to determine the alternating stress
�equiv that is equivalent from a high cycle fatigue standpoint to an
alternating stress �alt with a mean stress �mean is given by

�equiv � (10.1)

A transformation of this type is needed because fatigue capability
characteristics are most frequently defined for fatigue cycles having
zero mean stress.

It should also be noted that the strain–fatigue life relationship is
highly nonlinear and so, for example, doubling the applied strain mag-
nitude would likely result in a reduction in fatigue life that is far
greater than a factor of 2. As shown in Fig. 10.2, this is especially true
in the high cycle fatigue part of the curve (cycles greater than about 103

to 104), where the slope of the curve is small. The strain life character-
istic, such as that shown in Fig. 10.2, is generally shown with the log-
arithm of the alternating strain plotted against the logarithm of the
number of cycles to failure (where failure refers to initiation of a fatigue
crack). The data shown in Fig. 10.2 are fictitious and are presented for
illustrative purposes only.

10.2 Torsional Fatigue Estimation
Methodology

What follows is a brief summary of the steps usually taken in a torsion-
al fatigue analysis using a local strain approach. This approach is based
on the assumption that the fatigue life of a component is controlled by
the cyclic strain on its surface. Thus a smooth specimen subjected to the
same stress-strain history as the material at the surface of a stress riser
or “notch” (e.g., stress concentration due to hole or fillet) in the actual

�alt���
1 � �mean / �true fracture stress
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Figure 10.1 Modified Goodman diagram.
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component would initiate fatigue cracks in the same number of cycles.
This approach makes it possible to estimate the fatigue life expenditure
for a machine shaft with or without notches that has undergone a com-
plex torsional loading history from transient disturbances.

The main steps in the process are as follows:

1. The unconcentrated stress and strain reversal values at the shaft
section of interest are determined from the shaft response torque
waveform. The shaft response torque histories are calculated using the
methods presented in Sec. 8.2. The stress and strain values are relat-
ed to the calculated torques by geometry and material properties. For
example, the peak nominal shear stress in a solid shaft of diameter D
with a peak torque T is equal to 16T/(�D3) and occurs on the surface
(also refer to Table 6.1).

2. The stress concentration factor of the notch under consideration
is obtained from stress analysis, handbook data, or specimen testing.

3. Material fatigue property parameters are extracted from the
shaft material strain–fatigue life diagram and cyclic stress-strain dia-
gram from specimen fatigue tests.

4. The local notch strain history is developed from the information
presented above accounting for plasticity effects as required.16,17

5. The resulting notch strain history is analyzed with a fatigue cycle
counting technique18 that identifies closed hysteresis loops (“cycles”).
Figure 10.3 shows a torsional strain history that needs to have individ-
ual fatigue cycles identified for a cumulative fatigue calculation. This is
a short sample for illustration purposes only because usually many
reversal points would be present before the response falls below the
endurance level as a consequence of light damping. As fatigue is a non-
linear process, it is vital for estimating fatigue life consumption to prop-
erly identify the fatigue cycles. In the example shown in Fig. 10.3, there
is one major fatigue cycle 1-4-7, which in turn contains two minor cycles
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Figure 10.2 Fatigue life diagram: strain amplitude versus cycles to failure.
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2-3-2A and 5-6-5A. For tensile or bending strain states only, each cycle
must be separated into its alternating and mean strain components for
using a transformation such as given in Eq. (10.1). For example, for
cycle 2-3-2A, the alternating strain component is given by (�2 � �3)/2,
and the mean strain component by (�2 � �3)/2, where � is the strain on
the vertical axis of Fig. 10.3. The result of estimating damage with pair-
ing of reversals would generally be much larger than selecting fatigue
reversals strictly on the basis of the time sequence of peaks and valleys.
Dowling discusses rain flow and range pair cycle counting in detail.18

6. The fatigue damage for each cycle is determined from the smooth
bar strain life data that has been acquired for the shaft material of
interest. The smooth bar test data that are employed in this step must
be adjusted downward to account for effects such as size, environment
(e.g., effects of corrosion), shaft material processing, scatter in materi-
al properties,1 and initial and periodic overstraining.

