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Preface 

T H E authors have set out, in this volume, to give a clear picture 
of phenomena affecting the stability, both in the elastic and in the 
partially plastic range, of plane, rigid-jointed, triangulated and 
non-triangulated frames. Necessarily, much has been omitted. 
Thus, there is no mention of energy methods in the derivation 
of critical loads. The authors believe that, although energy 
methods are of prime importance in dealing with the stability 
of isolated members and of plate elements within members, the 
behaviour of plane frames can be adequately presented without 
the use of such methods, and that there are certain advantages 
in so doing in an elementary treatment. 

The method of presentation is through examples designed to 
illustrate the physical principles involved rather than to present 
in detail a multiplicity of analytical methods; it is considered 
that, once a reader familiar with linear elastic analysis has under-
stood the principles of non-linear behaviour, he will rapidly 
develop, for any particular problem, a suitable method of analysis. 
The examples treated in the text may be solved by hand with the 
help of a desk calculator. It is recommended that readers intend-
ing to carry out stability calculations should make use of the 
examples given at the ends of the chapters, these being either 
algebraic or, if numerical, again solvable by hand. Extensive 
calculations of the stability of frames are likely to be programmed 
for automatic digital computer, and reference to another book 
in this series (R. K. Livesley, Matrix Methods of Structural 
Analysis) may be made for help with such aspects. 

Chapter 1 introduces the essential features of stability in elastic 
and elastic-plastic structures by reference to single members 
bending about one axis. Stability functions for prismatic elastic 
members are derived in Chapter 2, tables of these functions being 

vii 
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given at the end of the book (more extensive tables by Livesley 
and Chandler (Ref. 17) are available elsewhere). Chapter 3 
deals with the elastic stability of triangulated frames, and Chapter 
4 with non-triangulated frames. The behaviour of both triangu-
lated and non-triangulated frames beyond the elastic limit is 
discussed in Chapter 5. 

The authors acknowledge the assistance of various members of 
the staffs of the Department of Structural Engineering in the 
Faculty of Technology, and of the Department of Civil Engineer-
ing in the Faculty of Science, both in the University of Man-
chester, for reading and criticising the manuscript. Thanks are 
due to Dr. N . J. Gardner and Mr. M. J. Davies for their assistance 
in programming, for automatic digital computer, the tables of 
stability functions on pages 157^. The authors acknowledge 
permission from the University Presses of Cambridge and Man-
chester to reproduce examination questions taken from Degree 
papers. 



C H A P T E R 1 

The Stability and Failure of 
Individual Members 

1.1 Introduction 

It is common, in dealing with rigid-jointed frames, to calculate 
deflexions and bending moments by a linear analysis. When this 
is done, the equations of equilibrium are established by considering 
the geometry of the structure in its undeformed state. This may 

FIG. 1.1 

be illustrated by reference to the simple structure ABC in Fig. 
1.1(a). The vertical column AB is fixed to a rigid foundation at 
A, and supports the cantilever BC through a rigid joint at B. 
If a vertical load P acts at C, the bending moment at any point D 
in the column is calculated as Py0 = Pa, while the bending moment 
at any point F i n the cantilever is Px0. The total vertical deflexion 
A c at C (Fig. 1.1(b)) may be obtained as A c = A 5 C + AAB 

1 

(a) (b) 
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where ABC is the deflexion produced by BC acting as a cantilever 
while AAB is the additional deflexion induced at C by the rotation 
6B of the joint B. If EI denotes the uniform flexural rigidity 

(1.1) 

The deflexion A c is thus proportional to the applied load P, 
giving the straight line Ob in Fig. 1.2(a) as the load-deflexion 

FIG. 1.2 

relation. In this treatment, it has been assumed that deflexions 
due to shear deformation and direct axial compression may be 
ignored. If these are allowed for, the deflexions are slightly 
increased, but are still linearly related to the applied load. 

It is evident that, in a more refined analysis, one should calculate 
the bending moments in the actual deformed state of the struc-
ture, Fig. 1.1(b). The bending moment at D becomes Pyl9 while 
that at F becomes Pxv When this is done, the deflexion com-
ponents, now denoted by AAB and ABC\ are no longer directly 
proportional to the applied load P, and the load-deflexion 
relation becomes curved as shown by Ob' in Fig. 1.2(b). 

whence and AAB of AB and BC, then ABC 

(a) (b) 
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The difference between the approximately and accurately 
calculated cantilever deflexions A ^ c and A j ^ ' is likely to be small, 
provided the deflexions are small compared with the dimen-
sions a and /. The difference between x0 and x± is of order of 
magnitude a(l — cos 6) (that is, of order ad2 or Id2 if a and / 
are of like order), where 6 is a typical value of the angle of slope of 
the cantilever. On the other hand, the difference between y0 

and j x is of order Id, and may cause a significant difference be-
tween AAB and AAB'. The linear analysis is thus in the first 
instance likely to be in error on account of the incorrect calcula-
tion of the bending moments in column AB, and generally in 
any structure it is the flexure of the axially loaded members 
that is the prime cause of non-linearity. The stability of frames is 
concerned with this non-linear behaviour, and the first step 
must be to consider the influence of axial loads in single members. 
The study of an isolated member under axial load develops 
ideas which have direct application to complete frames, and these 
ideas are explored in the present chapter. 

It is assumed throughout that the member is undergoing flexure 
about one principal axis only, and that bending about the other 
principal axis (i.e. out of the plane of the paper) does not occur. 
This may imply that restraints must be present preventing such 
deformations, this being particularly so if the bending which is 
allowed is about the major principal axis. 

1.2 Axially Loaded Member with Terminal Couples 

The initially straight strut AB in Fig. 1.3(a) is subjected to an 
axial thrust P applied at the centroids of the end sections, together 
with equal and opposite terminal couples M. As a result of this 
loading the strut takes up the deflected form ACB in Fig. 
1.3(b), the deflexion at D, distance x from A, being denoted by 
y relative to the straight line OB forming the .Y-axis. The bending 
moment in the strut at D is thus ( M + Py). If the strut has 
a uniform flexural rigidity EI about axes parallel to the terminal 
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FIG. 1.3 

where a 2 = PjEL The constants of integration A and B are 
derived from the boundary conditions that the deflexion y is 
zero at the ends x = 0 and x = / of the member. Hence 

0 = A sin a/ + B cos a/ —> 

(1.2) 

The solution is 

y = A sin (xx + B cos ax (1.3) 

couples, and if the deflexions are sufficiently small for (d j /dx) 2 

to be neglected in comparison with unity, the differential equation 
governing the deflected form becomes 
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Hence the load 7 7 2 J E 7 / / 2 , denoted by PE, is the elastic failure load 
of the strut, and is independent of the applied bending moment M. 

An alternative presentation of the results is shown in Fig. 1.5. 
The stiffness k of the member with respect to end moments may 
be defined as the ratio of the applied moments M to terminal 
rotations 0A = 6B. It follows from equation (1.4) that 

whence 

where k0 = 2EIJI, the stiffness of the strut when P = 0. The 
variation of k/k0 with P/PE is shown in Fig. 1.5, from which it 

(1.6) 

sec oo, i.e. as o r P -

The relation between yc and P is shown for four different values 
of M in Fig. 1.4. The values of yc, P and M are expressed non-
dimensionally in terms of suitable functions of the length / 
of the strut and its flexural rigidity EI. For any value of M, the 
deflexion becomes indefinitely large as 

(1.5) 

The maximum deflexion occurs at C (x = //2), and has the value 

(1.4) 

giving B = MjP and A = {MjP) tan a//2. The deflexion y 
given by equation (1.3) thus becomes 
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FIG. 1.5 

6 
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is seen that there is an almost linear reduction in stiffness of the 
member as the axial load is increased from zero to the elastic 
failure load (P = P E ) . The elastic failure load may in fact be 
interpreted as that axial load at which the stiffness becomes zero. 
It is important to note that the stiffness depends only on the axial 
load (equation (1.6)), and is independent of the magnitude of the 
terminal bending moment M. 

It should be noted that there is no mathematical reason for 
rejecting the above analysis for values of P greater than PE. 
The stiffness k then becomes negative (Fig. 1.5), and this provides 
a clue to the physical significance of assuming P > PE. Negative 
stiffness implies that an increase in end rotation is accompanied 
by an increase in the restraining moment, so that the strut must 
be connected at its ends to other members capable of supplying 
such restraint. It is only thus that any member will support an 
axial compressive load greater than its failure load as a pin-
ended strut. The concept of negative stiffness arises frequently 
in the treatment of the stability of frames. 

1.3 Member under Axial Load Only 

The behaviour of a member subjected to axial load only may 
conveniently be obtained by allowing M to approach zero in the 
solution obtained above. The curves in Fig. 1.4 then approach 
the limit represented by OHJ, indicating that no deformation 
occurs until P = PE or a = 7 7 / / , at which load deflexions of 
indefinite magnitude occur, with the form 

y = A smrrx/l (1.7) 

The load P = PE = TT2EI\12 (the "Euler load") now achieves 
the significance attributed to it by Euler, who first obtained the 
load in 1759 in the form PE = TT2SJ12 where S was defined as 
the flexural rigidity. The Euler load is that load at which a de-
flected form becomes statically admissible and may, with a 
more general connotation, be referred to as the first elastic 
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critical load of a strut with pinned ends. It may alternately be 
derived directly from equation (1.3) by putting M = 0. The 
condition y = 0 at x = 0 then gives B = 0, while y = 0 at x = I 
gives 

0 = A sin a/ 

This is satisfied by putting A = 0 (i.e. zero deflexions) or a/ = wr 
where n is an integer, whence, since a 2 = P / £ 7 = 7T2P/l2PE, it 
follows that 

There thus exists a series of "elastic critical loads" PC1 = PE, 
PC2 = 4PE, PC3 = 9PE, etc., with corresponding deflected forms 
(the "critical modes") y = Ax sin TTX/1, y = A2 sin Irrxjl, y = 
^43 sin 37rx//, etc. Since absolute axial loading is a limiting ideal 
condition, any real strut will deform according to a curve which lies 
below HJ in Fig. 1.4, and so only the first critical load PE has 
practical significance. The higher critical loads and critical 
modes are, however, of interest when analysing the behaviour 
of struts under various loading conditions, as explained later in 
the chapter. 

1.4 The Effect of Various End Conditions 

The elastic critical load may be obtained for columns with end 
conditions other than those of a pin-ended strut by solving the 
differential equation and obtaining the constants of integration 
by reference to the boundary conditions. A readier solution 
is, however, obtained by observing that the solution of the differen-
tial equation can always be represented as part of the continuous 
sine wave y = A sin OLX referred to suitable axes. The axial 
thrust Pc = <x2EI which makes the sinusoidal deformation of 
the member possible is then the elastic critical load for the given 
end conditions. The distance between points of contraflexure, 
/ ' , known as the effective length, is given by a/' = TT, whence 
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PC = 7r2EIj{l')2. By expressing /' as a proportion of the actual 
length / of the member, the critical load is derived as a function 
of the known properties of the member. Four cases for differing 
end conditions are represented in Fig. 1.6(a) to (d). 

FIG. 1.6 

In the first case, that of a pin-ended strut, the effective length 
is equal to the actual length, i.e. / ' = /, whence PC = TT2EI/12 = 

PE-

Figure 1.6(b) represents a member fixed in position and direc-
tion at B and completely free at A . The load at A acts parallel 
to the original longitudinal axis A'B of the member. Here we have 
/' = 21 and PC = TT2£//(2/)2 = PE/4. 

Figure 1.6(c) represents a member constrained in position and 
direction at both ends, except that the ends are allowed to approach 
each other along AB. Hence V = 1/2 and PC = TT2£7/(//2)2 = 
4P*. 
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In Fig. 1.6(d), a straight line has been drawn from the point of 
contraflexure at A to touch the sine curve at B. The column AB 
is then restrained in position and direction at B, while end A is 
unrestrained in direction (zero bending moment) but constrained 
to move along AB. In this case, the reference axis for the sine 
wave is not parallel to the original longitudinal axis AB of the 
member. The value of / is obtained from a simple trigonometric 
equation, the solution of which gives /' & 0-7/ a n d P c & 2-05PE. 

It is evident that the above solutions for the various end condi-
tions are not unique. Thus the end conditions of Fig. 1.6(d) are 
also satisfied by taking a greater length of the continuous sine 
curve, as shown in Fig. 1.6(e). This critical mode corresponds 
to a higher critical load, and as in the case of a pin-ended strut, 
there will exist an infinite series of critical modes and correspond-
ing critical loads. 

The solution of this equation involves the use of elliptic integrals 
and will not be given here . ( 1 ) * The curved shape taken up by the 
strut (assuming indefinite elastic behaviour) is known as the 
elastica, and successive forms for increasing values of P are shown 

* For references, see p. 155. 

(1.9) f l + ( d v / d x ) 2 } * y = 0 

governing the behaviour of an axially loaded pin-ended strut 
applies only when dy/dx is small. When this is not so, the correct 
expression for curvature (d 2 j /dx 2 ) /{ l + (dy/dx) 2 } 1 must be 
used in place of the approximation d2y/dx2. Hence equation 
(1.8) has to be modified to 

(1.8) 

The differential equation 

1.5 The Effect of Large Deformations 
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in Fig. 1.7. The relation between P and central lateral deflexion 
yc is given by OHK in Fig. 1.8, the curve HK being tangential 
at H to the solution HJ given by the approximate theory. A 
relation between P and yc which is accurate to within 1 percent 
in terms of P up to yjl = 0-25 is 

(1.10) 

C o< 

FIG. 1.7 
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FIG. 1.8 
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When yjl = 1/20, P is only 0-3 percent above PEi and when 
yjl = 1 / 1 0 , P still only exceeds PE by 1-2 percent. Hence, 
although the more accurate analysis shows that the elastic de-
flexions do not in fact increase indefinitely atP=PE, large deflexions 
can occur with a negligible increase in load. The properties of the 
elastica are thus of no great practical importance. Moreover, 
at large deflexions the elastic limit of the material will in practical 
structures be exceeded, and the present analysis becomes in any 
case irrelevant. 

1.6 Axial Deformations 

Axial deformations have two components, namely direct axial 
compression and longitudinal shortening due to flexure. 

Direct axial compression AD is proportional to the axial load, 
and is of magnitude AD = PljEA where A is the cross-sectional 
area and E is the elastic modulus. This requires no further 
treatment. 

The flexural shortening of a member is due to the difference 
between the developed length OCB (Fig. 1.3(b)) and the effective 
length OB. Ignoring shortening due to direct axial compression, 
the developed length OCB is equal to the original straight length 
/, while OB should be represented as less than /. In Fig. 1.3, 
this difference has been ignored since it does not affect signi-
ficantly the calculation of lateral deflexions. The difference 

B B i 
between OCB and OB is f ds — j* dx & | J (dy/dx)2 dx, 

A A 0 

hence when M = 0 and consequently;; = yc sin TTXJU the shorten-
ing due to flexure AF becomes AF = ( 7 r 2 / 4 ) j c

2 / / 2 . Substituting 
the expression for yc given in equation (1.10), the total axial 
compression after buckling, A = A^ + A F , is obtained in terms 
of the axial load P in the form 

(1.11) 
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I 

FIG. 1.9 

for small lateral deflexions (HJ in Fig. 1.4), the development of 
longitudinal displacement requires an increase in the axial load. 
This result has a bearing on the significance of elastic critical 
loads in triangulated structures (Chapter 3). 

1.7 The Bifurcation of Equilibrium States 

A strut loaded axially above the Euler load PE has more than 
one possible state of equilibrium. If it buckles, it follows the 
relationship HK (Figs. 1.8 and 1.9), and unless it has equal 
flexural rigidity about all axes, there will at any given axial load 
P> PE be two buckled states, one either side of the initial 

In Fig. 1.9, equation (1.11) gives the straight line HQ, which is 
tangential at H to the correct curve HK, obtained from elliptic 
integrals. There is thus an important difference between the 
axial load versus deformation relations for a strut as between 
lateral and longitudinal displacements. While at the Euler load 
PE the load-deflexion relation is parallel to the deflexion axis 
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longitudinal axis. Both these states of equilibrium will be stable, 
which means that a slight disturbing force applied to the strut and 
then removed will leave the strut in the same state as before the 
application of the force. If the potential energy of the applied 
load plus the strain energy in the strut together constitute the 
total potential energy of the system, then for a structure to be in 
stable equilibrium, the total potential energy must be at a sta-
tionary minimum with respect to any small arbitrary displace-
ment. 

Instead of the strut buckling when it reaches the Euler load, it 
would theoretically be possible for it to remain straight, following 
the load-deflexion relations HI in Figs. 1.8 and 1.9. Such a 
state would be one of unstable equilibrium, since a slight distur-
bance would cause the strut to buckle. When P> PE with the 
strut perfectly straight, the total potential energy of the system 
is at a stationary maximum. 

The point H at which divergent equilibrium states become 
possible is called a point of bifurcation. For a pin-ended strut, 
points of bifurcation occur in the unbuckled state at axial loads 
of P = PE, 4PE, 9PE, etc. It may be noted that, in any practical 
strut, sufficient disturbances in the form of incidental lateral 
loads, eccentricities of axial load or imperfections prevent the 
attainment of unstable states of equilibrium, and the load-
deflexion curve for perfectly elastic behaviour follows, for example, 
the dotted curve OMN in Fig. 1.8. It is of interest that such 
behaviour represents a stable equilibrium state at each stage of 
loading, despite the fact that in the region of the Euler load, a 
small increase of load may be accompanied by a large increase of 
deformation. 

1.8 Effect of Shear Deformation on Critical Loads 

In the preceding analysis, no account has been taken of the 
effect of shear deformation. When a pin-ended strut buckles 
laterally, Fig. 1.10(a), the applied loads PE will have components 
transverse to the bent longitudinal axis, thus introducing into 
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(a) (b) 

FIG. 1.10 

the critical load is reduced below the Euler load PE. It is found 
that, for practical purposes, the effect is unimportant, amounting 
to a reduction of a fraction of 1 percent . ( 2 > 

1.9 General Treatment of Lateral Loads 

It is now possible to deal more generally with axially loaded 
members subjected to transverse loads. The bending moments 
produced by such loads in the absence of axial loading may be 
referred to as primary moments. In the case already considered, 
in which a strut was subjected to terminal couples M (Fig. 1.3), 
the primary moments consisted of a uniform bending moment M 
throughout the length of the member. In the more general case, 
we express the primary bending moments, denoted by M0, as 
some function of the distance x from one end of the member, 

the member shear forces F as shown. These forces F will in 
turn produce additional deformation due to shear (Fig. 1.10(b)), 
and when these deformations are allowed for in the analysis, 
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viz. M0 = F(x). Thus, for a uniformly distributed lateral load w 
per unit length (Fig. 1.11(a)), the primary moments are given by 

(a) Primary deflections Amplified deflections 
Laterally and bending moments and bending moments 
loaded 
strut 

FIG. 1.11 

The critical modes of deformation for the strut when subjected 
to axial load only are y c i = A± sin irxjl, yC2 = A2 sin 2TTXJ19 etc., 
where Al9 A2, etc., are arbitrary constants, and are conveniently 
put equal to unity. The bending moments induced are respectively 
EIyCl" = - (TT2//2) sin rrx/l, EIyC2" = - (4T72//2)£7 sin 2TTX//, etc. 
It is possible to express the primary moments M0 as a half-range 
Fourier series in terms of the critical bending moments EIyc{\ 
EIyC2" etc., so that 

M 0 = EI{aiyci" + a2yC2" + . . . + anyCn" . . .} , (1.13) 

or, substituting for yCl", yC2\ etc., 

(1.14) 

(1.12) 
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1.19) 

(1.15) 

Since d2y/dx2 = M0/EI, equation (1.14) is readily integrated to 
give the deflexions induced by the primary moments. Since 
y = 0 when x = 0 and x = /, the constants of integration vanish 
and the primary deflexions y0 become 

(1.16) 

Taking the example represented in Fig. 1.11, the bending moments 
M f t may be expressed as 

(1.17) 

where only odd values of n are taken. The primary deflexions 
become 

(1.18) 

We now consider, for the general case of lateral loading, the 
effect on the equation of flexure of an axial load P . The total 
bending moment at any section is (M0 — Py), whence substituting 
for M0 from equation (1.14), 

The nth coefficient an is obtained by multiplying both sides of 
equation (1.14) by sinmrx// and integrating over the range 

i 
x = 0 to x = /. Since J sin nnrxjl. sin nirx\l. dx has value zero 

o 
when m 4= n and has value //2 when m = n, it follows that 
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y = A sin OLX + B cos ax 

, (1-20) 

where, as before, a 2 = PjEL At any value of P less than PE = 
TT2EIJ12, OLI < 7T, and so the end conditions y = 0 when x = 0 
and x = I require A = B = 0. Equation (1.20) may then be 
rewritten 

(1.21) 

The bending moment M at any section is given by Ely", whence 

(1.22) 

Comparisons between equations (1.21) and (1.16) and between 
equations (1.22) and (1.14) show that the axial load has the effect 
of amplifying the deflexions and bending moments induced in 
the absence of axial load. The factors 1/{1 — (P/n2PE)} by 
which the components in the Fourier analysis are multiplied by 

The solution of this equation is 
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the presence of axial load are called the amplification factors. 
The amplification factor for the nth component is actually 
1/{1 - (P/Pcn)} where PCn(= n2PE) is the nth critical load, 
corresponding to the nth mode in the buckling of the member 
under axial load only. As P ->PC1 (i.e. in this case, as P ->PE) 
the deflexions and bending moments become very large. Hence 
the lowest critical load is that at which, for any form of lateral 
("primary") loading, the deflexions tend to large values, and the 
behaviour depicted in Fig. 1.4 is of general application. 

It is to be noted that, as the first critical load is approached, the 
terms other than the first in the Fourier analysis becoming less 
and less important. Thus, for a uniform lateral load when 
P = 0, the actual deflexion at the mid-point (equation (1.18)) 
is (5/384)w/ 4/£7 = 0-013021 wl*/EI, while the first term alone 
gives (4/TT5)W/4/.E7 = 0-013071w/ 4/£7, an error of 0-39 percent. 
When P = 0 - 9 ^ , the actual central deflexion is 0-13065w/ 4/£7 
(equation (1.21)), while the first term alone gives 0-13071w/ 4/£7, 
an error of no more than 0-04 percent. Using the first term only 
in equations (1.17) and (1.22), the error in the central bending 
moment is 3-20 per cent when P = 0 and 0-34 percent when P = 

The results which have been obtained for a pin-ended strut 
may be applied in an analogous manner to columns with various 
end conditions. Instead of using a Fourier sine series, the primary 
bending moments and deflexions may be expressed as a series 
in terms of the critical modes yCl, yC2, . . ., yCn, . . ., etc. The 
primary moments are then given by equation (1.13), while the 
primary deflexions yQ become 

In the presence of an axial load P, these deflexions become 
amplified to 

0-9PE. 

Jo = tfijci + «2Jc2 + • • • + anyCi 
(1.23) 

. . . (1.24) 
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where PCn denotes the nth critical load of the columns for the 
given end conditions. Similarly, the bending moments become 

M = EI 

(1.25) 

Equations (1.13), (1.23), (1.24) and (1.25) are applicable not 
only when the flexural rigidity EI is uniform, but also when it 
varies with x9 the distance along the member. When the member 
is of variable section, the critical modes no longer form part of a 
continuous sine wave. Both for uniform and non-uniform 
members, the calculation of the coefficients al9 a2, . . ., an9. . . is 
facilitated by certain orthogonal relations which may be shown to 
exist between the critical modes . ( 2 ) These correspond to the ortho-

i 
gonal relations J sin mnx\l sin mrxjl dx = 0 for m =f= n in the 

o 
Fourier series. Provided the ends of the columns are either 
completely free to move laterally, or completely fixed against 
lateral movement, and either completely fixed or completely 

i 
free with respect to rotation, it may be shown that j* EIyCm"yCn"dx 

o 
= 0 when m + n. All the end conditions considered in Fig. 
1.6 fall into one of these categories. Hence, from equation 

This general treatment is also applicable to frames. 
In the whole of the above analysis, it has been assumed that 

deflexions are everywhere sufficiently small for d 2 j / d x 2 to be 
regarded as a close approximation to the curvature. Strictly 

(1.26) 
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1.10 The Effect of Initial Lack of Straightness 

Suppose a pin-ended strut has an initial lack of straightness 
defined by deflexions j 0 . In just the same way as primary defle-
xions due to lateral loads may be expressed as a Fourier series, 
so also may initial deflexions. Hence we may regard equation 
(1.16) as expressing the initial lack of straightness of the member. 
If the deflexions of the strut change to y as the result of applying 
an axial load P, the change of curvature is d2(y — y0)/dx2, and 
hence the equation of flexure (in the absence of lateral loading) 
becomes 

1.11 Experimental Determination of Critical Load 

The presence of initial imperfections prevents the observation 
of the buckling load as that load at which deflexions suddenly 
appear. In practice, small deflexions occur as soon as any load 
is applied. Were the strut to remain indefinitely elastic, the elastic 
buckling load could be identified as the load at which really 

(1.27) 

After substituting for y0 from equation (1.16), integrating and 
using the boundary conditions y = 0 when x = 0 and x = /, 
the deflexions y are found to be given by equation (1.21). Hence 
initial imperfections are magnified according to amplification 
factors in exactly the same way as are deflexions and bending 
moments due to primary loading. 

speaking, the load-deflexion curves in the presence of lateral 
load do not approach asymptotically to the line P = PC1 (the 
lowest critical load), but ultimately curl upwards, as shown for 
the case of a pin-ended strut by the dotted line LMN in Fig. 1.8. 
This upward trend only occurs, however, at gross deformations, 
and may for practical purposes be neglected. 
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large deflexions appeared, but inelastic behaviour usually sets 
in before this limit is approached at all closely. Southwell* 1 } has 
suggested a method whereby the elastic buckling load may be 
deduced from an observation of behaviour at loads below the 
buckling load. 

Observations are made of the increase in central deflexion A as 
the axial load P is increased from zero. This deflexion is additional 
to some initial deflexion A 0 as the axial load P is increased from 
zero. The additional deflexion A 0 is difficult to measure accurately 
and is therefore regarded as unknown. We now investigate analy-
tically the significance of the experimentally observed quantities. 

