SEISMIC ASSESSMENT
AND RETROFIT OF

REINFORCED

CONCRETE COLUMNS

Konstantinos G. Megalooikonomou




Seismic Assessment
and Retrofit of
Reinforced Concrete
Columns






Seismic Assessment
and Retrofit of
Reinforced Concrete
Columns

By

Konstantinos G. Megalooikonomou

Cambridge
Scholars
Publishing



Seismic Assessment and Retrofit of Reinforced Concrete Columns
By Konstantinos G. Megalooikonomou

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2019 by Konstantinos G. Megalooikonomou

All rights for this book reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the copyright owner.

ISBN (10): 1-5275-2785-9
ISBN (13): 978-1-5275-2785-0



To My Dedicated Parents and Brother






TABLE OF CONTENTS

AcKNOWIEdZemEnts ..........ccevuieriiiiiiiieeieseee e viii
(O E:1 o 3 o) T PSSP 1
Introduction

CRAPLET TWO c.viieiiieeiie ettt sttt ettt et e et e ebeesbeeenbeessbaennneens 5

State of the Art on Seismic Assessment of Reinforced Concrete Columns

Chapter TRICE ....cuvveeiieiiiciieciteie ettt 50
Performance of Existing Models Applied to the Experimental Columns
Database

Chapter FOUT ......oouiiiiiiecieece e 85
Plastic Hinge Length in RC Columns: Definition through Consideration
of Yield Penetration Effects

Chapter FIVE ..c..ooiieiieieeeee e 133
Phaethon: Software for Analysis of Shear-Critical Reinforced Concrete
Columns

CRAPLET STX 1.vvivieiieiieiieieeee ettt te e et e e seessaesseesseesseessesssessaesens 161
Constitutive Model for FRP- and Steel-Confined Concrete Including Shear
CRAPLEr SEVEM....cvieiieiiieiieeiieeieete ettt ettt ettt et et eeae e nseenseas 220
Conclusions

APPCIAIX .ttt 223

BiblO@IapRY ... 361



ACKNOWLEDGEMENTS

I would like to thank all the Professors and colleagues who I met
throughout my research experience. Above all, I am grateful to the
Alexander S. Onassis Public Benefit Foundation for providing me with a
triennial scholarship (Scholarship Code: F ZI 086-1 2012-2013/
01/09/2012 —29/02/2016) to pursue a Ph.D. degree in Civil Engineering at
the University of Cyprus. Without their financial support during this
worldwide economical crisis, this book would not have been realized.

Onassis
Foundation




CHAPTER ONE

INTRODUCTION

Existing reinforced concrete buildings constructed before the development
of modern seismic design provisions represent one of the largest seismic
safety concerns worldwide. Such buildings are vulnerable to significant
damage and even collapse when subjected to strong ground shaking. The
collapse of reinforced concrete buildings has been the cause of many of
the fatalities in past earthquakes. Since 1980, after the capacity design
concept was introduced into the seismic design code provisions, the
seismic safety gap between the newly designed seismic resistant buildings
and those constructed before 1980 has widened, causing worldwide
concern. The crucial issue that was evident after the earthquakes in 1999
in Athens (Partnitha) and in Turkey (Kocaeli) and was underlined by the
destructive earthquake of L’Aquila (2009) in Italy (an event which the
author experienced personally as a resident of L’Aquila at the time) is the
need to improve assessment and retrofit procedures for existing reinforced
concrete buildings.

Reinforced concrete (RC) columns play a very important role in
structural performance. Behaviour of RC columns in shear and flexure has
been studied for decades. In the case of flexural behavior, sectional
analysis, or a fiber model in one-dimensional stress field gives acceptable
predictions in terms of ultimate strength and yielding deformation.
Performance of reinforced concrete columns dominated by shear or shear-
flexure cannot be estimated by applying only a sectional analysis because
shear behavior is not taken into account in the approach. For evaluating
the shear response of structural elements, such as beams and columns,
many analytical models and theories have been presented in the past.
Some of the most commonly used approaches are strut and tie models
(Mérsh 1902, Ritter 1899) and the Modified Compression Field Theory
(MCFT) (Vecchio & Collins 1986). MCFT is a powerful tool to model the
response of RC elements subjected to in-plane shear and normal stresses.
The method is based upon a large number of membrane elements tests and
treats reinforced concrete in an average way. Specifically, the method is
formulated in terms of average stresses and strains across the element and
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is supplemented by local crack checks. The method is formulated with
consideration to equilibrium, compatibility, and approximate stress-strain
relationships of the materials.

Recently, another aspect that has roused the interest of researchers is
the axial failure of columns that can lead to collapse of a building (Elwood
and Moechle 2005). Before the introduction of special requirements in the
1970s, reinforced concrete building frames constructed in zones of high
seismicity had details and proportions similar to frames designed primarily
for gravity loads. Columns generally were not designed to have strengths
exceeding beam strengths, so column failure mechanisms often prevail in
buildings dating from that era. Relatively wide spacing of transverse
reinforcement was common, such that column failures may involve some
form of shear or combined flexure — shear failure. As shear failure
proceeds, degradation of the concrete core may lead to loss of axial load
carrying capacity of the column. As the axial capacity diminishes, the
gravity loads carried by the column must be transferred into neighboring
elements. A rapid loss of axial capacity will result in the dynamic
redistribution of internal actions within the building frame and may
progressively lead to collapse.

During earthquake excitation columns can experience a wide variety of
loading histories, which may consist of a single large pulse or several
smaller-amplitude cycles, occasionally leading to either shear failure or
even collapse — i.e. a loss of gravity-load bearing capacity of the column.
Previous research has demonstrated that the onset of this type of collapse
cannot be quantified unilaterally by a single combination of shear force
and axial load values, but rather, it is characterized by an interaction
envelope that depends on the history of loading and the peak magnitude of
deformation exertion attained by the column (max. drift demand). Recent
studies (Chapter 2) attribute particular influence to the final mode and
characteristics of failure by the occurrence of fluctuating axial load about a
mean value, on some occasions the load becoming actually tensile due to
the overturning effects imparted by the earthquake. Furthermore it has
been demonstrated that an increase in the number of cycles past the yield
displacement can result in a decrease in the drift capacity at shear failure.
Understanding these effects and developing mechanistic tools by which to
identify the characteristics of failure at the loss of axial load bearing
capacity and the implications of drift history is one of the objectives of this
book.

In the present book a fiber beam-column element accounting for shear
effects and the effect of tension stiffening through reinforcement-to-
concrete bond was developed, in order to provide an analytical test-bed for
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simulation and improved understanding of experimental cases where the
testing of RC columns actually led to collapse. Emphasis is particularly
laid on lightly reinforced columns. The combined experimental/numerical
results provided useful information for the definition of plastic hinge
length in columns through consideration of yield penetration effects. The
required confined zone in critical regions of columns and piers undergoing
lateral sway during earthquakes is related to the plastic hinge length where
inelastic deformation and damage develops. The exact definition of the
plastic hinge length stumbles upon several uncertainties, the most critical
being that the extent of the inelastic region evolves and spreads with the
intensity of lateral displacements. Design codes quantify a reference value
for the plastic hinge length, through calibrated empirical relationships that
account primarily for the length of the shear span and the diameter of
primary reinforcing bars. The latter term reflects the effects of bar yielding
penetration in the support of columns. Here a consistent definition of
plastic hinge length is pursued analytically with reference to the actual
strain state of the reinforcement.

Over the past three decades, fibre-reinforced polymer (FRP)
composites have emerged as an attractive construction material for civil
infrastructure, rehabilitation, and renewal. These advanced materials have
been successfully used for reinforcing new structures as well as the
strengthening/rehabilitation of existing buildings and bridges. The use of
FRP composites, analysis and design, and techniques for installation are
continually being researched and it is anticipated that the use of these
advanced materials will continue to grow to meet the demands of the
construction industry. Recent seismic events around the world continue to
underline the importance of seismic retrofit and strengthening of existing
concrete structures leading to the need for new, practical, occupant-
friendly and cost-effective remedial solutions.

In this context, the Fiber Reinforced Polymer (FRP)-confined concrete
model contained in a well-known Bulletin by the International Federation
for Structural Concrete (fib) has been enhanced to take into account the
superposition of the confining effects of the already existing steel
reinforcement with that of the FRP jacketing applied when retrofitting RC
columns. Columns are here modeled with a fiber-based nonlinear beam-
column element (with displacement formulation) in which the constitutive
law for concrete presented in this book is implemented. This allows for the
immediate incorporation of shear strains (uncoupled from the normal
ones) at the material level. The averaged response of the two different
regions—concrete core and concrete cover—in the cross-section allows
the assignment of a unique stress-strain law for all the fibers/layers of the
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section. Correlation with experimental studies from the literature is
performed to validate the proposed iterative procedure.

Specifically, the organization of the present book is the following:
After the introduction in Chapter 1, Chapter 2 contains a literature review
of the part of seismic assessment of old-type RC columns. Chapter 3
presents the correlation of - the state of the art — analytical models for
seismic assessment of reinforced concrete columns with the experimental
results of a well-known experimental database. Chapter 4 defines the
plastic hinge length in columns though consideration of yield penetration
effects. A mechanically consistent approach in determining inelastic
rotation capacity of reinforced concrete columns is introduced. Chapter 5
presents the development of a force-based fiber beam-column element
accounting for shear and tension stiffening effects. Chapter 6 presents new
developments on FRP seismic retrofit of RC columns with confining
wraps or jackets that has proven to be an efficient technique for the
seismic retrofit of structures. A new constitutive model for FRP -and steel-
confined concrete, including shear effects, is included in this Chapter.
Finally, in Chapter 7 important conclusions based on the described
research in this book are drawn.

To sum up, this book is introducing recent advances in research that
intends to attract academic staff, researchers, under- or post- graduate
students and professional engineers dealing with seismic assessment,
repair and retrofit of RC structures such as buildings and bridges.



CHAPTER TWO

STATE OF THE ART ON SEISMIC ASSESSMENT
OF REINFORCED CONCRETE COLUMNS

The procedure of estimating the strength, the deformation capacity and the
expected mode of failure in primary members of a RC frame structure, that
is, the complete process of seismic assessment, has been recently
supported by background documents in both Europe and the U.S.
(KAN.EPE. 2014, EN 1998-3 2005, ASCE/SEI-41 2007, and most
recently by the draft of the New Model Code 2010 by the fib). The
acceptance criteria proposed provide a complex system of evaluation, but
the various steps of this process are not vested with a uniform level of
confidence as compared with the experimental results. Strength values can
be estimated with sufficient accuracy only if the modes of failure involved
are ductile. The level of accuracy is degraded when considering brittle
mechanisms of resistance, and the associated deformation capacities,
which are used as a basis for comparison with deformation demands to
assess the level of performance (i.e. the damage), generally do not
correlate well with proposed Code estimations. However, in the process of
assessment it is a critical matter seriously affecting public safety, to
determine whether flexural yielding will precede shear failure (so as to
ensure ductility) or whether a brittle failure ought to be anticipated prior to
reinforcement yielding. Even when flexural yielding may be supported it
is also important to dependably estimate the ductility level beyond which
shear strength may be assumed to have degraded below the flexural
strength, leading to a secondary post-yielding failure that limits the
available deformation capacity (Fig. 2-1).

Stiffness properties and inelastic the earthquake response of frame
members are usually studied based on a statically determinant structure
comprising a cantilever reinforced concrete column under lateral loading.
Given the material properties (be they nominal, assumed or experimentally
measured), geometry, the loading conditions and loading history, it is
theoretically possible to analyze the cantilever so as to study the
interactions between various aspects of its response such as flexure, shear
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and reinforcement development capacity. In recent years the fixed ended
column specimen in lab experiments is preferred to be compared to the
cantilever arrangement, since the interaction of two end moments and
more realistic curvatures can be obtained, whereas they are more versatile
in dynamic tests (as it is possible to mount masses on top of the restraining
beam at the upper end of the column, thus simulating more realistically the
actual circumstances in the field). Moreover, in the case of lightly
reinforced concrete columns which are representative of older construction,
major inclined shear cracks have been seem to occur in the midheight
column region (near the point of column inflection), a crack pattern that
cannot be reproduced with the cantilever specimen since its tip is free to
rotate (only restrained in translation) and sustains no damage in that
region. In addition the elongation due to damage of the double curvature
member is more representative of a typical building column under
carthquake loading. The assessment performance objectives in such
experiments can be categorized and documented by obtaining the full
inelastic response until the collapse of the RC column.

Force 4
Variation of Member

——— Strength based on
\ Flexural Mechanism
Variation of Member

Strength based on Shear
Mechanism

»
»

Displacement

Fig. 2-1: Capacity curve due to flexural or shear mechanism.
Failure denoted with yellow point.

According to Eurocode 8, Part 3 (EN 1998-3, 2005), the fundamental
performance criteria related to the state of the structural damage are
defined through three Limit states that span the range of the member
resistance curve (Fig. 2-2.a), and are defined according to the severity of
damage that they represent as follows: “Damage Limitation (DL)”,
“Significant Damage (SD)”, and ‘“Near Collapse (NC)”. The target
displacement of the column based on the earthquake load defines which of
these Limit States are reached. In the following figure (Fig 2-2.b) the
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performance objectives for these Limit States are documented in practical
terms.

()

Fig.2-2: Damage of bridge columns: a) Member resistance curve and
definition of limit states according with EN 1998-3 (2005).
(b.1) Damage Limitation Limit State (b.2) Significant Damage Limit State
(b.3) Near Collapse Limit State.

The objective of this chapter is to critically review and identify,
through a thorough review of the published experimental evidence, the
critical issues affecting the resistance curve of columns during earthquake
action (strength and deformation capacity) and the limiting brittle modes
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of failure. This is important since the column resistance curve eventually
controls the buildings’ resistance in a relatively straightforward manner
(Fotopoulou et al., 2011) whereas a sudden loss of column strength to
overbearing loads may lead to collapse and human losses. In the context of
a displacement based evaluation framework, not only the relevant shear
strength is important, but also the corresponding column displacement
capacity. In this regard, recent experimental evidence of shear critical
reinforced concrete columns will be reviewed along with recently
developed analytical models and the relevant state of the art of code
assessment procedures.

Existing Experimental Studies on Shear Dominated RC
Columns

The behaviour of shear-critical reinforced concrete columns has been the
subject of extensive study and research in recent years as this seems to
remain a challenging concrete mechanics problem. Shear dominant
behaviour is reported in columns with a low aspect ratio, but also in lightly
reinforced columns containing low ratios of transverse reinforcement.
Section geometry (rectangular or circular sections) is one of the
parameters that differentiate the available test results; cyclic pseudo-static,
hybrid pseudo-dynamic and dynamic tests are included in the review.
Some experimental studies are dedicated to the influence of axial load
fluctuation on the response of the column (fluctuation of axial load about
the value that is affected by the overbearing loads occurring during the
seismic event as a result of the overturning action of lateral loads, and is
most significant in columns located at a distance from the centre of mass
of the building, i.e., on the perimeter of the structure).

The same effect is seen in bridge piers belonging to multiple-column
bents where it may be easily demonstrated that the axial load fluctuation is
proportional to the horizontal (seismic) forces. Columns are also subjected
to the vertical components of ground motion, which is not correlated
concurrently with the horizontal loading. Past earthquake records have
shown that in some cases, vertical ground motions cannot be ignored,
particularly for near-fault situations. For example, the lateral displacement
ductility of a column, designed based on constant axial load with a
relatively low axial load ratio, can become unsatisfactory when the actual
axial load due to the overturning effects or where the vertical ground
motion exceeds the “balanced” axial load limit (i.e., about 40% of the
column crushing load). The problem becomes even more significant when
shear design is considered. The increase of axial load from the design level
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(which typically is in the order of 5% to 10% of the crushing load) to the
level of the balanced value generally increases the column flexural
capacity causing a commensurate increase in the design shear demand
(based on capacity design principles). On the other hand, a change in the
axial load value from compression to tension may compromise significantly
the column shear strength.

A review of Influential Cyclic Column Tests

From among the multitude of published tests on cyclically loaded columns
under lateral displacement reversals (see also Chapter 3), a number of tests
have received greater attention as their response was used as points of
reference in calibrating the design expressions for shear published in the
literature. On account of the weighty contribution of these experimental
studies to the formation of the current assessment framework, these studies
are reviewed separately in the present work.

Ang, Priestley and Paulay (1989) performed experimental tests to
study the seismic shear strength of circular columns. A series of twenty-
five 400 mm-diameter columns, considered to be approximately one-third
scale models of typical bridge columns, were constructed and tested under
cyclic reversals of lateral loading, as part of a major investigation into the
strength and ductility of bridge pier columns. Variables in the test program
included axial load level, longitudinal reinforcement ratio, transverse
reinforcement ratio and aspect ratio. The column units were tested as
simple vertical cantilevers. Results indicated that the shear strength was
dependent on the axial load level, the column aspect ratio, the amount of
transverse spiral reinforcement and the flexural ductility displacement
factor. At low flexural ductilities, the additive principle for shear strength,
based on a concrete contribution plus a 45-deg truss mechanism involving
the spiral reinforcement and diagonal concrete compression struts,
described the behavior quite well. But at flexural displacement ductilities
greater than two, the tests demonstrated a gradual reduction of lateral load
strength with increasing ductility, whereas the inclination of the diagonal
compression struts of the truss mechanism relative to the longitudinal axis
decreased. Here it is worth noting that significant rotations occurred at the
base of these specimens artificially distorting the data in the direction of
more excessive strength loss due to P-A effects (Ioannou and Pantazopoulou,
2016).

Wong, Paulay and Priestley (1993) conducted a series of biaxial tests
that included 16 circular (400 mm-diameter) reinforced concrete cantilever
columns with an aspect ratio of two and different spiral reinforcement
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contents in order to investigate the sensitivity of the strength and stiffness
of shear-resisting mechanisms to various displacement pattern and axial
compression load intensities. Elastic shear deformations in squat circular
columns with small or no axial compression load were found to be
significant. It was concluded that shear deformation ought to be included
explicitly in the estimation of initial stiffness of a column, so that a reliable
relation between the ductility demand and the corresponding drift could be
established. A general observation was that in comparison with uniaxial
displacement paths, biaxial displacements led to more severe degradation
of stiffness and strength, and thereby, increased energy dissipation.
However, the reduction of initial shear strength and ductility capacity of
squat columns (recall that the aspect ratio of the tested columns was equal
to 2), subjected to biaxial displacement history was not very significant.
The value of the dependable displacement ductility level attained during
biaxial displacements was, on average, less (i.c. a value difference of 1)
than that obtained in identical units subjected to uniaxial loading history.
Initial shear strength of units with brittle shear failure was reduced by
about 5 to 10 percent, depending on the axial load level when biaxial
rather than uniaxial loading was considered. Finally, one more important
finding was that the shear carried by spirals was underestimated when
using a 45-deg potential failure plane; the observed major diagonal cracks
developed in squat columns at much lower angles with respect to the
longitudinal axis of the member.

Lynn et al. (1996) constructed and tested 8 full-scale square section
(457 mm) columns that had widely-spaced perimeter hoops with 90-
degree bends with or without intermediate S-hooks and with longitudinal
reinforcement with or without short lap-splices. The columns had an
aspect ratio of 3 and were loaded with constant axial load at low and
intermediate levels, and were subjected to lateral deformation cycles until
the column was incapable of supporting a lateral or vertical load. Failure
modes included localized crushing of concrete, reinforcement buckling,
lap-splice and flexural bond splitting, shear and axial load collapse. Loss
of gravity load capacity occurred at or after significant loss of lateral force
resistance. Where response was governed by a shear, gravity load failure
occurred soon after loss of lateral force resistance. Where response was
initially governed by lap-splice deterioration and gravity loads were
relatively low, gravity load resistance was maintained until eventual shear
failure occurred. Where response was predominantly flexural, gravity load
capacity was maintained to relatively large displacements.

As ecarthquakes and laboratory experience show that columns with
inadequate transverse reinforcement are vulnerable to damage including
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shear and axial load failure, another study in this direction is by Sezen and
Moehle (2006). The latter included four full-scale square section (457
mm) columns (aspect ratio equal to 3) with light transverse reinforcement
that were tested quasi statically under unidirectional lateral loads with
either constant or varying axial loads. Test results showed that responses
of columns with nominally identical properties varied considerably
depending on the magnitude and history of axial and lateral loads applied.
For the column with a light axial load and reversed cyclic lateral loads
(applied through a displacement history), apparent strength degradation
triggered shear failure after the flexural strength was reached. Axial load
failure did not occur until displacements had increased substantially
beyond this point. The column with high axial load sustained brittle shear
compression failure and lost axial load capacity immediately after shear
failure, pointing out the necessity of seismic evaluations to distinguish
between columns on the basis of axial load level. The column tested under
varying axial load showed different behavior in tension and compression,
with failure occurring under compressive loading.

A review of relevant Pseudodynamic Tests

It was stated earlier that columns in RC structures carry axial forces owing
to dead and live loads and a combined varying axial force, moment and
shear when excited by earthquake ground shaking. The varying axial loads
lead to simultaneous changes in the balance between their supply and
demand in axial, moment and shear to an extent that eludes adequate
estimation by the code models. To consider the time varying effects of the
ground motion on these combined actions, simulated dynamic loads were
applied using a hybrid simulation of the earthquake effects on the
structural model wherein the column specimen is assumed to belong. Kim
et al. (2011) used hybrid simulation, where an experimental pier specimen
was tested simultaneously and interactively with an analytical bridge
model which was modelled on the computer; at each step of the dynamic
test the forces applied on the specimen were calculated by solving the
dynamic equation of motion for the structure where the stiffness
contribution of the modelled column in the global structural stiffness was
estimated from the measured resistance in the previous step. Additionally,
two cyclic static tests with constant axial tension and compression were
performed to study the effect of the axial load level on the bridge piers. It
was found that by including vertical ground motion the axial force
fluctuation on the test specimen increased by 100%, resulting at times in a
net axial tension that was not observed under horizontal motion alone.
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This high axial force variation led to a fluctuation of lateral stiffness and a
more severe outcome of cracking and damage. Moreover, inclusion of
vertical ground motion significantly affected the confining spiral strains.
Thus, whereas the maximum spiral strain of the specimen subjected to
horizontal ground motion occurred at 20% of the pier height, in the case of
an identical specimen subjected to combined horizontal and vertical
excitations it occurred at 55% of the pier height. Thus, it was estimated
that the spiral strain increased by 200% when vertical ground motion was
included. Therefore, in this example, the deterioration of shear capacity
due to vertical ground motion was experimentally demonstrated. Also,
whereas the test specimen that was subjected to constant axial
compression experienced brittle shear failure including rupture of the
spiral reinforcement, the companion specimen that was subjected to
moderate tension showed ductile behavior. Comparing the strength at the
first peak of displacement, it was found that the lateral load strength of a
specimen with constant axial tension increased marginally with increasing
displacement; the response of the specimen with axial compression
showed significant strength degradation. Hence, considering observations
from the two tests described above, it was clearly shown that different
axial load levels influence the pier behavior significantly and can
ultimately dictate the failure mode.

Shake Table Tests conducted on Columns

Shake table tests were designed by Elwood (2002) to observe the
process of dynamic shear and axial load failures in reinforced concrete
columns when an alternative load path is provided for load redistribution.
The test specimens were composed of three columns fixed at their bases
and interconnected by a beam at the upper level. The central square
section column had a wide spacing of transverse reinforcement rendering
it vulnerable to shear failure and subsequent axial load failure during
testing. As the central column failed, the shear and axial loads were
redistributed to the adjacent ductile circular columns. Two test specimens
were constructed and tested. The first specimen supported a mass that
produced column axial load stresses roughly equivalent to those expected
for a seven-story building. In the second specimen hydraulic jacks were
added to increase the axial load carried by the central column, thereby
amplifying the demands for redistribution of the axial load when the
central column began to fail. Both specimens were subjected to one
horizontal component of a scaled ground motion recorded during the 1985
earthquake in Chile. A comparison of the results from the two specimens
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indicates that the behavior of the frame is dependent on the initial axial
stress on the center column. The specimen with a lower axial load failed in
shear- but maintained most of its initial axial load. For the specimen with a
higher axial load, shear failure of the center column occurred at lower
drifts and earlier in the ground motion record, and was followed by axial
failure of the center column. Displacement data from immediately after the
onset of axial failure suggest that there are two mechanisms by which the
center column shortens during axial failure: first, by large pulses that cause
a sudden increase in vertical displacement after a critical drift is attained,
and second, by smaller oscillations that appear to ‘grind down’ the shear-
failure plane. Dynamic amplification of axial loads transferred from the
center column to the outside columns was observed during axial failure of
the center column.

An additional study by Ghannoum and Moehle (2012) includes
earthquake simulation tests of a one-third-scale, three-storey, three-bay,
planar reinforced concrete frame which was conducted to gain insight into
the dynamic collapse of older-type construction. Collapse of the frame was
the result of shear and axial failures of columns with widely spaced
transverse reinforcement. The frame geometry enabled the observation of
the complex interactions among the failing columns and the surrounding
frame. The tests showed that the failure type and rate depended on the
axial load level, stiffness of the surrounding framing, and intensity and
duration of shaking. Column shear and axial behavior, including strength
degradation, was affected by both large lateral deformation excursions and
cycling at lower deformations. Low-cycle fatigue caused column collapse
at significantly lower drifts than anticipated. It was concluded that current
models and standards for estimating the shear and axial failure of columns
do not account for low-cycle fatigue and can be unconservative,
particularly for columns subjected to long-duration seismic motions.
Moreover, models for shear strength degradation of reinforced concrete
columns should account for both deformation and cyclically-driven
damage. Finally, it was seen that structural framing surrounding the failing
columns enabled vertical and lateral force redistribution that delayed or
slowed down progressive structural collapse.

Code Criteria for Shear Strength Assessment
of RC Columns

Behavior of reinforced concrete columns in combined shear and flexure
has been studied extensively (see also Chapter 3). In the case of flexural
behavior, sectional analysis, or a fiber model considering normal stresses
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provides acceptable estimations in terms of ultimate strength and yielding
deformation. Performance of reinforced concrete columns dominated by
shear or shear-flexure cannot be estimated by applying only sectional
analysis because shear behavior concerns the member and not a single
cross section. In these cases it is necessary to couple a shear strength
model with the flexural model — and by considering independently the
degradation of each with increasing deformation, to determine the
prevailing mechanism that controls the mode of failure of the member at
the reference performance limit. Several code assessment procedures
define the shear strength and its rate of degradation with increasing
displacement ductility by evaluating the concrete contribution and the
transverse steel reinforcement contribution to shear strength. Actually the
existing code methodologies are differentiated regarding the concrete
contribution term whereas the truss analogy for steel contribution is
adopted almost universally in all proposals with a minor point of
discussion being the angle inclination of the primary shear crack of the
column that activates the steel stirrups contribution (Fig. 2-3). The various
aspects of the code assessment of shear strength will be covered in the
following sections.

It is generally acknowledged that shear failure of RC structures
signifies rapid strength degradation and significant loss of energy dissipation
capacity. Reconnaissance reports from past strong earthquakes highlight
the susceptibility of RC column webs to diagonal tension cracking that
frequently leads to a brittle shear failure. Shear strength degradation
ensues after the opening of the diagonal cracks which eliminate the
mechanism of force transfer via aggregate interlock. To avoid shear
failure, shear strength should exceed the demand corresponding to
attainment of flexural strength by a safety margin.
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N

Figure 2-3: Angle inclination of the primary shear crack.

For the mechanics of shears in reinforced concrete, most issues relating
to physical interpretation are still fraught with considerable debate. For
example, consensus is lacking as to the physical significance of the
concrete contribution term and to mathematical description of tension-
based sources of shear-strength and their relationship to strain intensity
and cyclic displacement history. According to EN 1998-3 (2005), the
cyclic shear resistance, Vz, decreases with the plastic part of ductility
demand, expressed in terms of ductility ratio of the transverse deflection of
the shear span (Fig 2.4) or of the chord rotation (Fig. 2.4) at member end:
u,Pt = u, — 1. For this purpose u,?' may be calculated as the ratio of the
plastic part of the chord rotation, 6,, normalized to the chord rotation at
yielding, 8, .
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Figure 2-4: Definition of chord rotation of a cantilever reinforced concrete
column (top) modeling the shear span of an actual column (bottom).

Thus, EN 1998-3 (2005) defines shear strength accounting for the
above reduction as follows:

Vg = [(h — x)/2L Jmin(N; 0.554.£) + [1 — 0.05min (5;,7)] -
{0.16max (0.5; 10090, ) [1 — 0.16min (5; Lo/R))F A, + V)
2-1)
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where h: is the depth of the cross-section (equal to the diameter D for
circular sections); x: is the compressive zone depth; N: is the compressive
axial force (positive, taken as being zero for tension); Lg: M/V ratio
moment/shear at the end section; A.: is the cross-section area, taken as
being equal to by,d for a cross-section with a rectangular web of width
(thickness) by, and structural depth d or to nD. /4 (where D, is the
diameter of the concrete core to the inside of the hoops) for circular
sections; f.: is the concrete compressive strength, and @eg: is the total
longitudinal reinforcement ratio.

For a typical reinforced concrete column (mean concrete strength of 30
MPa) with a 1.5 meter shear span (i.e., a clear height of 3.0m) and a 350
mm circular section (clear concrete cover 20mm) with 14®12 longitudinal
reinforcement (yielding a strength of 500MPa) and ®10/10 spiral
reinforcement (yielding a strength of S00MPa) and axial load ratio of 20%,
the axial load and concrete contribution to shear strength calculated based
on the above equation (Eq. 2-1) lead to the following results: 49 kN axial
load contribution which is the first term of the above equation (Eq. 2-1)
and the concrete contribution is 34 kN. The reduction factor for a
displacement ductility of 3 is 0.9. Therefore, the reduced concrete
contribution is 31 KN.

For the same column under the same axial load and with the same
material properties as above but comprised of a square section (457 mm)
with  8®20 longitudinal reinforcement and @®10/20 transverse
reinforcement, the axial load contribution and the concrete contribution to
shear strength are 137 kN and 98 kN respectively. The concrete
contribution for displacement ductility equal to 3 will be reduced to the
value of 88 kN.

In Eq. 2-1 term ¥y, is the contribution of transverse reinforcement to shear
resistance, taken as equal to:

a) for cross-sections with a rectangular web of width b,
En' = Puw hwzf}"w (2'23)

where gy is the transverse reinforcement ratio (Fig. 2-5); £ is height of the
equivalent truss, set equal to the internal lever arm, i.e., d-d’ in beams and
columns (Fig 2-5); and f, is the yield stress of the transverse
reinforcement; and S the stirrup spacing.
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Figure 2-5: Transverse Reinforcement Ratio (S: spacing of the stirrups)

With regard to the example of the typical, square-sectioned column as
described above based on Eq. 2-2a, the steel contribution in shear strength
is 175 kN and the total shear strength of Eq. 2-1 is 410 kN. If the reduction
factor is applied, the shear strength becomes equal to 383 kN. The
variation of shear strength with spacing for this example under
consideration leads to the following graph (Fig. 2-6).
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Figure 2-6: Effect of stirrup spacing to transverse steel contribution of a

rectangular section in shear strength.

It is evident that for spacing greater than the effective depth of the
section—which for the 45° degree truss analogy means that the shear crack
doesn’t intersect any stirrup—Eq. 2-2a simply leads to a lower value of
steel contribution to shear strength. This is actually inconsistent — the
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value ought to be zero in this case; Pantazopoulou and Syntzirma (2010)
have suggested that the term be substituted by,

¥, = ZAS“.[ - fei imy = [d/'5] (greatest integer function)
ny

(2-2b)
For circular cross-sections (£ is the concrete cover):

Ay
Wy =2 22f, (D —20) (2-3)

Regarding the example of the typical column with the circular section
as described above based on Eq. 2-3, the steel contribution in shear
strength is 382 kN and the total shear strength of Eq. 2-1 is 465 kN. If the
reduction factor is applied the shear strength becomes equal to 424 kN.
The variation of shear strength with spacing for the example under
consideration leads to the following graph (Fig. 2-7).
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Figure 2-7: Effect of stirrup spacing on transverse steel contribution of a
circular section in shear strength.

Based on Fig. 2-7, the steel contribution component should be based
on the requirement that at least one stirrup layer must be intersected by the
diagonal cracking plane; otherwise the steel contribution term ought to be
taken as equal to zero.
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In concrete columns with shear span ratio of L /h, less or equal to 2,
the shear strength, ¥z may not be taken as greater than the value
corresponding to failure by web crushing along the diagonal of the column
after flexural yielding, Vgmgx, which under cyclic loading may be
calculated from the expression:

Vamax = (4/7)[1 — 0.02min(5; 4, P01 + 1.35(N /A, £)111 +
0.45(100 pe e V] min(40: £)b, 2 5in28
(2-4)

where & is the angle between the cracking plane and the axis of the
column (tan § = h/2L;). By implementing this equation to the example of
the cases described above but with a change on the shear span so that the
column be compliant to the shear span ratio limit of Eq. 2-4, the following
results are obtained (L;=700mm). It can be seen that for the circular
column case shear strength is limited by web crushing along the diagonal.

700
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400
300 M Circular Column

200 | M Square Column

Shear Stength (kN)

100

Figure 2-8: Shear Strength and its contributions for a typical reinforced
concrete column.

ASCE/SEI 41 is the latest in a series of documents developed after the
FEMA initiatives in the 1990s and 2000s towards the development of a
consistent assessment framework for existing structures. The FEMA/ATC
documents form the first integrated reference for performance-based
engineering, whereby deformation and force demands for different seismic
hazards are compared against the capacities at various performance limits
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(i.e. states of damage). At the outset of this momentous project by FEMA,
available data on the performance of existing components were rather
limited and therefore reliability concepts were not applied evenly towards
the establishment of performance criteria.

The issue of dependably estimating the shear strength of a RC element
appears to be rather complicated as it presumes the full understanding of
the several interacting behavior mechanisms under reversed cyclic
loading, whereas it is strongly affected by the imposed loading history, the
dimensions of the element (e.g. the aspect ratio), the concrete strength, the
longitudinal reinforcement ratio but mostly the ratio and the detailing of
the transverse reinforcement. So far it has not been possible to
theoretically describe the strength of the shear mechanism from first
principles of mechanics without the use of calibrated empirical constants.
Therefore the shear strength estimates obtained from calibrated design
expressions necessarily rely on the pool of experimental data used for
correlation of the empirical expressions, as well as on the preconceived
notions of the individual researchers as to the role each variable has in the
mechanics of shear.

