THE STABILITY OF FRAMES

M. R. HORNE
Sc.D., M.I.C.E., A.M.I.Struct.E.
Professor of Civil Engineering, University of Manchester

and

W. MERCHANT

M.A., S.M., D.Sc., M.I.Struct.E., M.I.C.E., A.M.I.Mech.E.

Professor of Structural Engineering, University of Manchester

PERGAMON PRESS
OXFORD • LONDON • EDINBURGH • NEW YORK
PARIS • FRANKFURT

Pergamon Press Ltd., Headington Hill Hall, Oxford 4 \& 5 Fitzroy Square, London W. 1
 Pergamon Press (Scotland) Ltd., 2 \& 3 Teviot Place, Edinburgh 1
 Pergamon Press Inc., 122 East 55th Street, New York 22, N.Y.
 Pergamon Press GmbH, Kaiserstrasse 75, Frankfurt-am-Main
 Federal Publications Ltd., Times House, River Valley Rd., Singapore
 Samcax Book Services Ltd., Queensway, P.O. Box 2720, Nairobi, Kenya

Copyright © 1965 Pergamon Press Ltd.
First Edition 1965
Library of Congress Catalog Card No. 65-19833

Set in 10 on 12 pt. Times New Roman
Printed in Great Britain by The Pitman Press, Bath

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out, or otherwise disposed of without the publisher's consent, in any form of binding or cover
other than that in which
it is published.

Preface

THE authors have set out, in this volume, to give a clear picture of phenomena affecting the stability, both in the elastic and in the partially plastic range, of plane, rigid-jointed, triangulated and non-triangulated frames. Necessarily, much has been omitted. Thus, there is no mention of energy methods in the derivation of critical loads. The authors believe that, although energy methods are of prime importance in dealing with the stability of isolated members and of plate elements within members, the behaviour of plane frames can be adequately presented without the use of such methods, and that there are certain advantages in so doing in an elementary treatment.

The method of presentation is through examples designed to illustrate the physical principles involved rather than to present in detail a multiplicity of analytical methods; it is considered that, once a reader familiar with linear elastic analysis has understood the principles of non-linear behaviour, he will rapidly develop, for any particular problem, a suitable method of analysis. The examples treated in the text may be solved by hand with the help of a desk calculator. It is recommended that readers intending to carry out stability calculations should make use of the examples given at the ends of the chapters, these being either algebraic or, if numerical, again solvable by hand. Extensive calculations of the stability of frames are likely to be programmed for automatic digital computer, and reference to another book in this series (R. K. Livesley, Matrix Methods of Structural Analysis) may be made for help with such aspects.

Chapter 1 introduces the essential features of stability in elastic and elastic-plastic structures by reference to single members bending about one axis. Stability functions for prismatic elastic members are derived in Chapter 2, tables of these functions being
given at the end of the book (more extensive tables by Livesley and Chandler (Ref. 17) are available elsewhere). Chapter 3 deals with the elastic stability of triangulated frames, and Chapter 4 with non-triangulated frames. The behaviour of both triangulated and non-triangulated frames beyond the elastic limit is discussed in Chapter 5.

The authors acknowledge the assistance of various members of the staffs of the Department of Structural Engineering in the Faculty of Technology, and of the Department of Civil Engineering in the Façulty of Science, both in the University of Manchester, for reading and criticising the manuscript. Thanks are due to Dr. N. J. Gardner and Mr. M. J. Davies for their assistance in programming, for automatic digital computer, the tables of stability functions on pages 157 ff . The authors acknowledge permission from the University Presses of Cambridge and Manchester to reproduce examination questions taken from Degree papers.

CHAPTER 1

The Stability and Failure of Individual Members

1.1 Introduction

It is common, in dealing with rigid-jointed frames, to calculate deflexions and bending moments by a linear analysis. When this is done, the equations of equilibrium are established by considering the geometry of the structure in its undeformed state. This may

Fig. 1.1
be illustrated by reference to the simple structure $A B C$ in Fig. 1.1(a). The vertical column $A B$ is fixed to a rigid foundation at A, and supports the cantilever $B C$ through a rigid joint at B. If a vertical load P acts at C, the bending moment at any point D in the column is calculated as $P y_{0}=P a$, while the bending moment at any point F in the cantilever is $P x_{0}$. The total vertical deflexion Δ_{C} at C (Fig. 1.1(b)) may be obtained as $\Delta_{C}=\Delta_{B C}+\Delta_{A B}$
where $\Delta_{B C}$ is the deflexion produced by $B C$ acting as a cantilever while $\Delta_{A B}$ is the additional deflexion induced at C by the rotation θ_{B} of the joint B. If $E I$ denotes the uniform flexural rigidity of $A B$ and $B C$, then $\Delta_{B C}=\frac{P a^{3}}{3 E I}$ and $\Delta_{A B}=\frac{P a^{2} l}{E I}$, whence

$$
\begin{equation*}
\Delta_{C}=\frac{P a^{2}}{3 E I}(a+3 l) \tag{1.1}
\end{equation*}
$$

The deflexion Δ_{C} is thus proportional to the applied load P, giving the straight line $O b$ in Fig. 1.2(a) as the load-deflexion

Fig. 1.2
relation. In this treatment, it has been assumed that deflexions due to shear deformation and direct axial compression may be ignored. If these are allowed for, the deflexions are slightly increased, but are still linearly related to the applied load.

It is evident that, in a more refined analysis, one should calculate the bending moments in the actual deformed state of the structure, Fig. 1.1(b). The bending moment at D becomes $P y_{1}$, while that at F becomes $P x_{1}$. When this is done, the deflexion components, now denoted by $\Delta_{A B^{\prime}}$ and $\Delta_{B C^{\prime}}$, are no longer directly proportional to the applied load P, and the load-deflexion relation becomes curved as shown by $O b^{\prime}$ in Fig. 1.2(b).

The difference between the approximately and accurately calculated cantilever deflexions $\Delta_{B C}$ and $\Delta_{B C}{ }^{\prime}$ is likely to be small, provided the deflexions are small compared with the dimensions a and l. The difference between x_{0} and x_{1} is of order of magnitude $a(1-\cos \theta)$ (that is, of order $a \theta^{2}$ or $l \theta^{2}$ if a and l are of like order), where θ is a typical value of the angle of slope of the cantilever. On the other hand, the difference between y_{0} and y_{1} is of order $l \theta$, and may cause a significant difference between $\Delta_{A B}$ and $\Delta_{A B}{ }^{\prime}$. The linear analysis is thus in the first instance likely to be in error on account of the incorrect calculation of the bending moments in column $A B$, and generally in any structure it is the flexure of the axially loaded members that is the prime cause of non-linearity. The stability of frames is concerned with this non-linear behaviour, and the first step must be to consider the influence of axial loads in single members. The study of an isolated member under axial load develops ideas which have direct application to complete frames, and these ideas are explored in the present chapter.

It is assumed throughout that the member is undergoing flexure about one principal axis only, and that bending about the other principal axis (i.e. out of the plane of the paper) does not occur. This may imply that restraints must be present preventing such deformations, this being particularly so if the bending which is allowed is about the major principal axis.

1.2 Axially Loaded Member with Terminal Couples

The initially straight strut $A B$ in Fig. 1.3(a) is subjected to an axial thrust P applied at the centroids of the end sections, together with equal and opposite terminal couples M. As a result of this loading the strut takes up the deflected form $A C B$ in Fig. 1.3(b), the deflexion at D, distance x from A, being denoted by y relative to the straight line $O B$ forming the X-axis. The bending moment in the strut at D is thus ($M+P y$). If the strut has a uniform flexural rigidity $E I$ about axes parallel to the terminal
couples, and if the deflexions are sufficiently small for ($\mathrm{d} y / \mathrm{d} x)^{2}$ to be neglected in comparison with unity, the differential equation governing the deflected form becomes

$$
\begin{equation*}
E I \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-(M+P y) \tag{1.2}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
y=A \sin \alpha x+B \cos \alpha x-\frac{M}{P} \tag{1.3}
\end{equation*}
$$

Fig. 1.3
where $\alpha^{2}=P / E I$. The constants of integration A and B are derived from the boundary conditions that the deflexion y is zero at the ends $x=0$ and $x=l$ of the member. Hence

$$
\begin{aligned}
& 0=B-\frac{M}{P} \\
& 0=A \sin \alpha l+B \cos \alpha l-\frac{M}{P}
\end{aligned}
$$

giving $B=M / P$ and $A=(M / P)$ tan $\alpha / / 2$. The deflexion y given by equation (1.3) thus becomes

$$
\begin{equation*}
y=\frac{M}{P}\left\{\tan \frac{\alpha l}{2} \sin \alpha x+\cos \alpha x-1\right\} \tag{1.4}
\end{equation*}
$$

The maximum deflexion occurs at $C(x=l / 2)$, and has the value

$$
\begin{equation*}
y_{c}=\frac{M}{P}\left(\sec \frac{\alpha l}{2}-1\right) \tag{1.5}
\end{equation*}
$$

The relation between y_{c} and P is shown for four different values of M in Fig. 1.4. The values of y_{o}, P and M are expressed nondimensionally in terms of suitable functions of the length l of the strut and its flexural rigidity $E I$. For any value of M, the deflexion becomes indefinitely large as

$$
\sec \frac{\alpha l}{2} \rightarrow \infty \text {, i.e. as } \frac{\alpha l}{2} \rightarrow \frac{\pi}{2} \text { or } P \rightarrow \pi^{2} \frac{E I}{l^{2}}
$$

Hence the load $\pi^{2} E I / l^{2}$, denoted by P_{E}, is the elastic failure load of the strut, and is independent of the applied bending moment M.

An alternative presentation of the results is shown in Fig. 1.5. The stiffness k of the member with respect to end moments may be defined as the ratio of the applied moments M to terminal rotations $\theta_{A}=\theta_{B}$. It follows from equation (1.4) that

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=0}=\theta_{A}=\frac{M}{P} \alpha \tan \frac{\alpha l}{2}
$$

whence

$$
\begin{equation*}
k=\frac{M}{\theta_{A}}=\frac{\frac{\pi}{2} \sqrt{\frac{P}{P_{E}}}}{\tan \frac{\pi}{2} \sqrt{\frac{P}{P_{E}}}} k_{0} \tag{1.6}
\end{equation*}
$$

where $k_{0}=2 E I / l$, the stiffness of the strut when $P=0$. The variation of k / k_{0} with P / P_{E} is shown in Fig. 1.5, from which it

Fig. 1.4

Fig. 1.5
is seen that there is an almost linear reduction in stiffness of the member as the axial load is increased from zero to the elastic failure load ($P=P_{E}$). The elastic failure load may in fact be interpreted as that axial load at which the stiffness becomes zero. It is important to note that the stiffness depends only on the axial load (equation (1.6)), and is independent of the magnitude of the terminal bending moment M.
It should be noted that there is no mathematical reason for rejecting the above analysis for values of P greater than P_{F}. The stiffness k then becomes negative (Fig. 1.5), and this provides a clue to the physical significance of assuming $P>P_{E}$. Negative stiffness implies that an increase in end rotation is accompanied by an increase in the restraining moment, so that the strut must be connected at its ends to other members capable of supplying such restraint. It is only thus that any member will support an axial compressive load greater than its failure load as a pinended strut. The concept of negative stiffness arises frequently in the treatment of the stability of frames.

1.3 Member under Axial Load Only

The behaviour of a member subjected to axial load only may conveniently be obtained by allowing M to approach zero in the solution obtained above. The curves in Fig. 1.4 then approach the limit represented by $O H J$, indicating that no deformation occurs until $P=P_{E}$ or $\alpha=\pi / l$, at which load deflexions of indefinite magnitude occur, with the form

$$
\begin{equation*}
y=A \sin \pi x / l \tag{1.7}
\end{equation*}
$$

The load $P=P_{E}=\pi^{2} E I / l^{2}$ (the "Euler load") now achieves the significance attributed to it by Euler, who first obtained the load in 1759 in the form $P_{E}=\pi^{2} S / l^{2}$ where S was defined as the flexural rigidity. The Euler load is that load at which a deflected form becomes statically admissible and may, with a more general connotation, be referred to as the first elastic
critical load of a strut with pinned ends. It may alternately be derived directly from equation (1.3) by putting $M=0$. The condition $y=0$ at $x=0$ then gives $B=0$, while $y=0$ at $x=l$ gives

$$
0=A \sin \alpha l
$$

This is satisfied by putting $A=0$ (i.e. zero deflexions) or $\alpha l=n \pi$ where n is an integer, whence, since $\alpha^{2}=P / E I=\pi^{2} P / l^{2} P_{E}$, it follows that

$$
\frac{P}{P_{E}}=n^{2}
$$

There thus exists a series of "elastic critical loads" $P_{C 1}=P_{E}$, $P_{C 2}=4 P_{E}, P_{C 3}=9 P_{E}$, etc., with corresponding deflected forms (the "critical modes") $y=A_{1} \sin \pi x / l, \quad y=A_{2} \sin 2 \pi x / l, y=$ $A_{3} \sin 3 \pi x / l$, etc. Since absolute axial loading is a limiting ideal condition, any real strut will deform according to a curve which lies below $H J$ in Fig. 1.4, and so only the first critical load P_{E} has practical significance. The higher critical loads and critical modes are, however, of interest when analysing the behaviour of struts under various loading conditions, as explained later in the chapter.

1.4 The Effect of Various End Conditions

The elastic critical load may be obtained for columns with end conditions other than those of a pin-ended strut by solving the differential equation and obtaining the constants of integration by reference to the boundary conditions. A readier solution is, however, obtained by observing that the solution of the differential equation can always be represented as part of the continuous sine wave $y=A \sin \alpha x$ referred to suitable axes. The axial thrust $P_{C}=\alpha^{2} E I$ which makes the sinusoidal deformation of the member possible is then the elastic critical load for the given end conditions. The distance between points of contraflexure, l^{\prime}, known as the effective length, is given by $\alpha l^{\prime}=\pi$, whence
$P_{C}=\pi^{2} E I /\left(l^{\prime}\right)^{2}$. By expressing l^{\prime} as a proportion of the actual length l of the member, the critical load is derived as a function of the known properties of the member. Four cases for differing end conditions are represented in Fig. 1.6(a) to (d).

Fig. 1.6

In the first case, that of a pin-ended strut, the effective length is equal to the actual length, i.e. $l^{\prime}=l$, whence $P_{C}=\pi^{2} E I / l^{2}=$ P_{E}.

Figure $1.6(\mathrm{~b})$ represents a member fixed in position and direction at B and completely free at A. The load at A acts parallel to the original longitudinal axis $A^{\prime} B$ of the member. Here we have $l^{\prime}=2 l$ and $P_{C}=\pi^{2} E I /(2 l)^{2}=P_{E} / 4$.

Figure $1.6(\mathrm{c})$ represents a member constrained in position and direction at both ends, except that the ends are allowed to approach each other along $A B$. Hence $l^{\prime}=l / 2$ and $P_{C}=\pi^{2} E I /(l / 2)^{2}=$ $4 P_{E}$.

In Fig. 1.6(d), a straight line has been drawn from the point of contraflexure at A to touch the sine curve at B. The column $A B$ is then restrained in position and direction at B, while end A is unrestrained in direction (zero bending moment) but constrained to move along $A B$. In this case, the reference axis for the sine wave is not parallel to the original longitudinal axis $A B$ of the member. The value of l is obtained from a simple trigonometric equation, the solution of which gives $l^{\prime} \approx 0.7 l$ and $P_{C} \approx 2.05 P_{E}$.

It is evident that the above solutions for the various end conditions are not unique. Thus the end conditions of Fig. 1.6(d) are also satisfied by taking a greater length of the continuous sine curve, as shown in Fig. 1.6(e). This critical mode corresponds to a higher critical load, and as in the case of a pin-ended strut, there will exist an infinite series of critical modes and corresponding critical loads.

1.5 The Effect of Large Deformations

The differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{P}{E I} y=0 \tag{1.8}
\end{equation*}
$$

governing the behaviour of an axially loaded pin-ended strut applies only when $\mathrm{d} y / \mathrm{d} x$ is small. When this is not so, the correct expression for curvature $\left(\mathrm{d}^{2} y / \mathrm{d} x^{2}\right) /\left\{1+(\mathrm{d} y / \mathrm{d} x)^{2}\right\}^{\frac{2}{2}}$ must be used in place of the approximation $\mathrm{d}^{2} y / \mathrm{d} x^{2}$. Hence equation (1.8) has to be modified to

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{P}{E I}\left\{1+(\mathrm{d} y / \mathrm{d} x)^{2}\right\}^{\frac{3}{2}} y=0 \tag{1.9}
\end{equation*}
$$

The solution of this equation involves the use of elliptic integrals and will not be given here. ${ }^{(1) *}$ The curved shape taken up by the strut (assuming indefinite elastic behaviour) is known as the elastica, and successive forms for increasing values of P are shown

[^0]in Fig. 1.7. The relation between P and central lateral deflexion y_{c} is given by $O H K$ in Fig. 1.8, the curve $H K$ being tangential at H to the solution $H J$ given by the approximate theory. A relation between P and y_{c} which is accurate to within 1 percent in terms of P up to $y_{c} l l=0.25$ is
\[

$$
\begin{equation*}
\frac{y_{c}}{l}=\frac{2 \sqrt{ } 2}{\pi} \sqrt{\left(\frac{P}{P_{E}}-1\right)} \tag{1.10}
\end{equation*}
$$

\]

Fig. 1.7

Fig. 1.8

When $y_{c} l=1 / 20, P$ is only 0.3 percent above P_{E}, and when $y_{c} / l=1 / 10, P$ still only exceeds P_{E} by $1 \cdot 2$ percent. Hence, although the more accurate analysis shows that the elastic deflexions do not in fact increase indefinitely at $P=P_{E}$, large deflexions can occur with a negligible increase in load. The properties of the elastica are thus of no great practical importance. Moreover, at large deflexions the elastic limit of the material will in practical structures be exceeded, and the present analysis becomes in any case irrelevant.

1.6 Axial Deformations

Axial deformations have two components, namely direct axial compression and longitudinal shortening due to flexure.

Direct axial compression Δ_{D} is proportional to the axial load, and is of magnitude $\Delta_{D}=P l / E A$ where A is the cross-sectional area and E is the elastic modulus. This requires no further treatment.

The flexural shortening of a member is due to the difference between the developed length $O C B$ (Fig. 1.3(b)) and the effective length $O B$. Ignoring shortening due to direct axial compression, the developed length $O C B$ is equal to the original straight length l, while $O B$ should be represented as less than l. In Fig. 1.3, this difference has been ignored since it does not affect significantly the calculation of lateral deflexions. The difference between $O C B$ and $O B$ is $\int_{A}^{B} \mathrm{~d} s-\int_{A}^{B} \mathrm{~d} x \approx \frac{1}{2} \int_{0}^{l}(\mathrm{~d} y / \mathrm{d} x)^{2} \mathrm{~d} x$, hence when $M=0$ and consequently $y=y_{c} \sin \pi x / l$, the shortening due to flexure Δ_{F} becomes $\Delta_{F}=\left(\pi^{2} / 4\right) y_{c}^{2} / l^{2}$. Substituting the expression for y_{c} given in equation (1.10), the total axial compression after buckling, $\Delta=\Delta_{D}+\Delta_{F}$, is obtained in terms of the axial load P in the form

$$
\begin{equation*}
\frac{\Delta}{l}=\frac{P}{E A}+2\left(\frac{P}{P_{E}}-1\right) \tag{1.11}
\end{equation*}
$$

In Fig. 1.9, equation (1.11) gives the straight line $H Q$, which is tangential at H to the correct curve $H K$, obtained from elliptic integrals. There is thus an important difference between the axial load versus deformation relations for a strut as between lateral and longitudinal displacements. While at the Euler load P_{E} the load-deflexion relation is parallel to the deflexion axis

Fig. 1.9
for small lateral deflexions ($H J$ in Fig. 1.4), the development of longitudinal displacement requires an increase in the axial load. This result has a bearing on the significance of elastic critical loads in triangulated structures (Chapter 3).

1.7 The Bifurcation of Equilibrium States

A strut loaded axially above the Euler load P_{E} has more than one possible state of equilibrium. If it buckles, it follows the relationship $H K$ (Figs. 1.8 and 1.9), and unless it has equal flexural rigidity about all axes, there will at any given axial load $P>P_{E}$ be two buckled states, one either side of the initial
longitudinal axis. Both these states of equilibrium will be stable, which means that a slight disturbing force applied to the strut and then removed will leave the strut in the same state as before the application of the force. If the potential energy of the applied load plus the strain energy in the strut together constitute the total potential energy of the system, then for a structure to be in stable equilibrium, the total potential energy must be at a stationary minimum with respect to any small arbitrary displacement.

Instead of the strut buckling when it reaches the Euler load, it would theoretically be possible for it to remain straight, following the load-deflexion relations HI in Figs. 1.8 and 1.9. Such a state would be one of unstable equilibrium, since a slight disturbance would cause the strut to buckle. When $P>P_{E}$ with the strut perfectly straight, the total potential energy of the system is at a stationary maximum.

The point H at which divergent equilibrium states become possible is called a point of bifurcation. For a pin-ended strut, points of bifurcation occur in the unbuckled state at axial loads of $P=P_{E}, 4 P_{E}, 9 P_{E}$, etc. It may be noted that, in any practical strut, sufficient disturbances in the form of incidental lateral loads, eccentricities of axial load or imperfections prevent the attainment of unstable states of equilibrium, and the loaddeflexion curve for perfectly elastic behaviour follows, for example, the dotted curve $O M N$ in Fig. 1.8. It is of interest that such behaviour represents a stable equilibrium state at each stage of loading, despite the fact that in the region of the Euler load, a small increase of load may be accompanied by a large increase of deformation.

1.8 Effect of Shear Deformation on Critical Loads

In the preceding analysis, no account has been taken of the effect of shear deformation. When a pin-ended strut buckles laterally, Fig. 1.10(a), the applied loads P_{E} will have components transverse to the bent longitudinal axis, thus introducing into
the member shear forces F as shown. These forces F will in turn produce additional deformation due to shear (Fig. 1.10(b)), and when these deformations are allowed for in the analysis,

Fig. 1.10
the critical load is reduced below the Euler load P_{E}. It is found that, for practical purposes, the effect is unimportant, amounting to a reduction of a fraction of 1 percent. ${ }^{(2)}$

1.9 General Treatment of Lateral Loads

It is now possible to deal more generally with axially loaded members subjected to transverse loads. The bending moments produced by such loads in the absence of axial loading may be referred to as primary moments. In the case already considered, in which a strut was subjected to terminal couples M (Fig. 1.3), the primary moments consisted of a uniform bending moment M throughout the length of the member. In the more general case, we express the primary bending moments, denoted by M_{0}, as some function of the distance x from one end of the member,
viz. $M_{0}=F(x)$. Thus, for a uniformly distributed lateral load w per unit length (Fig. 1.11(a)), the primary moments are given by

$$
\begin{equation*}
M_{0}=-\frac{w x(l-x)}{2} \tag{1.12}
\end{equation*}
$$

Fig. 1.11
The critical modes of deformation for the strut when subjected to axial load only are $y_{C 1}=A_{1} \sin \pi x / l, y_{C 2}=A_{2} \sin 2 \pi x / l$, etc., where A_{1}, A_{2}, etc., are arbitrary constants, and are conveniently put equal to unity. The bending moments induced are respectively $E I y_{C_{1}}{ }^{\prime \prime}=-\left(\pi^{2} / l^{2}\right) \sin \pi x / l, E I y_{C 2}{ }^{\prime \prime}=-\left(4 \pi^{2} / l^{2}\right) E I \sin 2 \pi x / l$, etc. It is possible to express the primary moments M_{0} as a half-range Fourier series in terms of the critical bending moments EIy ${ }_{C 1}{ }^{\prime \prime}$, $E I y_{C 2}{ }^{\prime \prime}$ etc., so that

$$
\begin{equation*}
M_{0}=E I\left\{a_{1} y_{C 1}^{\prime \prime}+a_{2} y_{C 2}^{\prime \prime}+\ldots+a_{n} y_{C n}^{\prime \prime} \ldots\right\} \tag{1.13}
\end{equation*}
$$

or, substituting for $y_{C l_{1}}{ }^{\prime \prime}, y_{C_{2}}{ }^{\prime \prime}$, etc.,

$$
\begin{equation*}
M_{0}=-\frac{\pi^{2}}{l^{2}} E I\left\{a_{1} \sin \frac{\pi x}{l}+4 a_{2} \sin \frac{2 \pi x}{l}+\ldots+n^{2} a_{n} \sin \frac{n \pi x}{l} \ldots\right\} \tag{1.14}
\end{equation*}
$$

The nth coefficient a_{n} is obtained by multiplying both sides of equation (1.14) by $\sin n \pi x / l$ and integrating over the range $x=0$ to $x=l$. Since $\int_{0}^{l} \sin m \pi x / l \cdot \sin n \pi x / l . \mathrm{d} x$ has value zero when $m \neq n$ and has value $l / 2$ when $m=n$, it follows that

$$
\begin{equation*}
a_{n}=\frac{2}{\pi^{2} n^{2}} \frac{l}{E I} \int_{0}^{l} M_{0} \sin \frac{n \pi x}{l} . \mathrm{d} x \tag{1.15}
\end{equation*}
$$

Since $\mathrm{d}^{2} y / \mathrm{d} x^{2}=M_{0} / E I$, equation (1.14) is readily integrated to give the deflexions induced by the primary moments. Since $y=0$ when $x=0$ and $x=l$, the constants of integration vanish and the primary deflexions y_{0} become

$$
\begin{equation*}
y_{0}=a_{1} \sin \frac{\pi x}{l}+a_{2} \sin \frac{2 \pi x}{l}+\ldots+a_{n} \sin \frac{n \pi x}{l} \ldots . \tag{1.16}
\end{equation*}
$$

Taking the example represented in Fig. 1.11, the bending moments M_{0} may be expressed as

$$
\begin{equation*}
M_{0}=-\frac{4}{\pi^{3}} w l^{2}\left\{\sin \frac{\pi x}{l}+\frac{1}{27} \sin \frac{3 \pi x}{l}+\ldots+\frac{1}{n^{3}} \sin \frac{n \pi x}{l} \ldots\right\} \tag{1.17}
\end{equation*}
$$

where only odd values of n are taken. The primary deflexions become

$$
\begin{equation*}
y_{0}=\frac{4}{\pi^{5}} \frac{w l^{4}}{E I}\left\{\sin \frac{\pi x}{l}+\frac{1}{243} \sin \frac{3 \pi x}{l}+\ldots+\frac{1}{n^{5}} \sin \frac{n \pi x}{l} \ldots\right\} . \tag{1.18}
\end{equation*}
$$

We now consider, for the general case of lateral loading, the effect on the equation of flexure of an axial load P. The total bending moment at any section is ($M_{0}-P y$), whence substituting for M_{0} from equation (1.14),

$$
\begin{align*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{P}{E I} y=-\frac{\pi^{2}}{l^{2}}\left\{a_{1} \sin \right. & \frac{\pi x}{l}+4 a_{2} \sin \frac{2 \pi x}{l} \\
& \left.+\ldots+n^{2} a_{n} \sin \frac{n \pi x}{l} \ldots\right\} \tag{1.19}
\end{align*}
$$

The solution of this equation is

$$
\begin{align*}
& y=A \sin \alpha x+B \cos \alpha x-\frac{\pi^{2}}{l^{2}}\left[\frac{a_{1}}{\frac{P}{E I}-\frac{\pi^{2}}{l^{2}}} \sin \frac{\pi x}{l}\right. \\
& \left.+\frac{4 a_{2}}{\frac{P}{E I}-\frac{4 \pi^{2}}{l^{2}}} \sin \frac{2 \pi x}{l}+\ldots+\frac{n^{2} a_{n}}{\frac{P}{E I}-\frac{n^{2} \pi^{2}}{l^{2}}} \sin \frac{n \pi x}{l}+\ldots\right] \tag{1.20}
\end{align*}
$$

where, as before, $\alpha^{2}=P / E I$. At any value of P less than $P_{E}=$ $\pi^{2} E I / l^{2}, \alpha l<\pi$, and so the end conditions $y=0$ when $x=0$ and $x=l$ require $A=B=0$. Equation (1.20) may then be rewritten

$$
\begin{align*}
y= & \frac{a_{1}}{1-\frac{P}{P_{E}}} \sin \frac{\pi x}{l}+\frac{a_{2}}{1-\frac{P}{4 P_{E}}} \sin \frac{2 \pi x}{l}+\ldots \\
& +\frac{a_{n}}{1-\frac{P}{n^{2} P_{E}}} \sin \frac{n \pi x}{l} \ldots \tag{1.21}
\end{align*}
$$

The bending moment M at any section is given by EIy", whence

$$
\begin{align*}
M=-\frac{\pi^{2}}{l^{2}} E I\left[\frac{a_{1}}{1-\frac{P}{P_{E}}} \sin \frac{\pi x}{l}\right. & +\frac{4 a_{2}}{1-\frac{P}{4 P_{E}}} \sin \frac{2 \pi x}{l}+\ldots \\
& \left.+\frac{n^{2} a_{n}}{1-\frac{P}{n^{2} P_{E}}} \sin \frac{n \pi x}{l} \ldots\right] \tag{1.22}
\end{align*}
$$

Comparisons between equations (1.21) and (1.16) and between equations (1.22) and (1.14) show that the axial load has the effect of amplifying the deflexions and bending moments induced in the absence of axial load. The factors $1 /\left\{1-\left(P / n^{2} P_{E}\right)\right\}$ by which the components in the Fourier analysis are multiplied by
the presence of axial load are called the amplification factors. The amplification factor for the nth component is actually $1 /\left\{1-\left(P / P_{C n}\right)\right\}$ where $P_{C n}\left(=n^{2} P_{E}\right)$ is the nth critical load, corresponding to the nth mode in the buckling of the member under axial load only. As $P \rightarrow P_{C 1}$ (i.e. in this case, as $P \rightarrow P_{E}$) the deflexions and bending moments become very large. Hence the lowest critical load is that at which, for any form of lateral ("primary") loading, the deflexions tend to large values, and the behaviour depicted in Fig. 1.4 is of general application.

It is to be noted that, as the first critical load is approached, the terms other than the first in the Fourier analysis becoming less and less important. Thus, for a uniform lateral load when $P=0$, the actual deflexion at the mid-point (equation (1.18)) is $(5 / 384) w l^{4} \mid E I=0.013021 w l^{4} / E I$, while the first term alone gives $\left(4 / \pi^{5}\right) w l^{4} / E I=0.013071 w l^{4} / E I$, an error of 0.39 percent. When $P=0.9 P_{E}$, the actual central deflexion is $0.13065 w l^{4} / E I$ (equation (1.21)), while the first term alone gives $0 \cdot 13071 w l^{4} / E I$, an error of no more than 0.04 percent. Using the first term only in equations (1.17) and (1.22), the error in the central bending moment is 3.20 per cent when $P=0$ and 0.34 percent when $P=$ $0.9 P_{E}$.

The results which have been obtained for a pin-ended strut may be applied in an analogous manner to columns with various end conditions. Instead of using a Fourier sine series, the primary bending moments and deflexions may be expressed as a series in terms of the critical modes $y_{C 1}, y_{C 2}, \ldots, y_{C_{n}}, \ldots$, etc. The primary moments are then given by equation (1.13), while the primary deflexions y_{0} become

$$
\begin{equation*}
y_{0}=a_{1} y_{C 1}+a_{2} y_{C 2}+\ldots+a_{n} y_{C n} \ldots \tag{1.23}
\end{equation*}
$$

In the presence of an axial load P, these deflexions become amplified to

$$
\begin{equation*}
y=\frac{a_{1}}{1-\frac{P}{P_{C 1}}} y_{C 1}+\frac{a_{2}}{1-\frac{P}{P_{C 2}}} y_{C 2}+\ldots+\frac{a_{n}}{1-\frac{P}{P_{C n}}} y_{C n} \ldots \tag{1.24}
\end{equation*}
$$

where $P_{C n}$ denotes the nth critical load of the columns for the given end conditions. Similarly, the bending moments become

$$
\begin{equation*}
M=E I\left[\frac{a_{1}}{1-\frac{P}{P_{C 1}}} y_{C 1}^{\prime \prime}+\frac{a_{2}}{1-\frac{P}{P_{C 2}}} y_{C 2}^{\prime \prime}+\ldots+\frac{a_{n}}{1-\frac{P}{P_{C n}}} y_{C n}^{\prime \prime} \ldots\right] \tag{1.25}
\end{equation*}
$$

Equations (1.13), (1.23), (1.24) and (1.25) are applicable not only when the flexural rigidity $E I$ is uniform, but also when it varies with x, the distance along the member. When the member is of variable section, the critical modes no longer form part of a continuous sine wave. Both for uniform and non-uniform members, the calculation of the coefficients $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ is facilitated by certain orthogonal relations which may be shown to exist between the critical modes. ${ }^{(2)}$ These correspond to the orthogonal relations $\int_{0}^{l} \sin m \pi x / l \sin n \pi x / l \mathrm{~d} x=0$ for $m \neq n$ in the Fourier series. Provided the ends of the columns are either completely free to move laterally, or completely fixed against lateral movement, and either completely fixed or completely free with respect to rotation, it may be shown that $\int_{0}^{l} E I y_{C_{m}}{ }^{\prime \prime} y_{C_{n}}{ }^{\prime \prime} \mathrm{d} x$ $=0$ when $m \neq n$. All the end conditions considered in Fig. 1.6 fall into one of these categories. Hence, from equation (1.13),

$$
\begin{equation*}
a_{n}=\frac{\int_{0}^{l} M_{0} y_{C n}{ }^{\prime \prime} \mathrm{d} x}{\int_{0}^{l} E I\left(y_{C n}{ }^{\prime \prime}\right)^{2} \mathrm{~d} x} \tag{1.26}
\end{equation*}
$$

This general treatment is also applicable to frames.
In the whole of the above analysis, it has been assumed that deflexions are everywhere sufficiently small for $\mathrm{d}^{2} y / \mathrm{d} x^{2}$ to be regarded as a close approximation to the curvature. Strictly
speaking, the load-deflexion curves in the presence of lateral load do not approach asymptotically to the line $P=P_{C 1}$ (the lowest critical load), but ultimately curl upwards, as shown for the case of a pin-ended strut by the dotted line $L M N$ in Fig. 1.8. This upward trend only occurs, however, at gross deformations, and may for practical purposes be neglected.