The total central deflexion may be expressed as the sum of the 
terms from equation (1.24) corresponding to the mid-points 
of the strut. All terms except the first will change negligibly as 
P is increased, since P is always less than the first critical mode 
PC1, and therefore very much less than the higher critical loads 
PC2, Pcs, etc. Hence we write the total central deflexion A + A 0 

in the form 

where A x is the first critical mode component of the central de-
flexion at no load, and A r is the remaining component of the 
central deflexion corresponding to all the higher modes. Since 
when P = 0, A = 0, 

The elimination of the unknown initial deflexion A 0 between 
equations (1.28) and (1.29) gives 

(1.28) 

A 0 = A x + A r . (1.29) 

(1.30) 
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Equation (1.30) may be rearranged in two alternative forms: 

(1.31) 

(1.32) 

In each case, the second term on the R.H.S. is constant. Equation 
(1.31) represents a linear relationship between A/P and A, 
while equation (1.32) represents a linear relationship between 
P/A and P. 
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The result of plotting experimentally observed values of A/P 
versus A is shown in Fig. 1.12(a). This is the original plot sug-
gested by Southwell, and it follows from equation (1.31) that the 
inverse slope of the straight line through the experimental points 
gives the critical load P C 1 , while the negative intercept with the 
deflexion axis gives A 1 ? the first critical mode component of the 
initial deflexion A 0 . Some departure from a straight line commonly 
occurs for the points obtained at low P values, but the higher 
points are usually found to lie close to a straight line. 

An alternative plot is of P /A against P , as shown in Fig. 
1.12(b). Hence, it follows from equation (1.32) that the critical 
load PC1 is given by the intercept with the P-axis, while the inverse 
slope gives A x . This plot is more useful than the standard 
Southwell, since it gives a better realisation of the nearness to 
buckling reached in the experiment. 

Similar methods may be used in the interpretation of observa-
tions on any complete structure subjected to loads in the elastic 
range. A close estimate of the first elastic critical load is obtained, 
provided the first critical mode of deformation has a dominant 
deflexion component corresponding to the deflexion used in the 
plot. 

1.12 Inelastic Behaviour 

Hitherto in this chapter it has been assumed that the material 
considered remains perfectly elastic. In real structures, the ma-
terial has only a limited elastic range. In the case of mild steel, 
the material properties are represented closely by the stress-
strain relations OAB (for direct tension) and OA!B' (for direct 
compression) in Fig. 1.13, the maximum strains considered 
being of the order of 1 percent. The straight lines OA, OA are 
of slope equal to the elastic modulus E. At the yield stress ±ay 

(virtually the same in tension and compression), a large amount 
of pure plastic deformation can occur without further increase 
of stress, although at strains of about ten times the strain 
at yield, strain-hardening occurs according to PC, B'C. The 
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A more general type of inelastic stress-strain relation is shown 
in Fig. 1.14, and is obtained for high tensile steel as well as light 
alloys, copper and many other materials. Behaviour is elastic 
up to the limit of proportionality at A or A', after which there is a 
strain-hardening curve AB or A'B'. The slope of the tangent 
CD at any point C is called the tangent modulus, and is denoted 
by ET. Hence ET = da/de, the ratio of increase of stress to 
increase of strain when the material is at the given stress. If the 
material is unloaded from point C, the stress-strain relation CF 
is of slope E, parallel to the elastic line OA, OA'. 

The discussion of inelastic stability differs according to whether 
an elastic-plastic or an elastic-strain-hardening material is 
involved. Sections 1.13 to 1.16 below refer to struts of elastic-
plastic material, while struts of strain-hardening material are 
discussed in Sections 1.17 to 1.19. 

FIG. 1 .13 

behaviour of mild steel structures beyond the elastic limit may, 
however, be assessed with sufficient accuracy by assuming that the 
material has an indefinitely long pure plastic range. Mild steel 
may thus be treated as "elastic-plastic". If, after straining to 
some point D or D' in the plastic range, the stress is reduced, 
the stress-strain relation followed is DF or D'F', with a slope 
equal to that of the elastic range OA, OA!. This is known as 
"unloading". 
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FIG. 1 .14 

1.13 Elastic-Plastic Struts with No Initial Imperfections 

If an initially straight, axially loaded strut is sufficiently 
slender, the lowest elastic critical load will be reached before the 
material yields. If A is the cross-sectional area of such a pin-
ended strut of length /, and ay is the yield stress, then the required 
condition is that ay > PEjA. If the radius of gyration about the 
axis of bending is r, then since PE = 7T2EI/l2 and I = Ar2, the 
limitation can be expressed as l/r > Tr\/(EJGY). In the case of 
mild steel with £ = 30 x 10 6lb/in 2 and ov = 36,000 lb/in 2 , this 
gives Ijr > 91. Such a member will buckle laterally at the Euler 
load, but at some stage in the deformations, the material on the 
concave face will yield, causing a drop in the stiffness of the strut 
and consequently a decrease in load. The complete load-
deflexion curve will take the form OHJK in Fig. 1.15(a). The 
stress distribution across the member at a section near the mid-
height of the strut is shown at various stages of deformation. 

When oy < PE\A, or Ijr < TT\J(E\OV), the material reaches the 
yield stress over the whole cross-section while the strut is still 
perfectly straight. The load at which this occurs is Aay, denoted 



S T A B I L I T Y A N D F A I L U R E O F I N D I V I D U A L M E M B E R S 27 

(b) 

FIG. 1.15 
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by PP, and referred to as the "squash" load, since it is the load 
at which a very short strut would squash in pure plastic com-
pression throughout its length. In other than very short struts, 
a small lateral disturbance at the squash load causes more plastic 
deformation on one side, which then becomes concave, and the 
consequent bending moment induced by the axial load results in 
an unloading of the material on the convex face. The load 
therefore immediately decreases, and the load-deflexion curve 
ZJVin Fig. 1.15(b) is obtained. 

The above behaviour is summarised by ABC in Fig. 1.16, 
which gives, as a function of the slenderness Ijr, the theoretical 
mean stress at failure for a perfectly straight pin-ended strut 
loaded axially. Practical struts, although they may nominally 
be perfectly straight and axially loaded, will in fact contain 
some imperfections, and the longitudinal load may be applied 
with some eccentricity. Hence experimental points for mild 
steel all lie below ABC, except at very low values of Ijr, when the 
incidence of strain-hardening may raise the mean stress at failure 
above ay. Before practical formulae for the loads of struts can be 
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discussed, it is therefore necessary to consider the effect of initial 
imperfections and eccentric loading. 

1.14 Effect of Initial Imperfections 

It was shown in the previous section that perfectly straight 
elastic-plastic struts have load-deflexion relations given by 
OHJK'm Fig. 1.15(a) or OLN in Fig. 1.15(b). Struts with initial 
imperfections follow the behaviour indicated by the dotted curves 

r 

FIG. 1 .17 

OCFD, and a complete theoretical treatment is laborious. 
The load of greatest interest is the peak or failure load PF. 
The behaviour of eccentrically loaded struts of certain cross-
sectional shapes (solid rectangular and circular tubes) has been 
investigated,*3*4*5* and the state of a typical strut when at the 
maximum load is represented in Fig. 1.17. 
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Since an accurate elastic-plastic treatment of strut behaviour is 
too complex for practical use, it is useful to study upper and lower 
limits between which the correct solution must lie. One upper 
limit is obtained by assuming that the material has indefinite 
elastic behaviour, so that, ignoring the effect of gross deformations, 
the failure load becomes the Euler load PE = rr^EIjl2. This 
gives the line HJ in Fig. 1.18 as an upper bound to the load-
deflexion curve. The effect of any imperfections is to produce 

H Euler load j 

/ A 

. Elastic response line 

/ 

0 Central deflexion 

FIG. 1.18 

some curve OAB lying below HJ. Another upper limit to the 
load-deflexion curve is obtained by ignoring entirely the elastic 
deformations, allowing only for the pure plastic-deformation 
that can take place at the yield stress in tension or compression. 
The material is then assumed to be rigid-plastic, with the stress-
strain relations OAB, OA'B' in Fig. 1.19(a). A collapsing strut 
JK (Fig. 1.19(b)) will develop a plastic hinge at some point C 
within its length, with plastic deformation occurring in compres-
sion on one side of the neutral axis and plastic deformation in 
tension on the other side. If a rectangular section strut of width 
b and depth d (Fig. 1.19(d)) has its neutral axis NA at a distance 
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(c) (d) 

FIG. 1.19 

n from the central axis, the plastic moment ot resistance about 
the central axis is MP' where 

(1.33) i.e. 

The resultant axial thrust is P where 

i.e. P = 2bnoy. (1.34) 

The equilibrium of the strut, considering moments taken about 
the hinge, requires that 

Pv, = M P ' . 
Hence it follows that 

(1.35) 
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This equation gives the curve LM in Fig. 1.18, and is known as 
the rigid-plastic line. At zero deflexion, P = PP = bdfy, the 
squash load which, as already discussed, may be above or below 
the Euler load PE. The curve LM lies above the load-deflexion 
curve for zero imperfections when allowance is made for elastic 
as well as plastic behaviour (LN in Fig. 1.15(b)), and above the 
load-deflexion curves for all actual struts (e.g. OFD in Fig. 1.18). 

The lines HJ and LM in Fig. 1.18 are thus upper limits for the 
true load-deflexion relation. If the initial imperfections in the 
longitudinal shape of the strut are known, the resulting elastic 
response line OAB is also an upper limit. If OAB intersects 
LM at G, then OGM is the closest upper limit to the true elastic-
plastic curve obtainable by simple analysis. Evidently, the inter-
section point G (axial load PG) is obtained as an upper limit to 
the true collapse load PF. 

The only readily calculable lower limit available is the load 
PY at which yield is first reached in the most highly stressed fibres 
of the strut. This occurs at the point C (Fig. 1.18) at which the 
true elastic-plastic curve OFD diverges from the elastic response 
line OAB. Formulae for PT are readily obtained if a state of 
initial imperfection is assumed. Thus, if a uniform strut of 
length / has a shape in the unloaded state given by y0 = 
ax sin TTX/1, then under an axial load PY the deflexions increase to 
y = ax sin7rx / / /(l — PYjPE), and the maximum bending mo-
ment, which occurs at mid-height (x = //2) is PEPY

ail(PE — ^ r ) « 
If the distance to the extreme fibres on the concave side is c, 
the maximum fibre stress is equal to the yield stress ay when 

(1.36) 

If r is the radius of gyration about the axis of bending, then I = 
Ar2. Put PY = ApT and PE = ApE, so that pY and pE are 
the mean axial stresses at the load at first yield PY and at the Euler 
load PE respectively. Moreover, let it be assumed that the initial 
imperfection at is defined in terms of a non-dimensional coefficient 
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rj such that rj = axc\r2. Then equation (1.36) may be solved to 
give 

(1.37) 

In a similar manner, the load at first yield can be calculated for 
a strut loaded eccentrically, using equation (1.5). If a load P is 
applied with eccentricity a / , then the terminal moment M is 
given by M = Pa{. It follows from equation (1.5) that the cen-
tral deflexion is a{ [sec (a//2) — 1] where a 2 = PjEL It is then 
readily shown that the mean axial stress at first yield is given by 
the solution of the equation 

(1.38) 

where rj' = a{c\r2. 

1.15 Practical Strut Formulae 

Formulae for the failure loads of struts may be obtained either 
by using an empirically elevated lower limit or by applying an 
empirical reduction to an upper limit. 

In the former category are the Perry-Rober tson ( 6 ) and Secant ( 7 ) 

formulae. If a suitable effective imperfection or eccentricity, 
smaller than the actual imperfection or eccentricity, is assumed, 
the theoretical first yield load PY of the resulting imaginary 
strut may be made to coincide with the failure load of the actual 
strut. This is conveniently achieved by selecting a value for the 
dimensionless coefficient rj in equation (1.37) or r\ in equation 
(1.38) such that the best correlation exists between experimental 
failure loads and the load PY = ApY. Equation (1.37) is then 
the Perry-Robertson formula, and equation (1.38) the Secant 
formula. Robertson found that a lower limit on the failure 
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loads of practical struts could be obtained by taking rj = 0-003//r 
in equation (1.37), whence ajl = 0-003 rjc & 0-0015 for most 
cross-sections. This is the basis for the design of struts in British 
Standard 449 (1958) for slenderness ratios exceeding 80. The 
Secant formula may be used as a basis for the design of mild 
steel struts, taking rf = 0-25. ( 7 ) Both the Perry-Robertson and 
the Secant formulae give a curve of the general shape of ADF 
in Fig. 1.16, rising to ay as / / r - > 0 and approaching the Euler 

curve BC as Ijr becomes large. Despite their apparent basis on an 
accurately derived formula, it is important to realise that both 
the Perry-Robertson and the Secant formulae are empirical 
approximations to the failure load. The "effective" initial 
imperfection or eccentricity does not correspond to any observable 
value, and is an empirically chosen quantity. 

Turning now to modifications of the upper limits, the failure 
load PF (Fig. 1.18) is lower than either the Euler load PE or the 
squash load PP. Hence PF\PE < 1 and PF/PP < 1. This may be 
expressed by stating that the solution for any practical strut must 
lie within the area OABC in Fig. 1.20. The tangent slope of any 
straight line OD through the origin is PE/PP = {Tr2EIjP)jAay = 



S T A B I L I T Y A N D F A I L U R E O F I N D I V I D U A L M E M B E R S 35 

(1.39) 

Putting PE = TT2EA ( r / / ) 2 and PP = Aay, this gives 

This is a particular case of an empirical formula suggested by 
Rankine in 1866. ( 8 ) Its significance has been studied more generally 
by Merchant . ( 9 ) In Rankine's formula, an arbitrary constant 
appears in place of oj7T2E, thus giving a straight line in Fig. 1.20 
that passes through A but not through C. It is found that equa-
tion (1.40) gives a reasonable approximation to the failure loads 
of pin-ended struts throughout the full range of slenderness 
values, and is represented in Fig. 1.16 by the curve ADF. In its 
more general form, Rankine's formula gives a curve which is 
tangential to the squash line AB at A , but does not become 
asymptotic to the Euler curve BC for struts of high slenderness. 
On theoretical grounds, therefore, the particular form of Rankine's 
formula represented by equation (1.40) (and therefore by equation 
(1.39)) is to be preferred. 

(1.40) 

7 r 2 ( r / / ) 2 E\ay, so that struts of any given material and slenderness 
will be represented by points on a fixed line OD. When Ijr is 
very large, so that PE <^ PP (i.e. OD lies close to OC), the strut 
fails by elastic instability, and PF/PE & 1- When Ijr is very 
small so that PE > PP (i.e. OD lies close to OA), the strut fails 
by squashing at the yield stress, whence PFjPP & 1. Hence 
A and C are the extreme points of a failure locus AFC for practical 
struts. While any number of curves could be drawn, the most 
useful locus turns out to be the straight line AC, which gives 
the following relationship between the failure load PF, the Euler 
load PE and the squash load PP. 
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1.16 The Failure of Struts with Lateral Loads 

As in the case of struts with initial imperfections, the calcula-
tion of failure loads for laterally loaded struts involves considera-
tion of elastic-plastic behaviour, and is too complex for practical 
use. If an initially straight strut of length / carries an axial load 
P and a central lateral load kP (Fig. 1.21(a)), the elastic load-

FIG. 1.21 

deflexion curve is of the form OAB in Fig. 1.18, and rises asympto-
tically to the Euler load PE, which is thus an upper limit. The 
rigid-plastic load P P , also an upper limit, is given by 

where MP is the full plastic moment of resistance under an axial 
load Pp . The rigid-plastic line LM in Fig. 1.18 is given by 

where yc is the central deflexion (Fig. 1.21(b)). Finally, the load 
at first yield PT is readily calculated, and gives a lower bound. 
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Various semi-empirical methods of obtaining the failure load 
have been investigated, but the most consistently successful 
appears to be that based on equation (1.39), as investigated by 
Merchant . ( 9 ) In applying this Rankine type formula, the Euler 
load PE is that upper bound on the failure load which is obtained 
by assuming indefinite elastic behaviour. The other upper bound 
PP (see above) has been obtained by ignoring elastic behaviour, 
but taking account of plasticity. These two upper limits, when 
used in equation (1.39), give an empirical estimate of the failure 
load PF which depends both on elastic and on plastic behaviour. 
It has been shown theoretically ( H o r n e ( 1 0 ) ) that the "Rankine 
load" PF as obtained from equation (1.39) is likely to be a rea-
sonable approximation to the failure load in all cases where the 
deflected shape due to lateral loading only is closely similar in 
form to the buckled form of the strut for axial loading only. 
In cases where this is not so (as for example for the loading in 
Fig. 1.21(c)), the actual failure load is likely to be above the 
"Rankine load". 

1.17 The Stability of Axially Loaded Members with Strain-
hardening Stress Relations—Double Modulus Load 

We discuss now a centrally loaded member composed of strain-
hardening material (Fig. 1.14), sufficiently short for the elastic 
limit of stress — ay to be reached over the entire cross-section 
before any buckling occurs. The question may be asked "Is it 
possible, when the stress in the member reaches some uniform 
value — aD, for the strut to buckle laterally with zero increase 
of load for small deformations?" In other words, we seek an 
axial load (to be denoted by PD) at which behaviour analogous 
to the behaviour of an Euler strut can take place. 

Consider an axially loaded member of rectangular cross-
section b x d (Fig. 1.22(a)) which has remained straight until 
it reaches the load PD = bdaD. The uniform stress — oD (ABCD 
in Fig. 1.22(c)) causes a uniform strain — eD (ABCD in Fig. 
1.22(b)), corresponding to point C" on the stress-strain curve in 
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Fig. 1.14. Suppose the strut buckles so that the face FG becomes 
concave, the radius of curvature at some particular section 
being R. With the usual assumption that plane sections remain 
plane during buckling, the total strain becomes AB'C'D in Fig. 
1.22(b), zero change of strain occurring at a depth d1 from the 
concave face and d2 from the convex face. The extreme fibre 
strains are e1 = djR and e2 = d2/R as shown. On the concave 

Face becoming concave 

N N 

F "B^'h 

H Face becoming convex J 

(a) 

Section 

FIG. 1.22 

face, the increase of stress is governed by the tangent modulus 
ET (slope of CD' in Fig. 1.14), and so the change of extreme 
fibre stress becomes ETEX (Fig. 1.22(c)). On the convex side, the 
material unloads and follows an elastic relationship between 
change of stress and change of strain (C'F' in Fig. 1.14). Hence 
the change of extreme fibre stress on the convex face of the strut 
becomes Es2 (Fig. 1.22(c)). The changes of stress throughout 
the cross-section are proportional to fibre distances from the 
axis NN (Fig. 1.22(a)) along which there is zero change of strain, 
and hence the changes of stress are as shown by the shaded 
triangles in Fig. 1.22(c). This change of stress corresponds to 
zero change of axial load, but gives a moment of resistance de-
noted by M. F rom the condition of zero change of axial load, 

(1.41) 

d 

| d 2 
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Since the change of stress represents a pure couple, moments 
may be taken about the axis NN, whence 

(1.42) 

(1.43) d1 + d2 = d. 

Moreover, 

Substituting e± = dJR and e2 = d2/R, it follows from (1.41) that 
di/d2 = V ( W Hence from (1.43), dx = {<s/E\{y/E + \JET)}d 
and d2 = {\/ET/(\/E + \/^T)} d> a n ^ equation (1.42) may be re-
duced to 

(1.44) 

The relationship between moment of resistance M and curva-
ture IIR may be compared with that for the member in the elastic 
range, namely 

Hence the flexural rigidity has been modified due to inelastic 
behaviour by the reduction of the modulus from the elastic 
value E to a "reduced modulus" or "double modulus" ED given 
by 

(1.45) 

The solution for the buckling of the strut under the axial load 
PD is obtained in exactly the same way as for an elastic strut 
at the Euler load, with the substitution of ED for E in the equation 
of flexure (1.8). Hence it follows that 

(1.46) 
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where / is the length of the strut and / = (l/12)Z?d3. Since the 
value of ED depends on the tangent modulus ET, and therefore 
on the mean stress aD = PD/bd, equation (1.46) can only be 
solved for a given member by trial and error. The load PD 

is the reduced modulus or double modulus load, and marks the 
point of bifurcation of equilibrium at A in the curve of load P 

Lateral deflexion y c 

FIG. 1.23 

versus lateral deflexion shown by AB in Fig. 1.23. The changes 
of stress considered above are assumed to be small, and for larger 
changes of stress, the effective modulus decreases below ED, 
causing a drop in the load-deflexion curve AB. 

It is important to note that the expression for the reduced 
modulus ED depends on the shape of cross-section of the member. 
Thus, if an I-section is buckling in the plane of the web, and the 
area of the web can be assumed small compared with that of the 
flanges, it is readily shown that 
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Elastic limit 

Stress 

FIG. 1 .24 

Slenderness 7 

FIG. 1.25 

are shown by curve DBC in Fig. 1.25. The part BC of the curve 
refers to slender members buckling in the elastic range, and is 
therefore part of the Euler curve. 

The reduced modulus or double modulus load was first 
introduced by Engesser , ( 1 1 ) and was for a long time considered to 

X) 
o 
o 

"o 
'x 
< 

The way in which ET and ED vary with stress for a typical light 
alloy is shown in Fig. 1.24. The double modulus buckling loads 
for rectangular section members of varying slenderness ratio 
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be the lowest load at which an initially straight axially loaded 
strut would deviate from a straight line. In 1947, Shanley ( 1 2 ) 

showed the greater significance of the tangent modulus load, 
which had in fact been discussed and then discarded by Engesser. 

1.18 The Tangent Modulus Load 

The double modulus load, considered in the previous section, 
is based on the concept of buckling while the axial load remains 
constant. Shanley realised that the condition of zero rate of 

r 
d X-

1. 

Foce becoming concove 

Face becoming convex 

( a ) 

Section 

"ETC 

E T € 2 ( c ) 

State of 
stress 

FIG. 1 .26 

increase of axial load during buckling is an unnecessary restric-
tion, and that if this restriction is removed, bifurcation of equili-
brium can occur at a load lower than PD. Buckling is governed 
by the incremental flexural rigidity of the member, namely the 
ratio of increase of moment of resistance to increase of curvature. 
This has its least value when all the fibres in a cross-section under-
go an increase of stress, following, for a small increase of strain, 
the tangent modulus relation CD' in Fig. 1.14. Considering 
again a strut of rectangular cross-section (Fig. 1.26(a)), the in-
creases in strain and stress become as shown in Figs. 1.26(b) and 
(c) respectively. The changes of strain and stress on the convex 
face HJ may be zero or compressive, but not tensile. The relation 
between curvature and moment of resistance, measured about 
the central axis XX, is obtained by substituting ET in place of 

b 



The load PT is the tangent modulus load, and is that stage at 
which buckling just becomes possible as the load is further in-
creased, as shown by the curve CFD in Fig. 1.23. It may be noted 
that, unlike equation (1.45), equation (1.47) applies to all shapes 
of cross-section. To follow the curve CD in detail involves a 
complicated step-by-step calculation, and for this reason the 
maximum or true failure load PF is difficult to obtain theoreti-
cally. The load PF is however known to lie between the tangent 
modulus load PT and the double modulus load PD. Typical 
tangent modulus loads are given by the curve TB in Fig. 1.25. 

1.19 Non-axial Loading of Strain-hardening Struts 

The behaviour of strain-hardening struts under non-axial 
loading is even more difficult to calculate than that of elastic-
plastic struts. Qualitatively, it is easily seen that the load-deflexion 
curve OF'D' (Fig. 1.23) will lie below the curve CFD for an axially 
loaded member, but the peak load PF has no specific relation 
to any of the loads PT, PF or PD except that PF and PD furnish 
upper bounds. A common assumption is to identify PF for 
nominally axially loaded members (i.e. members with some initial 
imperfection and unintentional load eccentricity) with the tangent 
modulus load PT for a similar ideal member. Experimentally, 
there is considerable evidence that the tangent modulus load 
provides a close estimate of the failure loads of nominally axially 
loaded members for a wide range of strain-hardening materials, 
and for this reason the tangent modulus load has an extensive 
use in design. It is, however, important to realise that the identi-
fication of the tangent modulus load with the failure load is an 
empirical rule to be justified experimentally. 

An alternative basis for practical strut curves of strain-hardening 
material is to use equation (1.37) or (1.38), the yield stress ay 

(1.47) 

E in the usual elastic formula, whence the condition for buckling 
becomes 
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being replaced by a proof stress, that is, the stress for which the 
permanent strain e0 (Fig. 1.14) has a specified value (e.g. 0-1 
percent proof stress, corresponding to e0 = 1/1000). As in the 
case of elastic-plastic members, the imperfection constant rj 
or rj' is settled empirically by reference to test results. 

1.20 Load Factor, Stress Factor and Factor of Safety 

A typical relation between applied load and maximum induced 
stress in a member subjected to longitudinal loads is shown by 
OAB in Fig. 1.27. As the combined loads (transverse and longi-

/ 

0 0"j 0~2 <T\ °2 
Maximum stress 

FIG. 1.27 

tudinal) increase, the stresses induced by bending action increase 
more than proportionately on account of the increasing deforma-
tions. This behaviour is in contrast to the linear relation OCD 
between applied load and maximum induced stress obtained for 
a member subjected to transverse loads only. 

Consider two load levels P± and P 2 . The load P± may correspond 
to the desired "working conditions" of the member, while load 
P2 is either an accidental overload, or a load at which the behaviour 
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of the structure becomes dangerous or otherwise objectionable. 
The ratio P2/P1 is known as a load factor. 

Instead of comparing the two states of the structure by reference 
to the applied loads, it would also be possible to compare the 
maximum induced stresses ax and a2 or o± and a2. The ratio 
O2\GX or cr27°i' * s then a stress factor. It is important to notice 
that, while for the member without axial load, O2\G{ = PJP^ 
i.e. stress factor = load factor, this is not true for the axially 
loaded member, for which o2lo1 > P2IPV It is true in general 
that, when comparing two given states in a member which carries 
a compressive axial load, the load factor will be smaller than the 
stress factor, and this is the more noticeable the closer the load 
P2 is to the Euler load PE. 

In order to establish a margin of safety in design, use may 
be made of either a load factor or a stress factor. While a load 
factor is usually a more satisfactory basis, it has been the more 
common to consider a stress ratio as providing the "factor of 
safety". The maximum working stress ox is then defined as some 
proportion of a stress a 2 , which may be a yield stress, a limit of 
proportionality or a proof stress. Since, in structures subject 
to instability, the margin of safety as measured by a load factor 
may be markedly and dangerously smaller than the "factor of 
safety" measured by a stress ratio, it is important that load 
factors, not stress factors, should be used in design. 