The following expression for estimation of the shear strength of
reinforced concrete columns is proposed by the Code for seismic
rehabilitation of existing buildings of the American Society of Civil
Engineers ASCE/SEI 41 (2007):

Ve =W +V¥, = k{.uﬂ][{U.S.,*-'E,u‘ru_g.-"rd]}\illl +N/(0.54,,/F)|0.84, +

kg Aqy fywd /5]
(2-5)

where ¥, is the concrete contribution in shear resistance; ¥y, is the
contribution of transverse reinforcement; d is the effective depth; Lg is
shear span of the column; IV is the axial force (compression positive, taken
zero for tension); A4 is the gross cross-sectional area of the column; Agyp is
the cross-sectional area of one layer of stirrup reinforcement parallel to the
shear action; and § is the centerline spacing of stirrups. If S is equal to or
greater than half of the effective depth of the column then the contribution
of steel reinforcement ¥, in shear strength is reduced to 50% of its
estimated value from the above equation. If S is equal to or greater than
the effective depth of the column then zero shear strength contribution
from steel reinforcement ¥, is considered; f; is the concrete compressive
strength; k() is the shear strength reduction factor that depends on
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ductility. If ductility is less than or equal to 2 then the factor is set to equal
to 1 (i.e. no strength reduction). If the ductility is greater than 6, then the
reduction factor is equal to 0.6. For ductility between 2 and 6 the reduction
factor is linearly interpolated between the proposed values.

The V. estimate given by Eq. 2-5 for the example of the rectangular
column presented in this Section is: Ve sce = 233 kN, while EN 1998-3
(2005) resulted in V. gcs.3= 88 kN which, when combined with the axial
load component (137 kN) leads to a total of 225 kN, which is comparable
to the result of Eq.2-5. For the case of the circular column results to Ve asce
= 81 kN whereas V. rcs-3=80 kN (49 kN axial load contribution+31 kN
concrete contribution) — values calibrated well with each other.

The effect of the stirrups’ spacing to the steel contribution to shear
strength is depicted in the following figures for ASCE/SEI-41 (2007) and
it is compared with the EN 1998-3 (2005) (here abbreviation EC8-III is
used) results.

Despite the convergence of the calibrated expressions, the preceding
comparisons highlight some of the uncertainties underlying the shear
problem. For one, the concrete contribution term is taken—in both code
documents—to be independent of the amount of transverse reinforcement,
an omission that goes to the root of the truss-analogy model as originally
introduced by Ritter and Moersch: there the concrete contribution
component was thought to be a minor correction to the main component
that was owing to transverse reinforcement (the truss posts) so as to
improve correlation with the tests — it was never meant to be a component
of commensurate importance and magnitude to that of transverse
reinforcement. Another source of uncertainty lies in the treatment of the
axial load: in the EN 1998-3 (2005) approach, the axial load contribution
is dealt with as a separate term, whereas in the ASCE/SEI 41 (2007)
approach it is treated as an offset to the tensile strength of concrete in the
member web. This difference causes a departure in the V. values near the
upper limit in the axial load ratio (v=N/Agf.) as depicted in Fig. 2-11.
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Figure 2-9: Effect of stirrup spacing to transverse steel contribution of a
rectangular section in shear strength.
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Figure 2-10: Effect of stirrup spacing to transverse steel contribution of a
circular section in shear strength.
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Figure 2-11: Shear strength vs. displacement ductility for the column with
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Figure 2-12: Shear strength vs. displacement ductility for the column with

circular section.
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Contrary to the shear strength assessment models of EN 1998-3 (2005)
and ASCE/SEI 41 (2007), the shear model of fib Model Code (2010) is a
design model which was not calibrated to specifically address members
under seismic loads. The fib-MC2010 design section on shears provides
the option of four different levels of model complexity depending on the
level of detail needed at the time of calculation (intended to address the
needs for preliminary design, detailed design and assessment). The four
models are referred to here on as levels of approximation (LA) and are
identified by Latin numbers. Thus, for members with shear reinforcement
the LA-III model provides the point of reference since the higher the level
of approximation is, the greater the design effort required. This is also the
case for shear strength assessment of members with low volume of shear
reinforcement (Sigrist et al. 2013).

For members with shear reinforcement the fib Model Code 2010 shear
provisions are based on a general stress field approach (Muttoni A. et al.
1997, Sigrist V. 2011), combined with Simplified Modified Compression
Field Theory (SMCFT, Vecchio and Collins 1986, Bentz et al. 2006). As
in all preceding code formulations the shear resistance ¥y is determined by
the sum of a concrete contribution and web steel contribution term:

Ve =V +¥, (2-6)

For structural assessment, the strain dependence of the shear resistance
may be taken into account by estimating the strain value &, at the mid-
depth of the effective shear section as depicted in (Fig. 2-13, fib Model
Code 2010). Other deformation parameters could be selected but this value
has a clear physical meaning as it represents the average longitudinal
strain in the web and can be found from the sectional forces. For a
reinforced member, the effective shear depth =z is assumed to be (L9d. The
tension chord force can be found from moment equilibrium in the section
(Fig. 2-13) and the tension chord strain is determined accordingly from the
tension chord force:

Ag

T=2E A4 ="+ cotat N[22 2-7)

where M is the resisted moment, ¥ is the applied shear force, N is the
axial force, Ae is the eccentricity of the beam axis with respect to its mid-
depth, E; is the modulus of elasticity of longitudinal steel reinforcement
and A; is the area of tensile longitudinal reinforcement.
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Figure 2-13: Equilibrium at cross-section and corresponding approximation
of strain profiles for end support region.

For the sake of simplicity, and to avoid iteration (since the definition of
the compressive stress field inclination angle & requires &,) for calculating
the strain &, the second item in Eq. 2-7 is approximated as
(V/2) cota = V (a compressive stress field inclination angle & close to
27° is assumed) (Fig. 2-13). With the conservative assumption that the
compression chord strain is zero, it may be shown that the mid-depth
strain may be taken as half the tension chord strain (Fig.2-13). The
resistance attributed to concrete is:

V = kyy/fibyz  (f: in MPa) (2-8)

where ky is a factor accounting for strain gradient effect and member size
(Eq. 2-9), f. is the concrete strength and by, is the web width.

The k,, value, accounting for the demand in the concrete contribution
term, is defined by:

k, = 04 (1_ Ved :.) (2-9)

1+1500 £ Vedmar min

where ¥y is the shear force demand at the control section.
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The concrete contribution equation (Eq. 2-8) is limited to normal or
moderately high concrete strengths up to f= 65MPa (the value «.,"E is
limited to a maximum of 8 MPa); for higher strengths the equation may be
deemed unconservative on account of the smoother crack faces where
cracks pass through, rather than around, aggregate particles, resulting in
larger variability in the shear resistance of members. For members with
shear reinforcement, the shear resistance is the sum of the resistances
provided by concrete (as per Eq. 2-8) and the contribution of stirrups:

W ==z, cota (2-10)

where Agy is the cross-sectional area of one layer of shear reinforcement,
fw s the yield strength of shear reinforcement and a is the inclination of

the compressive stress field relative to the longitudinal axis of the member
(i.e., the angle of shear sliding cracks).
Shear strength is limited by the crushing of concrete according with:

Vames = K fibyzsinocosa (2-11)

The strength reduction factor k; = k.nz accounts for the effect of
compression softening due to transverse tensile strain through factor k. :

k. =—— < 0.65 (2-12)

T 124558,

and for the increasing brittleness of high strength concrete through factor
77 which reduces the effective shear strength for f; = 30 MPa:

13
e = (;—”] <1.0 (f. in MPa) 2-13)

The principal tensile strain that causes the compression softening effect
in k. above, & = &, + (&, —&;) cot® a, is defined by a Mohr’s circle of
strain (Fig. 2-14); as an adequate approximation, the (negative) principal
strain —&; may be taken as the concrete peak strain .y = 0L002 and &



28 Chapter Two
from Eq. 2-7. Finally, the stress field or strut inclination (Fig. 2-14),

relative to the longitudinal axis of the member, is limited to:
(2-14)

Cmin = @ = 435°
(2-15)

Gmin = 20° + 10000z,

y/2
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Figure 2-14: Strut inclination in a column and Mohr circle of strains

A comparison of the assessment procedure described above based on
the design model of fib Model Code 2010 with the assessment models of

the previously presented Code requirements stated in this Section is
illustrated in Figs. 2-16, 2-17. The columns under study have similar

properties with the already described example columns. It may be
observed that the general method of the fib Model Code 2010 gives a more
conservative estimation of the concrete contribution to shear strength.

Similar to fib Model Code (2010), the design model of ACI-318-14
(2014) considers a concrete and a steel contribution to the shear strength

of beam-columns:
(2-16)
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The concrete term, . is taken as the shear force causing inclined
cracking in the member, obtained by setting the maximum sectional shear
stress to the principal tensile stress of concrete; after cracking, ¥ is kept
the same, but it is justified as a contribution supported by aggregate
interlock, dowel action and the shear term transmitted across the concrete
compression zone. As in all other codes, the shear strength is based on an
average shear stress acting over the effective cross section by, d (b, = web
width or diameter of circular section, d = effective depth of cross section).

For non-prestressed members with axial compression, ¥ is calculated
from:

My s
V. =0.17 (1 + u—%] A/Fob,d (2-17)

where Ny, is the axial force normal to cross section- to be taken as positive

for compression, (Newton), A4 is the gross area of concrete section, mm?,

f: is the specified compressive strength of concrete (MPa), & is a
modification factor to account for the reduced mechanical properties of
lightweight concrete relative to normal weight concrete of the same
compressive strength.

For non-prestressed members with significant axial tension, ¥ is
calculated from:

v, —Dl?l:1+“9"':“)1w§&“d::-ﬂ (2-18)

Required shear reinforement is obtained from a modified truss analogy,
wherein the force in the posts (vertical ties, Fig. 2-15) is resisted by the
shear reinforcement. However, considerable research on both
nonprestressed and prestressed members has indicated that shear
reinforcement needs to be designed to resist only the shear demand
exceeding the force that causes inclined cracking, assuming the diagonal
struts in the truss panels to be inclined at 45 degrees (Fig. 2-15).

From equilibrium it may be easily shown that ¥, supported by web
reinforcement is:

Apfyed

By =
W 5

(2.19)
where § is the longitudinal spacing of transverse reinforcement (or the
spiral pitch of tied columns with spiral transverse steel), mm; A, is the
cross sectional area of shear reinforcement parallel to the shear force
within a single stirrup pattern, mm?,and fye is the specified yield
strength of transverse reinforcement, MPa. Observe the similarity with the
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EN 1998-3 (2005) equation for the V,, term. For circular ties or spirals, 4,
is two times the area of the spiral bar or wire. For calculation of ¥ and ¥,
in solid circular sections, € is approximated by 0.8 times the diameter and
b, is taken as the diameter.

_ _

Figure 2-15: 45° Truss Model.

Comparison of Shear Strenth Assessments for the Square
Column Example
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Figure 2-16: Comparison of shear strength assessment models for the
square column example under study.
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Comparison of Shear Strenth Assessments for the Circular
Column Example
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Figure 2-17: Comparison of shear strength assessment models for the
circular column example under study.

Figures 2.16 and 2.17 compare the values obtained from the shear
stregth models of the various code provisions including ACI 318-14
(2014) for the example columns considered. Note that ACI 318-14 (2014)
gives a higher shear strength estimation for concrete contribution with
respect to the other code models but it is closely calibrated to both EN
1998-3 (2005) and ASCE/SEI-41 (2007).

Finally, it should be mentioned that the Greek Code (KAN.EPE. 2014)
containing the necessary provisions for structural assessment and
interventions for reinforced concrete buildings adopts the Eurocode 8 —
part 3 (ECS8-III) procedures (EN 1998-3, 2005), already introduced in this
Section.

Milestones in the Development of Models for Shear
Strength Assessment of RC Columns

Reviewed Code provisions were developed and based on past research
which was motivated by the extensive damages observed in modern
construction in the earthquakes worldwide after 1990. In particular,
defining the degradation of shear strength due to increasing inelastic
deformations has been the objective of several older models (Aschheim
and Moehle 1992, Priestley et al. 1994, Sezen and Moehle 2004).
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The study by Aschheim and Moehle (1992) was the first to develop a
degrading model for the shear strength envelope of columns and beams,
after calibrating an empirical relationship with a database of laboratory
data from cantilever bridge column tests. The data indicated that the
column shear strength is a function of displacement ductility demand, i 4,
the quantity of transverse reinforcement and axial load. As is the general
practice, the shear strength is calculated as the summation of strength
contributions from transverse reinforcement and concrete. The transverse
reinforcement contribution is computed from Eq. 2-19. The concrete
contribution is defined as:

N I3
V.= 0.3 (k + E) (7084, (2-20)
where 0 = k:""'T-”"g 1 2-21)

So this model attributes the entire amount of strength degradation to
deterioration of the concrete contribution term (through factor k). This
model was intended to evaluate the shear strength in plastic hinge zones
and was later adopted in FEMA 273 (1997). ASCE/SEI 41 is the most
recent report for the subject of the “seismic rehabilitation of existing
buildings,” which succeeded the previous editions on the same subject,
FEMA 273 (1997) and FEMA 356 (2000).

The approach by Priestley et al. (1994) further de-aggregates the shear
strength of columns under cyclic lateral loads as comprising three distinct
contributions — that of the concrete web, ¥z, a truss mechanism (or
transverse reinforcement), ¥, and an arch mechanism associated with an
axial load, Wy, as follows:

Ve=V+W+VW (2-22)
The concrete component I is given by:
Vo= k(F A (2-23)

where A, = 0.804; and the parameter k depends on the member
displacement ductility level as defined in the following equations:

Foru,=2,k=0.29
For2 < p,=<+4.k=-0.095u,+ 0.48
Forpu,=4,k=01 (2-24)
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The contribution of transverse reinforcement to shear strength is based
on a truss mechanism using a 30-degree angle between the diagonal
compression struts and the column longitudinal axis. For rectangular
cross-section columns, the truss mechanism component, ¥, is estimated
from:

Ay fld—d’
= Aarfeld2)

cot30° (2-25)
where d —d' is the distance measured parallel to the applied shear
between centers of the perimeter stirrup. For circular cross-section
columns, the truss mechanism component, ¥, is defined from:

T An\:fywﬂr

V., =
W 7

cot30° (2-26)
where D' is the distance measured parallel to the applied shear between
centers of the perimeter hoop or spiral.

The arch component refers to the horizontal component of the inclined
axial strut carrying the axial load to the support. In this model this term is
given by

Vy = N tana = ‘ifﬂ.r (2-27)
where @ is the inclination of the diagonal compression strut with respect to
the longitudinal axis of the column and x is the depth of the compression
zone, whereas d is the effective depth of the section.

It should be noted that the depth, x, depends on both the axial load and
aspect ratio (i.e. the amount of curvature required to develop a certain
displacement ductility). Thus, with an increasing aspect ratio the axial load
contribution to shear strength decreases. Similarly, a higher depth of
compression zone (for higher axial load) affects the value of ¥y, showing a
subtle increase for higher compressive N. The effect of the axial tensile
load on the shear strength is not defined in the model.

Sezen and Moehle (2004) updated the earlier model of Aschheim and
Moehle (1992) also relating column shear strength to the displacement
ductility demand; the novelty here is that the strength degradation factor k
was taken to operate on both concrete and steel contributions (Fig. 2-18):
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V-n = k{p:; + I{?] -
kﬂm._r’m.d
k3

(2-28)

This model was later adopted in the ASCE/SEI 41 assessment
provisions. The reasoning in applying a reduction to both terms is that the
concrete component is expected to diminish owing to increased cracking
and degradation of the aggregate interlocking mechanism, whereas the
steel component is assumed to degrade due to a reduction in the bond
stress capacity required for an effective truss mechanism.

Proposals for the shear strength degradation factor
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Figure 2-18: Variation of degradation coefficient k£ with displacement
ductility.

The comparison of the models included in this Section for the example
columns under study of this Chapter is illustrated in Figs. 2-19 and 2-20.
Differences in the estimation of the transverse reinforcement contribution
in shear strength between the 30-degree truss model (Priestley et al 1994)
and the 45-degree truss model adopted by Aschheim and Moehle 1992,
Sezen and Moehle 2004 are clearly evident. For the same stirrup
arrangement, the 30-degree truss model gives a higher steel contribution to
shear strength.
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Comparison of Shear Strength Estimates - Squared Celumn Example
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Figure 2-19: Comparison of shear strength assessment models for the
square column example under study.

Comparison of Shear Strength Estimates - Circular Column Example
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Figure 2-20: Comparison of shear strength assessment models for the
circular column example under study.

The Modified Compression Field Theory (MCFT) (Vecchio and
Collins, 1986) employs equilibrium, compatibility and experimentally
verified stress-strain relationships to model the shear behavior of cracked
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concrete. A fundamental relationship in the MCFT relates the shear stress
on a cracked surface due to aggregate interlock to the crack’s width, the
maximum aggregate size and the concrete strength. The aggregate effect
was first codified when a general method for shear design was derived
based on the MCFT and implemented in the AASHTO-LRFD bridge
design guidelines. In 1994 the general method of shear design was
implemented in the CSA concrete design code for buildings in Canada. An
updated and simplified version of the general method has been developed
(Bentz et al., 2006) and implemented in the 2004 CSA design code. The
new general method, referred to as the Simplified Modified Compression
Field Theory (SMCFT) has been found by some to be simpler than the
original general method with, in many cases, improved predictive
capabilities (Sherwood et al., 2006).

According to SMCFT simple expressions have been developed for £ (a
parameter that models the ability of cracked concrete to transfer shear), the
crack angle a, and the normal average strain in the web’s longitudinal
centroidal axis &, thereby eliminating the need to iterate in order to solve
for these values. The following general relationship is used to determine
the shear resistance of a concrete section:

— Ayl
Va =V + ¥, = B[fibyd, + —d,cota (2-29)

Term £ in Eq. 2-29 is a function of 1) the longitudinal strain at the
mid-depth of the web &, 2) the crack spacing at the mid-depth of the web
and 3) the maximum coarse aggregate size, ag. It is calculated using an
expression that consists of a strain effect term and a size effect term:

- - T — —MD '
f = (strain softening term) - (size af fect term) = (1e1500e0)
1200
(1000 +25)
(2-30)

The longitudinal strain at the mid-depth of a beam web is
conservatively assumed to be equal to one-half of the strain in the
longitudinal tensile reinforcing steel as is adopted in the fib Model Code
2010 previously presented. For sections that are not prestressed, &, is
calculated according to Eq. 2-31 which is practically the same as Eq. 2-7
(here, M is the resisted moment, ¥ is the applied shear force, IV is the
normal force [positive if it is tensile], E; the modulus of steel, and A; is
the area of tension reinforcement):
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e = M/d,+V+0.58 2-31)

1E;Ar

The effect of the crack spacing at the beam mid-depth is accounted for
by the use of a crack spacing parameter 5. This crack spacing parameter is
equal to the smaller of either the flexural lever arm (d,, = 0.9d or 0.72h,
whichever is smaller) or the maximum distance between layers of
longitudinal crack control steel distributed along the height of the web.

The term s, is referred to as an “equivalent crack spacing factor” and
has been developed to model the effects of different maximum aggregate
sizes on the shear strength of concrete sections by modifying the crack
spacing parameter. For concrete sections with less than the minimum
quantity of transverse reinforcement and constructed with a maximum
aggregate size of 20mm, 5z, is taken as equal to 5;. For concrete with a
maximum aggregate size other than 20mm, =, is calculated as follows:

_ E5g

Sge = 15+ag = 0.85s, (2-32)

To account for aggregate fracture at high concrete strengths, an
effective maximum aggregate size is calculated by linearly reducing ag to

zero as the compressive concrete strength f; increases from 60 to 70 MPa.
Term agis set equal to zero for higher concrete strengths (i.e., for fz>70
MPa). The square root of the concrete strength is limited to a maximum of
8 MPa as in the fib Model Code 2010 previously introduced.

The angle of inclination of the cracks at the beam mid-depth, a, is
calculated by the following equation:

a = (29° + 7000£,)(0.88 + 5,./2500) =73°  (2-33)

For the example columns of this Chapter, Eq. 2-33 results in & = 437
for the square column and @ = 417 for the circular column.

A campaign to re-evaluate the shear strength models for the V. term
was conducted by Tureyen and Frosch in 2003. As part of this effort, a
new model was developed, taking the compressive zone part of the cross
section (i.e. the part above the neutral axis) as the primary contributor to
shear strength. As shown in Fig. 2-21, the model considers that while the
shear can be transferred over the entire effective depth d between cracks,
at the location of a crack, shear stress can only be transferred through the
uncracked concrete above the neutral axis. The shear stress distributions
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shown in Figure 2-21 (a) are theoretical;, however, these can be simplified
in considering average stress distributions as shown in Figure 2-21 (b).
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Figure 2-21: Theoretical (a) and Average (b) Shear Stress Distribution.

Using this model and considering the average shear stress distribution
at a crack, a simplified expression for concrete contribution to shear
strength was developed:

I —
V= 2 Fbux ~ 0.4Fb,x (2.34)

where & is the neutral axis depth (mm) measured from the compression
face of the cracked, transformed cross section of the member. An
advantage of this approach is that the effect of axial load is implicitly
accounted for in the value of x.

Using shear-strength models such as those presented in the preceding
figure is useful in estimating the available strength of members in
conventional strength-based design and assessment. However, the
strength-based approaches overlook a significant aspect that is essential in
the performance context (i.e. when the focus is on damage sustained when
the strength term materializes) — namely, the deformation capacity of the
member and the mode of failure associated with the exhaustion of the
shear strength terms, and the margin of safety required between this, brittle
occurrence and the more ductile mechanisms of behavior before safety
may be compromised. The above-mentioned limitation motivated the
effort to develop displacement-based models for a dependable estimation
of the drift capacity of flexure-shear critical columns, i.e., columns that
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become critical in shear immediately after flexural yielding for a known
axial load magnitude and member aspect ratio.
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VR |77~~~ 23
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Figure 2-22: Shear and Axial Failure of a Reinforced Concrete Column.

The occurrence of a steep shear crack in a reinforced concrete column
signifies the process of strength degradation that eventually leads to shear
failure. If the reinforcement anchorages are sufficient, then, beyond this
point the steep shear crack developed on the column leads to progressive
sliding between the crack surfaces, permanent distortion of the web with
simultaneous buckling of longitudinal reinforcement and fracturing of
transverse reinforcing bars crossing the sliding plane; this type of failure
eliminates the ability of the column to carry the overbearing loads and is
therefore considered an axial failure. These two stages are distinct and not
interchangeable; for the sake of clarity the two points of failure are marked
on the notional element resistance curve in Fig 2-22.

The model developed by Pujol et al. (1999) related the magnitude of
drift at shear failure with the aspect ratio of the column ( Ly/d, where L; is
the column shear-span and d is the section depth from the centre of tension
reinforcement to the extreme compression fibre of the column), the shear
reinforcement ratio g (yield stress of fi,,), and with the column shear
stress T at shear failure (defined as the shear force at shear failure divided
by the web area, b, d). Based only on a statistical evaluation of the results
of an experimental database that comprised 15 series of tests containing 94
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specimens, and in an effort to establish a conservative estimate of the drift
ratio at shear failure, Pujol et al. (1999) recommended the following
relationship (L = clear height of column):
Ag wa w Le
100 F=—"=-=< {Li“:d (2-35)
All the column specimens considered in the study were subjected to
nominal shear stresses that may be assumed to be high enough so as to
produce inclined shear cracking (shear stresses that exceed the tensile
strength of the concrete). Failure was due to disintegration of the concrete
core caused by sliding along inclined cracks and crushing of the concrete
under compression. The ranges of the parameters for the employed
experimental data leading to Eq. 2-35 were:

o fii 21-86 MPa, g, (Longitudinal reinforcement ratio): 0.5-5.1%,
Pufiw: 0-8 MPa, v=N/(f4,): 002, L/d: 1.3-5, 7/ [f:
= 0.17.

Figure 2-23 depicts the results from Pujol’s model and the database
employed by Elwood (2003) (the database consists of 50 flexure-shear-
critical columns representative of columns from older reinforced concrete
buildings). It has been observed that the proposed expression for drift at
shear failure is not conservative for six of the columns in the employed
database. Three of those columns were subjected to axial loads in excess
of the axial loads considered when developing the model. Although
conservative with respect to the other specimens, there is nevertheless still
significant discrepancy between calculated and measured drift values.
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Figure 2-23: Comparison of calculated and measured drifts for Pujol et al.
1999 (Elwood 2003).

Elwood and Mochle (2005) proposed an empirical model that relates
the shear demand to the drift at shear failure (4,/L) based on the
transverse reinforcement ratio @, shear stress ratio {w’ ,*-'E}, and axial
load ratio {v = N/4, ﬁ;}. A database created by Sezen (2002) comprising
50 flexure-shear-critical specimens representative of older construction
practices was employed for validation of the model. The test columns were
selected based on a search of the literature for specimens tested under
unidirectional cyclic lateral load with low transverse reinforcement ratios
(p, =0.007), yielding of longitudinal reinforcement prior to loss of
lateral load capacity, and shear distress observed at failure suggesting that
loss in lateral load capacity was due to degradation of the shear-transfer
mechanism. The point of shear failure in the developed model was
determined by the intersection of shear-drift curve for the column and the
limit surface defined by a postulated drift capacity model (the limit surface
is the outcome of Equation 2-36 for different pairs of shear force (and the
corresponding shear stress) and the resulting displacement A; plotted
along with the element resistance curve- Figure 2-24). The proposed
equation is:
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Figure 2-24: Shear failure by Elwood and Moehle (2005)
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Figure 2-25: Comparison of calculated drift ratio at shear failure using Eq.
2-36 with database by Elwood. (Elwood 2003 — Dashed lined are +/- one

standard deviation from the mean.)
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For the example of the square column under study in this Chapter with
200 mm stirrup’s spacing Pujol’s model results in a 1.7% drift at shear
failure and Elwood’s model in 2.4 % drift at shear failure (in Fig. 2-25
depicted by the red and the blue dots, respectively). Therefore, the drift
model by Pujol is more conservative.

To date, a limited number of models (Elwood and Moechle 2005, C. T.
Ngoc Tran and B. Li 2013) have been developed to estimate the axial-drift
failure of non-ductile columns. The model by Elwood and Moehle (2005)
was developed considering the free body diagram of a column failed in the
shear; here the only possible resistance is provided through shear friction
along the sliding interface — collapse is imminent. Figure 2-26 depicts the
free-body diagram of the upper portion of a column under shear and axial
load. The external moment vector at the top of the column is not shown as
it will not enter the equilibrium equations. The inclined free surface at the
bottom of the free-body diagram is assumed to follow a critical inclined
crack associated with shear damage. The “critical” crack is one that,
according to the idealized model, results in axial load failure as shear
friction demand exceeds the shear-friction resistance along the crack.

Several assumptions were made to simplify the problem. Dowel forces
from the transverse reinforcement crossing the inclined crack are not
shown in the free body diagram; instead, the dowel forces are assumed to
be included implicitly in the shear-friction force along the inclined plane.
Shear resistance due to dowel action of the longitudinal bars depends on
the spacing of the transverse reinforcement, and it was ignored for the
columns considered in this study. Given the tendency for buckling at axial
load failure, the axial force capacity of the longitudinal reinforcement was
assumed equal to zero. Finally, the horizontal shear force was assumed to
have dropped to zero in the limit following shear failure and at the point of
incipient axial failure.

The equilibrium of the forces shown in the free body diagram (Figure
2-26) results in the following equations:

-"‘-rw.?ywa:

LE =0- Psing' +V = Vycosa' + " tan a' + Mggr ¥z (2-37)
YE =0-= N = Pcosa' + Vi sina' + npg, P (2-38)

In light of the foregoing assumptions, Equation 2-37 can be rewritten

as follows:
-'q-rwfywa c

Psing' = Vy cosa’ + tana' (2-39)
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Figure 2-26: Free-body diagram of upper end of column (Elwood and
Moehle 2005).

Based on Equations 2-38 and 2-39, on the axial capacity of the
longitudinal reinforcement f; and on the relationship between P and V¢
through the shear-friction model, the expression that relates axial load,
transverse reinforcement, and drift ratio at axial load collapse is:

[ o2
(ﬂ_,) = 48 1+(tanés _: (2.40)
axial

L [ta.u &s® +N'[Awffyvfig1=n 555‘;']

where d; = d — d' is the depth of the column core between the centerlines
of the ties. After experimental observation, the angle of the shear failure
surface from horizontal was taken as equal to 65°. Similar to the shear-
failure model described in the previous section, the axial drift model
defines a limit surface at which axial failure is expected to occur (Fig. 2-
27). For the square column under study in this Chapter and for a 200 mm
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stirrup spacing, the drift ratio at axial load failure or collapse was
estimated at 3.9%.
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Figure 2-27: Axial Failure defined by Elwood and Moehle drift-capacity
model (Elwood and Moehle 2005).

C. T. Ngoc Tran and B. Li (2013) presented analytical and
experimental investigations carried out on RC columns with light
transverse reinforcement. A semi-empirical model was developed to
estimate the ultimate displacement (displacement at axial failure) of RC
columns with light transverse reinforcement subjected to simulated
seismic loading. The following basic assumptions were employed in
deriving the model:

e The applied axial load at the point of axial failure is transferred

through the shear failure plane.

e The angle of the shear failure plane of 60° as defined by Priestley
et al. 1994 was adopted. (30-degree angle between the diagonal
compression struts and the column longitudinal axis as stated
already in the description of Priestley et al. shear strength model).

e The shear demand on the columns was considered to be
negligible and therefore ignored at the point of axial failure.

e Once the shear strength had degraded - corresponding to a
displacement ductility of 2 for unidirectional lateral loading —
then it was assumed that any additional deformation of the
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columns was owing to sliding between cracking surfaces as
shown in Fig. 2-28.
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Figure 2-28: Assumed failure plane at the point of axial failure.

At the point of axial failure as shown in Fig. 2-28, the external and
internal works Wi, Wiy, developed by the column were calculated
according to the following:
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Woe = N x 425, (2-41)
Wi = W, + W, + Wy (2-42)

W., W, and Wy; are the internal works done by deformation of concrete,
transverse reinforcement and longitudinal reinforcement, respectively. As
illustrated in Fig. 2-28, dz, is the vertical displacement due to sliding
between cracking surfaces at the point of axial failure. Equating the
external and the internal work leads to the following equation:

N=P;+P, +PE (2.43)

where Py, Fe, F. are the axial strengths contributed by longitudunal
reinforcement, transverse reinfrocement, and concrete at imminent axial
failure, respectively. Axial strength of longitudinal reinforcing bars at
axial failure normalized by their nominal yield strength defines the yield
strength ratio, 7, as follows:

Na =W — B, _E::]"'r{ﬁbwhf}'[} (2-44)
Py = {dcf}'n“’qm'}fs (2-45)
F = V; cota’ (2-46)

where d is the depth of the core (centerline to centerline of ties) g is the
total longitudinal reinforcement ratio; &, and h are the width and the
height of the column’s cross section respectively; f;; the yield strength of
the longitudinal reinforcement. ¥ is defined by Eq. 2-23. With reference
to Fig. 2-28 the damaged length Ly is given by:

Ly =htan &' (2-47)

The ratio of horizontal displacement due to sliding between cracking
surfaces at axial failure divided by the damaged length has the physical
significance of a drift ratio, associated here with axial collapse. This term,
&z , is given as:

——

&y = [{dc — 24, )/ (htan a) | x 100% (2-48)
Ag"
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In the above, the yield displacement 4, is defined as the displacement

associated with the secant to yield line in the force-displacement resistance
curve of the member.

The developed model is calibrated using the collected data of 47 RC
columns tested to the point of axial failure. These columns encompass a
wide range of cross-sectional sizes, material properties, and column axial
loads. They were subjected to a combination of an axial load and
unidirectional cyclic loadings to simulate earthquake actions. Based on the
employed database, an empirical equation was developed so as to relate
the ratio of- the axial strength of longitudinal reinforcing bars to the yield
strength of the longitudinal reinforcing bars- to the ratio of - the horizontal
displacement due to the sliding between cracking surfaces to the damaged
length - as follows:

ng = 1/(0.2046 % 67 + 1) (2-49)
4 ; .
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Figure 2-29: Comparisons between experimental and analytical ultimate
displacements at axial failure of various equations
(C. T. Ngoc Tran and B. Li 2013).
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A series of experiments was conducted on five RC columns with light
transverse reinforcement to validate the applicability and accuracy of the
developed model. These tests were not included in the experimental
database from which the developed semi-empirical model was derived. It
is concluded from the study that the mean ratios of the experimental to
estimated ultimate displacements and the corresponding coefficients of
variation were 1.077 and 0.194, respectively. A comparison of the
proposed equation by C. T. Ngoc Tran and B. Li (2013) with the model by
Elwood and Moehle (2005) is depicted in Fig. 2-29. When applying the
derived model by C. T. Ngoc Tran and B. Li (2013) described here to the
example square column under study in this Chapter for 200 mm stirrups
spacing, the drift at axial failure is 2.8 % which is much more conservative
with respect to the result by Elwood and Moehle (2005) (3.9%; red and
blue dots in the Figure, respectively).



CHAPTER THREE

PERFORMANCE OF EXISTING MODELS
APPLIED TO THE EXPERIMENTAL
COLUMNS DATABASE

The mode of failure of structural members such as reinforced concrete
columns depends on several factors, such as their geometric characteristics,
the longitudinal reinforcement, the efficiency of confinement through the
transverse reinforcement and the loading history. Their behavior
throughout the loading range is controlled by competing mechanisms of
resistance such as flexure, shear, buckling of longitudinal bars when they
are subjected to compressive loads, and in the case of lap splices, the lap-
splice mechanism of bar reinforcement development. Very often a
combination of such mechanisms characterizes the macroscopic behavior
of the column, especially in cases of cyclic load reversals. Various
predictive models have been developed in the past to determine both the
strength as well as the deformation capacity of the columns, the
uncertainty being at least one order of magnitude greater in terms of
deformation capacity rather than strength, as evidenced by comparisons
with test results.

