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Preface

To Students:

This book is written for electrical engineering students. It is a collection of examples that
show how to solve many common electrical engineering problems using the TI-89. It is not a
textbook; if you do not know how to solve the problem, look it up in your textbook first. If you
do know how to solve the problem, this book will show you how to use the TI-89 to get the
answer with more insight and less tedium. We show you how to use the TI-89 in class, in lab,
on homework, and so forth.

Many of you may now use Mapleê, Mathematicaê, MATLABê, Mathcadê, or other symbolic or
numeric software. You will be pleasantly surprised to find that the TI-89 can solve many of the
same problems as the big boys, but it will boot up in only a second or two, it rarely crashes, it
fits your pocket book (even if you have a small one), and can fit in your pocket (if you have a
big one).

You should find this book easy to use. Although we show how to use many of the features of
the TI-89, we assume you already know your way around it. First read Do This First, then
jump to the section discussing the problem you want to solve.

To Instructors:

Read the To Students section.

When writing this book, we resisted the temptation to show how the TI-89 can be used to solve
problems in ways that differ from standard electrical engineering texts. Although it has the
power and ability to approach many problems in new ways, that was not our focus.

Our focus is to help students learn the basic material better by showing them how to use the
TI-89 to do the tedious things so they don’t get lost in the details. Our approach was best
summed up by Gottfried Wilhelm Leibniz when, in the 17th century, he said,

“It is unworthy of excellent men to lose hours like slaves in the labor of calculation.”

— David Voltmer

— Mark Yoder
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Do This First This chapter describes the mode settings, folder structure,
and operating tips needed to do many of the examples in
this book. In order to reproduce the screen shots in this
book, the same settings and procedures must be used.

Keystroke Instructions in This Book

Although you must press ¸ to execute a command on the TI-89, the keystroke instructions in
this book do not include ¸.  You also must  press ¸ to select certain items (from the
CATALOG , for example), but we do include ¸ in these instructions.

Likewise, although you must press j to enter an alphabetic character on the TI-89, we have
omitted the j key before each letter in the keystroke instructions to avoid loss of clarity in
entering instructions.

Be sure to press j or jj (for multiple letters) before entering any alphabetic characters
except  Ù, Ú, Û, and Ü, which have their own key symbols.

When the keystroke instructions include a symbol other than an alphabetic character that requires
the use of j, we have included the j key symbol for clarity.

Mode Settings

READ THIS SECTION before going to other chapters. The standard settings used in this book are
described in this section!

The variety of the TI-89’s operational modes gives it great
versatility. But, this also means that these modes must be
carefully selected and set. Screens 1 - 3 show the default
settings.

1. Press 3 to see Page 1 (screen 1).
(1)

Features Used
3, getMode( ), StoGDB, 
setMode( ), RclGDB, NewProb, 
¥1, NewFold, getFold ( ), 
setFold( ) , 2 °,
¥ #,", ¥ $, 
¥ %, O, 2 ¯,
2 I, ½,
2 ¿, ¥ ^, §
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2. Press „ to display Page 2.

(2)

3. Press … to display Page 3.

4. If your settings are different, press 2 ¯ ƒ 3:Default
to set the defaults.

(3)

The examples in this book assume that you are using certain
mode settings, unless clearly stated otherwise. The settings
require only two changes from the defaults: Display Digits  should
be FIX 2 and Complex Format  should be RECTANGULAR .

To change the settings, press ƒ. (If you have closed the
MODE dialog box, press 3 first.) Press D to place the
cursor on the setting you wish to change, and then press B
to display the options. Select the appropriate setting and
press ¸ . When your screen looks like screen 4, press
¸  to save the settings.

Note: In order to match the results
in this book, be sure to set Display
Digits and Complex Format modes.

(4)

Note: To enter the !, press §.

As you use your calculator, you may need to change your mode
settings.  However, saving the mode settings used in this book
is easy.

1. To save the mode settings, enter getMode( 2 É all 2
É d § init  which returns a list of all the modes with
the current setting and stores them in the variable init
(middle of screen 5).

2. Enter init  to verify that the variable contains the mode
settings you want (bottom of screen 5).

(5)

Note: The alphabetic characters
are entered by pressin g j
followed by the character. The status
line will display a small “a” to the left
of RAD in screen 5. If you need to
enter several alphabetic characters,
pres s 2™ or jjto stay
in alpha mode. The status line will
display a small inverse “a” to the left
of RAD (screen 6). To exit alpha
mode, press j again.
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3. The settings and variables used for graphing also should
be saved. Enter StoGDB ginit  to save the current
graphing state in the variable ginit as shown in screen 6.

This variable can be recalled using the RclGDB
command.

(6)

Defining ¥ ¨

Changes in mode settings are specified in each chapter where
different settings are needed. To ensure that you get the results
shown in the book, it is recommended that setMode(init)  and
RclGDB ginit  be entered before starting each chapter. These
commands restore the settings saved in init  and ginit .

An easy way to do this is to create a program called kbdprgm1( ).

1. Create this program by pressing O7:Program  Editor
3:New.

2. Type kbdprgm1 as the name of the new program variable
as shown in screen 7, and press ¸ ¸.

3. Enter setMode(main\init)  and RclGDB  main\ginit  (screen 8).

4. Press " to return to the Home screen. Press ¥ ¨ to
run kbdprgm1( ) , thus setting the modes back to those
stored in init  and ginit ; however, the screen won’t
change.

Also run NewProb  before each chapter. NewProb  clears
all single-character variable names and turns off various
plots.

(7)

(8)

Note:   To enter the \, press 2 Ì.

Features Used Box

At the beginning of each chapter is a box which includes Features Used and Setup.  This box
describes the features you will use in the chapter. You must perform the Setup in order to execute
the examples in the chapter.

Folder Structure

A new or reset TI-89 unit has a single folder named MAIN. The name of the current folder is
displayed at the left edge of the status line at the bottom of the screen. Whenever a variable is
saved, it is stored in the current folder. After an hour or two of operation, the folder may be
cluttered with many variables—functions, strings, expressions, and so forth. A better strategy is to
organize your work with folders for related topics. Each chapter of this book has a folder in which
the work of that chapter is stored.
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The command NewFold  creates a new folder and sets that folder
as the current folder. This is the folder in which all variables
are stored until another folder is selected. A new folder, DC, is
created as shown in the middle of screen 9 and will be used in
Chapter 1.

(9)

Note: The name of a folder is
limited to 8 characters or fewer.

The name of the current folder is returned by the getFold( )
command. To transfer back to the MAIN folder, use the setFold( )
command (bottom of screen 9). This also returns DC, the
current folder before the transfer. The contents of folders are
displayed with 2 ° (screen 10). The folders and the
contents of each folder are displayed in alphabetical order.

(10)

Note: There are no variables in the
DC folder since it was just created.

A number of useful folder operations are available from the
VAR-LINK  screen using ƒ, „, †, and 2 ˆ.

Folders and their contents can be deleted, copied, renamed,
moved, or created using ƒ File Manage . „ View allows certain
folders and type of variables to be displayed.

† toggles a check by the highlighted variable to select more
than one variable for later operations such as copy, delete, or
move.

The contents of a folder are displayed with 2 ˆ.

To try some of the folder operations, follow these steps.

1. Press N or " to return to the Home screen.

2. Enter 2 É 100 2 É § str1 ¸ and p Z 2
§ exp1 ¸ as shown in screen 11.

Since the current folder is MAIN, these variables are
stored there. (11)

3. Press 2 ° (screen 12). Note that exp1 is an
expression of 7 bytes and str1  is a string of 8 bytes.

(12)
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4. To verify the contents of exp1, use D to highlight it and
press 2 ˆ Contents  (screen 13).

(13)

5. Press ¸ or N to return to the VAR-LINK  screen. To
move both of these variables to the DC folder, use D to
highlight each of them and press † to check them for
later operations (screen 14).

(14)

6. Press ƒ 4:Move , and select DC as the folder to which
they are to be moved (screen 15).

(15)

7. Press ¸. The VAR-LINK  screen shows exp1 and str1
in DC as shown in screen 16.

(16)

8. Rename variable str1  as zzzstr  by highlighting it, pressing
ƒ 3:Rename , and entering zzzstr  (screen 17).

(17)

9. Press ¸ ¸. The VAR-LINK  screen shows the
renamed variable in the DC folder (screen 18).

(18)

10. To delete these variables, select them with †, press
ƒ 1:Delete  (screen 19).

(19)
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11. Press ¸. The VAR-LINK  screen shows that they have
been deleted and that DC is empty (screen 20).

(20)

To delete a single variable at a time, highlight it and press 0 ¸.

With these operations, your folders can be organized in an orderly manner.

Navigating the Screens

When the TI-89 is turned on, it displays the Home screen that was in use when the calculator was
turned off with 2 ®. Most entries and operations are made from the Home screen. To change
the display from any other screen to the Home screen, press ". Here are some other screens.

¥ #

Expressions for graphing are entered using ¥ # as shown in
screen 21.

This screen will change depending on the graphing mode. For
now use FUNCTION, the default graph mode.

(21)

Note : The current graphing mode is
displayed on the bottom right of the
status line.

¥ $

The Window Editor sets the viewing window variables—range
and resolution. Press ¥ $ to display the FUNCTION mode
graphing parameters (screen 22).

The variables are different for each mode.

(22)

Press ¥ $ to set the range of x and y. The xmin  and xmax
defaults (-10, 10) are standard, and fine. Press D D D to
change ymin  to -1.5 and ymax  to 1.5 (screen 23).

(23)

Note: The - (negative) is entered by
pressing ·.
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¥ %

A graph is drawn using ¥ %. To display a graph, a function
is defined by entering the equation to graph in the Y= Editor.
Try it by pressing ¥ # ¸ 2 W x d ¸  to plot
y=sin(x)  (screen 24).

(24)

To view the graph of y=sin(x) , press ¥ %. The display
should look like screen 25.

(25)

O

Press O to display the APPLICATIONS  menu (screen 26).

(26)

The down arrow between 8 and Text Editor  shows that there are
more selections. Pressing 2 D will show the other selections
(screen 27).

Notice that there is now an up arrow between 2 and Y= Editor .
This shows that there are more selections above.

(27)

2 I

The MATH menu provides organized menus of the TI-89’s built-
in math functions (screen 28).

(28)
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½

The CATALOG  provides access to all of the TI-89’s built-in
commands.

Move to the crossP( )  command by typing its first letter c, and
scrolling with D to take single steps or 2 D to take big steps.
The status line shows that two vectors, VEC1 and VEC2, are
required as arguments (screen 29). (29)

2 ¿

The 2 ¿ screen displays organized menus of all of the
TI-89’s characters (screen 30).

Press N to leave the ¿ screen.

(30)

¥ ^

Pressing ¥ ^ displays many of the TI-89’s most common
special characters (screen 31).

The Greek symbols are selected through 2 ¿.

(31)

Saving Data

The TI-89 saves all entries from editor screens—programs,
functions, matrices, and tables—when you leave the screen.
Mode settings, graphing equations, and parameters are saved
until a change is entered.

Often it is useful to save and later recall a particular set of data
such as the mode settings, graphing data, graphics, or
commands. A variety of editing tools is available with ƒ on the
Home screen. In particular, ƒ 2:Save Copy  As can be used in
context-sensitive ways for saving textual, graphic, and tabular
data. When ƒ  is pressed from the Home screen, all
commands in the history area are saved and can be used for
later execution (screen 32).

(32)

Many variables are just temporary and should be deleted from
the memory regularly. From the Home screen pressing,
2 ˆ 2: NewProb  is especially useful (screen 33).

(33)



DO THIS FIRST 9

© 1999 TEXAS INSTRUMENTS INCORPORATED

It clears all single character, unlocked variables; turns off all
functions and stat plots; and clears all errors, graphs, tables,
and the program I/O and Home screens (screen 34).

(34)

Note:  Each chapter of this book
starts with NewProb .

NewProb  can be entered from the command line or CATALOG  as
well. To retain variables in memory independently of NewProb ,
assign them two (or more) character names or lock the
variable.

Enter 1 § a ̧ , 2 § b ¸, and 3 § c ¸. To
lock a variable, press 2 °, highlight or check (†) the
variable to be locked, and press ƒ 6:Lock Variable (screen 35).
Once locked, the variable name is marked by Œ and can’t be
changed.

Variables can be unlocked with ƒ 7:UnLock Variable .

(35)

The TI-89 has two separate areas of memory, RAM and archive.
Archiving variables is a good idea when they need to be
accessed but not changed. This frees up RAM for normal
operations and improved operation of the TI-89. To archive a
variable press 2 °, highlight the variable to be
archived, and press ƒ 8:Archive Variable  (screen 36).

(36)

Once archived, a variable is marked by û and is treated as a
locked variable (screen 37).

To unarchive a variable, use ƒ 9:Unarchive Variable .

In screen 37, variables a and b are not locked and will be
deleted with NewProb . Variable c is locked and will not be
deleted by NewProb . Variables ginit, init , and kbdprgm1  are
archived and removed from RAM area, but still usable.

(37)

Tips and Generalizations

Each chapter has been written to stand alone. That is, after reading this chapter, you can jump to
any other chapter. Each chapter ends with a “Tips and Generalizations” section, which includes
tips on how to use the TI-89 more effectively and suggestions on how the topics of the chapter can
be generalized to solve other problems.

The first chapter shows how the TI-89 solves DC circuits, which is also the first chapter of many
circuit analysis books.
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DC Circuit
Analysis

This chapter shows three examples of the use of nodal
analysis to solve linear circuits. The first two examples use
the solve( )  command to solve a set of linear equations for a
circuit. The third example shows how to write the equations
in matrix form and use simult( )  to solve them.

Topic 1:  Nodal Equations Using solve ( )
Given the circuit shown in Figure 1, find v1 and v2.

Figure 1.  DC Circuit

Nodal analysis can be used to solve for the voltages of a circuit by summing the current leaving
each node. Kirchhoff’s current law states that the currents out of a node must sum to zero. The
current through each resistor is calculated from Ohm’s law by:

¦ Defining the voltage drop across the resistor in the direction of the current as the voltage at
the node of the incoming current of the resistor minus the voltage at the node of the outgoing
current of the resistor, and

¦ Dividing the voltage drop by the resistance of the resistor.

For a circuit with N+1 nodes (including the ground node), this process gives N equations with N
unknown voltages. For the circuit above, summing the currents out of node 1 gives

5
v

32

v v

4
0+ + − =1 1 2

The sum of the currents out of node 2 is

v v

4

v

40

v

160
12  0

2 1 2 2− + + − =

C h a p t e r  1

Features Used

NewProd, solve ( ), 
Matrix Editor,
Simult( ), 
½ , §

Setup

¥1
setFold  dc
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The following series of steps leads to a solution of these two
equations.

1. Clear the TI-89 by pressin g 2   ̂  2:NewProb   ̧ .

2. Enter the equation for node 1 and store it a s n1 as
shown in screen 1.

 5 « v1 e 32 « c v1 | v2 d e 4 Á 0 §  n1

Note :  Press j before entering
alphabetic characters.

(1)

Note :  To enter the !, press §.

3. Enter the equation for node 2 and store it a s n2 as
shown in screen 2.

c v2 | v1 d e 4 « v2 e 40 « v2 e 160 | 12 Á 0 §

n2

(2)

4. Finally, solve fo r v1 an d v2 using th e solve()  command, as
shown in screen 3.

½  solve( n1  ½  and n2 b 2  [ v1 b v2 2
\ d

The two voltages are calculated a s v1 = 96 V an d v2 = 128 V.
(3)

Topic 2:  Nodal Equations with Voltage Sources

When a voltage source is present between two nodes, Ohm’s law cannot be used to calculate the
current through the source (as in Topic 1). Fortunately, this difficulty can be overcome easily by
giving a name to the current through the voltage source (as shown below) and treating this current
as an unknown. Nodal analysis then can be used to find the solution for the voltages of the circuit
shown in Figure 2.

Figure 2.  A DC Circuit with Three Sources

First, write the nodal equations in a form similar to that
entered into the TI-89 as

node1: − + +  = →5
v1

2
i 025  1n

node2: − + + − = →i
v

1

v v

1
025

2 2 3
2n

node3 :v3 10= → n3

Note : Some textbooks use the
concept of a “supernode,” which in
effect combines the nodal equations
for node1 and node2 into a single
equation and eliminates i25.
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Notice that the current flowing through the 25 V source from
left to right is defined as i25. This unknown current becomes
another variable which will be found as part of the solution.
The voltage drop of the 25 V battery establishes the relation
between v1 and v2 as

equation 1: v v  e2 1 25 1= + →

To enter these equations into the calculator:

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb ¸.

2. Enter the equation for node1 as shown in screen 4.

 · 5 « v1 e 2 « i25 Á 0 § n1

3. Enter the equation for node2 as shown in screen 5.

· i25 « v2 e 1 « c v2 | v3 d e 1 Á µ § n2

(4)

(5)

Note:  Enter the first - (negative) by
pressing · below ª and the second
- (subtract) by pressing | to the right
of  {.

4. Enter the node3 equation (screen 6).

v3 Á 10 § n3

5. Enter the last equation for the 25 V source (screen 7).

v2 Á v1 « 25 § e1

Screen 8 shows a summary of the four equations, which
can be displayed by entering their names—n1, n2, n3,
and e1.

(6)

(7)

(8)

6. Finally, solve for v1, v2, v3, and i25 by using solve( )  as
shown in screen 9.

½ solve(  n1 ½ and n2 ½ and n3 ½
and e1 b 2 [ v1 b v2 b v3 b i25 2 \ d

The complete result is

v1 = -14 V, v2 = 11 V, v3 = 10 V, and i25 (the current
through the 25 V source) = 12 A.

(9)
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Topic 3:  Nodal Equations Using simult()

Another approach to solving the problem in Topic 2 is to convert the equations to matrix form. The
equations as shown in screen 8 are rearranged as

node1:
1

2
1 25 5v i+ =

node2: 2 2 3 25 0v v i− − =

node3: v3 10= , and

eqn1: − + =v v1 2 25

In matrix form they appear as:

1/ 2 0 0 1

0 2 1 1

0 0 1 0

1 1 0 0

v1

v2

v3

i

5

0

10

25

− −

−





































=




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

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




25

1. To create the square matrix on the left side, press O
and select 6:Data/Matrix Editor  and 3:New in sequence, as
shown in screen 10.

2. Press ¸ to display screen 11.

3. To enter a matrix, press B and D to highlight 2:Matrix
(screen 12) and press ¸.

4. Press D twice and enter the Variable name. (For
convenience, call it mata.) Using D, fill in Row
dimension: 4 and Col dimension:  4 as shown in screen 13.

(10)

(11)

(12)

(13)



CHAPTER 1:  DC CIRCUIT ANALYSIS 15

© 1999 TEXAS INSTRUMENTS INCORPORATED

5. Press ¸. You will see screen 14.

6. To see all four columns, press ¥ Í and set the cell
width to 5 (screen 15).

7. Press ¸ twice to see screen 16.

8. Fill in the rows and columns with the numbers from the
circuit matrix as shown in screen 17.

9. To create the column matrix on the right side of the
matrix equation, press ƒ and select 3:New. Define it as:
Type: Matrix, Variable: colb, Row dimension: 4 , and Col
dimension: 1 (screen 18).

10. Press ¸ and fill in the values (screen 19).

11. Press " to return to the Home screen and check the
contents of mata and colb , shown in screens 20 and 21.

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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(21)

12. Enter ½ simult (mata b colb  d (screen 22). Note : The simult( )  command
returns a column vector that contains
the solutions to a system of linear
equations.

(22)

Referring to the matrix equation for the circuit as shown below, the values returned by simult( )
correspond to the variables in the first column vector. The solution is v1=-14 V, v2=11 V, v3=10 V,
and i25=12 A, the same answer as in Topic 2.

1/ 2 0 0 1

0 2 1 1

0 0 1 0

1 1 0 0

v1

v2

v3

i 25

5

0

10

25

− −

−





































=



















Tips and Generalizations

There are many ways a command can be entered on the Home screen. For example, to enter
solve( ) :

• Type it: j j solve  j c d. Here j j locked the j key and the single j
unlocked it.

• Use the function key menus: „ 1:solve(  .

• Use the catalog: ½ s. Pressing s scrolls to the first command that begins with s. If
needed, press D to get to the desired command.

• Use 2 I 9:Algebra , 1:solve( .

• If it has been used before, press C on the Home screen until the desired command is
highlighted and then press ¸.

Summary

In this chapter, nodal analysis was used to generate equations to solve a circuit. Loop analysis (or
any method that produces N equations and N unknowns) also can be used to produce equations
for the TI-89 to solve. The equations can include complex values (Chapter 4) and do not have to be
linear. In fact, they also can include derivatives as shown in Chapter 2.
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Transient Circuit
Analysis: Symbolic

This chapter describes how to use the differential equation
solver, deSolve( ) , to solve first- and second-order circuits
containing resistors, capacitors, inductors, DC sources, and
exponential sources. It also shows how to graph the
solutions and find the zero crossing and peak values.

Topic 4:  RC First-Order Circuit

In the circuit in Figure 1, the switch has been open for a long time. At time t =0, the switch closes.
Find v(t) after the switch is closed, that is, for t >0.

Figure 1.  A simple RC circuit

Kirchhoff’s current law is applied to the circuit; therefore, the sum of the currents out of node 1 is
zero. Current flow in the direction of the voltage drop across a capacitor is

i C
dv

dt
=  or i Cv= ′

Therefore, the nodal equation at node 1 is

v 36

6

1

8

v

12
0

− + ′ + =v

C h a p t e r  2

Features Used

deSolve( ) , expand( ) , Í, 
fMax( ), zeros( ) , #, 
$ , % ,
NewProb , tCollect( ) , 
limit( ) , È, ZoomFit , 
Trace, ± , “

Setup
¥1, NewFold transym
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1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter this equation as shown in screen 1.

 c v | 36 d e 6 « v 2 È e 8 « v e 12 Á 0 § n1

3. Since the switch has been open for a long time, any
charge originally on the capacitor has been discharged
through the 12Ω resistor. This initial condition is
expressed as v(0) = 0.

(1)

Note: To enter È, press 2 È; it
represents d/dt.

Enter the nodal equation, n1, and the initial condition, v(0) = 0,
into the deSolve()  command as shown in screen 2.

½ deSolve( n1  ½ and v c 0 d Á 0 b t b v d §

eqn

The solution is v(t) = 24 N 24e-2t  V, where t is in seconds.
(2)

Topic 5:  Graphing First-Order Solutions

A graph of this solution may help you understand it — graph
v(t) for 0≤t≤3 seconds.

1. Since y is always graphed versus x on the TI-89, v must
be converted to y and t to x. This is accomplished in the
Y= Editor (¥ #) using the “with” operator, Í. To
convert t to x and v(t) to y1(x), enter the expression as
shown in screen 3.

v Í eqn ½ and t Áx

This expression causes v to be graphed using its value
given in variable eqn and to use x instead of t.

(3)

2. Press ¥ $ to set the graph range of t from 0 to 3
seconds and v from 0 to 25 V, as shown in screen 4.

The y-axes tick marks are set with yscl . The resolution
or “closeness” of the pixels representing adjacent
calculated values is set by xres . Picking xres=5 will
complete the graphs more quickly, but also gives more
jagged results.

(4)

3. Press ¥ % to see a graph of the solution
(screen 5).

(5)
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4. Press … to trace the graph and to display the cursor
location, xc and yc. The cursor can be moved with the
cursor keys, A and B (screen 6).

(6)

Note : xc and yc are variables that
can be accessed from the Home
screen.

5. Tracing helps to verify that the voltage is approaching
24 V for large t as the equation shows, too. This can be
verified with the limit( )  command as well (screen 5).

" ½ limit(  v Í eqn b t b ¥ * d

(7)

Topic 6:  First-Order Circuit with an Initial Condition

Consider the circuit of Topic 5 (Figure 1) with an initial voltage on the capacitor of -10 V at time
t =0.  Figure 2 shows this circuit just after the switch has closed.

Figure 2. Circuit of Figure 1 just after the switch is closed

The circuit equation is the same as before. The initial condition
is changed to v(0) = -10 V.

1. Enter the equation as shown in screen 8.

½ deSolve(  n1 ½ and v c 0 d Á · 10 b t b
v d § eqn

(8)

2. Since the capacitor voltage starts with v(0) = -10 V, use
¥ $ and set ymin  to -15. There is no need to reset
the other window variables.

