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NOMENCLATURE 

Matrices are in boldface upper-case characters. 

Column matrices, algebraic vectors, and arrays are 
in boldface lower-case characters. 

Scalars are in lightface characters. 

Column vector (array) 

Row vector (array) 

Matrix 

Blement of matrix A in ith row and jth column 

Zero vector 

Zero (null) matrix 

OVERSCORES 

Geometric vector 

3 x 3 skew-symmetric matrix 

4 x 4 skew-symmetric matrix containing a negative 
3 X 3 skew-symmetric matrix 

4 X 4 skew-symmetric matrix containing a positive 
3 X 3 skew-symmetric matrix 

First derivative with respect to time 

Second derivative with respect to time 

SUPERSCRIPTS 

Matrix inverse 

ith time step 

Matrix or vector transpose 

Type of constraint or force 

Components of a vector in a body-fixed 
coordinate system 

Components of a vector or matrix 
in Buler-parameter space 

SUBSCRIPTS 

ith body in a system 

Projection of a vector along a known axis 



SYMBOLS 

(j 

A 

{t; 

p 

(Ti 

1; 

4)),1;,,1;3 

tJ;, 0, (T 

, 
Wi 

Vector of right-hand side of acceleration 
equations 

Angle between two vectors 

Vector of Lagrange multipliers 

Polar moment of inertia for body i 

Local (body-fixed) Cartesian coordinate 
system 

Radius of a circle 

Lagrange multiplier associated with the 
constraint on Pi 

Angle of rotation 

Bryant angles 

Euler angles 

Angular velocity vector for body i 

Global components of w; 
Local components of Wi 
One constraint; vector of constraints 

Jacobian matrix of constraints 

b Number of bodies 

bi Vector containing quadratic velocity 
terms for body i 

b Vector of quadratic velocity terms 

d Vector with its ends on two different 
bodies 

d Global components of d 
eo,el,eZ,e3 Euler parameters 

e, Vector of three Euler parameters el, e2, eJ 
for body i 

Ji Force acting on body i 

fi Global componcnts of Ji 
gi Vcctor of forces for body i containing fi 

and n: 

g Vector of forces for a system 

g(C) Vector of constraint reaction forces 

hi Velocity vector for body i containing f; 
and wi 

h Vector of velocities for a system 

k Number of degrees of freedom (DOF) 

I Vector with its ends on two different 
bodies 

Global components of 7 
m Number of constraint equations 

tn(P) Mass of a particle 

tn; Mass of body i 

n Number of coordinates 

ni Moment acting on body i 

ni Global components of ni 
ni Local components of ni 
nt Components of ni in four-dimensional 

space 

Pi Vector of four Euler parameters 
eo, el, e2, eJ for body i 

qi Vector of coordinates for body i 

q Vector of coordinates for a system 

r, Translational position vector for body i 

r, Global coordinates of i'i 

s; Vector with both ends on body i 
(constant magnitude) 

Si Global components of Si 

s: Local components of Si 

Time 

to Initial time 

t" Final (end) time 

ii Unit vector 

u Global components of ii; vector of 
dependent coordinates 

v Vector of independent coordinates 

xyz Global Cartesian coordinate system 

y Vector of integration variables 

Ai Rotational transformation matrix for 
body i 

Gi 3 X 4 transformation matrix for body i 

I 3 x 3 or general identity matrix 

1* 4 x 4 identity matrix 

Ji Global inertia tensor for body i 

J: Local (constant) inertia tensor for body i 

J t 4 x 4 inertia tensor 

L Lower triangular matrix 

Li 3 x 4 transformation matrix for body i 

Mi 6 x 6 mass matrix for body i containing 
N; and.Ii 

M Mass matrix for a system 

Ni 3 x 3 diagonal mass matrix for body i 

U Upper triangular matrix 

V Potential energy 
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Preface 

This book is designed to introduce fundamental theories and numerical methods for use 
in computational mechanics. These theories and methods can be used to develop com
puter programs for analyzing the response of simple and complex mechanical systems. 
In such programs the equations of motion are formulated systematically, and then solved 
numerically. Because they are relatively easy to use, the book focuses on Cartesian co
ordinates for formulating the equations of motion. After the reader has become familiar 
with this method of formulation, it can serve as a stepping stone to formulating the 
equations of motion in other sets of coordinates. The numerical algorithms that are dis
cussed in this book can be applied to the equations of motion when formulated in any 
coordinate system. 

Organization of the Book 

The text is organized in such a way that it can be used for teaching or for self
study. The concepts and numerical methods used in kinematics are systematically treated 
before the concepts and numerical methods used in dynamics are introduced. Separate 
chapters on each of these topics allow the text to be used for the study of each topic 
separately or for some desired combination of topics. Furthermore, the text first treats 
the less complex problems of planar kinematic and dynamic analysis before it discusses 
spatial kinematic and dynamic analysis. 

With the exception of the first two chapters and the last chapter, the text can be 
divided into two subjects-kinematics and dynamics. Chapter 1 gives an introduction to 
the subject of computational methods in kinematics and dynamics. Simple examples 
illustrate how a problem can be formulated using different coordinate systems. Chapter 1 
also explains why Cartesian coordinates provide a simple tool, if not necessarily the 
most computationally efficient one. Chapter 2 presents a review of vector and matrix 

ix 
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algebra, with an emphasis on the kind of formulation that lends itself to implementation 
in computer programs. 

Chapters 3 through 7 deal with kinematics. Chapter 3 introduces the basic con
cepts in kinematics that are applicable to both planar and spatial systems. Algebraic con
straint equations, the various coordinate systems, and the idea of degrees of freedom are 
presented as a foundation for both the analytical and the numerical aspects of kinematic 
analysis. Position, velocity, and acceleration analysis techniques are presented and illus
t~ated through the solution of simple mechanisms. Numerical methods for solving the 
associated kinematic equations are presented and illustrated. These include methods for 
solving sets of linear and nonlinear algebraic equations. A comprehensive treatment of 
planar kinematics using Cartesian coordinates is presented in Chapter 4. In that chapter, 
a library of kinematic constraints is defined and the governing algebraic constraint equa
tions are derived. 

Chapter 5 contains a FORTRAN program for planar kinematic analysis. The pro
gram is developed and explained as a collection of subroutines that carry out the func
tions of kinematic analysis. The problems at the end of Chapter 5 provide guidelines for 
the extensions that allow for the expansion of the program to treat broader classes of 
planar kinematic systems. 

Chapter 6 presents a set of spatial rotational coordinates known as Euler parameters. 
The physical properties of Euler parameters and the development of their algebraic prop
erties are introduced to allow the reader to become comfortable with and confident in their 
use. Also, velocity relationships-including the definition of angular velocity-and 
other identities are developed that are necessary for the formulation of spatial kinematic 
and dynamic analysis. 

Chapter 7 presents a unified formulation of spatial kinematics using Cartesian co
ordinates and Euler parameters. Vector relationships that are required for the definition 
of kinematic joints are first presented and then applied to derive the governing equations 
for a library of spatial kinematic joints. Although this book does not provide a source 
listing for a spatial kinematic analysis program, the computer program in Chapter 5 and 
the constraint formulations in Chapter 7 provide all the information that the reader needs 
to develop a computer program. 

Chapters 8 through 13 deal with dynamics. Basic concepts in dynamics are pre
sented in Chapter 8. Discussion begins with familiar concepts of the dynamics of a parti
cle and progresses to the dynamics of systems of particles and, finally, to the dynamics 
of rigid bodies. By means of a building block formulation, the complete theory of the 
dynamics of systems of rigid bodies is developed in a systematic and understandable 
way. The Newton-Euler equations of motion are derived and used as a fundamental tool 
in the dynamic analysis of systems of rigid bodies that are connected by kinematic 
joints. The Lagrange multiplier formulation for constrained systems is developed, and 
the reaction forces between the joints are derived in terms of the Lagrange multipliers. 

Chapter 9 discusses the planar dynamics of systems of constrained rigid bodies, 
drawing upon the kinematics theory discussed in Chapter 4 and the basic dynamics 
theory discussed in Chapter 8. Even though the numerical methods for solving the differ
ential equations of motion are discussed in detail in Chapters 12 and 13, a FORTRAN 
program for planar dynamic analysis is presented in Chapter 10. This program, which is 
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a collection of subroutines used to implement a variety of computations required in the 
formulation and solution of equations of motion, builds upon the kinematic analysis 
program in Chapter 5. The computer program is demonstrated through the solution of 
simple examples, and extensions to the program are included as problems at the end of 
the chapter. 

Chapter 11 presents the formulation of spatial system dynamics using Cartesian 
coordinates and Euler parameters. The equations of motion of kinematically constrained 
systems of rigid bodies are derived and developed in a form suitable for computational 
implementation. Chapter 12 presents a brief overview of numerical methods for solving 
ordinary differential equations. A FORTRAN listing of a fourth-order Runge-Kutta 
algorithm illustrates the implementation of these numerical methods along with some 
examples. Chapter 13 presents a number of advanced numerical methods for multibody 
dynamics. Alternate techniques and algorithms for the solution of mixed systems of dif
ferential and algebraic equations that arise in system dynamics are presented. 

In the analysis of multibody mechanical systems, it may be necessary to go beyond 
kinematics and dynamics and find the static equilibrium state of a system. Chapter 14 
discusses several computation-based methods for static eqUilibrium analysis. 

Level of Courses 

The book can be covered in two successive courses. The student is required 
to know the fundamentals of kinematics and dynamics, to have a basic knowledge of 
numerical methods, and to know computer programming, preferably FORTRAN. 

The first course-a senior undergraduate or a first-year graduate course-could 
cover Chapters 1 through 5, 9, and 10, on planar motion; if students do not have the 
proper background in numerical methods in ordinary differential equations, Chapter 12 
should also be covered to the extent necessary. The course could be project-oriented: 
students could be assigned to find existing medium- to large-scale mechanical systems 
and analyze them using the computer programs that are provided in the book. The second 
course would then cover Chapters 6 through 8 and 11 through 14, on spatial motion; this 
would be quite suitable as a graduate-level course. Students, divided into groups, should 
be able to develop a spatial-motion dynamic analysis program. 

Another possibility would be one course, covering Chapters 1 through 7, on the 
subject of kinematics, and a second course, covering Chapters 8 through 14, on the sub
ject of dynamics. 

Exercises 

Problem assignments can be found at the end of most chapters. The problems are. 
designed to clarify certain points and to provide ideas for program development and 
analysis techniques. However, by no means do these problems represent the ultimate 
flexibility and power of the formulations and algorithms that are stated in the book. 
Most realistic multi body problems that arise in engineering practice can be treated by 
employing similar techniques and ideas. 
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Computer Programs 

Two FORTRAN programs called KAP and DAP, for planar kinematic and dy
namic analysis, respectively, are developed and listed in the book. Other programs, for 
static equilibrium analysis, or for spatial kinematic and dynamic analysis, can be devel
oped by the reader by following the formulations and algorithms that are discussed in 
various chapters. Source codes for KAP, DAP, and other complementary programs can 
be obtained on a floppy disk from the publisher. 
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NOTE ON UNIT SYSTEM 

The system of units adopted in this book is, unless otherwise stated, the international 
system of units (SI). In most examples and problems, the variables are organized as the 
elements of arrays suitable for programming purposes. These variables usually represent 
various different quantities and therefore have different units. If the unit of each element 
of an array were to be stated, it would cause notational confusion. Therefore, in order to 
eliminate this problem, the units of the variables are not stated in most parts of the text. 
The reader must assign the correct unit to each variable. The unit of degree or radian 
alone is stated for variables representing angular quantities. 

Quantity 

(Base Units) 
Length 
Mass 
Time 

(Derived Units) 
Acceleration, translational 
Acceleration, angular 
Damping coefficient 
Force 
Moment of force 
Moment of Inertia, mass 
Pressure 
Spring constant 
Velocity, translational 
Velocity, angular 

t or degree 

SI Units Used in This Book 

Unit SI 

meter 
kilogram 
second 

meter / second2 

radiant / second2 

newton-second/meter 
newton 
newton-meter 
kilogram-meter2 

pascal 
newton/meter 
meter/second 
radiant/second 

Symbol 

m 
kg 

m/s2 

rad/s2 

N.s/m 
N (=kg.mjs2) 
N.m 
kg.m2 

Pa (=N/m2
) 

N/m 
m/s 
rad/s 





1 

Introduction 

The major goal of the engineering profession is to design and manufacture marketable 
products of high quality. Today's industries are utilizing computers in every phase of the 
design, management, manufacture, and storage of their products. The process of design 
and manufacture, beginning with an idea and ending with a final product, is a closed-loop 
process. Almost every link in the loop can benefit from the power of digital computers. 

1.1 COMPUTERS IN DESIGN AND MANUFACTURING 

Factory automation is one of the major objectives of modern industry. Although there is 
no one plan for factory automation, a general configuration is presented in Fig. 1.1. In 
this configuration, all branches of the factory communicate and exchange information 
through a central data base. Various parts of the product are designed in the computer
aided engineering (CAE) branch, and then the design is sent to the computer-aided manu
facturing (CAM) branch for parts manufacturing and final assembly. Two of the major 
subbranches of CAE are computer-aided product design and computer-aided manufac
turing design. 

The computer-aided product design branch, better known as computer-aided design 
(CAD), t may consider the design of single parts or it may concern itself with the final 
product as an assembly of those parts. Computerized product design requires such capa
bilities as computer-aided analysis, computer-aided drafting, design sensitivity analysis, 
or optimization. The computer-aided analysis capability serves as part of the design proc-

tThe abbreviation CAD is commonly used for both computer-aided drafting and computer-aided design. Most 
of the CAD systems available today are intelligent computerized drafting systems with limited design capability. 

1 
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)C:=::::J External information 

Figure 1.1 Automated design and manufacturing. 
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ess and is also used as a model simulator for the finished manufactured product. Analy
sis may be considered especially appropriate for a product whose initial design has to be 
modified several times during the manufacturing process. Thus computer-aided analysis 
can be used as a substitute for laboratory or field tests in order to reduce the cost. 

The computer-aided manufacturing design branch is concerned with the design 
of the manufacturing process. This branch considers the manufacturability of newly 
designed parts and employs techniques to improve the manufacturing process, in addi
tion to on-line control of the manufacturing process. 

1.1.1 Computer-Aided Analysis 

The computer-aided analysis process (CAA) allows the engineer to simulate the behav
ior of a product and modify its design prior to actual production. In contrast, prior to the 
introduction of CAA, the manufacturer had to construct and test a series of prototypes, a 
process which was not only time-consuming but also costly. Most optimal design tech
niques require repetitive analysis processes. Although one of the major goals of an auto
mated factory is computer-aided design, computer-aided analysis techniques must be 
developed first. 



Sec. 1.2 Multibody Mechanical Systems 3 

Computer-aided analysis techniques may be applied to the study of electrical and 
electronic circuits, structures, or mechanical systems. The development of algorithms 
for analyzing electrical circuits began in the early days of electronic computers. Similar 
techniques were also employed to develop computer programs for structural analysis. 
Today, these programs, known as finite-element techniques, have become highly 
advanced and are used widely in various fields of engineering. 

It was not until the early 1970s that computational techniques found their way into 
the field of meehanical engineering. One of the areas of mechanical engineering where com
putational techniques can be employed is the analysis of multibody mechanical systems. 

1.2 MUL TIBODY MECHANICAL SYSTEMS 

(a) 

A mechanical system is defined as a collection of bodies (or links) in which some or all 
of the bodies can move relative to one another. Mechanical systems may range from 
the very simple to the very complex. An example of a simple mechanical system is the 
single pendulum, shown in Fig. 1.2(a). This system contains two bodies- the pendu
lum and the ground. Examples of more complex meehanical systems are the four-bar 
linkage and the slider-crank mechanism, shown in Fig. 1.2(b) and (c), respectively. The 
four-bar linkage is the most commonly used mechanism for motion transmission. The 
slider-crank mechanism finds its greatest application in the internal-combustion engine. 

While the motion of the systems in Fig. 1.2 is planar (two-dimensional), other 
mechanical systems may experience spatial (three-dimensional) motion. For example, 
the suspension and the steering system of an automobile, shown in Fig. 1.3, contain 
several spatial mechanisms. This system as a whole has several degrees of freedom. 
While the kinematics of the individual linkages in this vehicle are more complicated than 
those of the mechanisms shown in Fig. 1.2, the concept remains the same. 

A cascade of simple planar linkage systems can be put together to perform rather 
complex tasks. The deployable satellite antenna shown in Fig. 1.4 contains such a CaS

cade of six four-bar linkages. 6 Before deployment, the panels of the antenna are folded 
in order to occupy the minimum space. On,ce the satellite is in orbit the panels are 
unfolded in a predefined sequence, as shown in Fig. 1.5. When the unfolding process is 
completed, the four-bar linkages become a truss structure to support the panels. 

Crank 

Connecting 
rod 

(bl 

Follower 

(e) 

Figure 1.2 Examples of simple mechanical systems: (a) a single pendulum, (b) a four-bar mecha
nism, and (c) a slider-crank mechanism. 
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Figure 1.3 The suspension system and the steering mechanism of an automobile. 

J<'igure 1.4 A deployed satellite antenna. 

(a) (b) (e) 

Figure 1.5 Unfolding process of the antenna in orbit: (a) folded panels; (b-e) unfold
ing process. 
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(d) (e) 

Figure 1.5 (continued) 

Another example of a mechanical system is a robotic device. A robot can be fixed 
to a stationary base or to a movable base, as shown in Fig. 1.6. The motion and the posi
tion of the end effector of a robot are controlled through force actuators located about 
each joint connecting the bodies that make up the robot. 

(a) (b) 

Figure 1.6 Examples of robots with (a) stationary base and (b) movable base. 

Any mechanical system can be represented schematically as a multi body system in 
the manner shown in Fig. l.7. The actual shape or outline of a body may not be of imme
diate concern in the process of analysis. Of primary importance is the connectivity of the 
bodies, the inertial characteristics of the bodies, the type and the location of the joints, 
and the physical characteristics of the springs, dampers, and other elements in the system. 
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1.3 BRANCHES OF MECHANICS 

Introduction Chap. 1 

Figure 1.7 Schematic representation of a 
multibody system. 

There are two different aspects to the study of a mechanical system: analysis and design. 
When a mechanical system is acted on by a given excitation, for example, an external force, 
the system exhibits a certain response. The process which allows an engineer to study 
the response of an already existing system to a known excitation is called analysis. This 
requires a complete knowledge of the physical characteristics of the mechanical system, 
such as material composition, shape, and arrangement of parts. The process of determin
ing which physical characteristics are necessary for a mechanical system to perform a 
prescribed task is called design or synthesis. The design process requires the application 
of scientific techniques along with the engineer's judgment. The scientific techniques in 
the design process are merely tools to be used by the engineer. These are mainly analy
sis techniques and optimization methods. Although these techniques can be employed in 
a systematic manner in the design process, the overall process hinges on the judgment of 
the design engineer. Since the scientific aspect of the design process requires analysis 
techniques as a tool, it is important to learn about methods of analysis prior to design. 

The branch of analysis which studies motion, time, and forces is called mechanics. 
It consists of two parts-statics and dynamics. Statics considers the analysis of station
ary systems-systems in which time is not a factor. Dynamics, on the other hand, deals 
with systems that are nonstationary - systems that change their response with respect to 
time. Dynamics is divided into two disciplines-kinematics and kinetics. Kinematics is 
the study of motion regardless of the forces that produce the motion. More explicitly, 
kinematics is the study of displacement, velocity, and acceleration. Kinetics, on the other 
hand, is the study of motion and its relationship with the forces that produce that motion. 

The focus of this book is on the dynamics of mechanical systems, with an emphasis 
on computational methods. In addition, one chapter is devoted to computational methods 
in static equilibrium analysis, since this may be needed prior to dynamic analysis for 
certain mechanical systems. 

1.3.1 Methods of Analysis 

Before we analyze the motion of any mechanical system, we must make some simplify
ing assumptions. For example, if the overall acceleration of a vehicle under the applied 
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load of the engine is to be detennined, then the vibrational motions of certain parts of the 
vehicle are of no signifiCance. If one decides to consider the vibration and local deforma
tion of every part of the vehicle, then determining the response of the system becomes 
highly complicated, if not impossible. Therefore, these simplifying assumptions serve 
two purposes: to make the problem solvable and to eliminate the expenditure of effort on 
unnecessary or insignificant responses. 

Classical methods of analysis in mechanics have relied upon graphical and often 
quite complex techniques. These techniques are based on geometrical interpretations of 
the system under consideration. As an example, consider the slider-crank mechanism 
shown in Fig. 1.8. The crank is rotating with a constant angular velocity. The objective 
is to find the velocity of the slider. A graphical solution to this problem can be achieved 
rather easily. The velocity of point A, VA, has a magnitude of VA = (1.0) (0.1) 0.1 mls 
and is perpendicular to the crank OA, as shown in Figure 1.9(a). The velocity of point 
B, v D, is in the direction of the motion of the slider, and the velocity of point B relative 
to point A, denoted by vector VDA

, is perpendicular to the connecting rod AB. A vector 
expression relating these velocities is given as 

(1.1) 

A vector diagram (velocity polygon) corresponding to this expression is shown in 
Fig. 1.9(b). From this diagram the magnitude and the direction of VB can be found. 

y 
OA 0.1 m 
AB 0.2 m 

w A ¢; 30° 

l~~~rad/s 

oJf:~x ~EB I 
W/;Y///W;Y/OU/Y;Y//h7ffl/; Figure 1.8 A slider-crank mechanism. 

A 

'\--,/'/ ~-----
0""'-

vA 

fa) 

v81A 

; 
I 
I 

I 
-I:!. ___ +_V8 

B 

Figure 1.9 Graphical solution. 

(bl 

Although a graphical solution to this problem is rather simple, its accuracy is 
limited. The graphical approach can yield more accurate results if some trigonometric 
formulas and geometric relations are introduced into the process. For example, for the 
slider-crank mechanism, since the angle <p and the lengths of the crank and the connect
ing rod are known, other geometric information for this system can be found easily, as 
depicted in Fig. I.lO(a). Then a vector diagram can be constructed with complete details 
as shown in Fig. 1.1O(b). From this diagram, VB can be calculated from the elementary 
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(II) 

Figure 1.10 Geometric approach with detailed information. 

relationship between the sides and the angles of a triangle: 

sin 44.48 
VB = (0.1) . = 0.072 mls 

sm 75.52 

and of course the direction of v B is known. 

(b) 

An alternative method to the graphical approach is the solution by vector algebra. 
In this method, all the vectors are expressed in terms of their components in a common 
coordinate system. For example, the components of the velocity vectors of the slider
crank mechanism in the xy coordinate system are 

VA [ ~~\C~;n 6~0 J VB [ ~J 
Substitution of these components in Eq. 1.1 yields 

VB 0.1 cos 60 + V
BA cos 75.52 

o -0.1 sin 60 + V
BA sin 75.52 

which results in V
BA = 0.089 mls and VB = 0.072 m/s. 

[

VBA cos 75.52J 
V

BA sin 75.52 

Kinematic analysis with vector algebra may lead to solving linear or nonlinear 
simultaneous algebraic equations. For example, the geometric relations between the sides 
and the angles of the triangle made by the slider-crank mechanism canbe expressed as 

a cos e/> + b cos () d = 0 
a sin e/> - b sin () = 0 

(1.2) 

where a = OA, b AB, and d OB. Since a and b have known values, Eq. 1.2 can 
be written as 

0.1 cos e/> + 0.2 cos () d = 0 
0.1 sin e/> - 0.2 sin () = 0 

(1.3) 

For any given value of the crank angle e/>, the solution to Eq. 1.3 yields values for () and 
d. For example for e/> 30°, it is found that () 14.48° and d 0.28 m. The time 
derivative of Eq. 1.3 yields the velocity equations, 

-0. Ie/> sin e/> 0.2() sin () d = 0 . . (1.4) 
O.Ie/> cos e/> - 0.2() cos () = 0 
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The angular velocity of the crank is UJ = ~ = -I rad/s. (Since the direction of the angu
lar velocity of the. crank is opposite to the defined positive:: direction of <p, a negative 
sign is given to <p.) Substituting this in Eq. 1.4 yields (J = -0.45 rad/s and d 
0.072 mis, where d represents the velocity of point B. 

The method of solution with vector algebra is an analytic approach. This approach 
is more systematic when compared with the graphical method. A problem formulated 
analytically can be solved repeatedly for different values of input. For example, if the 
angle <p and the angular velocity UJ of the crank are varied as a function of time, Eqs. 1.3 
and 1.4 can be solved repeatedly to obtain the solution. Although this process can be 
performed with pencil and paper, a computer program can do the job more efficiently. 

The usefulness of writing a computer program becomes even more apparent when 
the mechanical system under consideration is more complex than a planar slider-crank 
mechanism. For example, the spatial five-bar linkage shown in Fig. 1.11 has two input 
angles, <hI and <P2' If this system is considered for kinematic analysis, a graphical 
approach would be very tedious as well as inaccurate. In contrast, if the problem is 
solved analytically, the solution is accurate and is found efficiently. 

Figure 1.11 A spatial five-bar mechanism. 

An analytical approach using a computer program manifests itself when a mechani
cal system is considered for dynamic (kinetic) analysis. Equations to represent the 
motion of a system that contains the applied loads and other characteristics of the system 
are either differential equations or mixed algebraic-differential equations. An exact 
(closed-form) solution to these equations cannot be found except for highly simplified 
cases. Regardless of the complexity of the equations of motion, it is always possible to 
solve them numerically. 

1.4 COMPUTATIONAL METHODS 

The purpose of computer-aided analysis of mechanical systems is to develop basic 
methods for computer formulation and solution of the equations of motion. This requires 
systematic techniques for formulating the equations and numerical methods for solving 
them. A computer program for the analysis of mechanical systems can be either a 
special-purpose program or a general-purpose program. 

A special-purpose program is a rigidly structured computer code that deals with 
only one type of application. The equations of motion for that particular application are 
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derived a priori and then formulated into the program. As input to the program, the user 
can provide information such as the dimensions and physical characteristics of each part. 
Such a program can be made computationally efficient and its storage requirement can 
be minimized, with the result that it will be suitable for implementation on small per
sonal computers. The major drawback of a special-purpose program is its lack of flexi
bility for handling other types of applications. 

A general-purpose program can be employed to analyze a variety of mechanical 
systems. For example, the planar motion of a four-bar linkage under applied loads and 
the spatial motion of a vehicle driven over a rough terrain can be simulated with the same 
general-purpose program. The input data to such a program are provided by the user 
and must completely describe the mechanical system under consideration. The input 
must contain such information as number of bodies, connectivity between the bodies, 
joint types, force elements, and geometric and physical characteristics. The program 
then generates all of the governing equations of motion and solves them numerically. A 
general-purpose program, compared with a special-purpose program, is not computa
tionally as efficient and requires more memory space, but it is flexible in use. 

The computational efficiency of a general-purpose program depends upon several 
factors, two of which are the choice of coordinates and the method of numerical solu
tion. The choice of coordinates directly influences both the number of the equations of 
motion and their order of nonlinearity. Furthermore, depending upon the form of these 
equations, one method of numerical solution may be preferable to another in terms of 
efficiency and accuracy. 

1.4.1 Efficiency versus Simplicity 

The governing equations of motion for a mechanical system can be derived and expressed 
in a variety of forms, dependent mainly upon the type of coordinates being employed. A 
set of coordinates q selected for a system can describe the position of the elements in the 
system either with respect to each other or with respect to a common reference frame. 
In order to show how different sets of coordinates can lead to different formulations 
describing the same system, a simple example is given here. In this example, a four-bar 
linkage is considered for kinematic analysis. Therefore, all of the governing equations of 
motion are algebraic equations: i.e., no differential equations are involved. 

The first formulation shown here considers only one coordinate to describe the 
configuration of the system, since a four-bar linkage has only one degree of freedom. 
This is referred to as the generalized coordinate of the system. In a system of n degrees 
of freedom, there will be n generalized coordinates. As shown in Fig. 1.12, the angle <fJ, 
describing the orientation of the crank with respect to the ground, can be selected as the 
generalized coordinate; i.e., 

q [<fJJ 0.5) 

For any given configuration, i.e., known <fJ, any other information on the position of 
any point in the system can be calculated. For example, the angl~s 81, 82, and 83 can be 
found from the following formulas: 

(r2 + 12 + S2 d 2
) 2rl cos <fJ + 21s cos 01 - 2rs cos(<fJ - ( 1) = 0 (1.6) 

(r2 + /2 + S2 d 2
) 2rl cos <fJ + 2ds cos O2 = 0 (1.7) 



Sec. 1.4 Computational Methods 

F 

A D 

c 

11 

Figure 1.12 A four-bar mechanism with 
generalized coordinate cp. 

(1.8) 

In these equations r, d, and s represent the lengths of the links, and l represents the dis
tance between points A and D. These formulas are derived from simple geometric real
izations. It is clear that for a given ~, Eq. 1. 6 yields 81, then Eq. 1. 7 yields 8z, and 
finally Eq. 1.8 yields °3, The solution of these equations requires direct substitution
there is no need to solve a set of simultaneous algebraic equations. Now, it should be 
clear that the coordinates of a typical point attached to one of the links, in this case the 
point F on link Be, can be found easily. 

The second way of formulating the kinematic equations for the four-bar linkage 
considers three coordinates. For this or any other mechanism, the selected coordinates 
may define the orientation of each moving body with respect to a nonmoving body or 
with respect to another moving body. Therefore, in this book these coordinates are re
ferred to as relative coordinates. As shown in Fig. 1.13, angles ~I' ~2' and ~3 are selected 
as a set of coordinates 

(1.9) 

These angles are measured between the positive x axis and the positive vectors repre
senting the links. Since the four-bar linkage has only one degree of freedom, the three 

A D 
Figure 1.13 Relative coordinates describ
ing the configuration of a four-bar system. 
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coordinates are not independent. Two loop equations relating these coordinates can be 
written as follows: 

r cos 1>1 + d cos 1>2 + s cos 1>3 - I = 0 

r sin 1>1 + d sin 1>2 + s sin 1>3 = 0 
(1.10) 

For any given configuration, i.e., known 1>1' the set of two simultaneous algebraic equa
tions must be solved for 1>2 and 1>3' After Eq. 1.10 is solved, other information such as 
the .xy coordinates of a point F can be calculated. 

The third formulation uses three Cartesian coordinates per link - the x and Y coor
dinates of the center point of each link and the angle of the link which is measured with 
respect to the x axis, as shown in Fig. 1.14. Thus, the set of coordinates describing the 
configuration of the four-bar linkage is 

q [XI YI 1>1 X 2 Y2 1>2 X3 Y3 1>3Y (1.11) 
These nine coordinates are dependent upon each other through eight equations: 

r 
Xl 2 cos 1>1 0 

YI 
r . 1> 
2 sm I 0 

r d 
XI + '2 cos 1>1 X2 + 2 cos 1>2 0 

r . d . 1> 0 (1.12) Yt + '2 sm 1>1 Y2 2 sm 2 

d 
X2 + '2 cos 1>2 - X3 

s 
2 cos 1>3 = 0 

d . 1> 
Y2 + '2 sm 2 Y3 

S 

2 sin 1>3 = 0 

S 

X3 2 cos 1>3 - I = 0 

Y3 
s . 1> '2 sm 3 = 0 

For any known configuration, any of the nine variables can be specified, and then the 
remaining eight variables can be found by solving the set of eight nonlinear algebraic 
equations in eight unknowns. 

A o 
Figure 1.14 Cartesian coordinates describ
ing the configuration of a four-bar linkage. 
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The three preceding forms of formulation with generalized coordinates, relative 
coordinates, and Cartesian coordinates describe the kinematics of a four-bar mechanism. 
For dynamic analysis, the differential equations of motion for the four-bar linkage, or 
for any other mechanical system, can also be derived in terms of any of these sets of 
coordinates. For the four-bar linkage, formulation wi$h genexalized coordinates yields 
one second-order differential equation in terms of cp, cp, and cpo This equation is highly 
nonlinear and complex in terms of cp and cpo The equations of motion, for the four-bar 
linkage in terms of the ~lative .. coordinates, consist of three second-order differential 
equations in terms of Cpj, cpj and cpj for iI, 2, and 3. The order of nonlinearity of these 
equations is not as high or as complex as in the first case. However, with these three 
differential equations, the two algebraic constraint equations of Eq. 1.10 must be consid
ered. Therefore, the governing equations of motion for this system in terms of relative 
coordinates are a mixed set of algebraic-differential equations. Similarly, in terms of the 
Cartesian coordinates, nine second-order differential equations can be derived. Those, in 
conjunction with the eight algebraic constraint equations of Eq. 1.12, would define the 
governing equations of motion for the four-bar linkage. These algebraic-differential 
equations are loosely coupled and have a relatively low order of nonlinearity when com
pared with the previous sets. 

A crude but general comparison between these three sets of coordinates, with 
regard to several crucial and important aspects, is summarized in Table 1.1. A general 
conclusion that can be made from this table is that the smaller the number of coordinates 
and equations, the higher the order of nonlinearity and complexity of the governing 
equations of motion, and vice versa. Other aspects for comparison, not listed in this 
table, are the numerical solution of the governing equations of motion and the numerical 
error encountered in the solution for different formulations. 

TABLE 1.1 

Generalized Relative Cartesian 
coordinates coordinates coordinates 

Number of coordinates Minimumt Moderate Large 

Number of second-order Minimum + Moderate Large 
differential equations 

Number of algebraic None 
t 

Moderate Large 
constraint equations 

Order of nonlinearity High Moderate Low! 

Derivation of the Hard Moderately Simplet 

equations of motion hard 

Computational Efficient' Efficientt Not as efficient 
efficiency! 

Development of a Diftlcult Relatively Eas/ 
general-purpose difficult 
computer program 

tAn advantage over the other two sets of coordinates 

!Computational efficiency in solving the goveming equations of motion is dependent on the form and the 
number of equations. and the method of numerical solution. Therefore. this is a very general remark. 
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Numerical methods for solving ordinary differential equations have been well 
known for decades. Well-developed algorithms with reliable error control mechanisms 
have been used extensively in every area of science and engineering. This can be con
sidered another advantage in formulating the equations of motion in terms of a set of 
generalized coordinates. On the other hand, the governing equations of motion in terms 
of a set of relative coordinates or Cartesian coordinates are mixed algebraic-differential 
equations. Methods of numerical solution for such equations, compared with those for 
the ordinary differential equations, are still in their infancy (this subject is discussed in 
detail in Chap. 13). 

Numerical solutions for differential equations provide only an approximation to 
the actual (exact) solution. The deviation between the numerical solution and the actual 
response is the numerical error inherent in the solution. One of the main factors influenc
ing the amount of error in the solution is the number of equations. Generally, the larger 
the number of equations, the greater the chances for accumulation of numerical error. 
This can be considered one more advantage in using a minimum number of coordinates. 

At this point, it can be concluded that the points in favor of using a set of general
ized coordinates for formulating the governing equations of motion outnumber those fa
voring the other coordinates. However, the disadvantages must not be overlooked. The 
complexity in deriving the equations of motion and the difficulty in developing a ver
satile computer program for general usage require an advanced knowledge of dynamics 
and prior experience in developing large-scale codes. In contrast to the generalized coor
dinates, the derivation of the equations of motion with Cartesian coordinates is simple. 
The resulting equations can easily be put into general usage and into a versatile computer 
program. If computational efficiency is not the decisive factor, then a set of Cartesian 
coordinates can be an attractive candidate. 

It can be concluded that a set of relative coordinates falls in the middle of the 
"comparison scale." Therefore, selection of a set of relative coordinates might be a good 
compromise between the generalized and Cartesian coordinates in formulating the gov
erning equations of motion. In Chap. 13, it will be shown how a dynamic analysis 
algorithm can be developed to take advantage of the simplicity of the Cartesian coordi
nates for formulating the equations of motion and the efficiency of the generalized or 
relative coordinates for the numerical solution. 

1.4.2 A General-Purpose Program 

A general-purpose computer program for the dynamic analysis of mechanical systems 
must perform four basic functions: 

1. Accepting data from the user 

2. Generating the governing equations of motion 

3. Solving the equations 

4. Communicating the result to the user 

The first step is referred to as the input phase, the second and third steps are the analysis 
phase, and the fourth step is the output phase. 
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Input. The user must furnish for the program a description of the system under 
consideration through a set of engineering data. As an example, assume that the double
wishbone suspension system with steering shown in Fig. 1.15(a) is considered for 
dynamic analysis. A schematic representation of this system is shown in Fig. l.15(b). 
The system consists of six moving bodies, a nonmoving body (the ground), a spring and 
a damper, four spherical joints, and four revolute joints. The input data describing this 
system must contain such information as: 

1. Number of bodies, number and types of joints 

2. Mass and moments of inertia of each moving body 

3. Connectivity information between the bodies 

4. Connectivity information and characteristics of the spring and damper 

5. Tire characteristics (if its deformation is to be considered) 

6. Direction of gravity 

7. Initial conditions on the position and velocity of each body 

8. Steering input (from the driver) and applied forces to the wheel (from the road) 

Note that in rigid-body dynamic analysis, the shap~_j)r~()4ie~s-,!~e,~L@Lbedescribed
Jhis information is needed only if a graphical display of the system is required. 

The minimum requirement for generating and communicating a set of input data to 
the analysis program is an alphanumeric computer terminaL The input can be entered 
manually via the keyboard and transmitted to the analysis program, which may reside on 
a mainframe computer, a minicomputer, or a personal microcomputer. The process of 
generating the input data can be facilitated by developing a preprocessing program and 
employing a digitizer tablet, a graphics terminal, or a CAD system. 

Knuckle! 
Wheel drum 

(a) (bl 

Figure 1.15 (a) A double-wishbone suspension system, and (b) its corresponding sche
matic representation. 
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Analysis. On the basis of the input data, the analysis program generates all of 
the necessary equations describing the system., These equations are then solved numeri
cally in order to obtain the response of the system under the specified loads. The numeri-

(a) (b) 

Figure 1.16 Graphic display of the response for the double-wishbone suspension sys
tem (a) to a steering eommand, and (b) to an obstaele on the road. 
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cal algorithms provide the solution to the equations at discretized points in time. The 
response at each time point is communicated to the user; it contains such information as 
the position, velocity, and acceleration of each moving body and the reaction forces at 
the joints. 

Output. The minimum output-device requirement is either a terminal screen or 
a printer. The numerical result of the dynamic simulation for systems undergoing planar 
motion and having only a few moving bodies may not be too extensive. When it is not, 
one can interpret and understand the dynamic response for such systems from a printed 
output. But the task can become extremely time-consuming and tedious when the number 
of moving bodies is large, particularly when the system undergoes spatial motion. The 
difficulty of interpreting the dynamic response can be resolved by developing a post
processor program capable of communicating the result to the user through various 
forms of output device, e.g., a printer, a plotter, or a graphic display unit. 

Possibly one of the most expressive forms of communication is computer graphics. 
For this purpose, the user must provide for the graphics package the exact or an approxi
mate shape of each body. This can be done by defining a set of points on each body and 
specifying the connectivity between these points. The lines produced from the connec
tivity information, when displayed, represent surfaces of the outline of each body. The 
outlines can be positioned in their proper orientation according to the position data pro-
vided by the output at any required point in time. . 

Figure 1.16 is a graphical display of the result of a dynamic simulation of the sus
pension system of Fig. L 15. Figure 1. 16(a) shows the response of the wheel to a steer
ing command, and Fig. 1. 16(b) shows the response of the system when it encounters an 

Figure 1.17 Dynamic response of the double-wishbone suspension system presented 
as a series of graphic displays to form an animation. 
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obstacle on the road. Figure 1.17 shows the graphic presentation of the system at several 
instants of time. When a sequence of graphic displays at small and successive incre
ments of time is generated and displayed at a rate of at least 30 frames per second, an 
animated picture of the motion is created. This requires a high-speed graphic display 
device that is capable of displaying several thousand lines or polygons, flicker-free, in 
one second. 



2 
Vectors 

and 

Matrices 

Vector and matrix algebra form the mathematical foundation for kinematics and dynamics. 
Geometry of motion is at the heart of both the kinematics and the dynamics of mechani
cal systems. Vector analysis is the time-honored tool for describing geometry. In its geo
metric form, however, vector algebra is not well suited to computer implementation. 

In this chapter, a systematic matrix formulation of vector algebra, referred to as 
algebraic vector representation, is presented for use throughout the text. This form of 
vector representation, in contrast to the more traditional geometric form of vector repre
sentation, is easier to use for either formula manipulation or computer implementation. 
Elementary properties of vector and matrix algebra are stated in this chapter without proof. 

2.1 GEOMETRIC VECTOR 

When we write a vector in the form ii, it is understood from the arrow notation that we 
are referring to the vector in its geometric sense: it begins at a point A and ends at a 
point B. The magnitude of vector ii is denoted by a. A unit vector in the direction of ii is 
shown as ural' 

Vectors lying in the same plane are called coplanar vectors. Collinear vectors 
have the same direction and the same line of action. Equal Vectors have the same magni
tude and direction. A zero or null vector has zero magnitude and therefore no specified 
direction. 

Multiplication of a vector ii by a scalar a is defined as a vector in the same direc
tion as ii that has a magnitude aa. The negative of a vector is obtained by mUltiplying 
the vector by 1; it changes the direction of the vector. 

19 
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The vector sum of two vectors a and b is written as 
c = a + b (2,1) 

The product of a sum of two scalars 0: + {3 and a vector a is expanded as 
(0: + {3)ii = o:ii + {3ii (2,2) 

A vector a can be resolved into its Cartesian components a(x)' aCYl' and aCz) along 
the x, y, and z axes of a Cartesian system, Here, the unit vectors ucx» UCY)' and UCl) are 
directed along the coordinate axes x, y, and z,t In vector notation, the resolution of the 
vector into its components is expressed as 

a = a(x)u(xl + a(y)u(y) + a (zlU(z) (2,3) 

If the angles between the vector a and the positive x, y, and z axes are denoted by (Jcx), 

(J(y), and (Jw the components of vector a are given as 

a (x) = a cos (J(x) 

a(y) = a cos (J(yl (2.4) 

a(z) = a cos (J(l) 

The quantities cos (J(x), cos (J(y), and cos (J(ll are the direftion cosines of vector ii, 
The scalar (or dot) product of two vectors ii and b is defined as the product of the 

magnitudes of the two vectors and the cosine of the angle between them; i,e., 

ii . b ab cos (J 

a(x)b(x) + a(y)b(y) + a(zjb(z) 

b'a 

(2.5) 

(2.6) 

(2.7) 

where the angle (J between the vectors is measured in the plane of intersection of the 
vectors, If the two vectors are nonzero, i,e" if a ¥ ° and b ¥ 0, then their scalar 
product is zero only if cos (J 0, Two nonzero vectors are thus said to be orthogonal 

(perpendicular) if their scalar product is zero, For any vector ii, 
~ ~ 2 
a' a = a (2,8) 

The vector (or cross) product of two vectors ii and b is defined as the vector 
c = a x b (2,9) 

= ab sin (J U (2,10) 

(a(y)b(z) a(l)b(y»)u(x) + (a (z)b(x) - a(xjb(z»)u(y) + (a(x)b(y) - a(y)b(x))u(Z) 

(2, II) 

where U is a unit vector that is orthogonal to the plane of intersection of the two vectors 
ii and b, taken in the positive right-hand coordinate direction, and (J is the angle between 
vectors a and b. Since reversal of the order of the vectors ii and bin Eq, 2.9 would yield 
an opposite direction for the unit vector, it is clear that 

b X ii -ii X b (2.12) 

While not obvious on geometrical grounds, the following identities are valid: 
(ii + b) . c = a . C + b . C (2,13) 

(ii + b) X c = ii x c + b x c (2,14) 

tIn most textbooks the three unit vectors along the x, y, and z axes are denoted by i, j, and k, In this 
text, since i and} are used to denote indices of bodies, to avoid any confusion, unit vectors are denoted by u,,), 

and 11(z) , 
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From the definition of scalar product, vector product, and unit coordinate vectors, 
the following identities are valid: 

and 

U~r) • u(y) = it(y) • il(z) = ii(z) • ii(x) = 0 

ii(.<) • u(x) = U(Y) • ii(y) = ii(z) • u(z) 1 

U(x) X u(x) u(y) X U(Y) U(z) X u(z) 0 
t7(x) X u(Y) = U(,) 

u(y) X u(z) = u~,) 

u(z) X U(x) u(y) 

2.2 MATRIX AND ALGEBRAIC VECTORS 

(2.15) 

(2.16) 

Compact matrix notation often allows one to concentrate on the form of a system of 
equations and what it means, rather than on the minute details of its construction. Matrix 
manipulation also allows for the organized development and simplification of systems 
of equations. 

A matrix with m rows and n columns is said to be of dimension m x n and is 
denoted by a boldface capital letter; it is written in the form 

all al2 

a21 a22 a2J1 

A 0= [aii] == 

amI Q m2 all/II (mXn) 

where a typical element aij is located at the intersection of the ith row and jth column. 
The transpose of a matrix is formed by interchanging rows and columns and is desig
nated by the superscript T. Thus, if a(i is the ij element of matrix A, aji is the ij element 
of its transpose AT. 

A matrix with only one column is called a column matrix and is denoted by a 
boldface lower-case letter; e.g., a. A matrix with only one row is called a row matrix 
and is denoted as aT; Le., as the transpose of a column matrix. An m x n matrix can be 
considered to be constructed of n column matrices ai' where j 1, ... ,n, or tn row 
matrices a;; where i = 1, ... ,tn. 

The vector a in Eq. 2.3 is uniquely defined by its Cartesian components and can 
be written in matrix notation as follows: 

a = [::~] == [a(x), aryl' a(zJ (2.17) 

a(z) 

This is the algebraic (or component) representation of a vector. 

2.2.1 Matrix Operations 

In this section, the terminology of matrix algebra is briet1y reviewed. Several useful 
identities are stated that are used extensively throughout this text. 
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A square matrix has an equal number of rows and columns. A diagonal matrix is 
a square matrix with aij = 0 for i ¥- j and at least one nonzero diagonal term. An n x n 
diagonal matrix is denoted by 

A"" diag[a[[, a22 , • .. ;an,,] 

If square matrices Bi , i 
to give 

1, ... ,k, are arranged along the diagonal of a matrix D 

D 
o 

then the matrix is called a quasi-diagonal matrix and is denoted by 

D "" diag[BI' B2 ,· •• ,BkJ 

even though D is not a true diagonal matrix. An n x n unit or identity matrix, denoted 
normally as I, is a diagonal matrix with aii 1, i = I, ... ! n. A null matrix or zero 
matrix. designated as 0, has aij 0 for all i and j. 

If two matrices A and B are of the same dimension, they are defined to be equal 
matrices if au bu for all i and}. The sum of two equidimensional matrices A and B is 
a matrix with the same dimension, defined as 

C = A + B (2.18) 

where cij ai} + bi} for all i and}. The difference between two matrices A and B of the 
same dimension is defined as the matrix 

C=A-B (2.19) 

where cij = aij - bi} for all i and}. For matrices having the same dimension, the follow
ing identities are valid: 

~+m+C A+~+q=A+B+C 

A+B=B+A 
Multiplication of a matrix by a scalar is defined as 

aA = C 

where cij = aaij' 

(2.20) 

(2.21) 

(2.22) 

Let A be an m X p matrix and let B be a p X n matrix, written in the form 

A 

where the ar, i = 1, ... , m, are row vectors with p elements and the b;, iI, ... ,n, 
are column vectors with p elements. Then the matrix product of A and B is defined as 
the m x n matrix 

C = AB (2.23) 
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where 

aib l aib2 aib" 

a~bl a;b2 a~b" 
C= (2.24) 

a~bl a~b2 a~b" 

or C ii a;b j • The scalar product aTb for two vectors a = [a l ,a2 , ••• ,apf and 
b = [b l , b2 , ••• , bX is defined as 

aTb = alb l + a2b2 + ... + aA, (2.25) 

It is important to note that the product of two matrices is defined only if the number of 
columns in the first matrix equals the number of rows in the second matrix. It is clear 
from the definition that, in general, 

AB ~ BA (2.26) 

In fact, the products AB and BA are defined only if both A and B are square and of 
equal dimension. 

The following identities are valid, assuming that the matrices have proper dimensions: 

(A + B)C = AC + BC (2.27) 

(AB)C = A(BC) ABC (2.28) 
(A + B)T = AT + BT (2.29) 

(AB)T = BTAT (2.30) 

If aij = aji for all i and j, the matrix A is called symmetric; i.e., A AT. If 
aij -aji for all i and j, the matrix A is called skew-symmetric; i.e., A = _AT. Note 
that in this case, ali 0, for all i. 

Consider an m X p matrix A. If linear combinations of the rows of the matrix are 
nonzero; i.e., if 

(2.31) 

for all a = [ai' a2, . .. ,alit ~ 0, then the rows of A are said to be linearly indepen
dent. Otherwise, if 

(2.32) 

for at least one IX ~ 0, then the rows of A are said to be linearly dependent and at least 
one of them can be written as a linear combination of the others. 

The row rank (column rank) of a matrix A is defined as the largest number of lin
early independent rows (columns) in the matrix. The row and the column ranks of any 
matrix are equal. Each of them can thus be called the rank of the matrix. A square matrix 
with linearly independent rows (columns) is said to have full rank. When a square matrix 
does not have full rank, it is called singular. For a nonsingular matrix there is an inverse, 
denoted by A -.1, such that 

The following identities are valid: 
(A-I)T = (A1)-1 

(ABri = B-1A- 1 

(2.33) 

(2.34) 

(2.35) 
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A special nonsingular matrix that arises often in kinematics is called an orthogonal 
matrix, with the property thatt 

(2.36) 

Therefore, for an orthogonal matrix, 
(2.37) 

Since constructing the inverse of a nonsingular matrix is generally time-eonsuming, it is 
important to know when a matrix is orthogonal. In this special case, the inverse is trivi
ally constructed by using Eq. 2.36. 

2.2.2 Algebraic Vector Operations 

The algebraic representation of vectors provides a powerful tool for vector algebra. A 
reader who is not familiar with this notation and arithmetic may not realize at first 
its ease of use and flexibility. However, after learning how to operate with algebraic 
vectors, the reader will find that the traditional geometrical vector operation is rigid and 
limited for formula manipulation. 

An algebraic vector is defined as a column matrix. When an algebraic vector rep
resents a geometric vector in three-dimensional spaee, the algebraic vector has three 
components and is called a 3-vector. However, algebraic vectors with more than three 
eomponents will also be defined and employed in this text. 

A 3-vector a was shown in Eq. 2.17 in terms of its xyz components. The compo
nents of a vector can be specified in terms of the other coordinate systems besides the 
xyz coordinate system, such as the x' y' z' or ffJ' system. In order not to restrict the fol
lowing notation to the xyz components of a vector, we show the components of vectors a 
and b as 

and thus the vector sum of Eq. 2.1 becomes, in algebraic notation, 

c=a+b 

(2.38) 

(2.39) 

(2.40) 

It is also true that ii b if the components of the vectors are equal; i.e., if a = b. Mul
tiplication of a vector ii by a scalar a occurs component by component, so the vector aii 
is described by the column vector aa. A null or zero vector, denoted by 0, has all of its 
components equal to zero. 

The scalar product of two vectors may be expressed in algebraic form as 
aTb bTa = albl + a2b2 + a3b3 (2.41) 

tThe correct terminology would have been orthonormal instead of orthogonal. 
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Note that two vectors a and b are orthogonal if 
aTb = 0 

A skew-symmetric matrix associated with a vector a is defined as 

25 

(2.42) 

(2.43) 

Note that the tilde placed over a vector indicates that the components of the vector are 
used to generate a skew-symmetric matrix. Now the vector product a x b in Eq. 2.9 
can be written in component form as 

(2.44) 

For later use, it is helpful to develop some standard properties of the tilde opera
tion. First note that 

Also, for a scalar a, 

aa (m.) 

For any vectors a and b, a direct calculation shows that 
ab = -ba 

Direct calculation may also be done to show that 

aa = 0 
Hence, by Eq. 2.45, 

aTaT = -aTa = OT 

It can also be veritled by direct calculation that 
ab baT - aTbI 

where I is a 3 X 3 identity matrix. Also, 
(:ib) baT - abT 

ab - ba 
ab + abT = ba + baT 

It can also be verified by direct calculation that 

(a+b) a + b 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

Table 2.1 should assist the reader in becoming familiar with the algebraic notation. 

Example 2.1 

Test the validity of Eq. 2.47 with two vectors a [2, I, -3f and b = 
[I, -2,4f. 
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Solution The product lib is computed as follows: 

lib [-~ ~ ~ 1 [-~ 1 = [-~ 1 -} -2 oJ 4J 3 J 
The product ba is computed similarly: 

[0 -4 -2
J 

[-2
J 

[2] 
ba = 4 0 -1 1 = -5 

2 I 0 -3 -3 

It can be seen that lib = - ba. 

Example 2.la 
For vectors a and b, verify Eq. 2.51. 

Solution The product lib was found to be [-2,5, 3f. Therefore, 

ill) = [ ~ -~ ~] 
-5 -2 0 

The right-hand side of Eq. 2.51 is computed as follows: 

ba' - ab' ~ [ -~} -2, I, -3] [ ~!}, -2,4] 

[-! -~ -~] [-~ -~ -:] 
-8 4 12 -3 6 -12 

= [ ~ -~ ~] 
-5 -2 0 

which verifies the validity of Eq. 2.51. 

Example 2.2 
Show that 

axax~+~x~x~+~x~x~ 5 
Solution Using algebraic vector notation, we write the left-hand side of this 
expression as 

libc + bca + clib 

Employing Eq. 2.50 for lib, be, and ca, the above terms become 

(baT aTbJ)c + (cbT - bTcI)a + (acT - cTaI)b 
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TABLE 2.1 Vector Terms in Geometric and Algebraic Forms 

Geometric Algebraic 

a a 

a+b a+b 

aa aa 

Q'b aTb 

a x b ab 
Q . (b x c) aTbc 

(b x c) . a (bela (= -cTba) 

a x (b x c) abc 

(a x b) x c abc 

or 
baTe - aTbe + ebI'a - bI' ea + acTb - cT ab 

Observe that baTe aT eb, since aTe is a scalar and can be placed to the left or to 
the right of vector b. Since aTe eTa, then baTe cTab. Similarly, it can be 
shown that cbTa = aTbc, acTb = bTca, and the identity is proved to be zero. 

Consider three vectors a = [ai' a2 , a3f, b = [b l , b2 , b3f, and c [el' c2, c3f. For 
these vectors, the following representations in matix form will be used in this text: 

A [a, b, c] = r:: :: ~~] (2.55) 

La3 b3 c3 

AT [a, b, cy r~: ~: ~:] (2.56) 

L C 1 C2 C3 

The algebraic representation of vectors allows one to define vectors with more than 
three components; Le., vectors with higher dimension than 3. A vector with n compo
nents is called an n-vector. For example, the vector a = [a l ,a2,a3f is a 3-vector, and 

[ ]1' [1' l' 1JT d al,a2,a3,bl,b2,b3,CI,C2,C3 = a ,b ,e (2.57) 

is a 9-vector. Note that the right side of Eq. 2.57 is a column vector. In this text, for 
clarification purposes in particular cases, the dimension of a vector is shown as a super
script; e.g., vector d for Eq. 2.57 can be shown as d(9). 

A matrix can be represented in terms of its subvectors and submatrices. For example, 
the 3 X 4 matrix C can be represented as 

C = [a, A] (2.58) 

where a is a 3-vector and A is a 3 X 3 matrix. Vector a represents the elements of the 
first column of C, and the matrix A represents the elements in columns 2,3, and 4 of e. 
Example 2.3 

If e = [a, A] and 0 = [b, BJ are two 3 X 4 matrices, express COT and eTo in 
terms of a, A, b, and B. 
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Solution The product enT yields a 3 x 3 matrix: 

enT = [a, A] [::] = abT + ABT 

and the product eTn yields a 4 x 4 matrix: 

eTn = [~J [b, BJ 

2.3 VECTOR AND MATRIX DIFFERENTIATION 

In the kinematics and dynamics of mechanical systems, vectors representing the posi
tions of points on bodies, or equations describing the geometry or the dynamics of the 
motion, are often functions of time or some other variables. In analyzing these equations, 
time derivatives or partial derivatives with respect to some variables of the vectors and 
equations are needed. In this section, these derivatives are defined and the notation used 
in the text is explained. 

2.3.1 Time Derivatives 

In analyzing velocities and accelerations, time derivatives of vectors that locate points 
or bodies or equations that describe the geometry of motion must often be calculated. 
Consider a vector a == aCt) = [al(t), a2(t), a3(t)f, where t is a scalar parameter that 
may play the role of time or some other variable. The time derivative of a vector a is 
denoted by 

d [d d d JT . dta(t) = d/I(t), d/ 2(t) , dta3(t) == a (2.59) 

Thus, for vectors that are written in terms of their components in a fixed Cartesian coor
dinate system, the derivative of a vector is obtained by differentiating its components. 
The derivative of the sum of two vectors gives 

d . 
-(a(t) + b(t)) = a + b (2.60) 
dt 

which is completely analogous to the ordinary differentiation rule that the derivative of a 
sum is the sum of the derivatives. The following vector forms of the product rule of dif
ferentiation can also be verified: 

d () . ( . aa = aa + aa 
dt 

~(aTb) = aTb + arb 
dt 

~(ab) = ~b + ab 
dt 

where a(t) is a scalar function of time. Note also that 

a Ii 

(2.61) 

(2.62) 

(2.63) 

(2.64) 
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Many uses may be made of these derivative formulas. For example, if the length of a 
vector aCt) is fixed, i.e., if a(t)1'a(t) c, then 

a1'a 0 (2.65) 

If a is a position vector that locates a given point, then a is the velocity of that point. 
lIenee Eq. 2.65 indicates that the velocity is orthogonal to the position vector when the 
position vector has a constant magnitude. 

The second time derivative of a vector a == aCt) is denoted as 

d (d (') d (. ) .. - -a t) a == a 
dt dt dt 

(2.66) 

Thus, for vectors that are written in terms of their components in a fixed Cartesian coor
dinate system, the second time derivative may be calculated in terms of the second time 
derivatives of the components of the vector. 

Just as in the differentiation of a vector function, the derivative of a matrix whose 
components depend on a variable t may be defined. Consider a matrix A(t) [aa(f)]. 
The derivative of A(t) is defined as 

~A(t) [:raij(t)] A 

With this definition, it can be verified that 

Example 2.4 

d • • 
(A(t) + B(t» = A + B 

dt 
d •• 
dt (A(t)B(t» AB + AB 

d • 
-(a(t)A(t» = 6:A + aA 
dt 
d • 
d/A(t)a(t» = Aa + Aa 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

If a is a nonzero time-dependent 3-vector, A = [a, a] is a 3 X 4 matrix, and 
C = AAT

, what is the condition on a for which C will be a null matrix? 

Solutiou Matrix C is found to be 

C [a, a] [~~] aa
T 

- aa 

The time derivative of C is 
C = aaT + aaT - ~a a~ = aaT + aaT aaT + a1'aI aaT + aTaI 

where Eq. 2.50 is employed. Since aTa = aTa, after simplification it is found 
that C = 2aTaI. Therefore, C = 0 if a has a constant magnitude; i.e., a1'a = o. 

2.3.2 Partial Derivatives 

In dealing with systems of nonlinear differential and algebraic equations in many vari
ables, it is essential that a matrix calculus notation be employed. To introduce the nota-
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tion used here, let q be a k-vector of real variables and <P be a scalar differentiable 
function of q. Using j as column index, the following notation is defined: 

<P == o<P == [o<pJ (2.72) 
q oq 0%_ (IXk) 

Equation 2.72 indicates that the partial derivative of a scalar function with respect to a 
variable vector is a row vector. 

Example 2.5 
Vector q designates four variables as q = [X I ,X2,X3,X4t. Find the partial deriva-
tive of a scalar function <P with respect to q where <P - x I + 3xzX~.' 

Solution Since o<P lox I I, o<P I oX2 3x~, o<P I oX3 0, and o<P I oX4 

6xct~; then, using Eq. 2.72, <Pq is written as follows: 

<Pq = [-1 3x.! 0 6X2X4] 

If ~(q) [<PI(q), <P2(q), ... , <P",(q)JT is an m-vector of differentiable functions of 
q, using i as row index and j as column index, the following notation is defined: 

oq [o<pJ 
Oq; (mxk) 

(2.73) 

Equation 2.73 indicates that the partial derivative of m funetions of a k-vector of vari
ables with respect to that vector is defined as an m X k matrix. 

Example 2.6 

Vector q containing six variables is given as q = [x"y"xz,Yz,X3,y3f. Dctermine 
the partial derivative of two functions <I> [<P" <pzf with respect to q where 

<P, = XI + 3y, - X2 + 2x3 - Y3 

<P2 = XIY, + Y2 + 2Y3 

Solution The partial derivative of ~ with respect to q is a 2 x 6 matrix: 

~q [1 3 1 0 2 -1J 
YI XI 0 1 0 2 

Note that the first and the second rows of this matrix contain the partial derivatives 
of <PI and <P2 with respect to q respeetively. 

The partial derivative of the scalar product of two n-vector functions a(q) and 
b(q), by careful manipulation, is found to be a row vector: 

.i!.- (aTb) bT a + aTb (2.74) oq q q 

where the dimension of the resultant row vector is the same as the dimension of vector q. 
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Example 2.7 

Vectors a and b are functions of a single variable a. Determine the partial deriva
tive of aTb with respect to a if 

Solutiou The derivatives of a and b with respect to a are 

Using Eq. 2.74, it is found that 

a:(a'b) ~ [-3,a,-a1G] + [2a,-"a{ -:J ~ -2a-7 

This result can be obtained directly, in order to verify Eq. 2.74, by determining 
the scalar product aTb: 

Then the partial derivative of aTb with respect to a is found to be - 2a 7. 

Example 2.8 
Vector q contains two variables a and f3; i.e., q = la, f3f. Vectors a and bare 
functions of q, as follows: 

Determine the partial derivative of aTb with respect to q. 

Solution The derivatives of a and b with respect to q are: 

b
q 

r -2~ ~J 
L 1 -2f3 
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Using Eq. 2.74, it is found that 

o (aTb) [ -a? + f3, a + 2, -a - f32] [O~ 
oq 2f J 

[

-2a 1 J 
1] 1 0 

-1 -2f3 

= [-a2 + f3 + a + 2, a 2 
- f3 + 2af3 + 4f3 a - f32] 

+ [-2a2 + 2af3 + a + f32 f3 + 1, a f3 - 2f32 + 2f3] 
[ - 3a2 + 2af3 + f32 + 2a + 3, a 2 + 2af3 - 3f32 + 4f3] 

The partial derivative of the vector product of two n-vector functions a(q) and 
b(q) is found to be 

(2.75) 

The resultant matrix of Eq. 2.75 is an It X m matrix, where m is the dimension of q. 

Example 2.7a 

Evaluate Eq. 2.75 for vectors a and b. 

Solution The derivatives of a and b with respect to a are already available; 
therefore 

o _ 
-(ab) = oa 

Example 2.9 

[
0 -a -IJ [OJ [0 a aJ [2J [-2a + IJ a 0 -2a 1 -a 0 3 0 -3 + 4a 

1 2a 0 1 -a - 3 0 I 4a 

Vectors a, b, and c are functions of vector q. Find dq where d abc. 

Solution In expressions such as abc where several functions appear in a nonlinear 
form, it is helpful to find equivalent forms of the expression. Each equivalent expres
sion should have a different vector appearing at its extreme right. For instance, d 
can be presented in three forms: ' 

d abc -acb = -(bc)a 

where Eq. 2.47 has been employed. Now, these identities easily yield the partial 
derivative of d with respect to q: 

dq = (ab)cq - (ac)bq (bc)aq 

This approach can be used to verify Eq. 2.75. 
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PROBLEMS 

2.1 Let a u(.) + 2utv) - u(,) and b 2u(x) - u()') + u(z)' Use the algebraic vector approach to 
calculate the following: 

(a) a + b 
(b) a ' b 
(c) aii 
(d) Ii x b 
(e) (ii b) x ii 

2.2 If a and b are arbitrary 3-vectors, verify the following identities by direct calculation: 

(a) Eq, 2,50 

(b) Eq, 2.51 

(c) Eq, 2.52 

(d) Eg, 2.53 

2.3 If ii, b, c, and J are 3-vectors, use the algebraic vector approach to show that the following 
identities are valid: 

(a) ii . (ii x b) = 0 

(b) (Ii x b) . (c x d) + (b x c) . (ii x d) + (c x Ii) . (b x d) = 0 

2.4 Show that if A is a squarc matrix, the matrices 0 ~(A + AI) and C i(A - AI) are 
symmetric and skew-symmetric, respectively, 

2.5 Show that any square matrix A can be uniquely expressed as A = 0 + C, wherc 0 and C 
are symmetric and skcw-symmetric, respectively. 

2.6 Show that for an arbitrary angle 1>, thc matrix A [c~s ~ -sin 1>J is orthogonaL 
sm 'I' cos 1> 

2.7 Show that for arbitrary angles, cp, 1jJ, 0, and rr, the following matrices are orthogonal 
c cos and s "" sin): 

[ '. o ,.] 

-~¢ 
1 0 

o c1> 

(a) A 

(b) A 
[,. -sljJ cO '. " ] sljJ cljJ cO -cljJ sO 

0 sO cO 

[

CIjJ crr sljJ cO srr 

(c) A = sljJ crr + cljJ cO srr 

sO srr 

-cljJ srr sljJ cO crr sljJ sO ] 
- sljJ S(T cljJ cO crr - cljJ sO 

sO crr cO 

2.8 If e is a 3-vector and eo is a scalar, show that 

A = (2e~ - 1)1 + 2(ee' + eoe) 

is a 3 X 3 orthogonal matrix, knowing that e~ + eTe = L 

2.9 Vector a is a 3-vector and 0 is a 3 x 4 matrix defincd as 0 = [a, iii, What is thc condition 
for A = ~OT to be an orthogonal matrix? 
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2.10 In Prob. 2.9, show that under no condition can matrix C = BTB be orthogonal. 

2.11 Let B [a,a] and C = [a, -a]. Show that BCT = BCT
• 

2.12 Vector «fI contains two functions as follows: 

«fI = [2x 3xy +;2 xz + yz2 - 4XyzJ 
_XZ + xy 2y + 5yz xzz 

If vector q is defined as q [x, y, zf, find: 

(a) «fIq 
(b) ~ 
Show that ~ = «fIil. 

2.13 Use vectors a, b, and q from Example 2.8 and evaluate Eg. 2.75. 

2.14 For two 3-vectors sand w, veetor s is defined as s = Ws. Show that 

S = -sw + WWS 

2.15 For two 3-vectors sand w show that 

swsw = wssw 
2.16 Vectors a and b are defined as a = Aici and b = Azc2> where 

Ai [cos ¢i -sin ¢iJ i = 1,2 CI [1.2J CZ = [-0.3J 
sin ¢i cos ¢i -0.5 0.8 

(a) Let <P aTb and q = [XI,YI,¢I,XZ'YZ,¢zf. Evaluate <l)q for ¢I = 30° and ¢z 45°. 

(b) Let d [XZ XIJ and «fI ad. Evaluate «fIq for ¢I = 30°, ¢z 45°, XI 6.2, 
Yz - Yl 

YI = 1.0, X2 = -1.9, and Yz 2.3. 

2.17 Let a and b be two 3-vectors, B = [b, b], and C B1'a. Find C n and C b • 

2.18 Let x be an tl-vector of real variables and A be a real n x n matrix. Show that 

a 
-(xTAx) xTA1' + xTA = xT(AT + A) 
ax 

2.19 If the matrix A in Prob. 2.18 is symmetrie, show that 

~(xTAx) = 2xTA 
ax 



3 
Basic Concepts 

and Numerical Methods 

in Kinematics 

Kinematics, which is the study of the motion of rigid bodies, is useful in two important 
ways. First, it is frequently necessary to generate, transmit, or control motion by the use 
of cams, gears, and linkages. An analysis of the displacement, velocity and acceleration 
of the system is necessary to determine the design geometry of the mechanical parts. 
Furthermore, as a result of the generated motion, forces are frequently developed that 
must be accounted for in the design of parts. Second, it is often necessary to determine 
the motion of a system of rigid bodies that results from applied forces. In both types of 
problems, one must first have command of the principles of rigid-body kinematics. 

Kinematics analysis requires, in general, solution of nonlinear algebraic equa
tions. For small problems with only a few variables and a few equations, it might be 
possible to write and solve these equations by hand. However, for large problems with 
many variables and even for accurate analysis of smaller problems, hand calculation, if 
not impossible, is tedious and unlikely to succeed. Therefore, numerical methods and 
computer programs are the obvious choice for fast and aeeurate solution of kinematic 
equations. 

This chapter presents some of the definitions used in kinematics. The general 
forms of the kinematic equations are presented. Although systematic methods of deriv
ing these equations are not discussed until Chaps. 4, 5, 6, and 7, numerical methods for 
solving such equations are discussed in this ehapter. Several efficient methods for solv
ing linear algebraic equations and nonlinear algebraic equations are reviewed. Al
gorithms and listings of computer programs for some of these methods are also presented. 

3.1 DEFINITIONS 

A rigid body is defined as a system of particles for which distances between particles 
remain unchanged. If a particle on such a body is loeated by a position vector fixed to 
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the body, the vector never changes its position relative to the body, even when the body 
is in motion. In reality, all solid materials change shape to some extent when forces are 
applied to them. Nevertheless, if movement associated with the changes in shape is 
small compared with the overall movement of the body, then the concept of rigidity is 
acceptable. For example, displacements due to elastic vibration of the connecting rod of 
an engine may be of no consequence in the description of engine dynamics as a whole, 
so the rigid-body assumption is clearly in order. On the other hand, if the problem is one 
of describing stress in the connecting rod due to vibration, then the deformation of the 
connecting rod becomes of prime importance and cannot be neglected. 

In this text, essentially all analysis is based on the assumption of rigidity. A mecha
nism is a set of rigid elements that are arranged to produce a specified motion. This defi
nition of a mechanism includes classical linkages, as well as interconnected bodies that 
make up a vehicle, a vending machine, aircraft landing gear, an engine, and many other 
mechanical systems. While one can study the kinematics of a deformable body by defin
ing the position of every point in the body in its deformed state, this introduces consid
erable complexity that is not needed in many applications. This text is concerned with 
rigid (nondeforming) bodies. Thc term bodies, therefore, will be used instead of rigid 
bodies. 

Kinematics is the study of motion, quite apart from the forces that produce the 
motion. More particularly, kinematics is the study of position, velocity, and acceleration 
in a system of bodies that make up a mechanism. 

Kinematic synthesis is the process of finding the geometry of a mechanism that 
will yield a desired set of motion characteristics. Kinematic analysis, on the other hand, 
is the process of predicting position, velocity, and acceleration once a mechanism is 
specified. The processes of kinematic synthesis and kinematic analysis are normally in
tertwined. In order to do a synthesis, the engineer needs to be able to do an analysis to 
evaluate designs under consideration. Thus, kinematic analysis may be viewed as a tool 
that is needed to support the kinematic synthesis process. 

The individual bodies that collectively form a mechanism are said to be links. The 
combination of two links in contact constitutes a kinematic pair, orjoint. An assemblage 
of interconnected links is called a kinematic chain. A mechanism is formed when at 
least one of the links of the kinematic chain is held fixed and any of its other links can 
move. The fixed Hnk(s) is (are) called the ground or frame. 

If all the links of a mechanism move in a plane or in parallel planes, the mecha
nism is called a planar mechanism. If some links undergo motion in three-dimensional 
space, the mechanism is called a spatial mechanism. 

A mechanism that is formed from a collection of links or bodies that are kinemati
cally connected to one another but for which it is not possible to move to successive 
links across kinematic joints and return to the starting link is called an open-loop or 
open-chain mechanism. An open-loop mechanism may contain links with single joints. 
An example of this kind of mechanism is the double pendulum shown in Fig. 3.1(a). A 
closed-loop mechanism is formed from a closed chain, wherein each link is connected to 
at least two other links of the mechanism and it is possible to ,traverse a closed loop. 
Figure 3.I(b) shows a four-bar linkage, which is a closed-loop mechanism. Kinematic 
analysis considers systems containing only closed loops. 



Sec. 3.1 Definitions 

(al !b) 

37 

Figure 3.1 (a) Open-loop meehanism
double pendulum, (b) Closed-loop mecha
nism - four-bar linkage. 

A closed-loop mechanism may contain one or more loops (or closed paths) in its 
kinematic structure. If the number of loops in a closed-loop mechanism is 1, then the 
mechanism is called a single-loop mechanism. If the closed-loop mechanism contains 
more than one loop, then the mechanism is called a multiloop mechanism. Figure 3.2(a) 
is an example of a single-loop mechanism, and Fig. 3.2(b) shows a multiloop mechanism. 

3.1.1 Classification of Kinematic Pairs 

Mechanisms and kinematic pairs can be classified in a number of different ways. One 
method is purely descriptive; e.g., gear pairs, cams, sliding pairs, and so on. Such a di
vision is convenient, and some of these pairs will be studied in Chaps. 4 and 7 under such 
headings. However, a broader view of the grouping of kinematic pairs is presented here. 

Kinematic pairs may be classified generally into two groups. 17 Joints with surface 
contact are referred to as lower pairs, and those with point or line contact are referred to 
as higher pairs. Figure 3.3 gives a number of examples of kinematic pairs. The pairs (a), 
(b), (e), and (f) in Fig. 3.3 are examples of lower-pair joints, and pairs (c) and (d) are 
examples of higher-pair joints. 

The constraint formulation for most lower-pair joints is generally simpler to derive 
than that for higher-pair joints. 

Relative motion between two bodies of a kinematic pair may be planar or spatial. 
For example, pairs (a), (b), (c), and (d) in Fig. 3.3 display relative motion between bod
ies in a manner that can be considered either for planar or spatial kinematic analysis. In 
contrast, pairs (e) and (f) can be studied only in a spatial kinematic sense. 

(a) (bl 

Figure 3.2 (a) Single-loop mechanism, 
(b) Multiloop mechanism. 
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(e) 

Figure 3.3 Examples of kinematic pairs: (a) revolute joint, (b) translational joint, (c) gear set, 
(d) cam follower, (e) screw joint, (f) spherical (ball) joint. 

3.1.2 Vector of Coordinates 

Any set of parameters that uniquely specifies the position (configuration) of all bodies of 
a mechanism is called a set of coordinates. For systems in motion, these parameters 
vary with time. The term coordinates can refer to any of the commonly used coordinate 
systems, but it can also refer to any of an infinite variety of other sets of parameters that 
serve to specify the configuration of a system. Vectors of coordinates are designated in 
this text by column vectors q [q" q2" .. ,qnf, where n is the total number of coordi
nates used in describing the system. Examples of commonly used coordinates are 
Lagrangian and Cartesian coordinates. In this text, Cartesian coordinates are used 
almost exclusively. The general distinction between the Lagrangian and Cartesian coor
dinate systems is that the former allows definition of the position of a body relative to a 
moving coordinate system, whereas the latter normally requires that the position of each 
body in space be defined relative to a fixed global coordinate system. Thus the Cartesian 
coordinate system requires that a large number of coordinates be defined to specify the 
position of each body of the system. 

In order to specify the configuration of a planar system, a" body-fixed g'Yj coordi
nate system is embedded in each body of the system, as shown in Fig. 3.4(a). Body i (i 
is an identifying number assigned to each body) can be located by specifying the global 
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Figure 3.4 Global and body-fixed coordinate systems: (a) planar motion, (b) spatial 
motion. 
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translational coordinates r i [x, y]; of the origin of the body-fixed e;'YJi reference sys
tem and the angle cP; of rotation of this system relative to the global xy axes. The column 
vector qj == [x,y,cpJ; is the vector of coordinates for body i in a plane.' 

For spatial systems, six coordinates are required to define the configuration of 
each body; e.g., body i shown in Fig. 3.4(b). The three components of the vector rj -

i.e., the global translational coordinates r i == [x, y, z]; -locate the origin of the body
fixed ei'YJi~j reference system relative to the global xyz axes, and the three rotational 
coordinates CPu, CP2i' and CP3j specify the angular orientation of the body. Therefore, 
column vector qj == [x, y, Z, CPl' CP2' CP3]; is the vector of coordinates for body i in three
dimensional space. 

The concept of angular orientation of a body in three-dimensional space is dis
cussed in detail in Chap. 6. It will be shown that instead of three rotational coordinates, 
four rotational coordinates with one equation relating these four coordinates can be used 
to avoid singularity problems. In this case, the coordinates for body i become qi == 
[x,y,z,eo,e l ,eZ,e3];' The advantage of presenting the angular orientation of a body 
with four coordinates instead of three is also discussed in Chap. 6. 

If a mechanism with b bodies is considered, the number of coordinates required is 
n 3 x b if the system is planar, and n 6 x b (or 7 x b) if the system is spatiaL 
The overall vector of coordinates for the system is denoted by q rqi, q;', ... ,qr{. 
Since bodies making up a mechanism are interconnected by joints, all of the coordinates 
are not independent-there are equations of constraint relating the coordinates. 

Lagrangian coordinates, unlike Cartesian coordinates, do not necessarily assign 
the same number of coordinates to each body of the system. Some of the coordinates 
may be measured relative to a global coordinate system while others are measured rela
tive to moving coordinate systems. An example of a set of Lagrangian coordinates is 
shown in Fig. 3.5. The variables CPl' 'CP2' and d define the configuration of the slider
crank mechanism at every instant. The vector of coordinates for the system can thus be 

tFor notational simplification, the body index is moved outside the bracket; e.g., qi = [x,y, 4>li is used 
instead of qi = [X"Yi,4>if. 
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/ 

Figure 3.5 Slider-crank mechanism with 
Lagrangian coordinates. 

defined as q == [<PI' <P2' df'. It must also be noted that these coordinates are not indepen
dent. If the lengths of links 1 and 2 are given as 11 and 12, once <PI is specified, <P2 and d 
may be defined by simple trigonometry. 

When a system is in motion, some or all of the coordinates describing the configu
ration of the system vary with time. In this text t denotes time and is considered to be an 
independent variable. In kinematics and dynamics, the motion of a body or a mechanism 
is analyzed for an interval of time from to (initial time) to t e (final time). In most prob-
lems, it is convenient to let to O. 

3.1.3 Degrees of Freedom 

The minimum number of coordinates required to fully describe the configuration of a 
system is called the number of degrees of freedom (DOF) of the system. Consider the 
triple pendulum shown in Fig. 3.6. Here, no fewer than three angles, <PI, <P2' and <P3, can 
uniquely determine the configuration of the system. Therefore, the 'triple pendulum has 
3 degrees of freedom. Similarly, for the four-bar mechanism shown in Fig. 3.7, three 
variables, <PI' <P2' and <P3' define the configuration of the system. However, the angles 
are not independent. There exist two algebraic constraint equations, 

I, cos <PI + 12 cos <P2 13 cos <P3 dl 0 
(3.1) 

which define loop closure of the mechanism. The two equations can be solved for <P2 and 
<P3 as a function of <p,. Therefore, <PI is the only variable needed to define the configura
tion of the system, and so there is only I degree of freedom for the four-bar mechanism. 

Figure 3.6 
Triple pendulum. Figure 3.7 Four-bar mechanism. 
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In a mechanical system, if k is the number of degrees of freedom of the system, then 
k independent coordinates are required to completely describe the system. These k quan
tities need not all have the dimensions of length. Depending on the problem at hand, it 
may be convenient to choose some coordinates with dimensions of length and some that 
are dimensionless, such as angles or direction cosines. Any set of coordinates that are 
independent and are equal in number to the number of degrees of freedom of the system 
is called a set of independent coordinates. Any remaining coordinates, which may be deter
mined as a function of the independent coordinates, are called dependent coordinates. 