In this Chapter, some of the models described analytically in Chapter 2
are tested for their performance against a widely used experimental
database (2003, https://nisee.berkeley.edu/spd/) by Berry and Eberhard
(2004). Known as the PEER Structural Performance Database, it
assembles the results of over 400 cyclic, lateral-load tests of reinforced
concrete columns. The database describes tests of spiral or circular hoop-
confined columns, rectangular tied columns, and columns with or without
lap splices of longitudinal reinforcement at the critical sections. For each
test, where the information is available, the database provides the column
geometry, column material properties, column reinforcing details, test
configuration (including P-Delta configuration), axial load, digital lateral
force displacement history at the top of the column, and top displacement
that preceded various damage observations.
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First, a parametric sensitivity for the employed database is conducted
in order to highlight the statistical content and parameter trends with
regard to basic indices that define the column behavior. Subsequently,
flexure-dominant columns having either a circular or a rectangular cross
section are studied so as to attempt to reproduce (and therefore fully
comprehend) their hysteretic lateral experimental response. Shear critical
columns are studied as a separate group - in terms of strength and
deformation capacity. Some of the models presented in Chapter 2 for shear
strength are tested against this group of experimental data. Lastly an
experimental database for cyclic tests of reinforced concrete columns
under variable axial load is assembled for the needs of the present study,
and are used to corroborate the models outlined in Chapter 2 with regard
primarily to deformation capacity as the axial load varies from
compressive to tensile (modeling the overturning effects of the earthquake
on perimeter frame columns in structures).

Parametric Sensitivity of PEER Structural Performance
Database

The statistical profile of the data available in the PEER structural
performance database (https://nisee.berkeley.edu/spd/) is outlined here.
Distributions of key column properties (depth, aspect ratio, axial load
ratio, longitudinal reinforcement ratio and transverse reinforcement ratio)
provide the overall scope and limitations of the experimental investigations,
and the degree of overlap and knowledge gaps between the available
studies. The value of such collected databases is in crossing the boundaries
of the individual experimental studies that have been conducted before,
which, owing to the difficulty due to the size and expense of specimens,
never include more than a handful of tests, always much smaller in
number than the number of independent parameters and rarely if ever
presented in replicas of two or three. In the context of understanding the
scope of the database, principal indices of deformability (i.e. displacement
ductility) are presented in correlation with key design parameters (concrete
strength, axial load ratio, aspect ratio, maximum shear force and transverse
reinforcement ratio).

Characteristics of Available Data

Table 3-1 provides the mean values (Mean), Standard deviation (std) and
Coefficients of variation (CoV) of key column properties for 306
rectangular-reinforced columns and 177 spiral-reinforced columns. Statistics
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are provided for the column depth, aspect ratio, axial-load ratio,
longitudinal reinforcement ratio (p;) and transverse reinforcement ratio

(Ps)-

Table 3-1: Column Property Statistics

Rectangular-Reinforced . q

(306 tests) Spiral-Reinforced (177 tests)
i Mean Std CoV Mean Std CoV
Property
Depth | 353 43| 1165 | 036 | 42097 | 202.11 | 048
(mm)
Aspect | 50 | 144 | 042 | 331 196 | 059
Ratio
Axial-
Load 0.27 0.19 0.73 0.14 0.14 1.04
Ratio
P1(%) 245 1.00 0.41 2.62 1.02 0.39
Ps (%) 1.34 1.07 0.80 0..93 0.74 0.80

The distributions of column depth used by researchers are illustrated in
Figs. 3-1 and 3-2. Evidently, the rectangular-reinforced data is approximately
normally distributed about a mean value of 300 mm. On the other hand the
spiral column reinforcement data does not follow a normal distribution.
Fig. 3-2 depicts a box plot for each of the two groups of specimens. (A
Box Plot describes the five-number summary of a distribution that consists
of the smallest (Minimum) observation, the first quartile (Q1), the median
(Q2), the third quartile (Q3), and the largest (Maximum) observation
written in order of smallest to largest. The central box spans the quartiles.
A line within the box marks the median. Lines extending above and below
the box mark the smallest and the largest observations (i.e. the range).
Outlying samples may be additionally plotted outside the range.
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Figure 3-1: Distribution of Column Depth.
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Figure 3-2: Box Plot of Column Depth.

The distributions of the column aspect ratio are illustrated in Fig. 3-3
& 3-4. The rectangular-reinforced data is approximately normally
distributed about its mean value with a skew towards the lower aspect
ratios. The spiral reinforced data is also weighted towards the lower aspect
ratios. Fig. 3-4 depicts the box plot for the two groups of specimens. It
should be noted that the length for the determination of the aspect ratio of
each column is the equivalent cantilever column length.



54 Chapter Three

. : :
‘ Il Rectangular-Reinforced

Relative Frequencies
o
i

JRC)
N
N
w
S
4
o
~
®

o
~

T T

Relative Frequencies
o
N

(=}

5 6
Aspect Ratio L/D

Figure 3-3: Distribution of Column Aspect Ratio.

10 + ]
: T
g T+ | » 9 1
o = c
%8 1 'gE 8 ]
O 6f ‘ &5 T
=3 <] |
s 8 8O 7 } 1
25 5 ‘ a3
2 28 6 1
35 s
oK 4 °L 5 | 1
55 58
E=t = T b T
22 3 E
23 55 3 1
og 2r 0% ol |
kS
1r 1 11 . J
1 1
Box Plot Box Plot

Figure 3-4: Box Plot of Column Aspect Ratio.

The distributions of the axial-load ratio are illustrated in Figs. 3-5 and 3-6.
The spiral-reinforced data is approximately normally distributed about its
mean value with a skew towards the lower axial load ratios. The
rectangular reinforced data has a distribution weighted towards the lower
axial-loads ratios. Fig. 3-6 depicts the box plot for the two groups of
specimens.
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Figure 3-6: Box Plot of Axial-Load Ratio.

Figs. 3-7 and 3-8 plot the distributions of the longitudinal-reinforcement
ratio, pi. The rectangular-reinforced data is approximately normally distributed
about its mean value with a skew towards the lower reinforcement ratios.
Again, the spiral-reinforced data is not distributed normally. Fig. 3-8
depicts the box plot for the two groups of specimens.
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Figure 3-8: Box Plot of Longitudinal-Reinforcement Ratio.

Finally, the distributions of transverse reinforcement ratio are
presented in Figs. 3-9 and 3-10. Both the rectangular-reinforced and spiral-
reinforced columns have distributions weighted towards the lower
transverse reinforcement rations and cannot be characterized easily by a
specific distribution. Fig. 3-10 depicts the box plot for the two groups of
specimens.
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Figure 3-10: Box Plot of Transverse-Reinforcement Ratio.

Principal Indices of Deformability

One important goal in the seismic structural assessment procedures is the
reliable estimation of the available capacity of structural members for
inelastic deformation, as well as their available ductility. Ductility drives
assessment since its magnitude underlies the general design philosophy
(i.e., through the g-u-T relationships it controls the magnitude of strength
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reduction from the elastic demands that may be tolerated before failure)
and, in current code practice, its magnitude is reflected on the specific
reinforcing requirements of members and structures.

In this section the displacement ductility value clouds—as defined
from the reported experimental responses—are correlated against important
design parameters and plotted in graphs to illustrate the parametric
dependencies of this variable.

For example, considering the concrete strength, the following points
are made: (a) Higher strength materials are marked by lower ultimate
strain, (b) strain can be enhanced through confinement, (c) a higher
concrete strength results in a lower compression zone both at yielding and
at failure. In general it can be said that higher concrete strength causes a
reduction in ductility. This finding is confirmed by both groups of
rectangular-tied columns and by the spiral-reinforced columns as can be
seen in Figs. 3-11, 3-12. For the spiral-reinforced columns it is more
clearly evident that the ductility is increased for specimens with lower
concrete strengths.

During the flexural analysis of a section both at yielding and at failure
the presence of a compressive axial load increases the depth of the
compressive zone as compared to an identical section without axial force.
Based on the above remark the presence of the compressive axial load
reduces the curvature ductility of a section. In general it can be noted that
the increase of the compressive axial force in a section reduces drastically
the available ductility; it is also important to note that if the axial load
increases beyond the point of balanced failure, the column section
becomes brittle. This is confirmed by Figs. 3-13 and 3-14.



Performance of Existing Models 59

120 ° ° . 4 ° . . .
.. .: L AL .

100555 oo we
— ' L]
© .
[a N LY ° . - oo .
2 80 L
< co® " . . .
? (1] .. ®°
g 60 ° .
n
3 o e o
S 0L $oees Y e os.t
5 AR a2 DY TS .t .
© b ':' ‘:"fg.t N oo

20 . ° . .

.
‘ ° Rectangular—Reinforced‘
I I
00 5 10 15 20 25 30

Displacement Ductility

Figure 3-11: Effect of concrete strength on displacement ductility for the

Concrete Strength (MPa)

rectangular-reinforced columns of the Berry and Eberhard (2004)
experimental database.

120
* Spiral-Reinforced
100
80
60
® oo
4 . ¢ _o° .
0 ee ° 0"'.0' .'"'.. ...8:0".. ° . . oo
. * -‘..'. ® --.o.' . l'": L4
. e ° L | oo o ° .
20
0 5 10 1 20 25 30

5
Displacement Ductility

Figure 3-12: Effect of concrete strength on displacement ductility for the
spiral- reinforced columns of the Berry and Eberhard (2004) experimental
database.
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Shear-span to depth ratio, known as aspect ratio, [a] is the most
significant parameter that influences the shear behavior characteristics. In
a column of small shear-span-to-depth ratio, shear deformation may
become appreciable compared with the flexural deformation. A dominant
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shear response causes a more pronounced pinching in the force-
deformation (hysteresis) curve, and a faster degradation of the hysteresis
energy dissipating capacity. Interestingly, the experimental data show that
the ductility ratio increases with a decreasing aspect ratio (Figs. 3-15, 3-
16); this perplexing result is attributed to the fact that the yield
displacement increases at a quadratic rate with shear span length L,
whereas the ultimate displacement is linear with L; — and thus the ductility
estimate is inversely proportional to L or [a]. The following expressions
relate the flexural component of column response with aspect ratio,
illustrating the source of the experimental trend:

&
¢, =2.1.—
-Yield Curvature' h (3-1)
2 L, 2
=—- ¢ L2 g é‘y 7 LS=§~£Sy~a Lv

-Yield Displacement:

-Ultimate Displacement:

8
Ay mDy+ @y 0, Ly=A, +—L ot

(3-3)
Hp = 1+23(u, —1)-——
-Displacement Ductility: s (34

where ¢, is the plastic hinge length, a the shear span (or aspect ratio), and
&y the nonlinear (past yielding) part of the tension reinforcement total
strain, and g the required bar strain ductility.
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Figs. 3-17 and 3-18 depict the relationship between the maximum
shear stress (maximum experimental shear force divided by the gross area
of the column) normalized by the square root of concrete strength of each
column and the associated displacement ductility. It can be seen that
columns with higher ductility also supported higher shear force,
consistently with the result of Figs. 3-15, 3-16, which illustrated that
displacement ductility is inversely proportional to aspect ratio, which in
turn, for a given member flexural resistance, is inversely proportional to
shear demand (since Veg=Mgs/(h-a)).

The database trends are also examined with reference to lateral
confinement — which is generally acknowledged to enhance the deformation
capacity of the column. The arrangement of confining reinforcement is
important in this regard; a column with closely spaced stirrups and well-
distributed longitudinal reinforcement shows very little strength decay
even when being subjected to very high axial forces with magnitudes
exceeding the limit of balanced failure. The plotted trends confirm this
general expectation: the displacement ductility increases with the
transverse reinforcement ratio as shown in Figs. 3-19 and 3-20.
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Figure 3-17: Maximum shear stress vs. displacement ductility for the
rectangular- reinforced columns.
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Displacemnt Ductility

Figure 3-20: Effect of transverse reinforcement ratio on displacement
ductility for the spiral- reinforced columns.

Analytical (F.E.) Simulation of RC Columns
failed in Flexure

In the experimental database by Berry and Eberhard (2004) the nominal
column failure mode was classified as (a) flexure-critical, (b) flexure-
shear-critical, or (c) shear-critical, according to the following criteria:

If no shear damage was reported by the experimentalist the column
was classified as flexure-critical.

If shear damage was reported, the absolute maximum effective
force (%: absolute maximum measured force in the experimental
column response) was compared with the calculated “ideal” force
corresponding to a maximum axial compressive strain in the
concrete cover, equal to 0.004, which corresponds to spalling of
unconfined concrete (Fe.ces). The failure displacement ductility at an

effective force equal to 80% of maximum, #feii | was determined
from the experimental envelope. If the maximum effective force
Fegp <095 Fooos or if the failure displacement ductility was less than
or equal to 2 (#rat =2), the column was classified as shear-critical.
Otherwise, the column was classified as flexure-shear-critical. In
the present section, only columns failed in flexure (i.e. classified as
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flexure-critical) will be examined through simulation. These are
divided into two groups according to cross-sectional shape
(rectangular and circular section columns.

Circular-Reinforced Columns Failed in Flexure

Columns with a circular cross section that, upon lateral displacement
reversals exhibited flexural failure are listed in Table A-1 in the Appendix
of this Chapter. The hysteretic responses of several specimens from this
group are analyzed in the present section using finite element cyclic static
analysis.

The objective in conducting this analysis is to evaluate the available
theory regarding their success and limitations in reproducing the
experimental responses of those column specimens that did not experience
failures beyond the scope of the models (e.g. shear failure). Numerical
simulations were conducted using a nonlinear fiber beam-column element
that considers the spread of plasticity. In this type of analysis the
longitudinal beam element uses a force type formulation with linear
moment distribution to derive a flexibility matrix for the element with
progressing nonlinearity (step by step); the strain-displacement relationships
are therefore defined implicitly after inversion of the flexibility matrix to
obtain the stiffness. Assuming strain compatibility between materials
comprising the member, the formulation samples sectional response at
selected integration points along the length. At the sectional level the
Bernoulli hypothesis (plane sections remaining plane and normal to the
axis of the member) is used to relate strains in the different fibers to the
sectional curvature and longitudinal axis normal strain. Nonlinear uniaxial
material laws are used to relate normal stress with normal strain in the
fibers, thereby neglecting the effect of shear in modifying the principal
orientations through the height of the cross section. Typical discretization
of a column section is shown in Fig. 3-21. Sectional stress resultants
(Moment and Axial load) are obtained from the equilibrium of the
contributions of fiber stress resultants [FEDEAS Lab (2004)].
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Figure 3-21: a) Numerical model for Spiral-Reinforced Columns failed in
flexure b) Section discretization in fibers/layers.

For example, for the column with ID#43 in Table A-1 (axial load ratio
v=0.19), as it is depicted also in Fig. 3-21, a single beam-column element
is assigned to the entire length of the cantilever column and five Gauss-
Lobatto integration points [FEDEAS Lab (2004)] were defined along the
element. Uniaxial material stress-strain laws for the concrete and steel
fibers are depicted in Fig. 3-22(a) (Scott et al. 1982) for concrete and in
Fig. 3-22(b) for steel (Menegotto and Pinto, 1973). The effect of
confinement on the confined concrete core was modelled using pertinently
modified properties for the uniaxial stress-strain law of concrete in
compression. No P-A effect was considered in this simulation. The
calculated lateral Force — lateral Displacement response of the numerical
simulation of the column is plotted for comparison with the experimental
results in Fig. 3-23. The good correlation up to a drift of 3.75%
underscores the fact that flexural behavior is controlled by steel inelasticity
which is stable and may be reproduced without the consideration of other
secondary effects or the interaction of flexural with shear response.
However, correlation deteriorates significantly beyond that point, on
account of the fact that second order effects have been neglected and there
is no accounting for the ensuing degradation and progressive collapse.
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Force-Displacement for RC Column 43 of Berry and Eberhard Database
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Figure 3-23: Comparison between numerical and experimental response of
circular column (ID#43) of Berry and Eberhard Database (2004).

Another example (column ID#45) from Table A-1 in the Appendix of
this Chapter is shown here: the approach used for simulation is identical to
that of the previous example, the only difference being in the use of a
more complex stress-strain model for the confined core (Mander et al.
1988; here the strain capacity of the confined core is related to the strain
energy that may be absorbed by the stirrups before fracture), as depicted in
Fig. 3-24. Figure 3-25 compares the calculated and experimental lateral
force vs. lateral displacement hysteresis — again the correlation is satisfactory
up to a drift of 2.5%, however, the model cannot reproduce the loss of
lateral load bearing capacity near the end of the test; note that this column
was identical to the previous one but carried twice the amount of axial
load. Therefore second order effects would cause an apparent loss of 22.6
kN for an increment of lateral displacement from 20mm to 30mm (and
67.8 kN total reduction of the yield lateral force due to P-A effect at the
displacement level considered); the additional loss which occurs in
repeated cycles at the same displacement excursion is owing to material
degradation.
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Figure 3-25: Comparison between numerical and experimental response of
circular column (ID#45) of Berry and Eberhard Database (2004).
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Several other examples are presented in Figures A-1 — A.26 in the
Appendix to the present Chapter. Correlation in flexure dominant cases
follows the general pattern discussed in the previous two examples. It is
noteworthy that some cases demonstrated significant pinching, which was
not reproduced by the purely flexural nonlinear model; such examples are
specimens with ID#47, ID#53, ID#55, ID#56, ID#57, ID#58, ID#59,
ID#60, ID#116, ID#120, ID#141, ID#142 and ID#157. In the case of these
specimens, which had a low volumetric ratio of transverse reinforcement
(0.6%) and early yielding with strain penetration along the anchorage, the
observed pinching was owing to reinforcement pullout and shear
deformation in the plastic hinge region, both phenomena neglected in the
numerical model used here.

Rectangular-Reinforced Columns Failed in Flexure

The group of rectangular-reinforced specimens is summarized in Table A-
2 in the Appendix of this Chapter; again only specimens that reportedly
failed in flexure are considered in this section, to test the performance of
formulations that only consider normal stress response at the sectional
level.

The force-based nonlinear fiber beam-column element which considers
the spread of plasticity available in FEDEAS Lab (2004) was used in this
Section’s numerical simulations. As previously, a single frame element is
considered using flexibility formulation with assumed linear variations of
moments along the length; sampling of sectional response is done at five
Gauss Lobatto integration points along the member length. The typical
discretization of rectangular column sections is shown in Fig. 3-26.

For the first column (No. Database 1) of Table A-2 (with a square
cross section and an axial load ratio of 0.26), as shown in Fig. 3-26, a
unique fiber element is assigned to the entire height of the cantilever
column and five Gauss-Lobatto integration points were defined along the
element. Uniaxial concrete stress strain response was modeled using the
relationship by Mander et al. (1988, Fig. 3-24). The different confinement
effect of the unconfined concrete cover and the confined concrete core was
not considered in the discretization of the section (Fig. 3-26). The stress-
strain response of longitudinal reinforcement was modeled by Menegotto
and Pinto (1973, Fig. 3-22b). Again, the P-Delta effect was not accounted
for in the simulation. The comparison of the lateral Force — lateral
Displacement response of the numerical simulation of the column with the
experimental results can be seen in Fig. 3-27. As was seen in the case of
circular section columns, while the axial load ratio is kept low, a good
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agreement between numerical and experimental results is found up to drift
levels of 2.5% (where the strength loss owing to P-A is only 45kN i.e.,
about 7% of the column strength).
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Figure 3-26: a) Numerical model for Rectangular RC Columns failed in
flexure b) Section discretization in fibers/layers.

The performance of the same numerical model applied to the second
column example listed in Table A-2 — (again having an axial load ratio of
v=0.22) is compared to the experimental force - displacement response
curve in Fig. 3-28. Response is adequately well modeled, reproducing
faithfully the loss of cover (spalling) at a drift of 1.2%; therefore, it may be
concluded that the efficacy of distributed plasticity beam column models
based on the force formulation successfully estimates the flexural behavior
also in the case of reinforced concrete columns with rectangular sections.
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Force-Displacement for RC Column 1 of Berry and Eberhard Database
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Figure 3-27: Comparison between numerical and experimental response of
rectangular column (ID#1) of Berry and Eberhard Database (2004).
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Figure 3-28: Comparison between numerical and experimental response of
rectangular column (ID#2) of Berry and Eberhard Database (2004).
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Several other examples are presented in Figures A-27 — A-76 in the
Appendix to the present Chapter. Correlation in flexure dominant cases
follows the general pattern discussed in the previous two examples.
Correlation deteriorates beyond drift levels in the range of 3% or more,
when the column carries a significant axial load ratio. It is noteworthy that
some cases demonstrated significant pinching, which was not reproduced
by the purely flexural nonlinear model; such examples are specimens with
ID#32, ID#105 and ID#106. In the case of these specimens, which had a
low transverse reinforcement ratio and early yielding with strain
penetration along the anchorage, pinching in the experimental response
was owing to reinforcement pullout and shear deformation in the plastic
hinge region, both phenomena neglected in the current numerical model.
Finally, in one case (ID#91) the experimental response was not
symmetrical in the two directions of loading due to buckling of
compressive reinforcement and—since buckling was not modelled in the
simulation—this aspect of the response could not be reproduced
numerically.

Analytical (F.E.) Simulation of RC Columns Failed
in Shear

The performance of the shear critical columns (flexure-shear or shear
failure) of the experimental database in terms of strength and deformation
capacity is also examined so as to test again the performance of the
analytical procedure described in the preceding sections. Again, the
columns are divided into two groups according to cross sectional shape.

RC Columns with Rectangular Cross-Section Failed
in Shear

Columns with a rectangular cross section that developed shear failure are
summarized in Table A-3 of the Appendix of this Chapter. Figure 3-29
plots the shear strength degradation models adopted by EN 1998-3 (2005)
and ASCE-SEI 41 (2007) (also see Chapter 2) in order to describe the
envelope of the resistance curves of reinforced concrete columns as a
function of displacement ductility; this is used as the basic criterion in
order to detect shear failure before or after flexural yielding (point of
intersection with flexural capacity curve). Therefore, it is also necessary to
define the flexural capacity curve based on classic flexural analysis and
combine it with the reduction of the shear strength curve postulated by the
codes, in order for the strength and deformation of the reinforced concrete
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column at shear failure to be defined. This procedure is followed in the
present Section in order to analyze the shear critical columns of the
experimental database under study and to examine how successful the
code provisions are in predicting the strength and deformation of columns
failing in shear before or after flexural yielding. In addition, the models by
Elwood (2003) introduced also in Chapter 2 that define the drift capacity
of shear-critical columns at shear failure and at loss of axial load carrying
capacity are included in the study.

Flexural Capacity Curve

A: Shear failure before flexural yielding
B: Shear failure after flexural yielding
C: Flexural failure

\ 4+— Shear Capacity Curve

flex. cap. curv B

Shear capacitv

I —
flex. cap. curve C

A

Displacement ductility, 1=A/A,

Figure 3-29: Shear strength degradation model adopted by current codes of
assessment.

The force-based nonlinear fiber beam-column element which considers
the spread of plasticity available in the FEDEAS Lab (2004), was used
also in this section’s numerical simulations for the definition of flexural
capacity curve. The modelling procedure was the same as that used in
earlier paragraphs for columns with rectangular cross sections.

Figure 3-30 compares the analytical and experimental response of the
rectangular column —ID#28 (Table A-3). Clearly, correlation is poor even
with regard to the initial stiffness defined by flexural analysis. This is
owing to the fact that the contributions to deformation resulting from
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reinforcement pullout and shear deformation have been neglected. It can
be observed that only the degrading shear strength model of ASCE-SEI 41
(2007) intersects the flexural capacity curve and therefore is (correctly)
identifying the trigger of shear strength failure after flexural yielding as a
result of shear strength degradation. However, the displacement when this
event takes place occurs earlier than the actual onset of strength
degradation as observed in the experimental response. The proposal of
Elwood (in parentheses next to the drift ratios the corresponding
displacements are given for the column under study based on its shear
span) overestimate the actual drifts associated with shear and axial failures
as observed in the experimental results.

In the next column example (Fig. 3-31) the code provisions fail to
detect shear failure despite the fact that in the experiment shear failure was
reported. Again, the drift models by Elwood (2003) overestimate the
displacements at which shear and axial failure occurred. The force-based
fiber element used for the flexural analysis reproduces the peak strength
well but fails to converge after that point, and cannot detect the strength
degradation owing to shear failure. As mentioned before, the initial
stiffness of the numerical model is overestimated as compared with the
experiment.

Several other examples are presented in Figures A-77 — A-100 in the
Appendix to the present Chapter. Correlation in shear dominant cases
follows the general pattern discussed in the previous two examples.

RC Columns with Circular Cross-Section Failed in Shear

Spiral-reinforced specimens with a circular cross section that failed in
shear are presented in Table A-4 of the Appendix of this Chapter.
Monotonic analysis is conducted following the same procedure as
described in the circular section Column (second case) of the previous
Section.

As previously stated (Fig. 3-29), the shear strength degradation models
such as those adopted by EN 1998-3 (2005) (here abbreviation ECS8-III is
used) and ASCE-SEI 41 (2007) (Chapter 2), are used to determine the
deformation limit at shear failure from intersection with the flexural force
— displacement envelope. The flexural capacity curve is based on classic
flexural analysis. After the application of this procedure to specimen #14
in the experimental database, the following response envelope is
determined (plotted in Fig. 3-32 against the experimental result).
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Force-Displacement for RC Column 28 of Berry and Eberhard Database
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Figure 3-30: Comparison between numerical and experimental response of
rectangular column (ID#28) of Berry and Eberhard Database (2004).

Force-Displacement for RC Column 29 of Berry and Eberhard Database
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Figure 3-31: Comparison between numerical and experimental response of
rectangular column (ID#29) of Berry and Eberhard Database (2004).
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Force-Displacement for RC Column 14 of Berry and Eberhard Database
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Figure 3-32: Comparison between numerical and experimental response of circular
column (ID#14) of Berry and Eberhard Database (2004).
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Figure 3-33: Comparison between numerical and experimental response of circular
column (ID#16) of Berry and Eberhard Database (2004).
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Both the shear strength degradation models shown in Fig. 3-32
detected shear failure after yielding at a displacement much lower than the
corresponding experimental one. The strength at shear failure was better
assessed by the model of Eurocode 8 part 3 (ECS8-III) compared to the
alternative of ASCE-SEI 41. The drift model at shear failure by Elwood
(2003) performed very well as compared to the experimental shear failure
limit; however, drift at axial failure was overestimated (83mm as
compared to 30mm). The same comments are valid for the column in Fig.
3-33.

In the comparison showcased by Fig. 3-34, only the shear capacity
curve by ASCE-SEI 41 intersects the flexural force-displacement
envelope, thereby detecting shear failure after flexural yielding. The
strength at shear failure was well predicted by the latter model but the
corresponding displacement was much lower than in the experimental
response. The drift model at shear failure by Elwood (2003) performed
well compared to the experimental response but overestimated the drift at
the loss of axial strength.

Force-Displacement for RC Column 15 of Berry and Eberhard Database
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Figure 3-34: Comparison between numerical and experimental response of circular
column (ID#15) of Berry and Eberhard Database (2004).

Several other examples are presented in Figures A-101 — A-118 in the
Appendix to the present Chapter. Correlation in shear dominant cases
follows the general pattern discussed in the previous three examples.
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Analytical (F.E.) Simulation of RC Columns under
Variable Axial Load

Owing to the overturning moment, columns in multiple-column bents
experience variable axial forces corresponding to the direction of, and
typically being proportional to, the horizontal forces. Columns are also
subjected to the vertical components of ground motion, which is not
correlated concurrently with the horizontal loading. Past earthquake
records have shown that in some cases, vertical ground motions cannot be
ignored, particularly for near-fault situations. For example, the lateral
displacement ductility in a column, designed based on a constant axial
load, with a relatively low axial load ratio, can become unsatisfactory
when the actual axial load due to the overturning effects or the vertical
ground motion exceeds the value that corresponds to balanced failure. The
problem becomes even more significant when shear design is considered.
The increase of axial load from the design level (typically 5% to 10% axial
load ratio) to the level of the balanced axial load results in the increase of
column flexural capacity, thus increasing shear demand. On the other
hand, changes of axial load from compression to tension can result in a
significant decrease in column shear strength.

In Table A-5 of the Appendix of this Chapter, an experimental
database of reinforced concrete columns under cyclic lateral loading and
variable axial load is presented. For these cases, the experimental response
envelope will be assessed using monotonic static analysis. Analytical
procedures are identical to those used in the previous section. For the sake
of comparison with the numerical models and code specifications of the
previous section, only pairs of specimens of the above experimental
database tested under constant compressive or tensile axial load will be
considered in the following correlation with the experimental results. In
this way, the effect of the load on a column’s shear strength will be
demonstrated along with the effectiveness of code standards to assess this
influence.

The first columns under study are the specimens ICC and ICT by
Elnashai et al. (2011). Two columns with identical properties reported in
Table A-5 are tested under cyclic lateral loading and constant compressive
axial load (ICC) or constant tensile axial load (ICT). In the comparison of
Fig. 3-35 with the experimental response it can be observed that the shear
strength degradation model of ASCE-SEI 41 detects shear failure after
yielding of the column under study while in the Eurocode 8 part 3 (EC8-
IIT) shear capacity curve it does not. The predicted point of the detected
shear failure corresponds well to the specimen strength, but in terms of
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displacement the shear failure is identified to occur much earlier as
compared to the experimental response. The drift models by Elwood
(2003) defined well the displacement at shear failure, but again, the axial
failure drift was overestimated.

Force-Displacement for RC Column ICC by Elnashai
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Figure 3-35: Comparison between numerical and experimental response of circular
column (ICC) by Elnashai (2011).

For the case of the same specimen under constant tensile load (Fig. 3-
36) it is noted that the degradation model of Eurocode 8 part 3 (EC8-III)
for shear strength was the one reproducing the experimental response well
since it did not detect shear failure for the specimen under study which
failed in flexure. Finally, since no shear failure occurred, the drift models
by Elwood (2003) were not relevant in the tensile-axial load case either.
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Force-Displacement for RC Column ICT by Elnashai
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Figure 3-36: Comparison between numerical and experimental response of circular
column (ICT) by Elnashai (2011).

The next column examples for investigation of the effect of variable
axial load on shear strength are specimens CS1 and CS2 by Priestley et al.
(1996) which were tested under cyclic lateral loading and constant
compressive and tensile axial load respectively. From the comparison in
Fig. 3-37 it can be observed that only the shear strength degradation model
by ASCE-SEI 41 detects shear failure for the column under study, but at a
somewhat lower strength and displacement capacity as compared to the
experimental response. In addition, the drift model of Elwood at shear
failure overestimates the corresponding displacement, while the drift
model at axial failure underestimates the displacement where the loss of
axial bearing capacity is observed.

Finally, the comparison of the same specimen by Priestley under
tensile axial load is depicted in Fig. 3-38. The degraded shear capacity
models of the design codes (both) detect the shear failure of the column,
but at lower strength and displacement compared to the experimental
results. The drift model at shear failure by Elwood captures well the
displacement where shear failure occurs but the drift model at axial failure
overestimates the experimental column response.



700 r r .
== Flexural Analysis
600 ==-Experiment
—Shear Strength EC8-Il|

500 /7", —Shear Strength ASCE-SEI 41}
—~ N\ S
Z /K \\\
= 400 K So=———ao o
g /,l' \\ \l\x
S 300 G N =
I / / Sl
5 / B
2 200 I/ e
(2 ]

1
100 :;
Drift at shear failure - Elwood: 1.8% (16 mm)
0 Drift at axial failure - Elwood: 2.3% (21 mm)
| | |
i i I
-100
0 5 10 15 20 25 30 35

Performance of Exi

sting Models 83

Force-Displacement for RC Column CS1 by Priestley
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Figure 3-37: Comparison between numerical and experimental response of circular
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Figure 3-38: Comparison between numerical and experimental response of circular
column (CS2) by Priestley (1996).
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Clearly, based on the preceding analysis, the state of the art modeling
of the lateral load response of columns leaves a lot to be desired: improved
response estimation of the behavior of columns that are susceptible to
shear failure after flexural yielding; better procedures to estimate shear
strength and the pattern of degradation thereof, with increasing
displacement ductility; the need to account for reinforcement pullout and
its effects on stiffness; the shape of the hysteresis loops; the detrimental
effects of axial load at large displacement limits; and the magnitude of
deformation (drift ratio) associated with milestone events in the response
curve of the column member, are open issues that need to be settled before
the performance-based assessment framework may be considered complete
and dependable. Some of these issues are addressed in Chapters 4 and 5 of
the present book.



CHAPTER FOUR

PLASTIC HINGE LENGTH IN RC COLUMNS:
DEFINITION THROUGH CONSIDERATION
OF YIELD PENETRATION EFFECTS

Introduction

The deformation capacity of frame elements comprises contributions of
flexural, shear and reinforcement pullout components. The estimation of
the available deformation capacity of a column is linked to the length of
plastic hinges. Following an implicit assumption that all terms are
additive, the flexural component of lateral displacement is obtained from
the sum of an elastic component, owing to the flexural deformation
occurring along the length of the member, and a plastic component that is
practically owing to the inelastic rotation that occurs in the small region
near the face of the support where moments may exceed the yielding limit.
When comparing these deformation estimates with the experimental
evidence from predominantly flexural components, it is found that there is
a great disparity between measured and estimated deformation capacities
characterized by notable scatter (Syntzirma et al. 2010, Inel et al. 2004).
Several attempts to identify the source of inaccuracy have motivated the
progress made in that field, not the least the empirical expressions for
deformation capacity which are included in EN 1998-3, 2005 that
completely bypass the requirement of calculating the plastic hinge length.
Another approach, initiated by Priestley et al. and then followed by several
other researchers, and the approach to deformability by EN 1998-1, 2004
estimates the plastic hinge length including the length of yield penetration
inside the anchorage (see, for example, the detailed analysis in the book by
Priestley Seible and Calvi [1996], and of the fib Bulletin No.24 [2003]).