7. Finally, the fatigue expenditure for each cycle is summed to
obtain the cumulative damage from the strain cycle history using a
linear damage summation technique.19
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Figure 10.3 Fatigue cycle counting example.
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Machine Torsional Vibration
Design Rules

Most producers of rotating machinery develop design criteria often based
on operational experience. Design practices and criteria also evolve as
the analytical state-of-the-art advances. Knowledge and procedures in
this area are generally highly proprietary because they differentiate
competitor’s designs and drive product operational performance and
ability to succeed in the marketplace.

It should be noted that design practices that are unduly conservative
will generally escalate product costs and may be counterproductive for
meeting other machine design requirements.

This chapter therefore by intent discusses possible design strategies
only in general terms for achieving torsionally rugged machine designs
and uses the turbine-generator class of machinery as an example.

11.1 Tuning of Torsional Natural
Frequencies

Recognizing that there are significant generator airgap torque fre-
quency components at the first two harmonics of the transmission sys-
tem frequency and low damping of torsional modes of vibration, an
obvious design strategy is to avoid resonance with these harmonics of
system electrical frequency.

Torsional vibration modes in the vicinity of the first harmonic of the
electrical system frequency are generally predictable to better than ±3
percent. Hence a reasonable design guideline would be to separate the
torsional natural frequencies from the system forcing frequency (60
Hz) by approximately 10 percent.

Chapter
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For those torsional vibration modes in the vicinity of twice the sys-
tem frequency, for which the turbine blades can be considered to act as
rigid connections to the rotors that support them, the design guideline
for frequency separation needs to be guided by the mode shape.

For mode shapes that show significant relative motion at the gener-
ator rotor (location of applied torque), a frequency separation of the
order of approximately 10 percent may still be a reasonable design
guideline. It should be noted, however, that a vibration model with
more degrees of freedom than for the subsynchronous modes case
described previously would be required to achieve sufficient accuracy
for calculating the torsional natural frequencies.

Conversely, for modes in which the generator is virtually a node
(zero motion), it may be possible to ignore the presence of these modes
altogether because they are obviously very difficult to excite from
torques applied at the generator. An analogy would be the ineffective-
ness of trying to close a door by pushing at the hinge (the node).

In contrast, for those torsional vibration modes in the vicinity of
twice the system frequency, for which some turbine blade stages
vibrate in unison with the rotor torsional motion, it is very important
to avoid resonant conditions to prevent blade vibration failures. For
these complicated rotor–turbine blade system modes of vibration, com-
plex, branched vibration models are required. The damping levels in
these modes are extremely light, so even being off resonance by a frac-
tion of a hertz may result in acceptable blade and shaft vibration
response levels. The key issue, of course, in establishing the design
guideline is the accuracy of the calculation for these complex system
modes. Turbine-generator manufacturers have developed the required
experience in this area through testing programs. It should be noted
that in this frequency range there tend to be families of modes, with
frequencies within a family being very close in natural frequency.
Forced response analyses are generally performed to classify modes of
concern and those that are benign.

11.2 Forced Response Design Guidelines

Several types of incidents that generally apply modest levels of tran-
sient torsional stimulus to the turbine-generator can occur frequently
over the lifetime of a unit. These would include incidents such as sud-
den machine load rejections, planned transmission-line switching inci-
dents, and synchronizing the generator to the electrical network
during start-up. For these incidents it would appear sensible to design
the machine shafting such that there is zero or negligible consumption
of fatigue life. In addition, the design of couplings should be such that
they do not slip under these relatively minor transients. Otherwise,
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the turbine-generators may need frequent rebalancing operations to
compensate for possible cocking of the couplings following slippage.