1.10 The Effect of Initial Lack of Straightness

Suppose a pin-ended strut has an initial lack of straightness defined by deflexions y_{0}. In just the same way as primary deflexions due to lateral loads may be expressed as a Fourier series, so also may initial deflexions. Hence we may regard equation (1.16) as expressing the initial lack of straightness of the member. If the deflexions of the strut change to y as the result of applying an axial load P, the change of curvature is $\mathrm{d}^{2}\left(y-y_{0}\right) / \mathrm{d} x^{2}$, and hence the equation of flexure (in the absence of lateral loading) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2}\left(y-y_{0}\right)}{\mathrm{d} x^{2}}+\frac{P}{E I} y_{0}=0 \tag{1.27}
\end{equation*}
$$

After substituting for y_{0} from equation (1.16), integrating and using the boundary conditions $y=0$ when $x=0$ and $x=l$, the deflexions y are found to be given by equation (1.21). Hence initial imperfections are magnified according to amplification factors in exactly the same way as are deflexions and bending moments due to primary loading.

1.11 Experimental Determination of Critical Load

The presence of initial imperfections prevents the observation of the buckling load as that load at which deflexions suddenly appear. In practice, small deflexions occur as soon as any load is applied. Were the strut to remain indefinitely elastic, the elastic buckling load could be identified as the load at which really
large deflexions appeared, but inelastic behaviour usually sets in before this limit is approached at all closely. Southwell ${ }^{(1)}$ has suggested a method whereby the elastic buckling load may be deduced from an observation of behaviour at loads below the buckling load.

Observations are made of the increase in central deflexion Δ as the axial load P is increased from zero. This deflexion is additional to some initial deflexion Δ_{0} as the axial load P is increased from zero. The additional deflexion Δ_{0} is difficult to measure accurately and is therefore regarded as unknown. We now investigate analytically the significance of the experimentally observed quantities.

The total central deflexion may be expressed as the sum of the terms from equation (1.24) corresponding to the mid-points of the strut. All terms except the first will change negligibly as P is increased, since P is always less than the first critical mode $P_{C 1}$, and therefore very much less than the higher critical loads $P_{C 2}, P_{C 3}$, etc. Hence we write the total central deflexion $\Delta+\Delta_{0}$ in the form

$$
\begin{equation*}
\Delta+\Delta_{0}=\frac{\Delta_{1}}{1-\frac{P}{P_{C 1}}}+\Delta_{r} \tag{1.28}
\end{equation*}
$$

where Δ_{1} is the first critical mode component of the central deflexion at no load, and Δ_{r} is the remaining component of the central deflexion corresponding to all the higher modes. Since when $P=0, \Delta=0$,

$$
\begin{equation*}
\Delta_{0}=\Delta_{1}+\Delta_{r} \tag{1.29}
\end{equation*}
$$

The elimination of the unknown initial deflexion Δ_{0} between equations (1.28) and (1.29) gives

$$
\begin{equation*}
\Delta=\frac{\frac{P}{P_{C 1}}}{1-\frac{P}{P_{C 1}}} \Delta_{1} \tag{1.30}
\end{equation*}
$$

Equation (1.30) may be rearranged in two alternative forms:

$$
\begin{align*}
& \frac{\Delta}{P}=\frac{\Delta}{P_{C 1}}+\frac{\Delta_{1}}{P_{C 1}} \tag{1.31}\\
& \frac{P}{\Delta}=\frac{P}{\Delta_{1}}-\frac{P_{C 1}}{\Delta_{1}} \tag{1.32}
\end{align*}
$$

In each case, the second term on the R.H.S. is constant. Equation (1.31) represents a linear relationship between Δ / P and Δ, while equation (1.32) represents a linear relationship between P / Δ and P.

Fig. 1.12

The result of plotting experimentally observed values of Δ / P versus Δ is shown in Fig. 1.12(a). This is the original plot suggested by Southwell, and it follows from equation (1.31) that the inverse slope of the straight line through the experimental points gives the critical load $P_{C 1}$, while the negative intercept with the deflexion axis gives Δ_{1}, the first critical mode component of the initial deflexion Δ_{0}. Some departure from a straight line commonly occurs for the points obtained at low P values, but the higher points are usually found to lie close to a straight line.

An alternative plot is of P / Δ against P, as shown in Fig. 1.12(b). Hence, it follows from equation (1.32) that the critical load $P_{C 1}$ is given by the intercept with the P-axis, while the inverse slope gives Δ_{1}. This plot is more useful than the standard Southwell, since it gives a better realisation of the nearness to buckling reached in the experiment.

Similar methods may be used in the interpretation of observations on any complete structure subjected to loads in the elastic range. A close estimate of the first elastic critical load is obtained, provided the first critical mode of deformation has a dominant deflexion component corresponding to the deflexion used in the plot.

1.12 Inelastic Behaviour

Hitherto in this chapter it has been assumed that the material considered remains perfectly elastic. In real structures, the material has only a limited elastic range. In the case of mild steel, the material properties are represented closely by the stressstrain relations $O A B$ (for direct tension) and $O A^{\prime} B^{\prime}$ (for direct compression) in Fig. 1.13, the maximum strains considered being of the order of 1 percent. The straight lines $O A, O A^{\prime}$ are of slope equal to the elastic modulus E. At the yield stress $\pm \sigma_{y}$ (virtually the same in tension and compression), a large amount of pure plastic deformation can occur without further increase of stress, although at strains of about ten times the strain at yield, strain-hardening occurs according to $B C, B^{\prime} C^{\prime}$. The
behaviour of mild steel structures beyond the elastic limit may, however, be assessed with sufficient accuracy by assuming that the material has an indefinitely long pure plastic range. Mild steel may thus be treated as "elastic-plastic". If, after straining to some point D or D^{\prime} in the plastic range, the stress is reduced, the stress-strain relation followed is $D F$ or $D^{\prime} F^{\prime}$, with a slope equal to that of the elastic range $O A, O A^{\prime}$. This is known as "unloading".

Fig. 1.13

A more general type of inelastic stress-strain relation is shown in Fig. 1.14, and is obtained for high tensile steel as well as light alloys, copper and many other materials. Behaviour is elastic up to the limit of proportionality at A or A^{\prime}, after which there is a strain-hardening curve $A B$ or $A^{\prime} B^{\prime}$. The slope of the tangent $C D$ at any point C is called the tangent modulus, and is denoted by E_{T}. Hence $E_{T}=\mathrm{d} \sigma / \mathrm{d} \varepsilon$, the ratio of increase of stress to increase of strain when the material is at the given stress. If the material is unloaded from point C, the stress-strain relation $C F$ is of slope E, parallel to the elastic line $O A, O A^{\prime}$.

The discussion of inelastic stability differs according to whether an elastic-plastic or an elastic-strain-hardening material is involved. Sections 1.13 to 1.16 below refer to struts of elasticplastic material, while struts of strain-hardening material are discussed in Sections 1.17 to 1.19.

Fig. 1.14

1.13 Elastic-Plastic Struts with No Initial Imperfections

If an initially straight, axially loaded strut is sufficiently slender, the lowest elastic critical load will be reached before the material yields. If A is the cross-sectional area of such a pinended strut of length l, and σ_{y} is the yield stress, then the required condition is that $\sigma_{y}>P_{E} / A$. If the radius of gyration about the axis of bending is r, then since $P_{E}=\pi^{2} E I / l^{2}$ and $I=A r^{2}$, the limitation can be expressed as $l / r>\pi \sqrt{ }\left(E / \sigma_{y}\right)$. In the case of mild steel with $E=30 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2}$ and $\sigma_{y}=36,000 \mathrm{lb} / \mathrm{in}^{2}$, this gives $l / r>91$. Such a member will buckle laterally at the Euler load, but at some stage in the deformations, the material on the concave face will yield, causing a drop in the stiffness of the strut and consequently a decrease in load. The complete loaddeflexion curve will take the form OHJK in Fig. 1.15(a). The stress distribution across the member at a section near the midheight of the strut is shown at various stages of deformation.

When $\sigma_{y}<P_{E} / A$, or $l / r<\pi \sqrt{ }\left(E / \sigma_{y}\right)$, the material reaches the yield stress over the whole cross-section while the strut is still perfectly straight. The load at which this occurs is $A \sigma_{3}$, denoted

(b)

Fig. 1.15
by P_{P}, and referred to as the "squash" load, since it is the load at which a very short strut would squash in pure plastic compression throughout its length. In other than very short struts, a small lateral disturbance at the squash load causes more plastic deformation on one side, which then becomes concave, and the consequent bending moment induced by the axial load results in an unloading of the material on the convex face. The load therefore immediately decreases, and the load-deflexion curve $L N$ in Fig. 1.15(b) is obtained.

Fig. 1.16

The above behaviour is summarised by $A B C$ in Fig. 1.16, which gives, as a function of the slenderness l / r, the theoretical mean stress at failure for a perfectly straight pin-ended strut loaded axially. Practical struts, although they may nominally be perfectly straight and axially loaded, will in fact contain some imperfections, and the longitudinal load may be applied with some eccentricity. Hence experimental points for mild steel all lie below $A B C$, except at very low values of l / r, when the incidence of strain-hardening may raise the mean stress at failure above σ_{y}. Before practical formulae for the loads of struts can be
discussed, it is therefore necessary to consider the effect of initial imperfections and eccentric loading.

1.14 Effect of Initial Imperfections

It was shown in the previous section that perfectly straight elastic-plastic struts have load-deflexion relations given by $O H J K$ in Fig. 1.15(a) or $O L N$ in Fig. 1.15(b). Struts with initial imperfections follow the behaviour indicated by the dotted curves

Fig. 1.17
$O C F D$, and a complete theoretical treatment is laborious. The load of greatest interest is the peak or failure load P_{F}. The behaviour of eccentrically loaded struts of certain crosssectional shapes (solid rectangular and circular tubes) has been investigated, ${ }^{(3,4,5)}$ and the state of a typical strut when at the maximum load is represented in Fig. 1.17.

Since an accurate elastic-plastic treatment of strut behaviour is too complex for practical use, it is useful to study upper and lower limits between which the correct solution must lie. One upper limit is obtained by assuming that the material has indefinite elastic behaviour, so that, ignoring the effect of gross deformations, the failure load becomes the Euler load $P_{E}=\pi^{2} E I / l^{2}$. This gives the line $H J$ in Fig. 1.18 as an upper bound to the loaddeflexion curve. The effect of any imperfections is to produce

Fig. 1.18
some curve $O A B$ lying below $H J$. Another upper limit to the load-deflexion curve is obtained by ignoring entirely the elastic deformations, allowing only for the pure plastic-deformation that can take place at the yield stress in tension or compression. The material is then assumed to be rigid-plastic, with the stressstrain relations $O A B, O A^{\prime} B^{\prime}$ in Fig. 1.19(a). A collapsing strut $J K$ (Fig. 1.19(b)) will develop a plastic hinge at some point C within its length, with plastic deformation occurring in compression on one side of the neutral axis and plastic deformation in tension on the other side. If a rectangular section strut of width b and depth d (Fig. 1.19(d)) has its neutral axis NA at a distance

Fig. 1.19
n from the central axis, the plastic moment of resistance about the central axis is $M_{P}{ }^{\prime}$ where

$$
\begin{align*}
& M_{P}^{\prime}=\left\{b\left(\frac{d}{2}+n\right) \sigma_{y}\right\}\left\{\left(\frac{1}{2}\left(\frac{d}{2}-n\right)\right\}\right. \\
& \quad+\left\{b\left(\frac{d}{2}-n\right) \sigma_{y}\right)\left\{\frac{1}{2}\left(\frac{d}{2}+n\right)\right\}, \\
& M_{P}^{\prime}=b\left(\frac{d^{2}}{4}-n^{2}\right) \sigma_{y} . \tag{1.33}
\end{align*}
$$

i.e.

The resultant axial thrust is P where

$$
P=b\left(\frac{d}{2}+n\right) \sigma_{y}-b\left(\frac{d}{2}-n\right) \sigma_{y}
$$

i.e.

$$
\begin{equation*}
P=2 b n \sigma_{y} . \tag{1.34}
\end{equation*}
$$

The equilibrium of the strut, considering moments taken about the hinge, requires that

$$
P y_{c}=M_{P}^{\prime} .
$$

Hence it follows that

$$
\begin{equation*}
y_{c}=\frac{d}{4}\left\{\frac{b d \sigma_{y}}{P}-\frac{P}{b d \sigma_{y}}\right\} \tag{1.35}
\end{equation*}
$$

This equation gives the curve $L M$ in Fig. 1.18, and is known as the rigid-plastic line. At zero deflexion, $P=P_{P}=b d f_{y}$, the squash load which, as already discussed, may be above or below the Euler load P_{E}. The curve $L M$ lies above the load-deflexion curve for zero imperfections when allowance is made for elastic as well as plastic behaviour ($L N$ in Fig. 1.15(b)), and above the load-deflexion curves for all actual struts (e.g. $O F D$ in Fig. 1.18).

The lines $H J$ and $L M$ in Fig. 1.18 are thus upper limits for the true load-deflexion relation. If the initial imperfections in the longitudinal shape of the strut are known, the resulting elastic response line $O A B$ is also an upper limit. If $O A B$ intersects $L M$ at G, then $O G M$ is the closest upper limit to the true elasticplastic curve obtainable by simple analysis. Evidently, the intersection point G (axial load P_{G}) is obtained as an upper limit to the true collapse load P_{F}.

The only readily calculable lower limit available is the load P_{Y} at which yield is first reached in the most highly stressed fibres of the strut. This occurs at the point C (Fig. 1.18) at which the true elastic-plastic curve $O F D$ diverges from the elastic response line $O A B$. Formulae for $P_{\bar{X}}$ are readily obtained if a state of initial imperfection is assumed. Thus, if a uniform strut of length l has a shape in the unloaded state given by $y_{0}=$ $a_{1} \sin \pi x / l$, then under an axial load P_{Y} the deflexions increase to $y=a_{1} \sin \pi x / l /\left(1-P_{Y} / P_{E}\right)$, and the maximum bending moment, which occurs at mid-height $(x=l / 2)$ is $P_{E} P_{Y} a_{1} /\left(P_{E}-P_{Y}\right)$. If the distance to the extreme fibres on the concave side is c, the maximum fibre stress is equal to the yield stress σ_{y} when

$$
\begin{equation*}
\sigma_{y}=\frac{P_{Y}}{A}+\frac{P_{E} P_{Y}}{P_{E}-P_{Y}} \frac{a_{1} c}{l} . \tag{1.36}
\end{equation*}
$$

If r is the radius of gyration about the axis of bending, then $I=$ $A r^{2}$. Put $P_{Y}=A p_{Y}$ and $P_{E}=A p_{E}$, so that p_{Y} and p_{E} are the mean axial stresses at the load at first yield P_{Y} and at the Euler load P_{E} respectively. Moreover, let it be assumed that the initial imperfection a_{1} is defined in terms of a non-dimensional coefficient
η such that $\eta=a_{1} c / r^{2}$. Then equation (1.36) may be solved to give

$$
\begin{equation*}
p_{Y}=\frac{1}{2}\left\{\sigma_{y}+(1+\eta) p_{E}-\sqrt{\left.\left[\left(\sigma_{y}+(1+\eta) p_{E}\right)^{2}-4 \sigma_{y} p_{E}\right]\right\} ~ . ~}\right. \tag{1.37}
\end{equation*}
$$

In a similar manner, the load at first yield can be calculated for a strut loaded eccentrically, using equation (1.5). If a load P is applied with eccentricity $a_{1}{ }^{\prime}$, then the terminal moment M is given by $M=P a_{1}^{\prime}$. It follows from equation (1.5) that the central deflexion is $a_{1}^{\prime}[\sec (\alpha l / 2)-1]$ where $\alpha^{2}=P / E I$. It is then readily shown that the mean axial stress at first yield is given by the solution of the equation

$$
\begin{equation*}
\sigma_{y}=p_{Y}\left\{1+\eta^{\prime} \sec \frac{\pi}{2} \sqrt{\frac{p_{Y}}{p_{E}}}\right\} \tag{1.38}
\end{equation*}
$$

where $\eta^{\prime}=a_{1}{ }^{\prime} c / r^{2}$.

1.15 Practical Strut Formulae

Formulae for the failure loads of struts may be obtained either by using an empirically elevated lower limit or by applying an empirical reduction to an upper limit.

In the former category are the Perry-Robertson ${ }^{(6)}$ and Secant ${ }^{(7)}$ formulae. If a suitable effective imperfection or eccentricity, smaller than the actual imperfection or eccentricity, is assumed, the theoretical first yield load P_{Y} of the resulting imaginary strut may be made to coincide with the failure load of the actual strut. This is conveniently achieved by selecting a value for the dimensionless coefficient η in equation (1.37) or η^{\prime} in equation (1.38) such that the best correlation exists between experimental failure loads and the load $P_{Y}=A p_{Y}$. Equation (1.37) is then the Perry-Robertson formula, and equation (1.38) the Secant formula. Robertson found that a lower limit on the failure
loads of practical struts could be obtained by taking $\eta=0.003 / / r$ in equation (1.37), whence $a_{1} / l=0.003 r / c \approx 0.0015$ for most cross-sections. This is the basis for the design of struts in British Standard 449 (1958) for slenderness ratios exceeding 80. The Secant formula may be used as a basis for the design of mild steel struts, taking $\eta^{\prime}=0 \cdot 25 .{ }^{(7)}$ Both the Perry-Robertson and the Secant formulae give a curve of the general shape of $A D F$ in Fig. 1.16, rising to σ_{y} as $l / r \rightarrow 0$ and approaching the Euler

Fig. 1.20
curve $B C$ as l / r becomes large. Despite their apparent basis on an accurately derived formula, it is important to realise that both the Perry-Robertson and the Secant formulae are empirical approximations to the failure load. The "effective" initial imperfection or eccentricity does not correspond to any observable value, and is an empirically chosen quantity.

Turning now to modifications of the upper limits, the failure load P_{F} (Fig. 1.18) is lower than either the Euler load P_{E} or the squash load P_{P}. Hence $P_{F} / P_{E}<1$ and $P_{F} / P_{P}<1$. This may be expressed by stating that the solution for any practical strut must lie within the area $O A B C$ in Fig. 1.20. The tangent slope of any straight line $O D$ through the origin is $P_{E} / P_{P}=\left(\pi^{2} E I / l^{2}\right) / A \sigma_{u}=$
$\pi^{2}(r / l)^{2} E / \sigma_{y}$, so that struts of any given material and slenderness will be represented by points on a fixed line $O D$. When l / r is very large, so that $P_{E} \ll P_{P}$ (i.e. $O D$ lies close to $O C$), the strut fails by elastic instability, and $P_{F} / P_{E} \approx 1$. When l / r is very small so that $P_{E} \geqslant P_{P}$ (i.e. $O D$ lies close to $O A$), the strut fails by squashing at the yield stress, whence $P_{F} / P_{P} \approx 1$. Hence A and C are the extreme points of a failure locus $A F C$ for practical struts. While any number of curves could be drawn, the most useful locus turns out to be the straight line $A C$, which gives the following relationship between the failure load P_{F}, the Euler load P_{E} and the squash load P_{P}.

$$
\begin{equation*}
\frac{1}{P_{F}}=\frac{1}{P_{E}}+\frac{1}{P_{P}} \tag{1.39}
\end{equation*}
$$

Putting $P_{E}=\pi^{2} E A(r / l)^{2}$ and $P_{P}=A \sigma_{y}$, this gives

$$
\begin{equation*}
\frac{P_{F}}{A}=\frac{\sigma_{y}}{1+\frac{\sigma_{y}}{\pi^{2} E}\left(\frac{l}{r}\right)^{2}} \tag{1.40}
\end{equation*}
$$

This is a particular case of an empirical formula suggested by Rankine in $1866{ }^{(8)}$ Its significance has been studied more generally by Merchant. ${ }^{(9)}$ In Rankine's formula, an arbitrary constant appears in place of $\sigma_{y} / \pi^{2} E$, thus giving a straight line in Fig. 1.20 that passes through A but not through C. It is found that equation (1.40) gives a reasonable approximation to the failure loads of pin-ended struts throughout the full range of slenderness values, and is represented in Fig. 1.16 by the curve $A D F$. In its more general form, Rankine's formula gives a curve which is tangential to the squash line $A B$ at A, but does not become asymptotic to the Euler curve $B C$ for struts of high slenderness. On theoretical grounds, therefore, the particular form of Rankine's formula represented by equation (1.40) (and therefore by equation (1.39)) is to be preferred.

1.16 The Failure of Struts with Lateral Loads

As in the case of struts with initial imperfections, the calculation of failure loads for laterally loaded struts involves consideration of elastic-plastic behaviour, and is too complex for practical use. If an initially straight strut of length l carries an axial load P and a central lateral load $k P$ (Fig. 1.21(a)), the elastic load-

Fig. 1.21
deflexion curve is of the form $O A B$ in Fig. 1.18, and rises asymptotically to the Euler load P_{E}, which is thus an upper limit. The rigid-plastic load P_{P}, also an upper limit, is given by

$$
M_{P}^{\prime}=\frac{k P_{P} l}{4}
$$

where $M_{P}{ }^{\prime}$ is the full plastic moment of resistance under an axial load P_{P}. The rigid-plastic line $L M$ in Fig. 1.18 is given by

$$
M_{P^{\prime}}^{\prime}=\frac{k P l}{4}+P y_{c}
$$

where y_{c} is the central deflexion (Fig. 1.21(b)). Finally, the load at first yield P_{Y} is readily calculated, and gives a lower bound.

Various semi-empirical methods of obtaining the failure load have been investigated, but the most consistently successful appears to be that based on equation (1.39), as investigated by Merchant. ${ }^{(9)}$ In applying this Rankine type formula, the Euler load P_{E} is that upper bound on the failure load which is obtained by assuming indefinite elastic behaviour. The other upper bound P_{P} (see above) has been obtained by ignoring elastic behaviour, but taking account of plasticity. These two upper limits, when used in equation (1.39), give an empirical estimate of the failure load P_{F} which depends both on elastic and on plastic behaviour. It has been shown theoretically (Horne ${ }^{(10)}$) that the "Rankine load" P_{F} as obtained from equation (1.39) is likely to be a reasonable approximation to the failure load in all cases where the deflected shape due to lateral loading only is closely similar in form to the buckled form of the strut for axial loading only. In cases where this is not so (as for example for the loading in Fig. 1.21(c)), the actual failure load is likely to be above the "Rankine load".

1.17 The Stability of Axially Loaded Members with Strainhardening Stress Relations-Double Modulus Load

We discuss now a centrally loaded member composed of strainhardening material (Fig. 1.14), sufficiently short for the elastic limit of stress $-\sigma_{y}$ to be reached over the entire cross-section before any buckling occurs. The question may be asked "Is it possible, when the stress in the member reaches some uniform value $-\sigma_{D}$, for the strut to buckle laterally with zero increase of load for small deformations?" In other words, we seek an axial load (to be denoted by P_{D}) at which behaviour analogous to the behaviour of an Euler strut can take place.

Consider an axially loaded member of rectangular crosssection $b \times d$ (Fig. 1.22(a)) which has remained straight until it reaches the load $P_{D}=b d \sigma_{D}$. The uniform stress $-\sigma_{D}(A B C D$ in Fig. 1.22(c)) causes a uniform strain $-\varepsilon_{D}(A B C D$ in Fig. $1.22(\mathrm{~b})$), corresponding to point C^{\prime} on the stress-strain curve in

Fig. 1.14. Suppose the strut buckles so that the face $F G$ becomes concave, the radius of curvature at some particular section being R. With the usual assumption that plane sections remain plane during buckling, the total strain becomes $A B^{\prime} C^{\prime} D$ in Fig. $1.22(\mathrm{~b})$, zero change of strain occurring at a depth d_{1} from the concave face and d_{2} from the convex face. The extreme fibre strains are $\varepsilon_{1}=d_{1} / R$ and $\varepsilon_{2}=d_{2} / R$ as shown. On the concave

Fig. 1.22
face, the increase of stress is governed by the tangent modulus E_{T} (slope of $C^{\prime} D^{\prime}$ in Fig. 1.14), and so the change of extreme fibre stress becomes $E_{T} \varepsilon_{1}$ (Fig. 1.22(c)). On the convex side, the material unloads and follows an elastic relationship between change of stress and change of strain ($C^{\prime} F^{\prime}$ in Fig. 1.14). Hence the change of extreme fibre stress on the convex face of the strut becomes $E \varepsilon_{2}$ (Fig. 1.22(c)). The changes of stress throughout the cross-section are proportional to fibre distances from the axis $N N$ (Fig. 1.22(a)) along which there is zero change of strain, and hence the changes of stress are as shown by the shaded triangles in Fig. 1.22(c). This change of stress corresponds to zero change of axial load, but gives a moment of resistance denoted by M. From the condition of zero change of axial load,

$$
\begin{equation*}
\frac{E_{T} \varepsilon_{1}}{2} b d_{1}-\frac{E \varepsilon_{2}}{2} b d_{2}=0 \tag{1.41}
\end{equation*}
$$

Since the change of stress represents a pure couple, moments may be taken about the axis $N N$, whence

$$
\begin{equation*}
\frac{E_{T} \varepsilon_{1}}{2} b d_{1} \cdot \frac{2}{3} d_{1}+\frac{E \varepsilon_{2}}{2} b d_{2} \cdot \frac{2}{3} d_{2}=M \tag{1.42}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
d_{1}+d_{2}=d \tag{1.43}
\end{equation*}
$$

Substituting $\varepsilon_{1}=d_{1} / R$ and $\varepsilon_{2}=d_{2} / R$, it follows from (1.41) that $d_{1} / d_{2}=\sqrt{ }\left(E / E_{T}\right)$. Hence from (1.43), $d_{1}=\left\{\sqrt{ } E /\left(\sqrt{ } E+\sqrt{ } E_{T}\right)\right\} d$ and $d_{2}=\left\{\sqrt{ } E_{T} /\left(\sqrt{ } E+\sqrt{ } E_{T}\right)\right\} d$, and equation (1.42) may be reduced to

$$
\begin{equation*}
M=\frac{b d^{3}}{3} \cdot \frac{E E_{T}}{\left(\sqrt{ } E+\sqrt{ } E_{T}\right)^{2}} \cdot \frac{1}{R} \tag{1.44}
\end{equation*}
$$

The relationship between moment of resistance M and curvature $1 / R$ may be compared with that for the member in the elastic range, namely

$$
M=\frac{b d^{3}}{12} \cdot E \cdot \frac{1}{R} .
$$

Hence the flexural rigidity has been modified due to inelastic behaviour by the reduction of the modulus from the elastic value E to a "reduced modulus" or "double modulus" E_{D} given by

$$
\begin{equation*}
E_{D}=\frac{4 E E_{T}}{\left(\sqrt{ } E+\sqrt{ } E_{T}\right)^{2}} \tag{1.45}
\end{equation*}
$$

The solution for the buckling of the strut under the axial load P_{D} is obtained in exactly the same way as for an elastic strut at the Euler load, with the substitution of E_{D} for E in the equation of flexure (1.8). Hence it follows that

$$
\begin{equation*}
P_{D}=\pi^{2} \frac{E_{D} I}{l^{2}} \tag{1.46}
\end{equation*}
$$

where l is the length of the strut and $I=(1 / 12) b d^{3}$. Since the value of E_{D} depends on the tangent modulus E_{T}, and therefore on the mean stress $\sigma_{D}=P_{D} / b d$, equation (1.46) can only be solved for a given member by trial and error. The load P_{D} is the reduced modulus or double modulus load, and marks the point of bifurcation of equilibrium at A in the curve of load P

Fig. 1.23
versus lateral deflexion shown by $A B$ in Fig. 1.23. The changes of stress considered above are assumed to be small, and for larger changes of stress, the effective modulus decreases below E_{D}, causing a drop in the load-deflexion curve $A B$.

It is important to note that the expression for the reduced modulus E_{D} depends on the shape of cross-section of the member. Thus, if an I-section is buckling in the plane of the web, and the area of the web can be assumed small compared with that of the flanges, it is readily shown that

$$
E_{D}=\frac{2 E E_{T}}{E+E_{T}}
$$

The way in which E_{T} and E_{D} vary with stress for a typical light alloy is shown in Fig. 1.24. The double modulus buckling loads for rectangular section members of varying slenderness ratio

Fig. 1.24

Fig. 1.25
are shown by curve $D B C$ in Fig. 1.25. The part $B C$ of the curve refers to slender members buckling in the elastic range, and is therefore part of the Euler curve.

The reduced modulus or double modulus load was first introduced by Engesser, ${ }^{(11)}$ and was for a long time considered to
be the lowest load at which an initially straight axially loaded strut would deviate from a straight line. In 1947, Shanley ${ }^{(12)}$ showed the greater significance of the tangent modulus load, which had in fact been discussed and then discarded by Engesser.

1.18 The Tangent Modulus Load

The double modulus load, considered in the previous section, is based on the concept of buckling while the axial load remains constant. Shanley realised that the condition of zero rate of

Fig. 1.26
increase of axial load during buckling is an unnecessary restriction, and that if this restriction is removed, bifurcation of equilibrium can occur at a load lower than P_{D}. Buckling is governed by the incremental flexural rigidity of the member, namely the ratio of increase of moment of resistance to increase of curvature. This has its least value when all the fibres in a cross-section undergo an increase of stress, following, for a small increase of strain, the tangent modulus relation $C^{\prime} D^{\prime}$ in Fig. 1.14. Considering again a strut of rectangular cross-section (Fig. 1.26(a)), the increases in strain and stress become as shown in Figs. 1.26(b) and (c) respectively. The changes of strain and stress on the convex face $H J$ may be zero or compressive, but not tensile. The relation between curvature and moment of resistance, measured about the central axis $X X$, is obtained by substituting E_{T} in place of
E in the usual elastic formula, whence the condition for buckling becomes

$$
\begin{equation*}
P_{T}=\pi^{2} \frac{E_{T} I}{l^{2}} \tag{1.47}
\end{equation*}
$$

The load P_{T} is the tangent modulus load, and is that stage at which buckling just becomes possible as the load is further increased, as shown by the curve CFD in Fig. 1.23. It may be noted that, unlike equation (1.45), equation (1.47) applies to all shapes of cross-section. To follow the curve $C D$ in detail involves a complicated step-by-step calculation, and for this reason the maximum or true failure load P_{F} is difficult to obtain theoretically. The load P_{F} is however known to lie between the tangent modulus load P_{T} and the double modulus load P_{D}. Typical tangent modulus loads are given by the curve $T B$ in Fig. 1.25.

1.19 Non-axial Loading of Strain-hardening Struts

The behaviour of strain-hardening struts under non-axial loading is even more difficult to calculate than that of elasticplastic struts. Qualitatively, it is easily seen that the load-deflexion curve $O F^{\prime} D^{\prime}$ (Fig. 1.23) will lie below the curve $C F D$ for an axially loaded member, but the peak load P_{F}^{\prime} has no specific relation to any of the loads P_{T}, P_{F} or P_{D} except that P_{F} and P_{D} furnish upper bounds. A common assumption is to identify $P_{F}{ }^{\prime}$ for nominally axially loaded members (i.e. members with some initial imperfection and unintentional load eccentricity) with the tangent modulus load P_{T} for a similar ideal member. Experimentally, there is considerable evidence that the tangent modulus load provides a close estimate of the failure loads of nominally axially loaded members for a wide range of strain-hardening materials, and for this reason the tangent modulus load has an extensive use in design. It is, however, important to realise that the identification of the tangent modulus load with the failure load is an empirical rule to be justified experimentally.

An alternative basis for practical strut curves of strain-hardening material is to use equation (1.37) or (1.38), the yield stress σ_{y}
being replaced by a proof stress, that is, the stress for which the permanent strain ε_{0} (Fig. 1.14) has a specified value (e.g. $0 \cdot 1$ percent proof stress, corresponding to $\varepsilon_{0}=1 / 1000$). As in the case of elastic-plastic members, the imperfection constant η or η^{\prime} is settled empirically by reference to test results.

1.20 Load Factor, Stress Factor and Factor of Safety

A typical relation between applied load and maximum induced stress in a member subjected to longitudinal loads is shown by $O A B$ in Fig. 1.27. As the combined loads (transverse and longi-

Fig. 1.27
tudinal) increase, the stresses induced by bending action increase more than proportionately on account of the increasing deformations. This behaviour is in contrast to the linear relation $O C D$ between applied load and maximum induced stress obtained for a member subjected to transverse loads only.

Consider two load levels P_{1} and P_{2}. The load P_{1} may correspond to the desired "working conditions" of the member, while load P_{2} is either an accidental overload, or a load at which the behaviour
of the structure becomes dangerous or otherwise objectionable. The ratio P_{2} / P_{1} is known as a load factor.

Instead of comparing the two states of the structure by reference to the applied loads, it would also be possible to compare the maximum induced stresses σ_{1} and σ_{2} or $\sigma_{1}{ }^{\prime}$ and $\sigma_{2}{ }^{\prime}$. The ratio σ_{2} / σ_{1} or $\sigma_{2}{ }^{\prime} / \sigma_{1}^{\prime}$ is then a stress factor. It is important to notice that, while for the member without axial load, $\sigma_{2}{ }^{\prime} / \sigma_{1}{ }^{\prime}=P_{2} / P_{1}$, i.e. stress factor $=$ load factor, this is not true for the axially loaded member, for which $\sigma_{2} / \sigma_{1}>P_{2} / P_{1}$. It is true in general that, when comparing two given states in a member which carries a compressive axial load, the load factor will be smaller than the stress factor, and this is the more noticeable the closer the load P_{2} is to the Euler load P_{E}.