3.1.4 Constraint Equations 

A kinematic pair imposes certain conditions on the relative motion between the two bod
ies it comprises. When these conditions are expressed in analytical form, they are called 
equations of constraint. Since in a kinematic pair the motion of one body fully or par
tially defines the motion of the other, it becomes clear that the number of degrees of 
freedom of a kinematic pair is less than the total number of degrees of freedom of two 
free rigid bodies. Therefore, a constraint is any condition that reduces the number of de
grees of freedom in a system. 

A constraint equation describing a condition on the vector of coordinates of a system 
can be expressed as follows: htr::g~'/f)//,: ;.c:. _ '. '.' 

cP s cp(q) = 0- _ (3.2) 
. . .. ~(' /1?/ 't,.O:?; , " 

In some constramt equatIOns, the vanable tIlne may appear explicItly:- ( . 
/, 

cP CP(q, t) 0 Y'/),:>'J (3.3) 

For example, Eq. 3.1 describes two constraint equations for the four-bar mechanism of 
Fig. 3.7, which has a vector of coordinates q = [</>1' </>2' </>X. These equations are of the 
form stated by Eq. 3.2. 

Algebraic equality constraints in terms of the coordinates, and perhaps time, are 
said to be holonomic constraints. In general, if constraint equations contain inequalities 
or relations between velocity components that are not integrable in closed form, they are 
said to be nonholonomic constraints. In this text, for brevity, the term constraint will 
refer to a holonomic constraint, unless specified otherwise. 

3.1.5 Redundant Constraints 

A brief study of a mechanism is essential prior to actual kinematic or dynamic analysis, 
Know ledge of the number of degrees of freedom of the mechanism can be useful when 
constraint equations are being formulated. Often, the pictorial description of a mecha
nism can be misleading, Several joints may restrict the same degree of freedom and may 
therefore be equivalent or redundant. 

As an example, consider the double parallel-crank mechanism shown in Fig. 3.8(a), 
This system has I degree of freedom. If this system is modeled for kinematic analysis as 
four moving bodies and six revolute joints, the set of constraint equations will contain 
redundant equations. The reason for redundancy becomes clear when one of the coupler 
links is removed to obtain the mechanism shown in Fig. 3.8(b). The two mechanisms 
are kinematically equivalent. 
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(a) (bl 

Figure 3.8 (a) A double parallel-crank mechanism, and (b) its kinematically equiva
lent system. 

For a system having m independent constraint equations and n coordinates, the 
number of degrees of freedom is determined as follows: 

k n - m (3.4) 

In planar motion, a moving body can have three coordinates, and a revolute joint intro
duces two constraint equations. For the mechanism of Fig. 3.8(b), there are three 
moving bodies (n 3 X 3 = 9) and four revolute joints (m = 4 X 2 8). Therefore, 
k = 9 8 = 1 DOF. However, for the mechanism of Fig 3.8(a), n = 4 X 3 = 12 and 
m 4 X 3 = 12, which yields k = 12 - 12 0 DOF, which is obviously incorrect. 
Therefore, Eq. 3.4 yields a correct answer only when the m constraint equations are 
independent. 

Example 3.1 

Five coordinates q [ii' cPl, 12, cP2' IJ]T are used to describe the configuration of 
bodies in a mechanism. Determine the number of degrees of freedom of the system 
if the coordinates are dependent according to the following six constraint equations: 

<PI 6 cos cPl - i2 0 

<P2 6 sin cPl 13 = 0 

<P3 = II cos cPl 2 cos cPz = 0 

<P4 = II sin cPI - 2 sin cP2 13 + 3 = 0 

<P5 = 2 cos cP2 + (6 II) cos cPI - 12 0 

<P6 2 sin cP2 + (6 II) sin cPl - 3 0 

Solution An investigation of the six equations reveals that <P2 = <P4 + <P6 and 
<PI <P3 + <P5. Therefore, two of the equations are redundant, and hence, m 
6 - 2 4. Since n = 5, then k 5 - 4 I DOF. 

3.2 KINEMATIC ANALYSIS 

Kinematics is the study of the position, velocity, and acceleration of mechanisms. In kine
matic analysis, only constraint equations are considered. The first and second time deriva
tives of the constraint equations yield the kinematic velocity and acceleration equations. 

tIt will be shown in the forthcoming sections how redundant equations can b~ found by such techniques 
as Gaussian elimination or L-U factorization. 
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For position analysis, at any given instant, the value of k coordinates must be 
known (where k is equal to the number of degrees of freedom). Hence, the constraint 
equations can be solved for thc other m n - k coordinates. Similarly, for velocity 
and acceleration analysis, the value of k velocities and k accelerations must be known in 
order to solve the kinematic velocity and acceleration equations for the other, unknown 
velocities and accelerations. 

The process of kinematic analysis is presente,d in two slightly different forms in 
the next two sections. Each method has a computational advantage and disadvantage in 
relation to the other. 

3.2.1 Coordinate Partitioning Method 

The fundamentals of kinematic analysis with the coordinate partitioning method can be 
best understood by following the process in a simple example. 

Example 3.2 

The four-bar mechanism of Fig. 3.7 is considered for kinematic analysis and is 
shown again in Fig. 3.9. All of the lengths are known, and it is given that the 
crank is rotating counterclockwise (CCW) with a constant angular velocity of 
211' rad/s from the initial orientation of cf>~ = 2.36 rad. The constraint equations of 
Eq. 3.1 are written as follows: 

0.2 cos cf>1 + 0.4 cos cf>2 0.3 cos cf>3 0.35 = 0 

0.2 sin cf>1 + 0.4 sin cf>2 0.3 sin cf>3 0.1 = 0 
(1) 

For position analysis the substitution cf>t = 2.36 is made in Eq. 1 to get 

0.4 cos cf>2 0.3 cos cf>3 0.49 

0.4 sin cf>2 - 0.3 sin cf>3 = -0.04 
(2) 

These equations are solved to find cf>2 = 0.57 rad and cf>3 2.11 rad. For velocity 
~nalysis, the first time derivative of Eq. 1 is written as 

;7{" ".. 

-0.2 sin cf>1.cf>1 - 0.4 sin cf>21>2 + 0.3 sin cf>31>3 0 
0.2 cos cf>lcf>l + 0.4 cos cf>2cf>2 - 0.3 cos cf>3cf>3 0 

(3) 

For cf>,l = 2.36, cf>2 0.57, cf>3 2.11, and known angular velocity of the crank, 
i.e., cf>! 6.28 rad/s, Eq. 3 becomes . . 

-0.221>2 + 0.261>3 0.89 
0.34cf>2 + 0.16cf>3 = 0.89 

(4) 

. . 
The solution of Eq. 4 yields cf>2 0.76 rad/s and cf>3 4.09 rad/s. Similarly, for 
acceleration analysis, the time derivatives of Eq. 3 is 

-0.2 sin cf>l~l - 0.2 cos cf>l~~ - 0.4 sin cf>2~2 - 0.4 cos cf>2~i + 
0.3 sin cf>3~3 + 0.3 cos cf>3~; = 0 

(5) 

0.2 cos cf>l~l - 0.2 sin cf>l~i + 0.4 cos cf>2~2 - 0.4 sin cf>2~~ -

0.3 cos cf>3~3 + 0.3 sin cf>3~; = 0 
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'" . .. .. 
Since .pI' .p2' .p3' .pI' .p2, .p3 are known and .pI = 0 (indicating constant angular 
velocity), Eq. 5 becomes 

.. .. 
-0.22<p'2 + 0.261:3 -2.86 

0.34.p2 + 0.16.p3 = 1.39 
(6) 

This yields ~2 = 6.62 rad/s2 and ~3 = -5.39 rad/s2
. 

The process of position, velocity, and acceleration analysis can be repeated for 
different positions of the crank. If .pI is varied from its initial value through a com
plete revolution of the crank, then at every step the position, velodty, and accelera
tion analysis yield the results shown in the following table: 

4>1 

2.36 
2.52 
2.67 
2.83 

8.49 
8.64 

4>2 

0.57 
0.59 
0.62 
0.65 

0.55 
0.57 

o. 

4>3 

2.11 
2.21 
2.3\ 
2.40 

2.01 
2.11 

4>2 

0.76 
0.94 
1.13 
1.33 

0.60 
0.76 

4>3 

4.09 
3.93 
3.73 
3.48 

4.20 
4.09 

4>2 

6.62 
7.21 
7.91 
8.66 

6.21 
6.62 

4>3 

-5.39 
-7.17 
-8.97 

-10.74 

-3.61 
-5.39 

The result of the position analysis for one complete revolution of the crank is 
shown in Fig. 3.9. 

In the preceding example, the angle .pI' which has a known value at every instant, 
is called the independent coordinate or the driving coordinate. The remaining coordi
nates, such as .p2 and .p3' are called the dependent coordinates or the driven coordinates. 
The number of independent coordinates is equal to the number of degrees of freedom of 
the system; therefore the number of dependent coordinates is equal to the number of in
dependent constraint equations in the system. 

Kinematic analysis with coordinate partitioning considers the partitioned form of 
the coordinate vector q = ruT, vTf, where u and v are the dependent and independent 
coordinates, respectively. The m constraint equations 

<fl == <fl(q) 0 (3.5) 

may be expressed as 

<fl <fl(u, v) 0 (3.6) 

Constraint equations as presented by Eq. 3.6 are, in general, nonlinear. For position analy
sis, iterative numerical methods may be used to solve the set of nonlinear algebraic equa
tions. One such method is discussed in Section 3.4. The k independent coordinates v 
are specified at each instant of time t. Then, Eq. 3.6 becomes a set of m equations in 
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Figure 3.9 The result of the position analysis for the four-bar mechanism of Figure 3.7. 

m unknowns, which may be solved for the m dependent coordinates u. If the constraints 
of Eq. 3.5 are independent, then the existence of a solution to u for a given v is asserted 
by the implicit function theorem' of calculus. 

Differentiation of Eq. 3.5 yields velocity equations 

\.wil 0 (3.7) 
where it = [izl' iho· .. , q"f is the vector of velocities. The matrix q,q == [aq,/aq], 
which contains partial derivatives of the constraint equations with respect to the coordi
nates, is called the constraint Jacobian matrix. Let v = [VI' v2 , • •• , vkf represent the 
independent velocities with known values, and let u = [it I' it 2, ••• ,itm f represent the 
m dependent velocities. Equation 3.7 may be rewritten in partitioned form as 

<Pun = -q,.v (3.8) 

tlmplicit Function Theorem: 3 Consider a point qi [u/. l]T at time t i for which the constraint 
equations are satisfied; i.e., for which 

~(Ui. Vi) = 0 (a) 

If the partitioning of q into u and v has been selected so that the matrix ~u ;; [a~/iJul at (ui
, Vi) is nonsingu

lar, then in some neighborhood of Vi Eq. a has a unique solution u 'IT(v); i.e., ~('IT(v), v) = O. Further
more, if ~(u. v) is j times continuously differentiable in its arguments, so is 'IT(v). 
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where «). and «)y are two submatrices of «)q that contain the columns of «)q associated 
with u and v, respectively. The term on the right side of Eq. 3.8 is denoted by 

v = -«)yV (3.9) 

Since the constraint equations of Eq. 3.5 are assumed to be independent, then «). is an 
m x m nonsingular matrix, and so Eq. 3.8 may be solved directly for it, once v is given. 

Differentiating the velocity equations of Eq. 3.7 yields the acceleration equations 

«)qq + «()il)il = 0 (3.10) 

where q = WI' Q2" .. ,qnf is the vector of accelerations. Let v = [vH V2,· ..• vkf rep
resent the independent accelerations, and ii = [UI, U2 , • •• ,tlmf represent the dependent 
accelerations. Equation 3.10 can be written in partitioned fonn as 

«).ii -«),v - «()qq)qq (3.11) 

Since «)u is nonsingular, Eq. 3.11 can be solved for ii, once v is given. Note that the 
velocity and acceleration equations of Eqs. 3.8 and 3.11 are sets of linear algebraic 
equations in q and q, respectively, whereas the constraint equations of Eq. 3.6 are non
linear algebraic equations. 

The general procedure for kinematic analysis, using the coordinate partitioning 
method, may be summarized in the following algorithm: . 

ALGORITHM K-I 

(a) Set a time step counter i to i = 0 and initialize t i = to (initial time). 

(b) Partition q into dependent and independent sets u and v. 
(c) Specify independent coordinates Vi and solve Eq. 3.6 iteratively for ui

. 

(d) Specify independent velocities Vi and solve Eq. 3.8 for iti. 
(e) Specify independent accelerations Vi and solve Eq. 3.11 for W. 
(I) If the final time has been reached, then terminate; otherwise increment t i to a 

new time t i+ l
, let i ---,> i + I, and go to (c). 

The simple fonn of the constraint equations of Example 3.2 may give the impres
sion that the constraint equations can always be explicitly partitioned into tenns contain
ing the independent coordinates and terms containing the dependent coordinates. In 
general, this partitioning is not possible for highly nonlinear equations. However, 
regardless of the order of nonlinearity of the constraint equations, the velocity and accel
eration equations can be partitioned according to Eqs. 3.8 and 3.11, since they are linear 
in tenns of q and q, respectively. 

Example 3.3 

Derive the velocity and acceleration equations for the constraint equations 

2 cos cPI + 3 COS(cPl - cP2) 2COS(cP3 + cP4) - 4 cos cP4 5 = 0 

2 sin cP\ + 3 sin(cPl cP2) - 2 sin(cP3 + cP4) - 4 sin cP4 - I 0 
(1) 

Then express these equations in partitioned form if cPI and cP3 are assumed to be 
the independent coordinates. 

Solution The vector of coordinates is q = [cPl' cP2' cP3. cP4f; thus v [cPI' cP3f 
and u = [cP2' cP4f. Since the constraint equations are nonlinear, they cannot be 
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partitioned explicitly in terms of u and v, and therefore they are left as they are in 
Eq. 1. 

The kinematic velocity equations can be found either by direct differentia
tion of Eq. 1 or by using Eq. 3.7, as follows: 

-2 sin 1>1 - 3 sin(1)1 1>2) 3 sin(1) 1 - 1>2) 

) . 1>1 

2 sin(1)3 + 1>4) 2 sin(1)3 + 1>4) + 4 sin 1>4 J ~2 = [OJ (2) 
-2 COS(1)3 + 1>4) -2 COS(1)3 + 1>4) 4 cos 1>4 1>3 ° 

1>4 
where the 2 x 4 matrix at the left of Eq. 2 is the Jacobian matrix. Partitioning of 
Eq. 2 yields the velocity equations in the form of Eq. 3.8: 

[ 
3 sin(1) 1 - 1>2) 2 sin(1)3 + 1>4) + 4 sin 1>4 J [1>2J 

-3 cos(1) 1 - 1>2) -2 COS(1)3 + 1>4) - 4 cos 1>4 1>4 , 

[
-2 sin 1>1 3 sin(1)1 - 1>2) 2 sin(1)3 + 1>4) J [1>IJ (3) 

2 cos 1>1 + COS(1)1 - 1>2) -2 COS(1)3 + 1>4) 1>3 

The kinematic acceleration equations can be found either by direct differen-
tiation of Eq. 2 or by using Eq. 3.10, as follows: 

[
-2 sin 1>1 - 3 sin(1) 1 1>2) 3 sin(1) 1 1>J 

2 cos 1>1 + 3 COS(1)1 1>2) -3 COS(1)1 1» ['] 

2 sin(1)3 + 1>4) 2 :in(1)3 + 1>4) + 4 sin 1>4] ~: + 
-2 COS(1)3 + 1>4) -2 COS(1)3 + 1>4) - 4 cos 1>4 P3 

1>4 

[
-2 cos 1>l~f - 3 cos(1)! 1>2) (~I - .~2? + 
-2 sin 1>11>f 3 sin(1)1 -1>2)(1)1 1>2)2 + 

2 COS(1)3 + 1>4)(~3 + ~4)2 + 4 cos 1>4,~~] = [OJ (4) 
2 sine 1>3 + 1>4)(1)3 + 1>4? + 4 sin 1>41>: ° 

_ [-2 sin 1>1 - 3 sin(1)! 1>2) 
2 cos 1>1 + COS(1)1 - 1>2) 

[
-2 c~s 1>1~} 3 ~OS(1)1 1>2) (~I ,~2t + 
-2 sm 1>11> 1 - 3 sm(1)1 - 1>2) (1)1 - 1>2) + 
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3.2.2 Method of Appended Driving Constraints 

This method, unlike the coordinate partitioning method, does not partition the coordi
nates into independent and dependent sets. Additional constraint equations, called the 
driving constraints, equal in number to the number of degrees of freedom of the system, 
are appended to the original kinematic constraints. The driving constraints are equations 
representing each independent coordinate as a function of time. This method is best illus
trated by an example. 

Example 3.4 

The four-bar mechanism of Example 3.2 is considered here again. The kinematic 
constraints are 

<PI == 0.2 cos 1>1 + 0.4 cos 1>2 - 0.3 cos 1>3 - 0.35 = 0 
<P2 0.2 sin 1>, + 0.4 sin 1>2 0.3 sin 1>3 0.1 = 0 

(1) 

Since the crank angle 1>1 is the independent variable, a driving constraint can be 
written in terms of 1>1' The initial value at t = 0 for 1>1 is 1> ~ 2.36 rad, and the 
constant angular velocity of the crank is 217 rad/s. Therefore 1>1 = 2.36 + 6.28t 
can be used to represent 1>1 as a function of time. This driving equation can be 
rewritten as 

<p(d) == 1>1 2.36 6.28t = 0 (2) 

At any instant of time, i.e., known t, Eqs. 1 and 2 represent three equations in 
three unknowns 1>1' 1>2' and 1>3' If these equations are solved for t 0, it is found 
that 1>1 2.36, 1>2 = 0.57, and 1>3 2.11. 

For velocity analysis, the first time derivatives of Eqs. 1 and 2 are found and 
written as 

[ 

-0.2 sin 1>1 -0.4 sin 1>2 0.3 sin 1>3 ] [~1J 
0.2 cos 1>, 0.4 cos 1>2 -0.3 cos 1>3 4;2 

1 0 0 ~ 

(3) 

. . 
J;<or known values of 1>" 1>2, and 1>3' Eq. 3 yields 1>1 = 6.28, 1>2 = 0.76, and 
1>3 4.09. 

For acceleration analysis, the time derivative of Eq. 3 is found to be 

[ 

-0.2 sin 1>1 -0.4 sin 1>2 0.3 sin 1>3 ] [~IJ _ 
0.2 cos 1>1 0.4 cos 1>2 -0.3 cos 1>3 1:2-

1 0 0 1>3 

[

0.2 cos 1>11>; + 0.4 cos 1>21>~ - 0.3 cos 1>31>~J 
0.2 sin 1>l1>f + 0.4 sino 1>21>~ - 0.3 sin 1>31>~ 

... ..... 

(4) 

~ince 1>1,1>2,1>3,1>1,1>2' and 1>3 are known, Eq. 4 yields 1>1, = 0,1>2 6.62, and 
1>3 = 5.39. 

This process can be repeated at different instants of time. If t is incremented 
by t:.t = 0.025 s, the same table as shown in Example 3.2 is obtained. 
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The method of appended driving constraints can now be stated in its most general 
form. If there are m kinematic constraints, then k driving constraints must be appendcd 
to the kinematic constraints to obtain n = m + k equations: 

<I> == <1>( q) 0 
<I> (d) <I>(q, t) 0 

(3.12) 

where superscript (d) denotes the driving constraints. Equation 3.12 represents n equa
ti:ons in n unknowns q which can be solved at any specified time t. 

The velocity equations are obtained by taking the time derivative of Eq. 3.12: 

<l>il 0 
<I>(d)q' + <I>(d) 0 

q , 

(3.13) 

or 

[
<I>q]. - [ 0 ] <I>~d) q - _ <I>;dl (3.14) 

which represents n algebraic equations, linear in terms of q. 
Similarly, the time derivative of Eq. 3.13 yields the acceleration equations: 

<l>qq + (<I>qq)4= 0 
<I>(d)q" + (<I>(d)q') q' + 2<1>(d)q' + <I>(d) 0 

q q q ql /I 

(3.15) 

or 

(3.16) 

which represents n algebraic equations linear in terms of q, The term -(<I>qq)qq in 
Eq. 3.16 is referred to as the right side oj the kinematic acceleration equations, and is 
represented as 

(3.17) 

In the above formulations, the driving constraints are assumed to have the general 
form <I>(q, t) O. However, as shown in Example 3.4, the driving constraint can have a 
very simple form, such as Vj c(t) 0, where Vj is the jth independent variable and 
c(t) is a known function of time. If there are k independent variables in the system and 
the k driving constraints have the form 

<I>(d) == v - c(t) 0 (3.18) 

then Eqs. 3.12 through 3.16 can be simplified. In this case the Jacobian matrix becomes 

(3.19) 

where i is a permuted nonsquare identity matrix (permuted means the columns are re
ordered). The Is of i are in the columns associated with the independent variables v. 
Therefore, Eq. 3.19 can be expressed as 

(3.20) 
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Example 3.5 

Four coordinates q = [XI> X 2, X 3, x4f are subject to the kinematic constraints 

I + 2x2x3 - X 1X 4 = 0 

3X 1X 2 x~ + X 3X 4 - X3 0 

The coordinates X 2 and X 4 are expressed in terms of t as follows: 

X2 - 0.2t = 0 

X 4 + 0.5! 0.03t2 0 

In terms of <l>u and <1>. the Jacobian is permuted as follows: 

3x2 X 4 - 1 3x1 2X2 

[

2x1 - X 4 2x2 

o 0 
o 0 

1 

o 

The general procedure for kinematic analysis using the method of appended driv
ing constraints may be summarized in the following algorithm: 

ALGORITHM K-II 

(a) Set a time step counter i to i = 0 and initialize t i to (initial time). 

(b) Append k driving equations to the constraint equations. 

(c) Solve Eq. 3.12 iteratively to obtain qi. 

(d) Solve Eq. 3.14 to obtain «( 

(e) Solve Eq. 3.16 to obtain i{ 
(0 If final time is reached, then terminate; otherwise increment t i to t i+ I, let 

i -.-., i + 1, and go to (c). 

Kinematic analysis with the method of appended driving constraints usually re
quires the solution of a larger set of equations than with the coordinate partitioning 
method. However, this is not a major drawback since the programming effort for com
puter implementation of algorithm K-II is much less than of algorithm K-I. A computer 
program for kinematic analysis of mechanical systems based on this method is described 
in Chap. 5. 

3.3 LINEAR ALGEBRAIC EQUATIONS 

It was shown in Secs. 3.21 and 3.22 that the kinematic velocity and acceleration analy
sis of mechanical systems requires the solution of a set of linear algebraic equations. AI-
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though position analysis involves the solution of a set of nonlinear algebraic equations, 
it will be seen that most numerical methods solve these by iteratively solving a set of 
linear equations. Therefore, for almost every step of kinematic analysis-position, ve
locity, or acceleration-sets of linear algebraic equations must be solved. 

Consider a system of n linear algebraic equations with real constant coefficients, 

allx1 + al~2 + ... + al/lx/I CI 

a21Xj + a22x2 + ... + a2"x" C2 

alljX j + a/l~2 + ... + alll,xn = c" 

which can be written in matrix form as 

Ax c 

(3.21) 

(3.22) 

There are many methods for solving this set of equations. Cramer's rule offers one of the 
best-known methods, but also the most inefficient. Among the more efficient methods 
are the. Gaussian elimination, Gauss-Jordan reduction, and L-U factorization methods. 

3.3.1 Gaussian Methods 

The Gaussian elimination method for solving linear equations is based on the elementary 
idea of eliminating variables one at a time. This method consists of two major 
steps: (1) a forward elimination, which converts the matrix A into an upper-triangular 
matrix, and (2) a back substitution, which solves for the unknown x. There are a variety 
of Gaussian elimination algorithms that are similar in principle, but slightly different in 
approach. The method presented here converts the matrix A to an upper-triangular ma
trix with Is on the diagonal. The process is best illustrated by an example 'that can be 
followed easily. 

Example 3.6 

Solve the set of equations 

[ 
- ~ 2 ~] [::] [~] 

2 -3 1 X3 1 

Solution 

FORWARD ELIMINATION 

1. Multiply the first equation by L to put a 1 in the all position, as follows: 

[ -~ ~ -:] [::] [!] 
2 -3 1 X3 -\ 

and add the first equation to the second and then add - 2 times the first 
equation to the third, to put zeros in the first column below the diagonal: 
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2. Multiply the second equation by 9, to put a I in the a22 position, as shown: 

and add ¥ times the second equation to the third, to put a zero below the 
diagonal: 

3. Multiply the third equation by -k, to put a I in the a33 position: 

BACK SUBSTITUTION 

1. The third equation yields x) 3. 
2. The second equation then yields X2 + t (3) = so X2 = 2. 

3. The first equation yields Xl + ~ (2) 1 (3) = j, so Xl = 1. 

Note that the forward-elimination step requires division by ajj at the jth step. The 
preceding operation is valid only if aji c/ O. 

The Gauss-Jordan reduction method combines the forward-elimination and back
substitution steps of the Gaussian elimination method into one step. Matrix A is con
verted to a diagonal unit matrix, using elementary arithmetic. This method may also be 
illustrated with a simple example. 

Example 3.7 

Solve the set of linear algebraic equations 

[ 
2 -1 _IJ [XIJ [-3J 1 3 2 X 2 3 

-1 2 ~ 5 . 

using the Gauss-Jordan reduction method. 
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Solution 

1. Multiply the first equation by ~, to put a 1 in the a II position, as shown: 

r -: -! -~1 r:;j r -!1 
and add - 1 times the first equation to the second and then add the first 
equation to the third to put zeros below the diagonal: 

U -! -ilr:J r 11 
2. Multiply the second equation by ~ to put a 1 in the an position, as shown: 

U 1 -ilr;] [11 
and add ~ times the second equation to the first and then add - 4 times the 
second equation to the third, to put zeros above and below the a22 position: 

U! J1[:;j [-n 
3. Multiply the third equation by ~, to put a I in the aD position: 

r~ ! 11[;] [-,I] 
and add times the third equation to the first and then add ~ times the third 
equation to the second, to put zeros above the aD position: 

r ~ ! ~ 1 [;;j r -~ ] 
Since the coefficient matrix has been converted to the identity matrix it is clear 

that Xl -1, X2 2, and X} = 1 is the solution. 

3.3.2 Pivoting 

In the forward-elimination step of the Gaussian methods, the algorithm fails if at the jth 
step ajj is zero. Also, when the pivot element ajj becomes too small, numerical error 
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may occur. Therefore, the order in which the equations are treated during the forward
elimination step significantly affects the accuracy of the algorithm. To circumvent this 
difficulty, the order in which the equations are used is determined by the algorithm; i.e., 
the order may not necessarily be the original order 1, 2, ... , n. The algorithm reorders 
the equations depending on the actual system being solved. This process is caIled pivot
ing. Two types of pivoting, partial pivoting and full pivoting, are discussed here. 

In partial pivoting, during the jth forward-elimination step of the Gaussian al
gorithm, the equation with the largest coefficient (in absolute value) of Xj on or below 
the diagonal is chosen for pivoting. During the elimination step, the rows of the matrix 
and also the elements of vector c are interchanged. The following example illustrates 
this procedure. 

Example 3.8 

Perform Gaussian elimination with partial (row) pivoting on the following set of 
equations: 

[ 
4 -3 5 2] [Xl] [-1.5] -3 1 1 -6 X 9 

5 -5 10 0 X: 2.5 
2 -3 9 -7 X4 13.5 

Solution 

FORWARD ELIMINATION WITH PARTIAL PIVOTING 

1. The largest coefficient in column 1 of the matrix is 5. Therefore interchange 
the third and first equations, to obtain 

([_~ -~ 1~ _~] [:~] = [ ~'5] 
4 -3 5 2 X3 1.5 
2 -3 9 -7 X4 13.5 

Then perform forward elimination, as in Example 3.6, to obtain 

[
1 1 2 0] [Xl] [0.5] o -2 7 -6 X2 10.5 
o 1 -3 2 X3 -3.5 
o -1 5 -7 X4 12.5 

2. The largest coefficient in column 2 on or below the diagonal is -2; no inter-
change is necessary. Forward elimination yields 

[
1 -1 2 0] [Xl] [0.5] o 1 -3.5 3 X2 -5.25 
o 0 0.5 -1 X3 1. 7,S 
o 0 1.5 -4 X4 7.25 
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3. The largest coefficient in column 3 on or below the diagonal is 1.5. Inter
change the fourth and third equations to obtain 

[
I -1 2 0] [Xl] [0.5] o I -3.5 3 X2 -5.25 

( 
0 0 1.5 -4 X3 7.25 
o 0 0.5 -1 X4 1.75 

Then perform forward elimination to obtain 

[
1 -1 2 0] [Xl] [0.5] o 1 -3.5 3 X2 -5.25 
o 0 1 -2.66 X3 4.83 
o 0 0 0.33 X 4 -0.66 

4. Multiply the fourth equation by to obtain 

[
1 -1 2 0 ] [XI] [0.5] 3.5 3 X2 -5.25 

-2.66 X3 4.83 
1 X 4 -2 

Back substitution now yields x = [0.5, 1, -0.5, -2f. 

The preceding pivoting method is referred to as partial pivoting with row inter
change, since the rows of the matrix are interchanged. The method can be modified for 
partial pivoting with column interchange. 

Full or complete pivoting is the selection of the largest of all the coefficients (in 
absolute value) on the diagonal and to its right and below as the basis for the next stage 
of elimination, which operates on the corresponding variable. In full pivoting, both row 
interchange and column interchange are required. Note that when two columns of the 
coefficient matrix are interchanged, their corresponding variables in the vector x are 
interchanged. 

Example 3.9 
Apply the Gaussian elimination method with full pivoting to the following set of 
equations: 

l 2 I I] lXI] l 0] -1 0 2 x 2 5 

I 4 -2 Xl -5 

Solution 

1. The largest coefficient in the matrix is 4. Interchanging columns 2 and I, we 
get 
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[ -12 IJ [X2J [OJ o 1 2 XI 5 
4 1 -2 X3 -5 

Interchanging rows 3 and I yields 

The elimination step gives 

[~ ~.25 -~'5J [::J [-~.25J 
o 2.25 0.5 X3 -1.25 

2. The largest coefficient in the 2 X 2 lower right submatrix is 2.25. Inter
changing rows 3 and 2, we have 

[
I 0.25 -0.5J [X2J [-1.25J 

(~ ~.25 ~.5~: ~ .25 
The elimination step gives 

[
I 0.25 -0.5 J [X2J [-1.25J o I 0.22 XI -0.55 
o 0 2.22 X) 4.44 

3. Multiplying the last equation by we get 

Back substitution now yields X3 2, X I = I, and Xl = O. 

In most computer programs, partial or full pivoting is carried out simply by inter
changing the row (column) indices of the two rows (columns) to be interchanged. Two 
integer arrays hold the indices for column and row numbers of the matrix. 

3.3.3 L-U Factorization 

The L-U factorization method is a compact form of the Gaussian elimination method of 
operating on a matrix A. After the operation is completed, the set of linear equations 
Ax = c is efficiently solved for any given c vector. 
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For any nonsingular matrix A, it can be proved that there exists an upper trian
gular matrix U with nonzero diagonal elements and a lower triangular matrix L with unit 
diagonal elements, such that 

A = LU (3.23) 

The process of factoring A into the product LU is called L-U factorization. Once the 
L-U factorization is obtained, by whatever method, the equation 

Ax = LUx = c (3.24) 

is solved by transforming Eq. 3.24 into 

Ly = c (3.25) 

and 

Ux = y (3.26) 

Equation 3.25 is first solved for y and Eq. 3.26 is then solved for x. Since Eqs. 3.25 
and 3.26 are both triangular systems of equations, the solutions are easily obtained by 
forward and backward substitution. 

Crout's method calculates the elements of Land U recursively, without overwrit
ing previous results. 2 To illustrate how Crout's method generates the elements of L 
and U, consider a matrix A of rank 4, requiring no row or column interchanges, i.e., no 
pivoting. The matrix A can be written as 

o 0 

o 
U l2 

U 22 

0 

0 

U 13 

u,,] [a" U 23 U 24 = a21 

U 33 U 34 a31 

0 U 44 a41 

a l2 a l3 a,,] a22 a23 a24 

a32 a33 a34 

a42 a43 a44 

(3.27) 

Now an auxiliary matrix B can be defined, consisting of elements of Land U, such that 

["" 
Ui2 U 13 

",,] B == 121 
U 22 u23 U 24 

131 132 U 33 U 34 

141 142 143 u44 

Elements of B are to be calculated one by one, in the order indicated as follows: 

(DG)G)@ 
G)G)@@ 
@@@@ 
(j)@@@ 

(3.28) 

(3.29) 

where (;) indicates the kth element to be calculated. The elements of Land U are cal
culated simply by equating ajk successively, according to the order shown in Eq. 3.29, 
with the product of the jth row of L and the kth column of U. The Crout process for the 
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n X n matrix A is performed in n - 1 iterations. After i 
the form 

1 iterations matrix A finds 

U ll U l2 U III }i - 1 rows 
l21 U22 U 2n 

: [ D; ] (3.30) 

llll 1112 

~ 

i - 1 columns 

where the conversion process of the first i-I rows and i-I columns has been com
pleted. The (n - i + 1) x (n - i + 1) matrix in the lower right corner is denoted by 
D i • The elements of D j are not the same as the elements of the original matrix A. In the 
ith step, the Crout process converts matrix D j to a new form: 

[ T] [ TJ ~. r· U u· 
Di == n I --Crout's process~ In D' 

S, H,+I , ,+1 
(3.31) 

where matrix DHI is one row and one column smaller than matrix Dj • Crout's process 
can be stated as follows: 

ALGORITHM LU-I 

(a) Initially set an iteration counter i 1. In the first step, matrix D I = A. 

(b) Refer to the conversion formula of Eq. 3.31 and let 

(c) Increment i to i + 

Ujj dii 

uf = rf 
1 

Ii -Sj 
ujj 

(3.32) 

(3.33) 

(3.34) 

Di+1 = HHI - liuf (3.35) 
1. If i = n, L-U factorization is completed. Otherwise go to (b). 

Note that calculation of element CD of the auxiliary matrix B, which is an element of 
either Lor U, involves only the element of A (or D j ) in the same position and some ele-

ments of B that have already been calculated. As element CD is obtained, it is recorded 
in the B matrix. In fact it may be recorded in the corresponding position in the A matrix, 
if there is no need to keep matrix A. This calculated result need never be written over, 
since it is already one of the elements of L or U. 

Example 3.10 

Apply L-U factorization to matrix A, and then solve the set of algebraic equations 
Ax = c for the unknown x: 
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Solution Following the LU-I algorithm, we have: 

D I = A results in 

d ll 2 rf [I 3 -2] 

[
0 -2 -I] 

H2 = I 2 3 
2 0-1 

Then, 

UII = 2 uf = [I 3 -2] 

I, [T] 
D, [! -~ ~] [ T} _ [0.5 -0.5 -2] 

3 -2] = I 2 3 

° -6 3 

After the first iteration, matrix A becomes, 

[ -~'5 0.5 -~.5 =~l ° 1 2 3 
2 ° -6 3 

i = 2 D2 = [~.5 -~.5 -~] 
° -6 3 

results in 

r~ [-0.5 -2] 

H3 = [-~ ~J 
Then, 

u~ = [-0.5 -2] 

D3 = [_~ ~J - [~J[-0.5 -2] = [-~ ~J 
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After the second iteration, matrix A becomes, 

[-~'5 ~.5 -~.5 =~l 
o 2 3 7 
2 0 -6 3 

3 D3 = [ 3 
-6 ~J 

results in, 

d33 3 rI = [7] 

sr [-6] 8 4 [3] 

Then, 

U33 3 u;' = [7] 

13 [-2] 
Hence, matrix A becomes 

D4 [3] [ -2][7] [17] 

[+ ~5 + =~] 
2 0 -2 17 

4 Since i 4 = n, the L-U factorization is completed. The Land U 
matrices are: 

L = [+ ! H] U = [~ ~5 + =~ ] 
2 0 -2 1 0 0 0 17 

The solution to Ax = c is obtained by first solving Ly = c: 

Then, solving Ux = y gives 

[ ~ ~.5 -~.5 =~] [~:] [ ~.5 ] ----">,x [-~] o 0 3 7 X3 -7 0 
o 0 0 17 X 4 _17 -1 
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3.3.4 L-U Factorization with Pivoting 

In the preceding subsection, the situation in which U ii = 0, where Eq. 3.34 requires di
vision by zero, is not discussed. In this case, partial or full pivoting must be applied. 
Since pivoting may change the order of the rows or columns of the matrix, this inter
change information must be recorded in two additional permutation vectors. 

Example 3.11 
Apply L-U factorization with full pivoting to matrix A, and then solve the set of 
equations Ax = c: 

2 

1 

3 

o 

Solution Two index vectors record the permutation of columns and rows during 
pivoting. These vectors are initialized to [I, 2,3,4] and [1, 2, 3, 4]T. The pivot 
element (the largest element in absolute value) is moved to position d;; at each 
step. The initial matrix is 

2 3 4 

[ 
I 2 -I 

-~] 2 4 I -I 

3 2 -3 0 -I 

4 0 5 2 

i = The largest element (in absolute value) is moved to dll: 

~ 
2 3 4 3 2 1 4 

C [ 
1 0 5 

-:1 
4 

[j 
0 -I 

-:] 4 I --:> 2 4 

2 -3 0 3 -3 2 
1 2 -1 -3 2 -3 

Crout's algorithm then yields 

3 2 4 

4 

[ -~ 
0 

~'I 2 
1-

19 
I 1 5" 51 

3 I 3 2 [I 

I 2 
4 I 
5 I 
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i = 2 The largest element (in absolute value) in the 3 x 3 submatrix to the 
lower right is moved to d22 , to obtain 

........... 
3 1 2 4 

4 

[ ~~ 
-1 0 

J] 2 19 1 5 

3 2 -3 
4 2 13 
5 -5 

Crout's algorithm then yields 

3 2 4 

4 

[j 
-1 0 j] 2 19 

5 

3 10 r=- 21 19 I 19 19 I 
4 34 55 

19 I 19 -~I -
i = 3 The largest element (in absolute value) in the 2 x 2 matrix to the lower 
right is in d33 , so no interchange is needed. Crout's algorithm then yields 

3 1 2 4 

~ [-~ -~ ~ ~ ] 
3 0 ~ -~ -N 

_ 1 .±. _ 1i C 2531 
5 19 67 1_ 6?j 

= 4 Since i = n, the L-U factorization is completed. 
Now, to solve Ax = c, first solve Ly = c: 

The elements of vector c are interchanged according to the elements of the row 

index. Forward substitution yields y = [1, ¥, I~:, 2~if. Then, solve Ux = y: 

The elements of vector x are interchanged according to the column index vector. 
A back substitution yields x = [2, -2, 1, -If. 
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3.3.5 Subroutines for Linear Algebraic Equations 

Two FORTRAN subroutines for solving sets of linear algebraic equations, based on l-U 
factorization with partial pivoting, are presented in this section. The subroutines listed 
here are not unique. Other coding may be more compact, more general, or more effi
cient, but the subroutines show exactly what must be done. An overall understanding of 
these subroutines and their use makes it easier to understand other subroutines that 
follow in this text. 

An explanation of the subroutines and a description of the variables appearing in the 
argument list of the subroutines are given here. To eliminate any redundancy of com
ments, these descriptions are not repeated in the FORTRAN listing of the subroutines. 

Subroutine LU. This subroutine performs l-U factorization with partial pivot
ing on square matrices. The argument parameters in this subroutine are as follows: 

A 
ICOl 
N 
EPS 

The given N x N matrix. On return A contains Land U matrices. 
Integer N-vector containing the column indices. 
Number of rows (columns) of matrix A. 
Test value for deviation from zero due to round-off error. 

The subroutine employs Crout's method with column pivoting on matrix A. Therefore, 
the columns of the matrix are generally interchanged at each elimination step to bring 
the largest element (in absolute value) to the pivot position. The interchange information 
is recorded in an integer permutation vector ICOL. The Kth column of the interchange 
matrix corresponds to the ICOl(K)th column in the original matrix A. Initially, the sub
routine sets ICOl(K) K, K = 1, ... , N. During each pivot search, when thc largest 
element (in absolute value) is found, it will be compared with a parameter EPS. This 
parameter, which must be assigned by the user, is used by the subroutine as the smallest 
(in magnitude) nonzero number in the computation. If the selected pivot element is 
smaller (in absolute value) than EPS, then the pivot element is considered to be zero; 
i.e., the matrix, within the specified error level, is singular. Therefore, the routine ter
minates the l-U factorization with an error message. For most practical problems on 
standard computers, a default value of 0.0001 is adequate for EPS. When l-U factoriza
tion is successfully completed, the matrix A will contain matrices L and U. A FOR
TRAN program for such a subroutine is as follows: 

SUBROUfINE LU (A,ImL,N,EPS) 
DIMENSION A(N,N),ImL(N) 
00 10 K=1,N 

10 ImL(K)=K 
NMl=N-l 
00 50 I=l,NMI 

PIV-ABS(A( I, I)) 
IPIV-I 
IPl=hl 
00 20 K-IPl.N 

~=ABS(A( I .K)) 
IF (~.LE.PIV) GO TO 20 
PIV=~ 
IPIV-K 
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20 CDNfINUE 
IF (PIV.LT.EPS) GO TO 60 
IF (IPIV.EQ.I) GO TO 40 
I!=ICDL(I) 
ICDL(I)=ICDL(IPIV) 
ICDL( IPIV)=I I 
00 30 J=l.N 

1'EJI.1P=A( J , I ) 
A(J,I)=A(J,IPIV) 

30 AU, IPIV)=1'EJI.1P 
40 00 50 J=IPl,N 

A(J,I)=A(J,I)/A(I,I) 
00 50 K=IP1,N 

AU .K)=AU .K) -A(J • I) *A(r .K) 
50 CDNTlNUE 

RETURN 
60 \\RlTE( I, 200) 

STOP 
200 FDRMAT(5X,' ***1HE MA..TRIX IS SINGULAR***') 

END 

Subroutine LINEAR. This subroutine solves a set of linear equations in the 
form Ax c by calling subroutine LU to factorize matrix A into Land U matrices. The 
argument parameters in this subroutine are as follows: 

A 

e 

w 
leOL 

N 

ILU 

EPS 

The given N x N matrix, either as the original A matrix (ILU = I), or 
in the form of LU (ILU = 0). In either case, on return, A contains the 
Land U matrices. 

An N-vector containing the right side of the known quantities c, which 
upon return will contain the solution vector x. 

An N-vector for work space. 

Integer N-vector, which upon return will contain the column indices. 

Number of rows (columns) of matrix A. 
An index that must be set to 0 or 1 by the calling program. If EQ. 0, 

Land U matrices are already available in A. If EQ. I, Land U 
matrices are not available; i.e., this subroutine must call subroutine 
LU. 

Test value for deviation from zero due to round-off error. 

If L-U factorization must be employed on a matrix, then ILU must be set to I by 
the calling program. In this case, this subroutine will call subroutine LU to determine 
the Land U matrices and also the leOL vector. However, if the Land U matrices and 
leOL vector are already available, then ILU can be set to 0 by the calling program. This 
subroutine performs the steps of Eqs. 3.25 and 3.26 and stores the solution vector in the 
vector e. The dimensions of matrix A and vectors e, W, and leOL must be set properly 
by the calling program. A FORTRAN program for such a.subroutine is as follows: 

SUBROUfINE LINEAR (A,C,W, ICDL,N, ILU,EPS) 
DIMENSION A(N ,N) ,C(N) ,W(N) ,ICDL(N) . 
IF (ILU.GT.O) CALL LU (A,ICDL,N,EPS) 
00 10 J=l,N 

10 W(J)<=cU) 
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C ..... Perform forward elimination step. LY-C 
00 30 J-2,N 

Sl..M=weJ) 
JMl-J-l 
00 20 K-l, JMl 

20 Sl..M=SlM-A(J ,K) *W(K) 
30 weJ)-SlM 

C ..... Perform back substitution step. UX-Y 
weN)..W(N)/A(N,N) 
NPl-N+l 
00 50 J-2,N 

I-NP1-J 
StM=weI) 
IPl-l+l 
00 40 K-IP1,N 

40 Sl..M=SlM-A(I,K)*W(K) 
50 we I )-Sl.M!A( I, I) 

C ..... Pennute the solution vector to its original form 
00 60 J-l,N 

60 C(ICOL(J))-weJ) 
REruRN 
END 

Example 3.12 
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Write a computer program, making use of subroutines LINEAR and LU, to solve 
a set of linear algebraic equations. 

C***** EXAMPLE 3.12 ***** 
DIMENSION B(120),I(10) 
~TA EPS/O.OOOll 

C ..... Read no. of ro~ (columns) 
v.RITE(l,200) 
READ (1,* ) N 

C ..... Pointers for subarrays 
Nl-l 
N2-Nl+N*N 
N3-N2+N 
NUSED=N3+N-l 

C ..... Perform L-U factorization: ILU-l 
ILU-l 
CALL SOLVE (B(Nl),B(N2),B(N3),I,N,ILU,EPS) 
STOP 

200 FORMAT(SK, 'ENTER N') 
END 

SUBROUfINE SOLVE (A,C,W, ICOL,N, lLU,EPS) 
DIMENSION A(N ,N) ,C(N) ,weN), ICOL(N) 

C ..... Read the matrix A row by row 
00 10 J-l,N 

v.RITE(1,200) J 
10 READ (1, * ) (A(J ,K),K-l,N) 

C ..... Read the right-hand-side vector C 
20 v.RlTE(1,210) 

READ (1,* ) (C(J),J-l,N) 
C ..... Solve AX - C 

CALL LINFAR (A,C,W,ICOL,N,ILU,EPS) 
C ..... Report the solution vector 

v.RlTE(1,220) (C(J),J-l,N) 
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C ..... Check for another vector C 
VoRITE(1,230) 
READ (t, * ) IC 
IF (IC.EQ.O) RE1URN 
I LU=O 
ooro 20 

200 FOm£.T( 5X, 'ENTER RaN' , IS) 
210 FOm£.T(5X, 'ENTER VECI'OR C') 
220 FOm£.T(5X,'THE SOLUTION IS',I,10FIO.S) 
230 FOm£.T(5X, 'IF AN01HER VECI'OR C IS GOING TO BE GIVEN' ,I, 

+ 7X, 'THEN ENTER I, amERWISE ENTER 0') 
END 

Solution This program is written in a general form. It can accept up to 10 equa
tions in 10 unknowns. If a set of more than 10 equations is to be solved, then the 
dimensions of the B and I arrays must be changed to 12N and N, respectively, 
where N is the number of equations. 

Note how the B array is split into smaller subarrays. This technique will be 
used frequently in all of the programs in this text. For a set of equations Ax = c, 
the matrix A and vector c are entered. After the solution is obtained, the user may 
enter a different vector c to obtain a new solution. This process may be repeated 
as many times as needed. 

3.4 NONUNEAR ALGEBRAIC EQUATIONS 

One of the most frequently occurring problems in scientific work is to find the roots of 
one or a set of nonlinear algebraic equations of the form 

<I>(x) = 0 (3.36) 

i.e., zeros of the functions <I>(x). The functions <I>(x) may be given explicitly or as tran
scendental functions. Kinematic analysis of mechanical systems is one example for 
which solution of constraint equations of the form of Eq. 3.36 is required. In this case, 
the explicit form of the constraint equations is available. 

Numerous methods are available to find the zeros of Eq. 3.36. However, depend
ing on the application, some methods may have better convergence properties than oth
ers, and some may be more efficient. In either case, the methods are, in general, 
iterative. The most common and frequently used method is known as the Newton-Raph
son method. 

3.4.1 Newton-Raphson Method for One Equation in One Unknown 

Consider the equation 

<I>(x) = 0 (3.37) 

to be nonlinear in the unknown x. The Newton-Raphson iteration is stated as 

xi+ I = xi __ 1_. <I>(xi) 
<l>x (x}) 

(3.38) 
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where 

at (3.39) 

and the superscripts j and j + 1 are the iteration numbers. The Newton-Raphson al
gorithm produces a sequence of values, as follows: 

o <p(XO) 
Xl x 

- <px(XO) 

<p(x I) 
x 2 = Xl 

<px(x l
) 

where XO is the initial estimate of the solution of Eq. 3.37. The sequence of values, in 
many problems, will approach a root of <P(x). 

The geometry of Newton-Raphson iteration is shown in Fig. 3.10. The Newton
Raphson method, when it works, is very efficient, but restrictions on the method are sel
dom discussed. The sketches in Figs. 3.11 through 3.13 show how the method may 
diverge or may converge to an unwanted solution. Since the Newton-Raphson method 
will not always converge, it is essential to terminate the process after a finite number of 
iterations. 

3.4.2 Newton-Raphson Method for n Equations in n Unknowns 

Consider n nonlinear algebraic equations in n unknowns, 

<Il(x) 0 (3.40) 

where a solution vector x is to be found. The Newton-Raphson algorithm for n equations 
is stated as 

<I>(x) 

----4-~~~--~--~-----x 

Solution 

Figure 3.10 Graphic representation of 
Newton-Raphson method. 

(3.41 ) 

<p(x) 

Figure 3.11 Root at infection point. 
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Solution 
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<l>(x) 

<l>(x) 

Figure 3.12 Multiple roots. 

I<'igure 3.13 Divergence near a local mini
mum or maximum. 

where fIl;I(XI) is the inverse of the Jacobian matrix evaluated at x xi. Equation 3.41 
can be identified as the n-dimensional version of Eq. 3.38. The term fIl(xi) on the right 
side of Eq. 3.41 is known as the vector of residuals. which corresponds to the violation 
in the equations. 

Equation 3.41 may be restated as a two-step operation: 
fIlx(xi)!J.xi -fIl(xi) (3.42) 

(3.43) 

where Eq. 3.42, which is a set of n linear equations, is solved for !J.xi. Then, xi+ 1 is 
evaluated from Eq. 3.43. Gaussian elimination or L-U factorization methods are fre
quently employed to solve Eq. 3.42. The term !J.xi Xi+l - xi, known as the Newton 
difference, shows the amount of correction to the approximated solution in the jth itera
tion. The computational procedure is stated as follows: 

ALGORITHM NR-I 

(a) Set the iteration counter j = O. 

(b) An initial estimate XO is made for the desired solution. 

(e) The functions fIl(xi) are evaluated. If the magnitudes of all of the residuals <l>i(xi), 
i = 1, ... ,n, are less than a specified tolerance e, i.e., if 1<1>;1 < e, 

1, ... , n, then xi is the desired solution; therefore terminate. Otherwise, go to 
(d). 

(d) Evaluate the Jacobian matrix fIl,(xi) and solve Eqs. 3.42 and 3.43 for XJ+l. 



Sec. 3.4 Nonlinear Algebraic Equations 69 

(e) Increment j; Le., set j to j + 1. If j is greater than a specified allowed number of 
iterations, then stop. Otherwise go to (c). 

Algorithm NR-I is stated for the Newton-Raphson method in its simplest form. 
There are numerous teehniques that can be included in the algorithm to improve its con
vergence. These techniques are not discussed in this text. Interested readers are referred 
to textbooks on numerical analysis. 

Example 3.13 
Figure 3.14 shows a disk that is pressed against a plane surface that passes through 
point A. Apply the Newton-Raphson method to find <1>2 and d when <1>1 30°. 

Solution Two constraint equations may be written, as follows: 

<1>1 == b cos CPI + a cos CP2 d = 0 
<1>2 == b sin cP, + a sin CP2 - r 0 

(I) 

In order to analyze this system using the coordinate partitioning method of 
Sec. 3.2.1, the dependent and independent coordinates are taken to be u == [<1>2, dt, 
and v == [<I>d. Henee, Eq. 1 may be rewritten as 

<I> 1 = 2 cos CP2 d + to cos cP, = 0 

<1>2 = 2 sin CP2 - 4 + to sin CPI 0 

The Jacobian matrix for this system is 

<P == [-2 sin CP2 
q 2 cos CP2 

-I 

o 
where q [CP2' d, CPI]T, or 

<p == 'f'2 
[
-2 sin A-. 

u _ 2 cos CP2 

and 

<p. == [-~~ ~~s ~J 

~] 

For the Newton-Raphson algorithm, Llu is evaluated by solving 

[-~ ~~ i2 ~J [~~2J = [-:J 

a 2m 
r 4m 
b; 10m 

(2) 

(3) 

(4) 

(5) 

Ip 
I 

----------Joo-j 
I Figure 3.14 Roll with slip (Example 3.13). 
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Since Eq. 5 is simple to solve, there is no need to apply a numerical technique. It 
is found that 

11<p? = --""----
- 2 cos <P2 

I1d <1>1 + <1>2 tan <P2 
(6) 

Iterative results using this formula are presented in the accompanying table, where 
<PI = 30°. After three iterations, <P2 5.76 rad (330°) and d = 10.3924, and the 
residuals are <1>1 -0.0003 and <1>2 = 0.00007, which are small enough to termi
nate the process. Note that, since 11<P2 is found in radians from Eq. 6, then either 
<P2 must be converted to radians (from degrees), or 11<P2 must be converted to de
grees (from radians). 

Iteration 
number d t:.d 

5.59 (326') 10.0 0.19 -0.29 0.19 0.43 

2 5.77 10.43 0.026 0.0206 -0.0118 -0.03759 

3 5.76 10.3924 -0.0003 0.00007 

tAli angles should be in radians. 

3.4.3 A Subroutine for Nonlinear Algebraic Equations 

The Newton-Raphson algorithm of Section 3.4.2 is represented here in the form of a 
subroutine that can be embedded in programs to solve sets of nonlinear algebraic equa
tions. This subroutine makes use of subroutines LINEAR and LV to solve Eqs. 3.42 and 
3.43 iteratively. This subroutine is written in the simplest possible form, which can be 
modified easily. 

Subroutine NEWTON. The argument parameters in this subroutine are as 
follows: 

A,C,W, 
ICOL, 
N, EPS 
NRMAX 
PEPS 
X 

Refer to subroutine LINEAR 
Maximum number of iterations allowed 
Error tolerance on the Newton differences 
Vector of dependent coordinates (unknowns) 

This subroutine allows a maximum of NRMAX Newton iterations for finding the 
solution vector X to the set of nonlinear algebraic equations. If the solution is not found 
in NRMAX iterations, the subroutine terminates the process with a CONVERGENCE 
FAILED message. In each iteration, a call to a user-supplied subroutine FVNCT is 
made. This subroutine must provide the Jacobian matrix <1'. and the constraint violations 
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<Jl (refer to Eq. 3.41), for the particular problem at hand, in matrix A and array C, re
spectively. Equation 3.42 is then solved by a call to subroutine LINEAR. The Newton 
differences ax are returned in array C, which is employed to correct the vector of un
known X. Note that Eqs. 3.42 and 3.43 can be written as 

<Jlx(xj
) a'Ki = <Jl('Ki) (3.44) 

and 
Xl+1 xj axj (3.45) 

which are employed in this subroutine. Finally, if all of the Newton differences (in abso
lute value) that are stored in C are less than the specified tolerance FEPS, the subroutine 
successfully terminates the process by returning to the calling routines. A FORTRAN 
program for such a subroutine is as follows; 

/~ 
SUBROUfINE NEWION/ (A,C,W, I(x)L,N ,EPS,NRMAX,FEPS,X) 
DIMENS ION A(N 'Nl'C.(~) ,weN) , I(X)L(N) ,X(N) 
00 20 I=1,NRMAX / 

CALL FUNCf ( ,C. N) 
CALL LINEAR (A,C,W,I(x)L,N,l,EPS) 
lCONVR=O 
00 10 J=1,N 

IF (ABS(C(J)).GT.FEPS) I(x)NVR=1 
10 X(J)-X(J)-C(J) 

IF (I(x)NVR) 30,30,20 
20 <DNTINUE 

v.RITE(1,200) 
STOP 

30 RETURN 
200 FORMAT( 5X, '* **(x)NVERGENCE FAI LED** * ' ) 

END 

Example 3.14 
Write a computer program, making use of subroutine NEWTON, to solve the 
problem of Example 3.13. 

Solution The main routine presented here for this example is written in a general 
form. It can handle problems with up to 10 independent variables v and 10 depen
dent variables u, without the need to increase the dimension of the arrays. The 
program asks the user for the following information: 

Number of independent variables 
Number of dependent variables 
Known values for the independent variables 
Initial estimates for the dependent variables 

The main routine calls subroutine NEWTON, which in turn calls subroutines 
LINEAR (and LU) and FUNCT. 

The constraint equations of Eq. I and the Jacobian matrix <Jlu of Eq. 3 are 
formulated in subroutine FUNCT. In this subroutine, the array F, which has two 
elements, contains the constraint violations, and the 2 x 2 array (matrix) A con
tains the Jacobian entries. 
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c***** EXAMPLE 3:14 ***** 
a:M.{)N /EXAMPLI U(tO) ,V(tO) 
DIMENSION n(120).I(10) 
DATA EPS/O.OOOI/, FEPS/O.OOI/, NeMAX/25/ 

C ..... Initialize the variables 
WUTE( 1 ,200) 
READ (1,* ) NV,N 
IF (NV.EQ.O) ooro 10 

WUTE(l,210) 
READ (1,* ) (V(J),I~l,NV) 

10 WUTE( 1,220) 
READ (1,* ) (U(I),I-t,N) 

C ..... Pointers for the subarrays 
Nl-l 
N2-Nl+N*N 
N3-N2+N 
NUSED-N3+N -1 

C ....• Perfonn Ne~on-Raphson iteration 
CALL NEWTON (n(Nl),n(N2),n(N3),I,N,EPS,NeMAX,FEPS,U) 
WRITE(I,230) (U(I),J-l.N) 
STOP 

200 FORMAT(SX, 'ENTER NO. OF INDEPENDENT VARIABLES V',/, 
+ 8X, 'AND NO. OF DEPENDENT VARIABLES U') 

210 FORMAT(SX, 'ENTER VALUES FOR 'IHE INDEPENDENT VARIABLES') 
220 FORMAT(SX, 'ENTER ESTIM\TES FOR 'IHE DEPENDENT VARIABLES') 
230 FORMAT( ''IHE SOLUrION TO DEPENDENT VARIABLES IS:' ,/, 10FI0.5) 

END 

SUBRWI'INE FUNCf (A,F,N) 
a:M,{)N /EXAMPLI u(10) ,v(10) 
DIMENSION A(N,N),F(N) 

C***** EXAMPLE 3.13 ***** 
C ..... Constraint equations 

F(l) = 2.0*OOS(U(1»-U(2)+10.0*OOS(V(1» 
F(2) = 2.0*SIN(U(I»-4.0 +10.0*SIN(V(I» 

C ....• Jacobian nmtrix 
A(I,I) =-2.0*SIN(U(1» 
A(I,2) =-1.0 
A(2,1) = 2.0*OOS(U(I» 
A(2,2) 0.0 

RETURN 
END 

PROBLEMS 

3.1 For each of the planar mechanical systems shown in Fig. P.3.1, answer the following 
questions: 

(a) Is the system an open loop or a closed loop? 

(b) If the system contains any closed loops, identify all of the closed loops. 

(c) Determine the number of degrees of freedom of the system. 

(d) Identify all of the kinematic joints. 

Note: For mechanisms (b) and (i) consider two cases: where thc wheel(s) do(es) not slip, or 
where the wheeJ(s) slip(s). 

3.2 Determine which of the following constraint equations are nonholonomic: 

(a) 2 cos 1>1 + 3.6d2 cos 1>3 3.1 0 

(b) X4 - 3 cos 1>4 X6 + 2.5 sin 1>r, 0 
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(a) 

(d) 

(g) 

(c) X2 + 0.6t + 0.1 = 0 

(d) X2Y3 + Y3X2 = 0 

(b) 

leI 

(hI 

Figure P.3.1 

(e) (XI x3i + (YI - Y3i - d2 > 0 

(f) -eleo + eoel e3e2 + e2ej = 0 

(e) 

(f) 

I 

3.3 For the slider-crank mechanism shown in Fig. P.3.3, assume II 1.2 and 12 2.6. 
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(3) Write the constraint equations in terms of the coordinates CPI, CP2, and d .. From these 
equations, derive the velocity and acceleration equatio~s. 

(b) If CPI is the driving coordinate, then for CPI = 0.8 rad, CPI 0.1 rad/s, and ~I 0, find 
the remaining coordinates, velocities, and accelera~ions. .. 

(c) If the slider is the driving link, then for d = 2.5, d = -0.2, and d -0.06, find the 
remaining coordinates, velocities, and accelerations. 
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Figure P.3.3 

3.4 Points P and Q are defined on the coupler of a four-bar mechanism as shown in Fig. P.3.4. 
Assume II := 0.5, 12 1.2, I) 0.8,14:= 0.7,15 0.15, and 16 = 0.2. 

Figure P.3.4 

(a) Derive the constraint, velocity, and acceleration equations (loop ABeD). 

(b) Write expressions for x P
, /, x Q

, and yQ in terms of the coordinates. 

(c) From (b), derive expressions for the velocity and acceleration of P and Q. 
(d) For ~I 71'/4, ~l -0.171', and :bl = 0, solve the equations obtained in (a) to find 

the remaining coordinates, velocities, and accelerations. 

(e) Use the results of (d) and substitute in the expressions of (b) and (c) to obtain the coor
dinates, velocities, and accelerations of P and Q. 

3.5 Select some of the mechanical systems of Prob. 3. I having only closed loops, define a 
proper set of coordinates, and then derive the constraint, velocity, and acceleration equations. 

3.6 Assume that y is the independent coordinate in the constraint equations 

x 2 + xy + yz 2x + 3 := 0 

y 2 _ 3z 2 + xz + 2y I 0 

Apply two different approaches to find the velocity and acceleration equations for the coor
dinate partitioning method: 

(a) Take the first and the second time derivatives of the constraints. 

(b) Employ Eqs. 3.8 and 3.11 directly. 

3.7 Write the constraint, velocity, and acceleration equations for Prob. 3.6 in the form of the 
appended driving constraint method. Assume that the independent variable is defined as y 
CI> Y := C2, and y = C). Express these equations in the form of Eqs. 3.12, 3.14, and 3.16. 

3.8 A driver constraint equation for the slider-crank mechanism in Prob. 3.3 is stated as 

~l - 0.8 O.lt 0 

Write the constraint, velocity, and acceleration equations in the form of the appended driv
ing constraint formulation. Solve these equations for t 0 and compare the result with that 
obtained in Prob. 3.3(b). 
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3.9 Solve the system of equations 

[ -~ -~ ~ -~] [:] [~] 
4 1 3 -1 Y 1 

o 1 -2 5 z 2 

by the following methods: 

(a) Gaussian elimination 

(b) Gauss-Jordan reduction 

(c) L-U factorization 

3.10 Solve the system of equations 

[ 
3 1 -1 2] [w] [ 0] -6 -2 4 3 x 4 

o 3 2 -2 y I 
1 1 -5 6 z -10 

by the Gaussian elimination method 

(a) Without pivoting 

(b) With row pivoting when necessary 

(c) With column pivoting when necessary 

3.11 Solve the system of equations in Prob. 3.9 by L-U factorization and 

(a) No pivoting 

(b) Partial pivoting with row interchange 

(c) Partial pivoting with column interchange 

(d) Full pivoting 
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3.12 For the system shown in Fig. P.3.12, assume no slipping between the wheel and the contact
ing surface. If OA 1.5, AB = 2, Be = 1, r 1.2, and OE 0.2, write the constraint 
equations for this system in terms of c/>Io c/>2, c/>], and d. Note that two equations can be writ
ten for the loop closure and one equation can be written for the no-slip condition. Further
more, it is known that the system was initially assembled for d = 3 and c/>3 120°. For the 
crank angle c/>I :; 60°, apply the Newton-Raphson algorithm to solve the constraint equa
tions for the unknown coordinates. Show the result of each iteration in a table. 

8 

E 

Figure P.3.12 
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3.13 For the quick-return mechanism shown in Fig. P.3.13, derive the constraint, velocity, and 
acceleration equations. Solve these equations by writing a computer program using subrou
tines NEWTON and LINEAR. Assume DB = 0,7, CD = 2.1, DE 0.9, and the configu-
ration is for tPl 1T/6, ~I -0.2, and 4>1 = o. 

Figure P.3.13 

3.14 For the mechanism of Prob. 3.13 assume a driver constraint as 

1T 
tPl - 6" + 0.2/ = 0 

Start from t = 0 and increment t gradually to simulate the motion of the system for a com
plete cycle. 

3.1S Modify the computer program of Prob. 3.13 to solve Prob. 3.12. Assumc that the crank 
rotates with a constant angular velocity of 0.2 rad/s. 

3.16 The four-bar mechanism shown in Fig. P.3.16 is used to advance a film strip inside a movic 
projector. 17 

3 

l 
z t --4.5-~ 

}<'igure P.3.16 

(a) Write the constraint equations for the four-bar linkage ABCD. 

(b) Write expressions for the coordinates of point P in terms of o/\> tP2, and tP3' 
(c) Develop a computer program to solve the constraint equations for a complete revolution 

of the crank and compute the coordinates of P. 

(d) Plot the path of P and show whcre point P bccomes cngaged and disengaged with the 
film strip. 
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Planar Kinematics 

If all links of a mechanical system undergo motion in one plane or in parallel planes, the 
system is said to be experiencing planar motion. In this chapter, only planar mecha
nisms, in which all links experience planar motion, are considered. A more descriptive 
explanation of conditions for planar motion is given in Chap. 9. 

In Chap. 3 several examples of kinematic analyses were given using a minimal set 
of Lagrangian coordinates. Kinematic analysis of mechanical systems using Cartesian 
coordinates is no different in principle from the method of analysis with Lagrangian co
ordinates. The use of Cartesian coordinates, however, results in a larger number of coor
dinates and constraint equations. The number of degrees of freedom of a system, 
however, is the same regardless of the type of coordinates used. Since the number of in
dependent coordinates is equal to the number of degrees of freedom of a system, then 
the number of dependent Cartesian coordinates is generally greater than the number of 
dependent Lagrangian coordinates. 

Cartesian coordinates are used exclusively in this chapter and the remainder of the 
text. 

4.1 CARTESIAN COORDINATES 

In order to specify the configuration or state of a planar mechanical system, it is first 
necessary to define coordinates that specify the location of each body. Let the xy coordi
nate system shown in Fig. 4.1 be a global reference frame. Define a body-fixed g,TJ, co
ordinate system embedded in body i. Body i can be located in the plane by specifying 
the global coordinates r, [x, y IT of the origin of the body-fixed coordinate system and 
the angle CPr of rotation of this system relative to the global coordinate system. This 
angle is considered positive if the rotation from positive x axis to positive g, axis is 
counterclockwise. 

77 
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Figure 4.1 Locating point P relative to 
the body-fixed and global coordinate systems. 

A point Pi on body i can be located from the origin of the ~i'YIi axes by the vector 
sf. The coordinates of point Pi with respect to the ~i'YIi coordinate system are e and 'YI;' 
The local (body-fixed) components of vector s; are shown as Sl; = [e, 'YIP];' Since Pi is 
a fixed point on body i, e and 'YI; are constants, and therefore Sl f is a constant vector. 
The global xy components of vector sf are shown as sf. The elements of s; vary when 
body i rotates. Point Pj may also be located by its global coordinates r; [x

p
, yp];. It 

is clear that the components of P; are not necessarily constant, since body i may be in 
motion. Position vectors such as r{, sf, Sl;, r i , and so forth, are 3-vectors. However, in 
planar motion, since the z component of these vectors remains constant, the vectors are 
treated as 2-vectors. 

The relation between the local and global coordinates of point Pi is 

(4.1) 

where 

Ai = [::: -:~~:1 (4.2) 

is the rotational transformation matrix for body i. The transformation matrix Aj is the 
simplified form of the following 3 X 3 matrix: 

Ai = [:~:: ~:~n: ~J 
o 0 I i 

Equation 4.1 in expanded form can be written as 

or 

Note that 

[xPJ [x] [cos ~ - sin ~J [~P] 
yP i y, + sin ~ cos ~ i' 'YIP i 

x; = Xi + e cos ~i - 'YI; sin ~i 
y; Yi + e sin ~i + 'YI; cos ~i 

(4.3) 

s; Aisl; (4.4) 

is the relationship between the local and global components of vector sf. 
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The vector of coordinates for body i is denoted by the vector 

qi = [rT, <P Ji 
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= [x,y, <PJi (4.5) 
For a mechanical system with b bodies, the coordinate vector is the 3 x b vector 

q _[T T 7lT 
- Q],Q2,···,qbJ 

= [XI' YI, <PI' X2, Y2, <Ph ... ,Xb' Yb' <PbY (4.6) 

where q without a sUbscript denotes the vector of coordinates for the entire system. 
An algebraic 3-vector with a superscript prime is one that contains local compo

nents; e:g., Sf;, S;, n;, or w;. An algebraic 3-vector without a superscript prime is one 
that contains global components; e.g., sf, Sj' nj , wj ' r;, or rj . 

EXI~mple 4.1 
For the mechanism shown in the illustration, body 3 has translational coordinates 
r3 = [1.2, 2.5t and <P3 5.67 rad. Point B on body 3 has local coordinates e~ 

1.8 and '11~ = 1.3. Find the global components of vector s~ and the global coor
dinates of B. 

B 

Solution The global components of s~ are found to be 

~ A3Sf~ = [c~s <P -sin <p] [-1.8] 
sm <P cos <P 3 1.3 [-0.72] 

2.10 

Hence the global coordinates of Bare 

~ f3 + s~ = [1.2] + [-0.72] 
2.5 2.10 [0.48] 

4.60 
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4.2 KINEMATIC CONSTRAINTS 

In a mechanical system, the links and bodies may be interconnected by one or more kine
matic joints. For example, the quick-return mechanism shown in Fig. 4.2(a) consists of 
five moving bodies interconnected by five revolute joints and two sliding joints. Since 
this mechanism undergoes planar motion, the motion of each moving body is described 
by three coordinates -~ two translational and one rotational. The kinematic joints in this 
system can be described as algebraic constraint equations. 

In the following subsections, several commonly used kinematic joints are formu
lated. Some of these joints fall under the lower-pair category (LP) and the rest fall in the 
higher-pair (HP) category. The technique employed to formulate kinematic constraint 
equations for these joints may be applied to most other commonly used or special
purpose joints. 

In general, fonnulation of lower-pair joints does not require any information on the 
shape (outline) of the connected bodies. For example, the quick-return mechanism of 
Fig. 4.2(a) can also be represented as shown in Fig. 4.2(b), where the body outlines are 
drawn arbitrarily. To derive constraint equations describing each joint, one need know 
only the position of the joint with respect to the bodies to which it is connected. 

In some higher-pair joints, either the entire shape or a partial shape of the body 
outline must be known. For example, in analyzing the motion of a cam-follower pair, 
the full or partial outlines of the cam and the follower must be described. In some other 
higher-pair joints, instead of the shape of the outline, the shape or curvature of a slot on 
one of the bodies must be known. 

In the following subsections, the constraint equations are denoted by tI> with a 
superscript indicating the constraint type and the number of algebraic equations of that 

(a) (b) 

Figure 4.2 Quick-return mechanism: (a) schematic presentation and (b) its equivalent 
representation wilhou t showing the actual outlines. 
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expression. For example, 4>(r.2) denotes the revolute joint constraint which contains two 
equations, and cp(r", I) denotes the revolute-translational joint constraint which contains 
one equation. 

4.2.1 Revolute and Translational Joints (lP) 

Revolute and translational joints are lower-pair kinematic joints. Examples of revolute 
joints are joints A, B, C, D, and 0 in the quick-return mechanism of Fig. 4.2. Schematic 

,-,representation of a revolute joint eonnecting to bodies i and} is shown in Fig. 4.3. The 
center of the joint is denoted by point P. This point can be considered to be two coinci
dent points; point Pi on body i and point Pj on body}. Location of point P on body i and 
body j can be described by the two vectors s; and S), where S'; [gP, 'l/]; and 
S'; = [tP

, TnT are constants. The constraint equations for the revolute joint are obtained 
from the vector loop equation 

or 

which is equivalent to 

4>(r,2) == r. + A.s 'P - r - As'P 0 
III J } J 

More explicitly, Eq. 4.7 can be written in the form 

4>(r,2) == [< -x~J Y; - yJ 
Equation 4.8 can be written in expanded form, using Eq. 4.3, as 

4>(r, 2) [Xi + t; cos 1>1 - 11; sin 1>1 Xj cos 1>j + 11; sin 1>j] = [OoJ 
YI + t; sin 1>1 + 11; cos 1>i Yj t; sin 1>j - 11; cos 1>j 

(4.7) 

(4.8) 

(4.9) 
The two constraints of Eq. 4.7 reduce the number of degrees of freedom of the system 
by 2. Therefore, if the two bodies of Fig. 4.3 are not connected to any other bodies, 
then they have 4 degrees of freedom. 

Figure 4.3 Revolute joint P connecting 
bodies i and j. 
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In the quick-return m~chanism of Fig. 4.2, the two sliders (T1 and Tz) are good 
examples of translational joints. This type of joint may appear in different shapes in a 
mechanism. Figure 4.4 illustrates severa] forms and presentations of translational joints. 
In a translational joint, the two bodies translate with respect to each other parallel to an 
axis known as the line of translation; therefore, there is no relative rotation between the 
bodies. For a translational joint, there are an infinite number of parallel lines of translation. 

z i ~ 
I 

(j) 

(i) I 

I 

Figure 4.4 Different representations of a translational joint. 

A constraint equation for eliminating the relative rotation between two bodies i 
and j is written as 

<Pi - <Pj - (<p? - <PJ) 0 (4.10) 
where <p? and <P J are the initial rotational angles. In order to eliminate the relative motion 
between the two bodies in a direction perpendicular to the line of translation, the two 
vectors s; and d shown in Fig. 4.5 must remain parallel. These vectors are defined by 
locating three points on the line of translation - two points on body i and one point on 
body j. This condition is enforced by letting the vector product of these two vectors be 

Figure 4.5 A translational joint between bodies i and j. 
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zero. A s~mple method would be to define another vector iii perpendicular to the line of 
translatiOll and to require that d remain perpendicular to iii; i.e., that 

nid 0 
or 

(x; xf) (xf - x;) + (Y; R)( P P' Yi Yj -Yi) 0 (4.11) 

where 

ni= [x; - xfJ 
Y; yf d = [xr x~J 

Yj - Yi 

ni 
[x; - xfJ [ -(~; y?)J 
Y; - yf xQ Xi I 

Therefore, Eqs. 4.10 and 4.11 yield the two constraint equations for a translational joint as i 

cp(t.2) = [(X; - xf) (Y) yf) - «( ~f) (x) - X;)J [OoJ (4.12) 
<Pi <Pj - (<Pi - <p) 

Note that a translational joint reduces the number of degrees of freedom of a system by 2. 

Example 4.2 
For the revolute and translational joints shown in the accompanying illustration, 
define the points needed in order to use Eqs. 4.9 and 4.12 and determine their 
coordinates. 

Solution The body-fixed coordinates of point A are 

g~ = -1.6, TJ~ 2.3, g: = 0, TJ: = -1.5 

tThe vector product of Si and d gives directly the first constraint of Eq. 4.12. 



84 Planar Kinematics Chap. 4 

These can be used for the revolute joint constraints of Eq. 4.9. For the transla
tional joint, two points on body 2 and one point on body 3 are selected on a line 
parallel to the line of translation. The coordinates of these points are: 

g~ =:; 0, 'YJ~ =:; 0, gi = 1, 'YJf =:; 0, g~ 0, 'YJi = -0.5 
These coordinates can be used in the translational joint constraints of Eq. 4.11. 

4.2.2 Composite Joints (LP) 

The total number of constraint equations and coordinates describing a mechanical system 
can be reduced if some of the joints and bodies are combined into composite joints. This 
technique only simplifies the analytical formulation without changing the physical kine
matic characteristics of the system. For example consider three bodies connected by two 
revolute joints, as shown sehematically in Fig. 4.6(a). This system requires nine coordi
nates (three per body) and four constraint equations (two per revolute joint). Therefore, 
this system has 9 - 4 =:; 5 degrees of freedom. This system may be represented by the 
kinematically equivalent system shown in Fig. 4.6(b). In this representation, body k and 
the two revolute joints are considered to be a revolute-revolute joint (rigid link) without 
any coordinates. This configuration requires six coordinates for bodies i and j, and as 
will be shown presently, one constraint equation for the revolute-revolute joint. There-
fore, this equivalent system has 6 1=:;5 degrees of freedom. 

(al (b) 

Figure 4.6 Two representations of the same system: (a) with three bodies and two revolute joints; 
(b) with two bodies and one revolute-revolute joint. 

To formulate the constraint equation for a revolute-revolute joint, see Fig. 4.7, 
which illustrates two bodies connected by a link having length l. The length of the link 
is the distance between the centers of two revolute joints. The joint connectivity points 
on bodies i and j are shown as Pi and Pj' These points have fixed components Sf; and Sf; 
with respect to their corresponding body-fixed coordinate systems. The constraint equa
tion can be derived by requiring that the magnitUde of vector 

d s; = Gj = ~n 
connecting points Pi and Pj remain constant and equal to I. This constraint is written in 
the form 

(4.13) 
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Equation 4.13, if expanded, is written 
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Figure 4.7 Revolute-revolute joint: a link 
connecting two bodies with two revolute 
joints. 

<p(r.r,l) "" (x; - x;)2 + (y; - y;)2 l2 = 0 (4.14) 

A second type of composite joint is called the revolute-translational joint. Fig
ure 4.8 illustrates three examp1e~ of this type of joint. In Fig. 4.8(a), body i is connected 
to body k by a revolute joint and body k is connected to body} by a translational joint. 
The revolute joint, the translational joint, and body k can be combined into a composite 
joint in which point P on body i moves along an axis T on body}. Similar composite 
joints can be used in the mechanism of Fig. 4.8(b) by eliminating roller k as a body. The 
mechanism of Fig. 4.8(c) is identical in principle to the other two mechanisms; here, 
point P on body i moves on an axis parallel to the line of translation. 

Figure 4.9 illustrates schematically a revolute-translational joint between bodies i 
and}. Point Pi on body i (the revolute joint) can move along the line of translation T (the 
translational joint) on body}. Two arbitrary points Pi and Qi are chosen on the li!;e of 
translation. A constraint equation for this joint is found by requiring two vectors d and 
si to remain parallel. Or, if a vector ii} is defined perpendicular to the line of transla
tion, then 

(4.15) 

(a) (b) (e) 

Figure 4.8 Examples of composite revolute-translational joints. 
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Figure 4.9 Revolute-translational joint configuration. 

provides the same condition. If Sj nj , then 

[
-(yf, yJ)] 
x~ - xQ 

J J 

and the constraint equation is written as 

d = [xJ x;] yJ - y; 

<I>(I-r, J) = (xJ xi) (yJ - y;) (yJ yi) (xJ x;) 0 (4.16) 

Figure 4.10 shows an example of a mechanism with two revolute-translational joints. 
The slider and the revolute joint at point B can be combined to represent a revolute
translational joint. Similarly, the roller A and the revolute joint 0 can be combined and 
modeled as another revolute-translational joint. 

4.2.3 Spur Gears and Rack and Pinion (HP) 

Figure 4.10 A mechanism with two revo
lute-translational joints. 

Spur gears are used to transmit motion between parallel shafts. A pair of spur gears is 
shown in Fig. 4.11. The gears in Fig. 4.11(a) give the same motion to the shafts as the 
pair of equivalent rolling cylinders in Fig. 4.11 (b). It is assumed that there is no slippage 
between the two cylinders. 