In new structural design with EN 1998-1 2004, the plastic hinge length
is also used in reinforced concrete (RC) seismic detailing in order to
determine the region where additional confinement requirements apply,
this is apart from its use in seismic assessment to estimate the flexural
deformation capacity. Due to its importance in these applications as the



86 Chapter Four

key to understanding deformability of members, the plastic hinge has been
the subject of many experimental and analytical studies and the
expressions derived have been quantified and calibrated against several
hundreds of tests on isolated column specimens. Still, the disconnect
between observation and theory persists, and is considered a major
roadblock in establishing the performance criteria for many special
categories of members (e.g. walls, columns carrying a high axial load,
very slender columns, etc.).

In the typical test, a cantilever column fixed at the base and carrying a
constant axial load is driven to a protocol of reversed cyclical lateral load
displacement history at the top. The deformation capacity of such
members is usually described by the chord rotation that may be sustained
by the member prior to loss of its lateral load strength. Apart from the
rotation due to flexural curvature that occurs along the length of the
member, lumped rotation at the critical section resulting from inelastic
strain penetration into the support (e.g. footing) as well as inside the shear
span adds up in the reported drift ratios at different levels of performance.
This share of deformation is attributed to reinforcement pullout due to the
incompatible length change between the bar and the surrounding concrete.

In columns that do not fail by web crushing, pullout rotation increases
gradually with imposed drift, claiming a predominant share of the members’
deformation capacity near the ultimate limit state. Column deformation
capacity at yielding and ultimate state may be computed using a variety of
models (Pantazopoulou 2003, Inel et al. 2004, Pantazopoulou et al. 2010,
ASCE/SEI 41 2007, EN 1998-3 2005, Panagiotakos et al. 2001, Biskinis et
al. 2013). A stick model is a common point of reference to this purpose:
The length of the cantilever L, corresponds to the shear span of an actual
frame member under lateral sway (Fig. 4-1a); the aspect ratio of the
member Ly/h, where 7 is the cross section depth, quantifies the intensity of
shear force demand in the member. Inelastic activity is assumed to occur
within an equivalent “plastic hinge length”, £,;, whereas the segment of the
member outside ¢, is assumed to behave elastically. Displacements are
calculated from flexural curvatures assuming the curvature distributions of
Fig. 4-1(b-c) which correspond to the development of yielding ¢, and post-
yielding ¢, flexural strengths at the support. The plastic rotation
developing in the hinge due to flexure is 6,/ = (¢ -¢h)- €yi; similarly, the
plastic rotation owing to bar pullout from the support is 6,57 = 0,5 - 0,5
(Fig. 4-1d); the total plastic rotation is G, = G/ +6,°%.
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Figure 4-1: (a) The stick model for a column under lateral sway.

(b)-(c) Distributions of curvature along the column shear span at yielding
moment M, and at flexural strength M, attained at fixed support (M, > M,)

respectively. (d) Drift components from curvature along shear span (67, A/)
and from anchorage slip (9, A7),
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Figure 4-2: Bar state of stress / strain (f, ) along shear span and anchorage of a
cantilever column under horizontal loading at the tip. [Note: the bar bond / slip
state (f», ) is illustrated only for the anchorage.]

The corresponding terms are (Fig. 4-2) (x is the length counting from
the support to the tip of the cantilever column under study):

slip _ S}" slip _

ey R AT T

Sy 28 Ly 2 0 s, s, 405, +e,) L,

Lb,min = Db ' fy /(4 bmax); 1 = Lb - Lb,min (4_1)

sll

where x. is the depth of the compression zone at the critical cross section
(here it is assumed to remain constant after yielding) and L, the total
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available anchorage length, whereas Lpuix is the minimum required
anchorage length to yield a typical bar (diameter: D), at a yield stress of
/» considering a uniform bond stress equal to the bond strength of f,"*.
Rotation of the critical cross section occurs about the centroid of the
compression zone (located at a distance of 0.4x. from the extreme
compressed fiber based on the equivalent uniform stress block (Whitney
1937). The parameters s, and s, are values of reinforcement pullout slip
from the support anchorage at yielding and the ultimate state (Fig. 4-2).
Term ¢, represents the maximum sustainable penetration of yielding into
the anchorage (Fig. 4-2); the maximum reinforcement strain, &,, that can
be supported by the reinforcement at critical cross section (i.e. support)
may be estimated assuming that at the extreme, when the anchorage attains
its ultimate development capacity, the strain distribution along the
anchored length is bilinear: &,= & +4(Ls-Lomin)fs’*/(DvEs), wWhere Eg, is
the hardening modulus of steel and f," is the residual bond strength due to
cover splitting/delamination. The corresponding maximum and yield
flexural curvatures are defined as: @,=¢, /(d-x.) and ¢,=¢, /(d-x.), whereas
the total plastic rotation capacity 6,;, that may be sustained by the member
may be estimated through reverse engineering as in (Moehle, 1992):

slip f My
0, =050, =0, )L,y 0y =(0,—0,): I—M— Ly =

u

9[71 :((pu _Qy)' 05€lu +a'L‘\'

oW (4-2a)

where in Eq. (4-2a) index (i) denotes pullout from support and (i) flexure
in the shear span. Introducing the concept of the plastic hinge length £,; the
plastic rotation capacity is written as:

szz(fﬂu—(ﬂy)'épz:%z'fpl ; épl:O.S-fwﬂx-LS (4-2b)

In Eq. (4-2b), a is the strain-hardening ratio of the reinforcement, a =
1-M,/M,,, defined from a cross section analysis at the ultimate moment
given a simplified stress—strain law for the hardening branch of steel.
Empirical equations for the plastic hinge which have prevailed in design
Codes (EN 1998-1 2004, EN 1998-3 2005) and in research (Pantazopoulou
2003, Priestley et. al. 1984, Priestley et al. 1987, Priestley et al. 1996,



90 Chapter Four

Lehman et al. 1996, Bae, S. et al. 2008) have the form of Eq. (4-3a,b)
respectively:

¢, =0.08L, +0.022-D, - f,

pl =

L =0IL +0.17-h+024-Dy - £, 11,

(4-3a)

! (4-3b)

with 4 being the column sectional depth and f.” the concrete compressive
strength. (For example, 0.08 and 0.1 are common values for the strain
hardening ratio a of common reinforcement, whereas the term
proportional to the bar diameter D, which represents the strain penetration
length within the anchorage, is intended for well-designed anchorages that
can easily support strain penetration lengths of /0 ~20-Dy). In the presence
of high axial load N, the required confined length ¢ is obtained from the
basic value of ¢,; by adding terms to account for the tension shift in the
shear span of a member and the increased demands for confinement
(Watson et. al. 1994), (5. in Eq. (4-3¢) is a strength —reduction factor):

N

L
(o=l +05h ; —S=1+28 —— —
h 7c'chg

(4-3¢)

Bae and Bayrak (2008) proposed an alternative expression of p,
derived from correlation with column experiments under various axial
load levels, recognizing explicitly the important variables that control £,

N A, L,
0.3:| = |+3-| = |—0.1|-| == [+0.2520.25
N, A, h

where £ is the column depth, N is the applied axial load, N, =0.85/. (4¢-
Ay 1oty tfrAs o, (fe i the concrete compressive strength), 4, is the area of
tension reinforcement, A4, is the total reinforcement area, and A, the
gross area of the concrete section.

A significant limitation of the theoretical definition of £, as given by
Eq. (4-2b), is that it breaks down if the moment-curvature response of the
member is elastic—perfectly plastic (M,=M,, a=0), leading to a rather
small plastic hinge length. This is counter-intuitive considering that a
necessary accessory to rebar yielding is the localized loss of bond. Thus
point-yielding of column reinforcement with no penetration to an adjacent

Lot
h

(4-3¢)
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area is physically impossible. In practical applications, to resolve the
indeterminacy caused in Eq. (4-2b) due to elastoplasticity (i.e., M,=M,),
¢y 1s taken as 0.5k, or Eq. (4-3a, b) are used directly without reference to
the underlying physical model. The apparent inconsistency inherent in the
theoretical definition of £, is partly responsible for the poor correlation of
the estimated deformation capacity of flexure-dominated columns with
results from experimental databases (Syntzirma et al. 2007, 2010). An
alternative is to explicitly figure in for the plastic hinge length by
establishing and solving the field equations of bond along the principal
reinforcement (in the shear span) of the deformed member under lateral
sway, with particular emphasis on the part of the reinforcement that is
strained beyond the limit of yielding into the hardening range.

This modeling approach is pursued in the present chapter. A unidirectional
model of bond is considered as a basis for the evaluation of the
longitudinal strain distribution of the primary reinforcement of the column.
The processes of sequential crack formation due to tension stiffening, and
the subsequent crack opening are explicitly considered. In the analysis,
large localized slip magnitudes lead to bond degradation that is
accompanied by the spread of inelastic strains both in the shear span and
in the anchorage. Although several solutions that refer to the problem of
force development along the anchorage have been proposed, nevertheless
the problem of strain penetration in the anchorage has received limited
attention from researchers (Tastani and Pantazopoulou, 2013). On the
other hand, the problem of strain penetration in the shear span of the
member has not been addressed explicitly yet, and therefore represents the
main scope of the present chapter. In this study, strain distributions in the
span and in the bar anchorage are evaluated using a step by step
calculation algorithm; the controlling variable is the tension strain
magnitude at the critical cross section (the support of the cantilever).
Through this process, disturbed regions are identified in the shear span,
where bar strains are controlled by bond development rather than the
“plane-sections” assumption. Using this approach, the parametric
sensitivities of the plastic hinge length are illustrated and compared with
the other alternatives summarized in this section obtained from
experimental calibration. Application of the analytical procedure for
estimating the plastic hinge length is demonstrated through a comparison
with column specimens tested under axial load and reversed cyclical
lateral drift histories reported in the literature.
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Governing Equations of Bond—Slip Behaviour in Concrete

The basic equations that describe force transfer lengthwise from a bar to
the surrounding concrete cover through a bond are derived from the force
equilibrium established on an elementary bar segment of length dx
(Tassios et al. 1981, Filippou et al. 1983):

dfidx=(~4/D,)- f, (4-42)

where f'is the axial stress of the bar; Dj is the bar diameter; f; is the local
bond stress. Furthermore, compatibility between the relative translation of
the bar with respect to the surrounding concrete, (s=slip), the axial bar
strain &, and concrete strain &, over dx requires that (Tassios et al. 1981,
Filippou et al. 1983):

ds/dx= —(g —-&, ) =¥ (4-4b)

For normal concrete, the term &. is neglected as its tensile value cannot
exceed the cracking limit (& = 0.00015) which is well below the other
terms of Eq. (4-4b). Bond stress and slip, and bar stress and strain are
related through the interface and material constitutive relationships, f, =
fo(s) and f = f(g). The solution to Eq. 4-4 is possible though exact
integration, resulting in closed-form expressions for the state of stress and
strain along the anchorage, through pertinent selection of simple models
for the material laws (e.g. piecewise linear relations). This approach has a
clear advantage over the numerical solution alternative in that it enables
direct insight into the role of the various design parameters on the behavior
of bar anchorages and/or lap splices.

Here the reinforcing bar stress-strain relationship is considered
elastoplastic with hardening (representing conventional steel reinforcement,
Fig. 4-3a). Without loss of generality, and to facilitate derivation of
closed-form solutions, a linear elastic, perfectly plastic local bond-slip
relationship with a residual bond is assumed (Fig. 4-3b). The plateau in the
local bond-slip law implies sustained bond strength. This feature is not
always manifested in the test data; to be measured it requires redundancy
in the anchorage (i.e., the availability of longer anchorages to enable force
redistribution towards the healthy part of the anchorage before failure). In
the assumed law, the end of the plateau is marked by abrupt loss of bond
strength to the residual value of f,/*. (Note that f;/* is taken as non-zero
only in the case of ribbed steel bars, but not for smooth steel bars.) The
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last branch represents the residual friction between the concrete cover and
the steel bar after failure of the rib interlocking mechanism (Fig. 4-3b).

(a) (b) max
A f jl; A fll; fb

S

&

> s S
1 2
E,‘y 8u
Figure 4-3: (a) Assumed stress-strain law of steel reinforcing bar;
(b) Assumed local bond slip law.

Strain penetration occurs in the bars beyond the critical section due to
the degradation of a bond beyond slip limit s, which marks the end of the
plateau in the local bond-slip law. This stage may be attained in different
ways along a bar: (a) for yielding to occur, i.e. constant bar stress (= f,,
df7dx = 0) for a range of values of bar strain £>g, the bond should be
eliminated (fy* = 0); if f,"* is non-zero, then a yielded bar will
demonstrate a commensurate amount of strain hardening. (b) If the bar is
elastic (e.g. a Fiber Reinforced Polymer (FRP) bar), then for large strain
levels bar slip values are increased to levels beyond s, (Fig. 4-3b): this is
marked by debonding and cover splitting of the loaded end of anchorage,
thereby limiting the development capacity of the reinforcement.

Strain penetration of yielding over a bar anchorage has received some
attention, especially with regard to its contribution to the rotation capacity
of structural members (Bonacci et al. 1994, Bigaj 1999, Tastani et al.
2013). But the implications resulting from the spreading of inelastic strains
in the shear span of a structural member on the development capacity of
reinforcement and on member behavior have not yet been described with
reference to the mechanics of bonds.

Consider a reinforcing bar that spans the deformable length of a
structural column, anchored in its footing (Fig. 4-2). An important
difference may be traced in the state of stress occurring in the two regions
along the bar: within the anchorage, stress is controlled by the mechanics
of bonds, as described by the field equations (Egs. 4-4, see next Section).
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On the other hand, within the shear span, it is the prevailing notion that bar
stress is controlled by flexural theory; i.e. the requirement of plane
sections remaining plane at any cross section relates bar strains to flexural
moment and axial load through cross sectional equilibrium. This however
can be incompatible with the requirements of Eqs.4-4. The concept of
tension stiffening is used in order to settle this potential conflict between
the two antagonistic mechanisms for control of reinforcement strains: a
certain nontrivial length £p, is needed, measured from the face of the crack
toward the uncracked part of the member until bar strain compatibility
with the surrounding concrete cover may be claimed. Thus, the field
equations of bond control the segment ¢p,, whereas the classical theory of
bending controls the remaining length. The region over the shear span of a
flexural member where bar stresses are controlled by the mechanics of
bonds (Egs. 4-4) rather than the mechanics of flexure, is referred to herecon
as a “disturbed” region, thereby assigning to this length an alternative
interpretation than that used to explain shear dominated responses in frame
members (MacGregor et al. 2005). At the same time this alternative
significance of the disturbed region underscores the interaction between
bond and shear strength (Martin-Pérez et al. 2001). Clearly, as flexural
cracking propagates, the disturbed zone extends and may spread over the
entire length of the member.

Bond-Slip Distribution along the Anchorage of a Linear
Elastic Bar

The solution to Eq. 4-4 for elastic bars in the anchorage is given in this
section; this is valid for the ascending branch of the stress-strain law of
steel reinforcing bars, i.e. & = &y In the case of Fig. 4-4 for the elastic part
of the bond slip (i.e. when ¥ = 51, the bond is linearly related to slip in
accordance with: o = /sy s . By substitution in Eq. 4-4 the
differential equation may be solved in closed form. Thus, bar normal
strain, slip, and bond stress distributions over the available length of the

anchorage [':I =x= Li:'] are given by the following equations (Tastani and
Pantazopoulou 2013):

& _ —ax—
g(x):—(?(e X —e QX ZWL”)S(C,‘
1_6—2a)L,7
(4-5)
S(x) — 802 - —wx +e(wc—2a)L,, ) < s
w(l—e =)

(4-6)
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) (x) = (ﬁmcr .l"rsj_] cs(x) = fmoax (4-7)

where the characteristic property ® is given
— ] 0.5

by: @ = [4f5 2%/ (E; - Dy * 5. )1%* The variable £o is the bar axial strain

at the loaded end of the anchorage, and E; is the modulus of elasticity of

the bar in the longitudinal direction. By substituting * = L& in Eq. 4.6, a
nonzero slip value is obtained at the free end of the anchorage

) _ —wl —Zwl
fi.e. sp = 2500 /w1 — e 7*0RE)] = 0} even under very small loads.

This finding is consistent with the experimental observations (see for
example, Tastani 2005).

— i
The bar axial strain at the loaded end, & = Z&i is the limit value
beyond which the bond mechanism enters the state of plastification (i.e.

yielding of bond) over a length Ly which grows with increasing bar strain
at the loaded end, while the bar remains elastic. Therefore the variable Eel
is directly related to the slip magnitude *1 in Fig. 4-3 and may be
calculated by Eq. 4-6 after substitution of ¥ G = 0) = 51 45 follows:

1_g-2uly

£ = 5100 _—rar, (4-8)

In case the available bond length is sufficient or if transverse
confinement reacts normally to the contact surface thereby generating
secondary strength reserves for the bond mechanism, then the bar may

L
sustain a strain value higher than &l [Fig. 4-5]. In that case, the maximum
Tax
bond stress may reach the characteristic strength value f , over a length

of bond plastification Iy, The complete solution to Eq. 4-4 over Ly
(starting from the loaded end and proceeding toward the end of the
anchorage) comprises two segments, as follows:

Distributions of bar strain, slip and bond stress over the length Iy (for

D<x< '[IJ) are obtained considering that f;(s)= f,"* = constant (thus the
bar stress and strain varies as a linear function of distance over the
segment /, where the bond is plastified:

4fbrmx .
Es 'Db ) (4_9)
s(x) =5, + U.S{E_ﬂ — x)[e(x) + =] (4-10)

ex)=¢, -
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fio be) = e (4-11)

i
where el is the attenuated value of the bar strain as compared with the o
L
value which occurs at the loaded end. Note that ®¢i now occurs at the end

of the bond plastification region, Ly,

max
i _ . 41,
el =€

-1
E D, "

s

(4-12)

For the distributions of bar strain, slip and bond stress over the

remaining anchorage length (which is still in the elastic range), Ly— 1y

(for lp=x= Lii'), these are obtained from the elastic solution to Eq. 4-5-

4-7.:
_ gl —wlr-lp) wlx-l)}-2wlLy-1]
) = gy (TR TR )
sly) = ——2t—_ (g@lx-lp) | gulr-fpl-zuli-T))

_wlil_e—zm[l.-b—[pj} (4_14)
folx) = ("5 /5,) - s(x) < fmox (4-15)

The length of plastification, !

Ly,

#, is estimated if continuity of strain and

slip are enforced at * =
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Figure 4-4: Elastic bar response while bond-slip law remains elastic.
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Figure 4-5: Elastic bar response with bond plastification.

Bond-Slip Distribution along the Anchorage
of an Elastoplastic Bar

The solution to Eq. 4-4 for an elastoplastic steel bar is explored only after
yielding, because the preceding section fully describes the bar’s elastic

behavior. The bar strain at the onset of yielding is denoted by ¥ whereas

Esh is the strain hardening modulus of the stress-strain relationship in the
postyielding regime.
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The last case examined in the present model of the anchorage of a steel
reinforcing bar is depicted in Fig. 4-6 and it concerns yield penetration
(spread of strains beyond yielding) in the steel bar inside the anchorage
with simultaneous plastification of bond. The length of yield penetration is

U3
denoted by Ir. In the segment (0, '[r'], the bond stress is equal to B Also,
the distribution of strains is linear, ranging from e = 0) =2, 4t the
loaded end, to the value elx =1, = &y 4 the end of the yielded region
(Fig. 4-6). Slip at each point is obtained from the integration of strains
from the point considered at the unloaded end of the anchorage.

The strain, slip, and bond stress expressions governing this problem in
the three distinct regions are given as follows:

Over the debonded length L (for 0=x= '[r') (Eq. 4-16 is obtained
T
from Eq. 4-4 for a constant bond stress fo ):

ex)=¢, - b X
EgDy (4-16)
s(x) =5, +050, — D[) + EJ,-] (4-17)
Rl =g (4-18)

Over the length Iy where bond has exceeded the plasticity limit (for
L=x =l +1, ):

e(x)=¢, — b (x—1)
©ED, (4-19)
s(x) =s, + 0.5(1, + Iy — x)[e(x) + £1H] (4-20)
fo x) = fre* (4-21)

Over the remaining bonded length L& — Ir = In (for Ir +Ip = & = Ly,

s _ s e s
£(x) =1.—e-zm[L[r;"5p'|3r:| {9 wle-lp .,,:I_Ec..-[x tp=ir)-20 Lty Lr]} (4-22)

s(x) Eal

- mlil—e'z“‘[‘-'b'[]!!'[?:';l

(am0lx-lpt) 4 gule-tp-t)-20(-lp-1))

(4-23)
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where, according with the linear ascending branch of the bond-slip law, it
is:

folx) = ("5 /5,) - s(x) < fmox (4-24)

X I
I—
> 1
I
£a
L |
e |
I
1 1 1
hpy L
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1 1 1
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Figure 4-6: Plastic (yielded) bar response with bond plastification.

In Equation (4-22) the term £al is the strain at ¥ = Ir ¥ '[!J, i.e., the point
of transition from elastic to plastic bond stress (Fig. 4-6) and it is
calculated from Equation 4-19.
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Thus, yield penetration occurs over the segment Lr of the anchorage

where strain exceeds Z¥; this phenomenon is accompanied by a sudden
increase of slip (Eq. 4-17) with a commensurate reduction of bond strength

to 7 over the yielded bar length.

Disturbed Region on Shear Span of a Flexural Member

It was mentioned earlier that the spread of inelastic strains occurs on both
sides of a critical section (e.g. at the base of a column). The process of
inelastic strain penetration in the anchorage of a reinforcing bar has been
demonstrated in the previous section. This section is dedicated to solving
the same problem on the other side of the critical section, that is, over the
disturbed region along the shear span of a column. Here, the problem is
different from that of the anchorage in the type of boundary conditions that
may be enforced for the governing differential equation, Eqs. 4-4. The
bond-slip law has the same multilinear envelope as in the case of an
anchorage, however, the bond strength value, f;”*, is a function of the
available transverse reinforcement.

Evaluation of Disturbed Length on Crack Initiation

For the stage prior to the occurrence of flexural cracking along the length
of the flexural member, the bar strain is estimated from the flexural
analysis of the uncracked column cross section (i.e. from the moment-
curvature analysis, Fig. 4-7a):

€n(xX) =h(x) ¥

(4-25a)
This is expressed explicitly as:
M(x) N h
- . - ; =——C,, —0.5D,
& E. 'Ig YVeg EcAg Yeg > co b .
r N Ig
ysg,na :ycg -
M A (4-25b)

where M(x), N (+ for compression) and ¢(x) are the flexural moment, axial
load and flexural curvature acting on the member section at distance x
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from the support, E. is the elastic modulus of concrete, /, and A4, are the
moment of inertia and the uncracked cross section area, / is the section
height and C.,v is the clear cover (Fig. 4-7a). Parameters y., and ys..*" are
the distances of the centroid of tension reinforcement to the centroid of the
uncracked cross-section and to the neutral axis location, respectively (Fig.
4-7a). The distance to the neutral axis changes significantly from the initial

r cr

linear elastic state ” i”“, to the cracked state of a cross section ~ 54
Generally, the position of the neutral axis may be estimated based on
equilibrium requirements, both in the uncracked cross sections as well as
at the crack locations assuming “plane sections remain plane.” From the
flexural analysis perspective, when the flexural moment M(x) exceeds the
cracking moment, M., even by a small amount, then the member may be
considered cracked in the region of x. Although a large region may satisfy
this definition, however, cracks i occur at discrete locations x..;. Thus, if
an analysis of the cracked cross section is available (based on the plane
section hypothesis), the tension reinforcement strains &(x..;) that occur in
the crack locations may be calculated from:

S(XC,,J' ): ¢)(xcr,i ) y;};;a (4‘26)

In the segment between successive cracks where the moment exceeds
the cracking value, bar strains cannot be estimated from flexural analysis,
as prescribed by Eq. 4-26. Owing to reinforcement slip, the degree of
strain compatibility between steel and concrete in these locations is not
well understood, as would be required by the “plane-sections remain
plane” assumption, nor can the concrete be considered inert as would
happen in a fully cracked tension zone. Because it takes some distance
from a crack location before the reinforcement may fully engage its
concrete cover in tension again so as to satisfy the conditions of strain
compatibility, Eq. 4-26 is invalid even in the region immediately adjacent
to the last flexural crack in the shear span, although the flexural moment is
below the cracking limit in that region. Bar strain over cracked segments
of the member may be estimated from the solution of Eq. 4-4. In order to
address all the possible exceptions to the validity of the flexural
requirement stated in Eqs. 4-25 and 4-26, here, the term “undisturbed” is
used as a qualifier to “un-cracked” in order to refer to sections that also
satisfy “the plane sections remaining plane” compatibility requirement. As
a corollary, where strains are obtained from the solution of the bond
equation, the region is “disturbed”.
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[N] ys,na

normal stresses

(b)

M

jump in strains after
cracking
Figure 4-7: Definition of terms: (a) Cross sectional flexural analysis. (b) Bar strain
distribution along the shear span Ly: stage prior to cracking (red); response into the
disturbed region £p; (blue). (c) Moment - bar strain diagram.

The flexural moment at a distance x from the face of the support is

estimated with reference to the flexural moment at the support, M, (&, is
the bar tension strain, at x=0, Fig. 4-7b):

M(x) = My -(1 —x/L,)
(4-27)
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As the sequence of crack formation is critical for the occurrence of
disturbed regions and for the problem of strain penetration that will be
subsequently addressed, in the present discussion the static problem
represented by Eq. 4-27 will be solved for a gradually increasing value of
the support moment, M,. It is assumed that the characteristic flexural
resistance curve (moment-curvature) of any cross section along the shear
span (i.e. the moment — curvature and moment — bar strain diagram) is
available from classical flexural analysis (plane-sections) for the entire
range of response.

For a member with continuous primary reinforcement over the shear
span, L,, the moment distribution that follows Eq. 4-27 will cause first
cracking at the face of the support (x.;=0, Fig. 4.7b). Upon the cracking
of the tension zone the bar strain experiences a significant jump to
maintain equilibrium (Fig. 4-7c). For example, if the cracked section
stiffness is about 1/3 of the uncracked value, the bar strain at the critical
section is expected to increase threefold by the mere occurrence of the
crack even though the moment change from the uncracked to the cracked
stage may be imperceptible. Thus suddenly the whole region adjacent to
the cracked location becomes “disturbed”. Over the length of the disturbed
region, {p; (Fig. 4-7b) the reinforcement strain is described by the solution
of the bond equation (Tastani et al. 2013) i.e.:

elx) =C, e ™+ C,- g% w =[4f"*/(E, - Dy -5, 01°°
, where,
(4-28)

The solution of Eq. 4-28 is valid provided the bond is in the elastic
range (ascending branch in the bond slip law, Fig. 4-3b). Before the
creation of a second crack, the following conditions characterize the end of
the disturbed region at x= {p;:

a) the slope of the bar strain distribution, w=de(x)/dx, obtained from
differentiation of Eq. 4-28, matches that of the strain diagram as
would be obtained from Eq. 4.25b and 4.27:

¥ =ds(x)/dx —» w-(-C, e %01 4 C,-g¥o1) = —£F -

ll"lrLs* g = {Mrn '.Y;:gl"r{Ec 'Ig]

(4-292)
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b) the bar strain ¢(€p;) satisfies both Equations (4-25b), and (4-28):
e(8p, ) =Cpr oo 4 Cpre¥%m = g2 (1 — 85, /L) — N/(E, - 4,)
(4-29b)

Given the axial load N and the bar strain at the support e(x=0)=¢, the
corresponding moment M, is obtained from the moment-curvature analysis
of the cracked section. A boundary condition of Eq. 4-28 is:

0} =C,+ C;=5,
(4-29¢)

Unknowns of the system of Eqs. 4-29 are the disturbed length ¢p; (Fig.
4-7b), and the coefficients C; and C,. In an algorithm developed to solve
Egs. 4-29 numerically, the controlling parameter is &,; required input
includes the axial load, N, shear span L, the bond-slip characteristic
property ® (Eq. 4-28), and the member material and cross sectional
properties. The coefficients C; and C; are obtained from (4-29a) and (4-
29b):

. B
€y =05-gf ¥ [sg; : (1 - I+ ngJ —N/(E, - Ag}]

where =1 for C;, and p=-1 for C; (4-30)

The value of ¢p; is determined by solving Eq. (4-29c¢) after substitution
of C; and C>.

Formation of Additional Flexural Cracks
in the Shear Span

Increasing the reinforcement strain value at the critical section, &,
corresponds to a higher flexural moment M, at the support. Based on Eq.
4-27, the flexural moments exceed the cracking moment up to a distance

of x. from the support: Xer =Ly '(I_M”/MO). But the position of the
next crack is not necessarily at x.; rather, it is controlled by tension
stiffening of the reinforcement.
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(a) To determine if the next crack forms within £p; (Fig. 4-7b), the force
transferred through a bond to the concrete cover (i.e. EsAsi[e,-&(x)]) is
compared with the tensile resistance of the effective area of concrete
cover engaged in tension (i.e. fodc.e; EN 1992-1-1 2004)

l{ES 'Hsljl’rl:;ﬁ:r 'Ac.e_ff_” ' [Eg.— elx)] =1

>

Ac.eff =b- IEE{:W + ﬂi;'::I — Ay
4-31)

where Ay, is the area of the tensile reinforcement, 4.y is the area of
concrete effectively engaged in tension (shaded area around 4,; in Fig.
4-Ta), fo is the tensile concrete strength, and b is the width of the
section of the column (Fig. 4-7a). The lowest value of x=x..> < {p;
that satisfies Eq.4-31 determines the location of the next crack;
otherwise no further cracking is possible within £p; as long as the
reinforcement remains elastic.

(b) Alternatively, the next possible crack location, x> > €p; in the
undisturbed region (Fig. 4-7b) is also evaluated from Eq.4-25b (here,
&c.or=0.00015 is the concrete cracking strain):

ex) =51 —x/L)-N/(E, 4 )= ey 2, =1L+ [1-
Ec.u:r"'lrfgi - *n"rf'r(Ea:Ag Eg[]]
(4-32)

Slip in the disturbed region is obtained from integration of bar strains
(from x=0 to x= {py).

st =2(6,-674% — ;-6 +C 433)

The constant of integration C is obtained from the requirement of the
compatibility of strains in the concrete and reinforcement at the end of the
disturbed zone, x={p; where the local slip is zero (s({p;)=0). After
localization of the second crack at x..», the next step of the solution is the
determination of the new disturbed region ¢p, (along with the updated
values of the constants C; and C;). Term {p; initiates from the crack
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location x..» and extends towards the span until the requirements of slope
coincidence and continuity are reached, at coordinate x..> + {p> in Eqs.4-
29a-b (Fig. 4-8). In using the closed form expression of Eq.4-28, the value
of x is substituted by the value x-x.,2; this solution is valid for x < [xe2,
Xer,7Hp2]). The bar strain &> at the location of the second crack (Fig. 4-8)
is the outcome of the flexural analysis of the cracked section and
corresponds to the moment at that location according to Eq. 4-27 for
X=X¢r2. In the search for the new disturbed region, an additional
requirement is that slip at the location x.,.> should not exceed the limit s; in
Eq. 4.33 (where x is substituted by x-x..2), securing that the bond is still
elastic inside £p; (Fig. 4-8).

This process is repeated following the gradual increase in the value of
bar strain ¢, at the support, until no additional primary cracks can be
identified. This point corresponds to the stabilization of cracking, and it
generally occurs at a strain value in the critical section that is less than the
strain at yielding, &°''<g. From this stage and until failure of the
structural member, for the sake of simplicity of the mathematical problem,
the so called fotal disturbed region {p, is defined as the total distance
measured from the support to the end of the disturbed region of the last
(and remotest) crack that was formed prior to stabilization, {p, (Fig. 4-9).
Since bond development controls the total disturbed region, from that
point onwards the field equations (Eq. 4-4) are solved in ¢p, ignoring the
presence of intermediate discrete cracks or the flexural moment
requirements, since the “plane sections” assumption is not valid anywhere
over this entire region; upon further increase of the bar strain at the
support, the ¢p, length may increase further as the disturbed zone
penetrates towards the tip of the cantilever column.
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Figure 4-8: Disturbed region ¢p> after formation of the 2" crack.

Following cracking stabilization and beyond yielding of the steel bar
(£0>¢,), the yielded segment of the disturbed region undergoes simultaneous
degradation of the bond. Thus, of the total length £p,, there is a segment /.
where yielding penetrates and spreads with increasing value of ¢, (Fig. 4-
9). Owing to bar yielding, bar strains increase over [, without a
commensurate increase of stress: this means that bond must have degraded
to zero as a consequence of Eq. 4.4a, since df/dx=0 and thus f;=0. This
segment may be considered debonded. Even if the yield-plateau is
neglected, and the bar stress-strain diagram is considered bilinear with
some hardening (Fig. 4-3a), it is clear that the small hardening slope may
only be supported by the residual bond strength — in other words, in order
for a bar to yield, it must have slipped beyond the limit s in the bond - slip
law (Fig. 4-3b). Limit s, is not an intrinsic property of the bar—concrete
interface as it is generally assumed by Design Codes (fib Model Code
2010), but rather, it depends on the available bonded length (Tastani et al.
2013).
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Figure 4-9: Total disturbed region {p, after stabilization of cracking.

