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CHAPTER ONE 

INTRODUCTION 

 
 
 
Existing reinforced concrete buildings constructed before the development 
of modern seismic design provisions represent one of the largest seismic 
safety concerns worldwide. Such buildings are vulnerable to significant 
damage and even collapse when subjected to strong ground shaking. The 
collapse of reinforced concrete buildings has been the cause of many of 
the fatalities in past earthquakes. Since 1980, after the capacity design 
concept was introduced into the seismic design code provisions, the 
seismic safety gap between the newly designed seismic resistant buildings 
and those constructed before 1980 has widened, causing worldwide 
concern. The crucial issue that was evident after the earthquakes in 1999 
in Athens (Partnitha) and in Turkey (Kocaeli) and was underlined by the 
destructive earthquake of L’Aquila (2009) in Italy (an event which the 
author experienced personally as a resident of L’Aquila at the time) is the 
need to improve assessment and retrofit procedures for existing reinforced 
concrete buildings.  

Reinforced concrete (RC) columns play a very important role in 
structural performance. Behaviour of RC columns in shear and flexure has 
been studied for decades. In the case of flexural behavior, sectional 
analysis, or a fiber model in one-dimensional stress field gives acceptable 
predictions in terms of ultimate strength and yielding deformation. 
Performance of reinforced concrete columns dominated by shear or shear-
flexure cannot be estimated by applying only a sectional analysis because 
shear behavior is not taken into account in the approach. For evaluating 
the shear response of structural elements, such as beams and columns, 
many analytical models and theories have been presented in the past. 
Some of the most commonly used approaches are strut and tie models 
(Mörsh 1902, Ritter 1899) and the Modified Compression Field Theory 
(MCFT) (Vecchio & Collins 1986). MCFT is a powerful tool to model the 
response of RC elements subjected to in-plane shear and normal stresses. 
The method is based upon a large number of membrane elements tests and 
treats reinforced concrete in an average way. Specifically, the method is 
formulated in terms of average stresses and strains across the element and 
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is supplemented by local crack checks. The method is formulated with 
consideration to equilibrium, compatibility, and approximate stress-strain 
relationships of the materials. 

Recently, another aspect that has roused the interest of researchers is 
the axial failure of columns that can lead to collapse of a building (Elwood 
and Moehle 2005). Before the introduction of special requirements in the 
1970s, reinforced concrete building frames constructed in zones of high 
seismicity had details and proportions similar to frames designed primarily 
for gravity loads. Columns generally were not designed to have strengths 
exceeding beam strengths, so column failure mechanisms often prevail in 
buildings dating from that era. Relatively wide spacing of transverse 
reinforcement was common, such that column failures may involve some 
form of shear or combined flexure – shear failure. As shear failure 
proceeds, degradation of the concrete core may lead to loss of axial load 
carrying capacity of the column. As the axial capacity diminishes, the 
gravity loads carried by the column must be transferred into neighboring 
elements. A rapid loss of axial capacity will result in the dynamic 
redistribution of internal actions within the building frame and may 
progressively lead to collapse.  

During earthquake excitation columns can experience a wide variety of 
loading histories, which may consist of a single large pulse or several 
smaller-amplitude cycles, occasionally leading to either shear failure or 
even collapse – i.e. a loss of gravity-load bearing capacity of the column. 
Previous research has demonstrated that the onset of this type of collapse 
cannot be quantified unilaterally by a single combination of shear force 
and axial load values, but rather, it is characterized by an interaction 
envelope that depends on the history of loading and the peak magnitude of 
deformation exertion attained by the column (max. drift demand). Recent 
studies (Chapter 2) attribute particular influence to the final mode and 
characteristics of failure by the occurrence of fluctuating axial load about a 
mean value, on some occasions the load becoming actually tensile due to 
the overturning effects imparted by the earthquake. Furthermore it has 
been demonstrated that an increase in the number of cycles past the yield 
displacement can result in a decrease in the drift capacity at shear failure. 
Understanding these effects and developing mechanistic tools by which to 
identify the characteristics of failure at the loss of axial load bearing 
capacity and the implications of drift history is one of the objectives of this 
book.  

In the present book a fiber beam-column element accounting for shear 
effects and the effect of tension stiffening through reinforcement-to-
concrete bond was developed, in order to provide an analytical test-bed for 
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simulation and improved understanding of experimental cases where the 
testing of RC columns actually led to collapse. Emphasis is particularly 
laid on lightly reinforced columns. The combined experimental/numerical 
results provided useful information for the definition of plastic hinge 
length in columns through consideration of yield penetration effects. The 
required confined zone in critical regions of columns and piers undergoing 
lateral sway during earthquakes is related to the plastic hinge length where 
inelastic deformation and damage develops. The exact definition of the 
plastic hinge length stumbles upon several uncertainties, the most critical 
being that the extent of the inelastic region evolves and spreads with the 
intensity of lateral displacements. Design codes quantify a reference value 
for the plastic hinge length, through calibrated empirical relationships that 
account primarily for the length of the shear span and the diameter of 
primary reinforcing bars. The latter term reflects the effects of bar yielding 
penetration in the support of columns. Here a consistent definition of 
plastic hinge length is pursued analytically with reference to the actual 
strain state of the reinforcement.  

Over the past three decades, fibre-reinforced polymer (FRP) 
composites have emerged as an attractive construction material for civil 
infrastructure, rehabilitation, and renewal. These advanced materials have 
been successfully used for reinforcing new structures as well as the 
strengthening/rehabilitation of existing buildings and bridges. The use of 
FRP composites, analysis and design, and techniques for installation are 
continually being researched and it is anticipated that the use of these 
advanced materials will continue to grow to meet the demands of the 
construction industry. Recent seismic events around the world continue to 
underline the importance of seismic retrofit and strengthening of existing 
concrete structures leading to the need for new, practical, occupant-
friendly and cost-effective remedial solutions. 

In this context, the Fiber Reinforced Polymer (FRP)-confined concrete 
model contained in a well-known Bulletin by the International Federation 
for Structural Concrete (fib) has been enhanced to take into account the 
superposition of the confining effects of the already existing steel 
reinforcement with that of the FRP jacketing applied when retrofitting RC 
columns. Columns are here modeled with a fiber-based nonlinear beam- 
column element (with displacement formulation) in which the constitutive 
law for concrete presented in this book is implemented. This allows for the 
immediate incorporation of shear strains (uncoupled from the normal 
ones) at the material level. The averaged response of the two different 
regions—concrete core and concrete cover—in the cross-section allows 
the assignment of a unique stress-strain law for all the fibers/layers of the 
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section. Correlation with experimental studies from the literature is 
performed to validate the proposed iterative procedure. 

Specifically, the organization of the present book is the following: 
After the introduction in Chapter 1, Chapter 2 contains a literature review 
of the part of seismic assessment of old-type RC columns. Chapter 3 
presents the correlation of - the state of the art – analytical models for 
seismic assessment of reinforced concrete columns with the experimental 
results of a well-known experimental database. Chapter 4 defines the 
plastic hinge length in columns though consideration of yield penetration 
effects. A mechanically consistent approach in determining inelastic 
rotation capacity of reinforced concrete columns is introduced. Chapter 5 
presents the development of a force-based fiber beam-column element 
accounting for shear and tension stiffening effects. Chapter 6 presents new 
developments on FRP seismic retrofit of RC columns with confining 
wraps or jackets that has proven to be an efficient technique for the 
seismic retrofit of structures. A new constitutive model for FRP -and steel- 
confined concrete, including shear effects, is included in this Chapter. 
Finally, in Chapter 7 important conclusions based on the described 
research in this book are drawn.  

To sum up, this book is introducing recent advances in research that 
intends to attract academic staff, researchers, under- or post- graduate 
students and professional engineers dealing with seismic assessment, 
repair and retrofit of RC structures such as buildings and bridges. 
 



CHAPTER TWO 

STATE OF THE ART ON SEISMIC ASSESSMENT 
OF REINFORCED CONCRETE COLUMNS 

 
 
 
The procedure of estimating the strength, the deformation capacity and the 
expected mode of failure in primary members of a RC frame structure, that 
is, the complete process of seismic assessment, has been recently 
supported by background documents in both Europe and the U.S. 
(KAN.EPE. 2014, EN 1998-3 2005, ASCE/SEI-41 2007, and most 
recently by the draft of the New Model Code 2010 by the fib). The 
acceptance criteria proposed provide a complex system of evaluation, but 
the various steps of this process are not vested with a uniform level of 
confidence as compared with the experimental results. Strength values can 
be estimated with sufficient accuracy only if the modes of failure involved 
are ductile. The level of accuracy is degraded when considering brittle 
mechanisms of resistance, and the associated deformation capacities, 
which are used as a basis for comparison with deformation demands to 
assess the level of performance (i.e. the damage), generally do not 
correlate well with proposed Code estimations. However, in the process of 
assessment it is a critical matter seriously affecting public safety, to 
determine whether flexural yielding will precede shear failure (so as to 
ensure ductility) or whether a brittle failure ought to be anticipated prior to 
reinforcement yielding. Even when flexural yielding may be supported it 
is also important to dependably estimate the ductility level beyond which 
shear strength may be assumed to have degraded below the flexural 
strength, leading to a secondary post-yielding failure that limits the 
available deformation capacity (Fig. 2-1). 

Stiffness properties and inelastic the earthquake response of frame 
members are usually studied based on a statically determinant structure 
comprising a cantilever reinforced concrete column under lateral loading. 
Given the material properties (be they nominal, assumed or experimentally 
measured), geometry, the loading conditions and loading history, it is 
theoretically possible to analyze the cantilever so as to study the 
interactions between various aspects of its response such as flexure, shear 



Chapter Two 
 

6 

and reinforcement development capacity. In recent years the fixed ended 
column specimen in lab experiments is preferred to be compared to the 
cantilever arrangement, since the interaction of two end moments and 
more realistic curvatures can be obtained, whereas they are more versatile 
in dynamic tests (as it is possible to mount masses on top of the restraining 
beam at the upper end of the column, thus simulating more realistically the 
actual circumstances in the field). Moreover, in the case of lightly 
reinforced concrete columns which are representative of older construction, 
major inclined shear cracks have been seem to occur in the midheight 
column region (near the point of column inflection), a crack pattern that 
cannot be reproduced with the cantilever specimen since its tip is free to 
rotate (only restrained in translation) and sustains no damage in that 
region. In addition the elongation due to damage of the double curvature 
member is more representative of a typical building column under 
earthquake loading. The assessment performance objectives in such 
experiments can be categorized and documented by obtaining the full 
inelastic response until the collapse of the RC column.  

 
According to Eurocode 8, Part 3 (EN 1998-3, 2005), the fundamental 

performance criteria related to the state of the structural damage are 
defined through three Limit states that span the range of the member 
resistance curve (Fig. 2-2.a), and are defined according to the severity of 
damage that they represent as follows: “Damage Limitation (DL)”, 
“Significant Damage (SD)”, and “Near Collapse (NC)”. The target 
displacement of the column based on the earthquake load defines which of 
these Limit States are reached. In the following figure (Fig 2-2.b) the 

Force 
  

Displacement 

Variation of Member 
Strength based on 
Flexural Mechanism 

Variation of Member 
Strength based on Shear 
Mechanism  

 
Fig. 2-1: Capacity curve due to flexural or shear mechanism.  

Failure denoted with yellow point. 
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performance objectives for these Limit States are documented in practical 
terms. 

 

 
The objective of this chapter is to critically review and identify, 

through a thorough review of the published experimental evidence, the 
critical issues affecting the resistance curve of columns during earthquake 
action (strength and deformation capacity) and the limiting brittle modes 

Fig.2-2: Damage of bridge columns: a) Member resistance curve and 
definition of limit states according with EN 1998-3 (2005).   

(b.1) Damage Limitation Limit State (b.2) Significant Damage Limit State 
(b.3) Near Collapse Limit State. 
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of failure. This is important since the column resistance curve eventually 
controls the buildings’ resistance in a relatively straightforward manner 
(Fotopoulou et al., 2011) whereas a sudden loss of column strength to 
overbearing loads may lead to collapse and human losses. In the context of 
a displacement based evaluation framework, not only the relevant shear 
strength is important, but also the corresponding column displacement 
capacity. In this regard, recent experimental evidence of shear critical 
reinforced concrete columns will be reviewed along with recently 
developed analytical models and the relevant state of the art of code 
assessment procedures.  

Existing Experimental Studies on Shear Dominated RC 
Columns 

The behaviour of shear-critical reinforced concrete columns has been the 
subject of extensive study and research in recent years as this seems to 
remain a challenging concrete mechanics problem. Shear dominant 
behaviour is reported in columns with a low aspect ratio, but also in lightly 
reinforced columns containing low ratios of transverse reinforcement. 
Section geometry (rectangular or circular sections) is one of the 
parameters that differentiate the available test results; cyclic pseudo-static, 
hybrid pseudo-dynamic and dynamic tests are included in the review. 
Some experimental studies are dedicated to the influence of axial load 
fluctuation on the response of the column (fluctuation of axial load about 
the value that is affected by the overbearing loads occurring during the 
seismic event as a result of the overturning action of lateral loads, and is 
most significant in columns located at a distance from the centre of mass 
of the building, i.e., on the perimeter of the structure).  

The same effect is seen in bridge piers belonging to multiple-column 
bents where it may be easily demonstrated that the axial load fluctuation is 
proportional to the horizontal (seismic) forces. Columns are also subjected 
to the vertical components of ground motion, which is not correlated 
concurrently with the horizontal loading. Past earthquake records have 
shown that in some cases, vertical ground motions cannot be ignored, 
particularly for near-fault situations. For example, the lateral displacement 
ductility of a column, designed based on constant axial load with a 
relatively low axial load ratio, can become unsatisfactory when the actual 
axial load due to the overturning effects or where the vertical ground 
motion exceeds the “balanced” axial load limit (i.e., about 40% of the 
column crushing load). The problem becomes even more significant when 
shear design is considered. The increase of axial load from the design level 
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(which typically is in the order of 5% to 10% of the crushing load) to the 
level of the balanced value generally increases the column flexural 
capacity causing a commensurate increase in the design shear demand 
(based on capacity design principles). On the other hand, a change in the 
axial load value from compression to tension may compromise significantly 
the column shear strength. 

A review of Influential Cyclic Column Tests 

From among the multitude of published tests on cyclically loaded columns 
under lateral displacement reversals (see also Chapter 3), a number of tests 
have received greater attention as their response was used as points of 
reference in calibrating the design expressions for shear published in the 
literature. On account of the weighty contribution of these experimental 
studies to the formation of the current assessment framework, these studies 
are reviewed separately in the present work. 

Ang, Priestley and Paulay (1989) performed experimental tests to 
study the seismic shear strength of circular columns. A series of twenty-
five 400 mm-diameter columns, considered to be approximately one-third 
scale models of typical bridge columns, were constructed and tested under 
cyclic reversals of lateral loading, as part of a major investigation into the 
strength and ductility of bridge pier columns. Variables in the test program 
included axial load level, longitudinal reinforcement ratio, transverse 
reinforcement ratio and aspect ratio. The column units were tested as 
simple vertical cantilevers. Results indicated that the shear strength was 
dependent on the axial load level, the column aspect ratio, the amount of 
transverse spiral reinforcement and the flexural ductility displacement 
factor. At low flexural ductilities, the additive principle for shear strength, 
based on a concrete contribution plus a 45-deg truss mechanism involving 
the spiral reinforcement and diagonal concrete compression struts, 
described the behavior quite well. But at flexural displacement ductilities 
greater than two, the tests demonstrated a gradual reduction of lateral load 
strength with increasing ductility, whereas the inclination of the diagonal 
compression struts of the truss mechanism relative to the longitudinal axis 
decreased. Here it is worth noting that significant rotations occurred at the 
base of these specimens artificially distorting the data in the direction of 
more excessive strength loss due to P-Δ effects (Ioannou and Pantazopoulou, 
2016).  

Wong, Paulay and Priestley (1993) conducted a series of biaxial tests 
that included 16 circular (400 mm-diameter) reinforced concrete cantilever 
columns with an aspect ratio of two and different spiral reinforcement 
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contents in order to investigate the sensitivity of the strength and stiffness 
of shear-resisting mechanisms to various displacement pattern and axial 
compression load intensities. Elastic shear deformations in squat circular 
columns with small or no axial compression load were found to be 
significant. It was concluded that shear deformation ought to be included 
explicitly in the estimation of initial stiffness of a column, so that a reliable 
relation between the ductility demand and the corresponding drift could be 
established. A general observation was that in comparison with uniaxial 
displacement paths, biaxial displacements led to more severe degradation 
of stiffness and strength, and thereby, increased energy dissipation. 
However, the reduction of initial shear strength and ductility capacity of 
squat columns (recall that the aspect ratio of the tested columns was equal 
to 2), subjected to biaxial displacement history was not very significant. 
The value of the dependable displacement ductility level attained during 
biaxial displacements was, on average, less (i.e. a value difference of 1) 
than that obtained in identical units subjected to uniaxial loading history. 
Initial shear strength of units with brittle shear failure was reduced by 
about 5 to 10 percent, depending on the axial load level when biaxial 
rather than uniaxial loading was considered. Finally, one more important 
finding was that the shear carried by spirals was underestimated when 
using a 45-deg potential failure plane; the observed major diagonal cracks 
developed in squat columns at much lower angles with respect to the 
longitudinal axis of the member. 

Lynn et al. (1996) constructed and tested 8 full-scale square section 
(457 mm) columns that had widely-spaced perimeter hoops with 90-
degree bends with or without intermediate S-hooks and with longitudinal 
reinforcement with or without short lap-splices. The columns had an 
aspect ratio of 3 and were loaded with constant axial load at low and 
intermediate levels, and were subjected to lateral deformation cycles until 
the column was incapable of supporting a lateral or vertical load. Failure 
modes included localized crushing of concrete, reinforcement buckling, 
lap-splice and flexural bond splitting, shear and axial load collapse. Loss 
of gravity load capacity occurred at or after significant loss of lateral force 
resistance. Where response was governed by a shear, gravity load failure 
occurred soon after loss of lateral force resistance. Where response was 
initially governed by lap-splice deterioration and gravity loads were 
relatively low, gravity load resistance was maintained until eventual shear 
failure occurred. Where response was predominantly flexural, gravity load 
capacity was maintained to relatively large displacements.  

As earthquakes and laboratory experience show that columns with 
inadequate transverse reinforcement are vulnerable to damage including 
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shear and axial load failure, another study in this direction is by Sezen and 
Moehle (2006). The latter included four full-scale square section (457 
mm) columns (aspect ratio equal to 3) with light transverse reinforcement 
that were tested quasi statically under unidirectional lateral loads with 
either constant or varying axial loads. Test results showed that responses 
of columns with nominally identical properties varied considerably 
depending on the magnitude and history of axial and lateral loads applied. 
For the column with a light axial load and reversed cyclic lateral loads 
(applied through a displacement history), apparent strength degradation 
triggered shear failure after the flexural strength was reached. Axial load 
failure did not occur until displacements had increased substantially 
beyond this point. The column with high axial load sustained brittle shear 
compression failure and lost axial load capacity immediately after shear 
failure, pointing out the necessity of seismic evaluations to distinguish 
between columns on the basis of axial load level. The column tested under 
varying axial load showed different behavior in tension and compression, 
with failure occurring under compressive loading.  

A review of relevant Pseudodynamic Tests 

It was stated earlier that columns in RC structures carry axial forces owing 
to dead and live loads and a combined varying axial force, moment and 
shear when excited by earthquake ground shaking. The varying axial loads 
lead to simultaneous changes in the balance between their supply and 
demand in axial, moment and shear to an extent that eludes adequate 
estimation by the code models. To consider the time varying effects of the 
ground motion on these combined actions, simulated dynamic loads were 
applied using a hybrid simulation of the earthquake effects on the 
structural model wherein the column specimen is assumed to belong. Kim 
et al. (2011) used hybrid simulation, where an experimental pier specimen 
was tested simultaneously and interactively with an analytical bridge 
model which was modelled on the computer; at each step of the dynamic 
test the forces applied on the specimen were calculated by solving the 
dynamic equation of motion for the structure where the stiffness 
contribution of the modelled column in the global structural stiffness was 
estimated from the measured resistance in the previous step. Additionally, 
two cyclic static tests with constant axial tension and compression were 
performed to study the effect of the axial load level on the bridge piers. It 
was found that by including vertical ground motion the axial force 
fluctuation on the test specimen increased by 100%, resulting at times in a 
net axial tension that was not observed under horizontal motion alone. 
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This high axial force variation led to a fluctuation of lateral stiffness and a 
more severe outcome of cracking and damage. Moreover, inclusion of 
vertical ground motion significantly affected the confining spiral strains. 
Thus, whereas the maximum spiral strain of the specimen subjected to 
horizontal ground motion occurred at 20% of the pier height, in the case of 
an identical specimen subjected to combined horizontal and vertical 
excitations it occurred at 55% of the pier height. Thus, it was estimated 
that the spiral strain increased by 200% when vertical ground motion was 
included. Therefore, in this example, the deterioration of shear capacity 
due to vertical ground motion was experimentally demonstrated. Also, 
whereas the test specimen that was subjected to constant axial 
compression experienced brittle shear failure including rupture of the 
spiral reinforcement, the companion specimen that was subjected to 
moderate tension showed ductile behavior. Comparing the strength at the 
first peak of displacement, it was found that the lateral load strength of a 
specimen with constant axial tension increased marginally with increasing 
displacement; the response of the specimen with axial compression 
showed significant strength degradation. Hence, considering observations 
from the two tests described above, it was clearly shown that different 
axial load levels influence the pier behavior significantly and can 
ultimately dictate the failure mode. 

Shake Table Tests conducted on Columns 

Shake table tests were designed by Elwood (2002) to observe the 
process of dynamic shear and axial load failures in reinforced concrete 
columns when an alternative load path is provided for load redistribution. 
The test specimens were composed of three columns fixed at their bases 
and interconnected by a beam at the upper level. The central square 
section column had a wide spacing of transverse reinforcement rendering 
it vulnerable to shear failure and subsequent axial load failure during 
testing. As the central column failed, the shear and axial loads were 
redistributed to the adjacent ductile circular columns. Two test specimens 
were constructed and tested. The first specimen supported a mass that 
produced column axial load stresses roughly equivalent to those expected 
for a seven-story building. In the second specimen hydraulic jacks were 
added to increase the axial load carried by the central column, thereby 
amplifying the demands for redistribution of the axial load when the 
central column began to fail. Both specimens were subjected to one 
horizontal component of a scaled ground motion recorded during the 1985 
earthquake in Chile. A comparison of the results from the two specimens 
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indicates that the behavior of the frame is dependent on the initial axial 
stress on the center column. The specimen with a lower axial load failed in 
shear- but maintained most of its initial axial load. For the specimen with a 
higher axial load, shear failure of the center column occurred at lower 
drifts and earlier in the ground motion record, and was followed by axial 
failure of the center column. Displacement data from immediately after the 
onset of axial failure suggest that there are two mechanisms by which the 
center column shortens during axial failure: first, by large pulses that cause 
a sudden increase in vertical displacement after a critical drift is attained; 
and second, by smaller oscillations that appear to ‘grind down’ the shear-
failure plane. Dynamic amplification of axial loads transferred from the 
center column to the outside columns was observed during axial failure of 
the center column.                 

An additional study by Ghannoum and Moehle (2012) includes 
earthquake simulation tests of a one-third-scale, three-storey, three-bay, 
planar reinforced concrete frame which was conducted to gain insight into 
the dynamic collapse of older-type construction. Collapse of the frame was 
the result of shear and axial failures of columns with widely spaced 
transverse reinforcement. The frame geometry enabled the observation of 
the complex interactions among the failing columns and the surrounding 
frame. The tests showed that the failure type and rate depended on the 
axial load level, stiffness of the surrounding framing, and intensity and 
duration of shaking. Column shear and axial behavior, including strength 
degradation, was affected by both large lateral deformation excursions and 
cycling at lower deformations. Low-cycle fatigue caused column collapse 
at significantly lower drifts than anticipated. It was concluded that current 
models and standards for estimating the shear and axial failure of columns 
do not account for low-cycle fatigue and can be unconservative, 
particularly for columns subjected to long-duration seismic motions. 
Moreover, models for shear strength degradation of reinforced concrete 
columns should account for both deformation and cyclically-driven 
damage. Finally, it was seen that structural framing surrounding the failing 
columns enabled vertical and lateral force redistribution that delayed or 
slowed down progressive structural collapse.  

Code Criteria for Shear Strength Assessment  
of RC Columns 

Behavior of reinforced concrete columns in combined shear and flexure 
has been studied extensively (see also Chapter 3). In the case of flexural 
behavior, sectional analysis, or a fiber model considering normal stresses 
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provides acceptable estimations in terms of ultimate strength and yielding 
deformation. Performance of reinforced concrete columns dominated by 
shear or shear-flexure cannot be estimated by applying only sectional 
analysis because shear behavior concerns the member and not a single 
cross section. In these cases it is necessary to couple a shear strength 
model with the flexural model – and by considering independently the 
degradation of each with increasing deformation, to determine the 
prevailing mechanism that controls the mode of failure of the member at 
the reference performance limit. Several code assessment procedures 
define the shear strength and its rate of degradation with increasing 
displacement ductility by evaluating the concrete contribution and the 
transverse steel reinforcement contribution to shear strength. Actually the 
existing code methodologies are differentiated regarding the concrete 
contribution term whereas the truss analogy for steel contribution is 
adopted almost universally in all proposals with a minor point of 
discussion being the angle inclination of the primary shear crack of the 
column that activates the steel stirrups contribution (Fig. 2-3). The various 
aspects of the code assessment of shear strength will be covered in the 
following sections. 

It is generally acknowledged that shear failure of RC structures 
signifies rapid strength degradation and significant loss of energy dissipation 
capacity. Reconnaissance reports from past strong earthquakes highlight 
the susceptibility of RC column webs to diagonal tension cracking that 
frequently leads to a brittle shear failure. Shear strength degradation 
ensues after the opening of the diagonal cracks which eliminate the 
mechanism of force transfer via aggregate interlock. To avoid shear 
failure, shear strength should exceed the demand corresponding to 
attainment of flexural strength by a safety margin.  
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For the mechanics of shears in reinforced concrete, most issues relating 

to physical interpretation are still fraught with considerable debate. For 
example, consensus is lacking as to the physical significance of the 
concrete contribution term and to mathematical description of tension-
based sources of shear-strength and their relationship to strain intensity 
and cyclic displacement history. According to EN 1998-3 (2005), the 
cyclic shear resistance, VR, decreases with the plastic part of ductility 
demand, expressed in terms of ductility ratio of the transverse deflection of 
the shear span (Fig 2.4) or of the chord rotation (Fig. 2.4) at member end: 

 For this purpose  may be calculated as the ratio of the 
plastic part of the chord rotation, θp, normalized to the chord rotation at 
yielding, . 

 

M 

N 

V 

Figure 2-3: Angle inclination of the primary shear crack. 
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Thus, EN 1998-3 (2005) defines shear strength accounting for the 

above reduction as follows: 
 

             (2-1) 

 
 

 
 

 
 

 
 

Ls 

  θtot 

Δtot 

Figure 2-4: Definition of chord rotation of a cantilever reinforced concrete 
column (top) modeling the shear span of an actual column (bottom). 
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where  is the depth of the cross-section (equal to the diameter D for 
circular sections);  is the compressive zone depth;  is the compressive 
axial force (positive, taken as being zero for tension);   ratio 
moment/shear at the end section;  is the cross-section area, taken as 
being equal to  for a cross-section with a rectangular web of width 
(thickness)  and structural depth  or to  (where  is the 
diameter of the concrete core to the inside of the hoops) for circular 
sections;  is the concrete compressive strength, and 

p )
 is the total 

longitudinal reinforcement ratio. 
For a typical reinforced concrete column (mean concrete strength of 30 

MPa) with a 1.5 meter shear span (i.e., a clear height of 3.0m) and a 350 
mm circular section (clear concrete cover 20mm) with 14Φ12 longitudinal 
reinforcement (yielding a strength of 500MPa) and Φ10/10 spiral 
reinforcement (yielding a strength of 500MPa) and axial load ratio of 20%, 
the axial load and concrete contribution to shear strength calculated based 
on the above equation (Eq. 2-1) lead to the following results: 49 kN axial 
load contribution which is the first term of the above equation (Eq. 2-1) 
and the concrete contribution is 34 kN. The reduction factor for a 
displacement ductility of 3 is 0.9. Therefore, the reduced concrete 
contribution is 31 KN.  

For the same column under the same axial load and with the same 
material properties as above but comprised of a square section (457 mm) 
with 8Φ20 longitudinal reinforcement and Φ10/20 transverse 
reinforcement, the axial load contribution and the concrete contribution to 
shear strength are 137 kN and 98 kN respectively. The concrete 
contribution for displacement ductility equal to 3 will be reduced to the 
value of 88 kN.  
In Eq. 2-1 term  is the contribution of transverse reinforcement to shear 
resistance, taken as equal to: 

a) for cross-sections with a rectangular web of width : 

                     (2-2a) 

where  is the transverse reinforcement ratio (Fig. 2-5);  is height of the 
equivalent truss, set equal to the internal lever arm, i.e., d-d’ in beams and 
columns (Fig 2-5); and  is the yield stress of the transverse 
reinforcement; and S the stirrup spacing. 
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With regard to the example of the typical, square-sectioned column as 

described above based on Eq. 2-2a, the steel contribution in shear strength 
is 175 kN and the total shear strength of Eq. 2-1 is 410 kN. If the reduction 
factor is applied, the shear strength becomes equal to 383 kN. The 
variation of shear strength with spacing for this example under 
consideration leads to the following graph (Fig. 2-6).  

 

 
Ιt is evident that for spacing greater than the effective depth of the 
section—which for the 45o degree truss analogy means that the shear crack 
doesn’t intersect any stirrup—Eq. 2-2a simply leads to a lower value of 
steel contribution to shear strength. This is actually inconsistent – the 

Figure 2-6: Effect of stirrup spacing to transverse steel contribution of a 
rectangular section in shear strength.   

x’ 

d’ 

d 

Figure 2-5: Transverse Reinforcement Ratio (S: spacing of the stirrups)   
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value ought to be zero in this case; Pantazopoulou and Syntzirma (2010) 
have suggested that the term be substituted by, 
 

 
  (2-2b) 

 For circular cross-sections (  is the concrete cover): 
 

                 (2-3) 

Regarding the example of the typical column with the circular section 
as described above based on Eq. 2-3, the steel contribution in shear 
strength is 382 kN and the total shear strength of Eq. 2-1 is 465 kN. If the 
reduction factor is applied the shear strength becomes equal to 424 kN. 
The variation of shear strength with spacing for the example under 
consideration leads to the following graph (Fig. 2-7).  

 

 
 

Βased on Fig. 2-7, the steel contribution component should be based 
on the requirement that at least one stirrup layer must be intersected by the 
diagonal cracking plane; otherwise the steel contribution term ought to be 
taken as equal to zero.  

Figure 2-7: Effect of stirrup spacing on transverse steel contribution of a 
circular section in shear strength.   
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In concrete columns with shear span ratio of , less or equal to 2, 
the shear strength,  may not be taken as greater than the value 
corresponding to failure by web crushing along the diagonal of the column 
after flexural yielding, , which under cyclic loading may be 
calculated from the expression: 

 

              (2-4) 
 

where  is the angle between the cracking plane and the axis of the 
column ( ). By implementing this equation to the example of 
the cases described above but with a change on the shear span so that the 
column be compliant to the shear span ratio limit of Eq. 2-4, the following 
results are obtained ( =700mm). It can be seen that for the circular 
column case shear strength is limited by web crushing along the diagonal.  
 

 
ASCE/SEI 41 is the latest in a series of documents developed after the 

FEMA initiatives in the 1990s and 2000s towards the development of a 
consistent assessment framework for existing structures. The FEMA/ATC 
documents form the first integrated reference for performance-based 
engineering, whereby deformation and force demands for different seismic 
hazards are compared against the capacities at various performance limits 

Figure 2-8: Shear Strength and its contributions for a typical reinforced 
concrete column.  
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(i.e. states of damage). At the outset of this momentous project by FEMA, 
available data on the performance of existing components were rather 
limited and therefore reliability concepts were not applied evenly towards 
the establishment of performance criteria.  

The issue of dependably estimating the shear strength of a RC element 
appears to be rather complicated as it presumes the full understanding of 
the several interacting behavior mechanisms under reversed cyclic 
loading, whereas it is strongly affected by the imposed loading history, the 
dimensions of the element (e.g. the aspect ratio), the concrete strength, the 
longitudinal reinforcement ratio but mostly the ratio and the detailing of 
the transverse reinforcement. So far it has not been possible to 
theoretically describe the strength of the shear mechanism from first 
principles of mechanics without the use of calibrated empirical constants. 
Therefore the shear strength estimates obtained from calibrated design 
expressions necessarily rely on the pool of experimental data used for 
correlation of the empirical expressions, as well as on the preconceived 
notions of the individual researchers as to the role each variable has in the 
mechanics of shear.  