The constraint formulation for a pair of spur gears as represented in Fig. 4.12(a) 
can be found easily. In this configuration the centers of the gears (shown here as circles) 
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/U)~\ 

<~ 
I \ 

10\ 
I 

\ (j) / 

" ./ "'-.....---~ 
(a) (b) 

(a) 

Figure 4.11 (a) A pair of spur gears, and 
(b) a pair of equivalent rolling cylinders. 

y 

L. 
Ib) 

Figure 4.12 A pair of spur gears attached to (a) a nonmoving body and (b) a moving body. 

do not move with respect to the xy coordinate system (ground or chassis). The points of 
contact R; and Rj , at time t, have equal velocities; Le., 

(a) 

If body-fixed g(f/i and g/T'/j coordinate systems are defined for each gear, then Eq. a can 
be written as 

Pi;Pi -Pj;Pj (b) 

Note that ;Pi and ;Pj always have opposite signs. Integrating Eq. b yields 

cp(g.I.I) ;;;,;; (cp; cp~)p; + (cpj CPJ)Pj = 0 (4.17) 

where cp? and CPJ are the initial conditions. Equation 4.17 is the constraint equation for a 
pair of spur gears with nonmoving centers. In this equation cpj and Cpj must be assigned 
their accumulated angle of rotation; i.e., when bodies i and j rotate, the magnitudes of 
cp; and CPj may exceed 211, 41T, .... 
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The constraint formulation for a pair of spur gears attached to a moving body k is 
shown in Fig. 4.12(b). Since all three bodies, t, j, and k, can rotate, the no-slippage 
condition at the contact point between bodies i and j can be written as 

(;Pi ;Pk)Pi = -(;Pj - ;Pk)Pj (c) 

Integrating Eq. c yields 

<1>(8.
2

•
1
) [(<Pi - <p~) (<Pk <P~)]Pi + [(<p) <PJ) (<Pk - <p~)]p) = 0 

(4.18) 

If body k does not rotate, then <Pk <P~ and Eq. 4.18 becomes identical to Eq. 4.17. 
In the constraint formulation of Eqs. 4.17 and 4.18, it is assumed that bodies i and 

j remain in contact. This condition is provided by the revolute joints connecting the 
gears to a third body. Therefore, there is only one relative degree of freedom between 
bodies i and j. 

A rack and pinion can be considered a special form of a pair of spur gears in 
which the rack is a portion of a gear having an infinite pitch radius; thus its pitch circle 
is a straight line. A rack and pinion and its equivalent system, consisting of a rolling 
cylinder on a flat surface (a straight line), are shown in Fig. 4.13(a) and (b). It is 
assumed that no slippage occurs at the point of contact for the equivalent system. 

(a) (b) 

Figure 4.13 (al A rack-and-pinion mecha
nism, and (b) the equivalent system. 

Constraint formulation for a rack and pinion is derived for the two configurations 
in Fig. 4.14. The first configuration of a rack and pinion is shown in Fig. 4.l4(a), where 
the pinion (body i) can rotate only with respect to the .:\y coordinate system and the rack 
can translate only parallel to the x axis. The condition for no slippage at the point of 
contact is written as 

(d) 

Integrating Eq. d yields 
<I>(r.p.I,I) == (<Pi - <P?)Pi - (x) - xJ) = 0 (4.19) 

A second configuration of a rank-and-pinion mechanism is shown in Fig. 4.l4(b), 
where the pinion can both rotate and translate parallel to the rack and the x axis. The 
no-slip condition is 

(e) 

Integrating Eq. e yields 

<I>(r.p.2, I) =E (Xi '- x?) + (<Pi <P ?)Pi (x) - xJ) = 0 (4.20) 

In the constraint formulation of Eqs. 4.19 and 4,20, it is assumed that bodies i and 
j remain in contact. This condition is provided by the revolute and translational joints 
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x x 

(al (bl 

Figure 4.14 Rack-and-pinion mechanism in two different configurations. 

connecting bodies i and j to a third body. Therefore, there is only one relative degree of 
freedom between bodies i and j. 

In the configurations shown in Fig. 4.14, it is assumed that the line of translation 
remains parallel to the x axis. Constraint equations for the general case can also be 
derived where the third body can be in motion with respect to the xy coordinate system. 
Derivation of this constraint equation is left as an exercise for the reader. 

4.2.4 Curve Representation 

In some of the higher-pair joints, the shape of the outline of contacting bodies must be 
described analytically or numerically for kinematic analysis. If, for example, the outline 
of a cam is circular or elliptical, then it can be described analytically. However, in gen
eral, the outline must be described numerically. 

Consider, as an example, the cam shown in Fig. 4.15(a). The outline of this cam 
can be discretized and described in polar coordinates at the points shown in Fig. 4.15(b). 
Angle 0 is incremented counterclockwise from zero to 217' in equal or variable incre
ments, and the corresponding values of s are recorded, as shown in Table 4.1. In order 
to describe this outline in a closed-form expression, a cubic interpolating spline function 
can be used. 

A spline function is a function consisting of polynomial pieces on subintervals, 
joined together according to certain smootliness conditions. The choice of degree for the 
polynomial pieces most often made is 3. In this case, the resulting splines are termed 
cubic splines. The cubic polynomials are joined together in such a way that the resulting 
spline function has continuous first and second derivatives everywhere. For the curve 
segments shown in Fig. 4.16, if two cubic polynomials SI and 82 are determined, then, 
the continuity conditions at point B, I.e., those for 0 = 1f3, are 

SI 82 

d8 1 

dO dO 

d 2 81 d 2 82 

do2 d02 
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I!'igure 4.15 (a) A cam follower, and (b) discretization of the cam outline. 

TABLE 4.1 

Number (J (deg) s (cm) 

0 3.70 
2 30 4.55 
3 60 6.80 
4 70 8.38 
5 80 10.65 c 
6 90 12.46 
7 100 11.10 
8 110 8.65 
9 120 7.04 

10 ISO 4.63 
II 180 3.80 
12 225 3.62 
13 270 3.80 
14 315 3.62 
15 360 3.70 

Figure 4.16 Two cubic polynomials describing segments of a curve. 

A detailed discussion of cubic splines is outside the scope of this text. In most 
textbooks covering this subject, well-developed algorithms and computer programs are 
presented that can be applied to a discretized table of data, such as Table 4.1, to deter
mine the corresponding cubic polynomials. 

Example 4.3 
The curve shown in the illustration is discretized and a portion of the recorded 
data is listed. A cubic spline function algorithm finds three cubic polynomials for 
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three segments of the curve as follows: 

Sl -6.53803 + 3.23002 
- 2.1730 + 4.108 

S2 = 6.5380 3 
- 8.53802 + 1.3580 + 3.755 

S3 = -9.61503 + 10.84602 6.3960 + 4.788 

Show that Sl and S2 and their first and second derivatives are continuous at point B. 
Also, for a point P where oP = 0.26 rad, find $, ds/dO, and d 2s/d02

• 

Point e (rad) 5 (em) 
Sa 

52 

1/ 5, 

A 0.2 3.75 
B 0.3 3.57 s 

C 0.4 
D 0.5 

3.35 (J 
3.10 

Solution At B, (/ = 0.3; therefore SI S2 = 3.57. The first derivatives of SI 

and S2 are 

19.6/402 + 6.4600 - 2.173 

dO 
19.61402 17.0760 + 1.358 

Evaluating the first derivatives for 0 = 0.3 yields ds1/dO = dsjdO -2.000. 
The second derivatives of Sl and S2 are 

d 2s1 
d02 = -39.2280 + 6.460 

d 2s2 
d02 = 39.2280 - 17.076 

Evaluating the second derivatives for 0 = 0.3 yields d 2s l / dOl = d 2sd d02 = 
-5.308. 

For point P, since 08 
.;;: oP.;;: fr, function SI yields s 3.646, ds/dO 

1.819, and d 2s/d02 = -3.739. 

For any point on a curve, the g'Y/ coordinates are found from the relations 

g S cos 0 

'Y/ = s sin 0 
Then, the first and second derivatives of g and 'Y/ with respect to 0 are 

dg ds - = - ~ sin 0 + cos 0 
dO' dO 

d'Y/ ds . - = s cos 0 + sm 0 
dO dO 

(4.21) 

(4.22) 
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and 

ds. d 2s 
- S cos 0 - 2 - sm 0 + - cos 0 

dO d02 

(4.23) 
d 2r, . ds d 2s . 
d02 = - s sm 0 + 2 dO cos 0 + d02 sm 0 

For a point P, Eq. 4.22 represents the components of a vector tangent to the curve at P, 
as shown in Fig. 4.17, such as 

where jJ, = dUdO and JI = dr,jdO. 

Example 4.3a 

(4.24) 

Figure 4.17 Vector tangent to a curve at 
point P. 

Determine the er, components of P, as defined at the beginning of Example 4.3, 
and then find the tangent vector g at P. 

Solution Taking 0 = 0.26 and s = 3.646 and substituting into Eq. 4.21 yields 
e 3,523 and r,P 0.937. Since dsjdO -1.819, then Eq. 4.22 yields 
~jdO = -2.695 and dr,jdO 3.056; i.e., g'P = [-2.695, 3.056f. 

The outline (or a portion of the outline) of a body can be expressed in polar coordi
nates with respect to a point different from the origin of the er, axes. As shown in Fig. 4.18, 
the discretized portion of the outline is defined in terms of sand 0 with respect to a point Q 

Figure 4.18 Polar coordinates of a point P 
with respect to point Q and the g axis. 
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and an axis parallel to the g axis. In this case, the g and 'Y/ coordinates of any point on 
that portion of the outline are 

4.2.5 Cam-Followers (HP) 

g = gQ + s cos 0 

'Y/ = 'Y/Q + s sin 0 
(4.25) 

Cam-followers are used in a variety of designs; Fig. 4.19 shows a few of the many pos
sible design variations. The contacting surfaces of a cam or a follower, in general, are 

(al Ib) lei 

(d) 

Ie) (fl 

Figure 4.19 Several commonly used cam followers: (a) disk cam with offset point fol
lower, (b) disk cam with radial roller follower, (c) disk cam with offset flat-faced fol
lower, (d) translating cam with roller follower, (e) disk cam with oscillating roller 
follower, and (f) disk cam with oscillating flat-faced follower. 
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not expressible in closed-form functions. In this case, the cubic spline function method 
of Sec. 4.2.4 can be employed. In this section, the kinematic formulations for some of 
the cam-follower configurations are derived. It is assumed that the cam and the follower 
always remain in contact; i.e., no chattering is allowed. 

The first formulation is derived for a disk cam with an offset point follower, as 
shown in Fig. 4.20. The cam is connected to a third body (possibly the chassis) with a 
revolute joint, and the follower is connected to this body with a translational joint. The 
third body mayor may not move with respect to the global xy coordinate system. The 
coordinates of the contacting point P on body j (the follower) are known constant quan
tities S') == [tP

, 'Y(]J. The global coordinates of Pj are 

The contacting point on body i (the cam) does not have constant coordinates; i.e., the 
elements of vector s'r [e, 'Y(J; are functions of O. The global coordinates of Pi are 

Then, the constraint equations for this cam-follower pair can be written as 

<I>(c-/-1.2) 

y 

r: 

(4.26) 

Figure 4.20 A disk cam and point-fol
lower pair. 
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In expanded form, Eq. 4.26 is written 

[~J + [::: -~~: ~ 1[; :~:: 1 [~l [~~:: -~~: ~ l[ ~:l [~J 
(4.27) 

Another type of cam-follower pair is the disk cam with offset roller follower 
shown in Fig. 4.2l(a). The contact points Pi and Pj d2 not have known constant coordi
nates with respect to the bodies they are on. Vector d connecting point Pi to point Qj is 
perpendicular to the tangent vector to either of the outlines at the contact point. The 
components of vector d can be found as follows: 

d = rj + Ajs'f rj - A;s'f 

Vector d is perpendicular to the tangent vector to the cam outline at Pi; therefore gid O. 
This condition alone does not eliminate the possibilities of penetration and separation 
shown in Fig. 4.21(b) and (c). If the magnitude of vector d is equal to the radius p of 
the roller, then there is no penetration or separation. This condition can be written as 
dTd - p2 = O. Hence, there are two constraint equations for this pair: 

<I>(c
1

-2.2) = [dTdgi~ p2] [~J (4.28) 

This formulation is also valid for the cam-follower of Fig. 4.19(e). 

(b) 

(a) 
(e) 

Figure 4.21 (a) Vector loop closure for a disk cam with follower pair. (b) penetration. 
and (c) separation of the outlines. 
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Ibl 

Cal 

Ie) 

Figure 4.22 (a) A disk cam with an offset flat-faced follower, (b) penetration, and (c) 
separation of the outlines. 

A disk cam with an offset flat-faced follower is shown in Fig. 4.22(a). A vector iij 
is defined perpendicular to the contacting line (or face) of the follower, which must 
remain perpendicular to the tangent vector iL i.e., g;nj must be equal to O. This con
dition alone does not eliminate the possibility of penetration or separation shown in 
Fig. 4.22(b) and (c). A vector connecting points Pi and Qj is defined as d r; - rJ. 
This vector must also remain perpendicular to iij ; i.e., dTnj must be equal to O. There
fore, the two constraint equations for this pair are 

q> (c{-3, 2) (4.29) 

This formulation is also valid for the cam-follower of Fig. 4. 19(f). 
In the cam-follower formulation, fJ is treated as an artificial coordinate. Hence, the 

vectors of coordinates for bodies i and j of a cam-follower pair are qi = [x, y, <jJ, fJlT and 
qj = [x, y, <jJ 1;' It can be observed that for any of the cam-follower pairs shown in 
Fig. 4.19, there is one relative degree of freedom between the cam and its correspond
ing follower. 

The constraint formulation has been derived in Eqs. 4.26, 4.28, and 4.29 for a 
general configuration applicable to various cam-follower mechanisms. For specific 
cases, the constraint formulation can be obtained in a much simpler form. The following 
example illustrates this point. 

Example 4.4 
Derive the constraint equation for the disk cam-follower shown in the illustration. 
The cam and the follower are attached to a nonmoving body. The motion of the 
follower is in the y direction, and the outline of the cam is circular. 
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Solution If the radii of the cam and the roller are Pi and Pj' then a constraint 
equation can be written as 

q> == Yj - Yi + 'TIf - d 0 (a) 

where d is expressed as a function of cf>i: 

d == (Pi + Pj) cos Y + e? sin cf>i 
The angle y is found from the equation 

sin y 
Pi + Pj 

It can be observed that for this special case, only one constraint equation is 
needed, and there is no need to introduce an artificial coordinate. 

4.2.6 Point-Follower (HP) 

Figure 4.23 shows part of a mechanism in which a/slot is cut into one of the bodies. 
Pin A, which is rigidly attached to the other body: can slide in the slot. This type of 
kinematic higher pair is called a point-follower joint. 

A point-follower joint between bodies i and} is shown schematically in Fig. 4.24. 
Pin P, which is attached to body i, can slide and rotate in a slot on body j. The coordi
nates of any point on the slot, relative to the body-fixed coordinate system on body j, 
can be described by Eq. 4.21; i.e., ef = s cos 0 and 'TIf s sin O. The constraint 
equations for this joint are similar to the constraint equations of a revolute joint, with the 
exception that the position of point P on body j is not constant but varies as a function 
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'Figure 4.23 The motion relative to 
body 1 of point A attached to body 2 can 
be modeled by a point-follower joint. 

Planar Kinematics Chap. 4 

Figure 4.24 Point-follower joint: Pin P is attached rigidly 
to body i and can move in the slot embedded in body j. 

of (J. Hence, the constraint equations are 

<I>(p1. 2) "'" [x; (xj + gj cos ~j ~ 1/: sin ~)J = 0 
Y; - (Yj + e sin ~j + 1/: cos ~j) 

(4.30) 

In this formulation (J is treated as an artificial coordinate and is added to the vector of 
coordinates, and both of the constraint equations of Eq. 4.30 are employed to describe 
the point-follower joint. This formulation does not provide any stopping condition when 
the pin reaches either end of the slot. 

4.2.7 Simplified Constraints 

The constraint equations describing certain kinematic conditions between two bodies can 
be simplified, in general, or replaced by other simple equations if one of the bodies is a 
nonmoving body; e.g., if one body is the chassis or ground. As an example, consider 
the quick-return mechanism shown in Fig. 4.25. Slider 3 is constrained to the ground 
with a translational joint and can move parallel to the Y axis. Similarly, slider 4 is con
strained to the ground with a translational joint and can move parallel to the x axis. The 
constraint equations of Eq. 4.12 can be used to formulate the kinematics of these two 
sliders. However, other equations can be used instead of Eq. 4.12. For example, slider 3 
cannot move in the x direction or rotate; therefore, two equa~ions of the form X3 = 

constant and ~3 constant can be used. Similarly, since slider 4 cannot move in the 
Y direction or rotate, Y4 constant and ~4 = constant can describe the translational con-
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v 

Figure 4.25 A quick-return mechanism. 

straints for the slider. Therefore, in order to eons train translation of the origin or angular 
motion of a rigid body, one or more of the following equations may be used: 

<P == Xi - C 1 0 (4.31) 

<P == Yi - C2 = 0 (4.32) 

<P CPt C3 0 (4.33) 
where CI' c2• and C3 are constant quantities. Figure 4.26 illustrates graphically the three 
constraints of Eqs. 4.31 through 4.33. 

f/iV~i \ 
1 I 
1 I 

\ I /, 
r, ...L ..... / I 
\ --- - / 
" I < \ '---.!...---/ \ 
" I I v "I / 

................ -1_--/ 
I 
I 
I 
I 
I 
I 

1---____ "-- X 

C1 

la) 

v 

'-------x I------__ x 

(b) Ie) 

Figure 4.26 The body can move with (a) constant Xi' (b) constant Yi' and (c) constant <Pi' 
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To constrain the motion of point Pi on body i in the x or Y direction, the following 
equations, which incorporate the results of Eq. 4.3, can be employed: 

<t> xi C4 

Xi + e: cos 1Ji - 1); sin 1Ji C4 0 (4.34) 

<t> Y; C5 

Yi + e sin 1Jj + 1); cos 1Ji C5 0 (4.35) 

where C4 and C5 are constants. 

4.2.8 Driving Links 

In kinematically driven systems, the motion of one or more links (bodies) is usually defined. 
For example, in the quick-return mechanism of Fig. 4.27(a) or the slider-crank mecha
nism of Fig. 4.27(b), the driving link i rotates with known constant angular velocity w. 
If kinematic analysis is to be performed using the appended driving constraints method 
of Sec. 3.2.2, then the motion of the driving link must be specified in the form of a 
driving constraint equation. For either of the mechanisms of Fig. 4.27, one moving con
straint of the form 

<t>(d-I./) 1Ji dl(t) 0 (4.36) 

can be employed, where dl(t) = 1J? + wt and 1J? is the angle 1Ji at t = O. If the driving 
link rotates with a constant angular acceleration a, then Eq. 4.36 can be used with 
dl(t) = ~at2 + (pOt + 1Jo, where (po is the angular velocity at t = O. 

Equation 4.36 is not the only type of driving equation. Depending on the mecha
nism and the motion of its driving link(s), other forms of driving equation may be required. 
Some simple driving constraints are: 

(a) 

<t>(d-2, I) == Xi - d
2
(t) 0 

<t>(d-3. I) == Yi - d
3
(t) 0 

<t>(d4.1) == xi - d
4
(t) = 0 

<t>(d-5, I) == Y; - ds(t) = 0 

Driving 
link 

(b) 

Figure 4.27 Driving link of (a) a quick-return mechanism and (b) a slider-crank 
mechanism. 

(4.37) 

(4.38) 

(4.39) 

(4.40) 
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t 
PIO 

Y t 
L, 

(a) (b) 

Figure 4.28 (a) The motion of the slider is controlled in the x direction, and (b) the 
motion of point P is controlled in the y direction. 
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For example, if the motion of the slider shown in Fig. 4.28(a) is controlled as a function 
of time, then Eq. 4.37 can be used as the driving constraint. For the mechanism of 
Fig. 4.28(b), the motion of point P in the y direction is controlled as a function of time; 
therefore, Eq. 4.40 can be employed as the driving constraint. 

4.3 POSITION, VELOCITY, AND ACCELERATION ANALYSIS 

The kinematic constraint equations (j) derived in the preceding sections for planar kine
matic pairs are, in general, nonlinear in terms of the coordinates q. If the number of 
coordinates describing the configuration of a mechanical system is n and the number 
of degrees of freedom of the system is k, then m = n - k kinematic constraints can be 
defined as 

(j) (j)(q) 0 (4.41) 

In addition, k driving constraint equations must be defined as 
(j)(d) "" (j)(q,t) 0 (4.42) 

Equations 4.41 and 4.42 represent a set of n nonlinear algebraic equations which can be 
solved for n unknowns q at any given time ( (i. 

The procedure suggested here for solving Eqs. 4.41 and 4.42 is the appended driv
ing constraint method of Sec. 3.2.2. These equations are identical in form to Eq. 3.12. 
The main difference between the formulation in this chapter and that in Chap. 3 is the 
dimension, i.e., the number of coordinates and, therefore, the number of constraint 
equations. 

Example 4.5 
A four-bar linkage was formulated for kinematic analysis in Example 3.2, using 
three coordinates, two kinematic constraint equations, and one driving constraint 
equation. Determine the number of coordinates and constraints if this mechanism 
is being analyzed using Cartesian coordinates. 
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Solution Since there are four bodies in the system - three moving links and one 
stationary link-the dimension of q is 4 x 3 12. In the accompanying illustra
tion, body-fixed coordinates are attached to each link. Body 1 is assumed to be the 
frame, and bodies 2, 3, and 4 are the crank, the coupler, and the follower, respec
tively. According to Eq. 4.7, each revolute joint is represented by two algebraic 
equations, and therefore there are 4 x 2 = 8 algebraic equations representing all 
four revolute joints. In addition, since body 1 does not move with respect to the 
xy coordinate system, three simple constraints in the form of Eqs. 4.31 through 
4.:13 are needed. Therefore, the total number of kinematic constraints is m 8 + 
3 11. For the rotation of the crank, one driving constraint makes the total num
ber of equations equal to 12. 

The first and second time derivatives of Eqs. 4.41 and 4.42 yield velocity and 
acceleration equations that are identical in form to Eqs. 3. \3 and 3.15. For position analy
sis using the Newton-Raphson algorithm, velocity analysis, and acceleration analysis, 
the Jacobian matrix of the kinematic constraints, <l>q, is needed. Also, for acceleration 
analysis, the right side of the kinematic acceleration equations, vector l' as given in 
Eq. 3.17, is needed. For each of the kinematic pairs discussed in the preceding sections 
closed-form expressions can be derived for the entries of the Jacobian matrix and the 
right-side vector of the acceleration equations. From these expressions plus the constraint 
equations, all of the necessary terms for kinematic analysis can be assembled systemati
cally. In Sec. 4.3.1, these expressions are derived in detail for some of the kinematic 
pairs. The method can be applied similarly to other constraint equations. 

Derivation of the velocity and acceleration equations requires the time derivatives 
of the constraint equations. In turn, these require the derivatives of the coordinates of 
the points describing the kinematic joint. The xy coordinates of a point P attached to 
body i can be found from Eq. 4.1, where it is assumed that the position of the point on 
the body and the coordinates of the body are known. The velocity of the point in the xy 

coordinate system can be found by taking the time derivative of Eq. 4.1, 

(4.43) 
where 

B -i- [
-sin <P -c~s <pJ 

cos <p -sm <p i 
(4.44) 
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Similarly, the time derivative of Eq. 4.43 yields the acceleration of point P: 

r; = roo; + Ais'; 
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.. ,p" A ,Pl.2 
= r i + Bis ; <Pi - is i'f'i (4.45) 

Knowing the velocity of body i, i.e., iti [e,1>];, we can use Eq. 4.43 to find the ve
locity of Pi; and similarly, knowing the velocity and the acceleration of body i; i.e., iti 
and qi' we can find the acceleration of Pj by using Eq. 4.45. 

4.3.1 Systematic Generation of Some Basic Elements 

Systematic generation of the Jacobian matrix and the right side of the acceleration equa
tions for some of the standard kinematic joints can best be illustrated by deriving these 
elements for a revolute joint. 

Consider the revolute-joint constraint equations of Sec. 4.2.1. These equations in 
compact form are written as 

<I>(r.2) == r. + A.s'P - r - As'P 0 
I I I J J J 

and in expanded form they are 

<I>(r,lst) Xi + e cos <Pi - 1/; sin <pj - xi - e cos <Pj + 1/; sin <Pj = 0 

<I>(r,2nd) == Yj + gf sin <pj + 1/; cos <Pi - Yj g; sin <Pj 1/; cos <Pj 0 

The partial derivative of these equations with respect to q, i.e., <I>~,21, provides two rows 
to the overall system Jacobian. Since <I>(r,2) is a function of only qj and %, <I>~' 2) may 
have nonzero elements only in the columns associated with qi and qj. These possible 
nonzero entries are 

CD == o4>(r.lst) 

OX; 
o4>(r.lst) 

oy; 

1.0 

0.0 

(4.46) 
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f':\ aep(r, 2nd) 

\V == --- = 1.0 
aYi 
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@ 
aep(r.2nd) 

6 == --- = t: P cos -t., - 'Yl
P sin A., acpj ~ t 'fit ~/l 'fit 

aep(r.2nrl) 

ax; 

p Xi Xi 

0.0 

-~) cos epj + TJ) sin <1>; 

where four of the entries are identically zero. The position of these nonzero entriest in 
the rows of the Jacobian matrix corresponding to <I>(r.2) and columns corresponding to qi 
and qj is shown in Fig. 4.29. 

Xi V· v I 
epj Xj v 

" J 
epj 

aep(r, 1st) I a ... 

[CP 
a G) G) a 0] Figure 4.29 Nonzero entities of the J aco-

aep(r, 2nd) I a .. 0 @ a CD CD blan matrix for a revolute joint between 
bodies i and j. 

The entries of the Jacobian matrix can also be found by taking the time derivative 
of the constraint equations. The time derivative of the constraint equations for a revolute 
joint is 

or 

Xi - (~; sin epi + TJ; cos epJ(Pi - Xj + (~) sin epj + TJ) cos ep)(pj = a 
,Vi + (~f cos epj - TJ; sin epJ(Pj Yj (~; cos epj TJf sin ep)(pj = a 

Xj 

[CP G)G) 0] :Vi 
a a (pj [~J 0@ a CD CD Xj 

:Vj 
(pj 

This velocity equation is in the same form shown by the first equation of Eq. 3.13. 
To obtain the right side of the acceleration equation for a revolute joint, either 

Eq. 3.17 can be used with the Jacobian matrix of Eq. 4.46, or the velocity equations can 

'In this text, the term nonzero entry must be interpreted as an entry with a possible nonzero value, 
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be differentiated with respect to time to obtain the acceleration equations: 
.. (l:P' A. + P A.):.i. (l:P A. p. A.).l2 .. 
Xi - ~; sm'l'i 'Y/i cos 'l'i'l'; - ~ i COS'l'i - 'Y/i sm 'l'i 'l'i - Xj 
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+ (gP sin <P + 'Y/P cos <p)4>, + (~JP cOS <p,. 'Y/.,p sin <p))4»2 = 0 J J J J. . 

Yi + (~; cos <Pi - 'Y/; sin <Pi)4>i - (e sin <Pi + 'Y/; cos <Pi)4>; Yj 

or 

where 

[CP 

P p. ,. p. P '2 
- (~j cos <Pj - 'Y/j sm <Pj)<Pj + (~j sm <Pj + 'Y/j cos <p)<pj 0 

oG)G) 
000 

o 
G) 

G)] 
CD 

Y'2 P'2 
lSi <Pi Sj<Pj (4.47) 

From Eqs. 4.46 and 4.47, it can be observed that the entries of the Jacobian matrix and 
the vector of the right side of the acceleration equations for a revolute joint can be gen
erated systematically, in a computer program. 

Tables 4.2 and 4.3 summarize the elements of the Jacobian matrix and the vector 
1', respectively, for some of the constraint equations of the basic joints. Similar ele
ments can be derived for other kinematic pairs. Verification of these elements is left as 
an exercise for the reader. 

4.4 KINEMATIC MODELING 

In general, there are many ways to kinematically model a particular mechanism, anyone 
of which may be more advantageous in some circumstances. In kinematic analysis, the 
problem size, i.e., the number of coordinates and number of constraint equations, is an 
important factor to consider. A small number of coordinates yields a smaller problem to 
solve. In this section, several simple examples are considered to illustrate methods of 
kinematic modeling. The same techniques may be used to analyze larger problems. 

4.4.1 Slider-Crank Mechanism 

The slider-crank is one of the most widely used mechanisms in practice. This mecha
nism finds its greatest application in the internal-combustion engine. The mechanism is 
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TABLE 4.2 Elements of the Jacobian Matrix for Some of the Basic Constraint Equations 

iJ<f>! ax, a<f>!ay, 

o 
",Ir, 2) 

o 

- yf) -(x; xf) 
... (1,2) 

o o 

<f>(r-r, l) - 2(y; - y;) 
+ 

(y) -

a<f>/dcf>i 

- yJ 

Xi) (x; xf) 
- y,)(y; - y?) 

- Yi) 

x,) 

y,)(y) yJ) 

(x; - xJ (x; xJ) 

a<f>! iJx} 

-1 o 

o -1 

o o 

-2(x; -

- yJ) (x; -

a<f>! acf>j 
----I 

- Yj) 

-(X) 

xf) (x; Xj)(X t x?) 
+ (y)-

-I 

2(x; - X))( y) Yj) 

2( y; y))(X) - x}) 

xf) 
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TABLE 4.3 Vector 'Y for Some of the Basic Constraint Equations 

'Y 

q.(r, 2) 

o 

-2{(x; + (y, Yj)2 

+ [(xf - Xi)(X; - Xi) + (yf yJ (yj Yi)l~f 
+ [(X; - Xj) (xl' - Xj) + (yj - Yj)(yf - Yj)l~J 

- 2[(xr - Xi)(Xj Xj)+ (yf - y,)(yj - Y)l~';Pj 
+ 2[(x; - x;)(y, Y) (y; - y,)(x, - xi)l~i 

2[(xj Xj) (y, Yj) - (yF Yj) (x, x)l~j} 

[(X; x,J (yj yJ) - (yf y,)(xj xJ)(~' 2~Jl~, 
+ [(X; - Xj)(yj - yJ) (yf - Yj)(xj - xJ)l~J 
2[(xf XJ)(Xi Xj) + (yf yJ)(Yi Yj)l~j 

t •• 
Note that <Pi = <Pi' 

made of four links or bodies, as illustrated in Fig. 4.30(a). The bodies are numbered 
from 1 to 4, as shown in Fig. 4.30(b). Body 1 is the fixed link (ground, chassis, or en
gine block), body 2 is the crank, body 3 is the connecting rod, and body 4 is the slider. 
Bodies land 2, 2 and 3, and 3 and 4 are connected by revolute joints A, E, and 0, 
respectively. Bodies 1 and 4 are connected by a translational joint T. The number of 
degrees of freedom for this mechanism is k = 4 X 3 - (3 X 2 + 1 X 2 + 3) = I, 
since there are 4 X 3 = 12 coordinates in the system, 3 revolute joints eliminate 6 DOF, 
1 translational joint eliminates 2 DOF, and ground constraints on body 1 eliminate 
3DOF. 

Body-fixed coordinates g'1/ are attached to each body, including the ground, as 
shown in Fig. 4.30(c). Positioning of these coordinate systems is quite arbitrary for 
kinematic analysis. However, it is good practice to locate the origin of the coordinate 
system at the center of gravity of the body. Furthermore, aligning at least one of the co
ordinate axes with the link axis or parallel to some line of certain geometric or kinematic 
importance may simplify the task of collecting data for the kinematic pairs in the system. 

For the three revolute joints, the following data are obtained from Fig. 4.30(c): 

g~ = 0.0, '1/1 = 0.0, g~ = -200.0, '1/~ 0.0 

g~ = 300.0, '1/~ = 0.0, g~ = -100.0, '1/~ = 0.0 (a) 

g~ 100.0 '1/~ = 0.0, g? 0.0, '1/~ = 0.0 

For the translational joint, two points on body 4 and one point on body 1 are chosen. 
The location of these points is arbitrary, as long as they are on the same line of transla-
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Figure 4.30 Kinematic modeling of a slider-crank mechanism. 
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tion. These points are A, C, and O. The distance AC is taken here as 100 mm. The data 
that define the translational joint constraints are as follows: 

~1 = 0.0, 1)1 0.0, g~' 100.0, 

g~ = 0.0, 1)~ = 0.0 

C 
1)4 0.0, 

(b) 

Additional constraints are needed to ensure that body I is the nonmoving body. A 
global xy coordinate system is added to the configuration, as shown in Fig. 4.30(d). For 
convenience, the xy coordinate system is positioned to coincide with the ~11)1 coordi
nates. Therefore, the conditions 

Xl 0.0, Yl = 0.0, 1>1 = 0.0 (c) 

must be satisfied. 
The driving constraint on 1>2 is written, using Eg. 4.36, as 

1>2 5.76 + 1.2t = 0 (d) 

where 5.76 rad is equal to 3600 
- 30°. Since the crank rotates clockwise, a negative 

sign is selected for w. 
The data defined by Eqs. a through c are sufficient to describe the connectivity be

tween different bodies in the system. If a computer program is available to generate all 
of the kinematic constraint equations, such as the program of Chap. 5, then the con
straint equations are set up and analyzed automatically. Such a program requires an ini
tial estimate of the coordinates of the system, which is used to start the Newton-Raphson 
iteration for position analysis. These estimates are found from Fig. 4.30(d) to be, 

Xl 0.0, YI 0.0, 1>1 = 0.0 

X 2 -86.6, Y2 = 50.0, 1>2 5.76 

X3 -380.5, Y3 = 40.0, 1>3 0.2 
(e) 

X4 = -663.1, Y4 = 0.0, 1>4 = 0.0 

These estim1tes need not be accurate. The Newton-Raphson algorithm starts the itera
tions using ~e estimated values and finds the exact values for the coordinates at t = O. 
The estimat~s can be made by rough measurements from the actual system, or from an 
illustration by means of a ruler and protractor. 

Since there are 12 coordinates in this problem, the computer program must gener
ate 12 kinematic constraint equations. These equations can be obtained by substituting 
the data of Eqs. a to d in the constraint equations derived in the previous sections. Equa
tion c yields three constraints: 

<PI XI = 0.0 

<P2 Yl = 0.0 (j) 

<P3 == <PI = 0.0 

Substitution of Eg. a into the revolute-joint constraints of Eg. 4.9 yields six constraint 
equations for the three revolute joints: 

<P4 == X 4 X3 + 200 cos 1>3 0 

<Ps == Y4 Y3 + 200 sin 1>3 = 0 
<P 6 X3 + 300 cos 1>3 X2 + 100 cos 1>2 = 0 

<P7 Y3 + 300 sin 1>3 - Y2 + 100 sin 1>2 = a 
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<P8 Xl + 100 cos <1>2 XI = 0 

<P9 == Y2 + 100 sin <1>2 - Yt = 0 

Planar Kinematics Chap. 4 

Two constraint equations for the translational joint are obtained by substituting the data 
of Eq. b into Eq. 4.12 and using Eq. 4.3: 

<PIO (-100 cos <1>4) (YI - 100 sin <1>1 Y4) 

- (XI 100 cos <1>1 x4)( -100 sin <1>4) 0 

<Pu <1>4 - <1>1 = 0 

Equation d is the driving constraint: 

<P12 == <1>2 - 5.76 + 1.2t 0 
The nonzero entries of the Jacobian matrix for these 12 constraints are found from 

Table 4.2. The positions of these entries are shown in Fig. 4.31. There are 36 nonzero 
entries in the 12 X 12 matrix. The nonzero entries are: 

Note that some of the entries at any given instant of time, depending on the value of the 
coordinates, may become zero. This example illustrates that about 83 percent of the en
tries of this Jacobian matrix are exactly zero. Therefore, the matrix is said to be sparse. 

4.4.2 Ouick-Return Mechanism 

Figure 4.32(a) shows a commonly used quick-return mechanism' that produces a slow 
cutting stroke of a tool (attached to slider D) and a rapid return stroke, The driving crank 
OA turns at the constant rate of 3 rad/s. Several ways to model this mechanism are pre-
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sented in this section. Each model has some advantage and some disadvantage in rela
tion to the others. 

Model 1. A maximum number of six bodies is used in the first model, as 
shown in Fig. 4.32(b). This model requires five revolute joints and two translational 
joints. There are 18 coordinates, 10 revolute-joint constraint equations, 4 translational
joint constraint equations, 3 ground constraints, and 1 driving constraint. Bodies are 
numbered as shown in Fig. 4.32(b), and the following data are deduced from this figure 
for the revolute and translational joints: 

g~ 50, 'YJ1 = 0, g~ = 0, 'YJ~ ° gg = 250, 'YJ~ = 0, g~ = 60, 'YJ~ ° gi' 'YJr = 0, ge; = -250, 'YJe; = ° revolute 
0, joints 
-60, 'YJf = 0, gr = 0, 'YJ~ ° g~ 0, 'YJ? = 300, {;~ -50, 'YJ~ = ° 

g~ 0, 'YJ~ = 0, g~ 10, "~ ~ O} 
g~ 0, 'YJff = ° tra nslationa I 
g~ 0, 'YJ~ = 0, g~ 10, 'YJ~ = ° 
gi 0, 'YJi = 500 

To constrain body I to the ground, three conditions must be satisfied: 

Xl 0, YI = -300, <PI = ° 
and the driving constraint may be written as 

<P3 - 0.52 - 3t ° 
where it is assumed that the initial angle <P~ = 30°. 

joints 

Model 2. In the second model, the two sliders, which were modeled as bodies 
4 and 6 in model I, are combined with the revolute joints at A and D. A total of four 
bodies, three revolute joints, and two revolute-translational joints are used in this model. 
The system has 12 coordinates, 6 revolute-joint constraints, 2 revolute-translational joint 
constraints, 3 ground constraints, and I driving constraint. This model is shown in 

4.32(c), for which the following data can be obtained: 

g~ 250, 
gi' 0, 

g~ 0, 

{;~ 50, 

g~ 10, 

g~ = -60, 

g7 0, 

'YJ~ = 0, 

'YJi = 0, 
'YJ~ = 300, 

'YJ~ = ° 
'YJ~ = 0, 

'YJ~ = ° 
'YJ7 = 500, 

g~ = 60, 
= -250, 

g~ -50, 

15, 

10, 

~ } 

:~::J 

revolute 
joints 

revolute
translational 

joints 

Note that points F, G, and Hare ehosen on their cOlTesponding lines of translation. 
The ground and driving constraints are modeled as in model 1. 
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One advantage of this model is that it has fewer coordinates than the first model. 
However, a disadvantage arises if an additional body is to be attached to the slider D. 
Since in this model the slider D is not modeled as a body, no other bodies may be at
tached to it. 

Model 3. In model 3 the slider D is chosen as a body that slides relative to the 
frame with a translational joint. The link BD is modeled as a massless revolute-revolute 
joint. This model has a total of four bodies, two revolute joints, one translational joint, 
one revolute-revolute joint, and one revolute-translational joint. The data for this model 
can be derived from Fig. 4.32(d), as follows: 

gf = 0, Ti f = 0, 
g~ = 0, Ti~ = 300, 

gf 0, D 
Ti4 0, 

e 0, Ti; 500 

gg = 250, Ti~ = 0, 
d 120 

g1 50, Ti1 ° g~ = -10, K 
Ti2 0, 

gf = -250, 

ei = -50, 

g~ -10, 

gf = 0, 

g~ = 15, 

Tif o} 
Ti~ = ° 
Ti~ = o} 

Tif = O} 

Ti~ o} 

revolute 
joints 

translational 
joint 

revolute-revolute 
joint 

revolute-
translational 

joint 

The ground and driving constraints are modeled as in model I. 

g1 = 50, 

I;~ -10, 

I;f -60, 

e = 0, 

g1 50, 

I;~ = 10, 
gf = -60, 

I;T 0, 

Ti~ ° 
Ti~ = 0, 

Tif = ° 
TiT = 500, 

Ti~ = ° 
Ti~ = 0, 

Tif ° E Til 500, 

g~ 15, 

g~' = 10, 

Ti~ ° } 
Ti; = 500 

g~ = 15, "~~ 0 } 

1;; 10, F 500 Til 

revolute
translational 

joints 

revolute-
translational 

joints 

This model has the advantage of a smaller number of coordinates than modell, 
and since the slider at D is modeled as a body, it does not have the disadvantage of 
model 2. In none of these three models is the crank OA modeled by a massless revolute
revolute joint between points 0 and A. Since OA is the driving link, it must have its own 
coordinates for implementing the driving constraint. 
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PROBLEMS 

4.1 Point C on body i has global coordinates rf = [3.3, 2.3t. (See Fig. PA.1.) Attach a coordi
nate system to this body with its origin at C. Determine the vector of coordinates if 
a: 50°. Also determine s'; and r; if d = 1.2. 

Figure P.4.1 

4.2 Ifr2 = [5, 2f, ~2 = 30°, and r~ [6, 1.5f, find the local coordinates of Q. (See Fig. PA.2) 

Figure P.4.2 

4.3 Point Pi has local and global coordinates 

[ 1.3] 
-2.2 

Find the translational coordinates of body i if ~i = 32°. On graph paper, show the orienta
tion of the local coordinate system with respect to the global coordinate system and locate 
point p, 

4.4 The coordinates of body i are r; = [3.2, 2.8t and ~i = 80°. Points A and B have local coor
dinates s'f [-1.1, -oAf and s'f = l1.9,2.3f. Point C has global coordinates rf 
[5.3,4.01'[, Find the following: 

(a) The global coordinates of A 

(b) The global components sf 
(c) The local coordinates of C 

4.5 If Cartesian coordinates are used in constraint formulation, determine the following for each 
of the mechanisms shown in Fig. P.4.5: 

(a) Number of bodies and coordinates 

(b) Number of constraint equations 

(c) Number of dcgrces of frcedom 

(d) Number of dcpendent and independent coordinates 
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(a) (b) 

Figure 11.4.S 

4.6 Determine the Jacobian matrix and write the velocity and acceleration equations for the con
straint equations 

<PI == x4 + 1.6 cos <P4 - 0.3 sin <P4 
<1>2 == Y4 + 1.6 sin <P4 + 0.3 cos <P4 

XI + 0.75 sin <PI = 0 

YI 0.75 cos <PI 0 
4.7 Determine the minimum number of bodies and the types of joints required to model the 

mechanism shown in Fig. P.4.7. How many coordinates are involved? 

4.8 Attach body-fixed coordinate systems to bodies 2 and 3 in Fig. P.4.8 with their origins at C2 

and C3• Writc constraint equations for this system in their simplest form. 

(2) 

Crank 

Figure P.4.7 Figure P.4.8 

4.9 Two vectors Sj and attached to bodies 1 and 2, respectively, have local components 
s; = [1.2,-0.5fands~ [-0.3,0.8f. Vectorqisdefinedasq [XI,YIo4>I,X2,Y2,4>2t. 

(a) If 4>1 = 30° and 4>2 45°, evaluate the entries of the Jacobian matrix <Pq for <P 2 SiS2' 

(b) If XI = 6.2, YI 1,4>1 = 30°, X2 = -1.9, Y2 2.3, and 4>2 45°, evaluate the en-
tries of the Jacobian matrix for cP ~ sid where d = [X2 - XI,Y2 Ylf. 

4.10 Revolute joints A and B have local coordinates s'7 = [0,1 ."5f, s'~ [-2.2, of, 
s'g [2.2, of, and s'~ [2, Of. (See Fig. P.4.l0.) Coordinates of the moving bodies are 
estimated as rl = [-2, 2.5f. 4>1 = -12°, rz [0.5, 3.6f. 4>2 = -8°, r3 [1.6, 1.7f, and 
4>3 56°. Are the constraint equations for revolute joints A and B violated or not? 
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A 
(2) 

Figure P.4.10 

4.11 For the translational joint shown in Fig. 4.5, use the vector product operation to derive the 
first constraint of Eq. 4.12. 

4.12 For the revolute-translational join! shown in Fig. 4.9, usc the vector product operation to 
derive the constraint of Eq. 4.16. 

4.13 Since two bodies connccted by a translational joint can translate relative to one another, it is 
possible for vector d to become a zero vector at some instant. Does this causc any numerical 
difficulty in kinematic analysis? 

4.14 For the mechanism shown in Fig. PA.14, link ABE is the crank. If only revolute- and trans
lational-joint constraints are available, determine thc number of bodies and the number of 
constraint equations needed to model this system. If, in addition, revolute-revolute and 
revolute-translational joint constraints are available, show different ways that the number of 
bodies and the number of constraints can bc minimized. 

B 

Figure P.4.14 

4.15 Derive constraint equations for a rack and pinion where 

(a) The rack moves on a translational joint with respect to the ground and the line of trans
lation is not parallel to any of the coordinate axes. 

(b) The rack and the pinion can translate and rotate with respect to the ground (general case). 

4.16 If g; = [It, 1'1; is tangent to a curve at a point Pi> show that n; = [-v, 1t1{ is normal to the 
curve at Pi' Then, modify the cam-follower constraints of Eq. 4.29 by using the normal vec
tors and vector product instead of the tangent vector and scalar product. 

4.17 Most books on numerical methods provide algorithms and program listings for cubic spline 
functions. Experiment with one of these algorithms and try to determine values of a function 
and its first and second derivatives at randomly specified points. The program can later be 
used to expand the capabilities of the kinematic and dynamic analysis programs listed in 
Chaps. 5 and 10. 

4.18 Derive constraint equations for each of the cam-follower pairs shown in P.4.18. 

4.19 Simplify the general formulation of constraint equations for the cam-follower pairs shown in 
Fig. PA.19. For (a) and (b) the contacting surface of the cam is a sine function, and for (c), 
(d), and (e) the cam has a circular outline. 
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la) (b) {el 

Figure P.4.1S 

(al (bl 

(el (d) (e) 

Figure P.4.19 

4.20 Verify the entries of the Jacobian matrix and vector y listed in Tables 4.2 and 4.3. 

4.21 Derive expressions for the entries of the Jacobian matrix and vector y for the spur gear con
straint of Eq. 4.18. 

4.22 Derive expressions for the entries of the Jacobian matrix and vector y for the cam-follower 
constraints of Eq. 4.27. Note that the Jacobian matrix must contain an additional column as
sociated with the artificial coordinate 0;. 

4.23 What is the size of the Jacobian matrix for a four-bar mechanism modeled by four bodies 
and four revolute joints? Show the location of the nonzero entries in this matrix. What per
centage of the elements of the matrix are nonzero elements? 

4.24 Derive constraint equations to keep the translational speed of a body constant along a known 
direction denoted by a unit vector ii. Consider two cases: 

(a) Vector ii is fixed to the global coordinate system. 

(b) Vector ii is fixed to the body coordinate system. 



5 
A FORTRAN Program 

for Analysis 

of Planar Kinematics 

In this chapter, a FORTRAN program for planar kinematic analysis is presented. The 
program contains only two types of lower-pair joints-a revolute joint and a transla
tional joint. With only these two basic joints, a large class of mechanisms can be ana
lyzed. The program is organized in a form that can be expanded to include other 
kinematic pairs, such as those formulated in Chap. 4. The exercises given at the end of 
this chapter provide a pattern to assist in expansion of the program. 

The subroutines LINEAR and LU that were discussed in Chap. 3, are used in this 
program. They can be appended to this program without any modification. The program 
is written in standard FORTRAN and should run on most FORTRAN compilers without 
any difficulty. However, it is possible that some compilers will require minor modifica
tion of the program. 

5.1 KINEMATIC ANALYSIS PROGRAM (KAP) 

The main routine of the kinematic analysis program performs three major tasks: 

1. Reads input data, either directly or by making calls to other input subroutines. 
2. Splits the working arrays A and IA into smaller subarrays by defining pointers 

(addresses in arrays). 
3. Makes calls to subroutine KINEM for kinematic analysis. 

A detailed explanation of these three major tasks follows. 

119 
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Input/Output. Input is provided to the program through the eonsole in unfor
matted form: READ(l,*) .... The output is written on the eonsole screen with specified 
format; e.g., WRITE(1,230) .... 

Working Arrays. There are two main working arrays in this program-one 
real array A and one integer IA. The two arrays are dimensioned to 500 and 200, re
spectively (MAXA = 500 and MAXIA 200), which is sufficient for most small 
problems. For larger problems - those with larger numbers of bodies or kinematic 
joints, for example-these dimensions can be increased. The program computes the 
minimum dimensions that are required for the two arrays and provides a warning mes
sage when the existing dimensions are not sufficient. 

Number of Elements. The first request the program makes is to 

ENTER NB, NR, NT, NG, NS, NO, NP 

These data are defined as follows: 

NB Number of bodies in the system, including ground 

NR Number of revolute joints in the system 

NT Number of translational joints in the system 

NG Number of bodies that are attached to (or considered as) ground 

NS Number of simple constraints in the system 

NO Number of driving constraints (driving links) 

NP Number of points of interest 

Further explanation of these variables and their functions is given in the following 
sections. The program computes the number of coordinates N and the total number of 
constraint equations M, including the driving constraints, from this first set of data. If N 
is not equal to M, then an error message is given by the program. 

Subarrays. The working arrays A and IA are divided into smaller subarrays, 
according to the number of elements in the problem. The subarrays and their corre
sponding pointers and lengths are shown in Fig. 5.1. Pointers Nl, N2, ... locate the be
ginnings of subarrays of A, and pointers Ml, M2, ... locate the beginnings of subarrays 
IA; e.g., subarray TJ begins at A(N2), so TJ(2) is the same as A(N2+1), and so forth. 
Some pointers that have not been used, such as N8, N9, or M8, or other additional 
pointers can be included for further expansion of the program. The function of the sub
arrays is explained in the following sections. 

Input Data. The main program makes calls to other subroutines, such as IN
BODY and INRVLT, to read additional information for the problem at hand. These sub
routines are discussed in Sec. 5.1.1. 

Time Parameters. The last prompt given by the progr~m is 

ENTER STARTING TIME, FINAL TIME, AND TIME INCREMENT 

These values are assigned to the variable names TO, TE, and DT. During the analysis, 
the time parameter T is incremented by DT from TO to TE. 



Working Array A Working Array IA 

Pointer Subarray Length Description Pointer Sub array Length Description 

NI RJ 4*NR Revolute joints MI lRJ 2*NR Revolute joints 

N2 TJ 7*NT Translational joints M2 ITJ 2*NT Translational joints 

N3 GR 3*NG Ground M3 IGR 6*NG Ground 
N4 SM NS Simple constraints M4 ISM 2*NS Simple constraints 

N5 DR 3*ND Drivers M5 IDR 2*ND Drivers 

N6 RB 2*NB Bodies 
N7 PI 2*NP Points of interest M7 IPI NP Points of interest 
NJO Q N 9 MJO ICOL N Column pointers for Wq 
Nil QD N q 
NI2 QDD N ij 
Nl4 FQ M*N Wq • 
NI5 F M w,W,~ 
Nl6 W N Work array 

L 

Figure 5.1 Subarrays of A and IA with their corresponding pointers and lengths . 

..... 
flo) ..... 
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Kinematic Analysis. After all of the input data are read by the program, the 
main program makes a call to subroutine KINEM for kinematic analysis. Prior to this 
call, three variables are defined and given specific values: 

NRMAX 

PEPS 

EPSLU 

Maximum number of iterations allowed for the Newton-Raphson 
algorithm at each time step 

Maximum error allowed for constraint violation 

Error tolerance for the L-U factorization algorithm 

The user may modify the program to assign values to these variables, by a READ state
ment, depending on the accuracy required in the response computation. 

The main routine of the KAP program is as follows: 

C .......... KI~TIC ANALySIS .......... . 
C 
C ............ Main Program .............. . 
C 

<n.M)N lOONST I NRMAX,FEPS,EPSLU 
<n.M)N IMPNrR I M1,Ml ,M3 ,M4 ,MS ,M6 ,M7 ,MS ,119 ,M10 
<n.M)N lNELMNTI NB,NR,NT,NG,NG3,NS,ND,NP 
<n.M)N INPNrR I N1,N2,N3,N4,N5,N6,N7,N10,N11,N12,N14,N15,N16 
<n.M)N IROMDLI IR,IC,M,N 
<n.M)N ITIME I TO,TE,m,T 
DIMENSION A(500), iA(200) 

C ..... For nwre space in A and IA arrays, increase the dimension and 
C ..... update ~ and MAXIA accordingly 

MAXA. -500 
MAXIA-200 

C ..... Read number of bodies, revolute joints, translational joints, 
C ..... grounded bodies, simple constraints, drivers, points of interest 

10 v.RITE(1, 200) 
READ(1, * ) NB,NR,NT ,NG,NS ,ND,NP 

C ..... Determine number of coordinates N and number of constraints M 
N-3*NB 
~2*(NR+NT)+3*NG+NS+ND 

C ..... N mnst be equal to M (including the driver constraints) 
IF (M.EQ.N) ooro 20 

v.RITE(1,210) N,M 
ooro 10 

C ..... Define pointers and split A and IA into subarrays 
C ..... Subarrays for storing input data 

20 N1-1 
N2-N1+4*NR 
N3-N2+7*NT 
N4-N3+3*NG 
NS-N4+ NS 
N6-NS+3*ND 
N7-N6+2*NB 
Ml-1 
Ml..M1+2*NR 
M3-=M2+2*NT 
M4=M3+6*N(} 
MS=M4+2*NS 
M7-M5+2*ND 

C ..... Subarrays for vector of coordinates, velocities, etc. 
N10=N7+2*NP 
Nll-N10+N 
N12-N11+N 
N14-N12+N 
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N1S-N14+N*M 
NI6-N1S-IM 
NUSED-N16-1M-l 
MlO-M7+NP 
MJSEO-M10+N-l 

C ....• Check for sufficient storage space in A and IA arrays 
IF(NUSED.LE.M\XA .AND. MJSED.LE.MAXIA)ooro 30 

\\RITE( 1 ,220) NUSED ,MJSED 
STOP 

C ..... Read initial estimates on the coordinates 
30 CALL INBODY (A(NI0) ,NB) 

C ..... Read revolute joints data 
IF (NR.GT .0) CALL INRVLT (A(N1) , IA(MI) ,NR) 

C ..... Read translational joints data 
IF (NT.GT.O) CALL INTRAN (A(N2),IA(M2),NT,A(NI0),NB) 

C ....• Read ground constraints data 
NG3-3*NG 
IF (NG.GT .0) CALL INGRND (A(N3), IA(M3) ,NG,A(NI0) ,NG3,NB) 

C ...•. Read simple constraints data 
IF (NS.GT.O) CALL INSMPL (A(N4),IA(M4),NS,A(NI0),NB) 

C ..... Read driver constraints dataA 
IF (NO.GT .0) CALL INDRVR (A(NS) , IA(MS) ,NO) 

C ..... Read special points of interest data 
IF (NP.GT.O) CALL INPOIN (A(N7),IA(~),NP) 

C ..... Read initial time, final time, and the time increment 
\\RITE(1,230) 
READ(1, * ) TO.TE.Uf 

C ..... End of input data 
NRMAX-20 
FEPS -0.001 
EPSLU-O.OOI 

C ...•. Start KI~TIC ANALySIS ..... 
CALL KINEM (A,IA.M\XA,MAXIA) 
STOP 

200 FORMAT(SX, 'ENTER NB,NR,NT,NG,NS,NO,NP' ) 
210 FORMAT(SX,'***INPUT ERROR*** N.',I3.' ~',I3) 

123 

220 FORMAT(SX. '***DIMENSION ON A AND/OR IA ARRAYS NOr SUFFICIENT***', 
+ / ,lOX, 'MiNIMM DIMENSION ON A MJST BE', 15, 
+ /,10X,'MlNIMMDIMENSION ON IAMJST BE',IS) 

230 FORMAT(SX, 'ENTER STARTING TIME, FINAL TIME, AND Uf,) 
END 

5.1.1 Model-Description Subroutines 

The following subroutines are called by the main routine of KAP to read the description 
of the model. 

Subroutine INBODY. This subroutine reads initial estimates of Xi> Yi and cf>i 
for each body with a prompt: 

FOR BODY i ENTER INITIAL EST. ON X, y, PHI 

This information is saved in array Q, dimensioned as Q(3,NB). For example, for body i, 

Xi ~ Q(1,I) 

Yi ~ Q(2,1) 

cf>i ~ Q(3,1) 
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Subroutine INBODY is as follows: 

SUBRourlNE INBODY (Q,NB) 
DI~SION Q(3,NB) 
00 10 I-1,NB 

ViRlTE(1,200) I 
READ(1,*) (Q(J,I),J=1,3) 

10 roNrlNUE 
REIURN 

200 FORM\.T(5X, 'FOR BODY',I4,' ENTER INITIAL EST. ON X, Y, PHI') 
END 

Subroutine INRVLT. This subroutine is called if NR > 0, to read information 
describing the revolute joints in the system (refer to Sec. 4.2.1). The prompt given by 
this subroutine is 

FOR REV. JOINT NO. k ENTER 
BODY NOS. I AND J, THEN 
XI-P-I, ETA-P-I, XI-P-J, ETA-P-J 

This prompt is repeated for k = 1, ... , NR. Body numbers i and j that are connected by 
revolute joint k are stored in array IRJ, dimensioned as IRJ(NR,2). 

The local components of vectors that locate the revolute joints on the bodies are 
stored in array RJ, dimensioned as RJ(NR,4). For example, for the kth revolute joint in 
a system, connecting bodies i and j, the entries for the IRJ and RJ arrays are 

1-7IRJ(K,l) J -7 IRJ(K,2) 

e -7 RJ(K,l) (;f -7 RJ(K,3) 

'YI; -7 RJ(K,2) 'YIf -7 RJ(K,4) 

Subroutine INRVLT is as follows: 

SUBRourlNE INRVLT (RJ, IRJ ,NR) 
DI~SION RJ(NR,4),IRJ(NR,2) 
00 10 K=l,NR 

ViRITE(1,200) K 
READ(l,*) (IRJ(K,L),L=l,2),(RJ(K,L),L=1,4) 

10 roNrINUE 
RE'IURN 

200 FORM\.T( 5X, 'FOR REV. JOINr NO. ' , 13,' ENTER BODY NOS. I AND J' ,I, 
+ lOX, 'XI -P- I ,ETA-P-I ,XI -P-J ,ETA-P-J') 

END 

Subroutine INTRAN. The subroutine INTRAN is called if NT > 0, to read 
information describing the translational joints in the system (refer to Sec. 4.2.1). The 
prompt given by this subroutine is 

FOR TRAN. JOINT NO. k ENTER 
BODY NOS. I AND J, THEN 
XI-P-I, ETA-P-I, XI-c-I, ETA-c-I 
XI-P-J, ETA-P-J 

This prompt is repeated for k 1 , ... , NT. . Body numbers i and j that are connected by 
the kth translational joint are stored in array ITJ, dimensioned as ITJ(NT,2). The local 
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coordinates of points Pi and Pj are stored in array TJ, dimensioned as TJ(NT,7). The local 
coordinates of point Qi are not saved directly. Instead, 

a i = e - g?, f3i = 1/; - 1/? 
are stored in vector TJ. For the kth translational joint in the system, the elements of the 
ITJ and TJ arrays are: 

I ~ ITJ(K,l) 

e ~ TJ(K,l) 

1/; ~ TJ(K,2) 

a i ~ TJ(K,3) 

f3i ~ TJ(K,4) 

Subroutine INTRAN is as follows: 

J ~ ITJ(K,2) 

g: ~ TJ(K,5) 

1/: ~ TJ(K,6) 

~~ - ~J ~ TJ(K,7) 

SUBROOfINE INI'RAN (TJ, ITJ ,Nf ,Q,NB) 
DIMENSION TJ(Nf,7),ITJ(Nf,2),Q(3,NB) 
00 10 K-l,Nf 

VtRlTE( 1 ,200) K 
READ(I,*) (ITJ(K,L),L-l,2),(TJ(K,L),L=I,6) 
TJ(K, 3)~TJ (K,I) -TJ (K, 3) 
TJ (K, 4)-TJ (K, 2) -TJ (K, 4) 

10 TJ (K, 7)-Q(3, ITJ (K,I)) -Q(3, ITJ (K, 2)) 
REruRN 

200 FORMAT(5X, 'FOR TRAN. JOINf NO.' ,13,' ENTER BODY NOS. I AND J' ,/, 
+10X, 'XI -P- I ,ETA-P- I ,XI -Q- I ,ETA-Q- I ,XI -P-J ,ETA-P-J') 

END 

Subroutine INGRND. The subroutine INORND is called if NO > 0, to read 
the number(s) of a body or bodies constrained to the ground by giving the prompt 

ENTER BODY NO. FOR NO. k GROUNDED BODY 

This prompt is repeated NO times. This subroutine also transfers initial estimates of 
the coordinates for the grounded bodies from array Q to array OR, dimensioned as 
OR(3*NO). Each body that is constrained to the ground is treated as having three simple 
constraints on its x, y, and ~ motion. This information is stored in an integer array lOR, 
dimensioned as IOR(3*NO,2). The way the data are stored in the lOR and OR arrays is 
similar to the storage of data in the SM and ISM arrays for simple constraints, as will be 
shown in the next subsection. 

Subroutine INORND is as follows: 

SUBROOfINE INGRND (GR, IGR,NG,Q,NG3 ,NB) 
DIMENSION GR(NG3),IGR(NG3,2),Q(3,NB) 
00 10 K=I,NG 

VtRlTE(I,200) K 
READ(I,*) IB 
00 10 J=I,3 
KK=(K- 1)*3+J 
IGR(KK,1)=IB 
IGR(KK,2)=J 
GR(KK)=QU ,IB) 

10 OJNfINUE 
REruRN 

200 FORMAT(5X, 'ENTER BODY NO. FOR NO.' ,13,' GROUNDED BODY') 
END 
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Subroutine INSMPL. This subroutine is called if NS > 0, to read informa
tion on the bodies that have simple constraints (refer to Eqs. 4.31, 4.32, and 4.33). The 
prompt given by this subroutine is 

FOR SIMPLE CONSTRAINT NO. k ENTER 
BODY NO. AND 1,2, OR 3 FOR X, Y, OR PHI CONSTRAINT DIRECTION 

This prompt is repeated NS times. The information is stored in array ISM, dimensioned 
as ISM(NS,2). In addition, this subroutine transfers the initial values of the coordinates 
from array Q to array SM, dimensioned as SM(NS). For example, if the kth simple con
straint acts in the y direction on body i, then 

I -> ISM(K,1), 2(for y) -> ISM(K,2) , Q(2,1) -> SM(K) 

where Q(2,I) contains the initial value on the y coordinate of body i. 
The entries of array SM will be used as the constant c" c2, or C3 in Eq. 4.31,4.32, 

or 4.33. 
Subroutine INSMPL is as follows: 

SUBROUTINE INSMPL (SM, ISM,NS ,Q,NB) 
DI.MENS ION SM(NS) , I SM(NS ,2) ,Q(3 ,NB) 
IX) 10 K-l,NS 

v.RlTECl,200) K 
READ(1,*) (ISMCK,L),L=l,2) 
SM(K)-Q(ISMCK, 2), ISM(K,1)) 

10 OONTlNUE 
RETURN 

200 FORMAT(SX, 'FOR SIMPLE OONSTRAINT NO.', 13,' ENTER BODY NO.' ,I, 
+ lOX, 'AND 1,2 ,OR 3 FOR X, Y ,OR PHI OONSTRAINT DIREcrION') 

END 

Subroutine INDRVR. This subroutine is called if ND > 0, to read informa
tion on the driving link(s) (refer to Scc. 4.2.8). The prompt given by this subroutine is 

FOR DRIVER NO. k ENTER 
BODY NO., 1,2, OR 3 FOR X, Y, OR PHI, THEN 
INITIAL POSITION, VELOCITY, AND ACCELERATION 

This prompt is repeated ND times. The body number(s) and indices iridicating x, y, or cf> 
are constrained and stored in an integer array IDR, dimensioned as IDR(ND,2). The ini
tial value of x, y, or cf> and its velocity and acceleration at t 0 are stored in alTaY DR, 
dimensioned as DR(ND,3). For example, if the kth driver constraint is acting on the ro
tation of body i as follows: 

cf>i cf>~ - wt 0.50:t2 0 

then 

1---7 IDR(K,l), 3 (for cf» ---7 IDR(K,2), 

cf>f ---7 DR(K,I), w ---7 DR(K,2), 0: ---7 DR(K,3) 
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Subroutine INDRVR is as follows: 

SUBROUfINE INDRVR (DR, IDR,ND) 
DIMENSION DR(ND,3),IDR(ND,2) 
DO 10 K=l,ND 

v.RITE(l,200) K 
READ(l,*) (IDR(K,L),L=l,2),(DR(K,L),L=1,3) 

10 OONfINUE 
RETURN 

200 FORM\T( 5X, 'FOR DRIVER NO. ' , 13,' ENTER BODY NO. ' , I , 
+ lOX, ' 1, 2, OR 3 FOR X, Y, OR PHI' ,I , 
+ lOX, 'INITIAL POSITION, VELOCI'IY, AND ACCELERATIOt'l') 

END 
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Subroutine INPOIN. This subroutine is called if NP > 0, to read information 
on points of interest defined by the user. The user may specify some points of interest on 
one or more bodies (refer to Eqs. 4.1, 4.43, and 4.45). Hence, the program will report 
the global position, velocity, and acceleration for these points at every time step. Note 
that the program reports the coordinates of all the bodies in the system automatically, 
and therefore there is no need to specify the centroid of a body as a point of interest. 
The prompt from this subroutine is 

FOR POINT OF INTEREST NO. k ENTER 
BODY NO., THEN XI·P AND ETA·P COORDINATES 

This prompt is repeated NP times. The body numbers are stored in array IPI, dimen
sioned as IPI(NP). The e and 11; coordinates are stored in array PI, dimensioned as 
PI(NP,2). 

Subroutine INPOIN is as follows: 

SUBRourlNE INPOIN (PI, IPI ,NP) 
DIMENSION PI(NP,2),IPI(NP) 
DO 10 K-l,NP 

v.RITE(l,200) K 
READ(l,*) IPI(K),(PI(K,L),L=l,2) 

10 OONfINUE 
RETURN 

200 FORM\T(5X, 'FOR POINf OF INTEREST NO.' ,13,' ENTER BODY NO. ' .I. 
+ lOX, 'XI -P AND ETA-P <xx)RDINATES') 

END 

5.1.2 Kinematic Analysis 

Following the process of inputting data to describe a model, the main routine calls sub
routine KINEM. This subroutine is organized according to Algorithm K-II of Sec. 3.2.2, 
with a few minor additional steps. 

Subroutine KINEM. This subroutine increments the time variable T from the 
initial time TO to final time TE by steps DT. At each time step, the subroutine performs 
position, velocity, and acceleration analysis, and reports the results by making calls to 
other subroutines. Two flags are set by this subroutine: 

JACOB A flag for Jacobian matrix evaluation. 
EQ.O: Jacobian matrix does not need to be evaluated. 
EQ.1: Jacobian matrix must be evaluated. 
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A flag for evaluation of constraint equations. 
EQ.O: No function needs to be evaluated. 
EQ.l: Constraint equations must be evaluated. 
EQ.2: The right side of the velocity equations must be evaluated. 
EQ.3: The right side of the acceleration equations must be evaluated. 

Position Analysis. The flags JACOB and IFNCT are both set to I and a call 
is made to subroutine NUTON2 for position analysis. 

Velocity Analysis. The flag JACOB is set to I and IFNCT is set to 2. A call 
to subroutine FUNCT evaluates the Jacobian matrix and the right side of the velocity 
equations. At this step, subroutine LINEAR (refer to Sec. 3.3.5) is used to solve for the 
velocities according to Eq. 3.14. 

Acceleration Analysis. The flag JACOB is set to 0, since the Jacobian matrix 
and its corresponding Land U matrices are still valid from the velocity analysis step, 
and IFNCT is set to 3. A call to subroutine FUNCT evaluates the right side of accelera
tion equations. At this step, subroutine LINEAR is used to solve for the acceleration, 
according to Eq. 3.16. 

The velocities and accelerations determined by subroutine LINEAR are originally 
stored in array F. The velocities and accelerations are then transferred from array F to 
arrays QD and QDD, respectively, by subroutine TRANSF. The contents of arrays QD 
and QDD are organized in a way similar to the arrangements of array Q. 

Computationally,' the evaluation of trigonometric functions is time-consuming. 
Each time new values for coordinates are calculated, the sine and cosine of the rotational 
coordinates are computed and stored in array RB by subroutine TRIG. Array RB is 
dimensioned RB(NB,2), and, for example, for body i, 

sin cPi ~ RB(I,I), cos cPi ~RB(I,2) 
The contents of array RB are used in several other subroutines. 

Subroutines KINEM, TRANSF, and TRIG are as follows: 

SUBROOfINE KlNEM (A,IA,MAXA,MAXIA) 
CThM)N I ANALYSI JAOOB, I FNCf 
CThM)N I(x)NST I NRMAX,FEPS,EPSLU 
CThM)N IMPNTR I M1 ,M2 ,M3 ,M4 ,MS ,M6 ,M7 ,M8 ,M9 ,M1 0 
CThM)N lNElMNTI NB,NR,NT,NG,NG3,NS,ND,NP 
CThM)N INPNTR I Nl,N2,N3,N4,N5,N6,N7,N10,N11,N12,N14,NI5,N16 
CThM)N IR(}.l.(X)LI JR,IC,M,N 
CThM)N ITJME I TO,TE,m,T 
DIMENSION A(MAXA), IA(MAXIA) 
\\RITE (1,200) 

C ..... lnitia1ize time variable 
ISTEP=O 
T=TO 

C ..... Calculate sine and cosine of rotational coordinates 
CALL TRIG (A(N6),A(NI0),NB) 

C ..... Position (coordinate) analysis ..... . 
10 JAOOB=l 

IFNCf=1 
CALL NUI'ON2 (A, IA,MAXA,MAXIA,A(N10) ,A(N15) ,NB,JAOOB) 

C ...•. Veloci ty analysis .................. . 
IFNCf=2 
CALL FUNCf (A, IA,MAXA,MAXIA,A(NI0) ,A(Nll) ,A(N14) ,A(N15) ,JAOOB) 
CALL LINFAR (A(N14) ,A(N15) ,A(N16), IA(M10) ,M, JAOOB,EPSLU) 
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C ..... Transfer velocities frmn F array to QD array 
CALL TRANSF (A(Nll),A(Nl5),N) 

C ..... Acceleration analysis .............. . 
JACOB~O 

IFNCf=3 
CALL FUNCf (A, IA,.MAXA,MAXIA, (NlO) ,A(Nll) ,A(NI4) ,A(Nl5) , JACOB) 
CALL LINEAR (A(NI4) ,A(NI5) ,A(Nl6), IA(MI0) ,M, JAOOB,EPSLU) 

C ..... Transfer accelerations frmn F array to Ql.D array 
CALL TRANSF (A(NI2),A(N15).N) 

C ..... Report the result for this tinre step 
CALL REPORT (A(N6),A(N7),A(NI0),A(Nll).A(NI2),IA(M7),NB,NP,T) 

C ..... Incr~ent the time variable 
ISTEP=ISTEP+l 
T=TO+DT*FLOAT(ISTEP) 
IF (T.GT.TE.OR.DT.EQ.O.O) STOP 
GO TO 10 

200 FORMAT(III.I0X.'***** KI~TIC ANALYSIS *****'.11) 
END 

SUBROOTINE TRANSF (B,F,N) 
DIMENSION B(N).F(N) 
IX) 10 I=I,N 

10 B(n=FO) 
RETURN 
END 

SUBROOTINE TRIG (RB,Q,NB) 
DIMENSION RB(NB,2),Q(3,NB) 
IX) 10 I=l,NB 

RB(I.l)-SIN(Q(3.1» 
RB(I,2)=OOS(Q(3,I» 

10 OONTINUE 
RETURN 
END 
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Subroutine NUTON2. Subroutine NUTON2 is similar to subroutine NEW
TON of Sec. 3.4.3, with minor modifications. This subroutine is called by subroutine 
KIN EM for position analysis when JACOB = 1 and IFNCT = 1. This subroutine calls 
subroutine FUNCT to evaluate the Jacobian matrix and constraint equations. If Newton
Raphson iteration fails to converge in NRMAX iterations, analysis will be terminated 
with the message 

***CONVERGENCE FAILED""" 

This failure may be caused by either of the following: 

1. Large time increments DT (numerical failure) 

2. Nonexistence'of a solution (physical impossibility) 

Subroutine NUTON2 is as follows: 

SUBRourINE NUfON2 (A,IA,.MAXA,MAXIA,Q,F,NB,JAOOB) 
COMMON IOQNST I NRMAX,FEPS,EPSLU 
COMMON IMPNTR I Ml ,M2 ,M3 ,M4 ,MS ,M6 .M7 ,MS ,M9 .MlO 
COMMON INPNTR I Nl,N2 ,N3 ,N4 ,N5 ,N6 .N7 .NlO ,Nll,N12 .N14 .N15 .Nl6 
COMMON lROWODLI IR.IC,M.N 
DIMENSION Q(N) ,A(.MAXA) , IA(MAX.IA) ,F(M) 
IX) 20 I-l,NRMAX 

CALL FUNCf (A,IA,.MAXA.MAXIA,A(NI0),A(Nll).A(Nl4),A(NI5).JAOOB) 
CALL LINEAR (A(Nl4) ,A(NI5) ,A(N16). IA(MI0) ,M,JAOOB,EPSLU) 
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IQ)NVR=O 
00 10 J=1,N 

IF(ABS(F(J)).GT.FEPS) IQ)NVR=1 
10 Q(J)=QCJ)-F(J) 

CALL TRIG (A(N6),Q,NB) 
IF CIQ)NVR) 30,30,20 

20 Q)NTINUE 
v.RITE(*,200) 
STOP 

30 RETURN 
200 FORMA.T(5X,' ***Q)NVERGENCE FAILED***') 

END 

Subroutine REPORT. This subroutine reports the values of coordinates for all 
bodies in the system at the end of each time step. In addition, the global coordinates, 
velocities, and accelerations of the special points of interest are computed and reported. 

Subroutine REPORT is as follows: 

SUBROUTINE REPORT (RB,PI ,Q,QD,QDD, IPI .NB,NP ,T) 
DIMENSION Q(3.NB),QD(3,NB),QDD(3,NB),PICNP,2),IPI(NP),RB(NB,2) 
v.RITE(1.200) T 
00 10 I=1,NB 

10 v.RITE(1,210)I,(QCJ,I),J=1,3),(QD(J,I),J=1,3),(QDD(J,I),J=1,3) 
15 IF CNP.EQ.O) RETURN 

v.RITE(1,220) 
00 20 K=1.NP 

I=IPI(K) 
XPMX=PI(K,1)*RB(I,2)-PI(K,2)*RB(I,1) 
YPMY=PICK,1)*RB(I,l)+PI(K,2)*RB(I,2) 
XP =Q( 1 , I )+XPMX 
yP =Q(2,I)+YPMY 
XDP =QDCl,I)-YPMY*QDC3,I) 
YDP =QDC2,I)+XPMX*QD(3,I) 
XDDP=QDDCl,I)-XPMX*QDC3,I)**2-YPMY*QDD(3,I) 
YOOP=QDDC2,I)-YPMY*QDC3,I)**2+XPMX*QDD(3,I) 
v.RITE(1,230) K,XP,YP ,XDP ,YDP ,XDDP ,YOOP 

20 Q)NTINUE 
RETURN 

200 FORMAT(!,'TIME =',FI0.4,/,'---- ---',/, 
+ ' BODY' ,5X, 'X', 7X, 'Y' ,5X, 'PHI' ,6X, 'XD' ,6X, 'YD' ,4X, 'PHID', 
+ 'XD' ,6X, 'YD' ,6X, 'XDD' ,6X, 'YOO') 

210 FORMA.T(I3,6F8.3,3F9.3) 
220 FORMA.T( 'POINTS OF INTEREST', /,' NO.', 5X, 'X' ,7X, 'Y' ,6X, 

'XD' ,6X, 'YD' ,6X, 'XDD' ,6X, 'YOO') 
230 FORMA.T(I3,4F8.3,2F9.3) 

END 

5.1.3 Function Evaluation 

Subroutine FUNCT. The constraint equations, the right sides of the velocity 
and acceleration equations, and the Jacobian matrix are evaluated by calling subroutine 
FUNCT. This subroutine initializes a row number counter IR to zero. This counter gives 
the total number of functions or rows in the Jacobian matrix. The counter is incremented 
by subroutines RVLT, TRAN, SMPL, and DRVR. After all of the constraint equations 
have been considered, IR is equal to M (or N). ' 

Prior to evaluation of the entries in the Jacobian matrix, the entries in the matrix 
FQ are initialized to zero. Subroutine FUNCT calls subroutines RVLT, TRAN, SMPL 
(twice), and DRVR to evaluate those equations and the Jacobian matrix corresponding 
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to revolute joints, translational joints, ground, simple constraints, and driver links. The 
order of calling these subroutines has been written arbitrarily and does not have any 
significance. 

Subroutine FUNCT is as follows: 

SUBROUfINE FUNCf (A, IA,hWiA,~IA.Q,QD,FQ,F, JAmB) 
CXlvM)N IMPNTR I Ml ,W ,M3 ,M4 ,MS ,M6 ,M7 ,MS ,M9 ,MI0 
CXlvM)N INElMNTl NB.NR,NT .NG.NG3 ,NS ,ND,NP 
CXlvM)N INPNTR I Nl.N2,N3,N4,N5,N6,N7,NI0,Nll,NI2,NI4,N15,NI6 
CXlvM)N IR<JMX)LI IR,IC,M,N 
DIMENS ION A(hWiA) , IA(MAXIA) ,Q(N) ,QD(N) ,FQ(M,N) ,F(M) 
IR-O 
IF (JAmB.EQ.O) ooro 20 
00 10 I-I,M 

00 10 J=I,N 
10 FQ(I,J)-O.O 
20 IF (NR.GT.O) CALL RVLT (A(Nl),IA(M1),A(N6),Q,QD,FQ,F,NR,NB) 

IF (NT.OT.O) CALL TRAN (A(N2) ,IA(W) ,A(N6) ,Q,QD,FQ,F,NT,NB) 
IF (NG.GT.O) CALL SMPL CACN3),IACM3),Q,FQ,F,NG3,NB) 
IF (NS.OT.O) CALL SMPL (ACN4),IA(M4),Q,FQ,F,NS,NB) 
IF (ND.OT.O) CALL DRVR (A(NS),IACMS),Q,FQ,F,ND,NB) 
RE1URN 
END 

Subroutine RVLT. Subroutine RVLT is called by subroutine FUNCT when 
NR > O. It evaluates the constraint equation violations, the right sides of the velocity 
and acceleration equations, and the entries of the Jacobian matrix corresponding to the 
revolute joints in the system (refer to Sec. 4.2.1). Array F is used to store the constraint 
equation violations and the right sides of the velocity and acceleration equations, 
depending on the value of the flag IFNCT. The nonzero entries of the Jacobian matrix 
are stored in matrix form in array FQ, when JACOB = 1. 

