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Preface

This book is intended for use in a first course in vibrations or structural dynamics
for undergraduates in mechanical, civil, and aerospace engineering or engineer-
ing mechanics. The text contains the topics normally found in such courses
in accredited engineering departments as set out initially by Den Hartog and
refined by Thompson. In addition, topics on design, measurement, and computa-
tion are addressed.

Pedagogy

Originally, a major difference between the pedagogy of this text and competing
texts is the use of high level computing codes. Since then, the other authors of
vibrations texts have started to embrace use of these codes. While the book is
written so that the codes do not have to be used, I strongly encourage their use.
These codes (Mathcad®, MATLAB®, and Mathematica®) are very easy to use,
at the level of a programmable calculator, and hence do not require any prereq-
uisite courses or training. Of course, it is easier if the students have used one or
the other of the codes before, but it is not necessary. In fact, the MATLAB®
codes can be copied directly and will run as listed. The use of these codes greatly
enhances the student’s understanding of the fundamentals of vibration. Just as
a picture is worth a thousand words, a numerical simulation or plot can enable a
completely dynamic understanding of vibration phenomena. Computer calcula-
tions and simulations are presented at the end of each of the first four chapters.
After that, many of the problems assume that codes are second nature in solving
vibration problems.

Another unique feature of this text is the use of “windows,” which are
distributed throughout the book and provide reminders of essential informa-
tion pertinent to the text material at hand. The windows are placed in the text at
points where such prior information is required. The windows are also used to
summarize essential information. The book attempts to make strong connections
to previous course work in a typical engineering curriculum. In particular, refer-
ence is made to calculus, differential equations, statics, dynamics, and strength of
materials course work.
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WHAT’S NEW IN THIS EDITION

Most of the changes made in this edition are the result of comments sent to me by
students and faculty who have used the 3rd edition. These changes consist of improved
clarity in explanations, the addition of some new examples that clarify concepts, and
enhanced problem statements. In addition, some text material deemed outdated and
not useful has been removed. The computer codes have also been updated. However,
software companies update their codes much faster than the publishers can update
their texts, so users should consult the web for updates in syntax, commands, etc. One
consistent request from students has been not to reference data appearing previously in
other examples or problems. This has been addressed by providing all of the relevant
data in the problem statements. Three undergraduate engineering students (one in
Engineering Mechanics, one in Biological Systems Engineering, and one in Mechanical
Engineering) who had the prerequisite courses, but had not yet had courses in vibra-
tions, read the manuscript for clarity. Their suggestions prompted us to make the fol-
lowing changes in order to improve readability from the student’s perspective:

¢ Improved clarity in explanations added in 47 different passages in the text. In
addition, two new windows have been added.

¢ Twelve new examples that clarify concepts and enhanced problem statements
have been added, and ten examples have been modified to improve clarity.

e Text material deemed outdated and not useful has been removed. Two sections
have been dropped and two sections have been completely rewritten.

¢ All computer codes have been updated to agree with the latest syntax changes
made in MATLAB, Mathematica, and Mathcad.

¢ Fifty-four new problems have been added and 94 problems have been modi-
fied for clarity and numerical changes.

¢ Eight new figures have been added and three previous figures have been modified.
¢ Four new equations have been added.

Chapter 1: Changes include new examples, equations, and problems. New textual
explanations have been added and/or modified to improve clarity based on student sug-
gestions. Modifications have been made to problems to make the problem statement
clear by not referring to data from previous problems or examples. All of the codes have
been updated to current syntax, and older, obsolete commands have been replaced.

Chapter 2: New examples and figures have been added, while previous exam-
ples and figures have been modified for clarity. New textual explanations have also
been added and/or modified. New problems have been added and older problems
modified to make the problem statement clear by not referring to data from previ-
ous problems or examples. All of the codes have been updated to current syntax,
and older, obsolete commands have been replaced.
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Chapter 3: New examples and equations have been added, as well as new
problems. In particular, the explanation of impulse has been expanded. In addition,
previous problems have been rewritten for clarity and precision. All examples and
problems that referred to prior information in the text have been modified to pres-
ent a more self-contained statement. All of the codes have been updated to current
syntax, and older, obsolete commands have been replaced.

Chapter 4: Along with the addition of an entirely new example, many of the
examples have been changed and modified for clarity and to include improved
information. A new window has been added to clarify matrix information. A fig-
ure has been removed and a new figure added. New problems have been added
and older problems have been modified with the goal of making all problems and
examples more self-contained. All of the codes have been updated to current
syntax, and older, obsolete commands have been replaced. Several new plots
intermixed in the codes have been redone to reflect issues with Mathematica and
MATLAB’s automated time step which proves to be inaccurate when using singu-
larity functions. Several explanations have been modified according to students’
suggestions.

Chapter 5: Section 5.1 has been changed, the figure replaced, and the example
changed for clarity. The problems are largely the same but many have been changed
or modified with different details and to make the problems more self-contained.
Section 5.8 (Active Vibration Suppression) and Section 5.9 (Practical Isolation
Design) have been removed, along with the associated problems, to make room for
added material in the earlier chapters without lengthening the book. According to
user surveys, these sections are not usually covered.

Chapter 6: Section 6.8 has been rewritten for clarity and a window has been
added to summarize modal analysis of the forced response. New problems have
been added and many older problems restated for clarity. Further details have been
added to several examples. A number of small additions have been made to the to
the text for clarity.

Chapters 7 and 8: These chapters were not changed, except to make minor
corrections and additions as suggested by users.

Units

This book uses SI units. The 1st edition used a mixture of US Customary and SI,
but at the insistence of the editor all units were changed to SI. I have stayed with
SI in this edition because of the increasing international arena that our engineering
graduates compete in. The engineering community is now completely global. For
instance, GE Corporate Research has more engineers in its research center in India
than it does in the US. Engineering in the US is in danger of becoming the ‘gar-
ment’ workers of the next decade if we do not recognize the global work place. Our
engineers need to work in SI to be competitive in this increasingly international
work place.
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Instructor Support

This text comes with a bit of support. In particular, MS PowerPoint presentations
are available for each chapter along with some instructive movies. The solutions
manual is available in both MS Word and PDF format (sorry, instructors only).
Sample tests are available. The MS Word solutions manual can be cut and pasted
into presentation slides, tests, or other class enhancements. These resources can be
found at www.pearsonhighered.com and will be updated often. Please also email
me at daninman@umich.edu with corrections, typos, questions, and suggestions.
The book is reprinted often, and at each reprint I have the option to fix typos, so
please report any you find to me, as others as well as I will appreciate it.

Student Support

The best place to get help in studying this material is from your instructor, as there
is nothing more educational than a verbal exchange. However, the book was writ-
ten as much as possible from a student’s perspective. Many students critiqued the
original manuscript, and many of the changes in text have been the result of sug-
gestions from students trying to learn from the material, so please feel free to email
me (daninman@umich.edu) should you have questions about explanations. Also I
would appreciate knowing about any corrections or typos and, in particular, if you
find an explanation hard to follow. My goal in writing this was to provide a useful
resource for students learning vibration for the first time.
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Infroduction
to Vibration and
the Free Response

Vibration is the subdiscipline of dynamics that
deals with repetitive motion. Most of the examples
in this tfext are mechanical or structural elements.
However, vibration is prevalent in biological systems
and is in fact at the source of communication (the
ear vibrates to hear and the fongue and vocal
cords vibrate to speak). In the case of music,
vibrations, say of a stringed instrument such as

a guitar, are desired. On the other hand, in most
mechanical systems and structures, vibration is
unwanted and even destructive. For example,
vibration in an aircraft frame causes fatigue and
can eventually lead to failure. An example of
fatigue crack is illustrated in the circle in the photo
on the bottom left. Everyday experiences are full of
vibration and usually ways of mitigating vibration.
Automobiles, trains, and even some bicycles have
devices to reduce the vibration induced by motion
and transmitted to the driver.

The task of this text is to teach the reader how
fo analyze vibration using principles of dynamics.
This requires the use of mathematics. In fact, the
sine function provides the fundamental means of
analyzing vibration phenomena.

The basic concepts of understanding
vibration, analyzing vibration, and predicting the
behavior of vibrating systems form the topics of this
fext. The concepts and formulations presented in
the following chapters are infended fo provide the
skills needed for designing vibrating systems with
desired properties that enhance vibration when it
is wanted and reduce vibration when it is not.

This first chapter examines vibration in its
simplest form in which no external force is present
(free vibration). This chapter introduces both the
important concept of natural frequency and how
to model vibration mathematically.

The Internet is a great source for examples
of vibration, and the reader is encouraged fo
search for movies of vibrating systems and other
examples that can be found there.
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Introduction to Vibration and the Free Response Chap. 1

1.1 INTRODUCTION TO FREE VIBRATION

Vibration is the study of the repetitive motion of objects relative to a stationary
frame of reference or nominal position (usually equilibrium). Vibration is evident
everywhere and in many cases greatly affects the nature of engineering designs. The
vibrational properties of engineering devices are often limiting factors in their per-
formance. When harmful, vibration should be avoided, but it can also be extremely
useful. In either case, knowledge about vibration—how to analyze, measure, and
control it—is beneficial and forms the topic of this book.

Typical examples of vibration familiar to most include the motion of a
guitar string, the ride quality of an automobile or motorcycle, the motion of an
airplane’s wings, and the swaying of a large building due to wind or an earth-
quake. In the chapters that follow, vibration is modeled mathematically based
on fundamental principles, such as Newton’s laws, and analyzed using results
from calculus and differential equations. Techniques used to measure the vibra-
tion of a system are then developed. In addition, information and methods are
given that are useful for designing particular systems to have specific vibrational
responses.

The physical explanation of the phenomena of vibration concerns the inter-
play between potential energy and kinetic energy. A vibrating system must have a
component that stores potential energy and releases it as kinetic energy in the form
of motion (vibration) of a mass. The motion of the mass then gives up kinetic en-
ergy to the potential-energy storing device.

Engineering is built on a foundation of previous knowledge and the subject
of vibration is no exception. In particular, the topic of vibration builds on pre-
vious courses in dynamics, system dynamics, strength of materials, differential
equations, and some matrix analysis. In most accredited engineering programs,
these courses are prerequisites for a course in vibration. Thus, the material that
follows draws information and methods from these courses. Vibration analysis is
based on a coalescence of mathematics and physical observation. For example,
consider a simple pendulum. You may have seen one in a science museum, in a
grandfather clock, or you might make a simple one with a string and a marble.
As the pendulum swings back and forth, observe that its motion as a function of
time can be described very nicely by the sine function from trigonometry. Even
more interesting, if you make a free-body diagram of the pendulum and ap-
ply Newtonian mechanics to get the equation of motion (summing moments in
this case), the resulting equation of motion has the sine function as its solution.
Further, the equation of motion predicts the time it takes for the pendulum to
repeat its motion. In this example, dynamics, observation, and mathematics all
come into agreement to produce a predictive model of the motion of a pendulum,
which is easily verified by experiment (physical observation).
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This pendulum example tells the story of this text. We propose a series of
steps to build on the modeling skills developed in your first courses in statics, dy-
namics, and strength of materials combined with system dynamics to find equations
of motion of successively more complicated systems. Then we will use the tech-
niques of differential equations and numerical integration to solve these equations
of motion to predict how various mechanical systems and structures vibrate. The
following example illustrates the importance of recalling the methods learned in the
first course in dynamics.

Example 1.1.1

Derive the equation of motion of the pendulum in Figure 1.1.

Q

m
Q Figure 1.1 (a) A schematic of
a pendulum. (b) The free-body

(a) (b) diagram of (a).