3. The results are graphed with ¥ % as shown in
screen 9.

(9)
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4. The graphical form of the solution makes it easy to find
the instant of time when the capacitor voltage is 0.

Move the cursor to the vicinity of the zero crossing by
pressing … (the Trace tool) and using the cursor keys
A and B (screen 10).

At time t =0.19 seconds, the voltage is small, 0.74 V, but
not close enough.

(10)

Note : Press 2 A or 2 B to take
big steps, or hold down A or B.

More digits can be displayed by pressing 3 and
changing Display Digits  to 5:Fix 4 , but yc will not be any
closer to 0.

5. To get closer, press ¥ $ and set xres  to a smaller
value (try xres=2), but it will take longer to complete the
graph (screen 11). This result may be closer to 0, but
maybe not close enough due to graphical resolution.

(11)

6. A “cleaner” approach to finding the zero crossing is
through the Zero command.  Press ‡ 2:Zero  (screen 12.)

(12)

7. Position the cursor to the left of the zero crossing to set
a Lower Bound and press ¸ (screen 13).  Note that
the location is marked on the screen.

(13)

8. Move the cursor to the right of the zero crossing and
press ¸.

A much more accurate value for the time at which the
voltage is zero is now displayed in screen 14.

This more accurate time is t = .1742 seconds. (14)
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9. Return to the Home screen and find this value using the
zeros( )  command (top of screen 15).

" ½ zeros(  v Í eqn b t d

10. Press ¥ ‘ to get a floating point approximation of the
exact solution (bottom of screen 15).

Note that the more accurate graphical answer agrees
with the floating point answer through the four
significant figures.

11. Reset Display Digits  (3) to Fix 2 and xres  to 5
(¥ $).

(15)

Topic 7:  First-Order Circuit with a Time Varying Source

Modify the circuit of Topic 6 to include v(0) =-10 V with the battery and switch replaced by a
source with vs(t) =36e -3t  V for t≥0 s.

Figure 3. The circuit of Figure 2 with a time varying source

1. Edit n1 to include this different source by substituting
36e-3t for 36. Copy the original equation to the command
line and edit it by using C repeatedly to move up the
history area to the original equation and pressing
¸. Or just enter the equation as shown in screen 16.

 c v | 36 ¥ s · 3t d d e 6 « v 2 È e 8 « v e
12 Á 0 § n1

(16)

Note:  s is entered by pressing
¥ s and - is entered by pressing
·.

2. Use deSolve( )  to get the solution as shown in screen 17.
½ deSolve( n1 ½ and v  c 0 d Á · 10 b t b
v d § eqn

(17)

3. Use expand( )  to put eqn in a more familiar form
(screen 18).

½ expand( eqn  d

The solution is v(t) = 38e-2t-48e-3t V

(18)
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4. Press ¥ % to graph the solution since eqn is still
defined as the equation to graph in the Y= Editor
(screen 19). Note that the peak value is much different
than previously.

(19)

5. The range of the graph can be altered to see more of the
behavior by pressing „ A:ZoomFit  to make the curve fit
the window (screen 20).

(20)

6. Find the zero crossing using ‡ 2:Zero  as before.

7. Find a good first estimate of the peak value and its time
with Trace, …, where v = 3.52 V at time t = 0.66
seconds.

8. Find a more accurate value ‡ 4:Maximum . Use it the
same way as ‡ 2:Zero  to get v = 3.53 V at t = 0.64
seconds.

9. Return to the Home screen and use the fMax( ) command
to find an exact answer (top of screen 21).

" ½ fmax(  v Í eqn b t d

10. Substitute the result of the fMax( ) command into the
original equation (eqn) using the “with” operator, Í
(bottom of screen 21).

eqn Í 2 ±

(21)

11. Find the floating-point solution using ¥ ‘
(screen 22). Note that the ans(2) command was used to
get the answer from second line of the history area.

The accurate graphical answer agrees with the floating
point answer.

(22)
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Topic 8:  RLC Second-Order Circuit

Given the circuit in Figure 4 in which the current at time t=0 s is 10 A, (i(0)=10), and the time
derivative of the current at t=0 s is 0, (i′(0)=0), find i(t) for t>0 s.

Figure 4: A simple RLC circuit

Kirchhoff’s voltage law states that the sum of the voltages around every closed loop is zero. The
voltage drop across a capacitor in the direction of current flow is

vc
C

idt= z1

and the voltage drop across an inductor in the direction of current flow is

vl L
di

dt
=

Therefore, Kirchhoff’s voltage law for the single loop of the circuit above is given as

iR L
di

dt

1

C
idt 0+ + =∫

A derivative with respect to time of this equation and a rearrangement of terms gives

d i

dt

R

L

di

dt

1

LC
i 0

2

2
+ + =

The differential equation can be rewritten as

i i' '
R

L
'

1

LC
i 0+ + =

with the notation of i'(t) and i''(t) as the first and second time
derivatives, respectively.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter the equation as shown in screen 23.

i 2 È 2 È « r e ell p i 2 È « 1 e c ell p c d p

i Á 0 § eqn

(23)

Note : “ell” is entered instead of “l”
because “l” and “1” look very similar.
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3. Enter the numeric values of r, c, and ell as shown in
screen 24.

1 § r

.1 § c

1 § ell (24)

4. Set the radian mode before running deSolve( ) ;
otherwise, the solution may appear differently than
expected. ¥ 1 should have set the radian mode. To be
sure, press 3 and set Angle  to RADIAN.

5. Use deSolve()  to find i as shown in screen 25.

½ deSolve( eqn ½ and i 2 È c 0 d Á 0
½ and i c 0 d Á 10 b t b i d § eqn2

(25)

The result of deSolve( )  has been stored in a variable
called eqn2, although only a small portion is visible in
the entry line. To see the rest of the result, press C then
B until the rest of the line is visible, as shown in screen
26. The complete result is

i(t) = 10.00e
− t

2 cos(3.12t) + 1.60e
− t

2 sin(3.12t) A

(26)

If c is entered as an exact value of 1/10 rather than 0.1,
the answer will be in exact form. As a result, it may
contain square roots and fractions that aren’t always as
easily interpreted. For decimal results, be sure that at
least one of the element values is entered as a decimal
number.

Engineers generally express values in terms of a single
sinusoid, cosine or sine, and an angle rather than the
sum of a cosine and a sine.

6. Convert the solution from deSolve( )  to the more
common form with tCollect( )  (screen 27).

½ tCollect( eqn2  d § eqn3

The complete result is

i(t) = 10.13e
− t

2 sin(3.12t + 1.41) A

(27)
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To convert the angle from radians to degrees, multiply the
angle by 180/π, that is, 1.41*180/π=80.79°. Therefore, an
alternate form of the current answer is

i(t) = 10.13e
− t

2 sin(3.12t + 80.79°) A

Let’s graph it.

1. Press ¥ # and enter the equation as y2 (screen 28).

10.13 p ¥ s · t e 2 d p 2 W 3.12 t « 80.79 2 “

d Í t Á x

(28)

Note :  The ó symbol is essential for
correct graphing as it “overrides” the
radian mode setting.

From the differential equation solution, it is clear that
the time constant is 2, so the graph should extend for
several time constants.

2. Press ¥ $ and set xmin = 0, xmax = 5, ymin = -10,
and ymax = 10.

3. Press ¥ %.

Note :  To see how to enter other
special characters, press ¥ ^.

(29)

In screen 29, y1 graphs the results from the tCollect( )  command while y2 graphs the simplification.
They both should be the same graph if the simplification was done correctly; however, y2 graphs
more quickly. Refer to the Tips section to see how to speed up the graphing of y1.

The result looks like a nice, under-damped, second-order response.

Tips and Generalizations

Faster Graphs

Graphing y1 as shown in the previous section is a handy way to
graph the output of deSolve( )  (or solve( ) ), but it graphs more
slowly than just retyping the equation into the Y= Editor. One
way to graph i more quickly without reentering it is to use the
“with” operator, Í, to extract the equation for i prior to
graphing and to store it as another variable. This appears to
occur when the “with” operator, Í, is used for the y function
within the Y= Editor. Screen 30 shows how to extract i from
eqn3 and rename it as eqn4.

i Í eqn3 § eqn4

(30)

Now press ¥ # and enter y3 as shown in screen 31.

In the Graph screen, the graph of y3 should be the same as the
last two graphs, but it should appear about twice as fast.

Since y3 is the only function checked, it is the only one that is
graphed.

(31)

Note :  † is used in the Y= Editor to
select and deselect the functions to
be graphed.
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Exact vs. Approx

If the exact/approx mode (3 „) hasn’t been changed, the TI-89 will produce exact (rational
rather than decimal) results when it can. If a decimal value is used on the input, the output will be
approximate (contains decimal values). If the input has no decimal values, the result will be exact
(in terms of rationals). If a decimal result is desired, press ¥ ‘ rather than just ¸.

Summary

Although an RC circuit was shown here, any first-order equation can be solved and graphed using
these techniques. zeros( )  and fMax( ) also were used. fMin( )  works that same way to find the
minimum of a function. Check the other commands under the ‡ menu in the Graph screen, which
includes Minimums, Derivatives, Tangents, and so forth.

The solve( )  command also has a numeric version called nSolve( )  which finds a numeric solution
rather than symbolic. This shouldn’t be needed for linear equations, but nSolve( )  might be the only
way of getting a solution of non-linear circuits.

In addition, solving for the current in a series RLC circuit has been shown, but these techniques
can be used for finding voltage as well. A parallel RLC circuit could be solved for voltages or
currents, too. In fact, any second-order circuit can be solved by these methods.

Although the TI-89 can find symbolic solutions for up to second-order differential equations, it can
find numeric solution for systems of any number of first-order equations, as shown in Chapter 3.
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Transient Circuit
Analysis: Numeric

This chapter describes how the differential equation plotter
is used to solve the second-order circuit presented in
Chapter 2 (Topic 8) by expressing it as a system of
first-order differential equations.

Topic 9:  RLC Circuit: Direction Field

Find i(t) for t>0 s for the circuit in Figure 1 in which the current at time t=0 s is 10 A, that is,
i(0)=10 A, and the voltage across the capacitor at t=0 s is 0, that is, vc(0)=0 V.

Figure 1.  An RLC circuit

Kirchhoff’s voltage law states that the sum of the voltages around every closed loop is zero. The
voltage drop across a capacitor in the direction of current flow is

vc
C

idt= z1
(1)

and the voltage drop across an inductor in the direction of current flow is

vl L
di

dt
=

The DIFF EQUATIONS plot requires that the equations be expressed in terms of vc′ (t) and i′(t). To
do this, write equation (1) as

i t  C
dvc t

dt
or i t C vc t( )

( )
( )  * '( )= =

C h a p t e r  3

Features Used

Differential Equations
Graphing Mode
NewProb

Setup

¥1
NewFold trannum
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Solve for vc′(t) as

vc t
i t

C
'( )

( )=

and for i′(t) as

i t
vl t

L
'( )

( )=

All equations must be entered as functions y1(x), y2(x), and so on. Therefore, let

vc = y1 and i = y2

vl must be expressed in terms of y1 and y2. To do this, sum the voltages around the loop to get

i t R vc t vl t( )  ( )  ( )+ + = 0

which is solved for vl(t)

vl t i t R vc t( )  ( )  ( )= − −

Substitution of y1 and y2 gives

vl(t) = – y2*R – y1

or

i t
vl t

L

R

L
'( )

( )  *= =  = − −
y2

y2 y1
'

As a result, these differential equations are

y1
y2

y2
y2 y1

C
r

ell
' '

*= = − −
and

The corresponding initial conditions are

y and y1 0  0  2 0  10( )  ( )= =
Note: “ell” is used to avoid
confusion between “l ” and “1.”

To enter these equations, follow these steps.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Press 3 B 6:DIFF EQUATIONS ¸ to select the
differential equation graphing mode as shown in
screen 1.

(1)

3. Press ¥ # and enter the equations as shown in
screen 2.

The yi1=0 entry sets vc(0)=0 (remember y1 is vc(t)). The
yi2=10 entry sets i(0)=10.

(2)
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4. Press " and enter values for r, ell, and c as shown in
screen 3.

(3)

5. Press ¥ $ and set the window variables to the
values as shown in screens 4 and 5.

(4)

(5)

6. Press ¥ % to graph the results. An error message
appears first (screen 6). Slope fields are used for
1st-order equations only.

(6)

7. Press N ¥ Í to set the proper graph format. Move
the cursor down to Fields  at the bottom and select B
2:DIRFLD as shown in screen 7.

(7)

8. Press ¸. The graph first shows a direction field
(screen 8).  The short lines indicate the direction in
which i and vc change with respect to each other at
each point in the solution space. This plot has vc as y1
on the x-axis and i as y2 on the y-axis. Initial values
were entered in the Y= Editor. (8)

After a short time, the trajectory of the solution for the
given initial conditions appears (screen 9).

(9)
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It takes a few seconds to complete this plot. The time can be reduced by pressing ¥ $ and
setting tmax  to a smaller value or setting tstep  to a larger one. The smaller tmax  causes the plotting
to stop sooner. The larger tstep  results in a less smooth plot.

The thicker solution line starts at vc = 0 and i = 10 (screen 9). It then circles down and to the right,
spiraling clockwise to 0,0. This shows how the energy moves back and forth between the

current in the inductor E
Li

L =
2

2
 and the voltage on the capacitor E

Cvc
C =

2

2
. The resistor is

converting some of the energy to heat; so after a long time all the energy is lost as heat and i(t) and
vc(t) are 0.

Topic 10:  RLC Circuit: Time Domain

A more traditional way of viewing the voltage across the
capacitor (y1) and current through the inductor (y2) is to plot
them versus time.

1. You can do this easily from the Graph screen by
pressing ¥ Í and selecting Fields 3:FLDOFF
(screen 10). (10)

2. Press ¸ to save the change, and screen 11 appears.

(11)

3. Press ¥ $ and set xmin  to 0, xmax  to 10,
ymin  to -15, and ymax  to 25.

4. Press ¥ % to display a clearer plot, as shown in
screen 12.

(12)

Note: Pressing „ A:ZoomFit  will
produce a graph with ymin  and ymax
automatically set to display the
whole function.

Topic 11:  RLC Circuit: Multiple Initial Conditions

The Y= Editor can be used to set multiple initial conditions. The first example (Topic 9) initially set
the current, i (y2), to 10 A and the voltage vc (y1) to 0 V. The plot for the current i = 0 A and the
voltage vc = 20 V is added to the original plot by entering lists of initial conditions in the Y= Editor.
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1. Press ¥ $ to set xmin  back to -25, xmax  to 25,
ymin  to -10, and ymax  to 10, and press ¥ Í to set Fields
back to DIRFLD. This will enable redrawing the direction
field and y1 versus y2 solution.

2. The lists of initial conditions are added (in the Y=
Editor) as shown in screen 13.

 yi1: ¸ 2 [ 0 b 20 2 \ ¸

yi2: ¸ 2 [ 10 b 0 2 \ ¸,

(13)

3. Pressing ¥ % shows both solutions (screen 14).
Notice the second set of initial conditions produces a
second curve which begins on the positive x-axis.

(14)

Note: Pressing ¥ Í and selecting
Labels 2:ON  activates the y1 and y2
axes labels.

4. Initial conditions can also be added graphically. Press
2 Š and use the cursor keys to move to the desired
initial conditions in the y1-y2 plane (screen 15).

(15)

5. Press ¸ to add the graph of this new set of initial
conditions to the display (screen 16).

(16)

Topic 12:  RLC Circuit: Adjusting the Circuit Parameters

If the resistor, R, is increased, the energy in the circuit
should be dissipated in the resistor more rapidly. This
change can be investigated by simply changing r.

1. Press " and increase r to 10 by entering 10 § r as
shown in screen 17.

(17)

2. Press ¥ % to display the solutions to the previous
sets of initial conditions as shown in screen 18.

Notice that the direction field has changed dramatically,
and now the energy quickly goes to zero from both sets
of initial conditions.

(18)
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3. Making r smaller will cause the current and voltage to
die out more slowly. Return to the Home screen, and try
r = 0.1. Also, reset the initial conditions to the original
single set, that is, yi1=0 and yi2=10 (screen 19) to keep
the graph from becoming too cluttered.

4. Press ¥ %  to see the result (screen 20).

What would happen if r were set to 0 or to a negative
value? Try it!

(19)

(20)

Tips and Generalizations

The examples presented here show how to plot the numeric solution to a second-order differential
equation by expressing it as a system of two first-order differential equations. The numeric
differential equation solver is not limited to two equations, so higher-order differential equations
also can be solved.

The response of most circuits is composed of two parts, transient and steady-state.  Chapters 2 and
3 have considered transient responses.

Often the steady-state response is of more interest. Chapter 4 shows how the TI-89 manipulates
complex numbers (phasors) to find sinusoidal steady-state solutions.
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. 

Steady-State
Circuit Analysis

And Filter Design

This chapter shows how the TI-89 implements phasors to
perform sinusoidal steady-state analysis. The focus is on
how to enter and display complex numbers. This chapter
also shows a typical steady-state application—how to use
the Numeric Solver to find the required order of lowpass
Butterworth and Chebyshev filters in making a standard
“handbook” filter design.

Topic 13:  Phasor Analysis

Given the circuit shown in Figure 1, find v, the voltage across the current source.

Figure 1. A circuit in steady-state

The first step is to convert the actual circuit to its phasor equivalent. The circuit shown in Figure 2
includes these conversions.

Figure 2. The phasor equivalent of the Figure 1 circuit

Only one nodal equation is needed to solve for v

− ∠ °+ +
+

+
−

=8 0
v

10

v

6 j8

v

j5
0

C h a p t e r  4

Features Used
cSolve ( ), ’, “, Í,

abs( ), angle( ), Numeric
Solver, when ( ), log( ),
DelVar, DrawFunc, DrawInv,
NewProb,  a, ¥#,
¥%, ¥$

Setup
¥1,  NewFold steady, 
setMode( “ Angle ” ,“ Degree” )
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1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Be sure the Complex Format  mode is set to Rectangular .
Be sure the Graph  mode is set to Function .

3. Enter the equation as shown in screen 1.

· 8 « v e 10 « v e c 6 « 2 ) 8 d « v e c ·
2 ) 5 d Á 0 § n1

(1)

Note:  The usual imaginary number j
used in electrical engineering is
entered as i which is 2 ).

4. Using solve(n1,v)  will return “false” since it is valid for
real solutions only. To get a complex solution, enter
cSolve( )  as shown in screen 2.

(2)

Note: To enter cSolve( , press „
A:Complex 1:cSolve(  or ½
cSolve( .

5. Phasors are expressed as a magnitude at an angle, M∠θ.
There are a couple of ways to obtain this form.

The first way is to use the functions abs( ) (top of screen
3) and angle( ) (middle of screen 3). In this example, ¥
‘ is used to get the approximate values for the second
angle( )  command (bottom of screen 3).

This shows that the phasor form of the voltage is
40∠ -36.87 in Degree mode.

(3)

Note: To see the values on the
right end of a solution line in the
history section, press C to get to the
line and then press B to move to the
right.
Note: Press 3 to switch to
degree mode if it isn’t already set. If
in radian mode the angle would have
been given in radians.

The second approach is to put the TI-89 in Polar  mode.
Press 3 and select Complex Format 3:Polar  (screen 4).

(4)

6. Using cSolve( )  (and with ¥ ‘ for a second approximate
solution) gives the same results in the polar mode as
abs( ) and angle( )  in the rectangular mode, as shown in
the bottom two lines of screen 5.

(5)
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Topic 14:  Graphing Frequency Response

It is easy to find the voltage across the current source as a function of ω using symbolic
expressions. Table 1 shows the variations of phasor circuit elements with radian frequency ω.

Element
Element
Equation  Phasor Result

8cos105t v(t)=Re[Vejωt] V=8∠0°

10 Ω ZRa = Ra ZRa = 10 Ω

6 Ω ZRb = Rb ZRb = = 6 Ω

80 µH ZL = jωL ZL= jω80×10-6 Ω

2 µF
Z

1

j CC =
ω

Z
1

j 2 10C  6=
× −ω

Ω

Table 1:  Frequency Dependence of Phasor Circuit Elements

The nodal equation then becomes

− ∠ + +
+

+ =8 0
1

0o v

ra

v

rb zell

v

zc

Note that ra, rb, and zc1 are used because r1, r2, and zc are TI-89
system variables.

1. Switch back to Rectangular Complex Format  mode and
enter the equations as shown in screen 6.

· 8 « v e ra « v e c rb « zell d « v e zc1 Á 0 §
n1

as shown in screen 6.

(6)

Note: zell  is used to avoid confusing
zl with z1 (z followed by a 1), a
reserved name.

2. Define the element values from the table (screens 7 and
8). For convenience, w ( j w) is used instead of
ω ( ¥ c j w).

(7)

(8)
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3. With cSolve( ) , the solution in screen 9 shows that the
voltage varies with frequency.

(9)

The complete answer is

v
iw

w iw
= − +

− −
4000000 00 75000 00

125000 00 10000000000 002

. (  . )

. .

The answer is a bit of a mess. To check it with the
previous solution, enter eqn | w=100000  (screen 10).

It’s the same answer as Topic 13, screen 2.

(10)

4. To view the variation of the voltage magnitude versus
frequency, graph v versus w. Since the original problem
used w=100,000, graph from w=0 to w=200,000. Press
¥$ and set xmin  to 0, xmax  to 200000, ymin  to 0,
and ymax  to 50. Press ¥ # and set y1 to graph the
magnitude of v (screen 11).

(11)

5. Press ¥ % to see the magnitude graph (screen 12).

6. This graph takes a long time to complete because the
“with” substitutions are made over and over again for
each pixel. One way to speed it up is to do the “withs”
once before graphing and save the result in another
variable name which is then graphed. (12)

To do this, press " and enter the expression:

½ abs( v Í eqn d § eqn2 as shown in screen
13.

(13)

Then press ¥ #, deselect y1, and enter y2 (screen 14).

(14)

Note: Deselect equation y1(x) with
†.
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7. Press ¥ %. The same result as the previous graph
appears much more quickly (screen 15).

(15)

8. The phase can be graphed defining the phase angle of
the voltage on the Home screen as eqn3 (screen 16).

(16)

9. Press ¥ #, deselect y2, and enter eqn3 as plot variable
y3 (screen 17).

10. Press ¥ $ and set ymin  to -90 and ymax  to 0 (since
the calculations have been in the degree mode). xmin
and xmax  can remain the same.

(17)

11. Press ¥ % to see the phase graph as shown in
screen 18.

(18)

12. Usually the magnitude and phase plots are shown
together. This can be done using the split screen mode.
To do this, press 3 „ B D. Screen 19 presents the
Split Screen options.

(19)

13. Press ¸. Move down to Split 2 App , and select
4:Graph . Finally, set Number of Graphs  to 2 (screen 20).

(20)

14. Press ¸ to view the split screen plots (screen 21).

The top graph is the phase plot shown before; the
bottom graph contains no data yet.

(21)
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15. Convention says the magnitude plot should be on top.
To do this, press ¥ # and use † to select y2 and
deselect y3. Next, press ¥ $ and set ymin  to 0 and
ymax  to 50. Finally, press ¥% to see the magnitude
plot in the upper graph as shown in screen 22.

(22)

16. To set up the phase plot in the lower window, change to
the other half of the screen by pressing 2a and set
up the graph as before. The following operations will
give the phase plot in the bottom window (screen 23).

¥ #, select y3, ¥ $, set xmin  to 0, xmax  to
200000, ymin  to -90 and ymax  to 0, and finally, ¥ % (23)

17. You can use 2 ‰ 7:Text  to add magnitude and phase
labels to the graphs. To do this, press 2 ‰ 7:Text and
position the cursor where the text should start. The
characters will appear below and to the right of the
crosshairs. Be careful; once a letter is placed it can’t be
erased except by 2 ‰ 2:Eraser .