The solution for the distributions of strain, slip and the state of bond
over the disturbed region ¢p, of the shear span of a column under lateral
sway follows that obtained when considering yield penetration in a bar
anchorage (previous Section). Here, the disturbed region £p, comprises the
sequence of the following segments (Fig. 4-9): the yield penetration length
I (immediately adjacent to the support), the bond plastification length /,
(i.e. the length where the bar is elastic but bond is constant and equal to
the value at the plateau of the bond slip law f,"*); bar axial stress and
bond stress are elastic in the tail length of the disturbed region. The
solution of the bond equations for the different segments is given below:

4

E(X] =&, — E,:D;, x fg{-ﬂ — ﬁres

For 0 =x = [

(4-34a)
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sx) =5, + 050, — x)|=(x) + ¢, |
2> x=0: $,=5:10.51,-(,t¢y)

(4-34b)
4fWIII
For [, <x <1 +1,: elx) =g — EiDr;- (x—1,)
fi (x) = e
(4-352)

sx) =5, + 0501, + 1, — x)[el) + &3]
> x=l: $:=5110.51, (e, Fe)
(4-35b)
4.?"&”1!1 I!:
EDy P (4-35¢)

a _—
Eg] = Ey —

For [, +1,= x = £p,:

= st

e(x) =€, el g oL gulr-lp) £ = :
o  (4-36a)
s(x) =i{fu e o e B T

(4-36b)

Unknowns ¢p, Cr, Cz and the constant of integration C; are obtained
from boundary conditions at x = {p, (namely slope and strain continuity
and slip compatibility - zero relative displacement) between strain
distributions obtained from the bond development equation and from
flexural analysis. Therefore the reinforcement slip is: at x=/[+1,, s(x)=s;; at
x = €po , S(tpo)=0 (i.e., no slip). The following system of boundary
conditions is therefore established:

a) Slope continuity of the strain distributions at x = {p,:

@ (—Cypr o207 0) ) gV )) = 521 1/L,, £G =

{* o 'Ta:g]}'r(Ea: 'Ig]
(4-37a)
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b) Continuity of strains at x = {p,:

E{'EDI?] - ,:'H. g~ W¥pe—ir—ip] 1 CEr' g Fos—br—ip) — Eﬁ; 1 -

£0,/L) = N/(E, - 45)

(4-37b)
¢) Continuity of slip at x = /.+/,:
1
B {'[r + '[1'-"} = ;(Clt - EE[‘] +0=5 (4-37¢)
d) Continuity of strain at x = /.+/,:
(1, + '[p:} =Co +Cpe =25 (4-37d)

The length of yield penetration /. (Eq. 4-38) may be estimated considering
the continuity of strain at x = /. (in Eq. (4-34a).

E D
. =(g, _gy).Lm{’
/s (4-38)

/

Equation (4-38) for the yield penetration length (which defines the
plastic hinge length) has two interesting implications: first, it is a strain-
based criterion for the spread of yielding in the shear span, as opposed to
the stress-based definition given by Eq. (4-2b); there, the coefficient a
refers to the flexural overstrength normalized by the yielding moment. A
second more subtle point is the observation that the plastic hinge length is
influenced by several parameters indirectly, through the determining effect
that these have on f;"*. For example the presence of an axial load on a
member that undergoes cyclical displacement reversals weakens the cover
over a larger portion of the shear span length leading to cover delamination
due to excessive compressive strains; upon reversal of load, the crushed
cover cannot support significant bond action for the reinforcement when it
is stressed in tension, leading to a reduced value of f,"*, which in turn
causes increased penetration depth for columns carrying a higher axial
load; this is consistent with experimental reports (Watson et al. 1994, Bae
et al. 2008).
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Proposed Algorithm

The following algorithm (Fig. 4-10) is established in order to define the
locations of primary cracks and bar strain, slip and bond distribution along
the shear span L, of a laterally loaded reinforced concrete column as well
as the yield penetration length:

Initial Data: Using standard section analysis, M-¢ and M-¢ diagrams
(or better a unified diagram M-¢ -¢) are obtained, given N for the typical
section of the reinforced concrete column studied.

15 Step: Select value of bar strain, &,/ =¢,, after crack formation at the
support (Eqgs. 4-25,4-27).

2" Step: Find the corresponding moment, M, at the support, from
moment-bar strain diagram. Solve for the length of the disturbed region
{p; emanating from the first crack (Eqgs. 4-27- 4-30).

3" Step: Increase strain at critical section to &,? = &,/ +4e,. Find the
location x> of the second crack. Check if second crack will occur: (a)
inside ¢p; according to Eq. (4-31), or (b) in the undisturbed region L,- p;,
according to Eq. (4-32).

4t Step: (a) If next crack forms within £p;, repeat Step 3 for &, = g,
+A4e,. (b) Otherwise, find the new disturbed region ¢p; that extends beyond
Xer, 2.

5t Step: Find total disturbed length, £p,=x..2+ €p2.

6" Step: Solve for e(x), s(x), f(x), fs(x) for xe,<x<lp, from Egs. (4-28,
4-29, 4-30, 4-33) (Fig. 4-8a). In this phase of the solution, and up to
stabilization of cracking, elastic bond is assumed in ¢p; (Fig. 4-8). Thus
the distributions can be described by the Eqs. 4-36 after substituting /=0
and /,=0. For Ly-{p,<x<L, (elastic column) Egs. 4-25, 4-27) are used.

7t Step: Repeat steps 2 to 6 for &,7 = &, +Ag, until stabilization of

sthl _ . (D)
cracking (i.e., no more primary cracks can develop: “°¢ €o ). Final
length of disturbed zone is obtained from the n” increment using this
procedure: €po=xXcrnt €pn.

stbl

8 Step: Increase &7 = &,") +4e, > € . Solve for one continuous
disturbed region £p, > xent €pn allowing for bond plastification and
debonding as well as bar yielding (anchorage solution) up to either (a) &,
exhausting the ultimate strain of the M-¢ diagram, or (b) {p, exceeding the
available development length of the bar in the shear span, taken here as
(Ls*hnook), where hpoor refers to the bent length of a hooked anchorage
(according with fib Model Code (2010) the contribution of a hook to the
strength of an anchored bar is 50A4,f,"*, which corresponds to an
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additional anchored length, ALy=hpoox=12.5Dp). If (b) controls, continue
beyond that point for higher strains using the anchorage solution presented
in previous Section for the entire length £p,.

9th Step: The last converged value of /, in the shear span (Fig. 4-9) is
added to the corresponding yield penetration length into the anchorage
(previous Section) resulting in the definition of the total plastic hinge
length €.

Results

In the context of the present chapter, the length of plastic hinges is by
definition the length of yield penetration (thus £,~/,), occurring from the
critical section towards both the shear span and the anchorage; physically
it refers to the extent of the region where nonlinear reinforcing strains
occur, and it may be used to calculate the inelastic rotation capacity of the
column. The solution algorithm developed is applied in this section in
order to establish the parametric sensitivities of the estimated plastic hinge
to the important design parameters. It is also used to correlate the
behaviour of the plastic hinge spread in three published column tests that
were conducted to illustrate the effect of axial load on the length of the
plastic hinge region (Saatcioglu et al. 1989, Bae et al. 2008).

The three column experiments studied in the chapter are specimens U3
(Saatcioglu et al. 1989), S17-3UT and S24-4UT (Bae et al. 2008). Column
specimens were tested as cantilevers, simulating half a clear column length
under lateral sway such as would occur during an earthquake, with cross
section detailing as shown in Fig. 4-11a. Column U3 is analysed in detail
and the results are summarized in Table 4-1, whereas the results of S17-
3UT and S24-4UT are directly included in Table 4-1 for easy correlation.
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Section analysis to obtain M-¢ and M-¢
diaorams

Bar Strain, &,"”=¢,, after crack formation
at the support (Eqs. 4-25,4.27).

I
Calculation of moment M, and length of
the disturbed region £p; (Eqs. 4-27 — 4-
30).
(.
I
N
Increase strain ¢, = ¢, +4e,. Check
\ location x> (Egs. 4-31 or Eq. 4-32).
Repeat steps for &,” = &,/ +4e, )
until stabilization of cracking I <
(& o”bl = 50([ ) ). Final length of Crack within £p; repeat previous Step for
. 0 & = &,% +4¢,. Otherwise, new
disturbed zone for n” increment: . .
distrurbed region £p;.
Cpo=Xcrnt Cpn.
J
I
\ / Find total disturbed length,
Cro=Xo >t €po.
I
Solve for e(x), s(x), f(x), fo(x) for x.,»<x<lp, from Eqgs.
(4-28, 4-29, 4-30, 4-33). Define distributions by the
Eqgs. 4-36 after substituting /,=0 and /,=0. For L,-
{po,<x<L, (elastic column) Eqs. 4-25, 4-27 are used.
I J
~
G _ . D stbl . .
Increase &,” =&, +4e,> &, . Solve for one continuous disturbed
region £p, 2 X, + p, up to either (a) ¢, ultimate strain of the M-¢ diagram,
or (b) £p, exceeding the available development length of the bar in the shear
span.
J

The last converged value of /, in the shear span (Fig. 4-9) +
yield penetration length into the anchorage (previous Section)
= total plastic hinge length £,

Figure 4-10: Flow-chart of the established algorithm for the definition of the bond
state in the disturbed region of the shear span as well as that of the plastic hinge
length.
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Table 4-1: Summary of the analyzed experiments (units: mm, MPa).
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Experimental details Analysis
Test v=N/ Column Reinforcement Anchorage Shear span Column deformation at
1D (f'bd) g try 8 P ultimate
.  max < res Total -
Square section — ™ =12, fi7 0= 1.44, ry ! Y+
h=350, Long: 8 evenly distributed bars, 5 123(\)/@ 7:40 51=0.2 :6[;12;;::1 lgh
v 0.16 Cen=32.5 Di=25, /=430 Ey=5%E, L‘ e {p"¥=L+12.5Dy=1313 DR#-520mme1.5h
fo=34.8 d=305, Trans: 10@75 f;,«=470 5 qneh (jc —0)=2.33 =319 0517=0.018
Sh. span, B &=0.0095, ¢=4.7x10" PRI
1.~1000 1. =313 =103, 5P (=0)=2.36 0,/= 6,/ +6,/=0.015
‘ o= 103, s776=0)=2. 6.:~0.033 / 6.=0.035
’/;"'”“"'21 1.49
Square section mav— — S v Total €y
h=440, Long: 12 evenly distributed bars, o 12:5(;//; 8.2351 75 =209 f,faf‘_ol 1 Lp =lru+ [-=448mm=h
S17- 0.5 Cen=27 Di=15.9, =496 Eyi=5%E, 1 00 fire= " ({bz =L1, DR=450mm=h
=43, = :9. 5= i e 0,77=0.012
R - =434 Shiafgg;n Trans: 9.5@86 ;=496 5,0 (=0)=1.50 pe"=Ls+12.5D,=3248 9,720,029
’ =177 =271 e
L3049 ' =0. y
0,01, fm5.9x103 6,=0.041 / 6,47=0.032
¢ = 236, 5P (x=0)=2.30
* max
b,w/cov =8.85
Square section - max_ - ) max Total £y :
h=610, Long: 12 evenly distributed bars, fir=l '25:\([))(02_7'55 S Jbwoleov = Lot =l + 1 =380mm=0.6h
S24- 0.2 Cenr=49 Dy=22.2, /=400, Eg=1%E; Ly =890 Ji'¢=20%, fi"*=0.4, DR=350mm=0.57h
4UT  £'=365 d=550, Trans: 9.5@152 f,«=455 ks —0)—0.98 51=0.2 0,57=0.01
Shear span, Su I(x_—é(; : Cpo" ™ =Ls+12.5Dy=3327 6,/=0.017
L=3049 e 1-=301 6,=0.027/ 6,47=0.033

£=0.013, $,=3.9x10"
=217, 5.7 (x=0)=3.52

Note: Test U3 by Saatcioglu et al. 1989 and tests S17-3UT, S24-4UT by Bae et al. 2008; +*DR= Damaged Region
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Figure 4-11: For Specimens U3, S17-3UT and S24-4UT a) cross section details,
b) moment - curvature - tensile bar strain diagrams.

Column U3 (Saatcioglu et al. 1989)

The specimen had a 350 mm square cross section reinforced with eight
evenly distributed longitudinal reinforcing bars of D, = 25mm and stirrups
of Dy = 10mm spaced at 75mm o.c. (on centers) and clear cover Ceo, =
32.5mm (i.e., d=350-45=305mm), see Fig. 4-11a. The concrete strength
was f. =34.8MPa. Longitudinal steel yielding strength was 430MPa, with
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a 5% hardening. Stirrup yield strength was 470MPa.

Column shear span was L; = 1.0m and the axial load ratio [vV=N/(f. bd)]
was 0.16. Fig. 4-11b plots the unified M-¢-¢ relationship obtained for this
axial load using fiber section analysis with the modified Kent & Park
model for confined concrete (Scott et al. 1982); a Hognestad-type parabola
was used to model the compression stress-strain response of unconfined
concrete (Hognestad 1951). A bilinear stress-strain curve with 5%
hardening was used to model longitudinal reinforcement (Fig. 4-3a). Bond
strength was taken as equal to /3" = 1.25V/. (7.4MPa) for the anchorage
(anchorage with hook with equivalent straight length of L, = 800mm, fib
Model Code 2010). For the shear span, the bond strength is calculated
using a frictional model (Tastani et al. 2010) that accounts for separate
contributions of the cover concrete and stirrups according to:

2u 4, A
fmax =%[2va -t +0.33MJ
b b'S (4-39)

where N, is the number of tension bars (or pairs of tension spliced bars if
reinforcement is spliced) laterally restrained by the transverse pressure
exerted in the form of confinement by the stirrups, C., is the clear
concrete cover, Ay is the area of stirrup legs enclosing the N; bars (i.e., the
total area of legs crossing the splitting plane), s is the stirrup spacing along
the member length, s is the coefficient of friction, f is the concrete
tensile strength and f;  is the yielding strength of stirrups. Therefore the
maximum bond strength for the shear span is 7.2MPa when considering
the contribution of the cover, which drops to 2.75MPa after cover
delamination (for the present example: us-=1, fo; = 0.33Vf.', Ny = 3). Due to
the reversed cyclical nature of the displacement history, cover on the
tension reinforcement is assumed to have delaminated or split if, during
the opposite direction of loading, the compressive strain has attained the
limit value of 0.003; this is used also in all other examples considered
herein. The residual bond strength f," is defined as 20% of the maximum
bond strength and parameter s; = 0.2mm; s; mainly depends on the
anchorage length which is equal to the shear span if the latter is
transmitted to the total disturbed region. For the present problem, s, is
found to be equal to 0.5 mm at the ultimate state of reinforcement (see Fig.
4-14).

Following evaluation of the process of crack formation according to
the proposed algorithm, the resulting distribution of strains is illustrated in
Fig. 4-12. Note that stabilization of cracking occurred before yielding of
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the tensile bars (just after the formation of the fourth crack). Ultimate
strain corresponded to a disturbed region extending over the entire length
of the column shear span including an equivalent additional length equal
to 12.5Dp (313 mm) — thus €p,"*=L+12.5D)— in order to account for the
end detail of reinforcement at the tip of the column being welded onto a
steel plate (this additional length is the anchorage length equivalent of a T-
headed anchorage according to fib Model Code 2010 — here this is a
conservative estimate). The red dashed curve in Fig. 4-12d plots the bar
strain distribution that results from plane sections analysis; there is a
marked deviation from the distribution controlled by the bond action in the
most stressed part of the shear span.

Figure 4-12: Column U3 (a), (b) (c) tensile bar strain distributions along
the anchorage (blue curves) and the shear span (cyan-red-green curves).
Location of estimated successive cracks is indicated until crack
stabilization. d) Strain state of reinforcement at ultimate, where £,/ is
calculated.

From Fig. 4-12 it is seen that the yield penetration length over the
shear span at the last step of the calculation was 319mm (0.914 or 0.32Ly),
whereas the corresponding pullout slip was s,7*'(x=0) = 2.36mm  (Fig.
4-14). When including the yield penetration in the footing as is intended in
the formal definition of £,; (Eq. 4-2b), the total plastic hinge length is 632
mm. (Note that the yield penetration length inside the footing is 313mm or
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0.029Dsf, and the corresponding slip is s,%“"(x=0)=2.33 mm). Fig. 4-13
compares this value with the empirical estimates of Eqs. 4-3a, b; the easy
estimate of 0.5d is also noted. Also included is the result of the classical
definition of plastic hinge length (/-M,/M,)L,. For comparison it is noted
(red dashed line in Fig. 4-13) that cover delamination extended over 520
mm measured from the face of the support, according to the experimental
report of specimen U3 (Saatcioglu et al. 1989). Fig. 4-14 presents the slip
distribution lengthwise of the bar reinforcement, from where values at the
critical section are used next for the calculation of drift components.

The rotation components &7 and 6/ occurring at the critical section of
the specimen at yielding- and in the ultimate limit state, are estimated in
accordance with Eqs. 4-1, 4-2 by also adding the contribution from the
anchorage (previous Section); here the theoretical ultimate point
corresponds to the attainment of the maximum supportable disturbed
length, £p,"*=L+12.5D;=1313 mm as described in the preceding. Thus,
Eq. 4-1 is modified as follows:

span anch
slip _ Y | + y |
= =0 =0
Vo d=04c, " d—04c, "
R —
shear span anchorage .
B
span anch
slip _ Su | + Su |
u x=0 x=0
d—04c,™" " d-04c,'
—_ —_
shear span anchorage (4_40)

The values s,(x=0) and s,(x=0) are the contributions to slip at the base
of the column resulting from pullout from the anchorage as well as from
the shear span. For the analytical estimations of specimen U3, the
compression zone depth was (Fig. 4-11b, £=0.0095 and ¢,=4.7x10"mm™")
o= 103mm (i.e., d-0.4c,= 305-41=264mm) and from Eq. 4-40 the drift
capacity owing to pullout slip was estimated at:

0,4"P=2.36264+2.33264=0.018rad.

Using ¢, = 319mm, the ultimate rotation of the column due to flexure was:
0/=6/+6,/ where 6/=¢,L,/3 (see also Eq. 4-2b): 6,/=1/3:0.000013-1000 +
(0.000047-0.000013)-319 = 0.015rad. The term 6,7 accounts for 55% of
the total rotation capacity of the RC column (0.018+0.015=0.033rad). The
experimental reported tip displacement at the maximum moment
(268kNm) was 35 mm, corresponding to a rotation of 0.035rad.
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Column S17-3UT (Bae et al. 2008)

The geometry of the column is summarized in Table 4-1 and depicted in
Fig. 4-11a. The main bars were welded onto a steel plate for the
application of the load at the tip of the column. This was taken into
account in the analysis by including a length of 12.5D; (= 199mm) as an
effective extension of the available development length in the shear span.
Fig. 4-11b depicts the results of the moment — curvature - strain analysis.
It is evident that cover spalling occurs relatively early at a stage
corresponding to bar yielding. For the shear span, the maximum and the

post-cover delamination values for bond strength were estimated from Eq.
max

max
439 as /bwI50v = 11 49 MPa and 7570/ = 5 40MPa (indices w/cov and
wo/cov correspond to the inclusion or non-inclusion of the cover
contribution). The process of detecting the crack formation and the
corresponding strain distribution for the column are presented in Fig. 4-15.
Stabilization of cracking occurred before the yielding of the tensile bars.
Moreover, after the spalling of the concrete cover, the contribution of the

latter to bond strength was neglected (thus f;= 7 b-wo/cov = 5 40MPa).

As is evident from Fig.4-15d the maximum sustained yield penetration
length based on the proposed procedure is 271 mm (0.664 or 0.09L;) in the
shear span and inside the footing it is 177 mm (or 0.022D.f;). Reported
damage extended over a distance of 450 mm from the base of the column
(see experimental reference; red dashed line in Fig. 4-13). Fig. 4-13
presents the correlation of the analytical estimation with the empirical
results and Fig. 4-14 the analytically estimated slip distribution lengthwise
along the bar reinforcement at the ultimate strain.

The rotation of the column at the ultimate moment due to slippage 6,°?
(Eq. 4-40), is 0,57 = 2.30311+1.5311 = 0.012rad whereas the ultimate
rotation of the column due to flexure (using £ = 271mm) is: 6,/ =
1/3-0.000017-:3049 + (0.000059-0.000017) -271=0.029 rad. Thus the total
drift is estimated at 0.041rad. The experimental curvature corresponding to
a 20% drop in the lateral load capacity (this point was defined on the
lateral load lateral displacement envelope after correction for the P-A
effects), was 7x10°mm' (at the 6" level of cycling) and the associated
drift was 0.032rad.
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Figure 4-15: Column S17-3UT: (a), (b) and (c) tensile bar strain distributions along
the anchorage (blue) and shear span (cyan-red-green curves). Location of estimated

successive cracks is indicated until crack stabilization. d) Strain state of reinforcement

at ultimate, where ¢,/ is calculated.

Column S24-4UT (Bae et al. 2008)

Table 4-1 and Fig. 4-11a depict the geometric characteristics of the
column specimen. As in the previous example, the effective development
length of the longitudinal bars in the shear span was extended by 12.5D,
(= 278mm) to account for the welding of main reinforcement on a steel
plate attached to the point load setup. Fig. 4-11b plots the calculated
moment — curvature - strain diagram, indicating also the onset of cover
delamination (beyond that point, bond strength is reduced due to the
elimination of the cover contribution in Eq. 4-39). For the shear span f,"*
was /Pwlev = § 85MPa and /Pv0/ev = 2 0MPa (with and without the
cover contribution). The process of crack formation and the resulting bar
strain distributions as calculated using the proposed algorithm are shown
in Fig. 4-16.

Fig. 4-16 evidences that yield penetration length at maximum strain
value &, = 0.013 is /.= 301mm (= 0.5/ or 0.1L;) in the shear span. Adding
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the length of yield penetration in the footing (i.e. 80mm or 0.01D,f;) the
plastic hinge length is estimated at 380mm. Fig. 4-13 presents the
correlation of the analytical estimation with the empirical results and the
reported damage into the shear span, extending up to a distance of 350
mm. Fig. 4-14 shows the estimated slip distribution lengthwise along the
bar reinforcement at the ultimate strain.

Column rotation capacity at the ultimate moment was estimated as
follows: from slip, 6, = 3.52/463 + 0.98463 = 0.01rad and due to flexure
6,/ = 1/3 0.000007-3049 + (0.000039-0.000007)-301 = 0.017rad (in total
0.027rad). The experimental reported drift ratio at up to 20% net loss of
lateral load strength was 0.033rad (after correction of the result for the P-A
effect); therefore the experimental total rotation of 0.033rad was
approximated adequately by the estimated analytical value of 0.027.

Tensile Bar Strain
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Figure 4-16: Column S24-4UT: (a), (b) and (c) tensile bar strain distributions in the
anchorage (blue) and the shear span (cyan-red-green curves). Location of estimated
successive cracks is indicated until crack stabilization. d) Strain state of reinforcement
at ultimate, where {,; is calculated.
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Parametric Investigation

The parametric sensitivity of the proposed solution for the plastic hinge
length is investigated in this section considering as a point of reference
specimen U3, examined in the preceding section. Parameters considered,
reference values, and ranges of parameters thereof, are listed in Table 4-2;
in each case, one parameter is varied at a time keeping the reference values
for all other variables (so the possible interaction effects between variables
have not been considered in conducting the sensitivity analysis).
Consistent with the original definition of the plastic hinge length (Eq.
4-2b) the strain hardening ratio of the reinforcement Eg, effectively
increases the plastic hinge length (Table 4-2). Similarly, a reduction of the
residual bond strength f;/* leads to further increase of the plastic hinge
length (Table 4-2). It should be noted that the yield penetration length in
the anchorage is included in the plastic hinge length.

The location of the cracks is affected by variable w that defines the
elastic bond according to Eq. 4-28. Decreasing the slip limit s; and
increasing the value of average bond strength f,”* both led to the
consolidation of the cracks closer to the critical section at the base of the
column (before stabilization of cracking), as is evident from Table 4-2. In
all analytical cases presented in Table 4-2 the first crack appears always at
the base of the column (x;.=0), whereas in some of the experiments
severe cracking occurred about 50 mm above the footing, owing to the
restraint provided by the footing, particularly when the drift history was
applied by means of rotating that block while keeping the tip of the
cantilever specimen stationary (e.g. Bae et al. 2008).

In the previous section three specimens with different aspect ratios
(Lyd) and axial load ratios [v = N/f.bd)] were considered. The
corresponding values for (Ly/d) and v were (3, 0.16), (7, 0.5), and (5, 0.2)
respectively. According to Bae et al. 2008, the two parameters have a
simultaneous effect on the extent of £,;, and a degree of interaction (i.e.,
the effect of Ly/d is pronounced only in the presence of a high axial load
ratio) (Tables 4-2,4-3). To illustrate the sensitivity of the proposed
approach in reproducing the experimental trend, a second reference point
is introduced in the parametric study, namely the case of specimen U3 but
with an axial load ratio of v = 0.5 (Table 4-3).
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Table 4-2: Parametric Investigation — Properties similar to specimen
U3 (units: mm, MPa)

v=N/(f:'bd)

Parameter —0.15 —03 05
Plastic Hinge Length 1.8h 1.3h 0.9h
Parameter fr"r=3 fi"*=5 fi"=1
Plastic Hinge Length 3.1h 2.2h 1.8h
Parameter fie=1 fr'*=2 fr'*=3
Plastic Hinge Length 2.2h 1.6h 1.3h
Parameter Ea=1%E;s Ean=2.5%FEs Ea=5%E;s
Plastic Hinge Length 0.4h 0.9h 1.8h
Parameter L=2h L=3h L=4h
Plastic Hinge Length 1.8h 1.8h 1.8h
Parameter Dy=18
Plastic Hinge Length 1.4h

Table 4-3: Parametric Investigation — Axial load ratio equal to 0.5
(units: mm, MPa)

Ideal reference v=N/(f.'bd) = 0.5; all other characteristics are those

case: of U3
Parameter fi"* =3 fi"=5 fo"x=1
Plastic Hinge
L 1.6h 1.1h 0.9h
Parameter =1 fi' =2 fr'*=3
Plastic Hinge
Lt 1.1h 0.8h 0.7h
Parameter Esn=1%E; Esn=2.5%E; Esn=5%E;
Plastic Hinge
L 0.1h 0.4h 0.9h
Parameter L=2h L=3h L=4h
Plastic Hinge
L 0.9h 0.9h 0.9h
Parameter Dy=18
Plastic Hinge 0.7h

Length
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Figure 4-17a displays the influence of the variables on the normalized
plastic hinge length (£,/h, vertical axis) of the reference specimen, and on
the associated development capacity of the reinforcement (in terms of
tensile strain, &, in the horizontal axis) of the critical cross section. Each
curve in this diagram is read as follows:

e Reducing the bond strength f;”* (to the associated residual bond
strength /" = 20%f;,"*) gradually from 7 to 3MPa (red arrow next
to the brown curve pointing down) results in the increase of the
plastic hinge length attained at a lower bar strain capacity.

e Increasing the normalized axial load v (red arrow next to blue curve
pointing up) lowers the strain capacity and the associated plastic
hinge length.

e Reducing the hardening modulus £y (red arrow next to green curve
pointing down) decreases the plastic hinge length (as is implied by
Eq. 4-38) and increases the strain.

e Reducing the bar size D, (red arrow next to grey curve pointing
down) decreases the hinge length (as it is also implied by Eq. 4-38)
and increases the strain.

The hinge length is relatively insensitive to Lg% at low axial loads, i.e.,
at v = 0.15 all points coincide with the reference point (intersection of all
curves; i.e. for Ly/h =2, 3 and 4, the {,/h is 1.8 and the associated strain is
0.017).

The presence of an axial load on a member undergoing cyclical
displacement reversals weakens the cover over a larger portion of the
shear span length speeding up cover delamination due to excessive
compressive strains. Upon reversal of a load, the crushed cover cannot
support significant bond action for the reinforcement when the latter is
stressed in tension, leading to a reduced value of f,”* (it is sustained only
by the stirrups) and to the demise of f,"* (less than half of the bar
perimeter is in contact with concrete, with implications on residual
friction). These in turn cause increased penetration depth for columns
carrying a higher axial load. Fig. 4-17b depicts the effect of the studied
variables on the plastic hinge length under higher axial load (v=0.5); in the
reference case, the term £, was reduced from 7.2MPa to 2.75 after cover
loss. The following may conclude:

e Reducing bond strength f,"* from 7 to 3MPa (brown curve in Fig.
4-17b) results in increased plastic hinge length, attained at a higher
bar strain.
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e Reducing the residual bond strength f,"* (orange curve in  Fig. 4-
17b) increases the hinge length and lowers the associated strain
capacity.

e Lower hardening modulus Ej, (green curve in Fig. 4-17b) results in
lower hinge length and strain.

e Reduced bar size D, (grey curve in Fig. 4-17b) lowers the hinge
length and the strain capacity.

The mechanism by which the axial load ratio affects the damaged
region is by accelerating and spreading the delamination of the cover in
the compression zone of the laterally swaying column. This was already
evident in the M-¢-¢ relationships of Fig. 4-11. To study this parametric
trend, consider the cross section of Fig.4-18a. Cover delamination is
assumed to occur when the compressive strain at the level of compression
reinforcement reaches the limit of 0.004 (the term &=c./d is the normalized
compression zone and &= do/d defines the position of the compression
reinforcement as per the extreme fiber). In this case, from cross section
analysis, the strain of the tensile reinforcement ¢, is given by Eq. 4-41.

g, =0.004- 1_5'
§-¢ (4-41)
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Figure 4-17: Sensitivity analysis of the normalized plastic hinge length £,/h versus the
associated reinforcement maximum tensile strain &s for a) low and b) high axial load.
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For the needs of the parametric investigation, the relationship between v
and &, is established using experimental evidence: the column test series
conducted by Watson et al. 1994 included specimens with various axial
load ratios ranging from v = 0.1 to 0.6. Based on the reported test results,
the relation between axial load v and normalized compression zone depth
& is estimated as &= 0.25v+0.07 (Fig. 4-18b). Thus, given the applied
axial load v, the normalized compression zone depth of the cross section is
estimated at & (from Fig. 4-18a); then, the corresponding strain in the
tension reinforcement at the critical section, &,, is obtained from Eq. 4-41).
This is substituted in Eq. 4-38 to define the yield penetration length into
the shear span, using different intensities of average residual bond strength
depending on the magnitude of the axial load (lower residual bond
strength for higher axial load to reflect the effect of delaminated cover
over a broader region). This procedure is visualized in the combined
diagram in Fig. 4-19, where curves of v - &, (grey curve) and //d - &,
(black curves, where the thicker the curve the higher the fy* is) are
simultaneously plotted (note: the horizontal grey dashed line drawn at the
upper part of Fig. 4-19 defines the available column aspect ratio, Ly/d,
which serves as the ultimate limit for possible penetration). This diagram
may be used to illustrate two aspects of the parametric sensitivity of the
problem: a) the increase of axial load for example from 0.2 to 0.4
(following the red arrow) results in reduction of the strain capacity of the
cross section (from 0.05 to 0.027) along with diminishing of the f*
(crossing from the thicker to the thinner curve, i.e. from 4 to near 1MPa)
as well as an increase of the extent of the plastic hinge length in the shear
span (i.e. from 1.1 to 2.3d, where d is the effective depth of the cross
section, see the red dashed horizontal lines). b) the unified diagram v - [,/d
- & can be used in design: given the axial load and the aspect ratio of the
member, the strain capacity of the cross section and the corresponding
plastic hinge length are uniquely defined, leading to the proper assessment
of the members’ available deformation capacity. The extent and intensity
of damage may be effectively reduced through confinement as a higher
value of the residual bond strength may be supported (see the black dashed
paths in Fig. 4-19).
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Figure 4-18: a) Strain state of cross section at cover crushing. b) The influence
of axial load on compression zone based on data from Watson and Park (1994).
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PHAETHON:
SOFTWARE FOR ANALYSIS OF SHEAR-
CRITICAL REINFORCED CONCRETE COLUMNS

The correlation of experimental responses and results obtained from the
inelastic flexural analysis of column elements with a dominant shear
component had already highlighted the limitations of the underlying
assumptions of the later approach, when used beyond their scope of
application. Shear is a persistent problem in analysis and assessment
because by the mere rotation of the principal directions away from the
parallel and normal to a cross section, complicates convergence to
solutions that satisfy equilibrium, particularly in the inelastic range. The
debate on acceptable methods for calculation of shear strength still persists
in the literature; issues such as the effective area participating in shear
action and the size effect remain open. On the other hand it appears that
shear strength, although estimated as a cross sectional property, really
depends on the overall member response.

Even the most advanced stage of development on seismic design and
assessment to date requires some kind of nonlinear analysis either static or
dynamic. These nonlinear analyses are mostly carried out using frame
elements with different levels of approximation. Two main approaches are
usually used, classified as lumped-plasticity and distributed-inelasticity
models. The limitation of concentrated plasticity elements is that inelastic
deformations take place at predetermined locations in the ends of the
element. Another, in many respects more serious limitation, is the fact that
concentrated plasticity elements require calibration of their parameters
against the response of an actual or ideal frame element under idealized
loading conditions. This is necessary, because the response of concentrated
plasticity elements derives from the moment-rotation relation of their
components. In an actual frame element, the end moment-rotation relation
results from the integration of the section response. This can be achieved
directly with elements of distributed inelasticity (Filippou and Fenves
2004). For the latter approach, the so-called fiber beam elements (Fig. 5-1)
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provide results that seem to be particularly appropriate for studying the
seismic behavior of reinforced concrete (RC) structures: moment-axial
force (M-N) coupling is readily taken into account, as well as the interaction
between concrete and steel in the section. Several fiber beam-column
elements have been developed with good capability of reproducing axial
force and flexure effects. On the other hand, the coupling between the
effects of normal and shear forces is not straightforward and hence only a
few modelling strategies have accounted for, and implemented it up till
now (Ceresa et al., 2007).

A common theory, appropriate for the analysis of beam-column
elements, is the Euler-Bernoulli approach. The fundamental assumption of
this theory is that cross-sections remain plain and normal to the deformed
longitudinal axis. The engineering beam theory reproduces the response of
a beam under combined axial forces and bending moments, while shear
forces are recovered from a static equilibrium; the effects of the shear on
beam’s deformation are neglected. When the effects of tangential stresses
are important for the element deformation (i.e. in a beam-columns joint or
in the column/wall plastic hinge length), more refined theories like the
Timoshenko beam theory may be used.

In the development of a nonlinear frame element, two main approaches
have been used, namely the displacement-based (stiffness) approach and
the force-based (flexibility) approach. A flexibility-based frame element
gives the exact solutions for non-linear analysis of frame structure using
force interpolation functions that strictly satisfy element equilibrium, and
impose the compatibility conditions. Accordingly, this approach allows the
overcoming of some limitations of the stiffness approach. In particular, the
nonlinear analysis becomes independent of the displacement approximation, it
requires fewer elements for the representation of the non-linear behaviour
and, above all, in the case of a Timoshenko element or exact-beam theory-
element, it avoids the well-known shear-locking problem (a sharp increase
in the element stiffness which results in far fewer deformations for the
element than expected) (Hughes, 2000).