The following expression for estimation of the shear strength of 
reinforced concrete columns is proposed by the Code for seismic 
rehabilitation of existing buildings of the American Society of Civil 
Engineers ASCE/SEI 41 (2007): 

 

                                                  (2-5) 
 
where  is the concrete contribution in shear resistance;  is the 
contribution of transverse reinforcement;  is the effective depth;  is 
shear span of the column;  is the axial force (compression positive, taken 
zero for tension);  is the gross cross-sectional area of the column;  is 
the cross-sectional area of one layer of stirrup reinforcement parallel to the 
shear action; and  is the centerline spacing of stirrups. If S is equal to or 
greater than half of the effective depth of the column then the contribution 
of steel reinforcement  in shear strength is reduced to 50% of its 
estimated value from the above equation. If S is equal to or greater than 
the effective depth of the column then zero shear strength contribution 
from steel reinforcement  is considered;  is the concrete compressive 
strength;  is the shear strength reduction factor that depends on 
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ductility. If ductility is less than or equal to 2 then the factor is set to equal 
to 1 (i.e. no strength reduction). If the ductility is greater than 6, then the 
reduction factor is equal to 0.6. For ductility between 2 and 6 the reduction 
factor is linearly interpolated between the proposed values.  

The Vc estimate given by Eq. 2-5 for the example of the rectangular 
column presented in this Section is: Vc,ASCE = 233 kN, while EN 1998-3 
(2005) resulted in Vc,EC8-3= 88 kN which, when combined with the axial 
load component (137 kN) leads to a total of 225 kN, which is comparable 
to the result of Eq.2-5. For the case of the circular column results to Vc,ASCE 
= 81 kN whereas Vc,EC8-3=80 kN (49 kN axial load contribution+31 kN 
concrete contribution) – values calibrated well with each other. 

The effect of the stirrups’ spacing to the steel contribution to shear 
strength is depicted in the following figures for ASCE/SEI-41 (2007) and 
it is compared with the EN 1998-3 (2005) (here abbreviation EC8-III is 
used) results.  

Despite the convergence of the calibrated expressions, the preceding 
comparisons highlight some of the uncertainties underlying the shear 
problem. For one, the concrete contribution term is taken—in both code 
documents—to be independent of the amount of transverse reinforcement, 
an omission that goes to the root of the truss-analogy model as originally 
introduced by Ritter and Moersch: there the concrete contribution 
component was thought to be a minor correction to the main component 
that was owing to transverse reinforcement (the truss posts) so as to 
improve correlation with the tests – it was never meant to be a component 
of commensurate importance and magnitude to that of transverse 
reinforcement. Another source of uncertainty lies in the treatment of the 
axial load: in the EN 1998-3 (2005) approach, the axial load contribution 
is dealt with as a separate term, whereas in the ASCE/SEI 41 (2007) 
approach it is treated as an offset to the tensile strength of concrete in the 
member web. This difference causes a departure in the Vc values near the 
upper limit in the axial load ratio (ν=N/Agfc) as depicted in Fig. 2-11. 
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Figure 2-10: Effect of stirrup spacing to transverse steel contribution of a 
circular section in shear strength.   

Figure 2-9: Effect of stirrup spacing to transverse steel contribution of a 
rectangular section in shear strength.   
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Figure 2-12: Shear strength vs. displacement ductility for the column with 
circular section.    

Figure 2-11: Shear strength vs. displacement ductility for the column with 
rectangular section.    
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Contrary to the shear strength assessment models of EN 1998-3 (2005) 
and ASCE/SEI 41 (2007), the shear model of fib Model Code (2010) is a 
design model which was not calibrated to specifically address members 
under seismic loads. The fib-MC2010 design section on shears provides 
the option of four different levels of model complexity depending on the 
level of detail needed at the time of calculation (intended to address the 
needs for preliminary design, detailed design and assessment). The four 
models are referred to here on as levels of approximation (LA) and are 
identified by Latin numbers. Thus, for members with shear reinforcement 
the LA-III model provides the point of reference since the higher the level 
of approximation is, the greater the design effort required. This is also the 
case for shear strength assessment of members with low volume of shear 
reinforcement (Sigrist et al. 2013).  

For members with shear reinforcement the fib Model Code 2010 shear 
provisions are based on a general stress field approach (Muttoni A. et al. 
1997, Sigrist V. 2011), combined with Simplified Modified Compression 
Field Theory (SMCFT, Vecchio and Collins 1986, Bentz et al. 2006). As 
in all preceding code formulations the shear resistance  is determined by 
the sum of a concrete contribution and web steel contribution term: 
 

                       (2-6) 
  

For structural assessment, the strain dependence of the shear resistance 
may be taken into account by estimating the strain value  at the mid-
depth of the effective shear section as depicted in (Fig. 2-13, fib Model 
Code 2010). Other deformation parameters could be selected but this value 
has a clear physical meaning as it represents the average longitudinal 
strain in the web and can be found from the sectional forces. For a 
reinforced member, the effective shear depth  is assumed to be . The 
tension chord force can be found from moment equilibrium in the section 
(Fig. 2-13) and the tension chord strain is determined accordingly from the 
tension chord force: 
 

           (2-7) 

 
where  is the resisted moment,  is the applied shear force,  is the 
axial force,  is the eccentricity of the beam axis with respect to its mid-
depth,  is the modulus of elasticity of longitudinal steel reinforcement 
and  is the area of tensile longitudinal reinforcement.  
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For the sake of simplicity, and to avoid iteration (since the definition of 

the compressive stress field inclination angle  requires ) for calculating 
the strain , the second item in Eq. 2-7 is approximated as 

 (a compressive stress field inclination angle  close to 
27o is assumed) (Fig. 2-13). With the conservative assumption that the 
compression chord strain is zero, it may be shown that the mid-depth 
strain may be taken as half the tension chord strain (Fig.2-13). The 
resistance attributed to concrete is: 

 

              (2-8) 

 
where  is a factor accounting for strain gradient effect and member size 
(Eq. 2-9),  is the concrete strength and  is the web width. 

The  value, accounting for the demand in the concrete contribution 
term, is defined by: 

 

            (2-9) 

where  is the shear force demand at the control section.  

 

 

 

 

 
 

 

 

 

 

Figure 2-13: Equilibrium at cross-section and corresponding approximation 
of strain profiles for end support region. 
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The concrete contribution equation (Eq. 2-8) is limited to normal or 
moderately high concrete strengths up to fc= 65MPa (the value  is 
limited to a maximum of 8 MPa); for higher strengths the equation may be 
deemed unconservative on account of the smoother crack faces where 
cracks pass through, rather than around, aggregate particles, resulting in 
larger variability in the shear resistance of members. For members with 
shear reinforcement, the shear resistance is the sum of the resistances 
provided by concrete (as per Eq. 2-8) and the contribution of stirrups:  

                   (2-10) 

 
where  is the cross-sectional area of one layer of shear reinforcement,  is the yield strength of shear reinforcement and  is the inclination of the compressive stress field relative to the longitudinal axis of the member 
(i.e., the angle of shear sliding cracks).  

Shear strength is limited by the crushing of concrete according with: 
 

              (2-11) 

 
The strength reduction factor  accounts for the effect of 

compression softening due to transverse tensile strain through factor :  
 

                (2-12) 

 
and for the increasing brittleness of high strength concrete through factor 
ηfc which reduces the effective shear strength for  MPa:  
 

            (2-13) 

 
The principal tensile strain that causes the compression softening effect 

in kε above, 
p

, is defined by a Mohr’s circle of 
strain (Fig. 2-14); as an adequate approximation, the (negative) principal 
strain 

( g
 may be taken as the concrete peak strain

( g ) p
 and εx 
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from Eq. 2-7. Finally, the stress field or strut inclination (Fig. 2-14), 
relative to the longitudinal axis of the member, is limited to: 

 

                      (2-14) 

                   (2-15) 

 
A comparison of the assessment procedure described above based on 

the design model of fib Model Code 2010 with the assessment models of 
the previously presented Code requirements stated in this Section is 
illustrated in Figs. 2-16, 2-17. The columns under study have similar 
properties with the already described example columns. It may be 
observed that the general method of the fib Model Code 2010 gives a more 
conservative estimation of the concrete contribution to shear strength.  

Similar to fib Model Code (2010), the design model of ACI-318-14 
(2014)  considers a concrete and a steel contribution to the shear strength 
of beam-columns: 
 

                       (2-16) 

Figure 2-14: Strut inclination in a column and Mohr circle of strains. 
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The concrete term,  is taken as the shear force causing inclined 
cracking in the member, obtained by setting the maximum sectional shear 
stress to the principal tensile stress of concrete; after cracking,  is kept 
the same, but it is justified as a contribution supported by aggregate 
interlock, dowel action and the shear term transmitted across the concrete 
compression zone. As in all other codes, the shear strength is based on an 
average shear stress acting over the effective cross section  (  web 
width or diameter of circular section,  effective depth of cross section).  

For non-prestressed members with axial compression,  is calculated 
from: 

              (2-17) 

where  is the axial force normal to cross section- to be taken as positive 
for compression, (Newton),  is the gross area of concrete section, ,  is the specified compressive strength of concrete (MPa),  is a 
modification factor to account for the reduced mechanical properties of 
lightweight concrete relative to normal weight concrete of the same 
compressive strength.  

For non-prestressed members with significant axial tension,  is 
calculated from: 

                 (2-18) 

Required shear reinforement is obtained from a modified truss analogy, 
wherein the force in the posts (vertical ties, Fig. 2-15) is resisted by the 
shear reinforcement. However, considerable research on both 
nonprestressed and prestressed members has indicated that shear 
reinforcement needs to be designed to resist only the shear demand 
exceeding the force that causes inclined cracking, assuming the diagonal 
struts in the truss panels to be inclined at 45 degrees (Fig. 2-15).  

From equilibrium it may be easily shown that 
(

 supported by web 
reinforcement is: 

                     (2.19) 

where  is the longitudinal spacing of transverse reinforcement (or the 
spiral pitch of tied columns with spiral transverse steel), mm;  is the cross sectional area of shear reinforcement parallel to the shear force 
within a single stirrup pattern,   is the specified yield 
strength of transverse reinforcement, MPa. Observe the similarity with the 



Chapter Two
 

30

EN 1998-3 (2005) equation for the Vw term. For circular ties or spirals,  
is two times the area of the spiral bar or wire. For calculation of  and  
in solid circular sections,  is approximated by 0.8 times the diameter and 

 is taken as the diameter. 
 

 

 

 

Figure 2-16: Comparison of shear strength assessment models for the 
square column example under study. 

Figure 2-15: 45o Truss Model.   
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Figures 2.16 and 2.17 compare the values obtained from the shear 

stregth models of the various code provisions including ACI 318-14 
(2014) for the example columns considered. Note that ACI 318-14 (2014) 
gives a higher shear strength estimation for concrete contribution with 
respect to the other code models but it is closely calibrated to both EN 
1998-3 (2005) and ASCE/SEI-41 (2007).  

Finally, it should be mentioned that the Greek Code (KAN.EPE. 2014) 
containing the necessary provisions for structural assessment and 
interventions for reinforced concrete buildings adopts the Eurocode 8 – 
part 3 (EC8-III) procedures (EN 1998-3, 2005), already introduced in this 
Section. 

Milestones in the Development of Models for Shear 
Strength Assessment of RC Columns 

Reviewed Code provisions were developed and based on past research 
which was motivated by the extensive damages observed in modern 
construction in the earthquakes worldwide after 1990. In particular, 
defining the degradation of shear strength due to increasing inelastic 
deformations has been the objective of several older models (Aschheim 
and Moehle 1992, Priestley et al. 1994, Sezen and Moehle 2004).  

 

Figure 2-17: Comparison of shear strength assessment models for the 
circular column example under study. 
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The study by Aschheim and Moehle (1992) was the first to develop a 
degrading model for the shear strength envelope of columns and beams, 
after calibrating an empirical relationship with a database of laboratory 
data from cantilever bridge column tests. The data indicated that the 
column shear strength is a function of displacement ductility demand, , 
the quantity of transverse reinforcement and axial load. As is the general 
practice, the shear strength is calculated as the summation of strength 
contributions from transverse reinforcement and concrete. The transverse 
reinforcement contribution is computed from Eq. 2-19. The concrete 
contribution is defined as: 

 
                        (2-20) 

where                 (2-21) 
 

So this model attributes the entire amount of strength degradation to 
deterioration of the concrete contribution term (through factor k). This 
model was intended to evaluate the shear strength in plastic hinge zones 
and was later adopted in FEMA 273 (1997). ASCE/SEI 41 is the most 
recent report for the subject of the “seismic rehabilitation of existing 
buildings,” which succeeded the previous editions on the same subject, 
FEMA 273 (1997) and FEMA 356 (2000). 

The approach by Priestley et al. (1994) further de-aggregates the shear 
strength of columns under cyclic lateral loads as comprising three distinct 
contributions – that of the concrete web, , a truss mechanism (or 
transverse reinforcement), , and an arch mechanism associated with an 
axial load, , as follows: 

 
                 (2-22) 

 
The concrete component  is given by: 
 

                   (2-23) 
 

where  and the parameter  depends on the member 
displacement ductility level as defined in the following equations: 
 

 
 
                 (2-24) 
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The contribution of transverse reinforcement to shear strength is based 
on a truss mechanism using a 30-degree angle between the diagonal 
compression struts and the column longitudinal axis. For rectangular 
cross-section columns, the truss mechanism component, , is estimated 
from: 

 
                 (2-25) 

 
where  is the distance measured parallel to the applied shear 
between centers of the perimeter stirrup. For circular cross-section 
columns, the truss mechanism component, , is defined from: 
 

                  (2-26) 
 

where  is the distance measured parallel to the applied shear between 
centers of the perimeter hoop or spiral.  

The arch component refers to the horizontal component of the inclined 
axial strut carrying the axial load to the support. In this model this term is 
given by 

 
                  (2-27) 

 
where  is the inclination of the diagonal compression strut with respect to 
the longitudinal axis of the column and  is the depth of the compression 
zone, whereas  is the effective depth of the section.  

It should be noted that the depth, , depends on both the axial load and 
aspect ratio (i.e. the amount of curvature required to develop a certain 
displacement ductility). Thus, with an increasing aspect ratio the axial load 
contribution to shear strength decreases. Similarly, a higher depth of 
compression zone (for higher axial load) affects the value of 

g
, showing a 

subtle increase for higher compressive N. The effect of the axial tensile 
load on the shear strength is not defined in the model.  

Sezen and Moehle (2004) updated the earlier model of Aschheim and 
Moehle (1992) also relating column shear strength to the displacement 
ductility demand; the novelty here is that the strength degradation factor  
was taken to operate on both concrete and steel contributions (Fig. 2-18): 
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        (2-28) 
 

This model was later adopted in the ASCE/SEI 41 assessment 
provisions. The reasoning in applying a reduction to both terms is that the 
concrete component is expected to diminish owing to increased cracking 
and degradation of the aggregate interlocking mechanism, whereas the 
steel component is assumed to degrade due to a reduction in the bond 
stress capacity required for an effective truss mechanism. 

 

 
The comparison of the models included in this Section for the example 

columns under study of this Chapter is illustrated in Figs. 2-19 and 2-20. 
Differences in the estimation of the transverse reinforcement contribution 
in shear strength between the 30-degree truss model (Priestley et al 1994) 
and the 45-degree truss model adopted by Aschheim and Moehle 1992, 
Sezen and Moehle 2004 are clearly evident. For the same stirrup 
arrangement, the 30-degree truss model gives a higher steel contribution to 
shear strength.  

Figure 2-18: Variation of degradation coefficient k with displacement 
ductility. 



State of the Art on Seismic Assessment of Reinforced Concrete Columns 
 

35 

 

 
 
The Modified Compression Field Theory (MCFT) (Vecchio and 

Collins, 1986) employs equilibrium, compatibility and experimentally 
verified stress-strain relationships to model the shear behavior of cracked 

Figure 2-20: Comparison of shear strength assessment models for the 
circular column example under study. 

Figure 2-19: Comparison of shear strength assessment models for the 
square column example under study. 
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concrete. A fundamental relationship in the MCFT relates the shear stress 
on a cracked surface due to aggregate interlock to the crack’s width, the 
maximum aggregate size and the concrete strength. The aggregate effect 
was first codified when a general method for shear design was derived 
based on the MCFT and implemented in the AASHTO-LRFD bridge 
design guidelines. In 1994 the general method of shear design was 
implemented in the CSA concrete design code for buildings in Canada. An 
updated and simplified version of the general method has been developed 
(Bentz et al., 2006) and implemented in the 2004 CSA design code. The 
new general method, referred to as the Simplified Modified Compression 
Field Theory (SMCFT) has been found by some to be simpler than the 
original general method with, in many cases, improved predictive 
capabilities (Sherwood et al., 2006). 

According to SMCFT simple expressions have been developed for β (a 
parameter that models the ability of cracked concrete to transfer shear), the 
crack angle a, and the normal average strain in the web’s longitudinal 
centroidal axis , thereby eliminating the need to iterate in order to solve 
for these values. The following general relationship is used to determine 
the shear resistance of a concrete section: 

 
            (2-29) 

 
Term  in Eq. 2-29 is a function of 1) the longitudinal strain at the 

mid-depth of the web , 2) the crack spacing at the mid-depth of the web 
and 3) the maximum coarse aggregate size, . It is calculated using an 
expression that consists of a strain effect term and a size effect term: 

 

   (2-30) 
 

The longitudinal strain at the mid-depth of a beam web is 
conservatively assumed to be equal to one-half of the strain in the 
longitudinal tensile reinforcing steel as is adopted in the fib Model Code 
2010 previously presented. For sections that are not prestressed,  is 
calculated according to Eq. 2-31 which is practically the same as Eq. 2-7 
(here,  is the resisted moment,  is the applied shear force,  is the 
normal force [positive if it is tensile],  the modulus of steel, and  is 
the area of tension reinforcement): 
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                         (2-31) 

 
The effect of the crack spacing at the beam mid-depth is accounted for 

by the use of a crack spacing parameter . This crack spacing parameter is 
equal to the smaller of either the flexural lever arm (  orr , 
whichever is smaller) or the maximum distance between layers of 
longitudinal crack control steel distributed along the height of the web. 

The term  is referred to as an “equivalent crack spacing factor” and 
has been developed to model the effects of different maximum aggregate 
sizes on the shear strength of concrete sections by modifying the crack 
spacing parameter. For concrete sections with less than the minimum 
quantity of transverse reinforcement and constructed with a maximum 
aggregate size of 20mm,  is taken as equal to . For concrete with a 
maximum aggregate size other than 20mm,  is calculated as follows: 

 
                  (2-32) 

 
To account for aggregate fracture at high concrete strengths, an 

effective maximum aggregate size is calculated by linearly reducing  to 
zero as the compressive concrete strength  increases from 60 to 70 MPa. 
Term is set equal to zero for higher concrete strengths (i.e., for >70 
MPa). The square root of the concrete strength is limited to a maximum of 
8 MPa as in the fib Model Code 2010 previously introduced.  

The angle of inclination of the cracks at the beam mid-depth, α, is 
calculated by the following equation: 

 
       (2-33) 

 
For the example columns of this Chapter, Eq. 2-33 results in  

for the square column and for the circular column. 
A campaign to re-evaluate the shear strength models for the Vc term 

was conducted by Tureyen and Frosch in 2003. As part of this effort, a 
new model was developed, taking the compressive zone part of the cross 
section (i.e. the part above the neutral axis) as the primary contributor to 
shear strength. As shown in Fig. 2-21, the model considers that while the 
shear can be transferred over the entire effective depth d between cracks, 
at the location of a crack, shear stress can only be transferred through the 
uncracked concrete above the neutral axis. The shear stress distributions 



Chapter Two
 

38

shown in Figure 2-21 (a) are theoretical; however, these can be simplified 
in considering average stress distributions as shown in Figure 2-21 (b). 

ômax

ômax

c

d-c

á)

ôavg

ôavgc

d-c

b)

  
Figure 2-21: Theoretical (a) and Average (b) Shear Stress Distribution. 

 
Using this model and considering the average shear stress distribution 

at a crack, a simplified expression for concrete contribution to shear 
strength was developed: 
 

            (2.34) 

 
where  is the neutral axis depth (mm) measured from the compression 
face of the cracked, transformed cross section of the member. An 
advantage of this approach is that the effect of axial load is implicitly 
accounted for in the value of x. 

Using shear-strength models such as those presented in the preceding 
figure is useful in estimating the available strength of members in 
conventional strength-based design and assessment. However, the 
strength-based approaches overlook a significant aspect that is essential in 
the performance context (i.e. when the focus is on damage sustained when 
the strength term materializes) – namely, the deformation capacity of the 
member and the mode of failure associated with the exhaustion of the 
shear strength terms, and the margin of safety required between this, brittle 
occurrence and the more ductile mechanisms of behavior before safety 
may be compromised. The above-mentioned limitation motivated the 
effort to develop displacement-based models for a dependable estimation 
of the drift capacity of flexure-shear critical columns, i.e., columns that 
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become critical in shear immediately after flexural yielding for a known 
axial load magnitude and member aspect ratio.  

 

 
The occurrence of a steep shear crack in a reinforced concrete column 

signifies the process of strength degradation that eventually leads to shear 
failure. If the reinforcement anchorages are sufficient, then, beyond this 
point the steep shear crack developed on the column leads to progressive 
sliding between the crack surfaces, permanent distortion of the web with 
simultaneous buckling of longitudinal reinforcement and fracturing of 
transverse reinforcing bars crossing the sliding plane; this type of failure 
eliminates the ability of the column to carry the overbearing loads and is 
therefore considered an axial failure. These two stages are distinct and not 
interchangeable; for the sake of clarity the two points of failure are marked 
on the notional element resistance curve in Fig 2-22. 

The model developed by Pujol et al. (1999) related the magnitude of 
drift at shear failure with the aspect ratio of the column ( Ls/d, where Ls is 
the column shear-span and d is the section depth from the centre of tension 
reinforcement to the extreme compression fibre of the column), the shear 
reinforcement ratio  (yield stress of ), and with the column shear 
stress ߬ at shear failure (defined as the shear force at shear failure divided 
by the web area, ). Based only on a statistical evaluation of the results 
of an experimental database that comprised 15 series of tests containing 94 

Figure 2-22: Shear and Axial Failure of a Reinforced Concrete Column. 
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specimens, and in an effort to establish a conservative estimate of the drift 
ratio at shear failure, Pujol et al. (1999) recommended the following 
relationship (  = clear height of column): 

 
                        (2-35) 

 
All the column specimens considered in the study were subjected to 

nominal shear stresses that may be assumed to be high enough so as to 
produce inclined shear cracking (shear stresses that exceed the tensile 
strength of the concrete). Failure was due to disintegration of the concrete 
core caused by sliding along inclined cracks and crushing of the concrete 
under compression. The ranges of the parameters for the employed 
experimental data leading to Eq. 2-35 were:  

 
  21-86 MPa,  (Longitudinal reinforcement ratio): 0.5-5.1%, 

: 0-8 MPa, : 0-0.2, : 1.3-5, : 
. 

 
Figure 2-23 depicts the results from Pujol’s model and the database 

employed by Elwood (2003) (the database consists of 50 flexure-shear-
critical columns representative of columns from older reinforced concrete 
buildings). It has been observed that the proposed expression for drift at 
shear failure is not conservative for six of the columns in the employed 
database. Three of those columns were subjected to axial loads in excess 
of the axial loads considered when developing the model. Although 
conservative with respect to the other specimens, there is nevertheless still 
significant discrepancy between calculated and measured drift values. 
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Elwood and Moehle (2005) proposed an empirical model that relates 

the shear demand to the drift at shear failure  based on the 
transverse reinforcement ratio , shear stress ratio , and axial 
load ratio . A database created by Sezen (2002) comprising 
50 flexure-shear-critical specimens representative of older construction 
practices was employed for validation of the model. The test columns were 
selected based on a search of the literature for specimens tested under 
unidirectional cyclic lateral load with low transverse reinforcement ratios 

, yielding of longitudinal reinforcement prior to loss of 
lateral load capacity, and shear distress observed at failure suggesting that 
loss in lateral load capacity was due to degradation of the shear-transfer 
mechanism. The point of shear failure in the developed model was 
determined by the intersection of shear-drift curve for the column and the 
limit surface defined by a postulated drift capacity model (the limit surface 
is the outcome of Equation 2-36 for different pairs of shear force (and the 
corresponding shear stress) and the resulting displacement  plotted 
along with the element resistance curve- Figure 2-24). The proposed 
equation is:  

Figure 2-23: Comparison of calculated and measured drifts for Pujol et al. 
1999 (Elwood 2003). 
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           (2-36)     

 

 

Figure 2-25: Comparison of calculated drift ratio at shear failure using Eq. 
2-36 with database by Elwood. (Elwood 2003 – Dashed lined are +/- one 

standard deviation from the mean.)    

Figure 2-24: Shear failure by Elwood and Moehle (2005)  
drift capacity model. 

Limit surface defined by drift 
capacity model 

(Elwood & Moehle, 2005) 
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For the example of the square column under study in this Chapter with 
200 mm stirrup’s spacing Pujol’s model results in a 1.7% drift at shear 
failure and Elwood’s model in 2.4 % drift at shear failure (in Fig. 2-25 
depicted by the red and the blue dots, respectively). Therefore, the drift 
model by Pujol is more conservative.  

To date, a limited number of models (Elwood and Moehle 2005, C. T. 
Ngoc Tran and B. Li 2013) have been developed to estimate the axial-drift 
failure of non-ductile columns. The model by Elwood and Moehle (2005) 
was developed considering the free body diagram of a column failed in the 
shear; here the only possible resistance is provided through shear friction 
along the sliding interface – collapse is imminent. Figure 2-26 depicts the 
free-body diagram of the upper portion of a column under shear and axial 
load. The external moment vector at the top of the column is not shown as 
it will not enter the equilibrium equations. The inclined free surface at the 
bottom of the free-body diagram is assumed to follow a critical inclined 
crack associated with shear damage. The “critical” crack is one that, 
according to the idealized model, results in axial load failure as shear 
friction demand exceeds the shear-friction resistance along the crack.  

Several assumptions were made to simplify the problem. Dowel forces 
from the transverse reinforcement crossing the inclined crack are not 
shown in the free body diagram; instead, the dowel forces are assumed to 
be included implicitly in the shear-friction force along the inclined plane. 
Shear resistance due to dowel action of the longitudinal bars depends on 
the spacing of the transverse reinforcement, and it was ignored for the 
columns considered in this study. Given the tendency for buckling at axial 
load failure, the axial force capacity of the longitudinal reinforcement was 
assumed equal to zero. Finally, the horizontal shear force was assumed to 
have dropped to zero in the limit following shear failure and at the point of 
incipient axial failure. 

The equilibrium of the forces shown in the free body diagram (Figure 
2-26) results in the following equations: 

 
 (2-37) 

         (2-38) 
 

In light of the foregoing assumptions, Equation 2-37 can be rewritten 
as follows: 

         (2-39) 
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Based on Equations 2-38 and 2-39, on the axial capacity of the 

longitudinal reinforcement  and on the relationship between 
y
 and  

through the shear-friction model, the expression that relates axial load, 
transverse reinforcement, and drift ratio at axial load collapse is:  

 
               (2.40) 

 
where  is the depth of the column core between the centerlines 
of the ties. After experimental observation, the angle of the shear failure 
surface from horizontal was taken as equal to 65o. Similar to the shear-
failure model described in the previous section, the axial drift model 
defines a limit surface at which axial failure is expected to occur (Fig. 2-
27). For the square column under study in this Chapter and for a 200 mm 
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Figure 2-26: Free-body diagram of upper end of column (Elwood and 
Moehle 2005). 
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stirrup spacing, the drift ratio at axial load failure or collapse was 
estimated at 3.9%. 

 
C. T. Ngoc Tran and B. Li (2013) presented analytical and 

experimental investigations carried out on RC columns with light 
transverse reinforcement. A semi-empirical model was developed to 
estimate the ultimate displacement (displacement at axial failure) of RC 
columns with light transverse reinforcement subjected to simulated 
seismic loading. The following basic assumptions were employed in 
deriving the model: 

 The applied axial load at the point of axial failure is transferred 
through the shear failure plane. 

 The angle of the shear failure plane of 60o as defined by Priestley 
et al. 1994 was adopted. (30-degree angle between the diagonal 
compression struts and the column longitudinal axis as stated 
already in the description of Priestley et al. shear strength model). 

 The shear demand on the columns was considered to be 
negligible and therefore ignored at the point of axial failure. 

 Once the shear strength had degraded - corresponding to a 
displacement ductility of 2 for unidirectional lateral loading – 
then it was assumed that any additional deformation of the 

Figure 2-27: Axial Failure defined by Elwood and Moehle drift-capacity 
model (Elwood and Moehle 2005). 
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columns was owing to sliding between cracking surfaces as 
shown in Fig. 2-28. 

 
At the point of axial failure as shown in Fig. 2-28, the external and 

internal works  , developed by the column were calculated 
according to the following: 

 

Figure 2-28: Assumed failure plane at the point of axial failure. 
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                         (2-41) 
                     (2-42) 

 
, , and  are the internal works done by deformation of concrete, 

transverse reinforcement and longitudinal reinforcement, respectively. As 
illustrated in Fig. 2-28,  is the vertical displacement due to sliding 
between cracking surfaces at the point of axial failure. Equating the 
external and the internal work leads to the following equation: 
 

                      (2.43) 
 
where , ,  are the axial strengths contributed by longitudunal 
reinforcement, transverse reinfrocement, and concrete at imminent axial 
failure, respectively. Axial strength of longitudinal reinforcing bars at 
axial failure normalized by their nominal yield strength defines the yield 
strength ratio, , as follows: 
 

                   (2-44) 
                       (2-45) 

                          (2-46) 
 
where  is the depth of the core (centerline to centerline of ties)  is the 
total longitudinal reinforcement ratio;  and  are the width and the 
height of the column’s cross section respectively;  the yield strength of 
the longitudinal reinforcement.  is defined by Eq. 2-23. With reference 
to Fig. 2-28 the damaged length  is given by: 
 

                          (2-47) 
 

The ratio of horizontal displacement due to sliding between cracking 
surfaces at axial failure divided by the damaged length has the physical 
significance of a drift ratio, associated here with axial collapse. This term, g

 , is given as: 
 

            (2-48) 
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In the above, the yield displacement  is defined as the displacement 
associated with the secant to yield line in the force-displacement resistance 
curve of the member.  

The developed model is calibrated using the collected data of 47 RC 
columns tested to the point of axial failure. These columns encompass a 
wide range of cross-sectional sizes, material properties, and column axial 
loads. They were subjected to a combination of an axial load and 
unidirectional cyclic loadings to simulate earthquake actions. Based on the 
employed database, an empirical equation was developed so as to relate 
the ratio of- the axial strength of longitudinal reinforcing bars to the yield 
strength of the longitudinal reinforcing bars- to the ratio of - the horizontal 
displacement due to the sliding between cracking surfaces to the damaged 
length - as follows:  

 
                   (2-49) 

 
 

 
 

Figure 2-29: Comparisons between experimental and analytical ultimate 
displacements at axial failure of various equations  

(C. T. Ngoc Tran and B. Li 2013). 
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A series of experiments was conducted on five RC columns with light 
transverse reinforcement to validate the applicability and accuracy of the 
developed model. These tests were not included in the experimental 
database from which the developed semi-empirical model was derived. It 
is concluded from the study that the mean ratios of the experimental to 
estimated ultimate displacements and the corresponding coefficients of 
variation were 1.077 and 0.194, respectively. A comparison of the 
proposed equation by C. T. Ngoc Tran and B. Li (2013) with the model by 
Elwood and Moehle (2005) is depicted in Fig. 2-29. When applying the 
derived model by C. T. Ngoc Tran and B. Li (2013) described here to the 
example square column under study in this Chapter for 200 mm stirrups 
spacing, the drift at axial failure is 2.8 % which is much more conservative 
with respect to the result by Elwood and Moehle (2005) (3.9%; red and 
blue dots in the Figure, respectively). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER THREE 

PERFORMANCE OF EXISTING MODELS 
APPLIED TO THE EXPERIMENTAL 

 COLUMNS DATABASE 

 
 
 
The mode of failure of structural members such as reinforced concrete 
columns depends on several factors, such as their geometric characteristics, 
the longitudinal reinforcement, the efficiency of confinement through the 
transverse reinforcement and the loading history. Their behavior 
throughout the loading range is controlled by competing mechanisms of 
resistance such as flexure, shear, buckling of longitudinal bars when they 
are subjected to compressive loads, and in the case of lap splices, the lap-
splice mechanism of bar reinforcement development. Very often a 
combination of such mechanisms characterizes the macroscopic behavior 
of the column, especially in cases of cyclic load reversals. Various 
predictive models have been developed in the past to determine both the 
strength as well as the deformation capacity of the columns, the 
uncertainty being at least one order of magnitude greater in terms of 
deformation capacity rather than strength, as evidenced by comparisons 
with test results. 