In order to establish a margin of safety in design, use may be made of either a load factor or a stress factor. While a load factor is usually a more satisfactory basis, it has been the more common to consider a stress ratio as providing the "factor of safety". The maximum working stress σ_{1} is then defined as some proportion of a stress σ_{2}, which may be a yield stress, a limit of proportionality or a proof stress. Since, in structures subject to instability, the margin of safety as measured by a load factor may be markedly and dangerously smaller than the "factor of safety" measured by a stress ratio, it is important that load factors, not stress factors, should be used in design.

Examples

1.1 An initially straight pin-ended strut of length l and flexural rigidity $E I$ carries a compressive load P which acts at one end ($x=0$) through the centroid, and at the other end at an eccentricity e. Show that the effect of the eccentricity on the undeformed strut is to introduce a bending moment M which may be represented by the Fourier series

$$
M=\frac{2}{\pi} P e\left\{\sum_{1}^{\infty}(-1)^{n-1} \frac{1}{n} \sin \frac{n \pi x}{l}\right\}
$$

Hence show that, under the axial load P, the additional deflexions of the strut may be represented by

$$
y=\frac{2}{\pi} e\left\{\sum_{1}^{\infty}(-1)^{n-1} \frac{1}{n} \frac{\sin \frac{n \pi x}{l}}{n^{2} \frac{P_{E}}{P}-1}\right\}
$$

where $P_{E}=\pi^{2} E I / l^{2}$.
1.2 The centre line of any initially straight compression member, of flexural rigidity $E I$ and carrying an axial load P, may be represented by part of the sine curve $y=A \sin k x$ where $k^{2}=P / E I$ (see Fig. 1.6). Use this fact to show that a strut $A B$ of length l, with eccentricity e_{A} at end A and e_{B} at end B where $\left|e_{A}\right|>\left|e_{B}\right|$ will have the maximum bending moment at end A provided P is less than $\left(E I / l^{2}\right)\left\{\cos ^{-1}\left(e_{B} / e_{A}\right)\right\}^{2}$.
1.3 A pin-ended strut has an area of cross-section of $10.3 \mathrm{in}^{2}$, a radius of gyration about its minor axis of 2.03 in ., and is of length 12 ft . The extreme fibre distance for bending about the minor axis is 4.00 in . The strut is perfectly straight, but the axial load is applied at each end with an eccentricity of 0.5 in . on the same side of the centroidal axis. The strut has been designed to a load factor of 2.00 with respect to the attainment of a yield stress of $22 \cdot 5 \mathrm{ton} / \mathrm{in}^{2}$ in the most highly stressed fibres. Determine the maximum stress at working load. Take $E=13,000 \mathrm{ton} / \mathrm{in}^{2}$.
1.4 An elastic-plastic pin-ended strut of length l, with a rectangular cross-section $b \times d$ where $b>d$, has a centre line with an initial out-of-straightness given by $y=(\eta d / 6) \sin \pi x / l$ (η is the non-dimensional imperfection coefficient of equation (1.37)). Show that the axial load P corresponding to point G in Fig. 1.18 is given by the solution of the equation

$$
\eta=\frac{3}{2}\left(\frac{1}{n}-n\right)\left(1-\frac{12}{\pi^{2}} \frac{\sigma_{y} I^{2}}{E d^{2}} n\right)
$$

where σ_{y} is the yield stress and $n=P / b d \sigma_{y}$.
1.5 A pin-ended beam-column of rectangular cross-section carries an axial load P and a uniformly distributed transverse load of total value W where $W=\mu P$. The material is elasticplastic with elastic modulus E and yield stress σ_{y}. If p denotes the mean axial stress and S the slenderness ratio about the axis of bending (i.e. length divided by relevant radius of gyration), use the magnification factor (see Section 1.9) to show that y_{c}, the lateral deflexion at mid-span, is given approximately by

$$
y_{c}=\frac{5}{384} \frac{\frac{p S^{2}}{E} \mu L}{\left(1-\frac{1}{\pi^{2}} \frac{p S^{2}}{E}\right)}
$$

Obtain also an equation for the plastic mechanism line ($L M$ in Fig. 1.18), and hence show that the estimate of the failure load represented by point G is given very closely by the solution of the equation

$$
\left\{1-\left(\frac{p}{\sigma_{y}}\right)^{2}\right\}\left\{1-\frac{1}{\pi^{2}} \frac{p S^{2}}{E}\right\}=\frac{\mu p S .}{4 \sqrt{ } 3 \sigma_{y}}
$$

1.6 A pin-ended strut of rectangular cross-section has a slenderness about its minor axis of 50 . The stress-strain relationship for the material is similar in tension and compression. If σ is the stress in $\mathrm{lb} / \mathrm{in}^{2}$, then $|\varepsilon|=10^{-7}|\sigma|$ for $|\sigma| \leqslant 2 \times 10^{4}$ and $|\varepsilon|=10^{-7}|\sigma|+0.5 \times 10^{-14} \times\left(|\sigma|-2 \times 10^{4}\right)^{3}$ for $|\sigma| \geqslant 2 \times$ 10^{4}. Using double modulus and tangent modulus loads, obtain upper and lower bounds for the mean axial stress at failure. Obtain also the Perry-Robertson failure stress (equation (1.37)), substituting the $0 \cdot 1$ percent proof stress in place of σ_{y} and taking the imperfection constant $\eta=0 \cdot 15$.
(Answers to questions 1.3 and 1.6 may be found on page 154).

CHAPTER 2

Stability Functions

2.1 Introduction

The general features of structural behaviour in relation to elastic and plastic stability are described in Chapter 1. The development of methods of analysis for more extensive structures requires some convenient means of summarising the properties of individual members when subjected to bending moments in the presence of axial loads. While this is difficult to achieve for members loaded beyond the elastic limit, it is relatively easy in the elastic range, and the present chapter describes certain stability functions which are then employed in Chapters 3 and 4 as the basis for the analysis of stability in structures.

The analysis of elastic structures in which axial loads have negligible effect is facilitated by the application of the principle of superposition. Thus, suppose the member $A B$ in Fig. 2.1(a) has a uniform flexural rigidity $E I$ for bending in the plane of the diagram, and that the axial load $P=0$. If, as shown, end B is kept fixed in position and direction while end A is rotated about a fixed point, the terminal moments $M_{A B}$ and $M_{B A}$ and the rotation θ_{A} are linearly related, viz.

$$
M_{A B}=4\left(\frac{E I}{l}\right) \theta_{A}, \quad M_{B A}=\frac{1}{2} M_{A B}
$$

The ratio $M_{A B} / \theta_{A}=4(E I / l)$ is the stiffness of the member $A B$ for rotation at A, and is proportional to I / l. This rotational stiffness is used in the analysis of structures in the method of moment distribution. The ratio $M_{B A} / M_{A B}=\frac{1}{2}$ is also used in moment distribution as the carry-over factor. ${ }^{(13)}$ The rotation of
end B while A is kept fixed in position and direction (Fig. 1(b)) similarly gives

$$
M_{B A}=4\left(\frac{E I}{l}\right) \theta_{B}, \quad M_{A B}=\frac{1}{2} M_{B A}
$$

Moment distribution consists of the step-by-step deformation of a structure by the superposition of operations such as those shown in Figs. 2.1(a) and (b), the operations being systematically

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 2.1
directed towards a satisfaction of the equilibrium requirements. Superposition is justified by the linearity of the relationships between applied forces and deformation, i.e. by the constancy of the stiffnesses.

Another type of deformation used in moment distribution is the translation of one end of the member relative to the other through some distance Δ, see Fig. 2.1(c). The member retains its original direction at the ends A and B, thus inducing terminal moments $M_{A B}$ and $M_{B A}$ where

$$
M_{A B}=M_{B A}=-6\left(\frac{E I}{l}\right) \cdot \frac{\Delta}{l} .
$$

The translating force F is given by

$$
F=-\left[\frac{M_{A B}+M_{B A}}{l}\right]=12\left(\frac{E I}{l^{3}}\right) \cdot \Delta,
$$

the quantity $12\left(E I / l^{3}\right)$ thus being the stiffness of the member with respect to translation.

The effect of transverse loads is introduced by considering the fixed-end moments $M_{A B(F)}$ and $M_{B A(F)}$ induced when both ends are kept fixed in position and direction, Fig. 2.1(d). The state of a laterally loaded member in which rotations have occurred at both ends together with a translation (Fig. 2.1(e)) is derived by superposition from the four separate operations in Figs. (a) to (d), giving the complete slope-deflexion equation for a member with no axial load in the form

$$
\begin{equation*}
M_{A B}=M_{A B(F)}+k\left[4 \theta_{A}+2 \theta_{B}-\frac{6 \Delta}{l}\right] \tag{2.1}
\end{equation*}
$$

where $k=E I / l$.

2.2 The Effect of Axial Load on Member Stiffness

The introduction of an axial load P modifies the stiffness and fixed-end moments to an extent which depends on the value of the axial load. The principle of superposition can still be applied to a sequence of operations provided none of these operations alters the axial load in the member.

It is found convenient to express the axial load P as a proportion of P_{E}, the pin-ended Euler load for buckling in the plane of the applied loads and bending moments. Let $P / P_{E}=\rho$ and $E I / l=k$. Then since $P_{E}=\pi^{2} E I / l^{2}, P$ may be expressed in the form $P=\pi^{2} \rho(k / l)$. For joint rotation at end A, Fig. 2.1(a),

$$
\begin{gathered}
M_{A B}=s k \theta_{A}, \quad M_{B A}=s c k \theta_{A} \\
M_{B A} / M_{A B}=c
\end{gathered}
$$

where s and c are functions of ρ only. Comparison with the solution for $P=0$ shows that when $\rho=0, s=4$ and $c=0.5$. For the translational operation in Fig. 2.1(c), it is then found that

$$
M_{A B}=M_{B A}=-s(1+c) k \cdot \frac{\Delta}{l}
$$

The fixed-end moments $M_{A B(F)}$ and $M_{B A(F)}$ in Fig. 2.1(d) depend both on the distribution and intensity of the transverse loads and on the value of ρ, and may be denoted by $M_{A B(F)}^{\prime}$ and $M_{B A(F)}^{\prime}$. Superimposing the solutions for the elementary operations in Figs. 2.1(a) to (d), the general slope-deflexion equations for a laterally loaded member with axial load (Fig. 2.1(e)) become

$$
\begin{align*}
& M_{A B}=M_{A B(F)}^{\prime}+k\left[s \theta_{A}+s c \theta_{B}-s(1+c) \cdot \frac{\Delta}{l}\right] \tag{2.2}\\
& M_{B A}=M_{B A(F)}^{\prime}+k\left[s c \theta_{A}+s \theta_{B}-s(1+c) \cdot \frac{\Delta}{l}\right] \tag{2.3}
\end{align*}
$$

Stability functions of various types have been suggested by a number of authors, the first being due to Berry. ${ }^{(14)}$ Functions corresponding to s and c were first calculated by James ${ }^{(15)}$ and by Lundquist and Kroll. ${ }^{(16)}$ Livesley and Chandler ${ }^{(17)}$ retabulated s and c in terms of $\rho=P / P_{E}$, and their form of these functions
is used in the present treatment. The derivation of s and c functions will now be given.

2.3 The Functions s and c

The uniform member $A B$ in Fig. 2.2 is, when unloaded, perfectly straight and of length l, with its longitudinal axis coincident with $O X$. The end B is fixed in position and direction, and in the presence of an axial load P, a terminal moment $M_{A B}$ applied at A causes a rotation θ_{A} at A, and induces a restraining

Fig. 2.2
moment $M_{B A}$ at B. The uniform shear force F is obtained in terms of $M_{A B}$ and $M_{B A}$ by taking moments about one end, giving

$$
F=-\frac{M_{A B}+M_{B A}}{l}
$$

If y denotes the deflexion perpendicular to $O X$ of a point on the longitudinal axis distance x from end A, the equation of flexure becomes

$$
\begin{equation*}
E I \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-P y-M_{A B}-F x \tag{2.4}
\end{equation*}
$$

Substituting $P=\pi^{2} \rho(k / l)$ and rearranging,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\pi^{2} \rho}{l^{2}} y=\frac{1}{k l}\left[\left(M_{A B}+M_{B A}\right) \frac{x}{l}-M_{A B}\right] \tag{2.5}
\end{equation*}
$$

The general solution of equation (2.5) is

$$
\begin{align*}
y=A \sin \pi \sqrt{ } \rho \frac{x}{l} & +B \cos \pi \sqrt{ } \rho \frac{x}{l} \\
& +\frac{l}{\pi^{2} \rho k}\left[\left(M_{A B}+M_{B A}\right) \frac{x}{l}-M_{A B}\right] . \tag{2.6}
\end{align*}
$$

The constants of integration A and B may be derived from the two boundary conditions $y=0$ when $x=0$ and $y=0$ when $x=l$, giving

$$
\begin{aligned}
A & =-\frac{l}{4 \alpha^{2} k}\left[M_{A B} \cot 2 \alpha+M_{B A} \operatorname{cosec} 2 \alpha\right] \\
B & =\frac{l}{4 \alpha^{2} k} M_{A B}
\end{aligned}
$$

where $\alpha=(\pi / 2) \sqrt{ } \rho$. Substituting these values in equation (2.6) and differentiating with respect to x, it is found on rearrangement that

$$
\begin{align*}
4 \alpha^{2} k \frac{\mathrm{~d} y}{\mathrm{~d} x}=M_{A B}(1 & \left.-2 \alpha \sin 2 \alpha \frac{x}{l}-2 \alpha \cot 2 \alpha \cos 2 \alpha \frac{x}{l}\right) \\
& +M_{B A}\left(1-2 \alpha \operatorname{cosec} 2 \alpha \cos 2 \alpha \frac{x}{l}\right) \tag{2.7}
\end{align*}
$$

The boundary condition $\mathrm{d} y / \mathrm{d} x=0$ when $x=l$ leads to the evaluation of the carry-over factor c, namely

$$
c=\frac{M_{B A}}{M_{A B}}=\frac{2 \alpha-\sin 2 \alpha}{\sin 2 \alpha-2 \alpha \cos 2 \alpha}
$$

Since $M_{A B}=s k \theta_{A}$ and $M_{B A}=c s k \theta_{A}$, the value of s may now be obtained from equation (2.7), giving

$$
s=\frac{(1-2 \alpha \cot 2 \alpha) \alpha}{\tan \alpha-\alpha}
$$

The variation of s and c with ρ is shown graphically in Fig. 2.3, and is tabulated in Tables A1 and A2 (pages 158 to 169). It is seen that as ρ increases from zero, s decreases from 4.0 to 0 at $\rho \approx 2.046$, thereafter becoming negative. The axial

Fig. 2.3
load corresponding to $s=0$ (given by the condition $2 \alpha=\tan 2 \alpha$) represents the critical load of a member $A B$ direction fixed at B and pinned at A (Fig. 2.2), and it is evident that a member so loaded would have zero stiffness for rotation at A. At this same critical value of ρ, the carry-over factor c becomes infinitely
large, that is $M_{A B}=0$ while $M_{B A}$ is finite. At values of $\rho>$ 2.046 , the moment at A becomes a restraining moment, and this explains why the stiffness becomes negative.

It may be noted that the shear force F in Fig. 2.2 is given by

$$
F=-\frac{M_{A B}+M_{B A}}{l}=-s(1+c) \frac{k}{l} \theta_{A}
$$

In Tables A4 and A5 (pages 172 to 175) values of s and c are given for negative values of ρ, i.e. for axial tension. Increasing axial tension causes a continuous increase in stiffness s and a continuous decrease in carry-over factor c. The trigonometric functions are replaced by the corresponding hyperbolic functions. Thus if $\gamma=(\pi / 2) \sqrt{ }(-\rho)$,

$$
\begin{aligned}
& s=\frac{(1-2 \gamma \operatorname{coth} 2 \gamma) \gamma}{\tanh \gamma-\gamma} \\
& c=\frac{2 \gamma-\sinh 2 \gamma}{\sinh 2 \gamma-2 \gamma \cosh 2 \gamma}
\end{aligned}
$$

2.4 The Function $s^{\prime \prime}$

The stiffness of a member for rotation at one end is reduced when the remote end is free from rotational restraint. The deformation is represented in Fig. 2.1(f), and if $M_{A B}=s^{\prime \prime} k \theta_{A}$, the modified stiffness coefficient $s^{\prime \prime}$ may be obtained by a suitable superposition of the operations in Figs. 2.1(a) and (b). This may be represented in tabular form as follows.

Table 2.1

	$M_{A B}$	$M_{B A}$
Rotate θ_{A} Rotate θ_{B}	$s k \theta_{A}$ $s c k \theta_{B}$	$s c k \theta_{A}$ $s k \theta_{B}$
Rotate θ_{A} and θ_{B}	$s k\left(\theta_{A}+c \theta_{B}\right)$	$s k\left(c \theta_{A}+\theta_{B}\right)$

Since it is required to make $M_{B A}=0$, the final column shows that $\theta_{B}=-c \theta_{A}$. Hence from the second column, $M_{A B}=$ $s\left(1-c^{2}\right) k \theta_{A}$ and thus $s^{\prime \prime}=s\left(1-c^{2}\right)$. The modified stiffness function $s^{\prime \prime}$ is shown graphically in Fig. 2.3, and is tabulated on pages 157-75.

As would be expected, $s^{\prime \prime}=0$ when $\rho=1$, i.e. at the critical load for a pin-ended strut.

2.5 Sway Functions $s(1+c)$ and m

The functions s, c and $s^{\prime \prime}$ are all associated with a joint rotation as the elementary operation. Another operation is that of sway, Fig. 2.4(a). The ends A and B are restrained against rotation, but one end is translated through a distance Δ (where Δ / l is small compared with unity) relative to the other. The angle $\Delta / l=\phi$ is the angle of translation. The sway operation may alternatively be regarded as the rotation of the ends A and B through angles of $-\phi$ (Fig. 2.4b), followed by a bodily rotation of $+\phi$, during which the terminal moments $M_{A B}$ and $M_{B A}$ remain unchanged. (Strictly speaking, the axial load P^{\prime} in Fig. 2.4(b) differs from the axial load P in Fig. 2.4(a), but provided the angle of translation ϕ is small, the difference between P and P^{\prime} may be neglected.) The table of operations for the calculation of the terminal moments is as follows.

Table 2.2

	$M_{A B}$	$M_{B A}$
Rotate $\theta_{A}=-\phi$ Rotate $\theta_{B}=-\phi$	$-s k \phi$ $-s c k \phi$	$-s c k \phi$ $-s k \phi$
	$-s(1+c) k \phi$	$-s(1+c) k \phi$

Hence $M_{A B}=M_{B A}=-s(1+c) k \phi$.

Fig. 2.4

Fig. 2.5

In a translation such as that in Fig. 2.4(a), but with $P=0$, the shear force F is given by $F l=-\left(M_{A B}+M_{B A}\right)$, whence $M_{A B}=M_{B A}=-F l / 2$. In the presence of axial load, this is modified to $M_{A B}=M_{B A}=-m F l / 2$ where m is a function of ρ. Taking moments about one end of the member in Fig. 2.4(a), it follows that

$$
F l=-\left(M_{A B}+M_{B A}\right)-P \Delta
$$

Substituting $M_{A B}=M_{B A}=-m F l / 2=-s(1+c) k \phi$ and $P=$ $\pi^{2} \rho k / l$, it is readily shown that

$$
m=\frac{2 s(1+c)}{2 s(1+c)-\pi^{2} \rho}
$$

The shear force may also be calculated directly from the angle of translation ϕ, viz.

$$
F=\frac{2 s(1+c)}{m} \frac{k}{l} \phi=\frac{2 s(1+c)}{m} \frac{k}{l^{2}} \Delta .
$$

Hence the sway stiffness for both joints fixed against rotation is

$$
\frac{2 s(1+c)}{m} \frac{k}{l^{2}} .
$$

The variation of m with ρ is shown graphically in Fig. 2.5.

2.6 No Shear Functions \boldsymbol{n} and \boldsymbol{o}

The joint translation depicted in Fig. 2.4(a) involves the introduction of a sway force F. It is found convenient in some analytical procedures to introduce a unit operation which avoids any change in shear force, and this is achieved by compounding a sway with the rotation of one end only of the member $A B$, as shown in Fig. 2.6. The terminal moments induced when end A rotates through θ_{A} are expressed in the form $M_{A B}=n k \theta_{A}$ and $M_{B A}=-o k \theta_{A}$, and the functions n and o so defined are dependent only on ρ and are called no shear functions. The following table of operations enables n and o to be expressed in terms of s, c and m.

Table 2.3

Rotate θ_{A}	$M_{A B}$	$M_{B A}$
Sway" ϕ	$-s k \theta_{A}$	$s c k \theta_{A}$
$-s(1+c) k \phi$	$-s(1+c) k \phi$	$\frac{2 s(1+c) \frac{k}{l} \theta_{A}}{m} \frac{k}{l} \phi$
$n k \theta_{A}$	$-s k \theta_{A}$	0

It follows from the last column that $\phi=(m / 2) \theta_{A}$, whence n $=s\{1-m(1+c) / 2\}$ and $o=s\{-c+m(1+c) / 2\}$.

The variation of n and o with ρ is shown graphically in Fig. 2.5.

Fig. 2.6
The introduction of m, n and o functions, and their use in deriving the sway critical loads of rigid-jointed frames, is due to Merchant. ${ }^{(18)}$

2.7 Summary of Operations

A summary of the various elementary operations in terms of stability functions is given in Fig. 2.7. In addition to those already discussed, Fig. 2.7 gives at (d) the results for a joint translation in which one end is pinned and the other end is fixed in direction.

Also given in Fig. 2.7 are results for members with rigid gusset plates. These are discussed later in the chapter.

Fig. 2.7

Fig. 2.7 (continued)
(c) JOINT TRANSLATION (SWAY). BOTH ENDS DIRECTION FIXED

(d) JOINT TRANSLATION (SWAY). ONE END PINNED

(e) NO-SHEAR TRANSLATION

$$
\begin{aligned}
\bar{M}_{A B} & =-\bar{m}_{A} \frac{F l}{2} \\
\bar{M}_{B A} & =-\bar{m}_{B} \frac{F l}{2} \\
F & =\frac{2 s(1+c)}{m} \frac{k}{l} \cdot \frac{\Delta}{l} . \\
\bar{m}_{A} & =m+2 \frac{g_{A}}{l} \\
\bar{m}_{B} & =m+2 \frac{g_{B}}{l} .
\end{aligned}
$$

$$
M_{B A}=-s^{\prime \prime} k \phi
$$

$$
=-\frac{s^{\prime \prime}}{s^{\prime \prime}-\pi^{2} \rho} F l
$$

$$
F=\left(s^{\prime \prime}-\pi^{2} \rho\right) \frac{k}{l} \phi
$$

$$
\theta_{A}=(1+c) \phi
$$

$$
M_{A B}=n k \theta_{A}
$$

$$
M_{B A}=-o k \theta_{A}
$$

$$
\phi=\frac{m}{2} \theta_{A} .
$$

$$
\begin{aligned}
\bar{M}_{A B} & =\bar{n} k \theta_{A}, \\
\bar{M}_{B A} & =-\bar{o} k \theta_{A}, \\
\frac{\Delta}{l} & =\frac{\bar{m}_{A}}{2} \theta_{A} . \\
\bar{n} & =n-\pi^{2} \rho \frac{g_{A}}{l}, \\
\bar{o} & =o .
\end{aligned}
$$

2.8 Generalised Displacements

A generalised displacement (two end rotations plus a translation) may be established either in terms of s, c and m functions only, or in terms of n, o and m functions only. Using s, c, and m functions, the table of operations becomes:

Table 2.4

	$M_{A B}$	$M_{B A}$	F
Rotation at A θ_{A} Rotation at B θ_{B} Translation ϕ Lateral load	$s k \theta_{A}$	$s c k \theta_{A}$	$-s(1+c) \frac{k}{l} \theta_{A}$
	$s c k \theta_{B}$	$s k \theta_{B}$	$-s(1+c) \frac{k}{l} \theta_{B}$
	$-s(1+c) k \phi$	$-s(1+c) k \phi$	$\frac{2 s(1+c)}{m} \frac{k}{l} \phi$
$M_{A B(F)}^{\prime}$	$M_{B A(F)}^{\prime}$	$F_{A(F), F_{B(P)}^{\prime}}$	

For the sake of completeness, the components due to lateral loads within the length of a member have been added on the bottom line of the table.

Using n, o and m functions, the table of operations (excluding lateral loads) becomes:

Table 2.5

	$M_{A B}$	$M_{B A}$	ϕ
Rotation at A θ_{A} Rotation at B θ_{B}	$n k \theta_{A}$	$-o k \theta_{A}$	$\frac{m}{2} \theta_{A}$
Applied shear force F	$-o k \theta_{B}$	$n k \theta_{B}$	$\frac{m}{2} \theta_{B}$
$-m \frac{F l}{2}$	$-m \frac{F l}{2}$	$\frac{m}{2 s(1+c)} \frac{F l}{k}$	

In Table 2.4, the operations θ_{A} and θ_{B} introduce sway forces but are unaccompanied by sway deformation. In Table 2.5 , the operations θ_{A} and θ_{B} are accompanied by sway deformation, but do not introduce any sway force. The functions n and o are more convenient to use than s and c functions when the equilibrium conditions for the structure preclude the introduction or alteration of the shear force in a member, as for example in the columns of a symmetrical single bay building frame in the absence of sway bracing.

2.9 Lateral Loads

As in structures where the effect of axial loads on flexure is ignored, lateral loads may be allowed for by the introduction of fixed-end moments. These are the moments incurred at the ends of the members by the given lateral loads when the ends are direction-fixed at zero slope. These fixed-end moments depend, not only on the distribution and intensity of the lateral loads, but also on the value of the axial loads as defined by the parameter $\rho=P / P_{E}$. Two cases will be considered--that of a load uniformly distributed throughout the length of the member, and that of a single point load applied anywhere within the span. The case for any number of point loads may be solved by superposition from the solution for a single point load.

2.10 Uniformly Distributed Load

The member $A B$, of length l and uniform flexural rigidity $E I$ (Fig. 2.8), sustains an axial compressive load P and a uniformly distributed lateral load of intensity w per unit length. The ends A and B are fixed against rotation, the induced fixed-end moments being M_{F} at each end. The equation of flexure is

$$
\begin{equation*}
E I \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=M_{F^{\prime}}-P y-\frac{w x(l-x)}{2} \tag{2.8}
\end{equation*}
$$

Frg. 2.8
Integrating the equation, and substituting $k=E I / l, P=\pi^{2} \rho k / l$ and $\alpha=(\pi / 2) \sqrt{ } \rho$, it is found that

$$
\begin{align*}
y=A \sin \frac{2 \alpha x}{l}+B & \cos \frac{2 \alpha x}{l} \\
& +\frac{l}{4 \alpha^{2} k}\left[M_{F}-\frac{w l^{2}}{8 \alpha^{2}}-\frac{w}{2} x(l-x)\right] . \tag{2.9}
\end{align*}
$$

Inserting the boundary conditions $y=0$ and $\mathrm{d} y / \mathrm{d} x=0$ when $x=0$ gives

$$
\begin{aligned}
A & =\frac{w l^{3}}{16 \alpha^{3} k} \\
B & =\frac{w l^{3}}{32 \alpha^{4} k}\left[1-\frac{8 \alpha^{2}}{w l^{2}} M_{F}\right] .
\end{aligned}
$$

Using these values of A and B, and introducing the boundary condition $y=0$ when $x=l$ in equation (2.9) gives finally

$$
M_{F}=f \cdot \frac{w l^{2}}{12}
$$

where

$$
f=\frac{3}{\alpha^{2}}(1-\alpha \cot \alpha) .
$$

The coefficient f, a function of α and hence of ρ, is the factor by which the fixed-end moment for zero axial load $\left(w l^{2} / 12\right)$ has to be multiplied to obtain the fixed-end moment when axial load is
present. The fixed-end moment coefficient f is shown graphically in Fig. 2.3, and values are tabulated on pages 157-75.

It is to be noted that, in the application of these results in equations (2.2) and (2.3) and in Table 2.4, $M_{A B(F)}^{\prime}=-M_{F}$ and $M_{B A(F)}^{\prime}=M_{F}$.

2.11 Concentrated Load

A concentrated load W acts transversely on a uniform member $A B$, of length l, the point of application of W being $r l$ from end A and $(1-r) l$ from end B, as shown in Fig. 2.9(a). The

Fig. 2.9
fixed-end moments $M_{F 1}$ and $M_{F 2}$ are obtained by considering the behaviour of the two parts of the beam, $A C$ and $C B$, as shown in Fig. 2.9(b). The deflexion and rotation at C are denoted by Δ_{c} and θ_{c} respectively.

Let $\rho=P / P_{E}$ where P is the axial load in the member $A B$ and P_{E} is the Euler load for $A B$ considered as a pin-ended strut. If $P_{E 1}$ and $P_{E 2}$ are the Euler loads for $A C$ and $C B$ respectively when considered as separate members, then $P_{E 1}=P_{E} / r^{2}$ and $P_{E 2}=P_{E} /(1-r)^{2}$. If $\rho_{1}=P / P_{E 1}$ and $\rho_{2}=P / P_{E 2}$, then $\rho_{1}=r^{2} \rho$
and $\rho_{2}=(1-r)^{2} \rho$. The stability functions for $A C$ and $C B$, obtained from ρ_{1} and ρ_{2}, will be denoted respectively by s_{1}, c_{1}, m_{1}, etc., and s_{2}, c_{2}, m_{2}, etc. It is also to be noted that if $k=E I / l$, then $k_{1}=E I / r l=k / r$ and $k_{2}=E I /(1-r) l=k /(1-r)$.

To obtain the deformed states of $A C$ and $C B$ depicted in Fig. $2.9(\mathrm{~b})$, the initially straight members are subjected to a joint rotation at C of θ_{c} (as in Fig. 2.7(a)) followed by a joint translation of Δ_{c} (as in Fig. 2.7(c)). The bending moments $M_{A C}$, $M_{C A}, M_{C B}$ and $M_{B C}$ (clockwise positive, Fig. 2.9(b)) resulting from these two steps are shown in Table 2.6, the final values

Table 2.6

Operation	$M_{A C}$	$M_{C A}$	$M_{C B}$	$M_{B C}$
Rotate $C\left(\theta_{c}\right)$	$c_{1} s_{1} \frac{k}{r} \theta_{c}$	$s_{1} \frac{k}{r} \theta_{c}$	$s_{2} \frac{k}{(1-r)} \theta_{c}$	$c_{2} s_{2} \frac{k}{(1-r)} \theta_{c}$
Translate $C\left(\Delta_{c}\right)$	$-s_{1}\left(1+c_{1}\right) \frac{k}{r^{2}} \frac{\Delta_{c}}{l}$	$-s_{1}\left(1+c_{1} \frac{k}{r^{2}} \frac{\Delta_{c}}{l}\right.$	$s_{2}\left(1+c_{2}\right) \frac{k}{(1-r)^{2}} \frac{\Delta_{c}}{l}$	$s_{2}\left(1+c_{2}\right) \frac{k}{(1-r)^{2}} \frac{\Delta_{c}}{l}$

being obtained by addition of the two rows. Since for equilibrium at $C, M_{C A}+M_{C B}=0$, it follows that

$$
\begin{equation*}
\left[\frac{s_{1}}{r}+\frac{s_{2}}{1-r}\right] \theta_{c}=\left[\frac{s_{1}\left(1+c_{1}\right)}{r^{2}}-\frac{s_{2}\left(1+c_{2}\right)}{(1-r)^{2}}\right] \frac{\Delta_{c}}{l} . \tag{2.10}
\end{equation*}
$$

Since $M_{F 1}=-M_{A C}$, it follows from Table 2.6 that

$$
\begin{equation*}
M_{F \mathbf{1}}=s_{1}\left(1+c_{1}\right) \frac{k}{r^{2}} \frac{\Delta_{c}}{l}-s_{1} c_{1} \frac{k}{r} \theta_{c} . \tag{2.11}
\end{equation*}
$$

Using the last column of Table 2.4, the shear forces F_{1} and F_{2} either side of the applied load W may be derived (see Fig. 2.9(b)),

$$
\begin{align*}
& F_{1}=2 s_{1}\left(1+c_{1}\right)\left[\frac{1}{r m_{1}} \frac{\Delta_{c}}{l}-\frac{\theta_{c}}{2}\right] \frac{k}{r^{2} l}, \tag{2.12}\\
& F_{2}=-2 s_{2}\left(1+c_{2}\right)\left[\frac{1}{(1-r) m_{2}} \frac{\Delta_{c}}{l}+\frac{\theta_{c}}{2}\right] \frac{k}{(1-r)^{2} l} \tag{2.13}
\end{align*}
$$

By vertical equilibrium at C,

$$
\begin{equation*}
W=F_{1}-F_{2} \tag{2.14}
\end{equation*}
$$

The elimination of $\theta_{c}, \Delta_{c}, F_{1}$ and F_{2} between equations (2.10) to (2.14) gives an expression for the fixed-end moment $M_{F 1}$ in the form

$$
\begin{equation*}
\frac{M_{F 1}}{W l}=\left[\frac{\left(1+c_{1}\right) A-c_{1} r B}{2 A C-B^{2}}\right] \frac{s_{1}}{r^{2}} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\frac{s_{1}}{r}+\frac{s_{2}}{1-r} \\
& B=\frac{s_{1}\left(1+c_{1}\right)}{r^{2}}-\frac{s_{2}\left(1+c_{2}\right)}{(1-r)^{2}} \\
& C=\frac{s_{1}\left(1+c_{1}\right)}{r^{3} m_{1}}+\frac{s_{2}\left(1+c_{2}\right)}{(1-r)^{3} m_{2}}
\end{aligned}
$$

Values of $M_{F} / W l$ are shown graphically in Fig. 2.10 for values of ρ between -20 and +2 and of r between 0 and $1 \cdot 0$. By entering the chart with r and ($1-r$), the fixed-end moments at both ends of a member due to a load placed anywhere along its length may be derived. As mentioned before, the fixed-end moments due to a series of concentrated loads may be obtained by superposition. In applying equations (2.2) and (2.3) and Table 2.4, due account must be taken of signs in substituting for $M_{A B(F)}^{\prime}$ and $M_{B A(F)}^{\prime}$. The shear forces $F_{A(F)}^{\prime}$ and $F_{B(F)}^{\prime}$ for the fixed-end moment condition are best derived directly from the fixed-end moments themselves by considering the equilibrium of the loaded member (Fig. 2.1(d)).