Subroutine RVLT is as follows: 

SUBROUfINE RVLT (RJ, IRJ ,RB,Q,QD,FQ,F ,NR,NB) 
CXlvM)N IANALYSI JAmB.IFNCf 
CXlvM)N IR<JMX)LI IR,IC,M,N 
DIMENSION RJ(NR,4),IRJ(NR,2),RB(NB,2),QC3,NB),QD(3,NB), 

+ FQ(M,N),F(M) 
00 100 K-I,NR 

I-IRJ(K,I) 
J-IRJ(K,2) 
XPIMXI- RJ(K,1)*RB(I,2)-RJ(K.2)*RB(I.l) 
YPIMYI- RJ(K.I)*RB(I.l)+RJ(K.2)*RB(I,2) 
XPJMXJ- RJ(K,3)*RB(J,2)-RJ(K,4)*RB(J,I) 
YPJMYJ- RJ(K,3)*RB(J,I)+RJ(K,4)*RB(J,2) 
ooro (10,20,30) ,IFNCf 

C ...... Constraint equations 
10 F(IR+l)- Q(I,I)+XPIMXI-Q(I,J)-XPJMXJ 

F(IR+2)= Q(2,I)+YPIMYI-Q(2,J)-YPJMYJ 
ooro 40 

C ..... Right-hand-side of velocity equations 
20 F(IR+l)- 0.0 

F(IR+2)- 0.0 
ooro 40 

C ..... Right-hand-side of acceleration equations 
30 F(IR+l)- XPIMXI*QD(3,I)**2-XPJMXJ*QD(3,J)**2 

F(IR+2)- YPIMYI*QD(3,I)**2-YPJMYJ*QD(3,J)**2 
40 IF (JAmB) 60,60,50 



132 A FORTRAN Program for Analysis of Planar Kinematics Chap. 5 

C ..... Jacohian nmtrix nonzero entries 
50 ICI= 3*(1-1) 

ICJ= 3*(J-l) 
FQ(IR+l,ICI+l)= 1.0 
FQ(IR+l, ICI+3)=-YPIMYI 
FQ(IR+l,ICJ+l)--1.0 
FQ(IR+l,ICJ+3)= YPJMYJ 
FQOR+2,ICI+2)= 1. 0 
FQ(IR+2,ICI+3)= XPIMXI 
FQ(IR+2,ICJ+2)=-1.0 
FQ(IR+2,ICJ+3)=-XPIMXJ 

60 IR-IR+2 
100 mNTINUE 

RETURN 
END 

Subroutine TRAN. This subroutine is called by subroutine FUNCT when 
NT > O. It evaluates the constraint equation violations, the right sides of the velocity 
and acceleration equations, and the entries in the Jacobian matrix corresponding to the 
translational joints in the system (refer to Sees. 4.2.1 and 4.3.1). The organization of 
this subroutine is similar to that of subroutine RVLT. 

Subroutine TRAN is as follows: 

SUBROUrINE TRAN (TJ ,ITJ ,RB,Q,QD,FQ,F,NT,NB) 
UMvDN I ANALyst JACOB ,IFNCT 
UMvDN tROMl)LI IR,IC,M,N 
DIMENSION TJ(NT,7),ITJ(NT.2),RB(NB,2),Q(3,NB),QD(3,NB), 

+ FQ(M.N) ,F(M) 
00 100 K-l,NT 

I-ITJ (K, 1) 
J-ITHK,2) 
XPIMXI - TJ(K,l)*RB(I,2)-TJ(K,2)*RB(I,l) 
YPIMYI .. TJ(K,l)*RB(I,l)+TJ(K,2)*RB(I,2) 
XPJMXJ - TJ(K,5)*RB(J.2)-TJ(K,6)*RB(J,l) 
YPJMYJ - TJ(K,5)*RB(J,l)+TJ(K,6)*RB(J,2) 
XPlMOOQI= TJ(K,3)*RB(I,2)-TJ(K,4)*RB(I,l) 
YPIMYQI- TJ(K,3)*RB(I,l)+TJ(K,4)*RB(I,2) 
GOTO (10,20,30) ,IFNCT 

C ...... Constraint equations 
10 F(IR+l)- XPIMOOQI*(Q(2,J)+YPJMYJ-Q(2,I)-YPIMYI) 

+ -YPIMYQI* (QU, ])+XPJMXJ -QU, I) -XPIMXI) 
F(IR+2)- Q(3,1)-Q(3,J)-TJ(K,7) 
GOTO 40 

C ....•• Right-hand-side of velocity equations 
20 F(IR+l)- 0.0 

FCIR+2)- 0.0 
GOTO 40 

C ...... Right-hand-slde ~f acceleration equations 
30 FCIR+l)--QD(3,1)*(2.*(XPIMOOQI*(QD(l,I)-QD(l,J» 

+ +YPIMYQI*(QD(2,I)-QD(2,J») 
+ +QD(3,O*(XPIMOOQI*(Q (2,I)-Q (2,]) 
+ . -YPIMYQI*(Q (l,I)-Q (l,J»» 

F(IR+2)- 0.0 
40 IF (JAmB) 60,60,50 

C .....• Jacohian nmtrix nonzero entries 
50 ICI- 3*(1-1) 

ICJ- 3*{]-1) 
FQCIR+l,ICI+1)- YPIMYQI 
FQ(IR+l,ICI+2)--XPlMOOQI 
FQ(IR+l,ICI+3)--(Q(l,J)+XPJMXJ-Q(1,I»*XPlMOOQI 

+ (Q(2, ])+YPJMYJ -Q(2, I) )*YPIMYQI 
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FQ(IR+1,ICJ+1)--YPIMMQI 
FQCIR+1,ICJ+2)~ XPlNOOQI 
FQOR+1, ICJ+3)- XPJMX.J*XPlNOOQI+YPJM'{J*YPIMYQI 
FQ(IR+2.ICI+3)- 1.0 
FQ(IR+2.ICJ+3)--1.0 

60 IR-IR+2 
100 mNflNUE 

RE'IURN 
END 
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Subroutine SMPl. Subroutine SMPL evaluates the constraint equation viola
tions, the right sides of the velocity and acceleration equations, and the entries in the 
Jacobian matrix for simple constraints (refer to Sec. 4.2.7). It is called by subroutine 
FUNCT when NG > 0 and NS > O. Grounded bodies are treated as bodies with three 
simple constraints. The organization of this subroutine is similar to that of subrou
tine RVLT. 

Subroutine SMPL is as follows: 

SUBROUflNE SMPL (SM, ISM,Q,FQ,F ,NS ,NB) 
CThM)N /ANALYS/ JAmB,lFNCf 
CThM)N /Ro.\CXJL/ IR,IC,M,N 
DIMENSION SMCNS) ,ISMCNS,2),Q(3,NB) ,FQ(M,N),FCM) 
IX) 100 K-1,NS 

I=ISM(K,1) 
L=ISM(K,2) 
GOTO (10,20,20) ,IFNCf 

C ...... Constraint equation 
10 F(IR+1)- Q(L,I)-SM(K) 

GOTO 40 
C ...... Right-hand-side of velocity/acceleration equation 

20 F(IR+1)= 0.0 
40 IF (JAmB) 60,60,50 

C ...... Jacobian nmtrix nonzero entry 
50 ICI- 3*(1-1) 

FQCIR+1,ICI+L)- 1.0 
60 IR-IR+1 

100 mNflNUE 
RETURN 
END 

Subroutine DRVR. This subroutine is called by subroutine FUNCT when 
ND > O. It evaluates constraint equation violations, the right sides of the velocity and 
acceleration equations, and the entries in the Jacobian matrix for the driver links in the 
system (refer to Sec. 4.2.8). This is the only function evaluation subroutine in which the 
time variable T is used explicitly. 

Subroutine DRVR is as follows: 

SUBRWflNE DRVR (DR,IDR,Q,FQ,F,ND,NB) 
CThM)N / ANALYS / JAmB, I FNCf 
CThM)N /Ro.\CXJL/ IR, I C ,M, N 
<nvMJN /TlME / TO,TE,Df,T 
DI.MENSION DR(ND, 3), IDR(ND,2) ,Q(3 ,NB) ,FQCM,N) ,F(M) 
IX) 100 K-1,ND 

I=II1l(K,O 
L-IDR(K,2) 
GOTO (10,20,30) ,IFNCf 

c ...... Constraint equation 
10 F(IR+1)- Q(L,I)-DR(K,1)-T*(DR(K,2)+T*DR(K,3)/2.0) 

GOTO 40 

II 

Ii 

I: 

II 
II 

II 
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C ...... Right-hand-side of velocity equation 
20 F(IR+1)= DR(K,2)+T*DR(K,3) 

ooro 40 
C ...... Righ-hand-side of acceleration equation 

30 F(IR+1)= DR(K,3) 
40 IF (JACOB) 60,60,50 

C .....• Jacobian nmtrix nonzero entry 
50 ICI= 3*(1-1) 

FQ(IR+1,ICI+L)= 1.0 
60 IR=IR+1 

100 CONTINUE 
REIURN 
END 

6.1.4 Input Prompts 

A list of all the prompts given by the program KAP is given here. The prompts are 
labeled for easy reference, from 0 through 8. In examples that follow, each prompt 
is referred to by its corresponding label. The parameter k in the prompts is problem-

dependent. For example, in a model with two revolute joints, prompt 0 is repeated 
twice and k takes on values of 1 and 2. 

The prompts given are as follows: 

o ENTER NB, NR, NT, NG, NS, ND, NP 

® FOR BODY k ENTER INITIAL EST. ON X, Y, PHI 

(£) FOR REV. JOINT NO. k ENTER BODY NOS. I AND J 
XI-P-I, ETA-P-I, XI-P-J, ETA-P-J 

@ FOR TRAN. JOINT NO. k ENTER BODY NOS. I AND J 

XI-P-I, ETA-P-I, XI-Q-I, ETA-Q-I, XI-P-J, ETA-P-J 

(0 ENTER BODY NO. FOR NO. k GROUNDED BODY 

CD FOR SIMPLE CONSTRAINT NO. k ENTER BODY NO. 
AND 1,2, OR 3 FOR X, y, OR PHI CONSTRAINT DIRECTION 

@ FOR DRIVER NO. k ENTER BODY NO. 
1,2, OR 3 FOR X, y, OR PHI 
INITIAL POSITION, VELOCITY AND ACCELERATION 

® FOR POINT OF INTEREST NO. k ENTER BODY NO. 
XI-P AND ETA-P COORDINATES 

CD ENTER STARTING TIME, FINAL TIME, AND TIME INCREMENT 

5.2 SIMPLE EXAMPLES 

In the following sections, several simple examples are presented. The steps needed to 
set up a model for each mechanism are explained. Input data for the kinematic analysis 
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program are listed for each example. Similar steps can be followed to analyze many 
other mechanisms using this program. 

5.2.1 Four-Bar Linkage 

The four-bar linkage shown in Fig. 5.2(a) is considered for kinematic analysis. This 
mechanism consists of four bodies, including ground; four revolute joints; one driver; 
and one point of interest (point P). The body numbers and their corresponding coordi
nate systems and the revolute joint numbers are shown in Fig. 5.2(b). 

Initial estimates for the coordinates are as follows: 

XI 0.0, YI 0.0, <PI = 0.0 
X2 = 0.5, Y2 0.8, <P2 = 60.0° 
X3 2.6, Y3 = 2.6, <P3 = 30.0° 
X 4 = 3.5, Y4 1.8, <P4 = 60.0° 

The local coordinates for the revolute joints are 

g~ = 0.0, 'Y/~ 0.0, g~ 
g~ = 1.0, 'Y/~ 0.0, gg 
g~ = 2.0, 'Y/~ 0.0, 
gf = -2.0, 'Y/f = 0.0, 

-1.0, 

-2.0, 

2.0, 
2.5, 

'Y/~ = 0.0 
'Y/~ = 0.0 
'Y/; = 0.0 

'Y/~ = 0.0 

Body 2 is the driver link, and its corresponding driving variable is <P2' with 
<P~ = 1.0472 rad (60°) and a constant angular velocity of w 6.2832 rad/s. For one 
complete revolution, one second of simulation time is required. A time increment of 
0.025 s results in increments of 9° in <P2' 

r----2.5--~..., 

(a) (b) 

:Figure 5.2 (a) A four-bar linkage, and (b) the corresponding joint numbers and body-fixed coor
dinate systems. 
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The point of interest (point· P) is located on body 3. The local coordinates of this 
point are 

g~ 0.5, 'Y]~ 1.5 

When KAP is executed, the following sequence of prompts is given by the pro
gram (refer to Sec. 5.1.4), followed by inputs from the user to describe the model: 

o 
® 
® 2 

® 3 

® 4 

0) 
0) 2 

0) 3 

0) 4 

o 
CD 
CD 
CD 

4,4,0,1,0,1,1 

0.0,0.0,0.0 

0.5,0.8,1.047 

2.6,2.6,0.5 

3.5,1.8,1 

1,2,0.0,0.0, -1.0,0.0 

2,3,1.0,0.0, - 2.0,0.0 

3,4,2.0,0.0,2.0,0.0 

4,1,-2.0,0.0,2.5,0.0 

2,3,1.0472,6.2832,0.0 

3,0.5,1.5 

0.0,1.0,0.025 

Note that all of the angles are given in radians. The coordinates are given as estimates, 
except for CP2 (since this is the independent variable) and the coordinates of the nonmov
ing body 1. 

The output of this simulation for one second, with increments of 0.025 s, provides 
41 time steps (including t = 0 s). A portion of the output for the first two time steps is 
as follows: 

***** KINEMATIC ANALYSIS ***** 

TIME = .0000 

BODY X Y PHI XD YD PHID XDD YDD PHIDD 
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 .500 .866 1.047 -5.441 3.142 6.283 -19.739 -34.190 .000 
3 2.824 2.553 .423 -11.085 6.732 .246 -52.441 39.898 15.646 
4 3.574 1.687 1.004 -5.644 3.590 3.344 32.702 5.709 12.264 

POINTS OF INTEREST 
NO. X Y XD YD Xl)]) YDD 
1 2.663 4.126 11.472 6.692 -77 .042 -42.500 
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TIME = .0250 

BODY X Y PHI XD YO PHID XDD YDD PHIDD 
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 .358 .934 1.204 -5.866 2.252 6.283 -14.148 -36.856 .000 
3 2.531 2.708 .434 12.220 5.558 .581 -38.613 -53.046 11.545 
4 3.423 1.774 1.091 -6.354 3.306 3.581 -24.465 -16.189 7.116 

POINTS OF INTEREST 
NO. 
1 

X Y XD YO XDD YDD 
2.355 4.279 -13.133 5.455 -56.693 -55.617 

It can be observed that at t = 0, the program corrects the initial estimates on the 
coordinates. The value of 4>2 is kept constant according to the value given with the driv
ing constraint. Also, the coordinates of body 1 remain unchanged, since body 1 is the 
ground. At each time step, the body numbers and the corresponding coordinates, veloc
ities, and accelerations of their points of interest are reported. Figure 5.3 shows the path 
taken by point P for one revolution of the crank. 

. . ' 
5.2.2 Slider-Crank Mechanism 

Figure 5.3 Path covered by point of inter
est P . 

The slider-crank mechanism of Sec. 4.4.1 is now considered for kinematic analysis. The 
mechanism is modeled in two slightly different forms. 

Model 1. The first model considers the mechanism as discussed in Sec. 4.4.1. 
There are four bodies, three revolute joints, and one translational joint in this model. 
The flow of input data that describe this model is as follows: 

o 
® 
® 2 

® 3 

® 4 

<£) 
<£) 2 

4,3,1,1,0,1,0 

0.0,0.0,0.0 

-86.6,50.0,5.76 

-467.0AO.0,0.2 

-663.1,0.0,0.0 

4,3,0.0,0.0, - 200.0,0.0 

3,2,300.0,0.0, -1 00.0,0.0 
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(£) 
@ 

® 
@ 

CD 

3 2,1,100.0,0.0,0.0,0.0 

4,1,0.0,0.0,100.0,0.0,0.0,0.0 

2,3,5.76, -1.2,0.0 

0.0,5.3,0.1 

Figure 5.4 shows acceleration of the slider for one complete revolution of the crank. 
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Figure 5.4 Acceleration of the slider versus time. 
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Model 2. The translational joint of the first model is replaced in model 2 by 
two simple constraints. The slider, body 4, is constrained in the y and cp directions. The 
flow of input data that describe this model is as follows: 

Prompt k Input 

0 4,3,0,1,2,1,0 

® 0.0,0.0,0.0 
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5.2.3 Quick-Return Mechanism 

2 

3 

4 

2 

3 

2 

-86.6,50.0,5.76 

-467.0,40.0,0.2 

-663.1,0.0,0.0 

4,3,0.0,0.0, - 200.0,0.0 

3,2,300.0,0.0, -100.0,0.0 

2,1,100.0,0.0,0.0,0.0 

4,2 

4,3 

2,3,5.76, -1.2,0.0 

0.0,5.3,0.1 
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Consider the quick-return mechanism of Sec. 4.4.2. Model I consists of six bodies, five 
revolute joints, and two translational joints. The flow of input data for this model is 
as follows: 

Prompt k Input 

0 6,5,2,1,0,1,0 

® 0.0,-300.0,0.0 

® 2 70.0, - 60.0, 1.1 

® 3 50.0,40.0,0.5 

® 4 90.0,60.0,1.1 

® 5 80.0,180.0,6.0 

® 6 0.0,200.0,0.0 

0 3,4,50.0,0.0,0.0,0.0 

0 2 2,5,250.0,0.0,60.0,0.0 

0 3 1,2,0.0,0.0, - 250.0,0.0 

0 4 5,6, -60.0,0.0,0.0,0.0 

0 5 1,3,0.0,300.0,-50.0,0.0 

CD 4,2,0.0,0.0, -1 0.0,0.0,0.0,0.0, 

CD 2 6,1,0.0,0.0, -1 0.0,0.0, 0.0,500.0 

0 
CD 3,3,0.52,3.0,0.0 

(0 0.0,2.1,0.025 
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The velocity of body 6 (the slider) is plotted from the output in Fig. 5.5. 

500 

250 

0 

-250 

0.0 0.5 1.0 
Time (sec) 

1.5 

Figure 5.5 Slider velocity of a quick-return mechanism versus time. 

5.3 PROGRAM EXPANSION 

2.0 

The computer program that is listed in the opening of Sec. 5.1 and in subsections 5.1.1 
through 5.1.3 has been presented in its simplest form. This program may be expanded to 
accommodate, for example, other forms of input/output or other types of kinematic 
joints. These improvements to KAP are suggested at the end of this chapter, through a 
series of exercises (problems). These suggestions are only guidelines - the modifica
tions can also take other forms. Actual use of the program, for modeling and analyzing 
a wide range of examples, will provide the user with additional ideas for expansion and 
modification. 

PROBLEMS 

The following problems provide examples that ean be simulated by using a kinematic analysis 
program such as KAP. Many of the problems can be simulated on the existing listed version of 
KAP. Other problems may require some modifications or extensions to the program. Guidelines 
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for improving the versatility and increasing the capability of KAP arc included for some of those 
problems, The majority of the problems involve the analysis of four-bar mechanisms. The four
bar mechanism is one of the simplest closed-loop mechanisms, since it has only 1 DOE A wide 
variety of motion can be generated by this mechanism. In the following four-bar mechanisms, a, 
b, c, and d denote, respectively, the length of the crank, coupler, follower, and frame. The four
bar mechanisms are classified under various types. The following nomenclature is used to describe 
each type of four-bar mechanism: 17 

s = length of shortest link 

I = length of longest link 

m, n = lengths of the other two links 

5.1 A double-crank four-bar mechanism is shown in Fig. P.S.I. For this class, s + I < m n 
and the shortest link is the frame. Assume a 2.1, b 1.6, c = 2.6, and d 0.9 (any 
unit). Drive link AB through 3600 with a constant angular velocity. Monitor the path, veloc
ity, and acceleration of points Band C. 

5.2 A rocker-crank four-bar mechanism is shown in Fig. P.S.2. For this class, s + I < m + n 
and the shortest link is one of the side links. Assume that a = 0.8, b 2.1, c 1.6, and 
d 2.S. Drive link AB through 3600 and find the forbidden zones for the rocker CD and the 
angle of oscillation (1'. 

F'igure P.S.l Figure P.S.2 

5.3 A double-rocker four-bar mechanism is shown in Fig. P.S.3. For this class, s + I < m + n 
and the shortest link is the coupler. Assume that a 2.1, b 0.8, c = 2.S, and d = 1.6. 
Drive the coupler BC through one revolution. Determine the forbidden zones and the range 
of the angles of oscillation for the two rockers AB and CD. 

B'L-_-' 

Figure P.S.3 
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5.4 Repeat Prob. 5.3 but instead of driving the coupler BC, drive one of the rockers: 

(a) Drive the rocker AB counterclockwise. 
(b) Drive the rocker AB clockwise. 
(c) Determine the forbidden zones and the range of the angle of oscillation, and then com

pare the result with the result of Prob. 5.3. 

5.5 Figure P.5.5 shows a change-point four-bar mechanism. For this class, s + I m + n. 
Assume that a 1.2, b = 1.4, c = 1.6, and d 1.0. Drive link AB through 720°. Ob
serve that after one revolution of AB, point C finds a new position at C f. After the second 
rcvolution of AB, point C returns to its initial position. Plot the rotational acceleration of CD 
versus its rotational angle. 

5.6 The Galloway mechanism (Fig. P.5.6) is another example of a change-point four-bar mecha-
nism. In this mechanism, a d, b c, and a < b. Assume that a 1.0 and b = 1.5. 
Drive AB through 7200 and observe that CD executes only 3600

• 

c 
;Bl::==b::::::;~ C 

Figure P.S.S Figure P.S.6 

5.7 Figure P.5. 7 shows another example of a change-point four-bar mechanism. Configura
tion (a) is usually called parallelogram linkage and configuration (c) is called antiparallel 
linkage. Configuration (b) is the change-point state. A mechanism starting in configuration 
(a) and going through configuration (b) may end up in configuration (a) or (c). During posi
tion analysis, if the mechanism is near the change-point state, thc Newton-Raphson iteration 
may converge to any of the two solutions. Drive AB through 3600 and monitor the position 
of point C. Repeat for different values of time increment DT. 

B b C 

f > 1} 
A a .... --b : D I+CAI;::==:rtI)===:;Ar:.D~.= .=::::::00 

'/ / :Wm ~ 

B 

(al (b) (e) 

Figure P.S.7 

Note: A mechanism at a change-point state becomes kinematically indeterminate. During 
numerical analysis, if the constraint equations are assembled in the exact change-point state, 
the Jacobian matrix loses rank; i.e., the number of degrees of freedom incrcases at the 
change-point state. Since the Jacobian matrix becomes singUlar, a solution cannot be ob
tained at such a state. 
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5.8 It would be useful to save the input data in a file, in the same sequence in which it is entered 
interactively. This input data file could then be used if further simulation of the same prob
lem were needed. 

(a) Include any required statements in the program to save a copy of the interactively en
tered data in a disk file. The name of the file should be specified by the user. 

(b) The program should be able to accept data either interactively or from a file. 
(e) Include a WRITE statement after each READ statement to echo a copy of the input data 

to the output unit. 
5.9 Provide the capability for the program to save the output response at every time step in an 

output file. 
5.10 If the output is written into the terminal, the flow of data may be fast. In subroutine 

KINEM, after reporting the response and before incrementing T, include a WRITE and a 
READ statement making the program pause. The write statement should prompt the user to 
enter a C for continue or a T to terminate. 

5.11 Modify the program to accept data on angles either in radians or in degrees. If the data are 
given in degrees, then the program must convert them to radians. Similarly, the program 
should provide the output in either radians or degrees. 

5.12 For some mechanisms, the user may be interested in a complete kinematic analysis. How
ever, sometimes position analysis or position and velocity analysis may be sufficient. It 
would be more efficient to avoid unwanted levels of analysis. Modify the program by intro
ducing a flag as follows: 

lANAL = 1: Perform position analysis. 
lANAL = 2: Perform position and velocity analysis. 
lANAL = 3: Perform position, velocity, and acceleration analysis. 

5.13 Formulate additional kinematic joints in the program. Follow the form of the subroutines for 
the revolute joint that already exists in KAP. Include the following joints: 

(a) Revolute-revolute joint (Eq. 4.14.) 
(b) Revolute-translational joint (Eq. 4.16) 
(e) Spur gears (Eq. 4.18) 

5.14 Include other types of driver constraints in the program. Some useful constraints are: 

(a) <Pi <Pj - CI(t) = 0 
(b) Xi - XJ - C2(t) = 0 
(e) Yi Yj - C3(t) = 0 
(d) Eq. 4.39 
(e) Eq. 4.40 

The time-dependent functions can be provided either as a table of data or as a closed-form 
function such as a sine or a cosine function. 

5.15 In position analysis, the Newton-Raphson algorithm uses values of the coordinates from the 
previous time step as an estimate on qi to start the iteration. These estimates can be im
proved as follows: 

qi = qi-I + Ati{-I + iAt2qi-l 

Include this modification in subroutine KINEM to improve the efficiency of the program. 
5.16 Employ a Gaussian elimination (or L-U factorization) algorithm with full or partial (row in

terchange) pivoting in KAP to identify any redundant constraint equation. This process can 
be performed once on the Jacobian matrix before the start of the kinematic analysis. 

5.17 Simple but general algorithms and program listings for spline functions can be found in most 
numerical computation textbooks. Include such a program in KAP. These subroutines may 
be called for interpolation when a curve is defined in discrete form. 
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5.18 When nonstandard constraint equations are to be included in KAP to model a particular 
mechanism, it is not efficient to modify and compile the entire program. In this case a user
supplied subroutine can be written to implement the constraints. In subroutine FUNCT, in
clude a call to a subroutine USRCON before the return statement, as follows: 

CALL USRCON (A, lA, MAXA, MAXIA) 

Then, include a dummy user-supplied subroutine: 

SUBROUTINE USRCON (A, IA, MAX, MAXIA) 
C .... .Include all of the common blocks 
DIMENSION A(MAXA), IA(MAXIA) 
C ..... lnsert new constraints, define the Jacobian, etc. 
RETURN 
END 

This subroutine will be called by subroutine FUNCT at every time step. If there is no non
standard function in the model, this subroutine will not affect the simulation. However, if 
equations are inserted in this subroutine and it is linked to KAP, then each time this subrou
tine is called, the nonstandard constraints will be included in the model. 

5.19 When constraint equations are formulated in terms of a set of Cartesian coordinates, the re
sultant Jacobian is a sparse matrix; i.e., most of the elements of the matrix are zero. There 
are matrix factorization algorithms designed specifically for sparse matrices:! These al
gorithms are much more efficient than the standard full-matrix algorithms, such as subrou
tine LU used in KAP. If you have access to such sparse-matrix algorithms, employ them in 
KAP to improve the efficiency of the program. 

5.20 The linkage shown in Fig. P.5.20 is used to advance a film strip intermittently by the motion 
of point P, which periodically engages and disengages from the sprocket holes in the film
strip as crank CD rotates clockwise at 1800 rpm. 17 

(a) Plot the path of point P. 
(b) How far apart should the sprocket holes be placed on the film strip? 
(c) What is the mean speed of the film strip? 

Figure P.S.20 

5.21 Assign values to the lengths of the links of the four-bar mechanism shown in Fig. P.5.21. 
Rotate the crank and monitor the path of several points on the coupler, such as PI> P2 , •••• 

tThe HARWELL Subroutine Library offers FORTRAN subroutines for sparse-matrix factorization. For 
more detail, write to HARWELL Subroutine Library, United Kingdom Atomic Energy Authority, Computer 
Science and System Division, AERE Harwell, Oxfordshire. 
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Figure P.S.21 Figure P.S.22 

5.22 The crank-rocker four-bar mechanism shown in Fig. P.S.22 is a web cutter. 17 Link AB ro
tates with a constant angular velocity of 100 rpm. 

(a) Determine the angle of the crank at the time of cutting. 
(b) What should be the velocity of the web at the time of cutting? 

5.23 Figure P.S.23 shows an elliptic trammel. Any point P on the link KL traces out an ellipse. 
Define several points Ph P2, ••. as special points of interest on link KL, and then rotate this 
link through 3600 and plot the paths of these points. 

5.24 A dough-kneader mechanism is shown in Fig. P.S.24.* The crank AB rotates through 360°. 
Note that in order to model this meehanism two revolute joints are needed at B. Plot the 
path of point P. Assume AB = 6, BC EF = 13, BE = CF = 6, DC = 15, AD 18, 
BP = 26. 

Figure P.S.23 
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Figure P.S.24 

"These mechanisms have been adopted for kinematic simulation from the following reference: 
Artobolevsky, I. I., Mechanisms in Modern Engineering Design, Vol. I, MIR Publishers, Moscow, 1975. Many 
other simple to complicated mechanisms can be found in this and subsequent volumes of the same reference. 
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5.25 Figure P.5.25 shows a translator mechanism for a drafting table. + The lengths of the links 
comply with the conditions AB DC, AD BC, FG EH, and EF = HG. Verify that 
the system has 2 DOF. Also show that parallel lines can be drawn by link p. This can be 
done in several ways; for example, keep the angle between EF and EH constant (include the 
constraint ~i - ~j - c = 0), and then rotate link AB. 

Figure P.S.2S 

5.26 Repeat Prob. 5.25 and assume that ring q consists of two rings qj and q2 as shown in Fig. 
P.5.26. The two rings are connected by revolute joint I. Angle IX between the two rings can 
be varied in order to change the angle of link p. While keeping IX constant during any given 
simulation, perform several simulations for different values of IX. 

Figure P.S.26 

5.27 Figure P.5.27 shows two pantograph mechanisms where T is the tracing point and D is the 
drawing point. Since 0, D, and T are on a straight line, the paths traced by T and Dare 

'See footnote to Prob. 5.24. 
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la) (b) 

Figure P.S.27 

geometrically similar. In order to set up a simulation model, the following tasks must 
be performed: 

(a) Carry out Prob. 5.12 for position analysis only. 
(b) Carry out Prob. 5.14(d) and (e). 

Select an outline to be traced; for example, a known geometrical shape. Discretize the out
line into several points, and then find the x and y coordinates of these points with respect to 
the global xy coordinate system. These coordinates provide driver constraints on x T and yT. 

5.28 A pantograph mechanism can be modified easily to draw nonsimilar or warped traces. For 
example if point D is moved to position DI (see Fig. P.5.28), the shape of the drawn path 
will be different from the traced path. Similarly, if D is moved to position D 2 , then the 
drawn path will be quite different from the traced path. By moving D to different positions, 
completely unfamiliar shapes can be generated. If the result is displayed on a graphics ter
minal, interesting paths may be observed. Make this problem a computer graphics oriented 
project. 

5.29 The mechanism shown in Fig. P.5.29 is known as a Kostitsyn approximate straight-line sys-
tem, where b = 4a, c Sa, and AD = b. + When link BF rotates, point E describes a path 

8 b 
rr-------------,~c 

F 

Figure P.S.28 Figure P.S.29 

*See footnote to Prob. 5.24. 
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of which a portion is an approximate straight line. Verify this and note that the linkage 
ABCD is a change-point four-bar mechanism. 

5.30 Figure P.5. 30 shows the Peaucellier-Lipkin exact straight-line mechanism. + Choose 
e 1.2,f 3.0, and g = 1.4. Rotate link RE and observe that point S describes a straight 
line. Determine the length of the stmight line drawn by point S. 

5.31 The Peaucellier-Lipkin circle inversion mechanism is shown in Fig. P.5.31. 1 Assume that 
a 2.0, b = 1.6, and c := 1.4, where FE < c. Rotate link ER and observe that point S 
describes a circle c centered at point O. Verify that FO FE(a 2 b2)/(C2 - FE2) and 
that the radius of the circle is r = c(FO/FE) (for simulation assume FE = 0.8). 

s 

R 

Figure P.S.30 Figure P.S.31 

5.32 The Hart mechanism for drawing ellipses is shown in Figure P.5.32. The lengths of the links 
comply with the conditions n 2m and e = v'2;;. Verify that when link MR rotates, point 
S describes a straight line and any intcrmediatc point P on link RS describes an ellipse. 

5.33 The Chebyshev six-bar reversing mechanism is shown in Fig. P.5.33. Verify that one rcvo
lution of crank EF con-esponds to one revolution of link JK in the opposite direction. As
sume EF = 1.08, FG = Gll GI 2, IJ JK 1.14, llK = 2.78, and Ell 2.66. 

5.34 The mechanism shown in Fig. P.5.34 is a simplified version of a thread-and-needle guiding 
system of a sewing machine.' Rotate crank c and plot thc path of point H. Assume AB 10, 
BE = 9, DE = DF 6.5, EF = 5, FG 17.5, a = f 10, b 7, d = 1, and e = 4. 

5.35 For the mechanism shown in Fig. P.5.35, verify that when the crank rotates, the output link 
dwells. Plot the angular velocity of the output link versus the crank angle. Assume that 
OA = 0.8, AB = 3.6, BC = 2.3, CH = DE EF 3.5, OH 1.5, AD CG = 4, 
BD 2, and FG = 1. 

5.36 For the mechanism shown in Fig. P.5.36, find that portion of the crank orientation for which 
the output link dwells. Plot the path of the motion of the slider. Assume OA = I, AB 4, 
BC = OE = 3.5, CE = 5, and BD = OF = 2.5. 

5.37 A Geneva-wheel mechanism is shown in Fig. P.5.37. For a specific design, the following 
information is known: the radius of the crank p; the number of slots n; the half angle be
tween two adjacent slots /3 'IT/n; the center distance d p/sin /3. It is also known that 
the crank axis is perpendicular to the slot axis at the momenf of engagement or disengage-

ISee footnote to Prob. 5.24. 
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F'igure P.S.37 

ment. In order to model this mechanism, two types of constraints must be employed inter
changeably: 

(a) When the pin is disengaged from the wheel, the wheel does not rotate. 
(b) When the pin is engaged with a slot, the pin-slot combination can be modeled as a revo

lute-translational joint. It is clear that the axis of the translational joint will bc different 
from one revolution to the next. 

Include the constraint equations and the proper logic for switching between these equations 
in KAP. 

5.38 A walking robot mechanism is shown in Fig. P.5.38(a).* The mechanism consists of two 
identical TI-shaped legs, each having two feet. When one pair of feet is on the ground, the 

(a) 

tSee footnote to Prob. 5.24. 
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(b) 

Figure P.S.38 

other pair moves forward by the rotation of two parallel eranks AI C 'A2 and A3 C; A4 • The 
lengths of the links comply with the conditions: 

AjR; = BiD; = 1 i = 1,2,3,4 

BIC B2C B3CI =R4 CI =1 

AI C' A2C':= A3C; = A4C; = 0.355 
A2A4 AJA3 C1C; = 0.634 
CC' C I C; 0.785 
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A kinematic analysis of this system requires the following; 

(a) If all of the bodies and revolute joints that are shown in the figure are included in the 
model, redundant constraint equations will result. Therefore, the redundant equations 
must be eliminated. 

(b) During one-half of the crank revolution, one pair of feet must be constrained to the 
ground, and during the other half of the crank revolution, the other pair of feet must be 
constrained to the ground. This process must be performed interchangeably in every rev
olution of the crank. 

If the result of the simulation is viewed on a graphics terminal, a sequence of graphs, as 
shown in Fig. P.5.38(b), will be observed. 

5.39 Some relatively complex mechanisms can become interesting simulation projects. For the 
more complex systems, graphics output can be a valuable analysis and design tool. Exam
ples of such mechanisms can be found in the following: 

(a) Recliner chairs 
(b) Sofa-sleepers 
(c) Crank mechanisms for automobile windows 
(d) Convertible tops in some automobiles 

Find data on these mechanisms and try to. simulate their kinematics. 



6 

Euler Parameters 

In this chapter and the next, spatial kinematics is discussed. Although the analytical 
procedure in spatial kinematics is the same as in the planar case, spatial kinematic an
alysis requires much more powerful mathematical techniques than.planar kinematics, 
particularly for describing the angular orientation of a body in a global coordinate sys
tem. Therefore, this chapter is mostly devoted to developing the techniques involved in 
describing the angular orientation of bodies in space, without being concerned with 
the translation. 

As its title suggests, this chapter concentrates on a set of orientational coordinates 
known as Euler parameters, t which are free of some of the deficiencies of other com
monly used angular coordinates, such as Euler angles. At the beginning, it may appear 
that Euler parameters have no physical significance and that they are just mathematical 
tools. However, when the subject is thoroughly understood, their physical relevance will 
also become evident. Furthermore, for large-scale computer programs that treat the an
gular orientation of bodies, either rigid or deformable, the use of Euler parameters may 
drastically simplify the mathematical formulations. 

6.1 COORDINATES OF A BODY 

An unconstrained body in space requires six independent coordinates to determine its 
configuration - three coordinates specify translation and three specify rotation. The six 
coordinates define the location of a Cartesian coordinate system that is fixed in the body 
(i.e., the location of its local, or body-fixed, coordinates) relative to the global (refer-

tEuler parameters are a normalized form of parameters known as quaternions. 19 
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ence or inertial) coordinate axes. Since all points in the body may be located relative to 
this body-fixed coordinate system, the global locations of all points in the body can thus 
be determined from the six coordinates. The coordinates of the origin of the body-fixed 
axes are the translational coordinates. Rotational coordinates are then needed to define 
the orientation of the local axes relative to the global coordinate axes. Throughout this 
text, the body-fixed axes will be denoted as eYJ' axes and the global axes will be de
noted as xyz axes. 

Figure 6.1(a) shows how the configuration of the eYJ' axes with respect to the xyz 
axes can be considered a translation (xyz to x'y 'z') and a rotation (x'y'z' to eYJ'). How
ever, for purposes of finding only the angular orientation of the eYJ' axes relative to the 
xyz system, the origins of the two systems may be considered to coincide, as shown in 
Fig.6.1(b). 

z 

x 

/ 
/ 

x' 

/ 

(al 

z 

+------y' J-~-i---y 

x 

(b) 

Figure 6.1 Configuration of Cartesian coordinate systems: (a) translation and rotation; (b) rotation only. 

A vector s from the origin to a point P, as shown in Fig. 6.2, can be expanded in 
either of the two coordinate systems. If unit vectors u(e)' u('1)' and um are defined along 
the eYJ' axes and u(x), uCy), and u(,) are defined along the xyz axes, then: 

or 

z p 

~~--~----y 

x 

(6.1) 

(6.2) 

Figure 6.2 Unit vectors along the axes of 
the local and global coordinate systems. 
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where 

and 

Sw = S . U(g), S(1) S . U(1) , Sw = S . Uw 

The component vectors that define S in the two coordinate systems are 

s [s(x). s(y). s(z)Y 

in the xyz system and 

s' [s(~), s(1)' swY 

in the (iT]' system. It is clear that there is a relation between sand s', since they are 
uniquely defined by the same vector S. To find this relation, the u(~)' u(1)l' and u({) unit 
vectors are defined in terms of the u(x). u(Y)' and (U)(z) unit vectors as follows: 

Ute) = allu(x) + a2I u(y) + a3I u(z) 

u(1) = a l2u(x) + a22u(y) + a32u(z) 

Uw = anucx) + a23u(y) + a33u(z) 

where aij , i,j 1,2, 3, are the direction cosines that can be expressed as 

all = Ute) . u(x) = cos(u(g), u(x») 

a21 = u(g) • U(Y) = cos(Uw, u(Y») 

a31 = U(g) • U(,) = cos(uw, u(z)) 

al2 U(1) . U(x) = cos(U(1)' u(x») 

a22 u(1) • U(Y) = cos(U(1)l' U(Y») 

an U(",) • U(z) = cos(u(",) , U(z») 

an Um • U(x) = cos(Uw, U(x») 

a23 Uw • U(y) cos(U({), U(Y») 

a33 Uw' U(z) cos(U(Q, U(z») 

Substituting from Eq. 6.3 into Eq. 6.2 yields 

(aIIS(e) + a 12s(",) + a 13SW)U(x) 

+ (a2l sW + a22s('l) + a 23S(Q)ii (v) 

+ (a31sW + a32s('l) + a33sw)ii(z) 

By equating the right sides of Eqs. 6.1 and 6.5, it is found that 

or, in matrix form, 

S(x) = allsw + a I2s(1) + answ 

Sly) = a21sW + a22S('l) + a23sW 

S(z) = a 31s«1 + ans(1)l + a33SW 

s = As' 
where the matrix A of direction cosines is 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 



156 Euler Parameters Chap. 6 

The matrix A has a special property. If the xyz components of unit vectors uw, 
u('ll' and u(I;,) are denoted by u(e)' u(>/)' and u m and the xyz components of vectors u(x), 

U(Yl' and u(Z) are dcnoted by u(x), u(Y)' and u(z), it is clear that 

Dv) rn 0,,) ~ rn 0,. ~ m (6.8) 

Equation 6.4 indicates that a II is the x component 9f u(el' a21 is the y component of U«l, 

and so forth. Therefore, 

and the matrix A can be written as follows: 

A = [uw, 0(>/), um] 

Since the unit vectors u(fl, U('l) , and u(1;) are orthogonal, 

ATA = I 

(6.9) 

(6.10) 

Thus, AT A-I, and the matrix A is also orthogonal. This special property permits an 
easy inversion of Eq. 6.6, to obtain 

(6.11) 

The nine direction cosines in A define the orientation of the tYJ~ axes relative to 
the xyz axes, but they are not independent. Substituting Eq. 6.4 into Eq. 6.10 provides 
six equations (three of the nine equations are repeated twice) among the nine direction 
eosines. Thus, only three direetion cosines are independent. While the nine direction 
cosines, subject to six constraints, could be adopted as rotational coordinates, this is 
neither practical nor convenient. Thus, other orientation coordinates are sought. 

When the origins of the xyz and tYJ~ coordinate systems do not coincide, as is the 
case in Fig. 6.I(a), the foregoing analysis is applied between the x 'y' z' and tYJ~ sys
tems. If the component vector SfP locates a point P in the tYJ~ coordinate system, as it 
does in Fig. 6.3, then in the X/y'z' system this vector is just As'P, and in global xyz 
coordi nates, 

(6.12) 

where r is the vector from the origin of the xyz system to the origin of the tYJ~ system. 

x 

Figure 6.3 Translation and rotation of a 
body in three-dimensional space. 
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6.1.1 Euler's Theorem on the Motion of a Body 

At any instant in time, the orientation of a body can be specified by a transformation 
matrix, the elements of which may be expressed in terms of suitable sets of coordinates. 
As time progresses, the orientation of the body will change. Hence the transformation 
matrix will be a function of time. Since the motion of the body is continuous, the trans
formation matrix must be a continuous function of time. The transformation may thus be 
said to evolve continuously. With this method of describing the motion, Euler's theorem 4 

can be stated as follows: 

Euler's theorem: The general displacement of a body with one point fixed is a rotation 
about some axis. 

The theorem indicates that the orientation of the body-fixed axes at any time t can bc 
obtained by an imaginary rotation of these axes from an orientation coincident with thc 
global axes. This imaginary axis of rotation is not the so-called instantaneous axis of 
rotation of the body - in this text we will call it the orientational axis of rotation. It 
is impoltant to note that any vector lying along the orientational axis of rotation is left 
unaffected by this imaginary rotation - it must have the same components in both the 
reference and the body-fixed coordinates. The other necessary condition for rotation, 
that the magnitude of vectors undergoing the imaginary rotation be unaffected, is auto
matically satisfied. 

An immediate corollary of Euler's theorem, known as Chasles's theorem,4 is 
stated as follows: 

Chasles's theorem: The most general displacement of a body is a translation plus a rotation. 

This theorem simply states that removing the constraint of motion with one point fixed 
introduces three translatory degrees of freedom for the origin of the body-fixed axes. 

6.1.2 Active and Passive Points of View 

A change in the angular orientation may be interpreted from an active point of view or 
from a passive point of view. Symbolically, a transformation may be written as 

s = As' (6.13) 

According to the active point of view, the operator A relates two vectors of equal length, s 
and s', expressed in terms of the global coordinate system only, as shown in Fig. 6.4(a). 
On the other hand, the passive point of view describes only a single vector s and intro
duces a new local coordinate system to account for the change in orientation, as shown 
in Fig. 6 .4(b). In this case the operator A relates the global components of the vector s 
to its local components; i.e., s and Sf. Whereas one rotates the coordinate system coun
terclockwise (positive sense of rotation), according to the passive point of view, one 
rotates vector s clockwise by the same angle from the active point of view, to obtain a 
new vector s' in the same coordinate system. The algebra is the same when either of the 
two points of view is followed. 

In the following sections, rotational coordinates known as Euler parameters are 
discussed. The Euler parameter set employs the active point of view for determination of 
the transformation matrix A. A discussion of two other sets of commonly used coordi
nates, known as Euler angles and Bryant angles, can be found in Appendix A. The pas-
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"'igure 6.4 Coordinate system rotation: (a) active point of view; (b) passive point of view. 

sive point of view is employed to determine the transformation matrix in terms of Euler 
and Bryant angles. 

6.1.3 Eu ler Parameters 

Euler's theorem states that a coordinate transfotmation can be accomplished by a single 
rotation about a suitable axis. It is natural, therefore, to seek a representation of the coor
dinate transformation in terms of parameters of this rotation, namely, the angle of rota
tion and the direction cosines of the orientational axis of rotation.4 -In Fig. 6.5 the initial position of the vector; is denoted by OP and the final posi-
tion ;' is denoted by OF'. The unit vector along the orientational axis of rotation is 
denoted by U. Vector; can be expressed as the sum of three vectors; 

s 

U(U·S'). 

z 
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x 
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Figure 6.5 Vector diagram for derivation 
of rotation formula, 
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The direct distance between points 0 and N is u . "i', so vector ON can be written as 
follows: 

ON = u(u . "i') (b) 
Vector NF' can also be described as follows: 

f.W = "i' - ON = "i' - u(u . "i') 
Hence, 

NQ = ["i' - u(u . "i')] cos </> (c) 

The magnitude of vector f.1P' is the same as that of vectors iiP and u X "i'. There
fore, vector QP may be expressed as 

QP = u X "i' sin </> (d) 

Substitution of Eqs. b, c, and d into Eq. a, together with a slight rearrangement of 
terms, leads to the rotation formula: 4 

"i = "i' cos </> + u(u . S') (1 - cos </» + u X "i' sin </> (6.14) 

By means of the standard trigonometric relationships 

and the new quantities 

cos </> = 2 cos2 
; - 1 

',1,. 2'</> </> 
Sill 'I' = Sill "2 cos "2 

- cos </> = 2 sin2 
; 

eo = cos ; 

~ ~. </> 
e = u Sill "2 

the rotation formula of Eq. 6.14 can be put in a more useful form: 

(6.15) 

"i = (2e~ - l)"i' + 2e(e . "i') + 2eoe X "i' (6.16) 

Algebraic representation of Eq. 6.16, using the component form e = [e l , e2 , e3f of e, 
yields 

or 

s = [(2e~ - 1)1 + 2eeT + 2eoe]s' (6.17) 

where 1 is the 3 X 3 identity matrix and, by the definition in Eq. 2.43, 

e = [ ~3 - ~3 _:~ l 
-e2 e l 0 J 

The term in brackets in Eq. 6.17 is thus the transformation matrix ofEq. 6.13; i.e., 

A = (2e~ - 1)1 + 2(eeT + eoe) (6.18) 
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More explicitly, 

[
e~ + ei ~ 

A = 2 e]e2 + eOe3 

e]e3 eOe2 

(6.19) 

Taking the transpose of both sides of Eq. 6.18 yields 

AT (2e~ 1)1 + 2(eeT 
- eoe) (6.20) 

The four quantities eo, e], e2 , and e3 are called Euler parameters. Equation 6.15 in
dicates that the Euler parameters are not independent. Since cos2(¢/2) + uTu sin2(¢/2) = 
1, then 

(6.21) 

i.e., 

e~ + ei + e; + e; 

If the four Euler parameters are put in a 4-vector as follows: 

p = [eo, eTr 

= [eO,e],e2 ,e3t (6.22) 

then Eq. 6.21 is written as 

(6.23) 

According to Euler's theorem, any vector lying along the orientational axis of ro
tation must have the same components in both initial and final coordinate systems. This 
statement may be verified by finding the local and global components of the vector e. 
Assume that e = [e], ez, eX consists of the global components of e. The transformation 
matrix A can be used to obtain the local components of e; i.e., e', as follows: 

e' = ATe 

= (2e~ -

(2e~ 
= (2e~ 

J)e + 2(eeT 

l)e + 2e(I 

I)e + 2(1 

eoe)e 
e~) 

e~)e 
2e~)e (2e~ 1 + 2 

e 

where Eqs. 6.18 and 6.21 and the identity ee 0 (Eq. 2.48) have been used. This result 
shows that the global components and the local components of e are the same. Figure 6.6 
illustrates the projection of e on both the ~1j' and the xyz axes. 

6.1.4 Determination of Euler Parameters 

From the transformation matrix of Eq. 6.19, it is possible to derive explicit formulas for 
the Euler parameters in terms of the elements of the transformation matrix. Assume that 
the nine direction cosines of a transformation matrix are given as in Eq. 6.7: 

[

all 

A = a21 

a31 
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z Orientational 
axis of rotation 

----
--------------

--~ 

x 

Figure 6.6 Projection of vector eon g, T/, " x, y, and z axes. 

The trace of A, denoted by tr A, is defined as follows: 

tr A = all + an + a 33 

From the transformation matrix of Eq. 6.19 it is found that 

tf A 2(3e~ + e~ + e~ + eD - 3 
= 2(2e~ + I) - 3 

= 4d - 1 

where Eq. 6.21 has been employed. This equation can be written as 

e2 = tr A + 1 
o 4 

Substituting this into the diagonal elements of A results in 

all = 2(e~ + ei} 

A + 1 ) 
4 + ei 

or 

tr A 

and similarly, 

tf A 
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(6.24) 

(6.25) 

(6.26a) 

(6.26b) 
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and 

e; = 1 + 2a33 - tr A 
4 
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(6.26c) 

In contrast to Euler and Bryant angles (see Appendix A), or any other set of three rota
tional coordinates, there are no critical cases in which these inverse formulas are singular. 

It is interesting and computationally important to note that Eqs. 6.25 and 6.26 
determine only the magnitudes of the Euler parameters, in terms of only the diagonal 
elements of the direction-cosine matrix A. To find the algebraic signs of the Euler 
parameters, off-diagonal terms must be used. Equation 6.21 indicates that at least one 
Euler parameter must be nonzero, e.g., eo. The sign of eo may be selected as positive or 
negative. Subtracting symmetrically placed off-diagonal terms of matrix A in Eqs. 6.7 
and 6.19 yields 

a32 a23 4eoe l 

a 13 a3J 4eOe2 

a2l a l2 4eOe3 

or 

et 4eo 
a 13 a31 (6.27) e2 

4eo 

e3 = 
a21 - a l2 

4eo 

If eo, calculated from Eq. 6.25, is nonzero, then Eq. 6.27 can be used to deter
mine e j , e2, and e3' Suppose that for an assumed sign for eo, and for the computed values 
of e1, e2' and e3, the angle of rotation and the axis of rotation are determined to be cP and 
e, respectively. If the sign of eo is inverted, the signs of el, e2, and e3 are inverted also. 
Changing the signs of all four parameters does not influence the transformation matrix, 
since the matrix is quadratic. 

If eo, calculated from Eq. 6.25, is found to be zero, then Eqs. 6.26a-c can be used 
to calculate e j ,e2 , and e3' Since eo = 0, Eq. 6.15 indicates that cP k1T, k ±J, 

.... Therefore, the sign of cP is immaterial; e.g., +1T and -1T are the same. To find 
the algebraic sign of el , e2' and e3, symmetrically placed off-diagonal terms of matrix A 
are added to obtain 

a 21 + all = 4e l e 2 

a31 + au 4e le3 
an + a23 

(6.28) 

At least one of the three Euler parameters e t , e2, and e3 must be nonzero. Its sign may be 
selected as positive or negative. Then, Eq. 6.28 can be used to determine the magnitude 
and the sign of the other two parameters. 

Example 6.1 
Nine direction cosines of a transformation matrix A are given as follows: 
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A 
[ 

0.5449 
0.3111 

-0.7785 

-0.5549 0.6285] 
0.8299 0.4629 

-0.0567 0.6249 

Determine the four Euler parameters corresponding to this transformation. 

Solution The trace of A is calculated from Eq. 6.24: 

tr A 0.5449 + 0.8299 + 0.6249 1.9997 
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Then, Eq. 6.25 yields e~ = 0.7499. Selecting the positive sign for eo, we find that 
eo 0.866. From Eq. 6.27, 

-0.0567 0.4629 
e l = 4.0(0.866) -0.15 

0.6285 + 0.7785 
0.406 e2 = 

4.0(0.866) 
0.3111 + 0.5549 

0.25 e3 = 
4.0(0.866) 

A test can be performed to check that the four parameters satisfy the constraint 
of Eq. 6.21. Either the four parameters are p = [0.866, -0.15,0.406,0.25 f, 
or, if the sign of eo is changed, the four parameters become p [-0.866,0.15, 
-0.406, -0.25f. 

Example 6.2 
Determine the four Euler parameters for transformation matrix 

[

-0.280 -0.600 -0.749] 
A -0.600 -0.500 0.625 

-0.749 0.625 -0.220 

Solution The trace of A is found from Eq. 6.24: 
tr A -0.280 0.500 - 0.220 1.0 

Then, Eq. 6.25 yields eo = 0.0. From Eq. 6.26 it is found that 

e~ = 1.0 + 2.0(-0.28) + 1.0 0.36 
4.0 

Therefore, el ±0.6. If the positive sign is selected for el , then, Eq. 6.28 yields 

e
z 

= -0.6 0.6 = -0 5 
4.0(0.6) . 

-0.749 - 0.749 
e3 = 

4.0(0.6) 
-0.624 

The vector of the Euler parameters is p = [0.0,0.6, -0.5, -0.624f or p = [0.0, 
-0.6,0.5,0.624f. 
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When the angle of rotation is 1> k1T, k = 1, ± 3, ... , then eo is zero. There-
fore, the transformation matrix of Eq. 6.19 becomes 

A (6.29) 

which is symmetric. This property was observed in Example 6.2. 

6.1.5 Determination of the Direction Cosines 

It was shown in Section 6.1.4 that the Euler parameters can be determined if the direction 
cosines are known. This section considers methods to determine the direction cosines. 

One method for determining the nine direction cosines that describe the orientation 
of a body-fixed coordinate system with respect to the reference coordinates is to use 
Euler angles. If the three Euler angles can be determined (refer to Appendix A), then the 
elements of the transformation matrix can be computed. A direct calculation of the four 
Euler parameters in terms of the three Euler angles is given in Appendix B. This method 
may seem to be simple and straightforward; however, determination of the three Euler 
angles is difficult, and, for general cases, impractical. 

A second method for determining the nine direction cosines is discussed here. 
Two points A and B are located on the ~ and 7j axes, as shown in Fig. 6.7. The xyz coor
dinates of A and B and the origin 0 can be found by measurements taken on the actual 
system or on an illustration, or by some other means. The coordinates of points 0, A, 
and B are denoted by r, r'l, and rH, respectively. Vectors ii and b shown in Fig. 6.7 have 
the global component vectors 

a = rt! - r 
b = rH r 

(6.30) 

and magnitudes a and b, respectively. Vectors ii and b must be orthogonal; i.e., aTb 
must equal O. This rule is an important test of the accuracy of the measured data. 

J<'igure 6.7 Points defining the ~7)' axes. 
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Unit vectors u(O and u(1) may now be defined as follows: 

a 

b 

b 
The third unit vector, Uw on the ~ axis, can be found by noting that Uw 
i.e., 

U(~) uW u(1) 

Then, fromEq. 6.9, the nine direction cosines are found to be 

A [u(~)' U(1), uwl 

Example 6.3 
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(6.31) 

(6.32) 

(6.33) 

Points A on the g axis, B on the T/ axis, and 0 (the origin of the gT/~ axes) have 
coordinates rA [0.977,1.665, 2.916f, rll [-0.573,2.539, -0.709f, and 
r [-0.10,0.30, 0.25f. Determine the nine direction cosines and the four Euler 
parameters. 

Solution From Eq. 6.30, it is found that 

a [1.077,1.365, 2.666f 
b = [-0.473,2.239, -0.959f 

A test for orthogonality shows that aTb = -0.0099 = 0.0, which is acceptable. 
The magnitudes of a and b are calculated to be a = 3.183 and b 2.481. Then, 
Eq. 6.31 determines the unit vectors as 

U w = [0.338,0.429, 0.838f 

u('l) = [-0.191,0.902, -0.387f 

The third unit vector is found from Eq. 6.32: 

Hence 

Uw [0'~38 -0.~38 _~:;~:] [-~:~~~] 
-0.429 0.338 0 -0.387 

[

0.338 -0.191 -0.922] 
A = 0.429 0.902 -0.293 

0.838 -0.387 0.387 

[

-0.922] 
-0.293 

0.387 

which yields, according to the process of Sec. 6.1.4, p [0.810, -0.029, -0.543, 
0.191 f. The sum of the squares of the four Euler parameters is pTp = 0.988 = I. 

In most practical problems, the choice of how to embed a body-fixed coordinate 
system in a body (a link) is open. The gT/' axes may be embedded in a body according 
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(a) (b) (e) (d) 

z 

)-----v 

x 

Figure 6.8 Orientation of body-fixed coordinate system in special cases. (a) g7j~lIxyz, (b) gllx, 
(e) 1I11y, and (d) ~lIz. 

to any of the configurations shown in Fig. 6.8. If the ~T/' axes are parallel to the xyz 
axes, as shown in Fig. 6.8(a), then 

p = [1,O,O,of ~T/'I'XYz (6.34a) 

If the ~ axis is parallel to the x axis and the angle ofrotation is cp, as shown in Fig. 6.8(b), 
then 

[ 
cp . cp ]T 

P cos 2' sm 2,0,0 (6.34b) 

Similarly, for the orientations shown in Fig. 6.8(c) and (d), 

p = [cos ~ ,0, sin 2 or T/ II y (6.34c) 

and 

[ 
cp . cp]T 

P cos 2,0,0, Sin 2 ,II z (6.34d) 

In these special cases, it is relatively simple to determine the angle of rotation and then 
to calculate the Euler parameters. 

6.2 IDENTITIES WITH EULER PARAMETERS 

In this section, important formulas and identities between Euler parameters, their time 
derivatives, and their transformation matrices are derived. Derivation of some of the 
identities is shown in the text. However, to avoid extensive proofs in the text, several 
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problems are given instead at the end of this chapter. These identities are useful in the 
derivation of spatial constraint equations and equations of spatial motion. 15 

The product ppT is a 4 x 4 matrix that can be written in the form 

ppT [:O}eQ, e1 

From Eqs. 2.48 and 2.50, it is found that 

and 

and 

ee 0 

ee = eeT eTeI 

= eeT 
- (l e~)I 

A pair of 3 x 4 matrices G and L are defined as t 

G l-e l eo 

-ez e3 

-e3 -e2 

= [-e,e + eJJ 

l-e l eo e] 

L = -e2 -e3 eo 

-e3 e2 -e l 

= [-e, -e + eJ] 

Each row of G and L is orthogonal to p; i.e., 

Gp = [-e, e + eoI] [ ~ J 
= [-eoe + ee + eoeJ = 0 

where Eq. 6.36 has been used. Similarly, 

Lp 0 

(6.35) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

A direct calculation reveals that the rows of G are orthogonal, as are also the rows of L; 
i.e., 

(6.42) 

and 
(6.43) 

tThese matrices will be used extensively in the formulations that follow in this text. In Sec. 6.4 and 
some other sections it will be seen that G and L are transformation matrices dealing with global and local 
components of vectors. 
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so that 
(6.44) 

However, GTG is of the form 

GTG [- IJ[-e,e+ eol] 
-e + eo 

_ppT + 1* (6.45) 

where Eq. 6.37 has been used and 1* is the 4 x 4 identity matrix. Similarly, it can be 
shown that 

(6.46) 
so that 

(6.47) 

A very interesting relationship can be found by evaluating the matrix product GLT
: 

Ge [-e, c + eJJ [-e
T 

IJ 
e + eo 

= eeT + (e + eol) (e + eol) 

= (2e~ 1)1 + 2(eeT + eoc) 

Comparing Eq. 6.48 with the transformation matrix A of Eq. 6.18 reveals that 

A=Ge 

(6.48) 

(6.49) 

Equation 6.49 demonstrates that the quadratic transformation matrix A can be treated as 
the result of two successive linear transformations. This is one of the most useful rela
tionships between the G and L matrices and is a powerful property of Euler parameters. 

The first time derivative of Eq. 6.23 yields 

pTp = pTp 0 (6.50) 

Similarly, the first time derivatives of Eqs. 6.40 and 6.41 result in the identities 

and 
Gp -Gp 

Lp = -Lp 
The product Gp may be calculated, using Eq. 6.38, as follows: 

Gp = [-e,e + eol] [:oJ 

(6.51) 

(6.52) 
I 

(6.53) 
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since the vector product of e by itself is zero. Similarly, 

Lp 0 

Equation 2.53 can be employed, with Eqs. 6.38 and 6.39, to show that 

GLT = GC 
The time derivative of Eq. 6.49 yields 

A GLT + GLT = 2GLT 

= 2GLT 

The product Gp can be expanded as follows: 

Gp r-e,e+eoI][!ol 

= -eoe + ee + eoe 
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(6.54) 

(6.55) 

(6.56) 

Transforming both sides of the equation to skew-symmetric matrices, by the operation 
shown in Eq. 2.43 of Chap. 2, yields 

Gp = -eoe + ~ + eoe 

-eoe + ee - ee + eoe 
-eoc + ee eeT + eTeI + eoe 

= - eoe + ee eeT eoeoI + eoe 

= [e, -e - eol] [ -e-teoI] 

= -GGT (6.57) 

where Eqs. 2.52, 2.50, and the identity eoeo + eT e 0 (Eq. 6.50) have been used. 
Similarly, 

Lp = LLT (6.58) 

Two more identities can be derived using Eqs. 6.51, 6.52, 6.57, and 6.58: 

GGT -GGT 

LLT = -LC 

Furthermore, the time derivative of Eq. 6.50 yields 

pIp + p1'p 0 

The time derivative of Eq. 6.56 results in 

from which it is seen that 

A 2GL1' + 2Gf/ 
2GL1' + 2GC 

(6.59) 

(6.60) 

(6.61) 

(6.62) 

(6.63) 

At this time, it may not be apparent how useful these identities can be. However, 
later in this chapter and in the next several chapters, these identities will be used 
extensively. 
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6.2.1 Identities with Arbitrary Vectors 

Additional useful identities between Euler parameters, transformation matrices, and ar
bitrary vectors are derived here for later use. 15 Consider an arbitrary 3-vector a. Two 
4 X 4 matrices a and a are defined as follows: 

(6.64) 

and 

(6.65) 

The overhead plus or minus refers to the sign of the skew-symmetric matrix a in the 
definitions. Since a and a are skew-symmetric, 

and 

+ -a (6.66) 

aT = -a (6.67) 

To illustrate the importance and eonvenience of this notation, the matrix product 
GT a may be evaluated as folJows: 

Similarly, it can be shown that 

+ = ap (6.68) 

ea = ap (6.69) 

The product Ga is evaluated as follows: 

[
0 -aa_TJ Ga = [-e, e + eoI] a-

= [ea + eoa, eaT + ea + eoa] 
= [ea, ae + eoa] + [eoa, aeT] (a) 

where Eq. 2.53 has been used. It can be shown that [ea, ae + e03J = aG, and hence 
Eq. a is reduced to 

(6.70) 

Similarly, it can be shown that 

La = -aL + apT (6.71) 
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The time derivative of Eq. 6.68 can be written as 

t +. 
ap + ap 
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(b) 

Since a)s an arbitrary vector, Eq. 6.68 can be evaluated with the vector a, to obtain 
GTa = ap. This result can be used in Eq. b to obtain 

GTa ~p (6.72) 

Similarly, it can be shown that 

and 

i}a ap 

Postmultiplying Eq. 6.56 by a and using Eqs. 6.73 and 6.69 yields 

Aa = 2Gap 

Aa = 2Gap 

Similarly, it can be shown that 

and 
ATa = 2L~p 

The time derivative of Eq. 6.72 can be written as 

GTa + GTa = ~p + ~p 

(6.73) 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

(6.78) 
• + 

Since a is an arbitrary vector, Eq. 6.72 is also valid as GTit = ap. Hence, Eq. 6.78 be-
comes 

+ .. ap 
Similarly, it can be shown that 

Fa ap 

Equation 6.62 is postmultiplied by a to obtain 

Xa = 2Gi,Ta + 2GFa 

From Eqs. 6.73 and 6.80, Eq. 6.81 becomes 

Xa 2GC a + 2G'i-'" 

or 

Xa 2Gap + 2Gap 

Similarly, the product XTa can be written as follows: 

XTa 2LGTa + 2L~p 
or 

(6.79) 

(6.80) 

(6.81) 

(6.82) 

(6.83) 

(6.84) 

(6.85) 

The partial derivative of the matrix product Aa with respect to p is expanded as 
follows: 

iJ 
-(Aa) 
iJp 

iJ [(2e~ - 1)a + 2eeTa + 2eoea] 
iJp 

2[2eoa + ea, eTaI + eaT - eoit] (c) 
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By using Eq. 2.50, we can write this partial derivative thus: 

a: (Aa) = 2[2eoa + ea, aeT - ea + eaT - eoal 

[
0 _~TJ 

=2[-e,e+eoI] a-a 

2Ga + 2apT (6.86) 

Similarly, it can be shown that 

~ (Ala) 2La + 2apT 
ap 

(6.87) 

The following identity is valid for the transformation matrix A - which may be 
described in terms of Euler parameters or any other set of rotational coordinates - and 
any vector s. If the vector product of vcctor s and an arbitrary vector a is a vector b, 
then in terms of global and local components, this vector product is expressed as 

b sa (d) 

and 

b' s'a' 

Since a = Aa' and b = Ab', Eq. d becomes 

(e) 

Ab' = sAa' (f) 

Substituting Eq. e into Eq. f and eliminating the arbitrary vector a' from both sides 
yields 

As' = sA 
Postmultiplying both sides of Eq. 6.88 by AT yields 

s As'AI' 

Equation 6.89 will be found useful in many derivations. 

6.3 THE CONCEPT OF ANGULAR VELOCITY 

(6.88) 

(6.89) 

Consider the ~YJ' coordinate system shown in Fig. 6.9(a), with its origin constrained to 
the origin of the nonrotating xyz coordinate system, but otherwise free to rotate. The 
global location of a point P that is fixed in the ~YJ' coordinate system is given by the 
equation 

Differentiating this equation with respect to time yields 

it As'P + As'P 
Since sP is fixed in the ~YJ' axes, s,P = 0, and therefore 

fl = As'P (6.90) 



Sec. 6.3 The Concept of Angular Velocity 173 

x 

(a) (b) 

Figure 6.9 (a) Rotating (;T/( coordinate system, (b) Rotating and translating (;T/( coordinate system. 

At this point, the objective is to express the elements of matrix A in terms of the 
elements of matrix A. Two linear relationships between A and A may be expressed as 

A = OA (6.91) 

or 

A=AO' (6.92) 

where 0 and 0' are two 3 X 3 coefficient matrices. What the two coefficient matrices 
are and how they are related will be answered in the remainder of this section. 19 

Differentiating the identity AT A = I with respect to time yields 

ATA + ATA = 0 (a) 

Substituting Eq. 6.91 into Eq. a results in 

ATOTA + ATOA = 0 (b) 
Premultiplying Eq. b by A and then postmultiplying the result by AT yields OT + 
0= 0, or 

(6.93) 

Equation 6.93 indicates that 0 is a skew-symmetric matrix. Assume that 0 is composed 
of the elements of a 3-vector w so that 0 = w. Then Eq. 6.91 becomes 

A = wA (6.94) 

Similarly, substituting Eq. 6.92 into Eq. a results in 

(c) 

or 
0' = -O'T (6.95) 

Therefore 0' is also a skew-symmetric matrix. Assume that 0' is composed of the ele
ments of a 3-vector w' so that 0' = w'. Then Eq. 6.92 becomes 

A = Aw' (6.96) 
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Comparing Eqs. 6.94 and 6.96 gives 

wA = Aw' (6.97) 

Equation 6.97 is identical in form with Eq. 6.88; i.e., sA = As'. Therefore, it can be 
deduced that wand w' are the global and the local components of the same vector w. 
The vector w is defined as the angular velocity of the gYJ~ coordinate system. The com
ponents of vector w may be expressed as 

and 
, _ [ ]T 

W - cow' co("I)' COw 

By substituting Eq. 6.94 in Eq. 6.90, it is found that t 

~l = wAs'P 
liIsP 

In vector form Eq. 6.100 is expressed as 

iP=wx:t 

(6.98) 

(6.99) 

(6.100) 

For any vector s attached to the gYJ~ coordinate system, like that in Fig. 6.8(a), 
Eq. 6.100 can be written as 

s liIs (6.101) 

For a gYJ~ coordinate system that rotates and translates relative to the nonmoving 
xyz axes, the velocity of a point P that is fixed in the gYJ~ system can be determined. As 
shown in Fig. 6.9(b), we may employ a translating coordinate system such as x'y'zl 
whose origin coincides with the origin of the gYJ~ coordinate axes. The gYJ~ system ro
tates relative to the x'y I Z I system, which only translates relative to the xyz system. 
Point P can be located in the xyz system by the relation 

rP=r+sP 

The time derivative of this equation gives the velocity of point P as 

jJ' t+sP 

= t + w{ (6.102) 

6.3.1 Time Derivatives of Euler Parameters 

In this section, identities between the time derivatives of Euler parameters and angular 
velocity vectors wand w' are derived. These identities can be used for conversion from 
w or w' to p and vice versa. 

Postmultiplying Eq. 6.94 by AT yields 

(6.103) 

tBy~substituting Eq. 6.96 in Eq. 6.90, it is found that fl = Aw's'P. The global and local components of vec
tor Jl are denoted by il and (s)'p where (S)'P A(S)'P, and thus (S)'P = W'S'P. This equation is the same as 
Eq. 6.100, but expressed in terms of the local components of the vectors. Note 'that (S)'P "" s,p. Veetor S'P is 
defined as the time derivative of a constant vector S'P. and so S'P O. However, (S)'P is defined as the local 
components of veetor 1, and if -; "" 0, then (s)'P can be nonzero. 
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From Eqs. 6.56 and 6.49, Eq. 6.103 becomes 2GeLGT = iiJ, which, upon application 
of Eqs. 6.46 and 6.40, results in 2GGT = iiJ. Finally, substituting Eqs. 6.59 and 6.57 
into this last equation gives 2Gp = iiJ, or 

6.1 2Gp (6.104) 

In expanded form, Eq. 6.104 is 

(6.105) 

Premultiplying Eq. 6.104 by GT yields GT 
6.1 = 2GTGp, which, upon application 

of Eqs. 6.45 and 6.50, results in the inverse transformation 

(6.106) 

Similarly, it can be shown that 
6.1' 2Lp (6.107) 

In expanded form, Eq. 6.107 is 

l ] l ] [eo] Ww -e] eo e3 -e2 . 
e] 

W(71) 2 -e2 -e3 eo e] . 

w({) -e3 e2 -e j eo :: 

(6.108) 

) The inverse transformation of Eq. 6.107 is found to be 

p = 4ew' (6.109) 

Differentiating Eq. 6.104 with respect to time yields cd = 2Gp + 2Gp, which, 
upon application of Eq. 6.53, becomes 

cd = 2Gp (6.110) 

Similarly, differentiating Eq. 6.107 with respect to time and using Eq. 6.54 results in 

w' = 2Lp (6.111) 

Vectors cd and w' are the global and local components of a vector; defined as the 
angular acceleration of the gYJ' coordinate system. It can be shown that the inverses of 
Eqs. 6.110 and 6.111 are 

(6.112) 

and 

(6.113) 

It is clear that wTw W,TW ' = w2
, where w is the magnitude of w. Furthermore, it 

can be shown that the scalar product w T 
6.1 w2 

= 0 yields 

(6.114) 
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6.4 SEIVIIROTATING COORI)INATE SYSTEMS 

The concept of Euler parameters as rotational coordinates may appear, to the uninitiated 
reader, as a mathematical tool without any physical meaning. However, eareful study of 
these parameters will prove the contrary. Physical interpretation of Euler parameters is 
simple and is more natural to implement than any other set of rotational coordinates, 
such as Euler or Bryant angles. 

The angular orientation of one coordinate system relative to another can be looked 
upon by Euler's theor~m as the result of a single rotation about an orientational axis of 
rotation by an angle cp. A viewer may observe a rotation in different ways; three cases 
are considered here. 

Case 1. Consider an observer standing along the axis of rotation in the global xyz 

system. If the xyz and (;Yj' coordinates are initially coincident, then as the (;Yj' system 
finds its orientation, it will have rotated by an angle cp as seen by the observer. A posi
tive rotation may be seen by the observer as a clockwise rotation of (;Yj' about U. 

Case 2: The observer is in the (;Yj' coordinate system. In this case the rotation de
scribed in case 1 will be viewed as a counterclockwise rotation of the xyz system by an 
angle cp about it. 

Case 3: The observer is in a semirotating coordinate system designated af3y. In 
this case the same rotation will be viewed as a clockwise rotation of the (;Yj' system 
about u by an angle cp/2 and a simultaneous eounterclockwise rotation of the xyz system 
by an angle cp/2. 

The three cases are illustrated in Fig. 6.1O(a-c) for the special case of a planar 
system. It is assumed that the axis of rotation is outside the plane, along the z (or , or y) 
axis. The same example for the general case of a spatial system is illustrated in Fig. 
6.1O(d-t). 

Equation 6.49 states that the transformation matrix A is the result of two succes
sive transformations; i.e., A can be expressed as the product of two 3 x 4 matrices G 
and L as 

A GC 
The components of a vector s are transformed from the (;Yj' coordinate system to the xyz 
coordinate system as follows: 

s = As' 
This process can be performed in two steps: 

s* = es' 
s = GS* 

where s* is a 4-vector. Matrix C can be interprctcd as transforming s' from the (;Yj' co
ordinates by a semi rotation to an intermediate 4-space semi rotating coordinatc system, 
instead of the 3-space semi-rotating af3y system. Hence, s* is transformed from the 4- / 
space semirotating system to the xyz system by a second semirotation through matrix G. 

The transformation matrices G and L are linear in terms of the Euler parameters. 
The linearity of G and L is due to the fact that they perform a coordinate transformation 
between the local and global systems via a four-dimensional semirotating coordinate 
system. However, if the semirotating coordinate system is defined in a three-dimen-



Sec. 6.5 Relative Axis of Rotation 

(a) (b) 

z t z 
I \ 

I \ 
I \ 

~0 \ I \ 
I -~B-Y 

Y 1) 
,/ "-,/ 

/' 
/' 

,/ 

x t 

(d) (e) 

#2["'/2 y~(1 1) 

\ I 
\ I 
\ 1 

\1 _---x 
:: ---at 

(e) 

z 'Y t 
\ I 
\ I #2 
\ I 

~~~ \ I 
\ I 
1/ - -(1 -

//., --1) 

/ 1 
/ , 

F,/ I 

'" I 
x 

(f) 

Figure 6.10 Observer's interpretation of angle and orientational axis of rotation as seen from a 
point on the orientational axis of rotation and in a fixed orientation relative to (a, d) the xyz axes, 
(b, e) the f:1J' axes, and (c, f) the alJy axes. 
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sional space, its corresponding semirotational transformation matrices will be nonlinear 
in terms of the rotational coordinates. 

6.5 RELATIVE AXIS OF ROTATION 

The Euler parameters defined in Sec. 6.1.3 describe the angular orientation of a body
fixed coordinate system with respect to a global coordinate system. It may be advanta
geous to describe the orientation of a body-fixed coordinate system relative to another 
body-fixed coordinate system. In doing so, we need to find an axis about which one of 
the coordinate systems may be rotated by some angle to become parallel to the other co
ordinate system. 

Assume that a giTfi'i coordinate system with respect to the global xyz coordinate 
system is described by Euler parameters Pi and transformation matrix Ai' Similarly, as
sume that the orientation of the gjTfJ'j coordinate system with respect to the global coor
dinate system is described by Euler parameters Pj and transformation matrix A j' A 
vector s with s; components in the giTfi'i system has global components 

(a) 

The global components of vector s, i.c., s, can be transformed in terms of the giTfj'i co
ordinate system as follows: 

(b) 
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Substitution of Eq. a into Eq. b yields 

(c) 

Equation c may be written as 
(6.115) 

where 

Aij = AJAi (6.116) 

The product AJ Ai or Au is the transformation matrix from gil1i'i coordinates to gjl1j') 
coordinates. At this point, the objective is to find a set of Euler parameters 

Pi) = [eo, erg = [eo, el , e2, e3] & (6.117) 

that define the matrix Ai) in terms of Euler parameters Pi and Pj' 
Before attempting to find Euler parameters Pu' we present two identities. The 

product LiP) is expanded as follows: 

LiPj = [-ei, -ei + eoiI] [e
ol

] 
e, 

= [-eoje i - ejej + eOiej ] 

= [eOiej + eje j eOje;] 

= [ej,ej - eOjI] [:~J 
-Ljp; (6.118) 

Similarly, it can be shown that 

GiPj -GjPi (6.119) 

Now if Ai in Eq. 6.116 is replaced by G;L; from Eq. 6.49, then postmultiplying 
by L; yields 

AijL; AJG;L;Li 
AJGi(-p;p; + 1*) 

AJGi (d) 

where Eqs. 6.45 and 6.40 have been used. Postmultiplying Eq. d by Pj yields 

or 

r Ai) LiPj AjG;pj 

= -LjGJGjPi 
= -Lj( -PiPJ + I*)Pi 
= -LjP; 

~~~=~~ ~ 
where Eqs. 6.49, 6.119, 6.45, 6.41, and 6.118 have been employed, in that order. Equa
tion e may be rewritten as 

(f) 
where 

(g) 
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Equatio ... n g shows that the tr.i1nsformation matrix Ai) does not change the components of 
vector h. Therefore, vector b must be located along a relative orientatjonal axis of rota
tion between the gi"1)i~i and gj"1)j~j coordinate system}. Since vector eij also lies along the 
same relative orientational axis of rotation, eij and b must be collinear. 

According to Eq. 6.25, the Euler parameter eOij can be evaluated from 

2 tr Ai} + 1 (h) 
eOij 4 

The trace of matrix Aij can be found by substituting the elements of matrices Ai and Aj 

from Eq. 6.19 into Eq.6.116. If the matrix product is carried out and the trace of the 
resultant 3 X 3 matrix is formed and simplified, t the trace of Ai) is found to be 

tr Au = 4(pJp;? - 1 (i) 

Substitution of Eq. i into Eq. h yields 

2 _ ( Tp)2 e Oij - Pj i 

or 
eOij pJpi (6.120) 

where, according to the discussion of Sec. 6.1.4, the positive sign is chosen. 
Calculating the sum of the squares of eOij and the components of vector b reveals 

that 

(j) 

where Eqs. 6.46, 2.41, and 6.23 have been used. Since it is already known that eij and 
b are parallel, then a comparison of Eq. j and Eq. 6.21 indicates that eij = b, or 

eij Ljp; (6.121) 

Hence, the Euler parameters Pu are 

Pij = [eo] 
e ii 

or 

Pi) Ltp; (6.122) 

where L t is a 4 x 4 matrix defined as 

(6.123) 

Equation 6.122 shows that if the Euler parameters describing the orientations of two 
bodies with respect to a global coordinate system are known, then the Euler parameters 
describing the orientation of one of the bodies with respect to the other can be determined. 

Two more identities are stated here that can be verified easily: 

(6.124) 

tSince the calculation of tr Aij is too extensive to be listed in detail, only the final result is presented. 
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and 

Gdlj = -GjPi (6.125) 

These identities relate the Euler parameters of one body and the time derivative of the 
Euler parameters of another body. 