Solution Consider the schematic of a pendulum in Figure 1.1(a). In this case, the mass
of the rod will be ignored as well as any friction in the hinge. Typically, one starts with a
photograph or sketch of the part or structure of interest and is immediately faced with
having to make assumptions. This is the “art” or experience side of vibration analysis
and modeling. The general philosophy is to start with the simplest model possible
(hence, here we ignore friction and the mass of the rod and assume the motion remains
in a plane) and try to answer the relevant engineering questions. If the simple model
doesn’t agree with the experiment, then make it more complex by relaxing the assump-
tions until the model successfully predicts physical observation. With the assumptions
in mind, the next step is to create a free-body diagram of the system, as indicated in
Figure 1.1(b), in order to identify all of the relevant forces. With all the modeled forces
identified, Newton’s second law and Euler’s second law are used to derive the equa-
tions of motion.

In this example Euler’s second law takes the form of summing moments about
point O. This yields

EMO =Ja
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where My denotes moments about the point O, J = mi? is the mass moment of inertia
of the mass m about the point O, [ is the length of the massless rod, and e is the angu-
lar acceleration vector. Since the problem is really in one dimension, the vector sum of
moments equation becomes the single scalar equation
Ja(t) = —mglsin 8(t) or ml*8(t) + mglsin 6(f) = 0

Here the moment arm for the force mg is the horizontal distance / sin 6, and the two
overdots indicate two differentiations with respect to the time, ¢. This is a second-order
ordinary differential equation, which governs the time response of the pendulum. This
is exactly the procedure used in the first course in dynamics to obtain equations of
motion.

The equation of motion is nonlinear because of the appearance of the sin(0) and
hence difficult to solve. The nonlinear term can be made linear by approximating the
sine for small values of 6(¢) as sin 8 = 6. Then the equation of motion becomes

6(r) + %6([) =0

This is a linear, second-order ordinary differential equation with constant coefficients
and is commonly solved in the first course of differential equations (usually the third
course in the calculus sequence). As we will see later in this chapter, this linear equa-
tion of motion and its solution predict the period of oscillation for a simple pendulum
quite accurately. The last section of this chapter revisits the nonlinear version of the
pendulum equation.

O

Since Newton’s second law for a constant mass system is stated in terms of
force, which is equated to the mass multiplied by acceleration, an equation of motion
with two time derivatives will always result. Such equations require two constants of
integration to solve. Euler’s second law for constant mass systems also yields two
time derivatives. Hence the initial position for 8(0) and velocity of 6(0) must be
specified in order to solve for 8(¢) in Example 1.1.1. The term mgl sin 6 is called the
restoring force. In Example 1.1.1, the restoring force is gravity, which provides a
potential-energy storing mechanism. However, in most structures and machine parts
the restoring force is elastic. This establishes the need for background in strength of
materials when studying vibrations of structures and machines.

As mentioned in the example, when modeling a structure or machine it is
best to start with the simplest possible model. In this chapter, we model only sys-
tems that can be described by a single degree of freedom, that is, systems for which
Newtonian mechanics result in a single scalar equation with one displacement coor-
dinate. The degree of freedom of a system is the minimum number of displacement
coordinates needed to represent the position of the system’s mass at any instant of
time. For instance, if the mass of the pendulum in Example 1.1.1 were a rigid body,
free to rotate about the end of the pendulum as the pendulum swings, the angle of
rotation of the mass would define an additional degree of freedom. The problem
would then require two coordinates to determine the position of the mass in space,
hence two degrees of freedom. On the other hand, if the rod in Figure 1.1 is flexible,
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its distributed mass must be considered, effectively resulting in an infinite number
of degrees of freedom. Systems with more than one degree of freedom are dis-
cussed in Chapter 4, and systems with distributed mass and flexibility are discussed
in Chapter 6.

The next important classification of vibration problems after degree of
freedom is the nature of the input or stimulus to the system. In this chapter, only
the free response of the system is considered. Free response refers to analyzing
the vibration of a system resulting from a nonzero initial displacement and/or
velocity of the system with no external force or moment applied. In Chapter 2,
the response of a single-degree-of-freedom system to a harmonic input (i.e., a
sinusoidal applied force) is discussed. Chapter 3 examines the response of a sys-
tem to a general forcing function (impulse or shock loads, step functions, random
inputs, etc.), building on information learned in a course in system dynamics. In
the remaining chapters, the models of vibration and methods of analysis become
more complex.

The following sections analyze equations similar to the linear version of the pen-
dulum equation given in Example 1.1.1. In addition, energy dissipation is introduced,
and details of elastic restoring forces are presented. Introductions to design, measure-
ment, and simulation are also presented. The chapter ends with the introduction of
high-level computer codes (MATLAB®, Mathematica, and Mathcad) as a means to
visualize the response of a vibrating system and for making the calculations required
to solve vibration problems more efficiently. In addition, numerical simulation is intro-
duced in order to solve nonlinear vibration problems.

1.1.1 The Spring—Mass Model

From introductory physics and dynamics, the fundamental kinematical quantities
used to describe the motion of a particle are displacement, velocity, and accelera-
tion vectors. In addition, the laws of physics state that the motion of a mass with
changing velocity is determined by the net force acting on the mass. An easy de-
vice to use in thinking about vibration is a spring (such as the one used to pull a
storm door shut, or an automobile spring) with one end attached to a fixed object
and a mass attached to the other end. A schematic of this arrangement is given in
Figure 1.2.

i

—0

" Figure 1.2 A schematic of (a) a
& single-degree-of-freedom spring-mass
(a) (b) oscillator and (b) its free-body diagram.
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Ignoring the mass of the spring itself, the forces acting on the mass consist of
the force of gravity pulling down (mg) and the elastic-restoring force of the spring
pulling back up (f). Note that in this case the force vectors are collinear, reducing the
static equilibrium equation to one dimension easily treated as a scalar. The nature of
the spring force can be deduced by performing a simple static experiment. With no
mass attached, the spring stretches to the position labeled xy = 0 in Figure 1.3. As
successively more mass is attached to the spring, the force of gravity causes the spring
to stretch further. If the value of the mass is recorded, along with the value of the
displacement of the end of the spring each time more mass is added, the plot of the
force (mass, denoted by m, times the acceleration due to gravity, denoted by g) versus
this displacement, denoted by x, yields a curve similar to that illustrated in Figure 1.4.
Note that in the region of values for x between 0 and about 20 mm (millimeters), the
curve is a straight line. This indicates that for deflections less than 20 mm and forces
less than 1000 N (newtons), the force that is applied by the spring to the mass is pro-
portional to the stretch of the spring. The constant of proportionality is the slope of
the straight line between 0 and 20 mm. For the particular spring of Figure 1.4, the
constant is 50 N/mm, or 5 X 10* N/m. Thus, the equation that describes the force
applied by the spring, denoted by f, to the mass is the linear relationship

Je = kx (1.1)

The value of the slope, denoted by k, is called the stiffness of the spring and is a
property that characterizes the spring for all situations for which the displacement
is less than 20 mm. From strength-of-materials considerations, a linear spring of
stiffness k stores potential energy of the amount 5 kx?.

Figure 1.3 A schematic of a
massless spring with no mass
attached showing its static
l X2 x5 equilibrium position, followed
> by increments of increasing
g added mass illustrating the
corresponding deflections.

e

103N [--------=----

x  Figure 1.4 The static deflection
0 20 mm curve for the spring of Figure 1.3.
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Note that the relationship between f; and x of equation (1.1) is linear (i.e.,
the curve is linear and f; depends linearly on x). If the displacement of the spring
is larger than 20 mm, the relationship between f; and x becomes nonlinear, as indi-
cated in Figure 1.4. Nonlinear systems are much more difficult to analyze and form
the topic of Section 1.10. In this and all other chapters, it is assumed that displace-
ments (and forces) are limited to be in the linear range unless specified otherwise.

Next, consider a free-body diagram of the mass in Figure 1.5, with the mass-
less spring elongated from its rest (equilibrium or unstretched) position. As in the
earlier figures, the mass of the object is taken to be m and the stiffness of the spring
is taken to be k. Assuming that the mass moves on a frictionless surface along the
x direction, the only force acting on the mass in the x direction is the spring force.
As long as the motion of the spring does not exceed its linear range, the sum of the
forces in the x direction must equal the product of mass and acceleration.

Summing the forces on the free-body diagram in Figure 1.5 along the x direc-
tion yields

mx(t) = —kx(t) or mX(t) + kx(t) = 0 (1.2)

where X(¢) denotes the second time derivative of the displacement (i.e., the accel-
eration). Note that the direction of the spring force is opposite that of the deflection
(+ is marked to the right in the figure). As in Example 1.1.1, the displacement vec-
tor and acceleration vector are reduced to scalars, since the net force in the y direc-
tion is zero (N = mg) and the force in the x direction is collinear with the inertial
force. Both the displacement and acceleration are functions of the elapsed time ¢,
as denoted in equation (1.2). Window 1.1 illustrates three types of mechanical sys-
tems, which for small oscillations can be described by equation (1.2): a spring—-mass
system, a rotating shaft, and a swinging pendulum (Example 1.1.1). Other examples
are given in Section 1.4 and throughout the book.

One of the goals of vibration analysis is to be able to predict the response,
or motion, of a vibrating system. Thus it is desirable to calculate the solution to
equation (1.2). Fortunately, the differential equation of (1.2) is well known and
is covered extensively in introductory calculus and physics texts, as well as in
texts on differential equations. In fact, there are a variety of ways to calculate this
solution. These are all discussed in some detail in the next section. For now, it is
sufficient to present a solution based on physical observation. From experience

= x Y
0 X
_ w—t+ Friction-free
k surface
m —kx ~— y”g
/ ?N Figure 1.5 (a) A single spring-mass
system given an initial displacement of x
R;:t from its rest, or equilibrium, position and
position

zero initial velocity. (b) The system’s free-
(a) (b) body diagram.
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Window 1.1
Examples of Single-Degree-of-Freedom Systems (for small displacements)

Torsional
stiffness

m 0(1) g
Feo

Spring-mass Shaft and disk Simple pendulum
mix + kx =0 Jo + ko =0 0+ (g/hp=0

Gravity [ = length

(a) (b) (©

watching a spring, such as the one in Figure 1.5 (or a pendulum), it is guessed that
the motion is periodic, of the form

xX(f) = Asin(wyt + b) (1.3)

This choice is made because the sine function describes oscillation. Equation
(1.3) is the sine function in its most general form, where the constant A is the
amplitude, or maximum value, of the displacement; w,, the angular natural fre-
quency, determines the interval in time during which the function repeats itself;
and ¢, called the phase, determines the initial value of the sine function. As will
be discussed in the following sections, the phase and amplitude are determined
by the initial state of the system (see Figure 1.7). It is standard to measure the
time ¢ in seconds (s). The phase is measured in radians (rad), and the frequency
is measured in radians per second (rad/s). As derived in the following equation,
the frequency w,, is determined by the physical properties of mass and stiffness
(m and k), and the constants A and ¢ are determined by the initial position and
velocity as well as the frequency.

To see if equation (1.3) is in fact a solution of the equation of motion, it is
substituted into equation (1.2). Successive differentiation of the displacement, x()
in the form of equation (1.3), yields the velocity, x(¢), given by

x(f) = w,A cos(w,t + b) (1.4)
and the acceleration, X(¢), given by

¥(t) = —w3A sin(w,t + ¢) (1.5)
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Substitution of equations (1.5) and (1.3) into (1.2) yields
—molA sin(w,t + &) = —kA sin(w,t + ¢)

Dividing by A and m yields the fact that this last equation is satisfied if

, k |k
Wy = or 00 = (1.6)

Hence, equation (1.3) is a solution of the equation of motion. The constant w,,
characterizes the spring-mass system, as well as the frequency at which the motion
repeats itself, and hence is called the system’s natural frequency. A plot of the solu-
tion x(f) versus time ¢ is given in Figure 1.6. It remains to interpret the constants
A and .