At the other end of the spectrum there are a variety of incidents that
can apply very high levels of transient torque to the generator, but for-
tunately these incidents occur very rarely. These incidents include
major faults (three-phase and phase-to-phase) at the terminals of the
machine, malsynchronization accidents, and severe faults in the trans-
mission system close to the plant. For these incidents it is generally
impractical to design the machine to avoid loss of fatigue life in the
turbine-generator shafts. The design strategy in this case may be
based on transient response calculations using simulation of worst-
case faults and lower-bound values of electrical transmission system
reactance and applying design criteria based on the degree of yielding
in the limiting shaft cross sections and/or amount of shaft fatigue life
consumption.
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Machine Design Modification
Strategies

Sometimes design errors occur such that one or more torsional natural
frequencies have inadequate separation margins from the main tor-
sional forcing frequencies of concern. As discussed previously, the fre-
quencies of concern are often 60 and 120 Hz in the case of 60-Hz power
generation systems.

There are two main turbomachinery detuning approaches.

1. The first approach, which is often the easiest to apply, is to lower
or raise the offending torsional natural frequency, by adding or reduc-
ing inertias, respectively, at axial locations which are torsionally
responsive in that mode. Examination of the calculated or measured
mode shape is helpful in determining the machine locations that have
high relative motion. Placement of inertia at an axial location that is
at or close to an antinode will have the most effect, whereas placement
of inertia at a nodal point will have zero effect. Possibilities for chang-
ing inertia include

■ Adding a flywheel
■ Shrinking a ring on the outside diameter of a coupling
■ Replacing a rotating component with one of different density

having suitable other properties
■ Replacing a shrunk on component that can be removed easily

with one of different size
In each case it is necessary to investigate that no performance or

machine interface problems would result from the configuration
change. For example, if a component were modified resulting in a
weight increase, it would be important to check that mating compo-
nents can sustain the increase in centrifugal load.

Chapter
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2. The second approach is to change the stiffness of the system.
Examination of the mode shape to find sections of the machine that
are undergoing the most relative twist would also be helpful in this
case. In these areas it may be possible to machine off some material to
lower the stiffness and the natural frequency. For some rotors it may
be possible to cut off a shaft extension and bolt on a new one of modi-
fied dimensions. In planning such stiffness modifications, caution
must be exercised because, for example, removing material to reduce
stiffness and natural frequency will also lower the inertia tending to
negate some of the frequency reduction benefit.

In the case of higher-order rotor-bucket system modes where the pri-
mary concern is turbine blade fatigue failures, detuning these modes
from 120 Hz (for a 60-Hz transmission system) by just a fraction of a
hertz may be sufficient in some cases to dramatically improve vibra-
tion performance. This is because of the very light damping in these
modes and the needle-shaped resonance peaks. The required level of
detuning may often be achieved in these modes by modifying the rotor
system by the strategies explained earlier and/or by employing a mod-
ified blade or blade attachment design.

It should also be noted that even if natural frequency calculations
for a given machine turn out to be of poor accuracy for an unexplained
reason, using that same analytical model to calculate the percentage
change in a natural frequency as a result of a modification is likely in
most cases to give acceptable guidance. This, of course, would be
untrue if there were gross errors in parts of or the entire mathemati-
cal model.
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Torsional Vibration Measurement
Methods, Monitoring, and

Diagnostics

The usual measurements that are taken on turbomachines as needs
arise are shaft angular velocity oscillations about the average rota-
tional speed of the machine and the oscillating strain at locations of
interest. The former measurement signal is sometimes integrated to
give the angular displacement oscillations at a specific axial location,
and the latter measurement is converted to torque response. In taking
either type of measurement, it is important to inspect the machine
mode shapes of interest to ensure that the devices are positioned opti-
mally. For example, for the modes of interest

■ With angular velocity measurements, ensure that machine axial
locations are not selected near vibration mode node points.

■ For strain-gauge axial locations, ensure that there is significant
rotor twisting in the vibration modes of interest.