In this Chapter, some of the models described analytically in Chapter 2 
are tested for their performance against a widely used experimental 
database (2003, https://nisee.berkeley.edu/spd/) by Berry and Eberhard 
(2004). Known as the PEER Structural Performance Database, it 
assembles the results of over 400 cyclic, lateral-load tests of reinforced 
concrete columns. The database describes tests of spiral or circular hoop-
confined columns, rectangular tied columns, and columns with or without 
lap splices of longitudinal reinforcement at the critical sections. For each 
test, where the information is available, the database provides the column 
geometry, column material properties, column reinforcing details, test 
configuration (including P-Delta configuration), axial load, digital lateral 
force displacement history at the top of the column, and top displacement 
that preceded various damage observations.  
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First, a parametric sensitivity for the employed database is conducted 
in order to highlight the statistical content and parameter trends with 
regard to basic indices that define the column behavior. Subsequently, 
flexure-dominant columns having either a circular or a rectangular cross 
section are studied so as to attempt to reproduce (and therefore fully 
comprehend) their hysteretic lateral experimental response. Shear critical 
columns are studied as a separate group - in terms of strength and 
deformation capacity. Some of the models presented in Chapter 2 for shear 
strength are tested against this group of experimental data. Lastly an 
experimental database for cyclic tests of reinforced concrete columns 
under variable axial load is assembled for the needs of the present study, 
and are used to corroborate the models outlined in Chapter 2 with regard 
primarily to deformation capacity as the axial load varies from 
compressive to tensile (modeling the overturning effects of the earthquake 
on perimeter frame columns in structures).  

Parametric Sensitivity of PEER Structural Performance 
Database 

The statistical profile of the data available in the PEER structural 
performance database (https://nisee.berkeley.edu/spd/) is outlined here. 
Distributions of key column properties (depth, aspect ratio, axial load 
ratio, longitudinal reinforcement ratio and transverse reinforcement ratio) 
provide the overall scope and limitations of the experimental investigations, 
and the degree of overlap and knowledge gaps between the available 
studies. The value of such collected databases is in crossing the boundaries 
of the individual experimental studies that have been conducted before, 
which, owing to the difficulty due to the size and expense of specimens, 
never include more than a handful of tests, always much smaller in 
number than the number of independent parameters and rarely if ever 
presented in replicas of two or three. In the context of understanding the 
scope of the database, principal indices of deformability (i.e. displacement 
ductility) are presented in correlation with key design parameters (concrete 
strength, axial load ratio, aspect ratio, maximum shear force and transverse 
reinforcement ratio).  

Characteristics of Available Data 

Table 3-1 provides the mean values (Mean), Standard deviation (std) and 
Coefficients of variation (CoV) of key column properties for 306 
rectangular-reinforced columns and 177 spiral-reinforced columns. Statistics 
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are provided for the column depth, aspect ratio, axial-load ratio, 
longitudinal reinforcement ratio (ρl) and transverse reinforcement ratio 
(ρs). 
 
Table 3-1: Column Property Statistics 
 

 Rectangular-Reinforced 
(306 tests) Spiral-Reinforced (177 tests) 

Column 
Property Mean Std CoV Mean Std CoV 

Depth 
(mm) 323.43 116.5 0.36 420.97 202.11 0.48 

Aspect 
Ratio 3.44 1.44 0.42 3.31 1.96 0.59 

Axial-
Load 
Ratio 

0.27 0.19 0.73 0.14 0.14 1.04 

ρl (%) 2.45 1.00 0.41 2.62 1.02 0.39 
ρs (%) 1.34 1.07 0.80 0..93 0.74 0.80 

 
The distributions of column depth used by researchers are illustrated in 

Figs. 3-1 and 3-2. Evidently, the rectangular-reinforced data is approximately 
normally distributed about a mean value of 300 mm. On the other hand the 
spiral column reinforcement data does not follow a normal distribution. 
Fig. 3-2 depicts a box plot for each of the two groups of specimens. (A 
Box Plot describes the five-number summary of a distribution that consists 
of the smallest (Minimum) observation, the first quartile (Q1), the median 
(Q2), the third quartile (Q3), and the largest (Maximum) observation 
written in order of smallest to largest. The central box spans the quartiles. 
A line within the box marks the median. Lines extending above and below 
the box mark the smallest and the largest observations (i.e. the range). 
Outlying samples may be additionally plotted outside the range. 
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The distributions of the column aspect ratio are illustrated in Fig. 3-3 

& 3-4. The rectangular-reinforced data is approximately normally 
distributed about its mean value with a skew towards the lower aspect 
ratios. The spiral reinforced data is also weighted towards the lower aspect 
ratios. Fig. 3-4 depicts the box plot for the two groups of specimens. It 
should be noted that the length for the determination of the aspect ratio of 
each column is the equivalent cantilever column length. 

Figure 3-2: Box Plot of Column Depth.  

Figure 3-1: Distribution of Column Depth. 
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The distributions of the axial-load ratio are illustrated in Figs. 3-5 and 3-6. 
The spiral-reinforced data is approximately normally distributed about its 
mean value with a skew towards the lower axial load ratios. The 
rectangular reinforced data has a distribution weighted towards the lower 
axial-loads ratios. Fig. 3-6 depicts the box plot for the two groups of 
specimens. 
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Figure 3-4: Box Plot of Column Aspect Ratio. 
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Figs. 3-7 and 3-8 plot the distributions of the longitudinal-reinforcement 

ratio, ρl. The rectangular-reinforced data is approximately normally distributed 
about its mean value with a skew towards the lower reinforcement ratios. 
Again, the spiral-reinforced data is not distributed normally. Fig. 3-8 
depicts the box plot for the two groups of specimens. 
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Figure 3-6: Box Plot of Axial-Load Ratio. 
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Figure 3-5: Distribution of Axial-Load Ratio. 
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Finally, the distributions of transverse reinforcement ratio are 

presented in Figs. 3-9 and 3-10. Both the rectangular-reinforced and spiral-
reinforced columns have distributions weighted towards the lower 
transverse reinforcement rations and cannot be characterized easily by a 
specific distribution. Fig. 3-10 depicts the box plot for the two groups of 
specimens. 
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Figure 3-8: Box Plot of Longitudinal-Reinforcement Ratio.  

Figure 3-7: Distribution of Longitudinal-Reinforcement Ratio.  
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Principal Indices of Deformability 

 
One important goal in the seismic structural assessment procedures is the 
reliable estimation of the available capacity of structural members for 
inelastic deformation, as well as their available ductility. Ductility drives 
assessment since its magnitude underlies the general design philosophy 
(i.e., through the q- -T relationships it controls the magnitude of strength 

0

1

2

3

4

5

6

7

1

Box Plot

D
is

tri
bu

tio
n

of
 T

ra
ns

ve
rs

e-
R

ei
nf

or
ce

m
en

t R
at

io
 (%

)
of

 R
ec

ta
ng

ul
ar

-R
ei

nf
or

ce
d 

C
ol

um
ns

0

0.5

1

1.5

2

2.5

3

3.5

4

1

Box Plot

D
is

tri
bu

tio
n 

of
 T

ra
ns

ve
rs

e-
R

ei
nf

or
ce

m
en

t R
at

io
 (%

)
of

 S
pi

ra
l-R

ei
nf

or
ce

d 
C

ol
um

ns

Figure 3-10: Box Plot of Transverse-Reinforcement Ratio.  

Figure 3-9: Distribution of Transverse-Reinforcement Ratio.  
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reduction from the elastic demands that may be tolerated before failure) 
and, in current code practice, its magnitude is reflected on the specific 
reinforcing requirements of members and structures.  

In this section the displacement ductility value clouds—as defined 
from the reported experimental responses—are correlated against important 
design parameters and plotted in graphs to illustrate the parametric 
dependencies of this variable.  

For example, considering the concrete strength, the following points 
are made: (a) Higher strength materials are marked by lower ultimate 
strain, (b) strain can be enhanced through confinement, (c) a higher 
concrete strength results in a lower compression zone both at yielding and 
at failure. In general it can be said that higher concrete strength causes a 
reduction in ductility. This finding is confirmed by both groups of 
rectangular-tied columns and by the spiral-reinforced columns as can be 
seen in Figs. 3-11, 3-12. For the spiral-reinforced columns it is more 
clearly evident that the ductility is increased for specimens with lower 
concrete strengths. 

During the flexural analysis of a section both at yielding and at failure 
the presence of a compressive axial load increases the depth of the 
compressive zone as compared to an identical section without axial force. 
Based on the above remark the presence of the compressive axial load 
reduces the curvature ductility of a section. In general it can be noted that 
the increase of the compressive axial force in a section reduces drastically 
the available ductility; it is also important to note that if the axial load 
increases beyond the point of balanced failure, the column section 
becomes brittle. This is confirmed by Figs. 3-13 and 3-14.  
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Figure 3-12: Effect of concrete strength on displacement ductility for the 
spiral- reinforced columns of the Berry and Eberhard (2004) experimental 

database.  
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Figure 3-11: Effect of concrete strength on displacement ductility for the 
rectangular-reinforced columns of the Berry and Eberhard (2004) 

experimental database.  
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Shear-span to depth ratio, known as aspect ratio, [a] is the most 

significant parameter that influences the shear behavior characteristics. In 
a column of small shear-span-to-depth ratio, shear deformation may 
become appreciable compared with the flexural deformation. A dominant 
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Figure 3-14: Effect of axial load ratio on displacement ductility for the 
spiral-reinforced columns. 
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Figure 3-13: Effect of axial load ratio on displacement ductility for the 
rectangular-reinforced columns. 
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shear response causes a more pronounced pinching in the force-
deformation (hysteresis) curve, and a faster degradation of the hysteresis 
energy dissipating capacity. Interestingly, the experimental data show that 
the ductility ratio increases with a decreasing aspect ratio (Figs. 3-15, 3-
16); this perplexing result is attributed to the fact that the yield 
displacement increases at a quadratic rate with shear span length Ls, 
whereas the ultimate displacement is linear with Ls – and thus the ductility 
estimate is inversely proportional to Ls or [a]. The following expressions 
relate the flexural component of column response with aspect ratio, 
illustrating the source of the experimental trend: 

 

-Yield Curvature: h
sy

y 1.2
                              (3-1) 

-Yield Displacement:      
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where ℓpl is the plastic hinge length, a the shear span (or aspect ratio), and 
εpl the nonlinear (past yielding) part of the tension reinforcement total 
strain, and ε the required bar strain ductility.  
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Figure 3-16: Effect of aspect ratio on displacement ductility for the spiral- 
reinforced columns.  
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Figure 3-15: Effect of aspect ratio on displacement ductility for the 
rectangular- reinforced columns.  
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Figs. 3-17 and 3-18 depict the relationship between the maximum 
shear stress (maximum experimental shear force divided by the gross area 
of the column) normalized by the square root of concrete strength of each 
column and the associated displacement ductility. It can be seen that 
columns with higher ductility also supported higher shear force, 
consistently with the result of Figs. 3-15, 3-16, which illustrated that 
displacement ductility is inversely proportional to aspect ratio, which in 
turn, for a given member flexural resistance, is inversely proportional to 
shear demand (since VEd=MEd/(h·a)). 

The database trends are also examined with reference to lateral 
confinement – which is generally acknowledged to enhance the deformation 
capacity of the column. The arrangement of confining reinforcement is 
important in this regard; a column with closely spaced stirrups and well-
distributed longitudinal reinforcement shows very little strength decay 
even when being subjected to very high axial forces with magnitudes 
exceeding the limit of balanced failure. The plotted trends confirm this 
general expectation: the displacement ductility increases with the 
transverse reinforcement ratio as shown in Figs. 3-19 and 3-20. 
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Figure 3-17: Maximum shear stress vs. displacement ductility for the 
rectangular- reinforced columns. 
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Figure 3-19: Effect of transverse reinforcement ratio on displacement 
ductility for the rectangular- reinforced columns. 
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Figure 3-18: Maximum shear stress vs. displacement ductility for the spiral- 
reinforced columns. 
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Analytical (F.E.) Simulation of RC Columns  
failed in Flexure 

 
In the experimental database by Berry and Eberhard (2004) the nominal 
column failure mode was classified as (a) flexure-critical, (b) flexure-
shear-critical, or (c) shear-critical, according to the following criteria:  
 

 If no shear damage was reported by the experimentalist the column 
was classified as flexure-critical.  

 If shear damage was reported, the absolute maximum effective 
force ( : absolute maximum measured force in the experimental 
column response) was compared with the calculated “ideal” force 
corresponding to a maximum axial compressive strain in the 
concrete cover, equal to 0.004, which corresponds to spalling of 
unconfined concrete ( ). The failure displacement ductility at an 

effective force equal to 80% of maximum, , was determined 
from the experimental envelope. If the maximum effective force 

 or if the failure displacement ductility was less than 
or equal to 2 ( ), the column was classified as shear-critical. 
Otherwise, the column was classified as flexure-shear-critical. In 
the present section, only columns failed in flexure (i.e. classified as 
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Figure 3-20: Effect of transverse reinforcement ratio on displacement 
ductility for the spiral- reinforced columns. 
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flexure-critical) will be examined through simulation. These are 
divided into two groups according to cross-sectional shape 
(rectangular and circular section columns. 

Circular-Reinforced Columns Failed in Flexure 

Columns with a circular cross section that, upon lateral displacement 
reversals exhibited flexural failure are listed in Table A-1 in the Appendix 
of this Chapter. The hysteretic responses of several specimens from this 
group are analyzed in the present section using finite element cyclic static 
analysis.  

The objective in conducting this analysis is to evaluate the available 
theory regarding their success and limitations in reproducing the 
experimental responses of those column specimens that did not experience 
failures beyond the scope of the models (e.g. shear failure). Numerical 
simulations were conducted using a nonlinear fiber beam-column element 
that considers the spread of plasticity. In this type of analysis the 
longitudinal beam element uses a force type formulation with linear 
moment distribution to derive a flexibility matrix for the element with 
progressing nonlinearity (step by step); the strain-displacement relationships 
are therefore defined implicitly after inversion of the flexibility matrix to 
obtain the stiffness. Assuming strain compatibility between materials 
comprising the member, the formulation samples sectional response at 
selected integration points along the length. At the sectional level the 
Bernoulli hypothesis (plane sections remaining plane and normal to the 
axis of the member) is used to relate strains in the different fibers to the 
sectional curvature and longitudinal axis normal strain. Nonlinear uniaxial 
material laws are used to relate normal stress with normal strain in the 
fibers, thereby neglecting the effect of shear in modifying the principal 
orientations through the height of the cross section. Typical discretization 
of a column section is shown in Fig. 3-21. Sectional stress resultants 
(Moment and Axial load) are obtained from the equilibrium of the 
contributions of fiber stress resultants [FEDEAS Lab (2004)]. 
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For example, for the column with ID#43 in Table A-1 (axial load ratio 

ν=0.19), as it is depicted also in Fig. 3-21, a single beam-column element 
is assigned to the entire length of the cantilever column and five Gauss-
Lobatto integration points [FEDEAS Lab (2004)] were defined along the 
element. Uniaxial material stress-strain laws for the concrete and steel 
fibers are depicted in Fig. 3-22(a) (Scott et al. 1982) for concrete and in 
Fig. 3-22(b) for steel (Menegotto and Pinto, 1973). The effect of 
confinement on the confined concrete core was modelled using pertinently 
modified properties for the uniaxial stress-strain law of concrete in 
compression. No P-Δ effect was considered in this simulation. The 
calculated lateral Force – lateral Displacement response of the numerical 
simulation of the column is plotted for comparison with the experimental 
results in Fig. 3-23. The good correlation up to a drift of 3.75% 
underscores the fact that flexural behavior is controlled by steel inelasticity 
which is stable and may be reproduced without the consideration of other 
secondary effects or the interaction of flexural with shear response. 
However, correlation deteriorates significantly beyond that point, on 
account of the fact that second order effects have been neglected and there 
is no accounting for the ensuing degradation and progressive collapse. 

Figure 3-21: a) Numerical model for Spiral-Reinforced Columns failed in 
flexure b) Section discretization in fibers/layers. 
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Figure 3-22: (a) Scott et al. (1982) constitutive law assigned to the concrete 
fibers. (b) Menegotto and Pinto constitutive law assigned to the longitudinal 

steel fibers. 
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Another example (column ID#45) from Table A-1 in the Appendix of 

this Chapter is shown here: the approach used for simulation is identical to 
that of the previous example, the only difference being in the use of a 
more complex stress-strain model for the confined core (Mander et al. 
1988; here the strain capacity of the confined core is related to the strain 
energy that may be absorbed by the stirrups before fracture), as depicted in 
Fig. 3-24. Figure 3-25 compares the calculated and experimental lateral 
force vs. lateral displacement hysteresis – again the correlation is satisfactory 
up to a drift of 2.5%, however, the model cannot reproduce the loss of 
lateral load bearing capacity near the end of the test; note that this column 
was identical to the previous one but carried twice the amount of axial 
load. Therefore second order effects would cause an apparent loss of 22.6 
kN for an increment of lateral displacement from 20mm to 30mm (and 
67.8 kN total reduction of the yield lateral force due to P-Δ effect at the 
displacement level considered); the additional loss which occurs in 
repeated cycles at the same displacement excursion is owing to material 
degradation.  

 
 

Figure 3-23: Comparison between numerical and experimental response of 
circular column (ID#43) of Berry and Eberhard Database (2004).   
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Figure 3-25: Comparison between numerical and experimental response of 
circular column (ID#45) of Berry and Eberhard Database (2004). 
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Figure 3-24: Mander et al. (1988) stress-strain model assigned to the 
concrete fibers.  
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Several other examples are presented in Figures A-1 – A.26 in the 
Appendix to the present Chapter. Correlation in flexure dominant cases 
follows the general pattern discussed in the previous two examples. It is 
noteworthy that some cases demonstrated significant pinching, which was 
not reproduced by the purely flexural nonlinear model; such examples are 
specimens with ID#47, ID#53, ID#55, ID#56, ID#57, ID#58, ID#59, 
ID#60, ID#116, ID#120, ID#141, ID#142 and ID#157. In the case of these 
specimens, which had a low volumetric ratio of transverse reinforcement 
(0.6%) and early yielding with strain penetration along the anchorage, the 
observed pinching was owing to reinforcement pullout and shear 
deformation in the plastic hinge region, both phenomena neglected in the 
numerical model used here.   

Rectangular-Reinforced Columns Failed in Flexure 

The group of rectangular-reinforced specimens is summarized in Table A-
2 in the Appendix of this Chapter; again only specimens that reportedly 
failed in flexure are considered in this section, to test the performance of 
formulations that only consider normal stress response at the sectional 
level.  

The force-based nonlinear fiber beam-column element which considers 
the spread of plasticity available in FEDEAS Lab (2004) was used in this 
Section’s numerical simulations. As previously, a single frame element is 
considered using flexibility formulation with assumed linear variations of 
moments along the length; sampling of sectional response is done at five 
Gauss Lobatto integration points along the member length. The typical 
discretization of rectangular column sections is shown in Fig. 3-26. 

For the first column (No. Database 1) of Table A-2 (with a square 
cross section and an axial load ratio of 0.26), as shown in Fig. 3-26, a 
unique fiber element is assigned to the entire height of the cantilever 
column and five Gauss-Lobatto integration points were defined along the 
element. Uniaxial concrete stress strain response was modeled using the 
relationship by Mander et al. (1988, Fig. 3-24). The different confinement 
effect of the unconfined concrete cover and the confined concrete core was 
not considered in the discretization of the section (Fig. 3-26). The stress-
strain response of longitudinal reinforcement was modeled by Menegotto 
and Pinto (1973, Fig. 3-22b). Again, the P-Delta effect was not accounted 
for in the simulation. The comparison of the lateral Force – lateral 
Displacement response of the numerical simulation of the column with the 
experimental results can be seen in Fig. 3-27. As was seen in the case of 
circular section columns, while the axial load ratio is kept low, a good 
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agreement between numerical and experimental results is found up to drift 
levels of 2.5% (where the strength loss owing to P-Δ is only 45kN i.e., 
about 7% of the column strength).  

 
The performance of the same numerical model applied to the second 

column example listed in Table A-2 – (again having an axial load ratio of 
ν=0.22) is compared to the experimental force - displacement response 
curve in Fig. 3-28. Response is adequately well modeled, reproducing 
faithfully the loss of cover (spalling) at a drift of 1.2%; therefore, it may be 
concluded that the efficacy of distributed plasticity beam column models 
based on the force formulation successfully estimates the flexural behavior 
also in the case of reinforced concrete columns with rectangular sections.  
 

Figure 3-26: a) Numerical model for Rectangular RC Columns failed in 
flexure b) Section discretization in fibers/layers. 
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Figure 3-28: Comparison between numerical and experimental response of 
rectangular column (ID#2) of Berry and Eberhard Database (2004). 
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Figure 3-27: Comparison between numerical and experimental response of 
rectangular column (ID#1) of Berry and Eberhard Database (2004). 
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Several other examples are presented in Figures A-27 – A-76 in the 
Appendix to the present Chapter. Correlation in flexure dominant cases 
follows the general pattern discussed in the previous two examples. 
Correlation deteriorates beyond drift levels in the range of 3% or more, 
when the column carries a significant axial load ratio. It is noteworthy that 
some cases demonstrated significant pinching, which was not reproduced 
by the purely flexural nonlinear model; such examples are specimens with 
ID#32, ID#105 and ID#106. In the case of these specimens, which had a 
low transverse reinforcement ratio and early yielding with strain 
penetration along the anchorage, pinching in the experimental response 
was owing to reinforcement pullout and shear deformation in the plastic 
hinge region, both phenomena neglected in the current numerical model. 
Finally, in one case (ID#91) the experimental response was not 
symmetrical in the two directions of loading due to buckling of 
compressive reinforcement and—since buckling was not modelled in the 
simulation—this aspect of the response could not be reproduced 
numerically. 

Analytical (F.E.) Simulation of RC Columns Failed 
 in Shear 

Τhe performance of the shear critical columns (flexure-shear or shear 
failure) of the experimental database in terms of strength and deformation 
capacity is also examined so as to test again the performance of the 
analytical procedure described in the preceding sections. Again, the 
columns are divided into two groups according to cross sectional shape.  

RC Columns with Rectangular Cross-Section Failed  
in Shear 

Columns with a rectangular cross section that developed shear failure are 
summarized in Table A-3 of the Appendix of this Chapter. Figure 3-29 
plots the shear strength degradation models adopted by EN 1998-3 (2005) 
and ASCE-SEI 41 (2007) (also see Chapter 2) in order to describe the 
envelope of the resistance curves of reinforced concrete columns as a 
function of displacement ductility; this is used as the basic criterion in 
order to detect shear failure before or after flexural yielding (point of 
intersection with flexural capacity curve). Therefore, it is also necessary to 
define the flexural capacity curve based on classic flexural analysis and 
combine it with the reduction of the shear strength curve postulated by the 
codes, in order for the strength and deformation of the reinforced concrete 
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column at shear failure to be defined. This procedure is followed in the 
present Section in order to analyze the shear critical columns of the 
experimental database under study and to examine how successful the 
code provisions are in predicting the strength and deformation of columns 
failing in shear before or after flexural yielding. In addition, the models by 
Elwood (2003) introduced also in Chapter 2 that define the drift capacity 
of shear-critical columns at shear failure and at loss of axial load carrying 
capacity are included in the study. 

 

 
The force-based nonlinear fiber beam-column element which considers 

the spread of plasticity available in the FEDEAS Lab (2004), was used 
also in this section’s numerical simulations for the definition of flexural 
capacity curve. The modelling procedure was the same as that used in 
earlier paragraphs for columns with rectangular cross sections.  

Figure 3-30 compares the analytical and experimental response of the 
rectangular column –ID#28 (Table A-3). Clearly, correlation is poor even 
with regard to the initial stiffness defined by flexural analysis. This is 
owing to the fact that the contributions to deformation resulting from 
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Figure 3-29: Shear strength degradation model adopted by current codes of 
assessment. 
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reinforcement pullout and shear deformation have been neglected. It can 
be observed that only the degrading shear strength model of ASCE-SEI 41 
(2007) intersects the flexural capacity curve and therefore is (correctly) 
identifying the trigger of shear strength failure after flexural yielding as a 
result of shear strength degradation. However, the displacement when this 
event takes place occurs earlier than the actual onset of strength 
degradation as observed in the experimental response. The proposal of 
Elwood (in parentheses next to the drift ratios the corresponding 
displacements are given for the column under study based on its shear 
span) overestimate the actual drifts associated with shear and axial failures 
as observed in the experimental results.  

In the next column example (Fig. 3-31) the code provisions fail to 
detect shear failure despite the fact that in the experiment shear failure was 
reported. Again, the drift models by Elwood (2003) overestimate the 
displacements at which shear and axial failure occurred. The force-based 
fiber element used for the flexural analysis reproduces the peak strength 
well but fails to converge after that point, and cannot detect the strength 
degradation owing to shear failure. As mentioned before, the initial 
stiffness of the numerical model is overestimated as compared with the 
experiment. 

Several other examples are presented in Figures A-77 – A-100 in the 
Appendix to the present Chapter. Correlation in shear dominant cases 
follows the general pattern discussed in the previous two examples.  

RC Columns with Circular Cross-Section Failed in Shear 

Spiral-reinforced specimens with a circular cross section that failed in 
shear are presented in Table A-4 of the Appendix of this Chapter. 
Monotonic analysis is conducted following the same procedure as 
described in the circular section Column (second case) of the previous 
Section.  

As previously stated (Fig. 3-29), the shear strength degradation models 
such as those adopted by EN 1998-3 (2005) (here abbreviation EC8-III is 
used) and ASCE-SEI 41 (2007) (Chapter 2), are used to determine the 
deformation limit at shear failure from intersection with the flexural force 
– displacement envelope. The flexural capacity curve is based on classic 
flexural analysis. After the application of this procedure to specimen #14 
in the experimental database, the following response envelope is 
determined (plotted in Fig. 3-32 against the experimental result).  
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Figure 3-31: Comparison between numerical and experimental response of 
rectangular column (ID#29) of Berry and Eberhard Database (2004). 
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Figure 3-30: Comparison between numerical and experimental response of 
rectangular column (ID#28) of Berry and Eberhard Database (2004). 



Chapter Three 
 

78 

 
 

 

Figure 3-33: Comparison between numerical and experimental response of circular 
column (ID#16) of Berry and Eberhard Database (2004). 
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Figure 3-32: Comparison between numerical and experimental response of circular 
column (ID#14) of Berry and Eberhard Database (2004). 
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Both the shear strength degradation models shown in Fig. 3-32 
detected shear failure after yielding at a displacement much lower than the 
corresponding experimental one. The strength at shear failure was better 
assessed by the model of Eurocode 8 part 3 (EC8-III) compared to the 
alternative of ASCE-SEI 41. The drift model at shear failure by Elwood 
(2003) performed very well as compared to the experimental shear failure 
limit; however, drift at axial failure was overestimated (83mm as 
compared to 30mm). The same comments are valid for the column in Fig. 
3-33. 

In the comparison showcased by Fig. 3-34, only the shear capacity 
curve by ASCE-SEI 41 intersects the flexural force-displacement 
envelope, thereby detecting shear failure after flexural yielding. The 
strength at shear failure was well predicted by the latter model but the 
corresponding displacement was much lower than in the experimental 
response. The drift model at shear failure by Elwood (2003) performed 
well compared to the experimental response but overestimated the drift at 
the loss of axial strength.  

 

 
Several other examples are presented in Figures A-101 – A-118 in the 

Appendix to the present Chapter. Correlation in shear dominant cases 
follows the general pattern discussed in the previous three examples.  

Figure 3-34: Comparison between numerical and experimental response of circular 
column (ID#15) of Berry and Eberhard Database (2004). 
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Analytical (F.E.) Simulation of RC Columns under 
Variable Axial Load 

Owing to the overturning moment, columns in multiple-column bents 
experience variable axial forces corresponding to the direction of, and 
typically being proportional to, the horizontal forces. Columns are also 
subjected to the vertical components of ground motion, which is not 
correlated concurrently with the horizontal loading. Past earthquake 
records have shown that in some cases, vertical ground motions cannot be 
ignored, particularly for near-fault situations. For example, the lateral 
displacement ductility in a column, designed based on a constant axial 
load, with a relatively low axial load ratio, can become unsatisfactory 
when the actual axial load due to the overturning effects or the vertical 
ground motion exceeds the value that corresponds to balanced failure. The 
problem becomes even more significant when shear design is considered. 
The increase of axial load from the design level (typically 5% to 10% axial 
load ratio) to the level of the balanced axial load results in the increase of 
column flexural capacity, thus increasing shear demand. On the other 
hand, changes of axial load from compression to tension can result in a 
significant decrease in column shear strength. 

In Table A-5 of the Appendix of this Chapter, an experimental 
database of reinforced concrete columns under cyclic lateral loading and 
variable axial load is presented. For these cases, the experimental response 
envelope will be assessed using monotonic static analysis. Analytical 
procedures are identical to those used in the previous section. For the sake 
of comparison with the numerical models and code specifications of the 
previous section, only pairs of specimens of the above experimental 
database tested under constant compressive or tensile axial load will be 
considered in the following correlation with the experimental results. In 
this way, the effect of the load on a column’s shear strength will be 
demonstrated along with the effectiveness of code standards to assess this 
influence.  

The first columns under study are the specimens ICC and ICT by 
Elnashai et al. (2011). Two columns with identical properties reported in 
Table A-5 are tested under cyclic lateral loading and constant compressive 
axial load (ICC) or constant tensile axial load (ICT). In the comparison of 
Fig. 3-35 with the experimental response it can be observed that the shear 
strength degradation model of ASCE-SEI 41 detects shear failure after 
yielding of the column under study while in the Eurocode 8 part 3 (EC8-
III) shear capacity curve it does not. The predicted point of the detected 
shear failure corresponds well to the specimen strength, but in terms of 
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displacement the shear failure is identified to occur much earlier as 
compared to the experimental response. The drift models by Elwood 
(2003) defined well the displacement at shear failure, but again, the axial 
failure drift was overestimated.  

 

 
For the case of the same specimen under constant tensile load (Fig. 3-

36) it is noted that the degradation model of Eurocode 8 part 3 (EC8-III) 
for shear strength was the one reproducing the experimental response well 
since it did not detect shear failure for the specimen under study which 
failed in flexure. Finally, since no shear failure occurred, the drift models 
by Elwood (2003) were not relevant in the tensile-axial load case either.  
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Figure 3-35: Comparison between numerical and experimental response of circular 
column (ICC) by Elnashai (2011). 
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The next column examples for investigation of the effect of variable 

axial load on shear strength are specimens CS1 and CS2 by Priestley et al. 
(1996) which were tested under cyclic lateral loading and constant 
compressive and tensile axial load respectively. From the comparison in 
Fig. 3-37 it can be observed that only the shear strength degradation model 
by ASCE-SEI 41 detects shear failure for the column under study, but at a 
somewhat lower strength and displacement capacity as compared to the 
experimental response. In addition, the drift model of Elwood at shear 
failure overestimates the corresponding displacement, while the drift 
model at axial failure underestimates the displacement where the loss of 
axial bearing capacity is observed.  

Finally, the comparison of the same specimen by Priestley under 
tensile axial load is depicted in Fig. 3-38. The degraded shear capacity 
models of the design codes (both) detect the shear failure of the column, 
but at lower strength and displacement compared to the experimental 
results. The drift model at shear failure by Elwood captures well the 
displacement where shear failure occurs but the drift model at axial failure 
overestimates the experimental column response.  
 

Figure 3-36: Comparison between numerical and experimental response of circular 
column (ICT) by Elnashai (2011). 
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Figure 3-38: Comparison between numerical and experimental response of circular 
column (CS2) by Priestley (1996). 
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Figure 3-37: Comparison between numerical and experimental response of circular 
column (CS1) by Priestley (1996). 
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Clearly, based on the preceding analysis, the state of the art modeling 
of the lateral load response of columns leaves a lot to be desired: improved 
response estimation of the behavior of columns that are susceptible to 
shear failure after flexural yielding; better procedures to estimate shear 
strength and the pattern of degradation thereof, with increasing 
displacement ductility; the need to account for reinforcement pullout and 
its effects on stiffness; the shape of the hysteresis loops; the detrimental 
effects of axial load at large displacement limits; and the magnitude of 
deformation (drift ratio) associated with milestone events in the response 
curve of the column member, are open issues that need to be settled before 
the performance-based assessment framework may be considered complete 
and dependable. Some of these issues are addressed in Chapters 4 and 5 of 
the present book.  
 