The units associated with the notation w,, are rad/s and in older texts natural
frequency in these units is often referred to as the circular natural frequency or cir-
cular frequency to emphasize that the units are consistent with trigonometric func-
tions and to distinguish this from frequency stated in units of hertz (Hz) or cycles
per second, denoted by f,,, and commonly used in discussing frequency. The two
are related by f, = v, /2w as discussed in Section 1.2. In practice, the phrase natu-
ral frequency is used to refer to either f, or w,, and the units are stated explicitly
to avoid confusion. For example, a common statement is: the natural frequency is
10 Hz, or the natural frequency is 20w rad/s.

Recall from differential equations that because the equation of motion is of
second order, solving equation (1.2) involves integrating twice. Thus there are two
constants of integration to evaluate. These are the constants A and ¢. The physical
significance, or interpretation, of these constants is that they are determined by the
initial state of motion of the spring-mass system. Again, recall Newton’s laws, if no
force is imparted to the mass, it will stay at rest. If, however, the mass is displaced to
a position of xj at time ¢ = 0, the force kx( in the spring will result in motion. Also,
if the mass is given an initial velocity of vy at time ¢t = 0, motion will result because

x(t) (mm)

ALlS
1 -
0.5 .
Time (s) Figure 1.6 The response of a
0 simple spring-mass system

4 10 ) to an initial displacement of
—0.5 7 X9 = 0.5 mm and an initial
1 velocity of vy = 2V2 mm/s.
The natural frequency is
—A-15 - 2 rad/s and the amplitude
T 27

W is 1.5 mm. The period is

@, T=2m/w,=27w/2 = ms.



10

Introduction to Vibration and the Free Response Chap. 1
of the induced change in momentum. These are called initial conditions and when
substituted into the solution (1.3) yield

Xy = x(0) = Asin(w,0 + ¢) = Asind 1.7)
and
vy = %(0) = w,Acos(w,0 + ) = w,Acos ¢ (1.8)

Solving these two simultaneous equations for the two unknowns A and ¢ yields

/22 2
w,xg + v
A= 02 and ¢ = tan’!

Wy,

2no (1.9)

as illustrated in Figure 1.7. Here the phase ¢ must lie in the proper quadrant, so
care must be taken in evaluating the arc tangent. Thus, the solution of the equation
of motion for the spring-mass system is given by

Voixd + v} &)
x(t) = ”woosin<w,,t + tan’! Z%) (1.10)
n 0

and is plotted in Figure 1.6. This solution is called the free response of the system, be-
cause no force external to the system is applied after + = 0. The motion of the spring—
mass system is called simple harmonic motion or oscillatory motion and is discussed in
detail in the following section. The spring—mass system is also referred to as a simple
harmonic oscillator, as well as an undamped single-degree-of-freedom system.

X0
X0
o (%) Yo
A =\]xy" + o, Wy \
e —
X0 / 4\ |
90°
¢
90° Vo .
e
Yo X0
on PN
2 AR
A= X0 + Tn
(a) (b)

Figure 1.7 The trigonometric relationships between the phase, natural frequency,
and initial conditions. Note that the initial conditions determine the proper quadrant
for the phase: (a) for a positive initial position and velocity, (b) for a negative initial
position and a positive initial velocity.
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Example 1.1.2

The phase angle ¢ describes the relative shift in the sinusoidal vibration of the spring—
mass system resulting from the initial displacement, x,. Verify that equation (1.10)
satisfies the initial condition x(0) = x.

Solution Substitution of = 0 in equation (1.10) yields
\/wf,x% + v%

x(0) = Asind = 7sin(tan71 w;ixﬂ)
n 0

Figure 1.7 illustrates the phase angle ¢ defined by equation (1.9). This right triangle
is used to define the sine and tangent of the angle ¢. From the geometry of a right
triangle, and the definitions of the sine and tangent functions, the value of x(0) is
computed to be

\V mﬁx% + v% W, X
Wy \V4 m,%x% + v%

x(0) =

= Xy

which verifies that the solution given by equation (1.10) is consistent with the initial
displacement condition.
O

Example 1.1.3

A vehicle wheel, tire, and suspension assembly can be modeled crudely as a single-
degree-of-freedom spring-mass system. The (unsprung) mass of the assembly is
measured to be about 30 kilograms (kg). Its frequency of oscillation is observed to be
10 Hz. What is the approximate stiffness of the suspension assembly?

Solution The relationship between frequency, mass, and stiffness is o, = Vk/m,
so that

cycle
k = mo? = (30 kg)<1oyT-21T rad

2
> = 1.184 X 10°N/m
cycle

This provides one simple way to estimate the stiffness of a complicated device. This
stiffness could also be estimated by using a static deflection experiment similar to that
suggested by Figures 1.3 and 1.4.

d

Example 1.1.4
Compute the amplitude and phase of the response of a system with a mass of 2 kg and
a stiffness of 200 N /m, to the following initial conditions:
a) xp = 2mm and vy = 1 mm/s
b) xo
¢) xo = 2mmandvy = —1 mm/s

—2mm and vy = 1 mm/s

Compare the results of these calculations.
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Solution First, compute the natural frequency, as this does not depend on the initial
conditions and will be the same in each case. From equation (1.6):

k 200 N/m
®, = /—=+/—=——=10rad/s
m 2kg

Next, compute the amplitude, as it depends on the squares of the initial conditions and
will be the same in each case. From equation (1.9):

\/22+v2 2.2 4 P
_ Vet VIC2Z APl

A
w, 10

Thus the difference between the three responses in this example is determined only
by the phase. Using equation (1.9) and referring to Figure 1.7 to determine the proper
quadrant, the following yields the phase information for each case:

10rad/s) (2 mm
a) ¢ = tanﬁl<%) = tanﬁl<¢) = 1.521 rad (or 87.147°)
Vg 1 mm/s

which is in the first quadrant.
10rad/s) (—2 mm
b) ¢ = tan*l(w) = tan*l(( /9( )) = —1.521 rad (or —87.147°)
Uy 1 mm/s
which is in the fourth quadrant.

¢ ¢ = tan’! (M) = tan‘](w) = (=1.521 + ) rad (or 92.85°)
gy —1mm/s

which is in the second quadrant (position positive, velocity negative places the
angle in the second quadrant in Figure 1.7 requiring that the raw calculation be
shifted 180°).

Note that if equation (1.9) is used without regard to Figure 1.7, parts b and ¢
would result in the same answer (which makes no sense physically as the responses
each have different starting points). Thus in computing the phase it is important to
consider which quadrant the angle should lie in. Fortunately, some calculators and
some codes use an arc tangent function, which corrects for the quadrant (for instance,
MATLAB uses the atan2 (w0*x0, v0) command).

The tan($) can be positive or negative. If the tangent is positive, the phase angle
is in the first or third quadrant. If the sign of the initial displacement is positive, the
phase angle is in the first quadrant. If the sign is negative or the initial displacement
is negative, the phase angle is in the third quadrant. If on the other hand the tangent
is negative, the phase angle is in the second or fourth quadrant. As in the previous
case, by examining the sign of the initial displacement, the proper quadrant can be
determined. That is, if the sign is positive, the phase angle is in the second quadrant,
and if the sign is negative, the phase angle is in the fourth quadrant. The remaining
possibility is that the tangent is equal to zero. In this case, the phase angle is either
zero or 180°. The initial velocity determines which quadrant is correct. If the initial
displacement is zero and if the initial velocity is zero, then the phase angle is zero. If on
the other hand the initial velocity is negative, the phase angle is 180°.

O
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The main point of this section is summarized in Window 1.2. This illustrates
harmonic motion and how the initial conditions determine the response of such
a system.

Window 1.2
Summary of the Description of Simple Harmonic Motion

Displacement, x(t)

Slope here ' |<7 r= ‘2"_: 4.|

Amplitude

i Period
is vg
A= %J w,%xg-&-vg
n
0
Initial
displace-
ment

Time, ¢

|e

Maximum velocity

£

4h

1 2.2 .2 .
x(r) = o [o;x5+vy  sin(w,t + )

X L )
b =tan"1 <w—3 0> Vo = initial velocity
0

1.2 HARMONIC MOTION

The fundamental kinematic properties of a particle moving in one dimension are
displacement, velocity, and acceleration. For the harmonic motion of a simple
spring—mass system, these are given by equations (1.3), (1.4), and (1.5), respectively.
These equations reveal the different relative amplitudes of each quantity. For
systems with natural frequency larger than 1 rad/s, the relative amplitude of the
velocity response is larger than that of the displacement response by a multiple of
w,, and the acceleration response is larger by a multiple of w2. For systems with
frequency less than 1, the velocity and acceleration have smaller relative ampli-
tudes than the displacement. Also note that the velocity is 90° (or 7 /2 radians) out
of phase with the position [i.e., sin(w,t + 7/2 + ¢) = cos(w,t + ¢)], while the
acceleration is 180° out of phase with the position and 90° out of phase with the
velocity. This is summarized and illustrated in Window 1.3.
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Window 1.3
The Relationship between Displacement, Velocity, and Acceleration
Jor Simple Harmonic Motion

Displacement
x(t) = Asin (w,t + ¢) 0

Velocity
x(t) = 0,A cos (w,t + ) 0

7(1)A —

w?A —

Acceleration
¥(f) = —w2Asin (w,ft + ) 0
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The angular natural frequency, w,,, used in equations (1.3) and (1.10), is mea-
sured in radians per second and describes the repetitiveness of the oscillation. As
indicated in Window 1.2, the time the cycle takes to repeat itself is the period, T,
which is related to the natural frequency by

2mrad 2
= T2 = T (1.11)
o,rad/s o,

This results from the elementary definition of the period of a sine function. The
frequency in hertz (Hz), denoted by f,, is related to the frequency in radians per
second, denoted by w,;

o, o, rad/s o, cycles  w,

Jn 2w 2wrad/cycle 2ms 2m (Hz) (1.12)

Equation (1.2) is exactly the same form of differential equation as the linear
pendulum equation of Example 1.1.1 and of the shaft and disk of Window 1.1(b).
As such, the pendulum will have exactly the same form of solution as equation (1.3),

with frequency
0, = ﬁrad/ s

The solution of the pendulum equation thus predicts that the period of oscillation

of the pendulum is
r=2"_ 217\/78
Wy 8

where the non-italic s denotes seconds. This analytical value of the period can be
checked by measuring the period of oscillation of a pendulum with a simple stop-
watch. The period of the disk and shaft system of Window 1.1 will have a frequency

and period of
k J
w, = \/;rad/s and T= 217\/;5

respectively. The concept of frequency of vibration of a mechanical system is
the single most important physical concept (and number) in vibration analysis.
Measurement of either the period or the frequency allows validation of the analyti-
cal model. (If you made a 1-meter pendulum, the period would be about 2 s. This is
something you could try at home.)

As long as the only disturbance to these systems is a set of nonzero initial con-
ditions, the system will respond by oscillating with frequency o, and period 7. For
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the case of the pendulum, the longer the pendulum, the smaller the frequency and
the longer the period. That’s why in museum demonstrations of a pendulum, the
length is usually very large so that 7 is large and one can easily see the period (also
a pendulum is usually used to illustrate the earth’s precession; Google the phrase
Foucault Pendulum).

Example 1.2.1

Consider a small spring about 30 mm (or 1.18 in) long, welded to a stationary table
(ground) so that it is fixed at the point of contact, with a 12-mm (or 0.47-in) bolt welded
to the other end, which is free to move. The mass of this system is about 49.2 X 107> kg
(equivalent to about 1.73 ounces). The spring stiffness can be measured using the method
suggested in Figure 1.4 and yields a spring constant of k£ = 8578 N/m. Calculate the
natural frequency and period. Also determine the maximum amplitude of the response if
the spring is initially deflected 10 mm. Assume that the spring is oriented along the direc-
tion of gravity as in Window 1.1. (Ignore the effect of gravity; see below.)