One of the modelling strategies for incorporating the beam theory that
incorporates the shear into the fiber approach is related to the idea of
adopting suitable constitutive relationships. This category includes fiber
beam-column elements using smeared cracking models. According to this
approach, cracked concrete is simulated as a continuous medium with
anisotropic characteristics. In general, these models are referred to as
“smeared cracking approaches” since cracking is modelled as a distributed
effect with directionality. These approaches are particularly suitable for
sectional analysis.
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. T | constitutive law

Figure 5-1: Fiber Element Scheme — definitions.

RC Sectional Model Based on Modified Compression
Field Theory (MCFT)

Since the end of 1970s, a considerable amount of experimental and
analytical research has been conducted with the aim of developing
analytical procedures capable of estimating the load-deformation response
of reinforced concrete elements loaded in shear (Ceresa et al., 2008). At
the University of Toronto, Collins developed a procedure called the
compression field theory (CFT) in 1978 (Collins, 1978). In 1981, a
competition was held to predict the load-deformation response of four
reinforced concrete panels tested at the University of Toronto (Collins et
al., 1985), where leading researchers from around the world entered
predictions based on various constitutive approaches. The results indicated
that the most highly developed level in analytical modelling to time was
far from satisfactory. Generally, the models were not able to adequately
estimate the ultimate strength, the failure mode or the load-deformation
response of the panels. Most of the entrants used constitutive theories
developed from tests conducted on plain concrete specimens. Conditions
in the specimens are not representative of actual RC structures. The
interaction between the concrete and steel strongly influences the response
of reinforced concrete structures. In an effort to determine more realistic
relationships for cracked reinforced concrete, Vecchio and Collins (1982)
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tested a series of RC panels. From these tests, the modified compression
field theory (MCFT) (Vecchio & Collins, 1986) was calibrated by
including stress-strain relationships for cracked reinforced concrete under
plane stress conditions.

An RC element is homogenized and is treated as anisotropic elastic
material shown in Fig.5-2. Consider an elementary panel under constant
plane stress, of uniform thickness, containing a rectangular grid of well
distributed reinforcement. Loads acting on the element’s edge planes are
assumed to consist of uniform membrane stresses, i.e., axial stresses 7., n,
and uniform shear stresses z.,. The deformed shape is defined by the strain
tensor for plane stresses:

Ex  Yap f2 0
Yay /2 £y 0

Figure 5-2L: a) RC smeared-cracking membrane element, b) average strains
(Co: spacing of cracks inclined at 0) c¢) average stresses and d) local stresses
at a crack (vagg: shear stress on crack surface).

The MCFT utilizes the following assumptions:

e The reinforcement is averaged or smeared throughout the element,
i.e. it applies only to well-detailed members.

o The stresses applied to the element are uniform along edges.

o The total stress state is a function of the total strain state.

o The reinforcement is perfectly bonded to concrete, so that relative
displacement due to bond slip between reinforcement and concrete
is ignored.

e The shear stress is negligible in reinforcement.

e The principal stresses and principal strain axes are coincident; as a
consequence, no deviation between the two is allowed.

e The constitutive relationships for concrete and reinforcement are
independent.
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e The cracks are smeared and allowed to rotate.

The theory comprises three sets of relationships: compatibility
relationships between concrete and reinforcement average strains,
equilibrium relationships between externally applied loads and average
stresses in the concrete and reinforcement; and uniaxial constitutive
relationships for cracked concrete along the principal directions and for
reinforcement. The constitutive relationships for cracked concrete result
from tests of reinforced concrete panels using a purpose-built Panel
Element Tester at the University of Toronto. As such, the formulation of
the MCFT calibrated with the specific tests conducted in the panel tester,
incorporates realistic constitutive models for concrete based on
experimentally observed phenomena. While cracks are smeared and the
relationships are formulated in terms of average stresses and strains, a
critical aspect of the MCFT is the consideration of the local strain and
stress conditions at cracks (Fig.5-2d).

Constitutive Model based on MCFT for a Fiber RC Beam

In order to determine the normal and the shear stresses for the i-th
fiber/layer (o, 7v') of a fiber section of a RC beam (Vecchio & Collins,
1988), a bi-axial fiber constitutive model is developed according to the
Modified Compression Field Theory (MCFT) (Table 5-1). For the section
state determination the following assumptions were made: the longitudinal
& and shear yy, strains are known for each fiber, according to a plane
section assumption and to a parabolic shear strain distribution along the
height of the section with the maximum value }x,.m. located on the neutral
axis yuq (Eq. 5-2, two half-parabola with the same maximum are met to the
point of neutral axis with different starting point, extreme tensile and
extreme compressive fiber respectively).

Vay ) = Vaymax - [2 (ﬁ) - (fj] (5-2)

The transversal concrete stress f., was determined for each fiber from
equilibrium conditions (zero normal stress n, was assumed). The
constitutive law is based on an iterative procedure (Fig. 5-3) where, in
order to accelerate the convergence of the algorithm to the right angle 6,
the initial guess value of the procedure for the angle of inclination of
principal stresses/strains (angle of principal axis 2 with respect to x-axis) is
determined according to the following equation:
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J=ELE. J‘-J'z_mzl e
alyl =-+ 2( ( - ) s Ve <V =d 5:3)
where y is the location of the concrete layer/fiber (y : start measuring from
the extreme compressive fiber, Fig.5-1), y.. is the depth of the compression
zone, y. is the depth of the tension zone and d is the total depth of the
section (i.e., ye-+y-=d, Fig. 5-1). Fig. 5-4 depicts the angle shape function
along the height of the section according to the above equation (d =457
mm, y.. = 280 mm similar to Specimen 1 [Sezen & Moehle, 2006]). The
solution to the iterative procedure is reached by applying the Regula Falsi
root finding a numerical solution (Chabert, 1999).

Table 5-1. Equations embodied in the iterative procedure (Vecchio &
Collins, 1988).
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f — f:'r
f;:j. = Es " &1 for 0= By = Epy s £1 1+,/Z00z, for Secr <& = Eyx ,
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_ £2 £2 framer _ 1
fe = feamax [2 (E) - (E) ] T nE-Dassl =10
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o = Joy—Jez
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G = =¥ .E — fu
sEt F.‘l'_'l." =50 fx,
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thetu{sm, 1:’_1._}.} = tan .

Txy
fr= Concrete Cylinder Compressive Strength (MPa), Ec— Strain at
Concrete Cylinder Compressive Strength, E:= Concrete Elastic Modulus
(MPa), fer= Tensile Concrete Strength (MPa),fcr= Strain at Tensile
Concrete Strength, ¥*= Yielding Strain of Longitudinal Reinforcement,
Ezy—Elastic Modulus of Stirrups (MPa), Fyy= Yielding Strength of Stirrups
(MPa), Py = Stirrups Reinforcement Ratio.
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Figure 5-3: Iterative procedure for each fiber/layer of the section according

to MCFT.
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Figure 5-4: Shape function for angle theta (0) of inclination of principal
stresses/strains.

Sectional Model

Fig. 5-5 depicts a beam element with its degrees of freedom and its
displacement/forces in global, local and basic systems of reference. The
term “basic” is derived from the system of reference where the rigid body
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motion of the beam is extracted. Considering now the virtual work
principle for the beam element of Fig. 5-5, the Eq. 5-4 can be derived. The
external work is done by the end forces (p) on the corresponding
displacements (u), whereas the internal work is done by the basic forces
(g) on the corresponding deformations (v).

fuTp = &v'g (5-4)

The internal work of Eq. 5-4 can be derived from the integral of the
stress product with the corresponding virtual strains over the element
volume V. In many applications of nonlinear structural analysis, the
internal work is limited to the internal work of normal stress o, and shear
stress 7, on the axial strain &, and shear strain y respectively:

61:1-'? = .r ﬁETﬂ' dV = _Il.{ﬁﬁx Oy + &}" T]dv (5_5)

Global
to Local

Global
to Local
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L

Figure 5-5: Beam a) displacements and b) forces in global, local and basic
reference systems.

The strain and stress are functions of the position along the element
longitudinal axis x and the position within the cross section specified in
local coordinates y (with respect to the height) and z (with respect to the
width).

Eq. 5-5 can be rewritten by substituting the integral over the element
volume as integration over the section area A at a location x followed by
integration over the element length:
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v"q = [(8z, 0, + 6y DaV = [[[(Sz, 0, + Sy T)dAldx  (5.¢)

The strains at a fiber/layer point of the beam cross section (2d case) are
related to the section deformations as follows (Ceresa et al., 2008);

R (5-7)
Yy (x) = Yxy.mazx (5-8)

where g is the axial deformation at the center of the coordinate system
of the section (center of mass) and y; counts also from this center, ¢(x) is
the curvature of the cross-section and y.y.max 1s the maximum value of shear
strain located on the neutral axis. Therefore the strains at a material point
m of the section can be expressed in matrix form as follows:

3
(2 3 5 J-mor e
Xy

max (5-9)
By(y) = [é _dvs 2] (5-10)
The internal forces at a section level are given by:
N = [g,dA = Axial force (5-11)
V= _Irrr_}. dA = Shear force (5-12)
M= —_ry_sardﬂ = Bending Moment (5-13)

The section generalized forces can be written in a matrix format as
follows:

£&) = [B. () - alx, y:)dA (5-14)
where:
N
,f;(x]={m} . -y O [T
v/ 33{3‘*]_[0 0 1], “(x’h]_{"’m‘} (5-15)
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Taking into account the section discretization into fibers/layers, the
total forces on the beam section are easily computed through the
summation of the contributions of each i-th fiber/layer:

EI" LE_}E‘I’ L."'il , Er‘ HI_}-E‘I’ |_ AL , M' _ Er‘ HI_}-E‘I’ xly_ELAl
(5-16)

where A' is the area of the i-th fiber/layer.
In order to determine the normal and the shear stress for the i-th
fiber/layer (ov, 7y/), a bi-axial fiber constitutive model is developed

according to the MCFT, as it is stated previously (Fig. 5-3, a0y = f:x)

According to the above guidelines the section forces are determined
based on known sectional deformations. In cases where the section forces
are known and the section deformations render the desirable results,
iterations are necessary (this means that the roots are searched
deformations, whereas the deviation from the desired section forces is
negligible or zero).

The tangent section stiffness matrix £ is defined as the derivative of
the section force vector f; with respect to the section deformation vector e,
where the explicit reference to x is dropped for the brevity of notation:

-I;E‘i -E-E‘z -E-E‘g
3f. 3y 3,
3e, A5 des (5-17)

[ 3] [ 3 3]
k= 570 S50 220 a0 = [ .7 () - 525 B,y )4
(5-18)

ﬂmh]={_}ﬂxh]_hh} (5-19)
dofxy) _ Err. 0
de(xy _[ 0 Gm] (5-20)

where E,, and G,, are the tangent moduli of the stress — strain relations at a
point m of the section approximated here by Ey.. and G (Table 5-1, Fig.
5-3).
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Embedded Algorithms in Phaethon Software

The most studied and tested structural form for deeper understanding of
the structural behaviour in reinforced concrete structures is the simple
cantilever column under various types of loading. Although it is a very
simple case, its numerical simulation with all interacting deformation
mechanisms is still yet a very challenging task to accomplish. Towards
this need and for the case of shear-critical cantilever reinforced concrete
columns the idea of “Phaethon” (i.e. “the shining” in ancient Greek) was
born. Embedded in this program is a frame element that may be employed
in the analysis of complete structural systems too. In the following section
the algorithms embodied in this Windows application are presented.

Moment — Curvature Algorithm

Through the cross sectional analysis, the unknown moment M (and the
associated axial deformation &) are determined for given curvature ¢
increments, and the unknown shear force V' for given shear strain y
increments, with or without the presence of constant axial load N. The
system of equations for section equilibrium can be established as follows:

N =N, (g5,0,7)=0)
M-M, (&5,0.7)=0)
V_Vr((c"O)wﬂ]/):O) (5_21)

The explicit dependence of the resisting forces is noted. With N, ¢ and
y given, the first equation is used to solve for g; then this value is
substituted along with the given ¢ and y into the second and third equation
to determine M and V. The resisting axial force in the first Eq. 5-21 is
expanded with Taylor series and the higher than linear terms are truncated:

N—{Nr(goo,goo)—i-s—NAso +Z—NA¢+Z—NA;/} =0

where the second subscript 0 denotes the initial guess for the solution.
Given the axial force N, the curvature increment 4¢ and the shear strain
increment Ay, the above equation can be solved for Aey:
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Agg =£—J -LNM —a—NA¢—a—Nij
9g¢ o9 ay with Vu =N=N,(g01.0)

(5-23)

The numerical solution is distinguished by the incrementation phase,
which consists of the application of the curvature and shear strain
increment, and by the equilibrium iterations under fixed axial force,
curvature and shear strain. The axial force is applied in an initial step
under zero curvature and zero shear strain. Therefore, the following
algorithm is applied in Phaethon for this task:

Given section geometry and material properties, axial force N,
curvature increment A¢ and shear strain increment 4y (e is the section’s
strain vector and f; is the resisting section force- see previous Section).

Incrementation for k= 1..m
olF) = kD

0
1. Initial guess the solution at k-7 with e =0

(k) _ (k) (k) _ (k
2. Determine I _fs(eo )and ks = (eo ) according to
previous Section

3. Determine

k k
Nl(t ) :N_fs(l )and

1
AcP Z(S_NJ ,(N;M_Z_NA(D_Z_NMJ
€o @ e

ON _jo 0N _wy ON_
Py s11 S5, — 12 YA K]
o s o and 07
sl
¥ =0 4| Ap
Ay

4. Update solution
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Iteration for i = I..n and constant k (skip superscript)

1. Determine /s S AC )and ky =k(e;)
-
seg=[ 2] (v,
2. Determine Ne=N=Ja  ang €o where
ON
6_ =k
€o
Agg
e=¢+ 0
0

3. Update solution

Back to iteration Step 1 until the error norm satisfies specified
tolerance. On convergence the final state is updated thus determining the
bending moment and shear force and the algorithm returns to
Incrementation phase at Step 1.

Pushover Algorithm

For the Pushover analysis of a cantilever shear-critical RC column in
Phaethon, the sectional model (either rectangular or circular) established in
the previous Section is employed along with the anchorage model in the
footing established in Tastani and Pantazopoulou (2013) (see also Chapter
4). An increasing lateral point load at the tip of the cantilever is applied
(Fig. 5-6) and a unique fiber element is assigned to the entire height of the
cantilever column with the number of Gauss-Lobatto integration points
selected by the user. The user is selecting also the analysis step of lateral
load ¥ to be applied in the Pushover and the total number of steps until the
maximum load (Modified Compression Field Theory in the fiber approach
as described in Bentz (2000) cannot capture the descending branch of
shear-critical columns which is why a load-control procedure was selected
to be embedded in Phaethon). The maximum load in Phaethon is the load
of the last step of convergence of the algorithm in incremental form. It
should be highlighted that in reality the shear-critical column’s ascending
response is followed by a descending branch of failure; however the
proposed algorithm is limited by strength attainment. After the maximum
load, the descending branch of the capacity curve is defined as the line
connecting the maximum load point with the point at axial failure as
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defined in terms of drift by Elwood and Moehle (2005) and 20% of the
attained maximum load as residual load at axial failure.

For each point load at the tip of the cantilever (Fig. 5-6) the
corresponding shear force at the assigned column’s sections (integration
points) is equal to that load (constant shear diagram). Then the bending
moment for each section is defined based on the moment at the base M,
which is the product of the tip lateral load and the given shear span of the
cantilever column, as follows:

M(x) = My-(1 —x/L,) (5-24)

where x counts from the support (x=0) to the point load at the free edge of
the cantilever (x=Ls). The concentric axial load (tensile or compressive)
applied at the tip of the cantilever is also constant throughout the pushover
analysis and along the length of the cantilever and therefore each column’s
section has an axial force value equal to the one applied at the tip.
Following this procedure, the vector f; which is the resisting section forces
(see previous Section) should converge to the above defined section forces
based on the moment, shear and axial load diagram of the cantilever
column under constant axial load and gradually increasing lateral tip point
loading.

The following algorithm is applied in Phaethon to achieve this
convergence:

Given the section forces s, i.e. an axial force N, a bending moment M
and a shear force V, the equilibrium equation between applied and
resisting section forces is set up:

s, (@ =s5—f(e)=0 (5-25)

The Newton-Raphson algorithm for the solution of the system of three
nonlinear equations is:

1. Given the nonlinear equations s,(e¢) = 0 and a guess of the
solution e.

2. Fori = 0...n determine function value s,(e;) and derivatives ks(e;)
(see previous Section).

3. Determine correction to  previous solution  estimate
Ae; =s,(e;)/k;

4. Update solution estimate € =6 +A¢;
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Return to Step 2 until the error norm is smaller than specified
tolerance. On convergence determine the resisting forces for the final
deformations.

It should be highlighted that for the cases of “pure compression” or
“pure tension” with the angle of inclination of principal stresses/strains
(angle of principal axis 2 with respect to x-axis) being zero or z/2
respectively then no iteration is applied but the fiber state determination is
defined by entering directly on the constitutive law of concrete (previous
Section, Table 5-1) without defining the rotation of principal axes.

After the convergence of the section forces along the length of the
cantilever column to the correct values, the axial deformation, curvature
and shear strain is determined for each section. Integrating the curvatures
(Fig. 5-6) along the shear span of the cantilever column leads to the
rotation of the cantilever column due to flexure and can be easily
transformed to lateral displacement due to flexure 4,/ by multiplying with
the shear span. Then, integration of the shear strains (Fig. 5-6) of the
sections along the length of the cantilever column (integration points)
leads to the lateral displacement 4, due to the shear mechanism of the
cantilever column. Finally, the rotation and the displacement 4, due to
pull-out of the tensile reinforcement (Fig. 5-6) is determined based on the
theory established in Tastani and Pantazopoulou (2013) (see also Chapter
4). All the above contributions (flexure, shear and anchorage) are added
together to define the total lateral displacement (i.e., 4, = 4/ + 4," + 4,")
of the cantilever column at each lateral load step and to obtain the capacity
curve of the column until maximum lateral load (Fig. 5-6).
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Figure 5-6: Pushover Analysis in Phaethon.
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Correlation with Experimental Results

This section presents the correlation of the shear-flexure capacity curves
obtained with pushover analysis by Phaethon with the experimental
responses curves for comparison capacity of shear-critical RC columns
selected from literature. In the correlation are also included curves for
comparison capacity, obtained from flexural fiber beam/column based
toolbox FEDEAS Lab (Filippou, 2004) and from MCFT-based software
and dual-section analysis Response 2000 (Bentz, 2000).

The shear capacity degradation curve of RC columns as a function of
displacement ductility is approached by EN 1998-3 (2005) and ASCE-SEI
41 (2007) (see also Chapter 2 and Chapter 3) and can be used as the basic
criterion in order to detect shear failure before or after flexural yielding
depending on the point of intersection with flexural capacity curve (Fig. 5-
7). To this end, it is necessary to define the flexural capacity curve based
on classic flexural analysis and combine it with the shear capacity curve in
order to define the strength and deformation of the RC column at shear
failure. This procedure is adopted in this section in order to initially detect
whether the columns under study will fail in shear before or after flexural
yielding and therefore to judge whether the “Phaethon” tool is suitable.

A
Flexural Capacity Curve

" A: Shear failure before flexural
! yielding

— ~ .
; B: Shear failure after flexural
= -
& .
Shear Capacity Curve
: N pacity
: B
)
é ¥ —

Displacement ductility,

27 4

v

Figure 5-7: Shear-strength degradation model.



Phaethon 149

Rectangular Shear-Critical Columns

This first selected rectangular column for comparison is Specimen 1, from
the experimental campaign of Sezen and Moehle (2006) that failed in
shear after flexural yiedling. Its properties are reported in Table 5-2. Fig.
5-8 compares the experimental response (in red) with the analytical
flexural capacity curve (in blue) and the shear capacity obtained by EN
1998-3 (in green) and by ASCE-SEI 41 (in black) (here the yielding
displacement in both shear-strength degradation models is defined by the
flexural analysis based on the applied fiber element included in FEDEAS
Lab; it can be read from the end of the initial plateau of EN 1998-3
model). The ASCE-SEI 41 estimates a very conservative shear strength as
compared to the yielding strength of this specimen which would be
interpreted as premature brittle failure; EN 1998-3 detects the column’s
shear failure after yielding in terms of strength but at lower displacement
compared to the experimental result.

As can be seen in Fig. 5-9 the comparison of the capacity curve
defined by Phaethon for Specimen 1 (that failed in shear after flexural
yielding) until the maximum load, is close to the experimental response
but also close to the capacity curves by the other already mentioned
software. The deviation of stiffness close to peak load from Phaethon can
be improved if, in the displacement contribution due to pull-out of the
tensile reinforcement, the reinforcement slip from shear span L, is added
(Megalooikonomou et al., 2018, Chapter 4). Since the latter established
methodology does not refer only to extended flexural yielding, it was not
incorporated into the “Phaethon” software as it would not have been
general in simulating shear failures which could occur also before flexural
yielding.
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columns.
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Table 5-2. Details of RC columns failed in shear (units: mm, MPa,
kN).

457

457 : : 496 9.5
0.03 0.00082
20 436 38206
432400 600 18" 344 16
0.032 679 6
: 0.0038
20 482 38206
807 400 700 18" 367 16
o 758 6
: 0.0038

*: Cover to Ctr. of Hoop Bar

Response 2000 doesn’t provide the descending branch of the capacity
curve due to shear failure after flexural yielding, while FEDEAS Lab
overestimates the response after maximum load is attained since it doesn’t
consider any shear-flexure interaction mechanism. Phaethon postdicts both
the maximum load but also the descending branch of the response in this
case.
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Figure 5-10: Displacement Contributions from various deformation
menchansims included in Phaethon for cantilever columns.

Figures 10 and 11 depict the displacement contributions in each
pushover analysis step from the various interacting mechanisms as they
are defined by Phaethon and they are compared also to the ones measured
during the experiment. It can be seen that at yielding (10 mm total lateral
displacement reported by Phaethon) Phaethon gives correctly 62%
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contribution from flexure, 35% from Pull-Out and almost 3% from the
shear mechanism (which in this case is a bit underestimated).
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Figure 5-11: Displacement Contributions from various deformation
mechanisms included in Phaethon (left) for rectangular column
compared to the experiment (right) (Sezen and Moehle [2006]).

In Fig. 5-8, the shear capacity curve of Eurocode 8 part 3 (EN 1998-3)
doesn’t intersect with the flexural capacity curve for the second selected
specimen by Lynn et al. (1996). This takes place only with the model of
ASCE-SEI 41 almost at the point of yielding at a lower strength and
displacement compared to the experimental response.

The second selected rectangular column for comparison is by the
experimental campaign of Lynn et al. (1996) that failed in shear before
flexural yielding. Its properties are presented in Table 5-2. As can be seen
in Fig, 5-9 the comparison until the maximum load is close to the
experimental response but also close to the capacity curves by the other
already mentioned software. Here, Response 2000 underestimates the
specimen’s strength and doesn’t provide the descending branch of the
capacity curve due to shear failure before flexural yielding, while
FEDEAS Lab overestimates the response after maximum load is attained
since it doesn’t consider any shear-flexure interaction mechanism.
Phaethon postdicts correctly the maximum load as well as the descending
branch of the response in this case too. However, in all analytical capacity
curves the experimental initial stiffness is overestimated. The axial failure
(i.e. collapse as defined by Phaethon) is also reached at a lower
displacement compared to the experiment. Finally, Fig. 5-10 depicts the
displacement contributions in each pushover analysis step from the various
interacting mechanisms as they are defined by Phaethon. As it can be seen,
they are correctly increasing with the applied lateral load.
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Circular Shear-Critical Columns

The third selected column for comparison is the circular Specimen 19 by
the experimental campaign of Ang et al. (1989) that failed in shear before
flexural yielding. Its properties are presented in Table 5-2. In Figure 5-12,
it can be observed that it is a shear-critical column since both the shear
strength degradation models detect shear failure (although wrongly after
flexural yielding) at a displacement lower than the corresponding
experimental one. The strength at shear failure is better predicted by the
model of Eurocode 8 part 3 (EN 1998-3) compared to the alternative of
ASCE-SEI 41.

As it can be seen in Figure 5-9 the comparison of the Phaethon
response until the maximum load is close to the capacity curves by the
other aforementioned software. However, the initial stiffness predicted by
Phaethon is higher compared to the experiment although identical to what
the other software tools define. Phacthon captures well also the maximum
load but not the corresponding displacement. The descending branch as
defined by Phaethon follows the experimental strength degradation. The
shear strength is better postdicted by Phaethon compared to Response
2000. Finally, Figure 5-11 depicts the displacement contributions in each
pushover analysis step from the various interacting mechanisms as they
are defined by Phaethon. As it can be observed they are correctly
increasing with the applied lateral load and here due to the aspect ratio of
the circular column (short column) the shear mechanism displacement
contribution is significant. It should be stated that an incremental filtering
(that is omitting some steps from the capacity curve) of the pushover
results was applied in this specimen since in some steps the converged
displacements given by the program were higher than the previous or the
next load steps compared to the current one. This filtering was applied
only to the given capacity curve in Figure 5-9 but the displacement
contributions in Figure 5-10 are given as obtained by the program.

The fourth selected column for comparison is the circular Specimen 20
from the experimental campaign of Ang et al. in 1989 that failed in shear
after flexural yielding. Its properties are presented in Table 5-2. In Figure
5-12, it can be observed that it is a shear-critical column since both the
shear strength degradation models detect shear failure after yielding at a
displacement lower than the corresponding experimental one. The strength
at shear failure is better predicted by the model of Eurocode 8 part 3
compared to the alternative of ASCE-SEI 41.
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Specimen 19 by Ang et. al. 1989
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Figure 5-12. Detection of shear-critical circular reinforced concrete
columns.

As can be seen in Figure 5-9 the comparison of the Phaethon response
until the maximum load is close to the capacity curves by the other
aforementioned software. However, the initial stiffness predicted by
Phaethon is higher compared to the experiment although identical to what
the other software tools define. Phaethon also captures well the maximum
load but not the corresponding displacement. The descending branch as
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defined by Phaethon follows the experimental strength degradation. The
axial failure (i.e. collapse as defined by Phaethon) is reached at a lower
displacement compared to the experiment. The shear strength is better
postdicted by Phaethon compared to Response 2000. Finally, Figure 10
depicts the displacement contributions in each pushover analysis step from
the various interacting mechanisms as they are defined by Phaethon. The
same idea of filtering as described in the previous circular specimen was
applied here too.

Parametric Investigation

The parametric sensitivity of the developed software on the produced
capacity curve is investigated in this section, considering as a point of
reference Specimen 1 by Sezen and Moehle (2006), examined in the
preceding section. Parameters considered are the discretization sensitivity
of the force-based fiber element of the cantilever column and the effect of
axial load, stirrups spacing and shear span length on the produced
pushover curve; in each case one parameter at a time is varied keeping the
reference values for all other variables (so the possible interaction effects
between variables have not been considered in conducting the sensitivity
analysis).

In Figure 5-13 it the effect on the pushover curve of different amount
of Gauss-Lobatto integration points [Ele(Number)IP] can be observed
along the element, as well as the amount of integration points/layers of the
Midpoint integration rule along the section [Sec(Number)L]. As expected,
by increasing the amount of Midpoint layers and Gauss-Lobatto
integration points the capacity curve stabilizes to reach the final result. The
deviation from the final result is evident only at the lower amount of
integration points both at the section and along the element.
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Specimen 1 Sezen and Moehle (2006)
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Figure 13: Discretization sensitivity along fiber section and element of the
capacity curve provided by Phaethon.

As may be observed in Figure 5-14, by increasing the compressive
axial load (here is given in normalized form) the shear strength of the
column under study is correctly increasing and the deformability of the
column is decreasing with lower displacements at maximum load (shear
failure) and at point of axial failure (collapse). The effect of stirrup
spacing (Figure 5-15) for a given shear-critical column on the capacity
curve produced by Phaethon is negligible until the maximum load (shear
strength), but the displacement at axial failure (collapse) is decreasing
correctly by increasing the spacing of stirrups. The insensitivity of
Phaethon in defining shear strength as a function of stirrup spacing in
lightly reinforced columns where shear failure is driven by sparsely spaced
stirrups, is justified by the assumptions of the MCFT theory—as described
initially in this paper—about smearing of reinforcement. Finally the
decrease of the shear span of the cantilever column (Figure 5-16) correctly
produces a more shear-dominant and less deformable reinforced concrete
column both at maximum load (shear failure) but also at the point of axial
failure (collapse).
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Figure 5-14: Effect of axial load on capacity curve provided by Phaethon
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Figure 5-15: Effect of stirrups spacing on capacity curve provided by Phaethon.
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Figure 5-16: Effect of shear span on capacity curve provided by Phaethon.

Before concluding this Chapter it should be noted that the Phaethon
software installation file can be downloaded for free from the following

web address: http://bigeconomy.gr/en/phaethon-en/.



CHAPTER SIX

CONSTITUTIVE MODEL FOR FRP- AND STEEL-
CONFINED CONCRETE INCLUDING SHEAR

Confining wraps or jackets to rchabilitate and strengthen existing
substandard RC columns such as those described in the previous Chapters
of the present book has proven to be an efficient technique for seismic
retrofit of structures. However, most of the compressive strength models
of confined concrete only consider the increased strength and ductility
provided by fiber reinforced polymers (FRPs), neglecting the contribution
of the existing steel reinforcement inside the column’s section. Even if the
existing steel stirrups in a reinforced concrete column are not sufficient to
confine the concrete core they must also contribute, along with the FRP
jacket, in confining the section.

Literature Review on FRP and Steel Confined Concrete
Material Models

In the last century, most of the confined concrete constitutive models were
proposed specifically for concrete columns confined by either steel
reinforcement or Carbon Fiber Reinforced Polymers (CFRP). The first
model that took into account both the confining effects of CFRP and steel
reinforcement was Kawashima’s et al. in 1999.

In their experimental program twenty three 600 mm tall circular
concrete cylinders with a diameter of 200 mm were included. Tie
reinforcement ratio p, and CFRP ratio pcr were varied between 0-1.24%
and 0-1.336%, respectively. Figure 6-1 shows the axial stress f. vs. axial
strain & relation of specimens tested in their experimental program. In
each case, the tie reinforcement ratio ps was varied from 0 — 1.24% under
constant CFRP ratios pcr. It can be concluded from the graph that the
effect of ties is larger at lower pcr.

Kawashima’s model is based on a formulation derived from the
regression analysis of the experimental results, which is similar to the
model proposed by Richart et al. (1928) from tests conducted on concrete
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specimens confined with hydrostatic pressure. In the latter experimental
program it was concluded that the responses under passive (confining
pressure depending on the lateral dilation) and active (constant fluid

pressure) are similar.
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Figure 6-1: Stress fc vs. strain &. relation of circular concrete cylinders
confined by both ties and CFS (Tie reinforcement ratio ps was varied from 0
to 1.24 % in each case, in which CFS ratio pcrwas kept constant).

From the experimental results above it can be derived that the axial
stress vs. axial strain response of concrete cylinders confined by both steel
stirrups and FRP jackets can be similar or to that one of concrete confined
only by means of steel stirrups (at a smaller pcr) where the response
reaches a peak strength, after which it deteriorates or presents FRP-
confined-concrete like response (at higher pcr). In the latter the response
reaches a transition point very close to the peak strength of the unconfined
concrete and then the stiffness of the descending branch becomes positive
and the response is almost linear.

Kawashima used the following formulation
confinement effect:

to describe the
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® Increasing branch:
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Determination of the four parameters of the model:
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Since the concrete confined by both CFRP and ties reaches the
ultimate when there is rupture of the CFRP jacket, the ultimate strain in
the model can be determined based on the properties only of the FRP
Jacket:
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where E. = elastic modulus of concrete (MPa), fey= unconfined concrete
strength (MPa), ps = tie reinforcement (volumetric ) ratio, ft and & = stress
and strain where the stiffness changes, E; = stiffness in the descending
branch (MPa) and ecrr = is the hoop strain of the CFRP where the stiffness
of concrete has shifted to the post-deterioration stiffness.
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Figure 6-2: Definition of the confinement effect by CFS.

The paper by Braga et al, (2006) presents a plain strain analytical
model—based on the elasticity theory—to determine the confining
pressures of transverse reinforcements on the concrete core of a reinforced
concrete member. The analytical evaluation of the confining pressures was
first carried out on reinforced sections with square and circular stirrups,
and subsequently on reinforcement configurations of greater complexity
with square and rectangular stirrups and supplementary cross ties. Finally,
the model has been used to evaluate the confining pressures applied by
external wrapping with any material (FRP, steel, etc.) and to design better
combinations of techniques and confinement materials.

The key assumption of the proposed model is that the increment of
stress in the concrete section is produced without any out-of-plain strain.
This means that the confinement exercised by the transverse
reinforcements should take place under plain strain conditions.

o, (82): S0 (82)+Ao-z (‘92) (6-7)
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Under plain strain conditions:
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Figure 6-3: Strength increment due to confinement.

For circular sections the Airy’s function’s solution for the plane
stresses is expressed in polar coordinates. For the particular case in which
a circular plane section is subjected to a uniform radial pressure applied by
the reinforcements to the concrete core the solution gives (n = radial, m =
orthogonal to 7, S = hoop or spiral spacing, ¢ = constant):

q

S (6-11)
Thus, the strength increment turns out to be constant at every point in

the section.