CHAPTER FOUR 

PLASTIC HINGE LENGTH IN RC COLUMNS: 
DEFINITION THROUGH CONSIDERATION  

OF YIELD PENETRATION EFFECTS 

 
 
 

Introduction 
 
The deformation capacity of frame elements comprises contributions of 
flexural, shear and reinforcement pullout components. The estimation of 
the available deformation capacity of a column is linked to the length of 
plastic hinges. Following an implicit assumption that all terms are 
additive, the flexural component of lateral displacement is obtained from 
the sum of an elastic component, owing to the flexural deformation 
occurring along the length of the member, and a plastic component that is 
practically owing to the inelastic rotation that occurs in the small region 
near the face of the support where moments may exceed the yielding limit. 
When comparing these deformation estimates with the experimental 
evidence from predominantly flexural components, it is found that there is 
a great disparity between measured and estimated deformation capacities 
characterized by notable scatter (Syntzirma et al. 2010, Inel et al. 2004).  
Several attempts to identify the source of inaccuracy have motivated the 
progress made in that field, not the least the empirical expressions for 
deformation capacity which are included in EN 1998-3, 2005 that 
completely bypass the requirement of calculating the plastic hinge length. 
Another approach, initiated by Priestley et al. and then followed by several 
other researchers, and the approach to deformability by EN 1998-1, 2004 
estimates the plastic hinge length including the length of yield penetration 
inside the anchorage (see, for example, the detailed analysis in the book by 
Priestley Seible and Calvi [1996], and of the fib Bulletin No.24 [2003]).  

In new structural design with EN 1998-1 2004, the plastic hinge length 
is also used in reinforced concrete (RC) seismic detailing in order to 
determine the region where additional confinement requirements apply, 
this is apart from its use in seismic assessment to estimate the flexural 
deformation capacity. Due to its importance in these applications as the 
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key to understanding deformability of members, the plastic hinge has been 
the subject of many experimental and analytical studies and the 
expressions derived have been quantified and calibrated against several 
hundreds of tests on isolated column specimens. Still, the disconnect 
between observation and theory persists, and is considered a major 
roadblock in establishing the performance criteria for many special 
categories of members (e.g. walls, columns carrying a high axial load, 
very slender columns, etc.).   

In the typical test, a cantilever column fixed at the base and carrying a 
constant axial load is driven to a protocol of reversed cyclical lateral load 
displacement history at the top. The deformation capacity of such 
members is usually described by the chord rotation that may be sustained 
by the member prior to loss of its lateral load strength. Apart from the 
rotation due to flexural curvature that occurs along the length of the 
member, lumped rotation at the critical section resulting from inelastic 
strain penetration into the support (e.g. footing) as well as inside the shear 
span adds up in the reported drift ratios at different levels of performance. 
This share of deformation is attributed to reinforcement pullout due to the 
incompatible length change between the bar and the surrounding concrete. 

In columns that do not fail by web crushing, pullout rotation increases 
gradually with imposed drift, claiming a predominant share of the members’ 
deformation capacity near the ultimate limit state. Column deformation 
capacity at yielding and ultimate state may be computed using a variety of 
models (Pantazopoulou 2003, Inel et al. 2004, Pantazopoulou et al. 2010, 
ASCE/SEI 41 2007, EN 1998-3 2005, Panagiotakos et al. 2001, Biskinis et 
al. 2013). A stick model is a common point of reference to this purpose: 
The length of the cantilever Ls corresponds to the shear span of an actual 
frame member under lateral sway (Fig. 4-1a); the aspect ratio of the 
member Ls/h, where h is the cross section depth, quantifies the intensity of 
shear force demand in the member. Inelastic activity is assumed to occur 
within an equivalent “plastic hinge length”, ℓpl, whereas the segment of the 
member outside ℓpl is assumed to behave elastically. Displacements are 
calculated from flexural curvatures assuming the curvature distributions of 
Fig. 4-1(b-c) which correspond to the development of yielding y and post-
yielding u flexural strengths at the support. The plastic rotation 
developing in the hinge due to flexure is θpl 

f = ( u - y)  ℓpl; similarly, the 
plastic rotation owing to bar pullout from the support is θpl 

slip = θu
slip - θy

slip 
(Fig. 4-1d); the total plastic rotation is θpl = θpl 

f+θpl 
slip.  
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Figure 4-1: (a) The stick model for a column under lateral sway.  
(b)-(c) Distributions of curvature along the column shear span at yielding 
moment My and at flexural strength Mu attained at fixed support (Mu > My) 

respectively. (d) Drift components from curvature along shear span ( f, f ) 
and from anchorage slip ( slip, slip ).  
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The corresponding terms are (Fig. 4-2) (x is the length counting from 

the support to the tip of the cantilever column under study): 
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where xc is the depth of the compression zone at the critical cross section 
(here it is assumed to remain constant after yielding) and Lb the total 

Figure 4-2: Bar state of stress / strain (f, ) along shear span and anchorage of a 
cantilever column under horizontal loading at the tip. [Note: the bar bond / slip 

state (fb, s) is illustrated only for the anchorage.] 
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available anchorage length, whereas Lb,min is the minimum required 
anchorage length to yield a typical bar (diameter: Db), at a yield stress of 
fy, considering a uniform bond stress equal to the bond strength of fb

max. 
Rotation of the critical cross section occurs about the centroid of the 
compression zone (located at a distance of 0.4xc from the extreme 
compressed fiber based on the equivalent uniform stress block (Whitney 
1937). The parameters sy and su are values of reinforcement pullout slip 
from the support anchorage at yielding and the ultimate state (Fig. 4-2). 
Term ℓr,u represents the maximum sustainable penetration of yielding into 
the anchorage (Fig. 4-2); the maximum reinforcement strain, εu, that can 
be supported by the reinforcement at critical cross section (i.e. support) 
may be estimated assuming that at the extreme, when the anchorage attains 
its ultimate development capacity, the strain distribution along the 
anchored length is bilinear: u= y +4(Lb-Lb,min)fb

res/(DbEsh), where Esh is 
the hardening modulus of steel and fb

res is the residual bond strength due to 
cover splitting/delamination. The corresponding maximum and yield 
flexural curvatures are defined as: u=εu /(d-xc) and y=εy /(d-xc), whereas 
the total plastic rotation capacity pl, that may be sustained by the member 
may be estimated through reverse engineering as in (Moehle, 1992): 
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          (4-2a) 
 

where in Eq. (4-2a) index (i) denotes pullout from support and (ii) flexure 
in the shear span. Introducing the concept of the plastic hinge length ℓpl the 
plastic rotation capacity is written as:  
 

 sur,plplplplyupl Lα;)φ(φθ 5.0
        (4-2b) 

 
In Eq. (4-2b), α is the strain-hardening ratio of the reinforcement, a = 

1-My/Mu, defined from a cross section analysis at the ultimate moment 
given a simplified stress–strain law for the hardening branch of steel. 
Empirical equations for the plastic hinge which have prevailed in design 
Codes (EN 1998-1 2004, EN 1998-3 2005) and in research (Pantazopoulou 
2003, Priestley et. al. 1984, Priestley et al. 1987, Priestley et al. 1996, 
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Lehman et al. 1996, Bae, S. et al. 2008) have the form of Eq. (4-3a,b) 
respectively:  

  
ybspl fDL 022.008.0               (4-3a) 

'
cybspl f/fD0.24h0.170.1L

          (4-3b) 
 
with h being the column sectional depth and fc

’ the concrete compressive 
strength. (For example, 0.08 and 0.1 are common values for the strain 
hardening ratio α of common reinforcement, whereas the term 
proportional to the bar diameter Db, which represents the strain penetration 
length within the anchorage, is intended for well-designed anchorages that 
can easily support strain penetration lengths of 10 ~20·Db). In the presence 
of high axial load N, the required confined length ℓc is obtained from the 
basic value of ℓpl by adding terms to account for the tension shift in the 
shear span of a member and the increased demands for confinement 
(Watson et. al. 1994), ( c in Eq. (4-3c) is a strength –reduction factor):  
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                (4-3c)  
  

Bae and Bayrak (2008) proposed an alternative expression of ℓpl, 
derived from correlation with column experiments under various axial 
load levels, recognizing explicitly the important variables that control ℓpl:  
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       (4-3c) 
 
where h is the column depth, Ν is the applied axial load, Νo =0.85fc

’(Ag-
As,tot)+fyAs,tot, (fc

’ is the concrete compressive strength), As is the area of 
tension reinforcement, As,tot is the total reinforcement area, and Ag the 
gross area of the concrete section.  

A significant limitation of the theoretical definition of ℓpl, as given by 
Eq. (4-2b), is that it breaks down if the moment-curvature response of the 
member is elastic–perfectly plastic (My=Mu, a=0), leading to a rather 
small plastic hinge length. This is counter-intuitive considering that a 
necessary accessory to rebar yielding is the localized loss of bond. Thus 
point-yielding of column reinforcement with no penetration to an adjacent 
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area is physically impossible. In practical applications, to resolve the 
indeterminacy caused in Eq. (4-2b) due to elastoplasticity (i.e., My=Mu), 
ℓpl is taken as 0.5h, or Eq. (4-3a, b) are used directly without reference to 
the underlying physical model. The apparent inconsistency inherent in the 
theoretical definition of ℓpl is partly responsible for the poor correlation of 
the estimated deformation capacity of flexure-dominated columns with 
results from experimental databases (Syntzirma et al. 2007, 2010). An 
alternative is to explicitly figure in for the plastic hinge length by 
establishing and solving the field equations of bond along the principal 
reinforcement (in the shear span) of the deformed member under lateral 
sway, with particular emphasis on the part of the reinforcement that is 
strained beyond the limit of yielding into the hardening range.  

This modeling approach is pursued in the present chapter. A unidirectional 
model of bond is considered as a basis for the evaluation of the 
longitudinal strain distribution of the primary reinforcement of the column. 
The processes of sequential crack formation due to tension stiffening, and 
the subsequent crack opening are explicitly considered. In the analysis, 
large localized slip magnitudes lead to bond degradation that is 
accompanied by the spread of inelastic strains both in the shear span and 
in the anchorage. Although several solutions that refer to the problem of 
force development along the anchorage have been proposed, nevertheless 
the problem of strain penetration in the anchorage has received limited 
attention from researchers (Tastani and Pantazopoulou, 2013). On the 
other hand, the problem of strain penetration in the shear span of the 
member has not been addressed explicitly yet, and therefore represents the 
main scope of the present chapter. In this study, strain distributions in the 
span and in the bar anchorage are evaluated using a step by step 
calculation algorithm; the controlling variable is the tension strain 
magnitude at the critical cross section (the support of the cantilever). 
Through this process, disturbed regions are identified in the shear span, 
where bar strains are controlled by bond development rather than the 
“plane-sections” assumption. Using this approach, the parametric 
sensitivities of the plastic hinge length are illustrated and compared with 
the other alternatives summarized in this section obtained from 
experimental calibration. Application of the analytical procedure for 
estimating the plastic hinge length is demonstrated through a comparison 
with column specimens tested under axial load and reversed cyclical 
lateral drift histories reported in the literature. 
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Governing Equations of Bond–Slip Behaviour in Concrete 

The basic equations that describe force transfer lengthwise from a bar to 
the surrounding concrete cover through a bond are derived from the force 
equilibrium established on an elementary bar segment of length dx 
(Tassios et al. 1981, Filippou et al. 1983):  

 

      bb fDdf/dx /4               (4-4a) 
 

where f is the axial stress of the bar; Db is the bar diameter; fb is the local 
bond stress. Furthermore, compatibility between the relative translation of 
the bar with respect to the surrounding concrete, (s=slip), the axial bar 
strain ε, and concrete strain εc over dx requires that (Tassios et al. 1981, 
Filippou et al. 1983):  
 

cds/dx             (4-4b) 
 

For normal concrete, the term εc is neglected as its tensile value cannot 
exceed the cracking limit ( c,cr  0.00015) which is well below the other 
terms of Eq. (4-4b). Bond stress and slip, and bar stress and strain are 
related through the interface and material constitutive relationships, fb = 
fb(s) and f = f( ). The solution to Eq. 4-4 is possible though exact 
integration, resulting in closed-form expressions for the state of stress and 
strain along the anchorage, through pertinent selection of simple models 
for the material laws (e.g. piecewise linear relations). This approach has a 
clear advantage over the numerical solution alternative in that it enables 
direct insight into the role of the various design parameters on the behavior 
of bar anchorages and/or lap splices. 

Here the reinforcing bar stress-strain relationship is considered 
elastoplastic with hardening (representing conventional steel reinforcement, 
Fig. 4-3a). Without loss of generality, and to facilitate derivation of 
closed-form solutions, a linear elastic, perfectly plastic local bond-slip 
relationship with a residual bond is assumed (Fig. 4-3b). The plateau in the 
local bond-slip law implies sustained bond strength. This feature is not 
always manifested in the test data; to be measured it requires redundancy 
in the anchorage (i.e., the availability of longer anchorages to enable force 
redistribution towards the healthy part of the anchorage before failure). In 
the assumed law, the end of the plateau is marked by abrupt loss of bond 
strength to the residual value of fb

res. (Note that fb
res is taken as non-zero 

only in the case of ribbed steel bars, but not for smooth steel bars.) The 
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last branch represents the residual friction between the concrete cover and 
the steel bar after failure of the rib interlocking mechanism (Fig. 4-3b). 
 

 
Strain penetration occurs in the bars beyond the critical section due to 

the degradation of a bond beyond slip limit s2, which marks the end of the 
plateau in the local bond-slip law. This stage may be attained in different 
ways along a bar: (a) for yielding to occur, i.e. constant bar stress (= fy, 
df/dx = 0) for a range of values of bar strain > y, the bond should be 
eliminated (fb

res = 0); if fb
res is non-zero, then a yielded bar will 

demonstrate a commensurate amount of strain hardening. (b) If the bar is 
elastic (e.g. a Fiber Reinforced Polymer (FRP) bar), then for large strain 
levels bar slip values are increased to levels beyond s2 (Fig. 4-3b): this is 
marked by debonding and cover splitting of the loaded end of anchorage, 
thereby limiting the development capacity of the reinforcement.  

Strain penetration of yielding over a bar anchorage has received some 
attention, especially with regard to its contribution to the rotation capacity 
of structural members (Bonacci et al. 1994, Bigaj 1999, Tastani et al. 
2013). But the implications resulting from the spreading of inelastic strains 
in the shear span of a structural member on the development capacity of 
reinforcement and on member behavior have not yet been described with 
reference to the mechanics of bonds.  

Consider a reinforcing bar that spans the deformable length of a 
structural column, anchored in its footing (Fig. 4-2). An important 
difference may be traced in the state of stress occurring in the two regions 
along the bar: within the anchorage, stress is controlled by the mechanics 
of bonds, as described by the field equations (Eqs. 4-4, see next Section). 

Figure 4-3:  (a) Assumed stress-strain law of steel reinforcing bar;  
(b) Assumed local bond slip law.    
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On the other hand, within the shear span, it is the prevailing notion that bar 
stress is controlled by flexural theory; i.e. the requirement of plane 
sections remaining plane at any cross section relates bar strains to flexural 
moment and axial load through cross sectional equilibrium. This however 
can be incompatible with the requirements of Eqs.4-4. The concept of 
tension stiffening is used in order to settle this potential conflict between 
the two antagonistic mechanisms for control of reinforcement strains: a 
certain nontrivial length ℓDο is needed, measured from the face of the crack 
toward the uncracked part of the member until bar strain compatibility 
with the surrounding concrete cover may be claimed. Thus, the field 
equations of bond control the segment ℓDο, whereas the classical theory of 
bending controls the remaining length. The region over the shear span of a 
flexural member where bar stresses are controlled by the mechanics of 
bonds (Eqs. 4-4) rather than the mechanics of flexure, is referred to hereon 
as a “disturbed” region, thereby assigning to this length an alternative 
interpretation than that used to explain shear dominated responses in frame 
members (MacGregor et al. 2005). At the same time this alternative 
significance of the disturbed region underscores the interaction between 
bond and shear strength (Martin-Pérez et al. 2001). Clearly, as flexural 
cracking propagates, the disturbed zone extends and may spread over the 
entire length of the member. 

Bond-Slip Distribution along the Anchorage of a Linear 
Elastic Bar 

The solution to Eq. 4-4 for elastic bars in the anchorage is given in this 
section; this is valid for the ascending branch of the stress-strain law of 
steel reinforcing bars, i.e. . In the case of Fig. 4-4 for the elastic part 
of the bond slip (i.e. when , the bond is linearly related to slip in 
accordance with:

(
. By substitution in Eq. 4-4 the 

differential equation may be solved in closed form. Thus, bar normal 
strain, slip, and bond stress distributions over the available length of the 
anchorage [ ] are given by the following equations (Tastani and 
Pantazopoulou 2013): 
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               (4-7) 
 

where the characteristic property ω is given 
by: . The variable  is the bar axial strain 
at the loaded end of the anchorage, and  is the modulus of elasticity of 
the bar in the longitudinal direction. By substituting  in Eq. 4.6, a 
nonzero slip value is obtained at the free end of the anchorage 

 even under very small loads. 
This finding is consistent with the experimental observations (see for 
example, Tastani 2005).  

The bar axial strain at the loaded end, , is the limit value 
beyond which the bond mechanism enters the state of plastification (i.e. 
yielding of bond) over a length  which grows with increasing bar strain 
at the loaded end, while the bar remains elastic. Therefore the variable  
is directly related to the slip magnitude  in Fig. 4-3 and may be 
calculated by Eq. 4-6 after substitution of 

g
 as follows: 

 

                        (4-8) 
 

In case the available bond length is sufficient or if transverse 
confinement reacts normally to the contact surface thereby generating 
secondary strength reserves for the bond mechanism, then the bar may 
sustain a strain value higher than  [Fig. 4-5]. In that case, the maximum 
bond stress may reach the characteristic strength value , over a length 
of bond plastification . The complete solution to Eq. 4-4 over  
(starting from the loaded end and proceeding toward the end of the 
anchorage) comprises two segments, as follows: 

Distributions of bar strain, slip and bond stress over the length  (for 
) are obtained considering that fb(s)= fb

max = constant (thus the 
bar stress and strain varies as a linear function of distance over the 
segment lp where the bond is plastified: 
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                       (4-11) 
 

where  is the attenuated value of the bar strain as compared with the  
value which occurs at the loaded end. Note that  now occurs at the end 
of the bond plastification region, : 
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For the distributions of bar strain, slip and bond stress over the 
remaining anchorage length (which is still in the elastic range),  
(for 

g
), these are obtained from the elastic solution to Eq. 4-5-

4-7. : 
 

        (4-13) 

      (4-14) 
             (4-15) 

 
The length of plastification, , is estimated if continuity of strain and 

slip are enforced at . 
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Figure 4-4: Elastic bar response while bond-slip law remains elastic. 
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Bond-Slip Distribution along the Anchorage 

 of an Elastoplastic Bar 
 
The solution to Eq. 4-4 for an elastoplastic steel bar is explored only after 
yielding, because the preceding section fully describes the bar’s elastic 
behavior. The bar strain at the onset of yielding is denoted by  whereas 

 is the strain hardening modulus of the stress-strain relationship in the 
postyielding regime.  

Figure 4-5: Elastic bar response with bond plastification. 
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The last case examined in the present model of the anchorage of a steel 
reinforcing bar is depicted in Fig. 4-6 and it concerns yield penetration 
(spread of strains beyond yielding) in the steel bar inside the anchorage 
with simultaneous plastification of bond. The length of yield penetration is 
denoted by . In the segment , the bond stress is equal to . Also, 
the distribution of strains is linear, ranging from  at the 
loaded end, to the value  at the end of the yielded region 
(Fig. 4-6). Slip at each point is obtained from the integration of strains 
from the point considered at the unloaded end of the anchorage.  

The strain, slip, and bond stress expressions governing this problem in 
the three distinct regions are given as follows:  

 Over the debonded length  (forr ) (Eq. 4-16 is obtained 
from Eq. 4-4 for a constant bond stress ): 

 

   
x

DE
f

x
bsh

res
b

o
4

)(
                       (4-16) 

                (4-17) 
                         (4-18) 

 
Over the length  where bond has exceeded the plasticity limit (for g
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Over the remaining bonded length  (for ): 
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where, according with the linear ascending branch of the bond-slip law, it 
is: 
 

             (4-24) 
 

 
In Equation (4-22) the term  is the strain at , i.e., the point 
of transition from elastic to plastic bond stress (Fig. 4-6) and it is 
calculated from Equation 4-19.  

Figure 4-6:  Plastic (yielded) bar response with bond plastification. 
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Thus, yield penetration occurs over the segment  of the anchorage 
where strain exceeds ; this phenomenon is accompanied by a sudden 
increase of slip (Eq. 4-17) with a commensurate reduction of bond strength 
to  over the yielded bar length.  

Disturbed Region on Shear Span of a Flexural Member 

It was mentioned earlier that the spread of inelastic strains occurs on both 
sides of a critical section (e.g. at the base of a column). The process of 
inelastic strain penetration in the anchorage of a reinforcing bar has been 
demonstrated in the previous section. This section is dedicated to solving 
the same problem on the other side of the critical section, that is, over the 
disturbed region along the shear span of a column. Here, the problem is 
different from that of the anchorage in the type of boundary conditions that 
may be enforced for the governing differential equation, Eqs. 4-4. The 
bond-slip law has the same multilinear envelope as in the case of an 
anchorage, however, the bond strength value, fb

max, is a function of the 
available transverse reinforcement.  

Evaluation of Disturbed Length on Crack Initiation 

For the stage prior to the occurrence of flexural cracking along the length 
of the flexural member, the bar strain is estimated from the flexural 
analysis of the uncracked column cross section (i.e. from the moment-
curvature analysis, Fig. 4-7a):  
 

gr
nasfl yxx ,)()(

     (4-25a) 
 

This is expressed explicitly as:  
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where M(x), N (+ for compression) and φ(x) are the flexural moment, axial 
load and flexural curvature acting on the member section at distance x 
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from the support, Ec is the elastic modulus of concrete, Ig and Ag are the 
moment of inertia and the uncracked cross section area, h is the section 
height and Ccov is the clear cover (Fig. 4-7a). Parameters yc,g and ys,na

gr are 
the distances of the centroid of tension reinforcement to the centroid of the 
uncracked cross-section and to the neutral axis location, respectively (Fig. 
4-7a). The distance to the neutral axis changes significantly from the initial 

linear elastic state
gr

nasy , , to the cracked state of a cross section 
cr

nasy , . 
Generally, the position of the neutral axis may be estimated based on 
equilibrium requirements, both in the uncracked cross sections as well as 
at the crack locations assuming “plane sections remain plane.” From the 
flexural analysis perspective, when the flexural moment M(x) exceeds the 
cracking moment, Mcr, even by a small amount, then the member may be 
considered cracked in the region of x. Although a large region may satisfy 
this definition, however, cracks i occur at discrete locations xcr,i. Thus, if 
an analysis of the cracked cross section is available (based on the plane 
section hypothesis), the tension reinforcement strains ε(xcr,i) that occur in 
the crack locations may be calculated from:       
 

cr
nas,icr,icr, yxxε                         (4-26) 

 
In the segment between successive cracks where the moment exceeds 

the cracking value, bar strains cannot be estimated from flexural analysis, 
as prescribed by Eq. 4-26. Owing to reinforcement slip, the degree of 
strain compatibility between steel and concrete in these locations is not 
well understood, as would be required by the “plane-sections remain 
plane” assumption, nor can the concrete be considered inert as would 
happen in a fully cracked tension zone. Because it takes some distance 
from a crack location before the reinforcement may fully engage its 
concrete cover in tension again so as to satisfy the conditions of strain 
compatibility, Eq. 4-26 is invalid even in the region immediately adjacent 
to the last flexural crack in the shear span, although the flexural moment is 
below the cracking limit in that region. Bar strain over cracked segments 
of the member may be estimated from the solution of Eq. 4-4. In order to 
address all the possible exceptions to the validity of the flexural 
requirement stated in Eqs. 4-25 and 4-26, here, the term “undisturbed” is 
used as a qualifier to “un-cracked” in order to refer to sections that also 
satisfy “the plane sections remaining plane” compatibility requirement. As 
a corollary, where strains are obtained from the solution of the bond 
equation, the region is “disturbed”.  
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The flexural moment at a distance x from the face of the support is 
estimated with reference to the flexural moment at the support, Mo (εo is 
the bar tension strain, at x=0, Fig. 4-7b):  

 

                  (4-27) 
 

Figure 4-7: Definition of terms: (a) Cross sectional flexural analysis. (b) Bar strain 
distribution along the shear span Ls: stage prior to cracking (red); response into the 

disturbed region ℓD1 (blue). (c) Moment - bar strain diagram. 
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As the sequence of crack formation is critical for the occurrence of 
disturbed regions and for the problem of strain penetration that will be 
subsequently addressed, in the present discussion the static problem 
represented by Eq. 4-27 will be solved for a gradually increasing value of 
the support moment, Mo. It is assumed that the characteristic flexural 
resistance curve (moment-curvature) of any cross section along the shear 
span (i.e. the moment – curvature and moment – bar strain diagram) is 
available from classical flexural analysis (plane-sections) for the entire 
range of response.   

For a member with continuous primary reinforcement over the shear 
span, Ls, the moment distribution that follows Eq. 4-27 will cause first 
cracking at the face of the support (xcr,1=0, Fig. 4.7b). Upon the cracking 
of the tension zone the bar strain experiences a significant jump to 
maintain equilibrium (Fig. 4-7c). For example, if the cracked section 
stiffness is about 1/3 of the uncracked value, the bar strain at the critical 
section is expected to increase threefold by the mere occurrence of the 
crack even though the moment change from the uncracked to the cracked 
stage may be imperceptible. Thus suddenly the whole region adjacent to 
the cracked location becomes “disturbed”. Over the length of the disturbed 
region, ℓD1 (Fig. 4-7b) the reinforcement strain is described by the solution 
of the bond equation (Tastani et al. 2013) i.e.:  

 

, where,       
(4-28) 

 
The solution of Eq. 4-28 is valid provided the bond is in the elastic 

range (ascending branch in the bond slip law, Fig. 4-3b). Before the 
creation of a second crack, the following conditions characterize the end of 
the disturbed region at x= ℓD1: 

 
a) the slope of the bar strain distribution, ψ=dε(x)/dx, obtained from 

differentiation of Eq. 4-28, matches that of the strain diagram as 
would be obtained from Eq. 4.25b and 4.27: 

 

   (4-29a)  
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b) the bar strain ε(ℓD1) satisfies both Equations (4-25b), and (4-28):  
 

      
(4-29b) 

 
Given the axial load N and the bar strain at the support ε(x=0)=εo the 

corresponding moment Mo is obtained from the moment-curvature analysis 
of the cracked section. A boundary condition of Eq. 4-28 is: 

 

                          (4-29c) 
 

Unknowns of the system of Eqs. 4-29 are the disturbed length ℓD1 (Fig. 
4-7b), and the coefficients C1 and C2. In an algorithm developed to solve 
Eqs. 4-29 numerically, the controlling parameter is εo; required input 
includes the axial load, N, shear span Ls, the bond-slip characteristic 
property  (Eq. 4-28), and the member material and cross sectional 
properties. The coefficients C1 and C2 are obtained from (4-29a) and (4-
29b): 

 

 
where =1 for C1, and = -1 for C2                      (4-30) 

 
The value of ℓD1 is determined by solving Eq. (4-29c) after substitution 

of C1 and C2.  

Formation of Additional Flexural Cracks  
in the Shear Span 

Increasing the reinforcement strain value at the critical section, εo, 
corresponds to a higher flexural moment Mo at the support. Based on   Eq. 
4-27, the flexural moments exceed the cracking moment up to a distance 

of xcr from the support: ocrscr /MM1Lx . But the position of the 
next crack is not necessarily at xcr; rather, it is controlled by tension 
stiffening of the reinforcement.   
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(a) To determine if the next crack forms within ℓD1 (Fig. 4-7b), the force 
transferred through a bond to the concrete cover (i.e. EsAs1[εo-ε(x)]) is 
compared with the tensile resistance of the effective area of concrete 
cover engaged in tension (i.e. fctAc.eff, EN 1992-1-1 2004) 
 

,  

    (4-31) 
 

where As1 is the area of the tensile reinforcement, Ac.eff is the area of 
concrete effectively engaged in tension (shaded area around As1 in Fig. 
4-7a), fct is the tensile concrete strength, and b is the width of the 
section of the column (Fig. 4-7a). The lowest value of x=xcr,2 < ℓD1 
that satisfies Eq.4-31 determines the location of the next crack; 
otherwise no further cracking is possible within ℓD1 as long as the 
reinforcement remains elastic.  
 

(b) Alternatively, the next possible crack location, xcr,2 ≥ ℓD1 in the 
undisturbed region (Fig. 4-7b) is also evaluated from Eq.4-25b (here, 
εc.cr = 0.00015 is the concrete cracking strain):   

   

       (4-32) 
 

Slip in the disturbed region is obtained from integration of bar strains 
(from x=0 to x= ℓD1).  

 

                (4-33) 
 

The constant of integration C is obtained from the requirement of the 
compatibility of strains in the concrete and reinforcement at the end of the 
disturbed zone, x=ℓD1, where the local slip is zero (s(ℓD1)=0). After 
localization of the second crack at xcr,2, the next step of the solution is the 
determination of the new disturbed region ℓD2 (along with the updated 
values of the constants C1 and C2). Term ℓD2 initiates from the crack 
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location xcr,2 and extends towards the span until the requirements of slope 
coincidence and continuity are reached, at coordinate xcr,2 + ℓD2 in Eqs.4-
29a-b (Fig. 4-8). In using the closed form expression of Eq.4-28, the value 
of x is substituted by the value x-xcr,2; this solution is valid for x  [xcr,2 , 
xcr,2+ℓD2]). The bar strain εcr,2 at the location of the second crack (Fig. 4-8) 
is the outcome of the flexural analysis of the cracked section and 
corresponds to the moment at that location according to Eq. 4-27 for 
x=xcr,2. In the search for the new disturbed region, an additional 
requirement is that slip at the location xcr,2 should not exceed the limit s1 in 
Eq. 4.33 (where x is substituted by x-xcr,2), securing that the bond is still 
elastic inside ℓD2 (Fig. 4-8). 

This process is repeated following the gradual increase in the value of 
bar strain εo at the support, until no additional primary cracks can be 
identified. This point corresponds to the stabilization of cracking, and it 
generally occurs at a strain value in the critical section that is less than the 
strain at yielding, o

stbl< y. From this stage and until failure of the 
structural member, for the sake of simplicity of the mathematical problem, 
the so called total disturbed region ℓDο is defined as the total distance 
measured from the support to the end of the disturbed region of the last 
(and remotest) crack that was formed prior to stabilization, ℓD,n (Fig. 4-9). 
Since bond development controls the total disturbed region, from that 
point onwards the field equations (Eq. 4-4) are solved in ℓDο ignoring the 
presence of intermediate discrete cracks or the flexural moment 
requirements, since the “plane sections” assumption is not valid anywhere 
over this entire region; upon further increase of the bar strain at the 
support, the ℓDo length may increase further as the disturbed zone 
penetrates towards the tip of the cantilever column.  
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Following cracking stabilization and beyond yielding of the steel bar 

(εο>εy), the yielded segment of the disturbed region undergoes simultaneous 
degradation of the bond. Thus, of the total length ℓDο, there is a segment lr 
where yielding penetrates and spreads with increasing value of εο (Fig. 4-
9). Owing to bar yielding, bar strains increase over lr without a 
commensurate increase of stress: this means that bond must have degraded 
to zero as a consequence of Eq. 4.4a, since df/dx=0 and thus fb=0. This 
segment may be considered debonded. Even if the yield-plateau is 
neglected, and the bar stress-strain diagram is considered bilinear with 
some hardening (Fig. 4-3a), it is clear that the small hardening slope may 
only be supported by the residual bond strength – in other words, in order 
for a bar to yield, it must have slipped beyond the limit s2 in the bond - slip 
law (Fig. 4-3b). Limit s2 is not an intrinsic property of the bar–concrete 
interface as it is generally assumed by Design Codes (fib Model Code 
2010), but rather, it depends on the available bonded length (Tastani et al. 
2013).  