2.12 Effect of Gusset Plates

It is usually convenient to work to frame centre lines, so that the ends of members dealt with in a structural analysis actually lie within the boundaries of the joints. Although the joints

Fig. 2.10
cannot be absolutely rigid, it is more accurate to assume complete rigidity than to assume an effective rigidity equal to that of the rest of the member. Complete flexural rigidity over given lengths at the ends of members may be allowed for in the calculations by introducing modified values of the various stability functions as follows.

The member $\bar{A} \bar{B}$ (Fig. 2.11(a)) is completely rigid over the end lengths $\bar{A} A=g_{A}$ and $\bar{B} B=g_{B}$, the central length $A B=l$

Fig. 2.11
having uniform flexural rigidity $E I$. The terminal bending moments $\bar{M}_{A B}, \bar{M}_{B A}$ induced by a rotation θ_{A} at \bar{A} are expressed in terms of modified stability functions \bar{s} and \bar{c} where $\bar{M}_{A B}=\bar{s} k \theta_{A}$ and $\bar{M}_{B A}=\bar{s} \bar{c} k \theta_{A}, k$ being based on the length l (i.e. $\left.k=E I / l\right)$. The moments at A and B ($M_{A B}$ and $M_{B A}$ respectively) may be derived from the standard stability functions s and c, as shown in Fig. 2.11(b). The appropriate value of ρ is based on the length l, i.e. $\rho=P / P_{E}$ where $P_{E}=\pi^{2} E I / l^{2}$. Taking moments about \bar{A} for $\bar{A} A, \bar{B}$ for $\bar{B} B$ and about \bar{A} for the whole member, the following three equations are obtained,

$$
\begin{equation*}
\bar{s} k \theta_{A}=s k \theta_{A}+s(1+c) k \frac{g_{A} \theta_{A}}{l}-F g_{A}-P g_{A} \theta_{A} \tag{2.16}
\end{equation*}
$$

$$
\begin{gather*}
\tilde{s} \bar{c} k \theta_{A}=s c k \theta_{A}+s(1+c) k \frac{g_{A} \theta_{A}}{l}-F g_{B} \tag{2.17}\\
\bar{s} k \theta_{A}+\bar{s} \bar{c} k \theta_{A}=-F\left(l+g_{A}+g_{B}\right) \tag{2.18}
\end{gather*}
$$

Eliminating F,

$$
\begin{gather*}
\bar{s}=s+\frac{2 g_{A}}{l}\left(1+\frac{g_{A}}{l}\right) A \tag{2.19}\\
\bar{s} \bar{c}=s c+s(1+c)\left[\frac{g_{A}}{l}+\frac{g_{B}}{l}\right]+2 \frac{g_{A}}{l} \frac{g_{B}}{l} A, \tag{2.20}\\
\bar{s}(1+\bar{c})=\left[s(1+c)+\frac{2 g_{A}}{l} A\right]\left[1+\frac{g_{A}}{l}+\frac{g_{B}}{l}\right] . \tag{2.21}
\end{gather*}
$$

where $A=s(1+c)-\left(\pi^{2} / 2\right) \rho$. The quantity A may be regarded as a new function of ρ, and has been tabulated by Livesley and Chandler, ${ }^{(17)}$ to whom this treatment of gusset plates is due. Alternatively A may be calculated from the values of $s(1+c)$ given in Tables A. 1 to A. 5.

The modified sway functions \bar{m}_{A} and \bar{m}_{B} give the terminal moments $\bar{M}_{A B}=-\bar{m}_{A} F l / 2$ and $\bar{M}_{B A}=-\bar{m}_{B} F l / 2$ induced by a shear force F (Fig. 2.12(a)), and from Fig. 2.12(b),

$$
\bar{M}_{A B}=-\bar{m}_{A} \frac{F l}{2}=-m \frac{F l}{2}-F g_{A},
$$

i.e. $\quad \bar{m}_{A}=m+\frac{2 g_{A}}{l}$.

Similarly $\quad \bar{m}_{B}=m+\frac{2 g_{B}}{l}$.
The no-shear coefficients \bar{n}_{A} and \bar{o}_{A} (Fig. 2.13) define the terminal moments $\bar{M}_{A B}=\bar{n}_{A} k \theta_{A}$ and $\bar{M}_{B A}=-\bar{o}_{A} k \theta_{A}$ induced by a no-shear rotation θ_{A} at A.

Fig. 2.12

Fig. 2.13

Hence

$$
\begin{aligned}
& \bar{M}_{A B}=\bar{n}_{A} k \theta_{A}=n k \theta_{A}-P g_{A} \theta_{A} \\
& \bar{M}_{B A}=-\bar{o}_{A} k \theta_{A}=-o k \theta_{A}
\end{aligned}
$$

Hence

$$
\begin{align*}
& \bar{n}_{A}=n-\pi^{2} \rho \frac{g_{A}}{l} \tag{2.24}\\
& \bar{o}_{A}=o \tag{2.25}
\end{align*}
$$

The total sway Δ is given by

$$
\begin{equation*}
\Delta=\frac{m}{2} l \theta_{A}+g_{A} \theta_{A}=\frac{\bar{m}_{A}}{2} l \theta_{A} . \tag{2.26}
\end{equation*}
$$

Similarly, for a no-shear rotation θ_{B} at B,

$$
\bar{M}_{B A}=\bar{n}_{B} k \theta_{B} \quad \text { and } \quad \bar{M}_{A B}=-\bar{o}_{B} k \theta_{B}
$$

where

$$
\bar{n}_{B}=n-\pi^{2} \rho \frac{g_{B}}{l} \text { and } \bar{o}_{B}=o
$$

A summary of modifications to stiffness functions to allow for gusset plates is given in Fig. 2.7.

2.13 Limitations on the Use of Stability Functions

In this chapter, attention has been confined to the elastic flexural behaviour of a prismatic member bending in one plane only. It is assumed that the centroid and the shear centre of any

Fig. 2.14
cross-section both occur in that plane. This condition is satisfied for plane frames with loads acting in the plane of the frame only, the members all having axes of symmetry within that plane. Thus suppose each of the members with the successive crosssections shown in Figs. 2.14(a), (b) and (c) has one principal axis $Y Y$ in the plane of the frame containing the member. For flexure in the plane of the frame, bending will in each case take place about the other principal axis $X X$. The centroid of a crosssection is denoted by G, and the shear centre by S, these being almost coincident for the section in Fig. 2.14(a). The behaviour
of the members in Figs. 2.14(a) and (b) for bending about axis $X X$ will be fully described in the elastic range by the functions derived in this chapter. The same cannot be said of the channel section in Fig. 2.14(c), since the shear centre S does not occur with the centroid G in the plane $Y Y$. The stability functions may only be applied to such a member if it is so constrained continuously along its length that twisting about the longitudinal axis is everywhere prevented.

It should also be noted that stability functions are only valid for small angles of slope relative to a straight line joining the ends of a member, i.e. for values of $\mathrm{d} y / \mathrm{d} x$ small compared with unity. This means that they are inapplicable to a structure in which the deformations are of an order comparable with the dimensions of the structure.

2.14 Applications of Stability Functions

If it can be assumed that the axial loads in the members of a structure are known within sufficiently close limits without the necessity of performing a complete flexural analysis, the stability functions enable the setting up of a set of linear equations which express the equilibrium requirements in terms of the displacements and rotations of the joints. The analysis may then proceed exactly as for a structure in which the effects of axial loads or bending moments are neglected, and any of the standard methods of analysis may be applied. In particular, the methods of matrix analysis may be used, and the reader is referred to the treatment by Livesley. ${ }^{(19)}$ Matrix methods lead directly to computer solutions, and offer thereby an escape from the enormous labour encountered in the solution of stability problems by hand. While this procedure is attractive and will frequently be the ultimate goal, it is unwise to resort to it without first gaining some knowledge of the qualitative phenomena involved. The explanation of these phenomena is the main purpose of this volume. Chapter 3 describes the application of stability functions to triangulated frames, while Chapter 4 deals with non-triangulated frames. The
behaviour of frames beyond the elastic limit is discussed in Chapter 5.

Examples

2.1 The uniform member $A B$ in Fig. 2.15 is subjected to an axial load P, terminal moments $M_{A B}$ and $M_{B A}$ and a shear force F. Show that
(a)

$$
\theta_{A}-\frac{\Delta}{l}=\frac{M_{A B}-c M_{B A}}{s^{\prime \prime} k}
$$

(b)

$$
\theta_{A}=\frac{n M_{A B}+o M_{B A}}{\left(n^{2}-o^{2}\right) k}+\frac{m F l}{2(n-o) k}
$$

Fig. 2.15
2.2 The members $A B, B C$ are rigidly joined at B, and sustain axial loads $P_{A B}=\left(\pi^{2} k_{A B} / l_{A B}\right) \rho_{A B}$ in $A B$ and $P_{B C}=\left(\pi^{2} k_{B C} / l_{B C}\right) \rho_{B C}$ in $B C$. If the deformations indicated |in Fig.! 2.16! cause

Fig. 2.16
moments at A, B and C as shown, show that these moments are related by the equation:

$$
\frac{M_{B A}-c_{A B} M_{A B}}{s_{A B}^{\prime \prime} k_{A B}}-\frac{M_{B C}-c_{B C} M_{C B}}{s_{B C}^{\prime \prime} k_{B C}}+\frac{\Delta_{A B}}{l_{A B}}-\frac{\Delta_{B C}}{l_{B C}}=0
$$

[Note. This corresponds to the "four-moment equation" of Bleich. A possible method of analysing continuous frames is to apply this equation repeatedly to adjacent members, each application representing the satisfaction of the compatibility condition for the rotations of the members at the joint.

It may also be noted that transverse loads acting between joints may be allowed for by replacing the moments $M_{A B}, M_{B A}$, etc., by $\left(M_{A B}-M_{A B(F)}\right),\left(M_{B A}-M_{B A(F)}\right)$, etc., where $M_{A B(F)}$, $M_{B A(F)}$, etc., are the appropriate fixed-end moments in the presence of the given axial loads.]

Fig. 2.17
2.3 The vertical load W (Fig. 2.17) is supported by the tie $A C$ and the strut $B C$, both members being pin-ended. If failure occurs by the buckling of the strut $B C$, the dimensions a and b being fixed while h is undefined, show that W is a maximum when $h=b / \sqrt{ } 2$. If the flexural rigidity of $B C$ is $E I$, show that the maximum value of W is

$$
\frac{2 \pi^{2}}{3 \sqrt{ } 3} \frac{a}{(a+b) b^{2}} E I .
$$

If $a=b=\sqrt{ } 2 h$, and $A C$ has the same flexural rigidity as $B C$, show that the effect of making joint C rigid is to increase the value of W at which buckling occurs by approximately 50 percent.
2.4 A uniform member $A B$, of length l and flexural rigidity $E l=k l$, carries an axial load P and is joined at A to members which provide a restraining moment of $q_{A} k \theta_{A}$ when A is rotated through θ_{A}. Show that the rotational stiffness at B is $q_{B} k$
where

$$
\frac{q_{B}}{s}=1-\frac{c^{2}}{1+\left(q_{A} / s\right)}
$$

A uniform member of length $8 l$ is fixed in direction at each end and is restrained against lateral movement at the ends and at intervals of l within its length. Use the above result to show that buckling occurs under an axial load P given by $c=\sqrt{ }(4-2 \sqrt{ } 2)$ where c is the stability function corresponding to $\rho=P I^{2} / \pi^{2} E I$.
2.5 The end A of a member $A B$ is held by another member which provides a restraining moment of $Q_{A} \theta_{A}$ when end A is rotated through an angle θ_{A}. Show that, in the presence of axial load, the "no-shear" rotational stiffness at end B, after allowing equilibrium to be established at A, is Q_{B} where

$$
\frac{Q_{B}}{n k}=1-\frac{(o / n)^{2}}{1+\left(Q_{A} / n k\right)}
$$

A continuous vertical cantilever $A B C D$, where $A B=B C$ $=C D=l$, is held rigidly at A and carries equal vertical loads W at B, C and D. The flexural rigidities are uniformly $3 E I$ over $A B, 2 E I$ over $B C$ and $E I$ over $C D$. Show that buckling will occur when $o / n=\sqrt{ }(5 / 3)$ where the stability functions n and o correspond to $\rho=W l^{2} / \pi^{2} E I$.
2.6 A pin-ended strut $A D$ consists of a central section $B C$, of length $2 l$, and flexural rigidity $E I_{1}$, and two equal end sections $A B$ and $C D$, each of length l_{2} and flexural rigidity $E I_{2}$. Show that buckling occurs under an axial load P given by

$$
\left(\frac{o_{2}}{n_{2}}\right)^{2}=1+\frac{n_{1}}{n_{2}} \frac{k_{1}}{k_{2}}
$$

where $k_{1}=E I_{1} / l_{1}, k_{2}=E I_{2} / l_{2}$ and stability functions o_{1}, n_{1} and o_{2}, n_{2} correspond to $\rho_{1}=P l_{1}{ }^{2} / \pi^{2} E I_{1}$ and $\rho_{2}=P l_{2}{ }^{2} / \pi^{2} E I_{2}$ respectively.
2.7 A pin-ended strut of constant cross-section is restrained at midheight against lateral deflexion by a spring as shown in Fig. 2.18. If the spring stiffness is λ, i.e. $Q=\lambda \delta$, show that for λ small the critical load of the strut in the plane of the restraint is increased to
$P_{E}\left\{1+\frac{\lambda L^{3}}{48 E I}\right\}$ approximately.
(Manchester, Honours B.Sc. Tech., Part II 1956.)

Fig. 2.18
(It may be assumed that the relation between stiffness and axial load for the strut with respect to a central disturbing force is very nearly linear.)
2.8 A composite strut consists of two portions $A B$ and $B C$ as in Fig. 2.19. The length of $B C$ is λ times that of $A B$ and the

Fig. 2.19
moment of inertia of $B C$ is λ^{2} times that of $A B$. Show that if the composite strut is tested with pin ends at A and C its lowest critical load does not depend on λ and hence is equal to onequarter of the Euler load of the portion $A B$.
(Manchester, Honours B.Sc. Tech., Part II 1958.)

CHAPTER 3

Triangulated Frames

3.1 Introduction

The principles of structural analysis are the same for all frames, whether or not axial loads in members are sufficient to affect their stiffness, and amount to the simultaneous satisfaction of the conditions of equilibrium and compatibility. With the assistance of stability functions, analysis is straightforward provided the axial loads in the members are known, and for this reason structures in which axial loads are exactly or very nearly proportional to the applied loads are the most easily dealt with.

Pin-jointed, statically determinate frames present no problem, since axial loads are directly proportional to the applied loads. The inception of buckling is controlled by the readily ascertained critical members. For finite deformations after buckling, since a pin-ended Euler strut has finite stiffness with respect to axial compression (Fig. 1.9), the structure as a whole may become stable or unstable, depending on the particular geometry. This subject has been discussed by Britvec, ${ }^{(20)}$ but is not of much practical significance since it concerns gross deformations which are not usually acceptable in practice. Redundant, pin-jointed, triangulated frames present greater difficulty. Initially, the axial load distribution is controlled by the ordinary elastic stiffness of the member, but after the inception of buckling, the stiffness of the compression members is modified to the value given by the slope of the curve $H Q$ in Fig. 1.9 (cf. equation (1.11)). Since in any practical frame, the compression members will cease to behave elastically, certainly after the early stages of buckling if not before, problems involving the post-buckling behaviour of
such triangulated frames cannot be discussed at all usefully in terms of elastic theory.

Rigid-jointed-triangulated frames which would be statically determinate in the absence of the rigid joints (i.e. frames that are statically determinate in their primary stresses) are the most fruitful for discussion, both on account of their practical importance, and because of the light thereby shed on the phenomenon of "secondary stresses". To a close approximation, the axial loads in such a frame are proportional to the applied loads, but since the bending stiffnesses of the members will vary as these axial loads change, the entire pattern of secondary moments must depend on the load parameter. We illustrate this with a particular example.

Rigid-jointed triangulated frames which are redundant in their primary stresses form a special class as their axial force pattern depends on their axial stiffnesses which in turn depend on the amount of deflexion of the members. The class has certain similarities to laterally loaded portal frames discussed in Chapter 4, but will not be treated further in this book.

3.2 Secondary Stresses

Consider the frame shown in Fig. 3.1. $A B$ and $B C$ are prismatic members with constant flexural rigidity $E I$ rigidly jointed at B and with fixed ends at A and C.

If there were pin-joints at A, B and C the frame would be statically determinate and all the load would be transferred from B to A and C by direct axial loads in the members. Owing to the rigidity of the joints at A, B and C some load can be transferred by bending of the members. Although this is usually an extremely small portion of the load it can cause important bending stresses. It is conventional to assume that this secondary transfer of load does not alter the axial forces in the members which can therefore be calculated for the frame with pin-joints at A, B and C.

Thus from the triangle of forces at B

$$
P_{A B}=W / 2 \text { and } P_{B C}=\sqrt{3} \cdot W / 2
$$

Fig. 3.1
The corresponding shortenings of $A B$ and $B C$ are

$$
\delta_{A B}=\frac{\sqrt{3}}{4} \frac{W l}{A E}=\delta \text { and } \delta_{B C}=\frac{\sqrt{3}}{4} \frac{W l}{A E}=\delta
$$

and the deflexion of B can be found as shown in the Williot diagram in Fig. 3.1. We imagine the frame moved to this position with the joint B prevented from rotating. This requires moments as shown in the table below. The moments due to an arbitrary rotation of B are also shown.

For equilibrium $M_{B A}+M_{B C}=0$ and so

$$
\frac{2 E I}{l} \theta\left(\frac{s_{1}}{\sqrt{ } 3}+s_{2}\right)=\frac{4 E I \delta}{l^{2}}\left[\frac{s_{1}\left(1+c_{1}\right)}{3}-s_{2}\left(1+c_{2}\right)\right]
$$

Substituting for δ,

$$
\left(\frac{s_{1}}{\sqrt{ } 3}+s_{2}\right) \theta=\frac{\sqrt{ } 3}{2} \cdot \frac{W}{A E}\left[\frac{s_{1}\left(1+c_{1}\right)}{3}-s_{2}\left(1+c_{2}\right)\right]
$$

Let $\left(P_{E}\right)_{1}$ be the Euler load corresponding to a member of length $A B$ $\left(P_{E}\right)_{2}, ", ", ", ", \quad, \quad$,,$\quad$ C with corresponding values of ρ_{1} and ρ_{2} Then

$$
\begin{gathered}
\rho_{1}=\frac{3}{8} \frac{W l^{2}}{\pi^{2} E I}=\frac{3}{8 \lambda} \cdot \frac{W}{A E} \\
\rho_{2}=\frac{\sqrt{ } 3}{8} \frac{W l^{2}}{\pi^{2} E I}=\frac{\sqrt{ } 3}{8 \lambda} \cdot \frac{W}{A E} \\
\lambda=\frac{\pi^{2} I}{A l^{2}}
\end{gathered}
$$

Where

Therefore

$$
\rho_{2}=\frac{1}{\sqrt{ } 3} \rho_{1}
$$

Then

$$
\begin{equation*}
\theta=\frac{4 \lambda \rho_{1}}{3} \cdot \frac{s_{1}\left(1+c_{1}\right)-3 s_{2}\left(1+c_{2}\right)}{s_{1}+\sqrt{ } 3 s_{2}} \tag{3.1}
\end{equation*}
$$

And $\quad M_{B C}=\frac{2 E I}{l}\left[s_{2} \theta+2 s_{2}\left(1+c_{2}\right) \delta / l\right]$
Therefore

$$
\begin{equation*}
M_{B C}=\frac{2 E I}{l} s_{2}\left[\theta+4 \lambda\left(1+c_{2}\right) \rho_{2}\right] \tag{3.2}
\end{equation*}
$$

Graphs of θ / λ and $l M_{B C} / 2 E I \lambda$ against ρ_{1}, are shown in Fig. 3.2 and also a graph of $M_{B C} /\left(M_{B C}\right)_{0}$ where ($\left.M_{B C}\right)_{0}$ is the moment that would be obtained if there were no stability effects, i.e. ($\left.M_{B C}\right)_{0}$ varies linearly with ρ_{1}, and is tangential to $M_{B C}$ for small values of ρ_{1}. The consequence of taking stability into account is that $M_{B C}$ does not increase linearly with P and even changes sign as P increases. This is quite a normal consequence of stability and shows how little value a linear elastic analysis may have in predicting bending moments at high values of axial loads. $M_{B C}$
is zero at $\rho_{1}=2 \cdot 26$; below this value $B C$ is bending $A B$, above this value $B C$ is restraining $A B$ from bending and there is reversal of the sign of $M_{B C} . \theta$, however, continues to increase steadily until a vertical asymptote at $s_{1}+\sqrt{ } 3 . s_{2}=0$, i.e. ρ_{1}

Fig. 3.2
$=2 \cdot 62$. Such a value of the load at which deflexions become very large is known as a "critical load". It corresponds to the "Euler load" for pin-ended struts.

For this type of frame it would usually be accepted without question for a linear elastic analysis that the axial forces are as given by simple resolution at B. This procedure neglects the shear forces in $A B$ and $B C$ by comparison with the axial forces. The shear forces are proportional to λW and for a normal value
of λ are less than 1 percent of W. This justifies this procedure for the linear elastic analysis. For the stability analysis the members become more flexible as W increases and this causes the effect to be even less significant.

3.3 Internal Stresses

The same example can be used to show the effects of stability on internal stresses due to lack of fit. Suppose that $A B$ and $B C$ are built in first at A and C and that on coming to make the joint at B it is discovered that there is an error in the angle of $B C$ at B of $\phi . B C$ can be distorted to make the joint by applying a moment $\left(2 E I s_{2} / l\right) \phi$ and on making the joint and releasing the restraint the joint will rotate through ψ, where

$$
\frac{2 E I}{\sqrt{ } 3 . l}\left(s_{1}+\sqrt{ } 3 . s_{2}\right) \psi=\frac{2 E I}{l} s_{2} \phi
$$

Finally $\quad M_{B A}=\frac{2 E I}{\sqrt{ } 3 . l} s_{1} \psi=\frac{2 E I}{l} \frac{s_{1} s_{2}}{s_{1}+\sqrt{ } 3 . s_{2}} \phi$
The moment at B due to lack of fit then also depends on the load and a graph of $l M_{B A} / 2 E I \phi$ against ρ_{1} is shown in Fig. 3.3.

We note that, as in the case of secondary stresses, the sign of $M_{B A}$ can change as the load increases and that the lack of fit moments have the same vertical asymptote as the secondary stress moments.

In linear elastic structures a change in moment due to a change in load can be calculated, but owing to the effects of lacks of fit this is from an unknown initial condition.

We have now demonstrated that when stability effects are taken into account then even changes of moment or deflexion cannot be calculated owing to the fact that the internal stresses and deflexions themselves change due to stability effects. In these circumstances the "critical loads" already mentioned remain the only invariant of the framework that can be calculated.

Fig. 3.3

3.4 Critical Loads

In Chapter 1 it was shown that for a pin-ended strut there is a series of critical loads $P_{C 1}, P_{C 2}, P_{C 3}, \ldots$, associated with a series of buckling modes $y_{1}, y_{2}, y_{3}, \ldots$, such that for any initial distortion

$$
y_{0}=a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}+\ldots
$$

each component is magnified independently
i.e. $\quad y=\frac{a_{1} y_{1}}{1-P / P_{C 1}}+\frac{a_{2} y_{2}}{1-P / P_{C 2}}+\frac{a_{3} y_{3}}{1-P / P_{C 3}}+\ldots$

In the region of the first critical load the corresponding magnifier

$$
\frac{1}{1-P / P_{C 1}}
$$

dominates and we may write

$$
y=\frac{a_{1} y_{1}}{1-P / P_{C 1}}+b
$$

which leads to the Southwell plot. It has been shown that similar results hold for complete frames ${ }^{(21,22,23)}$ where the axial loads are proportional to the load parameter and as an example we give in Fig. 3.4 the Southwell plots for the two cases we have

Fig. 3.4
calculated. The critical loads as given by the inverse slopes of the straight part of the graphs are both in good agreement with the calculated value of $\rho_{1}=2 \cdot 62$.

The deflexions δ due to a disturbing force Q may also be thought of as arising from an initial imperfection

$$
\frac{\delta_{0}}{Q}=a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}+\ldots
$$

and

$$
\frac{\delta}{Q}=\frac{a_{1} y_{1}}{1-P / P_{C 1}}+\frac{a_{2} y_{2}}{1-P / P_{C 2}}+\ldots
$$

The stiffness " K " corresponding to the disturbing force is defined by the equation $Q=K \delta$ where δ is the deflexion corresponding to Q.

Hence

$$
\frac{1}{K}=\frac{b_{1}}{1-P / P_{C 1}}+\frac{b_{2}}{1-P / P_{C 2}}+\ldots
$$

A plot of K / K_{0}, where K_{0} is the value of K when $P=0$, against the load parameter P provides a good technique for determining the critical load. Providing the disturbing force excites any component of the first buckling mode K, vanishes at $P=P_{C 1}$. A linear plot is obtained if $0=b_{2}=b_{3}=\ldots$ and in general the best predictions are obtained by using disturbing forces which excite as large a component as possible of the first buckling mode. For our example let us use as disturbing force a moment M at B. The corresponding rotation is given by

$$
M=\frac{2 E I}{\sqrt{ } 3 . l}\left(s_{1}+\sqrt{ } 3 \cdot s_{2}\right) \theta
$$

Hence

$$
\begin{aligned}
K & =\frac{2 E I}{\sqrt{ } 3 \cdot l}\left(s_{1}+\sqrt{ } 3 \cdot s_{2}\right) \\
\frac{K}{K_{0}} & =\frac{s_{1}+\sqrt{ } 3 \cdot s_{2}}{4(1+\sqrt{ } 3)}
\end{aligned}
$$

A graph of K / K_{0} against ρ_{1} is also given in Fig. 3.3. As is to be expected it agrees with the previous determinations of the critical load. Note that the critical load $\rho_{1}=2.62$ is greater than for a strut fixed at A and pinned at $B\left(\rho_{1}=2.045\right)$ because of the restraint afforded by $B C$. At the critical load all deflexions are indeterminate; and it is wrong to think of just one member buckling since the phenomenon involves the whole frame.

3.5 Critical Loads-Example

Consider the symmetrical truss shown in Fig. 3.5 with member properties as shown in the table below the figure. $P_{E}=\pi^{2} E I / L^{2}$ $=\pi^{2} k / L$ and is therefore an alternative way of specifying the

Member	P / W	L (in)	P_{E} (ton)	$P / P_{E} W$	
$A B$	4.443	129.2	38.88	0.114	Strut
$B C$	2.962	129.2	20.81	0.142	Strut
$A D$	4.125	120	16.96	0.243	Tie
$D E$	4.125	120	16.96	0.243	Tie
BD	1000	48	1.51	0.662	Tie
BE	1.481	129.2	7.98	0.185	Strut
CE	2.100	96	3.50	0.600	Tie

Fig. 3.5
stiffness of a member. The example is one treated by Allen ${ }^{(24)}$ and the problem is to determine the value of W at the first critical load. For any member say $B C$

$$
\begin{aligned}
M_{B C} & =s k \theta_{B}+s c k \theta_{C} \\
& =\frac{s L P_{W}}{\pi^{2}}\left(\theta_{b}+c \theta_{C}\right)
\end{aligned}
$$

For a particular value of W we know the value of $\rho=P / P_{E}$ for each member and hence the corresponding values of s and c. For example at $W=9$ we have

Member	$L P_{E} / \pi^{2}$	P / P_{E}	s	c	$s L P_{E} / \pi^{2}$	$s c L P_{E} / \pi^{2}$	
$A B$	510	1.03	2.41	1.03	1230	1270	Strut
$A D$	206	2.19	6.31	0.25	1300	325	Tie

Therefore

$$
\begin{aligned}
M_{A B} & =1230 \theta_{A}+1270 \theta_{B} \\
M_{A D} & =1300 \theta_{A}+325 \theta_{D} \\
M_{A}=M_{A B}+M_{A D} & =2530 \theta_{A}+325 \theta_{D}+1270 \theta_{B}
\end{aligned}
$$

and for the complete truss we have

	θ_{A}	θ_{D}	θ_{B}	$\theta_{\boldsymbol{L}}$	θ_{C}	θ_{F}	θ_{θ}	$\theta_{\boldsymbol{H}}$
$M_{A}=$	2534	325	1267	0	0	0	0	0
$M_{D}=$	325	2670	10	325	0	0	0	0
$M_{B}=$	1267	10	1936	320	729	0	0	0
$M_{Z}=$	0	325	320	3121	47	320	325	0
$M_{C}=$	0	0	729	47	1348	729	0	0
$M_{F}=$	0	0	0	320	729	1936	10	1267
$M_{G}=$	0	0	0	325	0	10	2670	325
$M_{B}=$	0	0	0	0	0	1267	325	2534

Note the reciprocal check on the coefficients. The demonstration calculation is done with slide rule accuracy. The slightly different values in the complete table are taken from Allen's paper where more significant figures are carried. Allen uses the notation $U=s k V=s c k$. The table contains all the possible information about the response of the truss to disturbing moments at the joints. How one proceeds is a matter of choice. Livesley and Chandler ${ }^{(17)}$ for a truss of the same general shape but different member details use the stiffness approach and solve by relaxation ${ }^{(25)}$ for θ_{B} with $M_{B}=M_{F}$ and all other moments zero. Then M_{B} $=K \theta_{B}$ and a plot of the stiffness K determines the critical load by the value of W for which $K=0$.

Allen solves by successive elimination of the unknowns from each end with all moments zero except M_{E} and M_{C} until he obtains the equations

$$
\begin{aligned}
& M_{E}=2864 \theta_{E}-336 \theta_{C} \\
& M_{C}=-336 \theta_{E}+526 \theta_{C}
\end{aligned}
$$

The behaviour of the truss can thus be considered as that of an equivalent member $E C$ satisfying the above equations. In Allen's notation

$$
\begin{aligned}
& M_{E}=U_{E C} \theta_{E}+V_{E C} \theta_{C} \\
& M_{C}=V_{C E} \theta+U_{C E} \theta_{C}
\end{aligned}
$$

He now puts M_{C} equal to zero and obtains

$$
M_{E}=\left(U_{E C}-\frac{V_{E C} V_{C E}}{U_{C E}}\right) \theta_{E}
$$

He states that the truss is stable if the expression in the brackets is positive, the critical load being given by the vanishing of the expression. In our notation $M_{E}=K \theta_{E}$ and thus Allen's method is in effect the stiffness method. He performs the successive elimination of the unknowns on a picture of the truss rather than by the more usual algebraic methods.

To retain all the available information about the truss we will give here the complete solution of the equations (3.3). It was obtained using a digital computer but may be obtained by desk calculations. It is

$10^{6} \theta$	M_{A}	M_{D}	M_{B}	M_{E}	M_{C}	M_{F}	M_{G}	$M_{\boldsymbol{B}}$
$\theta_{A}=$	796	-109	-776	125	623	-384	-38	197
$\theta_{D}=$	-109	395	117	-60	-100	72	12	-38
$\theta_{B}=$	-776	117	1522	-234	-1220	749	72	-384
$\theta_{E}=$	125	-60	-234	377	240	-234	-60	125
$\theta_{C}=$	623	-100	-1200	240	2052	-1220	-100	623
$\theta_{F}=$	384	72	749	-234	-1220	1522	117	-776
$\theta_{a}=$	-38	12	72	-60	-100	117	395	-109
$\theta_{H}=$	197	-38	-384	125	623	-776	-109	796

Similar calculations were performed for $W=0,3$ and 10 . These enable the stiffness curves shown in Fig. 3.6 to be drawn. Thus for $W=9$ and all disturbing moments zero except M_{B} we have θ_{B} $=1522 M_{B}$ and similar information is available for the other values of W.

Fig. 3.6

Figure 3.6 illustrates several of the important effects of stability. Notice that the initial slopes of the stiffness curves depend on the type of members intersecting at the joints concerned. Thus for D which is at the intersection of three ties increase of W causes an increase of stiffness. A similar although less marked effect is shown for E which is at the intersection of three ties and two struts and initially the gain in stiffness of the ties is greater than the loss in stiffness of the struts. Joint A is at the intersection of a tie and a strut and initially exhibits little change in stiffness with load. Despite the initial increase in stiffness for D and E all the
curves pass through zero at the critical load which is seen to be given by $W=9.9$. The buckling of the truss is not then a local phenomenon but all the joints suffer large rotations and the truss as a whole distorts. It is of interest to note that if W could assume negative values there would also be a corresponding critical load on the other side of the origin.

If, as in the Southwell method, we can write

$$
\begin{gathered}
\frac{1}{K}=\frac{b_{1}}{1-P / P_{C 1}}+b_{2} \text { then } \\
{\left[\frac{K}{K_{0}}-(1+\lambda)\right]\left[\frac{P}{P_{C 1}}-(1+\lambda)\right]=\lambda(1+\lambda)} \\
\lambda=\frac{b_{1}}{b_{2}}
\end{gathered}
$$

where
i.e. the stiffness curves should be rectangular hyperbolae passing through $P=P_{C 1}$ at $K=0$ and having $P / P_{C 1}=1+\lambda$ as an asymptote. The nearness of the asymptote to $P / P_{C 1}=1$ for the stiffness curves for joints D and E indicate that for these joints $b_{2} \gg b_{1}$ and consequently the effect of the amplification factor $1 /\left(1-P / P_{C 1}\right)$ is swamped for small values of P and these stiffness curves are far from rectangular hyperbolae.