1.1 An initially straight pin-ended strut of length / and flexural 
rigidity EI carries a compressive load P which acts at one end 
(x = 0) through the centroid, and at the other end at an eccen-
tricity e. Show that the effect of the eccentricity on the undeformed 
strut is to introduce a bending moment M which may be repre-
sented by the Fourier series 

Examples 
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Hence show that, under the axial load P, the additional deflexions 
of the strut may be represented by 

where PE = TT2£///2. 
1.2 The centre line of any initially straight compression 

member, of flexural rigidity EI and carrying an axial load P , 
may be represented by part of the sine curve y = A sin kx where 
k2 = P/EI (see Fig. 1.6). Use this fact to show that a strut AB 
of length /, with eccentricity eA at end A and eB at end B where 
1*41 > \eB[ w i U have the maximum bending moment at end A 
provided P is less than (EIIl2){cos~1(eB/eA)}

2. 
1.3 A pin-ended strut has an area of cross-section of 10-3 in 2 , 

a radius of gyration about its minor axis of 2-03 in., and is of 
length 12 ft. The extreme fibre distance for bending about the 
minor axis is 4-00 in. The strut is perfectly straight, but the axial 
load is applied at each end with an eccentricity of 0-5 in. on the 
same side of the centroidal axis. The strut has been designed to a 
load factor of 2-00 with respect to the attainment of a yield 
stress of 22-5 ton/ in 2 in the most highly stressed fibres. Determine 
the maximum stress at working load. Take E = 13,000 ton/ in 2 . 

1.4 An elastic-plastic pin-ended strut of length /, with a rect-
angular cross-section b x d where b> d, has a centre line 
with an initial out-of-straightness given by y = (rjd/6) sin TTX/1 
(rj is the non-dimensional imperfection coefficient of equation 
(1.37)). Show that the axial load P corresponding to point G 
in Fig. 1.18 is given by the solution of the equation 

where ay is the yield stress and n = P\bda% 
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1.5 A pin-ended beam-column of rectangular cross-section 
carries an axial load P and a uniformly distributed transverse 
load of total value W where W = /uP. The material is elastic-
plastic with elastic modulus E and yield stress ay. If p denotes 
the mean axial stress and S the slenderness ratio about the axis 
of bending (i.e. length divided by relevant radius of gyration), 
use the magnification factor (see Section 1.9) to show that yC9 

the lateral deflexion at mid-span, is given approximately by 

Obtain also an equation for the plastic mechanism line (LM in 
Fig. 1.18), and hence show that the estimate of the failure load 
represented by point G is given very closely by the solution of 
the equation 

1.6 A pin-ended strut of rectangular cross-section has a slender-
ness about its minor axis of 50. The stress-strain relationship 
for the material is similar in tension and compression. If a is 
the stress in lb/in 2 , then |e | = 10~ 7 \a\ for |or| < 2 x 10 4 and 
|e| = 1 0 - 7 \ a \ + 0-5 X 10~ 1 4 x - 2 X 10 4 ) 3 for \a\ > 2 x 
10 4 . Using double modulus and tangent modulus loads, obtain 
upper and lower bounds for the mean axial stress at failure. 
Obtain also the Perry-Robertson failure stress (equation (l.37)), 
substituting the 0-1 percent proof stress in place of ay and taking 
the imperfection constant 77 = 0-15. 

(Answers to questions 1.3 and 1.6 may be found on page 154). 



C H A P T E R 2 

Stability Functions 

2.1 Introduction 

The general features of structural behaviour in relation to 
elastic and plastic stability are described in Chapter 1. The 
development of methods of analysis for more extensive structures 
requires some convenient means of summarising the properties 
of individual members when subjected to bending moments in 
the presence of axial loads. While this is difficult to achieve 
for members loaded beyond the elastic limit, it is relatively easy 
in the elastic range, and the present chapter describes certain 
stability functions which are then employed in Chapters 3 and 4 
as the basis for the analysis of stability in structures. 

The analysis of elastic structures in which axial loads have negli-
gible effect is facilitated by the application of the principle of 
superposition. Thus, suppose the member AB in Fig. 2.1(a) has a 
uniform flexural rigidity EI for bending in the plane of the dia-
gram, and that the axial load P = 0. If, as shown, end B is kept 
fixed in position and direction while end A is rotated about a 
fixed point, the terminal moments MAB and MBA and the rotation 
dA are linearly related, viz. 

The ratio MABjdA = 4(EI/l) is the stiffness of the member AB 
for rotation at A, and is proportional to ///. This rotational 
stiffness is used in the analysis of structures in the method of 
moment distribution. The ratio MBA\MAB = \ is also used in 
moment distribution as the carry-over fac tor . ( 1 3 ) The rotation of 

48 
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Moment distribution consists of the step-by-step deformation of 
a structure by the superposition of operations such as those shown 
in Figs. 2.1(a) and (b), the operations being systematically 

FIG. 2.1 

directed towards a satisfaction of the equilibrium requirements. 
Superposition is justified by the linearity of the relationships 
between applied forces and deformation, i.e. by the constancy of 
the stiffnesses. 

end B while A is kept fixed in position and direction (Fig. 1(b)) 
similarly gives 

(e) (f) 
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Another type of deformation used in moment distribution is 
the translation of one end of the member relative to the other 
through some distance A, see Fig. 2.1(c). The member retains 
its original direction at the ends A and B, thus inducing terminal 
moments MAB and MBA where 

the quantity 12(£7// 3) thus being the stiffness of the member 
with respect to translation. 

The effect of transverse loads is introduced by considering the 
fixed-end moments MAB(F) and MBAiF) induced when both 
ends are kept fixed in position and direction, Fig. 2.1(d). The 
state of a laterally loaded member in which rotations have 
occurred at both ends together with a translation (Fig. 2.1(e)) 
is derived by superposition from the four separate operations in 
Figs, (a) to (d), giving the complete slope-deflexion equation 
for a member with no axial load in the form 

where k = EI/1. 

2.2 The Effect of Axial Load on Member Stiffness 

The introduction of an axial load P modifies the stiffness and 
fixed-end moments to an extent which depends on the value of 
the axial load. The principle of superposition can still be applied 
to a sequence of operations provided none of these operations 
alters the axial load in the member. 

The translating force F is given by 

MAB = MAB{F) + k 40A + 2dB (2.1) 

50 
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It is found convenient to express the axial load P as a propor-
tion of PE, the pin-ended Euler load for buckling in the plane 
of the applied loads and bending moments. Let P\PE = p and 
EIjl = k. Then since PE = T T 2 E I \ 1 2

9 P may be expressed in the 
form P = n2p(kjl). For joint rotation at end A, Fig. 2.1(a), 

MAB = skOA, MBA = sckdA, 

MBAIMAB = c, 

where s and c are functions of p only. Comparison with the solu-
tion for P = 0 shows that when p = 0, s = 4 and c = 0-5. 
For the translational operation in Fig. 2.1(c), it is then found that 

A 
MAB = MBA = - s(l + c ) £ . -> 

The fixed-end moments MAB{F) and MBA(F) in Fig. 2.1(d) 
depend both on the distribution and intensity of the transverse 
loads and on the value of />, and may be denoted by M'ABiF) 

and M'BA(F). Superimposing the solutions for the elementary 
operations in Figs. 2.1(a) to (d), the general slope-deflexion 
equations for a laterally loaded member with axial load (Fig. 
2.1(e)) become 

MAB = M'ABiF) + k [sdA + sc6B - s(l + c). 

MBA = M'BMF) + k [scdA + s6B - ,y(l + c). 

(2.2) 

(2.3) 

Stability functions of various types have been suggested by a 
number of authors, the first being due to Ber ry . ( 1 4 ) Functions 
corresponding to s and c were first calculated by J a m e s ( 1 5 ) and by 
Lundquist and K r o l l . ( 1 6 ) Livesley and Chandle r ( 1 7 ) retabulated 
s and c in terms of p = P/PE, and their form of these functions 
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is used in the present treatment. The derivation of s and c 

functions will now be given. 

2.3 The Functions s and c 

The uniform member AB in Fig. 2.2 is, when unloaded, 
perfectly straight and of length /, with its longitudinal axis coinci-
dent with OX. The end B is fixed in position and direction, and 
in the presence of an axial load P, a terminal moment MAB 

applied at A causes a rotation 6A at A, and induces a restraining 

L — 

Y 

FIG. 2.2 

If j denotes the deflexion perpendicular to OX of a point on 
the longitudinal axis distance x from end A, the equation of 
flexure becomes 

(2.5) 

(2.4) 

Substituting P = ir2p (k/l) and rearranging, 

moment MBA at B. The uniform shear force F is obtained in 

terms of MAB and MBA by taking moments about one end, 

giving 
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The general solution of equation (2.5) is 

(2.6) 

The constants of integration A and B may be derived from the 
two boundary conditions y = 0 when x = 0 and y = 0 when 
x = /, giving 

MAB cot 2a + MBA cosec 2a 

where a = (7r/2)\//>. Substituting these values in equation (2.6) 
and differentiating with respect to x, it is found on rearrange-
ment that 

(2.7) 

The boundary condition dy/dx = 0 when x = / leads to the evalu-
ation of the carry-over factor c, namely 

Since MAB = skdA and MBA = cskOA, the value of s may now 
be obtained from equation (2.7), giving 
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The variation of s and c with p is shown graphically in Fig. 
2.3, and is tabulated in Tables A l and A2 (pages 158 to 169). 
It is seen that as p increases from zero, s decreases from 4-0 
to 0 at p ^ 2-046, thereafter becoming negative. The axial 

P 
FIG. 2 .3 

load corresponding to s = 0 (given by the condition 2a = tan 2a) 
represents the critical load of a member AB direction fixed at 
B and pinned at A (Fig. 2.2), and it is evident that a member so 
loaded would have zero stiffness for rotation at A. At this same 
critical value of p, the carry-over factor c becomes infinitely 
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2.4 The Function s" 

The stiffness of a member for rotation at one end is reduced 
when the remote end is free from rotational restraint. The 
deformation is represented in Fig. 2.1(f), and if MAB = s"kdA, 
the modified stiffness coefficient s" may be obtained by a suitable 
superposition of the operations in Figs. 2.1(a) and (b). This 
may be represented in tabular form as follows. 

TABLE 2.1 

MAB MBA 

Rotate dA skdA sckBA 

Rotate 6B sckQB sk6B 

Rotate 6A and 6B sk(QA + cOB) sk(c6A + 6B) 

3 

large, that is MAB = 0 while MBA is finite. At values of p > 
2-046, the moment at A becomes a restraining moment, and this 
explains why the stiffness becomes negative. 

It may be noted that the shear force F in Fig. 2.2 is given by 

In Tables A4 and A5 (pages 172 to 175) values of s and c are 
given for negative values of />, i.e. for axial tension. Increasing 
axial tension causes a continuous increase in stiffness 5- and 
a continuous decrease in carry-over factor c. The trigonometric 
functions are replaced by the corresponding hyperbolic functions. 
Thus if y = (TT/2)V(- P ) , 
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Since it is required to make MBA = 0, the final column shows 
that 0B=—c6A. Hence from the second column, MAB = 
s(l — c2)kOA and thus s" = s(\ — c2). The modified stiffness 
function s" is shown graphically in Fig. 2.3, and is tabulated 
on pages 157-75. 

As would be expected, s" = 0 when p = 1, i.e. at the critical 
load for a pin-ended strut. 

2.5 Sway Functions s(l + c) and m 

The functions s, c and s" are all associated with a joint rotation 
as the elementary operation. Another operation is that of sway, 
Fig. 2.4(a). The ends A and B are restrained against rotation, 
but one end is translated through a distance A (where A// is 
small compared with unity) relative to the other. The angle 
A// = <f) is the angle of translation. The sway operation may 
alternatively be regarded as the rotation of the ends A and B 
through angles of — <f> (Fig. 2.4b), followed by a bodily rotation 
of +</>, during which the terminal moments MAB and MBA 

remain unchanged. (Strictly speaking, the axial load P' in Fig. 
2.4(b) differs from the axial load P in Fig. 2.4(a), but provided the 
angle of translation <j> is small, the difference between P and P' 
may be neglected.) The table of operations for the calculation 
of the terminal moments is as follows. 

TABLE 2.2 

MAB MBA 

Rotate 6A = — <f> —sk(f> —sck<l> 
Rotate 6B = — </> — SCk(/) —sk<t> 

s(l + c)k(/> - 5 ( 1 + c)k<t> 

Hence MAB = MBA = —s(l + c)k(f). 
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P 
FIG. 2 .5 
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2.6 No Shear Functions n and o 

The joint translation depicted in Fig. 2.4(a) involves the intro-
duction of a sway force F. It is found convenient in some analyti-
cal procedures to introduce a unit operation which avoids any 
change in shear force, and this is achieved by compounding a 
sway with the rotation of one end only of the member AB, as 
shown in Fig. 2.6. The terminal moments induced when end A 
rotates through 6A are expressed in the form MAB = nkdA 

and MBA = —okdA, and the functions n and o so defined are 
dependent only on p and are called no shear functions. The 
following table of operations enables n and o to be expressed 
in terms of s, c and m. 

In a translation such as that in Fig. 2.4(a), but with P = 0, 
the shear force F is given by Fl = —(MAB + MBA), whence 
MAB = MBA = —Fiji. In the presence of axial load, this is 
modified to MAB — MBA = —mFljl where m is a function of p. 
Taking moments about one end of the member in Fig. 2.4(a), it 
follows that 

/ 7 = -(MAB + MBA) - PA. 

Substituting MAB = MBA = -mFljl = -s(l + c)k<j> and P = 
ir2pkjl, it is readily shown that 

The shear force may also be calculated directly from the angle of 
translation <b, viz. 

Hence the sway stiffness for both joints fixed against rotation is 

The variation of m with p is shown graphically in Fig. 2.5. 
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TABLE 2.3 

MAB MBA F 

Rotate 0A 

Sway^ 

skdA 

- 5 ( 1 + c)k</> 

sckdA 

- 5 ( 1 + c)k<j> 

- 5 ( 1 +c)jOA 

25(1 + c) k 
m I* 

nk6A -okdA 0 

It follows from the last column that <j> = (m/2)0A, whence n 
= s{l - m(l + c)j2) and o = s{-c + m(l + c)/2}. 

The variation of « and o with p is shown graphically in Fig. 2.5. 

F=o 

F=0 

FIG. 2 .6 

The introduction of m, n and o functions, and their use in deriv-
ing the sway critical loads of rigid-jointed frames, is due to Mer-
c h a n t / 1 ^ 

2.7 Summary of Operations 

A summary of the various elementary operations in terms of 
stability functions is given in Fig. 2.7. In addition to those already 
discussed, Fig. 2.7 gives at (d) the results for a joint translation 
in which one end is pinned and the other end is fixed in direction. 

Also given in Fig. 2.7 are results for members with rigid gusset 
plates. These are discussed later in the chapter. 
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UNIFORM MEMBER UNIFORM MEMBER WITH GUSSETS 

A / P 

1- 1 -1 
£* I PI 
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P A / ^ " B P 

- * » | 9A | -« 1 * - | g B | * -

f £ / 1 P/ 

. 4 = 5 ( 1 + c ) - y p . 

(a) END ROTATION. FAR END 
FIXED MAB = skdA, 

MBA = sckdA = CMJB, 

k 
F = - 5 ( 1 +c)jOA. 

MAB = 

Afi i = sckOAi 

5" = 5 + 2 ^ ( l + 7 ) ^ , 

i c - a W + 2 ^ H l + c ) ( S + f i ) 

, + fc--(<i+c) + 2Ef + 

(b) END ROTATION. FAR END 
PINNED 

p A >^F \B p 

MAB = 5(1 - c2)kdA = s"kQA, 

k k 

F = - 5 (1 - C2) y 6A = - 5 " y 0^, 

6>FI = - c ^ . 
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FIG. 2 .7 (continued) 

(c) J O I N T T R A N S L A T I O N 
( S W A Y ) . B O T H E N D S 

D I R E C T I O N F I X E D 

K . . . 

- _ Fl 
MAB = —mA —> 

MAB = MBA = - 5 ( 1 + c)k(f) _ F / 
= —mB —> 

J7 2 

= - m " 5 " ' 2^(1 + c)A: A 
m i l 

2s{\+c)k 
m I*' mA=m + 22f> 

mB = m + 2& 

(d) JOINT TRANSLATION 
(SWAY). ONE END PINNED MBA = —s"k<$> 

= - * S

 2 Fl, 
S — 7T2p 

k 
F = (S" - 7T2

P) - <f>, 

0A = (1 + c)<f> 

(e) NO-SHEAR TRANSLATION MAB = nkdA, 

1 

MAB = nkOA, MBA = -dkOA, 

MBA = -okdAi T ^ T ^ -

</> = -^°A- n= n - TT*P$J> 

? 
F=0 

6 = o . 
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2.8 Generalised Displacements 

A generalised displacement (two end rotations plus a transla-
tion) may be established either in terms of s, c and m functions 
only, or in terms of n, o and m functions only. Using s, c, and m 
functions, the table of operations becomes: 

TABLE 2 . 4 

MAB MBA F 

Rotation at A 
eA 

Rotation at B 

Translation 
* 

Lateral load 

sk6A 

sckdB 

-s(l + c)k<f> 

sckdA 

sk6B 

-s(l + c)k</> 

M'BA(F) 

s(i+c)-ldA 

-s(l+c)j6B 

2s(l + c) k f 

m 1* 
F'A(F)> F'B(F) 

For the sake of completeness, the components due to lateral 
loads within the length of a member have been added on the 
bot tom line of the table. 

Using «, o and m functions, the table of operations (excluding 
lateral loads) becomes: 

TABLE 2.5 

MAB MBA * 
Rotation at A 

eA 

Rotation at B 

Applied shear 
force F 

nkOA 

—okdB 

Fl 

-ok6A 

nk6B 

Fl 
- m -

2 A 

mfi 

m Fl 
25(1 +c)k 
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In Table 2.4, the operations 0A and 0B introduce sway forces but 
are unaccompanied by sway deformation. In Table 2.5, the opera-
tions 8A and 0B are accompanied by sway deformation, but do 
not introduce any sway force. The functions n and o are more 
convenient to use than s and c functions when the equilibrium 
conditions for the structure preclude the introduction or alteration 
of the shear force in a member, as for example in the columns of a 
symmetrical single bay building frame in the absence of sway 
bracing. 

2.9 Lateral Loads 

As in structures where the effect of axial loads on flexure is 
ignored, lateral loads may be allowed for by the introduction of 
fixed-end moments. These are the moments incurred at the ends 
of the members by the given lateral loads when the ends are 
direction-fixed at zero slope. These fixed-end moments depend, 
not only on the distribution and intensity of the lateral loads, 
but also on the value of the axial loads as defined by the para-
meter p = P/PE. Two cases will be considered—that of a load 
uniformly distributed throughout the length of the member, 
and that of a single point load applied anywhere within the span. 
The case for any number of point loads may be solved by super-
position from the solution for a single point load. 

2.10 Uniformly Distributed Load 

The member AB, of length / and uniform flexural rigidity EI 
(Fig. 2.8), sustains an axial compressive load P and a uniformly 
distributed lateral load of intensity w per unit length. The ends 
A and B are fixed against rotation, the induced fixed-end moments 
being MF at each end. The equation of flexure is 

(2.8) 
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( wl i wl 
1 2 I 2 

\ M p /w/ u n i t , e n g t h M p 

The coefficient / , a function of a and hence of p, is the factor by 
which the fixed-end moment for zero axial load (wl2/12) has to be 
multiplied to obtain the fixed-end moment when axial load is 

FIG. 2 .8 

Integrating the equation, and substituting k = EI/l, P = 7T2pk/l 
and a = ( 7 7 / 2 ) ^ , it is found that 

(2.9) 

Inserting the boundary conditions y = 0 and d j /dx = 0 when 
x = 0 gives 

Using these values of A and B, and introducing the boundary 
condition y = 0 when x = / in equation (2.9) gives finally 

where 
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present. The fixed-end moment coefficient / is shown graphically 
in Fig. 2.3, and values are tabulated on pages 157-75. 

It is to be noted that, in the application of these results in 
equations (2.2) and (2.3) and in Table 2.4, M'ABiF) = —MF and 
M'BA(F) = MF. 

2.11 Concentrated Load 

A concentrated load W acts transversely on a uniform member 
AB, of length /, the point of application of W being rl from 
end A and (1 — r)l from end B, as shown in Fig. 2.9(a). The 

FIG. 2 .9 

fixed-end moments MF1 and MF2 are obtained by considering 
the behaviour of the two parts of the beam, AC and CB, as shown 
in Fig. 2.9(b). The deflexion and rotation at C are denoted by 
A c and 0C respectively. 

Let p = PjPE where P is the axial load in the member AB and 
PE is the Euler load for AB considered as a pin-ended strut. 
If PE1 and PE2 are the Euler loads for AC and CB respectively 
when considered as separate members, then PE1 = PE/r

2 and 
PE2 = PEI(\ - r)2. If Pi = P/PEI and p2 = P\PE2, then P l = r2p 
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and p2 = (1 — r)2p. The stability functions for AC and CB9 

obtained from px and p29 will be denoted respectively by sl9 cl9 

ml9 etc., and s29 c29 m2, etc. It is also to be noted that if k = EI/1, 
then kx = Eljrl = kjr and k2 = £7/(1 - r)/ = kj(\ - r). 

To obtain the deformed states of AC and Ci? depicted in Fig. 
2.9(b), the initially straight members are subjected to a joint 
rotation at C of 0C (as in Fig. 2.7(a)) followed by a joint transla-
tion of A c (as in Fig. 2.7(c)). The bending moments MAC, 
MCA9 MCB and MBC (clockwise positive, Fig. 2.9(b)) resulting 
from these two steps are shown in Table 2.6, the final values 

TABLE 2 .6 

Operation MAC MCA MBC 

Rotate C (0C) '.;». 

Translate C (AC) S , (1 + d) ^ - » , 0 + O ^ i 2 ( l + c 2 ) ( 1 _ r ) 2 - ^ 

being obtained by addition of the two rows. Since for equilibrium 
at C, MCA + MCB = 0, it follows that 

(2.10) 

(2.11) 

Using the last column of Table 2.4, the shear forces F± and F2 

either side of the applied load W may be derived (see Fig. 2.9(b)), 

(2.12) 

(2.13) 

Since MF1 == —MAC, it follows from Table 2.6 that 
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Values of MFjWl are shown graphically in Fig. 2.10 for values of 
p between —20 and + 2 and of r between 0 and 1-0. By entering 
the chart with r and (1 — r), the fixed-end moments at both 
ends of a member due to a load placed anywhere along its 
length may be derived. As mentioned before, the fixed-end mo-
ments due to a series of concentrated loads may be obtained by 
superposition. In applying equations (2.2) and (2.3) and Table 
2.4, due account must be taken of signs in substituting for 
M'AB{F) and M'BA{F). The shear forces F'A{F) and F'B{F) for 
the fixed-end moment condition are best derived directly from the 
fixed-end moments themselves by considering the equilibrium 
of the loaded member (Fig. 2.1(d)). 

2.12 Effect of Gusset Plates 

It is usually convenient to work to frame centre lines, so that 
the ends of members dealt with in a structural analysis actually 
lie within the boundaries of the joints. Although the joints 

(2.15) 

where 

The elimination of 0C, A c , Fx and F2 between equations (2.10) to 
(2.14) gives an expression for the fixed-end moment MF1 in the 
form 

(2.14) W=F1- Ft. 

By vertical equilibrium at C, 
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cannot be absolutely rigid, it is more accurate to assume complete 
rigidity than to assume an effective rigidity equal to that of the 
rest of the member. Complete flexural rigidity over given lengths 
at the ends of members may be allowed for in the calculations by 
introducing modified values of the various stability functions as 
follows. 

The member AB (Fig. 2.11(a)) is completely rigid over the end 
lengths A A = gA and BB = gBi the central length AB = I 

(b) 

FIG. 2.11 

having uniform flexural rigidity EI. The terminal bending mo-
ments MAB, MBA induced by a rotation 6A at A are expressed 
in terms of modified stability functions s and c where MAB = skdA 

and MBA = sckOA, k being based on the length / (i.e. k = EIjl). 
The moments at A and B (MAB and MBA respectively) may be 
derived from the standard stability functions s and c, as shown in 
Fig. 2.11(b). The appropriate value of /> is based on the length 
/, i.e. p = PjPE where PE = TT2EIJ12. Taking moments about 
A for A A , B for BB and about .4 for the whole member, the follow-
ing three equations are obtained, 

(2.16) 
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(2.17) 

(2.18) 

Eliminating F, 

(2.19) 

(2.20) 

12 .21) 

where A = s(l + c) —(7r2/2)p. The quantity A may be regarded 
as a new function of p, and has been tabulated by Livesley and 
Chandler , ( 1 7 ) to whom this treatment of gusset plates is due. 
Alternatively A may be calculated from the values of 5(1 + c) 
given in Tables A. l to A.5. 

The modified sway functions mA and mB give the terminal 
moments MAB = —mAFl\2 and MBA = —mBFl\2 induced by 
a shear force F (Fig. 2.12(a)), and from Fig. 2.12(b), 

i.e. (2.22) 

Similarly (2.23) 

The no-shear coefficients nA and 6A (Fig. 2.13) define the ter-
minal moments MAB = nAkdA and MBA = —oAkdA induced 
by a no-shear rotation 6A at A. 
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mFl2 _ Fl 2 

A'2s(l+c)k"2Ak_ 

Mba= _ r r i B y 

FIG. 2 . 1 3 

Hence 

Hence 

MBA = -oAkdA = - o / c ^ . 

(2.24) 

(2.25) 

(2.26) 

<l4 = ° ' 

The total sway A is given by 

Similarly, for a no-shear rotation 0g at B, 

M B A = and MAB = -dBkOB 

P 
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A summary of modifications to stiffness functions to allow for 
gusset plates is given in Fig. 2.7. 

2.13 Limitations on the Use of Stability Functions 

In this chapter, attention has been confined to the elastic 
flexural behaviour of a prismatic member bending in one plane 
only. It is assumed that the centroid and the shear centre of any 

Y Y Y 

Y Y Y 

(a) (b) (c) 

FIG. 2 . 1 4 

cross-section both occur in that plane. This condition is satisfied 
for plane frames with loads acting in the plane of the frame only, 
the members all having axes of symmetry within that plane. 
Thus suppose each of the members with the successive cross-
sections shown in Figs. 2.14(a), (b) and (c) has one principal 
axis YY in the plane of the frame containing the member. For 
flexure in the plane of the frame, bending will in each case take 
place about the other principal axis XX. The centroid of a cross-
section is denoted by G, and the shear centre by S, these being 
almost coincident for the section in Fig. 2.14(a). The behaviour 

where 
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of the members in Figs. 2.14(a) and (b) for bending about axis 
XX will be fully described in the elastic range by the functions 
derived in this chapter. The same cannot be said of the channel 
section in Fig. 2.14(c), since the shear centre S does not occur with 
the centroid G in the plane YY. The stability functions may only 
be applied to such a member if it is so constrained continuously 
along its length that twisting about the longitudinal axis is every-
where prevented. 

It should also be noted that stability functions are only valid for 
small angles of slope relative to a straight line joining the ends of 
a member, i.e. for values of dy/dx small compared with unity. 
This means that they are inapplicable to a structure in which the 
deformations are of an order comparable with the dimensions of 
the structure. 