Figure 4-8: Disturbed region ℓD2 after formation of the 2nd crack. 
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The solution for the distributions of strain, slip and the state of bond 

over the disturbed region ℓDο of the shear span of a column under lateral 
sway follows that obtained when considering yield penetration in a bar 
anchorage (previous Section). Here, the disturbed region ℓDο comprises the 
sequence of the following segments (Fig. 4-9): the yield penetration length 
lr (immediately adjacent to the support), the bond plastification length lp 
(i.e. the length where the bar is elastic but bond is constant and equal to 
the value at the plateau of the bond slip law fb

max); bar axial stress and 
bond stress are elastic in the tail length of the disturbed region. The 
solution of the bond equations for the different segments is given below: 

   

              ;                
(4-34a) 

Figure 4-9: Total disturbed region ℓDo after stabilization of cracking. 
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    x=0:  so=s2+0.5·lr (εο+εy)   
(4-34b) 

 

                    ;   

           (4-35a) 

    x=lr: s2=s1+0.5·lp·(εy+εel
3)     

(4-35b) 

       (4-35c) 

   

              
(4-36a) 

                 

((( )

              
(4-36b) 

 
Unknowns ℓDo, C1t, C2t and the constant of integration Ct are obtained 

from boundary conditions at x = ℓDo (namely slope and strain continuity 
and slip compatibility - zero relative displacement) between strain 
distributions obtained from the bond development equation and from 
flexural analysis. Therefore the reinforcement slip is: at x=lr+lp, s(x)=s1; at 
x = ℓDo , s(ℓDo)=0 (i.e., no slip). The following system of boundary 
conditions is therefore established: 

 

 a) Slope continuity of the strain distributions at x = ℓDo: 

  (4-37a) 
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 b) Continuity of strains at x = ℓDo: 

   (4-37b) 

c) Continuity of slip at x = lr+lp: 

                (4-37c)   

        

d) Continuity of strain at x = lr+lp: 

                    (4-37d) 
 

The length of yield penetration lr (Eq. 4-38) may be estimated considering 
the continuity of strain at x = lr (in Eq. (4-34a). 
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                       (4-38) 
 

Equation (4-38) for the yield penetration length (which defines the 
plastic hinge length) has two interesting implications: first, it is a strain-
based criterion for the spread of yielding in the shear span, as opposed to 
the stress-based definition given by Eq. (4-2b); there, the coefficient a 
refers to the flexural overstrength normalized by the yielding moment. A 
second more subtle point is the observation that the plastic hinge length is 
influenced by several parameters indirectly, through the determining effect 
that these have on fb

res. For example the presence of an axial load on a 
member that undergoes cyclical displacement reversals weakens the cover 
over a larger portion of the shear span length leading to cover delamination 
due to excessive compressive strains; upon reversal of load, the crushed 
cover cannot support significant bond action for the reinforcement when it 
is stressed in tension, leading to a reduced value of fb

res, which in turn 
causes increased penetration depth for columns carrying a higher axial 
load; this is consistent with experimental reports (Watson et al. 1994, Bae 
et al. 2008). 
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Proposed Algorithm 

The following algorithm (Fig. 4-10) is established in order to define the 
locations of primary cracks and bar strain, slip and bond distribution along 
the shear span Ls of a laterally loaded reinforced concrete column as well 
as the yield penetration length:    

Initial Data: Using standard section analysis, M-  and M-ε diagrams 
(or better a unified diagram M-  -ε) are obtained, given N for the typical 
section of the reinforced concrete column studied. 

1st Step: Select value of bar strain, εo
(1)=εo, after crack formation at the 

support (Eqs. 4-25,4-27). 
2nd Step: Find the corresponding moment, Mo at the support, from 

moment-bar strain diagram. Solve for the length of the disturbed region 
ℓD1 emanating from the first crack (Eqs. 4-27- 4-30).  

3rd Step: Increase strain at critical section to εo
(2) = εo

(1) + εo. Find the 
location xcr,2 of the second crack. Check if second crack will occur: (a) 
inside ℓD1 according to Eq. (4-31), or (b) in the undisturbed region Ls- ℓD1, 
according to Eq. (4-32). 

4th Step: (a) If next crack forms within ℓD1, repeat Step 3 for εo
(3) = εo

(2) 
+ εo. (b) Otherwise, find the new disturbed region ℓD2 that extends beyond 
xcr,2.  

5th Step: Find total disturbed length, ℓDo=xcr,2+ ℓD2. 
6th Step: Solve for ε(x), s(x), f(x), fb(x) for xcr,2≤x≤ℓDo from Eqs. (4-28, 

4-29, 4-30, 4-33) (Fig. 4-8a). In this phase of the solution, and up to 
stabilization of cracking, elastic bond is assumed in ℓD2 (Fig. 4-8). Thus 
the distributions can be described by the Eqs. 4-36 after substituting lr=0 
and lp=0. For Ls-ℓDo<x<Ls, (elastic column) Eqs. 4-25, 4-27) are used.  

7th Step: Repeat steps 2 to 6 for εo
(i) = εo

(i-1) + εo until stabilization of 

cracking (i.e., no more primary cracks can develop: 
)(i

o
stbl
o ). Final 

length of disturbed zone is obtained from the nth increment using this 
procedure: ℓDo=xcr,n+ ℓD,n. 

8th Step: Increase εo
(i) = εo

(i-1) + εo > 
stbl
o . Solve for one continuous 

disturbed region ℓDo  xcr,n+ ℓD,n allowing for bond plastification and 
debonding as well as bar yielding (anchorage solution) up to either (a) εo 
exhausting the ultimate strain of the M-ε diagram, or (b) ℓDo exceeding the 
available development length of the bar in the shear span, taken here as 
(Ls+hhook), where hhook refers to the bent length of a hooked anchorage 
(according with fib Model Code (2010) the contribution of a hook to the 
strength of an anchored bar is 50Abfb

max, which corresponds to an 
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additional anchored length, Lb=hhook=12.5Db). If (b) controls, continue 
beyond that point for higher strains using the anchorage solution presented 
in previous Section for the entire length ℓDo. 

9th Step: The last converged value of lr in the shear span (Fig. 4-9) is 
added to the corresponding yield penetration length into the anchorage 
(previous Section) resulting in the definition of the total plastic hinge 
length ℓpl. 

 
Results 

 
In the context of the present chapter, the length of plastic hinges is by 
definition the length of yield penetration (thus ℓpl=lr), occurring from the 
critical section towards both the shear span and the anchorage; physically 
it refers to the extent of the region where nonlinear reinforcing strains 
occur, and it may be used to calculate the inelastic rotation capacity of the 
column. The solution algorithm developed is applied in this section in 
order to establish the parametric sensitivities of the estimated plastic hinge 
to the important design parameters. It is also used to correlate the 
behaviour of the plastic hinge spread in three published column tests that 
were conducted to illustrate the effect of axial load on the length of the 
plastic hinge region (Saatcioglu et al. 1989, Bae et al. 2008). 

The three column experiments studied in the chapter are specimens U3 
(Saatcioglu et al. 1989), S17-3UT and S24-4UT (Bae et al. 2008). Column 
specimens were tested as cantilevers, simulating half a clear column length 
under lateral sway such as would occur during an earthquake, with cross 
section detailing as shown in Fig. 4-11a. Column U3 is analysed in detail 
and the results are summarized in Table 4-1, whereas the results of S17-
3UT and S24-4UT are directly included in Table 4-1 for easy correlation.  
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Increase εo
(i) = εo

(i-1) + εo > stbl
o . Solve for one continuous disturbed 

region ℓDo  xcr,n+ ℓDn  up to either (a) εo ultimate strain of the M-ε diagram, 
or (b) ℓDo exceeding the available development length of the bar in the shear 

span. 

The last converged value of lr in the shear span (Fig. 4-9) + 
yield penetration length into the anchorage (previous Section) 

= total plastic hinge length ℓpl. 

Increase strain εo
(2) = εo

(1) + εo.  Check 
location xcr,2  (Eqs. 4-31 or Eq. 4-32). 

Section analysis to obtain  M-  and M-ε 
diagrams.

Bar Strain, εo
(1)=εo, after crack formation 

at the support (Eqs. 4-25,4.27). 

Calculation of moment Mo and length of 
the disturbed region ℓD1 (Eqs. 4-27 –       4-

30).

Crack within ℓD1, repeat previous Step for 
εo

(3) = εo
(2) + εo. Otherwise, new 

distrurbed region ℓD2. 

Find total disturbed length, 
ℓDo=xcr,2+ ℓD2. 

Solve for ε(x), s(x), f(x), fb(x) for xcr,2≤x≤ℓDo from Eqs. 
(4-28, 4-29, 4-30, 4-33).  Define distributions by the 

Eqs. 4-36 after substituting lr=0 and lp=0.  For Ls-
ℓDo<x<Ls, (elastic column) Eqs. 4-25, 4-27 are used. 

Repeat steps for εo
(i) = εo

(i-1) + εo 
until stabilization of cracking 

(
)(i

o
stbl
o ). Final length of 

disturbed zone for nth increment: 
ℓDo=xcr,n+ ℓDn. 

 

 

Figure 4-10: Flow-chart of the established algorithm for the definition of the bond 
state in the disturbed region of the shear span as well as that of the plastic hinge 

length. 
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Table 4-1: Summary of the analyzed experiments (units: mm, MPa). 
 

 

 Experimental details  Analysis 
Test 
ID 

ν=N/ 
(fc’bd) 

Column 
geometry Reinforcement  Anchorage Shear span Column deformation at 

ultimate 

U3 0.16 
fc

’=34.8 

Square section 
h=350, 

Ccov=32.5 
d=305, 

Sh. span, 
Ls=1000 

Long: 8 evenly distributed bars, 
Db=25, fy=430 Esh=5%Es 

Trans: 10@75 fy,st=470 
 

 
fb

max=1.25√fc
’=7.40 

s1 =0.2 
Lb =812 

su
anch(x=0)=2.33 

lr,u =313 

fb
max =7.2, fb

res= 1.44, 
s1=0.2 

ℓDo
max=Ls+12.5Db=1313 

lr =319 
u=0.0095, u=4.7x10-5 

cx= 103, su
span(x=0)=2.36 

Total ℓpl : 
 ℓpl =lr,u + lr 

=632mm=1.8h 
DR =520mm=1.5h 

θu
slip=0.018 

u f= y 
f + pl 

f=0.015 
u=0.033 / u

exp=0.035 

S17-
3UT 

0.5 
fc

’=43.4 

Square section 
h=440, 
Ccov=27 
d=405, 

Shear span, 
Ls=3049 

Long: 12 evenly distributed bars, 
Db=15.9, fy=496 Esh=5%Es 

Trans: 9.5@86 fy,st=496 
 

 

fb
max=1.25√fc

’=8.23s1 
=0.2 

Lb =890 
su

anch(x=0)=1.50 
lr,u =177 

max
cov/,wbf =11.49 

max
cov/,wobf =5.40 

fb
res=20% , fb

max=1.1, 
s1=0.2 

ℓDo
max=Ls+12.5Db=3248 

lr =271 
u=0.01, u=5.9x10-5 

cx = 236, su
span(x=0)=2.30 

Total ℓpl : 
ℓpl =lr,u + lr =448mm=h 

DR=450mm=h 
θu

slip=0.012 
u f=0.029 

u=0.041 / u
exp=0.032 

S24-
4UT 

0.2 
fc

’=36.5 

Square section 
h=610, 
Ccov=49 
d=550, 

Shear span, 
Ls=3049 

Long: 12 evenly distributed bars, 
Db=22.2, fy=400, Esh=1%Es 

Trans: 9.5@152 fy,st=455 
 

 

fb
max=1.25√fc

’=7.55   s1 
=0.2 

Lb =890 
su

anch(x=0)=0.98 
lr,u =80 

max
cov/,wbf

=8.85 
max

cov/,wobf
=2.0 

fb
res=20% , fb

max=0.4, 
s1=0.2 

ℓDo
max=Ls+12.5Db=3327 

lr =301 
u=0.013, u=3.9x10-5 

cx = 217, su
span(x=0)=3.52 

Total ℓpl : 
ℓpl =lr,u + lr =380mm=0.6h 

DR=350mm=0.57h 
θu

slip=0.01 
u f=0.017 

u=0.027 / u
exp=0.033 

Note: Test U3 by Saatcioglu et al. 1989 and tests S17-3UT, S24-4UT by Bae et al. 2008;  DR= Damaged Region 
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Column U3 (Saatcioglu et al. 1989) 

 
The specimen had a 350 mm square cross section reinforced with eight 
evenly distributed longitudinal reinforcing bars of Db = 25mm and stirrups 
of Db,st = 10mm spaced at 75mm o.c. (on centers) and clear cover Ccov = 
32.5mm (i.e., d=350-45=305mm), see Fig. 4-11a. The concrete strength 
was fc

’=34.8MPa. Longitudinal steel yielding strength was 430MPa, with 
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a 5% hardening. Stirrup yield strength was 470MPa.  
Column shear span was Ls = 1.0m and the axial load ratio [ν=N/(fc

’bd)] 
was 0.16. Fig. 4-11b plots the unified M- -  relationship obtained for this 
axial load using fiber section analysis with the modified Kent & Park 
model for confined concrete (Scott et al. 1982); a Hognestad-type parabola 
was used to model the compression stress-strain response of unconfined 
concrete (Hognestad 1951). A bilinear stress-strain curve with 5% 
hardening was used to model longitudinal reinforcement (Fig. 4-3a). Bond 
strength was taken as equal to fb

max = 1.25√fc
’
 (7.4MPa) for the anchorage 

(anchorage with hook with equivalent straight length of Lb = 800mm, fib 
Model Code 2010). For the shear span, the bond strength is calculated 
using a frictional model (Tastani et al. 2010) that accounts for separate 
contributions of the cover concrete and stirrups according to: 

 

sN

fA
0.33f2C

πD
2μ

f
b

sty,st
ctcov

b

frmax
b

           (4-39) 
 

where Nb is the number of tension bars (or pairs of tension spliced bars if 
reinforcement is spliced) laterally restrained by the transverse pressure 
exerted in the form of confinement by the stirrups, Ccov is the clear 
concrete cover, Ast is the area of stirrup legs enclosing the Nb bars (i.e., the 
total area of legs crossing the splitting plane), s is the stirrup spacing along 
the member length, μfr is the coefficient of friction, fct is the concrete 
tensile strength and fy,st is the yielding strength of stirrups. Therefore the 
maximum bond strength for the shear span is 7.2MPa when considering 
the contribution of the cover, which drops to 2.75MPa after cover 
delamination (for the present example: μfr =1, fct = 0.33√fc

’, Nb = 3). Due to 
the reversed cyclical nature of the displacement history, cover on the 
tension reinforcement is assumed to have delaminated or split if, during 
the opposite direction of loading, the compressive strain has attained the 
limit value of 0.003; this is used also in all other examples considered 
herein. The residual bond strength fb

res is defined as 20% of the maximum 
bond strength and parameter s1 = 0.2mm; s2 mainly depends on the 
anchorage length which is equal to the shear span if the latter is 
transmitted to the total disturbed region. For the present problem, s2 is 
found to be equal to 0.5 mm at the ultimate state of reinforcement (see Fig. 
4-14).   

Following evaluation of the process of crack formation according to 
the proposed algorithm, the resulting distribution of strains is illustrated in 
Fig. 4-12. Note that stabilization of cracking occurred before yielding of 
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the tensile bars (just after the formation of the fourth crack). Ultimate 
strain corresponded to a disturbed region extending over the entire length 
of the column shear span including an equivalent additional length equal 
to 12.5Db (313 mm) – thus ℓDo

max=Ls+12.5Db– in order to account for the 
end detail of reinforcement at the tip of the column being welded onto a 
steel plate (this additional length is the anchorage length equivalent of a T-
headed anchorage according to fib Model Code 2010 – here this is a 
conservative estimate). The red dashed curve in Fig. 4-12d plots the bar 
strain distribution that results from plane sections analysis; there is a 
marked deviation from the distribution controlled by the bond action in the 
most stressed part of the shear span. 
 

 
 

From Fig. 4-12 it is seen that the yield penetration length over the 
shear span at the last step of the calculation was 319mm (0.91h or 0.32Ls), 
whereas the corresponding pullout slip was su

span(x=0) = 2.36mm     (Fig. 
4-14). When including the yield penetration in the footing as is intended in 
the formal definition of ℓpl (Eq. 4-2b), the total plastic hinge length is 632 
mm. (Note that the yield penetration length inside the footing is 313mm or 

 
 

Figure 4-12: Column U3 (a), (b) (c) tensile bar strain distributions along 
the anchorage (blue curves) and the shear span (cyan-red-green curves). 

Location of estimated successive cracks is indicated until crack 
stabilization. d) Strain state of reinforcement at ultimate, where ℓpl is 

calculated. 
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0.029Dbfy and the corresponding slip is su
anch(x=0)=2.33 mm). Fig. 4-13 

compares this value with the empirical estimates of Eqs. 4-3a, b; the easy 
estimate of 0.5d is also noted. Also included is the result of the classical 
definition of plastic hinge length (1-My/Mu)Ls. For comparison it is noted 
(red dashed line in Fig. 4-13) that cover delamination extended over 520 
mm measured from the face of the support, according to the experimental 
report of specimen U3 (Saatcioglu et al. 1989). Fig. 4-14 presents the slip 
distribution lengthwise of the bar reinforcement, from where values at the 
critical section are used next for the calculation of drift components. 

The rotation components  slip and  f occurring at the critical section of 
the specimen at yielding- and in the ultimate limit state, are estimated in 
accordance with Eqs. 4-1, 4-2 by also adding the contribution from the 
anchorage (previous Section); here the theoretical ultimate point 
corresponds to the attainment of the maximum supportable disturbed 
length, ℓDo

max=Ls+12.5Db=1313 mm as described in the preceding. Thus, 
Eq. 4-1 is modified as follows: 
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4.04.0

;     

0x

anchorage

x

anch
u

0x

spanshear

x

span
uslip

u cd
s

cd
s

θ
4.04.0

    (4-40) 
The values sy(x=0) and su(x=0) are the contributions to slip at the base 

of the column resulting from pullout from the anchorage as well as from 
the shear span. For the analytical estimations of specimen U3, the 
compression zone depth was (Fig. 4-11b, u=0.0095 and u=4.7x10-5mm-1) 
cx= 103mm (i.e., d-0.4cx= 305-41=264mm) and from Eq. 4-40 the drift 
capacity owing to pullout slip was estimated at:  
 
θu

slip=2.36⁄264+2.33⁄264=0.018rad.  
 
Using ℓr = 319mm, the ultimate rotation of the column due to flexure was: 

u
f= y

f+ pl
f where y

f= y Ls/3 (see also Eq. 4-2b): θu
f=1/3∙0.000013∙1000 + 

(0.000047-0.000013)∙319 = 0.015rad. The term u
slip accounts for 55% of 

the total rotation capacity of the RC column (0.018+0.015=0.033rad). The 
experimental reported tip displacement at the maximum moment 
(268kNm) was 35 mm, corresponding to a rotation of 0.035rad. 
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Column S17-3UT (Bae et al. 2008) 
 
The geometry of the column is summarized in Table 4-1 and depicted in 
Fig. 4-11a. Τhe main bars were welded onto a steel plate for the 
application of the load at the tip of the column. This was taken into 
account in the analysis by including a length of 12.5Db (= 199mm) as an 
effective extension of the available development length in the shear span. 
Fig. 4-11b depicts the results of the moment – curvature - strain analysis. 
It is evident that cover spalling occurs relatively early at a stage 
corresponding to bar yielding. For the shear span, the maximum and the 
post-cover delamination values for bond strength were estimated from Eq. 

4-39 as 
max

cov/,wbf = 11.49 MPa and 
max

cov/,wobf = 5.40MPa (indices w/cov and 
wo/cov correspond to the inclusion or non-inclusion of the cover 
contribution). The process of detecting the crack formation and the 
corresponding strain distribution for the column are presented in Fig. 4-15. 
Stabilization of cracking occurred before the yielding of the tensile bars. 
Moreover, after the spalling of the concrete cover, the contribution of the 

latter to bond strength was neglected (thus fb
max = 

max
cov/,wobf

= 5.40MPa). 
As is evident from Fig.4-15d the maximum sustained yield penetration 

length based on the proposed procedure is 271 mm (0.66h or 0.09Ls) in the 
shear span and inside the footing it is 177 mm (or 0.022Dbfy). Reported 
damage extended over a distance of 450 mm from the base of the column 
(see experimental reference; red dashed line in Fig. 4-13). Fig. 4-13 
presents the correlation of the analytical estimation with the empirical 
results and Fig. 4-14 the analytically estimated slip distribution lengthwise 
along the bar reinforcement at the ultimate strain.  

The rotation of the column at the ultimate moment due to slippage u
slip 

(Eq. 4-40), is θu
slip = 2.30⁄311+1.5⁄311 = 0.012rad whereas the ultimate 

rotation of the column due to flexure (using ℓr = 271mm) is: θu
flex = 

1/3∙0.000017∙3049 + (0.000059-0.000017) ∙271=0.029 rad. Thus the total 
drift is estimated at 0.041rad. The experimental curvature corresponding to 
a 20% drop in the lateral load capacity (this point was defined on the 
lateral load lateral displacement envelope after correction for the P-  
effects), was 7x10-5mm-1 (at the 6th level of cycling) and the associated 
drift was 0.032rad.  
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Column S24-4UT (Bae et al. 2008) 

 
Table 4-1 and Fig. 4-11a depict the geometric characteristics of the 
column specimen. As in the previous example, the effective development 
length of the longitudinal bars in the shear span was extended by 12.5Db 
(= 278mm) to account for the welding of main reinforcement on a steel 
plate attached to the point load setup. Fig. 4-11b plots the calculated 
moment – curvature - strain diagram, indicating also the onset of cover 
delamination (beyond that point, bond strength is reduced due to the 
elimination of the cover contribution in Eq. 4-39). For the shear span fb

max 

was 
max

cov/,wbf  = 8.85MPa and 
max

cov/,wobf  = 2.0MPa (with and without the 
cover contribution). The process of crack formation and the resulting bar 
strain distributions as calculated using the proposed algorithm are shown 
in Fig. 4-16.  

Fig. 4-16 evidences that yield penetration length at maximum strain 
value u = 0.013 is lr = 301mm (= 0.5h or 0.1Ls) in the shear span. Adding 
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Figure 4-15: Column S17-3UT: (a), (b) and (c) tensile bar strain distributions along 
the anchorage (blue) and shear span (cyan-red-green curves). Location of estimated 

successive cracks is indicated until crack stabilization. d) Strain state of reinforcement 
at ultimate, where ℓpl is calculated. 
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the length of yield penetration in the footing (i.e. 80mm or 0.01Dbfy) the 
plastic hinge length is estimated at 380mm. Fig. 4-13 presents the 
correlation of the analytical estimation with the empirical results and the 
reported damage into the shear span, extending up to a distance of 350 
mm. Fig. 4-14 shows the estimated slip distribution lengthwise along the 
bar reinforcement at the ultimate strain.  

Column rotation capacity at the ultimate moment was estimated as 
follows: from slip, θu

slip = 3.52⁄463 + 0.98⁄463 = 0.01rad and due to flexure 
θu

fle = 1/3 0.000007∙3049 + (0.000039-0.000007)∙301 = 0.017rad (in total 
0.027rad). The experimental reported drift ratio at up to 20% net loss of 
lateral load strength was 0.033rad (after correction of the result for the P-  
effect); therefore the experimental total rotation of 0.033rad was 
approximated adequately by the estimated analytical value of 0.027. 
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Figure 4-16: Column S24-4UT: (a), (b) and (c) tensile bar strain distributions in the 
anchorage (blue) and the shear span (cyan-red-green curves).  Location of estimated 

successive cracks is indicated until crack stabilization. d) Strain state of reinforcement 
at ultimate, where ℓpl is calculated. 
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Parametric Investigation 
 
The parametric sensitivity of the proposed solution for the plastic hinge 
length is investigated in this section considering as a point of reference 
specimen U3, examined in the preceding section. Parameters considered, 
reference values, and ranges of parameters thereof, are listed in Table 4-2; 
in each case, one parameter is varied at a time keeping the reference values 
for all other variables (so the possible interaction effects between variables 
have not been considered in conducting the sensitivity analysis). 
Consistent with the original definition of the plastic hinge length      (Eq. 
4-2b) the strain hardening ratio of the reinforcement Esh effectively 
increases the plastic hinge length (Table 4-2). Similarly, a reduction of the 
residual bond strength fb

res leads to further increase of the plastic hinge 
length (Table 4-2). It should be noted that the yield penetration length in 
the anchorage is included in the plastic hinge length.  

The location of the cracks is affected by variable ω that defines the 
elastic bond according to Eq. 4-28. Decreasing the slip limit s1 and 
increasing the value of average bond strength fb

max both led to the 
consolidation of the cracks closer to the critical section at the base of the 
column (before stabilization of cracking), as is evident from Table 4-2. In 
all analytical cases presented in Table 4-2 the first crack appears always at 
the base of the column (x1,cr=0), whereas in some of the experiments 
severe cracking occurred about 50 mm above the footing, owing to the 
restraint provided by the footing, particularly when the drift history was 
applied by means of rotating that block while keeping the tip of the 
cantilever specimen stationary (e.g. Bae et al. 2008).  

In the previous section three specimens with different aspect ratios 
(Ls/d) and axial load ratios [ν = N/(fcbd)] were considered. The 
corresponding values for (Ls/d) and ν were (3, 0.16), (7, 0.5), and (5, 0.2) 
respectively. According to Bae et al. 2008, the two parameters have a 
simultaneous effect on the extent of ℓpl , and a degree of interaction (i.e., 
the effect of Ls/d is pronounced only in the presence of a high axial load 
ratio) (Tables 4-2,4-3). To illustrate the sensitivity of the proposed 
approach in reproducing the experimental trend, a second reference point 
is introduced in the parametric study, namely the case of specimen U3 but 
with an axial load ratio of ν = 0.5 (Table 4-3). 
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Table 4-2: Parametric Investigation – Properties similar to specimen 
U3 (units: mm, MPa) 

Parameter ν=N/(fc’bd)  
=0.15 =0.3 =0.5 

Plastic Hinge Length 1.8h 1.3h 0.9h 
Parameter fbmax = 3 fbmax = 5 fbmax = 7 
Plastic Hinge Length 3.1h 2.2h 1.8h 
Parameter fbres = 1 fbres = 2 fbres = 3 
Plastic Hinge Length 2.2h 1.6h 1.3h 

Parameter Esh=1%Es Esh=2.5%Es Esh=5%Es 

Plastic Hinge Length 0.4h 0.9h 1.8h 
Parameter Ls=2h Ls=3h Ls=4h 
Plastic Hinge Length 1.8h 1.8h 1.8h 
Parameter Db=18 
Plastic Hinge Length 1.4h 

 
Table 4-3: Parametric Investigation – Axial load ratio equal to 0.5 
(units: mm, MPa) 

Ideal reference 
case:  

ν=N/(fc’bd) = 0.5; all other characteristics are those 
of U3 

Parameter fbmax = 3 fbmax = 5 fbmax = 7 
Plastic Hinge 
Length 1.6h 1.1h 0.9h 

Parameter fbres = 1 fbres = 2 fbres = 3 
Plastic Hinge 
Length 1.1h 0.8h 0.7h 

Parameter Esh=1%Es Esh=2.5%Es Esh=5%Es 

Plastic Hinge 
Length 0.1h 0.4h 0.9h 

Parameter Ls=2h Ls=3h Ls=4h 
Plastic Hinge 
Length 0.9h 0.9h 0.9h 

Parameter Db=18 
Plastic Hinge 
Length 0.7h 



Plastic Hinge Length in RC Columns  127

Figure 4-17a displays the influence of the variables on the normalized 
plastic hinge length (ℓpl/h, vertical axis) of the reference specimen, and on 
the associated development capacity of the reinforcement (in terms of 
tensile strain, εs, in the horizontal axis) of the critical cross section. Each 
curve in this diagram is read as follows: 

 
 Reducing the bond strength fb

max (to the associated residual bond 
strength fb

res = 20%fb
max) gradually from 7 to 3MPa (red arrow next 

to the brown curve pointing down) results in the increase of the 
plastic hinge length attained at a lower bar strain capacity.   

 Increasing the normalized axial load v (red arrow next to blue curve 
pointing up) lowers the strain capacity and the associated plastic 
hinge length. 

 Reducing the hardening modulus Esh (red arrow next to green curve 
pointing down) decreases the plastic hinge length (as is implied by 
Eq. 4-38) and increases the strain.  

 Reducing the bar size Db (red arrow next to grey curve pointing 
down) decreases the hinge length (as it is also implied by Eq. 4-38) 
and increases the strain.  

 
The hinge length is relatively insensitive to Ls/h at low axial loads, i.e., 

at v = 0.15 all points coincide with the reference point (intersection of all 
curves; i.e. for Ls/h = 2, 3 and 4, the ℓpl/h is 1.8 and the associated strain is 
0.017). 

The presence of an axial load on a member undergoing cyclical 
displacement reversals weakens the cover over a larger portion of the 
shear span length speeding up cover delamination due to excessive 
compressive strains. Upon reversal of a load, the crushed cover cannot 
support significant bond action for the reinforcement when the latter is 
stressed in tension, leading to a reduced value of fb

max (it is sustained only 
by the stirrups) and to the demise of fb

res (less than half of the bar 
perimeter is in contact with concrete, with implications on residual 
friction). These in turn cause increased penetration depth for columns 
carrying a higher axial load. Fig. 4-17b depicts the effect of the studied 
variables on the plastic hinge length under higher axial load (v=0.5); in the 
reference case, the term fb

max was reduced from 7.2MPa to 2.75 after cover 
loss. The following may conclude: 

 
 Reducing bond strength fb

max from 7 to 3MPa (brown curve in Fig. 
4-17b) results in increased plastic hinge length, attained at a higher 
bar strain.  
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 Reducing the residual bond strength fb
res (orange curve in    Fig. 4-

17b) increases the hinge length and lowers the associated strain 
capacity. 

 Lower hardening modulus Esh (green curve in Fig. 4-17b) results in 
lower hinge length and strain.  

 Reduced bar size Db (grey curve in Fig. 4-17b) lowers the hinge 
length and the strain capacity.  

 
The mechanism by which the axial load ratio affects the damaged 

region is by accelerating and spreading the delamination of the cover in 
the compression zone of the laterally swaying column. This was already 
evident in the M-ϕ-  relationships of Fig. 4-11. To study this parametric 
trend, consider the cross section of Fig.4-18a. Cover delamination is 
assumed to occur when the compressive strain at the level of compression 
reinforcement reaches the limit of 0.004 (the term =cx/d is the normalized 
compression zone and '= d2/d defines the position of the compression 
reinforcement as per the extreme fiber). In this case, from cross section 
analysis, the strain of the tensile reinforcement o is given by Eq. 4-41. 

 

'
. 10040

                (4-41) 
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Figure 4-17: Sensitivity analysis of the normalized plastic hinge length ℓpl/h versus the 
associated reinforcement maximum tensile strain εs for a) low and b) high axial load. 

 

a) 

b) 
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For the needs of the parametric investigation, the relationship between ν 
and o is established using experimental evidence: the column test series 
conducted by Watson et al. 1994 included specimens with various axial 
load ratios ranging from ν = 0.1 to 0.6. Based on the reported test results, 
the relation between axial load v and normalized compression zone depth 
 is estimated as = 0.25v+0.07 (Fig. 4-18b). Thus, given the applied 

axial load v, the normalized compression zone depth of the cross section is 
estimated at ξ (from Fig. 4-18a); then, the corresponding strain in the 
tension reinforcement at the critical section, o, is obtained from Eq. 4-41). 
This is substituted in Eq. 4-38 to define the yield penetration length into 
the shear span, using different intensities of average residual bond strength 
depending on the magnitude of the axial load (lower residual bond 
strength for higher axial load to reflect the effect of delaminated cover 
over a broader region). This procedure is visualized in the combined 
diagram in Fig. 4-19, where curves of v - o (grey curve) and lr/d - o 
(black curves, where the thicker the curve the higher the fb

res is) are 
simultaneously plotted (note: the horizontal grey dashed line drawn at the 
upper part of Fig. 4-19 defines the available column aspect ratio, Ls/d, 
which serves as the ultimate limit for possible penetration). This diagram 
may be used to illustrate two aspects of the parametric sensitivity of the 
problem: a) the increase of axial load for example from 0.2 to 0.4 
(following the red arrow) results in reduction of the strain capacity of the 
cross section (from 0.05 to 0.027) along with diminishing of the fb

res 

(crossing from the thicker to the thinner curve, i.e. from 4 to near 1MPa) 
as well as an increase of the extent of the plastic hinge length in the shear 
span (i.e. from 1.1 to 2.3d, where d is the effective depth of the cross 
section, see the red dashed horizontal lines). b) the unified diagram v - lr/d 
- o can be used in design: given the axial load and the aspect ratio of the 
member, the strain capacity of the cross section and the corresponding 
plastic hinge length are uniquely defined, leading to the proper assessment 
of the members’ available deformation capacity. The extent and intensity 
of damage may be effectively reduced through confinement as a higher 
value of the residual bond strength may be supported (see the black dashed 
paths in Fig. 4-19).  
 
 
 
 
 
 



Plastic Hinge Length in RC Columns 131

(a) 

o   

cx= d 
s2=0.004 

 
d 

b 

h 

d2= ' d 

(b) 

Figure 4-18: a) Strain state of cross section at cover crushing. b) The influence 
of axial load on compression zone based on data from Watson and Park (1994). 
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Figure 4-19: A unified diagram v – lr/d - o for the influence of axial load, residual 
bond strength and tensile bar strain on yield penetration length into shear span. 

 



CHAPTER FIVE 

PHAETHON:  
SOFTWARE FOR ANALYSIS OF SHEAR-

CRITICAL REINFORCED CONCRETE COLUMNS 

 
 
 
The correlation of experimental responses and results obtained from the 
inelastic flexural analysis of column elements with a dominant shear 
component had already highlighted the limitations of the underlying 
assumptions of the later approach, when used beyond their scope of 
application. Shear is a persistent problem in analysis and assessment 
because by the mere rotation of the principal directions away from the 
parallel and normal to a cross section, complicates convergence to 
solutions that satisfy equilibrium, particularly in the inelastic range. The 
debate on acceptable methods for calculation of shear strength still persists 
in the literature; issues such as the effective area participating in shear 
action and the size effect remain open. On the other hand it appears that 
shear strength, although estimated as a cross sectional property, really 
depends on the overall member response.   