18. To return to a single screen, press 3 „ and set Split
Screen to 1:FULL .

(24)

Topic 15:  Filter Design Overview

A class of realizable frequency responses for lowpass filters has the form

H(f)
1

1 (f)2 2

2 =
+ ε Ψ

where Ψ(f) is a polynomial in f. If

Ψ( )f
f

f p

n

=










the filter is a Butterworth filter. An alternative is to make Ψ(f) = Cn(f/fp) where Cn is a Chebyshev
polynomial, the filter is a Chebyshev filter. The next topic deals with a Butterworth filter, the
following topic with a Chebyshev filter.
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The design of lowpass filters requires specification of passband and stopband responses often
given in dB. |H(f)|2 in dB is calculated as

| ( )| log
( )

H f
fdB

2
2 210
1

1
=

+




ε Ψ

which becomes

| ( )| logH f
f

f

dB

p

n
2

2

210
1

1

=

+




























ε

for Butterworth and

| ( )| logH f

C
f

f

dB

n
P

2

2 2

10
1

1

=
+

























ε

for Chebyshev.

Topic 16:  Butterworth Filter

The performance specifications of a filter are often given in graphical form as shown in Figure 3.
The design of a Butterworth filter with these performance specifications is described here.

f (Hz)2k1k

|H(f)|2dB

-3dB

-40dB

Passband

Stopband

Figure 3. Filter design specifications for a Butterworth filter

Suppose a filter with the maximum passband ripple is -3 dB, and the passband edge is at fp=1kHz is
to be designed. Additionally, the stopband gain is to be no more than -40 dB with a stopband edge
at fs=2kHz.
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1. From the Home screen, press ¥ 1 2 ˆ 2:NewProb  to
reset the TI-89 to a known state. Then enter the
Butterworth equation as shown in screen 25.

10 p ½ log( 1  e c 1 « eps Z 2 p c f e fp d Z
c 2n d d d § butter

(25)

2. Press O 9:Numeric Solver  exp=butter  ¸ (screen 26).

(26)

3. Note that the Numeric Solver listed each of the
variables for values to be entered. Find the value of eps
by entering the data for the passband edge with a -3 dB
response at 1000 Hz. n is unknown but at the passband
edge all values give the same result, so for now enter 1
for n as shown in screen 27.

(27)

4. Place the cursor on the eps line and press „ to solve
for eps.  After a second or two, the screen shows eps is
about 1 (screen 28).

(28)

5. Now, find the order of the filter by setting the stopband
edge response (exp) to -40 dB and f to 2000 (screen 29).

(29)

(5

6. Solve for n by placing the cursor on n and pressing „.
After a couple of seconds the solution of n=6.6 is
shown, as in screen 30.

(30)

7. Since n must be an integer, set n to the next larger
integer value of 7 and solve for exp to find the stopband
gain for this value of n (screen 31).

With a 7th-order Butterworth filter the stopband gain is
- 42 dB, a little better than the minimum needed.

(31)
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8. Now, plot the Butterworth equation to see the
frequency response. To do this, press ¥ # and enter
butter  with f replaced by x (screen 32).

(32)

9. Since the stopband edge of the filter is 2 kHz, plot x
from 0 to 3000. The stopband value is -40 dB, so plot y
from -45 to 0. Enter these values in the Window Editor
(¥ $) as shown in screen 33.

(33)

10. Press 3 to be sure the Graph  mode is set to
FUNCTION.  Then press ¥ % and wait a few seconds
to see screen 34.

(34)

The response in the passband looks very flat, which is
correct for Butterworth, but are the passband and
stopband edges in the right places? These can be
checked graphically by pressing 2 ˆ 2:DrawFunc  to
draw horizontal lines at -3 and -40 dB and
2 ˆ 3:DrawInv  to draw vertical lines at 1000 and
2000 Hz (screen 35).

(35)

11. Press ¥ % to plot the results (screen 36).

The curve passes through the -3 dB point at 1000 Hz and
passes below the -40 dB point at 2000 Hz. The filter
meets the required specifications.

(36)
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Topic 17:  Chebyshev Filter

This section shows how to design a Chebyshev lowpass filter with the same specifications as
discussed in Topic 16 and shown in Figure 4.

f (Hz)2k1k

|H(f)|2dB

-3dB

-40dB

Passband

Stopband

Figure 4.  Filter design specifications for a Chebyshev filter

The Chebyshev equations are

C
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where n is the order of the polynomial.

Therefore HdB is

H f
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
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Follow these steps to enter these three equations.

1. From the Home screen, clear f, fp, eps, and n using
DelVar.

2. Enter Cn for |f/fp| < 1 as shown in screen 37.

2 X n p ¥ R f e fp d d § cheb1

Note: DelVar  can be entered by
pressing †4:DelVar .

(37)
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3. Enter Cn for |f/fp|>1 as shown in screen 38.

½ cosh( n  p ½ cosh -1( f e fp d d §
cheb2

(38)

4. Define cheb  to be cheb1  for |f/fp|<1 and cheb2  for |f/fp|>1.
This is done using the “when” function as shown in
screen 39.

½ when(  ½ abs( f e fp d 2 Ã 1 b cheb2
b cheb1  d § cheb

(39)

5. Define hdb  to be |H(f)|2dB as shown in screen 40.

10 ½ log( 1  e c 1 « eps Z 2 p cheb  Z 2 d d
§ hdb

(40)

6. To design the filter, use the Numeric Solver. Press
O 9:Numeric Solver  exp=hdb  ¸ (screen 41).

(41)

7. Proceed as with Butterworth. Find eps for -3dB at the
passband edge by entering the values as shown in
screen 42. The result is the same as with Butterworth.

(42)

8. Now find n for -40 dB at 2000 Hz. It takes a few seconds
to find the order of the filter (screen 43).

(43)

9. To meet the design specifications, n must be 5. Enter 5
and calculate the response. See what the gain is
(screen 44).

This filter exceeds the design specifications by more
than 10 dB with a lower order than the Butterworth.

(44)
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10. In the Y= Editor, enter the expressions for the two
filters to compare them (screen 45). Note that n=7 is
added to y1 so that the Butterworth filter uses the order
computed for it instead of using the value of n=5 used
for the Chebyshev filter.

(45)

11. Press ¥ % to see the graphs (screen 46).

(See Topic 16 for a review of the instructions for a
graphical comparison of the filters’ performances.)

As expected, the Chebyshev filter has ripples in the
passband, but it drops more rapidly in the transition
band than the Butterworth.

(46)

12. Compare the filters’ performances with the lines which
represent the passband and stopband design
specifications (screen 47).  Press 2 ˆ 2:DrawFunc  to
draw horizontal lines at -3 and -40 dB.  Press 2 ˆ
3:DrawInv  to draw vertical lines at 1000 and 2000 Hz.

Both filters show the required -3 dB response at 1000
Hz; both filters exceed the specifications since they are
below -40 dB at 2000 Hz.

(47)

Topic 18:  Logarithmic Frequency Plots

Often frequency responses are plotted on a log frequency scale. Although the TI-89 doesn’t directly
support log plots, they are easy to do.

1. Return to the Y= Editor and alter the “with” operation
to include the logarithmic relation of frequency with x
as shown in screen 48.

y1: butter  Í f Á 10 Z x ½ and n Á 7

y2: hdb  Í f Á 10 Z x
(48)

The values for x are linearly spaced, but the values of
10x are logarithmically spaced.

2. Press ¥ $ to adjust the range on x. Graph the
functions for f=500 and f=3000. To do this, enter log(500)
for xmin  and log(3000)  for xmax  as shown in screen 49.

(49)

3. Press ¥ % to display screen 50. The logarithmic
plots take on a different appearance than the linear
plots of screen 46.

(50)
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4. The passband and stopband lines are added by using
log()  of the f values in DrawInv  (screen 51).  Press
2 ˆ 2:DrawFunc  for -3 and -40 dB.  Press 2 ˆ
3:DrawInv  for log(1000) and log(2000) Hz.

(51)

As expected, the plots in screen 52 show that both
filters meet the design specifications.

(52)

Tips and Generalizations

Topic 13 show how to enter, solve, and display equations with complex numbers. Multiple
equations with multiple complex unknowns can be solved. Also the matrix approach of Topic 3
can be used with complex numbers.

The Numeric Solver works nicely for filter design but can easily solve any equation for an
unknown value.

Once a steady-state response is known, the power dissipated by the various elements can be
found. Chapter 5 explores this topic further.
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. 

Power Engineering This chapter shows how to handle phasor algebra, complex
power, power factor corrections, and unbalanced three-
phase calculations using the TI-89.

Topic 19:  Phasor Algebra

The sinusoidal, single-frequency voltages and currents of power systems are usually written as
phasors — complex numbers in magnitude and phase form. This form is particularly useful in
three-phase calculations when phasors must be added or subtracted. For Y-configurations, the
line-to-neutral voltages, van, vbn, and vcn, (often called the phase voltages) are combined to give
the line-to-line voltages, vac, vba, and vcb as shown in Figure 1.

vba

vcb

vac

vbn van

vcn

Figure 1.  Three-phase line and phase voltages

For a positive phase sequence, the phasor forms of the line to neutral voltages are given as

van = 110

vbn = van∠120° = 110∠120°

vcn = van∠240° = 110∠240° = 110∠-120°

A negative phase sequence gives the opposite signs for the phase angles.

C h a p t e r  5

Features Used

Í, abs( ), real( ), imag( ), 
conj( ) , <, =, NewProb, ’,
Program Editor, ¥#, 
expúlist( )

Setup
¥1, NewFold power, 
setMode( “ Angle ” ,“ Degree” ) 
setMode( “ Complex  Format ” ,
“ Polar” )
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1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. The function vphase( )  uses van and the sign of the phase
sequence to calculate the phase voltages (see screen 1).
Press O 7:Program Editor 3:Ne w, select 2:Function for
Type, and enter vphase  for Variable. Then type the
function lines as shown in screen 1.

See Tips and Generalizations for shortcuts on entering
functions.

(1)

Note :  To enter ∠, press 2 ’.

3. Calculate the phase voltages for van=110 with a positive
phase sequence. Return to the Home screen, and use
the function vphase( )  with arguments of 110 and 1 as
shown in screen 2.

Two entries are displayed in screen 2. The first entry
shows the returned answer; the second shows the
answer scrolled to display the right side.

(2)

4. For a negative phase sequence, use arguments of 110
and -1 (screen 3).

If different results are displayed, press 3 and set the
modes as shown in the Setup section.

(3)

5. Each line-to-line voltage is expressed as the phasor
difference of the two adjacent phase voltages, for
example, vac=van-vcn . The function phas2lin( )  returns
the line-to-line voltages in a list {vac, vba, vcb} for van
and the sign of the phase sequence.

Enter the function as shown in screen 4. The function
vphase( )  is used to calculate the phase voltages which
then are used to calculate and return the list of line
voltages.

(4)

6. To calculate the line-to-line voltages for a phase voltage
van=110 with a positive phase sequence, use phas2lin( )
with arguments of 110 and 1 (screen 5). Two entries are
displayed again to show the complete answer.

(5)
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7. Phase voltages are calculated from line-to-line voltages
as the difference of the adjacent line voltages, for
example, van=(vac-vba)/3. The function lin2phas( )  returns
the phase voltages given the line-to-line voltages and
the sign of the phase sequence.

Enter the function shown in screen 6. The vac line to
line voltage and phase sequence are used to calculate
van which is used to calculate the other two phase
voltages.

(6)

8. Screen 7 shows the calculation of the phase voltages for

vac=110 3∠30° and a positive phase sequence.

(7)

Topic 20:  Average Power

Instantaneous power is defined as p(t)=i(t)v(t) for real signals where i(t) is the current which
flows in the direction of the voltage drop across the element, v(t). p(t) varies with time as the
signal varies. On the other hand, the average power of many signals is constant and often a more
useful parameter. It is defined as

P
T

v t i t dtAVG

t t

t T

=
=

+

z1

0

0

( ) ( )

where T is the period of the signal.

1. Set the Angle  mode to Radian .

2. To calculate the average power dissipated in a 1 kΩ
resistor with a voltage of v(t)=10sin(2π60t) V across it,
first calculate the current as shown in screen 8.

Since i=v/r, the current is i(t)=10sin(2π60t) (bottom of
screen 8). The period of this signal is calculated from
the relationship T=1/f=1/60 s.

(8)

3. Enter the average power, PAVG, as shown in screen 9.

2 < v c t d i c t d b t b 0 b 1 e 60 d e c 1 e
60 d

The average power is calculated as 1/20=50 mw.

(9)
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4. The average power dissipated in a 1 µF capacitor with a
voltage of v(t)=10sin(2π60t) V across it is calculated in
a similar way. However, for a capacitor i(t)=Cdv/dt. The
calculator can do the work of calculating the derivative
as well as the power. To do this, enter the three
expressions as shown in screen 10.

1 ^ · 6 § c
c 2 = v c t d b t d § i c t d

and
2 < v c t d i c t d b t b 0 b 1 e 60 d e c 1 e
60 d

The average power dissipated in a capacitor is always
zero!

Note : The integral entered before
can be copied to the entry line by
moving the cursor into the history
section with C, highlighting the
integral, and pressing ¸.

(10)

5. The integral calculation of power is valid when the
voltage and current are not so nicely related. For
example, consider an unusual device that has a periodic
pulse train voltage across it with one cycle defined with
the “when” function as shown on the top of screen 11.

½ when(  t 2 Â 0.01 b 10 b 2 d § v c t d

This device also has a sinusoidal current given by
i(t)=5sin(2π50t+π/4), as shown on the bottom of screen
11. These expressions are entered as voltage and
current.

(11)

6. Note that the two signals must be periodic with the
same period T=0.02 seconds. To graph the two signals
over one period, enter v(x) and i(x) in the Y= Editor
(screen 12).

(12)

7. Enter the graphing parameters in the Window Editor
screen as shown in screen 13.

(13)

8. Press ¥ % to display the results in the graph in
screen 14.

(14)
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9. The average power is found by using the same integral
over the period of 0.02 seconds. Return to the Home
screen, and enter this as shown in screen 15.

2 < v c t d p i c t d b t b 0 b 0.02 d e 0.02

Therefore, the average power dissipated in a device
with the square wave voltage and sinusoidal current is
9.00 W.

(15)

Topic 21:  Complex Power

For steady-state, sinusoidal signals with v(t)=vo sinωt and
i(t)=io sin(ωt-θ), the average power is calculated with the
integral as before where T=2π/ω.

1. Enter v(t) and i(t) as shown in screen 16.

(16)

Note:   To enter ω , press ¥ c
j w.

2. Find the average power as shown in screen 17.

¥ c j w e c 2 2 T d p 2 < v c t d p i c
t d b t b 0 b 2 2 T e ¥ c j w d

(17)

This form provides the basis for the common expression for average power

P
vo io

AVG =
2 2

cosθ

where θ is the angle by which the current lags the voltage. The terms ( / )vo 2  and ( / )io 2
are known as the root-mean-square (abbreviated as RMS) voltage and current, respectively.
RMS quantities are defined as the square root of the mean (or average) of the quantity
squared.

xrms

x t dt

T
t

T

= =
∫ 2

0

( )

3. Calculate the RMS voltage of v(t)=vo sin(ωt) as shown
in screen 18.

2 ] ¥ c j w e c 2 2 T d p 2 < v c t d
Z 2 b t b 0 b 2 2 T e ¥ c j w d d

The result shows that the RMS value of any sinusoidal

signal is 
2

2
 times its peak magnitude.

(18)
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When sinusoidal voltage and current are written in
phasor form, vo∠0 and io∠-θ, the average power is
given as PAVG=Real(vo*conj(io∠-θ))/2.

4. Calculate the average power for v(t)=vo sin(ωt) and
i(t)=io sin(ωt-θ) using the phasor method.

First enter the voltage phasor as shown in screen 19.

c vo e 2 ] 2 d 2 ’ 0 d § vphasor

(19)

5. Enter the current phasor (screen 20).

c io e 2 ] 2 d 2 ’ · ¥ Ï d § iphasor

(20)

6. Calculate the average power (screen 21).

½ real( vphasor  p ½ conj(  iphasor  d d

The results are identical with the time-domain
averaging.

(21)

This leads to the generalized concept of complex
power. The complex power, S, is defined as S=P+jQ
where the real part P is identical to average power and
is expressed in watts, the imaginary part Q is known as
reactive power expressed in VARs (volt-amperes
reactive), and the complex power S has units of VA
(volt-amperes). S is calculated by S=vo∠0*conj(io∠−θ ).
The average power is P=real(S); the reactive power is
Q=imag(S).

7. Find the reactive power as shown in screen 22.

½ imag(  vphasor  p ½ conj(  iphasor  d d

(22)

8. Calculation of the complex power for a load of
zz1 = 2-j3 Ω with a current iphasor1  = 20 A rms proceeds
as follows.

a.  First, enter the values of zz1 and iphasor1
(screen 23).

(23)
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b.  The voltage of the load is vphasor1 = iphasor1*zz1
and the complex power is
S1=vphasor1*conj(iphasor1) (screen 24).

c vphasor1  j p ½ conj(  iphasor1  d d
§ s1 2 Ë s1 ½ úRect

The calculation gives s1=800-j1200 VA.
(24)

Note :  To enter j = −1 , press

2 ).

Note : Two or more commands can
be entered on one line using the
colon (2 Ë) to separate them.

9. Calculation of the complex power associated with a
load given by zz2=3+j4 Ω with a voltage of
vphasor2=110 Vrms , applied across it proceeds as
follows.

a. Press 3 and change the Complex Format  mode to 
RECTANGULAR.

b. First enter zz2 and vphasor2  (screen 25).

(25)

c. The rms load current is vphasor2/zz2=iphasor2; the
complex power is S2 = vphasor2*conj(iphasor2).

Enter the complex power as shown in screen 26.

vphasor2  p ½ conj(  iphasor2  d § s2

The complex power is calculated as s2=1452+j1936
VA. The average power which does work or
produces heat in the 3 Ω resistive part of the load is
1452 W. The reactive power which represents the
rate of change of stored energy in the j4 Ω reactive
part of the load is 1936 VARs.

Note : setMode("Complex Format",
"Rectangular")  was used since the
rest of the examples are best
displayed in rectangular mode. This
can be set with 3 to minimize the
typing.

(26)

Topic 22:  Power Factor

Complex power S is supplied to a load. The real portion of the power, P, is available to do work or
produce heat; the imaginary portion of the power, Q, is unusable. The fraction of complex power
which is available to do work is given by the power factor

pf
al Power

Complex Power

P

S
= = =

Re
cosθ

For positive phase angles θ, the power factor is called leading; for negative phase angles, lagging.
Resistive loads have a unity power factor, that is, pf=1; reactive loads have a zero power factor.
The angle θ is the same angle as the impedance phase angle. Since Y=1/Z, the admittance phase
angle is the negative of the impedance phase angle and can be used to calculate the power factor
as well.

The complex power for the load zz1=2-j3 Ω in Topic 21 is s1=800-j1200 VARs.
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1. Find the power factor, pf1 (screen 27).

The power factor of pf1= 
2 13

13

⋅
is lagging since it is a

capacitive load, that is, the reactive component is
negative.

(27)

2. The complex power for the load zz2=3+j4 Ω in Topic 21
is s2=1452+j1936 VARs.

Screen 28 shows the power factor of pf2 = 3/5 is leading
for the inductive load.

(28)

Topic 23:  Power Factor Correction Using Impedances
Reduction of the reactive power improves the power factor which means that more of the power
generated by the electric utility can be sold. Therefore, rate incentives are offered for industrial
users to improve or “correct” their power factor. Most large users have a leading power due to the
inductive nature of motors. A leading power factor can be “corrected,” that is, brought closer to
unity, by adding capacitors in parallel. The capacitive susceptance, j2πfC, cancels part of the
inductive susceptance of the load, -jBL , and makes the angle θ smaller and the pf=cosθ closer to
unity. See Figure 2.

Figure 2.  Admittance triangle

The procedure for calculating the amount of parallel
capacitance needed to correct the power factor to unity for the
inductive load zz2=3+j4 Ω =5∠53.1° Ω (Topic 21) follows. This
load has pf2=cos(53.1°)=3/5=0.6 (Topic 22).

1. Convert the impedance to admittance, yy2=1/zz2= 3/25 -
j4/25 = 0.12-j0.16 S (top of screen 29).

2. The added parallel capacitive susceptance must cancel
the inductive susceptance so that j(0.16)=j2π(60)C
which gives C=424 µF (bottom of screen 29).

(29)

Note : Calculate the floating-point
result by pressing ¥ ‘.

Unity power factor is often prohibitively expensive to achieve so the rates are set to offer incentive
for partial correction.

Repeat the last example for the load zz2=3+j4 Ω but with a final power factor of pf=0.9 leading
The load conductance does not change with the addition of the parallel capacitor. To obtain the
specified power factor, the added capacitive susceptance must result in a leading pf=0.9=cosθ so
that tanθ=tan(cos-1(0.9))  = -0.484.

GL

-θ
j2πfC

-jBLYL
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With the addition of the parallel capacitor, the total susceptance of the load is given as
btot=imag(yy2)+2π60c.

The ratio of imag(s)/real(s) =( imag(yy2)+2π60c) /real(yy2)=tanθ=tan(cos-1(0.9)).

Find the desired value of capacitance as shown in screen 30.

½ solve(  c ½ imag(  yy2 d « 2 2 T 60c d e
½ real( yy2  d Á · 2 Y ¥ R 0.9 d d b c d

The result is C=270 µF, somewhat less than that needed for
unity power factor and therefore less expensive.

(30)

Topic 24:  Power Factor Correction Using Power Triangle

Alternatively, power factor calculations can be made in terms of complex power as well, but these
calculations require the voltage or current.

To recalculate the parallel capacitance needed to bring the power factor to 0.9 leading when the
complex power is S2=1452+j1936 VA, recall that P=real(S) and Q=imag(S) (top of screen 31).
Some negative reactive power is introduced by the added parallel capacitance
pf=0.9=P/S=P/(P+j(Q-QCAP)).

1. Enter this as shown in screen 31.

½ solve(  0.9 Á p2 e c ½ abs( p2 « 2 )
c q2 | qcap  d d d b qcap  d

The complete answer is qcap=2639.24 or qcap  = 1232.76

(31)

2. Enter the second solution to obtain
QCAP=1232.8=2π60 C|v|2=2π60C(|vphasor2|)2.

½ expúlist(  2 ± b qcap  d § cs

and

½ solve( cs  2 g 1 2 h Á 2 2 T 60c p
½ abs( vphasor2  d Z 2 b c d

Screen 32 shows this leads to c=270 µF, as before.

Note that the second solution cs[2]=2639.2 gives a
power factor of 0.9, but lagging. Since this requires a
capacitor twice as large, it is not an economical
solution.

(32)

Note : expúlist(ans(1),qcap)  § cs is
used to convert the results of the first
solve into a list which is stored in cs.
cs[1]  uses the first solution to solve
for c.
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Topic 25:  Y- ∆ and ∆-Y Transformations
Many circuits are simplified by transforming a circuit from a Y configuration to a ∆ or a ∆
configuration to a Y as shown in Figure 3. The transformation is particularly useful in simplifying
circuits for later series-parallel combinations.

Figure 3.  ∆ and Y Configurations

The transformations are expressed as

Z
Z Z

Z Z Z
Z

Z Z  Z Z  Z Z
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= + +

=
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= + +

Since there are multiple inputs and multiple results, functions
work well to make these transformations.

1. Press O 7:Program Editor 3:New  and define the two
functions, delta2y( ) and y2delta ( ), to implement these
equations (screens 33 and 34).

(33)

(34)

2. Return to the Home screen, and use the delta2y( )
function to calculate the Y-configuration elements for a
delta-configured circuit with zaΩ =3+j, zb=5+j5Ω, and
zc=2-j4Ω as shown in the middle of screen 35.

delta2y  c 2 [ 3. « 2 ) b 5 « 2 ) 5 b 2 | 2
) 4 2 \ d

The delta2y( ) function gives the results z1=2.69-j1.54Ω,
z2=0.77-j1.15Ω, and z3=1.35+j1.73Ω (middle of
screen 35).

3. The inverse transformation, y2delta( ) , returns the
original impedance values (bottom of screen 35).

(35)
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Topic 26:  Unbalanced Three-Phase Systems

Solving balanced three-phase Y-systems is quite simple. Since all phases have the same sources
and loads, their voltages and currents differ from each other only by 120°. The solution for a single
phase is just shifted by ±120° to get the solutions for the other phases. Although the solutions are
more complicated for unbalanced three-phase Y-systems, they are easy with the TI-89’s matrix
operations.