6.5.1 Intermediate Axis of Rotation 

In Section 6.5, a relative orientational axis of rotation between ~i'Y/i'; and ~j'Y/j'j coordi
nate systems was found when the Euler parameters that describe the orientation of the 
two systems with respect to the global coordinate system were known. This method can 
be stated in another form, but identical in principle, as follows: 

Find an intermediate orientational axis of rotation about which a body-jixed coordinate sys
tem at time tk can be rotated to become parallel to the coordinate system describing the ori
entalioll of the same body al time e. 
If the coordinate system of body i at times t k and (I is denoted by ~i'Y/i'~ and 

(fi'Y/I':, the Euler parameters of the body at t
k and (' are denoted by p1 and p;, respec

tively. Similarly, the intermediate set of Euler parameters between orientations at t k and 
tl, which is denoted by p~', can be written from Eq. 6.122 as 

(6.126) 
where 

L*' 
I (6.127) 

6.6 FINITE ROTATION 

Consider the two bodies i and j shown in Fig. 6 .11 (these may also be interpreted as two 
different configurations of the same body). The translational vectors for the two bodies 
are r i and rj , and the translational vector between the two bodies is denoted by r Ii' It is 
clear that 

x 

rj = r i + r ji 

rji + r i 

Figure 6.11 Two bodies with different 
translational and rotational configurations. 
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This indicates that translational vectors follow the commutative law of vector summa
tion, and therefore a translational vector is a true vector quantity. However, it will be 
seen that this is not a characteristic of the rotation of a body. If the transformation ma
trices for the two bodies are Ai and Ai and the transformation matrix of body j with re
spect to body i is Ai;' then from Eq. 6.116 (by reversing the indices) it is found that 
Aj; A;Aj' or 

Ai= A;Aji 

¥ A;;A; Ca) 
This is obvious, since matrix multiplication is not commutative. This means that in two 
successive rotations, the order of rotations cannot be reversed. Assume that a finite rota
tion is denoted by a rotational vector in the direction of the orientational axis of rotation, 
having a magnitude proportional to the angle of rotation, e.g., e = u sin cP/2. Then three 
rotational veetors e i , ej , and eji ean be defined and it ean be deduced that 

ej ¥ e; + ej ; 

In contrast to the rotational vector of a finite rotation, the angular velocity vector 
is a true vector quantity. The time derivative of Eq. a is 

(b) 

From Eq. 6.94, Eq. b becomes 

wjAj wjAjAji + AiW;,Aji (e) 

Note that W;i represents the components of wji with respect to the e(fV'j coordinate sys
tem. Substituting Eq. a in Eq. e and simplifying the result yields 

- - + A-I AT Wi = Wi iWji i 

= Wi + Wji 

Therefore, 

Wj = Wi + wji 

This is the proof that the angular velocity is a true vector quantity. 

PROBLEMS 

6.1 Three vectors ii, '6, and C are defined along the positive I; axis, 1/ axis, and, axis, respec
tively. The global components of these vectors are 

a = r-~:~~~~] b r ~:~~~~] c = r-~:~~:~] 
-0.6685 -2.7535 0.3213 

(a) Test these three vectors for orthogonality. 

(b) Detennine the global components of the three unit vectors u(t), U(')l' and u(0 along the 
1;1/' axes. 

(c) Detennine the nine direction cosines of matrix A. 
6.2 Using Eq. 6.3, find six constraint equations between the nine direction cosines. 
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6.3 

6.4 

6.5 
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Two vectors ii and b are defined along the positive g and Yi axes, respectively. The global 
components of these vectors are 

[

0. 1107J 
0.3924 
1.1286 

a b 
[

-1.9450] 
1.5330 

-0.3422 

(a) Test these two vectors for orthogonality. 

(b) Determine the global components of the three unit vectors uw, u('1)' and u(() along the 
gYi{ axes. 

(c) Determine the clements of matrix A. 

Two vectors a and c are defined along the positive g and { axes, respectively. The global 
components of these vectors are 

[ 

0.6438] 
2.3930 

-1.6909 
a 

[

-0.7796] 
c = -0.2077 

-0.5908 

Determine the elements of matrix A. 

A vector ii along the positive g axis and a vector J on the gYi plane have the following com
ponents: 

[
-1.0J [ 1.3] a 1.2 d = -0.6 

0.5 0.8 

(a) Determine the three unit vectors along the gYi{ axes. 

(b) Find the elements of matrix A. 

(c) Is the solution to this problem unique? 

6.6 Determine the four Euler parameters for the transformation matrices A in 

(a) Prob. 6.1 

(b) Prob. 6.3 

(c) Prob. 6.4 

(d) Prob. 6.5 

6.7 Determine the four Euler parameters for the transformation matrices 

(a) 

[

-0.4590 

A = 0.4908 
0.7406 

(b) 

[

-0.4590 

A = 0.8376 
-0.2962 

0.8376 -0.2962J 
0.5170 0.7014 
0.1766 -0.6483 

0.4908 
0.5170 
0.7014 

0.7406J 
0.1766 ' 

-0.6483 

Compare the results of parts (a) and (b). What do you conclude? 
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6.8 A transformation matrix A is given as follows: 

A 
[ 

0.0319 
-0.8506 

0.5249 

-0.8506 0.5249] 
-0.2988 -0.4327 
-0.4327 -0.7330 

(a) Test matrix A for orthogonality, using the identity AT A I. 
(b) Determine the four Euler parameters for matrix A. 

6.9 By using Eq. 6.18, show that if the signs of all four Euler parameters are reversed, i.e., if 
p ~ -p, then the transformation matrix A is not affected. 

6.10 If the angular orientation of a body-fixed coordinate system is described in terms of three 
Euler angles!/J 40°, 6 = 30°, and (J' = -25°, find its corresponding set of Euler 
parameters. 

6.11 Determine the global coordinates of the point [2,6, 8]T in a rotating g'f/' system, where the 
Euler angles are !/J = 45°, 6 45°, and (J' 30° and the origins of the two coordinate sys-
tems coincide. 

6.12 Determine the coordinates of a point in a rotating gYj' system if its global coordinates are 
[3,3, It. The Euler angles are ~I 30°,6= 30°, and (J' == 60° and the origins of the two 
systems coincide. 

6.13 A sequence of two rotations is required to uniquely locate the longitudinal axis of a vehicle. 
Consider the sequence !/J, 6 as shown in Fig. P.6.13. The first rotation is a positive rotation 
about the x axis through an angle !/J; the second, a positive rotation about the r axis through 
an angle 6. 

(a) Determine the elements of a transformation matrix A. 

(b) Test A for orthogonality. 

6.]4 Find the Euler angles describing the rotation shown in Fig. P.6.14 for e 30°. 

z 

}----+-..:......- v, "1/ 

X,t' 

Figure P,6.13 F'igure P.6.14 

6.15 Consider the spinning top shown in Fig. P.6.15. Assume Euler angle rates of!/J 2 rad/s, 
o 0, and a- = 125 rad/s when !/J = 120°,6== 30°, and (J' == 90°. 

(a) Determine the corresponding values of w(". w('!Il' and w(~). 

(b) For what values of 6 would the inverse of the transformation in (a) be nonexistent? 
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a 

\ 

'Wi=-----y 

~ 

x 

6.16 For the spinning top of Prob. 6.15, assume angular rate components of w(If) = 0, 
w('1) = 2 rad/s, and wm 20 rad/s when l/J = 60°, () 30°, and rr = 120°. 

(a) Determine w(x), w(y), and w(,). 

(b) Determine~, fJ, and Cr. 
6.17 Find expressions to convert Bryant angles into equivalent Euler parameters. 

6.18 Find expressions to convert Euler parameters to Bryant angles. 

6.19 Show that the rotation angle cf> and the components of the unit vector u along the orienta
tional axis of rotation are determined by the equations 

tr A 
cos 1> = 2 

1 - cos 1> 
1,2,3 

where aii is an element of A. 

6.20 Point P is located from the origin of a coordinate system by a vector having components 
[3,4, 12t. The vector is subjected to a rotation of 30° positive about an axis passing through 
the origin and a point [2, -3, 2t. Find the components of the veetor in its new orientation. 

6.21 The Euler parameters describing the orientation of a body-fixed coordinate system with re-
spect to a global eoordinate system are eo e3 0.6533, el = 0.3827, and e2 = O. Find 
the three Euler angles describing this orientation. 

6.22 Four Euler parameters p = [0.8,0,0, 0.6t describe the angular orientation of the g7l~ axes 
with respect to the xyz axes. Determine the equivalent set of Euler angles for this orienta
tion. What do you conclude? 

6.23 Points D and F arc located on the 71 and, axes, respectively, and have loeal coordinates 
S,D = [0,2, of and s,I-' = [0,0, If. The global components of vectors SD and SF are 
SD = [-1.1098,1.6598, -O.ll34t and SF [0.6285,0.4629,O.6249f, Find the elements 
of matrix A describing this orientation. 

6.24 Verify Eq. 6.41. 

6.25 Verify Eq. 6.42 (or 6.43), 

(a) Using the expanded form of matrix G (or L) 

(b) Using the compact form of matrix G (or L) 
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6.26 Verify the following identities: 

(a) Eq.6.46 

(b) Eq. 6.54 

(c) Eq.6.55 

(d) Eq. 6.58 

(e) Eq.6.59 

(I) Eq.6.60 

6.27 Verify the following identities: 

(a) Eq.6.69 

(b) Eq. 6.71 

(c) Eq. 6.73 

(d) Eq. 6.80 

(e) Eqs. 6.84 and 6.85 

(I) Eq. 6.87 

6.28 Start with Eq. 6.96 and obtain Eq. 6.107. 

6.29 Show that the inverse transformation of Eq. 6.109 is valid. 

6.30 Verify the following identities: 

(a) Eq. 6.112 

(b) Eq. 6.113 

(c) Eq. 6.119 
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6.31 Show that tr Aij = 4(pJpJ2 - 1 by determining the diagonal elements of the matrix product 
AJA;. 

6.32 Derive the inverse transformation of Eq. 6.122; i.e., calculate Pi when Pj and Pij are known 
(Hint: Start with Eq. 6.121). 
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Spatial Kinematics 

This chapter derives the spatial kinematic constraint equations for several standard kine
matic pairs. Those for other standard pairs, or for special-purpose kinematic pairs, may 
be formulated similarly. Euler parameters are used to define the angular orientation of 
bodies. The methodology will remain the same if other sets of rotational coordinates are 
used. However, the quadratic nature of the transformation matrix, the absence of 
trigonometric functions, and the singularity-free aspect of the Euler parameters make 
them more attractive than other sets of rotational coordinates. Another advantage of 
Euler parameter formulation is that it allows kinematic relationships for different pairs to 
be written in compact matrix form, so that compact and efficient computational al
gorithms can be developed. 

7.1 RELATIVE CONSTRAINTS BETWEEN TWO VECTORS 

186 

In this section algebraic relations between two vectors are derived to provide the basis 
for subsequent constraint equation formulation. Most kinematic constraints require that 
two vectors remain parallel or perpendicular. A vector may have fixed length, e.g., if it 
connects points that are fixed in the same body; or it may have variable length, if, for 
example, it connects points that are fixed in different bodies. 

In constraint equation formulation, it is necessary to express the components of all 
vectors in the same coordinate system, the most natural being the global coordinate sys
tem. The global components of a vector that is fixed in a body may be obtained from the 
vector's local components or they may be obtained from the global coordinates of its 
endpoints. 
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Vector Sf in Fig. 7.1 is fixed in body i. Thus, its magnitude is constant and its ori
entation irelative to the ~iYji'i axes does not change. The global components of Si can be 
obtained from any of the following: 

Sf S~ - sf 
A;S;B -' A;s;c 

Ai(s;B s;C) (7.1) 

where S;B [~B, YjB, ,B]; and s;c = [(, Yjc, (li are known constant quantities. It can 
be observed from Eq. 7.1 that the global components of a vector that is fixed in body i 
do not depend on the global location of the body, i.e., on the vector r f • 

When a vector connects two points on bodies i and j, such as vector d in Fig. 7.1, 
its global components are written as 

d (rj + sf) - (rj + sf) 
A lB A IB (72) rj + jS j - r f - is i . 

where s7 = [~B, YjB, ,B]; is constant. It is clear that the global components of a vector 
that connects points on two bodies depend on the global position of the bodies, i.e., on 
vectors r i and rj • 

In the following subsections, constraint equations are derived by imposing condi
tions between vectors in adjacent bodies. In general, either the vectors are of constant 
magnitude and are embedded in different bodies, e.g., Si and Sf in Fig. 7.1; or one vector 
is embedded in one body and the other vector is connected between points on it and an 
~djacent body and may have fixed or variable magnitude, e.g., vectors Si and d or Sj and 
d. If we write a constraint between two vectors having constant magnitudes, then we 
will refer to it as type 1 constraint. If the constraint is between two vectors, one having 
fixed magnitude and the other being variable, then we will refer to it as type 2 con
straint. Constraint equations in this chapter are assigned a superscript with two indices. 
The first index denotes the type of constraint, and the second index defines the number 
of independent equations in the expression. 

Figure 7.1 Vectors with constant and with 
varying magnitudes. 
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7.1.1 Two Perpendicular Vectors 

To specify that two vectors must remain perpendicular (normal) at all times, we need 
one constraint relation. If the direction of one vector is specified, the second vector can 
translate and rotate only in planes perpendicular to the first vector. Vectors Sj and sf 
shown in Fig. 7.1 remain perpendicular if their scalar product is zero, i.e., if 

<I>(nl. I) == s; Sj 

= s;r A;Ajs; 0 (7.3) 

Note that the superscription <I> indicates that this is a normal type 1 constraint having 1 
equation. 

If vector J in Fig. 7.1, which is connected between bodies i and j, is to remain 
perpendicular to Si (normal type 2), then 

<1>(112,1) s; d 

o (7.4) 

7.1.2 Two Parallel Vectors 

For two vectors to remain parallel, two constraint equations are required. The two con
straint equations are derived by setting the vector product of the two vectors to zero. The 
vector product yields three algebraic equations, of which only two are independent; i.e., 
one of the equations can be derived by combining the remaining two equations. There
fore, two of the equations can serve as the constraint equations. 

For two vectors Sj and s; that are embedded in corresponding bodies, the constraint 
equations imposing parallelism (parallel type 1) are 

cp(pl,2) == S.S. 
I J 

A -'ATA I 
iSi i jSj o (7.5) 

where Eq. 6.89 has been employed. For a vector s; with constant magnitude and a vec
tor J, the constraint equations (parallel type 2) are written as 

c.I>(p2.2) == Si d 

A;s;A;(r; + Ajs? - rj Ajs?) = 0 (7.6) 

Note that c.I>(pl,2) 0 and c.I>(p2,2) 0 provide three equations each. However, the 
sets of equations each have only two independent equations. There exists a critical case 
that is associated with selection of two equations from Eq. 7.5 or 7.6. The critical case 
occurs when the two vectors become parallel to one of the global coordinate axes. To 
show how this critical case arises, consider Eq. 7.5 in component form: 

-s(z)js(y)J + S(yliS(z)j = 0 (a) 

s(x)ls(z)j = 0 (b) 

-S(y)iS(xlj + S(x)iS(y)} = 0 (c) 

where Sj [S(x) , Sly)' s(z)]; and Sj [SIx), SlY}' s(z)JJ. Assume as an example that vectors s; 
and s; are located on bodies i and j of a cylindrical joint as shown in Fig. 7.2. At time t 
the joint axis, and hence vectors s; and Sj' has become parallel to the z coordinate axis. 
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z 

}-, (i) 

x 

ts: 

L 
Pi 
I 

In 
Figure 7.2 The axis of the cylindrk al joint 
may become parallel to c .f the coordi
nate axes, e.g., the z axis. 

Then s(x); Sly); = 0 and sIx)} = s(Y)i = O. It is clear that Eqs. a, b, and c are satisfied. 
However, for position, velocity, and acceleration analysis the Jacobian matrix of the 
constraint equations is needed. In this matrix, the row associated with Eq. c appears as 

P; Pj 

a(Eq. c)/a· .. 

The possible nonzero entries G) and (3) are 

G) 

(3)= 
These entries for this example are identical to zero, and hence Eq. c leads to a reduction 
in the row rank of the Jacobian matrix and to numerical difficulties. Therefore, Eqs. a 
and b must be selected, since both contain the nonzero components S(zli and s(zl}' A tech
nique for the selection of a proper set of equations can be stated as follows: 

Compare the absolllle values of S(x)i' Sly);' and s(zli alld select the two equations (out of 
three) having the largest terms. 

7.2 RELATIVE CONSTRAINTS BETWEEN TWO BODIES 

In the following subsections constraint equations for several commonty used lower
pair kinematic joints are derived. These equations fall under the category of holonomic 
constraints. 
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7.2.1 Spherical, Universal, and Revolute Joints (LP) 

A spherical or ball joint between two adjacent bodies i and j is shown in Fig. 7.3. The 
center of the spherical joint, point P, has constant coordinates with respect to the g/YIi', 
and gj1)Jj coordinate systems. There are three algebraic eql!.,ations for this joint; they 
can be found from the vector equation 1, + :sf -:s; rj = 0, as follows: 

4>(5.3) r ,' + A,s;P A.s~P - r 0 (7.7) 
.I .I .I 

There are three relative degrees of freedom between two bodies that are connected by a 
spherical joint. 

A universal or Hooke joint between bodies i andj is shown in Fig. 7.4(a). One bar 
of the cross can be considered part of body i and the other bar can be considered an ex
tension of body j. Point P, the intersection of the axes of the bars, has constant coordi
nates with respect to both body-fixed coordinate systems. Therefore, at point P, the 
constraint of Eq. 7.7 can be applied. The remaining constraint is that the two vectors Si 
and sJ, arbitrarily placed on the cross axes, remain perpendicular. Therefore, the con
straint equations for a universal joint are 

4>(s.3) 0 
(7.8) 

There are two relative degrees of freedom between a pair of bodies that are connected by 
a universal joint. 

The constraint formulation of Eq. 7.8 is for the general case of a universal joint 
between two bodies. This formulation can be simplified for special cases. For example, 
consider the configuration in Fig. 7.4(b), where body-fixed coordinates are embedded in 
the bodies in such a way that the gi axis and 'j axis are parallel to their corresponding 
bars of the cross and therefore gi and 'J must remain perpendicular. Two unit vectors 
u: = [1,0, of and u; = [0,0, 1 f can be defined on the gi and 'i axes, respectively. 
Hence, U i Aiu; and uj = Aju; form one constraint equation, 

(7.9) 

Figure 7.3 A spherical joint. 



Sec. 7.2 Relative Constraints Between Two Bodies 191 
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Figure 7.4 A universal joint: (a) general case, and (b) special case where (i axis and ~j axis are 
parallel to their corresponding bars of the cross. 

that replaces the constraint S;Sj = ° of Eq. 7.8. For this special case, only point P needs 
to be defined - there is no need to define points Qi and Qj. 

A revolute joint between bodies i and j is shown in Fig. 7.5(a). Any point on the 
revolute-joint axis has constant coordinates in both local coordinate systems. Equation 
7.7 can be imposed on an arbitrary point P on the joint axis. Two other points, Qi on 
body i and Qj on body j, are also chosen arbitrarily on the joint axis. It is clear that vec
tors Si and Sj must remain parallel. Therefore, there are five constraint equations for a 
revolute joint: 

<I>(s,3) = 0 

<I>(pl,2) = S,S 0 
I J 

(7.10) 

There is only one relative degree of freedom between two bodies connected by a revo
lute joint. 

The constraint formulation for a revolute joint may be simplified for special cases. 
Consider as an example the configuration in Fig. 7.5(b), where the body-fixed coordi
nates are placed in such a way that the 'i and 'j axes are parallel to the revolute-joint 
axis. In such a case, the two unit vectors u; [0,0, lf and u; [0,0, If must 
remain parallel at all times; i.e., 

<I>(pl,2) == iii U
j 

= 0 (7.11) 

This equation replaces the SiSj = 0 constraints in Eq. 7.10. For this or other, similar spe
cial cases, only one point on the joint axis (point p) needs to be defined. 
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Parallel 

(b) 

Figure 7.5 A revolute joint: (a) general case, and (b) special case when the ~i axis, the ~j axis, 
and the joint axis are parallel. 

For the special case of Fig. 7.5(b), another method can be used to keep the ~i and 
'j axes parallel. Since these two axes are parallel to the joint axis, the joint axis is the 
relative orientational axis of rotation. If a relative set of Euler parameters is defined as 
Pij [eo,e"e2,e31~, Eq. 6.122 must hold; i.e., 

Pij = Lj*Pi 

For this configuration, since the relative axis of rotation is parallel to the ~ axes, 
e2ij O. Therefore two algebraic equations are obtained: 

«>(ep, 2) [-e] eo e3 -e2] Pi = 0 (7.12) 
-e2 -e3 eo e] j 

These two equations may be used instead of the «>(1'],2) constraints of Eq. 7.10. 
The special-case configurations of Figs. 7.4(b) and 7.5(b) are not unique. Other 

special-case configurations may be defined in order to simplify the constraint formulation. 

7.2.2 Cylindrical, Translational, and Screw Joints (LP) 

A cylindrical joint constrains two bodies i and j to move along a common axis, but 
allows relative rotation about this axis. To derive equations of constraint for this joint, 
four points, Pi and Qi on body i and Pj and Qj on body j, are arbitrarily chosen on the 
joint axis,t as shown in Fig. 7.6(a). It is required that the vectors- Si and Sj of constant 

'Points defined on a body may not be physically located on that body. For example, points Pi and Qi 
are inside the hollow cylinder of body i. They are defined with respect to thc e(Ij;~; coordinate axes and they 
move with body i. 
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magnitude and d of variable magnitude remain collinear. Therefore, four constraint 
equations are needed to define a cylindrical joint; they can be found from two vector 
product conditions: 

«»(1'1,2) == SS 0 
, J 

«»(1'2,2) Sid 0 (7.13) 

Thus, there are two relative degrees of freedom between bodies connected by a cylin
drical joint. 

The constraint formulation for cylindrical joints may be simplified in special 
cases. A special case is shown in Fig. 7.6(b), where the ~i and ~j axes are parallel to the 
joint axis. Only two points, Pi and Pj' are placed on the joint axis to define a vector d, 
This vector must remain parallel to two unit vectors ui and uj , Therefore, in this case 
only four constraint equations are needed: 

«»(1'1,2) == D.ll. = 0 
I J 

«»(1'2,2) Did 0 (7.14) 

Another special case with even simpler formulation is shown in Fig. 7.6(c), where the ~ 
axes coincide with the joint axis, Vector d r i - rj must remain parallel to the unit 
vectors llj and llj' This can be established by the constraints of Eq. 7.14. For this special 
case, there is no need to define any arbitrary points on the joint axis. 

A translational or prismatic joint is similar to a cylindrical joint with the excep
tion that the two bodies cannot rotate relative to each other. Therefore, the cylindrical
joint equations apply and one additional equation is required. Two perpendicular 
vectors, hi and hj on bodies i and j, as shown in Fig, 7.7, must remain perpendicular. 
Therefore, there are five constraint equations for a translational joint: 

«»(1'1,2) SiSj 0 

«»(1'2,2) Sid 0 (7.15) 
cp(III,!) hTh = 0 

I J 

The vectors hi and h) are located so they are perpendicular to the line of translation. The 
relative number of degrees of freedom between two bodies that are connected by a trans
lational joint is 1. 

The body-fixed coordinates can be embedded in bodies i and j in special-case con
figurations, much as in the special cases of cylindrical joints shown in Fig. 7.6(b) and 
(c). If ~i'YJi~i and g)'YJj~j are parallel and ~i and ~) are also parallel to the joint axis, then 
the constraint h ;hj = 0 of Eq. 7.15 can be replaced by a similar constraint, but without 
defining any additional points such as Rj and Rj • Since the gj axis is perpendicular to the 
'YJj axis, then unit vectors on these axes must remain perpendicular at all times, 

Figure 7,8 illustrates a screw joint between bodies i and), which can rotate and 
translate about a common axis. However, the rotation and translation are related to each 
other by the pitch of the screw. To formulate this joint, four constraint equations for an 
equivalent cylindrical joint can be used. A fifth constraint equation must be supplied, to 
provide the relation between relative translation and rotation of the bodies. For this pur
pose, two unit vectors u; and iij perpendicular to the joint axis are embedded in bodies i 
and j, respectively, as shown in Fig. 7.8. If the initial angle between Ui and il) is eO and 
the instantaneous angle between the two vectors is denoted bye, then e - eO is the rela
tive rotation between the two bodies. Similarly, if the initial magnitude of vector d is dO 
and its instantaneous magnitude is denoted by d, then d dO is the relative translational 
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Figure 7.7 A translational joint. 

la) (b) 

Figure 7.8 A screw joint: (a) side view and (b) top view. 

displacement between bodies i and j. Therefore, the five constraint equations can be 
written as follows: 

.p(pl,2) == S.S. == 0 
I J 

.p(p2,2) == Sid = 0 

<p(r,l) == (d - dO) - a(O 0°) == 0 

where a is the pitch rate of the screw joint. 

(7.16) 
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The angle () for a screw joint can be treated as an artificial coordinate. There
fore, one additional constraint equation must be considered with the five constraints of 
Eq. 7.16: t 

<I>(6,1)=U;U
j 

cos(J 0 (7,17) 

If body-fixed coordinates are embedded in the bodies as was done in the speeial 
case of Fig. 7,6(c), then vector d r; - rj is obtained easily. Furthermore, since both ~ 
axes are parallel to the joint axis, the joint axis is the relative axis of rotation between 
bodies i and j. Therefore, from Eq. 6.120, we can write one constraint equation, 

<1>(0.1) = P;Pj - cos ~ 0 (7.18) 

that can be used instead of Eq. 7.17. In Eq. 7.18, (J is the relative angle of rotation 
between the bodies, and it is assumed that the two body-fixed coordinates are initially 
parallel, i.e., that (J0 O. 

7.2.3 Composite Joints 

Kinematic joints can be combined and modeled as composite joints in order to reduce 
the number of coordinates and constraint equations. Several examples of such composite 
joints are shown in this section. 

Figure 7.9 illustrates two bodies connected by a rigid link that contains two spher
ical joints; the entire system is called a spherical-spherical joint. Only one constraint 
equation is required for this joint; it may be written in the form 

(7.19) 

where 

d A lP A IP 
rj + iSi - r i - iSi (7.20) 

and 1 is the actual length of the link. 

x Figure 7.9 A spherical·spherical joint. 

tlf () is not treated as an artifical variable, then Eq, 7.17 is not needed. In this case, () may be calculated 
from () COS-I (urui) for 0 :5 () :5 'IT; and when 'IT < () < 2'IT, additional tests are required. This approach is 
cumbersome and computationally inefficient. 
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A spherical-revolute joint is shown in Fig. 7.10 . ...Two points Pj and Qj are defined 
on the revolute-joint axis in such a way that vector d is perpendicular to vector Sj as 
shown. If the distance between points P; and Pi is to remain equal to I, then two con
straint equations are written: 

o 
(7.21) 

<1>(112.1) ~ dTs 0 
J 

Two revolute-revolute joints are shown in Fig. 7.11. In the configuration of 
Fig. 7.11(a), the two revolute-joint axes are assumed to be perpendicular. Four con
straint equations for this joint may be written, as follows: 

<D(s-s.1) d T d [2 = 0 
<D(n2, I) 

<D(n2, I) 

<D(IIl.I) 

dTs; = 0 

dTs 0 
J 

S;Si 0 

(7.22) 

When the revolute-joint axes are parallel, as shown in Fig. 7.11(b), the four con
straint equations are 

<D(s-S, I) dTd - [2 = 0 

<D(1I2, l) dTs; = 0 

<D(1I2.1) dTs_ = ° 
J 

(7.23) 

<J)(pl. J) 8
i
S

j 
= 0 

where <J)(pl.l) indicates that only one out of three equations of <J)(pl) is needed. The rea
son is that the equations dTs; 0, d\ = 0, and only one of the three equations from 
S;Sj = 0 are independent. However, it is possible that one of the constraint equations 

/ 

Figure 7.10 A spherical-revolute joint. 
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I 

(a) (b) 

Figure 7.11 Revolute-revolute joint links: (a) perpendicular and (b) parallel. 

dTs i 0 or d\ = 0 could be ignored, so that two equations from cI>(pl,2) could be se
lected. In this case, either of the following sets may be used: 

$(.1".1',1) = 0 

$(112, J) dTs; = 0 (7.24) 
cI>(pl,2) 8

i
S

j 
0 

or 
$(.1"8,1) 0 

$(112, J) == d\ = 0 (7.25) 
cI>(pl,2) == 8.S = 0 

I J 

A revolute-cylindrical joint that connects two bodies is shown in Fig, 7.12. For
mulation of this joint as a revolute joint and a cylindrical joint involving three bodies 
would require nine constraint equations, This would result in the elimination of a total of 
9 degrees of freedom, leaving 3 relative degrees of freedom between bodies i andj, This 
joint may also be effectively formulated as two bodies connected by a composite revolute
cylindrical joint. In the configuration shown in Fig. 7.12, the cylindrical-joint axis is 
perpendicular to the revolute-joint axis and the two axes intersect. Three vectors, 
Ii' Sj' and d, can be defined for the constraint formulation, Vector Ii is located on the 
revolute-joint axis on body i, vector I j is on the cylindrical-joint axis on body j, and vec-
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(j) 

(i) 

Figure 7.12 A revolute-cylindrical joint. 

tor d connects point P; on body i to point Pj on body j. The constraint equations are writ
ten as follows: 

<1>(111.1) 

..r>(p2.2) (7.26) 

The first equation requires that the two axes remain perpendicular. The remaining equa
tion guarantees that the two axes intersect at point P; . 

Other composite joints, similar to those in the preceding examples, may be de
fined and formulated. The formulation of composite joints may be simplified if body
fixed coordinates are placed on the bodies in such a way that unit vectors on the 
coordinate axes are used instead of arbitrary vectors on the joint axes. This process is 
similar to the special cases shown in Sees. 7.2.1 and 7.2.2. 

7.2.4 Simplified Constraints 

Translational constraint equations on the global coordinates of a body can be formulated 
in a manner similar to the process used for planar motion in Section 4.2.7. Such con
straints are 

<I> == X; - C1 0 (7.27) 

<I> == y; - C2 0 (7.28) 

<I> == Z; C3 0 (7.29) 
<I> == x; - C4 0 (7.30) 

<I> == y; - Cs 0 (7.31) 

<I> z; - C6 0 (7.32) 

where C 1 through C6 are constants. Equations 7.27 through 7.29 constrain the origin of 
the body-fixed coordinate system, and Eqs. 7.30 through 7.32 constrain a point Pi on 
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body i, in both cases relative to the global axes. The constants C l through C6 can be 
replaced by time-dependent quantities for driving eonstraints. 

7.3 POSITION, VELOCITY, AND ACCELERA1"ION ANALYSIS 

The computational aspects of spatial kinematies are the same as those of planar kine
matic analysis. For a mechanism with b bodies, the vector of coordinates is represented 
as q = [qf, q;, ... , q;'f. Vector qj is expressed in the form qi = [x,y, z, eo, el , ez, e31; 
or q, = [rT, pTJi. If any artificial variables are used in the constraint formulation (for 
example, for screw joints), the artificial variables are also included in vector q. The 
constraint equations are assumed to consist of m equations in the form 

«I> «1>( q) 0 (7.33) 

Equation 7.33 contains m - b kinematic constraints and b mathematical constraints 
between the Euler parameters (one equation per body) in the form given by Eq. 6.23. 

Kinematic analysis with the appended driving constraint method requires a formu
lation identical to that shown in Sec. 3.2.2. For kinematic analysis, Jacobian matrix «I>q 
must be evaluated. 

Example 7.1 

Determine the nonzero entries of the Jacobian matrix for constraint <1>(111,1) of 
Eq.7.3. 

Solution The nonzero entries are determined by evaluating the partial derivatives 
of Eq. 7.3 with respect to the coordinates of bodies i and j. Since sis) is not a 
function of r" its partial derivative with respect to r i is zero: 

<1>(111.1) = OT (1) 
ri 

The partial derivative of Eq. 7.3 can be found by writing the equation as SrSi or 
sJA,s; and employing Eq. 6.86 to obtain ' 

ffi(nl, I) 2 T(G - 1 + I T) (2) 
""Pi Sj is, s,p, 

Similarly, the partial derivatives of Eq. 7.3 with respect to r i and Pi' by keeping 
the equation in the form s; Ajs;, are found to be 

<1>(,,1, I) = OT 
rj 

<1>(111,1) 2ST(Gs I + S'pI') 
Pj ')1.1.1 

(3) 

(4) 

Equations 2 and 4 each provide four nonzero entries in the columns of the 
Jacobian matrix associated with Pi and Pj' 

Table 7.1 summarizes elements of the Jacobian matrix for Eqs. 7.3 through 7.7 
and Eq. 7.19. These equations are the essential building blocks for nearly all of the con
straints developed in this chapter and for most constraint relations that can be developed 
between adjacent bodies. The fact that all terms can be written 'in compact vector or 
matrix form demonstrates an additional advantage of the Euler parameter formulation 
for developing compact computational algorithms. 
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TABLE 7.1 Components of the Jacobian Matrix of the Most Common Constraints15 

<1>(nl,1) 

<1>(ra,1) 

«I»,pl,2) 

«I»,p2,2) 

«1»(,,3) 

<1>(s-s,l) 

where: 

«I»'i 

OT 

0 

-Si 

I 

-2dT 

«I»Pi 

sTCi 
-siB; + dTC i 

-SjC, 

-slBi - dC; 

C i 

-2dTBI 

«I»'i «I»P! 

OT sicj 

sf siBj 
0 SiC] 

ii, SiBj 
~I -Cj 
2dT 2dTBj 

7.3.1 Modified Jacobian Matrix and Modified Vector l' 

For most common constraints, the components of the Jacobian matrix of Table 7.1 can 
be employed directly. However, when the velocity and acceleration equations are con
sidered, some equivalent terms from both sides of the equations can be eliminated. 
Hence, the final forms of the resultant equations are simpler, having fewer terms than 
the original equations. 

Example 7.2 
Consider a vector Si whose magnitude and direction must remain fixed in a given 
problem. The constraints describing this condition can be expressed as 

«I> ;: s, C 

= Ais; - C = 0 (1) 

where c contains three constant components. The entries of the Jacobian matrix 
for Eq. 1 are found, from Eq. 6.86, to be 

«I>Pi 2G,s; + 2s;pi 

According to the first equation of Eq. 3.13, the velocity equation is 

(2Gis; + 2s;pi)p, = 0 

Using the identity piPi = 0 in Eq, 3 yields 

(2) 

(3) 

2Gis;p; = 0 (4) 

Similarly, according to the first equation of Eq. 3.15, the acceleration equation is 

(2G;s; + 2S;Pi)Pi = [(2G,s; + 2s;pi)PJp;Pi 
- ( 2G' - I 2 " T ) , - - ;SiP, - SiPiPi PIP; 

2G'-" 2"[' - iSiPi - S;PiPi (5) 

where Eqs, 6.73,6.54, and 6,69 have been employed, in that order, From Eq. 6.61, 
Le., prp; + pip; = 0, Eq, 5 becomes 

2Gis;Pi =0 -2GJ';Pi 
-(2Gis;P')P;Pi (6) 



202 Spatial Kinematics Chap. 7 

For velocity and acceleration analysis, Eqs. 4 and 6 can be used instead of Eqs. 3 
and 5. By defining a modified Jacobian matrix as 

we can write Eqs. 4 and 6 as 

and 

<1>(111) = 2Gs! 
Pi l I 

<I>(III)p' . 0 
Pi I 

.ih(m) ••. = _(<1>(111)'.) '. 
"¥ Pi p, Pi p, PiP, 

(7) 

(8) 

(9) 

The simplification of the velocity and acceleration equations shown in Exam
ple 7.2 can be applied to all of the common constraint equations; it enables the entries of 
the modified Jacobian matrix and the components of the vector 'Y to be found. Another 
method for finding the modified Jacobian and vector 'Y is to use the second time deriva
tive of the constraint equations and employ Eq. 6.82. 

Example 7.3 
Apply Eq. 6.82 to find the second time derivative of Eq. 7.3. Obtain the modified 
Jacobian matrix and modified vector 'Y for this constraint. 

Solution The second time derivative of Eq. 7.3, i.e., sis) = 0, is 

o 
or 

T" I T" I • T· s)A;s; + s;A)Sj + 2SjSj = 0 

With Eq. 6.82, the above equation yields 

2sJ(Gj,;s; + G;s;p;) + 2s;(GrLJs; + Gjs;p) + 2s;s) = 0 

This equation can be rearranged as follows: 

[2sJG;s;, 2s;Gjsj] [~i] = -2(sJGj Lj s; + s;GjLjs; + srs)) 
Pi 

The matrix on the left side of this equation shows the nonzero entries of the modi
fied Jacobian, and the expression on the right side of this equation is the modified 
'Y vector. 

Table 7.2 summarizes the elements of the modified Jacobian matrix and modified 
vector 'Y for Eqs. 7.3 through 7.7 and Eq. 7.19. The components of Table 7.2 can 
be used in a computer program for kinematic analysis instead of those of Table 7.1. 
Examples 7.2 and 7.3 show how the entries of the Jacobian matrix can be modified 
(simplified) for velocity and acceleration analysis. It should be noted that the modified 
Jacobian matrix can also be used for position analysis. The first step of the Newton-
Raphson iteration is given by Eq. 3.42 as " 

~~q=-<I> ~ 
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TABLE 7.2 Components in the Expansion of the Most Common Constraints15 

<1>(,,1.1) 

<1>(112,1) 

<I>(pl,2) 

<I>(p2,2) 

<1>(,,3) 

<l>I,-s,1) 

where: 

<I>(m) 
r; 

OT 
-sf 
0 
-51' 
1 
-2dT 

<I> 1m) 
p, 

2sJG;s; 
-2sTGi s;S + 2dTGi S: 
-2sj G,s; 
-2ii i G,s;S 2dG,s; 
2G,s? 
-4dTGis;P 

<1>("') 
rj 

<I> (m) 
Pj 

ylm) 

OT 2siG/s; sThj + sJh i - 2sTsj • 

sf 2sTGj sfB -sT(h? - h7) :: dTh, - 2sTd 
0 2s/Gjs; s/hj sjh/ - 2s/sL _ . 
Sj 2s,G/s/8 -iilhf h?) - dh; - 2s,d 
-I -2Gj s? hi h; 
2dT 4dTGj SjP 2dT(hf hJ) - 2dTd 

This operation involves the product of the Jacobian matrix and a vector liq which con
tains the infinitesimal changes in the coordinates. Since the modification on the Jacobian 
has affected only the columns associated with the Euler parameters, not those for the 
translational coordinates, we need only test the part corresponding to <l>q lip. The first 
variation of the constraint equation on the Euler parameters (Eq. 6.23) is 

(b) 

If we consider the entries of the Jacobian from Table 7.1 in the columns associated with 
p; and Pi and employ Eq. b, we will obtain the modified matrix. For example, the 
columns of the Jacobian associated with p; of <1>(111,1) yield 

<l>Pi = (sfc,) lip; 

= 2sJ(G;s: + s;pD lip; 
= 2sJG;s; lip; 
= <I>(m) lip 

Pi I 

This result can also be obtained by considering Eq. 6.86. This equation can be simpli
fied in the Newton-Raphson algorithm as follows: 

[aa
p 

(Aa)] lip = (2Ga + 2apT) lip 

2Galip 

This equation shows that the term 2Ga in Eq. 6.86 (or the term 2L~ in Eq. 6.87) yields 
the entries of the modified Jacobian matrix. Therefore, two more identities can be stated: 

and 

[
a ](m) 

iJp (Aa) = 2Ga 

[
a ](m) 

-(Aa) 
iJp 

(7.34) 

(7.35) 
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PROBLEMS 

7.1 Two points Band C are located on body i. The coordinates of these points with respect to a 
set of (;1'YJi~i axes are [1.2, 0.5, -0.1 f and [-0.3, -0.8, 2.lf, respectively. The Euler 
parameters describing the angular orientation of body i with respect to a global coordinate 
system are Pi [0.860, -0.150,0.420, 0.248f. 

~ 

(a) Find the local components of vector S "" CB. 

(b) Find the global components of vector S. 
(c) Is it possible to find the global coordinates of points Band C? Explain. 

7.2 Point D is located on body i with local coordinates [1.5, -1.6, 0.2f. The origin of the (;i'YJI~1 
coordinate system is located with respect to the global coordinates by vector r l [3.3, 1.4, 
2.of. Thc Euler paramcters deseribing the angular orientation of body i are 
PI = [0.810, -0.029, -0.543, 0.220f. Determine the following: 

(a) Loeal components of vector sf eonnecting the origin of the (;i'YJl~i axes to point D 

(b) Global components of vector sf 
(c) Global eoordinates of point D 

7.3 Point B is located On body i with local coordinates [1.0,1.0, -0.5f, and point C is located 
on body j with local coordinates [-2.0, 1.5, -l.Of. The origins of the bodies are located by 
vectors rj = [-1.2,0.4, 3.lf and rj [0.4,4.5, O.5f with respeet to the global axes. The 
Euler parameters for the two bodies are Pi [0.343, -0.564,0.604, 0.447{ and 
Pi = [0.270,0.732, -0.331,0.53If. Find the following: 

(a) Global coordinates of points Bi and Cj 
~ ~ 

(b) Global components of vector d == BiCj 

(c) Local components of vector d with respect to the (;j'YJl~j axes 

(d) Local components of vector d with respect to the (;j'YJj~j axes 

7.4 The orientations of bodies i and j arc defined by Euler parameters Pi = [-0.667, 
-0.427,0.241, -0.561 f and, Pj = [0.223,0.549, -0.623,0.511]1. Vectors '~j and ~ are 
fixed vectors on the bodies with local components s; [I, I, 2f and s; = [- I, 1, a f, 
where a is unknown. Dctermine a, knowing that Si and Sj are perpendicular. 

7.5 What must the condition be between Euler parameters Pi and Pi for the two vectors Si and 5j 

to remain perpendicular? Assume s; = [I, 1,2f and s; [2, I, -2f. 
7.6 Points Band C are located on body i with local coordinates [-0.2, -0.7,0.6f and 

[2.7, -0.7, -o.lf. Vector SI connects points Band C. Find a condition on the Euler 
parameters of this body for which vector SI remains parallel to the xy plane. 

7.7 Show that the three equations in SISj 0 are not independent. 

7.8 Vectors r j = [0.5,0.5,0.9]1' and rj = [0.5, -0.2, 1.3f locate the fixed origins of bodies i 
and j with respect to the global axes. Vector sf locates point C on body i as s;c = 
[-0.7, 1.6,0.8f. Point B is located on body j by vector sjB [0.8, -0.6, -0.5f. Write the 
constraint equation that makes vector perpendicular to vector d Cj ~ • 

7.9 Repeat Prob. 7.8 but assume that the origins of bodies i and j are not fixed; i.e., that vectors 
ri and rj are variables. 

7.10 Write the condition for the two vectors Si and Sj to be parallel. If the condition yields more 
than two equations, then choose the best two equations as constraint equations: 

(a) s; [-0.448,0.399, l.700f, PI = [0.860, -0.150,0.420, 0.248f', 
s; = [-0.4131,1.690, 0.634f', Pj [0.810,0.029, -0.543, 0.220f. 
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(b) s; [1.976,0.874, 1.825f, Pi = [0.270, -0.732,0.331, -0.531f, 
s; [-1.143, -0.295, -1.220iT, Pi = [0.564, -0.447, -0.343, O.604]T. 

(c) s; [-0.132, -0.089, -0.324f, Pi = [-0.667, -0.427,0.241, -0.561f, 
s; [-0.446,0.121, -0.082f, Pj = [0.223,0.549, -0.623, 0.5uf. 

(d) s; [1.64,3, l.52f, Pi = [0.6,0, -0.8, of, 
s; ::::: [4.4, -6, O.8]T, Pi ;:::: [0,0.8,0, o.6f', 

7.11 What is (are) the necessary and sufficient condition(s) on the Euler parameters for the ~iTJi~i 
and ~jTJj'j coordinate systems to remain parallel? 

7.12 For the ~iTJi~i and ~jTJj~j coordinate systems, what is (are) the necessary and sufficient condi
tion(s) on the Euler parameters for the following conditions to be true: 

(a) The ~i and ~j axes remain parallel. 

(b) The ~i and TJj axes remain parallel. 

(c) The TJi and TJj axes remain perpendicular. 

7.13 Find the constraint equation for point P on body i to remain on the plane z = 6. The local 
coordinates of Pare s;P [2, -2, If. 

7.14 Repeat Prob. 7.13 and constrain point P to move on the line described by the intersection of 
the two planes z = 6 and x 2. 

7.15 Figure P.7.1S shows a mechanism consisting of two bodies connected by a spherical joint. 

(j) 

The vectors locating the center of the joint have components st = [0.4, 1.4, -0.5]T and 
s7 = [0.9, -0.3, -0.2f. Write the constraint equations for this joint. If the two bodies are 
not connected to any other bodies, how many degrees of freedom does the system have? 

(j) 

x Figure P. 7.15 

7.16 If two points P and Q are chosen arbitrarily on a revolute-joint axis connecting two bodies i 
and j, Eq. 7.7 may be repeated twice-for P and for Q -to yield six constraint equations. 
These equations can be used instead of Eq. 7.10. However, since there is one relative degree 
of freedom between the two bodies, one of the equations must be redundant. Define a strat
egy to eliminate one of the six equations efficiently in every possible configuration. 

7.17 Two bodies are connected by a revolute joint. Find the constraint equation for this joint, us
ing the spherical joint constraint and scalar products. instead of the vector product of 
Eq. 7.10. Hint: Initially define two vectors on one of the bodies perpendicular to the joint 
axis. 

7.18 Add one equation to the cylindrical-joint constraints of Eq. 7.13 to allow them to be used as 
revolute-joint constraint equations. 

7.19 The two bodies shown in Fig. P.7.19 can slide relative to each other without separation. For
mulate constraint equations describing this type of joint. 
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7.20 Use the concept of relative axis of rotation (relative set of Euler parameters) to find an 
additional equation to convert cylindrical-joint constraints to translational-joint constraints. 

7.21 Consider the system shown in Fig. 7.9, which contains two spherical joints. Determine the 
number of degrees of freedom if: 

(a) The system is modeled by three bodies and two spherical joints. 

(b) The system is modeled by two bodies and one spherical-spherical joint. 

Compare the results from (a) and (b). Explain why they are different. 

7.22 An A-arm suspension system contains a link connecting the main chassis (body i) to the 
wheel (body}) by two revolute joints as shown in Fig. P.7.22. The two joint axes intersect at 
an angle () 90°. Determine a set of constraint equations to model this composite 
revolute-revolute joint. 

Figure P. 7.22 

7.23 Repeat Prob. 7.22 for () "'" 90°. 
7.24 The steering command in automobile simulations can be provided as a time-dependent con

straint equation. This is usually done when the simulation of the actual steering mechanism 
is not of interest. Assume that body i is the main chassis, with TJi along the longitu
dinal direction and body j as one of the front wheels. In Figure P.7.24, the suspension mech
anism between the wheel and the chassis is not shown. If the steering command is 
described as c(t), derive a constraint equation between two unit vectors along the TJi and 
TJj axes. 

'~-----J 
Y "---+-11; 

Figure P. 7.24 
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7.25 Verify the entries of the Jacobian matrix listed in Table 7.1. 

7.26 Derive expressions for vector l' for the constraint equations that are listed in Table 7.1 

7.27 Verify the entries of the modified Jacobian matrix and modified vector l' listed in 
Table 7.2. 

7.28 The road wheels of a tracked vehicle are connected to the chassis by road arms as shown in 
Fig. P.7.28. A road arm can be modeled as a composite revolute-revolute joint with par
allel axes. The constraint equations for this composite joint may be simplified by locating 
the local coordinate systems on the chassis and on the wheels so that they have parallel axes; 
e.g., the g axes could be parallel as shown coming out of the plane. Derive the simplified 
constraint equations. 

Road wheel Figure P. 7.28 



8 
Basic Concepts 

• In 

Dynamics 

The basic concepts and laws of dynamics are best introduced by beginning with partiele 
dynamics. To derive the equations of motion for both unconstrained and constrained 
systems of bodies, only two of Newton's laws of motion for a single particle are needed 
as postulates. 

8.1 DYNAMICS OF A PARTICLE 

208 

The simplest body arising in the study of motion is a particle, or point mass, defined 
here as a mass concentrated at a point. While mass in reality is generally distributed in 
space, the notion that a body has all its mass concentrated at a point is an adequate 
approximation for many purposes. Further, as will be seen shortly, thc centroid of a 
complex distribution of mass behaves as a point mass. Thus, analysis of the behavior of 
a point mass leads to useful results, even for complex systems. 

Newton's first law of motion for a particle relates the total force J acting on the 
particle, the mass m(p) of the particle, and the acceleration ii of the particle, as follows 
(see Fig. 8.1): 

r 

x 

(8.1) 

Figure 8.1 A particle moving in a global 
coordinate system. 
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where it is assumed that a consistent system of units is used. From this equation, a con
dition for particle equilibrium may be deduced. A particle remains at rest (in equi
librium) or in a state of constant velocity if and only if the total force f acting on the 
particle is O. 

Newton's second law of motion. which is the law of action and reaction. states 
that when two palticles exert forces on each other, these interacting forces are equal in 
magnitude, opposite in sense, and directed along the straight line joining the particles. 

The vector form of Newton's law of motion for a particle in Eq. 8.1 can be written 
in terms of the components of vectors f and ii. If we denote the force f as f = 
[i(X),i(v),ftzt, then for a particle located in the xyz coordinate system with position vec
tor r, -Eq. 8.1 becomes 

(8.2) 
Throughout the preceding discussion of Newton's laws of motion, it is presumed that 

position, and hence acceleration, is measured in an inertial reference frame (a global xyz) 
coordinate system. Such a reference frame should technically be defined as a coordinate 
system fixed in the stars. For most engineering purposes, an adequate reference frame is 
an earthjixed reference system. It is important, however, to note that for applications 
concerning space dynamics, or even in long-range trajectories, the rotation of the earth 
has a significant effect on the precision with which points can be located by means of 
Newton's equations of motion, and an earth-fixed reference system may be inadequate. 

8.2 DYNAMICS OF A SYSTEM OF PARTICLES 

The governing laws of the dynamics of individual particles are now extended to systems 
of interacting particles. The equations of motion for such systems can be written simply 
as the collection of equations of motion for all the particles taken individually. If the 
forces acting between particles are readily characterized, this method is practical and 
direct. The more common situation in mechanical system dynamics, however, involves 
constraints among systems of particles; thus the forces acting between particles are usu
ally not so readily determined. For this reason we introduce the concept of the center 
of mass. 

Consider the system of p particles shown schematically in Fig. 8.2. Particle i has 
mass m ~P) and is located by a position vector ri directed from the origin of an inertial 
reference frame to the particle. The forces acting on each particle include an externally 
~pliest force fi and internal forces of interaction between particles fu, j oF- i, where 
fii O. The total force acting on the ith particle is the summation of external and inter
nal forces. Thus, for body i, Newton's first law of motion (Eq. 8.2) becomes 

1, ... ,p (a) 

This system of equations describes the motion of the system of p particles. 
Since the forces of interaction between bodies in a system must satisfy Newton's 

law of action and reaction, the force on body i due to body j must be equal to the nega
tive of the force acting on body j due to body i; i.e., 

fu = -fji i,j = 1, ... ,p (b) 

Note that since fa 0, Eq. b holds also for i j. 
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Figure 8.2 System of p particles. 

If the external forces acting on each particle are known and the nature of the force 
acting between bodies i and j is known, the system of equations in Eq. a may be written 
explicitly. However, the force of interaction between particles will generally depend on 
the positions of the particles. 

Since Eq. a must hold for each particle in the system, this system of equations can 
be summed to obtain 

p p p p 

~m}p)r; = ~fi + ~ ~fij (c) 
;=1 ;=1 ;=1 j=1 

which is valid for the entire system of particles. The double sum of Eq. c contains both 
fij and fj ;, and hence from Eq. b it is found that 

p p 

~ ~fij = 0 
;=! j=! 

Thus, Eq. c reduces to 
p p 

'" m(p)j' = '" f L.J t I L..i. 
;=1 ;=1 

We define the total mass of the system as the sum of the individual masses, 
p 

m = ~m)p) 
;=1 

and the center of mass, or centroid, of the system of particles as 

(d) 

(e) 

(8.3) 

r m)p)r; (8.4) 
m ;=1 

where r is the vector from the origin to the center of mass. Since the total mass and each 
of the component masses are constant, Eq. 8.4 can be differentiated twice with respect 
to time to obtain 

p 

mr ~m~p)j'; (f) 
;=1 
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Finally, if the total external force acting on the system of particles is defined as 

(8.5) 

then Eqs. e andj, and Eq. 8.5 yield 

mr f (8.6) 

This result states that the resultant of the external forces on any system of mass equals 
the total mass of the system times the acceleration of the center of mass. That is, the 
center of mass moves as if it were a particle of mass m under the action of the force f. 

8.3 DYNAMICS OF A BODY 

A body can be regarded as a collection of a very large number of particles. In addition, 
from the definition of rigidity, the location of the particles in a body relative to one 
another remains unchanged. 

In the discussion of the dynamics of a system of particles, the translational equa
tion of motion was derived as 

f mr 
Since a body is a particular case of a system of particles, Eq. 8.5 also applies to bodies. 

The definition of the center of mass or centroid of a body is found from Eq. 8.4. 
The summation over the particles is replaced by an integral over the body volume, and 
the mass of the individual particle is replaced by the infinitesimal mass dm: 

r=~(rPdm 
m -(v) 

(8.7) 

where r P locates an infinitesimal mass, as shown in Fig. 8.3. Vector r P is the sum of 
two vectors: 

x 

(8.8) 

Jiigure 8.3 A body as a collection of in
finitesimal masses. 
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Substituting Eq. 8.8 into Eq. 8.7 yields 

or 

r ~ J (r + s)dm 
m (v) 

= r + ~ J sdm 
m (v) 

J sdm = 0 
(I') 

(8.9) 

The first and second time derivatives of Eq. 8.9 are 

and 

J sdm 0 
(v) 

J sdm = 0 
(v) 

(8.10) 

(8.1I) 

Equations 8.9 through 8.11 will become useful in the following sections in deriving the 
equations of motion. 

In addition to its tendency to move a body in the direction of its application, a 
force also tends to rotate the body about any axis that does not intersect the line of 
action of the force and which is not parallel to it. The measure of this tendency is known 
as the moment of the force about the given axis. The moment of a force is also fre
quently referred to as torque. The rotational equation of motion for a body will be 
derived in Sec. 8.3.2. 

8.3.1 Moments and Couples 

Consider a force Z acting on a body, as shown in Fig. 8.4, and a point 0 not on the line 
of action of the force. If a vector s is introduced from 0 to any point on the line of 
action of Ji, the moment iif is found from the vector product: 

n7 Sri (8.12) 

The principle of moments is easily proved by applying the distributive law for the sum 
of vector products. A system of forces Ji' i = 1, .. " k, is shown in Fig. 8.5(a) concur-

Figure 8.4 The moment of a force .fi 
about point O. 
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fa) fb) 

Figure 8.5 (a) A force system acting at point A. (b) The equivalent system. 

rent at point A whose position vector from point 0 is S. The sum of moments about 0 is 
found to be 

0° = sf (8.l3) 

where nO = o? and f ~7=1 fi . Thus the sum of the moments of a system of con
current forces (forces all of which act at a point) about a given point is equal to the 
moment of their sum about the same point, as shown in Fig. 8.5 (b). 

The moment produced by two equal and opposite and noncollinear forces is 
known as a couple. Couples have certain unique properties. Figure 8.6 shows two equal 
and opposite force"?..f and -.f acting on a body. The vectoI s joins any point B on the 
line of action of f to any point A on the line of action of f. Points A and B are located 
by position vectors SA and SB, from any point O. The combined moment of the two 
forces about 0 is 

o = sAf + SB( -f) 
= (SA sB)f 

Since SA SB = s, the moment of the couple becomes 

o sf (8.14) 

Thus, the moment of a couple is the same about all points. Note that the magnitude of 0 

is n = fd, where d is the perpendicular distance between the lines of action of the two 

/ 
/ 

Figure 8.6 The moment of a couple. 
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forces. It is clear that the moment of a couple is afree vector, whereas the moment of a 
force about a point, which is also the moment about a defined axis through the point, is 
a sliding vector whose direction is along the axis through the point. 

The effect of a force acting on a body has been described in terms of its tendency 
to move the body in the direction of the force and to rotate the body about any axis that 
does not intersect the line of the force. The representation of this dual effect is often 
facilitated by replacing the given force by an equal parallel force and a couple to com
pensate for the change in the moment of the force. This resolution of a force into a force 
and a couple is illustrated in Fig. 8.7, where the couple has a magnitude n fd. 

7 7 

(al (bl leI 

Figure 8.7 (a) A force J acting at point A. (b) Two forces J and - J acting at point B 
have no effect on the body, since they cancel each other. (c) The couple J acting at A 
and -J acting at B are replaced by the moment ii. 

To study the motion of a body, it is often convenient to replace the forces acting 
on the body by an equivalent system consisting of one force and one couple, as shown 
in Fig. 8.8. The force f that acts at the centroid of the body is equal to the sum of all k 
forces acting on the body; i.e., 

k 

f= Lfi 
i~1 

fk -f 
f, 

-
f3 

(al (bl 

Figure 8.8 (a) A system of forces acting on a body. (b) Equivalent force-couple 
system. 

(8.15) 

ii 
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The moment of the couple is the sum of the moments of thc individual forces with 
respect to the centroid C; i.e., 

k k 

n = 2: ni = 2: 8i ( (8.16) 
i=) j=1 

Note that f is acting at the centroid but n is a free vector. 

8.3.2 Rotational Equations of Motion 

When the origin of the body-fixed e'YJ( coordinate system is located at the center of mass 
of a body, the system is what is known as a centroidal coordinate system. Consider the 
body shown in Fig. 8.9, where the only external force is a force] acting on the ith par
ticle of the body. This particle is located with respect to the xyz coordinate system by 

r; r + Sj (a) 

or, by expanding the vectors of both sides of Eq. a into skew-symmetric matrices yields 

r; = i + Si 

Postmultiplying this equation by f yields 

r;f if + sif 
or 

nG 
= if + n 

(b) 

(c) 

(8.17) 

where nG and n are the moments of f with respect to the origin of the xyz coordinate sys
tem and the body centroid, respectively .... 

In addition to the external force f acting on the ith particle, there are internal 
forces acting between the particles, such as ]u acting on the ith particle by the jth parti
cle. The equation of motion for the ith particle can be written as 

f + (fjj + ... ) 

. 
f 

F------y 

x 

(d) 

Figure 8.9 A body as a collection of par
ticles under the action of a force J. 
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where the terms in the parentheses represent the reaction forces from all other particles 
of the body acting on the ith particle, Premultiplying Eq, d by if results in 

iff + (iffij + ... ) m;")i;rf (e) 

For the other particles in the body, such as the jth particle, on which we have assumed 
only reaction forces are acting, the equations of motion have the general form 

(f + ... ) = m(p)rP 
)1 } } , j l, .. "k-l,jof:.i (f) 

Premultiplying Eq. f by r) yields 

(e'f + ... ) = mip)fPrP }' = I, ... ,k - I,}' of:. i 
JJI j jJ' ( g) 

Summing Eq. e and all of the k - 1 equations in Eq, g results in 
-Pf + (-Pf + -Pf ••• ) - (p)-p .. p + (p)-p .. p + r i r i ij rj ji + - m i riri mj rjr) (h) 

For every fij' there is an fji = -fii , and therefore Eq. h becomes 

pf + [(-I' -p)f + ] - (p)-p .. p + (p) .. p .. p + (I') r i r i - rj ij ••• - m; rir; mj rjr) 

All vector product terms in the parentheses of Eq, i are identical to zero, since any 
typical term (i; i)fij is zero (vectors fij and rf - r) are collinear, as illustrated in 
Fig, 8,10). Therefore, Eq. i is simplified to 

or 
k 

nG '" In(pkJ'r"P 
L.. } I'j j 
j=! 

(j) 

If the mass of any typical particle is replaced by an infinitesimal mass dm, then the 
summation can be replaced by an integral over the volume of the body. Hence Eq. j 
becomes 

ffl 

x 

(k) 

Figure 8.10 Reaction forces between two 
particles. 
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Taking r P r + s and substituting in Eq. k yields 

nO I (i + s)(r + s)dm 
(v) 

if I dm + I ssdm 
(v) (v) 

mif + I ssdm 
(v) 

where Eqs. S.9 and S.lI have been employed. 
From Eq. 6.101, i.e., S = Ws, it is found that 

s ks+ws 
-sw + wiiJs 

Premultiplying Eq. S .19 by s and rearranging one term yields 

SS -ssw - swsw 
From Eq. 2.52, it is found that 

Hence 

swsw = [ws + (s~)]sw 
= wssw 

ss = -ssw wssw 
Substitution of Eq. I into Eq. S.lS yields 

nO mif + (-L ss dm) w + w( -L ss dm) w 

= if + Jw + wJw 
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(S.lS) 

(S.19) 

(l) 

(S.20) 

where J - I(,,) SS dm is defined as the global inertia tensor for the body. Comparison 
of Eq. S.17 and S.20 results in 

n = Jw + wJw (8.21 ) 

Equation S.21 is the rotational equation of motion for a body. 

8.3.3 The Inertia Tensor 

Figure S. 11 shows a body with its centroidal body-fixed coordinate system. It is 
assumed that the body has volume v. Vector s in the local coordinate system is 
described as s' [set)' S(71)' s(,/. The inertia tensor is defined as the integral 

J' -I s's'dm 
(v) 

which can be written in expanded form as 

-S(~)S(71J 

J' 2 2 
S ('J + S (g) 

-sWS(1}) 

(S.22) 

(S.23) 
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Figure 8.11 A body with centroidal COOf

dinate system. 

The following individual integrals are defined: 

jgg == f (st'1) + st~)dm 
(v) 

j'1'1 f (sto + stg))dm 
(v) 

j~~ == f (stg) + st"'l) dm 
(v) 

j~'1 = j'1~ -f s(~)s('1)dm 
(v) 

j'1' j~"'I = -f s("'I)sW dm 
(v) 

hg == jg~ - f swsw dm 
(v) 

The matrix J' is called the inertia tensor (inertia matrix) for the body. 

(8.24) 

If the orientation of the centroidal ~'Y/{ body-fixed axes is changed, the moments 
and products of inertia will change in value. There is one unique ori~ntation of the ~'Y/{ axes 
for which the products of inertia vanish. For this orientation the inertia matrix takes the 
diagonal form 

(8.26) 
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The ~'Yj{ axes for which the products of inertia vanish are called the principal axes of 
inertia. 

Another form of the global inertia tensor .I as defined in Eq. 8.20 can be derived 
as follows: 

.I = f ssdm 
(v) 

-f AS 'ATAs 'AT dm 

{J ,'I' dm )A' 
= AJ' AT (8.27) 

In contrast to .I', which is a constant matrix, .I is a function of the angular orientation of 
the body. 

and 

The time derivatives of J' and .I are . 
J' = 0 

j AJ' AT + AJ'AT 

wAJ' AT + AJ' AT wT 

wJ - Jw 

where Eq. 6.94 has been employed. 

(8.28) 

(8.29) 

The rotational equations of motion for a body are given by Eq. 8.21 in terms of 
the global inertia tensor. The equations represented there can be converted to use the 
local components of the vectors by taking nAn', w Aw' , and w Aw' + Aw' = 

Aw'w' + Aw' = Aw' and substituting in Eg. 8.21 to get 

An' = .JAw' + Aw' ATJAw' 

Premultiplication by AT and application of Eq. 8.27 yield 

n' J'w' + w'J'w' (8.30) 

This represents the rotational equations of motion for a body, which are known as Euler's 
equations of motion. 

8.3.4 An Unconstrained Body 

Consider the body drawn solid in Fig. 8.12(a), which has no contact with any other 
body except through force elements. There is no kinematic joint attached to this body to 
eliminate any of its degrees of freedom. A typical free-body diagram for this body is 
shown in Fig. 8.12(b). If the sum of all forces acting on the body is denoted by f, and 
the sum of the moment of f, and any other pure moments acting on the body is denoted 
by nl , then the translational and rotational equations of motion for this body are given, 
from Eqs. 8.6 and 8.30, as 

(8.31) 

(8.32) 



220 Basic Concepts in Dynamics Chap. 8, 

x 

I 
\ 

/ 
/ 

(a) 

;-' 
x 

(b) 

Figure 8.12 (a) An unconstrained body, and (b) its equivalent free-body diagram, 

Equations 8.31 and 8.32 are the so-called Newton-Euler equations of motion for an un
constrained body. 

Equations 8.31 and 8.32 can be expressed in matrix form as 

where 

N; "" diag[m, m, mJ 

Equation 8.33 can also be written in the compact form 

where 

is the body mass matr"iX';"wtiere 

hi"" [~1 
is the body velocity vector, where 

[ 0] b. = 
, c;,'J'w'i 

(8.33) 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

(8.38) 
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contains the quadratic velocity terms, and where 

(8.39) 

is the body force vector. 

8.4 DYNAMICS OF A SYSTEM OF BODIES 

A system of bodies making up a mechanical system can be regarded as a collection of 
individual bodies interconnected by kinematic joints and/or force elements. If there are 
no kinematic joints in the system, it is called a system of unconstrained bodies. If there 
are one or more kinematic joints in the system, it is referred to as a system of con
strained bodies. 

8.4.1 A System of Unconstrained Bodies 

Consider the system of unconstrained bodies shown in Fig. 8.13. It is assumed that there 
are b bodies in this system connected to one another by various force elements. In addi
tion, other forces, either constant or time-dependent, may act on the bodies. 

The equations of motion for the ith body were given by Eq. 8.35: 

Equation a can be repeated for i 

M, 

or 

where 

M;li; + b i = gj (a) 

1, ... ,b to obtain 

+ (8.40) 

Mh + b g (8.41) 

M = diag[MI' M 2, ••• ,MbJ 
is the system mass matrix, where 

(8.42) 

(8.43) 

Figure 8.13 A system of unconstrained 
bodies. 
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is the system velocity vector, where 

[
T T 1'1T b= b 1,b2 ,··.,bbJ (8.44) 

contains the quadratic velocity terms, and where 

g [gr, gL ... ,grr (8.45) 

is the system force vector. Equation 8.41 represents the equations of motion for a sys
tem of unconstrained bodies. Vector g contains all of the external and internal forces 
and moments. Gravitational force is considered an external force, whereas the force ele
ments within the system, such as springs, are considered internal forces. t 

8.4.2 A System of Constrained Bodies 

In a system of constrained bodies, two or more of the bodies are interconnected by kine
matic joints. In addition to the kinematic joints, force elements are usually present, as 
shown in Fig. 8.14. 

Figure 8.14 A system of constrained 
bodies. 

If the system vector of coordinates for b bodies is denoted by q, then the kine
matic joints in the system can be represented as m independent constraints, normally 
nonlinear equations in terms of q, as: 

4> == 4>(q) = 0 (8.46) 

Each kinematic joint introduces reaction forces between connecting bodies. These reac
tion forces, which are also referred to as constraint forces, are denoted by vector g(c): 

[ g
(e)T g(e)T g(c)T]T 
1 , 2 , ••• , b (8.47) 

where g;e), i = 1, ... ,b, is the vector of joint reaction forces acting on body i. The sum 
of the constraint forces gee) and external forces g provides the total of forces acting on 
the system. Hence, Eq. 8.41 can be modified to read 

Mh + b = g + gee) (8.48) 

Equations 8.46 and 8.48 together present the equations of motion for a system of con
strained bodies. 

tIn the formulation of the equations of motion, springs, dampers, and actuators are not treated as 
bodies but rather as abstract foree elements. This is not an unrealistic assumption, since the mass of these ele
ments is usually negligible as compared to the mass of the connecting bodies. 
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The constraint force vector g(C) can be expressed in terms of the constraint equa
tions. However, this task cannot be accomplished at this point, since no rotational 
coordinates have been defined for the bodies. Equation 8.46 is expressed in terms of the 
vector of coordinates q, whereas Eq. 8.48 is expressed in terms of the vector of veloci
ties h. For body i the relationship between ('Ii and hi has not yet been defined. The 
ambiguity lies with the rotational coordinates, not the translational coordinates. Vector 
hi is defined as h; = [fT, WiT];, while vector qi is qT = [rT, '1];. This ambiguity will be 
clarified when proper sets of rotational coordinates for planar and spatial motions are 
defined in Chaps. 9 and 11. 

8.4.3 Constraint Reaction Forces 

It is possible to obtain a relationship between the constraint reaction forces and the con
straint equations if (1) a proper vector of coordinates is defined and (2) the constraint 
forces are expressed with respect to the same coordinate system as the vector of coordi
nates. For example, assume that Euler parameters are used as rotational coordinates; 
in that case, vector qi = [rT, pTJ; is the vector of coordinates for body i. Vector 
<Ii [e, pT]; is different from vector hi [fT, w'lT; however, the identity w; = 2Id)i 
can transform hi to <Ii or vice versa. Similarly, for the entire system, h can be trans
formed to <I. The constraint reaction force vector g(C) and the velocity vector hare 
expressed in the same coordinate system. It will be seen in Chap. II that vector g(C) can 
be transformed to another coordinate system consistent with q. 

At this point it will be assumed that g(C) can be transformed to a coordinate system 
consistent with q and denoted as g(*). It will further be assumed that there are m inde
pendent constraint equations 

<I> <I>(q) = 0 (a) 

If the joints are assumed to be frictionless, the workt done by the constraint forces in a 
virtual (infinitesimal) displacement+ oq is zero; i.e., 

~V~ 0 W 
Since the virtual displacement oq must be consistent with the constraints, Eq. a§ yields 

<l>q oq 0 (c) 

The vector of n coordinates q may be partitioned into a set of m dependent coordi
nates u, and a set of n-m independent coordinates v, as q = [uT, vTf. This yields a par
titioned vector of virtual displacements oq [OUT,ovTf and a partitioned Jacobian 

tThe work done by a foree f acting on a system and causing a displacement q is defined as IV fT q. 

j A virtual displacement of a system is defined as an infinitesimal change in the coordinates of the sys
tem consistent with the constraints and forces imposed on the system at time t. The displacement is called a 
virtual one to distinguish it from an actual displaeement of the system occurring in a time interval dt, during 
which the constraints and forces may change. 

IThe Taylor series expansion of Eq. a about q is 

<I>(q + Ilq) <I>(q) + <l>q Ilq + higher-order terms 

A displacement Ilq consistent with the constraints yields <I>(q + Ilq) O. Using <I>(q) 0 and eliminating 
the higher-order terms for infinitesimalllq, we find that <l>q Ilq = o. 
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matrix <l>q [<I>u, <1>,]. The matrix <l>u is m X m and nonsingular, since the constraint 
equations are assumed to be independent. If vector g(*) is also partitioned as 
g (*l == [g(*)1' g {*)1']7 then Eq b can be writtten as (u) ,(y) , • 

or 

(d) 

Similarly, Eq. c yields 

(8.49) 

If Eq. d is appended to the system of equations represented by Eq. 8.49, the result can 
be written as 

(e) 

The matrix to the left in Eq. e is an (m + l) X m matrix. Since <I>\)is an m X m non
singular matrix, the first row of the (m + 1) x m matrix, Le., gi,~) , can be expressed 
as a linear combination of the other rows of the matrix: 

g<*) = 4>1' A 
(u) u (f) 

where A is an m-vector of multipliers known as Lagrange multipliers. Substitution of 
Eq. f in Eq. d yields 

or 
\1'ffi ;:, (*)1';:, ( ) 

-4 'I!',uV -g(v) uV g 

where Eq. 8.49 has been employed. Vector Sv is an arbitrary (independent) vector. The 
consistency of the constraints for virtual displacements Sq is guaranteed by solving 
Eq. 8.49 for Su. Since Eq. g must hold for any arbitrary Sv, then 

\ 1'4> = g<*)1' 
4, (y) 

or 
(h) 

Appending Eq. fto Eq. h yields 
g(*l = <I>~ A (8.50) 

Equation 8.50 expresses the constraint reaction forces in terms of the constraint equa
tions and a vector of multipliers. 

8.5 CONOrriONS FOR PLANAR MOTION 

The equations of motion for an unconstrained body can be simplified if the motion is 
planar. Assume, without any loss of generality, that the centro ida I body-fixed ~iTJi'i co
ordinates are attached to body i in such a way that the, axis is parallel to the z axis. 
Furthermore, assume that the center of mass of the body is located in the xy plane. The 
vector of translational coordinates for the body is then r j = [x, y, 0];' It can be assumed 
that the ~TJ and xy planes remain coincident, and therefore that Zj 0 at all times. If the 
angle cP i is taken as the rotational coordinate, then vectors of angular velocity and angu-
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lar acceleration forJ:he body can be written, respectively, as Wi wI = [0, 0, ~]; and 
Wj = w; = [0,0, 1l];. 

Assume that a force fj is acting at point Pi' as shown in Fig. 8.15. The transla-
tional equation of motion given in Eq. 8.31 can be written, where Zj 0, as 

rm m ] r;] = [~x:)] 
m , 0, 1(,) i 

(8.51) 

which yields 1(')j = 0. 

Condition 1. In planar motion, the forces acting on a body must remain parallel to the 
plane of the body. 

If it is assumed that Pi is in the plane, then the moment 0i sic! can have a 
nonzero component only in the z (or ') direction: OJ = of [0,0, nJi, where nj is the 
magnitude of the moment. Hence, the system of rotational equations of motion, given in 
Eq. 8.32, is written as 

J:r~] + r~ -~ ~] J:[~] [~] 
1l, 000, 1l, n, 

or, by using the elements of J' from Eq. 8.25, it is found that 
•• • 2 

h'i1li - j'f/'i1li = ° •• • 2 

j'f/'i1li + j ai1li = ° 
j,,/bi ni 

Equations a and b can be written as 

~:: -j'l'J [<'fiJ - [OJ h, i ;P2 i - ° 

(a) 
(b) 

(8.52) 

(c) 

In order to have a nontrivial solution for Eq. c, i.e., nonzero 4>; and ;Pi' the matrix at 
the left in Eq. c must be singUlar. Therefore, j~'i + j~'i = 0, which yields 

(8.53) 

Condition 2. A moment about the ~ axis causes the body to rotate only about that axis if 
the products of inertia and j'l' are zero. 

Figure 8.15 A body with centroidal coor
dinate system in planar motion. 
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The condition shown by Eq. 8.53 applies to bodies in which the plane of motion is 
geometrically the plane of symmetry, where uniform distribution of mass is assumed. 
However, if either of the products of inertia je. and j1)' is nonzero, a moment about the' 
axis causes the body to rotate about an axis nonparallel to ,. 

An unconstrained body can experience a nonplanar motion if conditions land 2 
are not met. However, for a constrained body, kinematic joints may be aligned in such a 
way that the body would move only in a plane, without conditions land 2 being satis
fied. In such cases, if condition 1 is not met, joint reaction forces are developed that are 
not in the plane of motion, and if condition 2 is not met, joint reaction moments are 
developed that are not about the axis perpendicular to the plane of motion. 
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Planar Dynamics 

In this chapter, the equations of motion for both unconstrained and constrained mechani
cal systems undergoing planar motion are developed in a form adequate for computer 
programming. Suitable equations are formulated for a variety of forces commonly en
countered in mechanical systems, such as gravity and the forces of springs and dampers. 
The kinematic constraint equations of Chap. 4 are applied to complete the equations of 
motion. 

9.1 EQUATIONS OF MOTION 

Translational and rotational equations of motion for an unconstrained body are written 
from Eqs. 8.51 and 8.52, as follows: 

or 

miXi frX)i 

miYi = fry); 

j"i~i = ni 

(9.1) 

where for notational simplicity the polar moment of inertia j" of a body is denoted by 1'-. 
Equation 9. 1 may also be expressed as 

(9.2) 

227 
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where 

M; = diag [m, m, p,]; 

q; = [x,y, <pl; 
g; Lfrx),jU'l' n]; 

A comparison of Eqs. 9.2 and 8.35 reveals that in planar motion bi 0 and 
hi = qj or hi qi' The ambiguity that was mentioned in Sec. 8.4.2 between h; and q;, 
for general motion of a body, does not exist when planar motion is considered. In planar 
motion, the rotational velocity vector w; [0,0, cI>]; is the time derivative of a rota
tional coordinate vector [0,0, <p];. 

For a system of b unconstrained bodies, Eq. 9.2 is repeated b times as 

Mq = g 

where 

M = diag [M 1,M2, ••• ,Mb ] 

q = [qi,qr, ... ,qrf 
T T T T 

g [g 1, g2' ... ,gbl 

(9.3) 

The system mass matrix M is a 3b x 3b constant diagonal matrix, and vectors q, q, q, 
and g are 3b-vectors. 

For a system of b constrained bodies, the equations of motion can be written as 

Mq g + g(c) (9.4) 

where g(CI is the vector of constraint reaction forces. Since Eq. 9.4, and hence g(C), is de
scribed in the same coordinate system as q, then from Eq. 8.50 it is found that 

(9.5) 

where <J) = 0 represents m independent constraint equations. Substitution of Eq. 9.5 in 
Eq. 9.4 yields 

Mq - <J)~A = g 

Equation 9.6 and the constraint equations 

<J) = 0 

together represent the equations of motion for a system of constrained bodies. 

(9.6) 

(9.7) 

In kinematic analysis, the number of degrees of freedom of a system must be 
equal to the number of driver constraint equations. This means that m kinematic con
straint equations and k driver equations provide n equations in n unknowns and so will 
yield a unique solution. However, in dynamic analysis, in general, there are no driver 
equations to be specified. Since n > m, there are more unknowns in the constraint 
equations of Eq. 9.7 than there are equations, and so there is no unique solution to these 
equations. In dynamic analysis, a unique solution is obtained when the constraint equa
tions are considered simultaneously with the differential equations of motion, and a 
proper set of initial conditions is specified. These algebraic-differential equations are 
solved by numerical methods and will be discussed in Chap. 13. 
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9.2 VECTOR OF FORCES 

Vector g in Eq. 9.6 contains the vectors of forces acting on all the bodies in the sys
tem; i.e., 

g = [gi,gL··· ,g~y (9.8) 
To construct vector g, the vector of force for each body must be determined. For a typi
cal body i, the vector of force gi contains all forces and moments acting on that body: 

gi L/(x),1(y), nJi 
where 1(X)j ,J(y)!, and n i are the sums of all forces in the x and y directions and the sum of 
all moments, respectively. In Secs. 9.2.1 to 9.2.7, a variety of external and internal 
forces that commonly appear in mechanical systems are discussed, and their contribu
tions to the elements of gj' and hence g, are shown. 

9.2.1 Gravitational Force 

Figure 9.1 shows a body acted upon by a gravitational field in the negative y direction. 
The choice of the negative y direction as the direction of gravity is totally arbitrary. 
However, in this text the gravitational field will be considered to be acting in this direc
tion in planar motion unless indicated otherwise. 

If Wi is the weight of body i (mass of body i times the gravitational constant), then 
the contribution of this force to the vector of force of body i is 

g;grav;IY) = [0, -W, 0]; (9.9a) 

9.2.2 Single Force or Moment 

Consider a single forcc fi acting with known direction at point Pi on body i as shown in 
Fig. 9.2(a). This force has components 1(X); and 1(y)j' If the lopl coordinates of Pi are 
known as s;P = [e,7(]i, then sf = Ais? The moment of f about the origin of the 
body is . 

n, = (s;f,)(z) 

= S [V)jJ(X)j + s rxJi1(V)i 

-(gr sin CPi + "I]r cos cp,)/ix)j + (e cos cpj "1]: sin cp)/(Y)j (9.10) 

'TIl\? 
~. 