13.1 Rotor Speed Oscillation Measurements

Common ways to measure torsional vibration angular velocity oscilla-
tions are by means of toothed wheels or gears and magnetic pickups.
This is a very rugged and reliable measurement approach and is suit-
able for long-term monitoring of turbomachinery when required.
Other approaches involve optical methods using grids or stripes on the
shaft as the target. Sometimes the stripes or grid patterns are etched
on a tape that is stuck to the shaft. In such cases care must be exer-
cised to ensure that there is no large “optical” discontinuity where the
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ends of the tape butt together. Optical methods involving lasers and
the Doppler principle are sometimes used as well.

Such measurements are often taken at several axial locations on
a machine. The vibration response signals can be filtered to pass the
machine torsional modal components, and protective relaying and
monitoring equipment can alarm and initiate corrective actions if
levels exceed defined thresholds.

Figure 13.1 shows a picture of a toothed wheel attached to the end of a
turbine-generator rotor shaft for this purpose. It is necessary to have
a sufficient number of teeth and accurately machine them in the wheel to
ensure that they are spaced uniformly and have the same dimensions
to maximize signal-to-noise ratios from the pickups. As mentioned previ-
ously, and generally for short-term testing purposes, tapes are sometimes
glued to shafts with grid patterns that are viewed by optical sensors to
perform the same function as toothed wheels and magnetic pickups.

13.2 Rotor Torque and Strain
Measurements

The most common way to measure the strain on the surface of a shaft is
through the use of strain-gauge rosettes. For torsional vibration mea-
surements, two strain-gauge rosettes are commonly placed 180° apart on
the shaft and the signals summed. This cancels out bending strains in the
shaft because simple bending strains in a shaft (e.g., a bowed shaft) would
ideally be of equal magnitude but opposite in sign for the two rosettes.

Either slip rings or telemetry, which is more common these days, is
required to transfer the strain-gauge signal from the rotating shaft to
stationary signal processing equipment. For strain-gauge telemetry, a
ring is often mounted on the shaft close to the strain gauges. The ring
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Figure 13.1 Toothed wheel installation. (Courtesy of General Electric.)
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contains transmitters and equipment for powering the transmitters
for sending the strain-gauge signals to stationary signal receiving elec-
tronics using radio technology. Strain-gauge telemetry systems are
useful in tests but may lack the ruggedness and durability required for
long-term monitoring of a machine.

The principal stresses on the surface of an annular shaft subjected
to pure torsion are at an angle of 45° to the shaft axis as shown in Fig.
13.2 and are equal to the nominal shear stress. Hence P � SXY.

Therefore, the strain � measured at 45° to the shaft axis, which is
how strain gauges are normally orientated in a bridge circuit in each
rosette for torsion measurements, is given by

� � �

where E � Young’s modulus and � � Poisson’s ratio. However, for
isotropic materials, E/G � 2(1 � �), where G � rigidity modulus.
Hence

� � � (13.1)

As SXY in this equation is the maximum torsional stress on the shaft
surface, the simple formulas given in Table 6.1 can be used to produce
the response torque in the shaft at the strain-gauge location.

The twist and torque in a shaft are also sometimes measured by the
use of two transducers that measure rotational displacement at two
different axial locations and subtracting the signals.

13.3 Turbine-Generator Torsional Vibration
Monitors

For some turbine-generators that have significant potential for shaft
torsional fatigue damage due to instabilities such as SSR and/or
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Figure 13.2 Principal stresses for shaft in torsion. (Courtesy of General Electric.)
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abnormally high transient current oscillations in the electrical trans-
mission network, sophisticated torsional vibration monitors were put
in service to acquire experience data and to define the cumulative tor-
sional fatigue life expenditure in the machine shafts. Reference 1 cov-
ers this subject in detail, and one such system that it describes is
shown in schematic form in Fig. 13.3.