Figure 4.  Unbalanced, three-phase circuit

The three-phase system of Figure 4 has a short-circuit across one phase. The currents can be
calculated by using Kirchhoff’s voltage law to write three mesh equations for the circuit.

i1(5.6 + j5.8) - i2(0.3 + j0.4) - i3(5.0 + j5.0) = 220 - (220∠M120)

-i1(0.3 + j0.4) + i2(5.6 + j5.8) - i3(5.0 + j5.0) = (220∠120) + (220∠M120)

-i1(5 + j5) - i2(5 + j5) + i3(10 + j10) = 0

In matrix form, the equations are

5 6  5 8  3  4  5  5

3  4  5 6  5 8  5  5

5 5  5 5  10 10

1

2

3

220 220 120

220 120 220 120

0

. . . .

. .  . .

( )

( ) ( )

+ − − − −
− −  +  − −
− −  − −  +

L

N
M
M
M

O

Q
P
P
P

L

N
M
M
M

O

Q
P
P
P

=
− ∠

∠ + ∠
L

N
M
M
M

O

Q
P
P
P

−

−

j j j

j j j

j j j

i

i

i

1. Press 3. Then set Angle  mode to DEGREE and
Complex Format  mode to POLAR.

2. Create a new matrix variable. Press O 6:Data/Matrix
Editor 3:Ne w.  Select 2:Matrix  for Type, name the variable
unsymnet , and set the row and column dimensions to 3
(screen 36). Press ¸ to display the matrix. (36)
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3. Enter the elements from the matrix equation above.
Note that you can enter the values in rectangular form.
They will automatically be displayed in polar form
(screen 37). For j, press 2 ).

(37)

Note : Press ¥ Í and set the
column width to 6 to get the display
above.

4. To enter the 3x1 source matrix on the right hand side of
the equation, create a new matrix by pressing ƒ 3:New
(screen 38). Select 2:Matrix  as the type, name the
variable source , and set the row dimension to 3 and
column dimension to 1. Press ¸.

(38)

5. Enter the values from the right hand side of the matrix
equation in the same manner (screen 39).

(39)

Note : When the first element of a
complex number is preceded by a
minus sign it must be entered with
·. A minus sign on a following
element is entered as |.

6. Once the matrices are entered, matrix math is all that’s
needed to find the solution for the current matrix, ii.
Return to the Home screen, and enter this as shown in
screen 40.

unsymnet  Z c · 1 d p source  § ii
(40)

7. The load voltage across the short circuit is zero. The
load voltage across the zac is vac=(i1-i3)(5+j5)
(screen 41).

(41)

8. The load voltage across zbc is vbc=(i2-i3)(5+j5). Enter
the expressions as shown in screen 42. As expected, the
two non-zero voltages are the same magnitude, but 180°
out of phase.

(42)
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Tips and Generalizations

There are many shortcuts for entering functions. Check under the „, …, and † menus while in
the Program Editor. For example, Local  can be entered by pressing † 3:Local .

The string phase  is entered often in the examples in this chapter. To save typing, enter it once and
just after pressing e, press and hold ¤ while pressing A five times (once for each letter in phase).

Finally, release the ¤ key and press ¥ 6. This will save a copy of the highlighted letters so that
they can be quickly entered by pressing ¥ 7.

The TI-89 can easily handle Greek symbols such as α and ω. However, they take four keystrokes
each to enter (¥ c j a and ¥ c j w). If convenience is important, simply use the English
equivalents (a, w) which take only two keystrokes (j a or j w) or fewer if ™ is already
set.

The concept of building a simple function to do repetitive tasks was introduced. Don’t
underestimate the power of this method. For example, the whole power factor correction example
could be written as a function that takes various circuit parameters as an input and returns the
capacitor value needed to correct the power factor. Think of the time savings!

Another analysis technique involves the Laplace transform and the s-domain. Chapter 6 shows how
the symbolic capabilities of the TI-89 make it the ideal tool for dealing with all of those s’s.
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. 

Laplace Analysis:
The s-domain

This chapter demonstrates the utility of symbolic algebra by
using the Laplace transform to solve a second-order circuit.
The method requires that the circuit be converted from the
time-domain to the s-domain and then solved for V(s). The
voltage, v(t), of a sourceless, parallel, RLC circuit with initial
conditions is found through the Laplace transform method.
Then the solution, v(t), is graphed.

This chapter also shows how to find and plot the poles and
zeros of a circuit’s transfer function H(s) to gain insight to
the frequency response.

Topic 27:  RLC Circuit

Given the circuit shown in Figure 1, find v(t) for t>0 when v(0)=4 V and i(0)=1 A.

Figure 1. Simple parallel RLC circuit

Convert the components to their s-domain equivalents. Remember, the time-domain components
map to their s-domain counterparts as shown in Figure 2.

Figure 2. Time-domain to s-domain mappings

C h a p t e r  6

Features Used
%, solve ( ), expand ( ), 
getDenom ( ), zeros( ), 
NewProb ,  #, getNum ( ), 
factor( ) , Í, 3D graph, abs ( ), 
$, cFactor( ), 
NewData, cZeros ( ), real( ), 
imag( )

Setup
¥1, NewFold laplace
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Note that the initial voltage and current transform into equivalent sources in the s-domain. The
circuit in the s-domain is shown in Figure 3.

Figure 3. s-domain equivalent of the circuit in Figure 1

Using Kirchhoff's current law to sum the currents out of the
top node, the equation is

v v

s

v

s
s

n
4 3 24

4

24

1
1+ + = − →

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter the equation above (screen 1).

v e 4 « v e c 3s d « v e c 24 e s d Á 4 e 24 | 1
e s § n1

(1)

3. The s-domain voltage is found with solve (n1,v) as shown
in screen 2.

½ solve( n1 b v d § eqn

(2)

4. Enter expand (eqn) to put eqn in a form for easy
calculation of the inverse Laplace transform via a table
lookup (screen 3).

This must be an overdamped circuit since there are two
real poles. The answer should contain two decaying
exponents. From a Laplace transform table, the
solution is

v t( ) 20e  16e4 t  2 t= −− −  t≥0

This answer is in the expected mathematical form. How
does v(t) appear as a function of time?

(3)
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5. To obtain a graph, press ¥ # and enter the expression
for v(t) as shown in screen 4. Note that x is substituted
for t using the “with” operator, Í, since the Y= Editor
requires equations to be expressed as functions of x.

20 p ¥ s · 4t d | 16 p ¥ s · 2t d Í t Á x

Note:   x is substituted for t using the
with operator, Í, since the Y= Editor
requires equations to be expressed
as functions of x.

(4)

6. Now press „ 6:ZoomStd  to see the graph (screen 5).

(5)

It appears to be a typical overdamped response!

7. To zoom in for a closer look, press ¥ $ and set
the range of x to be 0 to 4 (screen 6).

(6)

8. Now, press ¥ % to see the graph of v(t) as shown
in screen 7.

(7)

9. Press ƒ 9:Format  and specify ON for Grid  and Labels
(screens 8 and 9).

(8)

(9)
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Topic 28:  Critical Damping

Given the circuit of Topic 27, change the value of the resistor so that the circuit will be critically
damped.

Assign the resistor value as r (see Figure 4) and let the TI-89 compute the node voltage v(s) in
terms of r.

Figure 4. Circuit of Figure 3 with the 4 Ω resistor changed to r

The nodal equation in the s-domain is

v

r

v

s

v

s
s

n+ + = − →
3 24

4

24

1
1

1. Return to the Home screen, and enter this as shown in
screen 10.

v e r « v e c 3s d « v e c 24 e s d Á 4 e 24 | 1
e s § n1

(10)

2. Solve for the node voltage with solve (n1,v) ! eqn
(screen 11).

(11)

3. For critical damping, the time constants of the two
exponentials of v(s) must be real and equal. To
determine this condition, the two roots of the
denominator of v(s) are found and set equal, and the
resulting equation is solved for the required value of r.
Get the denominator with getDenom( ) as shown in
screen 12.

½ getDenom( v  Í eqn d § eqn2

(12)

4. Solve for values of s which are the roots of the
denominator using the zeros( )  command as shown in
screen 13.

½ zeros(  eqn2 b s d § z

(13)
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5. Set the two roots equal to each other and solve for r as
shown in screen 14.

½ solve( z  2 g 1 2 h Á z 2 g 2 2 h b r
d

Since negative resistances are not physically possible,
the answer must be r = 3 2.

(14)

6. To get the floating point approximation, press ¥ ‘ as
shown in screen 15.

So r = 4.2 will give critical damping.

(15)

Topic 29:  Poles and Zeros in the Complex Plane

Given that

H s
s s s s

s s s s
( ) = + + + +

+ + +

4 3 2

4 3 2

14 74 200 400

10 49 100

find and plot the poles and zeros.

1. Enter h(s) as shown in screen 16.

c s Z 4 « 14s Z 3 « 74s Z 2 « 200s « 400 d e c s
Z 4 « 10s Z 3 « 49s Z 2 « 100s d § h

(16)

2. A quick way to see the poles and zeros is to factor h(s)
as shown in screen 17.

½ factor( h d

Note : To enter factor( ,  press „
2:factor( .

(17)

3. However, since factor( ) doesn’t give complex factors,
use cFactor( )  to get more information about h(s) (screen
18).

½ cFactor( h b s d

Press C B to see the rest of the terms of h(s). The
complete answer is

( )( )( )( )
( )

s i s i s i s i

s s  s  i s  i

− − + − − +  + +  + +
+ − − + + +

2 3  1 3  1 3  2 3

4 3 4 3 4

( ) ( )  ) ( )

( ) ( ) (  )

(18)
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4. getNum ( ) and getDenom( )  (screen 19) give the numerator
and denominator, respectively.

½ getNum( h  d § num

½ getDenom( h  d § denom

The TI-89 automatically expands these terms, so
cFactor( )  must be used again if you want to see the
factors.

Note : To enter getNum( )  and
getDenom( )  press „ B:Extract , then
1:getNum(  or 2:getDenom( .

(19)

5. Once the numerator and denominator are separated,
the zeros and poles are found by using the cZeros( )
command (screens 20 and 21).

½ cZeros( num  b s d § zero

½ cZeros( denom  b s d § pole
(20)

(21)

Plotting the poles and zeros takes a few steps.

a. Store the two lists in a data object called pz (screen 22).

(22)

b. pz can’t be displayed in the Home screen, but it can be
edited by pressing O 6:Data/Matrix Editor 2:Open
(screen 23).

(23)

c. The first column lists the poles; the second column lists
the zeros. To help remember this, add labels to each of
the columns by pressing C C and typing poles  ¸
followed by B C and typing zeros  ¸ (screen 24).

(24)
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The real part of each pole (or zero) provides the
x-component and the imaginary part, the y-component
in the complex plane.

d. To separate the poles into their real and imaginary
parts, first press B and type real(c1)  ¸. This makes
column c3 the real part of column c1.

e. Then press B C imag(c1)  ¸ to make column c4 the
imaginary part of c1 (screen 25).

(25)

Note :  Press ¥ Í and select a cell
width of 5 to see four columns.

f. Repeat this process for the zeros making column c5 the
real part of c2 (B C real(c2)  ¸) and column c6 the
imaginary part of c2 (B C imag(c2)  ¸). Note that the
screen scrolls to reveal c5 and c6 (screen 26).

(26)

g. To plot the data, press „ ƒ and fill in the required
data as shown in screen 27. Press ¸.

This will plot the real part of the poles (c3) versus the
imaginary part of the poles (c4) as a cross.

(27)

h. Press  D ƒ to set Plot 2  to plot the zeros with boxes
(screen 28). Press ¸.

(28)

i. Press ¥ $ to set the plot ranges
(screen 29). Turn OFF Grid  and Labels  with ¥ 1. Turn off
the previous graph with ¥ Í.

(29)

j. Finally, press ¥ % to see the poles and zeros
graphed in the complex plane (screen 30). This
representation is usually called the pole/zero
constellation.

(30)
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Topic 30:  Frequency Response

The frequency response that corresponds to the pole/zero constellation in Topic 29 is graphed by
noting that

H j  H s
s j

( ) ( )ω ω= =

1. To do this, press " and enter the equation as shown
in screen 31.

½ abs( h d Í s Á 2 ) w § eqn

(31)

2. Enter eqn as the function y1(x) (screen 32).

eqn Í w Á x §  y1 c x d

(32)

3. Press ¥ # to verify this. Be sure to deselect plots 1
and 2 in the Y= Editor using † (screen 33).

(33)

4. Press ¥ $ to set the correct graphing parameters
in the Window Editor (screen 34).

(34)

5. Press ¥ % to display the graph of frequency
response (screen 35).

Notice that the effects of the pole farthest from the axis
can be seen as slight rises near the left and right sides
of the graph. The zeros are causing the dips around
x=±3, and the pole at the origin is causing the large peak
in the middle.

(35)
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Topic 31:  3D Poles and Zeros

A different perspective of H(s) is gained from a 3D graph where
the z-axis represents the magnitude of H(s).

1. To do so, press 3 B and select 5:3D (screen 36).
Press ¸.

(36)

2. Press ¥ # and enter the function to be graphed
(screen 37).

½ abs(  h Í s Á x « 2 ) p y d

(37)

3. Press ¥ $ and set the x, y, and z scales
(screen 38). Note that these are the default values,
except zmin  has been set to 0.

(38)

4. Finally, press ¥ % (screen 39). It will take a few
minutes for the graph to display. Once the graph is
complete, press ¥ Í and select AXES and turn ON the
Labels .

(39)

5. The three poles are clearly visible. Things to try:

Press Ù, Ú, or Û to look down the corresponding axis.

Use the cursor controls (A B C D) to spin the graph.

Press µ to return to the original view.

6. Press ¥ Í and change the Style  to HIDDEN SURFACE
(screens 40 and 41).

(40)

(41)
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7. Press ¥ Í and change the Style  to WIRE AND CONTOUR
to see contours highlighted on the graph (screen 42).
This will take a few minutes to recalculate.

(42)

8. Press Û while in WIRE AND CONTOUR mode to view the
contours from above (screen 43). Press µ to return to
the original view.

(43)

9. Press ¥ $, set xgrid  and ygrid  to larger values
(25 in this case), and press ¥ % to get a smoother
graph (screen 44). This also takes a few minutes to
recalculate.

(44)

10. To zoom in (screen 45), press the p key (the
multiplication key, not the letter x).

(45)

Tips and Generalizations

The TI-89’s symbolic math capability makes it a good choice for manipulating equations in the
s-domain. The key step to plotting on the s-plane (real vs. imaginary) is to use the “with” operator
(Í) to replace s with x + ) y. Although plotting |H(s)| is most common, the TI-89 can just as easily
plot the angle of H(s) by entering

angle( h  c s  d Í s Á x « ) y d.

Although these examples solved for a single node problem with only one equation, v(s), more
complex circuits with more nodes (and therefore more equations) also can be solved.

The TI-89 assisted the conversion from the s-domain to the time-domain by doing the partial
fraction expansion. Chapter 7 shows how to find a system’s response by staying in the
time-domain and using convolution.
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Convolution This chapter shows the convolution of two functions. To
simplify the details, the functions are finite, piecewise, and
continuous.

Topic 32:  The Convolution Integral

Given a linear, time-invariant system with an impulse response of

h(t) = 2e
−t
2  for t>0

h(t) = 0 for t < 0

find the output y(t) for the input function x(t) = 1 for 1<t<3 and zero elsewhere. y(t) is found by
solving the convolution integral

y t  h  x t  d( )  ( ) (  )= −
−∞

∞

∫ α α α

Topic 33:  Piecewise Convolution

Both x(t) and h(t) are piecewise, continuous functions. That is, they are continuous everywhere
within sub-ranges and discontinuous only at the boundaries between subranges. As such, they can
be entered using the when  function.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter the piecewise function for x1(t) as shown in
screen 1.

½ when(  1 2 Â t ½ and t 2 Â 3 b 1 b 0
d § x1 c t d

The when  function says x1(t) has the value 1 for 1<t<3
and the value 0 for all other values of t. x1(t) is used
instead of x since the TI-89 uses x when graphing.

(1)

C h a p t e r  7

Features Used

<, when( ), NewProb,
±

Setup

¥1
NewFold conv
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3. Enter the piecewise function for h(t) as shown in
screen 2.

½ when(  t 2 Ã 0 b 2 ¥ s · 1 e 2 t d b 0 d
§ h c t d

(2)

To be sure the functions are entered correctly, graph them.
This book follows the standard electrical engineering
convention of writing these as functions of time, t. The TI-89,
however, displays graphs as functions of x.

4. Enter h(t) and x1(t) in the Y= Editor as functions of x as
shown in screen 3. (3)

5. Set the plot ranges in the Window Editor as shown in
screen 4.

6. Press ¥ Í and set Grid  to ON.

(4)

7. Press ¥ % to graph the functions (screen 5).

(5)

If you enter the convolution integral from Topic 32, an error
message is displayed as in screen 6. Therefore, the piecewise
integral must be divided into sub-ranges “by hand.”

(6)

Note : To enter the integral press 2
<. To enter α press ¥ c ja.
(Save keystrokes by entering “a”
instead of “α.”)

1. First, graph x(t-α) versus α.

To do this, pick a value for t, such as t=0, and enter it
on the Home screen (screen 7).

(7)
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2. Then define the functions in the Y= Editor as shown in
screen 8. Notice that y2(x) is deselected (use †) and y1(x)
and y3(x) are selected.

(8)

3. Press ¥ %.

y3(x) graphs a version of x1(t) that is “flipped” about the
y-axis. The graph for t=0 is shown in screen 9. x1(t) is
flipped so that its edges are at -3 and -1. For each value
of t>0 x1(t) is positioned further to the right.

(9)

4. Return to the Home screen and set t =0.5. Press ¥
% to see the result (screen 10). Notice that for
t=0.5, x1(t) is closer to h(t).

(10)

5. Continue to consider the convolution integral for
various ranges of t. The following ranges are chosen so
that the integrals are easy to define.

Try a value of t�1. From screen 10, the product of
x1(t-α)h(α) is 0 since there are no values of t where both
functions are non-zero. Therefore, y(t) = 0 for t�1.

6. Use a value of t such that 1< t <3. Set t to 1.5, and graph
the functions (screen 11).

(11)
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For these values of t, the product of x1(t-α)h(α) is non-zero over a range where there is some
overlap between the two functions. The convolution integral is now

y t  h  x t  d

e d
t

( )  ( ) (  )

( )

= −

=

−∞

∞

−
−

∫

∫

α α α

α
α

2 12

0

1

7. On the Home screen, use DelVar  to delete the variable t
before doing the integral since it was previously set to
1.5. Then enter the integral as shown in screen 12.

2 < 2 ¥ s · 1 e 2 p ¥ c j a d p 1 b ¥ c
j a b 0 b t | 1 d

(12)

8. Once the integral is calculated, store the result in y4(x)
as shown in screen 13 so that it can be graphed in
Topic 34.

2 ± § y4 c x d

(13)

Therefore, y(t) has the value shown in screen 12 for a
range of values of t. The graphs show that the overlap
starts when the tì1 edge of x1(t) passed t=0. Therefore,
when tì1>0, or when t>1, this form of y(t) is valid.
However, when the tì3 edge of x1(t) passes t=0, the
integral takes on a different form. This form of y(t) is
valid when tì3<0, or t<3.  Therefore, this graph is valid
for 1<t<3.

9. Now use the range t >3. In this range, x1(t) lies
completely within h(t).

Set t = 3.5 on the Home screen. Then graph y1(x) and
y3(x) as shown in screen 14.

(14)

For this range, the integral is

y t  h  x t  d

e d
t

t

( )  ( ) (  )

( )

= −

=

−∞

∞

−

−

−

∫

∫

α α α

α
α

2 12

3

1

which is like the previous integral except the lower limit is changed.
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10. On the Home screen, use DelVar  to delete t and then
enter the integral as shown in screen 15.

2 < 2 ¥ s · 1 e 2 p ¥ c j a d p 1 b ¥ c
j a b t | 3 b t | 1 d

11. Store the results in the variable y5(x) as shown in
screen 16 for plotting in Topic 34.

This is valid for tì3>0, or t >3.

(15)

(16)

Topic 34:  Graphing Piecewise Convolution Results

The output y(t) is given in three different pieces.

y(t) = 0 for t ≤ 1

y(t) = 4e Nt/2(et/2– e1/2) for 1 < t < 3

y(t) = 4(e–1) e1/2Nt/2 for t > 3

1. Combine these using the when( )  function as shown in
screen 17.

½ when(  t 2 Â Á 1 b 0 b ½ when(  1 2
Â t  ½ and t 2 Â 3 b y4 c x d b y5 c x d d
d § yy

(17)

2. In preparation for graphing yy, change all the t’s in yy to
x’s and save yy in y6(x) as in screen 18.

(18)

3. Press ¥ #. Use † to deselect y1(x), y3(x), y4(x), and
y5(x) and select y2(x) and y6(x) (screen 19).

(19)
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4. In the Window Editor, change the plot range on x so
that xmin  is 0 and xmax  is 6 as shown in screen 20.

(20)

5. Press ¥ % to see a graph of the convolution
integral as shown in screen 21.

The effects of the system on the input pulse x1(t) are clearly
seen in screen 21. The input pulse is amplified and “smeared”
or broadened as it passes through the system.

(21)

Tips and Generalizations

The when( )  function is a powerful feature of the TI-89 that allows piecewise functions to be
manipulated easily. Here, the three pieces of the solution to a piecewise convolution were
combined into a single function (yy), allowing it to be graphed as if it were a single continuous
function. The when( )  function can be used anytime a piecewise function is needed.

Sometimes a new function is built by defining pieces over different time intervals. Other times it is
better to define a function by adding sinusoids of different frequencies. In Chapter 8, the TI-89 will
be used to find the Fourier series coefficients of a signal and reconstruct that signal from some of
the coefficients.
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Fourier Series This chapter shows how to compute and graph the complex
Fourier Series coefficients for a square wave.

Topic 35:  Square Wave: Computing the Coefficients

The TI-89 can easily sum the Fourier Series

x t  c ek
j kf t

k

o( ) = −

=−∞

∞

∑ 2n

and evaluate the complex Fourier coefficients defined by the integral

c
T

x t ek
T

T

j kf t= z
−

−1

0

2

2
2

0

0

0( ) n  where f
T0

0

1
=

Suppose x(t) is a square wave as shown in Figure 1.

T0

2

a

T

2
t− T

2

Figure 1.  Periodic pulse train

For this example, the complex coefficient becomes

c
T

ae dtk
T

T

j kf t= z
−

−1

0

2

2
2 0n

C h a p t e r  8

Features Used

<, Í, limit ( ), ∑, #,
NewProb, DelVar, 
$, %, 
±

Setup

¥1
NewFold fourier
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1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Three variable substitutions are needed before entering
the expression for the complex coefficient. T0 is entered
as t00 (t0 is reserved), T is entered as tt (t and T are the
same on the TI-89), and j is ) which is entered as
2 ). Before entering the equation, any previous
values of the variables used must be deleted as shown
in screen 1.

½ DelVar t00  b tt  b f0

(1)

3. Enter the integral (screen 2).

1 e t00 2 < a ¥ s · 2 ) 2 2 T k p f0 p t d
b t b · tt e 2 b tt e 2 d § tmp

(2)

Note :  If a Domain Error message
appears, try switching to radian
angle mode by pressing 3 and
selecting RADIAN.

4. Next plot the coefficients. To do this, pick  values for a,
f0 (which sets t00 also), and tt. Try the values shown in
screen 3.

(3)

5. In this example, a is set to 1 and f0 to 1000 Hz. With tt set
to t00/2, the duty cycle is ½ so the square wave will be
“on” half the time. Display the value of tmp  (top of
screen 4).

6. Now save the formula for the coefficient in a function
called c(k) as shown in screen 4.

2 ± § c c k d

Using the answer from the integral ensures that the
value stored in c(k) is the result of the integral, not the
integral itself. If the integral is saved, it is reevaluated
every time a coefficient is computed. With c(k) stored
as a function, the integral is evaluated once and the
resulting formula is used each time a coefficient value
is needed.

(4)
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7. Check a few data points as shown in screen 5.