3.6 Combination of Disturbances

At the critical load the truss as a whole distorts and all the joints exhibit large rotations. To excite such a shape for $W=0$ will require disturbances distributed along the members but it is of interest to investigate how nearly the buckling shape can be excited by disturbing moments applied only at the joints. From Fig. 3.6 it is obvious that the most important disturbing moments are those at B, F and C. From symmetry we would expect the buckling mode to have $\theta_{B}=\theta_{F}$ and therefore as a first step
we will investigate the case of all joint moments zero except $M_{B}=M_{F}$. Then at $W=9$

$$
10^{6} \theta_{B}=1522 M_{B}+749 M_{F}=2271 M_{B}
$$

and as before we can plot K / K_{0} for the composite disturbance. This curve is more nearly linear than those for any of the separate joints and is also shown in Fig. 3.6.

Let us now incorporate a disturbing moment $M_{C}=\lambda M_{B}=\lambda M_{F}$ Then at $W=9$ we have

$$
\begin{aligned}
& 10^{6} \theta_{B}=2271 M_{B}-1220 M_{C}=(2271-1220 \lambda) M_{B} \\
& 10^{6} \theta_{C}=-2440 M_{B}+2052 M_{C}=(-2440+2052 \lambda) M_{B}
\end{aligned}
$$

The work done in applying these disturbing moments

$$
\begin{aligned}
& =\Sigma \frac{1}{2} M \theta=M_{B} \theta_{B}+\frac{1}{2} M_{C} \theta_{C} \\
& =10^{-6} M_{B}^{2}\left(2271-2440 \lambda+1026 \lambda^{2}\right)
\end{aligned}
$$

The disturbing moments are defined by the parameter M_{B}. If we define a corresponding deflexion (17) by the requirement that the work done is the same
i.e. $\quad \frac{1}{2} M_{B}(\mathbb{H})=\Sigma \frac{1}{2} M \theta$

Then

$$
\frac{1}{2} M_{B}(\mathbb{I I})=10^{-6} M_{B}^{2}\left(2271-2440 \lambda+1026 \lambda^{2}\right)
$$

The stiffness K to the composite disturbance may then be considered as given by $M_{B}=K(\oplus)$ and thus at $W=9$ we have

$$
K=10^{6}\left(4542-4880 \lambda+2052 \lambda^{2}\right)^{-1}
$$

A similar calculation at $W=0$ gives

$$
K_{0}=10^{6}\left(690-320 \lambda+469 \lambda^{2}\right)^{-1}
$$

and thus at $W=9$

$$
\frac{K}{K_{0}}=\frac{690-320 \lambda+469 \lambda^{2}}{4542-4880 \lambda+2026 \lambda^{2}}
$$

For $\lambda=0$ this agrees with our previous result for $M_{B}=M_{F^{\prime}}$ and $M_{C}=0$. For large values of $\lambda, K / K_{0}$ approaches the value we have calculated for M_{C} acting by itself as shown in Fig. 3.6. A graph of K / K_{0} against λ is shown in Fig. 3.7. The minimum value is given by λ approximately equal to -0.8 and then

Fig. 3.7
$K / K_{0}=0 \cdot 127$. For $M_{C}=0$ and $\mathrm{M}_{B}=M_{F}$ we had K / K_{0} $=0 \cdot 152$. As was to be expected we have obtained a lower stiffness and more nearly excited the buckling mode by including a disturbing moment at C.

To obtain a still lower value of K / K_{0} we must use disturbing moments at more joints. Figure 3.8 shows the relative rotations of the joints in terms of θ_{B} for all moments zero except M_{B} and Fig. 3.9 shows a sketch of the corresponding buckling shape. The buckling shape at $W=9 \cdot 9$ is defined by approximately

$$
\begin{aligned}
& \theta_{A}=\theta_{H}=-0.54 \theta_{B} \\
& \theta_{D}=\theta_{G}=0.09 \theta_{B} \\
& \theta_{F}=\theta_{B} \\
& \theta_{B}=-0.23 \theta_{B} \\
& \theta_{C}=-1.30 \theta_{B}
\end{aligned}
$$

Fig. 3.8

Fig. 3.9

The small values obtained for θ_{D} and θ_{E} confirm what we have already deduced from Fig. 3.6 that the rotations of these joints have the smallest components in the buckling mode. Notice that, though we are using an unsymmetrical disturbing moment system, the buckling mode itself exhibits symmetry as is to be expected. The same buckling mode is excited whatever disturbing moment is applied.

We can evaluate the moment pattern corresponding to these values of θ at $W=0$. It is

$$
\begin{aligned}
& M_{A}=M_{H}=-481\left(\theta_{B}\right)_{0} \\
& M_{D}=M_{G}=-151\left(\theta_{B}\right)_{0} \\
& M_{B}=M_{F}=2266\left(\theta_{B}\right)_{0} \\
& M_{E}=-198\left(\theta_{B}\right)_{0} \\
& M_{C}=-1936\left(\theta_{B}\right)_{0}
\end{aligned}
$$

At $W=9$ we obtain for this pattern of moments

$$
\begin{aligned}
& \theta_{A}=\theta_{H}=-4.311\left(\theta_{B}\right)_{0}=-0.540 \theta_{B} \\
& \theta_{D}=\theta_{G}=0.642\left(\theta_{B}\right)_{0}=0.081 \theta_{B} \\
& \theta_{B}=\theta_{F}=7.975\left(\theta_{B}\right)_{0}=1.00 \theta_{B} \\
& \theta_{E}=-1.702\left(\theta_{B}\right)_{0}=-0.214 \theta_{B} \\
& \theta_{C}=-10.105\left(\theta_{B}\right)_{0}=-1.27 \theta_{B}
\end{aligned}
$$

Notice the very small changes in the θ / θ_{B} ratios. These small changes are due to our assumed rotation pattern at $W=0$ being only a near approximation to the buckling shape. Treating the complete pattern of moments as a composite disturbance in exactly the same way as we did for M_{B}, M_{F} and M_{C} acting together we obtain $K / K_{0}=0 \cdot 125$. The same result is also obtained by comparing directly the ratios of θ_{A} and θ_{B} at $W=0$ and 9 as in these cases there is no correction due to the small changes in the rotation pattern.

We have now shown that if we use a disturbing moment pattern which excites the buckling mode at $W=0$ then this pattern is preserved as W increases. Further the lowest value of K / K_{0} that can be obtained by any combination of disturbing moments at the joints is 0.125 at $W=9$ and this is very little less than can be obtained by applying disturbing moments at B, F and C only. If we had been able to excite the buckling mode exactly by disturbing moments at the joints we would have expected a linear fall off in stiffness with W. As the critical value of W is 9.9 a linear variation in stiffness would give a value of $K / K_{0}=0 \cdot 100$ at $W=9 \cdot 0$.

The difference between this value and the minimum value of K / K_{0} that we have obtained must be attributed to the fact that we have not applied disturbing forces along the length of the members but only at the joints.

3.7 Approximate Methods of Calculation of Critical Loads

The reason for seeking approximate methods of calculation is to reduce the time taken in the solution of sets of equations such as equations (3.3). Approximate methods may be divided into two classes:
(a) those that deal with the whole structure, and
(b) those that deal with a simplified structure.

In class (a) there are various methods of fitting an equation to the stiffness curve from calculations at specific values. From a knowledge of similar structures one can form an estimate of P / P_{E} in the most heavily loaded member at collapse (in our case $\left.\left(P / P_{E}\right)_{B E}=1 \cdot 83\right)$. Two calculations in this region should allow of linear interpolation, i.e. in our example the calculations at $W=9$ and $W=10$.

Calculations for several values of the load parameter permit of the fitting of a rectangular hyperbola to the stiffness curve. Inspection of Fig. 3.6 shows that this is not likely to be successful for such joints as D and E where the rectangular hyperbola dominated by the critical load only prevails in the near region of the critical load.

Unless special measures are taken, relaxation type solutions do not usually converge in the negative stiffness region. The expansion $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots$ is only valid for $x<1$ although $(1-x)^{-1}$ exists and is negative for greater values of x. Relaxation solutions can be considered as calculating by a series expansion. For this reason Hoff ${ }^{(26)}$ uses convergence of the calculations as a test for stability and this method has been elaborated by Bolton. ${ }^{(27)}$

Method (b) using a simplified structure is a more practical one. Our investigations of combined disturbances show that disturbances at joints some distance from B do not have much effect on the response at B. We shall therefore assume that the response at B can be obtained by assuming that all the members one remove from B have no change of slope at the far end when calculating the response at B. The simplified structure thus obtained is shown in Fig. 3.10 and the resulting equations for $W=9$ are shown below.

Fig. 3.10

	θ_{A}	θ_{D}	θ_{B}	θ_{E}	θ_{C}
$M_{A}=0=$	2534	0	1267	0	0
$M_{D}=0=$	0	2670	10	0	0
$M_{B}=$	1267	10	1936	320	729
$M_{E}=0=$	0	0	320	3121	0
$M_{C}=0=$	0	0	729	0	1348

The equation for M_{A} gives θ_{A} in terms of θ_{B} and similarly for M_{D}, M_{E} and M_{C}. Substituting in the equation for M_{B} we obtain $M_{B}=876 \theta_{B}$. The estimate of K obtained this way is therefore 876. The accurate value obtained by inversion of the equations (3.3) is $M_{B}=658 \theta_{B}$. Part of the $\left(K / K_{0}, W\right)$ relation for the simplified structure is also shown on Fig. 3.6. It corresponds to an approximate estimate of the critical value of $W=11$ instead of the accurate value of $W=9.9$. The advantage of this approximate method is that no formal solution of a system of simultaneous equations is required. A better approximation would be obtained by restricting the problem to the five equations (3.4) but filling in the missing coefficients and thus requiring the formal solution
of five simultaneous equations instead of the complete set. This would correspond to putting $\theta_{F}=\theta_{G}=\theta_{H}=0$ in the real structure and thus introducing restraints at these points. It would therefore still give an over-estimate of the critical load.

3.8 Effect of Rigid Gussets

In Chapter 2 we have shown how the stiffness s and carryover factor c are modified by the presence of rigid gussets to \bar{s} and \bar{c} and have shown how to calculate these modified values. Therefore there is no difficulty in principle in determining the critical load of a truss with gusset plates, but the calculations are

Fig. 3.11
rather longer than if there were no gusset plates. It is therefore useful to have an idea of the extent to which critical loads are likely to be increased by gusset plates and this can be obtained by reference to three simple cases for an isolated member. In Fig. 3.11 the critical load of a member with symmetrical gusset plates at either end is compared with the critical load of a prismatic member of the same overall length. There is almost no difference between the two cases for the pin-ended strut. This is because the gussets are in the region of low bending moment and thus have little effect on the stiffness. The other two cases give an almost linear increase due to g / l in the range considered. Plotting the rate of increase divided by g / l against the critical load for the three cases shown we obtain the relationship shown in Fig. 3.11(b). In default of complete calculations it is suggested that this graph can be used to estimate the increase in critical loads due to gusset plates.

Examples

3.1 Find the lowest critical load of the structure shown in Fig. 3.12 for the three cases given below. The members are straight

Fig. 3.12
and of constant cross-section, their moments of inertia being shown on the figure. A and C are fixed ends and B is a rigid joint.
Case I I_{2} is small compared with I_{1},
Case II $I_{1}=\sqrt{ } 3 I_{2}$,
Case III I_{1} is small compared with I_{2}.
(Manchester, Honours B.Sc. Tech., Part II 1953.)
3.2 An equilateral rigid-jointed triangular plane framework is tested in the arrangement shown in Fig. 3.13. The loads are applied through pins at A, B and C. Indicate how the critical

Fig. 3.13
load of the frame can be obtained and sketch the buckling mode. Determine limits for the critical value of P compared with the Euler Load of the strut $B C$.
(Manchester, Honours B.Sc. Tech., Part II 1955.)
3.3 The rigid-jointed Warren girder shown in Fig. 3.14 is subjected to a compression along the bottom chord. All the triangles are equilateral and all the members are of the same cross-section.

Fig. 3.14
Determine the stiffness of the central joint against rotation when the compressive load is equal to the Euler load of an individual member. (At $P=P_{E}, s=2.467, c=1.0$.)
(Manchester, Honours B.Sc. Tech., Part II 1959.)
3.4 The cantilever bracket (Fig. 3.15) is made from a uniform prismatic member. It is encastered at A and C and rigidly jointed at B. Show that if buckling out of the plane of $A B C$ is

Fig. 3.15
prevented and plasticity effects are negligible, then the rotation of B is given by

$$
\frac{W}{A E} \cdot \frac{s_{1}\left(1+c_{1}\right)(1+2 \sqrt{ } 2)+s_{2}\left(1+c_{2}\right)\left(\frac{1+\sqrt{ } 2}{\sqrt{ } 2}\right)}{s_{1}+\frac{s_{2}}{\sqrt{ } 2}}
$$

where s_{1} and c_{1} are the stiffness and carry-over factors for $A B$, and s_{2} and c_{2} are the stiffness and carry-over factors for $B C$. Hence determine the critical value of W.
(Manchester, Honours B.Sc. Tech., Part II 1963).
(Answers to the above questions may be found on page 154).

CHAPTER

Rigid-Jointed Frames

4.1 Introduction

In a triangulated frame, any set of loads, provided all loads act at joints, could be supported in equilibrium by a system of internal forces acting as axial loads in the members without any bending action. Non-triangulated frames will support certain load systems also in this way, but only if the load systems are suitable. Examples are given in Fig. 4.1. The behaviour of frames so loaded is similar to that of triangulated frames statically determinate in their primary stresses, buckling modes being theoretically possible at a series of critical loads. The essential difference from triangulated structures is the incidence of sway modes involving the translation of one end of a member relative to the other (Fig. 2.1 (e)). The calculation of critical loads of this type is the first subject dealt with in this chapter. Just as for a pin-ended strut, deformations due to imperfections or disturbing forces are magnified as the first critical load is approached.

Suppose that, in a frame subjected to proportional loading, the elastic critical deflexion modes are represented by y_{1}, y_{2}, \ldots with critical load factors $\lambda_{C 1}, \lambda_{C 2}, \ldots$ Let the deformations y_{0} due to initial imperfections or disturbing forces, measured at zero axial load level $(\lambda=0)$ be expressed in terms of the elastic critical modes, viz.

$$
y_{0}=a_{1} y_{1}+a_{2} y_{2}+\ldots
$$

where a_{1}, a_{2}, \ldots are constants. Then it has been shown ${ }^{(21,22,23)}$ that, in the range of small deflexions, and provided the structure
is such that axial loads increase in proportion to the external load parameter, the deflexions at any load factor λ become

$$
y=\frac{a_{1} y_{1}}{1-\frac{\lambda}{\lambda_{C 1}}}+\frac{a_{2} y_{2}}{1-\frac{\lambda}{\lambda_{C 1}}}+\ldots
$$

While, therefore, no distinct bifurcation of equilibrium states occurs at the lowest critical load factor $\lambda_{C 1}$, and the structure is

Fig. 4.1
stable at all loads $\lambda<\lambda_{C 1}$, the lowest critical load factor is important since the deflexions increase more and more rapidly as it is approached.

A frame which sustains the applied loads entirely in axial compression or tension is structurally the most efficient, but it is not possible so to support any arbitrary combination of joint loads acting on a rigid frame, and bending is necessarily involved.

Examples of joint loads producing bending action are shown in Fig. 4.2. Further, any structure (either triangulated or rigid frame) which carries transverse loads within the length of any member (Fig. 4.3) must contain primary bending moments. In this class of problem, the critical load concept has no direct significance, since as the load parameter increases, the relative

Fig. 4.2
bending stiffnesses of the members alter, and therefore the bending moment pattern, and hence in turn the axial load pattern, also alter. The axial loads do not increase in proportion with the load parameter, and the ideas of analysing an initial deflexion in terms of the buckling modes and each component being magnified by its own factor are no longer applicable. Nevertheless, such structures may become unstable in that at a particular value of the load parameter they may cease to have any stiffness to a disturbing force, for small deflexion theory, and thus exhibit large deflexions. It is proposed to call such loads buckling loads
and to reserve the name "critical loads" for the phenomena exhibited by structures of the types shown in Fig. 4.1.

Buckling loads are more difficult to calculate than critical loads as there is an interdependence between bending moments and axial loads which requires an iterative method of calculation to

Fig. 4.3
be used. Furthermore ideas of the Southwell plot and about the shape of stiffness curves to which we have become accustomed require modification. A simple example of buckling loads of this type is discussed later in the chapter, but attention is first given to frames loaded after the manner of those in Fig. 4.1.

4.2 Simple Portal

Consider the simple portal shown in Fig. 4.4 where all the loads are applied at the joints and M_{B}, M_{C} and F are small disturbing forces. If there are no inaccuracies in manufacture, etc., there will be no bending moments in the members and no axial force in

$$
\begin{aligned}
& k_{1}=\frac{I_{1}}{n} \\
& k_{2}=\frac{I_{2}}{l}
\end{aligned}
$$

Fig. 4.4
$B C$. The operations table for rotations of B and C and a sway is

and the equations of equilibrium are therefore

$$
\left.\begin{array}{l}
M_{B}=\left(s k_{1}+4 k_{2}\right) \theta_{B}+2 k_{2} \theta_{C}-s(1+c) k_{1} \frac{\delta}{h} \\
M_{C}=2 k_{2} \theta_{B}+\left(s k_{1}+4 k_{2}\right) \theta_{C}-s(1+c) k_{1} \frac{\delta}{h} \tag{4.1}\\
F 1=-s(1+c) k_{1} \theta_{B}-s(1+c) k_{1} \theta_{C}+\frac{4 s(1+c)}{m} k_{1} \frac{\delta}{h}
\end{array}\right\}
$$

provided M_{B}, M_{C} and F are such small disturbing forces that they do not sensibly change the value of P / P_{E} in the members.

These equations (4.1) correspond to the similar equations we found for triangulated frames except that for trusses only joint equations are required and here we have two joint equations and a shear equation.

As for trusses we could determine and draw the stiffness curves for the response to the individual disturbing forces. We should expect all these curves to pass through zero at the lowest critical load. Because of the symmetry of the structure and loading it is more convenient here to use composite disturbances.

Thus a particular solution of equations (4.1) is given by $\theta_{C}=-\theta_{B}, \delta=0$ if

$$
\begin{aligned}
M_{B} & =\left(s k_{1}+2 k_{2}\right) \theta_{B} \\
M_{C} & =-\left(s k_{1}+2 k_{2}\right) \theta_{B} \\
F l & =0
\end{aligned}
$$

which we can write as $M=K \theta$
where

$$
K=s k_{1}+2 k_{2}
$$

and

$$
\frac{K}{K_{0}}=\frac{s+\frac{2 k_{2}}{k_{1}}}{4+2 \frac{k_{2}}{k_{1}}}
$$

Another solution of equations (4.1) is

$$
\theta_{B}=\theta_{C}, \frac{\delta}{h}=\frac{m}{2} \theta_{B}
$$

if

$$
\begin{aligned}
M_{C}=M_{B} & =\left(s k_{1}+6 k_{2}\right) \theta_{B}-\frac{m}{2} s(1+c) k_{1} \theta_{B} \\
F 1 & =0
\end{aligned}
$$

or in the notation of Chapter 2

$$
M_{C}=M_{B}=\left(n k_{1}+6 k_{2}\right) \theta_{B}
$$

i.e.

$$
M=K \theta
$$

where

$$
K=n k_{1}+6 k_{2}
$$

and

$$
\frac{K}{K_{0}}=\frac{n+\frac{6 k_{2}}{k_{1}}}{1+\frac{6 k_{2}}{k_{1}}}
$$

A third solution of equations (4.1) is given by

$$
\theta_{B}=\theta_{C}=\frac{s(1+c)}{s+6 k_{2} / k_{1}} \frac{\delta}{h}
$$

where

$$
M_{B}=M_{C}=0
$$

and

$$
F I=2 s(1+c) k_{1} \frac{\delta}{h}\left[\frac{2}{m}-\frac{s(1+c)}{s+6 k_{2} / k_{1}}\right]
$$

i.e. $\quad F I=K \frac{\delta}{h}$
where

$$
K=2 s(1+c) k_{1}\left[\frac{2}{m}-\frac{s(1+c)}{s+6 k_{2} / k_{1}}\right]
$$

and

$$
\frac{K}{K_{0}}=\frac{s(1+c)\left[\frac{2}{m}-\frac{s(1+c)}{s+6 k_{2} / k_{1}}\right]}{6\left[2-\frac{6}{4+6 k_{2} / k_{1}}\right]}
$$

Graphs of these three non-dimensional stiffness curves are shown in Fig. 4.5 for $k_{2} / k_{1}=1 \cdot 0$.

They seem normal stiffness curves, the first indicates a critical load at $P_{C} / P_{E}=2.56$ and the other two at $P_{C} / P_{E}=0.76$.

We stated that the stiffness curve for any composite disturbance should pass through zero at the lowest critical load and it is important to understand how the symmetrical system of disturbing moments has failed to indicate the lower of the critical loads.

In Chapter 3 we gave a general expression for the stiffness curves in the form

$$
\frac{1}{K}=\frac{b_{1}}{1-P / P_{C 1}}+\frac{b_{2}}{1-P / P_{C 2}}+\ldots
$$

and pointed out that providing a disturbing force excites any component of the first buckling mode (i.e. providing b_{1} exists, however small) then K vanished when $P=P_{C 1}$.

Fig. 4.5

The lower of the two critical loads indicated by Fig. 4.5 is a sway mode and as the first disturbing system of moments does not contain any sway component it fails to reveal the sway critical mode. In practice if there were any unsymmetrical imperfection of the structure or the loading system then this would
be magnified indefinitely at the lower critical mode and an experimental stiffness curve would look like the one dotted.

The fact that the first disturbing system misses the lower critical load is then a mathematical curiosity and is of no practical

Fig. 4.6
significance. As the structure would have a negative stiffness to sway disturbances above the lower critical load it would be unstable and the load could not be increased past the critical load without being provided with a lateral restraint to prevent sideways displacements developing. In practice this may be provided by bracing systems in the plane of the beams and the higher critical
load (symmetrical case) has then a practical significance. The four standard cases for single-storey portals are shown in Fig. 4.6.

4.3 Multi-storey Single-bay Portals

The sway and no sway critical loads of multi-storey portals as shown in Fig. 4.7 are easily obtained.

Fig. 4.7

Thus?for the sway case we have in succession

$$
\begin{aligned}
M_{1} & =\left(2 n k_{1}+6 k_{2}\right) \theta_{1}-o k_{1} \theta_{2} \\
M_{2} & =-o k_{1} \theta_{1}+\left(2 n k_{1}+6 k_{2}\right) \theta_{2}-o k_{1} \theta_{3} \\
M_{N-1} & =-o k_{1} \theta_{N-2}+\left(2 n k_{1}+6 k_{2}\right) \theta_{N-1}-o k_{1} \theta_{N} \\
M_{N} & =-o k_{1} \theta_{N-1}+\left(n k_{1}+6 k_{2}\right) \theta_{N}
\end{aligned}
$$

At the critical load $M_{1}=M_{2}=M_{N}=0$ and writing $X=$ $\left(2 n k_{1}+6 k_{2}\right) / o k_{1}$
we have

$$
\begin{aligned}
& 0=X \theta_{1}-\theta_{2} \\
& 0=-\theta_{1}+X \theta_{2}-\theta_{3} \\
& 0=-\theta_{2}+X \theta_{3}-\theta_{\mathbf{4}} \\
& 0=-\theta_{N-2}+X \theta_{N-1}-\theta_{N} \\
& 0=-\theta_{N-1}+(X-n / o) \theta_{N}
\end{aligned}
$$

i.e.

$$
\begin{aligned}
\theta_{2} & =X \theta_{1} \\
\theta_{3} & =\left(-1+X^{2}\right) \theta_{1} \\
\theta_{4} & =-X \theta_{1}+\left(-1+X^{2}\right) X \theta_{1} \\
& =+X\left(-2+X^{2}\right) \theta_{1} \text { and so on }
\end{aligned}
$$

If the portal is, for example, four stories high we also have.the last equation

$$
0=-\theta_{3}+(X-n / o) \theta_{4}
$$

Fig. 4.8
and so

$$
0=\left(1-X^{2}\right) \theta_{1}-X\left(2-X^{2}\right)(X-n / o) \theta_{1}
$$

i.e.

$$
\begin{equation*}
X\left(X^{2}-2\right)(X-n / o)=X^{2}-1 \tag{4.2}
\end{equation*}
$$

Equation (4.2) is easily solved. For any particular value of X it gives the corresponding value of n / o and therefore of n and o separately. k_{2} / k_{1} is then obtained from the expression for X.

The resulting P_{C} / P_{E} curves are shown in Fig. 4.8; also shown are results for various numbers of stories. ${ }^{(18)}$

The corresponding no sway critical loads are even simpler to obtain and are left as an exercise for the reader.

4.4 Multi-bay Multi-storey Portals

The sway deflexion characteristics of a single-bay portal can be used to obtain the similar characteristics of a particular family of multi-bay portals.

A series of identical portals under identical loads will have the same deflexions. Adjacent columns can therefore be superimposed and fastened together without causing any redistribution of stresses. All the portals shown in Fig. 4.9 will therefore have the same sway deflexion characteristics and in particular the same sway critical loads.

For all these portals the equivalent single-bay portal may be obtained by the application of the following rules:

$\Sigma \quad$column stiffness of single bay	$=$column stiffness of multi- bay
Σ column loads of single bay	$=\Sigma$ column loads of multi-
bay	
beam stiffness	$=\Sigma$ beam stiffness.

Now consider the application of these rules to form an equivalent single-bay portal for a multi-bay portal which is not formed in accordance with this "Principle of Multiples" ${ }^{(28)}$ and in the first place suppose that stability effects are negligible.

$$
\left(\begin{array}{c}
w \\
+ \\
m
\end{array}\right)=\begin{gathered}
\square \\
\square W
\end{gathered}
$$

Similar

or

Fig. 4.9
The deflexions of the equivalent single-bay portal may be calculated and if these are imposed as a composite disturbance on the real frame then the accompanying bending moments can be calculated. This is sharing the bending moments of the singlebay frame amongst the members of the real frame in proportion
to their stiffnesses. As the real frame is not proportioned in accordance with the Principle of Multiples individual joints will not necessarily be in equilibrium, but the bending moments as a whole will satisfy the shear equations and at any floor the sum of all the beam and column moments will be zero.

The deflexions of the equivalent single-bay frame therefore give a solution of the real frame loaded with the right shear forces and sets of self-equilibrating moments at each floor level. By St. Venant's principle a set of self-equilibrating moments can be expected only to cause a local perturbation and not to have an appreciable effect on the overall sway of a structure. For purposes of determining sway deflexion, although not for determining moments in individual members, a multi-bay frame can therefore be replaced by an equivalent single-bay frame.

If we use such a frame for stability calculations we make the further assumption that it is sufficiently accurate to use a mean value of P / P_{E} at any storey given by $\left(P / P_{E}\right)_{\text {mean }}=\Sigma P / \Sigma P_{E}$ for all the columns instead of the values for each individual column. It has been shown ${ }^{(29)}$ that these methods can be used to predict the sway critical loads of multi-bay frames with considerable accuracy.

These methods represent about the limit of what is at present feasible by hand calculations. For more complicated structures recourse must be had to computer methods, but no new physical principles are involved.

4.5 Frames in which Members Carry Primary Bending Moments

Having dealt with loads capable of being transmitted through the structure by axial loads only (Fig. 4.1), we now turn our attention to frames in which bending action predominates (Figs. 4.2 and 4.3). We take as an example the symmetrical, uniformsection portal frame shown in Fig. 4.10(a), and assume that sway is prevented.

The only possible displacements are equal and opposite rotations of B and C. Suppose equal and opposite bending moments

Fig. 4.10
M are applied at these joints, as shown in Fig. 4.10(b). Introducing the fixed-end moments in the beam due to the uniformly distributed load $2 W$ (see Chapter 2), the operations table becomes:

	A	B		C		D
F.E.M.	-	-	$-f_{2}\left(\frac{W L}{3}\right)$	$f_{2}\left(\frac{W L}{3}\right)$	-	-
Rotate B and C	0	$s_{1}{ }^{\prime \prime} k_{1} \theta$	$s_{2} k_{2} \theta$	$-s_{2} k_{2} \theta$	$-s_{1}{ }^{\prime \prime} k_{1} \theta$	0
$-s_{2} c_{2} k_{2} \theta$	$s_{2} c_{2} k_{2} \theta$					

Since $k_{1}=2 k_{2}$, the equations of equilibrium for the joints B and C are both given by

$$
\begin{equation*}
M=\left[2 s_{1}^{\prime \prime}+s_{2}\left(1-c_{2}\right)\right] k_{2} \theta-f_{2}\left(\frac{W L}{3}\right) . \tag{4.3}
\end{equation*}
$$

The horizontal thrust at A and D is $s_{1}{ }^{\prime \prime} k_{1} \theta / L$, whence

$$
\begin{equation*}
\rho_{2}=\frac{4}{\pi^{2}} \cdot s_{1}{ }^{\prime \prime} \theta \tag{4.4}
\end{equation*}
$$

Since the load in each column is W,

$$
\begin{equation*}
\rho_{1}=\frac{1}{\pi^{2}} \cdot \frac{W L}{k_{1}} \tag{4.5}
\end{equation*}
$$

Fig. 4.11

If there are no external moments acting at B and C, so that $M=0, \rho_{1}$ and ρ_{2} are related by the equation

$$
\begin{equation*}
\frac{4}{3} f_{2} \rho_{1}=\left[1+\frac{s_{2}\left(1-c_{2}\right)}{2 s_{1}^{\prime \prime}}\right] \rho_{2} \tag{4.6}
\end{equation*}
$$

obtained by eliminating W and θ from equations (4.3), (4.4) and (4.5). The numerical solution of equation (4.6) by iteration leads to the relationship between ρ_{1} and ρ_{2} depicted by $O A B$ in Fig. 4.11. It is found that ρ_{1} reaches a maximum value of
0.618 when $\rho_{2}=0.972$, so that $\rho_{1}=0.618$ or $W=0.618 \pi^{2}\left(E I / L^{2}\right)$ represents the buckling load. The variation of the rotation θ with ρ_{1} is given by curve $O A B$ in Fig. 4.12.

According to linear elastic theory (i.e. ignoring the effect of axial loads on flexure), the axial load in the beam would be $1 / 4$

Fig. 4.12
that in each column, whence $\rho_{1}=\rho_{2}(O D$ in Fig. 4.11). With this assumption, and putting $M=0$ in equation (4.3), it would follow that

$$
\begin{equation*}
\theta=\frac{2}{3} \pi^{2} \frac{f \rho_{1}}{s(1-c)(3+2 c)} \tag{4.7}
\end{equation*}
$$

where the stability functions s, c and f correspond to $\rho=\rho_{1}$. This results in the curve $O C D$ in Fig. 4.12, the rotations θ becoming infinite when $c=1$ or $\rho_{1}=1$, which therefore represents the buckling load for the assumption $\rho_{1}=\rho_{2}$. The stiffness of the structure, at a given value of W, with respect to small applied bending moments $\mathrm{d} M$ at B and C, assuming $\rho_{1}=\rho_{2}$,
may be obtained by differentiating equation (4.3) with respect to θ. Hence

$$
\begin{equation*}
\frac{\mathrm{d} M}{\mathrm{~d} \theta}=\left[2 s_{1}^{\prime \prime}+s_{2}\left(1-c_{2}\right)\right] k_{2} \tag{4.8}
\end{equation*}
$$

in which $s_{1}{ }^{\prime \prime}, s_{2}$ and c_{2} are all stability functions corresponding to $\rho_{1}=\rho_{2}=W L / \pi^{2} k_{1}$. The variation of $\mathrm{d} M / \mathrm{d} \theta$ with ρ_{1} is represented by $A B C$ in Fig. 4.13, and as would be expected, $\mathrm{d} M / \mathrm{d} \theta$ becomes zero when $\rho_{1}=1$.

Fig. 4.13

It might seem reasonable to assume that the stiffness of the frame, allowing for the variation of ρ_{2} with ρ_{1}, could be obtained from equation (4.8) by substituting the appropriate values of $s_{1}{ }^{\prime \prime}, s_{2}$ and c_{2}. However, when this is done, the curve obtained is $A D E$ in Fig. 4.13. When ρ_{1} reaches the buckling value of $0 \cdot 618$, equation (4.8) gives $\mathrm{d} M / \mathrm{d} \theta=1.53 k_{1}$. This apparently contradicts the concept of zero stiffness as a property of a structure at its buckling load. The anomaly is resolved by differentiating
equation (4.3), but allowing in the differentiation for the dependence of ρ_{2} on θ at stationary ρ_{1}. Denoting $\mathrm{d} s / \mathrm{d} \rho$ by $\dot{s}, \mathrm{~d} c / \mathrm{d} \rho$ by \dot{c} and $\mathrm{d} f / \mathrm{d} \rho$ by \dot{f}, and using $k_{1}=2 k_{2}$ and $\mathrm{d} \rho_{2} / \mathrm{d} \theta=4 s_{1}{ }^{\prime \prime} / \pi^{2}$ from equation (4.4), it follows that:

$$
\begin{align*}
\frac{\mathrm{d} M}{\mathrm{~d} \theta}= & {\left[2 s_{1}^{\prime \prime}+s_{2}\left(1-c_{2}\right)\right] K_{2} } \\
& \quad+\frac{4}{\pi^{2}} s_{1}^{\prime \prime}\left[\dot{s}_{2}\left(1-c_{2}\right)-s_{2} \dot{c}_{2}\right] \theta k_{2}-\frac{8}{3} \rho_{1} s_{1}^{\prime \prime}{\dot{f_{2}}}_{2} k_{2} \tag{4.9}
\end{align*}
$$

The above modified stiffness is plotted as curve $A F G$ in Fig. 4.13 and it will be seen that the stiffness becomes zero when $\rho_{1}=0.618$. It may be noted that the effect of including the differentials of the stability functions (curve $A F G$ compared with $A D E)$ is much greater than the effect of allowing only for the variation of ρ_{2} with ρ_{1} (curve $A D E$ compared with curve $A B C$).