2.14 Applications of Stability Functions 

If it can be assumed that the axial loads in the members of a 
structure are known within sufficiently close limits without the 
necessity of performing a complete flexural analysis, the stability 
functions enable the setting up of a set of linear equations which 
express the equilibrium requirements in terms of the displace-
ments and rotations of the joints. The analysis may then proceed 
exactly as for a structure in which the effects of axial loads or 
bending moments are neglected, and any of the standard methods 
of analysis may be applied. In particular, the methods of matrix 
analysis may be used, and the reader is referred to the treatment 
by Livesley. ( 1 9 ) Matrix methods lead directly to computer solu-
tions, and offer thereby an escape from the enormous labour 
encountered in the solution of stability problems by hand. While 
this procedure is attractive and will frequently be the ultimate 
goal, it is unwise to resort to it without first gaining some know-
ledge of the qualitative phenomena involved. The explanation 
of these phenomena is the main purpose of this volume. Chapter 
3 describes the application of stability functions to triangulated 
frames, while Chapter 4 deals with non-triangulated frames. The 
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(a) 

FIG. 2 . 1 5 

2.2 The members AB, BC are rigidly joined at B, and sustain axial 
loads PAB = (7T2kABllAB)PAB in AB and PBC = (7T2kBCllBC)pBC 

in BC. If the deformations indicated J in Fig. '2 .16 j 1 cause 

FIG. 2 . 1 6 

moments at A , B and C as shown, show that these moments 
are related by the equation: 

(b) 

behaviour of frames beyond the elastic limit is discussed in 
Chapter 5. 

Examples 

2.1 The uniform member AB in Fig. 2.15 is subjected to an axial 
load P, terminal moments MAB and MBA and a shear force F. 
Show that 
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[Note. This corresponds to the "four-moment equation" of 
Bleich. A possible method of analysing continuous frames is to 
apply this equation repeatedly to adjacent members, each applica-
tion representing the satisfaction of the compatibility condition 
for the rotations of the members at the joint. 

It may also be noted that transverse loads acting between joints 
may be allowed for by replacing the moments MAB, MBA, etc., 
b y (MAB - MAB(F)), (MBA - MBA(F)), etc., where MAB(F), 
MBA(F), etc., are the appropriate fixed-end moments in the pre-
sence of the given axial loads.] 

T 
h 

I 

FIG. 2 . 1 7 

2.3 The vertical load W (Fig. 2.17) is supported by the tie AC 
and the strut BC, both members being pin-ended. If failure 
occurs by the buckling of the strut BC, the dimensions a and b 
being fixed while h is undefined, show that W is a maximum 
when h = bjy/2. If the flexural rigidity of BC is EI, show that 
the maximum value of W is 

If a = b = \/2h, and AC has the same flexural rigidity as 
BC, show that the effect of making joint C rigid is to increase the 
value of W at which buckling occurs by approximately 50 
percent. 
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2.4 A uniform member AB, of length / and flexural rigidity 
El = kl, carries an axial load P and is joined at A to members 
which provide a restraining moment of qjk®A when A is rotated 
through 0A. Show that the rotational stiffness at B is qBk 

where 

A uniform member of length 8/ is fixed in direction at each end 
and is restrained against lateral movement at the ends and at 
intervals of / within its length. Use the above result to show that 
buckling occurs under an axial load P given by c = \/(4 — 2 \ /2 ) 
where c is the stability function corresponding to p = P12ITT2EI. 

2.5 The end A of a member AB is held by another member 
which provides a restraining moment of QA0A when end A is 
rotated through an angle dA. Show that, in the presence of axial 
load, the "no-shear" rotational stiffness at end B, after allowing 
equilibrium to be established at A, is QB where 

A continuous vertical cantilever ABCD, where AB = BC 
= CD = /, is held rigidly at A and carries equal vertical loads 
W at B, C and D. The flexural rigidities are uniformly 3EI 
>ver AB, 2EI over BC and EI over CD. Show that buckling 
vill occur when ojn = V(5/3) where the stability functions n 
ind o correspond to p = Wl2\-n2EI. 

2.6 A pin-ended strut AD consists of a central section BC, 
)f length 21, and flexural rigidity Ell9 and two equal end sections 
AB and CD, each of length / 2 and flexural rigidity EI2. Show 
hat buckling occurs under an axial load P given by 



S T A B I L I T Y F U N C T I O N S 77 

where kx = EIJl^ k2 = EI2\l2 and stability functions ol9 nx 

and o2, n2 correspond to p1 = Pl^/^EIj and p2 = P12

2JTT2EI2 

respectively. 
2.7 A pin-ended strut of constant 

cross-section is restrained at mid-
height against lateral deflexion by 
a spring as shown in Fig. 2.18. If 
the spring stiffness is A, i.e. Q = Xd, 
show that for X small the critical load 
of the strut in the plane of the 
restraint is increased to 

(Manchester, Honours B.Sc. Tech., 
Part II 1956.) 

(It may be assumed that the relation between stiffness and axial 
load for the strut with respect to a central disturbing force is 
very nearly linear.) 

2.8 A composite strut consists of two portions AB and BC 
as in Fig. 2.19. The length of BC is X times that of AB and the 

a T B X 2 I C 

•H L *H *L H 

FIG. 2 . 1 9 

moment of inertia of BC is X2 times that of AB. Show that if the 
composite strut is tested with pin ends at A and C its lowest 
critical load does not depend on X and hence is equal to one-
quarter of the Euler load of the portion AB. 

(Manchester, Honours B.Sc. Tech., Part II 1958.) 

X 
f v W A O 

6 

FIG. 2 . 1 8 

approximately. 
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Triangulated Frames 

3.1 Introduction 

The principles of structural analysis are the same for all frames, 
whether or not axial loads in members are sufficient to affect 
their stiffness, and amount to the simultaneous satisfaction of 
the conditions of equilibrium and compatibility. With the assis-
tance of stability functions, analysis is straightforward provided 
the axial loads in the members are known, and for this 
reason structures in which axial loads are exactly or very nearly 
proportional to the applied loads are the most easily dealt 
with. 

Pin-jointed, statically determinate frames present no problem, 
since axial loads are directly proportional to the applied loads. 
The inception of buckling is controlled by the readily ascertained 
critical members. For finite deformations after buckling, since 
a pin-ended Euler strut has finite stiffness with respect to axial 
compression (Fig. 1.9), the structure as a whole may become 
stable or unstable, depending on the particular geometry. This 
subject has been discussed by Bri tvec , ( 2 0 ) but is not of much practi-
cal significance since it concerns gross deformations which are 
not usually acceptable in practice. Redundant, pin-jointed, 
triangulated frames present greater difficulty. Initially, the axial 
load distribution is controlled by the ordinary elastic stiffness 
of the member, but after the inception of buckling, the stiffness 
of the compression members is modified to the value given by 
the slope of the curve HQ in Fig. 1.9 (cf. equation (1.11)). 
Since in any practical frame, the compression members will cease 
to behave elastically, certainly after the early stages of buckling 
if not before, problems involving the post-buckling behaviour of 

78 



T R I A N G U L A T E D F R A M E S 79 

such triangulated frames cannot be discussed at all usefully in 
terms of elastic theory. 

Rigid-jointed-triangulated frames which would be statically 
determinate in the absence of the rigid joints (i.e. frames that are 
statically determinate in their primary stresses) are the most 
fruitful for discussion, both on account of their practical impor-
tance, and because of the light thereby shed on the phenomenon 
of "secondary stresses". To a close approximation, the axial 
loads in such a frame are proportional to the applied loads, but 
since the bending stiffnesses of the members will vary as these 
axial loads change, the entire pattern of secondary moments must 
depend on the load parameter. We illustrate this with a particular 
example. 

Rigid-jointed triangulated frames which are redundant in their 
primary stresses form a special class as their axial force pattern 
depends on their axial stiffnesses which in turn depend on the 
amount of deflexion of the members. The class has certain 
similarities to laterally loaded portal frames discussed in Chapter 
4, but will not be treated further in this book. 

3.2 Secondary Stresses 

Consider the frame shown in Fig. 3.1. AB and BC are prismatic 
members with constant flexural rigidity EI rigidly jointed at B 
and with fixed ends at A and C. 

If there were pin-joints at A, B and C the frame would be 
statically determinate and all the load would be transferred from 
B to A and C by direct axial loads in the members. Owing to the 
rigidity of the joints at A, B and C some load can be transferred 
by bending of the members. Although this is usually an extremely 
small portion of the load it can cause important bending stresses. 
It is conventional to assume that this secondary transfer of load 
does not alter the axial forces in the members which can therefore 
be calculated for the frame with pin-joints at A, B and C. 

Thus from the triangle of forces at B 

PAB = W/2 and PBC = VY. W\2 
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* 0=0=C 

b 
Williot dioarom 

FIG. 3.1 

and the deflexion of B can be found as shown in the Williot 
diagram in Fig. 3.1. We imagine the frame moved to this position 
with the joint B prevented from rotating. This requires moments 
as shown in the table below. The moments due to an arbitrary 
rotation of B are also shown. 

A B C 

For equilibrium MBA + MBC = 0 and so 

Substituting for d, 

The corresponding shortenings of AB and BC are 
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Let (PE\ be the Euler load corresponding to a member of length AB 

55 ?? 5? ?J 95 ?95? ?? ?> BC 

with corresponding values of px and />2 

Then 

Graphs of 0/A and IMBC\2EI1 against p l 5 are shown in Fig. 
3.2 and also a graph of MBC/(MBC)0 where (MBC)0 is the moment 
that would be obtained if there were no stability effects, i.e. 
(MBC)Q varies linearly with p l 5 and is tangential to MBC for small 
values of px. The consequence of taking stability into account 
is that MBC does not increase linearly with P and even changes 
sign as P increases. This is quite a normal consequence of stability 
and shows how little value a linear elastic analysis may have in 
predicting bending moments at high values of axial loads. MBC 

(3.2) 

Therefore 

And 

Then (3.1) 

Therefore 

Where 
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is zero at px = 2-26; below this value BC is bending AB, above 
this value BC is restraining AB from bending and there is 
reversal of the sign of MBC. 6, however, continues to increase 
steadily until a vertical asymptote at s± + V 3 >s2 = 0, i.e. p1 

FIG. 3 .2 

= 2-62. Such a value of the load at which deflexions become 
very large is known as a "critical load". It corresponds to the 
"Euler load" for pin-ended struts. 

For this type of frame it would usually be accepted without 
question for a linear elastic analysis that the axial forces are as 
given by simple resolution at B. This procedure neglects the 
shear forces in AB and BC by comparison with the axial forces. 
The shear forces are proportional to XW and for a normal value 
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of X are less than 1 percent of W. This justifies this procedure 
for the linear elastic analysis. For the stability analysis the 
members become more flexible as W increases and this causes 
the effect to be even less significant. 

3.3 Internal Stresses 

The same example can be used to show the effects of stability on 
internal stresses due to lack of fit. Suppose that AB and BC are 
built in first at A and C and that on coming to make the joint 
at B it is discovered that there is an error in the angle of BC at B 
of <f). BC can be distorted to make the joint by applying a moment 
(2EIs2ll)(f) and on making the joint and releasing the restraint the 
joint will rotate through ip, where 

The moment at B due to lack of fit then also depends on the load 
and a graph of IMBA\2EI$ against p1 is shown in Fig. 3.3. 

We note that, as in the case of secondary stresses, the sign of 
MBA can change as the load increases and that the lack of fit 
moments have the same vertical asymptote as the secondary 
stress moments. 

In linear elastic structures a change in moment due to a change 
in load can be calculated, but owing to the effects of lacks of fit 
this is from an unknown initial condition. 

We have now demonstrated that when stability effects are taken 
into account then even changes of moment or deflexion cannot be 
calculated owing to the fact that the internal stresses and deflexions 
themselves change due to stability effects. In these circumstances 
the "critical loads" already mentioned remain the only invariant 
of the framework that can be calculated. 

Finally 
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- 2 0 L | 
FIG. 3.3 

3.4 Critical Loads 

In Chapter 1 it was shown that for a pin-ended strut there is a 
series of critical loads Pci9 PC29 Pc& • • •» associated with a series 
of buckling modes yl9 y2, y39..such that for any initial distortion 

Jo = a1y1 + a2y2 + a3ys + .. ., 

each component is magnified independently 

i.e. 

In the region of the first critical load the corresponding magnifier 
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which leads to the Southwell plot. It has been shown that similar 
results hold for complete frames* 2 1 ' 2 2 > 2 3 ) where the axial loads 
are proportional to the load parameter and as an example we 
give in Fig. 3.4 the Southwell plots for the two cases we have 

calculated. The critical loads as given by the inverse slopes of the 
straight part of the graphs are both in good agreement with the 
calculated value of p1 = 2-62. 

The deflexions d due to a disturbing force Q may also be thought 
of as arising from an initial imperfection 

aiyi + A 2 ) ; 2 + as + 

dominates and we may write 
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A graph of K/K0 against px is also given in Fig. 3.3. As is to be 
expected it agrees with the previous determinations of the critical 
load. Note that the critical load px = 2-62 is greater than for a 
strut fixed at A and pinned at B (px = 2-045) because of the res-
traint afforded by BC. At the critical load all deflexions are 
indeterminate; and it is wrong to think of just one member 
buckling since the phenomenon involves the whole frame. 

and 

The stiffness "K" corresponding to the disturbing force is defined 
by the equation Q = Kd where d is the deflexion corresponding 
to Q. 

Hence 

A plot of K/K0, where K0 is the value of K when P = 0, against 
the load parameter P provides a good technique for determining 
the critical load. Providing the disturbing force excites any 
component of the first buckling mode K, vanishes at P = PC1. 
A linear plot is obtained if 0 = b2 = b3 = . . . and in general 
the best predictions are obtained by using disturbing forces which 
excite as large a component as possible of the first buckling 
mode. For our example let us use as disturbing force a moment 
M at B. The corresponding rotation is given by 

Hence 



T R I A N G U L A T E D F R A M E S 87 

3.5 Critical Loads—Example 

Consider the symmetrical truss shown in Fig. 3.5 with member 
properties as shown in the table below the figure. PE = TT2EI/L2 

= 7T2k/L and is therefore an alternative way of specifying the 

o-iw 

Member p/w Uin) PE(torO P/P^N 

AB 4 - 4 4 3 129-2 38-88 0-114 Strut 

BC 2-962 129-2 20-81 0-142 Strut 

AD 4-125 120 16-96 0-243 Tie 

DE 4-125 120 16-96 0-243 Tie 

BD K ) 0 0 4 8 1-51 0 -662 Tie 

BE !«48! 129-2 7-98 0-185 Strut 

CE 2-100 9 6 3-50 0 - 6 0 0 Tie 

FIG. 3.5 

stiffness of a member. The example is one treated by A l l e n ( 2 4 ) 

and the problem is to determine the value of W a t the first critical 
load. For any member say BC 

MBC = skOB + sckOc 

4 

For a particular value of W we know the value of p = PjPE for 
each member and hence the corresponding values of s and c. 
For example at W = 9 we have 
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Member PIPE s c sLPEl<n* scLPEl>rr* 

AB 510 1-03 2-41 1-03 1230 1270 Strut 
AD 206 2-19 6-31 0-25 1300 325 Tie 

Therefore 

MAB = 12300^ + 12700* 

MAD = 13000.4 + 3250^ 

MA = MAB + MAD = 25300^ + 3250^ + 12700* 

and for the complete truss we have 

0A eD BB oE So eF 0G OH 

2534 325 1267 0 0 0 0 0 
MD = 325 2670 10 325 0 0 0 0 
MB = 1267 10 1936 320 729 0 0 0 
ME = 0 325 320 3121 47 320 325 0 
Mc = 0 0 729 47 1348 729 0 0 
MF = 0 0 0 320 729 1936 10 1267 
M0 = 0 0 0 325 0 10 2670 325 
MH = 0 0 0 0 0 1267 325 2534 

(3.3) 

Note the reciprocal check on the coefficients. The demonstration 
calculation is done with slide rule accuracy. The slightly different 
values in the complete table are taken from Allen's paper where 
more significant figures are carried. Allen uses the notation 
U = skV = sck. The table contains all the possible information 
about the response of the truss to disturbing moments at the 
joints. How one proceeds is a matter of choice. Livesley and 
Chandle r ( 1 7 ) for a truss of the same general shape but different 
member details use the stiffness approach and solve byre laxat ion ( 2 5 ) 

for 6B with MB = MF and all other moments zero. Then MB 

= KdB and a plot of the stiffness K determines the critical load 
by the value of W for which K = 0. 
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Allen solves by successive elimination of the unknowns from 
each end with all moments zero except ME and MC until he 
obtains the equations 

The behaviour of the truss can thus be considered as that of an 
equivalent member EC satisfying the above equations. In Allen's 
notation 

He states that the truss is stable if the expression in the brackets 
is positive, the critical load being given by the vanishing of the 
expression. In our notation ME = K6E and thus Allen's method 
is in effect the stiffness method. He performs the successive elim-
ination of the unknowns on a picture of the truss rather than by 
the more usual algebraic methods. 

To retain all the available information about the truss we will 
give here the complete solution of the equations (3.3). It was 
obtained using a digital computer but may be obtained by desk 
calculations. It is 

1O60 MA MD MB ME Mc 
MF MG MH 

6A = 796 - 1 0 9 -116 125 623 - 3 8 4 - 3 8 197 
eD = - 1 0 9 395 117 - 6 0 - 1 0 0 72 12 - 3 8 
0 f l = - 7 7 6 117 1522 - 2 3 4 - 1 2 2 0 749 72 - 3 8 4 
6E = 125 - 6 0 - 2 3 4 377 240 - 2 3 4 - 6 0 125 
6C = 623 - 1 0 0 - 1 2 0 0 240 2052 - 1 2 2 0 - 1 0 0 623 
dp = 384 72 749 - 2 3 4 - 1 2 2 0 1522 117 - 7 7 6 

- 3 8 12 72 - 6 0 - 1 0 0 117 395 - 1 0 9 
197 - 3 8 - 3 8 4 125 623 - 7 7 6 - 1 0 9 796 

ME = 2864(9^ - 336<9C 

MC = - 3 3 6 6 ^ + 5260c 

ME = UEC6E + VEC0C 

MC = V C E E + U C E E C 

He now puts MC equal to zero and obtains 
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Similar calculations were performed for W = 0, 3 and 10. These 
enable the stiffness curves shown in Fig. 3.6 to be drawn. Thus for 
W = 9 and all disturbing moments zero except MB we have 6B 

= 1522Mg and similar information is available for the other 
values of W. 

FIG. 3.6 

Figure 3.6 illustrates several of the important effects of stability. 
Notice that the initial slopes of the stiffness curves depend on the 
type of members intersecting at the joints concerned. Thus for D 
which is at the intersection of three ties increase of W causes an 
increase of stiffness. A similar although less marked effect is 
shown for E which is at the intersection of three ties and two 
struts and initially the gain in stiffness of the ties is greater than 
the loss in stiffness of the struts. Joint A is at the intersection of a 
tie and a strut and initially exhibits little change in stiffness with 
load. Despite the initial increase in stiffness for D and E all the 
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curves pass through zero at the critical load which is seen to be 
given by W = 9-9. The buckling of the truss is not then a local 
phenomenon but all the joints suffer large rotations and the truss 
as a whole distorts. It is of interest to note that if W could assume 
negative values there would also be a corresponding critical load 
on the other side of the origin. 

If, as in the Southwell method, we can write 

where 

i.e. the stiffness curves should be rectangular hyperbolae passing 
through P = PC1 at K = 0 and having PjPCi = 1 + A as an 
asymptote. The nearness of the asymptote to PjPCi = 1 for 
the stiffness curves for joints D and E indicate that for these 
joints b2 ^> bx and consequently the effect of the amplification 
factor 1/(1 — P/Pci) is swamped for small values of P and these 
stiffness curves are far from rectangular hyperbolae. 

3.6 Combination of Disturbances 

At the critical load the truss as a whole distorts and all the 
joints exhibit large rotations. To excite such a shape for W = 0 
will require disturbances distributed along the members but it is 
of interest to investigate how nearly the buckling shape can be 
excited by disturbing moments applied only at the joints. F rom 
Fig. 3.6 it is obvious that the most important disturbing moments 
are those at B, F and C. From symmetry we would expect the 
buckling mode to have 0B = 0F and therefore as a first step 
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we will investigate the case of all joint moments zero except 
MB = MF. Then at W = 9 

10 6 dB = 1522M^ + 149MF = 2271M* 

and as before we can plot K/K0 for the composite disturbance. 
This curve is more nearly linear than those for any of the separate 
joints and is also shown in Fig. 3.6. 

Let us now incorporate a disturbing moment Mc = XMB = 1MF 

Then at W = 9 we have 

10 6 6B = 221\MB - 1220M C = (2271 - \220X)MB 

10 6 6C = - 2 4 4 0 M ^ + 2052M C = ( - 2 4 4 0 + 2 0 5 2 ^ ^ 

The work done in applying these disturbing moments 

= -L\MQ = M B B B + \ M < f l c 

= 10- 6 MB

2 (2271 - 2440A + 1026A2) 

The disturbing moments are defined by the parameter MB. If 
we define a corresponding deflexion ® by the requirement that 
the work done is the same 

i.e. WB® = 2 WO 

Then WB® = lO~eMB

2 (2271 - 2440A + 1026A2) 

The stiffness K to the composite disturbance may then be con-
sidered as given by MB = K® and thus at W = 9 we have 

K = 10 6 (4542 - 4880A + 2052A 2)" 1 

A similar calculation at W = 0 gives 

K0 = 10 6 (690 - 320A + 469A 2)" 1 

and thus at W = 9 
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For X = 0 this agrees with our previous result for MB = MF 

and Mc = 0. For large values of X, K/K0 approaches the value we 
have calculated for Mc acting by itself as shown in Fig. 3.6. 
A graph of K/K0 against X is shown in Fig. 3.7. The minimum 
value is given by X approximately equal to —0-8 and then 

0-12 r -

K o a 0 8 h 

0-04 V-

0-2 0-4 0-6 

- X 

FIG. 3.7 

0-8 

# / # 0 = 0-127. For Mc = 0 and MB = MF we had K/K0 

= 0-152. As was to be expected we have obtained a lower 
stiffness and more nearly excited the buckling mode by including 
a disturbing moment at C. 

To obtain a still lower value of K/KQ we must use disturbing 
moments at more joints. Figure 3.8 shows the relative rotations 
of the joints in terms of 0B for all moments zero except MB 

and Fig. 3.9 shows a sketch of the corresponding buckling shape. 
The buckling shape at W = 9-9 is defined by approximately 

0A = 0H= -0-54 0B 

E D = E 0 = o-o9 

E E = -o-23 E B 

E C = - i - 3 o OJJ 

1-0 1-2 
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FIG. 3.9 

The small values obtained for 6D and 6E confirm what we have 
already deduced from Fig. 3.6 that the rotations of these joints 
have the smallest components in the buckling mode. Notice 
that, though we are using an unsymmetrical disturbing moment 
system, the buckling mode itself exhibits symmetry as is to be 
expected. The same buckling mode is excited whatever disturbing 
moment is applied. 
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We can evaluate the moment pattern corresponding to these 
values of 0 at W = 0. It is 

MA = MH= - 4 8 1 ( ^ ) 0 

MD = MG = - 1 5 1 ( ^ ) 0 

MB — MF = 2266 (6B\ 

ME= - 1 9 8 ( ^ ) 0 

Mc= - 1 9 3 6 

At W = 9 we obtain for this pattern of moments 

0 ^ = -4 -311 (6B\ = - 0 - 5 4 0 0* 

0^ = 0-642 ( 0 B ) O = 0.081 6B 

0F = 7-975 ( 0 ^ ) o = 1-00 0 B 

- 1 - 7 0 2 ( 0 ^ = - 0 - 2 1 4 0 5 

-10-105 ( 0 ^ 0 = - 1 - 2 7 0* 

Notice the very small changes in the 0/0* ratios. These small 
changes are due to our assumed rotation pattern at W = 0 being 
only a near approximation to the buckling shape. Treating the 
complete pattern of moments as a composite disturbance in 
exactly the same way as we did for MB, MF and Mc acting to-
gether we obtain K/K0 = 0-125. The same result is also obtained 
by comparing directly the ratios of 0A and 6B at W = 0 and 9 
as in these cases there is no correction due to the small changes 
in the rotation pattern. 

We have now shown that if we use a disturbing moment pattern 
which excites the buckling mode at W = 0 then this pattern is 
preserved as W increases. Further the lowest value of K/K0 

that can be obtained by any combination of disturbing moments 
at the joints is 0-125 at W = 9 and this is very little less than can be 
obtained by applying disturbing moments at B, F and C only. 
If we had been able to excite the buckling mode exactly by disturb-
ing moments at the joints we would have expected a linear fall off 
in stiffness with W. As the critical value of JFis 9-9 a linear varia-
tion in stiffness would give a value of K/K0 = 0-100 at W = 9-0. 

0A = 

6D = 

6B = 

®E = 
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The difference between this value and the minimum value of 
K/K0 that we have obtained must be attributed to the fact that 
we have not applied disturbing forces along the length of the 
members but only at the joints. 

3.7 Approximate Methods of Calculation of Critical Loads 

The reason for seeking approximate methods of calculation 
is to reduce the time taken in the solution of sets of equations 
such as equations (3.3). Approximate methods may be divided 
into two classes: 

(a) those that deal with the whole structure, and 
(b) those that deal with a simplified structure. 

In class (a) there are various methods of fitting an equation to the 
stiffness curve from calculations at specific values. From a 
knowledge of similar structures one can form an estimate of 
P\PE in the most heavily loaded member at collapse (in our case 
{PJPE)BE = 1*83). Two calculations in this region should allow 
of linear interpolation, i.e. in our example the calculations at 
W=9mdW= 10. 

Calculations for several values of the load parameter permit 
of the fitting of a rectangular hyperbola to the stiffness curve. 
Inspection of Fig. 3.6 shows that this is not likely to be successful 
for such joints as D and E where the rectangular hyperbola 
dominated by the critical load only prevails in the near region 
of the critical load. 

Unless special measures are taken, relaxation type solutions do 
not usually converge in the negative stiffness region. The expan-
sion (1 — x)-1 = 1 + x + x2 + x 3 + . . . is only valid for 
x < 1 although (1 — J C ) - 1 exists and is negative for greater values 
of x. Relaxation solutions can be considered as calculating by a 
series expansion. For this reason Hoff ( 2 6 ) uses convergence of the 
calculations as a test for stability and this method has been 
elaborated by Bol ton . ( 2 7 ) 
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Method (b) using a simplified structure is a more practical one. 
Our investigations of combined disturbances show that dis-
turbances at joints some distance from B do not have much effect 
on the response at B. We shall therefore assume that the response 
at B can be obtained by assuming that all the members one remove 
from B have no change of slope at the far end when calculating 
the response at B. The simplified structure thus obtained is shown 
in Fig. 3.10 and the resulting equations for W = 9 are shown below. 