Solution From equation (1.6) the natural frequency is

k 857.8 N/m
Wy =/ =/ = 132rad/s
m 492 x 103 kg

In hertz, this becomes

fy = 5 = 21Hz

The period is

2 1
=T = = 004765
©n
To determine the maximum value of the displacement response, note from Figure 1.6
that this corresponds to the value of the constant A. Assuming that no initial velocity is
given to the spring (vy = 0), equation (1.9) yields

\/u),qu% + ?J%
X(Dmaxy = A= ———— = xp = 10mm

Wy,

T

Note that the maximum value of the velocity response is w,A or w,xg = 1320 mm/s
and the acceleration response has maximum value

02A = wixy = 174.24 X 10° mm/s?

Since vy = 0, the phase is ¢ = tan™!(w,xo/0) = /2, or 90°. Hence, in this case, the
response is x(f) = 10sin(132¢ + «w/2) = 10 cos(132¢r) mm.
O

Does gravity matter in spring problems? The answer is no, if the system oscillates

in the linear region. Consider the spring of Figure 1.3 and let a mass of value m extend
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the spring. Let A denote the distance deflected in this static experiment (Ais called the
static deflection); then the force acting upon the mass is kKA. From static equilibrium
the forces acting on the mass must be zero so that (taking positive down in the figure)

mg — kA =0

Next, sum the forces along the vertical for the mass at some point x and apply
Newton’s law to get

mx(t) = —k(x + A) + mg = —kx + mg — Ak

Note the sign on the spring term is negative because the spring force opposes
the motion, which is taken here as positive down. The last two terms add to zero
(mg — kA = 0) because of the static equilibrium condition, and the equation of
motion becomes

mX(t) + kx(t) = 0

Thus gravity does not affect the dynamic response. Note x(f) is measured from the
elongated (or compressed if upside down) position of the spring-mass system, that
is, from its rest position. This is discussed again using energy methods in Figure 1.14.

Example 1.2.2

(a) A pendulum in Brussels swings with a period of 3 seconds. Compute the length of
the pendulum. (b) At another location, assume the length of the pendulum is known
to be 2 meters and suppose the period is measured to be 2.839 seconds. What is the
acceleration due to gravity at that location?

Solution The relationship between period and natural frequency is given in
equation (1.11). (a) Substitution of the value of natural frequency for a pendulum
and solving for the length of the pendulum yields
2w g 4m gT?  (9.811m/s*)(3)*?
T:7:>w%l:7: =]=— =

— =2.237m
W, l T2 4,11.2 4“_2

Here the value of g = 9.811 m/s” is used, as that is the value it has in Brussels (at 51°
latitude and an altitude of 102 m). (b) Next, manipulate the pendulum period equation
to solve for g. This yields

g 4w’ N 42 472
— g=

— 2
[T 5 (2)m = 9.796 m/s

- =
T2 (2.839)%s

This is the value of the acceleration due to gravity in Denver, Colorado, United States
(at an altitude 1638 m and latitude 40°).

These sorts of calculations are usually done in high school science classes but are
repeated here to underscore the usefulness of the concept of natural frequency and period
in terms of providing information about the vibration system’s physical properties. In
addition, this example serves to remind the reader of a familiar vibration phenomenon.

a
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The solution given by equation (1.10) was developed assuming that the response
should be harmonic based on physical observation. The form of the response can also
be derived by a more analytical approach following the theory of elementary differ-
ential equations (see, e.g., Boyce and DiPrima, 2009). This approach is reviewed here
and will be generalized in later sections and chapters to solve for the response of more
complicated systems.

Assume that the solution x() is of the form

x(t) = aeM (1.13)

where a and \ are nonzero constants to be determined. Upon successive differen-
tiation, equation (1.13) becomes x(f) = Aae™ and ¥(f) = Nae™. Substitution of the
assumed exponential form into equation (1.2) yields

m\’aeM + kaeM = 0 (1.14)

N

Since the term aeM is never zero, expression (1.14) can be divided by ae to yield

m\? + k=0 (1.15)

Solving this algebraically results in

| k [k

where j = V/—1 is the imaginary number and w, = Vk/m is the natural frequency
as before. Note that there are two values for A, A = +w,j and A = —w,j, because
the equation for \ is of second order. This implies that there must be two solutions
of equation (1.2) as well. Substitution of equation (1.16) into equation (1.13) yields
that the two solutions for x(¢) are

x(t) = are and  x(t) = ae " (1.17)

Since equation (1.2) is linear, the sum of two solutions is also a solution; hence, the
response x(¢) is of the form

x(t) = a;e™t + gyeiont (1.18)

where a; and a, are complex-valued constants of integration. The Euler relations for
trigonometric functions state that 2j sin 8 = (¥ — ¢™%) and 2 cos 8 = (e¥ + ¢Y),
where j = V—1. [See Appendix A, equations (A.18), (A.19), and (A.20), as well as
Window 1.5.] Using the Euler relations, equation (1.18) can be written as

x(t) = Asin(w,t + ) (1.19)

where A and ¢ are real-valued constants of integration. Note that equation (1.19) is
in agreement with the physically intuitive solution given by equation (1.3). The re-
lationships among the various constants in equations (1.18) and (1.19) are given in
Window 1.4. Window 1.5 illustrates the use of Euler relations for deriving harmonic
functions from exponentials for the underdamped case.
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Window 1.4
Three Equivalent Representations of Harmonic Motion

The solution of mx + kx = 0 subject to nonzero initial conditions can be
written in three equivalent ways. First, the solution can be written as

) . k
X(1) = @ g oy = [ = VT

where a; and a, are complex-valued constants. Second, the solution can be
written as
x(t) = Asin(w,t + )
where A and ¢ are real-valued constants. Last, the solution can be written as
x(t) = A;sinw,t + A, cosw,t

where A and A, are real-valued constants. Each set of two constants is deter-
mined by the initial conditions, xy and v,. The various constants are related by
the following:

A
A=VA+ 4 ¢=tan <2>

A
Al=( —w)] A=a+a
A — Ay Ay + Ay
a = 2 a, = 2

all of which follow from trigonometric identities and Euler’s formulas. Note
that a; and a, are a complex conjugate pair, so that A; and A, are both real
numbers provided that the initial conditions are real valued, as is normally
the case.

Often when computing frequencies from equation (1.16) such as \> = —4,
there is a temptation to write that the frequency is w, = *2. This is incorrect be-
cause the *sign is used up when the Euler relation is used to obtain the function
sin w,t from the exponential form. The concept of frequency is not defined until it
appears in the argument of the sine function and, as such, is always positive.

Precise terminology is useful in discussing an engineering problem, and the sub-
ject of vibration is no exception. Since the position, velocity, and acceleration change
continually with time, several other quantities are used to discuss vibration. The peak
value, defined as the maximum displacement, or magnitude A of equation (1.9), is
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often used to indicate the region in space in which the object vibrates. Another quan-
tity useful in describing vibration is the average value, denoted by x, and defined by

1 T
x = lim / x(t)dt (1.20)
T 0

Note that the average value of x(f) = A sin w,t over one period of oscillation is zero.

Since the square of displacement is associated with a system’s potential
energy, the average of the displacement squared is sometimes a useful vibration
property to discuss. The mean-square value (or variance) of the displacement x(¢),
denoted by x?, is defined by

1 /7
x* = lim / x*(t)dt (1.21)
T Jo

T —x

The square root of this value, called the root mean-square (rms) value, is commonly
used in specifying vibration. Because the peak value of the velocity and accelera-
tion are multiples of the natural frequency times the displacement amplitude [i.e.,
equations (1.3)—(1.5)], these three peak values often differ in value by an order of
magnitude or more. Hence, logarithmic scales are often used. A common unit of
measurement for vibration amplitudes and rms values is the decibel (dB). The deci-
bel was originally defined in terms of the base 10 logarithm of the power ratio of
two electrical signals, or as the ratio of the square of the amplitudes of two signals.
Following this idea, the decibel is defined as

dB =101 (xl )2 20 log o - (122)
= O — = (e} _ .
g10 X g10 X

Here the signal x is a reference signal. The decibel is used to quantify how far the
measured signal x; is above the reference signal x,. Note that if the measured signal
is equal to the reference signal, then this corresponds to 0 dB. The decibel is used
extensively in acoustics to compare sound levels. Using a dB scale expands or com-
presses vibration response information for convenience in graphical representation.

Example 1.2.3

Consider a 2-meter long pendulum placed on the moon and given an initial angular
displacement of 0.2 rad and zero initial velocity. Calculate the maximum angular veloc-
ity and the maximum angular acceleration of the swinging pendulum (note that gravity
on the earth’s moon is g,, = g/6, where g is the acceleration due to gravity on earth).

Solution From Example 1.1.1 the equation of motion of a pendulum is

b(r) + ng 0(f) = 0
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This equation is of the same form as equation (1.2) and hence has a solution of
the form

0(1) = Asin(wyt + &), ©, = ng

From equation (1.9) the amplitude is given by

[ 22 2

WXy + v

A = %:&)ZO.Zrad
U‘)l’l

From Window 1.3 the maximum velocity is just w, A or

m 9.8/6
Vmaxy = W, A = 7(0.2) = (0.2) - = 0.18 rad/s

The maximum acceleration is

- 9.8/6
=m3,A=g—A= /

a ; T(0.2) = 0.163 rad /s’

max

d

Frequencies of concern in mechanical vibration range from fractions of a hertz to
several thousand hertz. Amplitudes range from micrometers up to meters (for systems
such as tall buildings). According to Mansfield (2005), human beings are more sensitive
to acceleration than displacement and easily perceive vibration around 5 Hz at about
0.01 m/ s (about 0.01 mm). Horizontal vibration is easy to experience near 2 Hz. Work
attempting to characterize comfort levels for human vibrations is still ongoing.

1.3 VISCOUS DAMPING

The response of the spring—mass model (Section 1.1) predicts that the system will
oscillate indefinitely. However, everyday observation indicates that freely oscillat-
ing systems eventually die out and reduce to zero motion. This observation suggests
that the model sketched in Figure 1.5 and the corresponding mathematical model
given by equation (1.2) need to be modified to account for this decaying motion. The
choice of a representative model for the observed decay in an oscillating system is
based partially on physical observation and partially on mathematical convenience.
The theory of differential equations suggests that adding a term to equation (1.2)
of the form cx(f), where c is a constant, will result in a solution x(¢) that dies out.
Physical observation agrees fairly well with this model and is used successfully to
model the damping, or decay, in a variety of mechanical systems. This type of damp-
ing, called viscous damping, is described in detail in this section.
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Figure 1.8 A schematic of a dashpot that produces a damping force f.(t) = cx(z),
where x(f) is the motion of the case relative to the piston.

While the spring forms a physical model for storing potential energy and hence
causing vibration, the dashpot, or damper, forms the physical model for dissipating
energy and thus damping the response of a mechanical system. An example dashpot
consists of a piston fit into a cylinder filled with oil as indicated in Figure 1.8. This
piston is perforated with holes so that motion of the piston in the oil is possible. The
laminar flow of the oil through the perforations as the piston moves causes a damp-
ing force on this piston. The force is proportional to the velocity of the piston in a
direction opposite that of the piston motion. This damping force, denoted by f,, has
the form

fe = cx(t) (1.23)

where c is a constant of proportionality related to the oil viscosity. The constant
¢, called the damping coefficient, has units of force per velocity, or N s/m, as it is
customarily written. However, following the strict rules of SI units, the units on
damping can be reduced to kg/s, which states the units on damping in terms of the
fundamental (also called basic) SI units (mass, time, and length).