The presence of the additional terms in equation (4.9) (compared with equation (4.8)) implies that the stiffness of a frame carrying loads which produce primary bending moments is not identical with that of a frame supporting the appropriate axial loads only. The discrepancy in stiffness only becomes appreciable, however, when deformations become large. Thus, when $\theta=0.02$ radian, the discrepancy is about 1 percent, when $\theta=0 \cdot 1$ radian it is about 5 percent, and when $\theta=0.5$ radian it is about 30 percent. The effect of terms involving the differentials of the stability functions or buckling loads has also been discussed by Le-Wu-Lu. ${ }^{(30)}$

We have included this dissertation in order that our results should show mathematical consistency. The mathematics used, however, have long ceased to represent the behaviour of the frame before these effects become appreciable. We have been using equations valid for small deflexions only in the region of large deflexions where the effects of change of geometry and bowing would have to be introduced before a mathematical analysis was valid.

Despite the above limitations, the elastic critical load retains its significance in the magnification factor $1 /\left(1-W / W_{C}\right)$ used to
estimate the effects of axial loads on deformations. According to linear elastic theory, the rotation θ for the joints B and C (Fig. 4.10(a)) is $\theta=W L^{2} / 12 E I=\pi^{2} l_{1} / 12$ giving the straight line $O E$ in Fig. 4.12. Applying the magnification factor $1 /\left(1-W / W_{C}\right)$ where W_{C} is obtained from the $\rho_{1}=\rho_{2}$ solution (i.e. $l_{1}=1.000$ or $W_{O}=\pi^{2} E I / L^{2}$), the corrected load-rotation relation is the dotted curve $O F G$ in Fig. 4.12, agreeing almost exactly with the correct solution $O A B$ up to $l_{1}=0.5$ and $\theta=0.8$.

The practical conclusion is that for frames where bending stresses form a large component of the total stresses then stability effects will be small, and the concept of elastic buckling loads will not be applicable. Where it is necessary to investigate stability effects it will be sufficient to do so using the axial load pattern obtained from a linear elastic analysis.

It is shown in Chapter 5 that nominal elastic critical loads also have significance in the estimation of elastic-plastic failure loads.

The above analysis of the frame in Fig. 4.10(a) has been carried out on the assumption that buckling in a sway mode is prevented. An approximation to the sway buckling load (neglecting stability effects in the beam) may be obtained from Fig. 4.6, and gives $\rho_{1}=0 \cdot 15$. A more complete analysis reveals that the finite deformations induced by the loads before sway buckling occurs modify the sway buckling load slightly, due to the presence of terms involving the differentials of the stability functions. This type of problem has been investigated extensively by Chwalla, ${ }^{(31)}$ Chilver ${ }^{(32)}$ and Horne. ${ }^{(33)}$ Again, such effects appear to have little practical significance.

In multi-storey frames, although all loads may be applied as beam loads or horizontal sway loads, instability effects increase in importance with increase in number of storeys, because of the build-up of axial loads in the lower column lengths. When such frames are free to sway, the buckling load differs little from the critical load obtained by dividing the beam loads equally between the columns, and the effect of stability on deflexions is discussed very accurately by assuming the linear elastic sway deflexions to
be multiplied simply by the amplification factor $1 /\left(1-\lambda / \lambda_{C}\right)$. In multi-storey frames restrained against sway, stability functions may have to be employed to obtain reasonable estimates of elastic stresses, since the elastic critical loads may not be more than a few times the working load. It is found unnecessary to take into account the effect on stiffness of the small axial loads induced in the beams by bending action.

Examples

4.1 A rectangular portal frame $A B C D$ has two vertical stanchions $A B$ and $C D$ of height L rigidly jointed to a horizontal beam $B C$ of length $2 L / 3$. All members are of uniform flexural rigidity. The stanchion feet A and D are encastré to a rigid base. Equal vertical loads are applied at B and C. Show that the stiffness of the frame in respect of sway disturbance is zero when

$$
m_{1} s_{1}\left(1+c_{1}\right)-2 s_{1}=18
$$

where s_{1}, c_{1}, m_{1} are stability functions for the stanchions.
(Cambridge Mech. Sci. Tripos Part II 1962.)

Fig. 4.14
4.2 Show that the critical loads of the symmetrical single-bay rigid frame shown in Fig. 4.14 with side sway prevented are given by the equation

$$
\left(\frac{2}{s} \frac{k_{2}}{k_{1}}+1\right)\left(\frac{k_{2}}{s k_{1}}+1\right)=\frac{c^{2}}{2} .
$$

(Manchester, Honours B.Sc. Tech., Part II 1954.)
4.3 Show that the sway critical load of the portal shown in Fig. 4.15 is given by the equation

$$
s+3 \frac{k_{2}}{k_{1}}=\frac{m s(1+c)}{4-m(1+c)} .
$$

B is a rigid joint and C is a pin. A and D are fixed ends.
(Manchester, Honours B.Sc. Tech., Part II 1957.)

Fig. 4.15
4.4 Show that the sway critical load of the symmetrical singlebay rigid frame shown in Fig. 4.14 is given by the equation:

$$
o^{2}=\left\{n+6 \frac{k_{2}}{k_{1}}\right\}\left\{2 n+6 \frac{k_{2}}{k_{1}}\right\}
$$

where n, o are no-shear stability functions and k_{2}, k_{1} the stiffness of the beam and column members. Draw an approximate graph
showing how you would estimate the sway critical load to vary with the ratio of k_{2} to k_{1} and in particular determine the limit when k_{2} / k_{1} approaches zero.
(Manchester, Honours B.Sc. Tech., Part II 1960.)
4.5 Figure 4.16 shows a column, of constant cross-section of second moment of area equal to I_{1}, having pinned ends, which is restrained against buckling by being pinned at its mid-point to a

Fig. 4.16
uniform simply supported beam of the same span as the column and moment of inertia I_{2}. Show that for all values of I_{2} / I_{1} greater than 3.28 the column will buckle at a load corresponding to the Euler value for its half length.
Note. At $P=P_{E}, \quad s=2 \cdot 467, \quad c=1 \cdot 0, \quad m=\infty$.
(Manchester, Honours B.Sc. Tech., Part II 1961.)
4.6 Investigate the stability in the plane of the structure indicated in Fig. 4.17 for which $k_{2}=2 k_{1}$, and determine the critical load in terms of P / P_{E}, where P_{E} is the Euler load of a pin-ended strut of stiffness k_{1} and height h. Tables of stability functions are provided. The members are rigidly jointed at A and B. All other joints are pinned.
(Manchester, Honours B.Sc. Tech., Part II 1962.)
4.7 The end A of a member $A B$, length l and flexural rigidity $E I$, is held by other members which together provide a restraining moment of $Q_{A} \theta_{A}$ when end A is rotated through an angle θ_{A}. End B is restrained against rotation by a member of rotational
stiffness $q k$ where $k=E I / l$. The member $A B$ carries an axial load, and is subjected at end B to a "no-shear" rotation during which equilibrium is maintained at end A. Show that, for a joint rotation of θ_{B} at end B, the total moment applied at that joint is $Q_{B} \theta_{B}$ where

$$
\frac{Q_{B}}{n k}=\left(1+\frac{q}{n}\right)-\frac{\left(\frac{o}{n}\right)^{2}}{1+Q_{A} / n k}
$$

where o and n are stability functions for member $A B$.

Fig. 4.17

Fig. 4.18

The three-storey frame in Fig. 4.18 has uniform columns of flexural rigidity $E I$ and beams of flexural rigidity $\beta E I$. The feet of the columns are fixed in position and direction, and the columns each sustain a uniform axial load P. Using the above result or otherwise, show that the frame becomes unstable in a sidesway mode when

$$
\frac{o}{n}=\frac{2(3 \beta+\alpha n)}{\alpha n} \sqrt{\left(\frac{(6 \beta+\alpha n)}{3(4 \beta+\alpha n)}\right)}
$$

where n and o are stability functions corresponding to $\rho=$ $P h^{2} / \pi^{2} E I$.
4.8 Figure 4.19 shows a compression testing machine consisting of four circular equal members $A A^{\prime}, B B^{\prime}$, etc., each of length l and flexural rigidity $E I$, fixed into rigid end blocks. When testing a short pin-ended specimen $E F$ of length a, show that the machine will become unstable when the compressive load in $E F$ is given by

$$
\frac{s(1+c)}{\rho m}+\frac{\pi^{2}}{2} \frac{l}{a}=0
$$

where s, c and m are stability functions corresponding to $\rho=$ $-P l^{2} / 4 \pi^{2} E I$.

Fig. 4.19
4.9 A compression testing machine consists of two circular equal members $A A^{\prime}$ and $B B^{\prime}$, each of length l and flexural rigidity $E I$, fixed into rigid end blocks. An elevation of the machine would appear as in Fig. 4.19. Show that the testing machine would, when used to test the pin-ended specimen $E F$, become unstable by buckling out of the plane $A A^{\prime} B^{\prime} B$ when the compressive load in $E F$ was given by

$$
\begin{aligned}
&\left\{s-\frac{P}{2 k} \frac{b_{1}\left(a+b_{1}\right)}{a}\right\}\left\{s-\frac{P}{2 k} \frac{b_{2}\left(a+b_{2}\right)}{a}\right\} \\
&-\left\{s c-\frac{P}{2 k} \frac{b_{1} b_{2}}{a}\right\}^{2}=0
\end{aligned}
$$

where s and c are stability functions corresponding to $\rho=$ $-P l^{2} / 2 \pi^{2} E I$.
4.10 The rigid jointed frame shown in Fig. 4.20 is built on rigid foundations and the surrounding structure provides an elastic resistance to sway which is represented by a spring of axial

Fig. 4.20
stiffness k at D. Enumerate and sketch the possible elastic collapse modes of the structure and formulate equations which express the instability condition by a sway mode. Do not attempt to solve the equations.
(Manchester, Honours Engineering, Faculty of Science, Part II 1962.)
(Answers to questions 4.4 and 4.6 may be found on page 154.)

CHAPTER 5

Elastic-Plastic Behaviour

5.1 Introduction

When considering elastic stability, the stiffness of each member of a structure affects the buckling load, and it is incorrect (except when the members are pin-jointed) to speak of the buckling load of an individual member. The same is true in the elastic-plastic range, but in many cases final failure may in fact take place in

Fig. 5.1
one member only, and it is then easier to think of the problem primarily in terms of the behaviour of that particular member. Thus in the simple structure in Fig. 3.1, ultimate failure might involve the deformation of member $A B$ as a mechanism with plastic hinges at A, B and at some section near the mid-point of $A B$, as shown in Fig. 5.1. After considerable deformation, a fourth hinge would form at C, but this would be well after the attainment of the peak load, and it is the stages leading up to the formation of plastic hinges at A, B and D that have to be studied
in order to predict the failure load. It should be noted that the behaviour of the "critical" member $A B$ is throughout affected by the behaviour of member $B C$. Hence, failure is to be discussed in terms of the influence of the remainder of the structure on the failure of the "critical" member-leaving aside for the moment the problem of how the "critical" member is to be identified.

The above approach to elastic-plastic buckling is applicable wherever the "critical" member could sustain the applied load by an axial compressive load only. The bending moments that

Fig. 5.2
Fig. 5.3
actually arise in the "critical" members are due either to imperfections, axial deformations, lateral loads ("beam" loads) applied to adjacent members, or to combinations of these factors. The three individual causes are illustrated in Figs. 5.2, 5.3 and 5.4 respectively.

Imperfections (Fig. 5.2) are always present in some degree, due to lack of straightness or lack of fit or both, and may be important in their effect on the failure loads of compression members in triangulated structures, or of columns in multistorey frames restrained against sway. Ultimately a mechanism will form as shown, with hinges at both ends and near the centre of length. If the surrounding members are weaker than the failing member, then hinges may form in these adjacent members.

Axial deformations are important in triangulated frames, in which they induce joint translations with accompanying double curvature bending as shown in Fig. 5.3(a). Ultimate failure involves the deformation of the member to one side of the longitudinal centre line, and if in Fig. 5.3(a) $M_{A}>M_{B}$, failure will occur as in Fig. 5.3(b).

Single curvature
Fig. 5.4
Beam loads have an important effect on the columns of multistorey frames restrained against sway. In the elastic range, differing arrangements of beam loading cause double or single curvature flexure in the columns, as shown in Figs. 5.4(a) and (c) respectively, but ultimate failure is similar in mode (Figs. 5.4(b) and (d)).

Although, in all the above cases, the final failure mode is much the same, this does not mean that it is at all easy to obtain a reasonable estimate of the maximum axial loads sustained by the members before the final plastic hinge mechanism forms. At the peak load the member is in an intermediate condition, being
neither elastic nor having a fully developed plastic hinge mechanism, and a laborious step-by-step elastic-plastic analysis is necessary to obtain a theoretical failure load. Few such analyses have been made, but a study of the behaviour of columns in building frames has revealed interesting general results of a qualitative nature, and these will be described. Some progress has been made in empirical methods, and these will also be dealt with.

(a)

(b)

(a)

(b)

Fig. 5.6

Although the final failure of the compression members in Figs. 5.2 to 5.4 involves bending, the primary loading is axial, and so the members may all be described as "compression loaded". An entirely different type of member may be described as "lateral loaded". The simplest example would be a member which itself carried lateral load in addition to axial load, see Fig. 5.5. However, all the members in the frame in Fig. 4.2 may also be referred to as "lateral loaded" in that their bending resistance is a primary factor in the total rigidity of the structure with respect to the applied loads. The ultimate behaviour of such a member may be represented diagrammatically as in Fig. 5.6, but it is here not at all useful to refer to the "failure" of the member, since the bending moment distribution and the incidence of plastic hinges depends primarily on the behaviour of the structure as a
whole. There is another important difference between "compression loaded" and "lateral loaded" members. In the former, since the bending moments are secondary, their distribution may change radically, not only (as has been seen in Chapter 3) in the elastic range, but also in the plastic range. In laterally loaded members, on the other hand, the bending moment distributions, while varying in detail, tend to remain recognisably similar, even during plastic deformation, since they are dictated by overall equations of equilibrium.

We first discuss structures in which elastic-plastic stability is controlled by the behaviour of compression loaded members, and subsequently we discuss structures that are lateral loaded.

5.2 The Elastic-Plastic Behaviour of Compression-loaded Members

In the course of a lengthy experimental investigation into columns bent by beam loads into double and single curvature (Fig. 5.4(a) and (c)) ${ }^{(33,34)}$ a theoretical study was made of the spread of plasticity in the columns as the axial loads were increased to failure. The experimental test frames for single and double curvature are shown in Figs. 5.7(a) and (b) respectively. The beams were of high tensile steel, of width 0.75 in . and depth 1.25 in., so that plastic deformation was confined to the mild steel columns, some of which were of rectangular cross-section and some of I-section. The full beam loads were first applied, and further direct axial load was then added to the top of the column until complete failure occurred. The calculated sequence of behaviour for one of the rectangular section columns (width 1.25 in ., depth 0.375 in .) bent in single curvature about its minor axis is shown in Fig. 5.8. The calculations have been performed on the assumption that the material has an idealised elasticpure plastic stress-strain relation, with an upper yield stress of $22.9 \mathrm{ton} / \mathrm{in}^{2}$, a lower yield stress of $20.3 \mathrm{ton} / \mathrm{in}^{2}$, and a modulus of elasticity of 13,000 ton $/ \mathrm{in}^{2}$. The load deflexion curve (for central lateral deflexion of the column) is given by $O E A B C D$ in Fig. 5.9, while the changes with axial load of the end and central bending
moments in the column are shown in Fig. 5.10. Yield first occurred at the centre of the concave face of the column at an axial load of 3.98 ton (Fig. 5.8(a) and points A in Figs. 5.9 and 5.10). As the axial load increased (the beam loads remaining constant), the end

Fig. 5.7
moments decreased, eventually changing sign, while the central moment increased, causing plastic zones, first in compression on the concave face, and then in tension on the convex face. The reversed bending moment at the ends also caused first compressive yielding and then tensile yielding. At the peak load of 6.82 ton (Fig. 5.8(c) and points C in Figs. 5.9 and 5.10), no yielding had occurred in tension either at the ends or the centre, and a "plastic hinge" was nowhere fully operative, although it is evident that the degree of plasticity near the centre would seriously

reduce the rigidity of the column. Since the plastic zones which show increasing plastic flow have no rigidity, the peak load of 6.82 ton must be identical with the critical load of a structure consisting of the beams and a column of varying section, the cross-section of this column being the original section less these

Fig. 5.9
plastic zones. It will be seen from Fig. 5.8(c) that the crosssection of this reduced column at mid-height is very small, whereas the ends of the column are almost fully elastic. It would therefore be expected that a rough approximation to this critical load would be obtained by assuming a structural hinge at midheight in the column, as shown in Fig. 5.11. In fact, the critical
load of this "reduced structure" is found to be $8 \cdot 1$ ton, compared with $32 \cdot 2$ ton for the fully elastic structure. This explains why the column fails at the stage at which full plasticity is approached at mid-height.

Fig. 5.10

The theoretical failure load of 6.82 ton agrees very well with the experimental failure load for this frame of 6.67 ton. An exact elastic-plastic analysis of this nature, although instructive, is however tedious, and it is desirable to investigate how closely approximate methods will predict the result. ${ }^{(35)}$ The elastic response of the frame for the given load sequence, derived from s and c functions, is represented by $O E A F$ in Fig. 5.9. The rigid-plastic response is obtained from the plastic hinge mechanism
in Fig. 5.12, and this leads to the mechanism line $H J$ in Fig. 5.9. The calculation of $H J$ is similar to that for a pin-ended member, Figs. 1.18 and 1.19. Equations (1.33) and (1.34) apply, and taking moments about one end for half the column, $P y_{c}$ $=2 M_{P}{ }^{\prime}$ where y_{c} is the central deflexion (Fig. 5.12). Hence

$$
\begin{equation*}
y_{c}=\frac{d}{2}\left\{\frac{b d \sigma_{y}}{P}-\frac{P}{b d \sigma_{y}}\right\} \tag{5.1}
\end{equation*}
$$

where $b \times d$ is the cross-section of the member and σ_{y} is the yield stress.

Without performing the labour of an "exact" elastic-plastic analysis, a rough estimate of the failure load will be given by G, the intersection of the elastic curve $O E A F$ with the mechanism

Fig. 5.11

Fig. 5.12
line $H J$ (Fig. 5.9). This gives a load $P_{G}=7.93$ ton, 19 percent above the experimental value, and not a particularly close estimate.

The end and central moments vary, according to the elastic solution, as shown by the thinner continuous curves in Fig. 5.10, and full plastic moment is in fact reached at mid-height when the axial load is 6.40 ton, represented by points K in Figs. 5.9 and 5.10 . Assuming that plasticity is confined to the plastic hinge, a more accurate elastic-plastic analysis may be obtained beyond point K with the help of stability functions by applying these to the two halves of the column above and below the hinge. The deflexions then increase according to the dotted curve $K M$ in Fig. 5.9, and if no further hinges formed, would tend to indefinitely large values as the critical load for a column with a central hinge (i.e. $8 \cdot 10$ ton) was approached. In fact, full plastic moment is reached at the ends at an axial load of 7.3 ton, corresponding to points G^{\prime} in Figs. 5.9 and 5.10. Thereafter the theoretical load-deflexion curve follows the mechanism line $G^{\prime} J$. The approximate elastic-plastic load-deflexion curve $O E K G^{\prime} J$ thus furnishes a high estimate of the failure load, but the analysis of a number of columns shows that the overestimate is a consistent one of about 10 percent compared with experimental values. In a similar series of tests with columns of $1.25 \times 0.25 \mathrm{in}$. crosssection (i.e. 50 percent more slender than the above) the point corresponding to K in Fig. 5.9 is found to lie above the reduced critical load for a column with a central hinge, so that G^{\prime} lies below K, and the load at K then becomes the best estimate of failure. Again, this estimate is found to be about 10 percent above the experimental value.

5.3 The Estimation of Failure Loads of Compression-loaded Members

Although the above discussion has been with reference to a compression loaded member disturbed by bending moments induced by lateral loads in adjacent members, essentially similar phenomena are observed when the disturbing moments are due
to initial imperfections or lack of fit, or changes in the axial lengths of members.

A complete plastic zone analysis for a rigid-jointed triangle, in which the bending moments are those due to axial extension and contraction only, has been given by Foulkes. ${ }^{(36)}$ Murray ${ }^{(37)}$ tested a number of triangulated structures, and calculated loads P_{G} corresponding to point G in Fig. 5.9. Murray assumed that bending was induced in the members by imperfections only, and ignored the effects of changes in length; he found that failure loads lay between 77 and 98 percent of P_{G}. Since in practice disturbing moments arise from a number of causes, each of which may be important, it is readily seen that any attempt to perform a theoretical analysis is bound to be difficult, and for practical purposes, recourse must be had to empirical methods justified by experimental data.

The most useful general method hitherto suggested is the Rankine load P_{R} already described in Chapter 1 in relation to pin-ended members (equation (1.39)) ${ }^{(9)}$. If λ_{C} is the elastic critical load factor for a structure containing a member which reaches its "squash load" (area of cross-section times yield stress) at a load factor of λ_{P}, then what appears to be a satisfactory approximation to the failure load is given by the Rankine load factor λ_{R} where

$$
\begin{equation*}
\frac{1}{\lambda_{R}}=\frac{1}{\lambda_{C}}+\frac{1}{\lambda_{P}} . \tag{5.2}
\end{equation*}
$$

The compression member chosen is that having the lowest squash load factor for the given pattern of loads. For the column illustrated in Figs. 5.7(a) and 5.8 to 5.10, the axial loads in the column are:

Elastic critical, 32.2 ton
Squash load, 9.53 ton
Hence Rankine load $P_{R}=\frac{32.2 \times 9.53}{32.2+9.53}=7.35$ ton,
which is 10.2 percent above the experimental failure load.

When the rigid-plastic load is thus interpreted (i.e. simply as the squash load in the compression member), no influence of beam loading appears. If the collapse load of a compression member in a truss is estimated from equation (5.2), the failure load will always be increased if the restraint offered by an adjacent member is increased, since λ_{C} then increases while λ_{P} remains unchanged. Neal and Mansell ${ }^{(38)}$ have shown, however, that increasing the restraint on a compression member may reduce the failure load. Merchant ${ }^{(35)}$ has proposed the use of a modified rigid-plastic load in place of the squash load, so that allowance is made for the deformations imposed on the compression member by adjacent members that remain elastic. The deformation is the elastic deformation calculated without reference to stability effects. Applying this to the aforementioned frame in the Cambridge series (Fig. 5.7(a)), the rigid-plastic load is taken at point L on the mechanism line $H J$ (Fig. 5.9) corresponding to the elastic central deflexion at full beam load but zero axial load. This gives a load $P_{L}=8.74$ ton, and substituting this in the Rankine formula, the estimated failure load becomes

$$
P_{R}=\frac{32 \times 8.47}{32+8.47}=6.71 \mathrm{ton} .
$$

This is in excellent agreement with the observed failure load of 6.67 ton.

The correlation between experimental failure loads and Rankine loads for single and double curvature columns of $1.25 \times 0.375 \mathrm{in}$. cross-section in the Cambridge tests ${ }^{(34)}$ is summarised in Tables 5.1 and 5.2.

For the single curvature frames, the Rankine loads are calculated using both the squash load P_{P} and Merchant's load P_{L} as the rigid-plastic failure load. It is seen that the Merchant loads give greatly improved correlation for the more heavily loaded single curvature columns. The Rankine loads for the less heavily loaded single curvature columns and all the double curvature columns are conservative estimates of the actual failure loads.

Table 5.1. Columns Bent in Single Curvature

Frame No.	Beam Load (ton)	Axial Load at Failure P_{F} (ton)	Rigid- Plastic Loads ${ }_{P}^{P}$ (ton)	Elastic Critical Load P_{C} (ton)	Rankine Load $\begin{aligned} P_{R} & =\frac{P_{P} P_{C}}{P_{P}+P_{C}} \\ \boldsymbol{P}_{R^{\prime}} & =\frac{\boldsymbol{P}_{L} P_{C}}{P_{L}+P_{C}} \end{aligned}$ (ton)	$\begin{aligned} & \frac{P_{F}}{P_{R}} \\ & \frac{P_{F}}{P_{R}^{\prime}} \end{aligned}$
2/48	0	$7 \cdot 76$	$\begin{aligned} & 8 \cdot 34 \\ & 8.34 \end{aligned}$	$32 \cdot 2$	$\begin{aligned} & 6.62 \\ & 6.62 \end{aligned}$	$\begin{aligned} & \mathbf{1} \cdot 17 \\ & 1 \cdot 17 \end{aligned}$
2/47	0.5	$7 \cdot 67$	$\begin{aligned} & 8 \cdot 34 \\ & 8 \cdot 10 \end{aligned}$	$32 \cdot 2$	$\begin{aligned} & 6.62 \\ & 6.47 \end{aligned}$	$\begin{aligned} & 1 \cdot 16 \\ & 1 \cdot 19 \end{aligned}$
2/15	$1 \cdot 48$	$6 \cdot 86$	$\begin{aligned} & 9.53 \\ & 8.75 \end{aligned}$	$32 \cdot 2$	$\begin{array}{r} 7.35 \\ 6.87 \end{array}$	$\begin{aligned} & 0.93 \\ & 1.00 \end{aligned}$
2/16	1.99	$6 \cdot 67$	$\begin{aligned} & 9.53 \\ & 8.47 \end{aligned}$	$32 \cdot 2$	$\begin{aligned} & 7.35 \\ & 6.71 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.99 \end{aligned}$
2/17	$2 \cdot 49$	$6 \cdot 25$	$\begin{aligned} & 9 \cdot 53 \\ & 8 \cdot 13 \end{aligned}$	$32 \cdot 2$	$\begin{aligned} & 7.35 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.96 \end{aligned}$
2/46	$2 \cdot 50$	5-58	$\begin{aligned} & 8 \cdot 34 \\ & 7 \cdot 19 \end{aligned}$	32.2	$\begin{aligned} & 6 \cdot 62 \\ & 5 \cdot 88 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.95 \end{aligned}$
2/18	$2 \cdot 99$	$6 \cdot 17$	$\begin{aligned} & 9 \cdot 53 \\ & 7 \cdot 98 \end{aligned}$	$32 \cdot 2$	$\begin{aligned} & 7 \cdot 35 \\ & 6.38 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.97 \end{aligned}$

Table 5.2. Columns Bent in Double Curvature

Frame No.	Beam Load (ton)	Axial Load at Failure P_{F} (ton)	Squash Load P_{P} (ton)	Elastic Critical Load P_{C} (ton)	Rankine Load $P_{R}=\frac{P_{P} P_{C}}{P_{P}+P_{C}}$ (ton)	$\frac{P_{F}}{P_{R}}$
1/17	0	7.87	$8 \cdot 53$	$32 \cdot 2$	6.63	$1 \cdot 19$
1/5	1.00	8.03	$8 \cdot 90$	$32 \cdot 2$	6.98	1.15
1/13	1.50	7.61	8.53	$32 \cdot 2$	$6 \cdot 63$	1-15
1/15	2.00	7.63	$8 \cdot 53$	$32 \cdot 2$	6.63	1.15
1/10	$2 \cdot 50$	7.32	8.90	$32 \cdot 2$	6.98	1.05

In view of the sensitivity of failure loads in columns to initial imperfections, the general level of agreement is satisfactory.

The result of applying the Rankine load concept to derive the failure loads of model triangulated frames is shown in Fig. 5.13. ${ }^{(39)}$ The results are plotted non-dimensionally, with P_{P} / P_{C} horizontally and P_{F} / P_{C} vertically. The ratio P_{P} / P_{C} is a measure
of slenderness, while P_{F} / P_{P} shows the extent to which the failure load falls below the squash load. Only two of the fourteen results shown fall below the Rankine load, which thus provides an acceptable lower bound.

Fig. 5.13

In view of the many factors that affect the actual failure load of a compression loaded member (lateral loads on adjacent members, imperfections, lack of fit and accompanying internal stresses, internal stresses due to methods of fabrication, and axial deformations in the structure), it is unlikely that the Rankine load can be much improved upon as a general method of assessing failure loads.

In a triangulated frame which contains more than the minimum number of members required to render it simply stiff as a pinjointed frame, the load carried by a compression member may decrease without this causing a decrease in the loading level on the
truss. The behaviour then becomes quite involved, and as has been shown by Davies and Neal ${ }^{(40,41)}$, dynamic jumps may occur. The treatment of such frames is beyond the scope of this volume.

5.4 The Elastic-Plastic Failure of Lateral Loaded Frames Behaviour of a Two-storey Frame

The subject is best introduced by taking a specific example, and the theoretical results will be given for the two-storey, single-bay frame illustrated in Figs. 5.14 and 5.15. ${ }^{(10)}$ The dimensions of the frame and the applied loads are shown in Fig.

Fig. 5.14

Fig. 5.15
5.14(a), the loads λW_{P} being such that rigid-plastic collapse of the frame occurs when $\lambda=1 \cdot 00$. All members are of the same uniform symmetrical I-section with the web in the plane of the frame. It is assumed that the area of the web is negligible compared with that of the flanges, so that the cross-section has unit
shape factor and all members remain fully elastic except at the plastic hinge positions. (This assumption greatly simplifies the analysis and leads to imperceptible error in problems of this type.) The depth between the flanges is $2 r$ where, therefore, r is the radius of gyration for bending in the plane of the web. All members are of the same length l where $l / r=100$. The modulus of elasticity is $E=30 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2}$, and the yield stress (at which indefinite plastic deformation can occur) is $36 \times 10^{3} \mathrm{lb} / \mathrm{in}^{2}$. The variation of full plastic moment with axial load is small in a frame of this slenderness, and is therefore neglected.

Figure 5.14(a) shows the deformation of the structure according to a linear elastic analysis, that is, ignoring the effect of axial loads on the stiffnesses of the members. The ratio of upper to lower storey sway Δ_{2} / Δ_{1} is $0 \cdot 88$. When the total sway $\left(\Delta_{1}+\Delta_{2}\right)$ is plotted against the load factor λ, the straight line A (Fig. 5.15) is obtained. Under axial loads only (Fig. 5.14(b)), the first elastic critical load is obtained at $\lambda_{C}=3 \cdot 37$, the ratio Δ_{2} / Δ_{1} being $0 \cdot 67$. Under the full loading, allowing for instability effects, the elastic analysis gives curve B_{1} in Fig. 5.15. Curve B_{2} is an approximation to the elastic response obtained from the linear analysis (straight line A) by multiplying the total sway deflexion at any given load factor λ by $1 /\left(1-\lambda / \lambda_{C}\right)$. This is equivalent to assuming that the modes of deformation in Fig. 5.14(a) and (b) are identical, and that only the first terms in equations (1.23) and (1.24) have non-zero coefficients. It will be seen that the difference between the modes has negligible effect.

The rigid-plastic collapse mechanism (giving $\lambda_{P}=1.00$ and $\Delta_{2} / \Delta_{1}=1.00$) is shown in Fig. 5.14(c). Curve C in Fig. 5.15 is the elastic-plastic load-deflexion curve, the order of hinge formation being as shown in Fig. 5.14(d). The peak load occurs on the formation of the third hinge at point F in Fig. 5.15, giving $\lambda_{F}=0.777$. Hinge 5 (at the centre of the lower beam) ceases to be operative when hinge 6 forms, while hinges 1,4 and 7 also cease when hinge 8 forms. The final plastic collapse mechanism is thus with hinges in the lower storey only, as shown in

Fig. 5.14(e), and thus differs significantly from the rigid-plastic mechanism, Fig. 5.14(c).

It is of some interest to trace the decline in the stability of the structure with the progressive formation of plastic hinges. This may be achieved by reference to the "reduced critical loads", obtained by assuming structural hinges at these sections. Results are given in Table 5.3, which also shows the loads at which the plastic hinges form in the loading sequence.

Table 5.3

Positions of Hinges (Fig. 5.14(d))	Load Factor at which New Hinge Forms	Reduced Elastic Critical Load Factor
Elastic	-	3.37
1	0.613	2.02
1,2	0.768	1.52
$1,2,3$	0.777	0.54
$1,2,3,4$	0.745	0.48

With the formation of the third hinge at $\lambda_{F}=0.777$, the reduced critical load falls to $\lambda=0.54$ so that the frame is unstable and the load has to be decreased at higher deflexions to maintain equilibrium. Similar results have been obtained by Wood for two four-storey frames. ${ }^{(42)}$

5.5 The Elastic-Plastic Failure of Lateral Loaded Frames The Rankine Load as an Approximation to Failure Load

The Rankine load again appears to be a sufficiently reliable lower bound on failure loads. In this application λ_{P} in equation (5.2) is to be interpreted as the rigid-plastic failure load factor
of the structure, and may be obtained by any of a number of established methods. ${ }^{(34,43)}$ The elastic critical load factor λ_{C} refers to a distribution of axialloads in which there is some freedom of choice, but it is found that the actual distribution selected has little effect on the final result. When considering multi-storey frames, it is sufficient to ignore axial loads in the beams and

Fig. 5.16
the effect of horizontal loads generally, and to divide beam loads equally between columns. In pitched roof portal frames, it is permissible either to take the distribution of axial loads obtained as the result of a linear elastic analysis, or to assume axial loads proportional to those obtained at rigid-plastic collapse.

Salem ${ }^{(44)}$ has compared Rankine loads with theoretical failure loads for a large number of single and two-storey frames, and his results are summarised in Fig. 5.16. The Rankine load is a close estimate of the failure load when the general forms of the first elastic critical mode and of the rigid plastic failure mechanism are
similar, as, for example, in the case of the two-storey frame analysed above (Rankine load factor $\lambda_{R}=1.00 \times 3.37 /(1.00+3.37)$ $=0.772$, failure load factor $\lambda_{F}=0.777$). When the side load on a frame is small, so that rigid-plastic failure is confined to a beam, the Rankine load may fall well below the failure load. These features are illustrated by the plotted points in Fig. 5.16.