(5)

8. All the coefficients look fine except for k=0. The
equation for c(k) shows that for k=0 the result is 0/0.
The correct value can be found by using limit( )
(screen 6).

½ limit( c  c k d b k b 0 d

The correct value of c(k) for k=0 is ½. This makes sense
since the square wave is turned on half the time with an
average value of ½.

(6)

9. Use the when( )  function to define c(k) so that the k=0
case is calculated correctly (screen 7).

½ when( k  Á 0 b 1 e 2 b c c k d d § cc c k
d

The value of c(k) valid for all k is stored in cc(k). Now
the coefficients can be plotted.

(7)

10. Set the Graph  mode to SEQUENCE (3 B 4:SEQUENCE
¸), press ¥ #, and enter cc(n) as the sequence to
be plotted, as shown in screen 8. Note that the sequence
plot mode uses the variable n.

(8)

11. Press ¥ $ to set the plot range as shown in
screen 9.

Note :  nmin  must be greater than or
equal to 0.

(9)

12. Press ¥ % to see the results as shown in screen 10.

The graph also could be done in Function  graphing
mode. Sequence  graphing mode is chosen to emphasize
that the coefficients only appear at integer values.

(10)
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Topic 36:  Square Wave: Constructing the Wave from the Coefficients

The original signal can be rebuilt from the coefficients by using

x t  c ek
k

j kf t

( ) =
=−∞

∞ −

∑
2 0π

1. To do this, return to the Home screen and enter the
expression as shown in screen 11.

½ G( cc c k d ¥ s 2 ) 2 2 T k p f0 p t
d b k b · 3 b 3 d

Notice that the TI-89 applied Euler’s Identity to terms of
the form eiθ+ eNiθ to get 2cos(θ).

(11)

The complete output is

− + +2 6000

3

2 2000
1 2

cos( ) cos( )
/

π
π

π
π

t t

2. Save the result as y1(x), screen 12.

2 ± Í t Á x § y1 c x d (12)

3. Switch the Graph  mode to FUNCTION by pressing 3
B 1:FUNCTION ¸. Then press ¥ # to verify that
the equation is entered in the Y= Editor (screen 13).

(13)

4. Press ¥ $ and set the plot range as shown in
screen 14.

(14)

5. Press ¥ % to see the graph of x(t) as shown in
screen 15.

It’s not quite a square wave, but it’s not too bad for
using only 5 non-zero coefficients. Recall that c(-3),
c(-1), c(0), c(1) and c(3) are non-zero; c(-2)=c(2)=0.

(15)

6. To get a more accurate representation, include more
coefficients of the series. On the Home screen, change
the summation range to -5 to 5 as shown in screen 16.

½ G( cc c k d ¥ s 2 ) 2 2 T k p f0 p t
d b k b · 5 b 5 d

(16)
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The output for the 5-term series is

2 10000

5

2 6000

3
2 2000

1 2

cos( ) cos( )

cos( )
/ .

π
π

π
π

π
π

t t

t

−

+ +

7. Save the result in y2(x) as shown in screen 17.

2 ± Í t Á x § y2 c x d

(17)

8. Press ¥ %. Screen 18 compares the resulting graph
of the sum for k=.5 to 5 with the original graph for the
sum of k=.3 to 3. The new result more closely
represents a square wave because the sum more closely
represents a square wave as the number of terms
increases. With an infinite number of terms, the sum
exactly represents the square wave.

(18)

Tips and Generalizations

The TI-89 can easily find the Fourier Series coefficients in closed form for many periodic signals.
In this chapter, c(k) could be expressed as a simple equation. More complex signals may not have a
closed form solution. In these cases, use numeric integration (nInt) to find each of the coefficients.

Chapter 9 adds a new dimension by showing how the TI-89 can manipulate vectors.
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Vectors This chapter describes how to use the TI-89 for coordinate
system transformations, vector algebra, and vector
component transformations. The functions rec2cyl( ),
cyl2rec( ),  rec2sph( ),  and sph2rec( )  are created in this chapter
for vector component transformations and are used in
Chapters 10 and 11.

Topic 37:  Coordinate Systems and Coordinate Transformations
Points in 3-D space can be entered in rectangular, cylindrical, and spherical coordinate systems.
The TI-89 does this with position vectors, which are vectors that point from the origin to the
coordinates of the point in space. On the TI-89, each position vector is represented by the
coordinates of its endpoint—(x,y,z) in rectangular, (r,θ,z) in cylindrical, or (ρ,φ,θ) in spherical
coordinates.

The TI-89 notation differs in two ways from the standard form of (ρ,φ,z) for cylindrical and (r,θ,φ)
for spherical coordinates used in most electrical engineering texts. The coordinates are related as

ρSTD=rTI, rSTD=ρTI, φSTD=θTI, and θSTD=φTI. This difference in angle notation appears to interchange the

angles. The two vector forms are related as [ρSTD,∠φSTD,z]STD=[rTI,∠θTI,z]TI for cylindrical coordinates

and [rSTD,∠θSTD,∠φSTD]STD=[ρTI,∠φTI ,∠θTI]TI for spherical coordinates. Check the Guidebook to be sure
of the definition of these variables. The coordinate transformations of this section use the TI-89
form.

      Figure 1a.  Cylindrical coordinates Figure 1b.  Spherical coordinates

C h a p t e r  9

Features Used

’, 3, úRect, 
Cylind, úSphere, unitV ( ), 
dotP( ), crossP ( ), norm ( ), 
Func, ¤, D, 6, 
7, NewProb, ‘

Setup

¥1, NewFold emag
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The TI-89 defines vectors as either a 1x3 row matrix or a 3x1 column matrix. The vector entry

mode is determined solely by the format of the vector elements and establishes the coordinate
system in which the vector is interpreted, but not necessarily displayed.

¦ For rectangular coordinates, the vector is entered as three scalar expressions, for example,
[1,cos(x+√y),-2.9],

¦ For cylindrical coordinates, the second entry is entered as an angle with a preceding ∠
(2 ’ ), for example, [z^3,∠25,sin(y*z)],

¦ For spherical coordinates, the second and third entries are entered as angles, for example,
[1,∠π/4,∠(θ-3)].

Regardless of the entry mode, vectors are displayed according to the Vector Format  mode—
rectangular, cylindrical, or spherical.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.
Press 3 to verify that Vector Format  is set to
RECTANGULAR  (screen 1).

(1)

2. On the Home screen, enter the rectangular position
vector [1,1,1] as shown in the top of screen 2. Enter the
cylindrical position vector [1,∠π/4,1]. Enter the
spherical position vector [1,∠π/4, ∠π/6].

Note that the forms are all displayed in the
RECTANGULAR  format regardless of the entry mode. (2)

3. The TI-89 has three commands that change the display
format of these coordinates from one coordinate
system to another for the current entry only. The
rectangular-to-standard cylindrical coordinate
transformation is based upon

ρ ρ φ

φ ρ φ

= + =

= 





=

=

−

x y x

y

x
y

z z

2 2

1

cos

tan sin

Use ú Cylind  to display [1,1,1] in cylindrical components
as shown in the top of screen 3.

2 g 1 b 1 b 1 2 h ½ � Cylind

(3)
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4. The rectangular-to-standard spherical coordinate
transformation is based upon

r x y z x r

z

r
y r

y

x
z r

= + + =

= 





=

= 





=

−

−

2 2 2

1

1

sin cos

cos sin sin

tan cos

θ φ

θ θ φ

φ θ

Use ú Sphere  to display [1,1,1] in spherical coordinates
as shown in the bottom of screen 3.

2 g 1 b 1 b 1 2 h ½ � Sphere

5. To convert back to original rectangular form, use ans(1)
to get the previous answer, and then enter ú Rect as
shown in screen 4.

2 ± ½ � Rect

6. Set the Vector Format  mode to CYLINDRICAL .

3 D D D D D D B 2:CYLINDRICAL  ¸
(4)

7.  Enter [1, 1, 1] which is now displayed in cylindrical
format in screen 5.

(5)

8. Try this for SPHERICAL Vector Format  mode also as
shown in screen 6.

(6)

Topic 38:  Vector Components

In the common notation, vectors are given as v=A1a1+A2a2+A3a3 where all vectors are noted by
bold  symbols, such as v, and unit vectors in the ith direction as ai.

On the TI-89, the magnitudes of the components, A1, A2, and A3, for v are entered as a vector.  A
vector, v, can be represented in any orthogonal coordinate system as long as the unit vectors, a1, a2,
and a3 form a right-hand coordinate system.

A right-hand coordinate system is one for which the first vector crossed into the second gives the
third, the second crossed into the third gives the first, and the third crossed into the first gives the
second. Mathematically this is written as a1×a2=a3, a2×a3=a1, and a3×a1=a2. The proper right-hand
orders for the standard coordinate systems are (aX, aY, aZ), (aρ, aφ, aZ), and (ar, aθ, aφ).
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For operations on vector components, it is best to use the rectangular vector entry and display
modes.

1. Set the Vector Format  mode to RECTANGULAR.

2. Enter v1=-4ax+3ay+0az  as shown in screen 7.

2 g · 4 b 3 b 0 2 h §  v1

Although v1 was given in rectangular coordinates, this
could represent the cylindrical vector
v1=N4aρ+3aφ+0aZ or the spherical vector v1=N4ar+3aθ+0aφ

equally well.
(7)

Note :  The convention in this book is
to save the unit vector of vn as avn.

3. Use norm( )  to find the magnitude of v1.

½ norm( v1 d

4. Use unitV( )  to find the unit vector in the direction of v1.

½ unitV( v1 d § av1

Topic 39: Angle between Vectors

Calculate the angle between v1 from Topic 38 and a second
vector v2, which extends from (2,-5,4) to (1,1,3).

1. Enter the two endpoints in rectangular coordinates
using position vectors of [2,-5,4]! v2a and [1,1,3]! v2b,
respectively, as shown in screen 8.

(8)

2. v2 is the difference between the two position vectors,
see Figure 2. Enter v2bNv2a! v2 as shown in screen 9.

(9)

V v v� �% �$
 �

V  V

=

<

;

�$ �%

a

a

a
Figure 2.  Vector addition
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3. Use unitV( )  to find the unit vector in the direction of v2.

½ unitV( v2 d § av2

4. Set Angle  mode to DEGREE using 3.

5. The angle between two vectors is given by the arccosine
of the dot product of their unit vectors, that is,
cos -1(dotP(av1,av2))! angv1v2.   This is entered as shown
in screen 10.

¥ R ½ dotP( av1  b av2 d d § angv1v2
(10)

6. Use ¥ ‘ to get a floating point value of about 45o

(screen 11).

(11)

Topic 40:  Parallel and Perpendicular Vectors

Other common vector operations are to find the vector components of v1 that are parallel and
perpendicular to v2.

Every vector can be decomposed into two orthogonal vector components so that v1 is the vector
sum of two components, one parallel and one perpendicular, v1par  and v1perp  as in Figure 3.

V�
V�3$5

V�3(53

V�

Figure 3.  Parallel and perpendicular components

1. The magnitude of the component of v1 that is parallel to
v2 is the dot product of v1 and av2 as shown in screen
12.

½ dotP(  v1 b av2 d § v1parmag

2. The parallel component is the magnitude multiplied by
the unit vector av2  (screen 12).

v1parmag  p av2 § v1par

(12)
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3. Find v1perp  as v1-v1par! v1perp  as shown in screen 13.

(13)

4. An alternate method of finding v1perp  begins by
calculating the vector perpendicular to the plane
containing v1 and v2 using the crossP( )  command as
shown in screen 14.

½ crossP( v1  b v2 d § v3

5. The cross product crossP(v3 ,v2)!v4 is perpendicular to
v2 and so is in the direction of v1perp . Therefore, the dot
product dotP(v1 ,av4) gives the magnitude of the
perpendicular component of v1. The vector form of the
component of v1 perpendicular to v2 is calculated by
unitV(crossP(v2 ,v3)) as shown in screen 14.

½ unitV( ½ crossP( v2  b v3 d d § aperp

(14)

6. Calculate the dot product of dotP(v1 ,aperp) aperp .

½ dotP(v1  b aperp  d p aperp  §  v1perp

Screen 15 shows this result agrees with the earlier
calculation of v1perp  in screen 13.

(15)

Topic 41:  Rectangular to Cylindrical Vector Transformation

Vector components in one system are transformed to another according to the geometrical
relationships between the two systems.

Figure 4.  Rectangular and cylindrical components of a vector



CHAPTER 9:  VECTORS 89

©1999 TEXAS INSTRUMENTS INCORPORATED

The general procedure for transforming any vector is to find its components in the other system
using the dot product as Ei = E•ai. The rectangular to standard cylindrical transformation of vector
components is based on

E E  E

E E  E

E E

X Y

X Y

Z Z

ρ

φ

φ φ

φ φ

= +

= −  +

=

cos sin

sin cos

These equations are given in matrix form as

E

E

E

E

E

EZ

X

Y

Z

ρ

φ

φ φ
φ φ

















= −
































cos sin

sin cos

0

0

0 0 1

However, it is time consuming to enter the matrix repeatedly for each transformation, particularly
since it depends upon the vector components and the coordinates of the point. Functions are an
ideal feature of the TI-89 for this use since they can be used in expressions and return results for
different input values.

1. Press O 7:Program Editor 3:New .

2. Select 2:Function  for Type and select emag for Folder .

3. Type rec2cyl  for Variable  and press ¸ ¸ to
display a template for the new function, as shown in
screens 16 and 17.

(16)

(17)

4. Input data is provided to functions through the
arguments of the function. For the rec2cyl  function, the
arguments are the rectangular components of the
vector (vec) and the coordinates of the point at which
the transformation is to be evaluated (pt). Enter the
arguments in the parentheses as vec and pt (screen 18).

5. Enter the instructions for the function.
(18)

Note : To enter î, press 2 ¿
2:Math 9 : î.

Local rho,x,y

Defines rho , x, and y as local variables. The function arguments as well as all variables listed in the
Local  instruction exist only within the function and are erased upon the completion of the function.

pt[1,1]->x
pt[1,2]->y

Gets local variables x and y from the input vector pt.
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√(x^2+y^2)->rho

Computes local variable rho  based on x and y.

([[x/rho,y/rho,0][-y/rho,x/rho,0][0,0,1]]*vecT)T

Computes cosφ=x/rho  and sinφ=y/rho , forms the transformation matrix, and performs matrix
multiplication. vec is transposed to a 3x1 column matrix in order to be multiplied by the
transformation matrix. The results are transposed to be put back into the row matrix format used
earlier.

6. Return to the Home screen, and use the rec2cyl  function
to transform the rectangular vector components [1,1,1]
to cylindrical components at the point [-1,2,3].

rec2cyl  c 2 g 1 b 1 b 1 2 h b 2 g · 1 b 2 b
3 2 h d

7. Press ¸  to observe the exact result (top of
screen 19).

5

5

3 5

5
1

−L
N
MM

O
Q
PP

8. Press ¥ ‘ to observe the floating point result (bottom
of screen 19).

[.45 -1.34 1.00]

This result shows the cylindrical components [Eρ Eφ EZ] of the
original rectangular vector.

(19)

Topic 42:  Cylindrical to Rectangular Vector Transformation

Standard cylindrical components are transformed to rectangular components by

E

E

E

E

E

E

X

Y

Z Z

















=
−































cos sin

sin cos

φ φ
φ φ

ρ

φ

0

0

0 0 1

Rather than enter this transformation matrix, the rec2cyl  function in Topic 41 can be copied to a
new function and then edited by making use of the matrix relationship

E

E

E

Cyl

to

c

E

E

E

Cyl

to

c

c

to

Cyl

E

E

E

X

Y

Z Z

X

Y

Z

















=
































=














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
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
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
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Re Re

Reρ
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Cyl

to

c

c
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CylRe

Re





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







=
















−1
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1. Press O 7:Program  Editor 1:Curren t to display rec2cyl .

2. Use D to move to the beginning of the third line. Hold
down ¤ and press D D D D D D to highlight the
instructions to be copied as shown in screen 20.

(20)

3. To copy the highlighted instructions, press ¥ 6.

4. Press ƒ 3:New to open a new function. Name the
function cyl2rec  (screen 21).

(21)

5. Enter the arguments of vec and pt as before (screen 22).

(22)

6. Move the cursor to the third line and press ¥ 7 to
paste the copied instructions to cyl2rec  (screen 23).

(23)

7. The transformation from cylindrical to rectangular
components uses the inverse of the original matrix. Edit
the last instruction by inserting Z c · 1 d as
highlighted in screen 24.

(24)

8. To verify that it works, return to the Home screen. Use
ans(1) as the first argument of cyl2rec  to transform the
cylindrical components from Topic 41 back to
rectangular components (screen 25).

(25)

Topic 43:  Rectangular to Spherical Vector Transformation

Transformation from rectangular to standard spherical coordinates is based on

E

E

E

E

E

E

r X

Y

Z

θ

φ

θ φ θ φ  θ
θ φ θ φ  θ

φ φ

















= −
−

































sin cos sin sin cos

cos sin cos sin sin

sin cos 0
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A function rec2sph  is constructed in a manner similar to rec2cyl  (Topic 41).

1. Press O 7:Program Editor 3:New  and name the function
rec2sph .

2. Enter the function lines shown below.

:rec2sph(vec,pt)
:Func
:Local r,ra,x,y,z
:pt[1,1]->x:pt[1,2]->y:pt[1,3]->z
:√(x^2+y^2)->ra:√(ra^2+z^2)->r
:([[x/r,y/r,z/r][x*z/r/ra,y*z/r/ra,-ra/r][-y/ra,x/ra,0]]*vecT)T

:EndFunc

3. Return to the Home screen and use rec2sph  to transform
the rectangular components [1,1,1] to spherical
components at the point [-1,2,3].

rec2sph  c 2 g 1 b 1 b 1 2 h b 2 g · 1 b 2
b 3 2 h d

The exact result shown in screen 26 is

2 14

7

70

35

3 5

5

− −











(26)

Note :  The function rec2sph  gives
undefined results for x=y=0. A more
robust function could be written
using the when( )  command.

Topic 44:  Spherical to Rectangular Vector Transformation

The standard spherical to rectangular transformation sph2rec
uses the matrix inverse as in Topic 42 and transforms the
spherical components back to the original rectangular
components.

Screen 27 shows sph2rec  with the instructions copied from
rec2sph . Follow the procedure from Topic 42. (27)

Screen 28 shows how to edit to function for the matrix inverse.

(28)

Screen 29 shows the spherical components transformed back
to the rectangular components in Topic 43.

(29)
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Tips and Generalizations

Mathematicians and engineers have chosen different “standard” ways of representing vectors. The
TI-89 follows the mathematicians’ standards. The functions developed here always follow the
engineers’ standards.

All of the transformations in this chapter work for symbolic entries as well, although they often
lead to quite complicated results.

The real excitement begins when Chapter 10 builds on this chapter and introduces vector calculus
using the TI-89.
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. 

Vector Calculus This chapter describes how to use the TI-89 for differential
and integral calculus. The differential operations illustrated
include gradient, divergence, curl, and Laplacian. Line and
surface integrals also are included. The functions cordchk( ),
grad( ),  div( ),  curl( ),  and lap( ) are created in this chapter, and
the functions rec2sph( )  and cyl2rec( )  from Chapter 9:
Vectors are used.

Topic 45:  Gradient

The gradient is a differential vector operation which gives the magnitude and direction of the
greatest rate of change of a scalar potential. Calculation forms are usually given in rectangular,
cylindrical, and spherical coordinates. However, the single form

gradv v
v

h x

v

h x

v

h x
= ∇ =  +  +∂

∂
∂
∂

∂
∂1 1

1
2 2

2
3 3

3a a a

can serve for all three coordinate systems where xi is the ith variable and ai is the unit vector
associated with the ith variable. hi is called the metric for the ith variable; it is multiplied by
angular variables to calculate length in the angular direction. The table below shows these
elements for the three coordinate systems.

xi hi ai

Rectangular x,y,z 1,1,1 aX,aY,aZ

Cylindrical ρ,φ,z 1,ρ,1 aρ,aφ,aZ

Spherical r,θ,φ 1,r,rsinθ ar,aθ,aφ

Table 1.  Variables, metrics, and unit vectors

The similar form for the gradient definition in the three coordinate systems means that the same
instructions can be used for all of the coordinate systems. Once the coordinate system has been
selected, the variables and metrics for that coordinate system can be applied to the derivatives of
the potential.

C h a p t e r  1 0

Features Used
right( ) , product( ) , ./,
.*, list úmat( ), mod( ), 
For...EndFor, norm ( ), 
unitV( ) , <, ans(1), 
Func, NewProb, 
comDenom( ), unitV( ), 
=, ‘, If...Elseif...Endif

Setup
¥1, setFold(emag)
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These instructions are included in the function called grad . The arguments for this function are the
desired coordinate system and the mathematical form of the potential. Specification of the
coordinate system determines the variables and metrics used in grad . Since other vector operations
also require variable and metric selection, a separate function, cordchk , is created for this.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸ .

2. Press O 7:Program Editor 3:New  and select Type:
Function .

3. Name the Variable:  cordchk .

4. Enter the instructions for cordchk  listed below.

:cordchk(cord)
:Func
:If string(cord)="rec" Then
:  {x,y,z,1,1,1}
:ElseIf string(cord)="cyl" Then
:  {ρ,φ,z,1,ρ,1}
:ElseIf string(cord)="sph" Then
:  {r,θ,φ,1,r,r*sin(θ)}
:EndIf
:EndFunc

Note : To enter ρ, press ¥ c j r;
to enter Ï, press ¥ Ï; and to enter
φ, press ¥ c j f.

cordchk  accepts coordinate arguments of rec, cyl , or sph
from which it returns a list of the form {x1,x2,x3,h1,h2,h3}.

5. Create a new function named grad .

6. Enter the instructions for grad  as shown in screen 1.

grad  accepts the coordinate argument of rec, cyl , or sph
and a symbolic form of the potential argument
expressed in the variables of the chosen coordinate
system. The results of the cordchk  function are stored as
a local variable, var. The elements of var are used to
calculate the vector components of the gradient. The
resulting vector represents the three components of the
gradient in the coordinate system of the calculation.
The order of the components is (x,y,z), (ρ,φ,z), or
(r,θ,φ).

(1)

7. Return to the Home screen and calculate the gradient of
v=10xsin(y)exp(e-5z) as shown in screen 2.

grad  c rec b 10x p 2 W y d ¥ s · 5z d d

The complete answer is

[10sin(y)í–5z 10x cos(y)í –5z –50x sin(y)í –5z]. (2)
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8. Find the gradient of v=zcos( φ)/ρ as shown in screen 3.

grad  c cyl  b z p 2 X ¥ c j f d e ¥ c j
r d

The answer is

− −









cos( ) sin( ) cos( )φ
ρ

φ
ρ

φ
ρ

z z
2 2

(3)

9. Find the gradient of v=sin( θ)cos(φ)/r as shown in screen 4.

grad  c sph  b 2 W ¥ Ï d 2 X ¥ c j f d
e  r d

The answer is

− −





sin( ) cos( )  cos( ) cos( )  sin( )θ φ θ φ  φ
r r r2 2 2

(4)

Topic 46:  Surface Normal

Since the gradient points in the direction of greatest rate of change of a function, it is
perpendicular to a surface on which that function is constant. The unit normal vector to a surface
can be found using this property as aN=∇ f/|∇ f| where f is the function which describes the surface.

Find the unit normal vector to a sphere of radius a. The sphere is described by a function of
f=x2+y2+z2-a2.

1. Use the function grad  from Topic 45 to calculate the
gradient.

grad(rec,x^2+y^2+z^2-a^2 )

2. Use unitV( )  to find the unit normal vector (bottom of
screen 5).

½ unitV (  2 ±

The answer is

x

x y z

y

x y z

z

x y z2 2 2  2 2 2  2 2 2+ +  + +  + +













(5)



98 ELECTRICAL ENGINEERING APPLICATIONS WITH THE TI-89

© 1999 TEXAS INSTRUMENTS INCORPORATED

3. To verify that the unit normal vector to the spherical
surface is radial, convert to spherical components using
rec2sph  from Topic 43 as shown in screen 6.

rec2sph  c 2 ± b 2 g x b y b z 2 h d

The complete answer is

( )
1 0

2

2 2 2 2 2

2

2 2

2 2

2 2 2

x z

x y x y z

y z

x y
x y z

x y z+ + +
+

+
− +

+ +





















in which the terms correspond to the r-, θ-, and φ-
components, respectively.