Even the most advanced stage of development on seismic design and 
assessment to date requires some kind of nonlinear analysis either static or 
dynamic. These nonlinear analyses are mostly carried out using frame 
elements with different levels of approximation. Two main approaches are 
usually used, classified as lumped-plasticity and distributed-inelasticity 
models. The limitation of concentrated plasticity elements is that inelastic 
deformations take place at predetermined locations in the ends of the 
element. Another, in many respects more serious limitation, is the fact that 
concentrated plasticity elements require calibration of their parameters 
against the response of an actual or ideal frame element under idealized 
loading conditions. This is necessary, because the response of concentrated 
plasticity elements derives from the moment–rotation relation of their 
components. In an actual frame element, the end moment–rotation relation 
results from the integration of the section response. This can be achieved 
directly with elements of distributed inelasticity (Filippou and Fenves 
2004). For the latter approach, the so-called fiber beam elements (Fig. 5-1) 
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provide results that seem to be particularly appropriate for studying the 
seismic behavior of reinforced concrete (RC) structures: moment-axial 
force (M-N) coupling is readily taken into account, as well as the interaction 
between concrete and steel in the section. Several fiber beam-column 
elements have been developed with good capability of reproducing axial 
force and flexure effects. On the other hand, the coupling between the 
effects of normal and shear forces is not straightforward and hence only a 
few modelling strategies have accounted for, and implemented it up till 
now (Ceresa et al., 2007). 

A common theory, appropriate for the analysis of beam-column 
elements, is the Euler-Bernoulli approach. The fundamental assumption of 
this theory is that cross-sections remain plain and normal to the deformed 
longitudinal axis. The engineering beam theory reproduces the response of 
a beam under combined axial forces and bending moments, while shear 
forces are recovered from a static equilibrium; the effects of the shear on 
beam’s deformation are neglected. When the effects of tangential stresses 
are important for the element deformation (i.e. in a beam-columns joint or 
in the column/wall plastic hinge length), more refined theories like the 
Timoshenko beam theory may be used. 

In the development of a nonlinear frame element, two main approaches 
have been used, namely the displacement-based (stiffness) approach and 
the force-based (flexibility) approach. A flexibility-based frame element 
gives the exact solutions for non-linear analysis of frame structure using 
force interpolation functions that strictly satisfy element equilibrium, and 
impose the compatibility conditions. Accordingly, this approach allows the 
overcoming of some limitations of the stiffness approach. In particular, the 
nonlinear analysis becomes independent of the displacement approximation, it 
requires fewer elements for the representation of the non-linear behaviour 
and, above all, in the case of a Timoshenko element or exact-beam theory-
element, it avoids the well-known shear-locking problem (a sharp increase 
in the element stiffness which results in far fewer deformations for the 
element than expected) (Hughes, 2000).  

One of the modelling strategies for incorporating the beam theory that 
incorporates the shear into the fiber approach is related to the idea of 
adopting suitable constitutive relationships. This category includes fiber 
beam-column elements using smeared cracking models. According to this 
approach, cracked concrete is simulated as a continuous medium with 
anisotropic characteristics. In general, these models are referred to as 
“smeared cracking approaches” since cracking is modelled as a distributed 
effect with directionality. These approaches are particularly suitable for 
sectional analysis. 
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RC Sectional Model Based on Modified Compression 
Field Theory (MCFT) 

 
Since the end of 1970s, a considerable amount of experimental and 
analytical research has been conducted with the aim of developing 
analytical procedures capable of estimating the load-deformation response 
of reinforced concrete elements loaded in shear (Ceresa et al., 2008). At 
the University of Toronto, Collins developed a procedure called the 
compression field theory (CFT) in 1978 (Collins, 1978). In 1981, a 
competition was held to predict the load-deformation response of four 
reinforced concrete panels tested at the University of Toronto (Collins et 
al., 1985), where leading researchers from around the world entered 
predictions based on various constitutive approaches. The results indicated 
that the most highly developed level in analytical modelling to time was 
far from satisfactory. Generally, the models were not able to adequately 
estimate the ultimate strength, the failure mode or the load-deformation 
response of the panels. Most of the entrants used constitutive theories 
developed from tests conducted on plain concrete specimens. Conditions 
in the specimens are not representative of actual RC structures. The 
interaction between the concrete and steel strongly influences the response 
of reinforced concrete structures. In an effort to determine more realistic 
relationships for cracked reinforced concrete, Vecchio and Collins (1982) 

Figure 5-1: Fiber Element Scheme – definitions. 
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tested a series of RC panels. From these tests, the modified compression 
field theory (MCFT) (Vecchio & Collins, 1986) was calibrated by 
including stress-strain relationships for cracked reinforced concrete under 
plane stress conditions. 

An RC element is homogenized and is treated as anisotropic elastic 
material shown in Fig.5-2. Consider an elementary panel under constant 
plane stress, of uniform thickness, containing a rectangular grid of well 
distributed reinforcement. Loads acting on the element’s edge planes are 
assumed to consist of uniform membrane stresses, i.e., axial stresses nx, ny 
and uniform shear stresses τxy. The deformed shape is defined by the strain 
tensor for plane stresses:  

                                    (5-1) 

 
The MCFT utilizes the following assumptions: 
 
 The reinforcement is averaged or smeared throughout the element, 

i.e. it applies only to well-detailed members. 
 The stresses applied to the element are uniform along edges.  
 The total stress state is a function of the total strain state.  
 The reinforcement is perfectly bonded to concrete, so that relative 

displacement due to bond slip between reinforcement and concrete 
is ignored. 

 The shear stress is negligible in reinforcement.  
 The principal stresses and principal strain axes are coincident; as a 

consequence, no deviation between the two is allowed. 
 The constitutive relationships for concrete and reinforcement are 

independent. 

Figure 5-2L: a) RC smeared-cracking membrane element, b) average strains 
(Cθ: spacing of cracks inclined at θ) c) average stresses and d) local stresses 

at a crack (vagg: shear stress on crack surface). 
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 The cracks are smeared and allowed to rotate. 
 

The theory comprises three sets of relationships: compatibility 
relationships between concrete and reinforcement average strains, 
equilibrium relationships between externally applied loads and average 
stresses in the concrete and reinforcement; and uniaxial constitutive 
relationships for cracked concrete along the principal directions and for 
reinforcement. The constitutive relationships for cracked concrete result 
from tests of reinforced concrete panels using a purpose-built Panel 
Element Tester at the University of Toronto. As such, the formulation of 
the MCFT calibrated with the specific tests conducted in the panel tester, 
incorporates realistic constitutive models for concrete based on 
experimentally observed phenomena. While cracks are smeared and the 
relationships are formulated in terms of average stresses and strains, a 
critical aspect of the MCFT is the consideration of the local strain and 
stress conditions at cracks (Fig.5-2d). 

Constitutive Model based on MCFT for a Fiber RC Beam 

In order to determine the normal and the shear stresses for the i-th 
fiber/layer (σx

i, τxy
i) of a fiber section of a RC beam (Vecchio & Collins, 

1988), a bi-axial fiber constitutive model is developed according to the 
Modified Compression Field Theory (MCFT) (Table 5-1). For the section 
state determination the following assumptions were made: the longitudinal 
εx and shear γxy strains are known for each fiber, according to a plane 
section assumption and to a parabolic shear strain distribution along the 
height of the section with the maximum value γxy.max located on the neutral 
axis yna (Eq. 5-2, two half-parabola with the same maximum are met to the 
point of neutral axis with different starting point, extreme tensile and 
extreme compressive fiber respectively). 
 

               (5-2) 
 
The transversal concrete stress fcy was determined for each fiber from 

equilibrium conditions (zero normal stress ny was assumed). The 
constitutive law is based on an iterative procedure (Fig. 5-3) where, in 
order to accelerate the convergence of the algorithm to the right angle θ, 
the initial guess value of the procedure for the angle of inclination of 
principal stresses/strains (angle of principal axis 2 with respect to x-axis) is 
determined according to the following equation:  
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          (5-3) 
 

where y is the location of the concrete layer/fiber (y : start measuring from 
the extreme compressive fiber, Fig.5-1), ycz is the depth of the compression 
zone, ytz is the depth of the tension zone and d is the total depth of the 
section (i.e., ycz+ytz=d, Fig. 5-1). Fig. 5-4 depicts the angle shape function 
along the height of the section according to the above equation (d =457 
mm, ycz = 280 mm similar to Specimen 1 [Sezen & Moehle, 2006]). The 
solution to the iterative procedure is reached by applying the Regula Falsi 
root finding a numerical solution (Chabert, 1999). 
 
Table 5-1. Equations embodied in the iterative procedure (Vecchio & 
Collins, 1988). 
 

 ,  ,  , 
 

 for  ,  for  ,  

 , , 
 

, ,  , 

, , 

  
= Concrete Cylinder Compressive Strength (MPa), = Strain at 

Concrete Cylinder Compressive Strength, 
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= Concrete Elastic Modulus 
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= Tensile Concrete Strength (MPa),
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le C

= Yielding Strain of Longitudinal Reinforcement, Con
=Elastic Modulus of Stirrups (MPa), 
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= Yielding Strength of Stirrups 
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Sectional Model 
 
Fig. 5-5 depicts a beam element with its degrees of freedom and its 
displacement/forces in global, local and basic systems of reference. The 
term “basic” is derived from the system of reference where the rigid body 

Figure 5-4: Shape function for angle theta (θ) of inclination of principal 
stresses/strains. 

Figure 5-3: Iterative procedure for each fiber/layer of the section according 
to MCFT. 
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motion of the beam is extracted. Considering now the virtual work 
principle for the beam element of Fig. 5-5, the Eq. 5-4 can be derived. The 
external work is done by the end forces (p) on the corresponding 
displacements (u), whereas the internal work is done by the basic forces 
(q) on the corresponding deformations (v). 
 

                   (5-4) 
 

The internal work of Eq. 5-4 can be derived from the integral of the 
stress product with the corresponding virtual strains over the element 
volume V. In many applications of nonlinear structural analysis, the 
internal work is limited to the internal work of normal stress σx and shear 
stress τ, on the axial strain εx and shear strain γ respectively: 

 
              (5-5) 

 
  

 
 

The strain and stress are functions of the position along the element 
longitudinal axis x and the position within the cross section specified in 
local coordinates y (with respect to the height) and z (with respect to the 
width).  

Eq. 5-5 can be rewritten by substituting the integral over the element 
volume as integration over the section area A at a location x followed by 
integration over the element length: 

Figure 5-5: Beam a) displacements and b) forces in global, local and basic 
reference systems. 
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        (5-6) 

 
The strains at a fiber/layer point of the beam cross section (2d case) are 

related to the section deformations as follows (Ceresa et al., 2008); 
: 

                 (5-7) 

                  (5-8) 
 

where ε0 is the axial deformation at the center of the coordinate system 
of the section (center of mass) and yε counts also from this center, φ(x) is 
the curvature of the cross-section and γxy.max is the maximum value of shear 
strain located on the neutral axis. Therefore the strains at a material point 
m of the section can be expressed in matrix form as follows: 

 

       (5-9) 

              (5-10) 
 

The internal forces at a section level are given by: 
 

               (5-11) 

               (5-12) 

            (5-13) 
 

The section generalized forces can be written in a matrix format as 
follows: 

 
               (5-14) 

where:  
 

,   ,          (5-15) 
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Taking into account the section discretization into fibers/layers, the 

total forces on the beam section are easily computed through the 
summation of the contributions of each i-th fiber/layer: 

 

        
(5-16) 

 
where Ai is the area of the i-th fiber/layer. 

In order to determine the normal and the shear stress for the i-th 
fiber/layer (σx

i, τxy
i), a bi-axial fiber constitutive model is developed 

according to the MCFT, as it is stated previously (Fig. 5-3, ).  
According to the above guidelines the section forces are determined 

based on known sectional deformations. In cases where the section forces 
are known and the section deformations render the desirable results, 
iterations are necessary (this means that the roots are searched 
deformations, whereas the deviation from the desired section forces is 
negligible or zero).  

The tangent section stiffness matrix ks is defined as the derivative of 
the section force vector fs with respect to the section deformation vector e, 
where the explicit reference to x is dropped for the brevity of notation: 

 

                  (5-17) 
 

        
(5-18) 

                 (5-19) 

                  (5-20) 
 

where Em and Gm are the tangent moduli of the stress – strain relations at a 
point m of the section approximated here by Esec and Gsec (Table 5-1, Fig. 
5-3).  
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Embedded Algorithms in Phaethon Software 

The most studied and tested structural form for deeper understanding of 
the structural behaviour in reinforced concrete structures is the simple 
cantilever column under various types of loading. Although it is a very 
simple case, its numerical simulation with all interacting deformation 
mechanisms is still yet a very challenging task to accomplish. Towards 
this need and for the case of shear-critical cantilever reinforced concrete 
columns the idea of “Phaethon” (i.e. “the shining” in ancient Greek) was 
born. Embedded in this program is a frame element that may be employed 
in the analysis of complete structural systems too. In the following section 
the algorithms embodied in this Windows application are presented.  

Moment – Curvature Algorithm 

Through the cross sectional analysis, the unknown moment M (and the 
associated axial deformation ε0) are determined for given curvature φ 
increments, and the unknown shear force V for given shear strain γ 
increments, with or without the presence of constant axial load N. The 
system of equations for section equilibrium can be established as follows:  

 

0),,
0),,
0),,

0

0

0

r

r

r

VV

NN

                 (5-21) 
 

The explicit dependence of the resisting forces is noted. With N, φ and 
γ given, the first equation is used to solve for ε0; then this value is 
substituted along with the given φ and γ into the second and third equation 
to determine M and V. The resisting axial force in the first Eq. 5-21 is 
expanded with Taylor series and the higher than linear terms are truncated: 

  

0),( 0
0

000
NNN

NN r

      (5-22) 
 

where the second subscript 0 denotes the initial guess for the solution. 
Given the axial force N, the curvature increment Δφ and the shear strain 
increment Δγ, the above equation can be solved for Δε0:  
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NN
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 with ),( 101ru NNN      
(5-23) 

 
The numerical solution is distinguished by the incrementation phase, 

which consists of the application of the curvature and shear strain 
increment, and by the equilibrium iterations under fixed axial force, 
curvature and shear strain. The axial force is applied in an initial step 
under zero curvature and zero shear strain. Therefore, the following 
algorithm is applied in Phaethon for this task:  

Given section geometry and material properties, axial force N, 
curvature increment Δφ and shear strain increment Δγ (e is the section’s 
strain vector and fs is the resisting section force- see previous Section). 
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Iteration for i = 1..n and constant k (skip superscript) 
 

1. Determine iss eff and iss ekk  

2. Determine 1su fNN  and 
uN

N
1

0
0

where 

11
0

sk
N

  

3. Update solution 0
0

0

1 ii ee

 

Back to iteration Step 1 until the error norm satisfies specified 
tolerance. On convergence the final state is updated thus determining the 
bending moment and shear force and the algorithm returns to 
Incrementation phase at Step 1. 

Pushover Algorithm 

For the Pushover analysis of a cantilever shear-critical RC column in 
Phaethon, the sectional model (either rectangular or circular) established in 
the previous Section is employed along with the anchorage model in the 
footing established in Tastani and Pantazopoulou (2013) (see also Chapter 
4). An increasing lateral point load at the tip of the cantilever is applied 
(Fig. 5-6) and a unique fiber element is assigned to the entire height of the 
cantilever column with the number of Gauss-Lobatto integration points 
selected by the user. The user is selecting also the analysis step of lateral 
load V to be applied in the Pushover and the total number of steps until the 
maximum load (Modified Compression Field Theory in the fiber approach 
as described in Bentz (2000) cannot capture the descending branch of 
shear-critical columns which is why a load-control procedure was selected 
to be embedded in Phaethon). The maximum load in Phaethon is the load 
of the last step of convergence of the algorithm in incremental form. It 
should be highlighted that in reality the shear-critical column’s ascending 
response is followed by a descending branch of failure; however the 
proposed algorithm is limited by strength attainment. After the maximum 
load, the descending branch of the capacity curve is defined as the line 
connecting the maximum load point with the point at axial failure as 
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defined in terms of drift by Elwood and Moehle (2005) and 20% of the 
attained maximum load as residual load at axial failure. 

For each point load at the tip of the cantilever (Fig. 5-6) the 
corresponding shear force at the assigned column’s sections (integration 
points) is equal to that load (constant shear diagram). Then the bending 
moment for each section is defined based on the moment at the base M0 
which is the product of the tip lateral load and the given shear span of the 
cantilever column, as follows: 

 
                 (5-24) 

 
where x counts from the support (x=0) to the point load at the free edge of 
the cantilever (x=Ls). The concentric axial load (tensile or compressive) 
applied at the tip of the cantilever is also constant throughout the pushover 
analysis and along the length of the cantilever and therefore each column’s 
section has an axial force value equal to the one applied at the tip. 
Following this procedure, the vector fs which is the resisting section forces 
(see previous Section) should converge to the above defined section forces 
based on the moment, shear and axial load diagram of the cantilever 
column under constant axial load and gradually increasing lateral tip point 
loading.  

The following algorithm is applied in Phaethon to achieve this 
convergence: 

Given the section forces s, i.e. an axial force N, a bending moment M 
and a shear force V, the equilibrium equation between applied and 
resisting section forces is set up: 

 
0)()( efses su                  (5-25) 

 
The Newton-Raphson algorithm for the solution of the system of three 

nonlinear equations is: 
 
1. Given the nonlinear equations su(e) = 0 and a guess of the 

solution e0. 
2. For i = 0…n determine function value su(ei) and derivatives ks(ei) 

(see previous Section). 
3. Determine correction to previous solution estimate 

siui kese )(  

4. Update solution estimate iii eee 1  
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Return to Step 2 until the error norm is smaller than specified 
tolerance. On convergence determine the resisting forces for the final 
deformations.  

It should be highlighted that for the cases of “pure compression” or 
“pure tension” with the angle of inclination of principal stresses/strains 
(angle of principal axis 2 with respect to x-axis) being zero or π/2 
respectively then no iteration is applied but the fiber state determination is 
defined by entering directly on the constitutive law of concrete (previous 
Section, Table 5-1) without defining the rotation of principal axes. 

After the convergence of the section forces along the length of the 
cantilever column to the correct values, the axial deformation, curvature 
and shear strain is determined for each section. Integrating the curvatures 
(Fig. 5-6) along the shear span of the cantilever column leads to the 
rotation of the cantilever column due to flexure and can be easily 
transformed to lateral displacement due to flexure Δo 

f by multiplying with 
the shear span. Then, integration of the shear strains (Fig. 5-6) of the 
sections along the length of the cantilever column (integration points) 
leads to the lateral displacement Δo

sh due to the shear mechanism of the 
cantilever column. Finally, the rotation and the displacement Δo

sl due to 
pull-out of the tensile reinforcement (Fig. 5-6) is determined based on the 
theory established in Tastani and Pantazopoulou (2013) (see also Chapter 
4). All the above contributions (flexure, shear and anchorage) are added 
together to define the total lateral displacement (i.e., Δo = Δo

f + Δo
sh + Δo

sl) 
of the cantilever column at each lateral load step and to obtain the capacity 
curve of the column until maximum lateral load (Fig. 5-6). 
 

 
Figure 5-6: Pushover Analysis in Phaethon. 
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Correlation with Experimental Results 

This section presents the correlation of the shear-flexure capacity curves 
obtained with pushover analysis by Phaethon with the experimental 
responses curves for comparison capacity of shear-critical RC columns 
selected from literature. In the correlation are also included curves for 
comparison capacity, obtained from flexural fiber beam/column based 
toolbox FEDEAS Lab (Filippou, 2004) and from MCFT-based software 
and dual-section analysis Response 2000 (Bentz, 2000). 

The shear capacity degradation curve of RC columns as a function of 
displacement ductility is approached by EN 1998-3 (2005) and ASCE-SEI 
41 (2007) (see also Chapter 2 and Chapter 3) and can be used as the basic 
criterion in order to detect shear failure before or after flexural yielding 
depending on the point of intersection with flexural capacity curve (Fig. 5-
7). To this end, it is necessary to define the flexural capacity curve based 
on classic flexural analysis and combine it with the shear capacity curve in 
order to define the strength and deformation of the RC column at shear 
failure. This procedure is adopted in this section in order to initially detect 
whether the columns under study will fail in shear before or after flexural 
yielding and therefore to judge whether the “Phaethon” tool is suitable.  
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Figure 5-7: Shear-strength degradation model. 
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Rectangular Shear-Critical Columns 
 

This first selected rectangular column for comparison is Specimen 1, from 
the experimental campaign of Sezen and Moehle (2006) that failed in 
shear after flexural yiedling. Its properties are reported in Table 5-2. Fig. 
5-8 compares the experimental response (in red) with the analytical 
flexural capacity curve (in blue) and the shear capacity obtained by EN 
1998-3 (in green) and by ASCE-SEI 41 (in black) (here the yielding 
displacement in both shear-strength degradation models is defined by the 
flexural analysis based on the applied fiber element included in FEDEAS 
Lab; it can be read from the end of the initial plateau of EN 1998-3 
model). The ASCE-SEI 41 estimates a very conservative shear strength as 
compared to the yielding strength of this specimen which would be 
interpreted as premature brittle failure; EN 1998-3 detects the column’s 
shear failure after yielding in terms of strength but at lower displacement 
compared to the experimental result.  

As can be seen in Fig. 5-9 the comparison of the capacity curve 
defined by Phaethon for Specimen 1 (that failed in shear after flexural 
yielding) until the maximum load, is close to the experimental response 
but also close to the capacity curves by the other already mentioned 
software. The deviation of stiffness close to peak load from Phaethon can 
be improved if, in the displacement contribution due to pull-out of the 
tensile reinforcement, the reinforcement slip from shear span Ls is added 
(Megalooikonomou et al., 2018, Chapter 4). Since the latter established 
methodology does not refer only to extended flexural yielding, it was not 
incorporated into the “Phaethon” software as it would not have been 
general in simulating shear failures which could occur also before flexural 
yielding.  
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Figure 5-8. Detection of shear-critical rectangular reinforced concrete 
columns. 
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Table 5-2. Details of RC columns failed in shear (units: mm, MPa, 
kN). 
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 Sezen & 
Moehle 
(2006) – 
(Spec. 1) 
Rectangular 
cross 
section  

667 457 
457 1473 65.13 21.1 

8 
28.65 
0.025 

434 
645 

476 
304.8 
9.5 

0.0025 

 Lynn et. al. 
(1996) – 
(Spec. 3 
CMH18) 
Rectangular  
cross 
section 

1512 457 
457 1473 38.1 27.6 

8 
31.75 
0.03 

331 
496 

400 
457 
9.5 

0.00082 

Ang et al. 
(1989) – 
(Spec. 19) 
Circular 
cross 
section 

432 400 600 18* 34.4 
20 
16 

0.032 

436 
679 
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6 
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Ang et al. 
(1989) – 
(Spec. 20) 
Circular 
cross 
section 

807 400 700 18* 36.7 
20 
16 

0.032 

482 
758 

326 
80 
6 

0.0038 

*: Cover to Ctr. of Hoop Bar 
 
Response 2000 doesn’t provide the descending branch of the capacity 

curve due to shear failure after flexural yielding, while FEDEAS Lab 
overestimates the response after maximum load is attained since it doesn’t 
consider any shear-flexure interaction mechanism. Phaethon postdicts both 
the maximum load but also the descending branch of the response in this 
case.  
 



Chapter Five 
 

152 

 
 

0 20 40 60 80
0

50

100

150

200

250

300

350

Displacement (mm)

Sh
ea

r 
Fo

rc
e 

(k
N

)

Specimen 1 by Sezen&Moehle 2006

 

 
FEDEAS Lab - Flexure
Experiment
Response 2000
Phaethon

0 10 20 30 40
0

50

100

150

200

250

300

350

Displacement (mm)

Sh
ea

r 
Fo

rc
e 

(k
N

)

Specimen 3CMH18 by Lynn et al. 1996

 

 
FEDEAS Lab - Flexure
Experiment
Response 2000
Phaethon

0 10 20 30
0

50

100

150

200

250

300

350

400

450

Displacement (mm)

Sh
ea

r 
Fo

rc
e 

(k
N

)

Specimen 19 by Ang et. al. 1989

 

 

FEDEAS Lab - Flexure
Experiment
Response 2000
Phaethon

0 10 20 30 40
0

50

100

150

200

250

300

350

400

450

500

Displacement (mm)

Sh
ea

r 
Fo

rc
e 

(k
N

)

Specimen 20 by Ang et al. 1989

 

 

FEDEAS Lab - Flexure
Experiment
Response 2000
Phaethon

Figure 5-9: Comparison of the capacity curves provided by Phaethon and 
other software with the experimental responses. 
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Figures 10 and 11 depict the displacement contributions in each 

pushover analysis step from the various interacting mechanisms as they 
are defined by Phaethon and they are compared also to the ones measured 
during the experiment. It can be seen that at yielding (10 mm total lateral 
displacement reported by Phaethon) Phaethon gives correctly 62% 
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Figure 5-10: Displacement Contributions from various deformation 
menchansims included in Phaethon for cantilever columns. 
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contribution from flexure, 35% from Pull-Out and almost 3% from the 
shear mechanism (which in this case is a bit underestimated). 
 

 
In Fig. 5-8, the shear capacity curve of Eurocode 8 part 3 (EN 1998-3) 

doesn’t intersect with the flexural capacity curve for the second selected 
specimen by Lynn et al. (1996). This takes place only with the model of 
ASCE-SEI 41 almost at the point of yielding at a lower strength and 
displacement compared to the experimental response.  

The second selected rectangular column for comparison is by the 
experimental campaign of Lynn et al. (1996) that failed in shear before 
flexural yielding. Its properties are presented in Table 5-2. As can be seen 
in Fig, 5-9 the comparison until the maximum load is close to the 
experimental response but also close to the capacity curves by the other 
already mentioned software. Here, Response 2000 underestimates the 
specimen’s strength and doesn’t provide the descending branch of the 
capacity curve due to shear failure before flexural yielding, while 
FEDEAS Lab overestimates the response after maximum load is attained 
since it doesn’t consider any shear-flexure interaction mechanism. 
Phaethon postdicts correctly the maximum load as well as the descending 
branch of the response in this case too. However, in all analytical capacity 
curves the experimental initial stiffness is overestimated. The axial failure 
(i.e. collapse as defined by Phaethon) is also reached at a lower 
displacement compared to the experiment. Finally, Fig. 5-10 depicts the 
displacement contributions in each pushover analysis step from the various 
interacting mechanisms as they are defined by Phaethon. As it can be seen, 
they are correctly increasing with the applied lateral load.  

Figure 5-11: Displacement Contributions from various deformation 
mechanisms included in Phaethon (left) for rectangular column 
compared to the experiment (right) (Sezen and Moehle [2006]). 
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Circular Shear-Critical Columns 

The third selected column for comparison is the circular Specimen 19 by 
the experimental campaign of Ang et al. (1989) that failed in shear before 
flexural yielding. Its properties are presented in Table 5-2. In Figure 5-12, 
it can be observed that it is a shear-critical column since both the shear 
strength degradation models detect shear failure (although wrongly after 
flexural yielding) at a displacement lower than the corresponding 
experimental one. The strength at shear failure is better predicted by the 
model of Eurocode 8 part 3 (EN 1998-3) compared to the alternative of 
ASCE-SEI 41.  

As it can be seen in Figure 5-9 the comparison of the Phaethon 
response until the maximum load is close to the capacity curves by the 
other aforementioned software. However, the initial stiffness predicted by 
Phaethon is higher compared to the experiment although identical to what 
the other software tools define. Phaethon captures well also the maximum 
load but not the corresponding displacement. The descending branch as 
defined by Phaethon follows the experimental strength degradation. The 
shear strength is better postdicted by Phaethon compared to Response 
2000. Finally, Figure 5-11 depicts the displacement contributions in each 
pushover analysis step from the various interacting mechanisms as they 
are defined by Phaethon. As it can be observed they are correctly 
increasing with the applied lateral load and here due to the aspect ratio of 
the circular column (short column) the shear mechanism displacement 
contribution is significant. It should be stated that an incremental filtering 
(that is omitting some steps from the capacity curve) of the pushover 
results was applied in this specimen since in some steps the converged 
displacements given by the program were higher than the previous or the 
next load steps compared to the current one. This filtering was applied 
only to the given capacity curve in Figure 5-9 but the displacement 
contributions in Figure 5-10 are given as obtained by the program.  

The fourth selected column for comparison is the circular Specimen 20 
from the experimental campaign of Ang et al. in 1989 that failed in shear 
after flexural yielding. Its properties are presented in Table 5-2. In Figure 
5-12, it can be observed that it is a shear-critical column since both the 
shear strength degradation models detect shear failure after yielding at a 
displacement lower than the corresponding experimental one. The strength 
at shear failure is better predicted by the model of Eurocode 8 part 3 
compared to the alternative of ASCE-SEI 41.  
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As can be seen in Figure 5-9 the comparison of the Phaethon response 

until the maximum load is close to the capacity curves by the other 
aforementioned software. However, the initial stiffness predicted by 
Phaethon is higher compared to the experiment although identical to what 
the other software tools define. Phaethon also captures well the maximum 
load but not the corresponding displacement. The descending branch as 

Figure 5-12. Detection of shear-critical circular reinforced concrete 
columns. 
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defined by Phaethon follows the experimental strength degradation. The 
axial failure (i.e. collapse as defined by Phaethon) is reached at a lower 
displacement compared to the experiment. The shear strength is better 
postdicted by Phaethon compared to Response 2000. Finally, Figure 10 
depicts the displacement contributions in each pushover analysis step from 
the various interacting mechanisms as they are defined by Phaethon. The 
same idea of filtering as described in the previous circular specimen was 
applied here too.  

Parametric Investigation 

The parametric sensitivity of the developed software on the produced 
capacity curve is investigated in this section, considering as a point of 
reference Specimen 1 by Sezen and Moehle (2006), examined in the 
preceding section. Parameters considered are the discretization sensitivity 
of the force-based fiber element of the cantilever column and the effect of 
axial load, stirrups spacing and shear span length on the produced 
pushover curve; in each case one parameter at a time is varied keeping the 
reference values for all other variables (so the possible interaction effects 
between variables have not been considered in conducting the sensitivity 
analysis).  

In Figure 5-13 it the effect on the pushover curve of different amount 
of Gauss-Lobatto integration points [Ele(Number)IP] can be observed 
along the element, as well as the amount of integration points/layers of the 
Midpoint integration rule along the section [Sec(Number)L]. As expected, 
by increasing the amount of Midpoint layers and Gauss-Lobatto 
integration points the capacity curve stabilizes to reach the final result. The 
deviation from the final result is evident only at the lower amount of 
integration points both at the section and along the element.  
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As may be observed in Figure 5-14, by increasing the compressive 

axial load (here is given in normalized form) the shear strength of the 
column under study is correctly increasing and the deformability of the 
column is decreasing with lower displacements at maximum load (shear 
failure) and at point of axial failure (collapse). The effect of stirrup 
spacing (Figure 5-15) for a given shear-critical column on the capacity 
curve produced by Phaethon is negligible until the maximum load (shear 
strength), but the displacement at axial failure (collapse) is decreasing 
correctly by increasing the spacing of stirrups. The insensitivity of 
Phaethon in defining shear strength as a function of stirrup spacing in 
lightly reinforced columns where shear failure is driven by sparsely spaced 
stirrups, is justified by the assumptions of the MCFT theory—as described 
initially in this paper—about smearing of reinforcement. Finally the 
decrease of the shear span of the cantilever column (Figure 5-16) correctly 
produces a more shear-dominant and less deformable reinforced concrete 
column both at maximum load (shear failure) but also at the point of axial 
failure (collapse). 
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Figure 13: Discretization sensitivity along fiber section and element of the 
capacity curve provided by Phaethon. 
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Figure 5-15: Effect of stirrups spacing on capacity curve provided by Phaethon. 
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Figure 5-14: Effect of axial load on capacity curve provided by Phaethon. 
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Before concluding this Chapter it should be noted that the Phaethon 

software installation file can be downloaded for free from the following 
web address: http://bigeconomy.gr/en/phaethon-en/. 
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Figure 5-16: Effect of shear span on capacity curve provided by Phaethon. 



CHAPTER SIX 

CONSTITUTIVE MODEL FOR FRP- AND STEEL-
CONFINED CONCRETE INCLUDING SHEAR 

 
 
 
Confining wraps or jackets to rehabilitate and strengthen existing 
substandard RC columns such as those described in the previous Chapters 
of the present book has proven to be an efficient technique for seismic 
retrofit of structures. However, most of the compressive strength models 
of confined concrete only consider the increased strength and ductility 
provided by fiber reinforced polymers (FRPs), neglecting the contribution 
of the existing steel reinforcement inside the column’s section. Even if the 
existing steel stirrups in a reinforced concrete column are not sufficient to 
confine the concrete core they must also contribute, along with the FRP 
jacket, in confining the section. 