Fig. 5.17

It has been shown ${ }^{(10)}$ that there is some theoretical justification for the Rankine load when the rigid-plastic mechanism and first elastic critical mode are similar in form. Initial imperfections and lack of fit have, for such frames, negligible effect on failure loads, and need not therefore be considered in the argument.

In Fig. 5.17, in which the vertical scale is that of load factor and the horizontal scale is for a typical deflexion, $H J$ represents the elastic critical load level for a structure, and $L N$ the rigidplastic collapse load level. The elastic load-deflexion relation ignoring instability and change of geometry is the straight line $O C$. Similarly, it would be possible to calculate an elasticplastic load-deflexion curve $O R S$ which also ignored instability effects and change of geometry. This theoretical curve would
either meet, or become asymptotic to, the line $L N$. If the rigidplastic failure mechanism and the elastic critical mode are closely similar, the following construction may be used to derive the true elastic-plastic response curve $O F D$ from the curve $O R S$.

Let Δ_{C} be the deflexion obtained on the linear elastic line $O C$ at load factor λ_{C}. From point G at a deflexion $-\Delta_{C}$ on the horizontal axis draw $G T$ to any point T on $O R S$, intersecting the vertical axis at U. Then point V, where $T V$ and $U V$ are vertical and horizontal respectively, is on the true elastic-plastic load-deflexion curve $O F D$. The more the rigid-plastic mechanism and the elastic critical modes differ the more will the derived curve fall below the true curve. An estimate of the failure load factor is obtained by drawing the tangent $G E$ to the curve $O R S$, and this estimate must be conservative.

The Rankine load may now be derived by taking, as an approximation to the curve $O E S$, the two straight lines $O E N$ in Fig. 5.18. From similar triangles $G U O, G E E^{\prime}$,

$$
\frac{\lambda_{P}}{\lambda_{F}}=\frac{\Delta_{E}+\Delta_{C}}{\Delta_{C}}
$$

and from similar triangles $O E E^{\prime}, O C C^{\prime}$,

$$
\frac{\lambda_{C}}{\lambda_{P}}=\frac{\Delta_{C}}{\Delta_{E}} .
$$

Eliminating Δ_{C} / Δ_{E}, it follows that

$$
\frac{1}{\lambda_{F}}=\frac{1}{\lambda_{C}}+\frac{1}{\lambda_{P}}
$$

i.e. λ_{F} so derived is the Rankine load.

Since $O E N$ in Fig. 5.18 is always an upper bound to $O R S$ in Fig. 5.17, a consistent tendency for the Rankine load to overestimate the failure load is here superimposed on the tendency inherent in the construction of Fig. 5.17 to lead, due to differences between the rigid-plastic mechanism and the elastic critical mode,
to an underestimate. It is the cancellation of these contradictory effects that causes the Rankine load to be a close estimate of failure except when the elastic critical mode and the rigid-plastic mechanism are completely different in form.

It should be remembered that actual failure loads depend on internal stresses and cannot, therefore, be expected to be invariants for nominally identical frames. Refined detailed analysis can

Fig. 5.18
therefore hardly be justified and the test of formulae should be empirical. Unfortunately, complete frame tests are rare and most of those done have been performed at model scale.

Design codes dealing with stability effects are at present (1964) largely out of date and indeed some are at present undergoing revision. It is not the aim of this book to explain or comment on particular codes but rather to give a perspective of the phenomena involved in the behaviour of frames. It is hoped that it will be found useful for this purpose.

As a further comment it is worth emphasising the low sway critical loads of portal frames. It is certainly desirable to provide
sway stiffness to tall buildings by shear walls or such devices and tall skeletal buildings should not be erected without a proper understanding of the phenomena described in this chapter.

5.6 Ultimate Loads of Structures in Strain-hardening Material

The use of the tangent modulus concept to obtain estimates of ultimate loads for pin-ended compression members has already been mentioned in Chapter 1. It was emphasised there that, because of the importance of imperfections, this is essentially an empirical procedure, but that it has been found highly successful for a number of materials. The application of the same concept to structures containing compression loaded and tensile loaded members involves trial calculations at increasingly high load levels until the critical load, calculated using the tangent moduli of the individual members, drops to the level of the applied load. This is a straightforward if tedious process, but is the only general method at present available. Little progress has been made in calculating the failure loads of structures in strainhardening material when lateral loading predominates.

Examples

5.1 The uniform rectangular portal frame $A B C D$ shown in Fig. 5.19 is subjected to axial loads W in the columns and a shear load of 0.2 W . With W equal to $4000 \mathrm{lb}, 10,000 \mathrm{lb}$, and 20,000 lb the elastic lateral deflexions Δ at B would be 1.378 in , 4.5 in . and 18.3 in . respectively. The frame is made of a $2 \mathrm{in} . \times 2 \mathrm{in}$. solid rectangular section throughout with an E-value of $30 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2}$ and a yield stress of $30 \times 10^{3} \mathrm{lb} / \mathrm{in}^{2}$.

Plot the elastic stability line for the structure in terms of W against Δ showing the elastic critical load. Also plot a plastic collapse line on the assumption of a rigid-plastic behaviour of the material, taking into account the change of equilibrium of the collapse mechanism with finite deflexions. Ignore the reduction
of plastic moment due to end load and assume negligible axial load in the beam.

Using an empirical formula calculate the maximum value of W which the structure will carry and sketch in a probable line to describe its real behaviour.
(Manchester, Honours Engineering, Faculty of Science Part II
1962.)

Fig. 5.19
5.2 A member of length L is contained in a triangulated plane frame. Linear elastic analysis shows that, when the frame is subjected to working loads applied at nodal points only, secondary moments cause terminal bending stresses in the member of σ_{1} and σ_{2} where, when σ_{1} and σ_{2} are of like sign, the terminal moments act in like sense. If the extreme fibre distance is c and the modulus of elasticity is E, show that the central lateral deflexion of the member at load factor λ is $\lambda\left(\sigma_{1}-\sigma_{2}\right) L^{2} / 16 E c$.

The member has an additional central deflexion of $a_{1}=\eta r^{2} / c$ where r is the radius of gyration and η is the imperfection coefficient (see Section 1.14). The full plastic moment under a mean axial stress $\lambda \sigma$ may be expressed in the form

$$
M_{P}=\sigma_{y} S_{2}\left(1-\frac{\lambda \sigma}{\sigma_{y}}\right)\left(S_{3}+\frac{\lambda \sigma}{\sigma_{y}}\right)
$$

where σ_{y} is the yield stress and S_{2} and S_{3} are constants. The stress σ is the mean axial stress in the member at working loads. Show
that, with a central deflexion of $\left\{a_{1}+\lambda\left(\sigma_{1}-\sigma_{2}\right) L^{2} / 16 E c\right\}$, rigid-plastic failure occurs with plastic hinges at both ends and at the centre at a load factor λ_{P} given by the solution of the quadratic equation

$$
\begin{aligned}
&\left(\frac{\lambda_{P} \sigma}{\sigma_{y}}\right)^{2}\left\{1+\frac{\pi^{2}}{32} \frac{\sigma_{y}\left(\sigma_{1}-\sigma_{2}\right)}{\sigma \sigma_{E}} \frac{A r^{2}}{c S_{2}}\right\} \\
&-\left(\frac{\lambda_{P} \sigma}{\sigma_{y}}\right)\left\{1-S_{3}-\frac{\eta A r^{2}}{2 c S_{2}}\right\}-S_{3}=0
\end{aligned}
$$

where σ_{E} is the mean axial stress corresponding to the Euler buckling load for the member treated as a pin-ended strut, and A is the area of cross-section.

For such a member, $A=5.88 \mathrm{in}^{2}, r=1.20 \mathrm{in}$., $c=2.63 \mathrm{in}$., $L=150$ in., $\eta=0.003 L / r, S_{2}=10.45 \mathrm{in}^{3}, S_{3}=0.383, \sigma=4.5$ ton $/ \mathrm{in}^{2}, \sigma_{1}=3.5$ ton $/ \mathrm{in}^{2}, \sigma_{2}=0, E=13,000$ ton $/ \mathrm{in}^{2}, \sigma_{y}=16$ ton $/ \mathrm{in}^{2}$. At the elastic critical load of the truss, the stress in the member is $2 \cdot 14 \sigma_{E}$. If failure of the truss occurs due to elasticplastic failure of the member, use the rigid-plastic failure load as derived above together with the elastic critical load, to obtain an estimate of the load factor at failure.
(Answers to the above questions may be found on page 154.)

Answers to Examples

Chapter 1

$1.39 .45 \mathrm{ton} / \mathrm{in}^{2}$.
$1.610^{4} \times 2.227<\sigma_{F}<10^{4} \times 2.326 \mathrm{lb} / \mathrm{in}^{2}$. $10^{4} \times 1.965 \mathrm{lb} / \mathrm{in}^{2}$.

Chapter 3

$3.1 W=\frac{32}{\sqrt{ } 3} \pi^{2} \frac{E I_{2}}{L^{2}}, W=\frac{2.045 \times 8}{3} \pi^{2} \frac{E I_{1}}{L^{2}}, W=\frac{32}{3} \pi^{2} \frac{E I_{1}}{L^{2}}$.
$3.2 \sqrt{ } 3 P_{E}<P<4 \sqrt{ } 3 P_{E}$.
$3.310 \cdot 8 \mathrm{EI} / \mathrm{L}$.
$3.4 W_{C}=3 \cdot 22 \pi^{2} E I / L^{2}$.

Chapter 4

$4.4 P / P_{E} \rightarrow 1 / 16$ as $k_{2} / k_{1} \rightarrow 0$.
4.6 $P / P_{E}=0.492$

Chapter 5

5.1 Intersection of elastic line and plastic mechanism line at $W=8800 \mathrm{lb}$.
Elastic critical load $=29,200 \mathrm{lb}$.
Rankine load $=8500 \mathrm{lb}$.
$5.2 \lambda_{P}=3 \cdot 10, \lambda_{C}=3 \cdot 89, \lambda_{F}=1 \cdot 73$.

Bibliography

1. Southwell, R. V. Theory of Elasticity. Oxford University Press, 1941.
2. Bleich, F. Buckling Strength of Metal Structures. McGraw-Hill, 1952.
3. Horne, M. R. (1956). The Elastic-Plastic Theory of Compression Members, J. Mech. Phys. Solids, 4, 104.
4. Ellis, J. (1958). Plastic Behaviour of Compression Members, J. Mech. Phys. Solids, 6, 282.
5. Merchant, W. (1949). The Buckling of Pin-ended Struts under Axial Load, Structural Engineer, 27, 363.
6. Robertson, A. (1925). The Strength of Struts. Inst. Civ. Engrs. Selected Engineering Paper No. 28.
7. Osgood, W. R. (1946). Column Formulas, Trans. Amer. Soc. Civ. Engrs. 111, 165.
8. Rankine, W. J. M. Useful Rules and Tables. London, 1866.
9. Merchant, W. (1954). The Failure Load of Rigidly Jointed Frameworks as Influenced by Stability, Structural Engineer, 32, 185.
10. Horne, M. R. (1963). Elastic--Plastic Failure Loads of Plane Frames, Proc. Roy. Soc. A274, 343.
11. Engesser, F. (1895). Schweizenische Bauzeitung, 26, 24.
12. Shanley, F. R. (1947). Inelastic Column Theory, J. Aer. Sci. 14, 261.
13. Bull, F. B. and Sved, G. Moment Distribution Analysis. Pergamon Press (1964).
14. Berry, A. (1916). The Calculation of Stresses in Aeroplane Spars, Trans. Roy. Aer. Soc., No. 1.
15. James, B. W. (1935). Principal Effects of Axial Load by Moment Distribution Analysis of Rigid Structures. National Advisory Committee for Aeronautics, Technical Note No. 534.
16. Lundquist, E. E. and Kroll, W. D. Extended Tables of Stiffness and Carryover Factors for Structural Members Under Axial Load. National Advisory Committee for Aeronautics, Wartime Report L-255 (A.R.R. 4B 24).
17. Livesley, R. K. and Chandler, D. B. Stability Functions for Structural Frameworks. Manchester University Press, 1956.
18. Merchant, W. (1955). Critical Loads of Tall Building Frames, Structural Engineer, 33, 85.
19. Livesley, R. K. Matrix Methods in Structural Analysis. Pergamon Press, 1964.
20. Britvec, S. J. Ph.D. Thesis, Cambridge 1960.
21. Merchant, W. (1956). A Connection between Rayleigh's Method and Stiffness Methods of Determining Critical Loads. International Congress of Applied Mechanics, Brussels.
22. Ariaratnam, S. T. (1961). The Southwell Method for Predicting Critical Loads of Elastic Structures, Quart. J. Mech. App. Maths., 14.
23. Horne, M. R. (1962). The Effect of Finite Deformations in the Elastic Stability of Plane Frames, Proc. Roy. Soc. A266, 47.
24. Allen, H. G. (1955). The Estimation of the Critical Load of a Braced Framework, Proc. Roy. Soc. A231, 25.
25. Southwell, R. V. Relaxation Methods in Engineering Science. Oxford University Press, 1940.
26. Hoff, N. J., Boley, B. A., Nardo, S. V. and Kaufman, S. (1950). Buckling of Rigid-Jointed Plane Trusses, Trans. Amer. Soc. Civ. Engrs. 116, 958.
27. Bolton, A. (1955). A Quick Approximation to the Critical Loads of Rigidly Jointed Trusses, Structural Engineer 33, 90.
28. Lightfoot, E. (1956). The Analysis of Wind Loading of Rigid Jointed Multi-storey Building Frames, Civil Engineering, 51, 757, 887.
29. Bowles, R. E. and Merchant, W. (1958). Critical Loads of Tall Building Frames Pt. IV, Structural Engineer 36, 187.
30. Lu, Le Wu. (1963). Stability of Frames Under Primary Bending Moments, Proc. Amer. Soc. Civ. Engrs. Structural Div. 89, 35.
31. Chwalla, E. (1938). Die Stabilitat lotrecht belasteter Rechteckrahmen, Der Bauingenieur 19, 69.
32. Chilver, A. H. (1956). Buckling of a Simple Portal Frame, J. Phys. Mech. Solids, 5, 18.
33. Baker, J. F., Horne, M. R. and Roderick, J. W. (1949). The Behaviour of Continuous Stanchions, Proc. Roy. Soc. A198, 493.
34. Baker, J. F., Horne, M. R. and Heyman, J. The Steel Skeleton, Vol. II. C.U.P. 1956.
35. Merchant, W. (1956). Frame Instability in the Plastic Range, British Welding Journal, 3, 366.
36. Foulkes, J. Ph.D. Thesis, Cambridge University 1953. See also Horne, Structural Engineer, 34, 294 (1956).
37. Murray, J. Proc. Inst. Civ. Engrs. Part III, 5, 213 (1956) and Proc. Inst. Civ. Engrs., 10503 (1958).
38. Neal, B. G. and Mansell, D. S. (1963). The Effect of Restraint upon the Collapse Loads of Mild Steel Trusses, Int. J. Mech. Sci. 5, 87.
39. Merchant, W., Rashid, C. A., Bolton, A., and Salem, A. (1958). The Behaviour of Unclad Frames. Proc. Fiftieth Anniv. Conf., Inst. Struct. Engrs.
40. Davies, G. and Neal, B. G. (1959). The Dynamical Behaviour of a Strut in a Truss Framework, Proc. Roy. Soc., A253, 542.
41. Davies, G. and Neal, B. G. (1963). An Experimental Examination of the Dynamical Behaviour of a Strut in a Rigidly Jointed Truss Framework. Proc. Roy. Soc., A274, 225.
42. Wood, R. H. (1957). The Stability of Tall Buildings, Proc. Inst. Civ. Engrs. 11, 69.
43. Neal, B. G. The Plastic Methods of Structural Analysis. Chapman and Hall, 1956.
44. Salem, A. Ph.D. Thesis, Manchester 1958.

Tables of Stability Functions

Table A1 Stability

ρ	s	c	$s^{\prime \prime}$	$s c$	
$0 \cdot 00$	$4 \cdot 0000$	$0 \cdot 5000$	$3 \cdot 0000$	$2 \cdot 0000$	
	-132		5 -198		33
0.01	3.9868	$0 \cdot 5025$	$2 \cdot 9802$	2.0033	
	-132		-199		33
0.02	3.9736	$0 \cdot 5050$	$2 \cdot 9603$	2.0066	
	-132		-200		34
0.03	$3 \cdot 9604$	0.5075	$2 \cdot 9403$	$2 \cdot 0100$	
	-133		-202		33
0.04	3.9471	0.5101	2.9201	$2 \cdot 0133$	
	-133		-202		34
0.05	3.9338	0.5127	$2 \cdot 8999$	$2 \cdot 0167$	
0.06	$3.9204{ }^{-134}$	0.5153	26 -204	2.0201	34
	-134		28795-205		34
0.07	3.9070	0.5179	$2 \cdot 8590$	2.0235	
	-134		2.8384^{-206}		35
0.08	$3 \cdot 8936$	0.5206		2.0270	
	-134		2.8177^{-207}		34
0.09	3.8802	0.5233		$2 \cdot 0304$	
	-135		-209		35
$0 \cdot 10$	$3.8667-136$	0.5260	2.7968	$2 \cdot 0339$	
$0 \cdot 11$	$3.8531{ }^{-136}$	$0 \cdot 5288$	2.7758	2.0374	35
	-135		-211		36
$0 \cdot 12$	$3 \cdot 8396$	0.5316	2.7547	2.0410	
	-136		-213		35
$0 \cdot 13$	$3 \cdot 8260$	0.5344	2.7334	$2 \cdot 0445$	
	-137		-214		36
$0 \cdot 14$	3.8123	0.5372	2.7120	2.0481	
	-136		-215		36
	3.7987-138	0.5401	$2 \cdot 6905-217$	$2 \cdot 0517$	36
$0 \cdot 16$	3.7849	$0 \cdot 5430$	2-6688	$2 \cdot 0553$	
	-137		-218		37
$0 \cdot 17$	3.7712	0.5460	$2 \cdot 6470$	2.0590	
	-138		-219		36
$0 \cdot 18$	3.7574	0.5490	$2 \cdot 6251$	2.0626	
	-138		-221		37
$0 \cdot 19$	3.7436	0.5520	$2 \cdot 6030$	$2 \cdot 0663$	
	-139		-222		38
$0 \cdot 20$	3.7297	0.5550	$2 \cdot 5808$	2.0701	
	-139		-224		37
0.21	3.7158	0.5581	$2 \cdot 5584$	2.0738	
0.22	3.7019^{-139}	0.5612^{31}	$2 \cdot 5359$	2.0776	38
	-140		-227		37
0.23	$3 \cdot 6879$	0.5644	$2 \cdot 5132$	$2 \cdot 0813$	
	-140		$2 \cdot 4904^{-228}$		39
0.24	3.6739	0.5676		2.0852	

FUNCTIONS $\rho=0$ to $1 \cdot 00$

$s(1+c)$	f	m	n	0		p
6.0000	1.0000	$1 \cdot 0000$	1.0000	$1 \cdot 0000$		0.00
-99	16	83	-331		166	
5.9901	1.0016	1.0083	0.9669	1.0166		0.01
-99	17	85	-336		171	
5.9802	1.003317	1.0168	0.9333	1.0337		0.02
		86	-340		174	
5.9703	1.0050	$1 \cdot 0254$	0.8993	1.0511		0.03
-99	16	89	-345		179	
5.9604	1.0066	1.0343	0.8648	1.0690		0.04
-99	17	90	-350		182	
5.9505	1.0083	1.0433	0.8298	1.0872		0.05
-100	17	92	-355		188	
$5 \cdot 9405$	1.0100	1.0525	0.7943	$1 \cdot 1060$		0.06
$5.9306-99$	1.0117^{17}	${ }^{-0618} 93$	- 0^{-359}		192	
5.9306	$1 \cdot 0117$	1.0618	0.7584	$1 \cdot 1252$		$0 \cdot 07$
5.9206^{-100}	1.0134^{17}	1.0714^{96}	$0.7218{ }^{-366}$			
$5.9206-100$	1.0134	$1 \cdot 0714$	$0 \cdot 7218$	$1 \cdot 1448$	202	$0 \cdot 08$
5.9106	1.0151	$1 \cdot 0812$	$0 \cdot 6848$	$1 \cdot 1650$		0.09
-100	17	101	-377		206	
$5 \cdot 9006$	$1 \cdot 0168$	1.0913	$0 \cdot 6471$	1-1856		$0 \cdot 10$
-100	18	102	-382		212	
$5 \cdot 8906$	1.0186	$1 \cdot 1015$	0.6089	$1 \cdot 2068$		$0 \cdot 11$
-101	17	105	-388		217	
$5 \cdot 8805$	1.0203	$1 \cdot 1120$	0.5701	$1 \cdot 2285$		$0 \cdot 12$
-100	18	107	-395		223	
$5 \cdot 8705$	1.0221	1-1227	0.5306	1.2508		$0 \cdot 13$
5.8604^{-101}	$1.0238{ }^{17}$	${ }_{1} 1336^{109}$	$0.4905-401$		229	
$5 \cdot 8604$	1.0238	$1 \cdot 1336$	0.4905	1.2737		$0 \cdot 14$
5.8504^{-100}	1.0256^{18}	${ }^{113}$	-407		235	
5.8504	1.0256	$1 \cdot 1449$	0.4498	1.2972		$0 \cdot 15$
-101	17	114	-4083-415		241	
$5 \cdot 8403$	1.0273	$1 \cdot 1563$	0.4083	$1 \cdot 3213$		$0 \cdot 16$
-101	18	118	-422		248	
5.8302	1.0291	$1 \cdot 1681$	$0 \cdot 3661$	$1 \cdot 3461$		$0 \cdot 17$
-102	18	120	-428		254	
$5 \cdot 8200$	1.0309	$1 \cdot 1801$	0.3233	1.3715		0.18
-101	1.0327^{18}	123	0.2796 -437		261	
5.8099	1.0327	$1 \cdot 1924$	0.2796	$1 \cdot 3976$		$0 \cdot 19$
5.7998^{-101}	1.0345^{18}	${ }^{2051} 127$	0.2351 -445		269	
$5 \cdot 7998$	1.0345	1.2051	0.2351	1.4245		$0 \cdot 20$
5.7896^{-102}	1.0363^{18}	1.2180^{129}	0.1899^{-452}	1.4521		$0 \cdot 21$
$5.7896-102$	1.0363	1.2180	$\begin{array}{ll}0.1899 & -461\end{array}$	1.4521	284	
5.7794	1.0382	1.2313	$0 \cdot 1438$	1.4805		$0 \cdot 22$
-102	18	136	-470		293	
5.7692	1.0400	1.2449	0.0968	1.5098		$0 \cdot 23$
-102	18	140	-479	$1 \cdot 5398$		
5.7590	1.0418	$1 \cdot 2589$	0.0489			$0 \cdot 24$

TABLE A1 (continued overleaf)

Table A1 (continued)

ρ	s	c	$s^{\prime \prime}$	$s c$	
0.24	$3 \cdot 6739$	0.5676	$2 \cdot 4904$	$2 \cdot 0852$	
	-141	3	-230		38
$0 \cdot 25$	3.6598	0.5708	$2 \cdot 4674$	2.0890	
0.26	-141		-231		39
	36457-141	0.5741	$2 \cdot 4443-233$	$2 \cdot 0929$	39
0.27	$3 \cdot 6316$	$0 \cdot 5774$	$2 \cdot 4210$	2.0968	
	-142		-235		39
0.28	$3 \cdot 6174$	$0 \cdot 5807$	$2 \cdot 3975$	$2 \cdot 1007$	
0.29	$3.6031{ }^{-143}$	$0.5841{ }^{3}$	2.3738^{-237}	2•1046	39
	-142		-238		40
0.30	$3 \cdot 5889$	0.5875	2.3500	2•1086	
0.31	$3.5746{ }^{-143}$	0.5910^{3}	.3261 ${ }^{-239}$		40
	-144	0.5910	2.3261-242		40
0.32	$3 \cdot 5602$	0.5945	$2 \cdot 3019$	$2 \cdot 1166$	
	-144		-243		40
0.33	$3 \cdot 5458$	0.5981	2.2776	$2 \cdot 1206$	
	3.5314^{-144}	0.6017	2.2531^{-245}		41
$0 \cdot 34$	3.5314 -145	0.6017	$2.2531-247$	$2 \cdot 1247$	41
0.35	3-5169	$0 \cdot 6053$	$2 \cdot 2284$	$2 \cdot 1288$	
	-145		-249		41
0.36	$3 \cdot 5024$	0.6090	2.2035	$2 \cdot 1329$	
0.37	$3.4878{ }^{-146}$	0.6127	2.1784^{-251}	$2 \cdot 1371$	42
	-146		-252		41
0.38	$3 \cdot 4732$	0.6165	2.1532	$2 \cdot 1412$	
	-146		-255		42
0.39	$3 \cdot 4586-147$	$0 \cdot 6203$	2.1277 -256	2.1454	43
0.40	3.4439	0.6242	2-1021	2-1497	
	3.4292^{-147}		-259		42
$0 \cdot 41$	$3 \cdot 4292$	0.6281	$2 \cdot 0762$	$2 \cdot 1539$	
0.42	$3 \cdot 4144$	0.6321	2.0502	2.1582	
	-149		-263		44
0.43	$3 \cdot 3995$	0.6361	2.0239	$2 \cdot 1626$	
	-148		-265		43
0.44	$3 \cdot 3847$	0.6402	1.9974	$2 \cdot 1669$	
0.45	3.3698^{-149}	0.6443	1.9707^{-267}	$2 \cdot 1713$	44
	-150		-269		44
$0 \cdot 46$	$3 \cdot 3548$	0.6485	1.9438	2-1757	
	3.3398^{-150}		1.9166^{-272}		44
0.47	${ }^{3 \cdot 3398}-151$	$0 \cdot 6528$	${ }^{1 \cdot 9166}-273$	2-1801	45
0.48	$3 \cdot 3247$	0.6571	1.8893	2.1846	

$s(1+c)$	f	m	n	0	ρ
$5 \cdot 7590$	1.0418	$1 \cdot 2589$	0.0489	1.5398	0.24
-102	19	143	-489	310	
$5 \cdot 7488$	1.0437	1.2732	0.0000	$1 \cdot 5708$	0.25
-103	19	148	-498	319	
5.7385	1.0456	1.2880	-0.0498	1.6027	0.26
-102	18	151	-509	328	
$5 \cdot 7283$	1.0474	$1 \cdot 3031$	$-0 \cdot 1007$	1.6355	0.27
-103	19	155	-520	339	
5.7180	1.0493	$1 \cdot 3186$	-0.1527	1.6694	0.28
-103	19	160	-530	349	
$5 \cdot 7077$	$1 \cdot 0512$	$1 \cdot 3346$	-0.2057	1.7043	$0 \cdot 29$
-103	19	165	-542	359	
$5 \cdot 6974$	1.0531	1.3511	-0.2599	1.7402	0.30
5.6871^{-103}	${ }^{19}$	${ }^{1.3680} 169$	-0.3153 -554	1.7774372	
$5 \cdot 6871$	1.0550	$1 \cdot 3680$	-0.3153	1.7774	0.31
-103	19	174	-567	383	
$5 \cdot 6768$	1.0569	$1 \cdot 3854$	-0.3720	1.8157	0.32
-104	20	${ }^{179}$	-580	1.8552395	
$5 \cdot 6664$	1.0589	1.4033	-0.4300	1.8552	0.33
-103	1.0608^{19}	4^{185}	-0.4894 -594	1.8961409	
$5 \cdot 6561$	1.0608	1.4218	-0.4894	1.8961	$0 \cdot 34$
-104	20	${ }^{190}$	- -608	1.9383	
$5 \cdot 6457$	1.0628	1-4408	-0.5502	1.9383	0.35
-104	19	196	-623	437	
$5 \cdot 6353$	1.0647	1.4604	-0.6125	1.9820	0.36
-104	20	${ }^{1806^{202}}$	-6763 -638	2.0271	
$5 \cdot 6249$	1.0667	1.4806	-0.6763	$2 \cdot 0271$	$0 \cdot 37$
5.6145^{-104}	1.0687^{20}	1.5015^{209}	-0.7418-655	2.0738467	
5.6145	1.0687	$1 \cdot 5015$	-0.7418	$2 \cdot 0738$	$0 \cdot 38$
-105	20	216	-672	484	
$5 \cdot 6040$	1.0707	1.5231	-0.8090	$2 \cdot 1222$	0.39
-104	20	${ }^{2222}$	-6.691	501	
$5 \cdot 5936$	1.0727	1.5453	-0.8781	$2 \cdot 1723$	0.40
-105	20	231	-709	519	
$5 \cdot 5831$	1.0747	1.5684	-0.9490	$2 \cdot 2242$	0.41
-105	20	238	-729	539	
5.5726	1.0767	$1 \cdot 5922$	-1.0219	$2 \cdot 2781$	0.42
-105	20	246	-750	558	
$5 \cdot 5621$	1.0787	$1 \cdot 6168$	-1.0969	$2 \cdot 3339$	0.43
-105	21	255	-772	580	
$5 \cdot 5516$	1.0808	1.6423	$-1 \cdot 1741$	$2 \cdot 3919$	0.44
-106	20	265	2537 -796	603	
$5 \cdot 5410$	1.0828	1.6688	-1.2537	$2 \cdot 4522$	0.45
-105	21	274	-820	626	
5.5305	1.0849	1.6962	- I. 3357	$2 \cdot 5148$	$0 \cdot 46$
-106	21	285	-845	651	
$5 \cdot 5199$	1.0870	1.7247	-1.4202	$2 \cdot 5799$	0.47
-106	21	295	-874	678	
$5 \cdot 5093$	0.0891	1.7542	-1.5076	$2 \cdot 6477$	0.48

TABLE A1 (continued overleaf)

Table A1 (continued)

ρ	s	c	$s \prime$	$s c$	
0.48	3.3247	0.6571	1.8893	2.1846	
	-151		-276		45
0.49	$3 \cdot 3096$	0.6614	1.8617	2.1891	
	-151		-279		45
$0 \cdot 50$	$3 \cdot 2945$	0.6659	1-8338	$2 \cdot 1936$	
0.51	$3.2793{ }^{-152}$	0.6704	1.8057^{-281}	2-1982	46
	-153		-283		46
0.52	$3 \cdot 2640$	0.6749	1.7774	2.2028	
0.53	3.2487^{-153}	0.6795	$1.7488{ }^{-286}$	2-2074	46
	-153		-288		47
0.54	3.2334	0.6841	1.7200	$2 \cdot 2121$	
	-154		-291		47
0.55	3.2180	0.6889	1.6909	2.2168	
0.56	3.2025^{-155}	0.6937	1.6615^{-294}	$2 \cdot 2215$	47
	-155		-296		48
0.57	$3 \cdot 1870$	0.6986	1.6319	$2 \cdot 2263$	
	-155		-299		48
0.58	$3 \cdot 1715$	0.7035	$1 \cdot 6020$	2.2311	
$0 \cdot 59$	$3.1559{ }^{-156}$	0.7085	1.5718^{-302}	2.2359	48
	-156		-304		48
$0 \cdot 60$	3-1403	0.7136	1.5414	$2 \cdot 2407$	
	-157		-308		49
0.61	$3 \cdot 1246$	0.7187	$1 \cdot 5106$	2.2456	
	3.1088^{-158}		1.4795^{-311}		50
$0 \cdot 62$	${ }^{3 \cdot 1088}-158$	0.7239	$1 \cdot 4795-313$	$2 \cdot 2506$	49
0.63	3.0930	0.7292	$1 \cdot 4482$	$2 \cdot 2555$	
	-159		-317		50
$0 \cdot 64$	$3 \cdot 0771$	0.7346	1.4165	$2 \cdot 2605$	
	-159		-320		51
	-159	$0 \cdot 7401$	$1 \cdot 3845-323$	2.2656	50
$0 \cdot 66$	3.0453	0.7456	1-3522	2.2706	
	-160		-326		51
$0 \cdot 67$	3.0293	0.7513	$1 \cdot 3196$	$2 \cdot 2757$	
$0 \cdot 68$	3.0132^{-161}	0.7570	1.2866^{-330}	$2 \cdot 2809$	52
	-161		-333		52
0.69	$2 \cdot 9971$	0.7628	1.2533	2.2861	
	$2.9809{ }^{-162}$		1.2197^{-336}		52
0.70	$2 \cdot 9809$	0.7687	$1 \cdot 2197$	$2 \cdot 2913$	
	-163		-341		53
	-163		-344	2.2966	53
0.72	$2 \cdot 9483$	0.7807	$1 \cdot 1512$	$2 \cdot 3019$	