The system used a combination of on-site data acquisition equip-
ment and a centralized computer system, with automatic data trans-
mission between them. Typically the data acquisition equipment
would be at the power plant and the remote computer in an engineer-
ing office at another geographic location.

The signals that were monitored are generator electrical terminal
quantities and speed variation measurements at each end of the
machine. In the “TVMDAS” subsystem shown in Fig. 13.3, a trans-
ducer converted continuously monitored generator phase currents and
voltages into the electrical airgap torque (generator applied torque). A
sudden change in the airgap torque and/or a sudden increase in tor-
sional vibration above adjustable trigger settings caused the TVMDAS
to capture and store data from before, during, and after the initiating
disturbance. In a similar way the EFMDAS subsystem continuously
monitored the generator electrical terminal quantities and captured
them on the basis of activation of adjustable triggers.

The acquired information was then transferred by the “data com-
munication system” over dedicated phone lines to a remote computer
to produce the transient torque histories in each machine shaft. These
records were analyzed automatically to produce the fatigue life expen-
diture in each shaft for the specific event that was captured and to pro-
vide the cumulative total from the time the monitor entered service.
Summary data were then transmitted to the printers and consoles of
the monitor owner, which could be located at the power plant or engi-
neering offices.

Following the system development and installation, several moni-
tors were put in operation in various locations. The locations were
planned to encompass different transmission operating practices and
turbine-generator designs.

The purpose of these monitors was

■ To gather, for various types and severities of electrical disturbance
and different machine types, experience on the amount of shaft
fatigue life consumption and observe its rate of accumulation.

■ To identify needed modifications to operating practices if a serious
rate of fatigue life consumption was observed and prior to major
fatigue damage accumulation to the machine.
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Figure 13.3 Torsional vibration monitoring system. (Courtesy of General Electric and EPRI.)
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■ To confirm accuracy of turbine-generator modeling and vibration
calculation procedures.

■ To obtain torsional modal damping values and quantify the extent to
which levels increase at high levels of vibration. At high levels of
vibration, the shaft material hysteretic damping component identi-
fied in Chap. 4 was expected to increase significantly.

■ To provide guidance in scheduling of turbine-generator inspection
and maintenance programs and to assist utilities and manufactur-
ers in optimizing the reliability and availability of electric power
generation and transmission.

■ To provide data to power system planners for defining future system
requirements.

Some of these objectives were met, and most monitors were installed
where there was potential for the subsynchronous resonance issues
described in Chap. 3. Implementation of torsional vibration monitors
was not as widespread as was originally anticipated for other types of
users. Many of these systems put in service in the 1980s have now
been decommissioned because their mission of capturing experience
information to guide transmission system design and operating prac-
tices at specific installations was fulfilled.

13.4 Torsional Vibration Testing

Torsional vibration tests are usually performed on turbomachines in
service for the following reasons:

■ To confirm that the torsional natural frequencies are close to predic-
tions during commissioning tests at the installation.

■ To measure modal damping values, perhaps for use in torsional sta-
bility calculations.

■ To measure the magnitude of the torsional response to defined tran-
sient events. This may be done to confirm the accuracy of computer
simulations or to give assurance that observed response levels for
prescribed torsional events are acceptable.

■ To develop required torsional data for putting into service and check-
ing operation of long-term monitoring and/or protective and relaying
equipment.

■ To diagnose vibration problems.

Torsional natural frequencies can be determined from sensor output
(either rotational velocity or strain oscillation measurements) by
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applying a torsional stimulus to the machine that has a large impulsive
component. An impulse has the desirable characteristic of being able
to significantly stimulate many modes at one time. An example of gen-
eration of an impulse in the case of a turbine-generator would be the
result of malsynchronizing the generator to the transmission network
by a small amount during start-up. Another impulsive stimulus would
come from engaging the turning gear when the machine is stationary.
The purpose of this gear it to slowly rotate the machine to prevent
gravity sag bows from forming in the rotors and for providing bearing
breakaway torque prior to runup in speed. This latter impulse gener-
ation method has a disadvantage, though, because some of the tor-
sional natural frequencies of the machine change slightly (usually by
a few tenths of a hertz) under full-speed operating conditions because
of thermal and centrifugal effects. The thermal effect tends to reduce
the natural frequencies as the Young modulus of rotor steel decreases
with temperature rise, and centrifugal effects generally stiffen areas of
the rotor system, thereby increasing the frequencies.