In the case of the oil-filled dashpot, the constant ¢ can be determined by fluid
principles. However, in most cases, f, is provided by equivalent effects occurring in
the material forming the device. A good example is a block of rubber (which also
provides stiffness f;) such as an automobile motor mount, or the effects of air flowing
around an oscillating mass. In all cases in which the damping force f, is proportional
to velocity, the schematic of a dashpot is used to indicate the presence of this force.
The schematic is illustrated in Figure 1.9. Unfortunately, the damping coefficient of a
system cannot be measured as simply as the mass or stiffness of a system can be. This
is pointed out in Section 1.6.

Using a simple force balance on the mass of Figure 1.9 in the x direction, the
equation of motion for x(¢) becomes

mi = —f. — f; (1.24)

or

mx(t) + cx(t) + kx(t) = 0 (1.25)
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Figure 1.9 (a) The schematic of a single-degree-of-freedom system with viscous
damping indicated by a dashpot and (b) the corresponding free-body diagram.

subject to the initial conditions x(0) = x; and x(0) = v,. The forces f, and f are
negative in equation (1.24) because they oppose the motion (positive to the right).
Equation (1.25) and Figure 1.9, referred to as a damped single-degree-of-freedom
system, form the topic of Chapters 1 through 3.

To solve the damped system of equation (1.25), the same method used for
solving equation (1.2) is used. In fact, this provides an additional reason to choose
f. to be of the form cx. Let x(¢) have the form given in equation (1.13), x(t) = ae™.

Substitution of this form into equation (1.25) yields
(mN\> + e\ + k)aeM =0 (1.26)
Again, aeM # 0, so that this reduces to a quadratic equation in A of the form
m\2+ N+ k=0 (1.27)

called the characteristic equation. This is solved using the quadratic formula to yield
the two solutions

1
Mo = e+ P — dkm (1.28)

om T~ 2m

Examination of this expression indicates that the roots \ will be real or complex, de-
pending on the value of the discriminant, c> — 4km. As long as m, ¢, and k are positive
real numbers, \; and \, will be distinct negative real numbers if ¢? — 4km > 0. On the
other hand, if this discriminant is negative, the roots will be a complex conjugate pair
with a negative real part. If the discriminant is zero, the two roots A; and \, are equal
negative real numbers. Note that equation (1.15) represents the characteristic equa-
tion for the special undamped case (i.e.,c = 0).

In examining these three cases, it is both convenient and useful to define the
critical damping coefficient, c.,, by

Cor = 2mw, = 2Vkm (1.29)
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where o, is the undamped natural frequency in rad/s. Furthermore, the nondimen-
sional number ¢, called the damping ratio, defined by

c c c
= — = = 1.30
¢ Cer 2mo,, 2Vkm ( )

can be used to characterize the three types of solutions to the characteristic equa-
tion. Rewriting the roots given by equation (1.28) yields

Mo = —lo, £ 0,V -1 (1.31)

where it is now clear that the damping ratio { determines whether the roots are
complex or real. This in turn determines the nature of the response of the damped
single-degree-of-freedom system. For positive mass, damping, and stiffness coef-
ficients, there are three cases, which are delineated next.

1.3.1 Underdamped Motion

In this case, the damping ratio { is less than 1 (0 < { < 1) and the discriminant of
equation (1.31) is negative, resulting in a complex conjugate pair of roots. Factoring
out (—1) from the discriminant in order to clearly distinguish that the second term
is imaginary yields

VE-1=V1-O-1)=V1-2j (132)
where j = V/—1. Thus the two roots become
M= Lo, — 0, V1= (1.33)
and

N = —lo, + 0,V1 = ] (1.34)

Following the same argument as that made for the undamped response of equation
(1.18), the solution of (1.25) is then of the form

x(t) = et (ayelV1Cont 4 gye VI Lot (1.35)

where a; and a, are arbitrary complex-valued constants of integration to be deter-
mined by the initial conditions. Using the Euler relations (see Window 1.5), this can
be written as

x(t) = Ae " sin(wyt + b) (1.36)

where A and ¢ are constants of integration and wy, called the damped natural fre-

quency, is given by
0 = 0, V1 = (1.37)

in units of rad/s.
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Window 1.5
Euler Relations and the Underdamped Solution

An underdamped solution of mx + cx + kx = 0to nonzero initial conditions
is of the form

x(t) = aeM + ae™
where \q and \, are complex numbers of the form
M= —lo, g and N = —lw, — oy
where o, = W, {=c/Cmo,), vg = mnm, and j = V—1. The

two constants a; and a, are complex numbers and hence represent four
unknown constants rather than the two constants of integration required to
solve a second-order differential equation. This demands that the two com-
plex numbers a; and a, be conjugate pairs so that x(¢) depends only on two
undetermined constants. Substitution of the foregoing values of \; into the
solution x(¢) yields
x(t) = e ¥ (aevd! + aye ")
Using the Euler relations e¥ = cos ¢ + j sin ¢ and ¢ = cos ¢ — j sin &,
x(t) becomes
x(t) = e %[ (a; + ay)cos wgt + j(a; — ay)sin wyt ]
Choosing the real numbers A, = a; + ap and Ay = (a; — ay)j, this becomes
x(t) = e (A sin wgt + A, cos wgt)

which is real valued. Defining the constant A = VA% + A3 and the angle
¢ = tan"'(A,/A;) so that A; = A cos ¢ and A, = A sin ¢, the form of x(¢)
becomes [recall that sin @ cos b + cos a sin b = sin(a + b)]

x(t) = Ae ! sin (gt + )

where A and ¢ are the constants of integration to be determined from the ini-
tial conditions. Complex numbers are reviewed in Appendix A.

The constants A and ¢ are evaluated using the initial conditions in exactly the
same fashion as they were for the undamped system as indicated in equations (1.7)
and (1.8). Set t = 0in equation (1.36) to get x; = A sin . Differentiating (1.36) yields

x(t) = —Lw,Ae ' sin(wyt + ¢) + wgAe 8 cos(wyt + )

Lett = 0and A = x(/sin¢ in this last expression to get

X(O) = Vg = —éwnxo + Xpwy COtd)
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Solving this last expression for ¢ yields

XoWq
tanp = ————
Vo + gwnx()
With this value of ¢, the sine becomes
XpWq

sindg =

V(v + L0,0)? + (x04)?

Thus the value of A and ¢ are determined to be

vy T (o 2+ (xpwy)? X,
Az\/(o énxo)z (Od)’d):tan_l 0wy
05 vy + Lo,Xo

(1.38)

where x( and v are the initial displacement and velocity. A plot of x(¢) versus ¢ for
this underdamped case is given in Figure 1.10. Note that the motion is oscillatory
with exponentially decaying amplitude. The damping ratio { determines the rate of
decay. The response illustrated in Figure 1.10 is exhibited in many mechanical sys-
tems and constitutes the most common case. As a check to see that equation (1.38)
is reasonable, note that if { = 0 in the expressions for A and ¢, the undamped rela-
tions of equation (1.9) result.

Displacement (mm)

1.0 —
/\ e ,
0.0 \/ \/ e Time (s)
—1.0 — Figure 1.10 The response
n of an underdamped system:
0<{<l1.

1.3.2 Overdamped Motion

In this case, the damping ratio is greater than 1 ({ > 1). The discriminant of equa-
tion (1.31) is positive, resulting in a pair of distinct real roots. These are

AN = Lo, — 0,V -1 (1.39)
and

N = —lo, + 0,V -1 (1.40)
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The solution of equation (1.25) then becomes

x(t) = e “l(ae gt g azem”\/“:zjt) (1.41)

which represents a nonoscillatory response. Again, the constants of integration
ay and a; are determined by the initial conditions indicated in equations (1.7) and
(1.8). In this nonoscillatory case, the constants of integration are real valued and
are given by

—vy + (=0 + V- 1ox

= 1.42
a 2, /?2_1 ( )
and
\/72 _
ay = Vo + (g + C l)wnxﬂ (143)

2w, V-1

Typical responses are plotted in Figure 1.11, where it is clear that motion does not
involve oscillation. An overdamped system does not oscillate but rather returns to
its rest position exponentially.

Displacement (mm)
04 1. x=03, vy=0

0.2

0.0

Figure 1.11 The response of an
—02 - overdamped system, { > 1, for two
different values of initial displacement
(in mm) both with the initial velocity
—0.4 T T T T T 1 Time (s)  set to zero and one case with xy = 0

0 1 2 3 4 5 6 and vg = 1 mm/s.

1.3.3 Critically Damped Motion

In this last case, the damping ratio is exactly one ({ = 1) and the discriminant of
equation (1.31) is equal to zero. This corresponds to the value of { that separates
oscillatory motion from nonoscillatory motion. Since the roots are repeated, they
have the value

M=M= o, (1.44)
The solution takes the form

x(t) = (a1 + ayt)e™™" (1.45)
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where, again, the constants a; and a, are determined by the initial conditions.
Substituting the initial displacement into equation (1.45) and the initial velocity
into the derivative of equation (1.45) yields

a =Xy, a = vyt 0X (1.46)

Critically damped motion is plotted in Figure 1.12 for two different values of initial
conditions. It should be noted that critically damped systems can be thought of in
several ways. They represent systems with the smallest value of damping rate that
yields nonoscillatory motion. Critical damping can also be thought of as the case
that separates nonoscillation from oscillation, or the value of damping that provides
the fastest return to zero without oscillation.

Displacement (mm)
0.6

PRGN | 1. xyg = 0.4 mm, v, = + Imm/s
a1/, N 2. xo = 0.4 mm, vy = 0 mm/s
0.4 +& he 3. xp = 0.4 mm, vy = —1mm/s
- Figure 1.12 The response of
02 - a critically damped system for
three different initial velocities.
1T o~ T~ Tl ) The physical properties are
0 T =t === =———= 1M (8) ;= 100kg, k = 225N/m,
—01 0.5 1 1.5 2 2.5 3 35 and { = 1.

Example 1.3.1

Recall the small spring of Example 1.2.1 (i.e., w,, = 132 rad/s). The damping rate of
the spring is measured to be 0.11 kg/s. Calculate the damping ratio and determine if
the free motion of the spring—bolt system is overdamped, underdamped, or critically
damped.

Solution From Example 1.2.1, m = 49.2 X 107 kg and k = 857.8 N/m. Using the
definition of the critical damping coefficient of equation (1.29) and these values for m
and k yields

o = 2Vkm = 2\V/ (8578 N/m)(49.2 x 107 kg)
= 12993 kg/s

If ¢ is measured to be 0.11 kg /s, the critical damping ratio becomes

0.11(k
e 12.993(kg/s)

or 0.85% damping. Since { is less than 1, the system is underdamped. The motion

resulting from giving the spring—bolt system a small displacement will be oscillatory.
O
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The single-degree-of-freedom damped system of equation (1.25) is often writ-
ten in a standard form. This is obtained by dividing equation (1.25) by the mass, m.
This yields

k
Pt Skt x=0 (1.47)
m m

The coefficient of x(f) is w2, the undamped natural frequency squared. A little
manipulation illustrates that the coefficient of the velocity x is 2{w,. Thus equation
(1.47) can be written as

¥(t) + 2w, x(t) + wix(t) =0 (1.48)

In this standard form, the values of the natural frequency and the damping ratio are
clear. In differential equations, equation (1.48) is said to be in monic form, meaning
that the leading coefficient (coefficient of the highest derivative) is one.