(6)

4. The second term, although rather complicated, has
some common terms. Use ComDenom( ) to simplify it as
shown in screen 7.

The TI-89 built-in rules of algebra show that the second
term is zero. This agrees with intuition that the
perpendicular to a sphere is radial only. (7)

Topic 47:  Divergence

Divergence of a flux density is the differential vector operation which indicates the net flux
emanating from a point. When there are sources of flux at the point, the divergence is positive;
when there are sinks, it is negative. The mathematical description of divergence is

div

D h h

x

D h h

x

D h h

x

h h h

D D= ∇ •
∂

∂
+

∂
∂

+
∂

∂
=

( ) ( ) ( )1 2 3

1

2 3 1

2

3 1 2

2

1 2 3

where the Di is the ith component of the flux density vector D and hi and xi are defined as before
(Topic 45). These operations are defined in the function div  shown below.

:div(cord,fld
:Func
:Local  var,met
:cordchk(cord)!var
:right(var,3)!met
:product(met)*fld ./(listúmat(met))!fld
:(¶(fld[1,1],var[1])+¶(fld[1,2],v
 ar[2])+¶(fld[1,3],var[3]))/(product(met))
:EndFunc

The function cordchk  from Topic 45 determines the list of variables and metrics for the chosen
coordinate system and stores them in local variable, var. The three metrics are extracted from var
and stored in met using right( ).  Scalar multiplication of the field by the product of the metrics dot
divided (./) by the vector of the metrics forms the Dihjhk term. The partial derivatives and division
by the metric product completes the calculations of div .
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The position vector from the origin to a point in space is
expressed in the three coordinate systems as [x,y,z], [ρ,0,z],
and [r,0,0]. The divergence of the position vector should be the
same in all three coordinate systems since the coordinate
system should not alter the properties of the vector. The
calculations shown in screen 8 verify this.

(8)

Topic 48:  Curl

The curl of a vector field is a measure of its vorticity, which is its tendency to rotate about a point.
When the curl of a field is zero everywhere, it is known as a conservative field and an integral
around any closed path is zero. The electrostatic field is conservative; the magnetostatic field is
not conservative. The mathematical definition of the curl is

curl

h H

x

h H

x
h

h h h

k k

j

j j

k
i i

i
H H

a

= ∇ × =

−










=

∑ ∂
∂

∂
∂

( ) ( )

1

3

1 2 3

where xi, ai, hi, and Hi are the variable, unit vector, metric, and vector component of the ith
coordinate. (i,j,k) form a right-handed system. Although the form of the curl is somewhat more
complicated than previous vector operations, its cyclic nature makes it easy to implement.

The calculations of the curl are implemented in the function
curl .

1. Define the function curl  as shown in screens 9 and 10.
Notice that it includes the function cordchk  from
Topic 45.

The variables and metrics are stored in local variables
var and met; the elements of fld  serve as dummy
elements to form the local variable curl . n, n1, and n2
form a cyclical triad used to compute the derivatives of
fld . Each pass through the For loop forms one of the
vector components which replaces the dummy
elements stored in curl .

(9)

(10)

2. Return to the Home screen, and enter the curl of
[xyz,xyz,xyz] as shown in the top of screen 11.

curl  c rec b 2 g x p y p z b x p y p z b x p y p z
2 h d

The answer is [x(z-y) xy-yz yz-xz], as shown at the top
of screen 11.

3. Find the curl of [1/ρ,z,cosφ] as shown in the bottom of
screen 11.

curl  c cyl  b 2 g 1 e ¥ c j r b z b 2 X ¥
c j f d 2 h d

(11)



100 ELECTRICAL ENGINEERING APPLICATIONS WITH THE TI-89

© 1999 TEXAS INSTRUMENTS INCORPORATED

4. Find the curl of [rcosθ, sinφ, cosφ] as shown in screen
12.

curl  c sph  b 2 g r p 2 X ¥ Ï d b 2 W ¥
c j f d b 2 X ¥ c j f d 2 h d

The answer is

− 



 − +



















tan cos( )
cos( ) sin( ) sin( )

θ φ
φ θ φ2

r r

r

r

(12)

5. A vector theorem states that the curl of the gradient of
a potential is identically zero. The example of a gradient
in rectangular coordinates from Topic 45 demonstrates
this as curl(rec,grad(rec,10xsin(y)e –5z)≡0 (screen 13).

curl  c rec b grad  c rec b 10x p 2 W y d p ¥ s
· 5z d d d (13)

6. Another vector theorem states that the divergence of
any curl is identically zero. This is demonstrated by
div(cyl,curl(cyl,[1/ ρ,z,cos(φ)]))≡0 (screen 14).

div  c cyl  b curl  c cyl  b 2 g 1 e ¥ c j r b z b
2 X ¥ c j f d 2 h d d

(14)

Topic 49:  Laplacian

The behavior of many physical potentials is mathematically described in rectangular coordinates
by

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2

v

x

v

y

v

z
+ +

Since this often occurs in Laplace’s equation, this is known as the Laplacian. An alternate form of
the Laplacian is

lapv
v

x

v

y

v

z
v v= + + = ∇ • ∇ = ∇∂

∂
∂
∂

∂
∂

2

2

2

2

2

2
2

From the ∇•∇v term, the method of forming the Laplacian is obvious; it is the divergence of the
gradient of the potential v. Although vectors and vector operations are involved, the Laplacian
produces a scalar result.
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1. Define the function lap as shown in screen 15. Notice
that it uses the function div  from Topic 47 and the
function grad  from Topic 45.

(15)

2. Return to the Home screen and find the Laplacian of
v=10xsin(y)e–5z as shown on the top of screen 16.

lap c rec b 10x p 2 W y d p ¥ s · 5z d d

3. Find the Laplacian of v=zcos(φ)/ρas shown on the
bottom of screen 16.

lap c cyl  b z p 2 X ¥ c j f d e ¥ c j r
d

(16)

4. Find the Laplacian of v=sin(θ)cos(φ)/r as shown on
screen 17.

lap c sph  b 2 W ¥ Ï d p 2 X ¥ c j f d
e r d

(17)

Topic 50:  Line Integrals

The potential difference, also called voltage drop, between two points is given in the form of a line
integral as

V VA B
PathB A

− = −  •
→
zE dl

In electrostatic cases, this integral is independent of the path, that is, any path between the two
endpoints is valid. In general, however, the integral must be evaluated along a specific path.
Evaluation of line integrals along a path can be simplified to three steps:

1.  Evaluate the dot product of the integrand in the most convenient coordinate system.

2.  Include the effects of the path.

3.  Perform the resulting scalar integrals.

Example 1

Evaluate

F dl•z
Path

where F=4xyaX-3ze-xaY along the parabolic path y=x2 in the z=-4 plane from (0,0,-4) to (2,4,-4).
Since the path and the variables are specified in rectangular coordinates, the form of the
differential is chosen as rectangular also.

Step 1 leads to F•dl=4xydx-3ze-xdy.
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Step 2 requires that along the path, y=x2 and z=-4. These substitutions give the first term as
4xydx=4x(x2) ¶x, and the second term as -3ze-x¶y = -3(-4)e-√y ¶y. These explicit substitutions
introduce the effects of the path into the integrand. The substitutions have been chosen so that the
variables of each integrand are the same as the differential. These substitutions are simplified
using the “with” operator, Í.

1. Now do step 3 on the TI-89 to evaluate the resulting
integrals.

2 < 4x p y Í y Á x Z 2 b x b 0 b 2 d | 2 < 3 z
¥ s · x d Í z Á · 4 ½ and x Á 2 ] y d
b y b 0 b 4 d

The exact value result is 8(5e2-9)e-2 (top of screen 18).

2. Pressing ¥ ‘ gives 30.26 in floating point form (bottom
of screen 18).

(18)

Example 2

Evaluate

H dl•z
Path

where H=(10/2πρ)aφ along the path ρ=4, z=0, and 0≤φ≤π/2. The natural coordinate system is
cylindrical so H•dl=10ρdφ/2πρ. Note that dφ is multiplied by the metric ρ to get the differential
length in the φ direction, ρdφ.

1. The integral is entered as shown in screen 19.

2 < 10 ¥ c j r e c 2 2 T ¥ c j r d Í
¥ c j r Á 4 ½ and z Á 0 b ¥ c j f b 0
b 2 T e 2 d

The result is 5/2.
(19)

2. For those not as comfortable with cylindrical
coordinate integration, convert the problem to
rectangular coordinates. First, transform aφ to
rectangular coordinates using the cyl2rec  function from
Topic 42 (Chapter 9) to obtain aφ = -y/√(x2+y2)aX

+x/√(x2+y2)aY (screen 20).
(20)

With the relationship ρ =  +x y2 2 , the dot product of
the integrand becomes

H dl• =
+

−

+
+

+

L

N
M
M

O

Q
P
P

10

2 2 2 2 2  2 2π x y

ydx

x y

xdy

x y

The integration follows the circular path on which
x2+y2=16.
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This is entered as shown in screen 21.

10 e c 2 2 T d c 2 < · y e c x Z 2 « y Z 2
d Í y Á 2 ] 16 | x Z 2 d b x b 4 b 0 d+2 <
x e c x Z 2 « y Z 2 d Í x Á 2 ] 16 | y Z 2 d
b y b 0 b 4 d d

The result is 5/2 as before. Note that x goes from 4 to 0

and y from 0 to 4 as φ varies from 0 to π/2.

(21)

Topic 51:  Surface Integrals

The flux passing through a surface is expressed by surface integrals such as

J ds•∫∫
Area

where J is the flux density and ds is the directed surface element in a specified direction. The
evaluation of surface integrals is similar to the three-step process used with line integrals in
Topic 50:

1.  Evaluate the integrand.

2.  Include the effects of the surface.

3.  Evaluate the resulting integrals.

Two examples follow which illustrate this process.

Example 1

Find the flux

J ds•∫∫
Area

passing through the x=4 surface in the -aX direction for which
1≤y≤3 and -1≤z≤1 where J = 10xy2aX. The integrand when
evaluated on the surface is given by
J•ds = M10xy2dydz|x=4 =M40y2dydz.

The resulting integral is entered as shown in screen 22.

2 < 2 < · 10x p y Z 2 Í x Á 4 b y b 1 b 3 d b z b
· 1 b 1 d

The result is M2080/3.

(22)
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Example 2

The divergence theorem states that the flux out of a closed
surface integral is equal to the divergence of the flux density
throughout the volume

J ds  J• = ∇ •∫∫ ∫∫∫
A V

dv

Calculate the flux out of the entire unit sphere due to
J=10xy2axusing the function div  from Topic 47.

1. Calculate divJ=10y2  (screen 23).

div  c rec b 2 g 10x p y Z 2 b 0 b 0 2 h d

(23)

2. Integrate this result throughout the volume of the
sphere. Setting the limits of integration with respect to
rectangular coordinates is tedious because the volume
naturally fits spherical coordinates. Instead, transform
the single variable of the integrand to y=rsinθsinφ
(screen 24).

2 ± Í y Á r p 2 W ¥ Ï d p 2 W ¥ c

j f d

(24)

3. Integrate throughout the volume of the sphere using the
differential volume of spherical coordinates
dv=r2sinθdrdθdφ to obtain the total flux of 8π/3 as
shown in screen 25.

2 < 2 < 2 < 2 ± p r Z 2 p 2 W ¥ Ï
d b r b 0 b 1 d b ¥ Ï b 0 b 2 T d b ¥ c
j f b 0 b 2 2 T d

(25)

Tips and Generalizations

WOW! Triple integrals on a pocket calculator, and this is just a warm up. This chapter showed how
powerful vector calculus operations can be performed by defining a few simple functions (grad( ) ,
div( ) , curl( ) , lap( )). These combined with with  (Í) provide a convenient way to do vector calculus.

Chapter 11 shows how these operations can be used to solve typical electromagnetics problems.
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Electromagnetics This chapter describes how to use the TI-89 to solve
Laplace’s equation for two-dimensional electrostatic
problems. The separation of variables method provides
exact solutions but is restricted to specific geometries. The
relaxation method is applicable to any geometry, but it
provides only an approximate solution. This chapter uses
the function lap( ) which is defined in Chapter 10: Vector
Calculus.

Topic 52:  Separation of Variables

Electrostatic potentials satisfy Laplace’s equation, ∇2v=0, in charge-free regions. A typical
two-dimensional problem is shown in Figure 1.

Figure 1.  Geometry for 2-D electrostatic problem

In two-dimensional, rectangular geometries, the potential varies with x and y, that is, v=v(x,y). The
assumption that v is the product of two functions, each of which depending upon only a single
variable, leads to v=f(x)g(y).

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

C h a p t e r  1 1

Features Used
3-D Graphing,  
deSolve ( ), expand ( ), 
tExpand ( ), solve ( ), 
limit ( ), colDim ( ), 
rowDim ( ), Func, For, 
EndFor, newMat ( ), @n1, 
@1, ¶, «

Setup
¥1, setFold(emag)
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2. Enter the expression for v as shown in screen 1.

f c x d p g c y d § v

(1)

3. Applying the Laplacian operator to v and dividing the
result by v leads to

∇ = + =
2

2

2

2

2

0
v

v

f x

x
f x

g y

y
g y

∂
∂

∂
∂

( )

( )

( )

( )

Enter the expression using the function lap from
Topic 49 (Chapter 10)  as shown in screen 2.

½ expand( lap  c rec b v d e v d

(2)

4. Since the first term depends only on x and the second
only on y with their sum equal to zero, both terms must
be constant. When the x-dependent term is set equal to
the constant -k2, the result is the differential equation

∂
∂

2

2
2 0

f x

x
k f x

( )
( )+ =

Use deSolve( )  to enter this equation with the boundary
condition f(0)=0.

½ deSolve( f  2 È 2 È « k Z 2 p f Á 0
½ and f c 0 d Á 0 b x b f d

Screen 3 shows the output form is f(x)=
1

k
sin(|k|x)

times the constant  
1

k
. (The constant does not affect

the solution.)
(3)

5. This equation also equals zero at the other boundary, or
f(a)=sin(ka)=0. Find the allowed values of k to be
k=nπ/a as shown in screen 4.

½ solve(  2 W k p a d Á 0 Í k 2 Ã 0 b k d

(4)

Note : @1 represents an arbitrary
integer. The screen may show @2,
@3, and so forth, if deSolve( )  has
been executed prior to this.
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6. When the first term in the separated form of Laplace’s
equation equals -k2, the second term in the equation
must equal k2. This gives a second differential equation

∂
∂

∂
∂

π2

2
2

2

2

2

0
g y

y
k g y

g y

y

n

a
g y

( )
( )

( )
( )− = − 





=

which is entered as shown in screen 5.

½ deSolve( g  2 È 2 È | k Z 2 p g Á 0
½ and  g c 0 d Á 0 b y b g d

The solution is of the form g(y)= 
1

k
sinh(ky) times the

constant 
1

k
.

(5)

7. Since k=nπ/a from the boundary conditions on f(x),
g(y)=sinh(nπy/a). But it is not possible for this solution
of g(y) to satisfy the upper boundary condition for
arbitrary y=b (see top of Figure 1). Since the solutions
for each n satisfy Laplace’s equation, a linear
combination of solutions must satisfy it also; such a
solution is

v x y  c
n x

a

n y

an
n

( , )  sin  sinh= 









=

∞

∑ π π
1

At the upper boundary where y=b, this takes the form
of a Fourier series in x

v x b  c
n x

a

n b

an
n

( , )  sin  sinh= = 









=

∞

∑100
1

π π

The constant cn is determined by usual Fourier
techniques. Both sides of the equation are multiplied by
sin(mπx/a) and integrated over the range 0≤x≤a. The
left-hand side (LHS) integral becomes

LHS
m x

a
dx

a m

mx

a

= 





= −

=
∫ 100

100 1

0

sin
( cos )π π

π

as shown in screen 6.

2 < 100 2 W m 2 T x e a d b x b 0 b a d
§ lhs

(6)
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8. When m=2@n2 is even, lhs  = 0 (screen 7). When

m=2@n2-1 is odd, lhs
π

=
m

a200
 (screen 8).

(7)

(8)

9. The right hand side integral, given as

z F
HG

I
KJ

F
HG

I
KJ

F
HG

I
KJ= =

∞

x

a

n
cn

n b

a

n x

a

m x

a
dx

0 1
Σ sinh sin sin

π π π

requires more careful evaluation. An interchange of the
summation and integration leads to a series of integrals,
each with a different value of n

n x

a

cn
n b

a

n x

a

m x

a
dx

=

∞

=

F
HG

I
KJ

F
HG

I
KJ

F
HG

I
KJz

1 0
Σ sinh sin sin

π π π

The integral can be calculated directly by the TI-89 as
shown in screen 9.

cn p ½ sinh( n 2 T b e a d 2 < 2 W n 
2 T x e a d p 2 W m 2 T x e a d b x b 0 b
a d § rhs

Evaluation of rhs  for n≠m requires the tExpand  command
for the trigonometric functions only; in addition
n=@n1=integer and m=@n2=integer. Enter the following
key strokes for this evaluation.

½ sinh( n 2 T b e a d a p c c m « n d p
½ tExpand( 2 W m 2 T | n 2 T d d |
c m | n d p ½ tExpand( 2 W m 2 T « n 
2 T d d d p cn e c 2 p c m « n d p c m |
n d 2 T d Í n Á ¥ § n1 ½ and m Á ¥
§ n2.

(9)

10. The result shows RHS=0 when n≠m (top of Screen 10).

For the case n=m the evaluation is much simpler as
shown in screen 10.

½ limit( rhs , n , m d Í m Á ¥ § n1
(10)



CHAPTER 11:  ELECTROMAGNETICS 109

© 1999 TEXAS INSTRUMENTS INCORPORATED

11. The constant cn is determined by equating the
evaluations of lhs and rhs of previous calculations
(screen 11).

½ solve( 200a e c m 2 T d Á ½ sinh( b 
p m p 2 T e a d p a p cn e 2 b cn d

(11)

12. These results are combined to give the electrostatic
potential within the region as

v x y

n x

a

n y

a

n
n b

a
n odd

( , )
sin sinh

sinh
=



















=
∑400

π

π π

π

This is implemented with a finite number (5) of terms.
Due to the TI-89’s single step size of 1, the summation
index n must be replaced by 2n-1 which takes on only
odd integer values for consecutive integer values of n.

Calculate the electrostatic potential as shown on the
top of screen 12.

400 e 2 T ½ ∑( 4 2 W c 2n | 1 d 2 T x
e a d ½ sinh( c 2n | 1 d 2 T y e a d e c
c 2n | 1 d ½ sinh(  c 2n | 1 d 2 T b e a d
d b n b 1 b 5 d § v c x b y d

13. To check that this solution satisfies Laplace’s equation,
use the function lap from Topic 49 (screen 12).

lap c rec b v c x b y d d

Observe (after awhile) that the result is zero, as it must
be!

(12)

Topic 53:  3D Potential Graphs

How does v(x,y)  from Topic 52 vary throughout the region? 3-D graphing provides such a view, but
it requires specific values for a and b.

1. For simplicity, let a=b=1 as shown in the top of
screen 13.

The result is stored as a new function u(x,y)  by first
defining u(x,y) .

v c x b y d Í a Á 1 ½ and b Á 1 § u c x b
y d

Then verify that the function is correct.

u c x b y d

(13)
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2. Define the graph function z1(x,y)=u(x,y)  so that the
plotting is faster than it would be by plotting v(x,y)|a=1
and b=1 (bottom of screen 13).

u c x b y d § z1 c x b y d

The height z represents the magnitude of the function
v(x,y) .

3. Press 3 and set Graph  mode to3D. Use ¥ $ to
set the window variable values as shown in screens 14
and 15.

eyeθ=M120 ymin =0
eyeφ=75 ymax=1
eyeψ=0 ygrid =14
xmin =0 zmin=0
xmax=1 zmax=140
xgrid =14 ncontour =5

(14)

(15)

4. From the Window Editor, use ¥ Í to set the graph
formats as shown in screen 16.

Coordinates: RECT
Axes: AXES
Labels: ON
Style: WIRE AND CONTOUR (16)

5. Press ¥ %. Wait a few minutes for the graph to be
calculated. The results will look like screen 17.

The voltage v(x,y)  is graphed with equipotential contours
every 20 volts. Once the calculations with the contours
are made, the contours can be turned on and off.

(17)

6. Press ¥ Í and set Style  to WIRE FRAME to turn off the
contours. In the Window Editor, set eyeθ=60 and press
¥ % for a view from “behind” the graph, that is,
from the region of y>1 (screen 18).

(18)

7. Press ¥ Í  and set Style  to HIDDEN SURFACE to give a
different nature to the graph (screen 19).

The variation of the amplitude along the upper edge is
due to the limited five-term Fourier Series approxi-
mation of the 100 volts. More terms would make this
smoother. (19)
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8. Press Ú to look along the y-axis directly at these
variations from the back of the graph (screen 20).

(20)

Use p to toggle between expanded and normal views
(screen 21).

Use A B C D or change values in the Window Editor to
change the viewing angle.

(21)

9. Return to the original viewing angle by pressing 0. Then,
in the Window Editor, set eyeθ=-120 and press ¥ %.
To find the voltage at (x,y) coordinates, press … Trace
which places at cursor at the center of the x,y space
and provides the corresponding z-value. Move the
cursor ±y with C D and ±x with A B . The voltage at
x=.29 y=.79 is 52.12 V as shown in screen 22.

(22)

10. To see the voltage at a given position, just type the x
and y coordinates. For example, type 0.25 ̧ 0.75
¸  to see that the value at x=0.25 and y=0.75 is
43.20 V (screen 23).

(23)

11. Press ¥ Í and set Style  to WIRE AND CONTOUR to
display the equipotential contours on the wire frame.

Press Ù, Ú, and Û for views from those axes (screens
24, 25 and 26). The z-axis view (from above the graph)
provides the standard view of the equipotentials on the
x-y plane. However, „ 5:ZoomSqr  must be used to
recompute the graph if the proper ratio of the x and y
dimensions is required.

(24)

(25) (26)
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Topic 54:  Relaxation Method

An alternate, but approximate, method which works for all geometries is known as the relaxation
method. The procedure is simple: a solution for the voltage v(x,y) is guessed, an iterative set of
approximate calculations operates upon this solution, and the “guessed” solution is modified by
each successive set of calculations in a way which allows the guessed solution to “relax” to the
correct solution.

Electrostatic voltages satisfy Laplace’s equation as ∇ =2 0v . Finite differences approximate the
Laplacian by the central difference form as

∇ = ∂
∂

+ ∂
∂

≈
+ −

+
+ −

=
+

=
+ + −

2
2

2

2

2

2 2

2

2 2

4
0

v
v

x

v

y

v v v

x

v v v

y

v v v v v

x

R L  T B

R L T

o

o

o

B

∆ ∆

∆
where ∆x=∆y. For non-zero increments, ∆x,∆y≠0, this equation is solved for the central node
voltage as

v
v v v v

o
R L T B=

+ + +
4

This equation states that the voltage at the center node is equal to the average of the node voltages
around it. This equation is valid at all nodes. The solution region is divided into rectangular grids,
and the equation for vo is applied successively to each node. This procedure is repeated until the
node voltages approach the correct solution as a limiting value.

Figure 2.  Finite difference cell

The solution region is divided into square grids. Each node is described by two integers, an
x-coordinate and a y-coordinate. The x-coordinates are numbered from left to right; the
y-coordinates are numbered from bottom to top. The nodes show a great similarity to the elements
of a matrix in their geometric arrangement and in their numbering scheme. The storing of node
voltages in a matrix provides a convenient and visual display of the voltages. The matrix
row-column numbering scheme is used to simply and systematically apply the node voltage
calculations to all of the cells. A second matrix is used to identify those boundary nodes at which
the voltage is fixed and must not be changed by the calculations.
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The TI-89 handles matrices and repetitive calculations very handily. The node voltages are stored
in a matrix named volt ; the geometry data is stored in a matrix named geo. Define a function called
relax  to perform the calculations.