Other ways of applying a transient stimulus to a turbine-generator
could involve performing a sudden load rejection on the machine,
conducting a planned line-switching incident, and intentionally
short-circuiting one phase of a transmission line to ground (usually
remote from the generation station to limit the magnitude of the
transient to the machine). In the case of machines connected to
series-capacitor-compensated transmission lines, transients can be
produced by switching in and out of service series capacitor modules.
In all cases it is very important to analyze the transient operation
before it is performed to ensure that it does not damage the machine
and to demonstrate that the impact on power generation and trans-
mission from the station is acceptable.

A frequency spectrum analysis [using a device such as a fast Fourier
transform (FFT) analyzer] is then performed on the sensor output. The
peaks that show up generally correspond to the lower-order torsional
natural frequencies as well as spurious electrical noise components at
harmonics of the power system frequency.

Figure 13.4 shows a spectrum analysis plot that was taken during a
torsional test on a turbine-generator following malsynchronization of
the generator to the electrical network by about 10°. The first four
peaks correspond to the first four torsional natural frequencies of the
machine, and the small peak at 60 Hz is electrical noise.

The modal damping values can be obtained by bandpass filtering the
sensor signals, centered at each natural frequency and then process-
ing the output. For each torsional mode that has significant response,
the sensor output after filtering will contain only a fairly narrow fre-
quency band around the torsional natural frequency of interest. The
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filtered output now containing single-mode information will show an
almost pure sinusoidal decay that can be processed to give the modal
damping value by the methods shown in Sec. 13.4.1. This process is
repeated for each mode of interest. It is important that the filtering
electronics be designed so that the mechanical signal decay rate infor-
mation is not corrupted.

Another approach for measuring torsional natural frequencies and
modal damping is to apply a sinusoidal stimulus to the machine. A
method sometimes used on turbine-generators is to feed signals into
the excitation system control electronics to produce pulsating torques
at desired frequencies on the generator-alternator rotors. In this
method the stimulus frequency is very slowly ramped up until each
turbine-generator resonance peak corresponding to a natural frequency
is identified by the sensor outputs.

This stimulus method is also useful for obtaining very accurate esti-
mates of the modal damping values. This is achieved by setting the
stimulus frequency equal to a torsional natural frequency until steady-
state vibration conditions are attained and then removing the stimu-
lus at a zero crossing point of the stimulus. The damping values are
obtained by processing the torsional vibration signal decays which are
nearly in a single mode corresponding to the selected resonant fre-
quency. Figure 13.5 shows a virtually single mode torsional decay
obtained in this way. This figure shows a typical set of chart recorder
records taken in a sinusoidal stimulus test. The top trace is the 1-sec-
ond timing record. The next traces shown from the top are two speed
oscillation measurements from each end of the machine, three tor-
sional strain oscillation measurements from three shafts, and the
sinusoidal stimulus signal fed into the excitation system control elec-
tronics. This latter signal had been set to precisely the first torsional
natural frequency of the machine and at a level that produces undam-
aging levels of machine vibration. It is seen, as expected, that when
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Figure 13.4 Synchronization frequency analysis. (Courtesy of
General Electric.)
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this stimulus was turned off, the mechanical signals decayed almost
exponentially in the first mode. This test was then repeated to gain
information on the other subsynchronous modes that could be stimu-
lated by these means. Section 13.4.1 describes how information from
these mechanical decays can be converted into modal damping values.