$s(1+c)$	f	m	n	o	ρ
$5 \cdot 5093$	$0 \cdot 0891$	1.7542	-1.5076	$2 \cdot 6477$	0.48
-106	21	307	-902	706	
$5 \cdot 4987$	1.0912	1.7849	-1.5978	$2 \cdot 7183$	0.49
-106	21	321	-932	737	
$5 \cdot 4881$	1.0933	$1 \cdot 817$	-1.691	$2 \cdot 792$	$0 \cdot 50$
-106	21	33	-97	77	
5.4775	1.0954	$1 \cdot 850$	-1.788	2.869	$0 \cdot 51$
-107	21	35	-100	80	
$5 \cdot 4668$	1.0975	1.885	-1.888	$2 \cdot 949$	0.52
-106	22	36	-103	83	
$5 \cdot 4562$	1.0997	1.921	-1.991	$3 \cdot 032$	0.53
-107	21	37	-108	88	
$5 \cdot 4455$	$1 \cdot 1018$	1.958	-2.099	$3 \cdot 120$	0.54
5.4348^{-107}	$1 \cdot 1040^{22}$	1.99840	$2.210-111$	3.212	
$5 \cdot 4348$	$1 \cdot 1040$	1.998	-2.210	$3 \cdot 212$	$0 \cdot 55$
$5.4240{ }^{-108}$	1.1062^{22}	2.03941	-2.326 -116	3.30896	0.56
$5 \cdot 4240-107$	$1 \cdot 1062$	$2 \cdot 03943$	$-2.326 \quad-121$	3.308100	$0 \cdot 56$
$5 \cdot 4133$	1-1084	$2 \cdot 082$	-2.447	3.408	$0 \cdot 57$
-107	22	45	-126	106	
5.4026	$1 \cdot 1106$	2-127	-2.573	$3 \cdot 514$	0.58
5.3918^{-108}	22	47	- 132	111	
$5 \cdot 3918$	$1 \cdot 1128$	$2 \cdot 174$	-2.705	$3 \cdot 625$	0.59
-108	22	49	-137	116	
$5 \cdot 3810$	$1 \cdot 1150$	$2 \cdot 223$	-2.842	3.741	$0 \cdot 60$
-108	23	53	-144	123	
$5 \cdot 3702$	$1 \cdot 1173$	$2 \cdot 276$	-2.986	3.864	$0 \cdot 61$
5.3594^{-108}	$1 \cdot 1195^{22}$	2.33155	-3.136 -105	3.994130	
$5 \cdot 3594-10$	$1 \cdot 1195$	$2 \cdot 3315$	$-3.136-158$	3.994	$0 \cdot 62$
$5 \cdot 3485$	$1 \cdot 1218$	2.388	-3.294	$4 \cdot 131$	0.63
-108	23	61	-165	145	
$5 \cdot 3377$	$1 \cdot 1241$	2.449	-3.459	4.276	$0 \cdot 64$
$5 \cdot 3268{ }^{-109}$	${ }^{23}$	65	-175	153	
$5 \cdot 3268$	$1 \cdot 1264$	$2 \cdot 514$	-3.634	4.429	0.65
-109	23	68	-183	163	
$5 \cdot 3159$	$1 \cdot 1287$	$2 \cdot 582$	-3.817	$4 \cdot 592$	0.66
$5.3050-109$	1.1310^{23}	72	-194	173	
$5 \cdot 3050$	$1 \cdot 1310$	$2 \cdot 654$	-4.011	4.765	0.67
-109	23	77	-205	183	
$5 \cdot 2941$	1.1333	2.731	-4.216	4.948	0.68
-110	24	82	-218	197	
$5 \cdot 2831$	$1 \cdot 1357$	$2 \cdot 813$	-4.434	$5 \cdot 145$	0.69
-109	23	87	-230	209	
$5 \cdot 2722$	$1 \cdot 1380$	2.900	-4.664	$5 \cdot 354$	0.70
-110	24	94	-246	224	
$5 \cdot 2612$	$1 \cdot 1404$	2.994	-4.910	5.578	0.71
-110	24	100	-262	241	
$5 \cdot 2502$	1.1428	$3 \cdot 094$	-5.172	5.819	0.72

TABLE A1 (continued overleaf)

Table A1 (continued)

ρ	s	c	$s^{\prime \prime}$	sc
0.72	$2 \cdot 9483$	0.7807	$1 \cdot 1512$	$2 \cdot 3019$
	-163	62	-347	53
0.73	2.9320	0.7869	$1 \cdot 1165$	$2 \cdot 3072$
	-164	63	-351	54
$0 \cdot 74$	$2 \cdot 9156$	0.7932	1.0814	$2 \cdot 3126$
	-165	63	-356	54
0.75	$2 \cdot 8991$	0.7995	$1 \cdot 0458$	$2 \cdot 3180$
	-165	65	-359	54
0.76	2.8826	0.8060	1.0099	$2 \cdot 3234$
	-166	66	-363	55
0.77	$2 \cdot 8660$	0.8126	0.9736	$2 \cdot 3289$
	-166	67	-368	56
0.78	2.8494	0.8193	0.9368	$2 \cdot 3345$
	-167	68	-371	55
0.79	2.8327	0.8261	0.8997	$2 \cdot 3400$
	-168	69	-376	56
$0 \cdot 80$	2.8159	0.8330	0.8621	$2 \cdot 3456$
	-168	70	-381	57
0.81	2.7991	0.8400	0.8240	$2 \cdot 3513$
	-169	72	-385	57
0.82	$2 \cdot 7822$	0.8472	0.7855	$2 \cdot 3570$
	-169	72	-390	57
0.83	$2 \cdot 7653$	0.8544	0.7465	$2 \cdot 3627$
	-170	74	-394	58
0.84	2.7483	$0 \cdot 8618$	$0 \cdot 7071$	$2 \cdot 3685$
	-171	75	-400	58
0.85	2.7312	0.8693	0.6671	$2 \cdot 3743$
	-171	77	-404	59
0.86	2.7141	0.8770	$0 \cdot 6267$	$2 \cdot 3802$
	-172	78	-410	59
0.87	$2 \cdot 6969$	0.8848	$0 \cdot 5857$	$2 \cdot 3861$
	-172	79	-415	60
0.88	$2 \cdot 6797$	0.8927	0.5442	$2 \cdot 3921$
	-173	81	-420	60
0.89	$2 \cdot 6624$	0.9008	$0 \cdot 5022$	$2 \cdot 3981$
	-174	82	-426	61
0.90	$2 \cdot 6450$	0.9090	0.4596	$2 \cdot 4042$
	-175	83	-431	61
0.91	$2 \cdot 6275$	0.9173	0.4165	$2 \cdot 4103$
	-175	85	-438	61
0.92	$2 \cdot 6100$	0.9258	$0 \cdot 3727$	$2 \cdot 4164$
	2^{-176}	87	-443	62
0.93	$2 \cdot 5924$	0.9345	0.3284	$2 \cdot 4226$
	-176	88	-449	63
0.94	2.5748	0.9433	0.2835	$2 \cdot 4289$
	-178	90	-456	63
0.95	2.5570	0.9523	0.2379	$2 \cdot 4352$
	-178	92	-462	63
0.96	$2 \cdot 5392$	0.9615	$0 \cdot 1917$	2.4415

$s(1+c)$	f	m	n	0	ρ
$5 \cdot 2502$	$1 \cdot 1428$	$3 \cdot 094$	$-5 \cdot 172$	5.819	0.72
-110	24	107	-281	259	
$5 \cdot 2392$	$1 \cdot 1452$	$3 \cdot 201$	$-5 \cdot 453$	6.078	0.73
-110	24	115	-301	279	
$5 \cdot 2282$	$1 \cdot 1476$	$3 \cdot 316$	$-5 \cdot 754$	6.357	0.74
-111	25	125	-324	302	
$5 \cdot 2171$	$1 \cdot 1501$	3.441	-6.078	$6 \cdot 659$	0.75
-111	24	136	-349	327	
$5 \cdot 2060$	1-1525	$3 \cdot 577$	$-6 \cdot 427$	6.986	0.76
-111	25	147	-379	357	
$5 \cdot 1949$	$1 \cdot 1550$	3.724	-6.806	$7 \cdot 343$	0.77
-111	24	160	-411	389	
$5 \cdot 1838$	$1 \cdot 1574$	$3 \cdot 884$	-7.217	7.732	0.78
-111	25	176	-450	427	
$5 \cdot 1727$	$1 \cdot 1599$	$4 \cdot 060$	-7.667	$8 \cdot 159$	0.79
-111	25	193	-492	471	
5-1616	$1 \cdot 1624$	$4 \cdot 253$	$-8 \cdot 159$	$8 \cdot 630$	0.80
-112	26	213	-534	520	
$5 \cdot 1504$	$1 \cdot 1650$	4-466	$-8 \cdot 702$	$9 \cdot 150$	$0 \cdot 81$
-112	25	237	-601	578	
$5 \cdot 1392$	$1 \cdot 1675$	$4 \cdot 703$	-9.303	$9 \cdot 728$	0.82
-112	25	265	-670	648	
$5 \cdot 1280$	1.1700	$4 \cdot 968$	-9.973	$10 \cdot 376$	0.83
-112	26	298	-752	729	
$5 \cdot 1168$	$1 \cdot 1726$	$5 \cdot 266$	-10.725	$11 \cdot 105$	0.84
-112	26	338	-850	827	
$5 \cdot 1056$	$1 \cdot 1752$	$5 \cdot 604$	$-11 \cdot 575$	11.932	0.85
-113	26	386	-969	946	
$5 \cdot 0943$	$1 \cdot 1778$	$5 \cdot 990$	$-12 \cdot 544$	12.878	0.86
-112	26	446	$-1 \cdot 116$	1.093	
$5 \cdot 0831$	$1 \cdot 1804$	$6 \cdot 436$	$-13 \cdot 660$	13.971	0.87
-113	26	520	$-1 \cdot 299$	1.276	
$5 \cdot 0718$	$1 \cdot 1830$	6.956	-14.959	$15 \cdot 247$	0.88
-113	27	614	-1.532	$1 \cdot 508$	
5.0605	$1 \cdot 1857$	$7 \cdot 570$	-16.491	16.755	0.89
-114	26	737	-1.835	1.812	
$5 \cdot 0491$	$1 \cdot 1883$	$8 \cdot 307$	$-18 \cdot 326$	$18 \cdot 567$	0.90
-113	27	-	-20.57 -	20.78 -	
$5 \cdot 0378$	$1 \cdot 1910$	$9 \cdot 208$	-20.57	$20 \cdot 78$	0.91
-114	$1.1937{ }^{27}$	0	23-36	23.55	
$5 \cdot 0264$	$1 \cdot 1937$	$10 \cdot 334$	-23.36	23-55	0.92
$5.0150-114$	$1 \cdot 1964{ }^{27}$	11.781^{-}	-26.95	27.12 -	
5.0150	1-1964	11.781	-26.95	$27 \cdot 12$	$0 \cdot 93$
-114	27	-	-31.73	-	
$5 \cdot 0036$	1-1991	13.711	-31.73	31.87	0.94
4^{-114}	1^{2819}	16.413 -	-38.41	$38.53-$	
4.9922	1.2019	16.413	-38.41	$38 \cdot 53$	0.95
4.9808^{-114}	1.2046^{27}	20.47 -	-48.43 -	48.53 -	0.96
$4 \cdot 9808$	$1 \cdot 2046$	$20 \cdot 47$	-48.43	$48 \cdot 53$	0.96

Table A1 (continued overleaf)

Table A1 (continued)

ρ	s	c	$s^{\prime \prime}$	$s c$
0.96	$2 \cdot 5392$	0.9615	$0 \cdot 1917$	$2 \cdot 4415$
	2.5214^{-178}	94	-469	64
0.97	$2 \cdot 5214$	0.9709	$0 \cdot 1448$	$2 \cdot 4479$
	. 5035^{-179}	95	-476	65
0.98	$2 \cdot 5035$	0.9804	0.0972	$2 \cdot 4544$
0.99	$2.4855{ }^{-180}$	$0.9901{ }^{97}$	0.0490^{-482}	$2.4609{ }^{65}$
	-181	99	-490	65
1.00	2.4674	$1 \cdot 0000$	$0 \cdot 0000$	$2 \cdot 4674$

Table A2 Stability

ρ	s	c	$s^{\prime \prime}$	$s c$
1.00	$2 \cdot 467$	1.000	0.000	$2 \cdot 467$
$1 \cdot 10$	$2.283{ }^{-184}$	1.111^{111}	-0.534^{-534}	$2.536 \quad 69$
	-193	138	-635	74
1.20	$2 \cdot 090$	1.249	-1.169	$2 \cdot 610$
	1.889^{-201}	175	-775	81
$1 \cdot 30$	$1.889-211$	$1.424 \quad 232$	$-1.944-978$	2.69188
1.40	1.678	1.656	-2.922	2.779
1.50	1.457^{-221}	$1.973{ }^{317}$	-4.215^{-1293}	$2.875 \quad 96$
	-233	462	-1817	2.875105
1.60	$1 \cdot 224$	2.435	-6.032	2.980
	-246	731	-2793	116
1.70	0.978	$3 \cdot 166$	-8.825	3.096
1•80	0.717^{-261}	$4 \cdot 497$	-13.783	$3.224{ }^{128}$
	-278	-	- -	143
1.90	$0 \cdot 439$	7.661	-25.352	$3 \cdot 367$
	$0.143-296$	(2)	(-86.86)	3.525158
$2 \cdot 00$	$0.143-319$	(24.68) -	(-86.86) -	$3.525 \quad 177$
$2 \cdot 10$	-0.176	(-21.07)	(77.83)	37.02

FUNCTIONS $\rho=1.00$ to 4.00

Table A2 (continued overleaf)

Table A2 (continued)

ρ	s	c	$s^{\prime \prime}$	$s c$
$2 \cdot 10$	-0.176	(-21.07)	(77.83)	3.702
$2 \cdot 20$	-0.519^{-343}	-7.511	28.781	3.901199
	-374	-	28.781 -	226
$2 \cdot 30$	-0.893	-4.623	$18 \cdot 185$	$4 \cdot 127$
$2 \cdot 40$	$-1.301{ }^{-408}$	$-3 \cdot 370$	13.472	$4.383{ }^{256}$
	-449	697	-2718	295
$2 \cdot 50$	-1.750	-2.673	10.754	4.678
	-499	442	-1806	340
$2 \cdot 60$	-2.249 -560	-2.231	8.948	$5 \cdot 018$
2.70	$-2.809{ }^{-560}$	$-1.928{ }^{303}$	-1317	397
	-636	-1.928 220	7.631-1025	$5 \cdot 415469$
$2 \cdot 80$	-3.445	-1.708	$6 \cdot 606$	$5 \cdot 884$
$2 \cdot 90$	-4.176^{-731}	-1.543^{165}	$5.767-839$	$6.444{ }^{560}$
	-856	127	-714	680
3.00	-5.032	-1.416	$5 \cdot 053$	$7 \cdot 124$
	-1020	100	-629	838
3-10	$-6.052-1245$	$-1.316 \quad 80$	$4 \cdot 424-568$	7.9621059
$3 \cdot 20$	-7.297	-1.236	3.856	9.021
$3 \cdot 30$	-8.863^{-1566}	63	-527	1374
	$-8.863-2045$	$-1.173 \quad 51$	$3 \cdot 329-497$	10.3951847
3.40	-10.908	-1.122	$2 \cdot 832$	$12 \cdot 242$
$3 \cdot 50$	-13.719^{-2811}	$-1.082{ }^{40}$	$2.353-479$	$14.849{ }^{2607}$
	-	31	-467	-
$3 \cdot 60$	-17.87	-1.051	1.886	18.79
3.70	-24.68	-1.028^{23}	$1.423{ }^{-463}$	$25 \cdot 39$
	--	16	-465	25.39 -
3.80	-38.17	-1.012	0.958	38.65
3.90	-78.34	9	-473	78.58 -
	-78.34	$-1.003 \quad 3$	$0.485-485$	$78 \cdot 58$
4.00	$-\infty$	-1.000	0.000	∞

$s(1+c)$	J		m		n		o		ρ
3.526	1.702		-0.516		0.73		-4.61		2-10
3.382^{-144}	1.774	72	-0.452	64	0.25	-48	-4.67	-6	$2 \cdot 20$
-148		81		54		-50		-10	
3.234	1.855		-0.398		-0.25		-4.77		$2 \cdot 30$
$3.083{ }^{-151}$		91		46		-51		-16	
$3.083-155$	1.946		-0.352		-0.76		-4.93		$2 \cdot 40$
2.928	2.049		-0.311		-1.29		-5.13		$2 \cdot 50$
-159		118		36		-58		-27	
2.769	2.167		-0.275		-1.87		$-5 \cdot 40$		$2 \cdot 60$
-163		135		32		-62		-33	
$2 \cdot 606$	$2 \cdot 302$		-0.243		-2.49		--5.73		$2 \cdot 70$
$2.439{ }^{-167}$	$2 \cdot 460$	158	-0.214	29	-3.18	-69	-6. 6	-42	$2 \cdot 80$
-171		186		26		-78		-51	
2.268	$2 \cdot 646$		-0.188		-3.96		-6.66		$2 \cdot 90$
-176		223		23		-90		-64	
2.092	2.869		-0.165		-4.86		-7.30		3.00
1.911^{-181}		272		22		-106		-80	
1.911	$3 \cdot 141$		-0.143		-5.92		$-8 \cdot 10$		3-10
1.724	$3 \cdot 480$	339	-0.123	20	-7.19	-127	-9.13	-103	$3 \cdot 20$
-192		436		19		-159		-135	
1.532	3.916		-0.104		-8.78		-10.48		$3 \cdot 30$
1.334^{-198}		581		18		-207		-182	
1.334	$4 \cdot 497$		-0.086		-10.85		-12.30		$3 \cdot 40$
$1 \cdot 130^{-204}$	$5 \cdot 31$	813	-0.070	16	-13.68	-283	-14.89	-259	$3 \cdot 50$
-211		-		15		-	-14.89		3.50
0.919	$6 \cdot 53$		-0.055		-17.84		-18.81		$3 \cdot 60$
-218		-		15		-		-	
0.476	$12 \cdot 61$		-0.026		-38.17		-38.66		3.80
-234		-		13		-		-	
$0 \cdot 242$	$24 \cdot 77$		-0.013		-78.33		-78.58		$3 \cdot 90$
0^{-242}	∞		0	13	$-\infty$	-	$-\infty$	-	$4 \cdot 00$

Table A3 Reciprocal

ρ	$\frac{1}{c}$	$\frac{1}{s^{\prime \prime}}$
0.80		
0.90		
1.00	$1.0000-998$	
$1 \cdot 10$	0.9002	
	-994	
$1 \cdot 20$	0.8008 -988	
1.30	0.7020	
	-980	
$1 \cdot 40$	$0^{0.6040}$-972	$-0.3422{ }_{1050}$
1.50	0.5068	-0.2372
	0^{-961}	714
1.60	$0 \cdot 4107$	-0.1658
1.70	$0.3158{ }^{-949}$	-0.1133^{525}
	-934	${ }^{407}$
1.80	$0 \cdot 2224$	-0.0726
1.90	0.1305^{-919}	$-0.0394{ }^{332}$
	-900	-0.039 279
$2 \cdot 00$	0.0405	-0.0115
	-0.0475-880	${ }^{243}$
$2 \cdot 10$	$-0.0475-856$	0.0128
$2 \cdot 20$	-0.1331	0.0347
$2 \cdot 30$	$-0.2163{ }^{-832}$	$0.0550{ }^{203}$
	-804	192
$2 \cdot 40$	-0.2967	0.0742
$2 \cdot 50$	-0.37411^{-774}	$0_{0.0930}{ }^{188}$

STABILITY FUNCTIONS

Table A4 Stability functions for

ρ	s		c		$s^{\prime \prime}$		$s c$	
-0.00	4.0000		$0 \cdot 5000$		3.0000		$2 \cdot 0000$	
		1299		-235		1921		-319
$-0 \cdot 10$	4-1299		$0 \cdot 4765$		$3 \cdot 1921$		1.9681	
		1268		-212		1822		-301
-0.20	4.2567	1237	0.4553	-193	3.3743	1736	1.9380	-284
-0.30	4.3804		0.4360		3.5479		1.9096	
		1209		-177		1658		-267
-0.40	4.5013		0.4183		3.7137		1.8829	
		1181		-162		1588		-254
-0.50	$4 \cdot 6194$	1157	0.4021	-149	3.8725	1526	1.8575	-239
-0.60	4.7351		0.3872		4.0251		1.8336	
		1132		-137		1469		-227
-0.70	4.8483		0.3735		$4 \cdot 1720$		1.8109	
		1110		-127		1417		-216
-0.80	4.9593		$0 \cdot 3608$		4.3137		1.7893	
-0.90	$5 \cdot 0681$	1088	$0 \cdot 3490$	-118	$4 \cdot 4507$	1370	1.7689	-204
		1067		-109		1327		-195
-1.00	$5 \cdot 1748$		0.3381		4.5834		1.7494	
$-1 \cdot 10$	$5 \cdot 2795$	1047	$0 \cdot 3279$	-102	4.7121	1287	1.7309	-185
		1029		-96		1249		-176
-1.20	$5 \cdot 3824$		$0 \cdot 3183$		4.8370		1.7133	
		1011		-89		1216		-167
-1.30	$5 \cdot 4835$		$0 \cdot 3094$		4.9586		$1 \cdot 6965$	
-1.40	$5 \cdot 5828$	993	0.3010	-84	5.0770	1184	$1 \cdot 6805$	-160
		978		-79		1154		-153
$-1 \cdot 50$	$5 \cdot 6806$		0.2931		5-1924		1.6652	
$-1 \cdot 60$	$5 \cdot 7767$	961	$0 \cdot 2857$	-74	5-3051	1127	$1 \cdot 6506$	-146
		947		-70		1101		-140
-1.70	$5 \cdot 8714$		0.2787		5-4152		1.6366	
-1.80	5.9645	931	0.2721	-66	$5 \cdot 5228$	1076	1.6232	-134
		919		-62		1053		-128
-1.90	6.0564		0.2659		$5 \cdot 6281$		1.6104	
		904		-59		1032		-122
-2.00	$6 \cdot 1468$		0.2600		5.7313		1.5982	
$-2 \cdot 10$	$6 \cdot 2360$	892	0.2544	-56	5.8324	1011	1.5864	-118
		879		-53		992		-113
-2.20	6.3239		0.2491		5.9316		1.5751	
$-2 \cdot 30$	6.4107	868	0-2440	-51	6.0290	974		-108
		856		-48		956		-104
-2.40	6.4963		0.2392		6.1246		1.5539	
-2.50	6.5808	845	0.2346	-46	6.2186	940	1.5438	-101

NEGATIVE ρ values 0 to -2.5

$s(1+c)$	f	m	n	o	ρ
$6 \cdot 0000$	1.0000	$1 \cdot 0000$	$1 \cdot 000$	1.0000	-0.00
980	-161	-749	309	-1473	
6.0980	0.9839	0.9251	$1 \cdot 309$	0.8527	-0.10
967	-153	-625	276	-1190	
$6 \cdot 1947$	0.9686	0.8626	1.585	0.7337	-0.20
953	-147	-531	250	-975	
6.2900	0.9539	0.8095	1.835	0.6362	-0.30
941	-141	-457	228	-809	
$6 \cdot 3841$	0.9398	0.7638	$2 \cdot 063$	0.5553	-0.40
929	-134	-397	211	-677	
6.4770	0.9264	0.7241	$2 \cdot 274$	0.4876	-0.50
6.5687^{917}	0^{-130}	-348	1^{197}	0^{-573}	
6.5687	0.9134	0.6893	2.471	0.4303	-0.60
6^{905}	-124	-309	${ }^{185}$	-488	
6.6592	0.9010	0.6584	$2 \cdot 656$	0.3815	-0.70
894	-119	-275	174	-419	
$6 \cdot 7486$	0.8891	0.6309	$2 \cdot 830$	0.3396	-0.80
${ }^{8.8369}$	-115	-247	166	-362	
6.8369	0.8776	$0 \cdot 6062$	2.996	0.3034	-0.90
873	-111	-223	157	-314	
$6 \cdot 9242$	0.8665	0.5839	3-153	0.2720	-1.00
863	-106	-203	151	-274	
7.0105	0.8559	0.5636	$3 \cdot 304$	$0 \cdot 2446$	$-1 \cdot 10$
852	-103	-185	144	-240	
7.0957	0.8456	0.5451	3.448	0.2206	-1.20
7.1800^{843}	$0.8357-99$	-170	140	-211	
$7 \cdot 1800$	0.8357	0.5281	$3 \cdot 588$	$0 \cdot 1995$	$-1 \cdot 30$
833	-96	-156	134	-187	
$7 \cdot 2633$	$0 \cdot 8261$	0.5125	3.722	0•1808	-1.40
825	-93	-144	129	-166	
7.3458	0.8168	$0 \cdot 4981$	3.851	$0 \cdot 1642$	-1.50
$7.4273{ }^{815}$	-90	-134	126	-147	
$7 \cdot 4273$	0.8078	0.4847	3.977	$0 \cdot 1495$	-1.60
7.5080^{807}	-87	-124	121	-132	
$7 \cdot 5080$	0.7991	0.4723	$4 \cdot 098$	$0 \cdot 1363$	-1.70
798	-84	-116	119	-117	
7.5878	0.7907	0.4607	$4 \cdot 217$	$0 \cdot 1246$	-1.80
$7.6668{ }^{790}$	-81	-108	115	-106	
$7 \cdot 6668$	0.7826	0.4499	$4 \cdot 332$	$0 \cdot 1140$	-1.90
782	-79	-102	112	-95	
7.7450	0.7747	0.4397	$4 \cdot 444$	$0 \cdot 1045$	-2.00
774	-77	-96	110	-85	
7.8224	0.7670	0.4301	$4 \cdot 554$	0.0960	$-2 \cdot 10$
${ }^{767}$	-74	-89	107	-77	
7.8991	0.7596	0.4212	$4 \cdot 661$	0.0883	-2.20
759	-72	-85	104	-70	
7.9750	0.7524	0.4127	$4 \cdot 765$	0.0813	-2.30
${ }^{751}$	-71	-80	102	-64	
8.0501	0.7453	$0 \cdot 4047$	4-867	0.0749	-2.40
8.1246^{745}	-7385 -68	-76	101	-57	
8.1246	0.7385	0.3971	$4 \cdot 968$	0.0692	$-2 \cdot 50$

Table A5 Stability functions for

Greater negative values of ρ. The following approximations

$$
\begin{array}{ll}
s=\frac{\alpha(2 \alpha-1)}{\alpha-1}, & s^{\prime \prime}=s\left(1-c^{2}\right)=\frac{4 \alpha^{2}}{2 a-1} \\
c=\frac{1}{2 \alpha-1}, & s c=\frac{\alpha}{\alpha-1} \\
174 &
\end{array}
$$

NEGATIVE ρ VALUES 0 to -20

$s(1+c)$	f	m	n	o	ρ
6.000	1.0000	1.0000	1.000	$1 \cdot 0000$	0.0
924	-1335	-4161	$2 \cdot 153$	-7280	
6.924	0.8665	0.5839	$3 \cdot 153$	0.2720	-1.0
821	-918	-1442	1-291	-1675	
7.745	0.7747	0.4397	$4 \cdot 444$	0.1045	-2.0
$8.487{ }^{742}$	$0.7070-677$	$0.3644{ }^{-753}$	5.442998	0.0471^{-574}	-3.0
$8 \cdot 4876$	- 725	0.3644 -473	$5.442 \quad 841$	0.047 -236	-3.0
$9 \cdot 167$	0.6545	0.3171	6.283	0.0235	-4.0
$9.796{ }^{629}$	0.6125^{-420}	0.2842^{-329}	7.025742	$0.0125-110$	
9.796	0.6125	0.2842	7.025	0.0125	-5.0
$10.385{ }^{589}$	0.5778 -347	$0.2597-245$	7.695670	-55	
$10 \cdot 385$	$0 \cdot 5778$	$0 \cdot 2597$	7.695	0.0070	-6.0
$10.939{ }^{554}$	0.54855^{-293}	0.2405^{-192}	$8.312 \quad 617$	$0.0041{ }^{-29}$	-7.0
524	-251	-155	574	-16	
11.463	0.5234	0.2250	8.886	0.0025	-8.0
498	-218	-128	539	-10	
11.961	0.5016	0.2122	9.425	0.0015	-9.0
${ }^{476}$	-192	-109	510	-5	
$12 \cdot 437$	0.4824	0.2013	9.935	0.0010	$-10 \cdot 0$
$12.894{ }^{457}$	-171	-94	485	-4	
$12 \cdot 894_{438}$	$\begin{array}{ll}0.4653 & -153\end{array}$	0.1919 -81	$10 \cdot 420 \quad 463$	0.0006 -2	-11.0
13.332	0.4500	0.1838	10.883	0.0004	$-12 \cdot 0$
424	-138	-72	444	-1	
13.756	0.4362	$0 \cdot 1766$	11.327	0.0003	-13.0
$14 \cdot 165^{409}$	$0.4236-126$	$0 \cdot 1701{ }^{-65}$	11.755^{428}	0.0002^{-1}	
$14 \cdot 165396$	0.4236 -	$0.1701-57$	11.755	$0 \cdot 0002-1$	-14.0
14.561	0.4121	0.1644	$12 \cdot 167$	0.0001	-15.0
384	-106	-52	399	0	
14.945	0.4015	0.1592	12.566	0.0001	-16.0
373	-98	-48	387	0	
$15 \cdot 318$	$0 \cdot 3917$	$0 \cdot 1544$	12.953	$0 \cdot 0001$	-17.0
15.682^{364}	$0.3826{ }^{-91}$	$0 \cdot 1501{ }^{-43}$	13.329376	$0.0000{ }^{-1}$	-18.0
15.682	-38	-40	365	0	-18.0
16.036	0.3742	0-1461	13.694	0.0000	-19.0
16.382^{346}	0.3663 -79	$0 \cdot 1424{ }^{-37}$	$14.050{ }^{356}$	$0.0000 \quad 0$	-20.0

are sufficiently accurate-Let $\alpha=\frac{\pi}{2} \sqrt{ }(-\rho)$.

$$
\begin{aligned}
s(1+c) & =\frac{2 \alpha^{2}}{\alpha-1}, \quad m=\frac{1}{\alpha}, \quad o=\text { zero. } \\
f & =\frac{3(\alpha-1)}{\alpha^{2}}, \quad n=2 \alpha .
\end{aligned}
$$

Index

Allen, H. G. 87, 89
Amplification factor
in rigid frames $109,121,145$
in struts 19
in triangulated frames 84
Ariaratnam, S. T. 85, 102
Baker, J. F. 132
Berry, A. 51
Birfurcation of equilibrium
in frames 103
in struts 13, 40, 42
Bleich, F. 15, 20, 75
Bolton, A. 27, 141
Bracing 110
British Standard 449 (1958) 34
Britvec, S. J. 78
Buckling loads, definition 104
Bull, F. B 48
Carry-over factor 48
Chandler, D. B. viii, $51,70,88$
Chilver, A. H. 121
Chwalla, E. 121
Compression loaded members 131
Critical loads
experimental determination 21
pin-jointed trusses 78
reduced 135,146
rigid frames 105
rigid-jointed trusses 82
strut 8
Critical member 129
Critical modes
rigid frames 109
rigid-jointed trusses 94
strut 8
Davies, G. 143
Davies, M. J. viii

Deformations, large
in portal frames 120
in struts 10
Disturbing forces 85
combinations of 91,107
Double curvature bending, in columns 130, 132
Double modulus load 37
Dynamic jump 143
Eccentric loading of strut 29,33,43
Effective length of strut 8
Elastic critical loads, see Critical loads
Elastic critical modes, see Critical modes
Elastica 10
Elastic-plastic behaviour
columns 132
rigid frames 143
rigid-jointed triangulated frames 141
struts 26
Ellis, J. 29
End conditions in strut 8
Engesser, F. 41
Equilibrium, stable and unstable 14
Euler load 7
Experimental determination of critical load 21

Factor of safety 44
Failure load, elastic portal frame 117
strut 5
Failure load, elastic-plastic
columns 132
rigid frames 143
rigid-jointed triangulated frames 141

Fixed-end moments 50
concentrated load 65
uniformly distributed load 63
Flexural shortening 12
Foulkes, J. 139
Fourier series, use in strut 16
Four-moment equation 75
Gardner, N. J. viii
Generalised displacements 62
Gusset plates
effect on critical loads 98
effect on stability functions 67
Heyman, J. 132
Hinges, plastic 30, 128, 135, 143
Hoff, N. J. 96
Imperfections
effect on elastic-plastic failure loads 129, 139, 148
in portal frames 109
in struts 21, 28, 33, 43
in triangulated frames 83
Inelastic behaviour, see Elasticplastic behaviour
Internal stresses 83, 150
James, B. W. 51
Kroll, W. D. 51
Lack of fit 83, 148
Lack of straightness 21
Lateral loaded members, in rigid frames 129
Lateral loads, in struts $15,36,63$
Le-Wu-Lu 120
Linear analysis 1
Livesley, R. K. vii, 51, 70, 73, 88
Load factor 44
Lundquist, E. E. 51
Magnification factor
in rigid frames $109,121,145$
in struts 19
in triangulated frames 84
Mansell, D. S. 140

Moment distribution 48
Moment of resistance, plastic 31
Moments, fixed-ended 50
concentrated load 65
uniformly distributed load 63
Murray, J. 139
Neal, B. G. 140, 143, 147
No-shear functions 58
Non-linearity of deflexions 2
Non-uniform members 20
Operations, general tables of 60,62
Orthogonal relations 20
Perry-Robertson formula for struts 33
Pitched roof portal frames 147
Plastic hinges $30,128,135,143$
Plastic moment of resistance 31
Plastic zones
in columns 133
in struts 29
in triangulated frames 139
Portals
multi-storey, multi-bay 113
multi-storey, single bay 111
single-storey, single bay 105,115
Potential energy 14
Primary deflexions in struts 17
Primary moments, effect on stability 115
Primary moments in struts 15
Proof stress 44

Rankine load
in columns 139
in lateral loaded struts 37
in rigid frames 146
in struts 35
in triangulated frames 141
Rankine, W. J. M. 35
Rashid, C. A. 141
Reduced critical loads 135,146
Reduced modulus 39
Reduced structure 136
Relaxation 88

Rigid-plastic behaviour
in columns 136
in rigid frames 143
in struts 30, 36
Robertson, A. 33
Roderick, J. W. 132
Safety factor 44
Salem, A. 141, 147
Secant formula for struts 33
Secondary stresses 79
Shanley, F. R. 42
Shear centre 72
Shear deformation, effect on critical loads 14
Shear walls 150
Shortening, axial, due to flexure 12
Single curvature bending, in columns 130
Slope-deflexion equations
no axial load 50
with axial load 51
Southwell plot 22, 85, 105
Southwell, R. V. 10, 22, 88
Squash load 28, 139

Stability functions 48 ff
s and $c \quad 52$
$s^{\prime \prime} 55$
$s(1+c), m \quad 56$
$n, o \quad 58$
tables 157
with gusset plates 67
Stiffness
member under terminal couples 5
negative 7, 110
rotational 48
translational 50
Strain hardening 24, 151
Stress factor 44
Superposition 49
Sved, G. 48
Sway functions 56
Tangent modulus 25, 38
load of frames 151
load of strut 43
Unloading, of inelastic material 25
Wood, R. H. 146

[^0]: * For references, see p. 155.