OA On OB OE Oc 

MA = 0 = 2534 0 1267 0 0 
MD = 0 = 0 2670 10 0 0 
M£ = 1267 10 1936 320 729 
ME = 0 = 0 0 320 3121 0 
Mc = 0 = 0 0 729 0 1348 

(3.4) 

The equation for MA gives QA in terms of 0B and similarly for 
MD, ME and Mc. Substituting in the equation for MB we obtain 
MB = 8760g. The estimate of K obtained this way is therefore 
876. The accurate value obtained by inversion of the equations 
(3.3) is MB = 65WB. Part of the (K/KQ, W) relation for the 
simplified structure is also shown on Fig. 3.6. It corresponds to an 
approximate estimate of the critical value of W — 11 instead of 
the accurate value oiW = 9-9. The advantage of this approximate 
method is that no formal solution of a system of simultaneous 
equations is required. A better approximation would be obtained 
by restricting the problem to the five equations (3.4) but filling 
in the missing coefficients and thus requiring the formal solution 
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of five simultaneous equations instead of the complete set. 
This would correspond to putting 0F = 6G = 6H = 0 in the real 
structure and thus introducing restraints at these points. It 
would therefore still give an over-estimate of the critical load. 

3.8 Effect of Rigid Gussets 

In Chapter 2 we have shown how the stiffness s and carry-
over factor c are modified by the presence of rigid gussets to 
s and c and have shown how to calculate these modified values. 
Therefore there is no difficulty in principle in determining the 
critical load of a truss with gusset plates, but the calculations are 

O 0-02 0O4 0-06 0O6 010 012 

(b) 

FIG. 3.11 
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rather longer than if there were no gusset plates. It is therefore 
useful to have an idea of the extent to which critical loads are 
likely to be increased by gusset plates and this can be obtained by 
reference to three simple cases for an isolated member. In Fig. 
3.11 the critical load of a member with symmetrical gusset 
plates at either end is compared with the critical load of a pris-
matic member of the same overall length. There is almost no 
difference between the two cases for the pin-ended strut. This is 
because the gussets are in the region of low bending moment 
and thus have little effect on the stiffness. The other two cases 
give an almost linear increase due to gjl in the range considered. 
Plotting the rate of increase divided by gjl against the critical 
load for the three cases shown we obtain the relationship shown 
in Fig. 3.11(b). In default of complete calculations it is suggested 
that this graph can be used to estimate the increase in critical 
loads due to gusset plates. 

Examples 

3.1 Find the lowest critical load of the structure shown in Fig. 
3.12 for the three cases given below. The members are straight 

FIG. 3 . 1 2 

and of constant cross-section, their moments of inertia being 
shown on the figure. A and C are fixed ends and B is a rigid joint. 

Case I I2 is small compared with Il9 

Case II Ix = V 3 
Case III is small compared with I2. 

(Manchester, Honours B.Sc. Tech., Part II 1953.) 
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3.2 An equilateral rigid-jointed triangular plane framework 
is tested in the arrangement shown in Fig. 3.13. The loads are 
applied through pins at A, B and C. Indicate how the critical 

p p 

FIG. 3 . 1 3 

load of the frame can be obtained and sketch the buckling mode. 
Determine limits for the critical value of P compared with the 
Euler Load of the strut BC. 

(Manchester, Honours B.Sc. Tech., Part II 1955.) 

3.3 The rigid-jointed Warren girder shown in Fig. 3.14 is sub-
jected to a compression along the bot tom chord. All the triangles 
are equilateral and all the members are of the same cross-section. 

p p 
FIG. 3 . 1 4 

Determine the stiffness of the central joint against rotation when 
the compressive load is equal to the Euler load of an individual 
member. (At P = PE, s = 2-467, c = 1-0.) 

(Manchester, Honours B.Sc. Tech., Part II 1959.) 
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3.4 The cantilever bracket (Fig. 3.15) is made from a uniform 
prismatic member. It is encastered at A and C and rigidly 
jointed at B. Show that if buckling out of the plane of ABC is 

FIG. 3 . 1 5 

where s± and c± are the stiffness and carry-over factors for AB, 
and s2 and c2 are the stiffness and carry-over factors for BC. 
Hence determine the critical value of W. 

(Manchester, Honours B.Sc. Tech., Part II 1963). 

(Answers to the above questions may be found on page 154). 

prevented and plasticity enects are negligible, then the rotation 
of B is given by 
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Rigid-Jointed Frames 

4.1 Introduction 

In a triangulated frame, any set of loads, provided all loads 
act at joints, could be supported in equilibrium by a system of 
internal forces acting as axial loads in the members without 
any bending action. Non-triangulated frames will support certain 
load systems also in this way, but only if the load systems are 
suitable. Examples are given in Fig. 4.1. The behaviour of frames 
so loaded is similar to that of triangulated frames statically deter-
minate in their primary stresses, buckling modes being theoreti-
cally possible at a series of critical loads. The essential difference 
from triangulated structures is the incidence of sway modes 
involving the translation of one end of a member relative 
to the other (Fig. 2.1 (e)). The calculation of critical loads of 
this type is the first subject dealt with in this chapter. Just 
as for a pin-ended strut, deformations due to imperfections 
or disturbing forces are magnified as the first critical load is 
approached. 

Suppose that, in a frame subjected to proportional loading, 
the elastic critical deflexion modes are represented by yl9 y2, . . . 
with critical load factors A C 2 , . . . . Let the deformations y0 

due to initial imperfections or disturbing forces, measured at 
zero axial load level (A = 0) be expressed in terms of the elastic 
critical modes, viz. 

yo = + a2y2 + . . . 

where al9 a2, . . . are constants. Then it has been shown* 2 1 > 2 2 > 2 3 ) 

that, in the range of small deflexions, and provided the structure 

102 
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is such that axial loads increase in proportion to the external 
load parameter, the deflexions at any load factor X become 

stable at all loads X < XC1, the lowest critical load factor is im-
portant since the deflexions increase more and more rapidly as 
it is approached. 

A frame which sustains the applied loads entirely in axial 
compression or tension is structurally the most efficient, but it is 
not possible so to support any arbitrary combination of joint 
loads acting on a rigid frame, and bending is necessarily involved. 

While, therefore, no distinct bifurcation of equilibrium states 
occurs at the lowest critical load factor A C 1 , and the structure is 
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Examples of joint loads producing bending action are shown in 
Fig. 4.2. Further, any structure (either triangulated or rigid 
frame) which carries transverse loads within the length of any 
member (Fig. 4.3) must contain primary bending moments. 
In this class of problem, the critical load concept has no direct 
significance, since as the load parameter increases, the relative 

FIG. 4 . 2 

bending stiffnesses of the members alter, and therefore the bending 
moment pattern, and hence in turn the axial load pattern, also 
alter. The axial loads do not increase in proportion with the load 
parameter, and the ideas of analysing an initial deflexion in terms 
of the buckling modes and each component being magnified by 
its own factor are no longer applicable. Nevertheless, such 
structures may become unstable in that at a particular value of 
the load parameter they may cease to have any stiffness to a 
disturbing force, for small deflexion theory, and thus exhibit 
large deflexions. It is proposed to call such loads buckling loads 
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and to reserve the name "critical loads" for the phenomena 
exhibited by structures of the types shown in Fig. 4.1. 

Buckling loads are more difficult to calculate than critical loads 
as there is an interdependence between bending moments and 
axial loads which requires an iterative method of calculation to 

r V T Y Y V Y Y 1 ) 

(c) 

FIG. 4.3 

be used. Furthermore ideas of the Southwell plot and about the 
shape of stiffness curves to which we have become accustomed 
require modification. A simple example of buckling loads of this 
type is discussed later in the chapter, but attention is first given 
to frames loaded after the manner of those in Fig. 4.1. 

4.2 Simple Portal 

Consider the simple portal shown in Fig. 4.4 where all the loads 
are applied at the joints and MB, Mc and F are small disturbing 
forces. If there are no inaccuracies in manufacture, etc., there will 
be no bending moments in the members and no axial force in 



106 T H E S T A B I L I T Y O F F R A M E S 

FIG. 4.4 

BC. The operations table for rotations of B and C and a sway 
is 

Fl A B C D 

Rot. 5 csk16£ skfls 4k2eB 2k2( % 0 0 

Rot. C 0 0 2k2ec 4k2t skxdc cskflc 

Sway -s{\ + c)kx -h 0 0 - 5 ( 1 + c)kx -h 

6 

—s(l + c)ki ~h 

-s(l + c)kx -h 

and the equations of equilibrium are therefore 

MB = (skx + 4k2)6B + 2k26c - s(l + c ) ^ -
n 

Mc = 2 ^ 0 * + (skx + 4k2)dc - s(l + c)kx (4.1) 

provided MB, Mc and F a r e such small disturbing forces that they 
do not sensibly change the value of PjPE in the members. 
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These equations (4.1) correspond to the similar equations we 
found for triangulated frames except that for trusses only joint 
equations are required and here we have two joint equations and a 
shear equation. 

As for trusses we could determine and draw the stiffness curves 
for the response to the individual disturbing forces. We should 
expect all these curves to pass through zero at the lowest critical 
load. Because of the symmetry of the structure and loading it is 
more convenient here to use composite disturbances. 

Thus a particular solution of equations (4.1) is given by 
6C = -6B, 6 = 0 if 

Mc 

Fl 

B {skx + 2k2) E B 

-{skx + 2k2) E B 

0 

which we can write as M KB 

where K = skx + 2k2 

and 

Another solution of equations (4.1) is 

if Mc = MB = (skx + 6k2)0B 

Fl = 0 

or in the notation of Chapter 2 

Mc = MB = (wArx + 6k2) 6B 

S(l + C^OB 
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i.e. M = KO 

where 

and 

A third solution of equations (4.1) is given by 

where 

and 

i.e. 

where 

and 

Graphs of these three non-dimensional stiffness curves are shown 
in Fig. 4.5 for k2\kx = 1-0. 

They seem normal stiffness curves, the first indicates a critical 
load at PcjPE = 2-56 and the other two at PC\PB = 0-76. 

We stated that the stiffness curve for any composite disturbance 
should pass through zero at the lowest critical load and it is 
important to understand how the symmetrical system of disturb-
ing moments has failed to indicate the lower of the critical loads. 

K = nkx + 6k2 

MB = Mc = 0 
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FIG. 4.5 

The lower of the two critical loads indicated by Fig. 4.5 is a 
sway mode and as the first disturbing system of moments does 
not contain any sway component it fails to reveal the sway 
critical mode. In practice if there were any unsymmetrical imper-
fection of the structure or the loading system then this would 

and pointed out that providing a disturbing force excites any 
component of the first buckling mode (i.e. providing b± exists, 
however small) then K vanished when P = PC1. 

In Chapter 3 we gave a general expression for the stiffness curves 
in the form 
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be magnified indefinitely at the lower critical mode and an 
experimental stiffness curve would look like the one dotted. 

The fact that the first disturbing system misses the lower 
critical load is then a mathematical curiosity and is of no practical 

^ log scale 

FIG. 4 . 6 

significance. As the structure would have a negative stiffness to 
sway disturbances above the lower critical load it would be unstable 
and the load could not be increased past the critical load without 
being provided with a lateral restraint to prevent sideways dis-
placements developing. In practice this may be provided by 
bracing systems in the plane of the beams and the higher critical 
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load (symmetrical case) has then a practical significance. The 
four standard cases for single-storey portals are shown in Fig. 4.6. 

4.3 Multi-storey Single-bay Portals 

The sway and no sway critical loads of multi-storey portals 
as shown in Fig. 4.7 are easily obtained. 

[ , 1 
N 

N - l 

. . 

h k. 

h ' 

WWWt "777/77777, 

FIG. 4 .7 

Thusjfor the sway case we have in succession 

M1 = (Ink-L + 6 k2)01 - ok^ 

M2 = —ok$x + (2nkx + 6 k2)62 — ok^ 

MN_X = —okflx^ + (2n kx + 6 k2) dN_± — ok16N 

MN = —^i^ iv - i + (nkx + 6 k2) 0N 
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FIG. 4.8 

At the critical load M± = M2 = MN = 0 and writing X = 
(2nkx + 6 k2)\okx 

we have 

0 = X0X - 62 

o = - + XE2 - E3 

o = - E2 + XE3 - e 4 

0 = —0N_2 + XBN__X — 6N 

0 = _ 0 v _ 1 + ( X - ^ ) 0 i V 

i.e. 62=X61 

03 = ( - 1 + X 2 ^ 

fl4==-^ + ( - 1 + Z 2 ) ^ ! 

= + X ( - 2 + X 2 ) 0X and so on 

If the portal is, for example, four stories high we also have'the 
last equation 

0 = _ 0 8 + ( * - / i / 0 ) 04 
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and so 0 = (1 - X2) 0± -X(2 - X2) (X - njo) dx 

i.e. X(X2 - 2) (X - «/o) = X 2 - 1 (4.2) 

Equation (4.2) is easily solved. For any particular value of 
X it gives the corresponding value of njo and therefore of n and o 
separately. k2\kx is then obtained from the expression for X. 

The resulting PC/PE curves are shown in Fig. 4.8; also shown 
are results for various numbers of s tor ies . ( 1 8 ) 

The corresponding no sway critical loads are even simpler to 
obtain and are left as an exercise for the reader. 

4.4 Multi-bay Multi-storey Portals 

The sway deflexion characteristics of a single-bay portal can be 
used to obtain the similar characteristics of a particular family of 
multi-bay portals. 

A series of identical portals under identical loads will have the 
same deflexions. Adjacent columns can therefore be super-
imposed and fastened together without causing any redistribution 
of stresses. All the portals shown in Fig. 4.9 will therefore have 
the same sway deflexion characteristics and in particular the 
same sway critical loads. 

For all these portals the equivalent single-bay portal may be 
obtained by the application of the following rules: 

2 column stiffness of single 
bay 

2 column loads of single bay 

beam stiffness 

= 2 column stiffness of multi-
bay 

= 2 column loads of multi-
bay 

= 2 beam stiffness. 

Now consider the application of these rules to form an equiva-
lent single-bay portal for a multi-bay portal which is not formed 
in accordance with this "Principle of Mul t ip les" ( 2 8 ) and in the first 
place suppose that stability effects are negligible. 
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FIG. 4.9 

The deflexions of the equivalent single-bay portal may be 
calculated and if these are imposed as a composite disturbance on 
the real frame then the accompanying bending moments can be 
calculated. This is sharing the bending moments of the single-
bay frame amongst the members of the real frame in proport ion 
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to their stiffnesses. As the real frame is not proportioned in 
accordance with the Principle of Multiples individual joints will 
not necessarily be in equilibrium, but the bending moments as a 
whole will satisfy the shear equations and at any floor the sum 
of all the beam and column moments will be zero. 

The deflexions of the equivalent single-bay frame therefore 
give a solution of the real frame loaded with the right shear 
forces and sets of self-equilibrating moments at each floor level. 
By St. Venant's principle a set of self-equilibrating moments can be 
expected only to cause a local perturbation and not to have an appre-
ciable effect on the overall sway of a structure. For purposes of 
determining sway deflexion, although not for determining 
moments in individual members, a multi-bay frame can therefore 
be replaced by an equivalent single-bay frame. 

If we use such a frame for stability calculations we make the 
further assumption that it is sufficiently accurate to use a mean 
value of P\PE at any storey given by (P/P^)mean = 2 Pj^PE for 
all the columns instead of the values for each individual column. 
It has been s h o w n ( 2 9 ) that these methods can be used to predict 
the sway critical loads of multi-bay frames with considerable 
accuracy. 

These methods represent about the limit of what is at present 
feasible by hand calculations. For more complicated structures 
recourse must be had to computer methods, but no new physical 
principles are involved. 

4.5 Frames in which Members Carry Primary Bending Moments 

Having dealt with loads capable of being transmitted through 
the structure by axial loads only (Fig. 4.1), we now turn our 
attention to frames in which bending action predominates (Figs. 
4.2 and 4.3). We take as an example the symmetrical, uniform-
section portal frame shown in Fig. 4.10(a), and assume that 
sway is prevented. 

The only possible displacements are equal and opposite rota-
tions of B and C. Suppose equal and opposite bending moments 
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(b) 

FIG. 4.10 

M are applied at these joints, as shown in Fig. 4.10(b). Introduc-
ing the fixed-end moments in the beam due to the uniformly 
distributed load 2W (see Chapter 2), the operations table 
becomes: 

A B C D 

F . E . M . — — /-.(?) — — 

Rotate B and C 0 SikjB s2k26 —s2k2d -SI'kid 0 

s2c2k2d s2c2k20 

Since kx = 2k2, the equations of equilibrium for the joints B 
and C are both given by 

AF = 
2sx + s2(l - c2) 

k26 (4.3) 
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(4.4) 

Since the load in each column is W, 

(4.5) 

P\ 0 6 K 

/ ) , = I 0 0 0 
(Buckling load iotp{-pz) 

/>,=0-6l8 

FIG. 4.11 

If there are no external moments acting at B and C, so that 
M = 0, p x and p2 are related by the equation 

(4.6) 

obtained by eliminating W and 6 from equations (4.3), (4.4) 
and (4.5). The numerical solution of equation (4.6) by iteration 
leads to the relationship between p1 and p2 depicted by OAB 
in Fig. 4.11. It is found that p1 reaches a maximum value of 

The horizontal thrust at A and D is s-l'k-fijL, whence 
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0 - 6 1 8 when ft = 0 - 9 7 2 , so that ft = 0 - 6 1 8 or W = 0-618T7 2(£//L 2) 
represents the buckling load. The variation of the rotation 0 
with ft is given by curve OAB in Fig. 4 . 1 2 . 

According to linear elastic theory (i.e. ignoring the effect of 
axial loads on flexure), the axial load in the beam would be 1/4 

FIG. 4.12 

where the stability functions s, c and / correspond to p = ft. 
This results in the curve OCD in Fig. 4 . 1 2 , the rotations 6 
becoming infinite when c = 1 or ft = 1, which therefore repre-
sents the buckling load for the assumption ft = p2. The stiffness 
of the structure, at a given value of W, with respect to small 
applied bending moments d M at B and C, assuming ft = p2, 

that in each column, whence ft = p2 (OD in Fig. 4 . 1 1 ) . With 
this assumption, and putting M = 0 in equation ( 4 . 3 ) , it would 
follow that 

( 4 . 7 ) 



in which s{9 s2 and c2 are all stability functions corresponding to 

P l = p2 = WLl7T2kv The variation of dMjdd with p1 is repre-
sented by ABC in Fig. 4.13, and as would be expected, dMjdd 
becomes zero when p± = 1. 

FIG. 4 . 1 3 

It might seem reasonable to assume that the stiffness of the 
frame, allowing for the variation of p2 with pl9 could be obtained 
from equation (4.8) by substituting the appropriate values of 
Si, s2 and c2. However, when this is done, the curve obtained is 
ADE in Fig. 4.13. When px reaches the buckling value of 0-618, 
equation (4.8) gives dMjdd = l-53fcx. This apparently contra-
dicts the concept of zero stiffness as a property of a structure at 
its buckling load. The anomaly is resolved by differentiating 

5 

(4.8) 

may be obtained by differentiating equation (4.3) with respect 
to 0. Hence 
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equation (4.3), but allowing in the differentiation for the depen-
dence of p 2

 o n 0 a t stationary pv Denoting ds/dp by s, dcjdp 
by c and d//dp by / , and using kx — 2k2 and dpjdd = AS{JTT2 

from equation (4.4), it follows that : 

The above modified stiffness is plotted as curve AFG in Fig. 
4.13 and it will be seen that the stiffness becomes zero when 
px = 0-618. It may be noted that the effect of including the dif-
ferentials of the stability functions (curve AFG compared with 
ADE) is much greater than the effect of allowing only for the 
variation of p2 with p± (curve ADE compared with curve ABC). 

The presence of the additional terms in equation (4.9) (compared 
with equation (4.8)) implies that the stiffness of a frame carrying 
loads which produce primary bending moments is not identical 
with that of a frame supporting the appropriate axial loads only. 
The discrepancy in stiffness only becomes appreciable, however, 
when deformations become large. Thus, when 6 = 0-02 radian, 
the discrepancy is about 1 percent, when 0 = 0-1 radian it is about 
5 percent, and when 0 = 0-5 radian it is about 30 percent. The 
effect of terms involving the differentials of the stability functions 
or buckling loads has also been discussed by Le-Wu-Lu. < 3 0 ) 

We have included this dissertation in order that our results 
should show mathematical consistency. The mathematics used, 
however, have long ceased to represent the behaviour of the frame 
before these effects become appreciable. We have been using 
equations valid for small deflexions only in the region of large 
deflexions where the effects of change of geometry and bowing 
would have to be introduced before a mathematical analysis 
was valid. 

Despite the above limitations, the elastic critical load retains 
its significance in the magnification factor 1/(1 — WJWQ) used to 

(4.9) 
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estimate the effects of axial loads on deformations. According 
to linear elastic theory, the rotation 0 for the joints B and C 
(Fig. 4.10(a)) is 6 = WL2\\2EI = TT^JU giving the straight line 
OE in Fig. 4.12. Applying the magnification factor 1/(1 — WjWc) 
where Wc is obtained from the px = p2 solution (i.e. lx = 1-000 or 
Wc = 7r2EI/L2), the corrected load-rotation relation is the dotted 
curve OFG in Fig. 4.12, agreeing almost exactly with the correct 
solution OAB up to lx = 0-5 and 6 = 0-8. 

The practical conclusion is that for frames where bending 
stresses form a large component of the total stresses then stability 
effects will be small, and the concept of elastic buckling loads 
will not be applicable. Where it is necessary to investigate stabi-
lity effects it will be sufficient to do so using the axial load pattern 
obtained from a linear elastic analysis. 

It is shown in Chapter 5 that nominal elastic critical loads 
also have significance in the estimation of elastic-plastic failure 
loads. 

The above analysis of the frame in Fig. 4.10(a) has been carried 
out on the assumption that buckling in a sway mode is prevented. 
An approximation to the sway buckling load (neglecting stability 
effects in the beam) may be obtained from Fig. 4.6, and gives 
pt = 0-15. A more complete analysis reveals that the finite defor-
mations induced by the loads before sway buckling occurs modify 
the sway buckling load slightly, due to the presence of terms 
involving the differentials of the stability functions. This type 
of problem has been investigated extensively by Chwal la , ( 3 1 ) 

Chi lver ( 3 2 ) and H o r n e . ( 3 3 ) Again, such effects appear to have 
little practical significance. 

In multi-storey frames, although all loads may be applied 
as beam loads or horizontal sway loads, instability effects increase 
in importance with increase in number of storeys, because of the 
build-up of axial loads in the lower column lengths. When such 
frames are free to sway, the buckling load differs little from the 
critical load obtained by dividing the beam loads equally between 
the columns, and the effect of stability on deflexions is discussed 
very accurately by assuming the linear elastic sway deflexions to 
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be multiplied simply by the amplification factor 1/(1 — A/Ac). In 
multi-storey frames restrained against sway, stability functions 
may have to be employed to obtain reasonable estimates of 
elastic stresses, since the elastic critical loads may not be more than 
a few times the working load. It is found unnecessary to take 
into account the effect on stiffness of the small axial loads in-
duced in the beams by bending action. 

Examples 

4.1 A rectangular portal frame ABCD has two vertical stan-
chions AB and CD of height L rigidly jointed to a horizontal 
beam BC of length 2L/3. All members are of uniform flexural 
rigidity. The stanchion feet A and D are encastre to a rigid base. 
Equal vertical loads are applied at B and C. Show that the stiff-
ness of the frame in respect of sway disturbance is zero when 

m ^ l + c1)-2s1 = 18, 

where sl9 cl9 m1 are stability functions for the stanchions. 

(Cambridge Mech. Sci. Tripos Part II 1962.) 

I k , 

77777T, 777777: 

FIG. 4.14 
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4.2 Show that the critical loads of the symmetrical single-bay 
rigid frame shown in Fig. 4.14 with side sway prevented are 
given by the equation 

(Manchester, Honours B.Sc. Tech., Part II 1954.) 

4.3 Show that the sway critical load of the portal shown in 
Fig. 4.15 is given by the equation 

B is a rigid joint and C is a pin. A and D are fixed ends. 

(Manchester, Honours B.Sc. Tech., Part II 1957.) 

4.4 Show that the sway critical load of the symmetrical single-
bay rigid frame shown in Fig. 4.14 is given by the equation: 

where n, o are no-shear stability functions and fc2, kx the stiffness 
of the beam and column members. Draw an approximate graph 

FIG. 4 . 1 5 
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showing how you would estimate the sway critical load to vary 
with the ratio of k2 to kx and in particular determine the limit 
when k2\kx approaches zero. 

(Manchester, Honours B.Sc. Tech., Part II 1960.) 

4.5 Figure 4.16 shows a column, of constant cross-section of 
second moment of area equal to Il9 having pinned ends, which is 
restrained against buckling by being pinned at its mid-point to a 

FIG. 4 . 1 6 

uniform simply supported beam of the same span as the column 
and moment of inertia I2. Show that for all values of I2\IX 

greater than 3-28 the column will buckle at a load corresponding 
to the Euler value for its half length. 

Note. At P = PE, s = 2-467, c = 1-0, m = oo. 

(Manchester, Honours B.Sc. Tech., Part II 1961.) 

4.6 Investigate the stability in the plane of the structure indi-
cated in Fig. 4.17 for which k2 = 2kl9 and determine the critical 
load in terms of PjPE, where PE is the Euler load of a pin-ended 
strut of stiffness kx and height h. Tables of stability functions 
are provided. The members are rigidly jointed at A and B. All 
other joints are pinned. 

(Manchester, Honours B.Sc. Tech., Part II 1962.) 

4.7 The end A of a member AB, length / and flexural rigidity 
EI, is held by other members which together provide a restraining 
moment of QA0A when end A is rotated through an angle 0A. 
End B is restrained against rotation by a member of rotational 
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stiffness qk where k = EIjl. The member AB carries an axial 
load, and is subjected at end B to a "no-shear" rotation during 
which equilibrium is maintained at end A. Show that, for a joint 
rotation of 0B at end B, the total moment applied at that joint 
is 0„6T? where 

T77Yf7T. 77p777 • 

FIG. 4 . 1 7 
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FIG. 4 .18 

The three-storey frame in Fig. 4.18 has uniform columns of 
flexural rigidity EI and beams of flexural rigidity ft EI. The feet 
of the columns are fixed in position and direction, and the columns 
each sustain a uniform axial load P. Using the above result or 
otherwise, show that the frame becomes unstable in a sidesway 
mode when 

where o and n are stability functions for member AB. 

where n and o are stability functions corresponding to p = 
Ph2lrr2EI. 
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4.8 Figure 4.19 shows a compression testing machine consisting 
of four circular equal members AA!, BB', etc., each of length / 
and flexural rigidity EI, fixed into rigid end blocks. When testing 
a short pin-ended specimen EE of length a, show that the machine 
will become unstable when the compressive load in isFis given by 

FIG. 4 . 1 9 

4.9 A compression testing machine consists of two circular 
equal members AA' and BB\ each of length / and flexural rigidity 
EI, fixed into rigid end blocks. An elevation of the machine would 
appear as in Fig. 4.19. Show that the testing machine would, 
when used to test the pin-ended specimen EE, become unstable 
by buckling out of the plane AA'B'B when the compressive load 
in EE was given by 

(b) 

where s, c and m are stability functions corresponding to p = 
-P12I4TT2EI. 