(i) , 

L-____ x 
Figure 9.1 Gravitational field acting on a 
body. 
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(a) (b) 

Figure 9.2 A body acted upon by a constant (a) force, and (b) moment. 

The contribution of this force to the vector of forces of body i is 

g,(single_n [F F ]T 
}(X)'}(y)' n i (9.11) 

When a pure moment with magnitude ni acts on body i as shown in Fig. 9.2(b), its 
contribution to the vector of forces of body i is 

g;sioglell) [O,O,n]; (9.12) 

Equations 9.11 and 9.12 are valid for either constant or time-dependent forees or 
moments. 

Example 9.1 

Body i, with a mass of 2, is acted upon by gravity, a constant force, and a pure 
moment, as shown in the illustration. The constant force has the components 
f = [1.2, 0.5f, and the magnitude of the pure moment is 0.6. Determine the vec-
tor of force for this body if s;r = [-0.2, 0.3f, 1:>i = 30°, and ri [2.1, 1.6f, 

Solution The weight of the body is Wi 2 x 9.81 19.62. The moment of the 
force is found from Eq. 9.10 to be ni -0.35. Therefore, the vector of forces for 
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this body is 

[ 
1.2 J [ 1.2 J gi 0.5 19.62 -19.12 

-0.35 0.6 -0.95 

9.2.3 Translational Actuators 

Actuators provide a constant or a time-dependent pair of forces acting on two bodies 
without imposing any kinematic constraints. The forces making up the pair have a com
mon line of action but are in opposite directions. As shown in Fig. 9.3(a) an actuator 
acts between bodies i and j at the attachment points Pi and Pj • The equivalent represen
tation for this system is shown in Fig. 9.3(b) or (c), depending on the direction of the 
forces. 

The sign convention for the pair of forces can be defined as positive when the 
forces pull on the bodies and negative when the forces push on the bodies. If the actua
tor force is denoted by fa) ,1(0) > 0 constitutes a pull and fa) < 0 constitutes a push. In 
order to find the forces being applied to bodies i and j, i.e., jjG) and jja), a unit vector on 
the line of action of the actuator must be defined . .... 

A vector I connecting points Pi and Pj' as shown in Fig. 9.4, is defined as 

I = rj + Ajs? ri - A,s;P (9.13) 

The magnitude of this vector is 

I = (fl)lI2 (9.14) 

A unit vector Ii is defined as 

I 
(9.15) u= 

The unit vector Ii has the same direction as J i") in the case of a pull and Jr in the case 
of a push. Therefore, 

lal (bl leI 

Figure 9.3 (a) An actuator acting between two bodies, and the equivalent representa
tion; (b) pull; (c) push. 

(9.16) 
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and 
r(a) 

J 
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Figure 9.4 Defining a unit vector along 
the axis of the actuator forces. 

(9.17) 

It is clear that since pal can be either positive or negative, the sign convention in Eqs. 
9.16 and 9.17 is automatically satisfied. The contribution of riDI (or rj"l) to the vector of 
forces gj(or g) can be found from Eqs. 9.10 and 9.11. 

9.2.4 Translational Springs 

Translational (point-to-point) springs are the most commonly used force elements in me
chanical systems. Figure 9.5(a) shows a spring attached between points P j and Pi on 
bodies i and j. The force of this spring can be found as 

f SI k(l - [0) (9.18) 

fl.) 

k 

/" 

(bl 

(a) Ie) 

I<'igure 9.5 (a) A translational spring between two bodies with (b) linear characteristics 
or (c) nonlinear characteristics. < 
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where k is the spring stiffness, t is the deformed length, and to is the undeformed length 
of the spring. The deformed length of the spring is found from Eq. 9.14. 

The sign convention for the spring force is similar to that of the actuator force
positive in tension (pull) and negative in compression (push). The forces of the spring 
acting on bodies i and j are 

(9.19) 
and 

ry) _/I)U (9.20) 

where u is a unit vector defined along I (Eq. 9.15). Equations 9.19 and 9.20 are valid in 
tension and compression-if 1 > [0 (for tension),f(') is positive; and if t < [0 (for com
pression), liS) is negative. 

The contributions of f;') (or fy» to gj (or g) are found from Eqs. 9.10 and 9.1l. 
In Eq. 9.18 a linear characteristic is assumed for the spring (Fig. 9.5(b». How

ever, the spring. may have nonlinear force-deformation characteristics, e.g., the curve 
shown in Fig. 9.5(c). In this case, the force-deformation curve can be used directly in
stead of Eq. 9. 18. If the force-deformation data are available in discretized form, the lin
ear or cubic spline function technique (Sec. 4.2.4) can be employed to computel l

) for a 
deformation [ to. 
Example 9.2 

Two bodies are connected by a translational spring, where st [0.15, of and 
s~P [0, o.lf (see the illustration). Write the equations of motion when ql = 
[-0.1, 0.2,0.785f and q2 = [0.1,0.1,0.262f, and then calculate the accelera
tions. 

v 

m1 0.2 
m2 0.15 

k =50 

(2) 

III = 0.03 

112 0.02 
[0 0.2 

Solution From Eq. 9.13, vector I is found to be equal to [0.068, -0.109f, and 
hence I = 0.129. The unit vector along I is u = [0.528, -0.849f. The spring 
force is liS) 50(0.129 - 0.2) = -3.558. From Eqs. 9.19 and 9.20 it is found 
that f~S) = [-1.878,3.022t and f~') = [1.878, -3.022f. Equation 9.10 yields 
n is) = 0.520 and n ~s) = - ° .103. The vectors of forces for bodies 1 and 2 con
tain the contribution from the spring and from gravity and are found to be 
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gl = [-1.878, 1.060, 0.520f and g2 = [1.878, -4.494, -O.I03f. The equations 
of motion are written from Eq. 9.3 as 

0.2 Xl -1.878 

0.2 YI 1.060 

0.03 ~I 0.520 

0.15 XI 1.878 

0.15 h -4.494 

0.02 ~2 -0.103 

The accelerations are found easily to be 
q = [-9.389,5.302,17.326, 12.518, -29.959, -5.154f 

9.2.5 Translational Dampers 

A translational (point-to-point) damper between two bodies i andj is shown in Fig. 9.6. 
The damping force can be found to be 

f(d) = di (9.21) 

where d is the damping coefficient and I is the time rate of change of the damper length. 
I is found by taking the time derivative of Eq. 9.14: 

IT i 
I 

where i, in turn, is found from Eq. 9.13: 

and where 

[
-sin <p 

cos <p 
-cos <pJ 
-sin <p k 

(9.22) 

(9.23) 

k i,j 

The sign convention for the damping force is defined as positive for I > 0 and negative 
for I < O. Since a damper opposes the relative motion of two bodies, when the two 
bodies move away from each other (when i > 0), the forces of the damper exhibit a 
pull, and when the bodies move toward each other (when i < 0), the forces of the 
damper exhibit a push. 

Figure 9.6 A translational damper be
tween two bodies. 
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and 

By defining a unit vector it along 1, we express the forces rid) and rY) as 

r)d) = ld)U (9.24) 

ry) = -ld)U (9.25) 

Equations 9.24 and 9.25 are valid for both pull and push cases. 
As was true of deformation in the case of springs, the relationship between force 

and deformation rate for a damper can be linear or nonlinear. Equation 9.21 assumes a 
linear characteristic for the damper. However, if the damper characteristic is nonlinear, a 
curve or a table of data describing the relationship between force and deformation rate 
can be used instead of Eq. 9.21. 

Example 9.3 

A spring-damper element is connected between bodies 2 and 4 of a four-bar link
age, as shown in the illustration. The attachment points are st = [0.3, 0.2f and 
st = [-0.1, o.lf. If at a particular instant the vectors of coordinates and veloc
ities are q2 = lOA, 0.1, 1.3f, q4 [-0.35,0.2, 5.6f, (h [0.8, -0.6, -0.3f, 
and 44 = [-0.5, OA5, -0. If, determine the vector of forces for the three moving 
bodies. 

k 100 

d 25 
,0 0.9 

m2 3 
ma 0.7 

m4 2.4 

Solution From Eqs. 9.13 and 9.23 it can be found that l = [-0.652, -0.102,f 
and i 1.389, 1.018f, which yield l = 0.660 and i = 1.215. A unit vector 
along l is u [-0.988, -0.154f Equations 9.18 and 9.21 yield the spring and 
damper forces f(S) = 100(0.660 0.9) = -24.012 and ld) = 25 X 1.215 
30.373. Since the spring and the damper have the same point of application on 
each body, their total force can be used as f(s+<fJ = -24.012 + 30.373 = 6.361. 
The components of this force acting on the two bodies are 

r(s+<fJ = [-6.285] 
2 -0.982 [

6.285] 
0.982 

Equation 9.10 can be used to determine that the moments of these forces are 
n~+<fJ = 2.263 and n~+<fJ = -0.898. 
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The weights of the bodies are W2 = 29.430, W3 

The vectors of forces for the bodies are 

l-6.285J l 0.0 J 
g2 = -30.4]2 g3 = -6.867 

2.263 0.0 

Planar Dynamics Chap. 9 

6.867, and W4 23.544. 

l 6.285J 
g4 = -22.562 

-0.898 

9.2.6 Rotational Springs 

A rotational (torsional) spring acting between two bodies i andj is shown in Fig. 9.7(a). 
The two bodies are also assumed to be connected by a revolute joint whose axis is the 
same as the spring axis. A rotational spring applies pure moments on the bodies, equal 
in magnitude and opposite in direction. 

The moment is found as 

(9.26) 

where k is the spring stiffness, e is the deformed angle of the spring, and eO is the unde
formed angle, as shown in Fig. 9.7(b). Vectors Sj and Sj are assumed to be attached to 
the spring in order to define the spring angle. 

(f) 
(i! 

(a) (b) 

Figure 9.7 (a) A rotational spring acting between two bodies, (b) Free (undeformed) 
state of the spring. 

When e > eO, the moment of the spring acts on body i in the positive rotational 
direction and on body j in the negative rotational direction, as shown in Fig. 9.8(a). 
When e < eO the situation is reversed, as shown in Fig. 9.8(b). Therefore, 

and 
(ros) _ n (r-s) 

nj 

(a) (bl 

(9.27) 

(9.28) 

Figure 9.8 The moments of a rotational 
spring acting on the bodies, (a) for e > eO 
and (b) for e < eO, 
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9.2.7 Rotational Dampers 

The rotational element shown in Fig. 9.7 may also contain a damper, in addition to the 
spring. For a rotational damper the moment is found as 

nCr-d) dO (9.29) 

where d is the damping coefficient and 

o =;Pj ;Pi (9.30) 

is the time rate of change of the element angle. 
When iJ > 0, the moment of the damper acts on body i in the positive rotational 

direction and on body j in the negative rotational direction. When iJ < 0, the situation is 
reversed. Therefore, 

and 

9.3 CONSTRAINT REACTION FORCES 

n (r-d) = - n (r-d) 
J 

(9.31) 

(9.32) 

The joint reaction forces can be expr:essed in terms of the Jacobian matrix of the con
straint equations and a vector of Lagrange multipliers, as shown in Eq. 8.50, as 

(9.33) 

This equation is studied for several commonly used constraints in Sees. 9.3.1 to 9.3.3. 

9.3.1 Revolute Joint 

Consider two bodies i and j connected by a revolute joint, as shown in Fig. 9.9(a). The 
kinematic constraint equations for this joint are given by Eq. 4.7. The equations of mo
tion for bodies i and j are 

MA; - W~A g; (a) 
and 

MAj - W~A gj (b) 

Using the entries of the Jacobian matrix for a revolute joint from Table 4.2, we can 
write Eq. a in the expanded form 

[; ~ ~] [;] -[~ ~] [~IJ [~:] (c) ° 0 f.L I ~ I -(y; - y,) (x; x,) 2 n; 

Since there are two algebraic equations in the constraint equations for a revolute joint, 
vector A is correspondingly a 2-vector. Equation c can be written as the set of equations 

m;'x; = fix)! + A) 

m! Yi = fiy)! + A2 
f.Li(f,; nj (y; - yJA) + (x; - X;)A2 

(9.34) 
(9.35) 
(9.36) 
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(al 

(b) 
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Figure 9.9 (a) Two bodies connected by a 
revolute joint; (b) free-body diagrams for 
the bodies. 

A free-body diagram for body i is shown in Fig. 9.9(b). Equation 9.34 indicates that be
sidesJ(x)j' another force, AI' acts in the x direction on body i. Similarly, from Eq. 9.35 it 
is deduced that a force A2 acts in the y direction on the same body. However, in order for 
Eq. 9.36 to be satisfied, forces AI and A2 must act at point Pi' The moment arm of AI is 
yf - Yj, and hence a moment (yf - Yj)AI acts in the negative rotational direction. The 
moment arm of A2 is xf - x j' and so a moment (xf - Xi )A2 acts in the positive rota
tional direction. 

or 

Equations of motion for body j, in the same form as Eq. c are written as follows: 

[; ~ ~] [~] -[01 ~1 J [~] [:::] (d) 
o 0 J.t ) 4> J (y; - yJ -(x: - x) 2 n J 

m/Xj At») - AI 

mjYj = J(Y)j A2 

J.tj4>j = nj + (yf - Y)AI (xf - X)A2 

(9.37) 

(9.38) 

(9.39) 
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It is shown in Fig. 9.9(b) that AI and A2 are two forces acting at point Pj in the negative 
x and Y directions, respectively. The moment arm for Al is yf Yj which yields a posi
tive moment (y;' Yj)A I , and the moment arm for A2 is Xj xf, which yields a moment 
(Xj Xf)A2 or -(xf Xj)Al • 

The multipliers Al and Al can be positive or negative quantities. In any case, the 
reaction forces acting at the revolute joint on the connecting bodies are always equal in 
magnitude and opposite in direction. 

Example 9.4 

Consider a system of two bodies connected by a revolute joint as shown in Fig. 
9.9(a). The external forces acting on the system are gravity, a constant force of 
10 N acting on body i in the negative x direction, and a constant force of to N act
ing on body.i in the positive x direction. Calculate the joint reaction forces at the 
instant for which 

qi [1.58,1.59,0.6f, qj [3.4, 1.96, 0.2f 

tij [1.1,0.2, -o.02f, tij [1.l4,0.24,0.03f 

The constant quantities for this system are: m; 1.2, mj 2, P-j = 2.5, P-j 4, 
s? [0.9,0.7f, and s;P = [-1.3, If. 
Solution The constraint equations for this revolute joint are 

Xi + 0.9 cos <Pi - 0.7 sin <Pi - Xj + 1.3 cos <Pj + sin <Pj = 0 

Yt + 0.9 sin <Pi + 0.7 cos <Pi - Yj + 1.3 sin <Pj - cos <Pj = 0 
The Jacobian matrix for these constraints is 

[
1 0 1.09 -1 0 0.72] 

c:f>q 0 1 0.35 0 1 1.47 

From Eqs. 9.34 through 9.36, the equations of motion for body i are 

1.2X; - AI 10 

l.2YI - A2 11.77 (1) 

2.5cj)j + 1.09AI 0.35A2 0 

Similarly, Eqs. 9.37 through 9.39 provide equations of motion for body j: 

2xj + AI = 10 
2Yj + A2 = 19.62 (2) 

4~j - O.72AI 1.47Az = 0 

Equations I and 2 are six equations in eight unknowns, and therefore two more 
equations are needed. These two additional equations are the kinematic accelera
tion equations. The second-time derivative of the constraint equations (refer to 
Table 4.3) can be used to obtain the acceleration equations for the revolute joint, 
as follows: 

Xi - 1.09cj)j - Xj + O.72cj)j = 0 

y; + 0.35cj)i Yj + 1.47cj)j = 0 
(3) 

The right side of the acceleration equations is approximately zero, i.e., 
l' = [0.0017, -0.0002f. Equations I through 3 can be solved to nnd 
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qi [2.571,-10.154, -3.061]T, qj [1.543, -9.604, 1.096f, and 
A [6.915, -0.413]T. Hence, f/C) [6.915, -0.413]T and 
flC

) = [-6.915, 0.413f. 

9.3.2 Revolute-Revolute Joint 

Consider two bodies i and j connected by a revolute joint as shown in Fig. 9.1O(a). The 
equations of motion for bodies i and j, using the elements of the Jacobian matrix for a 
revolute-revolute joint from Table 4.2, are written as 

mix; = fixJi + 2(x; Xf)Al (9.40) 

miy; = fiy); + 2(Y; - ynAl (9.41) 

I-Licj;i = ni - 2[(x; - x;)(y; yJ - (y; - y;)(x; Xi)]A l (9.42) 

(a) 

2(xj - xfle. 

Tli\ .--
~~; 

VPI 
; I 

L 

(b) 

Figure 9.10 (,a) Two bodies connected by 
a revolute-revolute joint. (b) Free-body dia
grams for the bodies. 
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and 

rnA = f(X)j - 2(x; - X;)A 1 (9.43) 

rnjYj = f(Y)j - 2(y; - Y;)Al (9.44) 

•• - p P P (P P)( P /Ljc/>j - nj + 2[(Xi - xj)(Yj - y) - Yi - Yj Xi - x)lAl (9.45) 
There is only one Lagrange multiplier in these equations; it corresponds to the one con
straint equation describing the revolute-revolute joint. 

From Eqs. 9.40 and 9.41 it is deduced that the terms 2(x; - X;)A1 and 2(y; -
Y;)A 1 can be considered reaction forces acting on body i in the X and Y directions, re
spectively. However, in order for Eq. 9.42 to be valid, these forces must act at point Pi' 
Figure 9. lO(b) shows the components of the reaction force and the moment arms at point 
Pi' Similarly, Eqs. 9.43 and 9.44 show that the x and Y components of the reaction force 
on body j are -2(x; - X;)A 1 and -2(y; - Y;)A 1, and Eq. 9.45 indicates that these 
forces must act at point Pj • 

The reaction forces at points Pi and Pj are equal in magnitude and opposite in di
rection. These forces act along the revolute-revolute joint axis, i.e., a line passing 
through points Pi and Pi' 

Example 9.5 
For the two-body system of Example 9.2, assume that a revolute-revolute joint 
with a length I = 0.175 is connected between points Ql and Q2, where s;Q = 
[-0.05, -0.05f and s~Q = [-0.03, o.of (see the illustration). Write the equa
tions of motion and calculate the reaction forces due to this added link if 4 I 
[0.0, 1.22, o.of and 42 = [-0.71, -2.06, o.of. 

'7, 

Gravity t y 

L, 
(2) 

Solution The global coordinates of Q I and Q2 are found to be r f = [-0.1, 
0.129f and r~ = [0.071, 0.092]T. The equations of motion of Example 9.2 are 
modified as follows: 
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0.2 X, -0.342 -1.878 

0.2 y, 0.074 1.060 

0,03 ~, 0,024 0.520 

0.15 X2 0.342 
11.,= 

1.878 

0.15 Y2 -0.074 -4.494 

0.02 ~2 -0.001 -0,103 

Since cI>~ is already available and l' can be found from Table 4.3, the kinematic 
acceleration equation for the revolute-revolute joint can now be round: 

-0,342Xt + 0,074YI + 0.024~, + 0.342X2 - 0.074Y2 0.001~2 = -22.525 

There are seven equations in seven unknowns that are solved to find 

A, = -22.828 

q = [29.646, -3.146, -0.929, -39.528, -18.698, -4.008]T 

The reaction forces at Q, and Q2 are f\C) = [7.807, - I. 689f and f~) = [-7.807, 
1.689f. 

9.3.3 Translational Joint 

If a translational joint is considered between bodies i and} as shown in Fig. 9.1l(a), the 
equations of motion for body i can be written as 

mix; Ax); + (y; - yf)A, (9.46) 

m;y; !(y); (x; - Xf)A, 

f.t;cb; = n; [(x; - x;) (x; xf) + (y; - yJ (y; - yf)]A, + 11.2 

(9.47) 

(9,48) 

The free-body diagram for body i is shown in Fig. 9.II(b). In this diagram the force as
sociated with AI is the reaction force caused by the first constraint equation. It is a sim
ple matter to show that this force, Ie" is perpendicular to the line of translation. The 
contribution of the second constraint equation is a couple acting on body i. Note that 11.2 
may be a positive or negative quantity. ~ 

In order to find a simpler physical description of the reaction force k" one should 
not locate the points P;, Q;, and Pj arbitrarily on the line of translation. These points can 
be selected to coincide with the edges of the slider, as ~hown in 9.12(a). If Pi is al
lowed to slide with the slider, then the reaction force k, always acts at the edge of the 
slider, as shown in Fig. 9.12(b). 

9.4 SYSTEM OF PLANAR EQUATIONS OF MOTION 

For an unconstrained mechanical system, the equations of motion are as given in Eq. 9.3: 
Mq = g (9.49) 

Vector g is, in general, a function of q, q, and t. If, at an instant,'q and q are known, q 
can be found as follows: 

(9.50) 
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(a) 

y 

L, 
(b) 

Figure 9.11 (a) Two bodies connected by a translational joint and (b) the reaction 
forces acting on body i associated with a translational joint. 

(i) 

(a) Ib) 

Figure 9.12 (a) A typical translational joint. (b) Forces acting on body j by the sliding 
body j. 
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For a well-posed problem, every body in the system must have nonzero mass and 
moment of inertia. Therefore, M is a diagonal nonsingular matrix, and M- 1 can be cal
culated easily. 

For a constrained mechanical system with m independent constraints 

<I> 0 (9.51) 

the velocity and acceleration equations are 

<l>qt'l 0 (9.52) 

and 
<l>qq - 'Y 0 (9.53) 

The equations of motion for this constrained system are as given in Eq. 9.6: 
Mq - <I>~A = g (9.54) 

Equation 9.53 can be appended to Eq. 9.54 and the result can be written as 

(9.55) 

The Jacobian matrix <l>q is a function of q, and vectors g and 'Yare functions of q, q, 
and t. Therefore, at any given instant, if q and q are known, Eq. 9.55 provides n + m 
linear algebraic equations in n + m unknowns that can be solved for q and A. For con
strained mechanical systems, Eqs. 9.51 through 9.54 must be considered together as the 
system equations of motion. 

A FORTRAN program for solving the planar equations of motion is presented in 
Chap. to. Numerical methods for solving ordinary differential equations (for uncon
strained systems) and mixed algebraic-differential equations (for constrained systems) 
are discussed in detail in Chaps. 12 and 13. 

9.5 STATIC FORCES 

The subjects that are discussed in this section and in Sees. 9.6 and 9.7 are valid for both 
planar and spatial systems. However, because of the simplicity of illustrations for planar 
systems, these alone will be treated in this chapter. 

A mechanical system becomes a structure (a nonmovable system) when the num
ber of independent constraint equations is equal to the number of coordinates in the sys
tem. For example, the system shown in Fig. 9.13 contains 8 links and the ground, which 
yields n (8 + 1) x 3 = 27 coordinates. There are 12 revolute joints in the system; 
resulting in 24 algebraic equations, and 3 algebraic equations for the ground constraints, 
totaling m 24 + 3 = 27. This yields k = 27 27 0 degree of freedom. In gen
eral, for a structure with n coordinates q, n constraint equations can be written as 

<I>(q) = 0 

These equations can be solved to find the coordinates q. Since for a structure q q = 0, 
Eq. 9.4 yields 

g(c) = -g (9.56) 

This equation shows that the constraint reaction forces acting on each body of the sys
tem can be found directly from the vector of forces. In order to find the constraint reac-
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Figure 9.13 A planar truss subject to an 
external force. 

tion forces at each joint, the Lagrange multipliers can be determined as 

A = -(<I>~rlg (9.57) 

The inverse of <I>~ exists, since it is assumed that the constraints are independent and, 
for a system with 0 degree of freedom, <l>q is a square matrix. After the determination of 
A, a process similar to that of Sees. 9.3.1 to 9.3.3 can be employed to find the reaction 
forces at each point. 

9.6 STATIC BALANCE FORCES 

Consider the planar robot manipulator shown in Fig. 9.14. The motion of the robot is 
controlled by three electric motors (rotational actuators) acting about the axes of revolute 
joints A, B, and C. What moments must the motors apply on the bodies in order to keep 
the system in equilibrium, in the configuration shown? The moments (or forces, in other 
examples) are referred to as the static balance forces. If the number of unknown static 
balance forces is equal to the number of degrees of freedom, then the forces can be 
found by the following method. 

The vector of forces is split into two vectors, as follows: 

(9.58) 

where g(k) contains the known forces acting on the system and g(U) is the vector of un
known forces, which can be the static balance forces. Hence, the equations of motion 

c 

FIgure 9.14 A planar robot manipulator. 
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for the system are written as 

or 

(a) 

since in a static configuration q = O. The same mechanical system can be kept in equi
librium, in its given configuration, if the actuators with unknown forces (or moments) 
are ,replaced by artificial constraint equations, equal in number to the number of degrees 
of freedom. These artificial constraints are denoted here by k algebraic equations as 

«>*(q) 0 (9.59) 

For example, for the robot manipulator of Fig. 9.14, three artificial constraints are de
fined as 

<pf == <1>2 1>1 - CI = 0 

<Pi 1>3 1>2 - C2 0 
<pj 1>4 - 1>3 C3 = 0 

These constraints keep the relative angles between bodies constant. 
If these equations are appended to the original m kinematic constraint equations 

«>(q) 0, then the equations of motion become 

-«>~A - «>rA * = g(k) (9.60) 

where q O. Comparing Eq. a and Eq. 9.60 results in 

g(lI) «>;TA * (9.61) 

Equation 9.60 represents n linear algebraic equations in n unknowns. The n unknowns 
are m multipliers A and k multipliers A *. If these equations are solved for A and A * , 
then Eq. 9.61 yields the unknown static balance forces g(II). 

Example 9.6 
The motion of the five-bar linkage in Fig. 9.15 is controlled by two actuators as 
shown in Fig. 9.15(a). The number of actuators is the same as the number of de
grees of freedom. In order to find what forces applied by the actuators will keep 
the system in equilibrium, the actuators are replaced by two revolute-revolute 
joints, as shown in Fig. 9.15(b). The two artificial constraints for the revolute-

(a) (b) 

Figure 9.15 A five-bar mechanism. 
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revolute joints lower the number of degrees of freedom from 2 to O. If the system 
of Fig. 9. 15(b) is solved for the reaction forces along the revolute-revolute joints, 
then Eq. 9.61 will yield the desired actuator forces in the equivalent system of 
Fig. 9.15(a). 

9.7 KINETOSTATIC ANALYSIS 

If the forces acting on a mechanical system are known, then the equations of motion can 
be solved to obtain the motion of the system. This process is known as forward dynamic 
analysis. In some problems, a specified motion for a mechanical system is sought and 
the objective is to determine the forces that must act on the system to produce such a 
motion. This process is usually referred to as inverse dynamic or kinetostatic analysis. 

As an example, consider the 3-degrees of freedom robot manipulators of Fig. 9.14. 
Assume that the end effector, point P, must move along a known path, such as the 
straight line shown in Fig. 9.16. The range of interest is from E to F, and it is further 
required that point P keep a constant velocity within this range. One additional require
ment is that the angle of body 4 must remain unchanged with respect to the line EF. The 
objective is to find the torque that actuators A, B, and C must supply, as a function of 
time, in order to produce such motion. 

/ 

/ 
/ 

/ 

)'/ 
// 

/ E 
/ 

Figure 9.16 The end-effector of the robot 
must move along a specified path, keeping 
a specified orientation. 

This problem can be solved by specifying k driving constraint equations, equal to 
the number of degrees of freedom, to describe the required motion-such as 

<I>*(q,t) 0 (9.62) 

For example, the driving constraints for the robot manipulator are 

<P[ == x~ a l vlt = 0 

<Pi' y~ a2 - v2t = 0 

<Pj <1>4 - c1 = 0 
where a l and a2 are the initial x and y coordinates of P at t 0, VI and V2 are the con-
stant velocities of P along the x and y axes, and c, is the specified angle for body 4. 

The k driving constraints of Eq. 9.62 are appended to m kinematic constraints to 
yield n constraints in n unknowns. This is a kinematics problem that can be solved by 
the method described in Sec. 3.2.2. The time t is varied from tOto te in order to 
move point P from E to F. At every time step, position, velocity, and acceleration analy
ses are performed and the results, i.e., q, q, and q, are saved in numerical form. 
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The equations of motion can be written as 

Mq - ~~A = g(kl + g(ul (9.63) 

where g(k) contains the known forces, such as gravity, and g(U) contains the unknown 
forces of the actuators (the moments of the actuators A, B, and C in the robot example). 
Since q, q, and q are calculated kinematically, Mq, ~q, and g(k) are known. Therefore, 

~~A + g(U) = Mq - g(k) (9.64) 

can be solved for A and g(lIl. Equation 9.64 represents n equations in m unknowns A and 
k unknowns embedded in g(u). These equations can be solved at every time step from 
tOto te

, and the actuator forces can be found numerically as functions of time. 

PROBLEMS 

... 
9.1 A force f acts at point P on body i as shown in Fig. P. 9.1. This force keeps a fixed angle 

0: with vector Ir. Find the component of this force and its corresponding moment for inclu
sion in vector gi' 

9.2 Repeat Prob. 9.1 and assume that the force keeps a constant angle f3 with the global x axis 
as shown in Fig. P. 9.2. 

y 

L. 
Figure P. 9.1 Figure P. 9.2 

9.3 A multi body model of a vehicle is assembled in the configuration shown in Fig. P. 9.3(a), 
where the gravitational force is perpendicular to the road. If the vehicle is placed on a slope 

! Gravity 

(a) (b) 

Figure P. 9.3 
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as shown in Fig. P. 9.3(b), the gravitational force makes an angle a with the normal to the 
road. Instead of changing the coordinate values from model (a) to model (b), devise a simple 
method to modify the vector of forces by rotating the direction of the gravitational force with 
respect to the global coordinate axes. 

9.4 Derive the equations of motion for a body when the origin of the local coordinate system 
does not coincide with the body center of mass, as shown in Fig. P. 9.4. 

9.S For the single pendulum shown in Fig. P. 9.5, write the equations of motion in terms of 
Cartesian coordinates. Use the kinematic acceleration equations to eliminate the translational 
components of acceleration and Lagrange multipliers. The resultant equation should be a 
second-order differential equation in terms of ~2' 

y 

'J'.--- ---x 

t Gravity 

Figure P. 9.4 Figure P. 9.5 

9.6 The rod shown in Fig. P. 9.6 is attached to the ground by a spring. Write the equations of 
motion for the rod. What are the initial conditions on the coordinates? Assume m = 4, 
IL 3, k = 50, and [0 = I. 

9.7 Two unconstrained bodies are connected to each other and the ground by springs and 
dampers as shown in P. 9.7. Let ml = 4. ILl 3, m2 = 3, IL2 = I, k 40, [0 = 1.2, 
and d 12. 

(a) Define local and global coordinate systems. 

(b) Determine the initial condition for the vector of coordinates. 