Example 1.3.2

The human leg has a measured natural frequency of around 20 Hz when in its rigid
(knee-locked) position in the longitudinal direction (i.e., along the length of the bone)
with a damping ratio of { = 0.224. Calculate the response of the tip of the leg bone
to an initial velocity of vy = 0.6 m/s and zero initial displacement (this would cor-
respond to the vibration induced while landing on your feet, with your knees locked
from a height of 18 mm) and plot the response. Last, calculate the maximum accelera-
tion experienced by the leg assuming no damping.

Solution The damping ratio is { = 0.224 < 1, so the system is clearly underdamped.
20 cycles 24 rad
1 s cycles

frequency is w; = 125.66V1 — (0.224)> = 122.467 rad/s. Using equation (1.38) with
vy = 0.6 m/s and xy = 0 yields

The natural frequency is w, = = 125.66 rad/s. The damped natural

V0.6 + (0.224)(125.66)(0) 1% + [(0)(122.467)]?
A= 122.467 = 0.005m

L Ow)
d"tanl(%uwnm))‘o

The response as given by equation (1.36) is
x(f) = 0.005¢ 2148 sin (122.467¢)

This is plotted in Figure 1.13. To find the maximum acceleration rate that the leg expe-
riences for zero damping, use the undamped case of equation (1.9):

_ o (WY = =
A= g+ (), 0, =12566,v) = 0.6,x, = 0
Wy,
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Displacement (mm)
5 —_

-5 T T T T T T T Time (s)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Figure 1.13 A plot of displacement versus time for the leg bone of Example 1.3.2.

A= @m = %m
w"l wﬂ
o 241 — 2( 06| _ N 2
max (¥) = |—wzA| = |0 w = (0.6)(125.66 m/s*) = 75.396 m/s

In terms of g = 9.81 m/s, this becomes

) . 75.396 m /s’
maximum acceleration = —————-¢ = 7.69¢’s
9.81 m/s

Example 1.3.3

Compute the form of the response of an underdamped system using the Cartesian
form of the solution given in Window 1.5.

Solution From basic trigonometry sin(x + y) = sin x cos y + cos x sin y. Applying
this to equation (1.36) with x = w,tand y = ¢ yields

x(t) = Ae *'sin (gt + ¢) = e 5(A; sin oyt + A, cosw,t)

where A| = A cos ¢ and A, = A sin ¢, as indicated in Window 1.5. Evaluating the
initial conditions yields

x(0) = x, = €%(A;sin 0 + A, cos 0)
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Solving yields A, = x,. Next, differentiate x(¢) to get
X = —{wye " (A sinwgt + Ay cos wyt) + wge 5 (A; cos wgt — Ay sin wyt)
Applying the initial velocity condition yields
vy = x(0) = —{w,(A;sin 0 + xycos 0) + wy(A;cos 0 — xsin 0)
Solving this last expression yields

Vo + Cwnx()
Wq

A1:

Thus the free response in Cartesian form becomes

Vo + Cu)n-x()

sin w,t + Xy cos wdt)
Wq

x(t) = e_g"’"'(

1.4 MODELING AND ENERGY METHODS

Modeling is the art or process of writing down an equation, or system of equa-
tions, to describe the motion of a physical device. For example, equation (1.2)
was obtained by modeling the spring—-mass system of Figure 1.5. By summing the
forces acting on the mass along the x direction and employing the experimental
evidence of the mathematical model of the force in a spring given by Figure 1.4,
equation (1.2) can be obtained. The success of this model is determined by how
well the solution of equation (1.2) predicts the observed and measured behavior
of the actual system. This comparison between the vibration response of a device
and the response predicted by the analytical model is discussed in Section 1.6. The
majority of this book is devoted to the analysis of vibration models. However, two
methods of modeling—force balance and energy methods—are presented in this
section. Newton’s three laws form the basis of dynamics. Fifty years after Newton,
Euler published his laws of motion. Newton’s second law states: the sum of forces
acting on a body is equal to the body’s mass times its acceleration, and Euler’s
second law states: the rate of change of angular momentum is equal to the sum
of external moments acting on the mass. Euler’s second law can be manipulated
to reveal that the sum of moments acting on a mass is equal to its rotational in-
ertia times its angular acceleration. These two laws require the use of free-body
diagrams and the proper identification of forces and moments acting on a body,
forming most of the activity in the study of dynamics.

An alternative approach, studied in dynamics, is to examine the energy in
the system, giving rise to what is referred to as energy methods for determining
the equations of motion. The energy methods do not require free-body diagrams
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but rather require an understanding of the energy in a system, providing a useful
alternative when forces are not easy to determine. More comprehensive treatments
of modeling can be found in Doebelin (1980), Shames (1980, 1989), and Cannon
(1967), for example. The best reference for modeling is the text you used to study
dynamics. There are also many excellent descriptions on the Internet which can be
found using a search engine such as Google.

The force summation method is used in the previous sections and should be
familiar to the reader from introductory dynamics. For systems with constant mass
(such as those considered here) moving in only one direction, the rate of change of
momentum becomes the scalar relation

— (mx) = mx

7t (M%)

which is often called the inertia force. The physical device of interest is examined
by noting the forces acting on the device. The forces are then summed (as vectors)
to produce a dynamic equation following Newton’s second law. For motion along
the x direction only, this becomes the scalar equation

> fi = mit (1.49)

where f,; denotes the ith force acting on the mass m along the x direction and the
summation is over the number of such forces. In the first three chapters, only single-
degree-of-freedom systems moving in one direction are considered; thus, Newton’s
law takes on a scalar nature. In more practical problems with many degrees of
freedom, energy considerations can be combined with the concepts of virtual work
to produce Lagrange’s equations, as discussed in Section 4.7. Lagrange’s equations
also provide an energy-based alternative to summing forces to derive equations
of motion.

For rigid bodies in plane motion (i.e., rigid bodies for which all the forces act-
ing on them are coplanar in a plane perpendicular to a principal axis) and free to
rotate, Euler’s second law states that the sum of the applied torques is equal to the
rate of change of angular momentum of the mass. This is expressed as

> My = Jo (1.50)

where M|y are the torques acting on the object about the point 0, J is the moment of
inertia (also denoted by /) about the rotation axis, and 6 is the angle of rotation. The
sum of moments method was used in Example 1.1.1 to find the equation of motion of
a pendulum and is discussed in more detail in Example 1.5.1.

If the forces or torques acting on an object or mechanical part are difficult to
determine, an energy approach may be more efficient. In this method, the differen-
tial equation of motion is established by using the principle of energy conservation.
This principle is equivalent to Newton’s law for conservative systems and states that
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the sum of the potential energy and kinetic energy of a particle remains constant at
each instant of time throughout the particle’s motion:

T + U = constant (1.51)

where 7 and U denote the total kinetic and potential energy, respectively.
Conservation of energy also implies that the change in kinetic energy must equal
the change in potential energy:

Ul - U2 - T2 - Tl (152)

where U; and U, represent the particle’s potential energy at the times #; and #,,
respectively, and 77 and T, represent the particle’s kinetic energy at times #; and #,,
respectively. For periodic motion, energy conservation also implies that

Tinax = Unax (153)

Since energy is a scalar quantity, using the conservation of energy principle yields
a possibility of obtaining the equation of motion of a system without using force or
moment summations.

Equations (1.51), (1.52), and (1.53) are three statements of the conservation of
energy. Each of these can be used to determine the equation of motion of a spring—
mass system. As an illustration, consider the energy of the spring—mass system of Figure
1.14 hanging in a gravitational field of strength g. The effect of adding the mass m to
the massless spring of stiffness k is to stretch the spring from its rest position at O to the
static equilibrium position A. The total potential energy of the spring—mass system is
the sum of the potential energy of the spring (or strain energy; see, e.g., Shames, 1989)
and the gravitational potential energy. The potential energy of the spring is given by

Uspring = 3 k(A + x)? (1.54)
The gravitational potential energy is
Ugray = —mgx (1.55)

where the negative sign indicates that x = 0 is the reference for zero potential energy.
The kinetic energy of the system is

T = Lmi? (1.56)
k ? kA
0
oD
m
A % mg Figure 1.14 (a) A spring-mass system
hanging in a gravitational field. Here A is
i x(t) the static equilibrium position and x is the

displacement from equilibrium. (b) The
(a) (b) free-body diagram for static equilibrium.
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Substituting these energy expressions into equation (1.51) yields
Imi* — mgx + L k(A + x)> = constant (1.57)

Differentiating this expression with respect to time yields
x(mx + kx) + x(kA — mg) =0 (1.58)

Since the static force balance on the mass from Figure 1.14(b) yields the fact that
kA = mg, equation (1.58) becomes

x(mx + kx) =0 (1.59)

The velocity x cannot be zero for all time; otherwise, x(f) = constant and no vibra-
tion would be possible. Hence equation (1.59) yields the standard equation of motion

mxX + kx =0 (1.60)

This procedure is called the energy method of obtaining the equation of motion.

The energy method can also be used to obtain the frequency of vibration
directly for conservative systems that are oscillatory. The maximum value of sine
(and cosine) is one. Hence, from equations (1.3) and (1.4), the maximum displace-
ment is A and the maximum velocity is w,A (recall Window 1.3). Substitution of
these maximum values into the expression for Uy, and Ty, and using the energy
equation (1.53) yields

Im(w,A)? =L kA (1.61)

Solving equation (1.61) for , yields the standard natural frequency relation

0, = Vk/m.

Example 1.4.1

Figure 1.15 is a simple single-degree-of-freedom model of a wheel mounted on a spring.
The friction in the system is such that the wheel rolls without slipping. Calculate the
natural frequency of oscillation using the energy method. Assume that no energy is lost
during the contact.

x(0) +—
Figure 1.15 The rotational displacement
A k of the wheel of radius r is given by 6(¢) and
the linear displacement is denoted by x(z).
The wheel has a mass m and a moment of

inertia J. The spring has a stiffness k.

Solution From introductory dynamics, the rotational kinetic energy of the wheel is
Tior = %]62, where J is the mass moment of inertia of the wheel and 6 = 6(¢) is the
angle of rotation of the wheel. This assumes that the wheel moves relative to the surface
without slipping (so that no energy is lost at contact). The translational kinetic energy
of the wheel is Ty = 1 mi?.
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The rotation # and the translation x are related by x = r8. Thus ¥ = r and
Ty = 3J%%/r?. At maximum energy x = A and X = w, A, so that

1
Tmax = 7m56%13x + 77xmax = E(m + ‘,/rz)w%lAz
r

and
— 1.2 _ 154
Umax - kamax - ZkA

Using conservation of energy in the form of equation (1.53) yields Tyax = Upax, OF

1 I\, 1
5("’1‘5—;)(1)”:5](

Solving this last expression for w,, yields

k
W, = |
m+J/r?

the desired frequency of oscillation of the suspension system.

The denominator in the frequency expression derived in this example is called
the effective mass because the term (m + J/r?) has the same effect on the natural fre-
quency as does a mass of value (m + J/r%).

d

Example 1.4.2

Use the energy method to determine the equation of motion of the simple pendulum
(the rod ! is assumed massless) shown in Example 1.1.1 and repeated in Figure 1.16.

lcos 6

—-Z==h  Figure 1.16 The geometry of the
pendulum for Example 1.4.2.