R I G I D - J O I N T E D F R A M E S 127 

where s and c are stability functions corresponding to p = 
- P12I2TT2EL 

4.10 The rigid jointed frame shown in Fig. 4.20 is built on rigid 
foundations and the surrounding structure provides an elastic 
resistance to sway which is represented by a spring of axial 

stiffness k at D. Enumerate and sketch the possible elastic 
collapse modes of the structure and formulate equations which 
express the instability condition by a sway mode. D o not attempt 
to solve the equations. 

(Manchester, Honours Engineering, Faculty of Science, Part II 
1962.) 

(Answers to questions 4.4 and 4.6 may be found on page 154.) 
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Elastic-Plastic Behaviour 

5.1 Introduction 

When considering elastic stability, the stiffness of each member 
of a structure affects the buckling load, and it is incorrect (except 
when the members are pin-jointed) to speak of the buckling load 
of an individual member. The same is true in the elastic-plastic 
range, but in many cases final failure may in fact take place in 

FIG. 5.1 

one member only, and it is then easier to think of the problem 
primarily in terms of the behaviour of that particular member. 
Thus in the simple structure in Fig. 3.1, ultimate failure might 
involve the deformation of member AB as a mechanism with 
plastic hinges at A, B and at some section near the mid-point 
of AB, as shown in Fig. 5.1. After considerable deformation, a 
fourth hinge would form at C, but this would be well after the 
attainment of the peak load, and it is the stages leading up to the 
formation of plastic hinges at A, B and D that have to be studied 

128 
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in order to predict the failure load. It should be noted that the 
behaviour of the "critical" member AB is throughout affected 
by the behaviour of member BC. Hence, failure is to be discussed 
in terms of the influence of the remainder of the structure on the 
failure of the "critical" member—leaving aside for the moment 
the problem of how the "critical" member is to be identified. 

The above approach to elastic-plastic buckling is applicable 
wherever the "critical" member could sustain the applied load 
by an axial compressive load only. The bending moments that 

actually arise in the "critical" members are due either to imper-
fections, axial deformations, lateral loads ("beam" loads) applied 
to adjacent members, or to combinations of these factors. The 
three individual causes are illustrated in Figs. 5.2, 5.3 and 5.4 
respectively. 

Imperfections (Fig. 5.2) are always present in some degree, 
due to lack of straightness or lack of fit or both, and may be 
important in their effect on the failure loads of compression 
members in triangulated structures, or of columns in multi-
storey frames restrained against sway. Ultimately a mechanism 
will form as shown, with hinges at both ends and near the centre 
of length. If the surrounding members are weaker than the failing 
member, then hinges may form in these adjacent members. 
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Axial deformations are important in triangulated frames, in 
which they induce joint translations with accompanying double 
curvature bending as shown in Fig. 5.3(a). Ultimate failure 
involves the deformation of the member to one side of the 
longitudinal centre line, and if in Fig. 5.3(a) MA > MB, failure 
will occur as in Fig. 5.3(b). 

Single curvature 

FIG. 5.4 

Beam loads have an important effect on the columns of multi-
storey frames restrained against sway. In the elastic range, 
differing arrangements of beam loading cause double or single 
curvature flexure in the columns, as shown in Figs. 5.4(a) and (c) 
respectively, but ultimate failure is similar in mode (Figs. 5.4(b) 
and (d)). 

Although, in all the above cases, the final failure mode is much 
the same, this does not mean that it is at all easy to obtain a rea-
sonable estimate of the maximum axial loads sustained by the 
members before the final plastic hinge mechanism forms. At 
the peak load the member is in an intermediate condition, being 
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neither elastic nor having a fully developed plastic hinge mechan-
ism, and a laborious step-by-step elastic-plastic analysis is neces-
sary to obtain a theoretical failure load. Few such analyses 
have been made, but a study of the behaviour of columns in 
building frames has revealed interesting general results of a 
qualitative nature, and these will be described. Some progress 
has been made in empirical methods, and these will also be dealt 
with. 

Although the final failure of the compression members in Figs. 
5.2 to 5.4 involves bending, the primary loading is axial, and so 
the members may all be described as "compression loaded". 
An entirely different type of member may be described as "lateral 
loaded". The simplest example would be a member which 
itself carried lateral load in addition to axial load, see Fig. 5.5. 
However, all the members in the frame in Fig. 4.2 may also be 
referred to as "lateral loaded" in that their bending resistance is a 
primary factor in the total rigidity of the structure with respect 
to the applied loads. The ultimate behaviour of such a member 
may be represented diagrammatically as in Fig. 5.6, but it is 
here not at all useful to refer to the "failure" of the member, since 
the bending moment distribution and the incidence of plastic 
hinges depends primarily on the behaviour of the structure as a 

FIG. 5.5 FIG. 5 .6 
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whole. There is another important difference between "compres-
sion loaded" and "lateral loaded" members. In the former, 
since the bending moments are secondary, their distribution may 
change radically, not only (as has been seen in Chapter 3) in the 
elastic range, but also in the plastic range. In laterally loaded 
members, on the other hand, the bending moment distributions, 
while varying in detail, tend to remain recognisably similar, 
even during plastic deformation, since they are dictated by overall 
equations of equilibrium. 

We first discuss structures in which elastic-plastic stability is 
controlled by the behaviour of compression loaded members, 
and subsequently we discuss structures that are lateral loaded. 

5.2 The Elastic-Plastic Behaviour of Compression-loaded Members 

In the course of a lengthy experimental investigation into 
columns bent by beam loads into double and single curvature 
(Fig. 5.4(a) and (c ) ) ( 3 3 > 3 4 ) a theoretical study was made of the spread 
of plasticity in the columns as the axial loads were increased to 
failure. The experimental test frames for single and double 
curvature are shown in Figs. 5.7(a) and (b) respectively. The 
beams were of high tensile steel, of width 0-75 in. and depth 
1-25 in., so that plastic deformation was confined to the mild 
steel columns, some of which were of rectangular cross-section 
and some of /-section. The full beam loads were first applied, 
and further direct axial load was then added to the top of the 
column until complete failure occurred. The calculated sequence 
of behaviour for one of the rectangular section columns (width 
1-25 in., depth 0-375 in.) bent in single curvature about its minor 
axis is shown in Fig. 5.8. The calculations have been performed 
on the assumption that the material has an idealised elastic-
pure plastic stress-strain relation, with an upper yield stress of 
22-9 ton/in 2 , a lower yield stress of 20-3 ton/in 2 , and a modulus of 
elasticity of 13,000 ton/in 2 . The load deflexion curve (for central 
lateral deflexion of the column) is given by OEABCD in Fig. 5.9, 
while the changes with axial load of the end and central bending 
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moments in the column are shown in Fig. 5.10. Yield first occurred 
at the centre of the concave face of the column at an axial load of 
3-98 ton (Fig. 5.8(a) and points A in Figs. 5.9 and 5.10). As the 
axial load increased (the beam loads remaining constant), the end 

moments decreased, eventually changing sign, while the central 
moment increased, causing plastic zones, first in compression 
on the concave face, and then in tension on the convex face. The 
reversed bending moment at the ends also caused first compressive 
yielding and then tensile yielding. At the peak load of 6-82 
ton (Fig. 5.8(c) and points C in Figs. 5.9 and 5.10), no yielding 
had occurred in tension either at the ends or the centre, and a 
"plastic hinge" was nowhere fully operative, although it is 
evident that the degree of plasticity near the centre would seriously 

FIG. 5.7 
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reduce the rigidity of the column. Since the plastic zones which 
show increasing plastic flow have no rigidity, the peak load of 
6-82 ton must be identical with the critical load of a structure 
consisting of the beams and a column of varying section, the 
cross-section of this column being the original section less these 

Central deflexion, in 

FIG. 5.9 

plastic zones. It will be seen from Fig. 5.8(c) that the cross-
section of this reduced column at mid-height is very small, 
whereas the ends of the column are almost fully elastic. It would 
therefore be expected that a rough approximation to this critical 
load would be obtained by assuming a structural hinge at mid-
height in the column, as shown in Fig. 5.11. In fact, the critical 
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load of this "reduced structure" is found to be 8-1 ton, compared 
with 32-2 ton for the fully elastic structure. This explains why 
the column fails at the stage at which full plasticity is approached 
at mid-height. 

FIG. 5 . 1 0 

The theoretical failure load of 6-82 ton agrees very well with the 
experimental failure load for this frame of 6-67 ton. An exact 
elastic-plastic analysis of this nature, although instructive, is 
however tedious, and it is desirable to investigate how closely 
approximate methods will predict the resul t . ( 3 5 ) The elastic 
response of the frame for the given load sequence, derived from 
s and c functions, is represented by OEAF in Fig. 5.9. The 
rigid-plastic response is obtained from the plastic hinge mechanism 
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in Fig. 5.12, and this leads to the mechanism line HJ in Fig. 
5.9. The calculation of HJ is similar to that for a pin-ended 
member, Figs. 1.18 and 1.19. Equations (1.33) and (1.34) apply, 
and taking moments about one end for half the column, Pyc 

= 2Mp where yc is the central deflexion (Fig. 5.12). Hence 

where b x d is the cross-section of the member and ay is the 
yield stress. 

Without performing the labour of an "exact" elastic-plastic 
analysis, a rough estimate of the failure load will be given by G, 
the intersection of the elastic curve OEAF with the mechanism 

(5.1) 

FIG. 5 .11 

FIG. 5 . 1 2 
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line HJ (Fig. 5.9). This gives a load PQ = 7-93 ton, 19 percent 
above the experimental value, and not a particularly close estimate. 

The end and central moments vary, according to the elastic 
solution, as shown by the thinner continuous curves in Fig. 
5.10, and full plastic moment is in fact reached at mid-height 
when the axial load is 6-40 ton, represented by points K in Figs. 
5.9 and 5.10. Assuming that plasticity is confined to the plastic 
hinge, a more accurate elastic-plastic analysis may be obtained 
beyond point K with the help of stability functions by applying 
these to the two halves of the column above and below the hinge. 
The deflexions then increase according to the dotted curve KM 
in Fig. 5.9, and if no further hinges formed, would tend to 
indefinitely large values as the critical load for a column with a 
central hinge (i.e. 8-10 ton) was approached. In fact, full plastic 
moment is reached at the ends at an axial load of 7-3 ton, corres-
ponding to points G' in Figs. 5.9 and 5.10. Thereafter the theoreti-
cal load-deflexion curve follows the mechanism line G'J. The 
approximate elastic-plastic load-deflexion curve OEKG'J thus 
furnishes a high estimate of the failure load, but the analysis of 
a number of columns shows that the overestimate is a consistent 
one of about 10 percent compared with experimental values. 
In a similar series of tests with columns of 1-25 X 0-25 in. cross-
section (i.e. 50 percent more slender than the above) the point 
corresponding to K in Fig. 5.9 is found to lie above the reduced 
critical load for a column with a central hinge, so that G' lies 
below K9 and the load at K then becomes the best estimate of 
failure. Again, this estimate is found to be about 10 percent 
above the experimental value. 

5.3 The Estimation of Failure Loads 
of Compression-loaded Members 

Although the above discussion has been with reference to a 
compression loaded member disturbed by bending moments 
induced by lateral loads in adjacent members, essentially similar 
phenomena are observed when the disturbing moments are due 
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to initial imperfections or lack of fit, or changes in the axial 
lengths of members. 

A complete plastic zone analysis for a rigid-jointed triangle, in 
which the bending moments are those due to axial extension and 
contraction only, has been given by Fou lkes . ( 3 6 ) M u r r a y ( 3 7 ) tested 
a number of triangulated structures, and calculated loads PG 

corresponding to point G in Fig. 5.9. Murray assumed that 
bending was induced in the members by imperfections only, 
and ignored the effects of changes in length; he found that failure 
loads lay between 77 and 98 percent of PG. Since in practice 
disturbing moments arise from a number of causes, each of which 
may be important, it is readily seen that any attempt to perform 
a theoretical analysis is bound to be difficult, and for practical 
purposes, recourse must be had to empirical methods justified by 
experimental data. 

The most useful general method hitherto suggested is the 
Rankine load PR already described in Chapter 1 in relation to 
pin-ended members (equation (1.39)) ( 9 ) . If Xc is the elastic critical 
load factor for a structure containing a member which reaches 
its "squash load" (area of cross-section times yield stress) at a 
load factor of A P , then what appears to be a satisfactory approxi-
mation to the failure load is given by the Rankine load factor 
kR where 

(5.2) 

The compression member chosen is that having the lowest 
squash load factor for the given pattern of loads. For the 
column illustrated in Figs. 5.7(a) and 5.8 to 5.10, the axial loads 
in the column are: 

Elastic critical, 32-2 ton 

Squash load, 9-53 ton 

Hence Rankine load PR • 7-35 ton, 



140 T H E S T A B I L I T Y O F F R A M E S 

When the rigid-plastic load is thus interpreted (i.e. simply as 
the squash load in the compression member), no influence of 
beam loading appears. If the collapse load of a compression 
member in a truss is estimated from equation (5.2), the failure 
load will always be increased if the restraint offered by an adjacent 
member is increased, since Xc then increases while XP remains 
unchanged. Neal and Manse l l ( 3 8 ) have shown, however, that 
increasing the restraint on a compression member may reduce 
the failure load. M e r c h a n t 3 5 ) has proposed the use of a modified 
rigid-plastic load in place of the squash load, so that allowance 
is made for the deformations imposed on the compression mem-
ber by adjacent members that remain elastic. The deformation 
is the elastic deformation calculated without reference to stability 
effects. Applying this to the aforementioned frame in the Cam-
bridge series (Fig. 5.7(a)), the rigid-plastic load is taken at point 
L on the mechanism line HJ (Fig. 5.9) corresponding to the elastic 
central deflexion at full beam load but zero axial load. This 
gives a load PL = 8-74 ton, and substituting this in the Rankine 
formula, the estimated failure load becomes 

This is in excellent agreement with the observed failure load of 
6-67 ton. 

The correlation between experimental failure loads and Rankine 
loads for single and double curvature columns of 1-25 x 0-375 in. 
cross-section in the Cambridge t e s t s ( 3 4 ) is summarised in Tables 
5.1 and 5.2. 

For the single curvature frames, the Rankine loads are calculated 
using both the squash load PP and Merchant's load PL as the 
rigid-plastic failure load. It is seen that the Merchant loads give 
greatly improved correlation for the more heavily loaded single 
curvature columns. The Rankine loads for the less heavily 
loaded single curvature columns and all the double curvature 
columns are conservative estimates of the actual failure loads. 
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TABLE 5 .1 . COLUMNS BENT IN SINGLE CURVATURE 

Frame 
No. 

Beam 
Load 

Axial 
Load at 
Failure 

PF 

Rigid-
Plastic 
Loads 

Pp 
P 

Elastic 
Critical 
Load 

Pc 

Rankine Load 

PR- P P P C 

R Pp + Pc 

P . _ PLPC 
R PL + Pc 

PF 

PR 

PF 

PR 

(ton) (ton) (ton) (ton) (ton) 

2/48 0 7-76 8-34 
8-34 

32-2 6-62 
6-62 

117 
117 

2/47 0-5 7-67 8-34 
810 

32-2 6-62 
6-47 

116 
119 

2/15 1-48 6-86 9-53 
8-75 

32-2 7-35 
6.87 

0-93 
100 

2/16 1-99 6-67 9-53 
8-47 

32-2 7-35 
6-71 

0-91 
0-99 

2/17 2-49 6-25 9-53 
8-13 

32-2 7-35 
6-50 

0-85 
0-96 

2/46 2-50 5-58 8-34 
719 

32.2 6-62 
5-88 

0-84 
0-95 

2/18 2-99 6-17 9-53 
7-98 

32-2 7-35 
6-38 

0-84 
0-97 

TABLE 5 . 2 . COLUMNS BENT IN DOUBLE CURVATURE 

Frame 
No. 

Beam 
Load 

Axial 
Load at 
Failure 

PF 

Squash 
Load 

Pp 

Elastic 
Critical 
Load 

Pc 

Rankine Load 

PR- P P P C 

R PP + PC 

PF 

PR 

(ton) (ton) (ton) (ton) (ton) 

1/17 0 7-87 8-53 32-2 6-63 119 

1/5 100 803 8-90 32-2 6-98 115 

1/13 1-50 7-61 8-53 32-2 6-63 115 

1/15 200 7-63 8-53 32-2 6-63 115 

1/10 2-50 7-32 8-90 32-2 6-98 105 

In view of the sensitivity of failure loads in columns to initial 
imperfections, the general level of agreement is satisfactory. 

The result of applying the Rankine load concept to derive the 
failure loads of model triangulated frames is shown in Fig. 
5 j 3 (39) r esults are plotted non-dimensionally, with PP/Pc 
horizontally and PF/PC vertically. The ratio PPjPc is a measure 
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of slenderness, while PF/PP shows the extent to which the failure 
load falls below the squash load. Only two of the fourteen results 
shown fall below the Rankine load, which thus provides an accep-
table lower bound. 

0 8 h -

0-6 

2V 
pp 

0-4 

0-2 h 

FIG. 5 . 1 3 

In view of the many factors that affect the actual failure load of 
a compression loaded member (lateral loads on adjacent members, 
imperfections, lack of fit and accompanying internal stresses, 
internal stresses due to methods of fabrication, and axial defor-
mations in the structure), it is unlikely that the Rankine load can 
be much improved upon as a general method of assessing failure 
loads. 

In a triangulated frame which contains more than the minimum 
number of members required to render it simply stiff as a pin-
jointed frame, the load carried by a compression member may 
decrease without this causing a decrease in the loading level on the 
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truss. The behaviour then becomes quite involved, and as has 
been shown by Davies and N e a l ( 4 0 ' 4 1 ) , dynamic jumps may occur. 
The treatment of such frames is beyond the scope of this volume. 

5.4 The Elastic-Plastic Failure of Lateral Loaded Frames 
Behaviour of a Two-storey Frame 

The subject is best introduced by taking a specific example, 
and the theoretical results will be given for the two-storey, 
single-bay frame illustrated in Figs. 5.14 and 5.15. < 1 0 ) The dimen-
sions of the frame and the applied loads are shown in Fig. 

Order of hinge 
formation {curve c, fig 5-15) 

(d) 

Final plastic hinge 
mechanism 

( e ) 

FIG. 5 . 1 4 
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0 0 0 2 0 0 4 O06 O08 010 0-12 0-14 016 

Total sway deflexion 

FIG. 5 . 1 5 

5.14(a), the loads XWP being such that rigid-plastic collapse of 
the frame occurs when A = 1-00. All members are of the same 
uniform symmetrical I-section with the web in the plane of the 
frame. It is assumed that the area of the web is negligible com-
pared with that of the flanges, so that the cross-section has unit 
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shape factor and all members remain fully elastic except at the 
plastic hinge positions. (This assumption greatly simplifies 
the analysis and leads to imperceptible error in problems of this 
type.) The depth between the flanges is 2r where, therefore, r 
is the radius of gyration for bending in the plane of the 
web. All members are of the same length / where Ijr = 100. 
The modulus of elasticity is E = 30 X 10 6 lb/ in 2 , and the yield 
stress (at which indefinite plastic deformation can occur) is 
36 x 10 3 lb/in 2 . The variation of full plastic moment with 
axial load is small in a frame of this slenderness, and is therefore 
neglected. 

Figure 5.14(a) shows the deformation of the structure according 
to a linear elastic analysis, that is, ignoring the effect of axial 
loads on the stiffnesses of the members. The ratio of upper to 
lower storey sway A 2 / A x is 0-88. When the total sway (A x + A 2 ) 
is plotted against the load factor A, the straight line A (Fig. 5.15) 
is obtained. Under axial loads only (Fig. 5.14(b)), the first 
elastic critical load is obtained at Xc = 3-37, the ratio A J A i 
being 0-67. Under the full loading, allowing for instability 
effects, the elastic analysis gives curve B± in Fig. 5.15. Curve 
B2 is an approximation to the elastic response obtained from the 
linear analysis (straight line A) by multiplying the total sway 
deflexion at any given load factor X by 1/(1 — XfXc). This is 
equivalent to assuming that the modes of deformation in Fig. 
5.14(a) and (b) are identical, and that only the first terms in equa-
tions (1.23) and (1.24) have non-zero coefficients. It will be seen 
that the difference between the modes has negligible effect. 

The rigid-plastic collapse mechanism (giving XP = 1-00 and 
A 2 /A! = 1-00) is shown in Fig. 5.14(c). Curve C in Fig. 5.15 is 
the elastic-plastic load-deflexion curve, the order of hinge 
formation being as shown in Fig. 5.14(d). The peak load occurs 
on the formation of the third hinge at point F i n Fig. 5.15, giving 
XF = 0-777. Hinge 5 (at the centre of the lower beam) ceases 
to be operative when hinge 6 forms, while hinges 1, 4 and 7 
also cease when hinge 8 forms. The final plastic collapse mechan-
ism is thus with hinges in the lower storey only, as shown in 
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Fig. 5.14(e), and thus differs significantly from the rigid-plastic 
mechanism, Fig. 5.14(c). 

It is of some interest to trace the decline in the stability of the 
structure with the progressive formation of plastic hinges. This 
may be achieved by reference to the "reduced critical loads", 
obtained by assuming structural hinges at these sections. Results 
are given in Table 5.3, which also shows the loads at which the 
plastic hinges form in the loading sequence. 

TABLE 5.3 

Positions of Hinges 
(Fig. 5.14(d)) 

Load Factor at 
which New Hinge 

Forms 

Reduced Elastic 
Critical Load 

Factor 

Elastic — 3-37 

1 0-613 2-02 

1, 2 0-768 1-52 

1, 2, 3 0-777 0-54 

1, 2, 3, 4 0-745 0-48 

With the formation of the third hinge at XF = 0-777, the reduced 
critical load falls to A = 0-54 so that the frame is unstable and 
the load has to be decreased at higher deflexions to maintain 
equilibrium. Similar results have been obtained by Wood for 
two four-storey f rames . ( 4 2 ) 

5.5 The Elastic-Plastic Failure of Lateral Loaded Frames 
The Rankine Load as an Approximation to Failure Load 

The Rankine load again appears to be a sufficiently reliable 
lower bound on failure loads. In this application XP in equation 
(5.2) is to be interpreted as the rigid-plastic failure load factor 
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of the structure, and may be obtained by any of a number of 
established m e t h o d s . ( 3 4 ' 4 3 ) The elastic critical load factor Xc 

refers to a distribution of axial loads in which there is some freedom 
of choice, but it is found that the actual distribution selected has 
little effect on the final result. When considering multi-storey 
frames, it is sufficient to ignore axial loads in the beams and 

051 I I I 1 I I 1 

0 0*1 0-2 0-3 0-4 0 5 0-6 0-7 

Pp 

Pc 
FIG. 5 . 1 6 

the effect of horizontal loads generally, and to divide beam loads 
equally between columns. In pitched roof portal frames, it is 
permissible either to take the distribution of axial loads obtained 
as the result of a linear elastic analysis, or to assume axial loads 
proportional to those obtained at rigid-plastic collapse. 

Sa lem ( 4 4 ) has compared Rankine loads with theoretical failure 
loads for a large number of single and two-storey frames, and his 
results are summarised in Fig. 5.16. The Rankine load is a close 
estimate of the failure load when the general forms of the first 
elastic critical mode and of the rigid plastic failure mechanism are 
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similar, as, for example, in the case of the two-storey frame analysed 
above (Rankine load factor XR = 1-00 x 3-37/(1-00 + 3-37) 
= 0-772, failure load factor XF = 0-777). When the side 
load on a frame is small, so that rigid-plastic failure is confined 
to a beam, the Rankine load may fall well below the failure load. 
These features are illustrated by the plotted points in Fig. 5.16. 

It has been s h o w n ( 1 0 ) that there is some theoretical justification 
for the Rankine load when the rigid-plastic mechanism and first 
elastic critical mode are similar in form. Initial imperfections 
and lack of fit have, for such frames, negligible effect on failure 
loads, and need not therefore be considered in the argument. 

In Fig. 5.17, in which the vertical scale is that of load factor 
and the horizontal scale is for a typical deflexion, HJ represents 
the elastic critical load level for a structure, and LN the rigid-
plastic collapse load level. The elastic load-deflexion relation 
ignoring instability and change of geometry is the straight line 
OC. Similarly, it would be possible to calculate an elastic-
plastic load-deflexion curve ORS which also ignored instability 
effects and change of geometry. This theoretical curve would 

D 

Deflexion A 

FIG. 5 . 1 7 
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either meet, or become asymptotic to, the line LN. If the rigid-
plastic failure mechanism and the elastic critical mode are closely 
similar, the following construction may be used to derive the 
true elastic-plastic response curve OFD from the curve ORS. 

Let A c be the deflexion obtained on the linear elastic line OC 
at load factor Xc. From point G at a deflexion — A c on the hori-
zontal axis draw GT to any point T on ORS, intersecting the ver-
tical axis at U. Then point V, where TV and UV are vertical and 
horizontal respectively, is on the true elastic-plastic load-deflexion 
curve OFD. The more the rigid-plastic mechanism and the elastic 
critical modes differ the more will the derived curve fall below the 
true curve. An estimate of the failure load factor is obtained by 
drawing the tangent GE to the curve ORS, and this estimate must 
be conservative. 

The Rankine load may now be derived by taking, as an approxi-
mation to the curve OES, the two straight lines OEN in Fig. 
5.18. From similar triansles GUO. GEE'. 

i.e. XF so derived is the Rankine load. 
Since OEN in Fig. 5.18 is always an upper bound to ORS in 

Fig. 5.17, a consistent tendency for the Rankine load to over-
estimate the failure load is here superimposed on the tendency 
inherent in the construction of Fig. 5.17 to lead, due to differences 
between the rigid-plastic mechanism and the elastic critical mode, 

and from similar triangles OEE', OCC, 

Eliminating AC/AE, it follows that 
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to an underestimate. It is the cancellation of these contradictory 
effects that causes the Rankine load to be a close estimate of 
failure except when the elastic critical mode and the rigid-plastic 
mechanism are completely different in form. 

It should be remembered that actual failure loads depend on 
internal stresses and cannot, therefore, be expected to be invariants 
for nominally identical frames. Refined detailed analysis can 

therefore hardly be justified and the test of formulae should be 
empirical. Unfortunately, complete frame tests are rare and most 
of those done have been performed at model scale. 