:relax(v,geo,ntot)
:Func
:Local n,ntot,nrow,ncol
:Local nrowmax,ncolmax
:colDim(v)!ncolmax
:rowDim(v)!nrowmax
:For n,1,ntot
: For nrow,2,nrowmax-1
:   For ncol,2,ncolmax-1
:(v[nrow-1,ncol]+v[nrow+1,ncol]+v[nrow,ncol-1]+v[nrow,ncol+1])/4*geo[nrow,ncol]+v[nrow,ncol]*(1-
geo[nrow,ncol])!v[nrow,ncol]

:   EndFor
: EndFor
:EndFor
:v
:EndFunc

The function relax  accepts the voltage matrix (v), the geometry matrix (geo), and the desired
number of sets of repeated calculations (ntot ) as arguments. For simplicity, all interior nodes of the
voltage matrix are set to zero as the initial guess. Since the nodes on the edges of the matrix are
fixed, the calculations are limited to interior points by the row and column sizes. The single
instruction within the nested loops implements the discrete Laplacian at a node. The results of this
calculation are multiplied by the corresponding element of the geometry matrix, 0 for nodes that
are fixed or 1 for nodes that are modified by calculations. In addition, the nodal voltage is
multiplied by 1ìgeo so that the original nodal voltage is stored in those nodes which are to remain
fixed. This calculated node voltage is stored in v, and calculations move to the next node. With the
completion of calculations, v is displayed on the Home screen.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. For numeric results, the region of screen 27 is divided
into 10x10 square grids resulting in 11x11 matrices for
the voltage and geometry matrices. On the Home
screen, create the voltage matrix filled with zeros (see
screen 27).

½ newMat( 11  b 11 d §  volt

(27)

3. Set the 100 V boundary voltage.

½ For  n b 1 b 11 2 Ë 100 ¶ §  volt  2 g 1
b n 2 h 2 Ë ½ EndFor

Screen 28 shows that floating point results are returned
because of the decimal point in 100.

(28)
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4. To verify that the matrix has been entered correctly,
press O 6:Data/Matrix Editor 2:Ope n. Specify Type as
Matrix , Folder  as emag, and Variable  as volt  (screens 29 and
30).

(29)

(30)

Note : The 100’s can be entered
directly into this display instead of
the entry line For...EndFor  instruction.

5. On the Home screen, create the geometry matrix filled
with 1’s (screen 31).

½ newMat( 11  b 11 d ¶ « 1 § geo

Note :  The ¶ « tells the TI-89 to do
a dot addition. That is, add 1 to each
of the elements in the new, all-
zeroes matrix. If the ¶ is omitted
and just the « is used, the 1 will be
treated as the identity matrix and
then added to the new matrix, which
is not wanted.

(31)

6. Since the function relax  automatically excludes the first
and last rows, zeros need not be inserted for a
rectangular solution region. For non-rectangular
regions, zeros must be inserted into geo at boundary
locations. Do one iteration as shown in screen 32.

relax  c volt  b geo b 1 d § volt

The results are stored in volt  through the command line
since relax  is a function and cannot change any stored
variables.

(32)

7. Repeat function relax  10 times (screen 33).

relax  c volt  b geo b 10 d § volt

It will take a while to get the results.

(33)
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8. The matrix can be viewed by pressing O 6:Data/Matrix
Editor 1:Current  as shown in screen 34.

Since the structure is symmetric, the voltages should
show symmetry about c6 when sufficient iterations
have been completed.

(34)

Note :  Press ¥ Í and select 5 to
show four columns.

9. Since it isn’t exactly symmetric, return to the Home
screen and repeat the function relax  five more times as
shown in screen 35.

relax  c volt  b geo b 5 d § volt

(35)

10. Return to the Matrix Editor to check the symmetry
(screen 36).

It’s not exactly there yet , but close enough.

(36)

Topic 55:  3D Graphs of Tabular Data

As with the separation of variables method, a graph of the voltage from Topic 54 is helpful.
However, matrix data cannot be graphed directly because it exists only for discrete values of row
and column variables. But with the int( )  function, values of the graphing variable within a range can
be converted to an integer for which row or column matrix data exists.

1. Create the function matplot  as shown in screen 37 to
convert the data.

The x,y coordinates of the data matrix mat are converted
to integer values that provide the row and column
indices. In order that the y index begins at the bottom
of the matrix, it is reflected about the center row of the
matrix.

(37)

2. Press ¥ $ and set the window variable values as
shown in screen 38 as well as zmin=0, zmax=140, and
ncoutour =0. Be sure the TI-89 is in the 3D graph mode.

(38)
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3. Press ¥ # to display the Y= Editor. Define
z2(x,y)=matplot(x,y,volt)  to graph the relaxation method
solution (screen 39). Deselect z1.

(39)

4. Press ¥ % to see the solution.

(40)

5. It looks nearly like the graph with the other method. A
comparison with the exact solution of separation of
variables using … Trace shows that the approximate
voltage at x=1/4ùxmax=4 and y=3/4ùymax=8 is v=34.44 V
compared to the exact value of 43.20 V (screen 23). This
inaccuracy is due to the adjustment of the x- and y-
coordinates to take the integer plotting routine into
account and the approximate nature of the relaxation
method.

(41)

Tips and Generalizations

This chapter showed how to solve and display problems using the TI-89 that are normally solved
on larger computers. The relaxation method is general enough to solve other configurations by
simply changing volt  and geo.

The matplot( )  function can be used to display a 3D graph of any
matrix of data. It is faster, though less general, if the matrix to
be graphed is explicitly stated in the function rather than
passed as a parameter. Screen 42 shows how this is done for
the relaxation problem.

(42)

Although finding the potential over a 2D surface is useful, sometimes knowing what happens on a
line is enough. Chapter 12 looks at some common ways of analyzing transmission lines.
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. 

Transmission Lines This chapter describes how to calculate the characteristic
impedance and phase velocity on transmission lines.
Steady state transmission line behavior and simple
matching concepts are included also. The functions
reflcoef( ) , lineleng( ) , zin( ), yin( ) , and vswr( )  are created.

Topic 56:  Characteristic Impedance

One of the most basic parameters of a transmission line is zo, its characteristic impedance. zo
depends upon the geometry and the material of the transmission line. In this section, zo is
calculated for four common transmission lines — coaxial, twin-lead, parallel plate, and microstrip.
The cross-sections of these lines are shown in Figure 1.

Figure 1.  Transmission line cross-sections
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εr

2b

d

2a

Twin-lead

Features Used
real( ), limit ( ), 
NewProb, when ( ), 
Numeric Solver

Setup
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
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F

Table 1.  Characteristic impedances

The equations shown in Table 1 are used to calculate zo of a transmission line from its geometry
and material parameters. However, with the TI-89’s numeric solver, any variable can be calculated
when the others are known.

Coaxial and Twin-lead

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Press O 9:Numeric Solver  to display the Numeric
Solver, and enter the equation for zo as highlighted in
screen 1.

zocoax Á 60 p ½ ln( b  e a d e c 2 ] ¥ c
j e r d d

3. Press ¸ or D  to display the variables in the
equation.

Note :  To enter ε , press ¥ c
j e.

(1)

Note :  The number of digits
displayed is independent of the
mode settings, since it is a numeric
solution.
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4. Enter values of b=.015, a=.005, and εr=2. Then move the
cursor to zocoax=  and press „ Solve  to obtain the
solution zocoax =46.61… Ω as shown in screen 2.

The é symbols on the left side of the screen show which
variable was calculated and that the solution is exact
since left-rt=0 . (2)

5. To calculate the value of εr which will give zocoax =50,
enter 50 into zocoax , move the cursor to εr, and press
„ to display the required value of 1.73… (screen 3).

(3)

6. In a similar manner, enter the zo equation for the twin-
lead line by moving to the top of the line.

zotwin  Á 120 p ½ cosh -1( d e c 2 p 2 ] a p b
d d d e c 2 ] ¥ c j e r d d

7. Set d=.01, a=b=.0005, and εr=1.5 and solve for
zotwin =293.27… Ω (screen 4).

(4)

8. These two equations used can be accessed through ‡ ;
the number of “last” equations is eleven (11) by default
and is set using ¥ Í B (screen 5).

(5)

9. Press B to display both equations. Any equation in this
list can be made the active equation by highlighting it
and pressing ¸; activate zocoax  (screen 6).

(6)

10. Equations can be recalled to the Numeric Solver in this
way as long as the number of last equations history is
not exceeded. For more permanent storage, press ƒ
2:Save Copy As  D. The equation is placed in the TLINE
folder. Name it coax  (if it is named zocoax , the equation
name will conflict with the variable name) as shown in
screen 7.

(7)
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11. To verify that coax  has been stored, press 2 °
and scroll down to the TLINE folder to see coax  and each
of the variables a, b, zocoax , and εr listed (screen 8).
Since the variables are listed alphabetically and Roman
characters precede Greek, εr is at the bottom of the
folder; scroll down to see it.

(8)

Parallel Plate and Microstrip

Although the remaining two equations can be entered into the
Numeric Solver and saved in the same way, the rather
complicated microstrip equation is entered and checked more
easily in the Home screen.

1. Return to the Home screen, and clear the variables to
be used in the microstrip equation as shown in screen 9.

½ DelVar f b w b ¥ c j e r b d

(9)

2. Now enter the zo equation (screen 10).

zomicro  Á ½ when(  w e d 2 Â Á 1 b 60 p 2
x 8 p d e w « w e c 4 d d d e f b 120 2 T e
c c w e d « 1.393 « 2 e 3 p 2 x w e d « 1.444
d d p f d d § eqn

(10)

Note how the when( )  command is used to implement the
two parts of the zomicro  equation. The ! eqn at the end
stores the zomicro  equation so that the Numeric Solver
uses it.

3. Press O 9:Numeric Solver  to see zomicro  in the
Numeric Solver. (11)

4. So far f has not been defined. Return to the Home
screen and define f as shown in screen 12.

2 ] c ¥ c j e r « 1 d e 2 « c ¥ c j e r
| 1 d e c 2 p 2 ] 1 « 12 p d e w d d d
§ f

To prevent deleting f with NewProb, be sure to lock it.
Alternatively, name it ff. See Do This First.

(12)

5. Display the Numeric Solver and press ¸. Enter the
values for a microstrip transmission line on a dielectric
substrate with thickness d=0.00127, εr=2.2, and a
conductor width of w=.00391 m. Solving for zomicro
gives zomicro =50.31…Ω (screen 13).

(13)
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Topic 57:  Reflection Coefficient

When sinusoidal generators are used to excite a transmission line, all transient waves have
decayed to zero and the line is in steady state. A common steady-state design goal is to match the
source impedance to the transmission line input impedance. The input impedance of a
transmission line with characteristic impedance zo and length d is given by

zin zo
e

e

L

j
d

L

j
d= +

−

−

−

1

1

4

4

Γ

Γ

π
λ

π
λ

for a frequency with a wavelength of λ. Since this calculation involves complex numbers, creating
a function will make the calculations easier.

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Calculate the reflection coefficient of the load
impedance as

ΓL

zl zo

zl zo
= −

+

The reflection coefficient is a complex phasor with an
amplitude of 1 or less.

Define the function reflcoef  as shown in screen 14.

Note that limit( )  is used to handle the case of an open
circuit with zl =∞.

(14)

3. Return to the Home screen and use reflcoef  to calculate
the reflection coefficients for real loads of zl =50, 0, and
∞ Ω on a line with zo=50 Ω (screen 15).

(15)

4. Calculate the coefficients for the complex load of
100ìj50 Ω on a line with zo=50 Ω (screen 16).

5. Press ¥ ‘ to get the floating point value shown at the
bottom of screen 16.

(16)

The results are 0, -1, +1, and 0.45∠-26.57°. When the load is “matched” to the line, there is no
reflected signal; a short circuit reflects the incident signal with opposite polarity; and an open
circuit reflects with the same polarity.
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Topic 58:  Phase Shift

When the load is attached to the end of a length of line, the
input reflection coefficient is multiplied by exp(-j4πd/λ) which
is 1∠(-720d/λ) as a phasor in degree form. This term depends
only on the line length in terms of wavelength d/λ.

1. Define the function lineleng  as shown in screen 17.

2. Return to the Home screen and clear the TI-89 by
pressing 2 ˆ 2:NewProb  ¸.

(17)

Note : To enter λ, press ¥ c jL.
To enter ∠, press 2 ’.  To
enter − , press ·.

3. Use lineleng  to calculate the phase shift of a reflection
coefficient for line lengths of d=0, 1/8, 1/4, and ½
wavelengths. Since the line length is given as a fraction
of wavelength, λ=1 (screen 18).

(18)

Topic 59:  Input Impedance/Admittance

The equation for input impedance can be defined as a function.

The input impedance depends upon the line length. For lines with d=nλ/2, the input impedance
equals the load impedance. For loads with zl=zo, the input impedance is zo.

1. Press 3 and set Complex Format  mode to
RECTANGULAR .

2. Define the function zin as shown in screen 19. zin uses
reflcoef  from Topic 57 and lineleng  from Topic 58.

3. Return to the Home screen, and clear the TI-89 by
pressing 2 ˆ 2:NewProb  ¸.

(19)

4. Use zin to calculate the input impedance of a line with
zl =100-j50 Ω, zo=50 Ω, and λ=1. Use d=.35, d=.5, and d=1
(screen 20).

(20)

5. Calculate the input impedance for zl =50 Ω, zo=50 Ω,
d=1, and λ=1.

(21)

Note : The Complex Format mode
has been switched to Rectangular
so that real and imaginary results
are displayed.
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6. Since connecting elements in parallel with transmission
lines is common, admittance is helpful in transmission
line calculations.

Define the admittance calculation as a function yin
which uses the function zin (screen 22).

(22)

7. Return to the Home screen, and clear the TI-89 by
pressing 2 ˆ 2:NewProb  ¸.

8. Use yin  to calculate the input admittance of a zo=50 Ω
line for d=0.35m and λ=1 for the real values of zl=0 and
100 (screen 23).

(23)

9. Calculate the input admittance for the complex values
of zl=j50 and 100-j50. Use zo=50 Ω, d=0.35m, and λ=1m
(screen 24).

(24)

Topic 60:  VSWR

The reflection coefficient is difficult to measure, so an easily measured alternate parameter is used
to describe mismatch, Voltage Standing Ratio (VSWR), given as

VSWR L

L

=
+
−

1

1

| |

| |

Γ
Γ

1. Define the function vswr  (screen 25) to implement these
calculations. Vswr uses the function reflcoef  from
Topic 57.

2. Return to the Home screen, and clear the TI-89 by
pressing 2 ˆ 2:NewProb  ¸.

(25)

3. Calculate the VSWR of loads of 0, 0.01, j50 Ω, with
zo=50 Ω (screen 26).

The results are undefined (undef ) for short circuits and
open circuits.

(26)

4. Calculate the VSWR of loads of 1000, 50, 100, 100-j50 Ω.

Use a value of 50 ¶ (note the decimal point) in the last
entry to get the floating-point value.

VSWR varies from 1 for a matched condition to ∞ for
loads of 0, jX, or ∞ Ω.

(27)
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Topic 61:  Impedance Matching

A load can be matched to a transmission line, ΓL=0, by the addition of parallel circuit elements.
One method of matching a load is to insert an additional length of line between the original line
and the load as shown in Figure 2. The length of this added line is chosen so that the real part of
the input impedance (or admittance) equals the characteristic impedance (or admittance) of the
transmission line. Then a parallel element is added to cancel the imaginary part of input
admittance resulting in a matched condition. In mathematical terms the match is achieved when

real(yin(zl,zo,d, λ)) = real(gin + jbin) = 1/zo

where zl, zo, and λ are fixed and d varies.

The resulting value of susceptance, jbin , must be cancelled by a parallel element to achieve the
desired match.

Calculate the parameters to match the load zl=100-j50 to a 50 Ω line.

Figure 2.  Matching circuit

1. On the Home screen, enter the impedance matching
equation as shown in screen 28.

½ real( yin  c 100 | 2 ) 50 b 50 b d b 1 d d
| 1 e 50 Á 0 § eqn

The equation is stored in eqn so that the Numeric Solver
can be used to find the value for d.

(28)

2. Press O 9: Numeric Solver . The equation is displayed
as shown in screen 29.

(29)

3. Press ¸ „ to solve for d (screen 30).

d=.125λ is one solution.

(30)
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4. Therefore, d=.125λ is the required value for the function
yin .

On the Home screen, calculate the parameters for
zL=100-j50Ω, zo=50m, d=.125λ, and λ=1m (screen 31).

gin=.02=1/50, and the accompanying susceptance is
jbin =j0.02. The equality of g and b is merely coincidental.

(31)

To match this load, a parallel susceptance of -j0.02 is
needed. This is satisfied by an inductor since
1/2πfL=0.02 or L=1/0.04πf where the frequency must be
known to determine L.

There are an infinite number of solutions, repeating
every λ/2, that is, d=.125, .625, 1.125,… . But there are
other solutions for d as well.

5. To see these, press ¥ $ and set xmin  to 0 and
xmax  to .5 as shown in screen 32.

(32)

6. Press O 9:Numeric Solver  ¸ to redisplay the
Numeric Solver.

7. Press … 4:ZoomFit  to see a graph of the equation on the
right of a split screen (screen 33).

(33)

8. The Numeric Solver found the first zero; however, the
second zero is also a valid solution. To find its value,
press the B and D keys until the cursor is near the
second zero (screen 34).

(34)

9. Press 2 a to switch screens, and then press
† Get Cursor  (screen 35).

d now has the x value of the cursor.

(35)
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10. Press „ Solve  to get the second solution (screen 36).

The proper conductance occurs at about d=.301.

(36)

11. Press " ¥ 1 to display a full-sized Home screen.

12. Use the function yin  to calculate the input admittance
for zl=100-j50Ω, zo=50m, length d=.301λ, and λ=1m
(screen 37).

The input admittance for this length is yin=.020-j.020.
This can be matched by using a capacitor where
2πfC=.02.

(37)

Tips and Generalizations

This chapter has again shown the power of the Numeric Solver for finding an unknown in a
transcendental equation and plotting the equation versus the unknowns to see if there are multiple
solutions. This chapter has also shown that the Solver remembers previous equations, which can
be a great time saver.

Finding properties of transmission lines is nice; however, for the ambitious who really want to go
far, Chapter 13 on antennas is the way to go.
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. 

Antennas This chapter describes how to perform basic antenna and
radiation calculations with the TI-89. Antenna patterns,
radiation resistance, radiation integrals, and phased array
patterns are included.

Topic 62:  Incremental Dipole

The most fundamental antenna is the incremental dipole as pictured in Figure 1.

aX

aZ

Hφθ

Eθr

δh aY
Io

φ

Figure 1.  Incremental dipole

For mathematical convenience, the dipole is centered at the origin and aligned with the z-axis. It
has a length δh which is much shorter than the wavelength λ, that is, δh<<λ. It is excited by a
sinusoidal current source of angular frequency ω. The resulting current is uniformly distributed
along the dipole and has a phasor form of io..

Example 1: Calculating Incremental Dipole Values

The far-zone electric field radiated by the incremental dipole is given by the vector

E a=
−

j
iok h e

r
V m

jkr

η δ θ
π θ
sin

/
4

C h a p t e r  1 3

Features Used

crossP ( ), dotP( ),
real( ), conj( ) , Í,
NewProb,  §,
Polar graphs

Setup

¥ 1
NewFold ant 
setMode("Complex 
Format", "Polar")

 >
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1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

 Using 3, set Complex Format  to POLAR.

2. Enter the vector in spherical coordinates as shown in
screen 1.

2 g 0 b 2 ) eta p io p k p ¥ c j d h p 2

W ¥ Ï d ¥ s · 2 ) k p r d e c 4 2 T r d
b 0 2 h § eincdip

(1)

Note : To enter δ, press ¥ c j d
on the keyboard.

3. The far-zone magnetic field is

H a=
−

j
iok h e

r
A m

jkrδ θ
π φ
sin

/
4

Enter the vector as shown in screen 2.

2 g 0 b 0 b 2 ) i o p k p ¥ c j d h p 2
W ¥ Ï d ¥ s · 2 ) k  p r d e c 4 2 T r d
2 h § hincdip

(2) 

4. These fields represent outward propagating, spherical
waves with an amplitude that varies with polar angle.
The fields decrease as the distance to the antenna is
increased. The power density of such a field is given by

W
E H= × ∗Re( )

2
w/m2

Calculate the power density as shown in screen 3.

½ real( ½ crossP(  eincdip  b ½ conj(
hincdip  d d d e 2 § wincdip

(3)

The result is

( )  (  )k eta io h

r

2 2 2 2

2 232
0 0

δ θ
π

sin( )











This shows that the power is directed radially outward.
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5. The total power radiated is calculated as

PRAD

SPHERE

= •∫∫ W ds

Enter this expression as shown in screen 4.

2 < 2 < ½ dotP(  wincdip  b 2 g r Z 2 p
2 W ¥ Ï d b 0 b 0 2 h d b ¥ Ï b 0 b 2
T d b ¥ c j f b 0 b 2 2 T d § pradincd

Calculation of the radiated power is simplified since
there are only radial components of both W and ds.
Note that the differential surface element on the sphere
is r2sinθdθdφ.

(4)

Note :  To enter φ, press ¥ c
j f.

6. Substituting of the free space wave impedance as
eta=120π and the wave propagation constant as k=2π/λ
gives the average power radiated into free space.

Use the “with” operator to substitute the values as
shown in screen 5.

pradincd  Í eta Á 120 2 T ½ and k Á 2 2 T
e ¥ c j l

(5)

Note :  To enter λ, press ¥ c j l.

7. The current flowing into one side and out of the other
side of the dipole is io. From a circuit point of view, the
power extracted from the current by radiation is given
by

P
io R

RAD
RAD=

2

2

where RRAD represents equivalent resistance to dissipate
this power. The radiation resistance is calculated as

R
P

io
RAD

RAD=
2

2

Find the radiation resistance as shown in screen 6.

2pradincd  e io Z 2 Í eta Á 120 2 T ½ and k Á
2 2 T e ¥ c j l § rradincd

(6)



130 ELECTRICAL ENGINEERING APPLICATIONS WITH THE TI-89

© 1999 TEXAS INSTRUMENTS INCORPORATED

8. Calculate the radiation resistance for δh=0.05λ as shown
in screen 7.

rradincd Í ¥ c j d h Á .05 ¥ c j l

The result of RRAD = 1.97 J is quite small for an
incremental dipole.

(7)

9. The directive gain of an antenna is defined as

D
r W

r W

r W

PG
r

rAVE

r

RAD

= =
2

2

2

4π

Calculate the directive gain as shown in screen 8.

4 2 T ½ dotP(  wincdip  b 2 g r Z 2 b 0 b 0
2 h d e pradincd  § dincdip

(8)

10. The directive gain indicates how much the power
density is increased or focused at an angular position
compared to that of an isotropic source with the same
radiated power. Directivity is the peak directive gain,
that is, 3/2 for the infinitesimal dipole as shown in
screen 9.

(9)

Topic 63:  Antenna Patterns

The directive gain or just gain shows the variation of power density with the polar angle θ at a
fixed radial distance from the dipole. A plot of this variation, called the antenna power pattern and
commonly normalized to one at the peak, helps to visualize this important characteristic of the
dipole. It is standard practice to make pattern plots in the plane of the electric field, the E-plane
pattern, and in the plane of the magnetic field, the H-plane pattern. The planes are chosen to
include the peak value as well. For the dipole antenna, the peak occurs at θ=90° so the E-plane
pattern is plotted as a function of θ in a plane of constant φ; the H-plane pattern is plotted as a
function of φ in the θ=90° plane.

1. To use the polar graphing capabilities for an E-plane
pattern, directive gain must be defined as a function of
θ as shown in screen 10.

2 ± 0 0 2 d § d c ¥ Ï d

(10)

2. Set the Graph  mode to POLAR and the Angle  mode to
DEGREE using 3.

3. In the Y= Editor, define the function to be graphed
(screen 11).

¥ # ¸ d c ¥ Ï d e c 3 e 2 d

Note that the division by 3/2 is to normalize the peak
value of the graph to 1.

(11)
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4. In the Window Editor, set the window variable values
(screen 12) for θ to vary from 0 to 360° (that is θmin=0 and
θmax=360). Although polar angle θ is defined over 0 to
180°, this range is needed to include both half-planes on
which φ is constant.