Ao, =vo,+0,)=2v0, = wd

S (6-12)
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The concrete radial and tangent boundary strains and the stirrup axial
strain are given by the relations (R. = Radius of the concrete core circular
section, measured at the center lines of the spiral or the circular hoop):

1
En ZE_(O-n _Vo-m)
e (6-13)
1
Em =7 Opn —VO'n)
E (6-14)
_ __ 49 (
&, =&, = l—v)
E.-§ (6-15)
q 'Rc
CRrRvy
¢ s (6-16)

Then, by applying the compatibility equation between the stirrup and
concrete in the radial direction, Airy’s constant ¢ can be expressed by the
following equation:

_ ECESASVS &
R.ES+EA(0-v)(v-g,+1)

q
(6-17)

Equilibrium conditions and compatibility specifications between the
concrete core and the confining ties are based on linear elasticity, thus
referring to the initial linear part of the steel behavior. When the steel
yields, the transversal pressure reaches its highest value and, from that
moment on, remains constant until failure. In the model, steel behaves in a
linear-elastic manner, whereas concrete behavior is assumed to be
nonlinear elastic, thus the values of E. and v are functions of the strain
state. Therefore, one has to refer to the secant modulus of concrete,
evaluated on different confined curves, relevant to different confinement
levels and has to define the law of variability of the unconfined concrete
Poisson’s modulus (vp = 0.2, &, = strain at stress peak of the unconfined
concrete).
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In the above expression of the Poisson’s Modulus, coherent with the
theory of elasticity, the upper limit value has been assumed to be equal to
0.5, which corresponds to diffuse cracking in the unconfined concrete. It
must be pointed out that when using steel stirrups, if one does not set an
upper limit on v, the shape of the lateral pressure — axial deformation
relationship changes in a negligible way until the yielding stress is reached
without any effect on the peak point and on the softening part of the curve.

In this model, the vertical arching action between adjacent stirrups and
the confining effect of the longitudinal bars is also considered. The
longitudinal bar’s role is evaluated by taking into account that the
extension of the stirrup should correspond to the rigid translation of the
edge of the longitudinal bars. According to this and referring to the Fig. 6-
4 outline, a uniform load is applied to the longitudinal bar. This load is
given by the following relationship:

(6-18)

Pion =

N (6-19)
= s
k= [
‘ﬂ.rr Vln .'rm
(a) {b) (e} (d) fo=kifom

Figure 6-4: (a) Transverse and longitudinal reinforcements;
(b) longitudinal bar schematization; (c) longitudinal bar deflection;
and (d) vertical confining pressures distribution.

The rigid displacement, corresponding to the confining pressure f, is
equal to the stirrup extension Al;, while the mean concrete core
displacement V,,, which corresponds to the effective mean confinement
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pressure is given by the relationship (where ¥}, = mean displacement of
the longitudinal bar, which is calculated according to the figure outline,
while Iy = the longitudinal bars’ inertia):

N,,S?

V,=Al,+V,, =Al, + ———
' ‘ T20E 1,

(6-20)

For a reductive coefficient ky = f/ f;» the following relation is obtained
(1 is the length of the stirrup corresponding to 1/4 of the section). When the
bending stiffness of the longitudinal bars becomes negligible (low ratio
values &) only the arching action between two stirrups spreads the
confining pressures along the column:

Al

st __

P 45>
TV, 458+ e,

S =% B = Py Sy = ¢;t

S ¢long (6—21)

Taking into account the effects of existing internal stirrups and
additional external wrappings separately, the confining pressure is given
by the following relation (f,; = confining pressure induced on the core by
the internal stirrup, f.. = pressure induced by the external wrapping on the
whole section, 4; = area within the internal stirrup, 4. = area within the
external stirrup):

Ai
frm = A_fri + Jre
e (6-22)

EE A
fri(gz): s OV -gz,gn-<€yi
R,ES+EA(Q-Vv)v-e.+])

fri(‘gz):o‘spsfyh’gn Zgyi (6-23)
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3 E.E, t, (b, SV .
R.E,+E,t,b, /S A-v)v-e, +1)
(b= wrapping width, ¢,,= wrapping depth)

fre (gZ )
(6-24)

The passive stress — strain curve is obtained in accordance with the
following procedure:

e.=file.)= fu(s) (6-25)

It should be pointed out that the curve relative to concrete confined by
a transverse reinforcement crosses all active confinement curves (relative
to increasing values of lateral pressure), up to the curve with a lateral
pressure equal to the one applied by the stirrups at yielding. Once this
curve has been reached, assuming that the steel doesn’t have a strain
hardening behavior, the passive confinement curve would match the active
confining curve. The above approach is different from the classical one.
Usually, the stress in the transverse reinforcement is supposed to be equal
to the yielding stress and the confining pressures calculated this way
define an upper limit. In reality, for low levels of strain in the concrete the
stress state in the transverse reinforcements is very small and the concrete
is basically not confined.

When confining is due to composites materials, which behave
elastically until failure and whose strength is much higher than that of
steel, the model is able to describe the behavior of the section until the
failure of the confining material. Based on linear elasticity, the
superposition of the combined confining effects of steel stirrups and FRP
jackets can easily be analyzed. An important aspect of the model is that the
cross-section tangential stresses (shear), which are generally neglected,
have an essential role in ensuing plane strain conditions.

The axial stress vs. axial strain response was determined by using the
confined concrete model of Attard & Settunge (1996). The model can be
summarized in the following (Fig. 6-5):
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Figure 6-5: Confined Concrete Model by Attard&Settunge (1996).
®  Confined Peak Stress and Strain:
Lo (£ )
=2 = (—’ + 1] k= 1.25{1 +0.062 i}( 1) (MPa)
fo _1+(17-0.06 fc)(ij (MPa)
& Je (6-27)

®  Stress and Strain at point of inflection:

fe_y
Ji fe

=—Je 4

0.57
Jo 5.06(fr} +1
/.

c

(6-28)



Constitutive Model for FRP- and Steel -Confined Concrete 171

¢ (6-29)

fic —2.5-0.3In(f,) (MPa)
& (6-30)

Jie _

Zic —1.41-0.17n(f,) (MPa)

c (6'31)
®  Stress corresponding to strain & = (2&i-€cc):
f2ic -1
S o Se
fo 0.62
6.35(]( r] +1

Je (6-32)

Jric _1 45025 in(f.) (MPa)
Je (6-33)

®  Stress — Strain Relationship:
2
yo AX+BX' g e
1+CX + DX ? Jo €, (6-34)
A | E2Ci T eyl AgEy ]
&, __(fa_.fi) (fo_fZi)_ (6_35)
- E 4E,,
B= (’9i — &y : - >

Lo =1) (o= 1a)] (6-36)
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C=4-2 (6-37)
D=B+1 (6-38)

Ji Jai

E; = g_aEZi = 5_2
i 2 (6-39)

It should be noted that in the paper by Braga et al. (2006) a comparison
with experimental results from the literature is presented with specimens
confined by either steel stirrups or FRP jackets. No comparison with
specimens having both confining materials is available. However, this
possibility is left open.

Another model that will be introduced here is the Spoelstra and Monti
model (1999), although it does not include the confining effect of the
lateral steel reinforcement but only that of the FRP jacket. The reason for
the following presentation is that this model will be the basis for the
constitutive law proposal of this book for modeling of seismic retrofitted
with FRP jackets circular RC columns.

The Spoelstra-Monti model (1999) is based on the following formula
(Popovics 1973):

*X-r
o, = cc p
r—l+x (6-40)
where
X = Ee Eee :gco|:1+5(&_lJ:| I”Z—EC Esec:&
Eee fa’ Ec - Esec Eee (6_

41)

where &.. = compressive strain at confined peak strength f... The confined
peak strength f.. is expressed in terms of a constant (throughout the
response) effective confining pressure o; with an equation (Mander et al.
1988) that has been extensively tested against experimental data:

Jeel01) _ 5 554 147,948 201 554
fco fc" fco (6—42)
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To account for the peculiar behavior of FRP, the following approach is
taken (Spoelstra and Monti 1999). The uniaxial stress response o, of plain
concrete under compressive axial strain ¢ is described as (Pantazopoulou
and Mills 1995):

O, = Ege. (gl ) 2 (6-43)
Esec(gl):Ec 1 :Ec 1
1+ pe 1+2p¢, (6-44)

Note that the area strain ¢, is taken as a measure of the internal damage
from cracking, which reduces the secant modulus Ej., starting from the
initial tangent modulus E.. The constant S (here, the reciprocal of that
given in the original paper by Pantazopoulou and Mills, 1995) is a
property of concrete, as discussed below. Note that in Eq. 6-44 the
assumption of radial symmetry (&4 = 2¢;) is adopted (¢;= lateral strain, g4 =
area strain), which allows for pointing out the dependence on the lateral
strain ¢. Note also that the sign convention is: compressive &. and o, are
negative, while dilating &4 and ¢; are positive.

Equations 6-43 and 6-44 are merged into a single equation:

Ecgc — O, (gc 0 )
2ﬂo_c (5070_1) (6-45)

81(80501):

where the dependence of the quantities o. and & on the current strain . and
the current confining pressure o; is rendered explicitly. The constant f is a
property of concrete which is evaluated as a function of the unconfined
concrete strength £, (in MPa).

5100 <00

i
/o]

(6-46)

The lateral confining pressure o; exerted by the confining jacket is
computed as shown in the Figure below (Fig. 6-6) and is based on the
jacket’s current stress g, = Eje; < f; = Ejgju, while the maximum lateral
confinement f; is provided for ¢ = g, = FRP jacket effective ultimate
circumferential strain.
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Once ¢ is computed from Eq. 6-45, the strain ¢; in the confining jacket
can be found (e.g., in axially loaded concrete cylinders it is simply: & = &),
along with its current stress g; = Eje;. This updated value of g; can be used
for a new estimate of ¢ through Eq. 6-45, giving rise to an iterative
procedure (Fig. 6-7) until o; converges to the correct value. The whole
procedure is repeated for each ¢. over the complete stress-strain curve. The
resulting curve can be regarded as a curve crossing a family of Popovics
curves, each one pertaining to the level of confining pressure, computed
with the Mander equation, corresponding to the current lateral strain,
determined according to Pantazopoulou and Mills (1995). The stress-strain
characteristics of the confining mechanism are explicitly accounted for,
while the lateral strain of concrete is implicitly obtained through the
iterative procedure. The procedure is ended when & = g;,.

Steel ties
1 _44,
f}=§ka F":rfr Pst = SdS
FRP
i 4t ,
f, =—pPsE €, Dy =—
IRRRRTEEARRRRRRRRAT 1 2 I A _-‘-’G"'E" " =g

Figure 6-6: Lateral confining pressure — analogy between steel stirrups
and FRP Jacket.

The response of an FRP-wrapped concrete specimen obtained with this
model can be seen in the following Figures along with a comparison with
steel — confined concrete. The axial stress versus axial strain is shown
first: steel and CFRP start with almost the same slope, but after steel yields
at 2.5 normalized axial strains, it departs towards higher axial strains.
GFRP starts with the same slope until the unconfined concrete strength is
reached; after that point GFRP has a lower slope leading to higher axial
strains. In Fig. 6-8b the lateral strain versus axial strain relation is shown
too. It can be observed that the slope of the branches depends on the type
of confining device. GFRP starts with a higher slope (meaning that



Constitutive Model for FRP- and Steel -Confined Concrete 175

concrete has a higher initial lateral dilation), which however remains
constant until the jacket fails. CFRP reduces the initial lateral strain, but its
effectiveness has a shorter duration, due to its lower extensional ultimate
strain g,. Finally, a comparison of confinement actions of steel and FRP

materials is presented.
— 4"{ set f; = fip at previous ste[;a

(cak:ulate fo (1) wan j

[calculate current stress /() (640 J

|update lateral strain £,(f)) (645 J

[ update f; Fie. (6-6) )
1

no [ h=rp? }

yes

Figure 6-7: Spoelstra and Monti (1999) iterative procedure.
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Figure 6-8: Modeling of concrete behavior confined with steel, CFRP
and GFRP.
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Figure 6-9: Comparison of confinement effectiveness of steel and FRP
materials.

Constitutive Model for FRP and Steel Confined Concrete
including Shear Deformations

The behavior of confined circular sections under axial load is characterized by
the radial lateral dilation, which causes radial confining forces or else
axisymmetric passive confining pressure that increases with the amount of
lateral expansion (Fig. 6-10). Considering this scheme for the case of
confinement by means of FRP jacketing, in order to define the confining
pressure acting on the section, it is necessary to define the jacket strain, or
circumferential strain, parallel to the fibers’ orientation. Relating the
circumferential strain to the strain in the radial direction, the following
simple relationship is obtained (Fig. 6-10):

_AC _27R(l+¢, 1) .
cC 27R : (6-47)

Owing to the axisymmetry of the problem, the outcome is that the
circumferential strain and the strain in the radial direction are equal. This
property has been extensively used to calculate directly the radial
confining forces based on experimental data by strain gauges attached
parallel to the fibers’ orientation in order to obtain the circumferential
strains. Along this line, it seems useful to try and extend the simple
calculation above to the case where steel stirrups and external FRP
jacketing are simultaneously present. The steel ties divide the section into
two parts: the first is the concrete core and the second is the concrete
cover.
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A_C — 27[{ [RCOI’E(I + gF.COV€)+ C(l + gV‘COVEI" )]_ (RC(N"Q + C)}

g, =
C 271'(Rwre + c) (6-48)
AC Rcore(l + gr.core)+ C(l + gr.cover )
E,=—= -1
C (RCOVE + C) (6_49)

However, for the concrete core the following assumption still holds:

&

c.core

81",6‘0}"6 (6_50)

As explicitly stated above, the equation of radial strains and jacket
strains for the case of both FRP and steel confined concrete in circular
sections is no longer valid. The circumferential strain of the external jacket
is based on the radial strains of both concrete cover and concrete core,
where in the latter, the presence of the steel ties plays an important role.

l Steel Reinforcement

Confining jacket

Figure 6-10: Circular Concrete Section confined by steel stirrups and/or FRP
Jackets.

The mechanical properties of concrete (strength, ductility and energy
dissipation) are substantially enhanced under a triaxial stress state. In
practice, this is obtained by using closed stirrups or spiral reinforcement or
even FRP wraps, so that, together with the longitudinal reinforcement, the
lateral expansion of concrete is limited. This kind of (passive) confinement
improves the material behavior after the initiation of internal cracking,
which gives rise to the initiation of expansion.
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For low strain values, the stress state in the transverse steel
reinforcement is very small and the concrete is basically unconfined. In
this range, steel and FRP jacketing behave similarly. That is, the inward
pressure as a reaction to the expansion of concrete increases continuously.
Therefore, speaking in terms of variable confining pressures corresponding
to the axial strain level in the section and active triaxial models defining
axial stress-strain curves for concrete subjects to constant lateral pressure,
it can be stated—following the original approach by the Spoelstra and
Monti (1999) model presented in the previous Section—that the stress-
strain curve describing the stress state of the section has to cross all active
confinement curves up to the curve with lateral pressure equal to the one
applied by the stirrups at yielding. After the yielding of stirrups, the lateral
pressure is still increasing only due to the FRP jacketing, while the steel
lateral pressure remains constant. The corresponding stress-strain curve of
the section throughout this procedure converges to a confined-concrete
axial stress-strain curve that is associated with a lateral pressure magnitude
equal to the tensile strength of the FRP jacket plus the yielding strength of
ties (excluding the strain hardening behavior of steel, since ultimate strains
of steel are usually much higher than those of FRP jackets). In order to
model this behavior, a well-known FRP-confined concrete model
(Spoelstra and Monti, 1999) has been enhanced to include the steel ties
contribution and thus model circular columns with transverse steel
reinforcement and retrofitted with FRP jacketing more consistently. The
above model was based on an iterative procedure that needed to be
modified as in Fig. 6-11.

In the procedure depicted in Fig.6-11, after imposing an axial strain on
the section, a pressure coming from the FRP jacket is assumed. Then, the
Poisson’s coefficient until yielding of steel stirrups and the pressure
coming from the steel ties is calculated based on the BGL model presented
also in the previous Section (Braga et al., 2006). Since this lateral pressure
according to the BGL model is the solution of the plain stress tensor by the
Airy’s stress function, the shear stress in the concrete core is also
determined along with the shear modulus. Here, also the longitudinal bars’
contribution and the arching action between two adjacent stirrups along
the column are taken into account (Table 6-1). Thus, the confining
pressure in the concrete core is the summation of the lateral pressures
contributed by the two confining systems (FRP and Steel). The
International Federation for Structural Concrete (fib) model proposal
(Spoelstra and Monti, 1999) beyond this point is basically used to define
the remainder of the parameters declared above, applying that model for
the two different regions already mentioned. The focal point of the
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procedure is in the last step where the confining pressure of the jacket is
defined based on the circumferential strain according to Eq. 6-49. Finally,
cases with partial wrapping have been included too (14% fib bulletin, 2001,
Table 6-1). Such an approach also permits, in cases of repair and retrofit,
the consideration of two different concrete strengths, one for the new layer
of concrete applied externally, and the other for the old existing concrete
core which may also be cracked due to previous seismic loading. At the
end of the procedure, a two-condition failure criterion is incorporated
either due to the excessive dilation of concrete or due to the buckling of
longitudinal bars.

A

Im j iteri
POSE Econ Failure Criterion

| ﬁf(f. core jJc.core
Assume fcc.cover fc.cover
ﬁ.CUV@I‘
I [ Yes
V(&fon ) _ﬂ.sreel &r.core Er.cover
Tcore Gcore ée
[ [
ﬁ core ﬁ,cover (8()
No

Figure 6-11: Iterative procedure.

It has been well established in recent studies that the rupture
strains/strengths measured in tests on FRP confined cylindrical specimens
fall substantially below those from flat coupon tensile tests. Several
reasons have been suggested for the observed lower rupture strains in
place, among which are ([Carey and Harries 2005), (Lam and Teng 2004),
(Matthys et al. 2005]):

e Misalignment or damage to jacket fibers during handling and lay-
up.

e The radius of curvature in FRP jackets on cylinders as opposed to
flat tensile coupons.

e Near failure, the concrete is internally cracked resulting in no
homogeneous deformations. Due to this non-homogeneity of
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deformations and the high loads exerted on the cracked concrete,
local stress concentrations may occur in the FRP reinforcement.

e The existence of a lap-splice zone in which the measured strains are
much lower than strains measured elsewhere.

Accounting for these effects an ultimate tensile coupon FRP strain
reduced by a k factor (ranging between 50 and 80% in the literature) is
compared to the circumferential strain of concrete (Eq. 6-49), and the
ultimate compressive axial strain of concrete is considered to be attained
when:

g, < k- € j rup.coup (6-51)

Table 6-1: Equations embodied in the iterative procedure.
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In old-type circular columns with inadequate transversal reinforcing
details (where FRP jacketing are a commonly used remedy), the
unsupported length of longitudinal bars (between 2 successive stirrups) is
often much greater than 6Dy, (D = longitudinal bar diameter). Therefore,
the risk of longitudinal bars buckling under compressive loads soon after
yielding is higher. A dire implication is reduced effectiveness of the FRP
wraps due to interaction between buckled longitudinal bars and the jacket,
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which may cause premature failure due to the rupture of the jacket
(Tastani et al. 2006). This is an additional source of error contributing to
overestimating the strength of FRP confined concrete in addition to that
generated by the difference between the nominal and in-situ strain capacity
of the wraps as detailed above. It is the objective of the present book to
study the interaction between wraps and compression reinforcement in
FRP-encased reinforced concrete columns, with particular emphasis on the
occurrence of instability conditions and the dependable compressive strain
of the column prior to actual buckling of the rebars.

In this model, the dilation of the concrete core and concrete cover are
described through the following equation (Eq. 6-52) of the model by
Spoelstra and Monti (1999).

Econgcon - fc (gcon’ fl) ﬂ = ﬂ —500
24 (5cona S ) , |fw | (6-52)

gr (gcon’fl ) =

Thus, the lateral pressure of the FRP jacket confining the concrete
cover has been taken into account, and by relating the critical buckling
conditions with the onset of significant strength loss of the concrete cover,
the effect of the confining pressure exerted by the jacket in delaying the
occurrence of buckling of the longitudinal bars can be evaluated.
Therefore, the critical buckling conditions are delayed depending on how
axially stiff the jacket is, which accordingly delays the failure of the
concrete cover (which laterally supports the longitudinal bar). This onset
of loss of resistance in concrete has been proved to be the point when the
net volumetric strain of the material becomes equal to zero (Pantazopoulou
and Mills, 1995). In circular sections this occurs when:

&y =0=>2-¢,=¢,,=>v=05 (6-53)

However, another condition that should be valid for the attainment of
critical instability conditions of the longitudinal bars in the high confining
stress states under consideration is the occurrence of compression yielding
of the longitudinal bar. Regarding this step, it is interesting to note with
reference to Fig. 6-12 for a given concrete strength, the point where the
volumetric ratio becomes zero moves forward into higher axial
compression strain values with increasing confining pressures. Thus, as
shown by the two curves in Fig. 6-12 corresponding to different confining
pressures, the difference in the lateral behavior of the concrete cover
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(confined by the jacket’s pressure) and the concrete core (confined by both
the steel’s and FRP’s pressure) should also be considered.

As it is shown in previous studies (Monti and Nuti, 1992), (Bae et al.
2005), the buckling length L. and the Lp./Dpy ratio are critical
parameters for the post buckling behavior of longitudinal bars under
compression. In cases of columns constructed with obsolete codes with the
spacing of the stirrups ranging from 200 to 500 mm (buckling length) and
bar diameters from 12 to 20 mm, the Lyux/Dy ratio ranges between 10 and
42. However, apart from old type columns, the assumption that the
buckling length is equal to the spacing of the stirrups in a RC column does
not hold true in all cases (Dhakal and Maekawa 2002) and it may extend
over more than a single tie spacing. In order to take into account this
behavior (cases of reinforcement repair and FRP retrofit) the following

procedure is suggested.
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Figure 6-12: Volumetric Strain versus Axial Compressive Strain
(Pantazopoulou and Mills, 1995).

The longitudinal bar is modeled as a pin-ended bar supported along its
length by an elastic foundation as shown in Fig. 6-13. The foundation
modulus is £° (N/mm?) and it is such that when the bar deflects by an

amount u, a restoring force k' -u (N/mm) is exerted by the foundation
normal to the bar.
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The governing homogeneous differential equation and the associated
eigenvalue problem are:

EIV™ +P0" +k'v=0 (6-54)
2 ’ 4
EI k'L
Pcr _ T rzed {mZ +L2[ - buck J}
Liuer m=\ 7 Eleq (6-55)

%%i%%ﬁﬁ%

Figure 6-13: A pin-ended bar on elastic foundation.

Note that if £”= 0 (which occurs upon the yielding of the stirrups), the
minimum value of P, becomes the classical Euler buckling load. In order
to determine the critical load, the buckling mode m equal to one should be
used. The stiffness &’ representing the supporting system of stirrups could
be calculated as follows:

k' Es 'Ash
=p.—5 "0
Lbuck ’”'Dcore ’Lbuck = (l’l+1) S (6_56)
fyl

El.; =05-E -1, |—=
400 (Dhakal and Maekawa, 2002)  (6-57)

The solution to the problem above is obtained by setting the critical load
of the bar equal to its yield force; in this case the only unknown is the
number 7 of the stirrups, n over the buckling length. Therefore, by solving
Eq. 6-55 for n, the buckling length is determined. The value of n may be
rounded to the nearest integer owing to the fact that the pin-ended bar
segment engaged in buckling is assumed to span between successive
inflection points of the real deformed shape. If convergence is not possible
for n>1, the buckling length is taken as equal to the spacing of stirrups b.
To sum up, after the critical conditions of a longitudinal compressive
bar have been attained (this is assumed to coincide with the compression
yielding of the bar and the Poisson’s coefficient at the concrete cover
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exceeding the value of 0.5) the buckling length of the bar is determined.
Then, based on the model by Bae et al., 2005, who have related the axial
strain to the transversal displacement of the buckled longitudinal bar for a
given Lp./Dp ratio the transversal displacement of the bar is calculated
(Table 6-1). Given that for a longitudinal bar embedded in an RC member,
axial shortening of the bar means the same amount of shortening for the
surrounding concrete mass (Pantazopoulou, 1998), the axial strain in the
bar is taken as equal to the axial strain of concrete. Finally, the jacket’s
circumferential strain due to buckling is determined as follows:

2o7r-|w—c|

Eebuck =~ ¢ j.rup.cou,
7D SN (Full wrapping)  (6-58)

2-7-

c
w——|
2‘

Ecbuck = r-D < 8j.l‘up.coup

, (Partial wrapping) (6-59)

It follows from the above Equations (Egs. 6-58, 6-59) that a tolerance
equal to the concrete cover for full wrapping, and half of the concrete cover
for partial wrapping is given before the initiation of the jacket’s strains due
to the buckling of longitudinal bars since the concrete cover should be
severely cracked in case of full wrapping and some spalling could appear in
case of partial wrapping. Since the displacement of the buckled longitudinal
bar could be high and the phenomenon affects locally the jacket where the
FRP material behavior could be considered linear-elastic, the results are
compared to the deformation capacity of tensile coupons (dilation strains
and buckling strains are studied independently). In the proposed algorithm
detailed above, the failure criterion is used in two steps. Firstly, the
circumferential strain due to dilation of concrete under compression is
compared to a reduced FRP tensile coupon strain, and secondly the induced
circumferential strains due to buckling which locally accelerate the jacket’s
rupture are compared to the deformation capacity of flat FRP tensile
coupons. If one of these conditions is fulfilled, the iterative procedure (Fig.
6-11) is terminated.

Figures 6-14 and 6-15 depict a simple run of the material model under
axial strain reversals with the same material properties as the specimen
ST2NT of the experimental study with FRP- and steel- confined columns
performed by Sheikh and Yau, 2002. A moment-curvature analysis (Fig.
6-16) for the section (with layers/fibers) of the same specimen that also
provides the shear force - shear angle diagram has been performed, where
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the constitutive model by Menegotto and Pinto (1973) is used to model the
longitudinal steel behavior. Figures 6-17 and 6-18 depict the implications
of the application of the constitutive relation presented in this Chapter,
where, in contrast to the assumption of a Timoshenko beam (Ceresa et al.,
2007) the shear deformation is not constant along the section. The shear
deformation of the section is defined as the mean value of the shear
deformations of each material fiber/layer. The Bernoulli assumption is
bypassed since the shear deformations are included and are uncoupled
from the normal ones.
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Figure 6-14: Proposed cyclic stress-strain material model including shear
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Figure 6-18: Circular concrete section confined by steel stirrups and FRP
jacket under bending and shear based on the proposed model.

Correlation with Experimental Results

Four experimental studies have been included in this Chapter for the
validation of the proposed iterative procedure. The first is one of the few
extensive experimental studies on large scale FRP wrapped circular
columns where different FRP configurations have been applied, for
identical embedded steel reinforcement (Matthys et al. 2005). It includes 8
large-scale columns subjected to axial loading. The columns had a total
length of 2 m, a longitudinal reinforcement ratio of 0.9% and 8 mm
diameter stirrups spaced at 140 mm. All columns had a circular cross
section with a diameter of 400 mm. Different types of FRP reinforcement
(CFRP, GFRP & HFRP) have been used to confine the columns. The
comparison seems to be satisfactory (Figs. 6-19, 6-20), although the
solution has moderate success in resolving the problem of predicting the
actual instance of jacket’s failure in terms of axial and circumferential
ultimate strains. It should be noted that the cases that followed the
circumferential strains—owing to concrete dilation estimated by the
model, Eq. 6-49—were compared to the rupture FRP strains measured
experimentally. Some clarifications are in order for the last graph (Fig. 6-
21) which illustrates the model’s estimations of the circumferential strains
in the FRP jacket owing to concrete dilation and to the buckling of
longitudinal bars at the ultimate axial strain reported in the tests for each
specimen. These values are compared to the experimental rupture strain of
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the jacket (from strain gages) and to the deformation capacity of the flat
tensile coupons which was reported accordingly.
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( Height = 2 m, Diameter = 0.4 m)
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Figure 6-19: Correlation with experimental results (Matthys et al. 2005).
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Figure 6-20: Correlation with experimental results (Matthys et al. 2005).
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Figure 6-21: Correlation with experimental results (Matthys et al. 2005).

The second experimental study (Demers and Neale 1999) includes 16
reinforced concrete columns having a circular section of 300 mm in
diameter and 1200 mm high. These columns were confined by means of
carbon-epoxy sheets and loaded concentrically in axial compression. The
effects of various parameters on the structural behavior of the confined
concrete columns were investigated. These parameters included the
concrete strength, longitudinal steel reinforcement, steel stirrups, steel
corrosion and concrete damage while the FRP configuration was kept
constant. The comparison between model estimates and experimental
results depicted in Figs. 6-22 and 6-23, in this case too, could be
characterized as satisfactory; they can also be considered satisfactory due
to the the fact that, in this experimental study, the lateral pressures from
both confining materials (Steel and FRP) are provided based on
circumferential strains obtained by strain gages applied on both FRP
Jacket and Steel ties. (It should be underlined that the horizontal strain
gages on the jacket were located midway between two successive
stirrups). Among the 16 specimens in only one case (Specimen U40-4) the
pressures coming from the ties were evidently higher than those of the
FRP jacket and the model was able to detect that (Fig. 6-24).
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Figure 6-22: Correlation with experimental results
(Demers and Neale 1999).
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Some clarifications are in order for the l.a graph (Fig. 6-25) which
illustrates the model’s estimations of the circumferential strains in the FRP
jacket owing to concrete dilation and to the buckling of longitudinal bars
at the ultimate axial strain reported in the tests for each specimen. These
values are compared to the experimental rupture strain of the jacket (from
strain gages) and to the nominal deformation capacity of the FRP jacket
which was reported accordingly.

The third experimental study (Gallardo-Zafra R. & K. Kawashima,
[2009]) contains a series of cyclic loading tests that was conducted on six
reinforced concrete column specimens 400 mm in diameter and 1.350 mm
in effective height. Because the test was used in this study to clarify the
analytical model, only a summary of the tests results necessary for
ascertaining the accuracy of the analytical correlation is described here.
The specimens were grouped into A and B series where each series
consisted of three specimens; one was as-built while the second and the
third were wrapped laterally by CFRP with a single layer and with two
layers, respectively. The CFRP ratio was 0.111% and 0.222% when the
columns were wrapped by a single layer and two layers, respectively.
CFRP was wrapped 1 m high from the base and no gap was provided at
the base. The specimens were laterally confined by 6 mm deformed bars
having a yield strength of 363 MPa (SD295) with 135° bent hooks. The tie
reinforcement ratio was 0.256% (150 mm spacing) for the A-series and
0.128% (300 mm spacing) for the B-series. All specimens were reinforced
in the longitudinal direction by 12-16 mm deformed bars having a nominal
yield strength of 374 MPa (SD295). Concrete compressive strength ranged
from 27.5 — 30 MPa. Under a constant axial load of 185 KN, which is
about 8% of the theoretical ultimate axial capacity, the piers were loaded
in a unilateral direction with a displacement increment of a half drift. At
each increment, three cyclic loads were applied. The columns were
designed such that they would fail in flexure.

Regarding the third experimental correlation, Figs. 6-26-6-45 depict
the comparison with the two groups of cyclic tests on bridge piers having
different levels of confinement in terms of lateral steel reinforcement and
FRP jacketing. To simulate the experimental behavior of the columns, they
were idealized by a discrete analytical model (Fig. 6-46). Similar to the
publication by Gallardo-Zafra R. & K. Kawashima (2009), the cantilever
column was modeled by a linear beam element with the stiffness
corresponding to flexural yielding and a fiber element used to idealize
flexural hysteretic behavior at the plastic hinge. (The results produced in
this study are based on the displacement formulation of the nonlinear
beam element of the plastic hinge region). The length of the fiber element
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was assumed to be half of the column diameter. A rotational spring at the
bottom of the column represents the longitudinal bar pullout from the
footing. Its property was based on a moment-rotation curve obtained from
the experiment at a small amplitude loading and was assumed to have an
elastic stiffness.

While in the original proposal the fiber section had to be divided into
the concrete core and concrete cover (Fig. 6-46) and two different stress-
strain relations were applied for the concrete core (confined by both FRP
& Steel) and concrete cover (confined by only the FRP), in this work,
since the material response is already averaged based on the different
responses of those two regions, the same stress-strain law is applied for
each fiber. This fact gives a clear advantage to the proposed model. In
addition to the force-displacement response of the cantilever columns the
response in the level of the section is also provided for each specimen in
terms of material stress-strain hysteresis.

It can be seen that the agreement is very close to the experimental one
with some deviation concentrated on the parts of reloading after reversal
of the imposed displacement. This difference of response in terms of
modeling can be explained based on the way the cracks on the concrete
surface are described on the level of the material model. Since the crack is
described as a two-event phenomenon, which means either open or closed
(while in reality it is not the case due to imperfect crack closure) the
contribution of concrete while the longitudinal steel reinforcement is in
compression and the crack is closing gives this deviation in the response.

The comparison with the originally proposed model of this
experimental study is, impressively, the same. However, the proposed
model describes rationally the procedure of the passive confinement based
on the calculation of the lateral concrete expansion in terms of the
different levels of lateral pressures coming from the two different
materials (Steel and FRP). Moreover, the active (constant lateral pressure)
confinement model proposed by Kawashima et al. (1999) is based on
regression analysis of the experimental results of cylindrical specimens
under compression and it is specifically calibrated for Carbon Fiber
Composite material (CFRP). Finally, it doesn’t consider the confinement
effect of the longitudinal reinforcement and the effect of partial
confinement due to the vertical arching action of the adjacent stirrups
along the member but also cases of partial FRP wrapping of the column.
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Figure 6-26: Correlation with experimental results A2 (Gallardo-Zafra R. &
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Figure 6-28: Correlation with experimental results A2 (Gallardo-Zafra R. &
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Comparison with Test Specimen B2
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Figure 6-36: Correlation with experimental results B2 (Gallardo-Zafra R. &
K. Kawashima, 2009).
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Figure 6-38: Correlation with experimental results B2 (Gallardo-Zafra R. &
K. Kawashima, 2009).
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Figure 6-39: Correlation with experimental results B2 (Gallardo-Zafra R. &
K. Kawashima, 2009).
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Comparison with Test Specimen B2
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Figure 6-41: Correlation with experimental results B3 (Gallardo-Zafra R. &
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Figure 6-44: Correlation with experimental results B3 (Gallardo-Zafra R. &
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Figure 6-46: Discrete analytical model to simulate the experimental behavior
of RC columns by Gallardo-Zafra R. & K. Kawashima, (2009).