Literature Review on FRP and Steel Confined Concrete 
Material Models 

In the last century, most of the confined concrete constitutive models were 
proposed specifically for concrete columns confined by either steel 
reinforcement or Carbon Fiber Reinforced Polymers (CFRP). The first 
model that took into account both the confining effects of CFRP and steel 
reinforcement was Kawashima’s et al. in 1999. 

In their experimental program twenty three 600 mm tall circular 
concrete cylinders with a diameter of 200 mm were included. Tie 
reinforcement ratio ρs and CFRP ratio ρCF were varied between 0-1.24% 
and 0-1.336%, respectively. Figure 6-1 shows the axial stress fc vs. axial 
strain εc relation of specimens tested in their experimental program. In 
each case, the tie reinforcement ratio ρs was varied from 0 – 1.24% under 
constant CFRP ratios ρCF. It can be concluded from the graph that the 
effect of ties is larger at lower ρCF. 

Kawashima’s model is based on a formulation derived from the 
regression analysis of the experimental results, which is similar to the 
model proposed by Richart et al. (1928) from tests conducted on concrete 
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specimens confined with hydrostatic pressure. In the latter experimental 
program it was concluded that the responses under passive (confining 
pressure depending on the lateral dilation) and active (constant fluid 
pressure) are similar. 

 

 
From the experimental results above it can be derived that the axial 

stress vs. axial strain response of concrete cylinders confined by both steel 
stirrups and FRP jackets can be similar or to that one of concrete confined 
only by means of steel stirrups (at a smaller ρCF) where the response 
reaches a peak strength, after which it deteriorates or presents FRP-
confined-concrete like response (at higher ρCF). In the latter the response 
reaches a transition point very close to the peak strength of the unconfined 
concrete and then the stiffness of the descending branch becomes positive 
and the response is almost linear.    

Kawashima used the following formulation to describe the 
confinement effect: 

 

Figure 6-1: Stress fc vs. strain εc relation of circular concrete cylinders 
confined by both ties and CFS (Tie reinforcement ratio ρs was varied from 0 

to 1.24 % in each case, in which CFS ratio ρCF was kept constant). 
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 Decreasing branch: 
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Determination of the four parameters of the model: 
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Since the concrete confined by both CFRP and ties reaches the 
ultimate when there is rupture of the CFRP jacket, the ultimate strain in 
the model can be determined based on the properties only of the FRP 
Jacket: 
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where Ec = elastic modulus of concrete (MPa), fc0= unconfined concrete 
strength (MPa), ρs = tie reinforcement (volumetric ) ratio, ft and εt = stress 
and strain where the stiffness changes, Eg = stiffness in the descending 
branch (MPa) and εCFt = is the hoop strain of the CFRP where the stiffness 
of concrete has shifted to the post-deterioration stiffness.  
 

 
The paper by Braga et al, (2006) presents a plain strain analytical 

model—based on the elasticity theory—to determine the confining 
pressures of transverse reinforcements on the concrete core of a reinforced 
concrete member. The analytical evaluation of the confining pressures was 
first carried out on reinforced sections with square and circular stirrups, 
and subsequently on reinforcement configurations of greater complexity 
with square and rectangular stirrups and supplementary cross ties. Finally, 
the model has been used to evaluate the confining pressures applied by 
external wrapping with any material (FRP, steel, etc.) and to design better 
combinations of techniques and confinement materials. 

The key assumption of the proposed model is that the increment of 
stress in the concrete section is produced without any out-of-plain strain. 
This means that the confinement exercised by the transverse 
reinforcements should take place under plain strain conditions. 

 
zzzzzz 0                 (6-7) 

 

Figure 6-2: Definition of the confinement effect by CFS. 



Constitutive Model for FRP- and Steel -Confined Concrete  
 

165

Under plain strain conditions: 
0zyzxz                    (6-8) 
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E                 (6-9) 
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                 (6-10) 

 
For circular sections the Airy’s function’s solution for the plane 

stresses is expressed in polar coordinates. For the particular case in which 
a circular plane section is subjected to a uniform radial pressure applied by 
the reinforcements to the concrete core the solution gives (n = radial, m = 
orthogonal to n, S = hoop or spiral spacing, q = constant): 
 

S
q

f mnr
                  (6-11) 

 
Thus, the strength increment turns out to be constant at every point in 

the section. 

  S
q

vvv nmnz 22)(
           (6-12) 

 

Figure 6-3: Strength increment due to confinement. 
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The concrete radial and tangent boundary strains and the stirrup axial 
strain are given by the relations (Rc = Radius of the concrete core circular 
section, measured at the center lines of the spiral or the circular hoop): 
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Then, by applying the compatibility equation between the stirrup and 
concrete in the radial direction, Airy’s constant q can be expressed by the 
following equation: 
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Equilibrium conditions and compatibility specifications between the 

concrete core and the confining ties are based on linear elasticity, thus 
referring to the initial linear part of the steel behavior. When the steel 
yields, the transversal pressure reaches its highest value and, from that 
moment on, remains constant until failure. In the model, steel behaves in a 
linear-elastic manner, whereas concrete behavior is assumed to be 
nonlinear elastic, thus the values of Ec and ν are functions of the strain 
state. Therefore, one has to refer to the secant modulus of concrete, 
evaluated on different confined curves, relevant to different confinement 
levels and has to define the law of variability of the unconfined concrete 
Poisson’s modulus (ν0 = 0.2, εc0 = strain at stress peak of the unconfined 
concrete). 
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In the above expression of the Poisson’s Modulus, coherent with the 
theory of elasticity, the upper limit value has been assumed to be equal to 
0.5, which corresponds to diffuse cracking in the unconfined concrete. It 
must be pointed out that when using steel stirrups, if one does not set an 
upper limit on ν, the shape of the lateral pressure – axial deformation 
relationship changes in a negligible way until the yielding stress is reached 
without any effect on the peak point and on the softening part of the curve. 

In this model, the vertical arching action between adjacent stirrups and 
the confining effect of the longitudinal bars is also considered. The 
longitudinal bar’s role is evaluated by taking into account that the 
extension of the stirrup should correspond to the rigid translation of the 
edge of the longitudinal bars. According to this and referring to the Fig. 6-
4 outline, a uniform load is applied to the longitudinal bar. This load is 
given by the following relationship: 

 

   S
N

p st
lon

                   (6-19) 

 
The rigid displacement, corresponding to the confining pressure frm is 

equal to the stirrup extension Δlst, while the mean concrete core 
displacement Vm, which corresponds to the effective mean confinement 

Figure 6-4: (a) Transverse and longitudinal reinforcements;  
(b) longitudinal bar schematization; (c) longitudinal bar deflection;  

and (d) vertical confining pressures distribution. 
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pressure is given by the relationship (where Vlm = mean displacement of 
the longitudinal bar, which is calculated according to the figure outline, 
while Isl = the longitudinal bars’ inertia): 
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             (6-20) 
 

For a reductive coefficient ksl = fr / frm, the following relation is obtained 
(l is the length of the stirrup corresponding to 1/4 of the section). When the 
bending stiffness of the longitudinal bars becomes negligible (low ratio 
values ξl) only the arching action between two stirrups spreads the 
confining pressures along the column: 
 

                     (6-21) 
 

Taking into account the effects of existing internal stirrups and 
additional external wrappings separately, the confining pressure is given 
by the following relation (fri = confining pressure induced on the core by 
the internal stirrup, fre = pressure induced by the external wrapping on the 
whole section, Ai = area within the internal stirrup, Ae = area within the 
external stirrup): 
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         (bm = wrapping width, tm = wrapping depth) 

 
The passive stress – strain curve is obtained in accordance with the 

following procedure: 
 

)( zczrz ff              (6-25) 
 

It should be pointed out that the curve relative to concrete confined by 
a transverse reinforcement crosses all active confinement curves (relative 
to increasing values of lateral pressure), up to the curve with a lateral 
pressure equal to the one applied by the stirrups at yielding. Once this 
curve has been reached, assuming that the steel doesn’t have a strain 
hardening behavior, the passive confinement curve would match the active 
confining curve. The above approach is different from the classical one. 
Usually, the stress in the transverse reinforcement is supposed to be equal 
to the yielding stress and the confining pressures calculated this way 
define an upper limit. In reality, for low levels of strain in the concrete the 
stress state in the transverse reinforcements is very small and the concrete 
is basically not confined. 

When confining is due to composites materials, which behave 
elastically until failure and whose strength is much higher than that of 
steel, the model is able to describe the behavior of the section until the 
failure of the confining material. Based on linear elasticity, the 
superposition of the combined confining effects of steel stirrups and FRP 
jackets can easily be analyzed. An important aspect of the model is that the 
cross-section tangential stresses (shear), which are generally neglected, 
have an essential role in ensuing plane strain conditions.  

The axial stress vs. axial strain response was determined by using the 
confined concrete model of Attard & Settunge (1996). The model can be 
summarized in the following (Fig. 6-5): 
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 Confined Peak Stress and Strain: 
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 Stress and Strain at point of inflection: 
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Figure 6-5: Confined Concrete Model by Attard&Settunge (1996). 
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 Stress corresponding to strain ε2i = (2εi-εcc): 
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 Stress – Strain Relationship: 
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2AC                         (6-37) 
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It should be noted that in the paper by Braga et al. (2006) a comparison 
with experimental results from the literature is presented with specimens 
confined by either steel stirrups or FRP jackets. No comparison with 
specimens having both confining materials is available. However, this 
possibility is left open. 

Another model that will be introduced here is the Spoelstra and Monti 
model (1999), although it does not include the confining effect of the 
lateral steel reinforcement but only that of the FRP jacket. The reason for 
the following presentation is that this model will be the basis for the 
constitutive law proposal of this book for modeling of seismic retrofitted 
with FRP jackets circular RC columns.  

The Spoelstra-Monti model (1999) is based on the following formula 
(Popovics 1973):  
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where εcc = compressive strain at confined peak strength fcc. The confined 
peak strength fcc is expressed in terms of a constant (throughout the 
response) effective confining pressure σl with an equation (Mander et al. 
1988) that has been extensively tested against experimental data: 
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To account for the peculiar behavior of FRP, the following approach is 
taken (Spoelstra and Monti 1999). The uniaxial stress response σc of plain 
concrete under compressive axial strain εc is described as (Pantazopoulou 
and Mills 1995): 
 

clc Esec                 (6-43) 
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sec
         (6-44) 

 
Note that the area strain εA is taken as a measure of the internal damage 

from cracking, which reduces the secant modulus Esec, starting from the 
initial tangent modulus Ec. The constant β (here, the reciprocal of that 
given in the original paper by Pantazopoulou and Mills, 1995) is a 
property of concrete, as discussed below. Note that in Eq. 6-44 the 
assumption of radial symmetry (εA = 2εl) is adopted (εl = lateral strain, εA = 
area strain), which allows for pointing out the dependence on the lateral 
strain εl. Note also that the sign convention is: compressive εc and σc are 
negative, while dilating εA and εl are positive. 

Equations 6-43 and 6-44 are merged into a single equation: 
 

lcc

lcccc
lcl

E
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,,
           (6-45) 

 
where the dependence of the quantities σc and εl on the current strain εc and 
the current confining pressure σl is rendered explicitly. The constant β is a 
property of concrete which is evaluated as a function of the unconfined 
concrete strength fco (in MPa). 
 

5005700

cof
             (6-46) 

 
The lateral confining pressure σl exerted by the confining jacket is 

computed as shown in the Figure below (Fig. 6-6) and is based on the 
jacket’s current stress σj = Ejεj ≤ fj = Ejεju, while the maximum lateral 
confinement fl is provided for εj = εju = FRP jacket effective ultimate 
circumferential strain. 
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Once εl is computed from Eq. 6-45, the strain εj in the confining jacket 
can be found (e.g., in axially loaded concrete cylinders it is simply: εj = εl), 
along with its current stress σj = Εjεj. This updated value of σl can be used 
for a new estimate of εl through Eq. 6-45, giving rise to an iterative 
procedure (Fig. 6-7) until σl converges to the correct value. The whole 
procedure is repeated for each εc over the complete stress-strain curve. The 
resulting curve can be regarded as a curve crossing a family of Popovics 
curves, each one pertaining to the level of confining pressure, computed 
with the Mander equation, corresponding to the current lateral strain, 
determined according to Pantazopoulou and Mills (1995). The stress-strain 
characteristics of the confining mechanism are explicitly accounted for, 
while the lateral strain of concrete is implicitly obtained through the 
iterative procedure. The procedure is ended when εl = εju. 

 

 
The response of an FRP-wrapped concrete specimen obtained with this 

model can be seen in the following Figures along with a comparison with 
steel – confined concrete. The axial stress versus axial strain is shown 
first: steel and CFRP start with almost the same slope, but after steel yields 
at 2.5 normalized axial strains, it departs towards higher axial strains. 
GFRP starts with the same slope until the unconfined concrete strength is 
reached; after that point GFRP has a lower slope leading to higher axial 
strains. In Fig. 6-8b the lateral strain versus axial strain relation is shown 
too. It can be observed that the slope of the branches depends on the type 
of confining device. GFRP starts with a higher slope (meaning that 

Figure 6-6: Lateral confining pressure – analogy between steel stirrups 
and FRP Jacket. 
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concrete has a higher initial lateral dilation), which however remains 
constant until the jacket fails. CFRP reduces the initial lateral strain, but its 
effectiveness has a shorter duration, due to its lower extensional ultimate 
strain εju. Finally, a comparison of confinement actions of steel and FRP 
materials is presented. 

 

 

 

Figure 6-8: Modeling of concrete behavior confined with steel, CFRP  
and GFRP. 

(6-42) 

(6-40) 

(6-45) 

Fig. (6-6) 

Figure 6-7: Spoelstra and Monti (1999) iterative procedure. 
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Constitutive Model for FRP and Steel Confined Concrete 
including Shear Deformations 

 
The behavior of confined circular sections under axial load is characterized by 
the radial lateral dilation, which causes radial confining forces or else 
axisymmetric passive confining pressure that increases with the amount of 
lateral expansion (Fig. 6-10). Considering this scheme for the case of 
confinement by means of FRP jacketing, in order to define the confining 
pressure acting on the section, it is necessary to define the jacket strain, or 
circumferential strain, parallel to the fibers’ orientation. Relating the 
circumferential strain to the strain in the radial direction, the following 
simple relationship is obtained (Fig. 6-10): 
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             (6-47) 
  

Owing to the axisymmetry of the problem, the outcome is that the 
circumferential strain and the strain in the radial direction are equal. This 
property has been extensively used to calculate directly the radial 
confining forces based on experimental data by strain gauges attached 
parallel to the fibers’ orientation in order to obtain the circumferential 
strains. Along this line, it seems useful to try and extend the simple 
calculation above to the case where steel stirrups and external FRP 
jacketing are simultaneously present. The steel ties divide the section into 
two parts: the first is the concrete core and the second is the concrete 
cover. 

Figure 6-9: Comparison of confinement effectiveness of steel and FRP 
materials. 
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However, for the concrete core the following assumption still holds: 

 

                 corercorec ..                  (6-50) 
 
As explicitly stated above, the equation of radial strains and jacket 

strains for the case of both FRP and steel confined concrete in circular 
sections is no longer valid. The circumferential strain of the external jacket 
is based on the radial strains of both concrete cover and concrete core, 
where in the latter, the presence of the steel ties plays an important role. 

 

Confining jacketConfining jacket

Steel Reinforcement

 Figure 6-10: Circular Concrete Section confined by steel stirrups and/or FRP 
Jackets. 

 
The mechanical properties of concrete (strength, ductility and energy 

dissipation) are substantially enhanced under a triaxial stress state. In 
practice, this is obtained by using closed stirrups or spiral reinforcement or 
even FRP wraps, so that, together with the longitudinal reinforcement, the 
lateral expansion of concrete is limited. This kind of (passive) confinement 
improves the material behavior after the initiation of internal cracking, 
which gives rise to the initiation of expansion.  
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For low strain values, the stress state in the transverse steel 
reinforcement is very small and the concrete is basically unconfined. In 
this range, steel and FRP jacketing behave similarly. That is, the inward 
pressure as a reaction to the expansion of concrete increases continuously. 
Therefore, speaking in terms of variable confining pressures corresponding 
to the axial strain level in the section and active triaxial models defining 
axial stress-strain curves for concrete subjects to constant lateral pressure, 
it can be stated—following the original approach by the Spoelstra and 
Monti (1999) model presented in the previous Section—that the stress-
strain curve describing the stress state of the section has to cross all active 
confinement curves up to the curve with lateral pressure equal to the one 
applied by the stirrups at yielding. After the yielding of stirrups, the lateral 
pressure is still increasing only due to the FRP jacketing, while the steel 
lateral pressure remains constant. The corresponding stress-strain curve of 
the section throughout this procedure converges to a confined-concrete 
axial stress-strain curve that is associated with a lateral pressure magnitude 
equal to the tensile strength of the FRP jacket plus the yielding strength of 
ties (excluding the strain hardening behavior of steel, since ultimate strains 
of steel are usually much higher than those of FRP jackets). In order to 
model this behavior, a well-known FRP-confined concrete model 
(Spoelstra and Monti, 1999) has been enhanced to include the steel ties 
contribution and thus model circular columns with transverse steel 
reinforcement and retrofitted with FRP jacketing more consistently. The 
above model was based on an iterative procedure that needed to be 
modified as in Fig. 6-11. 

In the procedure depicted in Fig.6-11, after imposing an axial strain on 
the section, a pressure coming from the FRP jacket is assumed. Then, the 
Poisson’s coefficient until yielding of steel stirrups and the pressure 
coming from the steel ties is calculated based on the BGL model presented 
also in the previous Section (Braga et al., 2006). Since this lateral pressure 
according to the BGL model is the solution of the plain stress tensor by the 
Airy’s stress function, the shear stress in the concrete core is also 
determined along with the shear modulus. Here, also the longitudinal bars’ 
contribution and the arching action between two adjacent stirrups along 
the column are taken into account (Table 6-1). Thus, the confining 
pressure in the concrete core is the summation of the lateral pressures 
contributed by the two confining systems (FRP and Steel). The 
International Federation for Structural Concrete (fib) model proposal 
(Spoelstra and Monti, 1999) beyond this point is basically used to define 
the remainder of the parameters declared above, applying that model for 
the two different regions already mentioned. The focal point of the 
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procedure is in the last step where the confining pressure of the jacket is 
defined based on the circumferential strain according to Eq. 6-49. Finally, 
cases with partial wrapping have been included too (14th fib bulletin, 2001, 
Table 6-1). Such an approach also permits, in cases of repair and retrofit, 
the consideration of two different concrete strengths, one for the new layer 
of concrete applied externally, and the other for the old existing concrete 
core which may also be cracked due to previous seismic loading. At the 
end of the procedure, a two-condition failure criterion is incorporated 
either due to the excessive dilation of concrete or due to the buckling of 
longitudinal bars. 

 

 
It has been well established in recent studies that the rupture 

strains/strengths measured in tests on FRP confined cylindrical specimens 
fall substantially below those from flat coupon tensile tests. Several 
reasons have been suggested for the observed lower rupture strains in 
place, among which are ([Carey and Harries 2005), (Lam and Teng 2004), 
(Matthys et al. 2005]): 

 
 Misalignment or damage to jacket fibers during handling and lay-

up. 
 The radius of curvature in FRP jackets on cylinders as opposed to 

flat tensile coupons. 
 Near failure, the concrete is internally cracked resulting in no 

homogeneous deformations. Due to this non-homogeneity of 

Impose εcon 

Assume   
fl.cover 

ν(εcon )  fl.steel 
τcore  Gcore 

       fl.core   

fcc.core  fc.core 

fcc.cover fc.cover 

εr.core   εr.cover    

εc 

   fl.cover (εc) fl.cover (εc) = 
  fl.assumed ? 

  Failure Criterion 

Yes 

No 

Figure 6-11: Iterative procedure. 
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deformations and the high loads exerted on the cracked concrete, 
local stress concentrations may occur in the FRP reinforcement. 

 The existence of a lap-splice zone in which the measured strains are 
much lower than strains measured elsewhere. 

 
Accounting for these effects an ultimate tensile coupon FRP strain 

reduced by a k factor (ranging between 50 and 80% in the literature) is 
compared to the circumferential strain of concrete (Eq. 6-49), and the 
ultimate compressive axial strain of concrete is considered to be attained 
when: 

  
couprupjc k ..                   (6-51) 

 
Table 6-1: Equations embodied in the iterative procedure. 
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In old-type circular columns with inadequate transversal reinforcing 

details (where FRP jacketing are a commonly used remedy), the 
unsupported length of longitudinal bars (between 2 successive stirrups) is 
often much greater than 6Db (Db = longitudinal bar diameter). Therefore, 
the risk of longitudinal bars buckling under compressive loads soon after 
yielding is higher. A dire implication is reduced effectiveness of the FRP 
wraps due to interaction between buckled longitudinal bars and the jacket, 
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which may cause premature failure due to the rupture of the jacket 
(Tastani et al. 2006). This is an additional source of error contributing to 
overestimating the strength of FRP confined concrete in addition to that 
generated by the difference between the nominal and in-situ strain capacity 
of the wraps as detailed above. It is the objective of the present book to 
study the interaction between wraps and compression reinforcement in 
FRP-encased reinforced concrete columns, with particular emphasis on the 
occurrence of instability conditions and the dependable compressive strain 
of the column prior to actual buckling of the rebars. 

In this model, the dilation of the concrete core and concrete cover are 
described through the following equation (Eq. 6-52) of the model by 
Spoelstra and Monti (1999). 
 

lconc
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ffE
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Thus, the lateral pressure of the FRP jacket confining the concrete 

cover has been taken into account, and by relating the critical buckling 
conditions with the onset of significant strength loss of the concrete cover, 
the effect of the confining pressure exerted by the jacket in delaying the 
occurrence of buckling of the longitudinal bars can be evaluated. 
Therefore, the critical buckling conditions are delayed depending on how 
axially stiff the jacket is, which accordingly delays the failure of the 
concrete cover (which laterally supports the longitudinal bar). This onset 
of loss of resistance in concrete has been proved to be the point when the 
net volumetric strain of the material becomes equal to zero (Pantazopoulou 
and Mills, 1995). In circular sections this occurs when: 

 

          5.020 conrV              (6-53) 
 

However, another condition that should be valid for the attainment of 
critical instability conditions of the longitudinal bars in the high confining 
stress states under consideration is the occurrence of compression yielding 
of the longitudinal bar. Regarding this step, it is interesting to note with 
reference to Fig. 6-12 for a given concrete strength, the point where the 
volumetric ratio becomes zero moves forward into higher axial 
compression strain values with increasing confining pressures. Thus, as 
shown by the two curves in Fig. 6-12 corresponding to different confining 
pressures, the difference in the lateral behavior of the concrete cover 



Constitutive Model for FRP- and Steel -Confined Concrete  
 

183

(confined by the jacket’s pressure) and the concrete core (confined by both 
the steel’s and FRP’s pressure) should also be considered.  

As it is shown in previous studies (Monti and Nuti, 1992), (Bae et al. 
2005), the buckling length Lbuck and the Lbuck/Db ratio are critical 
parameters for the post buckling behavior of longitudinal bars under 
compression. In cases of columns constructed with obsolete codes with the 
spacing of the stirrups ranging from 200 to 500 mm (buckling length) and 
bar diameters from 12 to 20 mm, the Lbuck/Db ratio ranges between 10 and 
42. However, apart from old type columns, the assumption that the 
buckling length is equal to the spacing of the stirrups in a RC column does 
not hold true in all cases (Dhakal and Maekawa 2002) and it may extend 
over more than a single tie spacing. In order to take into account this 
behavior (cases of reinforcement repair and FRP retrofit) the following 
procedure is suggested. 

 

 
The longitudinal bar is modeled as a pin-ended bar supported along its 

length by an elastic foundation as shown in Fig. 6-13. The foundation 
modulus is k’ (N/mm2) and it is such that when the bar deflects by an 
amount u, a restoring force uk  (N/mm) is exerted by the foundation 
normal to the bar.  

Figure 6-12: Volumetric Strain versus Axial Compressive Strain 
(Pantazopoulou and Mills, 1995). 
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The governing homogeneous differential equation and the associated 
eigenvalue problem are: 
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Note that if k’ = 0 (which occurs upon the yielding of the stirrups), the 

minimum value of Pcr becomes the classical Euler buckling load. In order 
to determine the critical load, the buckling mode m equal to one should be 
used. The stiffness k’ representing the supporting system of stirrups could 
be calculated as follows: 

 

      corebuck

shs

DL
AE

nk
  SnLbuck )1(,        (6-56) 

 400
5.0 yl

bsred

f
IEEI

   (Dhakal and Maekawa, 2002)    (6-57)  
 

The solution to the problem above is obtained by setting the critical load 
of the bar equal to its yield force; in this case the only unknown is the 
number n of the stirrups, n over the buckling length. Therefore, by solving 
Eq. 6-55 for n, the buckling length is determined. The value of n may be 
rounded to the nearest integer owing to the fact that the pin-ended bar 
segment engaged in buckling is assumed to span between successive 
inflection points of the real deformed shape. If convergence is not possible 
for n>1, the buckling length is taken as equal to the spacing of stirrups b. 

To sum up, after the critical conditions of a longitudinal compressive 
bar have been attained (this is assumed to coincide with the compression 
yielding of the bar and the Poisson’s coefficient at the concrete cover 

Figure 6-13: A pin-ended bar on elastic foundation. 



Constitutive Model for FRP- and Steel -Confined Concrete  
 

185

exceeding the value of 0.5) the buckling length of the bar is determined. 
Then, based on the model by Bae et al., 2005, who have related the axial 
strain to the transversal displacement of the buckled longitudinal bar for a 
given Lbuck/Db ratio the transversal displacement of the bar is calculated 
(Table 6-1). Given that for a longitudinal bar embedded in an RC member, 
axial shortening of the bar means the same amount of shortening for the 
surrounding concrete mass (Pantazopoulou, 1998), the axial strain in the 
bar is taken as equal to the axial strain of concrete. Finally, the jacket’s 
circumferential strain due to buckling is determined as follows: 
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It follows from the above Equations (Eqs. 6-58, 6-59) that a tolerance 
equal to the concrete cover for full wrapping, and half of the concrete cover 
for partial wrapping is given before the initiation of the jacket’s strains due 
to the buckling of longitudinal bars since the concrete cover should be 
severely cracked in case of full wrapping and some spalling could appear in 
case of partial wrapping. Since the displacement of the buckled longitudinal 
bar could be high and the phenomenon affects locally the jacket where the 
FRP material behavior could be considered linear-elastic, the results are 
compared to the deformation capacity of tensile coupons (dilation strains 
and buckling strains are studied independently). In the proposed algorithm 
detailed above, the failure criterion is used in two steps. Firstly, the 
circumferential strain due to dilation of concrete under compression is 
compared to a reduced FRP tensile coupon strain, and secondly the induced 
circumferential strains due to buckling which locally accelerate the jacket’s 
rupture are compared to the deformation capacity of flat FRP tensile 
coupons. If one of these conditions is fulfilled, the iterative procedure (Fig. 
6-11) is terminated. 

Figures 6-14 and 6-15 depict a simple run of the material model under 
axial strain reversals with the same material properties as the specimen 
ST2NT of the experimental study with FRP- and steel- confined columns 
performed by Sheikh and Yau, 2002. A moment-curvature analysis (Fig. 
6-16) for the section (with layers/fibers) of the same specimen that also 
provides the shear force - shear angle diagram has been performed, where 
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the constitutive model by Menegotto and Pinto (1973) is used to model the 
longitudinal steel behavior. Figures 6-17 and 6-18 depict the implications 
of the application of the constitutive relation presented in this Chapter, 
where, in contrast to the assumption of a Timoshenko beam (Ceresa et al., 
2007) the shear deformation is not constant along the section. The shear 
deformation of the section is defined as the mean value of the shear 
deformations of each material fiber/layer. The Bernoulli assumption is 
bypassed since the shear deformations are included and are uncoupled 
from the normal ones. 
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Figure 6-14: Proposed cyclic stress-strain material model including shear 
deformations. 
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Chapter Six 
 

190 

 

0 1 2 3 4 5 6 7
x 10-6

-200

-100

0

100

200

Shear Strain of the Layer 

La
ye

r C
oo

rd
in

at
e 

[m
m

]

0 1 2 3 4 5 6 7
x 10-5

-200

-100

0

100

200

Shear Strain of the Layer 

La
ye

r C
oo

rd
in

at
e 

[m
m

]

0 1 2 3 4 5 6 7
x 10-3

-200

-100

0

100

200

Shear Strain of the Layer 

La
ye

r C
oo

rd
in

at
e 

[m
m

]

Figure 6-17: Shear strain profile over the section for the first curvature 
increment, flexural yielding and ultimate moment (from top to bottom). 
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Correlation with Experimental Results 

 
Four experimental studies have been included in this Chapter for the 
validation of the proposed iterative procedure. The first is one of the few 
extensive experimental studies on large scale FRP wrapped circular 
columns where different FRP configurations have been applied, for 
identical embedded steel reinforcement (Matthys et al. 2005). It includes 8 
large-scale columns subjected to axial loading. The columns had a total 
length of 2 m, a longitudinal reinforcement ratio of 0.9% and 8 mm 
diameter stirrups spaced at 140 mm. All columns had a circular cross 
section with a diameter of 400 mm. Different types of FRP reinforcement 
(CFRP, GFRP & HFRP) have been used to confine the columns. The 
comparison seems to be satisfactory (Figs. 6-19, 6-20), although the 
solution has moderate success in resolving the problem of predicting the 
actual instance of jacket’s failure in terms of axial and circumferential 
ultimate strains. It should be noted that the cases that followed the 
circumferential strains—owing to concrete dilation estimated by the 
model, Eq. 6-49—were compared to the rupture FRP strains measured 
experimentally. Some clarifications are in order for the last graph (Fig. 6-
21) which illustrates the model’s estimations of the circumferential strains 
in the FRP jacket owing to concrete dilation and to the buckling of 
longitudinal bars at the ultimate axial strain reported in the tests for each 
specimen. These values are compared to the experimental rupture strain of 

Figure 6-18: Circular concrete section confined by steel stirrups and FRP 
jacket under bending and shear based on the proposed model. 
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the jacket (from strain gages) and to the deformation capacity of the flat 
tensile coupons which was reported accordingly.  
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Figure 6-20: Correlation with experimental results (Matthys et al. 2005). 
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The second experimental study (Demers and Neale 1999) includes 16 
reinforced concrete columns having a circular section of 300 mm in 
diameter and 1200 mm high. These columns were confined by means of 
carbon-epoxy sheets and loaded concentrically in axial compression. The 
effects of various parameters on the structural behavior of the confined 
concrete columns were investigated. These parameters included the 
concrete strength, longitudinal steel reinforcement, steel stirrups, steel 
corrosion and concrete damage while the FRP configuration was kept 
constant. The comparison between model estimates and experimental 
results depicted in Figs. 6-22 and 6-23, in this case too, could be 
characterized as satisfactory; they can also be considered satisfactory due 
to the the fact that, in this experimental study, the lateral pressures from 
both confining materials (Steel and FRP) are provided based on 
circumferential strains obtained by strain gages applied on both FRP 
Jacket and Steel ties. (It should be underlined that the horizontal strain 
gages on the jacket were located midway between two successive 
stirrups). Among the 16 specimens in only one case (Specimen U40-4) the 
pressures coming from the ties were evidently higher than those of the 
FRP jacket and the model was able to detect that (Fig. 6-24).  
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Figure 6-23: Correlation with experimental results  
(Demers and Neale 1999). 
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Figure 6-24: Correlation with experimental results  
(Demers and Neale 1999). 
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Some clarifications are in order for the l.a graph (Fig. 6-25) which 
illustrates the model’s estimations of the circumferential strains in the FRP 
jacket owing to concrete dilation and to the buckling of longitudinal bars 
at the ultimate axial strain reported in the tests for each specimen. These 
values are compared to the experimental rupture strain of the jacket (from 
strain gages) and to the nominal deformation capacity of the FRP jacket 
which was reported accordingly.  

The third experimental study (Gallardo-Zafra R. & K. Kawashima, 
[2009]) contains a series of cyclic loading tests that was conducted on six 
reinforced concrete column specimens 400 mm in diameter and 1.350 mm 
in effective height. Because the test was used in this study to clarify the 
analytical model, only a summary of the tests results necessary for 
ascertaining the accuracy of the analytical correlation is described here. 
The specimens were grouped into A and B series where each series 
consisted of three specimens; one was as-built while the second and the 
third were wrapped laterally by CFRP with a single layer and with two 
layers, respectively. The CFRP ratio was 0.111% and 0.222% when the 
columns were wrapped by a single layer and two layers, respectively. 
CFRP was wrapped 1 m high from the base and no gap was provided at 
the base. The specimens were laterally confined by 6 mm deformed bars 
having a yield strength of 363 MPa (SD295) with 135o bent hooks. The tie 
reinforcement ratio was 0.256% (150 mm spacing) for the A-series and 
0.128% (300 mm spacing) for the B-series. All specimens were reinforced 
in the longitudinal direction by 12-16 mm deformed bars having a nominal 
yield strength of 374 MPa (SD295). Concrete compressive strength ranged 
from 27.5 – 30 MPa. Under a constant axial load of 185 KN, which is 
about 8% of the theoretical ultimate axial capacity, the piers were loaded 
in a unilateral direction with a displacement increment of a half drift. At 
each increment, three cyclic loads were applied. The columns were 
designed such that they would fail in flexure.  