θstep=1 is used to generate the plot here, but θstep=5 is
faster and good enough in most cases. Since the pattern
is normalized to one (division by the 3/2 factor), the
ranges on x and y are ±1.

(12)

5. Press ¥ % to plot the E-plane pattern (screen 13).

This is a distorted view of the pattern due to different
scaling on x and y.

(13)

6. Use „ 5:ZoomSqr  to plot a properly scaled pattern
(screen 14).

Since the polar angle θ is measured from the positive
z-axis on the dipole and the graphing angle θ is
measured from the positive x-axis on the screen, the
dipole lies along the x-axis of the pattern. (14)

7. Half-power beamwidth is a parameter used to describe
antennas. It is the angular separation of the half-power
points of a pattern. Use the trace cursor (… and A, B,
2 A, or 2 B ) to display pattern values and angles
and find the beamwidth.

First, use ¥ Í B 2:Polar  to set coordinates in the polar
mode.

The right-hand half-power point is at θ=45°. Press …
and 45 ̧ . Screen 15 shows that at an angle of 45°
the power is 0.5.

(15)

8. The left-hand half-power point is at θ=135°.

Press 135 ¸.

So the E-plane beamwidth is 135-45=90°.

(16)
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9. The concept of beamwidth can be further emphasized
by using 2 ‰ 3:Line .

10. In response to the on-screen question “1st Point? ”,
position the cursor at the origin and press ¸ .

11. For “2nd Point? ”, position the cursor at the angle of the
lower half-power point, θ=45°, with rc=1.12 and press
¸ (screen 17).

(17)

12. Add a second line at the upper half-power point in the
same manner.

13. Press N to exit this mode.

14. Add text to the graph using 2 ‰ 7:Text . Position the
cursor at the starting point (screen 18). If there is an
error, use the eraser (2 ‰ 2:Eraser  and ¸, then
hold down the ¤ key to erase).

15. The H-plane pattern is plotted as a function of φ;
however, it has no φ dependence so it is a constant and
graphs as a circle of radius 1.

(18)

Topic 64:  Phased Arrays

Phased arrays are commonly used to tailor antenna patterns to a desired shape. When several
identical elements are located near each other, they form an array. The pattern of the array is the
product of an element factor, a geometric factor, and an array factor. The array factor, AF, for N
identical, equi-amplitude radiators located on the z-axis with uniform spacing D, is given by

AF

N D

N
D

=
+













+





sin cos

sin cos

2
2

2

π
λ

θ β

π
λ

θ β

β is the progressive phase shift along the array from one element to the next. An alternate form
allows graphing with θ in degrees and expresses radiator spacing, d=D/λ, in fractions of the
wavelength for easy graphing of the array factor

( )
AF

N
d

N d
=

+





+





sin cos

sin cos

2
360

180
2

θ β

θ β

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter the array factor expression as shown is screen 19.

½ abs( 2 W n e 2 c 360d p 2 X ¥ Ï d
« ¥ c j b d d e c n p 2 W 180d p 2 X
¥ Ï d « ¥ c j b e 2 d d d § af c n b d
b ¥ Ï b ¥ c j b d

(19)



CHAPTER 13:  ANTENNAS 133

© 1999 TEXAS INSTRUMENTS INCORPORATED

3. The beam from an array can be “steered” by varying the
phase-shift between elements.

To graph the patterns for a two-element array (n=2)
with d=1/4 spacing for phase shifts of β=-90°, 0°, 45°,
and 90°, define -1 in the Y= Editor as shown in
screen 20.

af c 2 b 1 e 4 b ¥ Ï b ¥ c j b d

(20)

4. On the Home screen, assign the values -90, 0, 45, and 90
to β.  Then graph each pattern as shown in screens 21
through 24.

(21) (22)

-90!ββ 0!ββ

(23) (24)

45!ββ 90!ββ

5. With more elements in an array, the beamwidth becomes narrower and more focused, as
shown in screens 25-27 by arrays with 2, 4, and 6 elements (n=2, 4, and 6) spaced with
one-half wavelength (d=1/2) and with zero phase-shift (β=0). However, this improvement
in beamwidth is accompanied by an undesirable increase in the number and amplitude of
sidelobes.

Edit r1 in the Y= Editor.

af c n b ¨ e © b ¥ Ï b 0 d

On the Home screen, assign the values of 2, 4, and 6 to n. Then graph each pattern.

(25) (26) (27)

2!n 4!n 6!n



134 ELECTRICAL ENGINEERING APPLICATIONS WITH THE TI-89

© 1999 TEXAS INSTRUMENTS INCORPORATED

6. Finally, the element spacing can narrow the beamwidth, but the wider spacing causes more
and larger sidelobes. This effect is shown in screens 28-30 by 3 elements (n=3) with spacing
of λ/4, λ/2, and λ (d=1/4, 1/2, and 1) and β=0.

Edit r1 in the Y= Editor.

af c 3 b d b ¥ Ï b 0 d

Assign the values for d on the Home screen. Graph the patterns.

(28) (29) (30)

1/4!d ½!d 1!d

Tips and Generalizations

These examples show how rather complex antenna and array equations can be better understood
by making a few exploratory  polar plots with the TI-89.

So far, only equations have been graphed. The next chapter shows that lab data also can be
plotted.
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Manipulating Lab
Data:  The Diode

This chapter introduces the Shockley diode equation, which
gives the voltage-current characteristics of a diode. The
equation is plotted and compared to actual diode data
taken in a laboratory. The method of importing data to the
TI-89 is shown, followed by instructions on how to
manipulate the data to prepare it for plotting.

Topic 65:  The Diode Equation

The diode has a voltage-current characteristic that is modeled by the Shockley diode equation

i i e
qV

nkT= −






0 1

where

i is the current through the diode,

i0 is the reverse saturation current,

q is the charge of an electron (1.6022eë19),

V is the voltage across the diode,

n is a dimensionless factor that is theoretically 1, but ranges from 1 to 2 in real diodes,

k is Boltzmann’s constant (1.3806eë23), and

T is the temperature in Kelvin (K).

1. Clear the TI-89 by pressing 2 ˆ 2:NewProb  ¸.

2. Enter the equation as shown in screen 1.

i0 p c ¥ s q p v e c n p k p t d d | 1 d §
diodeeq

(1)

Note : Enter the p between i0 and
the c; otherwise, i0 will be
interpreted as a function.

C h a p t e r  1 4

Features Used

TI-GRAPH LINK ,
NewData, NewProb,
DATA EDITOR, Í, 
§

Setup

¥ 1
NewFold diode
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3. The values for the parameters can be entered now.

Enter q and k. Choose a typical value of i0=1.í-10 A and
a temperature, t, of 273.16+25 K. The parameter n is not
specified yet.

(2)

4. The usual way to plot the diode equation is to press
¥ # and enter the equation.

However, you can skip that step and enter the equation
from the Home screen as shown in screen 3.

diodeeq  Í n Á 1.2 ½ and v Á x § y1 c x d
(3)

5. Press ¥ $ and set the window variable values as
shown in screen 4.

(4)

6. Press ¥ % to see the plot (screen 5). It takes a
couple of seconds for the graph to appear since the
values on the left half of the screen are nearly 0 but
must be plotted.

It looks like the proper curve for a diode. The effects of
n can be seen by plotting a second equation with a
different value of n.

(5)

7. In the Y= Editor, enter the equation for y2 with n=1.6 as
shown in screen 6.

diodeeq  Í n Á 1.6 ½ and v Á x

(6)

8. Graph both equations.

Increasing n causes the curve to move to the right with
a larger voltage drop across the diode in the “on” state
(screen 7).

(7)
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Topic 66:  Lab Data

The Shockley equation attempts to model a diode, but how close is it? The only way to tell is to
take some real data from a diode and compare it to the equation. Figure 1 shows the diagram of a
circuit that was built to measure such diode characteristics. (The value for the resistor is the
measured value of a resistor marked as 1kΩ.)

Figure 1.  Diode measurement circuit

Several values for vin  and vr were measured in the lab and entered into two files (called vin.txt  and
vr.txt , respectively) on a computer. These values can be downloaded to the TI-89 using the
TI-GRAPH LINK™ cable and software. Alternatively, the data from vin  and vr can be entered
directly into the TI-89 by hand.

A single data value is entered on each line of the text file. The data presented here is inserted into a
table to save space, vin.txt  in Table 1 and vr.txt  in Table 2. (Read across each row and then continue
at the left of the next row.)

0.2002 0.2507 0.3003 0.3501

0.4008 0.4501 0.5014 0.5506

0.6001 0.6504 0.7006 0.7503

0.8008 0.8501 0.9 0.951

1.0005 1.1022 1.2029 1.3017

1.4013 1.5032 2.002 2.502

2.999 4.007 5.003 7.502

10.003

Table 1.  vin.txt data

0.0001 0.0004 0.0011 0.0031

0.008 0.0182 0.0368 0.062

0.0928 0.1282 0.1666 0.2063

0.2484 0.2902 0.3336 0.3778

0.4231 0.5158 0.6087 0.7007

0.7951 0.8912 1.369 1.855

2.341 3.331 4.315 6.79

9.274

Table 2.  vr.txt data
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Method 1: Using the TI-GRAPH LINK™

Download the values from the computer into the TI-89 using
TI-GRAPH LINK.

1. Start TI-GRAPH LINK on the PC and select
Tools:Import:ASCII Data . A file selection box appears.

2. Select vin.txt  on the computer and click OK. Naming the
converted file as the default, vin.9xl , is fine, so click OK.

3. Repeat these steps for vr.txt .

4. Use the cable to connect the computer and the TI-89.

5. On the TI-89 screen, display the Home screen.

6. Now transfer these files to the TI-89 by selecting
Link:Send  on the computer.

7. Double-click on vin.9xl  and vr.9xl , and then click OK. A
window opens showing the progress of the file transfer.
It shouldn’t take long.

8. Click OK once the “** Complete **” message appears.
The data is now stored in list form in the TI-89.

9. Check the values by entering vin  and vr on the Home
screen. The results should match screen 8.

(8)

Note :  The default mode used in this
book is “FIX 2”; therefore, only 2
digits are displayed even though 4
were entered.

Method 2: Entering the Data Directly

On the Home screen, enter the data directly as a list separated
by commas.

2 [.2002,.4008,…,7.502 \ § vin

2 [ .0001,.008,…,6.79 \ § vr

1. Combine the two sets of data, vin  and vr, into one data
file by using NewData as shown in screen 9.

½ NewData data  b vin  b vr

(9)



CHAPTER 14:  MANIPULATING LAB DATA:  THE DIODE 139

© 1999 TEXAS INSTRUMENTS INCORPORATED

2. The contents of data do not appear on the Home screen,
but they can be viewed by pressing O 6:Data/Matrix
Editor 2:Open,  specifying Type as Data, and selecting the
variable data. (screen 10).

(10)

3. It’s a good idea to label each column of the data so that
the two sets of data are not confused.

Press C C and enter vin . Then press ¸ B C vr
¸ (screen 11).

(11)

4. The diode voltage, vd=vin ìvr, is placed in column c3 by
pressing B C vd ¸ c1 | c2 ¸ (screen 12).

Note that the contents of the computed cells are
“locked” to their computed values. This is indicated by
the Œ symbol preceding the cell name in the command
line. (12)

5. The current through the diode is the same as the
current through the resistor, which is vr/982.9.

Place this in column c4 by pressing B C C id
¸ c2/982.9 ¸ (screen 13).

(13)

6. Plot the diode current in c4 versus the diode voltage in
c3 by pressing „ Plot Setup  ƒ Define .

7. Change Mark to Box . Then make sure the plot
parameters are c3 and c4, as shown in screen 14.

(14)

8. Press ¥ % to see the plot (screen 15).

The squares on the bottom are the lab data. The solid
curves are the plots from Topic 65. The plot range isn’t
right for the data.

(15)

9. Press „ 9:ZoomData  to scale the graph to the data
(screen 16).

The left curve was for n=1.2, and the right was for
n=1.6. The data looks like it fits a curve where n ≈1.5.
Try it.

(16)
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10. Press ¥ # and enter the diode equation as y3 with
n =1.5 as shown in screen 17.

diodeeq  Í n Á 1.5 ½ and v Á x

(17)

11. Press ¥ % (screen 18).

The laboratory data closely fits the n=1.5 curve. The
actual value of n may be a little more than 1.5.

(18)

Tips and Generalizations

Any sort of lab data can be plotted using the techniques shown in this chapter. Plotting the data as
it is taken in the lab could show quickly when anomalous data has been collected.

Chapter 15 shows how to compute what money is worth both now and in the future.
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. 

Financial
Calculations

This chapter describes how to use the TI-89 to calculate
interest, present worth, loan repayments, and so forth.
These methods utilize the time-value-of-money.

Topic 67:  Simple Interest

Money that is invested earns interest. The most basic form of interest is known as simple interest.
An amount of money with present value P that is invested for N years at an annual interest rate of i
has a future value F. For simple interest, the future value is calculated as F=P+NPi=P(1+iN). The
future values can be converted back to present value as P=F/(1+iN).

1. Clear the TI-89 by pressin g 2 ˆ 2:NewProb  ¸.

2. Find the payment received after 5 years on a $5000
investment at 6% simple interest (screen 1). The future
value is given by F=5000(1+.0 6 ù5)=$6500.

The total interest paid is 6500-5000=$1500.

(1)

3. The TI-89 displays this type of sequential calculations in
the SEQUENCE graphing mode.

Pres s 3 and se t Graph  mode t o SEQUENCE .

4. Pres s ¥ # and enter the equation fo r u1 as a function
of the payment period as shown in screen 2.

5000 c 1 « .06 n d

Also enter an initial value o f ui1=5000 .

(2)

C h a p t e r  1 5

Features Used

seq( ), SEQUENCE, 
solve( ) , Í, Σ( sum, 
±, NewProb

Setup

¥1
NewFold econ
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5. Set the Window variable values in the Window Editor as
shown in screen 3.

(3)

6. Pres s ¥ % to display the sequence for a 20-year
period (screen 4). The future value at the 10th year is
observed by pressin g … Trac e and moving the cursor to
the 10th year (nc) where the value is $8,000.

(4)

Topic 68:  Compound Interest

Compound interest is more common than simple interest and much better for the investor. The
interest is calculated on the initial investment plus the interest earned to date. At the starting date,
the value of the investment is F(0)=P. At the end of the first interest period, the value of the
investment is F(1)=P(1+i); at the end of the second period the value is F(2)=P(1+i)2. The pattern is
clear-—the value after the nth period is F(n) = P(1+i)n.

1. Clear the TI-89 by pressin g 2 ˆ 2:NewProb  ¸.

2. Screen 5 shows how to find the interest on the same
$5000 principle at 6% compound interest paid on a
yearly basis for 5 years (screen 5). The future value is
calculated by F=5000(1+.06)^5= $6691.13.

The total interest earned is 6691.13 - 5000=$1691.13,
more profitable for the investor than simple interest.  (5)

3. The most common method of interest payment is with
monthly compounding. The monthly interest rate is
iMonth = i/12.

Find the future value after 5 years for the $5000
investment at 6% annual interest compounded monthly
(screen 6): F=5000(1+.06/12)^(5*12)= $6744.25.

The interest earned is $1744.25, an even more attractive
investment.

(6)

4. The two compound interest examples are compared
graphically with the simple interest case by entering
them in the Y= Editor.

u2(n)= 5000 c 1 « .06 d Z n

with ui2=5000

u3(n)= 5000 c 1 « .06 e 12 d Z c n p 12 d

with ui3=5000

(7)
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5. Make the three graphs look different. Highlight the
equation fo r u2 and pres s 2 ˆ 1:Line. Highligh t u3 and
pres s 2 ˆ 4:Thick. Then pres s ¥ %.

Although the two compounding curves look the same,
pressin g … Trac e shows that a t nc = 15 years the three
graphs have the future worth of $9500.00, $11982.79,
and $12,270.47, for simple interest, yearly
compounding, and monthly compounding, respectively.

(8)

Note: Use D and C to change from

one graph to another.

Topic 69:  Loans

The calculation of loan repayment schedules is of great interest in professional as well personal
life. Typical loans require an equal periodic payment A made for k payment periods to repay an
amount P borrowed at interest rate i per period. At the end of the first payment period, the amount
owed is P(1+i) (the principle plus interest for one period) minus one payment A, that is, P(1+i)-A.
After the second payment, the remaining amount owed is (P(1+i)-A)(1+i)-A=P(1+i)2- A(l+i)-A.
After th e kth payment, the entire loan and interest is paid, P(1+i)k-A(1+i)k-1-A(1+i)k-2-...-A(1+i)-A=0.
Use solve( ) to find the form of A.

1. Clear the TI-89 by pressin g 2 ˆ 2:NewProb  ¸.

2. Enter th e solve( ) command as shown in screen 9.

½ solve ( p p c 1 « i d Z k | a p ½ ∑( c
1 « i d Z n b n b 0 b k | 1 d Á 0 b a d § a1

(9)

3. Calculate the total interest paid on a two-year, $5000
auto loan at an annual interest rate of 9% repaid with
monthly payments.

Enter the interest rate , loan amount, and number of
payments (screen 10).

.09 e 12 § i 2 Ë 5000 § p 2 Ë 24 § k

4. Display the payment amount ($228.42) by enterin g a1.

5. Calculate the total interest paid.

k p 2 ± | 5000

The total interest paid is $482.17.

(10)

6. Find the payment for the same debt but with a typical
credit card interest rate of 15.9% (screen 11). The
monthly payment (a1) is $244.58; and the total interest
paid i s k ù a ì 5000 = $869.84, nearly twice the total
interest for the smaller rate.

(11)
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Topic 70:  Annuities

An annuity is a financial process in which equal payments, A, are made to an account with an
interest rate, i, for a fixed number of periods, k. Usually, the compounding takes place each period.
This is often called a uniform series. The first payment earns compounded interest for k -1 periods
with a future value of A(1+i)k-1; the second payment has a future value of A(1+i)k-2; the last
payment that is made when the annuity is due has a future value of A. The sum of these terms gives
the future value of the annuity, F= A∑(1+i)n summed from 0 to k-1. To achieve a future value F, the
periodic payment is A=F /∑(1+i)n.

Example 1: Finding Monthly Payment Amount

1. solve ( ) gives a closed form of solution for the
computations, but first us e DelVar so that previous
values fo r i and k are deleted.

½ DelVar i b k

2. Use th e solve( ) command to enter the annuities equation
as shown in screen 12.

½ solve ( a Á f e ½ ∑( c 1 « i d Z n b n
b 0 b k | 1 d b a d § a1

(12)

3. To calculate the monthly payments necessary to
accumulate $5000 in 5 years at 6% annual interest rate,
enter the variable values as shown in screen 13.

(13)

4. Find the monthly payment amount, the total amount
paid, and the amount of interest earned (screen 14).

a1

x 2 ±

5000 | 2 ±

The monthly payment is $71.66; the total amount paid is
$4299.84; the total interest earned is $700.16.

(14)
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Example 2: Finding Amount to Invest

The next example shows how to calculate the present amount to invest, P, required to receive
equal periodic payments, A, over a fixed number of periods, k, from an account which earns a
compound interest rate , i. The equation is the same as the equation in Topic 69 with present value,
P = F/(1+ i) ^ k, substituted for future value.

1. Delete the values fo r i, k, an d P.

½ DelVar i b k b p

2. Enter the equation as shown in screen 15.

½ solve ( a Á i p c i « 1 d Z k p p e c c i «
1 d Z k | 1 d b p d § p1

(15)

3. This process is the inverse of loan payments. Instead of
receiving an amount of money and paying it back in
equal payments, an amount of money is paid to an
institution and the equal payments are received.

Calculate the amount to be paid in order to receive
equal monthly payments of a=$100 for k=2 years=24
months from an account that earns i=7% interest per
month (screen 16).

A deposit of $2233.51 (p1) returns a total of $2400 over
the two-year period.

(16)

Tips and Generalizations

This chapter has shown how the TI-89 can easily derive and solve time-value-of-money problems.
Consider using these examples before you apply for a loan or get a credit card.
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∆-Y transformations, 56

A

annuity, 144
antenna patterns, 127, 130, 132
applications screen, 7
approximate results, 26
average power, 49, 50-53

B

beamwidth, 132, 133
Butterworth filter, 33, 38, 39, 44

C

½  key, 16
catalog screen, 8
char screen, 8
characteristic impedance, 117
Chebyshev filter, 33, 38, 42
coaxial, 117
complex power, 47, 51-55
compound interest, 142
convolution integral, 71, 74
coordinate system transformations, 83
critical damping, 64, 65
curl, 99
current, 50

D

data
saving, 8

default settings, 1
deSolve(), 17

differential calculus, 95
differential equations, 27, 32
directive gain, 130
divergence, 98

E

exact results, 26
exact/approx mode, 26

F

filter design, 38
first-order circuit

with initial condition, 19
folder structure, 3
Fourier, 107
Fourier Series, 77, 81
frequency response, 35, 38, 61, 68
FUNCTION, 6
function key, 16
functions, 71

continuous, 71
finite, 71
piecewise, 71

G

geometry matrix, 114
getFold(), 4
gradient, 95
graph, 7

first-order solutions, 18
Greek symbols, 8, 59

H

Home screen, 3, 4, 6, 8, 9, 16

I n d e x
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I

impedance matching, 124
incremental dipole, 127
input admittance, 123
input impedance, 122
instantaneous power, 49
integral calculus, 95
interest, 141

K

keystroke instructions, 1
Kirchhoff’s current law, 11, 17, 62
Kirchhoff’s voltage law, 23, 27, 57

L

lap( ) function, 105
Laplace transform, 61
Laplacian, 100, 106, 112
line integral, 101
line voltages, 48
linear circuits, 11
load voltage, 58
loan repayments, 141, 143
logarithmic frequency plots, 44
loop analysis, 16
lowpass filter, 38, 39

M

MATH screen, 7
microstrip, 117, 120
mode settings, 1-3, 8

N

navigating screens, 6
negative phase sequence, 48
NewFold, 4
NewProb, 3
nodal analysis, 11, 12, 16
Numeric Solver, 33, 40, 43, 45, 118, 120, 125

O

Ohm’s law, 11
overdamped circuit, 62

P

parallel capacitance, 54, 55
parallel plate, 117
passband, 39, 40, 41, 43-45
phase shift, 122
phase voltages, 48, 49
phased arrays, 132
phasor, 33-35, 47

algebra, 47
analysis, 33
equivalent, 33

phasors, 32
piecewise convolution, 71
pole/zero constellation, 67
poles, 61, 66
poles and zeros, 65

3D, 69
positive phase sequence, 48
power factor, 47, 53-55, 59

corrections, 47
lagging, 53
leading, 53

power triangle, 55
present worth, 141
Program Editor, 59

R

radiation calculations, 127
radiation resistance, 129
RC first-order circuit, 17
RclGDB, 3
reactive power, 52
reflection coefficient, 121
relaxation method, 112
RLC circuit, 61

adjusting the circuit parameters, 31
direction field, 27
multiple initial conditions, 30
second-order circuit, 23
time domain, 30

root-mean-square (RMS), 51
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S

save
data, 8

screens
navigating, 6

s-domain, 61, 62, 64, 70
setFold(), 4
Shockley diode equation, 137
shortcuts, 26, 59
simult(), 11
sinusoidal voltage, 52
solve( ), 11, 16
split screen, 37
square wave, 77, 80
steady-state, 32, 33
StoGDB, 3
stopband, 39, 40, 41, 44, 45
surface integrals, 103
surface normal, 97
symbolic algebra, 61

T

3D graphing, 109, 115
3D poles and zeros, 69
TI-GRAPH LINK, 138
time-domain, 61, 70
time-value-of-money, 141, 145
transient, 32
transmission lines, 117
twin-lead, 117
two-dimensional problems, 105

U

unbalanced three-phase calculations, 47
unbalanced three-phase systems, 57

V

variable
archive, 9
lock, 9
unarchive, 9
unlock, 9

VAR-LINK screen, 4
VARs (volt-amperes reactive), 52
vector, 85

angle between, 86
components, 85
parallel and perpendicular, 87
transformation, 88, 90-92

vector component transformations, 83
voltage, 50
voltage drop, 101
VSWR (Voltage Standing Ratio), 123

W

when( ) function, 71, 76
window screen, 6

Y

Y-∆ transformation, 56

Z

zeros, 61, 66
zo, 117, 118, 121