13.4.1 Obtaining modal damping values

Mechanical damping values are frequently expressed in terms of the
nondimensional logarithmic decrement (LOG-DEC), which is related
to other commonly used damping definitions such as the nondimen-
sional damping ratio entry in Sec. 2.1.

By definition, LOG-DEC relates to an exponential decay such as
that depicted in Fig. 13.6. It is defined mathematically as follows:
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Figure 13.5 First mode decay waveforms. (Courtesy of General
Electric.)
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LOG-DEC� � � ln � �
If a mechanical vibration that decays exponentially is plotted on a

logarithmic scale, such as in Fig. 13.7, where the strain amplitude is
expressed in decibels (dB), then the decay envelope will follow a
straight line and its slope being proportional to the LOG-DEC.

Referring to Fig. 13.7, if the amplitudes of the mechanical response
at times t0 and tN are A0 and AN, respectively, then, by the definition of
decibels, we obtain V � 20 log10(A0/AN). Therefore A0/AN � 10V/20. Also,
the number of cycles in the decay interval is given by N � f (tN � t0),
where f is the frequency in hertz of the mode in the decay. Hence

LOG-DEC �

13.5 Machinery Vibration Diagnosis
Procedures

The calculations and tests that are commonly performed to help diag-
nose rotating machinery torsional vibration problems and to support
associated testing investigations are as follows:

1. Define the undamped torsional natural frequencies and mode
shapes for the frequency range of interest. This calculation frequency
range will usually extend to at least the second harmonic of the rated
rotational speed frequency. This information is also vital for design of
machine modifications if this becomes necessary.

2. With the information obtained from step 1, construct the Campbell
diagram, sometimes called the “spoke diagram.” This graphically defines
separation margins of torsional critical speeds (resonant points) from run-
ning speed and any hold point speeds of interest. Description of the
Campbell diagram and its use are given in Case Study 9.4.7.

3. Calculate the sinusoidal steady-state forced response, including
the effects of damping, to estimate modal responsiveness in forcing fre-
quency ranges of interest. Torques are applied at nodes where stimuli
are known to be present.

0.1151V
��
f(tN � t0)

A0�
AN

1
�
N
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Figure 13.6 LOG-DEC definition. (Courtesy of General
Electric.)
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4. Perform transient response calculations for types of disturbance
that the machine may have been subjected to and which are suspect.

5. Evaluate calculated cyclic stress levels relative to the high cycle
fatigue capability of machine components of concern. Estimate compo-
nent fatigue life consumption for simulated incidents that show dam-
aging levels of response.

6. On the basis of this information, perform test programs as
required to confirm analytical findings, establish response baselines,
and verify success of machine modifications if they are required.

7. The methods and instrumentation for performing torsional vibra-
tion tests are covered in Secs. 13.1 through 13.4. One of the most useful
presentations of measured data to help diagnose vibration problems is
the “waterfall plot,” which is a three-dimensional display of vibration
data in a variety of forms. One axis always represents the magnitudes
of the response that show on the waterfall plot as “waves” of heights
proportional to the magnitude. The other two axes may be time, rpm
(revolutions per minute), and order (meaning “per revolution” number).
One of the most useful plots in the author’s experience is the vibration
magnitude, rpm, and order number plot. This often provides rapid
assessment of whether the problem is forced vibration or self-excited
vibration—and if forced vibration, the modal frequency(s) and forcing
order number(s) that are dominant. The waterfall plot data can be sliced
by the software package that developed it, to produce two-dimensional
displays to provide increased clarity. The slice may, for example, be
response magnitude versus rpm for a given order number, or response
magnitude versus order number for a given rpm. Other useful diagnos-
tic displays come from a frequency spectrum analysis of a vibration
measurement. This data representation identifies the vibration
response magnitude as a function of frequency and helps identify the
vibration modes that are responding most and dominant forcing fre-
quency components.
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Figure 13.7 LOG-DEC from decay plot. (Courtesy of General
Electric.)
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