Regarding the third experimental correlation, Figs. 6-26-6-45 depict 
the comparison with the two groups of cyclic tests on bridge piers having 
different levels of confinement in terms of lateral steel reinforcement and 
FRP jacketing. To simulate the experimental behavior of the columns, they 
were idealized by a discrete analytical model (Fig. 6-46). Similar to the 
publication by Gallardo-Zafra R. & K. Kawashima (2009), the cantilever 
column was modeled by a linear beam element with the stiffness 
corresponding to flexural yielding and a fiber element used to idealize 
flexural hysteretic behavior at the plastic hinge. (The results produced in 
this study are based on the displacement formulation of the nonlinear 
beam element of the plastic hinge region). The length of the fiber element 
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was assumed to be half of the column diameter. A rotational spring at the 
bottom of the column represents the longitudinal bar pullout from the 
footing. Its property was based on a moment-rotation curve obtained from 
the experiment at a small amplitude loading and was assumed to have an 
elastic stiffness.  

While in the original proposal the fiber section had to be divided into 
the concrete core and concrete cover (Fig. 6-46) and two different stress-
strain relations were applied for the concrete core (confined by both FRP 
& Steel) and concrete cover (confined by only the FRP), in this work, 
since the material response is already averaged based on the different 
responses of those two regions, the same stress-strain law is applied for 
each fiber. This fact gives a clear advantage to the proposed model. In 
addition to the force-displacement response of the cantilever columns the 
response in the level of the section is also provided for each specimen in 
terms of material stress-strain hysteresis.  

It can be seen that the agreement is very close to the experimental one 
with some deviation concentrated on the parts of reloading after reversal 
of the imposed displacement. This difference of response in terms of 
modeling can be explained based on the way the cracks on the concrete 
surface are described on the level of the material model. Since the crack is 
described as a two-event phenomenon, which means either open or closed 
(while in reality it is not the case due to imperfect crack closure) the 
contribution of concrete while the longitudinal steel reinforcement is in 
compression and the crack is closing gives this deviation in the response.  

The comparison with the originally proposed model of this 
experimental study is, impressively, the same. However, the proposed 
model describes rationally the procedure of the passive confinement based 
on the calculation of the lateral concrete expansion in terms of the 
different levels of lateral pressures coming from the two different 
materials (Steel and FRP). Moreover, the active (constant lateral pressure) 
confinement model proposed by Kawashima et al. (1999) is based on 
regression analysis of the experimental results of cylindrical specimens 
under compression and it is specifically calibrated for Carbon Fiber 
Composite material (CFRP). Finally, it doesn’t consider the confinement 
effect of the longitudinal reinforcement and the effect of partial 
confinement due to the vertical arching action of the adjacent stirrups 
along the member but also cases of partial FRP wrapping of the column. 
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Figure 6-27: Correlation with experimental results A2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-26: Correlation with experimental results A2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-29: Correlation with experimental results A2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-28: Correlation with experimental results A2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-31: Correlation with experimental results A3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-30: Correlation with experimental results A2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-33: Correlation with experimental results A3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-32: Correlation with experimental results A3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-35: Correlation with experimental results A3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-34: Correlation with experimental results A3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-37: Correlation with experimental results B2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-36: Correlation with experimental results B2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-39: Correlation with experimental results B2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-38: Correlation with experimental results B2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-41: Correlation with experimental results B3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 

-80 -60 -40 -20 0 20 40 60 80-150

-100

-50

0

50

100

150

Displacement(mm)

S
he

ar
 F

or
ce

(k
N

)

Comparison with Test Specimen B3

 

 

Proposed Concrete Model
Experiment B3

Figure 6-40: Correlation with experimental results B2 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-43: Correlation with experimental results B3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-42: Correlation with experimental results B3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07-400

-200

0

200

400

S
tr

es
s 

of
 L

on
gi

tu
di

na
l B

ar
 [M

P
a]

 

Strain of Longitudinal Bar 

Stress-Strain relation for Longitudinal Bar - B3



Constitutive Model for FRP- and Steel -Confined Concrete  
 

207

 

 
 

Figure 6-45: Correlation with experimental results B3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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Figure 6-44: Correlation with experimental results B3 (Gallardo-Zafra R. & 
K. Kawashima, 2009). 
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The fourth experimental study was performed by Sheikh SA and Yao 

G (2002) in which twelve 356 mm diameter and 1473 mm long columns 
were tested under constant axial load and reversed cyclic lateral load that 
simulated forces from an earthquake. The test specimens were divided into 
three groups. The first group consisted of four columns that were 
conventionally reinforced with longitudinal and spiral steel. The second 
group contained six reinforced concrete columns that were strengthened 
with carbon fiber-reinforced polymers (CFRP) or glass fiber-reinforced 
polymers (GFRP) before testing. The last group included two columns that 
were damaged to a certain extent, repaired with fiber-reinforced polymers 
(FRP) under axial load and then tested to failure. The correlation with the 
second group will be provided here. The columns contained six 25 m 
longitudinal steel bars, and the spirals were made of U.S No 3. (71 mm2) 
bars.   

The latter experimental program was conducted on FRP-retrofitted 
columns subjected to a constant axial load and increasing cycles of lateral 
deformation in single-curvature setup. Four specimens of identical 
dimensions and steel reinforcements are used from this study. For each 
level of applied axial load (27% and 54% of the axial load carrying 
capacity, Po), two columns were retrofitted using two different types of 

Figure 6-46: Discrete analytical model to simulate the experimental behavior 
of RC columns by Gallardo-Zafra R. & K. Kawashima, (2009). 
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FRP lamina (carbon CFRP) and glass (GFRP) prior to testing. The 
experimental moment – curvature responses within the plastic hinge 
regions are reported along with the numerical results in Figures        6-47 – 
6-50. The modeling of the cantilever columns has been done using simply 
a unique fiber element with a displacement formulation for the entire 
column and by then reporting the moment curvature response of the most 
critical section. The comparison seems satisfactory, although the model 
fails to detect properly the events related to the yielding of stirrups, 
buckling of longitudinal bars and rupture of FRP as already mentioned in 
previous experimental correlations. The total moment-curvature response 
until the last step of numerical convergence is provided below.  

An important comment that should be made before concluding is one 
related to some studies (Gallardo-Zafra and Kawashima 2009, Khaloo et 
al. 2008) that have reported a different behavior (softening) for FRP and 
Steel confined concrete in circular RC sections, in respect to the already 
recognized bilinear one (Carey and Harries 2005). The author attributes 
that to the small scale of the reinforced concrete specimens used, while the 
most important explanation which could lead to those results is the 
influence of concrete strength. According to Mandal et al. (2005) the FRP 
wraps provide a substantial increase in strength and ductility for low-to-
medium-strength concrete, which shows a bilinear stress-strain response 
with strain hardening. For high-strength concrete, however, enhancement 
in strength is very limited, with hardly any improvement in ductility. The 
response in this case shows a steep post-peak strain softening. 

It should be emphasised that the last two experimental correlations the 
modeling of the bridge piers has been performed using the “MatLab Finite 
Elements for Design Evaluation and Analysis of Structures” (FEDEAS 
Lab) developed by Professor F. C. Filippou of the Department of Civil and 
Environmental Engineering of the University of California, Berkeley, 
USA. Moreover, the two–condition failure criterion of the constitutive 
model for concrete was deactivated for the comparison with these last two 
experimental studies. 

 
 
 
 
 
 
 
 
 



Chapter Six 
 

210 

Figure 6-47: Correlation with experimental results ST-2NT  
(Sheikh SA and Yao G 2002). 
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Figure 6-48: Correlation with experimental results ST-3NT  
(Sheikh SA and Yao G 2002). 
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Figure 6-49: Correlation with experimental results ST-4NT  
(Sheikh SA and Yao G 2002). 
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Implementation of the Proposed Material Model in 

OpenSees under the Name “FRPConfinedConcrete”  
 
The library of materials, elements and analysis commands makes OpenSees 
(http://opensees.berkeley.edu/) a powerful tool for numerical simulation of 
nonlinear structural and geotechnical systems. The Opensees library of 
components is ever-growing and at the cutting edge of numerical-
simulation models. Its interface is based on a command-driven scripting 
language which enables the user to create more-versatile input files. 
Opensees is not a black box, making it a useful educational tool for 
numerical modelling. Material, element or analysis tools can be 
incorporated into Opensees. 

The addition of a new uniaxial material module by the developer is 
achieved by providing a new C++ subclass of the UniaxialMaterial class, 
along with an interface function which is used to parse the input and create 
the new material. In contrast to C++, the C and Fortran programming 
languages’ modules provide no information about the state of the model as 

Figure 6-50: Correlation with experimental results ST-5NT  
(Sheikh SA and Yao G 2002). 



Chapter Six 
 

214 

an argument to the material routine. Retaining the required information 
and rejection of the unnecessary information is performed within the 
material model. This information includes simultaneously (a) parameters, 
i.e. information needed to define the material, and (b) state variables or 
history variables, i.e. information needed in order to define its current state 
and, consequently, compute the applied stress and tangent. 

The present Section provides information on the implementation of the 
introduced in the previous Section’s material model for FRP and Steel – 
confined concrete, in Opensees under the name ‘FRPConfinedConcrete’ 
http://opensees.berkeley.edu/wiki/index.php/FRPConfinedConcrete. To 
date, the model has no tensile strength and uses the degraded linear 
unloading/reloading stiffness in the case of cyclic loadings based on the 
work of Karsan and Jirsa (1969).  

The command used in order to construct the uniaxial 
‘FRPConfinedConcrete’ is provided in the following syntax: 

uniaxialMaterial FRPConfinedConcrete $tag $fpc1 $fpc2   $epsc0  
$D $c $Ej $Sj   $tj      $eju   $S     $fyl  $fyh  $dlong 

      $dtrans    $Es        $vo         $k   $useBuck 

Each input parameter defined above corresponds to the mechanical and 
geometrical properties of the FRP&Steel-confined element which affect its 
overall performance. Their description is provided in Table 6-2. 

 
Table 6-2: ‘FRPConfinedConcrete’ input parameters. 

 
1 tag Material Tag 

2 fpc1 Concrete Core Compressive Strength 

3 fpc2 Concrete Cover Compressive Strength 

4 epsc0 Strain Corresponding to Unconfined 
Concrete Strength 

5 D Diameter of the Circular Section 

6 c Dimension of Concrete Cover 

7 Ej Elastic Modulus of the Jacket 

8 Sj Clear Spacing of the FRP Strips - zero if it's 
continuous 

9 tj Total Thickness of the FRP Jacket 
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10 eju Rupture Strain of the Jacket 

11 S Spacing of the Stirrups 

12 fyl Yielding Strength of Longitudinal Steel Bars 

13 fyh Yielding Strength of the Hoops 

14 dlong Diameter of the Longitudinal Bars 

15 dtrans Diameter of the Stirrups 

16 Es Steel's Elastic Modulus 

17 νo Initial Poisson's Coefficient for Concrete 

18 k Reduction Factor (0.5-0.8) for the Rupture 
Strain of the FRP Jacket 

19 useBuck 
FRP Jacket Failure Criterion due to Buckling 
of Longitudinal Compressive Steel Bars (0 = 

not include it, 1= to include it) 

 
Before concluding, Table 6-3 is provided below with all the symbols 

declared in the presentation of the proposed model in the previous 
Sections for better comprehension of the described procedure and results.  

 
Table 6-3: Symbols used in the proposed material model and its 
correlation with experimental results. 

 

C circumference of the circular section 

R radius of the circular section 

k reduction factor 

εr radial strain 

εc circumferential strain 

εV volumetric strain 

εcon concrete’s axial strain 
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εco concrete’s axial strain at unconfined concrete’s strength 

εcc concrete’s axial strain at confined concrete’s strength 

εc.core circumferential strain of the core 

εr.core radial strain of the core 

εr.cover radial strain of the cover 

Rcore radius of the concrete core 

c concrete cover 

fco concrete strength 

fcc confined concrete strength 

vo initial Poisson’s coefficient for concrete 

v Poisson’s coefficient for concrete 

ρsh steel hoop’s volumetric ratio 

ρj FRP jacket’s volumetric ratio 

Gcore shear modulus of concrete core 

τcore shear stress of concrete core 

fl.core lateral confining pressure of the concrete core 

fl.cover lateral confining pressure of the concrete cover 

fl.steel lateral confining pressure of the steel reinforcement 

fc.av average axial concrete stress 

fc.core axial concrete core stress 
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fc.cover axial concrete cover stress 

fcc.core axial confined concrete core strength 

fcc.cover axial confined concrete cover strength 

Acore area of concrete core 

Acover area of concrete cover 

fl lateral confining pressure of concrete 

fc axial concrete stress 

Econ modulus of elasticity of concrete 

Esec secant modulus of elasticity of concrete 

β a property of concrete evaluated as a function of the 
unconfined concrete strength 

Db bar diameter 

Lbuck buckling length 

EI Flexural rigidity of steel longitudinal bar 

EIred Reduced flexural rigidity of steel longitudinal bar 

Es modulus of elasticity for steel 

P axial force 

k' foundation modulus 

υ vertical displacement 

m buckling mode 

n number of stirrups 
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S Spacing of the stirrups 

Pcr critical load 

Atot total area of the circular section 

Ash area of steel hoops (ties) 

Ib 
 

fyl 

longitudinal bar’s moment of inertia 
 

yielding strength of longitudinal bar 

w transversal displacement of the bar 

εsl axial strain in the bar 

εsh steel hoop’s strain 

εshu ultimate steel hoop’s strain 

εyh steel hoop’s strain for yielding 

ksl Partial confinement coefficient for steel 

ξl coefficient taking into account longitudinal bar’s confining 
effect 

ξst coefficient taking into account the confining effect of stirrups’ 
spacing 

Dh hoop’s diameter 

kj partial wrapping coefficient 

Ab total area of longitudinal steel reinforcement 

Ag gross area of the section 

Sj jacket’s clear spacing 
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Ej jacket’s modulus 

tj thickness of the jacket 

εc.buck jacket’s circumferential strain due to buckling of longitudinal 
bars 

εcu.exp experimental ultimate strain for concrete 

εj.rup.sg jacket’s rupture strain read by strain gages 

εj.rup.coup jacket’s rupture strain by coupons’ test 

εj.rup.nom nominal jacket’s rupture strain given in material properties 

εj.mod.dil jacket’s strain calculated by the model due to concrete’s 
dilation 

εj.mod.buck jacket’s strain calculated by the model due to buckling of 
longitudinal bars 

db diameter of longitudinal bars 

dt diameter of transverse stirrups 

s spacing of transverse stirrups 

 
 
 
 
 
 
 
 
 
 



CHAPTER SEVEN 

CONCLUSIONS 

 
 
 
Clearly, based on the preceding Chapters, the state of the art in 

modeling the lateral load response of columns leaves a lot to be desired: 
improved response estimation of the behavior of columns that are 
susceptible to shear failure after flexural yielding; better procedures to 
estimate shear strength, and the pattern of degradation thereof with 
increasing displacement ductility; the need to account for reinforcement 
pullout and its effects on stiffness; the shape of the hysteresis loops; the 
detrimental effects of axial load at large displacement limits; and the 
magnitude of deformation (drift ratio) associated with milestone events in 
the response curve of the column member are open issues that need to be 
settled before the performance-based assessment framework may be 
considered complete and dependable.  

In this direction, the definition of the deformability of RC columns was 
reassessed in this book by proposing a new methodology for the 
determination of plastic hinge length through a consideration of yield 
penetration effects. Yield penetration occurs from the critical section 
towards both the shear span and the support of columns; physically it 
refers to the extent of the nonlinear region and determines the pullout slip 
measured at the critical section. Contrary to the fixed design values 
adopted by codes of assessment, the yield penetration length is actually the 
only consistent definition of the notion of the plastic hinge length, whereas 
the latter determines the contribution of pullout rotation to column drift 
and column stiffness. In order to establish the plastic hinge length in a 
manner consistent to the above definition, this book pursued the explicit 
solution of the field equations of bond over the shear span of a column. 
Through this approach, the bar strain distributions and the extent of yield 
penetration from the yielding cross section towards the shear span were 
resolved and calculated analytically. By obtaining this solution, a 
consistent definition of plastic hinge length was established, by reference 
to the state of reinforcement strain (replacing the stress based definition 
used previously). The true parametric sensitivities of this design variable 
for practical use in the seismic assessment of existing structures are 
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illustrated. The numerical results show good agreement with the 
experimental evidence and are consistent with the experimental trends 
supported by test databases, confirming that the plastic hinge length is 
controlled by the residual bond that may be mobilized along the yielded 
reinforcement.  

In addition, a force-based fiber beam-column element accounting for 
shear effects and the effect of tension stiffening was developed, in order to 
provide an analytical test-bed for simulation and improved understanding 
of experimental cases where testing of reinforced concrete columns 
actually led to collapse. The developed fiber-element is incorporated in the 
stand-alone Windows program Phaethon with the user’s interface written 
in C++ programming language code. The latter offers its user the 
possibility to obtain the capacity curve for shear-critical reinforced 
concrete cantilever columns whilst taking into account the shear–flexure 
interaction mechanism, as well as an important contribution to the final 
column’s lateral displacement of the pull-out of the inadequate anchorage 
of the tensile longitudinal reinforcing bars of the column. This is available 
for both rectangular and circular reinforced concrete columns. 
Furthermore, the software resolves strain, slip and bond distributions along 
the anchorage length. Comparison with experimental results from the 
literature verifies the capability of this Windows software tool to assess 
the strength and deformation indices of shear-critical reinforced concrete 
columns. Moreover, the moment curvature as well as the shear force – 
shear strain analysis of the sections of these columns is also possible, all 
based on the Modified Compression Field Theory. 

Finally, confining wraps or jackets to rehabilitate and strengthen 
existing substandard RC columns as with those described in the present 
book has proven to be an efficient technique for seismic retrofit of 
structures. However, most of the compressive strength models of confined 
concrete only consider the increased strength and ductility provided by 
fiber reinforced polymers (FRPs), neglecting the contribution of the 
existing steel reinforcement inside the column’s section. Even if the 
existing steel stirrups in a reinforced concrete column are not sufficient to 
confine the concrete core, they must also contribute, along with the FRP 
jacket, in confining the section. Therefore, the FRP-confined concrete 
model contained in a well-known Bulletin by the International Federation 
for Structural Concrete (fib) has been enhanced to take into account the 
confining effect of the already existing steel reinforcement when 
retrofitting a reinforced concrete column with FRP jacketing. To this end, 
the transverse steel reinforcement has been considered not as imposing a 
constant value of confining pressure, but rather, following the steel’s 
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stress-strain law at each deformation step in accordance with the BGL 
model, while also considering the confining contribution of longitudinal 
reinforcement. Similar to the BGL model, an important aspect of the 
model is that the cross-section tangential stresses (shear), which are 
generally neglected, have an essential role in ensuring plane strain 
conditions. In addition, compatibility in the lateral direction, inwards for 
confining pressures and outwards for lateral strains, between the two 
confining materials (FRP and Steel) has been established. Through this 
approach the difference in the lateral behavior of the concrete cover 
(confined with the jacket’s pressure) and the concrete core (confined by 
both the steel’s and FRP’s pressure) has been considered. This allows the 
application of the model also in cases of reinforcement repair and FRP 
retrofit where two different concrete strengths should be considered; one 
for the new layer of concrete applied externally and the other for the old 
concrete in the concrete core which may also be cracked due to former 
seismic loading. Moreover, in the case of RC column modeling with a 
fiber nonlinear beam-column element (displacement formulation), apart 
from the immediate incorporation of shear deformations (uncoupled from 
the normal ones) on the material level (and in contrast to the standard fiber 
beam-column formulation), the averaged response of the two different 
regions—concrete core and concrete cover—in the section, gives a clear 
advantage in terms of modeling since it allows the assignment of a unique 
stress-strain law for all the fibers/layers of the circular section.  Before 
concluding, another aspect that seems to be valid and important for further 
thought is that the response of the seismic retrofitted RC columns in this 
study based on the model presented is correct although these columns are 
under cyclic excitation and contrary to the model’s assumptions which are 
clearly static (monotonic). Moreover, the model uses the idea of the 
superposition of the effects of confinement that extend further the linear 
assumptions. In addition, a two-condition failure criterion has been 
incorporated regarding the dilation of concrete and buckling of 
compressive longitudinal bars as independent events. Correlation with 
experimental results seems to be satisfactory, although the model has 
moderate success in predicting the actual instance of rupture of the FRP 
jacket. Finally, this recently developed material model for FRP and Steel–
confined concrete was implemented in OpenSees under the name 
‘FRPConfinedConcrete’ with no tensile strength and degraded linear 
unloading/reloading stiffness in the case of cyclic loadings.  
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Concrete Model: Scott et al., 1982. 

Figure A-1: Comparison between numerical and experimental 

responses of circular columns (ID#46&47) of Berry and Eberhard 

Database (2004).
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Concrete Model: Scott et al., 1982. 

Figure A-2: Comparison between numerical and experimental 

responses of circular columns (ID#50&51) of Berry and Eberhard 

Database (2004).



Seismic Assessment and Retrofit of Reinforced Concrete Columns
 

229

 
 
 

Concrete Model: Mander et al., 1988. 

Figure A-3: Comparison between numerical and experimental 

responses of circular columns (ID#52&53) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-4: Comparison between numerical and experimental 

responses of circular columns (ID#54&55) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-5: Comparison between numerical and experimental 

responses of circular columns (ID#56&57) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-6: Comparison between numerical and experimental 

responses of circular columns (ID#58&59) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-7: Comparison between numerical and experimental 

responses of circular columns (ID#60&93) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-8: Comparison between numerical and experimental 

responses of circular columns (ID#94&95) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-9: Comparison between numerical and experimental 

responses of circular columns (ID#96&97) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-10: Comparison between numerical and experimental 

responses of circular columns (ID#98&99) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-11: Comparison between numerical and experimental 

responses of circular columns (ID#100&101) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-12: Comparison between numerical and experimental 

responses of circular columns (ID#102&103) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-13: Comparison between numerical and experimental 

responses of circular columns (ID#106&107) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-14: Comparison between numerical and experimental 

responses of circular columns (ID#109&112) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-15: Comparison between numerical and experimental 

responses of circular columns (ID#113&114) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-16: Comparison between numerical and experimental 

responses of circular columns (ID#115&116) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-17: Comparison between numerical and experimental 

responses of circular columns (ID#117&118) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-18: Comparison between numerical and experimental 

responses of circular columns (ID#119&120) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-19: Comparison between numerical and experimental 

responses of circular columns (ID#121&122) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-20: Comparison between numerical and experimental 

responses of circular columns (ID#123&125) of Berry and 

Eberhard Database (2004). 
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Concrete Model: Mander et al., 1988. 

Figure A-21: Comparison between numerical and experimental 

responses of circular columns (ID#126&127) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-22: Comparison between numerical and experimental 

responses of circular columns (ID#128&130) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-23: Comparison between numerical and experimental 

responses of circular columns (ID#131&132) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-24: Comparison between numerical and experimental 

responses of circular columns (ID#133&141) of Berry and 

Eberhard Database (2004). 
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Concrete Model: Mander et al., 1988. 

Figure A-25: Comparison between numerical and experimental 

responses of circular columns (ID#142&143) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-26: Comparison between numerical and experimental 

responses of circular columns (ID#157&158) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-27: Comparison between numerical and experimental 

responses of rectangular columns (ID#3&4) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-28: Comparison between numerical and experimental 

responses of rectangular columns (ID#5&6) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-29: Comparison between numerical and experimental 

responses of rectangular columns (ID#7&8) of Berry and Eberhard 

Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-30: Comparison between numerical and experimental 

responses of rectangular columns (ID#9&10) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-31: Comparison between numerical and experimental 

responses of rectangular columns (ID#11&12) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-32: Comparison between numerical and experimental 

responses of rectangular columns (ID#13&14) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-33: Comparison between numerical and experimental 

responses of rectangular columns (ID#15&16) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-34: Comparison between numerical and experimental 

responses of rectangular columns (ID#17&18) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-35: Comparison between numerical and experimental 

responses of rectangular columns (ID#19&20) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-36: Comparison between numerical and experimental 

responses of rectangular columns (ID#21&22) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-37: Comparison between numerical and experimental 

responses of rectangular columns (ID#23&24) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-38: Comparison between numerical and experimental 

responses of rectangular columns (ID#25&26) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-39: Comparison between numerical and experimental 

responses of rectangular columns (ID#27&30) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-40: Comparison between numerical and experimental 

responses of rectangular columns (ID#31&32) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-41: Comparison between numerical and experimental 

responses of rectangular columns (ID#43&48) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-42: Comparison between numerical and experimental 

responses of rectangular columns (ID#49&50) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-43: Comparison between numerical and experimental 

responses of rectangular columns (ID#51&52) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-44: Comparison between numerical and experimental 

responses of rectangular columns (ID#53&56) of Berry and 

Eberhard Database (2004). 
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Concrete Model: Mander et al., 1988. 

Figure A-45: Comparison between numerical and experimental 

responses of rectangular columns (ID#57&58) of Berry and 

Eberhard Database (2004). 
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Concrete Model: Mander et al., 1988. 

Figure A-46: Comparison between numerical and experimental 

responses of rectangular columns (ID#59&60) of Berry and 

Eberhard Database (2004). 
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Concrete Model: Mander et al., 1988. 

Figure A-47: Comparison between numerical and experimental 

responses of rectangular columns (ID#61&62) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-48: Comparison between numerical and experimental 

responses of rectangular columns (ID#63&66) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-49: Comparison between numerical and experimental 

responses of rectangular columns (ID#67&68) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-50: Comparison between numerical and experimental 

responses of rectangular columns (ID#69&70) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-51: Comparison between numerical and experimental 

responses of rectangular columns (ID#71&72) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-52: Comparison between numerical and experimental 

responses of rectangular columns (ID#88&89) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-53: Comparison between numerical and experimental 

responses of rectangular columns (ID#90&91) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-54: Comparison between numerical and experimental 

responses of rectangular columns (ID#92&93) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-55: Comparison between numerical and experimental 

responses of rectangular columns (ID#94&95) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-56: Comparison between numerical and experimental 

responses of rectangular columns (ID#96&97) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-57: Comparison between numerical and experimental 

responses of rectangular columns (ID#102&103) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-58: Comparison between numerical and experimental 

responses of rectangular columns (ID#105&106) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-59: Comparison between numerical and experimental 

responses of rectangular columns (ID#107&108) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-60: Comparison between numerical and experimental 

responses of rectangular columns (ID#109&110) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-61: Comparison between numerical and experimental 

responses of rectangular columns (ID#111&112) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-62: Comparison between numerical and experimental 

responses of rectangular columns (ID#113&114) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-63: Comparison between numerical and experimental 

responses of rectangular columns (ID#115&116) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-64: Comparison between numerical and experimental 

responses of rectangular columns (ID#117&118) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-65: Comparison between numerical and experimental 

responses of rectangular columns (ID#119&120) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-66: Comparison between numerical and experimental 

responses of rectangular columns (ID#121&122) of Berry and 

Eberhard Database (2004). 
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Concrete Model: Mander et al., 1988. 

Figure A-67: Comparison between numerical and experimental 

responses of rectangular columns (ID#123&124) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-68: Comparison between numerical and experimental 

responses of rectangular columns (ID#125&126) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-69: Comparison between numerical and experimental 

responses of rectangular columns (ID#127&128) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-70: Comparison between numerical and experimental 

responses of rectangular columns (ID#129&130) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-71: Comparison between numerical and experimental 

responses of rectangular columns (ID#131&132) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-72: Comparison between numerical and experimental 

responses of rectangular columns (ID#133&134) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-73: Comparison between numerical and experimental 

responses of rectangular columns (ID#135&136) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-74: Comparison between numerical and experimental 

responses of rectangular columns (ID#145&146) of Berry and 

Eberhard Database (2004).
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Concrete Model: Mander et al., 1988. 

Figure A-75: Comparison between numerical and experimental 

responses of rectangular columns (ID#147&148) of Berry and 

Eberhard Database (2004).



Seismic Assessment and Retrofit of Reinforced Concrete Columns
 

309

 
 

Concrete Model: Mander et al., 1988. 

Figure A-76: Comparison between numerical and experimental 

responses of rectangular columns (ID#156&157) of Berry and 

Eberhard Database (2004).
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Figure A-77: Comparison between numerical and experimental 

responses of rectangular columns (ID#33&34) of Berry and 

Eberhard Database (2004). 

Concrete Model: Mander et al., 1988. ,
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Figure A-78: Comparison between numerical and experimental 

responses of rectangular columns (ID#38&39) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-79: Comparison between numerical and experimental 

responses of rectangular columns (ID#41&42) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-80: Comparison between numerical and experimental 

responses of rectangular columns (ID#44&45) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-81: Comparison between numerical and experimental 

responses of rectangular columns (ID#47&54) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-82: Comparison between numerical and experimental 

responses of rectangular columns (ID#55&64) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-83: Comparison between numerical and experimental 

responses of rectangular columns (ID#65&73) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-84: Comparison between numerical and experimental 

responses of rectangular columns (ID#74&76) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-85: Comparison between numerical and experimental 

responses of rectangular columns (ID#78&80) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-86: Comparison between numerical and experimental 

responses of rectangular columns (ID#82&84) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-87: Comparison between numerical and experimental 

responses of rectangular columns (ID#86&98) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-88: Comparison between numerical and experimental 

responses of rectangular columns (ID#99&100) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-89: Comparison between numerical and experimental 

responses of rectangular columns (ID#101&137) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 

Fi A 89 C i b i l d i l
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Figure A-90: Comparison between numerical and experimental 

responses of rectangular columns (ID#138&139) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-91: Comparison between numerical and experimental 

responses of rectangular columns (ID#140&141) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-92: Comparison between numerical and experimental 

responses of rectangular columns (ID#142&143) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-93: Comparison between numerical and experimental 

responses of rectangular columns (ID#144&149) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-94: Comparison between numerical and experimental 

responses of rectangular columns (ID#150&199) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-95: Comparison between numerical and experimental 

responses of rectangular columns (ID#200&212) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-96: Comparison between numerical and experimental 

responses of rectangular columns (ID#213&214) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-97: Comparison between numerical and experimental 

responses of rectangular columns (ID#276&277) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-98: Comparison between numerical and experimental 

responses of rectangular columns (ID#278&279) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-99: Comparison between numerical and experimental 

responses of rectangular columns (ID#280&281) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-100: Comparison between numerical and experimental 

responses of rectangular columns (ID#283) of Berry and Eberhard 

Database (2004). 

Concrete Model: Mander et al., 1988. 
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Figure A-101: Comparison between numerical and experimental 

responses of circular columns (ID#17&18) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-102: Comparison between numerical and experimental 

responses of circular columns (ID#19&20) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-103: Comparison between numerical and experimental 

responses of circular columns (ID#21&23) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-104: Comparison between numerical and experimental 

responses of circular columns (ID#24&25) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-105: Comparison between numerical and experimental 

responses of circular columns (ID#26&27) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-106: Comparison between numerical and experimental 

responses of circular columns (ID#28&29) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-107: Comparison between numerical and experimental 

responses of circular columns (ID#30&31) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-108: Comparison between numerical and experimental 

responses of circular columns (ID#32&33) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-109: Comparison between numerical and experimental 

responses of circular columns (ID#34&35) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-110: Comparison between numerical and experimental 

responses of circular columns (ID#36&37) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-111: Comparison between numerical and experimental 

responses of circular columns (ID#44&48) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-112: Comparison between numerical and experimental 

responses of circular columns (ID#49&104) of Berry and Eberhard 

Database (2004).

Concrete Model: Mander et al., 1988. 



Appendix 
 

352

 

Figure A-113: Comparison between numerical and experimental 

responses of circular columns (ID#105&108) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-114: Comparison between numerical and experimental 

responses of circular columns (ID#110&111) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-115: Comparison between numerical and experimental 

responses of circular columns (ID#159&161) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-116: Comparison between numerical and experimental 

responses of circular columns (ID#163&164) of Berry and 

Eberhard Database (2004).

Concrete Model: Mander et al., 1988. 
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Figure A-117: Comparison between numerical and experimental 

responses of circular columns (ID#165&166) of Berry and 

Eberhard Database (2004). 

Concrete Model: Mander et al., 1988. 
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Figure A-118: Comparison between numerical and experimental 

responses of circular columns (ID#168) of Berry and Eberhard 

Database (2004). 

Concrete Model: Mander et al., 1988. 
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