Solution Several assumptions must first be made to ensure simple behavior (a more
complicated version is considered in Example 1.4.6). Using the same assumptions
given in Example 1.1.1 (massless rod, no friction in the hinge), the mass moment of
inertia about point 0 is

J = ml?
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The angular displacement 6(¢) is measured from the static equilibrium or rest position
of the pendulum. The kinetic energy of the system is

1 . 1 .
T=_J6°=_mPt
2 2"
The potential energy of the system is determined by the distance 4 in the figure
so that

U = mgl(1 — cos 8)

since # = /(1 — cos 0) is the geometric change in elevation of the pendulum mass.
Substitution of these expressions for the kinetic and potential energy into equation (1.51)
and differentiating yields

d .
E[%mlzez + mgl(1 — cos 6)} =0

or
ml*68 + mgl(sin )6 = 0
Factoring out 6 yields
6(mi%9 + mglsin ) = 0
Since 6(¢) cannot be zero for all time, this becomes
ml?0 + mglsinf = 0

or

o+ %sin 6=0
This is a nonlinear equation in 6 and is discussed in Section 1.10 and is derived from
summing moments on a free-body diagram in Example 1.1.1. However, since sin § can
be approximated by 6 for small angles, the linear equation of motion for the pendulum
becomes

i+%0=0
[
This corresponds to an oscillation with natural frequency w, = Vg/I for initial con-
ditions such that 6 remains small, as defined by the approximation sin 8 = 8, as dis-
cussed in Example 1.1.1.

In Example 1.4.2, it is important to not invoke the small-angle approximation
before the final equation of motion is derived. For instance, if the small-angle ap-
proximation is used in the potential energy term, then U = mgl(1 — cos ) = 0, since
the small-angle approximation for cos 6 is 1. This would yield an incorrect equation
of motion.

d
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Example 1.4.3

Determine the equation of motion of the shaft and disk illustrated in Window 1.1 using
the energy method.

Solution The shaft and disk of Window 1.1 are modeled as a rod stiffness in twisting,
resulting in torsional motion. The shaft, or rod, exhibits a torque in twisting proportional
to the angle of twist 6(¢). The potential energy associated with the torsional spring stift-
ness is U = } k62, where the stiffness coefficient k is determined much like the method
used to determine the spring stiffness in translation, as discussed in Section 1.1. The
angle 0(¢) is measured from the static equilibrium, or rest, position. The kinetic energy
associated with the disk of mass moment of inertia J is 7 = 1 /6% This assumes that the
inertia of the rod is much smaller than that of the disk and can be neglected.

Substitution of these expressions for the kinetic and potential energy into equa-
tion (1.51) and differentiating yields

%(%Jéz +5k0%) = (Jb + k0)6 = 0
so that the equation of motion becomes (because § = 0)
Jo + ko =0
This is the equation of motion for torsional vibration of a disk on a shaft. The natural

frequency of vibration is w,, = Vk/J.
d

Example 1.4.4

Model the mass of the spring in the system shown in Figure 1.17 and determine the effect
of including the mass of the spring on the value of the natural frequency.

m

k V y+dy ;

l Figure 1.17 A spring—mass
m . -

system with a spring of mass

x(1) my that is too large to neglect.

Solution One approach to considering the mass of the spring in analyzing the system
vibration response is to calculate the kinetic energy of the spring. Consider the kinetic en-
ergy of the element dy of the spring. If m is the total mass of the spring, then " dy, is the
mass of the element dy. The velocity of this element, denoted by v,,, may be approximated
by assuming that the velocity at any point varies linearly over the length of the spring:

Y.
Vg = Yx(t)
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The total kinetic energy of the spring is the kinetic energy of the element dy integrated
over the length of the spring:

i 2
Tspring = 5/0 f{?x} dy

_Lim .,
*2<3)x
From the form of this expression, the effective mass of the spring is 3, or one-third of

that of the spring. Following the energy method, the maximum kinetic energy of the
system is thus

1 M
Tmax = E(WL + ?) (.v.)%A2

Equating this to the maximum potential energy, 1kA? yields the fact that the natural

frequency of the system is
k
®, = ./
" m + my/3

Thus, including the effects of the mass of the spring in the system decreases the natural
frequency. Note that if the mass of the spring is much smaller than the system mass m,
the effect of the spring’s mass on the natural frequency is negligible.

O

Example 1.4.5

Fluid systems, as well as solid systems, exhibit vibration. Calculate the natural fre-
quency of oscillation of the fluid in the U-shaped manometer illustrated in Figure 1.18
using the energy method.

[

v = weight density (volume) Figure 1.18 A U-shaped
A = cross-sectional area manometer consisting of a fluid

| = length of fluid moving in a tube.
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Solution The fluid has weight density vy (i.e., the specific weight). The restoring
force is provided by gravity. The potential energy of the fluid [(weight)(displacement
of c.g.)] is 0.5(yAx)x in each column, so that the total change in potential energy is

U=U,— U = yAx — (-5yAxX) = yAX

The change in kinetic energy is

1 Aly . 1 Aly .
T==-"T2_0==-2132
> (x> —0) > X
Equating the change in potential energy to the change in kinetic energy yields
1 Al
77“/)-62 = yAx?
2 g

Assuming an oscillating motion of the form x(r) = X sin(w,t + ¢) and evaluating this
expression for maximum velocity and position yields
11

s 2X2:X2
Zgw"

where X is used to denote the amplitude of vibration. Solving for w,, yields

which is the natural frequency of oscillation of the fluid in the tube. Note that it depends
only on the acceleration due to gravity and the length of the fluid. Vibration of fluids in-
side mechanical containers (called sloshing) occurs in gas tanks in both automobiles and
airplanes and forms an important application of vibration analysis.

|

Example 1.4.6

Consider the compound pendulum of Figure 1.19 pinned to rotate around point
O. Derive the equation of motion using Euler’s second law (sum of moments as in
Example 1.1.1). A compound pendulum is any rigid body pinned at a point other
than its center of mass. If the only force acting on the system is gravity, then it will
oscillate around that point and behave like a pendulum. The purpose of this example
is to determine the equation of motion and to introduce the interesting dynamic
property of the center of percussion.

Solution A compound pendulum results from a simple pendulum configuration
(Examples 1.1.1 and 1.4.2) if there is a significant mass distribution along its length. In
the figure, G is the center of mass, O is the pivot point, and 6(¢) is the angular displace-
ment of the centerline of the pendulum of mass m and moment of inertia / measured
about the z-axis at point O. Point C is the center of percussion, which is defined as the
distance g along the centerline such that a simple pendulum (a massless rod pivoted at
zero with mass m at its tip, as in Example 1.4.2) of radius g has the same period. Hence

J

do = —
mr



40

Introduction to Vibration and the Free Response Chap. 1

\&f

(a)

Figure 1.19 (a) A compound pendulum pivoted to swing about point O under the
influence of gravity (pointing down). (b) A free-body diagram of the pendulum.

where r is the distance from the pivot point to the center of mass. Note that the pivot
point O and the center of percussion C can be interchanged to produce a pendulum
with the same frequency. The radius of gyration, ky, is the radius of a ring that has the
same moment of inertia as the rigid body does. The radius of gyration and center of
percussion are related by

qor = k%

Consider the equation of motion of the compound pendulum. Taking moments about
its pivot point O yields

SM, = Jo(t) = —mgrsin 6(¢)
For small 6(¢) this nonlinear equation becomes (sin ~ 6)
Jo(r) + mgro(t) =0

The natural frequency of oscillation becomes

. mgr
W, = 7

This frequency can be expressed in terms of the center of percussion as

_ |8
W, = -
90
which is just the frequency of a simple pendulum of length gg. This can be seen by exam-

ining the forces acting on the simple (massless rod) pendulum of Examples 1.1.1, 1.4.2,
and Figure 1.20(a) or recalling the result obtained in these examples.
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Figure 1.20 (a) A simple pendulum consisting
of a massless rod pivoted at point O with a
mass attached to its tip. (b) A compound
pendulum consisting of a shaft with center

of mass at point G. Here fj is the pin

(b) reaction force.

Summing moments about O yields
ml*8 = —mglsin 0

or after approximating sin 6 with 6,

6+§e=0
This yields the simple pendulum frequency of w, = \/g71 which is equivalent to that
obtained previously for the compound pendulum using / = qq.
Next, consider the uniformly shaped compound pendulum of Figure 1.20(b) of
length /. Here it is desired to calculate the center of percussion and radius of gyration.
The mass moment of inertia about point O is J, so that summing moments about
O yields

.. l
JO = —mg — sin 6
mg 5
since the mass is assumed to be evenly distributed and the center of massis at r = [/2. The
moment of inertia for a slender rod about O is J = %ml 2. hence, the equation of motion is
mflz 8 +m i 6=0
3 £2

where sin 6 has again been approximated by 6, assuming small motion. This becomes

. 3g
6+>50=0
21

so that the natural frequency is
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The center of percussion becomes

g2,
D= 3
and the radius of gyration becomes
/
ky = Vqor = ﬁ

These positions are marked on Figure 1.20(b).

The center of percussion and pivot point play a significant role in designing an
automobile. The center of percussion is the point on an object where it may be struck
(impacted) producing forces that cancel, causing no motion at the point of support.
The axle of the front wheels of an automobile is considered as the pivot point of a
compound pendulum parallel to the road. If the back wheels hit a bump, the frequency
of oscillation of the center of percussion will annoy passengers. Hence automobiles are
designed such that the center of percussion falls over the axle and suspension system,
away from passengers.

The concept of center of percussion is used in many swinging, or pendulum-like,
situations. This notion is sometimes used to define the “sweet spot” in a tennis racket
or baseball bat and defines where the ball should be hit. If the hammer is shaped so
that the impact point is at the center of percussion (i.e., the hammer’s head), then ide-
ally no force is felt if it is held at the “end” of the pendulum.

a

The energy method can be used in two ways. The first is to equate the maxi-
mum kinetic energy to the maximum potential energy [equation (1.53)] while as-
suming harmonic motion. This yields the natural frequency without writing out the
equation of motion, as illustrated in equation (1.61). Beyond the simple calculation
of frequency, this approach has limited use. However, the second use of the energy
method involves deriving the equation of motion from the conservation of energy by
differentiating equation (1.51) with respect to time. This concept is more useful and
is illustrated in Examples 1.4.2 and 1.4.3. The concept of using energy quantities to
derive the equations of motion can be extended to more complicated systems with
many degrees of freedom, such as those discussed in Chapters 4 (multiple-degree-
of-freedom systems) and 6 (distributed-parameter systems). The method is called
Lagrange’s method and is simply stated here to introduce the concept. Lagrange’s
method is introduced more formally in Chapter 4, where multiple-degree-of-freedom
systems make the power of Lagrange’s method obvious.

Lagrange’s method for conservative systems consists of defining the
Lagrangian, L, of the system defined by L = T — U. Here T is the total kinetic
energy of the system and U is the total potential energy in the system, both stated in
terms of “generalized” coordinates. Generalized coordinates are denoted by “g;(¢)”
and will be formally defined later. Here it is sufficient to state that g; would be x in
Example 1.4.4 and 6 in Example 1.4.3. Then Lagrange’s method for conservative
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systems states that the equations of motion for the free response of an undamped
system result from

d (oL L
(1) = a
dt aq, aq,
Substitution of the expression for L into equation (1.62) yields
d(oT orf  oU
() _ AT LUy (1.63)
d \9g; ag; g

Here one equation results for each subscript, i. In the case of the single-degree-of-
freedom systems considered in this chapter, there is only one coordinate (i = 1)
and only one equation of motion will result. The following example illustrates the
use of the Lagrange approach to derive the equation of motion of a simple spring—
mass system.

Example 1.4.7

Use Lagrange’s method to derive the equation of motion of the simple spring-mass
system of Figure 1.5. Compare this derivation to using the energy method described in
Examples 1.4.2 and 1.4.3.