Design codes dealing with stability effects are at present (1964) 
largely out of date and indeed some are at present undergoing 
revision. It is not the aim of this book to explain or comment on 
particular codes but rather to give a perspective of the phenomena 
involved in the behaviour of frames. It is hoped that it will be 
found useful for this purpose. 

As a further comment it is worth emphasising the low sway 
critical loads of portal frames. It is certainly desirable to provide 
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sway stiffness to tall buildings by shear walls or such devices 
and tall skeletal buildings should not be erected without a proper 
understanding of the phenomena described in this chapter. 

5.6 Ultimate Loads of Structures in Strain-hardening Material 

The use of the tangent modulus concept to obtain estimates of 
ultimate loads for pin-ended compression members has already 
been mentioned in Chapter 1. It was emphasised there that, 
because of the importance of imperfections, this is essentially 
an empirical procedure, but that it has been found highly success-
ful for a number of materials. The application of the same 
concept to structures containing compression loaded and tensile 
loaded members involves trial calculations at increasingly high 
load levels until the critical load, calculated using the tangent 
moduli of the individual members, drops to the level of the applied 
load. This is a straightforward if tedious process, but is the only 
general method at present available. Little progress has been 
made in calculating the failure loads of structures in strain-
hardening material when lateral loading predominates. 

Examples 

5.1 The uniform rectangular portal frame ABCD shown in 
Fig. 5.19 is subjected to axial loads W in the columns and a shear 
load of 0-2 W. With W equal to 4000 lb, 10,000 lb, and 20,000 
lb the elastic lateral deflexions A at B would be 1-378 in., 4-5 in. 
and 18-3 in. respectively. The frame is made of a 2 in. x 2 in. solid 
rectangular section throughout with an E-value of 30 x 10 6 lb/ in 2 

and a yield stress of 30 x 10 3 lb/in 2 . 
Plot the elastic stability line for the structure in terms of W 

against A showing the elastic critical load. Also plot a plastic 
collapse line on the assumption of a rigid-plastic behaviour of 
the material, taking into account the change of equilibrium of the 
collapse mechanism with finite deflexions. Ignore the reduction 

6 
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of plastic moment due to end load and assume negligible axial 
load in the beam. 

Using an empirical formula calculate the maximum value of W 
which the structure will carry and sketch in a probable line to 
describe its real behaviour. 

(Manchester, Honours Engineering, Faculty of Science Part II 
1962.) 

0-2 W 
100-

A 
7777777. 

100 

ID 
777777?-

FIG. 5 . 1 9 

5.2 A member of length L is contained in a triangulated plane 
frame. Linear elastic analysis shows that, when the frame is 
subjected to working loads applied at nodal points only, secondary 
moments cause terminal bending stresses in the member of a± 

and a2 where, when ax and a2 are of like sign, the terminal mo-
ments act in like sense. If the extreme fibre distance is c and the 
modulus of elasticity is E, show that the central lateral deflexion 
of the member at load factor X is X(o1 — cr2)L2/16 Ec. 

The member has an additional central deflexion of ax = rjr2/c 
where r is the radius of gyration and rj is the imperfection co-
efficient (see Section 1.14). The full plastic moment under a mean 
axial stress Xa may be expressed in the form 

where ay is the yield stress and S2 and Sz are constants. The stress 
a is the mean axial stress in the member at working loads. Show 
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that, with a central deflexion of {ax + X(ax — cr 2)L 2/16 Ec), 
rigid-plastic failure occurs with plastic hinges at both ends and 
at the centre at a load factor XP given by the solution of the quadra-
tic equation 

where aE is the mean axial stress corresponding to the Euler 
buckling load for the member treated as a pin-ended strut, and A 
is the area of cross-section. 

For such a member, A = 5-88 in 2 , r = 1-20 in., c = 2-63 in., 
L = 150 in., rj = 0-003 L/r, S2 = 10-45 in 3 , Ss = 0-383, a = 4-5 
ton/ in 2 , Oi = 3-5 ton/in 2 , a2 = 0, £ = 13,000 ton/ in 2 , ay = 16 
ton/ in 2 . At the elastic critical load of the truss, the stress in the 
member is 2-140*^. If failure of the truss occurs due to elastic-
plastic failure of the member, use the rigid-plastic failure load 
as derived above together with the elastic critical load, to obtain 
an estimate of the load factor at failure. 
(Answers to the above questions may be found on page 154.) 



Answers to Examples 

Chapter 1 

1.3 9-45 ton/ in 2 . 
1.6 10 4 x 2-227 <aF< 10 4 x 2-326 lb/in 2 . 

10 4 x 1-965 lb/in 2 . 

3.2 V3PE<P<W3PE. 
3.3 10-8 EI/L. 
3.4 Wc = 3-22 7T2 EI/L2. 

Chapter 4 

4.4 P/PE 1/16 as kjkt -> 0. 
4.6 PjPE = 0-492 

Chapter 5 

5.1 Intersection of elastic line and plastic mechanism line at 
W = 8800 lb. 
Elastic critical load = 29,200 lb. 
Rankine load = 8500 lb. 

5.2 l P = 3-10, Xc = 3-89, l F = 1-73. 

154 

Chapter 3 
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TABLE A l STABILITY 

p s C SC 

0 0 0 4-0000 0-5000 3-0000 2-0000 
-132 25 -198 33 

0.01 3-9868 0-5025 2-9802 2-0033 
-132 25 -199 33 

0 0 2 3-9736 0-5050 2-9603 2-0066 
-132 25 -200 34 

0 0 3 3-9604 0-5075 2-9403 2-0100 
-133 26 -202 33 

0 0 4 3-9471 0-5101 2-9201 2-0133 
-133 26 -202 34 

0 0 5 3-9338 0-5127 2-8999 20167 
-134 26 -204 34 

0 0 6 3-9204 0-5153 2-8795 2-0201 
-134 26 -205 34 

0 0 7 3-9070 0-5179 2-8590 2-0235 
-134 27 -206 35 

0 0 8 3-8936 0-5206 2-8384 20270 
-134 27 -207 34 

0 0 9 3-8802 0-5233 2-8177 2-0304 
-135 27 -209 35 

0 1 0 3-8667 0-5260 2-7968 2-0339 
-136 28 -210 35 

O i l 3-8531 0-5288 2-7758 2-0374 
-135 28 -211 36 

0-12 3-8396 0-5316 2-7547 20410 
-136 28 -213 35 

0 1 3 3-8260 0-5344 2-7334 2-0445 
-137 28 -214 36 

0-14 3-8123 0-5372 2-7120 2-0481 
-136 29 -215 36 

0 1 5 3-7987 0-5401 2-6905 2-0517 
-138 29 -217 36 

0-16 3-7849 0-5430 2-6688 2-0553 
-137 30 -218 37 

0-17 3-7712 0-5460 2-6470 2-0590 
-138 30 -219 36 

0 1 8 3-7574 0-5490 2-6251 20626 
-138 30 -221 37 

0-19 3-7436 0-5520 2-6030 2-0663 
-139 30 -222 38 

0-20 3-7297 0-5550 2-5808 2-0701 
-139 31 -224 37 

0-21 3-7158 0-5581 2-5584 2-0738 
-139 31 -225 38 

0-22 3-7019 0-5612 2-5359 2-0776 
-140 32 -227 37 

0-23 3-6879 0-5644 2-5132 2-0813 
-140 32 -228 39 

0-24 3-6739 0-5676 2-4904 

1 
20852 
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F U N C T I O N S p = 0 t O l'OO 

s{\ + c) / m n 0 P 

60000 1-0000 1-0000 1 0000 1-0000 0 0 0 
- 9 9 16 83 -331 166 

5-9901 10016 1-0083 0-9669 10166 0 0 1 
- 9 9 17 85 -336 171 

5-9802 1-0033 1-0168 0-9333 1-0337 0-02 
- 9 9 17 86 - 3 4 0 174 

5-9703 1 0050 1-0254 0-8993 10511 0-03 
- 9 9 16 89 -345 179 

5-9604 1-0066 1 0343 0-8648 1 0690 0 0 4 
- 9 9 17 90 -350 182 

5-9505 1-0083 1-0433 0-8298 1-0872 0-05 
- 1 0 0 17 92 -355 188 

5-9405 1-0100 1-0525 0-7943 11060 0 0 6 
- 9 9 17 93 -359 192 

5-9306 10117 10618 0-7584 1-1252 0-07 
-100 17 96 -366 196 

5-9206 1-0134 1-0714 0-7218 1-1448 0-08 
- 1 0 0 17 98 -370 202 

5-9106 10151 10812 0-6848 11650 0 0 9 
-100 17 101 -377 206 

5-9006 1-0168 10913 0-6471 1-1856 0-10 
- 1 0 0 18 102 -382 212 

5-8906 10186 11015 0-6089 1-2068 O i l 
-101 17 105 -388 217 

5-8805 1 0203 1-1120 0-5701 1-2285 0 1 2 
- 1 0 0 18 107 -395 223 

5-8705 1 0221 1-1227 0-5306 1-2508 0-13 
-101 17 109 -401 229 

5-8604 1-0238 1-1336 0-4905 1-2737 0 1 4 
-100 18 113 -407 235 

5-8504 1 0256 11449 0-4498 1-2972 0-15 
-101 17 114 -415 241 

5-8403 1-0273 11563 0-4083 1-3213 0-16 
-101 18 118 -422 248 

5-8302 1-0291 1-1681 0-3661 1-3461 0-17 
-102 18 120 -428 254 

5-8200 1-0309 11801 0-3233 1-3715 0-18 
-101 18 123 -437 261 

5-8099 1-0327 1-1924 0-2796 1-3976 0 1 9 
-101 18 127 -445 269 

5-7998 1-0345 1-2051 0-2351 1-4245 0-20 
-102 18 129 -452 276 

5-7896 1-0363 1-2180 0-1899 1-4521 0-21 
-102 19 133 -461 284 

5-7794 1-0382 1-2313 0-1438 1-4805 0-22 
-102 18 136 -470 293 

5-7692 1-0400 1-2449 0-0968 1-5098 0-23 
-102 18 140 -479 300 

5-7590 10418 1-2589 00489 1-5398 0-24 

TABLE Al {continued overleaf) 
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TABLE A l (continued) 

p s c s" SC 

024 3-6739 0-5676 2-4904 2-0852 
-141 32 -230 38 

0-25 3-6598 0-5708 2-4674 2-0890 
-141 33 -231 39 

0-26 3-6457 0-5741 2-4443 20929 
-141 33 -233 39 

0-27 3-6316 0-5774 2-4210 2-0968 
-142 33 -235 39 

0-28 3-6174 0-5807 2-3975 2-1007 
-143 34 -237 39 

0-29 3-6031 0-5841 2-3738 2-1046 
-142 34 -238 40 

0-30 3-5889 0-5875 2-3500 2-1086 
-143 35 -239 40 

0-31 3-5746 0-5910 2-3261 2-1126 
-144 35 -242 40 

0-32 3-5602 0-5945 2-3019 2-1166 
- 1 4 4 36 -243 40 

0-33 3-5458 0-5981 2-2776 21206 
-144 36 -245 41 

0-34 3-5314 0-6017 2-2531 2-1247 
-145 36 -247 41 

0-35 3-5169 0-6053 2-2284 2-1288 
-145 37 -249 41 

0-36 3-5024 0-6090 2-2035 2-1329 
-146 37 -251 42 

0-37 3-4878 0-6127 2-1784 2-1371 
-146 38 -252 41 

0-38 3-4732 0-6165 2-1532 2-1412 
-146 38 -255 42 

0-39 3-4586 0-6203 2-1277 2-1454 
-147 39 -256 43 

0-40 3-4439 0-6242 2-1021 2-1497 
-147 39 -259 42 

0-41 3-4292 0-6281 2-0762 2-1539 
-148 40 -260 43 

0-42 3-4144 0-6321 2-0502 2-1582 
-149 40 -263 44 

0-43 3-3995 0-6361 2-0239 2-1626 
-148 41 -265 43 

0-44 3-3847 0-6402 1-9974 2-1669 
-149 41 -267 44 

0-45 3-3698 0-6443 1-9707 21713 
-150 42 -269 44 

0-46 3-3548 0-6485 1-9438 2-1757 
-150 43 -272 44 

0-47 3-3398 0-6528 1-9166 2-1801 
-151 43 -273 45 

0-48 3-3247 0-6571 1-8893 2-1846 
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s(l + c) / m n o P 

5-7590 1-0418 1-2589 0-0489 1-5398 0-24 
-102 19 143 -489 310 

5-7488 1-0437 1-2732 0-0000 1-5708 0-25 
-103 19 148 -498 319 

5-7385 1-0456 1-2880 - 0 - 0 4 9 8 1-6027 0-26 
-102 18 151 -509 328 

5-7283 1-0474 1-3031 - 0 - 1 0 0 7 1-6355 0-27 
-103 19 155 -520 339 

5-7180 1-0493 1-3186 - 0 - 1 5 2 7 1-6694 0-28 
-103 19 160 -530 349 

5-7077 1-0512 1-3346 - 0 - 2 0 5 7 1-7043 0-29 
-103 19 165 -542 359 

5-6974 1-0531 1-3511 - 0 - 2 5 9 9 1-7402 0-30 
-103 19 169 -554 372 

5-6871 1-0550 1-3680 - 0 - 3 1 5 3 1-7774 0-31 
-103 19 174 -567 383 

5-6768 1-0569 1-3854 - 0 - 3 7 2 0 1-8157 0-32 
-104 20 179 -580 395 

5-6664 1-0589 1-4033 - 0 - 4 3 0 0 1-8552 0-33 
-103 19 185 -594 409 

5-6561 1-0608 1-4218 - 0 - 4 8 9 4 1-8961 0-34 
-104 20 190 -608 422 

5-6457 1-0628 1-4408 - 0 - 5 5 0 2 1-9383 0-35 
-104 19 196 -623 437 

5-6353 1-0647 1-4604 - 0 - 6 1 2 5 1-9820 0-36 
-104 20 202 -638 451 

5-6249 1-0667 1-4806 - 0 - 6 7 6 3 2-0271 0-37 
-104 20 209 -655 467 

5-6145 1-0687 1-5015 - 0 - 7 4 1 8 2-0738 0-38 
-105 20 216 -672 484 

5-6040 1-0707 1-5231 - 0 - 8 0 9 0 2-1222 0-39 
-104 20 222 -691 501 

5-5936 1-0727 1-5453 -0 -8781 2-1723 0-40 
-105 20 231 -709 519 

5-5831 1-0747 1-5684 - 0 - 9 4 9 0 2-2242 0-41 
-105 20 238 -729 539 

5-5726 1-0767 1-5922 - 1 - 0 2 1 9 2-2781 0-42 
-105 20 246 -750 558 

5-5621 1-0787 1-6168 - 1 0969 2-3339 0-43 
-105 21 255 -772 580 

5-5516 1-0808 1-6423 -1 -1741 2-3919 0-44 
-106 20 265 -796 603 

5-5410 1-0828 1-6688 - 1 - 2 5 3 7 2-4522 0-45 
-105 21 274 -820 626 

5-5305 1-0849 1-6962 - 1 - 3 3 5 7 2-5148 0-46 
-106 21 285 -845 651 

5-5199 1-0870 1-7247 - 1 - 4 2 0 2 2-5799 0-47 
-106 21 295 - 8 7 4 678 

5-5093 00891 1-7542 - 1 - 5 0 7 6 

1 2-6477 

0-48 

TABLE Al (continued overleaf) 
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TABLE A l (continued) 

p s c s" sc 

0-48 3-3247 0-6571 1-8893 2-1846 
-151 43 -276 45 

0-49 3-3096 0-6614 1-8617 2-1891 
-151 45 -279 45 

0-50 3-2945 0-6659 1-8338 2-1936 
-152 45 -281 46 

0-51 3-2793 0-6704 1-8057 2-1982 
-153 45 -283 46 

0-52 3-2640 0-6749 1-7774 2-2028 
-153 46 -286 46 

0-53 3-2487 0-6795 1-7488 2-2074 
-153 46 -288 47 

0-54 3-2334 0-6841 1-7200 2-2121 
-154 48 -291 47 

0-55 3-2180 0-6889 1-6909 2-2168 
-155 48 -294 47 

0-56 3-2025 0-6937 1-6615 2-2215 
-155 49 -296 48 

0-57 3-1870 0-6986 1-6319 2-2263 
-155 49 -299 48 

0-58 3-1715 0-7035 1-6020 2-2311 
-156 50 -302 48 

0-59 3-1559 0-7085 1-5718 2-2359 
-156 51 -304 48 

0-60 3-1403 0-7136 1-5414 2-2407 
-157 51 -308 49 

0-61 3-1246 0-7187 1-5106 2-2456 
-158 52 -311 50 

0-62 3-1088 0-7239 1-4795 2-2506 
-158 53 -313 49 

0-63 3-0930 0-7292 1-4482 2-2555 
-159 54 -317 50 

0-64 3-0771 0-7346 1-4165 2-2605 
- 1 5 9 55 -320 51 

0-65 3-0612 0-7401 1-3845 2-2656 
-159 55 -323 50 

0-66 3-0453 0-7456 1-3522 2-2706 
-160 57 -326 51 

0-67 3-0293 0-7513 1-3196 2-2757 
-161 57 -330 52 

0-68 3-0132 0-7570 1-2866 2-2809 
-161 58 -333 52 

0-69 2-9971 0-7628 1-2533 2-2861 
-162 59 -336 52 

0-70 2-9809 0-7687 1-2197 2-2913 
-163 59 -341 53 

0-71 2-9646 0-7746 1-1856 2-2966 
-163 61 -344 53 

0-72 2-9483 0-7807 1-1512 2-3019 
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J(l + c) / m n o P 

5-5093 
-106 

0-0891 
21 

1-7542 
307 

- 1 - 5 0 7 6 
-902 

2-6477 
706 

0-48 

5-4987 
-106 

1-0912 
21 

1-7849 
321 

-1 -5978 
-932 

2-7183 
737 

0-49 

5-4881 
-106 

1-0933 
21 

1-817 
33 

— 1-691 
- 9 7 

2-792 
77 

0-50 

5-4775 
-107 

1-0954 
21 

1-850 
35 

- 1 - 7 8 8 
-100 

2-869 
80 

0-51 

5-4668 
-106 

1-0975 
22 

1-885 
36 

- 1 - 8 8 8 
-103 

2-949 
83 

0-52 

5-4562 
-107 

1-0997 
21 

1-921 
37 

- 1 - 9 9 1 
-108 

3-032 
88 

0-53 

5-4455 
-107 

1-1018 
22 

1-958 
40 

- 2 - 0 9 9 
-111 

3-120 
92 

0-54 

5-4348 
-108 

1-1040 
22 

1-998 
41 

- 2 - 2 1 0 
-116 

3-212 
96 

0-55 

5-4240 
-107 

1-1062 
22 

2 039 
43 

- 2 - 3 2 6 
-121 

3-308 
100 

0-56 

5-4133 
-107 

1-1084 
22 

2-082 
45 

- 2 - 4 4 7 
-126 

3-408 
106 

0-57 

5-4026 
-108 

1-1106 
22 

2-127 
47 

- 2 - 5 7 3 
-132 

3-514 
111 

0-58 

5-3918 
-108 

1-1128 
22 

2-174 
49 

- 2 - 7 0 5 
-137 

3-625 
116 

0-59 

5-3810 
-108 

1-1150 
23 

2-223 
53 

- 2 - 8 4 2 
-144 

3-741 
123 

0-60 

5-3702 
-108 

1-1173 
22 

2-276 
55 

- 2 - 9 8 6 
-105 

3-864 
130 

0-61 

5-3594 
-109 

1-1195 
23 

2-331 
58 

- 3 - 1 3 6 
-158 

3-994 
137 

0-62 

5-3485 
-108 

1-1218 
23 

2-388 
61 

- 3 - 2 9 4 
-165 

4131 
145 

0-63 

5-3377 
-109 

1-1241 
23 

2-449 
65 

- 3 - 4 5 9 
-175 

4-276 
153 

0-64 

5-3268 
-109 

1-1264 
23 

2-514 
68 

- 3 - 6 3 4 
-183 

4-429 
163 

0-65 

5-3159 
-109 

1-1287 
23 

2-582 
72 

- 3 - 8 1 7 
-194 

4-592 
173 

0-66 

5-3050 
-109 

1-1310 
23 

2-654 
77 

- 4 0 1 1 
-205 

4-765 
183 

0-67 

5-2941 
-110 

1-1333 
24 

2-731 
82 

- 4 - 2 1 6 
-218 

4-948 
197 

0-68 

5-2831 
-109 

1-1357 
23 

2-813 
87 

- 4 - 4 3 4 
-230 

5-145 
209 

0-69 

5-2722 
-110 

1-1380 
24 

2-900 
94 

- 4 - 6 6 4 
-246 

5-354 
224 

0-70 

5-2612 
-110 

1-1404 
24 

2-994 
100 

- 4 - 9 1 0 
-262 

5-578 
241 

0-71 

5-2502 1-1428 3-094 - 5 - 1 7 2 5-819 0-72 
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TABLE A l (continued) 

p s C s" sc 

0-72 2-9483 0-7807 1-1512 2-3019 
-163 62 -347 53 

0-73 2-9320 0-7869 1-1165 2-3072 
-164 63 -351 54 

0-74 2-9156 0-7932 1-0814 2-3126 
-165 63 -356 54 

0-75 2-8991 0-7995 1-0458 2-3180 
-165 65 -359 54 

0-76 2-8826 0-8060 1 0099 2-3234 
-166 66 -363 55 

0-77 2-8660 0-8126 0-9736 2-3289 
-166 67 -368 56 

0-78 2-8494 0-8193 0-9368 2-3345 
-167 68 -371 55 

0-79 2-8327 0-8261 0-8997 2-3400 
-168 69 -376 56 

0-80 2-8159 0-8330 0-8621 2-3456 
-168 70 -381 57 

0-81 2-7991 0-8400 0-8240 2-3513 
-169 72 -385 57 

0-82 2-7822 0-8472 0-7855 2-3570 
-169 72 -390 57 

0-83 2-7653 0-8544 0-7465 2-3627 
-170 74 -394 58 

0-84 2-7483 0-8618 0-7071 2-3685 
-171 75 - 4 0 0 58 

0-85 2-7312 0-8693 0-6671 2-3743 
-171 77 -404 59 

0-86 2-7141 0-8770 0-6267 2-3802 
-172 78 -410 59 

0-87 2-6969 0-8848 0-5857 2-3861 
-172 79 -415 60 

0-88 2-6797 0-8927 0-5442 2-3921 
-173 81 -420 60 

0-89 2-6624 0-9008 0-5022 2-3981 
-174 82 -426 61 

0-90 2-6450 0-9090 0-4596 2-4042 
-175 83 -431 61 

0-91 2-6275 0-9173 0-4165 2-4103 
-175 85 -438 61 

0-92 2-6100 0-9258 0-3727 2-4164 
-176 87 -443 62 

0-93 2-5924 0-9345 0-3284 2-4226 
-176 88 -449 63 

0-94 2-5748 0-9433 0-2835 2-4289 
-178 90 -456 63 

0-95 2-5570 0-9523 0-2379 2-4352 
-178 92 -462 63 

0-96 2-5392 0-9615 01917 2-4415 
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s(\ + c) / m n 0 P 

5-2502 
-110 

1-1428 
24 

3 094 
107 

- 5 - 1 7 2 
-281 

5-819 
259 

0-72 

5-2392 
-110 

1-1452 
24 

3-201 
115 

- 5 - 4 5 3 
-301 

6-078 
279 

0-73 

5-2282 
-111 

1-1476 
25 

3-316 
125 

- 5 - 7 5 4 
-324 

6-357 
302 

0-74 

5-2171 
-111 

1-1501 
24 

3-441 
136 

- 6 - 0 7 8 
-349 

6-659 
327 

0-75 

5-2060 
-111 

1-1525 
25 

3-577 
147 

- 6 - 4 2 7 
-379 

6-986 
357 

0-76 

5-1949 
-111 

1-1550 
24 

3-724 
160 

- 6 - 8 0 6 
-411 

7-343 
389 

0-77 

5-1838 
-111 

1-1574 
25 

3-884 
176 

- 7 - 2 1 7 
-450 

7-732 
427 

0-78 

5-1727 
-111 

1-1599 
25 

4-060 
193 

- 7 - 6 6 7 
-492 

8-159 
471 

0-79 

5-1616 
-112 

1-1624 
26 

4-253 
213 

- 8 - 1 5 9 
-534 

8-630 
520 

0-80 

5-1504 
-112 

1-1650 
25 

4-466 
237 

- 8 - 7 0 2 
-601 

9-150 
578 

0-81 

5-1392 
-112 

1-1675 
25 

4-703 
265 

- 9 - 3 0 3 
-670 

9-728 
648 

0-82 

5-1280 
-112 

1-1700 
26 

4-968 
298 

- 9 - 9 7 3 
-752 

10-376 
729 

0-83 

5-1168 
-112 

1-1726 
26 

5-266 
338 

- 1 0 - 7 2 5 
- 8 5 0 

11-105 
827 

0-84 

5-1056 
-113 

1-1752 
26 

5-604 
386 

- 1 1 - 5 7 5 
-969 

11-932 
946 

0-85 

5-0943 
-112 

1-1778 
26 

5-990 
446 

- 1 2 - 5 4 4 
- 1 1 1 6 

12-878 
1093 

0-86 

5-0831 
-113 

1-1804 
26 

6-436 
520 

- 1 3 - 6 6 0 
-1-299 

13-971 
1-276 

0-87 

5-0718 
-113 

1-1830 
27 

6-956 
614 

- 1 4 - 9 5 9 
-1-532 

15-247 
1-508 

0-88 

50605 
-114 

1-1857 
26 

7-570 
737 

-16 -491 
-1-835 

16-755 
1-812 

0-89 

5-0491 
-113 

1-1883 
27 

8-307 - 1 8 - 3 2 6 18-567 _ 0-90 

5-0378 
-114 

11910 
27 

9-208 - 2 0 - 5 7 20-78 _ 0-91 

5-0264 
-114 

1-1937 
27 

10-334 - 2 3 - 3 6 23-55 _ 0-92 

5-0150 
-114 

1-1964 
27 

11-781 - 2 6 - 9 5 27-12 _ 0-93 

5-0036 
-114 

1-1991 
28 

13-711 - 3 1 - 7 3 31-87 _ 0-94 

4-9922 
-114 

1-2019 
27 

16-413 - 3 8 - 4 1 38-53 0-95 

4-9808 1-2046 20-47 - 4 8 - 4 3 48-53 0-96 

TABLE Al (continued overleaf) 
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TABLE A l (continued) 

p s C s" SC 

0-96 2-5392 0-9615 0-1917 2-4415 
-178 94 -469 64 

0-97 2-5214 0-9709 0-1448 2-4479 
-179 95 -476 65 

0-98 2-5035 0-9804 0-0972 2-4544 
-180 97 -482 65 

0-99 2-4855 0-9901 0-0490 2-4609 
-181 99 -490 65 

1 0 0 2-4674 1 0000 00000 2-4674 

TABLE A2 STABILITY 

p 51 c s" SC 

1-00 2-467 
-184 

1000 
111 

0 0 0 0 
-534 

2-467 
69 

1-10 2-283 
-193 

1-111 
138 

- 0 - 5 3 4 
-635 

2-536 
74 

1-20 2-090 
-201 

1-249 
175 

- 1 - 1 6 9 
-775 

2-610 
81 

1-30 1-889 
-211 

1-424 
232 

- 1 - 9 4 4 
-978 

2-691 
88 

1-40 1-678 
-221 

1-656 
317 

-2-922 
-1293 

2-779 
96 

1-50 1-457 
-233 

1-973 
462 

- 4 - 2 1 5 
-1817 

2-875 
105 

1-60 1-224 
-246 

2-435 
731 

- 6 - 0 3 2 
-2793 

2-980 
116 

1-70 0-978 
-261 

3-166 - 8 - 8 2 5 3-096 
128 

1-80 0-717 
-278 

4-497 -13 -783 3-224 
143 

1-90 0-439 
-296 

7-661 - 2 5 - 3 5 2 3-367 
158 

2-00 0-143 
-319 

(24-68) ( -86-86) 3-525 
177 

2-10 - 0 - 1 7 6 ( - 2 1 - 0 7 ) (77-83) 37-02 
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s(l + c) / m n 0 p 

4-9808 1-2046 20-47 - 4 8 - 4 3 48-53 0-96 
-115 28 

4-9693 1-2074 27-22 - 6 5 1 1 6519 0-97 
-115 28 

4-9578 1-2102 40-73 - 9 8 - 4 7 98-51 0-98 
-115 28 — 

4-9463 1-2130 81-26 - 1 9 8 - 4 8 198-51 0-99 
-115 28 

4-9348 1-2158 00 00 00 1 0 0 

FUNCTIONS p = 1-00 to 4-00 

*(1 + c) / m n o 

4-935 1-216 00 00 00 1-00 
-117 29 — — 

4-818 1-245 - 7 - 9 0 2 21-32 - 2 1 - 5 7 1-10 
-118 32 — — — 

4-700 1-277 - 3 - 8 4 7 11-13 - 1 1 - 6 5 1-20 
-120 33 — — — 

4-580 1-310 - 2 - 4 9 5 7-60 - 8 - 4 0 1-30 
-123 36 — — 

4-457 1-346 - 1 - 8 1 8 5-73 —6-83 1-40 
-125 39 — — 

4-332 1-385 - 1 - 4 1 1 4-51 —5-93 1-50 
-128 42 272 - 8 9 56 

4-204 1-427 - 1 1 3 9 3-62 — 5-37 1-60 
-130 46 195 - 7 2 35 

4-074 1-473 - 0 - 9 4 4 2-90 — 5-02 1-70 
-133 49 146 - 6 1 22 

3-941 1-522 - 0 - 7 9 8 2-29 —4-80 1-80 
-135 54 115 - 5 5 13 . 