d 

lQk---3--> r1.5+1.5-1 1 
~~~k -f-

(1) I 
Gravity 1 2 

(2) 

d 

Figure P. 9.6 Figure P. 9.7 
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(c) If XI -0.3 and <1>2 = 0.05, determine the initial condition for the vector of velocities. 

(d) Write the equations of motion for the system. 

9.8 Two rods are connected to each other by a revolute joint as shown in Fig. P. 9.8. "Let 
ml m2 = 6, fJ-1 == fJ-2 12.5, kl 20, l~ = 5, k2 = 30, l~ 4.5, and d2 6. 
(a) Define local and global coordinate systems. 

(b) Determine the initial condition for the vector of coordinates. 

(c) Test the constraint equations for any violations. In case of violation, correct the initial 
conditions. 

(d) If rod 1 has a positive rotational velocity of <1>1 0.01 rad/s, find a proper set of initial 
conditions for the vector of velocities consistent with the constraints. 

(e) Write the equations of motion for the system. 

Figure P. 9.8 

9.9 Two masses ml and m2 go through a one-dimensional motion in the x direction as shown in 
Fig. P. 9.9. Assume that ml = 1, m2 2, kilO, k2 = 15, I? = 1.25, l~ = 1, d l 5, 
d2 6, a = 1, and b = 3. 

(a) Write the equations of motion for this system in terms of.i l and Xz (do not combine the 
two masses into a single mass). 

(b) At the instant shown, XI = 1.2, X2 = 2.2, and XI = X2 0.3. Solve the equations of 
motion for the accelerations. 

(c) Draw the free-body diagram for each mass and show all the forces in their proper direc
tions. 

Figure P. 9.9 

9.10 The radial deformation of an automobile wheel may be modeled'by a translational spring
damper combination as long as the wheel is in contact with the ground. Knowing the radius, 
position, and velocity of the wheel, find: 
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(a) The coordinates of the contact point (center of the contact patch) 

(b) The spring force 

(c) The damper force 

(d) The components of the resultant force acting on the wheel 
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Repeat this process for the three cases shown in Fig. P. 9.10. Assume that complete geo
metrical data for the road are available. 

y 

(a) (b) lei 

Figure P. 9.10 

9.11 Repeat Prob. 9.10 for the case where the wheel and the ground are in contact at two points 
(patches) as shown in Fig. P. 9.11. The resultant force acting on the wheel can be found as 
the sum of forces from two spring-damper elements. 

Figure P. 9.11 

9.12 Deformation of the cantilever beam shown in Fig. P. 9.12(a) may be modeled by a rigid 
body, a revolute joint, and a rotational spring, as shown in Fig. P. 9.12(b). For a beam with 

~+ 
iT 
f 

(a) 

~
kl I 

---- ----
::.:: 8 d 

IT 
(b) (e) 

Figure P. 9.12 
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length I under an externalloadf, the free end yields a displacement d. The equivalent rigid
body model yields the same displacement if the spring stiffness kl is selected properly. 

(a) If the beam is modeled by two rigid bodies, two revolute joints, and two rotational 
springs with stiffness k2• as shown in Fig. P. 9.12(c), find an approximate formula for k2 
in terms of kl (for small deformations d ~ I). 

(b) If the beam is modeled by n equal-length bodies, n revolute joints, and n rotational 
springs, find a formula,for kIt in terms of k l • 

9.13 For two bodies connected by a revolute-translational joint, show that the reaction force be
tween the bodies can be found from the term <I>~ in the equations of motion. Show the forces 
on free-body diagrams of the two bodies. 



10 
A FORTRAN Program 

for Analysis 

of Planar Dynamics 

In this chapter a FORTRAN program for planar dynamic analysis is presented. The pro
gram employs several subroutines from the kinematic analysis program (KAP) in 
Chap. 5 without any modifications. This program can model constant forces, gravity, 
and translational elements consisting of a spring, a damper, and/or an actuator. The pro
gram is organized in a form that allows it to be expanded to include other types of force 
elements. The problems at the end of this chapter provide a pattern to use for expanding 
the program. 

Numerical methods for solving a system of mixed algebraic and differential equa
tions, such as the equations of motion given in Sec. 9.4, are discussed in detail in 
Chaps. 12 and 13. However, in order to show how the dynamic analysis program (DAP) 
listed in this chapter solves the equations of motion, a brief discussion is provided in 
Sec. 10.1. 

The listed program can solve the equations of motion for the dynamic response of 
constrained systems. In addition, this program can solve static problems as formulated 
in Secs. 9.5 and 9.6. 

10.1 SOLVING THE EQUATIONS OF MOTION 

For an unconstrained mechanical system, the equations of motion are given by 
Mq g (l0.1) 

with initial conditions on the coordinates and velocities given as qO and it Since M is a 
constant diagonal matrix and g can be a function of q and q, Eq. 10.1 can be solved for 
the unknowns ct at the initial time. 

253 
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The numerical integration algorithms that will be discussed in Chap. 12, can inte
grate the velocity and acceleration vectors at a given time and obtain the position and 
velocity vectors at a new time step. If the position and velocity vectors are appended 
together as the vector 

(10.2) 

then the velocity and acceleration vectors are represented in the vector 

(10.3) 

At time t = t\ vector _yil can be integrated numerically to obtain y(i+I), where t i+ l = 
t i + At; i.e., 

(1004) 

Initially, at i 0, the initial conditions on q and q are required to start the integration 
process. 

For a constrained mechanical system, the equations of motion are, from Eg. 9.55, 

(10.5) 

with initial conditions qO and qo. The Jacobian <l>q is a function of q, and g and yare 
functions of q and q that can be evaluated at the initial time. Hence, Eq. 10.5 can be 
solved for the unknowns at the initial time, i.e., it and A 0. 

The initial conditions on q and q for a constrained system cannot be specified 
arbitrarily. The initial conditions qO and qO must satisfy the constraint equations; i.e., 

<I> 0 (for q = q~ (10.6) 

and 

(for q = qO and q q~ (10.7) 

For the constrained equations of motion, vectors y and yare as defined in Eqs. 10.2 and 
10.3, and a numerical integration algorithm is applied to process Eq. lOA. This is a 
simple but crude method of solving the constrained equations of motion. The possible 
error accumulation associated with this method and the techniques for resolving the 
problem are discussed in Chap. 13. 

10.2 DYNAMIC ANALYSIS PROGRAM (DAP) 

The main routine of the dynamic analysis program performs threc major tasks: 

1. Reads input data, either directly or by making calls to other input subroutines 

2. Splits the working arrays A and IA into smaller subarrays JJy defining pointers 

3. Makes calls to subroutine RUNG4 for integrating the equations of motion, or sub
routine STATIC for static analysis 
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A detailed explanation of these tasks follows. 

• Input/Output: Same as for KAP, Sec. 5.1. 

• Working Arrays: Same as for KAP, Sec. 5.1. 

• Number of Elements: The first set of data the program requests is 

ENTER NB, NR, NT, NG. NS. NSP, NP 

which are defined as follows: 

NB Number of bodies in the system, including ground 

NR Number of revolute joints in the system 

NT Number of translational joints in the system 

NG Number of bodies that are attached to (or considered to be) ground 

NS Number of simple constraints in the system 

NSP Number of translational spring, damper, or actuator elements 

NP Number of points of interest 
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The program computes the number of coordinates N and the total number of con
straint equations M from the above information. If M is greater than N, then an error 
message is given. Otherwise, the program continues. 

• Subarrays: The working arrays A and IA are divided into smaller subarrays, 
according to the number of elements in the problem. The sub arrays and their corre
sponding pointers and lengths are shown in Fig. 10.1. The function of the sub arrays is 
explained in Secs. 10.2.1, 10.2.2, and 10.2.4. 

• Input Data: The main program makes calls to other subroutines to read addi
tional information for the problem at hand. These subroutines are discussed in Sec. 10.2.1. 

• Time Parameters: Same as for KAP, Sec. 5.1. 

• Static Analysis: If N = M, then a call is made to subroutine STATIC. For 
static analysis, the time parameters are not used. 

• Dynamic Analysis: If N > M, then a call to subroutine RUNG4 is made to 
start the integration process for dynamic analysis. 

The main routine for DAP is as follows: 

C •••••••••••• ~C ANALYSIS/STATIC ANALySIS •••••••• 
C 
C ....•....••.......•.. Main Program .••.•.••.•...•..... 
C 

<XM.DN /<X>NST / NRMAX,FEPS,EPSLU 
<XM.DN IMPNrR / M1 ,M2 ,M3 ,M4 ,MS ,M6 ,M7 ,M8 ,M9 ,M1 0 
<XM.DN /NElMNT/ NB ,NR ,NT ,NG,NG3 ,NS ,NSP ,NP 
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COMMON /NPNTR / Nl,N2,N3,N4,NS,N6,N7,N10,Nll,N12,NI3,NI4,N15,NI6, 
+ N17 ,N18 ,N19 ,N20 ,N21,N22 ,N23 ,N24 

COMMON /ROWOOL/ IR,IC,M,N,NPM,NC2 
COMMON /TlME / TO,TE,ur,T 
DIMENS ION A( 3000) , IA( 500) 

C ..... lf nwre storage space in A and IA arrays are needed increase the 
C ..... dimension and update ~ and MAXIA accordingly 
~ -3000 
MAXIA=500 

C ..... Read number of bodies, revolute joints, translational joints, 
C ..... grounded bodies, simple constraints, spring-dumper-actuators, 
C ..... points of interest 

10 "-RITE(l,200) 
READ (1,* ) NB,NR,NT,OO,NS,NSP,NP 

C ..... Determine number of coordinates N and number of constraint M 
N=3*NB 
~2*(NR+NT)+3*OO+NS 
NJlM..N+M 
NC2-N+N 

C ..... Nmust be greater to M 
IF (M.LE.N) ooro 20 

"-RITE(I,210) N,M 
ooro 10 

C ..... Define pointers and split A and IA into subarrays 
C ..... Refer to Figure 10.1 

20 Nl-l 
N2-Nl+4*NR 
N3-N2+7*NT 
N4-N3+3*OO 
N5-N4+ NS 
N6-NS+12*NSP 
N7-N6+7*NB 
MI-l 
M2>=Ml+2*NR 
M3=M2+2*NT 
M4-M3+6*OO 
M5>=M4+2*NS 
M7-M5+2*NSP 
NIO-N7+2*NP 
Nll-NI0+N 
N12-Nll+N 
N13-NI2+N 
N14-NI3+M 
NlS-N14+N*M 
N16-N1S+M 
NI7-N16+NPM 
NI8-N17+N 
N19-N18+M 
N20-N19+NPM*NPM 
N2lzN20+NC2 
N22-N21+NC2 
N23-N22+NC2 
NUSEJ).aN23+NC2-l 
MI0=M7+NP 
~S~lO+NPM-l 

C ..... Check for sufficient storage space in A and IA arrays 
IF(NUSED.LE.~ .AND. ~SED.LE.MAXIA)ooro 30 

"-RlTE(I,220) NUSED,~SED 
STOP 

C .... :Rigid body information . 
30 CALL INBODY (A(N10),A(Nll),A(N6),NB) 

C ..... Read revolute joints data 
IF (NR. GT . 0) CALL INRVLT (A(Nl), IA(MI) ,NR) 



Pointer Subarray 

Nl RJ 
N2 TJ 
N3 GR 
N4 SM 
N5 SP 
N6 RB 
N7 PI 
NlO Q 
NIl QD 
N12 QDD 
N13 EL 
N14 FQ 
Nl5 F 
N16 W 
Nt7 FRC 
N18 RHS 

Nt9 EM 

N20 Y 
N21 YD 
N22 YS 
N23 FrOT 

-----------------

Working Array A Working Array IA 

Length Description Pointer Subarray Length 

4*NR Revolute joints Ml IRJ 2*NR 
7*NT Translational joints M2 ITJ 2*NT 
3*NG Ground M3 IGR 6*NG 
NS Simple constraints M4 ISM 2*NS 
12*NSP Springs, dampers, actuators M5 ISP 2*NSP 
7*NB Rigid bodies M6 
2*NP Points of interest M7 IPI NP 
N ? MlO ICOL N 
N q 
N Ii 
M A 
M*N «)Q • 
M «) «() or ;p if needed) 
N+M Work array 
N g 
M 'Y 

(N + M)*(N + M) [:q :~] 
2*N Runge-Kutta 
2*N Runge-Kutta 
2*N Runge-Kutta 
2*N Runge-Kutta 

Figure 10.1 Subarrays of A and IA with their corresponding pointers and lengths, 

Description 

Revolute joints 
Translational joints 
Ground 
Simple constraints 
Springs, dampers, actuators 

Points of interest ' 
Column pointers for «) q 

(f) 
(1) 
p 
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(Q 
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C ..... Read translational joints data 
IF (NT.GT.O) CALL INTRAN (A(N2),IA(~),NT,A(NI0),NB) 

C .. ~ .. Read ground constraints data 
NG3=3*NG 
IF (NG.GT.O) CALL INGRND (A(N3),IA(WO),NG,A(N10),NG3,NB) 

C ..... Read simple constraints data 
IF (NS.GT.O) CALL INSMPL (A(N4),IAQd4),NS,A(N10),NB) 

C ...•. Read spring-damper-actuator elements data 
IF (NSP.GT.O) CALL INSPRG (A(N5),IA(N5),NSP) 

C .•... Read special points of interest 
IF (NP.GT.O) CALL INPOIN (A(N7),IA(M7),NP) 

C ..... Read initial time, final time, and time increments 
\\RITE(1,230) 
READ (t, * ) TO, TE,Df 

C ..... End of input data 
EPSW-0.00001 

C ..... Static analysis 
IF (M.EQ.N) CALL STATIC (A,IA,MAXA,M<\XIA) 

C ..... Start dynamic analysis 
C ..... Transfer Q and QD to YS 

CALL TRANSF (A(N22),A(N10),NC2) 
C ..... Start numerical integration 

CALL RUNG4 (A, IA,A(N20) ,A(N21) ,A(N22) ,A(N23) ,MAXA,M<\XIA) 
STOP 

200 ffiRMAT(SX, 'ENTER NB,NR,NT ,NG,NS ,NSP ,NP') 
210 ffiRMAT(SX,'***INPUT ERROR*** N -',13,' M ',13) 
220 ffiRMAT(SX, '***DIMENSION ON A AND/OR IA ARRAYS N<IT SUFFICIENT***' , 

+ /,10X,'MINIMMDIMENSION ON A MlST BE',I5, 
+ / ,lOX, 'MINIMM DIMENSION ON IA MlST BE' ,15) 

230 FORMAT(SX, 'ENTER TSTART, TEND, AND STEP') 
END 

10.2.1 Model Description Subroutines 

The following subroutines are called by the main routine of DAP to read the description 
of the model. 

Subroutine INBODY. This subroutine reads initial conditions on Xi' Yi' and 
<P i' initial velocities Xi' .vi> and <P j, mass mi , moment of inertia f.L j, constant external 
applied forces acting at the center of mass f(x); and '~Y)i' and moments ni • The prompt 
from this subroutine is repeated for each body i as follows: 

FOR BODY i ENTER INITIAL CONDo ON X, Y, PHI 
INITIAL CONDITIONS ON XD, YD, PHID 
MASS, MOMENT OF INERTIA 
CONSTANT FORCE-MOMENT FX, FY, N 

The coordinates and velocities are stored in Q and QD (just as in KAP). The rest of the 
information is stored in array RB, dimensioned as RB(NB,7). For example, for body it 

sin <Pi ~ RB(I,I) 

cos <Pi ~ RB(I,2) 

mj ~ RB(I,3) 

f.LI ~ RB(I,4) 

J(x); ~ RB(I,5) 

f(y), - Wi ~ RB(I,6) 
ni ~ RB(I,7) 
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The weight of each body is computed as Wi = 9.81m; (where the mass is in SI units) and 
is added in the negative y direction toffY); (refer to Sec. 9.2.1). 

Subroutine INBODY is as follows: 

SUBROUI'INE INBODY (Q,QD,RB,NB) 
DIMENSION Q(3,NB),QD(3,NB),RBCNB,7) 
00 10 I=l,NB 

\\RlTE( 1 ,200) I 
READ (1,* ) CQCJ,I),J=1,3),CQD(J,I),J=l,3),(RB(I,J),J=3,7) 

10 RBCI,6)-RBCI,6)-RB(I,3)*9.81 
RETURN 

200 FQRMl\.T(5X,'FOR BODY' ,14,' ENTER INITIAL roNDo ON x, Y, PHI',I, 
+ 10X,'INITIAL roNDITIONS ON XD, YD, PHID',I, 
+ lOX, 'M;\SS, M.:MENT OF INERTIA', I, 
+ lOX, 'roNSTANT FORCE-M.:MENT FX, FY, N') 

END 

Subroutine U\lRVLT. Same as for KAP, Sec. 5.1.1. 

Subroutine INTRAN. Same as for KAP, Sec. 5.1.1. 

Subroutine INGRND. Same as for KAP, Sec. 5.1.1. 

Subroutine INSMPL. Same as for KAP, Sec. 5.1.1. 

Subroutine INSPRG. This subroutine is called if NSP > 0 to read informa
tion on spring, damper, and actuator elements (refer to Sec. 9.2.3, 9.2.4, and 9.2.5). 
An element can have one spring, one damper, and one actuator as long as the attach
ment points are shared. One possibility is that an element to contain only one spring and 
no damper or actuator. The prompt given by this subroutine is 

FOR SPRING ELEMENT NO. k ENTER BODY NOS. I and J 
XI-P-I, ETA-P-I, XI-P-J, ETA-P-J 
SPRING CONST., DAMPING COEF., ACTUATOR FORCE, UN DEFORMED SPRING 
LENGTH 

This prompt is repeated for k I, ... , NSP. The body numbers of bodies i and j, 
which are by definition those connected by the kth element, are stored in array ISP, 
dimensioned as ISP(NSP ,2). The local coordinates of points Pi and Pj , the spring con
stant k, the damping coefficient d, the actuator force fal, and the undefonned spring 
length to are stored for each element in array SP, dimensioned as SP(NSP,12). For the 
kth element, the entries of SP are, 

e,P ~ SP(K,l) k ~ SP(K,5) 

'YI; ~ SP(K,2) d ~ SP(K,6) 
eJ ~ SP(K,3) f(a) ~ SP(K,7) 

'YI/ ~ SP(K,4) 1° ~ SP(K,8) 

The last four columns of SP, columns 9 through 12, are not used in this subroutine. 
They are used in subroutine SP.RNG for storing the defonned length of the spring I, the 
time rate of change in length I, the spring force, and the damper force. This informa
tion will be reported to the user by subroutine REPORT. 
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Subroutine INSPRG is as follows: 

SUBROUTINE INSPRG (SP,ISP,NSP) 
DIMENSION SP(NSP,12),ISP(NSP,2) 
00 10 K-l,NSP 

ViR ITE ( I, 200) K 
10 READ (1,* ) (ISP(K,L),L=l,2),(SP(K,L),L=1,8) 

RETURN 
200 FORMAT(SX, 'FOR SPRING EL. NO.',I3,' ENTER BODY NOS. I AND J',I, 

+ lOX, 'XI -P- I ,IrrA-P- I ,XI -P-J ,ETA,P-J' ,I, 
+10X, 'SPRING OONST., DAMPING OOEF., ACIUATOR FORCE, SPRING LENG1H') 

END 

Subroutine INPOIN. Same as for KAP, Sec. 5.1.1. 

10.2.2 Dynamic Analysis 

The dynamic analysis program (DAP) performs dynamic analysis by employing the 
methodology of Sec. 13.3. The N second-order differential equations of motion are con
verted into 2 * N first-order differential equations. A fourth-order Runge-Kutta 
algorithm is employed to solve the initial-value problem. A discussion on Runge-Kutta 
algorithms and other algorithms for solving initial value problems is provided in 
Chap. 12. 

The Runge-Kutta algorithm uses the four arrays Y, YD, YS, and FrOT, each hav
ing a dimension of 2 * N. Vector y of Eq. 10.2 is stored in Y. At every time step, a 
copy of Y is saved in YS. Vector y of Eq. 10.3 is stored in YD, and FTOT stores the 
sum of the functions evaluated by the algorithm. 

Following the process of data input, the main program calls subroutine TRANSF 
to transfer q and q from Y to YS. Then the main program calls subroutine RUNG4. 

Subroutine TRANSF. Same as for KAP, Sec. 5.1.1. 

Subroutine RUNG4. Subroutine RUNG4 evaluates y four times in every time 
step Ilt. This subroutine calls subroutine DIFEQN to evaluate y. The time variable T is 
incremented from TS to TE. At the beginning of every time step, a call is made to sub
routine REPORT for reporting the result. 

Subroutine RUNG4 is as follows: 

SUBROUrINE RUNG4 (A. IA,Y. YD, YS ,FIUr .M\XA.1W\XIA) 
<Xt£I)N IMPNTR 1 Ml ,Ml ,W ,M4 ,MS ,M6 ,M7 ,M8 ,M9 ,MlO 
a:M\DN INEIMNTI NB,NR,NT,NG,NG3,NS,NSP,NP 
<Xt£I)N INPNTR 1 Nl,N2.N3,N4,NS,N6.N7,N10,Nll,N12,N13,N14,NlS,N16, 

+ N17 .N18,N19 ,N20,N21,N22,N23 ,N24 
a:M\DN IROWOOLI IR,IC,M,N,NBM,NC2 
a:M\DN ITiME 1 TO,TE,ur,T 
DIMENSION A(M\XA) ,IA(1W\XIA) ,Y(NC2),YD(NC2) ,YS(NC2) ,FIUr(NC2) 
T-TO 
DlH-O.S*ur 
'rnOUI'-2.0*ur 
ViRITE (1,200) 

C .•.... Step 1 ..... . 
1 TS-T 

00 10 l=l,NC2 
10 Y(I)=YS(I) 

CALL DIFEQN (A,IA,M\XA,1W\XIA) 
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CALL REPORT (A, IA,A(N5) ,A(N6) ,A(N7) ,A(NI0) ,A(Nll) ,A(N12). 
+ IA(M7) ,T ,M.o\XA,MAXIA) 

IF (T.GT.TE) RETURN 
IX) 11 I-l,NC2 

11 FTOT(I)-Dr*YD(I) 
C ..... Step 2 ...... 

T-TS+mH 
IX) 20 I=1,NC2 

20 Y(I)-YS(I)+mH*YD(I) 
CALL DIFEQN (A,IA,M.o\XA,MAXIA) 
IX) 21 I-l,NC2 

21 FTOT( I ) -FTOT( 1 )+ 'JV.OIJf*YD( I ) 
C •.•.. Step 3 ••.••. 

IX) 30 I=1,NC2 
30 Y(I)-YS(I)+mH*YD(I) 

CALL DIFEQN (A,IA,M.o\XA,MAXIA) 
IX) 31 1-1,NC2 

31 FTOT( I) =FTOT(I ) + 'JV.OIJf*YDO ) 
C •.... Step 4 ••.... 

T-TS+Dr 
IX) 40 I=1,NC2 

40 Y(I)-YS(I)+Dr*YD(I) 
CALL DIFEQN (A,IA,M.o\XA,MAXIA) 
IX) 41 1=1,NC2 

41 FTOT(I)=FTOT(I)+Dr*YD(I) 
C .••.• Determine new values for Q and QD 

IX) 50 I-1,NC2 
50 YS(I)=YS(I)+FTOT(I)/6.0 

ooro 1 
200 FO~T(III,10X.'***** D¥NAMUC ANALYSIS *****',11) 

END 
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Subroutine DIFEQN. This subroutine transfers the contents of Y to the arrays 
Q and QD prior to a call to subroutine DYNAM, by calling subroutine TRANSF. This 
transfer is necessary because subroutine RUNG4 modifies the contents of Y four times 
in every time step. Similarly, after the return from subroutine DYNAM, the contents of 
QD and QDD are transferred to YD. 

Subroutine DIFEQN is as follows: 

SUBRQUrINE DIFEQN (A,IA,M.o\XA,MAXIA) 
OJvMJN IMPNTR 1 M1 ,M2 ,M3 ,M4 ,MS ,M6 ,M7 ,M8 ,M9 .M! 0 
OJvMJN INElMNTl NB,NR,Nr.NG,NG3,NS,NSP.NP 
OJvMJN INPNTR 1 N1.N2,N3,N4,N5.N6,N7.N10.Nl1,N12.N13,N14.N15.N16, 

+ N17 ,N18 ,N19 ,N20 ,N21,N22 ,N23 ,N24 
OJvMJN IR(MO)L/ IR,IC,M,N ,NPM.NC2 
DIMENSION A(M.o\XA) ,IA(MAXIA) 

C ..•.. Transfer Y to Q and QD 
CALL TRANSF (A(N10).A(N20),NC2) 

C ..... Determine YD 
CALL DYNAM (A, IA,A(N15) ,A(N18) ,M.o\XA,MAXIA) 

C ..... Transfer QD and QDD to YD 
CALL TRANSF (A(N21).A(N11),NC2) 
RETURN 
END 

Subroutine DYI\lAM. This subroutine can be considered the central station of 
DAP. The input to this subroutine is q and Ii and the output is q. This subroutine calls 
the subroutine FUNCT to evaluate the Jacobian matrix 4>q and vector 'Y, whereupon 
they are stored in arrays FQ and RHS, respectively. 
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A call to subroutine FORCE evaluates the vector of forces g which is stored in 
array FRC. Vectors g and l' are stored in FRC and RHS back to back, forming an 
N + M array in a form given by the right-hand side of Eq. 10.5. 

A call to subroutine MASS generates the matrix at the left in Eq. 10.5. This 
matrix contains thc diagonal matrix M, along with the Jacobian matrix <Pq and its trans
pose <P~. 

Finally, subroutine LINEAR is called to solve Eq. to.5 for q and A. The results 
are transferred to arrays QDD and EL. 

C 

Subroutine DYNAM is as follows: 

SUBRCJUrlNE DYNAM (A. IA.F ,RHS ,M\XA,WoXIA) 
<XMvDN I ANALYS I JAOOB, I FNCT 
<XMvDN lOONST I NRM4X,FEPS.EPSLU 
<XMvDN IMPNTR I Ml.M2 ,M3 ,M4.MS .M6 ,M7 .M8 ,M9 .Ml 0 
<XMvDN lNEl1ANT1 NB.NR,NT,NG,NG3,NS,NSP,NP 
<XMvDN INPNTR I Nl.N2.N3,N4,N5,N6.N7.NlO,Nll,Nl2,Nl3,Nl4,N15,Nl6. 

+ Nl7,Nl8,N19,N20,N21,N22,N23,N24 
<XMvDN IRcm:::oL/ IR. IC,M,N ,NPM,NC2 
<XMvDN /TU.1E I TO, TE, Dr, T 
DIMENSION A(M\XA) , IA(WoXIA) ,F(M) ,RHS(M) 

C ..... Calculate sine and cosine of rotational coordinates 
CALL TRIG (A(N6).A(NlO),NB) 

C ..... Evaluate right-hand-side of acceleration equations. 
JAmB=l 
IFNGr=3 
CALL FUNGr (A, IA.M\XA,WoXIA.A(NlO) ,A(Nll) ,A(NI4) ,A(NI5), JAmB) 
00 20 I-I,M 

20 RHS(I)-F(I) 
C ..... Evaluate forces 

CALL FORCE (A, IA,M\XA,WoXIA.A(N17) ,N) 
C ..... Evaluate nmss nmtrix, Jacobian, Jacobian transpose 

CALL ~S (A(N6),A(Nl4),A(N19),NB,N,M,NPM) 
C ..... Solve for accelerations and Lagrange multipliers 

CALL LINEAR (A(N19),A(N17),A(N16),IA(MIO),NPM,l,EPSLU) 
C ..... Transfer aces. and Lag. mults. to QDD and EL 

CALL TRANSF (A(N12),AlN17),NPM) 
RETURN 
END 

Subroutine TRIG. Same as in KAP, Sec. 5.1.2 except that the dimension of 
RB must be changed to RB(NB,7). 

Subroutine MASS is as follows: 

SUBRCJUrlNE ~S (RB,FQ,FM,NB,N,M,NPM) 
DIMENSION RB(NB, 7) ,FQ(M,N) ,FM(NPM,NPM) 

C ..... Initialize nmss nmtrix 
00 10 I-l,NPM 

00 10 J-l,NPM 
10 FM(I,J)=O.O 

C ..... Add nmss and moment of inertia to diagonal 
00 20 I-l,NB 

J-3*(1·1)+1 
FM(J ,J )= RBO ,3) 
FM(J+l,J+l)= RB(I,3) 

20 FM(J+2,J+2)- RB(I,4) 
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C ..... Include Jacobian and Jacobian transpose 
00 30 I-I,M 

II~N+I 
00 30 J-l,N 

EM(II,J )= FQ(I,J) 
30 EMU ,11)- FQO, J) 

RETURN 
END 

Subroutines LINEAR and LU. See Sec. 3.3.5. 

10.2.3 Function Evaluation 
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• Subroutine FUNCT: Same as in KAP, Sec. 5.2.3, but the call to subroutine 
DRVR is deleted. 

• Subroutine RVLT: Same as in KAP, Sec. 5.2.3. 

• Subroutine TRAN: Same as in KAP, Sec. 5.2.3. 

• Subroutine SMPL: Same as in KAP, Sec. 5.2.3. 

Note that in DAP the control flag IFNCT is never set to 1 or 2 (in contrast to the 
case for KAP). Therefore, the constraint equations and the right side of the velocity 
equations are never evaluated in the three subroutines just named. Only vector y is evalu
ated when IFNCT is set to 3 in subroutine DYNAM. Several methods are discussed in 
Chap. 13 for controlling the accumulation of numerical errors during the numerical inte
gration process. If DAP is modified to incorporate such a technique as the constraint 
violation stabilization method (refer to Chap. 13), then IFNCT = 1 may be used 
in order to provide the violation in the constraints for the algorithm. 

10.2.4 Force Evaluation 

Subroutine FORCE. The vector of forces is evaluated by a call to subroutine 
FORCE. All of the external and internal forces and moments acting on the bodies are 
stored in array FRC, dimensioned as FRC(3,NB). For example, the forces acting on 
body i are stored as follows: 

f(X)i -'" FRC(l ,1) 

f(Y)j -'" FRC(2,1) 
nj -'" FRC(3,1) 

This subroutine calls subroutines BODYF and SPRNG to evaluate these forces. 
Subroutine FORCE is as follows: 

SUBROUflNE FORCE (A,IA,M<\XA,MAXIA,FRC,N) 
<XMd)N IMPNfR I Ml ,M2 ,M3 ,M4 ,MS ,M6 ,M7 ,M8 ,M9 ,MI0 
<XMd)N lNELMNTI NB,NR,NT ,NG.NG3 .NS .NSP.NP 
<XMd)N INPNfR I Nl ,N2 .N3 ,N4 ,NS .N6 ,N7 ,NlO ,Nll,N12 ,N13 ,N14 .NIS ,NI6, 

+ N17 ,N18 ,NI9 ,N20 ,N2I,N22 ,N23 ,N24 
DHvlENS ION A(M<\XA) , IA(MAXIA) ,FRC(N) 

CALL BODYF (A(N6) ,FRC,NB) 
IF (NSP.GT.O) CALLSPRNG (A(NS),A(N6),A(NlO),A(NII),A(N17), 

+ IACMS),NB,NSP) 
RETURN 
END 
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Subroutine BODYF. This subroutine transfers the constant external forces and 
moments, including the gravitational force, from RB to FRC, for all of the bodies. 

Subroutine BODYF is as follows: 

SUBRourlNE BODYF (RB,FRC,NB) 
DIMENSION RB(NB,7),FRC(3.NB) 

C ..... Add constant forces and weights to FRC 
00 10 1-1 

FRC(l, RB(I,S) 
FRC(2,1 RB(I,6) 

10 FRC(3,I RB(I.7) 
RETURN 
END 

Subroutine SPRNG. This subroutine computes the forces of spring, damper, 
and actuator elements between pairs of bodies. For each element, the spring constant k, 
damping coefficient d, actuator force fa), and undeformed spring length to are obtained 
from array SP. The body numbers connected by each element are found in array ISP. 
The element forces are calculated from the equations of Sec. 9.2.3, 9.2.4, and 9.2.5. 
The element forces and moments acting on e~ch body are entered in array FRC. 

This subroutine saves the values of t, I, f S
), and fdl for each element in the last 

four entries of array SP. This information is reported by subroutine REPORT at each 
time step. 

Subroutine SPRNG is as follows: 

SUBRourINE SPRNG(SP,RB,Q,QD,FRC,ISP,NB,NSP) 
DIMENSION SP(NSP,12) ,ISP(NSP,2) ,RB(NB,7),FRC(3,NB) ,Q(3,NB), 

+ QD(3,NB) 
00 10 K-l,NSP 

I-ISP(K,l) 
J-ISP(K,2) 
XPIMXI-SP(K,1)*RB(I,2)-SP(K,2)*RB(I,1) 
YPIMYI=SP(K,O*RB(I, O+SP(K,2) *RB(I ,2) 
XPJMXJ=SP(K,3)*RB(J.2)-SP(K,4)*RB(J,1) 
YPJMYJ-SP(K,3)*RB(J,1)+SP(K,4)*RB(J,2) 

C ..... Current spring length and change of length 
ELX -Q(l.J)+XPJMXJ-Q(l,I)-XPIMXI 
ELY -Q(2,J)+YPJMYJ-Q(2.I)-YPIMYI 
EL - SQRT(ELX**2 +ELY**2) 
DELEL =EL-SP(K,S) 
IF(ABS(EL).LT.l.E-10) EL-l.E-10 

c ...... Uni t vector 
UX -ELX/EL 
UY -ELY/EL 

C ..... Spring velocity 
~(l,J)-YPJMYJ*QD(3,J)-QD(1,I)+YPIMYI*QD(3,I) 
ELYD=QD(2,J)+XPJMXJ*QD(3,J)-QD(2,I)-XPIMXI*QD(3,I) 
ElD - (ELX*ELXD + ELY*ELYD)/EL 

C ..... Element forces 
FS-SP(K,S)*DELEL 
FD=SP(K,6) *ELD 
FF-FS+FD+SP(K,7) 
FX- UX*FF 
FY- UY*FF 

C ..... Save element length, vel., spr. force, damp. force for output 
SP(K, 9)-EL 
SP(K.I0)-ElD 
SP(K,l1)-FS 
SP(K,12)-FD 
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C ..... Add forces to the vector of forces 
FRC(l,I)-FRC(l,I)+FX 
FRC(2,I)=FRC(2,I)+FY 
FRC(3,I)=FRC(3,I)-YPIMYI*FX+XPIMXI*FY 
FRC(I,J)-FRC(I,J)-FX 
FRC(2,J)-FRC(2,J)-FY 

10 FRC(3,J)-FRC(3,J)+YPJMYJ*FX-XPJMXJ*FY 
RETURN 
END 

10.2.5 Reporting 
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For reporting the result of the dynamic analysis at the beginning of each time step, sub
routine RUNG4 calls subroutine REPORT. 

Subroutine REPORT. This subroutine is similar to subroutine REPORT in 
KAP. It reports the coordinates, velocities, and accelerations of the bodies and points of 
interest. In addition, if there are any spring, damper, or actuator elements in the system, 
the contents of the last four columns of the SP array are reported. This subroutine calls 
subroutine REACT to calculate and report the reaction forces at the kinematic joints. 

Subroutine REPORT is as follows: 

SUBRourINE REPORT (A, IA,SP,RB,PI ,Q.QD,QDD,IPI ,T,MAXA,.M\XIA) 
aMvDN INElM'lT1 NB,NR,NT,NG,NG3,NS,NSP,NP 
aMvDN IROWOOLI IR.IC,M,N,~,NC2 
DIMENSION SP(NSP,12),Q(3,NB),QD(3,NB),QDD(3,NB),PI(NP,2), 

+ IPI(NP) ,RB(NB, 7) ,A(MAXA) , IA(.M\XIA) 
WUTE(I,200) T 
00 10 I-l,NB 

10 WRITE(I,210)I,(Q(J,I),J=I,3),(QD(J,I),J=I,3),(QDD(J,I),J=1,3) 
IF (NP.EQ.O) GO TO 30 

WRITE(1 ,220) 
00 20 K-l,NP 

I=IPI(K) 
XPMX=PI(K,I)*RB(I,2)-PI(K,2)*RB(I,I) 
YPMY-PI(K,I)*RB(I,l)+PI(K,2)*RB(I,2) 
XP =Q( 1 , I )+XPMX 
yP =Q(2, I hYPMY 
XDP -QD(1.I)-YPMY*QD(3,I) 
YOP =QD(2,1)+XPMX*QDC3,I) 
XDDP-QDD(1,1)-XPMX*QD(3,1)**2-YPMY*QDD(3.1) 
YOOP-QDD(2,1)-YPMY*QD(3,1)**2+XPMX*QDD(3,1) 

20 WRITE( 1,260) K,XP, yP ,XDP, YOP .XDDP, YIDP 
30 IF(NSP.EQ.O) GO TO 50 

WRITE(1,240) 
00 40 K-1,NSP 

40 WRlTE(1,250)K,SP(K,9),SP(K,10),SP(K,11),SPCK,12) 
50 IF (M.GT .0) CALL REACr(A,IA,MAXA,.M\XIA) 

RETURN 
200 FO~T(/,' TIME -' ,FIO.4,I,' ----------- - ',I, 

+ ' BODY' ,5X, 'X', 7X, 'Y' ,5X, 'PHI' ,6X, 'XD' ,6X, 'YO' ,4X, 'PHID' .6X, 
+ 'XDD' ,6X, 'YOO' ,4X, 'PHIDD') 

210 FO~T(I3,6F8.3,3F9.3) 
220 FO~T(' POINTS OF INTEREST',1,' NO.' ,6X, 'X', 7X, 'Y' ,6X, 

+ 'XD' ,6X, 'YO' ,6X, 'XDD' ,6X, 'YOO') 
240 FO~T(' TRANSLATIONAL SPRING-J::IAMPER-ACIUATOR' ,I, 

+ 'NO. LENGTII d(EL)/dt' ,6X, 'fCs)' ,6X, 'fCd)') 
250 FO~T(I3,4FIO.3) 
260 FO~TCI3,4F8.3,2F9.3) 

END 
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Subroutines REACT and RFORCE. Subroutine REACT calls subroutine 
RFORCE for computing the product <I> ~A. This product is computed separately for each 
kinematic joint. Some of the variables in the argument list of subroutine RFORCE are 
dependent on the type of joint. For example, for a revolute joint, NEQ, which represents 
the number of equations, is set to 2, and NBJ, which represents the number of bodies 
associated with the joint, is also set to 2. 

Subroutine RFORCE reports the reaction forces acting on each body that are due 
to that body's kinematic joints. A reaction force is reported in terms of its x and y com
ponents and its moment with respect to the centroid of the body. The reported reaction 
forces are labeled with REV. for a revolute joint, TRA. for a translational joint, and 
SMP. for a simple constraint. 

Subroutines REACT and RFORCE are as follows: 

SUBRourlNE REACf(A, IA,MAXA,M\XIA) 
<XlvMJN IMPNfR I Ml ,M2,M3 ,M4 ,MS,M6 ,M7 ,M8,M9 ,Ml 0 
(l}.M)N INElMNTl NB,NR,Nf,NG,NG3,NS,NSP,NP 
<XlvMJN INPNfR I Nl,N2,N3,N4,N5,N6,N7,NlO,Nll,NI2,NI3,NI4, 

+ N15 ,N16 ,N17 ,N18 ,N19 ,N20,N21 ,N22 ,N23 ,N24 
DIMENS ION A(MAXA) , IA(M\XIA) 
JR-O 

v.RlTE(1,200) 
IF(NR.GT.O) CALL RFORCE(A(N13) ,A(NI4), IA(M!) ,NR,2 ,2 ,JR, 'REV. ,) 
IF(Nf .GT .0) CALL RFORCE(A(NI3) ,A(NI4), IA(M2) ,Nf, 2,2, JR, 'TRA. ,) 
JR-JR+NG3 
IF(NS.GT.O) CALL RFORCE(A(NI3),A(Nl4),IA(M4),NS,l,I,JR,'SMP.') 
RETURN 

200 FORMAT(' REACfION FORCES',I,2X,'JOINf NO. I ',5K,'PX-I',6X, 
+ 'FY- I' , 7X, 'N-I' ,3X,' J ',5K, 'PX-J' .6X, 'FY-J' • 7X. 'N-J') 

END 

SUBRourlNE RFORCE(EL,FQ,IJ ,NJ ,NEQ,NBJ ,JR,NAME) 
<XlvMJN IROWDOLI IR,IC,M,N,~,NC2 
CHARACI'ER * 4 NAME 
DIMENSION FQ(M,N),EL(M),IJ(NJ,NBJ),F(3,2) 
00 20 K-l,NJ 

00 10 L=I,NBJ 
I -IJ(K,L) 
IC-(I-t)*3 
00 10 J=I,3 

F(J ,L)=O.O 
00 10 1M=I,NEQ 

10 F(J ,L)=F(J ,L)-FQ(JR-fM1, IC+J)*EL(JR-fM1) 
v.RITE(I,200) NAME,K,(IJ(K,L),(F(J,L),J=1,3),L-l,NBJ) 

20 JR=JR+NEQ 
RETURN 

200 FORMAT(2X,A4,13,14,3FIO.3,I4,3FIO.3) 
END 

10.2.6 Static Analysis 

When the number of constraint equations is equal to the number of coordinates, the 
main program calls subroutine STATIC to perform static analysis. This subroutine calls 
subroutine FUNCT to evaluate the Jacobian matrix <l>q, calls subroutine FORCE to evalu
ate the vector of forces g, and then calls subroutine JACTRN td transpose the Jacobian 
matrix. A call to subroutine LINEAR solves for the Lagrange multipliers according 
to Eq. 9.57. The constraint reaction forces are then reported by a call to subroutine 
REPORTS. 
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Subroutines STATIC, JACTRN, and REPORTS are as follows: 

SUBROOTlNE STATIC (A,IA,M<\XA,MAXIA) 
(XM..f)N IANALYSI J.AO)B,IFNCf 
(XM..f)N I(»NST I NRMAX,FEPS ,EPSLU 
(XM..f)N IMPNTR I Ml,M2,M3 ,M4 ,MS ,M6 ,M7 ,MS ,M9 ,MiO 
(XM..f)N lNElMNTl NB,NR,NT,NG,NG3,NS,NSP,NP 
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(XM..f)N INPNTR I Nl,N2,N3,N4,N5,N6.N7,NI0,Nl1,NI2,N13,N14,NI5,N16, 
+ N17,NlS,N19,N20,N21,N22,N23,N24 

(XM..f)N IRC».CDL/ IR,IC,M,N ,NPM,NC2 
DIMENSION A(M<\XA) ,IA(MAXIA) 

C ..... Calculate sine and cosine of rotational coordinates 
CALL TRIG (A(N6),A(NI0),NB) 

C ..... Evaluate Jacobian nmtrix 
J.AO)B-l 
IFNCf-O 
CALL FUNCf (A, IA,M<\XA,MAXIA,A(NI0) ,A(Nll) ,A(N14),A(N15), J.AO)B) 

C ..... Evaluate forces 
CALL FORCE (A, IA,M<\XA,MAXIA,A(N17) ,N) 

C ..... Jacobian transpose 
CALL JACrRN(A(N14) ,A(N19) ,M) 

C ...•. Solve for Lagrange multipliers 
CALL LINEAR (A(N19) ,A(NI7) ,A(N16), IA(M10) ,M,l ,EPSLU) 

C ..... Transfer Lagrange multipliers to EL 
CALL TRANSF (A(N13),A(N17),M) 

C ..... OUtput the result 
CALL REPORTS (A, IA,A(NI0) ,M<\XA,MAXIA) 
STOP 
END 

SUBROOTINE JACfRN (FQ,CM,M) 
DIMENSION FQ(M,M) ,CMCM,M) 
00 10 I-I,M 

00 10 J-l,M 
10 CM(I,J)=FQ(J,I) 

RETURN 
END 

SUBROOTlNE REPORTS (A,IA,Q,M<\XA,MAXIA) 
(XM..f)N lNElMNTI NB,NR,NT,NG,NG3,NS,NSP,NP 
(XM..f)N IRC».CDL/ IR,IC,M,N,NPM,NC2 
DlMENS ION Q( 3 ,NB) ,A(M<\XA) , IA(MAXIA) 
VvRITE (1,200) 
00 10 I=l,NB 

10 VvRITE(1,210)I,(Q(J,I),J=l,3) 
CALL REACf(A,IA,M<\XA,MAXIA) 
RETURN 

210 FORMAT(I3,3F8.3) 
200 FORMAT(III,10X,'***** STATIC ANALYSIS *****',11, 

+ ' BODY' ,5X, 'X' ,7X, 'Y' ,5X. 'PHI') 
END 

10.2.7 Input Prompts 

A list of all the prompts given by the program DAP is given here. The prompts are la
beled for easy reference, from ® through CD. In the examples that follow, each 
prompt is referred to by its corresponding label. The parameter k in the prompts is 
problem-dependent. 
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The prompts given are as follows: 

G) ENTER NB, NR, NT, NG, NS, NSP, NP 

® FOR BODY k ENTER INITIAL CONDo ON X, Y, PHI 
INITIAL CONDITIONS ON XD, YD, PHID 
MASS, MOMENT OF INERTIA 
CONSTANT FORCE-MOMENT FX, FY. N 

(£) FOR REV. JOINT NO. k ENTER BODY NOS. I AND J 
XI-P-I, ETA-P·I, XI-P-J, ETA-P-J 

@ FOR TRAN. JOINT NO. k ENTER BODY NOS. I AND J 
XI-P-I, ETA-P-I, XI-Q-I, ETA-Q-I, XI·P·J, ETA·P-J 

o ENTER BODY NO. FOR NO. k GROUNDED BODY 

CD FOR SIMPLE CONSTRAINT NO. k ENTER BODY NO. 
AND 1, 2, OR 3 FOR X, Y, OR PHI CONSTRAINT DIRECTION 

@ FOR SPRING EL. NO. k ENTER BODY NOS. I AND J 
XI-P-I, ETA-P-I, XI-P-J, ETA-P-J 
SPRING CONST., DAMPING COEF., ACTUATOR FORCE, UNDEFORMED 
SPRING LENGTH 

® FOR POINT OF INTEREST NO. k ENTER BODY NO. 
XI-P AND ETA-P COORDINATES 

CD ENTER STARTING TIME, FINAL TIME, AND TIME INCREMENT 

10.3 SIMPLE EXAMPLES 

In Secs. 10.3.1 through 10.3.3 several simple examples are presented. The steps needed 
to set up a model for each mechanical system are explained. Input data for the dynamic 
analysis program (DAP) are listed for each example. Similar steps can be followed to 
analyze many other mechanical systems by means of this program. 

10.3.1 Four-Bar Linkage 

The four-bar linkage of Sec. 5.2.1 is considered here. The mechanism is released from 
an initial position, where all of the initial velocities are zero, and falls under its own 
weight. The mass and moment of inertia for the moving bodies are: 

m2=1, m32.25, m4 =2 

""2 = 0.3, ""3 = 2, ""4 1.35 
For body 1, the nonmoving body, any arbitrary value can be assigned for the mass and 
moment of inertia. 

When DAP is executed, the following sequence of prompts is given by the pro
gram; each prompt must be followed by input from the user to describe the model: 
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Prompt k Input 

0 4, 4, 0, 1, 0, 0, 1 

® 1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

® 2 .5, .866, 1.047, 0, 0, 0, 1, .3, 0, 0, 0 

® 3 2.824, 2.553, .423, 0, 0, 0, 2.25, 2, 0, 0, 0 

® 4 3.574, 1.687, 1.004, 0, 0, 0, 2, 1.35, 0, 0, 0 

0) 1,2, 0, ~1, 0 

0) 2 2,3,1,0,-2,0 

0) 3 3, 4, 2, 0, 2, 0 

0) 4 4, 1, ~2, 0, 2.5,0 

(0 
® 3,0.5,1.5 

CD 0.0, 0.25, 0.025 

The initial conditions for the coordinates satisfy the constraint equations as stated by Eq. 
10.6. This is assured, since these coordinates are taken from the output of KAP at t 0 
for the same linkage, as given in Sec. 5.2.1. The initial conditions for the velocities do 
not violate the velocity equations, since q = 0 automatically satisfies Eq. 10.7. 

:rhe output of DAP for the first time step is as follows: 

***** DYNAMIC ANALYSIS ***** 

.0000 
----------------

BODY X Y PHI XD YD PHIO XDD YID PHIDD 
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 .500 .866 1.047 .000 .000 .000 2.544 -1.470 -2.938 
3 2.824 2.553 .423 .000 .000 .000 5.183 -3.149 - .115 
4 3.574 1.687 1.004 .000 .000 .000 2.639 -1.679 -1.564 

POINTS OF INTEREST 
NO. X Y XD YD XDD YID 
1 2.664 4.126 .000 .000 5.364 -3.131 

REACfION FORCES 
JOINT NO. I FX-I FY-I N-I J FX-J FY-J N-J 
REV. 
REV. 
REV. 
REV. 

1 1 -7.242 -15.387 .000 2 7.242 15.387 -1.425 
2 2 -4.698 -7.046 .543 3 4.698 7.046 -8.994 
3 3 6.964 7.941 8.764 4 -6.964 -7.941 3.223 
4 4 12.242 24.202 -5.334 1 12.242 -24.202 -60.504 

The output gives the coordinates, velocity, and acceleration of each body's centroid and 
of each point of interest. The reaction forces corresponding to each joint are also 
printed; these are shown in Fig. 10.2. 

10.3.2 Horizontal Platform 

The horizontal platform shown in Fig. 1O.3(a) is connected to ground by four slender 
legs through eight revolute joints. The mass and moment of inertia of the platform 
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Figure 10.2 Reaction forces acting on each body at t = O. 

°1 
0.5 

1 
(al (b) 

)<'igure 10.3 (a) A horizontal platform and (b) its corresponding planar model. 
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(about the ,-axis out of the plane of motion) are 1.5 and 0.2, respectively. The mass and 
moment of inertia of each leg are 0.3 and 0.05, respectively. There are two parallel 
spring-damper elements in the system, as shown. For each element, k = 350, to 0.6, 
and d = 25. When the angle of each leg with the horizontal is a: 110°, the platform is 
released with an upward velocity of y 0.12. 

A planar model for this system is shown in Fig. 1O.3(b). In this model, the masses 
and moments of inertia are: 

1L2 = 1L4 
For the spring-damper element: 

k = 700, 

0.6, m) = 1.5 

0.1, 1L3 = 0.2 

[0 0.6, d = 50 

Since the initial conditions for q and it are not available, a simulation on KAP for 
t = 0 can be performed initially. In this simulation the known initial conditions are the 
vertical coordinate and velocity of the platform. From a: = 110°, it is found that 
Y3 = 0.46895, and it is given that Y3 = 0.12. Therefore, a driver constraint can be 
specified on Y3' The input to KAP is 

Prompt (KAP) 

The output from the kinematic analysis at t 

***** KINEMATIC ANALYSIS ***** 

k 

2 

3 

4 

2 

3 

4 

4,4,0, 1,0,1, ° 
0,0,0 

-0.35, 0.2, 0.3 

-0.1, 0.46895, 0 

0.15, 0.2, 0.3 

1, 2, -0.25, 0, 0, -0.25 

2, 3, 0, 0.25, -0.25, ° 
3, 4, 0.25, 0, 0, 0.25 

4, 1, 0, -0.25, 0.25, 0 

1 

3, 2, 0.46895, 0.12, ° 
0.0, 0.0, 0.1 

o is 

TIME - .0000 

BODY X Y PHI XD YO PRIO :xro YDD PHIDD 
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 -.335 .235 .349 .165 .060 -.702 .360 .000 -1.353 
3 -.171 .470 .000 .330 .120 .000 .720 .000 .000 
4 .165 .235 .349 .165 .060 .702 .360 .000 -1.353 
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The initial conditions for q and q are taken from this output to generate the input to DAP: 

Prompt (DAP) k 

2 

3 

4 

2 

3 

4 

1 

4, 4, 0, 1, 0, 1, 0 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

-.335, .235, .349, .165, .060, -.702, .6,.1, 0, 0, 0 

-.171, .46895, .000, .330, .120, .000, 1.5, .2, 0, 0, 0 

.165, .235, .349, .165, .060, --.702, .6, .1, 0, 0, 0 

1,2, -.25,0,0, -.25 

2,3,0, .25, -.25, 0 

3, 4, .25, 0, 0, .25 

4, 1,0, --.25, .25,0 

1 

1,3,0.25,0, -0.25,0,700,50,0,0.6 

0,3,0.01 

The result of this simulation for t = 0 and t 3 s is as follows: 

***** D~IC ANALYSIS ***** 

TIME - .0000 
----------

BODY X Y PHI XD YD PHID Xl)]) YDD PHIDD 
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 -.335 .235 .349 .165 .060 -.702 13.630 4.829 -57.838 
3 -.171 .470 .000 .330 .120 .000 27.260 9.658 .000 
4 .165 .235 .349 .165 .060 -.702 13.630 4.829 -57.838 

TRANSlATIONAL SPRING-I:W.1PER -ACIUATOR 
00. LENG1H fCs) f(d) 
1 .819 -.201 153.462 -10.072 

REACfION FORCES 
JOINT 00. I FX-I FY-I N-I J FX-J FY-J N-J 
REV. 1 1 45.067 -105.648 26.412 2 -45.067 105.648 -1.556 
REV. 2 2 53.245 -96.865 -4.228 3 -53.245 96.865 -24.216 
REV. 3 3 -23.310 14.601 3.650 4 23.310 -14.601 -4.228 
REV. 4 4 -15.132 23.384 -1.556 1 15.132 -23.384 -5.846 

TIME = 3.0000 
----------------

BODY X Y PHI XD YD PHID Xl)]) YDD PHIDD 
1 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 -.173 .238 - .311 .000 .000 .000 .000 .000 .000 
3 .153 .476 .000 .000 .000 .000 .000 .000 .000 
4 .327 .238 .311 .000 .000 .000 .000 .000 .000 

TRANSlATIONAL SPR ING-I:W.1PER -ACIUATOR 
NO. LENG1H f(s) fCd) 
1 .589 .000 -7.805 .000 

REACfION FORCES 
JOINT 00. I FX-I FY-I N-I J FX-J FY-J N-J 
REV. 1 1 -1. 283 -6.933 1.733 2 1.283 6.933 .225 
REV. 2 2 1.283 -1.047 .225 3 1.283 1.047 .262 
REV. 3 3 3.311 7.3.58 1.839 4 -3.311 -7.358 .225 
REV. 4 4 3.311 13.244 -.225 1 -3.311 -13.244 -3.311 
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At t = 3 s, all of the velocities and accelerations are zero. This indicates that the system 
reaches the state of static equilibrium within 3 seconds as a result of the presence of 
dampers in the system. Figure 10.4 shows the plots of Y3' Y3' spring force, and damper 
force as a function of time. 
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Figure 10.4 The dynamic response for the horizontal platform. (a) Plots of y displace
ment and velocity of the platform, and (b) spring and damper forces versus time. 

-

1.5 

10.3.3 Dump Truck 

A hydraulic actuator controls the unloading process of a dump truck. For the configura
tion shown in Fig. 10.5 (0 = 0.38 rad), find the force that the actuator must apply be-

Figure 10.5 A dump truck in unloading configuration. 

AL = 1.6 
AC = EF = GH = 0.4 
BL = 0.2 
CD = DE = 1.3 
CK = BE = 2 
FH= HK = 0.8 



274 A FORTRAN Program for Analysis of Planar Dynamics Chap. 10 

tween points A and D in order to keep the system in equilibrium. Masses and moments 
of inertia for the bodies are: 

m EF mAC 0.4, m CK m BE 2, m10ad 100 

/LEF = /LAC = 0.005, /LCK /LBE 0.7, /Lload = 27 
Assume that the center of mass of each body is at its geometric center, and that the cen
ter of mass of the load is at G. 

First, as shown in Fig. 1O.6(a), a model is set up for KAP to determine the correct 
initial conditions on the coordinates. This model is executed on KAP for t = 0, with the 
known value of cP2> which is found from the specified e. Since the system is not in mo
tion, a constraint on cP2 can be stated in the form of either a simple constraint or a driver 
constraint. The input to KAP is as follows: 

Prompt (KAP) k 

6, 7, 0, 1, 1,0, 1 

0,0,0 

(a) 

(b) (e) 

Figure 10.6 A model for the dump truck for (a) kinematic analysis, (b) static analysis, 
and (c) dynamic analysis. 
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® 2 - .2, .08, -0.38 

® 3 .6, .3,0.15 

® 4 .6, .4, -0.2 

® 5 -.15, .6, 0.25 

® 6 .9, .95, -0.15 

0 1 1, 2, 0, 0, .2, ° 
0 2 1, 4, 1.6, .2, 1, ° 
0 3 2,3, -.2,0, -1, ° 
0 4 3, 4, .3, 0, .3, ° 
0 5 3,6, 1,0, .8, -.4 

0 6 4,5, -1,0, -.2, ° 
0 7 5,6, .2, 0, -.8, -.4 

G) 1 

@ 2,3, -.38 

® 3, .3, ° 
CD 0,0,0.1 

In this model, there are six bodies (one grounded), and seven revolute joints, and point 
D is given as a special point of interest on body 3 (or body 4). The output from this simu
lation is: 

***** KINEMATIC ANALYSIS ***** 

.0000 
-------------
BODY X Y PHI Xl) YD PHm XDD YDD PHIDD 

1 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 -.186 .074 .380 .000 .000 .000 .000 .000 .000 
3 .618 .296 .148 .000 .000 .000 .000 .000 .000 
4 .620 .401 -.202 .000 .000 .000 .000 .000 .000 
5 -.166 .652 .256 .000 .000 .000 .000 .000 .000 
6 .882 .968 -.163 .000 .000 .000 .000 .000 .000 

POINTS OF INfEREST 
NO. 
1 

X Y Xl) YD XDD YDD 
.914 .341 .000 .000 .000 .000 

According to Sec. 9.6, in order to determine the force required by the actuator for 
keeping the system in equilibrium, the actuator may be replaced by a revolute-revolute 
joint. The reaction forces exerted at A and D on this revolute-revolute joint give the re
quired actuator force. However, since the formulation for the revolute-revolute joint is 
not included in the present version of DAP, the actuator can be replaced with a fictitious 
body and two revolute joints, one atA and one atD. This model is shown in Fig. 1O.6(b), 
and the input to DAP is as follows: 

Prompt (DAP) k 

7, 9, 0, 1, 0, 0, ° 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ° 
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® 2 -.1857, .0742, -0.380,0, 0, 0, .4, .005, 0, 0, 0 

® 3 .6175, .2962,0.148,0, 0, 0, 2, .7, 0, 0, 0 

® 4 .6204, .4008, -0.202, 0, 0, 0, 2, .7, 0, 0, 0 

® 5 -.1658, .6522,0.256,0, 0, 0, .4, .005, 0, 0, 0 

® 6 .8818, .9682, -0.163, 0, 0, 0, 100, 27., 0,0, 0 

® 7 .4571, .1703, 0.357, 0, 0, 0, .001, .001, 0, 0, 0 

(0 1,2,0,0, .2, ° 
(0 2 1,4,1.6, .2,1,0 

(0 3 2,3, .2,0, -1, a 
(0 4 3, 4, .3, 0, .3, ° 
(0 5 3,6,1,0, .8, -.4 

(0 6 4,5, -1,0, -.2,0 

(0 7 5,6, .2,0, -.8, -.4 

(0 8 1,7,0,0, -.4878, ° 
(0 9 3, 7, .3, 0, .4878, a 

0 1 

CD 0, 0, 0.1 

In this model, there are seven bodies and nine revolute joints. The coordinates of point 
D from the first simulation, with the known coordinates of A, are used to calculate the 
correct coordinates of body 7. Since this is a O-degree of freedom system, DAP per
fomls static analysis and the output is as follows: 

***** STATIC ANALYSIS ***** 
BODY X Y PHI 

1 .000 .000 .000 
2 .186 .074 -.380 
3 .618 .296 .148 
4 .620 .401 .202 
5 -.166 .652 .256 
6 .882 .968 -.163 
7 .457 .170 .357 

REACTION FORCES 
JOINT NO. I FX-I FY-I N-I J FX-J FY-J N-J 
REV. 1 1 -835.818 331. 874 .000 2 835.818 -331.874 .365 
REV. 2 1 4505.031 8.582 -887.275 4 -4505.031 8.582 -912.248 
REV. 3 2 -835.817 335.798 - .364 3 835.817 -335.798 455.377 
REV. 4 3 -5565.859 -307.829 154.884 4 5565.859 307.829 425.473 
REV. 5 3 1060.831 705.297 -854.017 6 -1060.831 705.297 -45.452 
REV. 6 4 -1060.831 -279.627 486.775 5 1060.831 279.627 .380 
REV. 7 5 -1060.831 -275.703 .380 6 1060.831 275.703 45.452 
REV. 8 1 -3669.213 -1368.553 .000 7 3669.213 1368.553 .002 
REV. 9 3 3669.213 1368.544 243.756 7 -3669.213 -1368.544 .002 

This output yields the reaction forces acting at A and D on the fictitious body 7. These 
force components indicate a eompressive force on body 7, having a magnitude 

f (3.669.22 + 1368.52
)112 3916 

If body 7 is replaced by an actuator, the force of the actuator must be tal = - 3916 to 
keep the system in equilibrium. The negative sign is assigned to the actuator force, ac-
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cording to the sign convention of Sec. 9.2.3. Note that the force that the actuator must 
apply on the system is in the direction opposite that of the force that the system applies 
on the actuator (or the fictitious body 7). 

For dynamic analysis, another model can be set up by replacing the fictitious body 
with an actuator, as shown in Fig. 1O.6(c).lfthe force of the actuator is specified asj(a) = 
-3916, then the system remains in equilibrium. For simulating the unloading process, 
the actuator force is increased slightly to -3955 and the input to DAP is as follows: 

Prompt (DAP) k 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

7 

6, 7, 0, 1, 0, 1, ° 
0,0,0,0,0,0,0,0,0,0,0 

- .1857, .0742, -0.380, 0, 0, 0, .4, .005, 0, 0, ° 
.6175, .2962,0.148, 0, 0, 0, 2, .7, 0, 0, ° 
.6204, .4008, -0.202, 0, 0, 0, 2, .7, 0, 0, ° 
-.1658, .6522,0.256,0,0,0, , .4, .005,0,0, ° 
.8818, .9682, -0.163, 0, 0, 0, 100, 27, 0, 0, ° 
1, 2, 0, 0, .2, ° 
1,4,1.6, .2,1, ° 
2,3, -.2,0, -1, ° 
3, 4, .3, 0, .3, ° 
3,6,1,0, .8,-.4 

4,5, -1,0, -.2, ° 
5,6, .2,0, -.8, -.4 

1, 4, 0, 0, .3, 0, 0, 500, -3955., ° 
0,1.5,0.05 

The result of this simulation is shown in Fig. 10.7 for several intermediate stages. 
In the dynamic simulation of this system, or other systems, a problem may arise. 

In certain kinematic configurations, the Jacobian matrix <l>q may lose rank-one or 
more of the constraint equations may become redundant. In this case, the matrix at the 
left in Eq. 10.5 becomes singular. Therefore, the present version of subroutine LINEAR 
cannot solve Eq. 10.5 for the accelerations and Lagrange multipliers. For the dump 
truck model, this situation occurs when the linkage system is completely stretched open 
or when it is folded. In these two cases, some of the bodies align in a way that causes 
kinematic redundancy in the constraint equations. 

10.4 TIME STEP SELECTION 

One of the most crucial problems in using a constant-step numerical integration al
gorithm, such as the Runge-Kutta algorithm, is the selection of a proper step size. A 
large step size may cause erroneous results. A step size too small may yield accurate re
sults while increasing the computation time unreasonably. Therefore, it is important to 
choose a reasonably small step size to obtain accurate results without unnecessarily in-
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.i'igure 10.7 Unloading process of the dump truck. 

creasing the computation time. A thorough discussion on the subject of time-step selec
tion is outside the scope of this book. The interested reader may refer to other textbooks 
on the subject of numerical solution of differential equations. In this section only two 
highly simple examples are presented to familiarize the reader with this important point. 
Since these examples deal with vibratory motion, which has not been covered in this 
book, the reader may refer to any textbook on the subject of mechanical vibration for 
more detail. 

The simplest form of vibratory motion is a simple harmonic motion which is de
scribed by the differential equation 

(l0.8) 

where p is a real number. The frequency of oscillation of this single degree-of-freedom 
system is 

f 

The period of the oscillation is 

T 

P 
211' 

211' 

P 

(10.9) 

(10.10) 

If Eq. 10.8 is solved numerically, the step size at must be much smaller than the period T. 

As an example, consider the one-dimensional motion of the mass-spring system 
shown in Fig. 1O.8(a). The only external force acting on the system is gravity. The 
equation of motion for this system, in the y direction, is given'by 

my ::=: -mg - k(y - to) 
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or 

v 

'-------------1 ..... Time 

(a) (b) 

Figure 10.8 (a) A one-dimensional vibrating mass-spring system, and (b) a full cycle 
of the response denoted by T. 

k 
Y +-y 

m 
k 0 -g +-{ 
m 
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(a) 

For a system in free vibration, if the left sides ofEq. 10.10 and Eq. a are compared, it 
is found that 

or 

,.,. = 21T{!j (b) 

Given the values of m and k, the time period,.,. can be calculated. For numerical integra
tion, a reasonable value for at can be at ,.,./20. 

As another example, consider the single pendulum shown in Fig. 10.9. A single 
equation of motion for this system in terms of the angular coordinate can be written 

v 

Figure 10.9 A single pendulum. 
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directly. However, here the equation is derived from the Cartesian equations of motion. 
Considering gravity to be the only external force, the equations of motion are 

mX - A! = 0 

my - A2 -mg (c) 
ILcp + d cos cpA! + d sin CPA2 0 

where AI and A2 are two Lagrange multipliers associated with the constraints for the revo
lute joint, 

x d sin cp 0 

y+dcoscp=O 

The kinematic acceleration equations are, 

i - d cos cp ¢ + d sin cp 4? = 0 

y - d sin cp ¢ - d cos cp 4i = 0 

Elimination of A!, A2, i, and y in Eqs. c and d results in one equation: 

(IL + md 2)¢ + mdg sin cp = 0 

(d) 

For oscillations of small amplitude, sin cp can be replaced by cp; this last equation is then 
linearized as follows: 

(IL + md 2)¢ + mdgcp = 0 

Comparing Eq. 10.8 and Eq. e yields 

mdg 

or 

T 

(e) 

(f) 

The preceding examples show how the time period of the oscillation can be calcu
lated. For more complicated systems, the calculation of natural frequencies will not be 
that simple. For systems with several interconnected moving bodies, the linearization of 
the equations of motion in explicit form can be rather cumbersome. For systems with 
more than 1 degree of freedom, there will be more than one natural frequency. For such 
systems, the highest frequency must be found, and a step size much smaller than the 
period of the highest frequency must be selected. Since the equations of motion are gen
erally nonlinear in terms of the coordinates, linearization of these equations yields a time 
step which is valid only in the individual configuration. In a different configuration for 
the same system, the linearization process may yield a different time period, and conse
quently a different time step size. 

To avoid the difficulties associated with the selection of a proper time step, it is 
strongly suggested that a variable-step size algorithm be used for dynamic analysis. 
Many well-developed algorithms of this sort are available. Most of these algorithms 
determine a proper time step and will adjust the time step automatically during the 
simulation. 
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PROBLEMS 

The following problems provide examples that can be simulated by using a dynamic analy
sis program such as DAP. Many of the problems can be simulated on the existing listed version of 
DAP. Other problems may require some modifications or extensions to the program. Guidelines 
for improving the versatility and increasing the capability of DAP are included for some of those 
problems. 

10.1 Refer to Probs. 5.8 through 5.11 and include similar modifications in DAP for input-output 
versatility. 

10.2 Modify DAP to accept data in different but consistent units. 

10.3 Formulate additional force elements such as the rotational spring-damper-actuator element 
inDAP. . 

10.4 Refer to Probs. 5.13 and 5.16 through 5.19. Include similar changes in DAP. 

10.5 Refer to Prob. 9.5 and include this capability in DAP. 

10.6 An external force acting on a body can be time-dependent. Modify DAP to accept time-de
pendent external forces in the following forms: 

(a) A closed-form expression 

(b) A table of data points 

10.7 Provide the user with the option of including or excluding gravitational forces in a simula
tion. 

10.8 Refer to Prob. 5.18. A dummy subroutine USRFRC, similar to the user-supplied subrou
tine USRCON, can be called from subroutine UFORCE before the RETURN statement. 
This subroutine may be used for nonstandard forces defined by the user. 

10.9 The present version of DAP applies L-U factorization to the coefficient matrix in Eq. 10.5 
to solve for q and A. This process can be made more efficient by the following modifica
tion: 

(a) From Eq. 10.5 it is found that, 

BJ\. = Y Cg 
q = CTA + M-1g 

where C = ~qM-l and B = C~~. Matrix B is an m x m symmetric matrix. 

(b) Perform L-U factorization on B, and then solve Eq. a.1 for A. 

(c) Substitute the result for A in Eq. a.2 to find q. 

(a. I) 

(a.2) 

Note that this process requires M-1 to be evaluated only once, since M is a constant diago
nal matrix. If the mass or the moment of inertia of a body is specified as zero, then the 
inversion cannot be performed. This is usually the case for nonmoving (grounded) bodies. 
For these bodies, the mass and moment of inertia can be set to any nonzero value; e.g., 
m = 1 and f.L = 1. 

10.10 Matrix B in Prob. 10.9, for a well-posed problem, is symmetric and positive-definite. For 
these types of matrices, special-purpose matrix factorization algorithms are available. 
These algorithms are more efficient than the standard L-U factorization algorithms. Re
place subroutine LU with a subroutine utilizing such an algorithm. 

10.11 Evaluation of matrices C and B in Prob. 10.9 requires matrix multiplication involving ~q. 
Since ~q is a sparse matrix, a large number of multiplications by zero are performed in the 
process of evaluating C and B. In order to eliminate an unnecessary multiplication by zero, 
store the row and column numbers of the nonzero elements of ~q in two index arrays IRN 
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and ICN. The elements of these arrays, plus the fact that M- ' is diagonal, can minimize 
the number of multiplications in the evaluation of C and B. 

10.12 For very small integration time steps and long simulation time periods, the output of DAP 
can be extensive. Modify DAP to report the result at every nth time step, where n is an 
integer to be specified by the user. 

10.13 If the initial conditions on coordinates and vebities violate the constraints and their time 
derivatives respectively, they must be corrected before the start of dynamic analysis. Per
form a kinematic position and velocity analysis at tOto correct the initial conditions. 
For this process, additional constraints equal to the number of degrees of freedom must be 
introduced. The corrected initial conditions are then used to start the dynamic analysis. 

10.14 Replace the Runge-Kutta algorithm in DAP with a predictor-corrector algorithm in order to 
make the integration process more efficient (refer to Chap. 12). You may find such an al
gorithm in the library of your computer. 

10.15 Use a variable step/order predictor-corrector algorithm in DAP instead of subrouting 
RUNG4. This can be the most important modification to DAP for minimizing the numeri
cal error in the computation (refer to Prob. 12.7). 

10.16 Refer to the constraint violation stabilization method in Sec. 13.3.1. Modify vector 'Y, ac
cording to Eq. 13.18, to include the feedback terms -21X~ and -f32cfl. Before evaluating 
the forces in subroutine DYNAM, perform the following tasks: 

(a) Call FUNCT, with IFNCT = I and JACOB = 0, to obtain the constraint violations in 
F. Add -f32F(I) to RHS(I) for I = 1, ... , M. 

(b) Since the Jacobian matrix is already available, add - 2IXcflqq to RHS(I) for I 
I, ... , M. The user must specify the parameters IX and 13. Simulate different problems 
and experiment with different values of these parameters. 

10.17 Modify DAP in order to handle both unconstrained and constrained systems. If M 0, 
there are no constraints. Therefore, the program should solve the equations of motion 
stated in Eq. 10.1. 

10.18 In the dynamic analysis of mechanical systems, it might be necessary to include aerody
namic forces in vector g. A simple formula for calculating aerodynamic forces is given as 

where 

laero) = ~cdpAv2 

Cd drag coefficient; e.g., Cd = 0.5 

p = air density 

v velocity of the body 

A cross-sectional area of the body perpendicular 

to the direction of velocity 

Included this capability in DAP as another force element. 

10.19 Simulate the dynamics of the chain shown in Fig. P.1O.19. The links are connected by rev
olute joints and the external force is gravity. Start the dynamic analysis from two different 
initial positions: 

Figure P. 10.19 
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(a) The links are open and the chain is stretched. 

(b) The links are folded on top of one another. 
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10.20 The front landing gear of an aircraft is designed in such a way that it avoids hitting a pro
truding pod (this might be an extra fuel tank) while retracting. The opening or retracting of 
the landing gear is controlled by a hydraulic actuator between points P and Q as shown in 
Fig. P.1O.20. Assume AB = 1.2, CD = 1.62, BC = 0.5, BO = 1.32, AE = 0.97, 
DE = 0.14, and the wheel radius p = 0.2. 

(a) Assign values to the mass and moment of inertia of each moving body. 

(b) Simulate the retracting process by applying a constant force (or a variable force, if 
DAP is modified to accommodate one) to the actuator. 

(c) Determine the path of the wheel with respect to the aircraft. 

Figure P. 10.20 

10.21 Simulate the bouncing of a rubber ball against the ground. Assume that the ground surface 
is flat at y = 0, as shown in Fig. P.1O.21. Write a nonstandard force subroutine (refer to 
Prob. 10.8) to determine the reaction force between the ball and the ground during contact. 
Monitor the deformation!:J.1 = p - Y2' If !:J.l < 0, then there is no contact; hence, there is 
no reaction force. If !:J.l > 0, calculate the reaction force as f = j<') + j<'~ 
where 

for»2 < 0 

for»2 > 0 

It is assumed that k and d are the stiffness and damping coefficient of the ball. 
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Figure P. 10.21 

10.22 Repeat Prob. 10.21 and assume that the ground surface makes an angie with the horizontal 
direction. 

10.23 Two rubber balls are constrained to move in the vertical direction inside a frictionless cylin
der as shown in Fig. P.IO.23. Write a subroutine to calculate the reaction forces between 
the balls and the ground. Simulate the motion of the balls using DAP. 

10.24 The apparatus shown in Fig. P.IO.24 consists of five pendulums terminating in rubber balls 
which can be modeled as five moving bodies and five revolute joints. The interaction be
tween the balls can be modeled by unilateral spring elements, as can that in Prob. 10.23. 
Move one ball (or two) from the equilibrium state and then release it (or them). Simulate 
the motion of the balls using DAP. 

I 
I , 
I 
I 
I , 

:EJ' I I 

(2) 
I I 
I I 
I I 

~ 
(1) 

\ 
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\ 

\ 
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\~ 

Figure P. 10.23 Figure P. 10.24 

10.25 The motion of the articulated bulldozer shown in Fig. P.IO.25 is controlled by two hy
draulic actuators. The centers of mass of the moving bodies are shown as G I1 .•• , G4 • Take 
measurements from the figure and assume In, =' 190, 1n2 52, 1n3 12. 1n4 = 3, 
/kl 45, /k2 = 0.9, /k3 = 0.3, and /k4 = 0.1. 
(a) Find a correct set of initial conditions for the coordinates. 

(b) Determine the actuator forces in the equilibrium state. 

Figure P. 10.25 
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10.26 A hydraulic excavator is shown in P.1O.26. Set up a model for this vehicle by taking 
direct measurements from the figure and assuming reasonable values for the mass and 
moment of inertia of each body. 

(a) For different orientations, find the correct set of initial conditions. 

(b) For each set of initial conditions, find the necessary force for each actuator to keep the 
system in equilibrium. 

(c) Perform dynamic analysis by controlling the force of each actuator. 

Figure P. 10.26 

10.27 Modify the revolute-revolute joint constraint formulation of Eq. 4.13 by assuming that the 
length of the link varies as a function of time; i.e., 

ITI - [d(t )]2 = 0 

For this constraint, it and d must be induded in the velocity and acceleration equations. 

(a) [nelude this fonnulation in DAP. 

(b) Repeat Prob. 10.26 and employ this variable-length revolute-revolute joint constraint to 
represent the actuators. Specify a time function for each d(t) and monitor the reaction 
forces associated with each actuator. 

This process is an inverse approach for determining the required force of each actuator as a 
function of time in order to generate a particular motion for the system. 

10.28 A fork-lift mechanism is shown in Fig. P. 10.28. Rotation of the crank provides an upward 
or a downward motion of the fork. Set up a model for this vehicle by taking direct mea
surements from the figure and assigning values to the mass and moment of inertia of each 
body. 

(a) For different orientations, find the correct set of initial conditions. 

(b) For each set of initial conditions, find the torque on the crank that keeps the system in 
equilibrium. 

(c) Perfonn a dynamic analysis by changing the applied torque. Monitor the path of the 
fork for a complete revolution of the crank. 

[] 

Figure P. 10.28 
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10.29 The mechanism shown in Fig. P. 10.29 is a centrifugal brake system. The braking mecha
nism is designed so that when the drive shaft exceeds a certain angular velocity, the three 
pistons are forced against the hub wall. The contacting surfaces of the pistons are covered 
by brake pads, which provide the friction force opposing the motion, hence reducing the 
angular velocity. When the shaft is not rotating, the distance between the shaft axis and the 
contact surface of each pad is equal to the inner radius of the hub. The contact interface 
beween the pads and the hub wall can be modeled by unilateral spring elements. The spring 
force lr) = k2 1:.1 constitutes the reaction force, where k2 is the pad stiffness and 1:.1 is the 
pad defonnation. A friction force fi) = /kdlr

) is applied to the pad at the contacting sur
face, where /kd is the kinetic coefficient of friction. Assume m2 = 10, m3 3, /k2 10, 
/k3 3, k, = 150, d l = 10, k z 10,000, and /krl = 0.5. 

(a) Write a user-supplied subroutine for the unilateral spring, reaction force, and friction 
force (repeat for each pad). 

(b) For a specified initial rotational velocity of body 2, detennine the initial velocity vcctor 
for the system that will satisfy the constraints. 

(c) Apply a constant input torque to the shaft and simulate the response. 

(d) Determine the equilibrium rotational velocity of the shaft. 

Note: Since the three braking elements are identical, you may model only one element and 
multiply the resisting force (moment) by 3. 

Figure P. 10.29 

10.30 The pressure-type altimeter shown in Fig. P. 10.30 utilizes the difference between the pres
sure at sea level and the ambient pressure to displace a pointer which indicates the altitude. 
This is accomplished by sealing air at sea-level pressure inside a bellows. When the outside 
pressure is different from the air pressure inside the bellows, the bellows expands or con
tracts until the pressure in the bellows is equal to the outside pressure. 

(a) Write a user-supplied subroutine to model the bellows and convert the pressure differ
ence to a force acting on the attached piston. 

(b) Include some damping (friction) force acting on the piston. 

(c) Simulate the dynamics of the system and show whether or not the displacement of the 
pointer is a linear function of the pressure change. 

10.31 A simple model of a vehicle can be set up by assuming that it consists of three bodies and 
two revolute joints as shown in Fig. P.1O.31. Body 1 is the chassis, and bodies 2 and 3 are 
the wheels. Let ml = 600, m2 = m3 20, /kl = 1200, and /kz /k3 = 5. The axial de-
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Bellows 

Figure P. 10.30 

(al leI 

Figure P. 10.31 

formation of each tire can be modeled by unilateral spring-damper elements, whcre 
k 175,000 and d = 7000. 

(a) Use DAP to determine the static equilibrium state of the vehicle. 

(b) Perform a dynamic analysis, starting from the static equilibrium state, by assuming that 
the wheels slide (i.e., do not rotate). Assign an initial velocity to the vehicle. Refer to 
Prob. 9.10 and write a user-supplied subroutine for different terrains and obstacles. 

(c) For a more realistic dynamic simulation, the rotation of the wheels must be included in 
the analysis. Assume that the rear wheel (body 3) is the driving wheel. A moment n3 is 
applied to this wheel by the engine. If there is no slipping between the wheel and the 
ground, then a force 13 = - nJj P3, where P3 is the deformed radius of the wheel, is ap
plied to the wheel in the direction shown i~ Fig. P. 1O.3J(b). 

(d) If the results of part (c) are studied, it is observed that the rotational and the transla
tional velocity of body 3 do not satisfy the no-slip assumption; i.e., x] ¥= -P3(P3' 
Therefore, a friction model must be included in the simulation. If v X3 + P3(P3 is 
nonzero, then the wheel is slipping. A friction force can be calculated according to the 
friction curve shown in Fig. P.IO.31(c). In this curve f3 is a coefficient based on the 
tire characteristics (for simulation, assume values of f3 between 1000 and 5000), and 
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the upper bound for the frietion force is ff/) = J1.dil'l, wherc J1.d is the kinetic coefficient 
of frietion and if) is thc normal reaction force. if) is available from the unilateral 
spring-damper element represcnting the tire deformation. 

(e) Assume that the front wheel (body 2) is the driven wheel. Include a no-slip friction 
model for this wheel and perform a dynamic simulation. 

10.32 Improve the vehicle model of Prob. 10.31 by adding a suspension system to the front and 
rear wheels as shown in Fig. P.IO.32. Assume that the front wheel is attached to an extra 
body (body 4) by a revolute joint, and that body 4 is attached to the ehassis by a transla
tional joint. Also, assume that the rear wheel is attached to an extra body (body 5) by a 
revolute joint, and that body 5 is attached to the chassis by another revolute joint. Let 
m4 = ms 4, J1.4 = I, and J1.s = 2. The spring-damper characteristics for the front sus
pension system are k j 90,000 and d l 5000, and for the rear suspension system 
k2 60,000 and d2 = 5000. The tire charactcristics are the same as in Prob. 10.31. 

(a) Find the static cquilibrium state for the vehicle. Adjust the attachment points or the un
deformed lengths of the suspension springs in such a way that the main chassis and the 
axis of body 5 remain horizontal when the vehicle is in static equilibrium. 

(b) Include friction models for a no-slip condition of the wheels. 

(c) Perform a variety of simulations for different terrains. 
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10.33 Include an additional capability in DAP to perform a static equilibrium analysis prior to dy
namic analysis when necessary. Rcfer to the algorithms in Chap. 14 (the iterative method 
of Eq. 14.3 rcquires a minimum amount of programming). 
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Spatial Dynamics 

A general system of constrained equations of rigid-body spatial motion is formulated in 
this chapter on the basis of the principles of dynamics discussed in Chap. 8 and the spa
tial kinematics formulation from Chaps. 6 and 7. The equations of motion are formu
lated in terms of Euler parameters. The formulation developed here is identical in nature 
to that for planar systems in Chap. 9; the principal difference between the formulations 
for spatial and planar dynamics is in their dimensionality. 

11.1 VECTOR OF FORCES 

The forces and moments acting on a body can be due to such force elements as springs, 
dampers, or gravity, among others. The derivation of equations to calculate the forces 
(or moments) of these force elements in spatial motion is identical to that shown in Sees. 
9.2.1.1hrough 9.2.7 for planar motion. Ifthe resultant force and moment acting on body 
i are fj and iii, they must be transformed into the coordinate system in which the equa
tions of motionJre derived. For the translational equations of motion shown in Eq. 
8.31, the force fj must be defined in terms of its xyz components; i.e., f i • If the rota
tional equations of motion given by Eq. 8.32 are used, then the moment iii must be de
fined in terms of its g7j~ components; i.e., n . However, if Euler parameters are used 
and the equations of motion are expressed in terms of these coordinates, then the 
moment iii must be transformed to a coordinate system associated with the Euler 
parameters. 

11.1.1 Conversion of Moments 

It is possible to convert the three rotational equations of motion represented by Eq. 8.32 
to four rotational equations of motion associated with the Euler parameters (this will be 

289 
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seen in Sec. 11.2.1). In this case the moment iii must be expressed in terms of four com
ponents denoted by nf. The objective is to find the transformation between n: (or nJ 
and nf. Two methods for deriving this transformation are shown here. 

The first method is based on the scalar product of two vectors. As long as two 
vectors are described in the same coordinate system, their scalar product yields a scalar 
quantity independent of the coordinate system in which the vectors are expressed. In Eq. 
8.32, n: is expressed in the same coordinate system as w;. When Euler parameters are 
used, the moment n; must be expressed in the same coordinate system as Pi' Hence, 

Then, Eq. 6.107 yields 

• T * IT I Pini = Wi n i (a) 

(11.1) 

If the global components of these vectors are considered, then Eq. a is also equal to 
w;ni' and therefore it can be found that 

(11.2) 

The inverse transformations are 

(11. 3) 

and 

(11.4) 

The second method considers t!}e virtual displacement of the point of application 
of a force on a body. In Fig. 11.1, F acts on point Pi and the moment of the force is 
n: = s:f:. The position of Pi is 

(11.5) 

The total differential of Eq. 11.5 is 

'" p _ '" 8(AiS :) '" ur· -ur·+ up· 
I I 8Pi I 

= 8r i + 2Gi s; 8Pi + 2s:p;8Pi (b) 

Since the four Euler parameters are subject to the constraint pip;' = 0, the total 
differential of this constraint yields 

a(p;Pi - 1) 8 . = ° 
a P, 

Pi 
or 

(11.6) 

x Figure 11.1 Applied forces. 
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Hence, Eq. b is simplified as follows: 

or; = ori + 2Gis; Opj 

= ori + 2AiLis; Opj 

or; + 2A;(-s;L; + s;p;)8pj 

= orj - 2sjGj Opj 

where Eqs. 6.49, 6.71, and 6.88 have been employed. 
The virtual work done by fj is 

OWl = fTor; 

= rT (orj 2sjGj oPJ 
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f; ori + 2n;Gi op; (11. 7) 

This equation shows that the virtual work OW; is the sum of the virtual work of the force 
fj causing a virtual translation or; and the virtual work of a moment n7 2G;ni causing 
a virtual rotation 0p!' This result agrees with Eq. 11.2. 

11.2 EQUATIONS OF MOTION FOR AN UNCONSTRAINED BODY 

The translational equations of motion for an unconstrained body are given by Eq. 8.31 as 

( 11.8) 

where N; = diag [m, m, m1;. The rotational equations of motion for an unconstrained 
body given by Eq. 8.32 are converted into three different forms in this section. 

Formulation I. Substitution of Eqs. 6.107 and 6.111 into Eq. 8.32 yields 

2J;'Lj>j + 4L;L;J;L I Pj 

Premultiplication of this equation by 2L r gives 

where 

and 

Using Eq. 6.46 and defining 

we can write Eq. 11.10 as 

n* I 

I nj (11.9) 

(11.10) 

(1Ll1) 

(11.12) 

(11.13) 

J7p; + (Tjp! + 2H;p; n1 (lU4) 

This represents the rotational equations of motion in terms of Pi' However, since the 
four Euler parameters are not independent, Eq. 6.61, i.e, 

(IU5) 
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must be considered with Eq. 11. 14. Equations 11.14 and 1l.15 in matrix form are 

[
J* p] [pJ [2HPJ 
pT 0 i a ; + j,rp; (11.16) 

Equation 11.16 contains five equations that can be solved for Pi and a i if n;, Pi' Pi' and 
J; are known. This, obviously, gives the same value for ai as given by Eq. 11.13! The 
artificial variable a; was defined in such a way as to have an exact inverse to the 5 X 5 
matrix at the left in Eq. 11.16. In Eq. 11.14, a; can be interpreted as a Lagrange multi-
plier associated with the constraint equation pip; - I O. 

Formulation II. Equation 1l.l5 can be appended to Eq. II. 9 and written in 
matrix fonn to yield 

(11.17) 

If n;,p;,p;, and J: are known, then Eq. 11.17 can be solved exactly for Pi' Note that 
the matrix at the left in Eq. U.17 is a 4 X 4 matrix. 

Formulation III. In the third formulation, the rotational equations of motion 
are left in their original form in terms of the angular velocities; i.e., 

(l1.1S) 

It is clear that w; can be calculated from this equation if n;, w;, and J: are known. 
A comparison of these three formulations shows that Eq. 11.16 contains five equa

tions in terms of P; and ai' Eq. 11.17 contains four equations in terms of Pi' and 
Eq. 11.18 contains three equations in tenns of w;. 

11.3 EQUATIONS OF MOTION FOR A CONSTRAINED BODY 

For a constrained mechanical system containing body i, it is assumed that there are 
Tn independent constraint equations, 

4> == 4>(q) 0 (11.19) 

where q contains the coordinates of all of the bodies in the system, including the coordi
nates of body i: 

It was shown in Sec. S.4.3 that the constraint reaction forces could be described in the 
form given by Eq. 8.50 in terms of the Jacobian matrix of the system and a vector of 
Lagrange multipliers: 

g(*) 4>~A (11.20) 

This equation was obtained with the assumption that the vectors of forces g and g(*) were 
defined in a coordinate system consistent with q. 

The constrained translational equations of motion for body i can be written, from 
Eq. U.S, as 



Sec. 11.4. System of Spatial Equations of Motion 293 

From Eq. 11.20 it is found that 

Therefore, 

Nji'; «I>:A = fj (11.21) 

This represents the translational equations of motion for constrained body i. The rota
tional equations of motion for this body are derived in three forms corresponding to the 
formulations of Sec. 11.2. 

Formulation I. The rotational equations of motion from Eq. 11.14 for con
strained body i are written as 

Jipj + <TiP; + 2H;i)i ni + n7(c) 

Since ni and n7(C) are described in the same coordinate system as Pj, Eq. 11.20 yields 

n *(c) = «I>T A 
/ Pi 

Therefore, 

J *.. + + 2H . d"T I. - * (11 22) i Pi <Tjpj iPi '¥p/l. - n i . 

Equations 11.22 and 11.15 are the rotational equations of motion for a constrained body. 

Formulation II. Equation 11.9 is written for a constrained body as 

2J ;I~j)i + LjHj)i n; + n;(d 

. The transformation of moments is given by Eq. II. 3 as 

n I (c) = -2
1 Ln * (c) 

I I I 

~Lj«l>~iA 
Therefore, 

2J;l"iPi + LiHiPi 4Li«l>~iA = n; 01.23) 

Equations 11.23 and 11.15 together can be used as the rotational equations of motion for 
a constrained body. 

Formulation III. Equation 11.18 can be written for a constrained body as 

or 

(11.24) 

In this equation the constraint equations, and hence the Jacobian matrix, are expressed 
in terms of Euler parameters. However, the joint reaction moments are converted to a set 
of coordinates consistent with (d; and n; . 

11.4 SYSTEM OF SPATIAL EQUATIONS OF MOTION 

In the preceding sections, the equations of motion for a single body were derived. Three 
formulations for the rotational equations of motion were shown. For a system of b bod
ies, constrained or unconstrained, these equations can be repeated b times in any of the 
three forms to find the system equations. 
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11.4.1 Unconstrained Bodies 

For a system of b unconstrained bodies, three formulations are given. 

Formulation I. Equations 11.8, 11.14, and 11.15, with a slight rearrangement, 
are written for all b bodies as 

[ ~* ~J [! J + [bc* J = [g; J (I 1. 25) 

where 
Nj 

Ji 0 

M* (1l.26) 

0 Nb 

n 
OT pi 

0 

p= (11.27) 

0 OT pr 

i\ 
PI 

q (11.28) 

rb 
Pb 

U~[] (11.29) 

0 

2Hd), 

b* = (11.30) 

0 

2Hb Pb 

c 
[PiP] 

prPb 

(11.31) 
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g* = (11.32) 

Formulation II. Equations 11.8 and 11.17, with a slight rearrangement, are 
written for all b bodies as 

[~Jq + [!J = [:J (11.33) 

where 

NI 
2J;L1 0 

M= (11.34) 

0 Nb 

2J~Lb 

0 

LIH1PI 

b = (11.35) 

0 

LbHbPb 

fl 
I 

"I 

g= (11.36) 

fb 
I 

"b 
Formulation III. Equations 11.8 and 11.18 are written for all b bodies to obtain 

a set of equations identical to Eq. 8.40: 

MIl + b = g (11.37) 
where 

o 
M (11.38) 

o 
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11= (11.39) 

o 

b 01.40) 

11.4.2 Constrained Bodies 

For a system of b constrained bodies with the m independent constraint equations 
Eq. 11.19, three different formulations are obtained. The second-time derivative of the 
constraint equations, i.e., 

(11.41) 

is appended to the equations of motion. The total number of equations becomes equal to 
the total number of accelerations and Lagrange multipliers. 

Formulation I. Equations 11.21, 11.22, and 11.15 are written for all b bodies 
and then Eq. 1l.41 is appended to them to obtain 8 x b + m equations, as follows: 

01.42) 

where 

B = 4>q 

[4>'1' 4>PI' ... , 4>rv' 4>PIt] (11.43) 

and 

A [AI' A2, ••• , Am f (11.44) 

Note that the square matrix at the left in Eq. 11.42 is symmetric. 

Formulation II. Equations 11.21, 11.23, and 11.l5 are written for all b bodies 
and then Eq. 1l.41 is appended to them to obtain 7 x b + m equations, as follows: 

[! r][-1] + m m (I1.4~ 
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where 

B (11.46) 

Note that the square matrix at the left in Eq. 11.45 is nonsymmetric. 

Formulation III. In the last formulation, the acceleration equation as given by 
Eq. 11.41 is written in terms of the angular acceleration of each body, w;, instead of Pi' 
This conversion is performed first by writing Eq. 11.41 as 

r1 

PI 

rb 
Pb 

=y (11.47) 

F th 'd' .. I LT. I I 2 t' 1 t ",... E 11 47 b . rom e I entity Pi 2 iClJi - 4W Pi' a yplca erm '*'PiPi In q. . can e wnt-
ten as 

Hence, Eq. 11.47 is rewritten as 

(11.48) 

where the terms -~wf<IJPiPi' i = 1, ... ,b, have been moved to the right side of the 
equation. A detailed explanation of this new form of the Jacobian matrix is given in the 
next section. Appending Eq. ll.48 to Eqs. 11.21 and 11.24 for all b bodies yields 

(11.49) 

Note that the square matrix at the left in this equation is symmetric. 

11.5 CONVERSION OF KINEMATIC EQUATIONS 

Although the Euler parameters are ideal for representing the angular orientation of a 
body in space, they yield too many equations when their time derivatives are used 
explicitly in the equations of motion, as was shown in Eq. 11.16. Equation 11.18 shows 
that only three rotational equations are needed if w; is used instead of Pi' For a con
strained body, the equations of motion given in Eq. 11.24 contain only three equations 
and also take advantage of the Euler parameters (the constraint equations and hence the 
Jacobian matrix are described in terms of Euler parameters). This advantage becomes 
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apparent when Eqs. 11.42 and 11.49 are compared. Equation 11.49 contains 2 x b 
fewer equations than Eq. 11.42. 

In Eq. 11.49, the kinematic constraints are kept in terms of Euler parameters, as 
follows: 

<I> <I>(q) 

<I>(rl,PI"" ,rb,Pb) = 0 
The velocity equations are written as 

<i> <l>il 

(11.50) 

=0 (11.51) 

The modified Jacobian matrix of Eq. 11.51 is the same as that of Eq. 11.48. The modi
fied Jacobian matrix and the modified vector y# can be obtained in explicit forms for 
the constraint equations of Chap. 7. 

Example 11.1 
The modified velocity and acceleration equations and hence the modified Jacobian 
matrix and vector y# for the constraint equation of Eq. 7.3 are derived here. The 
velocity equation is 

<b(III. 1) 

=0 (1) 

The entries of the modified transformation matrix could have been found directly 
from Table 7.2: 

(2) 
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This result agrees with the coefficient of w: in Eq. 1. The time derivative of Eq. 1 
yields 

ii,(nl, I) - [ TA -I TA ~I] [w:] + ('TA -I TAo ~I) 1 
'I" = -Sj iSi, - Si jSj • 1 Sj iSi - Sj iSi Wj 

W} 

+ ( .TA ~I TAo ~I) 1 0 
-Sj jSj - Sj jS) Wj = 

The last two terms of Eq. 3 can be simplified to obtain 

1'#(nl,l) .TA ~I 1 + TAO -S' I + s·TA ~S' 1 + sTAo TS~I 
Sj jSjWi Sj i iWi ; j jWj i j jWj 

·T- + T - - + 'T- + T - -SjSjWj SjWjSiWj SiSjWj S;WjSjWj 

2·T. T ~. T - • 
- SjSj - SjWjSj - SjWiSj 

(3) 

2 ·T . + ·T- + ·T~ (4) - SiSj SjWjSj SjWjSi 

This example illustrates how the modified Jacobian matrix and vector 1'# 
can be calculated. Table 11.1 shows the components of the Jacobian matrix and 
vector 1'# for some of the most common constraints. This table provides sufficient 
information to assemble in the form of 11.49 the complete set of equations of 
motion for mechanical systems with the more commonly used constraints. Numer
ical methods for solving these equations are discussed in Chap. 13. 

TABLE 11.1 Components in the Expansion of the Most Common Constraints13 

cI> 

4>(111,1) 

4>(112,1) 

cI>(pl.2) 

cI>(p2.2) 

cI>(,.3) 

4>(,-,.1) 

cl>lm) 
rl !cI>~7)L; cI> (III) 

r) !cI>~7)LJ y# 

OT -sJs,A, OT -s;sjAj -2sTsj + S;W,Sj + sJWjS, 

-sf -(d + sflsiAi ST 
1 -sfsJAj -2dTsi dT WiSi + S;(WiS: - w/,J) 

0 SjSiAi 0 -SisjAj -2~iSj + SjWjSj SiWjSj 

-Sj (SiS: + ds;)A j Si -S;l,JAj -2~id + Si(WiSf WjSJ) + dWiSi 

-SfAj -I S;Aj -wisf + WjS; 

-2dT 
2d

T
sfAi 2dT -2dTsfAj -2dTd + 2dT(WiSf - WX) 

PROBLEMS 

11.1 Show that matrix J? is singular. 

11.2 Express matrix J~ in terms of J i and G i • 

11.3 From the rotational equations of motion given in 1 t .6, 

. (a) Determine the inverse of the coefficient matrix [!; ~ 1 
(b) Solve Eq. 11.16 for vector [pT,O'li 
(c) Show that O'i obtained in part (b) is the same as that shown in Eq. 11.13. 

1104 Solve Eq. 11.17 for Pi' 
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11.S The kinetic energy of a body is defined as 

Ti tr;Nir; + ~w;TJI wi 
Express the kinetic energy in terms of: 

(a) Wi and J i 

(b) Pi and J~ 

11.6 The angular orientation of a body is given as Pi = [0.5,g.7, -O.5,O.lf. Point P on this 
body has the local coordinates siP [1, -1, 2]T. A force f acts on this body and has local 
components ff [3, -2, -If. Find the components of the moment of this force in the fol
lowing forms:; 

(a) nl 

(b) ni 
(c) n~ 

11.7 Two bodies are connected to each other by a spherical joint as shown in Fig. P.II. 7. In 
addition to the gravitational force, two external moments, n, and n2, and one external force, 
7" act on the bodies, where 7, is parallel to the y axis. 
(a) Write the equations of motion for thebodies in terms of angular accelerations. 

(b) Show the elements of the vector of forces in terms of the applied loads. 

(c) From the equations of motion, show the components of the reaction forces acting at P 
on body i and body j. 

--f-~7'--- fl 

Figure P. 11.7 

11.8 Verify the entries of the modified Jacobian matrix and vector yO' listed in T-able 11.1. 



12 
Numerical Methods 

for Ordinary 

Differential Equations 

The dynamic analysis of a mechanical system requires the solution of the equations of 
motion. The equations of motion, planar and spatial, are either a set of differential equa
tions or a set of mixed differential and algebraic equations. In general, the equations of 
motion must be solved numerically, although it might be possible to obtain a c1osed
form solution to the equations of motion for highly simplified systems. 

This chapter provides a brief review of numerical methods for solving ordinary 
differential equations. It is assumed that the reader has some background in the area of 
numerical methods. 

12.1 INITIAL-VALUE PROBLEMS 

A first-order differential equation may be written as 

Y = fey, t) (12.1) 

This equation has a family of solutions y(t). The choice of an initial value yO serves to 
determine one of the solutions of the family. The initial value yO could be defined for 
any value of to, although it is often assumed that a transformation has been made so that 
to = O. This does not affect the solution or methods used to approximate the solution. 

If more than one dependent variable is involved, the problem then is to solve a 
system of first~order equations; e.g., 

YI = .ft(Y]'Y2' t) 
Y2 = A(YI,Y2,t) 

(12.2) 

Given the initial values y~ and y~, if the functions.ft andf2 are regular; i.e., continuously 
differentiable, then there will be a unique solution of the system. 

301 
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Any nth-order ordinary differential equation that can be written with the highest
order derivatives on the left-hand side may be written as a system of n first-order equa-
tions by defining n 1 new variables. For example, the second-order equation 

YI f(Yl,YI, t) (12.3) 

can be written as the system 

Yl = Y2 

Y2 f(YJ'Y2' t) 
(12.4) 

In discussing methods of solving initial-value problems, it is convenient to think 
of a single equation in the form of Eq. 12.1, although the same methods can also be 
applied to a system of equations. These methods involve a step-by-step process in which 
a sequence of discrete points to, t I, t 2

, ••• is generated. The discrete points may have 
either constant or variable spacing hi = t i+ 1 ti, where hi is the step size for any dis
crete point ti. At each point ti, the solution y(t i) is approximated by a number yi. 

Since no numerical method is capable of finding y(t i
) exactly, the quantity 

(/ = Iy(ti) /)1 (12.5) 

represents the total error at t ti. The total error consists of two components: a trun
cation error and a round-off error. The truncation error depends on the nature of the 
numerical algorithm used in computing /. The round-off error is due to the finite word 
length in a computer. In the rest of the text, when the term numerical error is used, we 
mean truncation error unless stated otherwise. 

Although there exist many algorithms for solving initial-value problems, most of 
them are based on two basic approaches: Taylor series expansion and polynomial 
approximation. The objective of Sec. 12.2 and 12.3 is to present general formulas for 
some of these methods, without proof. Interested readers may refer to numerous text
books for the derivation of details and for error analysis for these methods. Unless other
wise stated, in order to simplify matters, a uniform step size hi = h is assumed in 
formulation of the algorithms. 

12.2 TAYLOR SERIES ALGORITHMS2 

Assume that y(t) is the exact solution to .the initial-value problem 

Y f(y, t) 

where 

(12.6) 

yO y(tO) (12.7) 

If y(t) is expanded in a Taylor series about t t i and the expansion is evaluated at 
t = til \ it is found that 

. . ' (t i) "(ti) 
y(t,+l) = y(t') + -y-h + Lh2 + higher-order terms 

l! 2! 
Substituting Eq. 12.6 into Eq. 12.8 yields 

y(tH1
) = y(ti) + hf(yi,ti

) + ~:j(/,ti) + higher-orderterms 

(12.8) 

(12.9) 
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The first-order TayJor algorithm, also known as the forward Euler algorithm, is 
obtained by eliminating f(/, t i

) and the higher-order terms in Eq. 12.9: 

yHl = yi + hf(yi, i) (12.10) 

Truncating Eq. 12.9 of all but the first two terms makes Eq. 12.10 an approximate solu
tion to the initial-value problem of Eqs. 12.6 and 12.7. 

The second-order Taylor algorithm is obtained by truncating Eq. 12.9 of only the 
higher-order terms, to obtain 

, "h 2
., , 

y' + hf(y', t') + 21 f(y', t') 

The term f(/, t i
) can be expressed as follows: 

f• ( i ti) = af. + af 
y, a/ at 

= af f + af 
ay at 

(12.11) 

(12.12) 

Similarly, higher-order Taylor algorithms may be derived. However, the higher the 
order, the more derivative terms of f( y, t) with respect to t must be evaluated. This is a 
major drawback of the Taylor algorithms. Consequently, they are seldom used except 
for the lower-order algorithms. 

12.2.1 Runge·Kutta Algorithms2 

The Runge-Kutta algorithms obviate the need for evaluating the partial derivatives and 
still retain the same order of accuracy as the Taylor algorithms. A second-order Runge
Kutta algorithm is stated as 

(12.13) 

where 

(12.14) 

Note that a 7'= 0 is a free parameter. Consequently, an entire family of second-order 
Runge-Kutta algorithms can be derived by assigning different values to a. One common 
choice is the modified trapezoidal algorithm, in which a ~; then, 

yHl = yi + ~f(/,ti) + ~f(i + hf(i, ti), t i + h) (12.15) 

Another common choice is the modified Euler-Cauchy algorithm, in which a 1: 

yHl = yi + hf(i + ~f(ij), t i + ~) (12.16) 

For a larger step size and for greater accuracy, the fourth-order Runge-Kutta 
algorithm is most widely used. This algorithm is given by 

(12.17) 
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where 

g = iUI + 212 + 2[3 + h) 

II = I(/,t i
) 

( . h . h) 12 I y' + , t' + 2 

( . h . h) 13 = I y' + 212,t' + 2 

14 I(yi + h13, t
i + h) 

Since the algorithm is a fourth-order one, the truncation error will remain relatively 
small even for a relatively large step size. The major disadvantage of this algorithm is 
that the function fey, t) must be evaluated four times at each time step. In addition, the 
values of the function are not used in any subsequent computations. Hence, this 
algorithm is not as computationally efficient as some of the multistep algorithms pre
sented in Sees. 12.3 through 12.3.3. 

12.2.2 A Subroutine for a Runge-Kutta Algorithm 

The fourth-order Runge-Kutta algorithm in the preceding section is represented here in 
the form of a subroutine that can be embedded in a program to solve a set of ordinary 
differential equations. This subroutine is written in its simplest form and can be modi
fied easH y . t 

Subroutine RUNGK4. The argument parameters in this subroutine are: 

H 
NSTEP 
N 

y 

F 

Time step 
Number of time steps 
Number of dependent variables (same as the number of differen
tial equations) 
An N-vector of dependent variables y 
An N-vector which upon return will contain y = f(y,t) 

FI, F2, F3, 
F4, YY N-vectors of working arrays 

Subroutine RUNGK4 is as follows: 

SUBROUTINE RUNGK4 (T,H,NSTEP,N,Y,F,F1,F2,F3,F4,YY) 
DIMENSION Y(N),F(N),F1(N),F2(N),F3(N),F4(N),YY(N) 
Inl=0.5*H 
TS-T 
\\RITE (1,200) 
DO 100 l=l,NSTEP 

\\RITE (1,210) T,(Y(J),J-1,N) 
CALL DIFEQN (T,N,Y,F) 
DO to J-t,N 

tThe subroutine RUNG4 in the program DAP of C'hap. 10 is a slightly modified version of this subroutine. 
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10 F1 (J )=H'F( J) 
TI=T+HH 
JX) 20 J=1,N 

20 YY(J)-Y(J)+0.S'F1(J) 
CALL DIFEQN (TI,N,YY,F) 
JX) 30 J=l,N 

F2(J)=H*F(J) 
30 YY(J)=Y(J)+0.S'F2(J) 

CALL DIFEQN (TI,N,YY,F) 
TI=T+H 
JX) 40 J=1,N 

F3( J)=H'F( 1) 
40 YY(J)=Y(J)+F3(J) 

CALL DIFEQN (TI,N,YY,F) 
T=TS+H*FLOAT( I ) 
JX) SO J=1,N 

F4(J)=H'F(J) 
SO Y(J)=Y(J)+(F1(J)+2.0·F2(J)+2.0·F3(J)+F4(J))/6.0 

100 CONTINUE 
200 FORMAT (SX,' TIME Y') 
210 FORMAT (SX,4F10.6) 

RETURN 
END 
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This subroutine is written in a form that will handle one or more first-order differ-
ential equations. It calls subroutine DIFEQN for evaluating y f(y, t). 

Example 12.1 
Write a computer program, making use of subroutine RUNGK4, to solve y = -l 
with the initial condition yO = 1. 

Solution A main program and two subroutines INITL and DIFEQN for this 
problem are: 

C*····~IN PROG~***'*** 
DIMENS ION A( 80) 

C .•.•. Data 
N=1 
T=O.O 
H=O.l 
NSTEP-SO 

C ..••. Po inter 8 

Nl=l 
N2-Nl+N 
N3-N2+N 
N4=N3+N 
NS-N4+N 
N6-NS+N 
N7=N6+N 

C ..... lnitial Conditions 
CALL INITL (N,A(Nl)) 

C ...•• lntegration 
CALL RUNGK4 (T,H,NSTEP,N,A(Nl),A(N2),A(N3),A(N4),A(NS), 

+ A(N6) ,A(N7)) 
STOP 
END 

SUBROOI'INE INITL (N, y) 
DIMENSION yeN) 
Y(1)=1.0 
RETURN 
END 
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SUBROUTINE DIFEQN (T,N,Y,F) 
DIMENSION Y(N),F(N) 
F(1)=-Y(1)**2 
REWRN 
END 

Subroutine INITL is used to specify the initial conditions. The result of this nu
merical computation can be compared against the exact solution Y = 1/0 + t). 

Example 12.2 
The equations of motion for the spring-mass system shown in the schematic dia
gram are: 

mlXl = -kl(x} - l~) - dlx1 + k2(X2 - Xl l~) 

m2X2 = -k2(X 2 Xl - l~ + k3(d X2 l~) d3x2 

Solve these equations numerically for 

d = 3, l~ l~ 1° -3 - 1 , kl k2 k3 100, 

m l = m2 4, d l = d3 40 

and the initial conditions 

x? = 1.0, ·0 
XI 0, x~ = 1.9, ·0 

X 2 ° 
Solution The second-order differential equations can be converted to first-order 
equations by defining four new variables: 

»1 = Y2 

kl 0 d 1 k2 ( 0 »2 -(Yl - 'I) - -Y2 + - Y3 - Yl - 12) 
m1 m 1 m1 

In the main program, N is set to N = 4, and the INITL and DIFEQN subroutines 
are written as follows: 

SUBROUTINE INITL (N, y) 
DIMENSION yeN) 
Y(1)=1.0 
Y(2)=O.O 
Y(3)=1.9 
Y(4)=O.O 
RETIJRN 
END 
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SUBROUTINE DIFEQN (T,N,Y,F) 
DIMENSION Y(N),F(N) 
DATA Al/2S.0/,A2/10.0/,AJ/2S.0/,A4/2S.0/,AS/IO.OI 
DATA ELOl/l.0/,EL02/1.0/,EL03/1.0/,D/3.01 
F( 1) = y(2) 
F(2) = -Al*(Y(1)-EL01)-A2*Y(2)+A3*(Y(3)-Y(1)-EL02) 
F(3) = Y(4) 
F(4) = -A3*(Y(3)-Y(1)-EL02)+A4*(D-Y(3)-EL03)-AS*Y(4) 
RETURN 
END 
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The result of this computation is shown in the accompanying graph for x I and 
d X2 plotted versus time. 
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Any algorithm that is capable of calculating the exact value y(t it I) for an initial-value 
problem that has an exact solution in the form of a kth-degree polynomial is called a nu
merical integration formula of order k. Of course, if the exact solution is not a polyno
mial, a numerical integration formula will generally give only an approximate value yi+l 

and not the exact value y(t itl ). In view of a classical theorem that asserts that any con
tinuous function can be approximated arbitrarily within any closed interval by a polyno
mial of sufficiently high degree, it is clear that even if the solution is not a polynomial, 
a numerical integration formula of sufficiently high order can, in principle, be used to 
calculate y(t itl ) to any desired accuracy. In practice, however, the amount of computa
tion and round-off error increases with the order of the integration formula and only or
ders of k < 10 are of practical value. 

In contrast to the procedure in the Taylor and Runge-Kutta algorithms, informa
tion from previous time steps is utilized in most numerical integration formulas to com
pute y it I. A numerical integration formula is generally of the following form: 
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(12.18) 

where ao, aI' ... , ap , b ... 1, bo, bl , ••• ,bp are 2p + 3 coefficients that are to be deter
mined such that, if the exact solution is a polynomial and if the previously calculated 
values l,yH, ... ,/-P andf(l, ti),f(yH, t H ), . .. ,f(l-P, t i

-