The fourth experimental study was performed by Sheikh SA and Yao
G (2002) in which twelve 356 mm diameter and 1473 mm long columns
were tested under constant axial load and reversed cyclic lateral load that
simulated forces from an earthquake. The test specimens were divided into
three groups. The first group consisted of four columns that were
conventionally reinforced with longitudinal and spiral steel. The second
group contained six reinforced concrete columns that were strengthened
with carbon fiber-reinforced polymers (CFRP) or glass fiber-reinforced
polymers (GFRP) before testing. The last group included two columns that
were damaged to a certain extent, repaired with fiber-reinforced polymers
(FRP) under axial load and then tested to failure. The correlation with the
second group will be provided here. The columns contained six 25 m
longitudinal steel bars, and the spirals were made of U.S No 3. (71 mm?)
bars.

The latter experimental program was conducted on FRP-retrofitted
columns subjected to a constant axial load and increasing cycles of lateral
deformation in single-curvature setup. Four specimens of identical
dimensions and steel reinforcements are used from this study. For each
level of applied axial load (27% and 54% of the axial load carrying
capacity, Po), two columns were retrofitted using two different types of
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FRP lamina (carbon CFRP) and glass (GFRP) prior to testing. The
experimental moment — curvature responses within the plastic hinge
regions are reported along with the numerical results in Figures 6-47 —
6-50. The modeling of the cantilever columns has been done using simply
a unique fiber element with a displacement formulation for the entire
column and by then reporting the moment curvature response of the most
critical section. The comparison seems satisfactory, although the model
fails to detect properly the events related to the yielding of stirrups,
buckling of longitudinal bars and rupture of FRP as already mentioned in
previous experimental correlations. The total moment-curvature response
until the last step of numerical convergence is provided below.

An important comment that should be made before concluding is one
related to some studies (Gallardo-Zafra and Kawashima 2009, Khaloo et
al. 2008) that have reported a different behavior (softening) for FRP and
Steel confined concrete in circular RC sections, in respect to the already
recognized bilinear one (Carey and Harries 2005). The author attributes
that to the small scale of the reinforced concrete specimens used, while the
most important explanation which could lead to those results is the
influence of concrete strength. According to Mandal et al. (2005) the FRP
wraps provide a substantial increase in strength and ductility for low-to-
medium-strength concrete, which shows a bilinear stress-strain response
with strain hardening. For high-strength concrete, however, enhancement
in strength is very limited, with hardly any improvement in ductility. The
response in this case shows a steep post-peak strain softening.

It should be emphasised that the last two experimental correlations the
modeling of the bridge piers has been performed using the “MatLab Finite
Elements for Design Evaluation and Analysis of Structures” (FEDEAS
Lab) developed by Professor F. C. Filippou of the Department of Civil and
Environmental Engineering of the University of California, Berkeley,
USA. Moreover, the two—condition failure criterion of the constitutive
model for concrete was deactivated for the comparison with these last two
experimental studies.
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Figure 6-48: Correlation with experimental results ST-3NT
(Sheikh SA and Yao G 2002).
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Figure 6-49: Correlation with experimental results ST-4NT
(Sheikh SA and Yao G 2002).
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Figure 6-50: Correlation with experimental results ST-SNT
(Sheikh SA and Yao G 2002).

Implementation of the Proposed Material Model in
OpenSees under the Name “FRPConfinedConcrete”

The library of materials, elements and analysis commands makes OpenSees
(http://opensees.berkeley.edu/) a powerful tool for numerical simulation of
nonlinear structural and geotechnical systems. The Opensees library of
components is ever-growing and at the cutting edge of numerical-
simulation models. Its interface is based on a command-driven scripting
language which enables the user to create more-versatile input files.
Opensees is not a black box, making it a useful educational tool for
numerical modelling. Material, element or analysis tools can be
incorporated into Opensees.

The addition of a new uniaxial material module by the developer is
achieved by providing a new C++ subclass of the UniaxialMaterial class,
along with an interface function which is used to parse the input and create
the new material. In contrast to C++, the C and Fortran programming
languages’ modules provide no information about the state of the model as
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an argument to the material routine. Retaining the required information
and rejection of the unnecessary information is performed within the
material model. This information includes simultaneously (a) parameters,
i.e. information needed to define the material, and (b) state variables or
history variables, i.e. information needed in order to define its current state
and, consequently, compute the applied stress and tangent.

The present Section provides information on the implementation of the
introduced in the previous Section’s material model for FRP and Steel —
confined concrete, in Opensees under the name ‘FRPConfinedConcrete’
http://opensees.berkeley.edu/wiki/index.php/FRPConfinedConcrete.  To
date, the model has no tensile strength and uses the degraded linear
unloading/reloading stiffness in the case of cyclic loadings based on the
work of Karsan and Jirsa (1969).

The command wused in order to construct the uniaxial
‘FRPConfinedConcrete’ is provided in the following syntax:

uniaxialMaterial FRPConfinedConcrete $tag S$fpcl Sfpc2 SepscO
$D Sc SEj 3Sj 84 Seju $S Sl $fyh Sdlong
Sdtrans SEs Svo Sk SuseBuck

Each input parameter defined above corresponds to the mechanical and
geometrical properties of the FRP&Steel-confined element which affect its
overall performance. Their description is provided in Table 6-2.

Table 6-2: ‘FRPConfinedConcrete’ input parameters.

1 tag Material Tag
2 fpcl Concrete Core Compressive Strength
3 fpe2 Concrete Cover Compressive Strength
4 i) Strain Cog;e,jf,i’;jlgi et;)glt]hnconﬁned
5 D Diameter of the Circular Section
c Dimension of Concrete Cover
7 Ej Elastic Modulus of the Jacket
8 Sj Clear Spacing of the FRP Strips - zero if it's

continuous

9 tj Total Thickness of the FRP Jacket
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10 eju Rupture Strain of the Jacket
11 S Spacing of the Stirrups
12 i Yielding Strength of Longitudinal Steel Bars
13 fyh Yielding Strength of the Hoops
14 dlong Diameter of the Longitudinal Bars
15 dtrans Diameter of the Stirrups
16 Es Steel's Elastic Modulus
17 Vo Initial Poisson's Coefficient for Concrete
18 K Reduction F a.ctor (0.5-0.8) for the Rupture
Strain of the FRP Jacket
FRP Jacket Failure Criterion due to Buckling
19 useBuck of Longitudinal Compressive Steel Bars (0 =
not include it, 1= to include it)

Before concluding, Table 6-3 is provided below with all the symbols
declared in the presentation of the proposed model in the previous
Sections for better comprehension of the described procedure and results.

Table 6-3: Symbols used in the proposed material model and its
correlation with experimental results.

C circumference of the circular section
R radius of the circular section

k reduction factor

&r radial strain

& circumferential strain

&y volumetric strain

Econ

concrete’s axial strain
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&co concrete’s axial strain at unconfined concrete’s strength
&Eee concrete’s axial strain at confined concrete’s strength
Ec.core circumferential strain of the core
Er.core radial strain of the core
Er.cover radial strain of the cover
Recore radius of the concrete core
c concrete cover
Jeo concrete strength
See confined concrete strength
Vo initial Poisson’s coefficient for concrete
v Poisson’s coefficient for concrete
Psh steel hoop’s volumetric ratio
Pi FRP jacket’s volumetric ratio
Geore shear modulus of concrete core
Tcore shear stress of concrete core
Sicore lateral confining pressure of the concrete core
Si.cover lateral confining pressure of the concrete cover
Ssteel lateral confining pressure of the steel reinforcement
Jeav average axial concrete stress

f;:. core

axial concrete core stress
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Sfe.cover axial concrete cover stress
Sec.core axial confined concrete core strength
Sec.cover axial confined concrete cover strength
Acore area of concrete core
Acover area of concrete cover
fi lateral confining pressure of concrete
fe axial concrete stress
Econ modulus of elasticity of concrete
ESCC

secant modulus of elasticity of concrete

a property of concrete evaluated as a function of the
unconfined concrete strength

Dy bar diameter
Lbuck buckling length

EI Flexural rigidity of steel longitudinal bar
Elrea Reduced flexural rigidity of steel longitudinal bar

E;s modulus of elasticity for steel

P axial force

k' foundation modulus

) vertical displacement

m buckling mode

n

number of stirrups
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S Spacing of the stirrups
Per critical load
Arot total area of the circular section
Ash area of steel hoops (ties)
Iy longitudinal bar’s moment of inertia
S yielding strength of longitudinal bar
w transversal displacement of the bar
&si axial strain in the bar
Esh steel hoop’s strain
Eshu ultimate steel hoop’s strain
Eyh steel hoop’s strain for yielding
kst Partial confinement coefficient for steel
& coefficient taking into account longitudinal bar’s confining
effect
coefficient taking into account the confining effect of stirrups’
G spacing
Dy hoop’s diameter
kj partial wrapping coefficient
Ab total area of longitudinal steel reinforcement
Ag gross area of the section

jacket’s clear spacing
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Ej Jjacket’s modulus
ti thickness of the jacket
. jacket’s circumferential strain due to buckling of longitudinal
c.buck bars
Ecuexp experimental ultimate strain for concrete
&j.rup.sg Jjacket’s rupture strain read by strain gages
&j.rup.coup jacket’s rupture strain by coupons’ test
&Ej.rup.nom nominal jacket’s rupture strain given in material properties
jacket’s strain calculated by the model due to concrete’s
&j.mod.dil N
dilation
jacket’s strain calculated by the model due to buckling of
&j.mod.buck . .
longitudinal bars
dp diameter of longitudinal bars
d: diameter of transverse stirrups
s spacing of transverse stirrups




CHAPTER SEVEN

CONCLUSIONS

Clearly, based on the preceding Chapters, the state of the art in
modeling the lateral load response of columns leaves a lot to be desired:
improved response estimation of the behavior of columns that are
susceptible to shear failure after flexural yielding; better procedures to
estimate shear strength, and the pattern of degradation thercof with
increasing displacement ductility; the need to account for reinforcement
pullout and its effects on stiffness; the shape of the hysteresis loops; the
detrimental effects of axial load at large displacement limits; and the
magnitude of deformation (drift ratio) associated with milestone events in
the response curve of the column member are open issues that need to be
settled before the performance-based assessment framework may be
considered complete and dependable.

In this direction, the definition of the deformability of RC columns was
reassessed in this book by proposing a new methodology for the
determination of plastic hinge length through a consideration of yield
penetration effects. Yield penetration occurs from the critical section
towards both the shear span and the support of columns; physically it
refers to the extent of the nonlinear region and determines the pullout slip
measured at the critical section. Contrary to the fixed design values
adopted by codes of assessment, the yield penetration length is actually the
only consistent definition of the notion of the plastic hinge length, whereas
the latter determines the contribution of pullout rotation to column drift
and column stiffness. In order to establish the plastic hinge length in a
manner consistent to the above definition, this book pursued the explicit
solution of the field equations of bond over the shear span of a column.
Through this approach, the bar strain distributions and the extent of yield
penetration from the yielding cross section towards the shear span were
resolved and calculated analytically. By obtaining this solution, a
consistent definition of plastic hinge length was established, by reference
to the state of reinforcement strain (replacing the stress based definition
used previously). The true parametric sensitivities of this design variable
for practical use in the seismic assessment of existing structures are
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illustrated. The numerical results show good agreement with the
experimental evidence and are consistent with the experimental trends
supported by test databases, confirming that the plastic hinge length is
controlled by the residual bond that may be mobilized along the yielded
reinforcement.

In addition, a force-based fiber beam-column element accounting for
shear effects and the effect of tension stiffening was developed, in order to
provide an analytical test-bed for simulation and improved understanding
of experimental cases where testing of reinforced concrete columns
actually led to collapse. The developed fiber-element is incorporated in the
stand-alone Windows program Phaethon with the user’s interface written
in C++ programming language code. The latter offers its user the
possibility to obtain the capacity curve for shear-critical reinforced
concrete cantilever columns whilst taking into account the shear—flexure
interaction mechanism, as well as an important contribution to the final
column’s lateral displacement of the pull-out of the inadequate anchorage
of the tensile longitudinal reinforcing bars of the column. This is available
for both rectangular and circular reinforced concrete columns.
Furthermore, the software resolves strain, slip and bond distributions along
the anchorage length. Comparison with experimental results from the
literature verifies the capability of this Windows software tool to assess
the strength and deformation indices of shear-critical reinforced concrete
columns. Moreover, the moment curvature as well as the shear force —
shear strain analysis of the sections of these columns is also possible, all
based on the Modified Compression Field Theory.

Finally, confining wraps or jackets to rehabilitate and strengthen
existing substandard RC columns as with those described in the present
book has proven to be an efficient technique for seismic retrofit of
structures. However, most of the compressive strength models of confined
concrete only consider the increased strength and ductility provided by
fiber reinforced polymers (FRPs), neglecting the contribution of the
existing steel reinforcement inside the column’s section. Even if the
existing steel stirrups in a reinforced concrete column are not sufficient to
confine the concrete core, they must also contribute, along with the FRP
jacket, in confining the section. Therefore, the FRP-confined concrete
model contained in a well-known Bulletin by the International Federation
for Structural Concrete (fib) has been enhanced to take into account the
confining effect of the already existing steel reinforcement when
retrofitting a reinforced concrete column with FRP jacketing. To this end,
the transverse steel reinforcement has been considered not as imposing a
constant value of confining pressure, but rather, following the steel’s
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stress-strain law at each deformation step in accordance with the BGL
model, while also considering the confining contribution of longitudinal
reinforcement. Similar to the BGL model, an important aspect of the
model is that the cross-section tangential stresses (shear), which are
generally neglected, have an essential role in ensuring plane strain
conditions. In addition, compatibility in the lateral direction, inwards for
confining pressures and outwards for lateral strains, between the two
confining materials (FRP and Steel) has been established. Through this
approach the difference in the lateral behavior of the concrete cover
(confined with the jacket’s pressure) and the concrete core (confined by
both the steel’s and FRP’s pressure) has been considered. This allows the
application of the model also in cases of reinforcement repair and FRP
retrofit where two different concrete strengths should be considered; one
for the new layer of concrete applied externally and the other for the old
concrete in the concrete core which may also be cracked due to former
seismic loading. Moreover, in the case of RC column modeling with a
fiber nonlinear beam-column element (displacement formulation), apart
from the immediate incorporation of shear deformations (uncoupled from
the normal ones) on the material level (and in contrast to the standard fiber
beam-column formulation), the averaged response of the two different
regions—concrete core and concrete cover—in the section, gives a clear
advantage in terms of modeling since it allows the assignment of a unique
stress-strain law for all the fibers/layers of the circular section. Before
concluding, another aspect that seems to be valid and important for further
thought is that the response of the seismic retrofitted RC columns in this
study based on the model presented is correct although these columns are
under cyclic excitation and contrary to the model’s assumptions which are
clearly static (monotonic). Moreover, the model uses the idea of the
superposition of the effects of confinement that extend further the linear
assumptions. In addition, a two-condition failure criterion has been
incorporated regarding the dilation of concrete and buckling of
compressive longitudinal bars as independent events. Correlation with
experimental results seems to be satisfactory, although the model has
moderate success in predicting the actual instance of rupture of the FRP
jacket. Finally, this recently developed material model for FRP and Steel—-
confined concrete was implemented in OpenSees under the name
‘FRPConfinedConcrete’ with no tensile strength and degraded linear
unloading/reloading stiffness in the case of cyclic loadings.



APPENDIX TO CHAPTER THREE

This is an Appendix to Chapter 3.
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Force-Displacement for RC Column 46 of Bemy and Eberhard Database
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Concrete Model: Scott et al., 1982.

Force-Displacement for RC Column 47 of Berry and Eberhard Database
40

— Analysis ! !
30{ -—-Experiment ] ------+-----------1----- — T

'
T ——

'4-%0 40 -20 0 20 40 E0
Displacement {(mm)

Figure A-1: Comparison between numerical and experimental
responses of circular columns (ID#46&47) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 50 of Berry and Eberhard Database
20

— Analysis
15} -—-Experiment

Shear Force (kKN)

Displacement (mm)
Concrete Model: Scott et al., 1982.

Force-Displacement for RC Column 51 of Berry and Eberhard Database
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Figure A-2: Comparison between numerical and experimental
responses of circular columns (ID#50&51) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 52 of Berry and Eberhard Database
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Concrete Model: Mander et al., 1988.

Force-Displacement for RC Column 53 of Berry and Eberhard Database
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Figure A-3: Comparison between numerical and experimental
responses of circular columns (ID#52&53) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 54 of Berry and Eberhard Database
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Farce-Displacement for RC Column 55 of Berry and Eberhard Database
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Figure A-4: Comparison between numerical and experimental
responses of circular columns (ID#54&55) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 56 of Berry and Eberhard Database
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Concrete Model: Mander et al., 1988.

Force-Displacement for RC Column 57 of Berry and Eberhard Database
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Figure A-5: Comparison between numerical and experimental
responses of circular columns (ID#56&57) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 58 of Berry and Eberhard Database
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Database (2004).
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Force-Displacement for RC Column 60 of Berry and Eberhard Database
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Figure A-7: Comparison between numerical and experimental
responses of circular columns (ID#60&93) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 94 of Berry and Eberhard Database
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Force-Displacement for RC Column 96 of Berry and Eberhard Database
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Figure A-9: Comparison between numerical and experimental
responses of circular columns (ID#96&97) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 98 of Berry and Eberhard Database
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Figure A-10: Comparison between numerical and experimental
responses of circular columns (ID#98&99) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 100 of Berry and Eberhard Database
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Figure A-11: Comparison between numerical and experimental
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Eberhard Database (2004).
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Force-Displacement for RC Column 102 of Berry and Eberhard Database
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Force-Displacement for RC Column 106 of Berry and Eberhard Database
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Force-Displacement for RC Column 113 of Berry and Eberhard Database

200 T T T T T T
150

—
=
¥
=
@
(=]
L
[=}
N
_
I
@
C
w

100

a0

=Analysis |: ' : : : |

-—-Experiment |

................

20 0o 200 100 0 100 200 400
Displacement (mm)
Concrete Model: Mander et al., 1988.
Force-Displacement for RC Column 114 of Berry and Eberhard Database
200 T T T T T
— Analysis ; ; P Lo Ny
150 ---Experiment| VT L ' y/ A
5100 ............ . | Lo A R R Y. SRR
® EvD ------------------ "?L"}‘. ------------
i 1 ra N
T e G SIS
| |
F Y e ThTTTTTTRTTTTTTM
0 , ,
A00}----------- -- A hr EEETREPEE e e
A4S0 S R S
-100

20050

-200 0 100 200

Displacement (mm)

Figure A-15: Comparison between numerical and experimental
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Eberhard Database (2004).
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Force-Displacement for RC Column 115 of Berry and Eberhard Database
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Force-Displacement for RC Column 117 of Berry and Eberhard Database
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Figure A-17: Comparison between numerical and experimental
responses of circular columns (ID#117&118) of Berry and
Eberhard Database (2004).



244

Appendix
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Force-Displacement for RC Column 121 of Berry and Eberhard Database
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responses of circular columns (ID#121&122) of Berry and
Eberhard Database (2004).
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Figure A-20: Comparison between numerical and experimental
responses of circular columns (ID#123&125) of Berry and
Eberhard Database (2004).



Seismic Assessment and Retrofit of Reinforced Concrete Columns 247

Force-Displacement for RC Column 126 of Berry and Eberhard Database
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Figure A-21: Comparison between numerical and experimental
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Eberhard Database (2004).
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Force-Displacement for RC Column 131 of Berry and Eberhard Database
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Figure A-23: Comparison between numerical and experimental
responses of circular columns (ID#131&132) of Berry and
Eberhard Database (2004).
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Figure A-24: Comparison between numerical and experimental
responses of circular columns (ID#133&141) of Berry and
Eberhard Database (2004).
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Figure A-26: Comparison between numerical and experimental

responses of circular columns (ID#157&158) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 3 of Berry and Eberhard Database
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Concrete Model: Mander et al., 1988.
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Figure A-27: Comparison between numerical and experimental
responses of rectangular columns (ID#3&4) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 5 of Berry and Eberhard Database
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Figure A-28: Comparison between numerical and experimental

responses of rectangular columns (ID#5&6) of Berry and Eberhard

Database (2004).
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Force-Displacement for RC Column 7 of Berry and Eberhard Database
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Figure A-29: Comparison between numerical and experimental
responses of rectangular columns (ID#7&8) of Berry and Eberhard
Database (2004).
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Figure A-30: Comparison between numerical and experimental

responses of rectangular columns (ID#9&10) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 11 of Berry and Eberhard Database
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Figure A-31: Comparison between numerical and experimental
responses of rectangular columns (ID#11&12) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 13 of Berry and Eberhard Database
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responses of rectangular columns (ID#13&14) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 15 of Berry and Eberhard Database
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Figure A-33: Comparison between numerical and experimental
responses of rectangular columns (ID#15&16) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 17 of Berry and Eberhard Database
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Figure A-34: Comparison between numerical and experimental
responses of rectangular columns (ID#17&18) of Berry and
Eberhard Database (2004).
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Faorce-Displacement for RC Column 19 of Berryand Eberhard Database
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Figure A-35: Comparison between numerical and experimental
responses of rectangular columns (ID#19&20) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 21 of Berry and Eberhard Database
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Figure A-36: Comparison between numerical and experimental

responses of rectangular columns (ID#21&22) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 23 of Berry and Eberhard Database
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Figure A-37: Comparison between numerical and experimental

responses of rectangular columns (ID#23&24) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 25 of Berry and Eberhard Database
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Figure A-38: Comparison between numerical and experimental
responses of rectangular columns (ID#25&26) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 27 of Berry and Eberhard Database
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Figure A-39: Comparison between numerical and experimental

responses of rectangular columns (ID#27&30) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 31 of Berry and Eberhard Database
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Figure A-40: Comparison between numerical and experimental
responses of rectangular columns (ID#31&32) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 43 of Berry and Eberhard Database
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Figure A-41: Comparison between numerical and experimental

responses of rectangular columns (ID#43&48) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 49 of Berry and Eberhard Database
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Figure A-42: Comparison between numerical and experimental

responses of rectangular columns (ID#49&50) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 51 of Berry and Eberhard Database
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Figure A-43: Comparison between numerical and experimental
responses of rectangular columns (ID#51&52) of Berry and
Eberhard Database (2004).
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Figure A-45: Comparison between numerical and experimental

responses of rectangular columns (ID#57&58) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 58 of Berry and Eberhard Database
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Figure A-46: Comparison between numerical and experimental
responses of rectangular columns (ID#59&60) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 61 of Berry and Eberhard Database
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Force-Displacement for RC Column 62 of Berry and Eberhard Database
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Figure A-47: Comparison between numerical and experimental
responses of rectangular columns (ID#61&62) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 63 of Berry and Eberhard Database
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Figure A-48: Comparison between numerical and experimental

responses of rectangular columns (ID#63&66) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 67 of Berry and Eberhard Database
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Figure A-49: Comparison between numerical and experimental

responses of rectangular columns (ID#67&68) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 69 of Berry and Eberhard Database
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Figure A-50: Comparison between numerical and experimental
responses of rectangular columns (ID#69&70) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 71 of Berry and Eberhard Database
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Figure A-51: Comparison between numerical and experimental

responses of rectangular columns (ID#71&72) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 88 of Berry and Eberhard Database
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Figure A-52: Comparison between numerical and experimental
responses of rectangular columns (ID#88&89) of Berry and
Eberhard Database (2004).
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Figure A-53: Comparison between numerical and experimental

responses of rectangular columns (ID#90&91) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 92 of Berry and Eberhard Database
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Figure A-54: Comparison between numerical and experimental

responses of rectangular columns (ID#92&93) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 94 of Berry and Eberhard Database
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Figure A-55: Comparison between numerical and experimental
responses of rectangular columns (ID#94&95) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 96 of Berry and Eberhard Database
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Figure A-56: Comparison between numerical and experimental
responses of rectangular columns (ID#96&97) of Berry and
Eberhard Database (2004).
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Farce-Displacement for RC Column 102 of Berry and Eberhard Database
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Figure A-57: Comparison between numerical and experimental

responses of rectangular columns (ID#102&103) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 1032 of Berry and Eberhard Database
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Figure A-58: Comparison between numerical and experimental
responses of rectangular columns (ID#105&106) of Berry and
Eberhard Database (2004).
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mEDrEE—Displacementfnr RC Column 107 of Berry and Eberhard Database
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: Comparison between numerical and experimental

responses of rectangular columns (ID#107&108) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 108 of Berry and Eberhard Database
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Figure A-60: Comparison between numerical and experimental
responses of rectangular columns (ID#109&110) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 111 of Berry and Eberhard Database
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Figure A-61: Comparison between numerical and experimental
responses of rectangular columns (ID#111&112) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 113 of Berry and Eberhard Database
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Figure A-62: Comparison between numerical and experimental
responses of rectangular columns (ID#113&114) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 115 of Berry and Eberhard Database
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Figure A-63: Comparison between numerical and experimental
responses of rectangular columns (ID#115&116) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 117 of Berry and Eberhard Database
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Figure A-64: Comparison between numerical and experimental
responses of rectangular columns (ID#117&118) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 119 of Berry and Eberhard Database
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Figure A-65: Comparison between numerical and experimental
responses of rectangular columns (ID#119&120) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 121 of Berry and Eberhard Database
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Figure A-66: Comparison between numerical and experimental

responses of rectangular columns (ID#121&122) of Berry and
Eberhard Database (2004).
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Figure A-67: Comparison between numerical and experimental
responses of rectangular columns (ID#123&124) of Berry and
Eberhard Database (2004).



Seismic Assessment and Retrofit of Reinforced Concrete Columns 301

Force-Displacement for RC Column 125 of Berry and Eberhard Database
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Figure A-68: Comparison between numerical and experimental

responses of rectangular columns (ID#125&126) of Berry and
Eberhard Database (2004).



302 Appendix

Force-Displacement for RC Column 127 of Berry and Eberhard Database
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Figure A-69: Comparison between numerical and experimental
responses of rectangular columns (ID#127&128) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 129 of Bemry and Eberhard Database
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Figure A-70: Comparison between numerical and experimental
responses of rectangular columns (ID#129&130) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 131 of Berry and Eberhard Database
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Figure A-71: Comparison between numerical and experimental
responses of rectangular columns (ID#131&132) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 133 of Berry and Eberhard Database
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Figure A-72: Comparison between numerical and experimental
responses of rectangular columns (ID#133&134) of Berry and
Eberhard Database (2004).
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mgnrce—Dismacement for RC Column 135 of Berry and Eberhard Database
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Figure A-73: Comparison between numerical and experimental
responses of rectangular columns (ID#135&136) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 145 of Berry and Eberhard Database
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Figure A-74: Comparison between numerical and experimental
responses of rectangular columns (ID#145&146) of Berry and
Eberhard Database (2004).
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Force-Displacement far RC Column 147 of Berry and Eberhard Database
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ure A-75: Comparison between numerical and experimental

responses of rectangular columns (ID#147&148) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 158 of Berry and Eberhard Database
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Figure A-76: Comparison between numerical and experimental
responses of rectangular columns (ID#156&157) of Berry and
Eberhard Database (2004).
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Force-Cisplacement for RC Column 33 of Berry and Eberhard Database
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Figure A-77: Comparison between numerical and experimental
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responses of rectangular columns (ID#33&34) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 38 of Berry and Eberhard Database
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Force-Displacement for RC Column 39 of Berry and Eberhard Database
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Figure A-78: Comparison between numerical and experimental
responses of rectangular columns (ID#38&39) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 41 of Berry and Eberhard Database
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Force-Displacement for RC Column 42 of Berry and Eberhard Database
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Figure A-79: Comparison between numerical and experimental
responses of rectangular columns (ID#41&42) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 44 of Berry and Eberhard Database
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Figure A-80: Comparison between numerical and experimental

responses of rectangular columns (ID#44&45) of Berry and
Eberhard Database (2004).
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Figure A-81: Comparison between numerical and experimental

responses of rectangular columns (ID#47&54) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 55 of Berry and Eberhard Database
300 T T T

=F|exural Analysis (+) 1
=F|exural Analysis (-}

===E xperiment

——Shear Strength ECB4Il (+)

100 §=—shear Strength EC81I -}
—5Shear Strength ASCE-SEI 41 (+)

200

0.7% (1.6 mm)
‘| Drift at axial failure - Elwood:
/| 1.4% (3 mm)

1 7 3

)

o
[ I
JA

0
Displacement (mm)
Concrete Model: Mander et al., 1988.

Force-Displacement for RC Column 64 of Berry and Eberhard Database
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Figure A-82: Comparison between numerical and experimental
responses of rectangular columns (ID#55&64) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column &5 of Berry and E berhard Database
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Figure A-83: Comparison between numerical and experimental

responses of rectangular columns (ID#65&73) of Berry and

Eberhard Database (2004).
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Force-Displacerment for RC Column 74 of Berry and Eberhard Database
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Figure A-84: Comparison between numerical and experimental
responses of rectangular columns (ID#74&76) of Berry and
Eberhard Database (2004).
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Figure A-85: Comparison between numerical and experimental
responses of rectangular columns (ID#78&80) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 82 of Berry and Eberhard Database
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. Force-Displacement for RC Column 86 of Berry and Eberhard Database
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Figure A-87: Comparison between numerical and experimental

responses of rectangular columns (ID#86&98) of Berry and
Eberhard Database (2004).
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Farce-Displacement for RC Column 99 of Berry and Eberhard Database
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Figure A-88: Comparison between numerical and experimental
responses of rectangular columns (ID#99&100) of Berry and
Eberhard Database (2004).
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dDDFurce-Displacement for RC Column 101 of Berry and Eberhard Database
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Figure A-89: Comparison between numerical and experimental

responses of rectangular columns (ID#101&137) of Berry and

Eberhard Database (2004).
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Force-Displacement for RC Column 138 of Berry and Eberhard Database
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Figure A-90: Comparison between numerical and experimental
responses of rectangular columns (ID#138&139) of Berry and
Eberhard Database (2004).



328

Appendix

5{:’OFEJr‘I:E-Displai:E!mE‘ﬁt for RC Column 140 of Berry and Eberhard Database
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Figure A-91: Comparison between numerical and experimental

responses of rectangular columns (ID#140&141) of Berry and
Eberhard Database (2004).
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3UUF::uru:e-D isplacement for RC Column 142 of Berry and Eberhard Database
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Figure A-92: Comparison between numerical and experimental
responses of rectangular columns (ID#142&143) of Berry and
Eberhard Database (2004).
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5[][]an:e D|5p|a|:ement far RC Column 144 of Elern_f and Eberhard Database
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Figure A-93: Comparison between numerical and experimental
responses of rectangular columns (ID#144&149) of Berry and
Eberhard Database (2004).
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Figure A-94: Comparison between numerical and experimental
responses of rectangular columns (ID#150&199) of Berry and
Eberhard Database (2004).
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Figure A-95: Comparison between numerical and experimental

responses of rectangular columns (ID#200&212) of Berry and
Eberhard Database (2004).
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Figure A-96: Comparison between numerical and experimental

responses of rectangular columns (ID#213&214) of Berry and
Eberhard Database (2004).
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Force-Displacement for RC Column 276 of Berry and Eberhard Database
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Figure A-97: Comparison between numerical and experimental
responses of rectangular columns (ID#276&277) of Berry and
Eberhard Database (2004).
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Figure A-98: Comparison between numerical and experimental

responses of rectangular columns (ID#278&279) of Berry and
Eberhard Database (2004).
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Force- Dlsplacement for RC Column 280 of Elern_f and Eberhard Database
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Figure A-99: Comparison between numerical and experimental
responses of rectangular columns (ID#280&281) of Berry and
Eberhard Database (2004).
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Figure A-100: Comparison between numerical and experimental

responses of rectangular columns (ID#283) of Berry and Eberhard

Database (2004).
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lar cross section that failed in shear.
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Reinforced concrete columns with a ¢
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Force-Displacement for RC Column 17 of Berry and Eberhard Database
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Figure A-101: Comparison between numerical and experimental

responses of circular columns (ID#17&18) of Berry and Eberhard
Database (2004).
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Force-Digplacement for RC Column 1% of Berry and Eberhard [ratabaze
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Figure A-102: Comparison between numerical and experimental
responses of circular columns (ID#19&20) of Berry and Eberhard
Database (2004).
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Figure A-103: Comparison between numerical and experimental
responses of circular columns (ID#21&23) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 24 of Bermry and Eberhard Database
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Figure A-104: Comparison between numerical and experimental

responses of circular columns (ID#24&25) of Berry and Eberhard
Database (2004).
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gure A-105: Comparison between numerical and experimental

responses of circular columns (ID#26&27) of Berry and Eberhard

Database (2004).
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Figure A-106: Comparison between numerical and experimental
responses of circular columns (ID#28&29) of Berry and Eberhard
Database (2004).
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4E|E|F orce-Displacement for RC Column 30 of Berry and Eberhard Database
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Figure A-107: Comparison between numerical and experimental

responses of circular columns (ID#30&31) of Berry and Eberhard
Database (2004).
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Figure A-108: Comparison between numerical and experimental
responses of circular columns (ID#32&33) of Berry and Eberhard
Database (2004).
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DDFome-DispIacement for RC Column 34 of Berry and Eberhard Database
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Figure A-109: Comparison between numerical and experimental
responses of circular columns (ID#34&35) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 36 of Berry and Eberhard Database
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Figure A-110: Comparison between numerical and experimental
responses of circular columns (ID#36&37) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 44 of Berry and Eberhard D atabase
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Figure A-111: Comparison between numerical and experimental

responses of circular columns (ID#44&48) of Berry and Eberhard

Database (2004).
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Figure A-112: Comparison between numerical and experimental
responses of circular columns (ID#49&104) of Berry and Eberhard
Database (2004).
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Force-Displacement for RC Column 105 of Bemy and Eberhard Database
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Figure A-113: Comparison between numerical and experimental
responses of circular columns (ID#105&108) of Berry and
Eberhard Database (2004).
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Figure A-114: Comparison between numerical and experimental
responses of circular columns (ID#110&111) of Berry and

Eberhard Database (2004).
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Figure A-115: Comparison between numerical and experimental
responses of circular columns (ID#159&161) of Berry and
Eberhard Database (2004).
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Figure A-116: Comparison between numerical and experimental
responses of circular columns (ID#163&164) of Berry and
Eberhard Database (2004).
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Figure A-117: Comparison between numerical and experimental
responses of circular columns (ID#165&166) of Berry and
Eberhard Database (2004).
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