3-806 1-576 - 0 - 6 8 3 1-74 —4-67 1-90 
-138 60 92 - 5 1 

3-668 1-636 - 0 - 5 9 1 1-23 —4-61 2 0 0 
-142 66 75 - 5 0 © 

3-526 1-702 - 0 - 5 1 6 0-73 —4-61 2-10 

TABLE A 2 {continued overleaf) 
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TABLE A2 (continued) 

p s c s" sc 

2 1 0 - 0 - 1 7 6 
-343 

( -21-07) (77-83) 3-702 
199 

2-20 - 0 - 5 1 9 
-374 

- 7 - 5 1 1 28-781 3-901 
226 

2-30 - 0 - 8 9 3 
-408 

- 4 - 6 2 3 18-185 4-127 
256 

2-40 - 1 - 3 0 1 
-449 

- 3 - 3 7 0 
697 

13-472 
-2718 

4-383 
295 

2-50 - 1 - 7 5 0 
-499 

- 2 - 6 7 3 
442 

10-754 
-1806 

4-678 
340 

2-60 - 2 - 2 4 9 
-560 

- 2 - 2 3 1 
303 

8-948 
-1317 

5-018 
397 

2-70 - 2 - 8 0 9 
-636 

- 1 - 9 2 8 
220 

7-631 
-1025 

5-415 
469 

2-80 - 3 - 4 4 5 
-731 

- 1 - 7 0 8 
165 

6-606 
-839 

5-884 
560 

2-90 - 4 - 1 7 6 
-856 

- 1 - 5 4 3 
127 

5-767 
-714 

6-444 
680 

3 0 0 - 5 - 0 3 2 
-1020 

- 1 - 4 1 6 
100 

5-053 
-629 

7-124 
838 

3 1 0 - 6 - 0 5 2 
-1245 

- 1 - 3 1 6 
80 

4*424 
-568 

7-962 
1059 

3-20 - 7 - 2 9 7 
-1566 

- 1 - 2 3 6 
63 

3-856 
-527 

9021 
1374 

3-30 - 8 - 8 6 3 
-2045 

- 1 - 1 7 3 
51 

3-329 
-497 

10-395 
1847 

3-40 - 1 0 - 9 0 8 
-2811 

- 1 - 1 2 2 
40 

2-832 
-479 

12-242 
2607 

3-50 — 13-719 - 1 - 0 8 2 
31 

2-353 
-467 

14-849 

3-60 - 1 7 - 8 7 - 1 - 0 5 1 
23 

1-886 
-463 

18-79 

3-70 - 2 4 - 6 8 - 1 - 0 2 8 
16 

1-423 
-465 

25-39 

3-80 - 3 8 - 1 7 - 1 0 1 2 
9 

0-958 
-473 

38-65 

3-90 - 7 8 - 3 4 - 1 - 0 0 3 
3 

0-485 
-485 

78-58 

4 0 0 00 - 1 0 0 0 0-000 00 
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s(l + c) / m n o P 

3-526 
-144 

1-702 
72 

- 0 - 5 1 6 
64 

0-73 
- 4 8 

- 4 - 6 1 
- 6 

2 1 0 

3-382 
-148 

1-774 
81 

- 0 - 4 5 2 
54 

0-25 
- 5 0 

- 4 - 6 7 
- 1 0 

2-20 

3-234 
-151 

1-855 
91 

- 0 - 3 9 8 
46 

- 0 - 2 5 
- 5 1 

- 4 - 7 7 
- 1 6 

2-30 

3-083 
-155 

1-946 
103 

- 0 - 3 5 2 
41 

- 0 - 7 6 
- 5 3 

- 4 - 9 3 
- 2 0 

2-40 

2-928 
-159 

2 0 4 9 
118 

- 0 - 3 1 1 
36 

- 1 - 2 9 
- 5 8 

- 5 1 3 
- 2 7 

2-50 

2-769 
-163 

2-167 
135 

- 0 - 2 7 5 
32 

- 1 - 8 7 
- 6 2 

- 5 - 4 0 
- 3 3 

2-60 

2-606 
-167 

2-302 
158 

- 0 - 2 4 3 
29 

- 2 - 4 9 
- 6 9 

- 5 - 7 3 
- 4 2 

2-70 

2-439 
-171 

2-460 
186 

- 0 - 2 1 4 
26 

- 3 - 1 8 
- 7 8 

- 6 - 1 5 
- 5 1 

2-80 

2-268 
-176 

2-646 
223 

- 0 - 1 8 8 
23 

- 3 - 9 6 
- 9 0 

- 6 - 6 6 
- 6 4 

2-90 

2-092 
-181 

2-869 
272 

- 0 - 1 6 5 
22 

- 4 - 8 6 
-106 

- 7 - 3 0 
- 8 0 

3-00 

1-911 
-187 

3-141 
339 

- 0 - 1 4 3 
20 

- 5 - 9 2 
-127 

- 8 1 0 
-103 

3-10 

1-724 
-192 

3-480 
436 

- 0 - 1 2 3 
19 

- 7 - 1 9 
-159 

- 9 1 3 
-135 

3-20 

1-532 
-198 

3-916 
581 

- 0 - 1 0 4 
18 

- 8 - 7 8 
-207 

- 1 0 - 4 8 
-182 

3-30 

1-334 
-204 

4-497 
813 

- 0 - 0 8 6 
16 

- 1 0 - 8 5 
-283 

- 1 2 - 3 0 
-259 

3-40 

1130 
-211 

5-31 - 0 - 0 7 0 
15 

- 1 3 - 6 8 - 1 4 - 8 9 3-50 

0-919 
-218 

6-53 - 0 0 5 5 
15 

- 1 7 - 8 4 - 1 8 - 8 1 3-60 

0-701 
-225 

8-56 - 0 0 4 0 
14 

- 2 4 - 6 7 - 2 5 - 4 0 3-70 

0-476 
-234 

12-61 - 0 - 0 2 6 
13 

- 3 8 - 1 7 - 3 8 - 6 6 3-80 

0-242 
-242 

24-77 - 0 - 0 1 3 
13 

- 7 8 - 3 3 - 7 8 - 5 8 3-90 

0 00 0 00 00 4-00 
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TABLE A3 RECIPROCAL 

170 

p 
1 
c 

1 
s" 

0-80 

0-90 

1 0 0 1-0000 
-998 

1-10 0-9002 
-994 

1-20 0-8008 
-988 

1-30 0-7020 
-980 

1-40 0-6040 - 0 - 3 4 2 2 
-972 1050 

1-50 0-5068 - 0 - 2 3 7 2 
-961 714 

1-60 0-4107 - 0 - 1 6 5 8 
-949 525 

1-70 0-3158 -0 -1133 
-934 407 

1-80 0-2224 - 0 - 0 7 2 6 
-919 332 

1-90 0-1305 - 0 - 0 3 9 4 
-900 279 

2-00 00405 - 0 - 0 1 1 5 
-880 243 

2 1 0 - 0 - 0 4 7 5 0-0128 
-856 219 

2-20 -0 -1331 0-0347 
-832 203 

2-30 - 0 - 2 1 6 3 00550 
-804 192 

2-40 - 0 - 2 9 6 7 0-0742 
-774 188 

2-50 -0 -3741 0-0930 



S T A B I L I T Y F U N C T I O N S 

1 

m 

1 

n 

1 

o 
P 

0-2351 - 0 - 1 2 2 6 0-1159 0-80 
-1147 680 - 6 2 0 

0-1204 - 0 - 0 5 4 6 0-0539 0-90 
-1204 546 -539 

0 0 0 0 0 0 0 0 0 0 00000 1 0 0 
-1266 469 -464 

-0 -1266 0-0469 - 0 - 0 4 6 4 110 
-1333 429 -394 

-0 -2599 0-0898 - 0 - 0 8 5 8 1-20 
-1410 418 -332 

-0 -4009 0-1316 - 0 - 1 1 9 0 1-30 
-1493 430 -274 

- 0 - 5 5 0 2 0-1746 - 0 - 1 4 6 4 1-40 
-1587 470 -222 

- 0 - 7 0 8 9 0-2216 - 0 - 1 6 8 6 1-50 
-1692 548 -175 

-0 -8781 0-2764 -0 -1861 1-60 
-1811 683 -131 

- 1 0592 0-3447 - 0 - 1 9 9 2 1-70 
-1945 922 - 9 3 

- 1 - 2 5 3 7 0-4369 - 0 - 2 0 8 5 1-80 

1-90 

2 0 0 

2 1 0 

2-20 

2-30 

2-40 

2-50 
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TABLE A4 STABILITY FUNCTIONS FOR 

p s C s" SC 

- 0 0 0 4-0000 0-5000 3-0000 2-0000 
1299 -235 1921 -319 

- 0 1 0 4-1299 0-4765 3-1921 1-9681 
1268 -212 1822 -301 

- 0 - 2 0 4-2567 0-4553 3-3743 1-9380 
1237 -193 1736 -284 

- 0 - 3 0 4-3804 0-4360 3-5479 1-9096 
1209 -177 1658 -267 

- 0 - 4 0 4-5013 0-4183 3-7137 1-8829 
1181 -162 1588 -254 

- 0 - 5 0 4-6194 0-4021 3-8725 1-8575 
1157 -149 1526 -239 

- 0 - 6 0 4-7351 0-3872 4-0251 1-8336 
1132 -137 1469 -227 

- 0 - 7 0 4-8483 0-3735 4-1720 1-8109 
1110 -127 1417 -216 

- 0 - 8 0 4-9593 0-3608 4-3137 1-7893 
1088 -118 1370 -204 

- 0 - 9 0 5-0681 0-3490 4-4507 1-7689 
1067 -109 1327 -195 

- 1 0 0 5-1748 0-3381 4-5834 1-7494 
1047 -102 1287 -185 

- 1 - 1 0 5-2795 0-3279 4-7121 1-7309 
1029 - 9 6 1249 -176 

- 1 - 2 0 5-3824 0-3183 4-8370 1-7133 
1011 - 8 9 1216 -167 

- 1 - 3 0 5-4835 0-3094 4-9586 1-6965 
993 - 8 4 1184 -160 

- 1 - 4 0 5-5828 0-3010 5-0770 1-6805 
978 - 7 9 1154 -153 

- 1 - 5 0 5-6806 0-2931 5-1924 1-6652 
961 - 7 4 1127 -146 

- 1 - 6 0 5-7767 0-2857 5-3051 1-6506 
947 - 7 0 1101 -140 

- 1 - 7 0 5-8714 0-2787 5-4152 1-6366 
931 - 6 6 1076 -134 

- 1 - 8 0 5-9645 0-2721 5-5228 1-6232 
919 - 6 2 1053 -128 

- 1 - 9 0 6-0564 0-2659 5-6281 1-6104 
904 - 5 9 1032 -122 

- 2 - 0 0 6-1468 0-2600 5-7313 1-5982 
892 - 5 6 1011 -118 

- 2 1 0 6-2360 0-2544 5-8324 1-5864 
879 - 5 3 992 -113 

- 2 - 2 0 6-3239 0-2491 5-9316 1-5751 
868 - 5 1 974 -108 

- 2 - 3 0 6-4107 0-2440 6-0290 1-5643 
856 - 4 8 956 -104 

- 2 - 4 0 6-4963 0-2392 6-1246 1-5539 
845 - 4 6 940 -101 

- 2 - 5 0 6-5808 0-2346 6-2186 1-5438 
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NEGATIVE p VALUES 0 t o —2' 5 

s(l + c) / m n 0 P 

6-0000 1-0000 1-0000 1000 1-0000 - 0 0 0 
980 -161 -749 309 -1473 

6-0980 0-9839 0-9251 1-309 0-8527 - 0 1 0 
967 -153 -625 276 -1190 

6-1947 0-9686 0-8626 1-585 0-7337 - 0 - 2 0 
953 -147 -531 250 -975 

6-2900 0-9539 0-8095 1-835 0-6362 - 0 - 3 0 
941 -141 -457 228 -809 

6-3841 0-9398 0-7638 2063 0-5553 - 0 - 4 0 
929 -134 -397 211 -677 

6-4770 0-9264 0-7241 2-274 0-4876 - 0 - 5 0 
917 -130 -348 197 -573 

6-5687 0-9134 0-6893 2-471 0-4303 - 0 - 6 0 
905 -124 -309 185 -488 

6-6592 0-9010 0-6584 2-656 0-3815 - 0 - 7 0 
894 -119 -275 174 -419 

6-7486 0-8891 0-6309 2-830 0-3396 - 0 - 8 0 
883 -115 -247 166 -362 

6-8369 0-8776 0-6062 2-996 0-3034 - 0 - 9 0 
873 — 111 -223 157 -314 

6-9242 0-8665 0-5839 3-153 0-2720 - 1 0 0 
863 -106 -203 151 -274 

7-0105 0-8559 0-5636 3-304 0-2446 - 1 1 0 
852 -103 -185 144 -240 

7-0957 0-8456 0-5451 3-448 0-2206 - 1 - 2 0 
843 - 9 9 - 1 7 0 140 -211 

7-1800 0-8357 0-5281 3-588 0-1995 - 1 - 3 0 
833 - 9 6 -156 134 -187 

7-2633 0-8261 0-5125 3-722 0-1808 - 1 - 4 0 
825 - 9 3 -144 129 -166 

7-3458 0-8168 0-4981 3-851 0-1642 - 1 - 5 0 
815 - 9 0 -134 126 -147 

7-4273 0-8078 0-4847 3-977 0-1495 - 1 - 6 0 
807 - 8 7 -124 121 -132 

7-5080 0-7991 0-4723 4-098 0-1363 - 1 - 7 0 
798 - 8 4 -116 119 -117 

7-5878 0-7907 0-4607 4-217 0-1246 - 1 - 8 0 
790 - 8 1 -108 115 -106 

7-6668 0-7826 0-4499 4-332 0-1140 - 1 - 9 0 
782 - 7 9 -102 112 - 9 5 

7-7450 0-7747 0-4397 4-444 0-1045 - 2 0 0 
774 - 7 7 - 9 6 110 - 8 5 

7-8224 0-7670 0-4301 4-554 0-0960 - 2 1 0 
767 - 7 4 - 8 9 107 - 7 7 

7-8991 0-7596 0-4212 4-661 0-0883 - 2 - 2 0 
759 - 7 2 - 8 5 104 - 7 0 

7-9750 0-7524 0-4127 4-765 0-0813 - 2 - 3 0 
751 - 7 1 - 8 0 102 - 6 4 

8-0501 0-7453 0-4047 4-867 0-0749 - 2 - 4 0 
745 - 6 8 - 7 6 101 - 5 7 

8-1246 0-7385 0-3971 4-968 00692 - 2 - 5 0 
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TABLE A5 STABILITY FUNCTIONS FOR 

p s c s" sc 

- 0 0 4-000 0-5000 3-000 2-0000 
1175 -1619 1583 -2506 

- 1 0 5-175 0-3381 4-583 1-7494 
972 -781 1148 -1512 

- 2 - 0 6-147 
841 

0-2600 
-455 

5-731 
935 

1-5982 
-991 

- 3 0 6-988 
749 

0-2145 
-297 

6-666 
806 

1-4991 
-691 

- 4 0 7-737 
680 

0-1848 
-209 

7-472 
719 

1-4300 
- 5 0 4 

- 5 0 8-417 
627 

0-1639 
-156 

8-191 
654 

1-3796 
-383 

- 6 0 9-044 
583 

0-1483 
-121 

8-845 
604 

1-3413 
- 3 0 0 

- 7 - 0 9-627 
548 

0-1362 
- 9 7 

9-449 
564 

1-3113 
-241 

- 8 0 10-175 
519 

0-1265 
- 8 0 

10013 
530 

1-2872 
-198 

- 9 0 10-694 
492 

0-1185 
- 6 7 

10-543 
504 

1-2674 
-166 

- 1 0 0 11-186 
471 

01118 
- 5 7 

11-047 
479 

1-2508 
-140 

- 1 1 0 11-657 
451 

0-1061 
- 5 0 

11-526 
458 

1-2368 
-122 

- 1 2 0 12-108 
434 

01011 
- 4 3 

11-984 
440 

1-2246 
-105 

- 1 3 0 12-542 
418 

00968 
- 3 8 

12-424 
424 

1-2141 
- 9 3 

- 1 4 0 12-960 
404 

0-0930 
- 3 5 

12-848 
409 

1-2048 
- 8 2 

- 1 5 0 13-364 
392 

00895 
- 3 1 

13-257 
396 

1-1966 
- 7 4 

- 1 6 0 13-756 
380 

00864 
- 2 7 

13-653 
384 

1-1892 
- 6 7 

- 1 7 0 14-136 
369 

0-0837 
- 2 6 

14-037 
373 

1-1825 
- 6 0 

- 1 8 0 14-505 
360 

0-0811 
- 2 3 

14-410 
363 

1-1765 
- 5 5 

- 1 9 0 14-865 
351 

0-0788 
- 2 2 

14-773 
353 

1-1710 
- 5 0 

- 2 0 0 15-216 0-0766 15-126 11660 

Greater negative values of p. The following approximations 



NEGATIVE p VALUES 0 t o —20 

5(1 + c) / m n O P 

6 0 0 0 1-0000 1 0000 1-000 1-0000 0 0 
924 -1335 -4161 2-153 -7280 

6-924 0-8665 0-5839 3-153 0-2720 - 1 0 
821 -918 -1442 1-291 -1675 

7-745 0-7747 0-4397 4-444 01045 - 2 0 
742 -677 -753 998 - 5 7 4 

8-487 0-7070 0-3644 5-442 0-0471 - 3 0 
680 -525 -473 841 -236 

9-167 0-6545 0-3171 6-283 00235 - 4 0 
629 - 4 2 0 -329 742 - 1 1 0 

9-796 0-6125 0-2842 7-025 00125 - 5 0 
589 -347 -245 670 - 5 5 

10-385 0-5778 0-2597 7-695 0 0 0 7 0 - 6 0 
554 -293 -192 617 - 2 9 

10-939 0-5485 0-2405 8-312 0-0041 - 7 0 
524 -251 -155 574 - 1 6 

11-463 0-5234 0-2250 8-886 00025 - 8 0 
498 -218 -128 539 - 1 0 

11-961 0-5016 0-2122 9-425 00015 - 9 0 
476 -192 -109 510 - 5 

12-437 0-4824 0-2013 9-935 0 0 0 1 0 - 1 0 0 
457 -171 - 9 4 485 - 4 

12-894 0-4653 01919 10-420 0 0 0 0 6 - 1 1 0 
438 -153 - 8 1 463 - 2 

13-332 0-4500 0-1838 10-883 0 0 0 0 4 - 1 2 0 
424 -138 - 7 2 444 - 1 

13-756 0-4362 0-1766 11-327 00003 - 1 3 0 
409 -126 - 6 5 428 — 1 

14165 0-4236 0-1701 11-755 0 0 0 0 2 - 1 4 0 
396 -115 - 5 7 412 - 1 

14-561 0-4121 0-1644 12-167 0 0001 - 1 5 0 
384 -106 - 5 2 399 0 

14-945 0-4015 0-1592 12-566 00001 - 1 6 0 
373 - 9 8 - 4 8 387 0 

15-318 0-3917 0-1544 12-953 00001 - 1 7 0 
364 - 9 1 - 4 3 376 - 1 

15-682 0-3826 01501 13-329 0 0 0 0 0 - 1 8 0 
354 - 8 4 - 4 0 365 0 

16-036 0-3742 0-1461 13-694 0 0 0 0 0 - 1 9 0 
346 - 7 9 - 3 7 356 0 

16-382 0-3663 0-1424 14050 0 0 0 0 0 - 2 0 0 

are sufficiently accurate—Let a = - A/(—p). 
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Allen, H. G. 87, 89 
Amplification factor 

in rigid frames 109, 121, 145 
in struts 19 
in triangulated frames 84 

Ariaratnam, S. T. 85, 102 

Baker, J. F. 132 
Berry, A. 51 
Birfurcation of equilibrium 

in frames 103 
in struts 13,40,42 

Bleich, F. 15, 20, 75 
Bolton, A. 27, 141 
Bracing 110 
British Standard 449 (1958) 34 
Britvec, S. J. 78 
Buckling loads, definition 104 
Bull, F. B 48 

Carry-over factor 48 
Chandler, D. B. viii, 51, 70, 88 
Chilver, A. H. 121 
Chwalla, E. 121 
Compression loaded members 131 
Critical loads 

experimental determination 21 
pin-jointed trusses 78 
reduced 135, 146 
rigid frames 105 
rigid-jointed trusses 82 
strut 8 

Critical member 129 
Critical modes 

rigid frames 109 
rigid-jointed trusses 94 
strut 8 

Davies, G. 143 
Davies, M. J. viii 

I Deformations, large 
I in portal frames 120 
I in struts 10 

Disturbing forces 85 
combinations of 91, 107 

Double curvature bending, in 
columns 130, 132 

Double modulus load 37 
Dynamic jump 143 

Eccentric loading of strut 29, 33,43 
Effective length of strut 8 
Elastic critical loads, see Critical 

loads 
Elastic critical modes, see Critical 

modes 
Elastica 10 
Elastic-plastic behaviour 

columns 132 
rigid frames 143 
rigid-jointed triangulated frames 

141 
struts 26 

Ellis, J. 29 
End conditions in strut 8 
Engesser, F. 41 
Equilibrium, stable and unstable 14 
Euler load 7 
Experimental determination of 

critical load 21 

Factor of safety 44 
Failure load, elastic 

| portal frame 117 
! strut 5 
J Failure load, elastic-plastic 
| columns 132 
! rigid frames 143 

rigid-jointed triangulated frames 
141 
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Fixed-end moments 50 
concentrated load 65 
uniformly distributed load 63 

Flexural shortening 12 
Foulkes, J. 139 
Fourier series, use in strut 16 
Four-moment equation 75 

Gardner, N. J. viii 
Generalised displacements 62 
Gusset plates 

effect on critical loads 98 
effect on stability functions 67 

Heyman, J. 132 
Hinges, plastic 30, 128, 135, 143 
Hoff, N. J. 96 

Imperfections 
effect on elastic-plastic failure 

loads 129, 139, 148 
in portal frames 109 
in struts 21, 28, 33, 43 
in triangulated frames 83 

Inelastic behaviour, see Elastic-
plastic behaviour 

Internal stresses 83, 150 

James, B. W. 51 

Kroll, W. D. 51 

Lack of fit 83,148 
Lack of straightness 21 
Lateral loaded members, in rigid 

frames 129 
Lateral loads, in struts 15, 36, 63 
Le-Wu-Lu 120 
Linear analysis 1 
Livesley, R. K. vii, 51, 70, 73, 88 
Load factor 44 
Lundquist, E. E. 51 

Magnification factor 
in rigid frames 109, 121, 145 
in struts 19 
in triangulated frames 84 

Mansell, D. S. 140 

Moment distribution 48 
Moment of resistance, plastic 31 
Moments, fixed-ended 50 

concentrated load 65 
uniformly distributed load 63 

Murray, J. 139 

Neal, B. G. 140, 143, 147 
No-shear functions 58 
Non-linearity of deflexions 2 
Non-uniform members 20 

Operations, general tables of 60, 62 
Orthogonal relations 20 

Perry-Robertson formula for struts 
33 

Pitched roof portal frames 147 
Plastic hinges 30, 128, 135, 143 
Plastic moment of resistance 31 
Plastic zones 

in columns 133 
in struts 29 
in triangulated frames 139 

Portals 
multi-storey, multi-bay 113 
multi-storey, single bay 111 
single-storey, single bay 105, 115 

Potential energy 14 
Primary deflexions in struts 17 
Primary moments, effect on stability 

115 
Primary moments in struts 15 
Proof stress 44 

Rankine load 
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