p

) are assumed to be cx
act, then Eq. 12.18 gives the exact value of yi+ 1. A numerical integration algorithm with 
p ?: 1 is called a multistep algorithm, in contrast to the Taylor and Rungc-Kutta al
gorithms, which are single-step algorithms. 

Note that Eq. 12.18 defines yi+1 only implicitly, since the unknown yi+ lappears on 
both sides of the equation. Thus, algorithms with b_ 1 ¥= ° are called implicit algorithms. 
If b_1 0, the algorithm is an explicit algorithm, since the unknown does not ap
pear on the right side of the formula. Taylor and Runge-Kutta algorithms can be clas
sified as explicit algorithms. 

12.3.1 Explicit Multistep Algorithms2 

Explicit multistep algorithms known as Adams-Bashforth algorithms are obtained by setting 

p k - 1 

a l a2 = . . . a k- 1 = 0 (12.19) 
b_ 1 = 0 

in Eq. 12.18, where k is the degree of the polynomial. Table 12.1 shows four formulas 
for first- through fourth-order Adams-Bashforth algorithms. Examination of Table 12.1 
shows that the kth-order Adams-Bashforth algorithm requires k starting values 
yi,/\ ... ,yi-Hl. 

TABLE 12.1 Adams-Bashforth Algorithms 

Order yi+' = 

I~ yi+ If' 
2nd yi + h(tf' - t/H) 
3rd l + h(fil - M/H + Mi-I) 

4th yi + h(~f' - */H + ~r2 - !.JH) 

where Ii =/(l,l~ 
f'-j""'/(yH,t"j), j 1,2,3 

12.3.2 Implicit Multistep Algorithms2 

Implicit multistep algorithms known as Adams-Moulton algorithms are obtained by 
setting 

p = k 2 

a l = a2 = ak - 2 0 
(12.20) 

in Eq. 12.18, where k is the degree of the polynomial. Table 12.2 shows four formulas 
for first- through fourth-order Adams-Mouton algorithms. Examination of Table 12.2 
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TABLE 12.2 Adams-Moulton Algorithms 

Order yi+1 

1st y' + hf'+' 

2nd y' + h(!.r+ I + !f') 

3rd y' + h(fif'+' + hf' - ·hri- I) 

4th y' + h('h.r+ ' + ~fi - ?Af'-I + -i4f'-') 

where .r+ 1 = f(yHI,t i+l
) 

f' = f(y', til 
.r-i = f(yi-i, ti-i), j = 1,2 
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shows that the kth-order Adams-Moulton algorithm requires only k - 1 starting values 
yi,yi-I, ... ,yi-k+2. These formulas, if employed by themselves, are solved iteratively. 
In every time step, an initial estimate is given for yH I, and then f( yi+ I, t i+ I) is evalu
ated. These values for y and f substituted in the formula yields an improved value for 
yi+ I, and the sequence is repeated until very little change in yi+ 1 is observed. The num
ber of iterations to achieve convergence on yi+1 depends on the estimated value of yi+l. 

12.3.3 Predictor-Corrector Algorithms 

Consider the implicit numerical integration algorithms in Sec. 12.3.2. In these 
algorithms, an estimate of yi+1 is required to start the iteration of the fonnula. In order 
to obtain a relatively good estimate for i+ l

, an explicit formula can be used. For exam
ple, consider the fourth-order Adams-Moulton fonnula of Table 12.2 and the third-order 
Adams-Bashforth fonnula of Table 12.l. Both formulas require values of fey, t) at ti, 
t i

-
I
, and t i

-
2

• If the third-order explicit fonnula is employed, a good approximation on 
yi+1 can be obtained. This step is known as a predictor step. Then, the fourth-order 
implicit formula is employed to correct the predicted value of yi+ I. This step is known 
as a corrector step. Sometimes an algorithm may iterate on the corrector step. 

In most predictor-corrector algorithms, if a kth-order implicit formula is used as 
the corrector, a k - 1st-order explicit fonnula is used as the predictor. Although it is 
possible to employ lower-order Taylor or Runge-Kutta formulas as predictors, numeri
cally it is more efficient to stay with Admas-Bashforth formulas for prediction. 

12.3.4 Methods for Starting Multistep Algorithms2 

In contrast to single-step algorithms, multistep numerical integration algorithms are not 
self-starting, since initially only yO and to are given. For example, it suffices to consider 
the simpler case in which b_ , = 0 in Eq. 12.18 and write outy' explicitly as follows: 

yl = aoyo + a1y-1 + ... + apy-p 

+ h[bof(yO, to) + bd(y-l, t- I + ... + bpf(y-P, t-P)] (12.21) 

Equation 12.21 shows that the values y-I ,y-2, . .. ,y-P must be given, in addition to yO 
and to, in order to compute yl. In general, to compute yi+l, the p + 1 preceding values 
of yare needed, assuming a uniform step size h. To obtain these values, a single-step 
algorithm must be used at least p + 1 times before a multistep algorithm can be ini-
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tiated. Because of its high degree of accuracy, the fourth-order Runge-Kutta algorithm is 
frequently used to provide these initiating values. 

Efficient and accurate numerical algorithms for solving initial-value problems are 
almost always a combination of single-step and multistep algorithms, with the former 
used only to obtain the starting values for initiating the latter. Multistep algorithms are 
used to compute the remaining points, because they are often computationally more effi
cient and with them the propagation of both truncation and round-off errors can be more 
easily controlled. 

12.4 ALGORITHMS FOR STIFF SYSTEMS2 

A stiff system is referred to as any initial-value problem in which the complete solution 
consists of fast and slow components. Technically, when the eigenvalues are widely 
spread, the system is said to be stiff. If a numerical solution is to display the entire tran
sient response, integration must be performed over a relatively long time interval in 
order to cover the slow component(s) of the response. Furthermore, in order to capture 
the fast component(s) of the response and keep the numerical error within bounds, the 
selected step size must be relatively small. It is clear that carrying integration with small 
t:me steps over a long time interval can make the computer time, even for a small prob
lem, prohibitive or unrealistic. A family of formulas that allow relatively large time. 
steps and that guarantee stability and bounded numerical error is available. These multi
step formulas are known as Gear algorithms. 

The kth-order Gear algorithm is an implicit formula of the form 

yi+l = ao(k)/ + a](k)yi-l + ... + ak_l(k)yi-k+1 + hb_ ,(k)f(/+ l,llI) (12.22) 

where the designation aj(k) emphasizes each coefficient's dependence on the order k. 
The k + 1 coefficients ao(k), ... ,ak_l(k), and b_,(k) are to be determined so that 
Eq. 12.22 is exact for all polynomial solutions of degree k. Table 12.3 shows four for
mulas for first- through fourth-order Gear algorithms. Examination of Table 12.3 shows 
that the kth-order Gear algorithm requires k starting values /, yi-l , ... ,yi-H I. 

TABLE 12.3 Gear Algorithms 

Order 

1st 
2nd 

3rd 

4th 

where 

~/ b H + ~hfi+' 
thi - ftyi-l + + {thfi+l 

+ ~yi-2 _ fsyH + #hfi+l 

f(/+ 1. tit 1) 

Since the kth-order Gear algorithm is an implicit multistep algorithm, it is neces
sary to solve an imp1icit equation in each time step. The kth-ordet formula of Eq. 12.22, 
for a system of equations 

y = fey, t) 



Problems 

can be recast into the form 
k-I 

yi+1 _ hb_If(yi+l, t i+ l ) - L (ajyi-j) = 0 
j~O 

Applying the Newton-Rhapson algorithm to Eq. 12.23 yields 

Llyi+1 = I - b_1 a i+1 yi+l - hb_1f+ 1 - L (ajyi-}) 
( 

fi+l) -I [ k-I] 

ay rl 
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(12.23) 

(12.24) 

where I is an identity matrix. Equation 12.24 is the Newton-Raphson corrector for im
plementing the Gear algorithm. 

12.5 ALGORITHMS FOR VARIABLE ORDER AND STEP SIZE 

So far, it has been implicitly assumed that, given an initial-value problem, a numerical 
integration algorithm of certain "order" is selected and the order remains fixed during the 
entire integration process. Under this assumption, the step size for each time step may 
be optimized by choosing the largest possible value of h for which the truncation error 
remains bounded below the user-specified maximum allowable error, and for which the 
algorithm remains numerically stable. For large systems of equations, the amount of 
computation does not increase substantially when the order of the algorithm is increased. 
Consequently, it often turns out to be more efficient to vary both the order and the step 
size during each time step. 

From a programming point of view, changing the order requires only selecting a 
set of coefficients that define the multistep algorithm of the desired order. Increasing 
(decreasing) the order would require an increase (decrease) in the number of coeffi
cients, with a corresponding increase (decrease) in storage space. In most cases of prac
tical interest, the order may vary from k = 1 to k = 10. Thus, enough "past" values 
must be stored that the highest-order algorithm can be implemented whenever called for. 
However, stored "past" values may not be needed if a lower-order algorithm is used. In 
any event, the unused values cost very little, since they require only a modest amount of 
storage space. 

Unlike change of order, which requires little extra programming and computa
tional effort, changing the step size could entail considerable additional computation 
time. Often, the previously stored "past" values corresponding to step size h must be 
interpolated to yield a set of transformed "past" values corresponding to the new step 
size h. 

PROBLEMS 

12.1 Solve the following types of problem with subroutine RUNGK4: 

(a) A first-order differential equation 
(b) A second-order differential equation 
(c) A system of second-order differential equations. 
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Repeat each problem for different values of integration time steps and compare the results. 
If the exact solution to the problem is available, compare that against the numerical solu
tions. 

12.2 Refer the Table 12.1 and develop subroutines for the following integration algorithms: 

(a) The third-order Adams-Bashforth 

(b) The fourth-order Adams-Bashforth 

12.3 Refer to Table 12.2 and develop subroutines for the following integration algorithms: 

(a) The third-order Adams-Moulton 

(b) The fourth-order Adams-Moulton 

12.4 Develop a predictor-corrector integration subroutine by employing a third-order Adams
Bashforth algorithm and a fourth-order Adams-Moulton algorithm. 

12.5 Compare the subroutines developed in Probs. 12.2 to 12.4 in terms of accuracy and compu
tational efficiency by following a process similar to that stated in Prob. 12.1. 

12.6 Refer to the software library of your computer and experiment with the available integration 
subroutines. 

12.7 Find a computer program for a variable step/order predictor-corrector numerical integration 
algorithm. t 
(a) Implement this program on your computer. 

(b) Compare this algorithm with the subroutines developed in Probs. 12.2 to 12.4. 

12.8 Experiment with numerical integration programs based on Gear algorithms. + Compare these 
algorithms and those developed in Probs. 12.2 to 12.4. 

tAn excellent variable step/order predictor·corrector algorithm can be found in L. F. Shampinc, and 
M. K. Gordon, Computer Solution of Ordinary Differential Equations: The lnitial Value Problem, W. H. Free
man, San Francisco, 1975. 

IMost scientific software libraries furnish numerical integration packages based on Gear algorithms. 
For more detailed discussion on these algorithms, refer to C. W. Gear, Numerical lnitial Value Problems in 
Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N.J., 1971. 



13 
Numerical Methods 

• 
In 

Dynamics 

In this chapter several algorithms for the numerical solution of the equations of motion 
are presented. These algorithms utilize the numerical methods given in Chap. 12 for 
solving ordinary differential equations. If a mechanical system does not have any kine
matic joints, Le., if it is an unconstrained system, then these algorithms can be employed 
directly. However, if a mechanical system contains kinematic joints, and if Cartesian 
coordinates are employed in deriving the equations of motion, then these numerical 
integration algorithms must be modified. 

The techniques and algorithms that are discussed in this chapter can be applied to 
solve the equations of motion when they are derived either in Cartesian coordinates or in 
other coordinate systems, such as Lagrangian coordinates. If the Lagrangian coordinates 
describing the configuration of a system are the generalized coordinates (i. e., if the 
number of Lagrangian coordinates is equal to the number of degrees of freedom), then 
the equations of motion are ordinary differential equations with no algebraic constraints, 
regardless of the presence or the absence of any kinematic joints. If the number of 
Lagrangian coordinates is greater than the number of degrees of freedom, then the 
equations of motion are mixed algebraic-differential equations. This is the same type of 
equation as in the case of Cartesian coordinates for systems containing kinematic joints. 

13.1 INTEGRATION ARRAYS 

A numerical solution to the equations of motion may be obtained by utilizing any com
monly used numerical integration algorithm. These algorithms are useful in solving first
order differential equations that take the form 

y = f(y,t) (13.1) 
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If there are n second-order differential equations of motion, they can be converted to 2n 
first-order equations by defining the y and y arrays as follows: 

y [
Position coordinates] y' [velocities J 

Velocities' Accelerations (13.2) 

Although the arrangement of the elements in y and y is quite arbitrary, the two arrays 
must follow a similar order. For example, if the jth element of y contains Xi' then the jth 
element of y must contain Xi' 

The process of numerical integration at time t = t i can be interpreted by the fol
lowing diagram: 

. (i) (integration) (i A ) 
Y t , Y t + ut (13.3) 

In other words, velocities and accelerations at t t i yield coordinates and velocities at 
t = t i + At. 

13.2 KINEMATICALLY UNCONSTRAINED SYSTEMS 

The equations of motion for b unconstrained bodies containing n coordinates are repre
sented by 

Mq = g (13.4) 

If there are no mathematical constraints t on the coordinates, then the number of d~grees 
of freedom is also n. A numerical solution to Eq. 13.4 can be found in the same manner 
as that shown in Example 12.2. In the following algorithm, called the direct integration 
algorithm (DI), arrays y and y are defined as follows: 

y = [:] y = [:] 

ALGORITHM DI-1 

(a) Main routine 

(a.l) Specify initial conditions for q and q. 
(a.2) Transfer the contents of q and q to vector y [qT, qTf. 
(a.3) Enter the numerical integration routine (NI). 

(b) Numerical integration routine 

(This routine solves initial-value problems of the form y = f(y, t) from an ini
tial time to to a final time te

) 

tPor an unconstrained system of bodies in spatial motion, there are no kinematic constraints; however, 
there is one mathematical constraint for each set of Euler parameters. 
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(b.l) In the process of numerical integration, f(y, t) must be evaluated. For this 
purpose enter a DIFEQN routine with known yi and t i to determine 
f(yi, til. 

(c) DIFEQN routine 

(col) Transfer the contents of y to q and q. 
(c.2) Evaluate M (since M is constant, it needs to be evaluated only once) and g. 

(c.3) Solve Eq. 13.4 for q. 
(c.4) Transfer the contents of q and q to y. 

(coS) Return. 

During an integration time step, the routine DIFEQN is called several times. The 
contents of yare changed automatically by the integration routine, according to the al
gorithm. For example, in the Runge-Kutta subroutine of Sec. 12.2.2, the subroutine 
DIFEQN is called four times in every integration time step. The arrays y and yare 
named Y and F, respectively, in that subroutine. 

13.2.1 Mathematical Constraints 

A kinematically unconstrained system may be represented by a set of dependent coordi
nates. This situation exists when Euler parameters are employed as rotational coordinates. 

The complete set of equations of motion is written, from Eq. 11.25, as 

pip; - I = 0 

pip; 0 

i=l, ... ,b 

i=1, ... ,b 

(13.5) 

(13.6) 

(13.7) 

An algorithm for solving Eqs. 13.5 through 13.7 can be developed by a slight modifica
tion to algorithm DI-l: 

ALGORITHM DI·2 

(a) and (b) the same as for DI-l. 

(c) DIFEQN routine 

(c.l) Transfer y to q and q. 
(co2) Evaluate M*, P, g*, b*, and c. 

(co3) Solve Eq. 13.7 for q and u. 
(co4) Transfer q and q to y. 

(coS) Return. 

In this algorithm, the artificial Lagrange multipliers u are evaluated as a by
product when Eq. 13.7 is solved. This algorithm requires correct initial conditions on Pi 
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and Pi' i I, ... ,b. Since a numerical integration algorithm yields only an approxi
mate solution to the exact response, the computed values for Pi and Pi may contain some 
numerical error after several time steps. Therefore, Eqs. 13.5 and 13.6 may no longer be 
satisfied. If the accumulation of the error is not corrected or controlled, erroneous results 
may be obtained. Two methods for correcting the numerical error are discussed in the 
following. 

Method 1. The numerically integrated values for the Euler parameters of body 
i at any time step are denoted by Pf, which may not satisfy Eq. 13.5; i.e., it may be that 

(13.8) 

where 8 represents the violation in the constraint. In this case, the transformation matrix 
Ai, calculated in terms of pi, will lose the orthogonality condition; i.e., the result will 
be that 

AiT Ai r" I 

A correction in pi by lO can be found to yield a corrected set of Euler parameters, as 
follows: 

Pi = pi + lO 

which will satisfy Eq. 13.5. An infinite number of lO vectors can be found for this 
purpose. 

A popular method for evaluating the best set of lO vectors is to minimize the sum 
of squares of the elements of lO as follows: 

Minimize ft = lOT lO 

subject to the constraints of Eq. 13.5 

Minimizeh 

This yields: 

or 

1)A 

p* (I + A)p 

Substitution of this equation in Eq. 13.8 gives (1 + A)2 = 1 + 8 which results in 

(a) 

_ 1 * P - -vT+8 P (13.9) 

This is the correction fonnula for the Euler parameters. All four parameters are nor
malized by the same quantity, and in such a way that only the angle of rotation cf> is 
affected, not the direction u of the orientational axis of rotation. , 

tIn constrained optimization techniques, the constraint equation(s) can be included in the objective 
function by the use of Lagrange multipliers. 

IThe selection of Eq. a as the objective function for the optimization process is rather arbitrary. If other 
objective functions are selected, different correction formulas are obtained. Somewhat different formula can be 
fnnurl in Rpf ?O 
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The numerical integration error may also yield numerical values for the violation 
of Eq. 13.6 by the elements of Pi: 

(13.10) 

A process similar to the preceding minimization process gives a correction formula for 
the velocities: 

(13.11) 

The correction formulas of Eqs. 13.9 and 13.11 can be included in the algorithm 
DI-2, step c.l. 

Method II. The constraints of Eqs. 13.5 and 13.6 can be treated in much tie 
same way as the kinematic constraint equations. This subject is discussed later in this 
chapter. 

13.2.2 Using Angular Velocities 

If the equations of motion are taken in the form given by Eq. 11.37, a considerable amount 
of computational efficiency can be gained. In this case, vectors y and yare defined 
as follows: 

y=[:] y=[~] 
The dimension of y or y is 13 X b, so that each contains b fewer elements than the 
arrays of Sec. 13.2. The integration of the velocities and accelerations of a typical 
body i is performed according to the following diagram: 

The computed values for Pi and w: are employed in Eq. 6.109 to find Pi' 
An algorithm for dynamic analysis using Eq. 11.37 can be stated by a slight 

modification to algorithm DI-l: 

ALGORITHM 01-3 

(a) Main routine 

(a.l) Specify initial condition for q and h. 

(a.2) Define vector y as y = [qT, hTf. 
(a.3) Enter the numerical integration routine (NI). 

(b) Numerical integration routine 
(Same as DI-l) 

(c) DIFEQN routine 

(c.l) Transfer the translational coordinates and velocities r i and i-;, 
i = 1, ... ,b, from y to q and q. Transfer Pi' i = 1, ... ,b, from y to q 
after correcting for the numerical error. Obtain w:, i = 1, ... , b, from y, 
use Eq. 6.109 to calculate Pi' and then transfer to q. 
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(c.2) Evaluate M (since M is constant in Eq. 11.37, it can be evaluated only 
once), b, and g. 

(c.3) Solve Eq. 11.37 for Ii. 
(c.4) Transfer q and Ii to y. 
(c.S) Return. 

13.3 KINEMATICALLY CONSTRAINED SYSTEMS 

The complete set of equations of motion for a kinematically constrained mechanical 
system is given as 

<I> <I>(q) = 0 (13.12) 

ci> <l>qq 0 (13.13) 

cI> == <l>qq - 'Y 0 (13.14) 

Mq <l>TA q g (13.15) 

These equations may represent the planar equations of motion given in Eq. 9.6, or 
the spatial equations of motion given in Eq. 11.42. In the case of spatial motion, it is 
assumed that the constraints of Eq. 13.12 contain both kinematic constraints and mathe
matical constraints. Therefore, the Jacobian matrix <l>q in Eqs. 13.13 to 13.15 contains 
the P and B matrices of Eq. 11.42. If Eqs. 13.14 and 13.15 are appended together, a set 
of algebraic equations, linear in q and A, is obtained: 

(13.16) 

It should be clear that g, A, and 'Y in Eq. 13.16 represent g* b*, u and A, and c and 
'Y, respectively, in Eq. 11.42. 

A simple but crude method for obtaining the dynamic response of a system repre
sented by Eqs. 13.12 to 13.15 is to employ the direct integration algorithm DI-1 with 
some minor modifications: 

ALGORITHM DI-4 

(a) and (b) the same as in DI-l. 

(c) DIFEQN routine 

(c.l) Transfer y to q and q. 
(c.2) Evaluate M (M is constant in Eq. 9.6, but a function of Pi' i 1, ... ,b, 

in Eq. 11.42), <l>q, g, and 'Y. 
(c.3) Solve Eq. 13.16 for ij and A. 

(c.4) Transfer q and q to y. 
(c.S) Return. 

The initial conditions on q and q must satisfy Eqs. 13.12 aM 13.13. However, on 
account of the numerical integration error, these equations may be violated. In the pre
ceding sections, several methods for circumventing this problem were presented. 
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13.3.1 Constraint Violation Stabilization Method 

The constraint violation stabilization method I is an extension of feedback control theory 
applied to the dynamic analysis of mechanical systems. One of the goals in designing a 
feedback controller is to suppress the growth of error and achieve a stable response. 

In control systems, it is well known that circuits described by second-order differ
ential equations such as 

9=0 (a) 

are unstable, since outside disturbances such as noise (or numerical error, in the case of 
a numerical integration process) can be amplified. In contrast to Eq. a, which is said to 
be an open-loop system, a closed-loop system, such as 

9 + 2ay + f32y 0 

is stable if a and f3 are positive constants. The terms 2ay and f32y are the feedback con
trol terms that achieve stability for the differential equation. 

The violations in the constraints of Eqs. 13.12 and 13.13 are denoted as 

<I> <I>(q*) = e (b) 

and 

(c) 

where q* and q* are the computed values of q and q. Knowing q* and q*, we can find 
the acceleration vector q from Eq. 13.16. For these computed vectors, Eq. 13.14 finds 
the form 

(13.17) 

Vector q* is different from the correct acceleration vector q. The errors in the three 
vectors are 

q* q aq 

q* - q = aq 

q* q aq 
Since q* is integrated to obtain q* in the next step, any error aq subsequently adds 
to any existing error in the velocity vector. It is ideal to have aq = O. But since this is 
an open-loop system, it can be replaced, for the integration process, by the cIosed
loop system 

(d) 
Equation b is expanded about q and the second- and higher-order terms are elimi

nated, to find 

From Eq. c, it is found that 

Premultiplying Eq. d by <l>q yields 

<l>q(q* - q) + 2a<l>q aq + f32<1>q aq = 0 
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or 

(e) 

If the constraint violations E and u are replaced by constraint symbols 4J and <b respec
tively, then Eq. 13.17 and Eq. e yield 

y* = y lacP p24J 

Appending Eq. 13.17 to Eq. 13.15 yields the sta~ilized form of Eq. 13.16: 

g J • 2 
2a4J - p 4J 

(13.18) 

where q represents the computed accelerations. When there is no violation in the con
straints, Eq. 13.18 becomes identical to Eq. 13.16. 

An algorithm CS for the constraint stabilization method can be stated by a slight 
modification to the algorithm DI-4: 

ALGORITHM eS-1 

(a) and (b) are as in DI-l, but in (a) values are assigned to a and p. 
(c) DlFEQN routine 

(c.l) Transfer y to q and q. 
(c.2) Evaluate M, 4Jq , g, and y. 
(c.3) Evaluate 4J and calulate cP 4Jqq. 
(c.4) SolveEq.13.l8forqandA. 

(c.S) Transfer q and q to y. 
(c.6) Return. 

The effect of introducing the feedback terms in Eq. 13. 18 is illustrated in Fig. 13.1, 
with some exaggeration, for a typical response. When both a and p are given zero values, 
which is exactly the method of algorithm DI-4, the numerical result may diverge from 
the exact solution. For nOn7..ero values of a and p, the solution oscillates about the exact 
solution. The amplitude and the frequency of the oscillation due to the stabilization 
terms depend upon the values of a and p. Experience has shown that for most practical 
problems, a range of values between 1 and 10 for a and p is adequate. When a = p, 
critical damping is achieved, which usually stabilizes the response more quickly.19 

Figure 13.1 Schematic representation of 
the exact and numerical solutions to a typi
cal dynamic response. 
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13.3.2 Coordinate Partitioning Method 

The coordinate partitioning methodt controls the accumulation of the numerical error 
quite differently from the constraint stabilization method. This method makes use of the 
fact that the n coordinates q are not independent. If the n coordinates are partitioned into 
m dependent coordinates u and k independent coordinates v, then the velocity vector it 
can be partitioned accordingly into u and v. The integration arrays y and y are defined in 
terms of the independent variables: 

y [:], [:J 
where v is the vector of independent accelerations. The two arrays y and y each have a 
dimension of 2k. 

The kinematic constraints and velocity equations of Eqs. 13.12 and 13.13 can be 
expressed as 

4>(u, v) = 0 (13.19) 

and 
4>uu -4>vv (13.20) 

Equations 13.19 and 13.20 each represent m independent equations in terms of u and u 
respectively. Having v and v from y, we can solve Eqs. 13.19 and 13.20 for u and u; 
then vectors q and it are completely known. At this point Eq. 13.16 is solved for q 
and A. 

An algorithm for the coordinate partitioning method (CP) can be stated, in its 
simplest form, as follows: 

ALGORrrHM CP-1 

(a) Main routine 

(a.1) Specify initial conditions on q and it. 
(a.2) Specify the independent variables v (and v). 

(a.3) Define vector y as y = [vT
, "ry. 

(a.4) Enter the numerical integration routine (NI). 

(b) Numerical integration routine 
(same as for DI-l) 

(c) DIFEQN routine 

(c.1) Obtain v and v from y. 
(c.2) Solve Eq. 13.19 for u using the Newton-Raphson method; q is found. 

(c.3) Solve Eq. 13.20 for u; it is found. 
(c.4) Solve Eq. 13.16 for q and A. 

(c.S) Transfer v and v (from q) to y. 
(c.6) Return. 

tThe coordinate partitioning method was first developed in a planar-motion computer program called 
DADS-2D (dynamic analysis and design system) by Wehage and Haug in 1982.18 The three-dimensional mo
tion version of this program for DADS-3D was first developed by Nikravesh and Chung, 1982. 12 
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The most troublesome part in this algorithm is step c.2. In this step, independent 
coordinates Vi are known and the constraint equations are solved for the dependent coor
dinates ui

. Since the constraints are nonlinear algebraic equations, iterative methods 
must be employed. These require an estimate for u' in every time step. The estimate 
cannot be too far from the correct solution, since if it is it may cause divergence. 
An estimate for ui

, at time ti, can be found by using the information from the previous 
time tH

: 

ui = uH + hUi
-

1 + O.Sh 2iiH 

where h is the time step from t i
-

I to ti. 
Proper partitioning of the coordinates q into u and v is critical in controlling the 

accumulation of the numerical error. In order to keep this error under control, it might 
be necessary to switch from one set of independent coordinates to a different set during 
the integration process. For example, consider the single pendulum shown in Fig. 13.2. 
Since this is a I-degree of freedom system, the dimension of v is 1. For the pendulum 
(the moving body), with coordinates q = [x, y, </> y, two equations can be written: 

x = d cos </> 

y = d sin </> 

If the numerical error in the coordinates is denoted by 8x, 8y, and 8</>, then 

8x = -d sin </> 8</> 

8y = d cos </> 8</> 

In the selection of the independent coordinates, three cases may arise: 

1. v = [x], u = [y, </>y. An error 8x causes errors in y and </>, as follows: 

1 
8</> = d' A,. 8x sm '+' 

8y = 

Figure 13.2 A single pendulum. 
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2. v = [y], u = [x, CPt An error oy causes errors in x and cP, as follows: 

1 
ocp = d cos cP oy 

ox = - sin cP oy 
cos cP 

3. v = rcp], u [x,yf. An error in ocp causes errors in x and y, as follows: 

ox = - d sin cp ocp 
oy = d cos cp ocp 
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A comparison of the three cases reveals that for cp 0 or cp = 1T, case 1 yields large 
errors in cp and y for even a small error in x. However, the errors of the other two cases 
are bounded. Therefore, for these values of cp, or any value of cp in these neighbor
hoods, the selection of x as the independent coordinate is the worst case. Similarly, in 
the neighborhood of cp = ±1T /2, the y coordinate is the worst choice for the indepen
dent coordinate. If the pendulum starts from the initial condition cp = 0 and the y coor
dinate is selected as the independent coordinate, then around cp = ±1T /4 the independent 
coordinate must be switched from y to x in order to keep the error under control. The 
third case shows that if cp is selected as the independent coordinate, the error remains 
bounded regardless of the orientation of the pendulum, and therefore there is no need to 
switch to another coordinate at any time. 

An automatic technique for partitioning the coordinates into the dependent and in
dependent sets is shown in Sec. 13.3.3. During the integration process, some criteria 
must be used to indicate whether the independent coordinates must be redefined. Such 
criteria can be based upon the following observations: 

1. The number of iterations in the corrector step of a predictor-corrector integration 
algorithm keeps increasing from one time step to the next. 

2. The number of iterations in the Newton-Raphson process of step c.2 keeps in
creasing from one time step to the next, i.e., the estimated values for u are getting 
too far from the solution. 

A conservative but safe process is to automatically redefine vector v once every few 
time steps. 

A modified version of algorithm CP-l can be stated that allows for redefining the 
independent and dependent coordinates. 

ALGORITHM CP-2 

(a) and (b) are the same as in CP-l. 
(c) DIFEQN routine 

(c.1) Obtain v and v from y. 
(c.2) Solve Eq. 13.19 for u. 
(c.3) Is it necessary to redefine the independent coordinates? 

If yes, then return to step a.2. 
If no, then continue. 
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(c.4) Solve Eq. 13.20 for U. 

(c.S) Solve Eq. 13 .16 for qand A. 
(c.6) Transfer v and v to y. 
(c.7) Return. 

13.3.3 Automatic Partitioning of the Coordinates 

In step a.2 of algorithm CP-2, an automatic process can be employed to partition the 
coordinates into dependent and independent sets. A matrix factorization technique, such 
as the Gaussian elimination with full or partial (column) pivoting, can be performed on 
the Jacobian matrix for this process. For a mechanical system with m constraints and n 
coordinates, the Jacobian is an m X n matrix. The order of the columns of the matrix 
corresponds to the order of the elements in vector q. After pivoting, the order of 
the columns determines the reordering of the elements of q. The first m elements of the 
reordered q can be used as the dependent coordinates u, and the remaining k elements 
represent the independent coordinates v. 

Example 13.1 

Consider the single pendulum with the oscillating mass shown in Fig. 13.3. Con
straint equations for the ground and for the revolute and translational joints are 
written as 

Xl = 0 

Yl = 0 

1>1 0 

Xl - X2 + 0.5 sin 1>2 0 

Yl - Y2 0.5 cos 1>2 0 

sin 1>2(Y3 - Y2) + cos 1>iX3 - x2) = 0 

1>21>3=0 
The first three equations are the ground constraints on body 1, the fourth and fifth 
equations are the revolute joint constraints from Eq. 4.9, the sixth and seventh 
equations are the translational joint constraints from Eq. 4.12. The first transla
tional constraint is obtained by defining three points on the line of translation 
having local coordinates~; = 0, 71; 0, ~~ = 0, 7j~ = 1, ~; = 0, 71; = O. 

If the vector of coordinates is defined as 

q = [Xl,YI,1>I,X2,Y2,<Pz,X),Y3,<P3f 

then the Jacobian matrix is written as 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

1 0 0 -1 0 0.5 cos 1>2 0 0 0 

0 0 0 0.5 sin 1>2 0 0 0 

0 0 0 -cos 1>2 -sin <P2 CD cos 1>2 sin 1>2 0 

0 0 0 0 0 1 0 0 -1 
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v 

I 
771 

y 

I 
~1-'-X 

(a) 

(b) 

Figure 13.3 A single pendulum with an oscillating mass in two different orientations. 

where 

CD -sin CP2(X3 x2) + cos CP2(Y3 - Y2) 

For the configuration in Fig. 13.3(a), the coordinates of the moving bodies 
are: 

X 2 0043, 

X3 = 0.69, 

Y2 -0.25, 

Y3 = -0040, 

With these coordinates, the Jacobian matrix becomes 

1 2 3 4 5 6 7 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

1 0 0 -1 0 0.25 0 

0 1 0 0 -1 0043 0 

0 0 o -0.5 -0.87 -0.3 0.5 

0 0 0 0 0 0 

8 9 

0 0 

0 0 
0 0 

0 0 
0 0 

0.87 0 

0 
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The column indices corresponding to the order of elements in q are shown at the 
top of the matrix. A Gaussian elimination with partial (column) pivoting yields 

2 3 4 5 8 6 7 9 

0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 o -0.25 0 0 
0 0 0 0 1 o -0.43 0 0 
0 0 0 0 0 1 -0.92 0.58 0 
0 0 0 0 0 0 0 -1 

The order of the column indices shows the reordering of the elements of q as 

q == [X P Y1,CPj,X2'Y2'Y3,CP2,X3 ,CP3f 
Since m = 7 and k 2, vectors u and v are defined as 

u == [XI' Yl, CPl, X2, Yz, Y3' CP2( 

v == [x 3, CP3f 

For the configuration shown in Fig. 13.3(b), the moving bodies have the 
coordinates 

X2 = -0.21, Y2 -0.45, cpz = -25 0 

X3 = -0.42, Y3 = -0.91, CP3 -250 

With these coordinates, the Jacobian matrix becomes 

2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 

1 0 0 -1 0 0.45 0 0 0 

0 1 0 0 -1 -0.21 0 0 0 
0 0 o -0.91 0.42 -0.5 0.91 -0,42 0 
0 0 0 0 0 1 0 0 1 

A Gaussian elimination on this matrix yields 

1 2 3 4 5 6 9 8 7 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 o -0,45 0 0 0' 

0 0 0 0 1 0.22 0 0 0 
0 0 0 0 0 1 0 0.42 -0.91 

0 0 0 0 0 0 0.42 -0.91 
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In this configuration, the appropriate sets of dependent and independent coordi
nates are 

v [Y3,X3f 

The Gaussian elimination with pivoting suggests that for Fig. l3.3(a) the 
appropriate independent coordinates are X3 and rP3 but for Fig. 13.3(b) the appro
priate independent coordinates are x) and Y3' Note that the coordinates of the non
moving body always become part of the set of dependent coordinates. 

Several factors influence the selection of the independent coordinates. One such 
factor is the choice of the unit system. Since not all of the elements of the Jacobian 
matrix have the same physical dimension, their numerical values may form different 
ratios when different systems of unit are employed (e.g., SI units versus the U.S. cus
tomary FPS units). This in effect yields a different pivoting process, and hence a differ
ent set of dependent and independent coordinates. 

The second factor is the type of pivoting. A partial (column) pivoting may yield a 
different result from that given by a full pivoting. Matrix factorization with full pivoting 
may have some advantage, in terms of the numerical error, over the partial pivoting. 
However, it cannot be said that the partitioning of the coordinates through a full pivoting 
process yields a better (in the physical sense) set of independent coordinates. 

Possibly the most influential factor in an automatic partitioning of coordinates is 
the method of matrix factorization. If an L-U factorization process is employed on the 
constraint Jacobian matrix, instead of the standard Gaussian elimination, different sets 
of dependent and independent coordinates may be obtained. The original coordinate par
titioning algorithm with L-U factorization was suggested by Wehage. 18 A brief discus
sion on coordinate partitioning with L-U factorization can be found in Appendix C. In 
recent years, several other matrix factorization techniques have been employed by other 
researchers, such as the singular-value decomposition, the QR decomposition, and the 
Gram-Schmidt process. These techniques offer some advantages over L-U factorization, 
although the main idea remains basically the same. 8,10. II 

13.3.4 Stiff Differential Equation Method 

The method of solving a mixed system of algebraic and differential equations of motion 
presented in this section is completely different in principle from the methods discussed 
in the preceding sections. This method considers the algebraic constraint equations to be 
a special form of differential equation in which the time derivatives of the variables do 
not appear. This assuinption has proved to cause the system equations to become numer
ically stiff. Therefore, a stiff numerical integration method must be applied to solve the 
equations. t 

tThis algorithm has served as a forerunner in the development of the numerical methods in the area of 
mechanical systems. 16 The algorithm has been formulated into a computer program for three-dimensional mo
tion known as ADAMS. 
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In Sec. 13.1, it was stated that the standard numerical integration algorithms are 
designed to solve systems of differential equations of the form 

y = fey, t) (13.21) 

The modified approach taken here allows for the simultaneous solution of mixed alge
braic and differential equations of the form 

g(y,y,t) = 0 (13.22) 

where some components of y may not appear in some of the equations. When none of 
the components of y appear in an equation, that equation is an algebraic equation; other
wise it is a differential equation. 

The kth order Gear algorithm and its corresponding corrector formula are given by 
Eqs. 12.23 and 12.24. In order to modify these formulas to solve a mixed system of 
algebraic and differential equations, Eq. 13.22 is written as 

g(z,t) 0 (13.23) 

where z [yT, fr. The Newton-Raphson formula for this equation is 

g~) 6.z(/) = _g(l) (13.24) 

where I is the iteration number. When the substitution z [yT, Vf is made in 
Eq. 13.24, it is found that 

(13.25) 

For the lth and I + 1st Newton-Raphson iterations, Eq. 12.23 can be rewritten as 
k-l 

(yi+l)(I) _ hb_1W + 1)(1) 2: (ajyi-1 = 0 (13.26) 

k-l 

(yi+I)(I+!l hb_1(yi+l)(I+l) 2: (ad-i) 0 (13.27) 
j=O 

The summation terms in these equations are not a function of the iteration number
they are a function of the information from the lth and previous time steps, so they 
remain constant at each iteration. Subtracting Eq. 13.26 from Eq. 13.27 yields 

(yi+I)(I+1) _ (yi+l)(1) _ hb_I(y'+I)(I+!) + hb_ly+l)(I) = 0 

or 

(13.28) 

which holds true for the i + 1st or any other time step. Substitution of Eq. 13.28 into 
Eq. 13.25 results in the corrector formula 

(g~) + hL, g/l) 6.y(l) = _g(l) (13.29) 

If Eq. 13.22 is of the form 

g(y, y, t) Py + p(y, t) = 0 (13.30) 

where P is a constant matrix or a time-dependent matrix, then Eq. 13.29 can be written 
in a simpler form as . 



Sec. 13.3 Kinematically Constrained Systems 329 

(p~) + _1_ p) .1y(/) = -g(/) 
hb_ t 

(13.31) 

At each time step, the iterative corrector process of Eq. 13.29 or Eq. 13.31 is con
tinued until all of the Newton differences .1y(i) are below a specified tolerance level. At 
each Newton-Raphson iteration, arrays y and yare updated: 

y(l-II) = y(1) + .1y(1) 

y<l+1) = y(i) + _1_.1y(l) 
hb_ t 

(13.32) 

The total-system equations of motion of Eqs. 13.15 and 13.12 are written as 

Ms - 4>~A = g (13.33) 

q s (13.34) 

<I>(q) = 0 (13.35) 

Equations 13.33 to 13.35 may be expressed in the form of Eq. 13.30, where 

and 

p~[r!~] 
p [-~; g] 

y W,qT,..i?y 
The corrector formula of Eq. 13.31 can be employed to solve for the unknown y at 
every time step. In this case, Eq. 13.31 provides 2n + m equations in 2n + m 
unknowns. 

It must be expected that the iterative solution of 2n + m equations, using the 
Newton-Raphson method, may not be successful for every problem. For large systems 
of equations, this method may not be considered efficient. One major drawback of this 
algorithm is the initial estimate on the variables at time t ,0. At the starting time, the 
initial condition on q and q might be available. However, at t to, for almost every 
practical problem, no information on the Lagrange multipliers A can be found. There
fore, starting the Newton-Raphson iteration at t = to for an arbitrary estimate on A may 
cause divergence. 

It was noted at the beginning of this section that treating algebraic equations as 
special forms of differential equations yields numerically stiff systems. This causes arti
ficially high-frequency components in the solution. The high-frequency components of 
the response do not represent the physical system -they are introduced into the solution 
numerically. Because of the presence of the high-frequency components in the re-
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sponse, the time increment h must be chosen relatively small. For small values of h, the 
term l/h in the algorithm can become substantially large. Experience has shown that 
this algorithm cannot be implemented on machines with small word length (4 bytes or 
single precision). Either a machine with a word length of 8 bytes is needed, or double 
precision must be employed. 

13.4 JOINT COORDII\lATE METHOD 

In Table 1.1 of Sec. 1.4.1, a comparison was made among three different coordinate 
systems in terms of various aspects of formulating the equations of motion. The table 
showed, in a relative sense, that if a set of generalized coordinates (in which the coordi
nates are equal in number to the number of degrees of freedom) is employed, derivation 
of the equations of motion can be quite difficult. However, computational efficiency in 
solving these equations is gained. In contrast, employing Cartesian coordinates yields 
easy derivation of the equations of motion, but computational efficiency is lost. The 
joint coordinate method takes advantage of Cartesian coordinates for easy formulation, 
and Lagrangian coordinates for computational efficiency. This is done by numerically 
combining the two schemes of formulation. This method is based on the velocity trans
formations developed by lerkovsky. 7 

Consider two bodies i and j connected by a revolute joint as shown in Fig. 
13.4(a). If the relative angle between the two bodies about the joint axis is denoted by 0, 
then, for known coordinates of body i and known 0, the coordinates of body j can be 
found; i.e., 

qj = «r)(qi'O) 

If the two bodies are connected by a translational joint, as in Fig. 13.4(b), a similar for
mula can be found: 

qj «1)( qi, 0) 

where 0 indicates the relative distance between the two bodies. If there are 2 degrees of 
freedom between the two bodies, as there are for the universal joint shown in Fig. 
13.4(c), then there are two relative angles, 0) and O2, denoted by Oij [0),02Y: 

qj f(U)(qi,Oij) 

(s) (b) (e) 

Figure 13.4 Two bodies connected by (a) a revolute joint. (b) a translational joint. and 
(c) a universal joint. 
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In general, if two bodies i and j are connected by a kinematic joint having relative (joint) 
coordinates (Jij' then the coordinates qj can be expressed as follows: 

qj f(C)(qi' (Jij) (13.36) 

The number of relative coordinates in (Jij is equal to the number of relative degrees of 
freedom between the two bodies, which is dependent only on the kinematic joint con
necting the bodies. 

A similar expression can be stated for velocity calculation. If the relative velocity 
between bodies i and j is described as OJ), then qj ean be expressed as follows: 

qj f(V)(q;, OJ) (13.31) 

A similar but inverse expression can be stated for the accelerations. If it is as
sumed that the absolute accelerations it and tij are known, then the relative acceleration 
can be found as 

Bij ra)(tii' tij) (13.38) 

Explicit formulas for coordinate, velocity, and acceleration computations (Eqs. 
13.36 through 13.38) can be derived for a variety of kinematic joints.9 This is left as an 
exercise to the interested reader. 

13.4.1 Open-Chain Systems 

Consider the open-chain system shown in Fig. 13.S(a), containing one branch and one 
grounded body (called the base body). Consecutive bodies are connected by kinematic 
joints. The system may contain force elements that are not shown in the figure. If the 
bodies are numbered from 1 to b, in any desired order, then relative coordinates (Jij are 
defined between every two adjacent bodies. In this system, the coordinates of the base 
body q] are constants. A vector of relative coordinates (J is defined as follows: 

(J == [(Jiz, (J~3' •.. , (J~-I)bY 

For numerical integration, the two vectors y and yare then defined: 

(13.39) 

----A 
GO(b-lib 

Base 

(a) (b) 

Figure 13.S A single-branch open-chain system with (a) a fixed base body, and (b) a 
floating base body. 
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If, like the system shown in Fig. 13.S(b), the mechanical system does not have a 
fixed (grounded) base body, then a base body has to be chosen for the system; the result
ing base body is called afloating base body. If, for example, body 1 is chosen to be the 
floating base body, then vectors y and y are defined as follows: 

(13.40) 

The dimension of y or y in the form of either Eq. 13.39 or Eq. 13.40, is twice the num
ber of degrees of freedom of the system. 

For systems with no grounded body, there is at least one floating base body. Al
though the selection of the floating base body is not unique, one body may be a better 
candidate for the floating base body than another. If the mass of one body is substan
tially greater than the mass of any of the other bodies, then that body should be selected 
as the floating base body. It should be noted that the floating base body is not necessar
ily one of the end bodies in the chain. If no one body has a mass substantially greater 
than the others, a floating base body can be selected by employing a simple procedure. 
Each joint is given a number, called the distance, which represents the number of its rel
ative degrees of freedom. For some commonly used three-dimensional kinematic joints, 
the following data can be found: 

Joint Symbol Distance 

Spherical (globular) G 3 
Revolute R 1 
Universal U 2 
Cylindrical C 2 
Translational (prismatic) P 
Screw S 

Each body in the system is treated momentarily as a candidate for the floating base. The 
sum of distances from branch to branch starting from the body under consideration is 
calculated and recorded. When the next neighboring body becomes the candidate, the 
sum of distances decreases in the direction of the move and increases in the other direc
tion. For example, consider the system shown in Fig. 13.6. The following table can be 
found for the sums of distances for all the bodies: 

Floating base Sum of distances Sum of distances 
candidate to left to right 

0 11 
2 10 

3 2 9 
4 3 8 
5 5 15 
6 8 3 
7 11 0 
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Figure 13.6 An open-chain system. 

This table shows that the difference between the left and right distances is smallest for 
body 5, and therefore body 5 is the best candidate for the floating base body. This selec
tion minimizes the propagation of numerical error in the computation. For example, if 
body 5 is selected as the floating base body, then the coordinates of body 1 contain the 
numerical error accumulated from five relative coordinates. But if body 6 is selected as 
the floating base body, then body 1 contains the numerical error from eight relative co
ordinates. Applying this observation to both left and right subbranches for each of the 
bodies shows how the total error can be minimized by this process. 

Some systems may have multiple branches, such as the system shown in 
Fig. 13.7, which has two branches. For position and velocity computation, the process 
starts from the base body and moves toward the last body in each branch. For multi
branch systems, after the process is completed for the first branch, the process can start 
on the second branch from the branching body (in Fig. 13.7, body 3). 

The order of connectivity between the bodies of a system is called the system to
pology. The topology of a system either can be defined by inspection or can be done au
tomatically through graph theory. The topology of the system can be set up in the for of 
a table showing the direction to move in calculating the coordinates (or velocities) of 
body j, once Oij and coordinates (or velocities) of body i are known. For the system of 
Fig. 13.7, this table can have the following entries: 

Body i Body j 

1 (base) 2 
2 

: 1 
3 

branch 1 
4 

3 
j' 1) j + 1 j + 2 

j + 2 branch 2 
b 

This table also serves as a directive for calculating 6ij from qi and qj. 
At this point, an algorithm can be stated for the joint coordinate method. At the 

beginning of each time step, the numerical values for qbase' qbasc, 0, and iJ are known. 
Equations 13.36 and 13.37 yield q and q for all of the bodies in the system. The coeffi
cient matrix and the right-side vector of Eq. 13.16 can be evaluated, since they are func
tions of q and q. Then the solution of Eq. 13.16 yields q and A. Since q is known for all 
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----.~ (Branch 1) 

Figure 13.7 A multibranch open-chain 
system. 

of the bodies, Eq. 13.38 yields O. Then the numerical integration routine moves the pro
cess to the next time step. 

ALGORITHM Je-1 

(a) Main routine 

(a.l) Specify initial conditions for q and <'I. 
(a.2) Specify (or automatically determine) the topology of the system. 

(a.3) Compute initial conditions for 0 and O. 
(a.4) Transfer the initial values to y (Eq. 13.39 or 13.40). 

(b) Numerical integration routing 
(Same as DI-l) 

(c) DIFEQN routine 

(c.l) Transfer the contents of y to qbase, <'Iba,e (if there is a t10ating base body), 0, 
and 0. 

(c.2) Compute q and <'I for all of the bodies (Eqs. 13.36 and 13.37). 

(c.3) Evaluate M, "'q, g, and 1'. 
(c.4) Solve Eq. 13.16 for q and A. 

(c.S) Compute 0 (Eq. 13.38). 

(c.6) Transfer <'I base , quase (if there is a t10ating base body), 0, and 0 to y. 
(c.7) Return. 

In this algorithm, since the coordinates of a body are found from the coordinates 
of the adjacent body and the interconnected joint coordinates, the constraint equations in 
terms of Cartesian coordinates are never violated. The same argument is also true for the 
velocity equations. 

13.4.2 Closed-Loop Systems 

A mechanical system may contain one or more independent closed kinematic loops. For 
example, the system shown in Fig. 13.8(a) contains one closed loop. If the closed loop 
is cut at one of its joints, as in Fig. 13.8(b), the system becomes equivalent to an open
chain system. If the topology of the equivalent open-chain system is defined, then q and 
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(a) (b) 

Figure 13.8 A system containing a closed loop. 

Q for all of the bodies can be computed from qbase, Qb.,e, 0, and O. In this process the 
joint coordinates and velocities of the cut edge(s) are not needed, e.g., the joint coordi
nates between bodies 3 and 4 of Fig. 13.8(b) denoted by Ot4' If algorithm JC-I is ap
plied to this system, it is likely that the kinematic constraints describing the joint at the 
cut edge(s) will be violated. This may happen because the coordinates of q4 are not 
found from q3 and 034 , In order to eliminate the constraint violation at the cut edge(s), 
feedback terms for constraint stabilization can be introduced in Eq. 13.16. 

The constraint equations can be divided into those for uncut edges and for cut 
edges, as follows: 

cI>(q) = 0 

cI>*(q) = 0 

where the asterisk denotes the cut edges. Then, stabilization terms are included in Eq. 
13 .16, as follows: 

[
M cI>T cI>*] [ ..] [ ] 

q q q g 
cI>q 0 0 -A = y 
cI>: 0 0 - A * y* - 2a~* - {icI>* 

(13.41) 

Graph theory provides schemes for determining which joints should be cut. It 
should be noted that the number of joint coordinates for a closed-loop system is larger 
than the number of degrees of freedom of that system. Therefore, for the equivalent 
open-chain representation of a closed-loop system, vector y contains more elements than 
twice the number of degrees of freedom of the actual system. 

PROBLEMS 

13.1 Use algorithm DI-I in conjunction with subroutine RUNGK4. Assuming zero initial veloc
ities, solve the equations of motion from the following problems: 

(a) Prob. 9.6 

(b) Prob. 9.7 
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13.2 For the unconstrained body shown in Fig. P. 13.2, the translational coordinate vector has 
components r = [0,5, 4f, and the local and the global coordinate systems are initially 
parallel. Let a = 0.6, b = 0.4, and c = 0.2, and assume a mass of 50. A force f with a 
constant magnitude of 12 acts at point A and remains perpendicular to plane ABC. 

(a) Write the translation equations of motion (Eq. 11.8). 

(b) Write the rotational equations of motion in terms of Euler parameters (Eq. 11.16). 

(c) Use algorithm DI-2 in conjunction with subroutine RUNGK4 to solve these equations 
for a specified period of time. Assume initial velocities of zero. 

(d) Monitor (plot) the constraint violations for pTp - 1 = 0 and pTp = O. 

(e) Repeat the process for different values of !:.t. 

b 
~--~1-:~------~8 

! I f 

Figure P. 13.2 

13.3 Repeat Prob. 13.2 and correct the computed values of p and p according to Eqs. 13.9 and 
13.11. 

13.4 Repeat Prob. 13.2 and correct the Euler parameters for any constraint violations using the 
constraint violation stabilization technique. __ 

13.5 Employ the coordinate partitioning method to Prob. 13.2. Assume v = [rT, eTf and 
u = [eol. For values of eo close to zero, how would you determine the sign of eo? 

13.6 Repeat Prob. 13.2 and instead of Eq. 11.16, use Eq. 11.18. Then: 

(a) use algorithm DI-3 to solve the equations. 

(b) Monitor the constraint violation for pT p - 1 = O. 

(c) Modify the program to eliminate or control any constraint violation. 

13.7 Why is there no need to correct the computed values of p in algorithm DI-3? 

13.8 State the reasons why algorithm DI-3 is more efficient than algorithm DI-2. 

13.9 Solve the constrained equations of motion from Prob. 9.8 by employing subroutine 
RUNGK4 in the following algorithms: 

(a) Algorithm DI-4 

(b) Algorithm CS-I 

(c) Algorithm CP-l, assuming v = [x"YIo CPIo CP2f 

(d) Algorithm JC-l, assuming (J = [x"YIo cP" (Jl2f 

13.10 In order to develop a planar dynamic analysis program using the joint coordinate method, 
the transformation formulas of Eqs. 13.36 through 13.38 must be derived explicitly for 
some of the standard kinematic joints. Derive these formulatioQs for the three kinematic 
joints shown in Fig. P. 13. 10 and assume: 

(a) (Jij = a for the revolute joint. 

(b) (Jij = d for the translational joint. 

(c) (Jij = [a" a2f for the revolute-revolute joint. 
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In) (b) Ie) 

Figure P. 13.10 

13.11 Modify the dynamic analysis program in Chap. 10 from the direct integration method (Ol) 
and devise tbe following algorithms: 

(a) Coordinate partitioning method 

(b) Joint coordinate method 

13.12 Derive the joint coordinate transformation formulas for a spatial revolute joint in a general 
case where tbe joint axis is not parallel to any of the local coordinate axes. Hint: Assume a 
second local coordinate system {;r"l/r'r attached to body j and initially parallel to {;i"l/i'i. as 
shown in Fig. P.l3 .12. Tbe transformation matrix between {;j "I/j 'j and {;j'''I/j'/;,j, is a constant 
matrix. Tbe joint axis becomes the relative orientational and instantaneous axis of rotation 
between {;i"l/i'i and {;j'''I/r'j'' Therefore, Aij' can be expressed as a function of ()ij' and hence 
of ()ij' 

(i) 

Figure P. 13.12 

13.13 Repeat Prob. 13.12 for special cases where the joint axis is parallel to one of the coordinate 
axes of each body; e.g., wbere {;; is parallel to {;j. Estimate the percentage of computational 
efficiency that is gained in this formulation as compared with the general-case formulation. 

13.14 Derive tbe joint coordinate transformation formulas for a spatial translational joint in a gen
eral case where the joint axis is not parallel to any of the coordinate axes. 

13.15 Repeat Prob. 13.14 for special cases where the joint axis is parallel to one of the coordinate 
axes of each body; e.g., for {;i parallel to {;j. Estimate the percentage of computational effi
ciency tbat is gained in this formulation as compared with the general-case formulation. 

13.16 Derive the joint coordinate transformation formulas for the following spatial kinematic 
joints (each joint allows two relative degrees of freedom): 

(a) A universal joint 

(b) A cylindrical joint 

Derive the formulas for general and special cases. Hint: You may assume a third, fictitious 
body between the two bodies that has one relative DOF with each body. 
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13.17 Derive the joint coordinate transformation formulas for a spherical joint. Hint: Use a rela
tive set of Euler parameters. 

13.18 In order to develop a spatial dynamic analysis program, an approach similar to that of the 
planar program in Chap. 10 can be followed. For developing the first spatial analysis pro
gram, the following formulation and algorithm are suggested: 

(a) Use the formulation of Eq. 11.49 for the equations of motion. Use the elements of 
Table 11.1 for the entries of the Jacobian matrix and vector ,,#. 

(b) Employ the direct integration algorithm DI-4. Do not be concerned initially with the 
constraint violation. After the initial version of the program is developed, an additional 
modification for constraint violation can be implemented, 

(c) Employ a well-developed variable step/order predictor-corrector numerical integration 
package. 

The constraint equations listed in Table 11.1 can be combined to model a variety of com
monly uscd kinematic joints. The elements of this table can be easily programmed by em
ploying elementary vector and matrix operations dealing with 3-vectors and 3 X 3 
matrices. Rearrangement of the equations may yield an elementary operation on 3 x 4 ma
trices (such as'L and G matrices). A careful organization of the program and the use of 
these elementary operations can easily yield a spatial dynamic analysis program, 



14 
Static Equilibrium 

Analysis 

Transient dynamic analysis of complex mechanical systems is often initiated from a po
sition of static equilibrium. Assigning correct values to the coordinates that describe a 
state of static equilibrium can be a complicated (almost impossible) task for large-scale 
interconnected systems of bodies. Therefore, static equilibrium analysis is often 
performed to find the correct set of coordinates prior to the dynamic analysis. As an 
example, consider a spatial multi body system representing a particular vehicle. The 
model contains elements representing the main chassis, the wheels, and the suspension 
and steering systems. The springs of the suspension system may have nonlinear charac
teristics, and so may the stiffness of the tires. Finding the coordinates describing the 
static equilibrium configuration of this system from the available data and figures, or 
even from the actual vehicle, is not a trivial task. 

In this chapter several methods for static equilibrium analysis are presented. These 
methods are based on the general formulation of the governing equations of motion 
given in Eqs. 13.12 through 13.15. The static equilibrium equations presented in this 
chapter can easily be modified to fit any particular formulation or any set of coordinates. 

14.1 AN ITERATIVE METHOD 

Since velocities and accelerations are zero for static equilibrium, Eqs. 13.12 to 13.15 
yield the equilibrium equations as 

«)(q) = 0 

«)~A + g = 0 

(14.1) 

(14.2) 

339 
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This is a set of m + n nonlinear algebraic equations in m + n unknowns A and q. An 
iterative technique such as Newton-Raphson can be employed to solve Eqs. 14.1 and 
14.2. The corresponding iterative equation is 

[(lIl~AlIlt g)q :~J [~1] = - [ lIl~AlIl + g] (14.3) 

This formula requires proper initial estimates for q and A. Determination of a reasonable 
set of initial estimates for q is possible. However, a proper set of initial estimates for A 
is rather difficult. A poor estip!ate for A may lead to a badly conditioned matrix and di
vergence of the algorithm. This is an undesirable feature of this method. 

It is possible to obtain an estimate for A by solving Eq. 13.16 for t = O. The ini
tial estimates for q, with q = 0, are used to solve Eq. 13.16 for q and A. Then, vector 
A obtained from this solution might be a reasonable estimate to start the iterative process 
of Eq. 14.3. 

14.1.1 Coordinate Partitioning 

In order to circumvent the difficulty of finding a reasonable initial estimate for A in 
Eq. 14.3, the coordinate partitioning method can eliminate the presence of Lagrange 
multipliers in the equilibrium equations. 18 If q is partitioned into m dependent coordi
nates u and k independent coordinates v, then lIlq and g can be partitioned as follows: 

Hence, Eq. 14.2 is written as 

lIlq == [lIlu, lIlJ 

lIl~A + g(u) = 0 

lIl~A + g(v) = 0 

If Eq. a is solved for A and the result is substituted in Eq. b, it is found that 

g(v) = - HT g(u) 

where H is as defined in Appendix C: 

H = -lIl~llIlv 

Equation 14.4 can be written as 

(a) 

(b) 

(14.4) 

(14.5) 

which represents k equations in k unknowns v. Equation 14.5 can be solved by a Newton
Raphson algorithm provided an initial estimate is given for v. The iterative formula in 
this case is 

[:!]~V = -f (14.6) 

Finding explicit expressions for the elements of df/dv can be too complicated, since H 
and g are implicitly functions of v. Therefore, this matrix is evaluated by a numerical 
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differencing method. This can be done by perturbing one element of v at a time to deter
mine its corresponding column of df/dv. If v is defined prior to and after perturbation 
of its ith element by the equations 

then 

df = _1 [f(v i ) f(v)] 
dv; llVi 

(14.7) 

This process is repeated for i = 1, ... , k to obtain all k columns of df/dv. 

14.2 POTENTIAL ENERGY FUNCTION 

For the purpose of static equilibrium analysis, the definition of potential energy is stated 
here without proof. For a conservative system, the vector of forces g can be derived 
from a potential energy function V such that5 

_VT g q (14.8) 

The potential energy V depends only on position coordinates q and not on time or 
velocities. The most common factors contributing to the system potential energy are 
gravitational field, externally applied forces, and springs. 

Assume that the gravitational field is acting on a system in the negative z direc
tion. If the gravitational constant is g and the mass of body i is m j, then Eq. 14.8 is writ-
ten as 

(a) 

where v~g) denotes the potential energy of body i due to gravity. Eq. a yields 

V~) mjg(zj ZO) (14.9) 

where ZO is a constant. For simplification, the potential energy V(gl may be taken as zero 
at the xy plane. Then Eq. 14.9 becomes 

(14.10) 

If a constant external force ik acts on body i, the potential energy corresponding to 
l can be written as 

(14.11) 

where, as was done with the gravitational force, the xyz coordinate system is considered 
the reference frame in which the potential energy due to l is zero in the coordinate 
planes. 
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Potential (strain) energy stored in the kth translational spring, which connects bod
ies i and j, may be written as 

If the spring characteristic is linear, then lS) = k(l - [0) yields 

V~S) = !k(l - [0)2 

(b) 

(14.12) 

If the spring has nonlinear characteristics and the force lS) is available as a nonlinear 
function of 11[, then Eq. b may be integrated numerically to obtain the potential energy. 

Contributions to the potential energy of a system from other sources, such as rota
tional springs or external moments, can be determined as in the preceding derivations. 
The total potential energy of a system may be defined as the sum of the potential ener
gies of the springs, and other externally applied forces. If there are b bodies in the sys
tem, the total potential energy due to the gravitational field is 

b 

V (g) = 2: v~g) (14.13) 

For c constant externally applied forces, Eq. 14.11 yields 

(14.14) 
k=1 

Similarly, if there are d translational springs in the system, the total potential energy of 
the springs is 

(14.15) 
k=1 

The system potential energy is thus 

V = V (g) + V(J) + V(s) (14.16) 

If there are any other force elements in the system that are not discussed here, their con
tribution to the total potential energy must be added to Eq. 14.16. 

14.2.1 Minimization of Potential Energy 

The static equilibrium configuration of a mechanical system may be determined by evalu
ating the position for which the potential energy function is at its minimum. 5 For the po
tential energy function V = V(q) of Eq. 14.16, the minimization problem can be stated 
as 

Minimize V = V (q) 

subject to constraints <I>(q) = 0 (14.17) 

This equation represents a constrained minimization problem; i.e., the kinematic con
straints <1>( q) = 0 must be satisfied for all feasible q. Many constqlined optimization al
gorithms are available and can be applied to this problem. However, Eq. 14.17 can be 
transformed into an unconstrained minimization problem. 14 The method is based on the 
coordinate partitioning method. 
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The total differential of the potential energy function may be written as 

dV = Vqdq 

= Vudu + Vvdv 

= (VuH + Vv) dv 

where Eq. C.S of Appendix C has been employed. This equation can be written as 

dV 
- = VuH+ Vv 
dv 

(14.18) 

Hence, the minimization problem can be restated as 

Minimize V = V(v) 

dV 
where dv = VuH + Vv 

(14.19) 

This is an unconstrained optimization problem in k variables. The gradient vector dV / dv 
is needed for most of the commonly used optimization algorithms, e.g., steepest descent 
or conjugate gradient. 

The gradient vector dV / dv can be determined easily at a feasible position q, i.e., 
where «I»(q) = 0 is satisfied. The partial derivative Vq is the negative of the force vector 
gT at position q; hence, 

or 

Vu = -gr.) 

Vv = -gTv) 

dV T T 
dv = -g(u)H - g(v) (14.20) 

The following steps outline an algorithm, based on the minimization of potential 
energy, for finding a stable equilibrium configuration. Any well-developed uncon
strained minimization algorithm can be used. 

ALGORITHM SE-1 

(a) Main routine 

(a.I) Specify initial estimates for q. 

(a.2) Specify (or determine automatically) the independent variables v. 

(a.3) Enter the minimization routine. 

(b) Minimization routine 

(b.I) In the process of minimization, the function under consideration and its 
vector of gradient (in this case V and dV / dv) must be evaluated for any 
particular v. This is accomplished by a call to FUNCTION routine. 

(b.2) If Flag = 0, then continue the minimization process. If Flag = 1, then a 
feasible solution for the kinematic constraint equations for the assigned 
values of v does not exist. 

One of the following two conditions may exist: 

(1) The step taken by the minimization routine is too large. Make the 
step smaller; e.g., cut it by half, update v, and return to step b.l to 
repeat the process. 
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(2) The step taken by the minimization routine is too small. This may be 
an indication that the set of coordinates considered as independent co
ordinates is not an adequate set. In order to define a new set of inde
pendent coordinates return to step a.2. 

(c) FUNCTION routine 

(c.l) Knowing v, solve the constraint equations for u. If u cannot be found, 
then set Flag 1 and return to the minimization routine. Otherwise set 
Flag 0 and continue to step c.2. 

(c.2) Knowing u and v; i.e., q, evaluate the potential energy function from Eq. 
14.16. 

(c.3) Evaluate matrices <l>u and <l>v, and then H. 

(c.4) Evaluate the force vector g and partition it into g(") and g(v)' 

(c.5) Compute the gradient vector dV/dv from Eq. 14.20. 
(c.6) Return. 

It is stated in step c.l of this algorithm that for some predicted values of v a solu
tion to the constraint equations <I>(u, v) 0 may not exist. This can be because the 
unconstrained minimization algorithm is not aware of the presence of the constraint 
equations. The algorithm predicts the largest possible step toward a minimum along a 
predicted direction. The predicted point may be outside the feasible region of the con
straint equations. In cases such as this, the step must be made smaller. 

If the initial estimate for the coordinates is too far from the equilibrium state, then, 
as was true of the coordinate partitioning method in dynamic analysis, the initial set of 
independent coordinates may not be valid in other points. Therefore, the preceding al
gorithm requires occasional checking or possibly switching to a different set of indepen
dent coordinates. 

14.3 FICTITIOUS DAMPING METHOD 

A mechanical system in motion with no damping elements can oscillate about its static 
equilibrium state. If several dampers, which are energy-dissipating elements, are added 
to the system, the total energy of the system will decrease as time passes. The oscilla
tion will be slowed, and finally the mechanical system will reach its static equilibrium 
state. Therefore, if a mechanical system contains some damping elements, then its static 
equilibrium state may be determined by performing dynamic analysis, using any of the 
algorithms stated in Chap. 13. 

For systems containing no damping elements, or not having a sufficient number of 
energy-dissipating elements, fictitious damping terms can be included in the equations 
of motion: 

Mq ~~A = g Dq (14.21) 

Matrix D is a positive-definite matrix containing the fictitious damping coefficients. For 
simplification, D can be defined as a diagonal matrix. The values 'of the fictitious damp
ing coefficients do not change the static equilibrium state, but influence the speed of 
reaching that state. 
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14.4 JOINT COORDINATE METHOD 

In Sec. 13.4 and subsections 13.4.1 and 13.4.2, a method based on the joint coordinates 
was introduced for the transient dynamic analysis of mechanical systems. The joint co
ordinates in conjunction with the potential energy function can be used for determining 
the static equilibrium configuration of a system. 

For a system containing an open chain (single-branch or multibranch), such as the 
one shown in Fig. 14.1(a), a vector s is defined in terms of the coordinates of the base 
body and the joint coordinates: 

(14.22) 

For a known vector s, vector q representing the configuration of the system can be com
puted as stated in Sec. 13.4. Then the potential energy of the system in that configura
tion can be computed. The static equilibrium configuration may be found by minimizing 
a function J: 

MinimizeJ = V(s) (14.23) 

where the gradient vector is 

dV 
ds ds 

_gT[~:] (14.24) 

The elements of the matrix [dq/ ds] can be computed by a numerical differencing 
method similar to that shown in Eq. 14.7. Note that since q is computed directly from 
qbase and (J, there is no constraint violation to consider. 

For systems with closed loops, such as the one shown in Fig. 14.1(b), each closed 
loop can be cut at one of the joints to achieve an equivalent open-chain system. For the 

(a) (b) 

(j)~ 
I 

I 
/ 

I 
I 

/ External 
/ forces 

I 
/ 

Figure 14.1 Schematic presentation of a mechanical system with (a) an open chain and 
(b) a closed loop. 
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equivalent system, vector s is defined as in Eq. 14.22, where 8 does not include the 
joint coordinates at the cut edges; such as 8t in Figure 14.1(b). If the kinematic joints at 
the cut edges are defined by the constraint equations 4>*(q) = 0, then a minimization 
problem can be stated as 

Minimize f V(s) + 1w4>*T4>* (14.25) 

where w is a weighting coefficient. Note that in this minimization problem, the con
straint violations at the cut edges are introduced in the objective function. The weighting 
coefficient w is introduced to scale the two terms in Eq. 14.25. Depending on the unit 
system used, and also the reference frame for zero potential energy, the magnitude of 
the potential energy V is normally several orders of magnitude larger than the sum of the 
squares of the constraint violations 4> * T4> * . Therefore, the minimization algorithm is not 
sensitive to the constraint violation as much as to the changes in the potential energy. 
For this reason, a large value for w can bring the magnitude of both terms within the 
same range. The magnitude of w may be redefined several times during the minimiza
tion process. 

The gradient vector for the function of Eq. 14.25 is 

+ w ..... * --dV ...,. T[d4>*] 
ds ds ds 

[_gT + w4>*T4>*] [dq
] 

q ds (14.26) 



Appendix A 

Euler Angles 

and 

Bryant Angles 

Among the most common parameters used to describe the angular orientation of a body 
in space are Euler angles. The angular orientation of a given body-fixed coordinate 
system fY}~ can be envisioned to be the result of three successive rotations. The three 
angles of rotation corresponding to the three successive rotations are defined as Euler 
angles. The sequence of rotations used to define the final orientation of the coordinate 
system is to some extent arbitrary. A total of twelve conventions is possible in a right
hand coordinate system. For the Euler angles described here, a particular sequence of 
rotations known as the x convention is considered. Another convention, known as the 
xyz convention, is also discussed here; the parameters associated with this convention 
are often referred to as Bryant angles. 

A.1 Euler Angles 

Euler angles provide a set of three coordinates without any constraint equations. The se
quence of rotations employed in the x convention starts by rotating the initial system of 
xyz axes counterclockwise about the z axis by an angle t/J, as shown in Fig. A.I. The 
resulting coordinate system is labeled ~"r/'r. In the second step the intermediate f'rl'~" 
axes are rotated about ~fI counterclockwise by an angle (J to produce another intermedi
ate set, the g'rt'{' axes. Finally, the g''YJ'{' axes are rotated counterclockwise about r 
by an angle 0" to produce the desired ~'YJ~ system ofaxes. t The angles t/J, (J, and 0", 

which are the Euler angles, completely specify the orientation of the ~'YJ~ system relative 
to the xyz system and can therefore act as a set of three independent coordinates. 

tIn most textbooks, the third Euler angle is denoted by cpo Since, in this text, cp is used to describe the 
angle of rotation about the orientational axis of rotation, (T is used here for the third Euler angle instead of cpo 
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x 

Line of 
nodes ~", ( ~ 

Figure A.I The rotations defining the 
Euler Angles. 

The elements of the complete transformation matrix A can be obtained as the 
triple product of the matrices that define the separate rotations, Le., the matrices 

['$ -'$ ~] c ~ [~ 00] [00 -sO' 

~] D= s!fJ c!fJ cO -sO B= ~O' cO' 

o 0 sO cO 0 

where c cos and s ;:: sin. Hence, A = DCB is found to be 

[ '$'" *08" -c!fJsO' - s!fJcOcO' *6] A = s!fJcO' + c!fJcOsO' - s!fJsO' + c!fJcOcO' -c!fJsO (A. I) 

sOsO' sOcO' cO 

It can be verified that matrix A is orthononnal, Le., that AT = A-I. 
The advantage of having three independent rotational coordinates, instead of nine 

dependent direction cosines, is offset by the disadvantage that the elements of A in 
tenns of the Euler angles are complicated trigonometric functions. Still, a more severe 
problem exists. Figure A.2 shows that if 0 n'TT, n 0, ± 1, ... , the axes of the 
first and third rotations coincide, so that !fJ and 0' cannot be distinguished. This fact is 
illustrated by setting 0 := 0 in A to obtain 

[

ca -sa 0] 
A = sa -ca 0 

o 0 I 

0=0 

where a !fJ + 0'. 
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Z, 1;", I; 

o 

71 

J-=========u=-:' 

x 

Figure A.2 Euler angles for the case 
o = mr (n 0, ± I, ±2, ... ). 

It may be necessary to calculate Euler angles that correspond to a known transfor
mation matrix. For this purpose, the following formulas are deduced from Eq. A.I: 

cos 8 = a 33 

-a23 
cos'" = -.

Sin 8 

sin 8 = ± 

sin", = . 8 
sm 

a32 sin (J" 
cos (J = sin 8 sin 8 

(A.2) 

These formulas show that numerical difficulties are to be expected for values of 8 that 
are close to the critical values n7r, n 0, ±1, 

A.1.1 Time Derivatives of Euler Angles 

The general rotation associated with W can be considered equivalent to three successive 
rotations with angular velocities w(oI<) ~, w(O) = 8, and w(.,.) = iT. Hence, the vector W 
can be obtained as the sum of three separate angular velocity vectors. This vector sum 
cannot be obtained easily, since the directions w(oI<)' weB)' and w(a) are not orthogonally 
placed: wCoI<) is along the global z axis and, wCO) is along the line of nodes, while w(rr) is 
along the body' axis. However, the orthonormal transformation matrices B, C, and D 
may be used to determine the components of these vectors along any desired set of axes. 

Figure A.3 can be used to obtain the compo!}ents of the velocity vector W in the 
~'YJ' axes in terms of Euler angles and rates. Since'" is parallel to the z axis, its compo
nents along the body axes are given by applying the orthonormal transformation BTCT. 

~w = ~ sin 8 sin (J 

~('1) = ~ sin 8 cos (J" 

~m = ~ cos 8 
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x 

Figure A.3 Euler angle rates . 

... 
The line of nodes, which is the direction of 0, coincides with the faxis, and 80 the 

7 
components of () with respect to the body axes are furnished by applying only the final 
orthononnal transfonnation BT: 

Ow = 0 cos (T 

0(1/) = -0 sin (T 

Om = 0 

No transformation is necessary for the component of &, which lies along the ~ axis. 
When these components of the separate angular velocities are added, the components of 
ill with respect to the body axes are 

or, in matrix fonn, 

w(~) ~ sin () sin (T + ° cos (T 

w(1/) = ~ sin () cos (T - ° sin (T 

wm ~ cos () + 0-

[
W] [Sin () sin (T cos (T 

w;:: ::::: sin () cos (T - sin (T 

w(~) cos () 0 

(A.3) 

In addition, the Euler angle rates can be expressed in tenns of w(g), w('l)' and wm. Since 
Euler angle rates are not orthogonal, the inverse of the matrix of Eq. A.3 yields 

[1] [

sin (T 

1 . 
= -:--() cos (T sm () 

sm . 
-sm (T cos () 

cos (T 

-sin (T sin () 

- cos (T cos () 
(A.4) 
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Similar techniques may be applied to express the components of J, along the xyz axes, in 
tenns of Euler angles and rates. Equation A.4 shows, again, that numerical problems 
will arise if () is close to the critical values n'lT, n = 0, ± 1 , .... 

A.2 BRYANT ANGLES'9 

The Bryant angle convention considers rotations about axes other than those for the Eu
ler angles. The first rotation may be carried out counterclockwise about the x axis 
through an angle <PI; the resultant coordinate system will be labeled I;"r/"", as shown in 
Fig. A.4. The second rotation, through an angle <P2 counterclockwise about the 7J1I axis, 
produces the coordinate system g'7JT. Finally, the third rotation, counterclockwise 
about the" axis through an angle <P3' results in the g7J' coordinate system. The trans
fonnation matrices for the individual rotations are 

[l 0 0 j [ ~, 0 '~'J [,~, -8<P3 

~J D o C<PI -8<P1 C= o 1 0 B S<P3 C<P3 
o S<Pl C<Pl . -8<P2 0 C<P2 0 0 

Hence, the matrix of the complete transfonnation, A DCB, is 

[ '~"~' -C<P28<P3 s~, J 
A = C<P18<P3 + 8<P18<P2C<P3 C<PIC<P3 - S<PI S<P28<P3 -S<PIC<PZ (A.S) 

s<p 1 S<P3 - c<p 1 S<P2C<P3 S<PIC<P3 + C<PIS<P2S<P3 C<PIC<P2 

Again, it may be necessary to calculate Bryant angles that correspond to a known 
transformation matrix. This can be done, with the help of formulas derived from 

z 

~~--~--------y 

Figure A.4 Rotations defining Bryant 
angles. 
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Eq. A.S, to obtain 

cos 4>1 = 
cos 4>2 

(A. 6) 

cos 4>2 
It can be observed again that there exists a critical case, namely, when 4>2 1T 12 + n1T, 
nO, ± 1, ... , in which the axes of the first and third rotations coincide, so that 
the rotation angles 4>1 and 4>3 become indistinguishable. 

A.2.1 Time Derivative of Bryant Angles 

The relationship between angular velocity OJ and Bryant angles and rates can be found in 
a similar fashion to that for the Euler rates. The transformation matrix for the velocity 
components is 

[ w,o] [ cos q" cos q" sin 4>3 

~] [t:] W(1) -cos 4>2 sin 4>3 cos 4>3 (A.7) 

we') sin 4>2 0 

The inverse transformation can be found to be 

[~'J [cos q" 
-sin 4>3 

o ] [w,,'] cb2 = ~ sin 4>3 cos 4>2 cos 4>J cos 4>2 o we'll (A.S) 
. cos 2 . 

sin 4>3 sin 4>2 cos 4>2 we') 4>3 - cos 4>3 Sill 4>2 

It can be seen that Eq. A.S fails numerically in the vicinity of the critical values 
4>2 == 1T12 + n1T,n = 0, +1, .... 



Appendix B 

Relationshi p between 

Euler Parameters 

and Euler Angles 

In some kinematics problems, the angular orientation of a body with respect to the 
global coordinate system is described in terms of Euler angles and it is desired to deter
mine the corresponding set of Euler parameters, or vice versa. There are simple formu
las that can be used directly to find one set of variables if the other set is known. 

B.1 EULER PARAMETERS IN TERMS OF EULER ANGLES 

If the angular orientation of a local coordinate system is described in terms of three 
Euler angles t/J, (), and cr, it is possible to tind the corresponding Euler parameters. The 
trace of matrix A in terms of Euler angles, from Eq. A.1, is 

() t/J+cr 
tr A = 4 cos2 cos2 

--
2 2 

Then, Eq. 6.25 yields 

() 
eo cos "2 cos 2 (B.1) 

From Eqs. 6.26a-c with all> a22, and a33 taken from the transformation matrix of Eq. 
A.1, it is found that 

() -cr 
(B.2) e, sin - cos 

2 2 
() -cr 

e2 = sin "2 sin 
2 

(B.3) 

() +cr 
e = cos - sin (BA) 

3 2 2 
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Note that the four Euler parameters can always be determined if the three Euler angles 
are known. 

B.2 EULER ANGLES IN TERMS OF EULER PARAMETERS 

The Euler angles can be determined from the Euler parameters by comparing the trans
formation matrices in terms of Euler angles and Euler parameters: i.e., Eqs. A.I and 
6.19. Equating the a33 elements of the two matrices yields 

Equating a32 and a23 , we get 
cos () 2(e~ + eD - 1 (B.5) 

cos (]" 

cos tjJ 

2(e2e3 + eoe l) 
sin () 

2(e2e3 - eoe l) 

sin () 

(B.6) 

(B.7) 

It is clear that for sin () = 0, cos (]" and cos tjJ cannot be evaluated. In this case, from 
Eq. B.5, cos 0 1 yields 

e~ + e; = 1 (B.8) 

Then, from the constraints between Euler parameters, i.e., Eq. 6.21, it is found that 

ei + e~ 0 (B.9) 

which can be true only if 

e l = e2 0 (B.lO) 

Since e = [el, e2, e3Y consists of the components of e along both the xyz and gYJ{ coor
dinate axes, Eq. B.lO indicates that the orientational axis of rotation, denoted bye, is 
along the z or the ~ axis. The ambiguity for () k1T, k = 0, I, ... , is discussed in Ap
pendix A in more detail. However, if the a2l elements of the two transformation ma-
trices are used when cos 0 I, it is found that 

sin(tjJ + (]") = 2eOe3 (B.ll) . 

Now, if either tjJ or (]" is given an arbitrary value, the value of the other can be deter
mined. 



Appendix C 

Coordinate Partitioning 

with L-U Factorization 

Crout's algorithm LU-I from Sec. 3.3.3 can easily be modified to perform L-U factor
ization on nonsquare matrices. If L-U factorization with full pivoting is performed on an 
m x n matrix A, it may result in the following partitioned form: 

m{[ A 1--m - s{[~~~~~] 
s{ SID 

'---.r-' ........... 
m-s n-m+s 

It is assumed that there are s redundant rows in the matrix that have ended up as the 
bottom s rows after factorization as a result of full pivoting. The rank of this matrix is 
m - s. The Land U matrices occupy the (m - s) X (m - s) top left elements, and D 
is a submatrix all of whose elements begin at approximately zero (i.e., smaller than a 
specified tolerance). The left m s columns of the factored matrix are called the basic 
columns, and the remaining n - m + s columns are the nonbasic columns. If all of the 
rows of A are independent, i.e., if s = 0, then L-U factorization with full or partial 
(column) pivoting partitions A as follows: 

m{[ A 1 ~ m{[:'~,H 
'---.r-' '---.r-' 

m n - m 

Without any loss of generality, it can be assumed that A represents the Jacobian 
matrix cIlq , where all of the m constraints are independent. Since the elements of q cor-
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respond to the column indices of <l>q, the indices of the columns of L (or V) define the 
dependent (basic) coordinates II, and indices of the columns of R define the independent 
(nonbasic) coordinates V.

1B 

Pattitioning of q into II and v also corresponds to the partitioning of <l>q into <1> .. 
and <1>,. In tenns of the L, V, and R matrices, 

<1>.. LV (C.l) 

<1>, LR (C.2) 

In some well-developed L-V factorization subroutines, matrix R is replaced by a matrix 
H, as follows: 

where 

(C.3) 

This yields 

or 

(C.4) 

The matrix H is called the influence coefficient matrix. This matrix relates variations of 
II to variations of v. This is obtained by taking the differential of the constraint equations 
<I> = 0: 

or 

which yields 

()II - <I> ~ 1 <1>, ()V 

H()v 
The kinematic velocity equations also yield 

U Hv 

(C.5) 

(C.6) 
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A 

Acceleration analysis, 43, 101, 105, 128, 
200, 202 

Acceleration: 
angular, 175 

identities with Euler parameters, 175 
independent, 46 
vector of, 46 

Acceleration equations, 46, 49, 102, 201-2 
right side, 49, 104-5, (table) 109, 202 

modified, (table) 203, 298, (table) 299 
Active point of view, 157 
Actuator, 222, 231, 255, 273, 275 

subroutine, 259, 264 
ADAMS, 327 
Adams-Bashforth algorithms, 308 
Adams-Moulton algorithms, 308 
Algebraic-differential equations, 228, 244, 

253, 313, 328-35 
Algebraic equations: 

linear, 50-66 
nonlinear, 66-72, 101 

Algorithms: 
dynamic analysis: 

constrained systems: 
CP-l,321 
CP-2,323 

CS-l, 320 
DI-4, 318 
JC-l, 334 

unconstrained systems: 
DI-l,314 
DI-2, 315 
DI-3, 317 

kinematic analysis: 
K-I,46 
K-II,50 

linear algebraic equations: 
LU-I,58 

nonlinear algebraic equations: 
NR-I,68 

static equilibrium analysis: 
SE-l,343 

Analysis, 6, 16 
methods, 6-9 

Angular: 
acceleration, 175 

identities with Euler parameters, 175 
orientation, 39, 153 
velocity, 172, 174 

identities with Euler parameters, 174-75 
numerical integration algorithm, 317 

Animation, computer, 17, 18 
Appended driving constraint method, 48 

Algorithm K-II, 50 
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Artificial constraint, 246 
Automated factory, 2 
Axis of rotation: 

B 

instantaneous, 157 
intermediate, 180 
orientational, 157, 158 
relative, 177 

Base body: 
fixed, 332 
floating, 332 

Bodies, collection 3 
Body: (see also Link) 

outline,S 
shape,S 

Bryant angles, 157, 162, 347, 351 
critical values, 352 
time derivatives, 352 

c 
Centroid, 210 
Centroidal coordinate system, 215 
Chain (see Kinematic, chain) 
Chasles' theorem, 157 
Clockwise rotation, 157 
Closed-form solution, 9 
Closed-loop, 334 (see also Mechanisms) 

cut, 334, 345 
Computational techniques, 3 
Computer-aided: 

analysis (CAA), I, 2 
design (CAD), I 
drafting, I 
engineering (CAE), I 
manufacturing (CAM), I 
manufacturing design, I 
product design, I 

Constraint: 
artificial, 246 
driving, 48, 49, 100, 101 

subroutine, 126, 133 
equality, 41 
equations, 40,41,44,49 

conversion, 297 
number of, 13 

force, 222, 223, 228, 244,266, 269, 276, 
292 

revolute joint, 237 

revolute-revolute joint, 240 
translational joint, 242 

ground, 98 
subroutine, 125 

holonomic, 41, 189 
independent, 42 
inequality, 41 
Jacobian (see Jacobian matrix) 
nonholonomic, 41 
not integrable, 41 
redundant, 41 
simple, 98, 199 

subroutine, 126, 133 
stabilization method, 319, 335 

Algorithm CS-l, 320 
violation, 316, 319 

maximum error allowed, 122 
stabilization, 319 

Constraints between: 
parallel vectors, 188 
perpendicular vectors, 188 
two bodies, 189 
two vectors, 186 

Coordinate: 
body-fixed, 38, 77, 154 

Index 

Cartesian, 12, 13, 38, 77, 153, 313, 330 
dependent, 41, 44, 321, 324, 340, 356 
driven, 44 
driving, 44 
generalized, to, 13, 313 
global, 77, 153 
independent, 41, 44, 321, 324, 340, 356 
joint, 330 
La Grangian, 38, 77, 313 
local (see Base body, fixed) 
number of, 13, 39, 101 
partitioning method: 

automatic process, 324 
dynamic analysis, 321 

Algorithm CP-l, 321 
Algorithm CP-2, 323 

kinematic analysis, 43 
Algorithm K-I, 46 

static equilibrium, 340, 342 
with LU factorization, 355 

relative, 11, 13 
rotational, 39, 154 , 
translational, 39, 154 

Coordinates, vector of, 38, 39, 222 
Counterclockwise rotation, 77, 157 
Couple, 213 



Index 

Cramer's rule, 51 
Critieal damping, 320 
Crout's method, 57, 63, 355 

Algorithm LU-I, 58-93 
Curve representation, 89 

D 
DADS, 321 
Damper, 15, 222, 234, 237, 255, 271 

subroutine, 259, 264 
Damping: 

coefficient, 234, 237 
critical, 320 

DAP, 253, 254 
Deformable body, 36 
Degrees of freedom, 3, 40, 42 
Design, 6 

sensitivity analysis, I 
Differential-algebraic equations (see Alge

braic-differential equations) 
Differential equations (see Ordinary differen-

tial equations) 
Digitizer tablet, 15 
Direction cosines, 20, 155, 158, 164, 348 
Distance, kin'ematic, 332 
Divergenee, 68 
Double parallel-crank mechanism, 41, 42 
Driving constraint method, appended, 48 

Algorithm K-II, 50 
Dump truck, 273 
Dynamic analysis, 228, 255 

forward, 247 
inverse, 247 
numerical methods, 313 
program (DAP), 253-77 

Dynamics, 6 

E 

basic concepts, 208-26 
planar motion, 227 
spatial motion, 289 

Efficiency, numerical, 10, 13 
Eigenvalues, 310 
End-effector, 247 
Equations of motion: 

a constrained body, 292 
an unconstrained body, 219, 227, 291 
constrained bodies, 222, 228 

planar, 244, 254 

spatial, 296-97 
rotational, 215, 217, 291-93, 297 
translational, 211 
unconstrained bodies, 221, 228 

planar, 242, 253 
spatial, 294-96 

365 

Equilibrium (see also Static, equilibrium), 275 
equations, 339 

Error: 
numerical, 14, 302 

Euler parameters, 316 
joint coordinates, 333 

round-off, 63, 64, 302 
sum of squares, 316 
tolerance, 68, 70, 122 
total, 302 
truncation, 302, 310 

Euler angles, 153, 157, 162, 164, 347 
conventions, 347 
critical values, 348, 349 
in terms of Euler parameters, 354 
time derivatives, 349 

Euler parameters, 153 158, 160, 289 
in terms of Euler angles, 353 
identities, 166-72 

partial derivative, 171 
time derivatives, 168, 169, 171 

time derivatives, 174 
Euler's theorem, 157, 158, 160, 176 
Exact solution, 9 
Explicit algorithm, 308 

F 
Factory automation, 1 
Feedback control theory, 319 
Fictitious damping, 344 
Finite rotation, 180 
Five-bar mechanism, 9 
Force: 

gravitational, 229, 341 
vector of: 

body, 221, 229 
system, 222, 228 

Foree-deformation, 233 
Forward: 

dynamic analysis, 247 
Euler algorithm, 303 

Four-bar mechanism, 3, 11-13,40,43,48, 
135,268 

Frictionless constraints, 223 
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G 
Gaussian: 

elimination, 51, 55, 324 
back substitution, 51, 52 
forward elimination, 51, 52, 54 

methods, 51 
Gauss-Jordan reduction, 52 
Gear algorithms, 310, 328 
General-purpose program, 9, 13, 14 
Gram-Schmidt process, 327 
Graphics, computer, 15-18 
Graph theory, 333 
Gravitational force, 229, 341 

H 
Harmonic motion, 278 
HARWELL, Library of Subroutines, 144 

I 
Implicit: 

algorithms, 308 
function theorem, 45 

Indices: 
column, 56, 63 
row, 56 

Inertia: 
principal axes, 219 
tensor, 218 

global, 217 
Infinitesimal: 

displacement, 223 
mass, 216 

Influence coefficient matrix, 356 
Initial conditions (values), 254, 301,314,315 
Initial-value problems, 301, 307 
Input/Output, 15, 17, 210, 255 
Input prompts: 

DAP, 255,258-59,267 
KAP, 120, 123-27, 134 

Integration: 
arrays, 254, 313 
numerical, 254, 30t-ll 

Inverse dynamics, 247 

J 
Jacobian matrix, 45, 103, (table) 106, 200, 

(table) 201 

Index 

modified, 201, (table) 203, (table) 299 
rank reduction, 189 

Joint (see Kinematic, joints): 
coordinate method: 

dynamic analysis, 330 
static equilibrium analysis, 345 

reaction force (see Constraint, force) 

K 
KAP, 119, 253;, 
Kinematic: 

acceleration equations (see Acceleration 
equations) 

analysis, 36, 42, 127 
numerical methods, 35 
program (KAP), 119-40 

chain, 36, 331 
constraints, 80 (see also Constraints and 

Kinematic, joints) 
joints (see also Kinematic pairs), 36 

ball (see Spherical) 
cam-follower, 37, 38, 90, 93-96 
composite, 84, 196 
cylindrical, 189, 192 
gears, 37, 38, 86, 87 
globular (see also spherical), 332 
Hook, (see universal) 
point-follower, 97 
prismatic (see translational) 
rack and pinion, 86, 88 
revolute, 38, 81, 120, 191, 255, 330 

subroutine, 124, 131 
revolute-cylindrical, 198 
revolute-revolute, 84, 197 
revolute-translational, 85 
screw, 38, 193 
sliding (see Translational) 
spherical, 38, 190 
spherical-spherical, 196 
spur gears, (see gears) 
translational, 37, 38, 83, 120, 193, 255, 

330 
subroutine, 125, 132 

universal, 190, 330 
modeling, 105 
pairs (see also Kin«matic, joinl~), 37, 38 

lower, 37, 80, 189 
higher, 37, 80 

Kinematics, 6 
basic concepts, 35-42 



Index 

planar motion, 77 
spatial motion, 186 
synthesis, 36 

Kinetics, 6 
Kinetostatic analysis, 247 

L 
LaGrange multiplier, 224, 228, 237-42, 

244-47, 254, 292, 296, 316 
artificial, 292, 315 

Linear algebraie equations, 50-66 
Line: 

of nodes, 348 
of translation, 83 

Link (see also Body), 36 
coupler, 41 
driving, 100 
fixed, 36 
frame, 36 
ground,36 

L-U factorization, 56, 327, 355 
Algorithm LU-I, 58-93 

M 
MAIN computer program for: 

dynamic analysis, DAP, 255 
kinematic analysis, KAP, 122 
linear algebraic equations, 65 
nonlinear algebraic equations, 72 

Mass: 
center, 210 
matrix: 

body, 220 
system, 221, 294, 295 

Mathematical constraint, 314, 315 
Matrix: 

column, 21 
diagonal, 22 
difference, 22 
differentiation, 28 
dimension, 21 
identity, 22 

permuted, 49 
inverse, 23 
linearly (in)dependent rows, 23 
lower triangular, 57 
mUltiplication by a scalar, 22 
null, 22 
orthogonal, 24, 156 
orthonormal, 24, 348 

product, 22 
quasi-diagonal, 22 
rank,23 
row, 21 
singular, 23 
skew-symmetrie, 23, 25 
sparse, 110, 144 
square, 22 
symmetric, 23 
time derivative, 29 
trace, 161, 353 
transpose, 21 
unit (see identity matrix) 
upper triangular, 51, 57 
zero (see null matrix) 

MAXA,120 
MAXIA,120 
Mechanics, branches, 6 
Mechanism, 36 

closed-loop, 36, 37 
multiloop, 37 
open-loop (chain), 36, 37 
planar, 36, 77 
single-loop, 37 
spatial, 36 

367 

Mechanisms, kinematically equivalent, 41, 
42 

Minimization, 342, 345 
Moment, 212, 229 

conversion, 289 
Moments: 

of inertia, 218 
polar, 227 

principle, 212 
Motion: 

planar, 3, 77 
conditions, 224 

spatial, 3 
Multibody system, 3 

schematic presentation, 5, 6 
Multistep algorithm, 308, 309 

N 
Newton defference, 68 
Newton-Euler equations, 220 
Newton-Raphson, 66-67,311,323,328,340 

iteration number, 67 
iterations, maximum number, 70, 122 

Algorithm NR-I, 68 
residuals, 68 



310 

Vector, cont. 
scalar (or dot) product, 20, 23, 24 
time derivative, 28 
vector (or cross) product, 20 
collinear, 19 
coplanar, 19 
differentiation, 28 
dimension, 27 
sliding, 214 
sum, 20, 14 
unit, 19, 154 
zero (see null vector) 

Velocities, vector of, 45, 220 
Velocity: 

analysis, 43, 101, 128, 200, 202 
angular, 172, 174 

Index 

identities with Euler parameters, 174-75 
numerical integration algorithm, 317 

dependent, 45 
equations, 42, 45, 49, 102, 298 

modified, 298 
independent. 45 
transformation, 330 

Vibration, free, 279 
Virtual: 

displacement, 223, 290 
work, 291 

w 
Working arrays, 120, 255 
Work of a force, 223 
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