Solution In the case of the simple spring-mass system, the kinetic and potential energy
are, respectively,

1 1
T= Emfcz and U = Ekx2
Here the generalized coordinate g¢;(f) is just the displacement x(¢). Following the
Lagrange approach, the Lagrange equation (1.63) becomes
d (aT) aT | U
+ — =

dt

ox ax

; 0
0x

d a1
=—(mx) + —|-kxX®> | =m¥ + kx =0

7 (mx) o (2 X ) mx X
This, of course, agrees with the approach of Newton’s sum of forces. Next, consider
the energy method, which starts with 7 + U = constant. Taking the total derivative of
this expression with respect to time yields

%Gmxz + %kxz) = miX + kxt = x(m¥ + kx) = 0=>mX + kx =0
since the velocity cannot be zero for all time. Thus the two energy-based approaches
yield the same result and that result is equivalent to that obtained by Newton’s sum of
forces. Note that in order to follow the above calculations, it is important to remember
the difference between total derivatives and partial derivatives and their respective
rules of calculation from calculus.

a
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Example 1.4.8

Use Lagrange’s method to derive the equation of motion of the simple spring—mass
pendulum system of Figure 1.21 and compute the system’s natural frequency.

Figure 1.21 A pendulum attached to a spring.

Assume that the pendulum swings through only small angles so that the spring has
negligible deflection in the vertical direction and assume that the mass of the pendu-
lum rod is negligible.

Solution In approaching a problem where there are several choices of variables, as in this
case, it is a good idea to first write down the energy expressions in easy choices of velocities
and displacements and then use a diagram to identify kinematic relationships and geom-
etry as indicated in Figure 1.22. Referring to the figure, the kinetic energy of the mass is

1o, 1
T=_J6=_m’®
2 2"

[cos 0

Figure 1.22 The geometry of the
pendulum attached to a spring for small
angles showing the kinematic relationships
needed to formulate the energies in terms
of a single generalized coordinate, 6.

The potential energy in the system consists of two parts, one due to the spring and one
due to gravity. Thus the total potential energy is
1

Ufzkxz-i-mgh
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Next, use the figure to write each energy expression in terms of the single variable 6.
From the figure, the mass moves up a distance & = [ — [ cos0, and the distance the
spring compresses is x = [ sin 6. Thus the potential energy becomes

1
U= 512 sin’® + mgl(1 — cos)

With the energies all stated in terms of the single generalized coordinate 6, the deriva-
tives required in the Lagrange formulation become

d(oT\ _d .
dr(aé) = g (0 = mi%
oU a1

e %(E %sin’0 + mgl(1 — cose)) = kI’sin@cos® + mgl sin@

Combining these expressions, the Lagrange equation (1.63) yields

d (T or U ..
—(—) — — + — = mi* + kI’sin0cos® + mglsin® = 0
dr\ao/ 90 ~ 96

0

For small 8 the equation of motion becomes

ml*0 + (kI*> + mgl)p = 0

ki + mg
W, = A
ml

Note that the equation of motion reduces to that of the pendulum given in Example
1.4.2 without the spring (k = 0).

Thus the natural frequency is

|

The Lagrange approach presented here is for the free response of undamped
systems (conservative systems) and has only been applied to a single-degree-of-
freedom system. However, the method is general and can be expanded to include
the forced response and damping.

So far, three basic systems have been modeled: rectilinear or translational motion
of a spring—-mass system, torsional motion of a disk—shaft system, and the pendulum
motion of a suspended mass system. Each of these motions commonly experiences
energy dissipation of some form. The viscous-damping model of Section 1.3 developed
for translational motion can be applied directly to both torsional and pendulum motion.
In the case of torsional motion of the shaft, the energy dissipation is assumed to come
from heating of the material and/or air resistance. Sometimes, as in the case of using
the rod and disk to model an automobile crankshaft or camshaft, the damping is as-
sumed to come from the oil that surrounds the disk and shaft, or bearings that support
the shaft.
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TABLE 1.1 A COMPARISON OF RECTILINEAR AND ROTATIONAL
SYSTEMS AND A SUMMARY OF UNITS

Rectilinear, Torsional/pendulum,
x (m) 0 (rad)

Spring force kx k0
Damping force cx ch
Inertia force mx Jo
Equation of motion mX +cx +kx =0 Jog + b + k6 =0
Stiffness units N/m N-m/rad
Damping units N-s/m,kg/s M-N-s/rad
Inertia units Kg kg - m?/rad
Force/torque N = kg-m/s’ N-m = kg-m?/s?

In all three cases, the damping is modeled as proportional to velocity (i.e.,
f. = cx or f. = cf). The equations of motion are then of the form indicated in
Table 1.1. Each of these equations can be expressed as a damped linear oscillator
given in the form of equation (1.48). Hence, each of these three systems is charac-
terized by a natural frequency and a damping ratio. Each of these three systems has
a solution based on the nature of the damping ratio , as discussed in Section 1.3.

1.5 STIFFNESS

The stiffness in a spring, introduced in Section 1.1, can be related more directly
to material and geometric properties of the spring. This section introduces the
relationships between stiffness, elastic modulus, and geometry of various types of
springs and illustrates various situations that can lead to simple harmonic motion.
A spring-like behavior results from a variety of configurations, including longitudi-
nal motion (vibration in the direction of the length), transverse motion (vibration
perpendicular to the length), and torsional motion (vibration rotating around the
length). Consider again the stiffness of the spring introduced in Section 1.1. A spring
is generally made of an elastic material. For a slender elastic material of length /,
cross-sectional area A, and elastic modulus E (or Young’s modulus), the stiffness of
the bar for vibration along its length is given by

_EA
[

This describes the spring constant for the vibration problem illustrated in Figure 1.23,
where the mass of the rod is ignored (or very small relative to the mass m in the figure).
The modulus E has the units of pascal (denoted by Pa), which are N /m?. The modulus
for several common materials is given in Table 1.2.

k (1.64)
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x(1)

E = elastic modulus
A = cross-sectional area
[ = length of bar
x(t) = deflection

GJ
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Figure 1.23 The stiffness associated with
the longitudinal (along the long axis)
vibration of a slender prismatic bar.

k= —r = stiffness of rod

0(1)

J = mass moment of inertia of the disk
G = shear modulus of rigidity of the rod
Jp = polar moment of inertia of the rod
6(0) | = length of rod
6 = angular displacement

Figure 1.24 The stiffness associated with the torsional rotation (twisting) of a shaft.

Next, consider a twisting motion with a similar rod of circular cross section, as
illustrated in Figure 1.24. In this case, the rod possesses a polar moment of inertia,
Jp, and (shear) modulus of rigidity, G (see Table 1.2). For the case of a wire or shaft
of diameter d, Jp = wd*/32. The modulus of rigidity has units N/m?. The torsional

stiffness is

_ Gy

=

(1.65)

TABLE 1.2 PHYSICAL CONSTANTS FOR SOME COMMON MATERIALS

Young’s modulus, Density, Shear modulus,

Material E(N/ mz) (kg/ m3) G(N/ m2)
Steel 2.0 x 101 78 % 10° 8.0 x 10%0
Aluminum 71 % 1010 2.7 X 10° 2.67 X 100
Brass 10.0 x 10 85 x 10° 3.68 x 100
Copper 6.0 x 100 24 x10° 222 x 10"
Concrete 3.8 x 10° 13 x 10° —

Rubber 23 % 10° 11 % 10° 821 x 108
Plywood 5.4 % 10° 6.0 X 10% —
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which is used to describe the vibration problem illustrated in Figure 1.24, where the
mass of the shaft is ignored. In the figure, 6(¢) represents the angular position of the
shaft relative to its equilibrium position. The disk of radius r and rotational moment
of inertia J will vibrate around the equilibrium position 6(0) with stiffness GJp/I.

Example 1.5.1
Calculate the natural frequency of oscillation of the torsional system given in Figure 1.24.
Solution Using the moment equation (1.50), the equation of motion for this system is
Jo(t) = —ko(r)

This may be written as
.. k
0(r) + 7 8 =0

This agrees with the result obtained using the energy method as indicated in Example 1.4.3.
This indicates an oscillatory motion with frequency

_\/E_ |Glp
On=NT TN U

Suppose that the shaft is made of steel and is 1 m long with a diameter of 5 cm. The
polar moment of inertia of a rod of circular cross section is Jp = (wd*)/32. If the disk
has mass moment of inertia J/ = 0.5 kg - m? and considering that the shear modulus of
steel is G = 8 X 10'° N /m?, the frequency can be calculated by

% 1010 ™ (1 %102m)*
z_k_GJp_(S 10" N/m )[32(1 102 m)
wn—j—i—

u (1m)(0.5kg-m?)
= 9.817 x 10*(rad?/s?)

Thus the natural frequency is »,, = 313.3 rad/s, or about 49.9 Hz.
O

Consider the helical spring of Figure 1.25. In this figure the deflection of the
spring is along the axis of the coil. The stiffness is actually dependent on the “twist” of
the metal rod forming this spring. The stiffness is a function of the shear modulus G,
the diameter of the rod, the diameter of the coils, and the number of coils. The stiff-
ness has the value

Gd*

k=i (1.66)

The helical-shaped spring is very common. Some examples are the spring inside
a retractable ballpoint pen and the spring contained in the front suspension of an
automobile.
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d = diameter of spring material
2R = diameter of turns

n = number of turns
x(t) = deflection

E = elastic modulus
| = length of beam

2R
}—~ x(t)
_ Gd*
64nR>
x(1)

I = moment of inertia of cross-sectional area about the neutral axis
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Figure 1.25 The stiffness
associated with a helical spring.

Figure 1.26 The stiffness
associated with the transverse
(perpendicular to the long
axis) vibration of the tip of a
beam, also called the bending
stiffness (Blevins, 1987).
Assumes the mass of the
beam is negligible.

Next, consider the transverse vibration of the end of a “leaf” spring illustrated
in Figure 1.26. This type of spring behavior is similar to the rear suspension of an
automobile as well as the wings of some aircraft. In the figure, / is the length of the
beam, E is the elastic (Young’s) modulus of the beam, and [ is the (area) moment
of inertia of the cross-sectional area. The mass m at the tip of the beam will oscillate

[k [3EI
(‘)n = —_— = _—
m mil?

in the direction perpendicular to the length of the beam x(&).

with frequency

Example 1.5.2

(1.67)

Consider an airplane wing with a fuel pod mounted at its tip as illustrated in Figure 1.27
The pod has a mass of 10 kg when it is empty and 1000 kg when it is full. Calculate the
change in the natural frequency of vibration of the wing, modeled as in Figure 1.27 as
the airplane uses up the fuel in the wing pod. The estimated physical parameters of the
beamare I = 52 X 10 m* E = 6.9 x 10° N/rnz, and/ = 2 m.
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m x(0)
O

x(1)
Vertical wing vibration

Figure 1.27 A simple model of the transverse vibration of an airplane wing
with a fuel pod mounted on its tip.

Solution The natural frequency of the vibration of the wing modeled as a simple
massless beam with a tip mass is given by equation (1.67). The natural frequency when
the fuel pod is full is

[3EI 3)(6.9 x 10”)(5.2 X 10~
Wy — 3 ,; \/( )( ( 3 ) = 116 rad/s
mi’ 1000(2)

which is about 1.8 Hz (1.8 cycles per second). The natural frequency for the wing when
the fuel pod is empty becomes

3EI (3)(6.9 x 10°)(5.2 x 107°)
wempt = 10(2)3

= 116 rad/s

or 18.5 Hz. Hence the natural frequency of the airplane wing changes by a factor of 10
(i.e., becomes 10 times larger) when the fuel pod is empty. Such a drastic change may
cause changes in handling and performance characteristics of the aircraft.

d

The above calculation ignores the mass of the beam. Clearly if the mass of the beam
is significant compared to the tip mass, then the frequency calculation of equation
(1.67) must be altered to account for the beam inertia. Similar to including the mass of
the spring in Example 1.4.4, the kinetic energy of the beam itself must be considered.
To estimate the kinetic energy, consider the static deflection of the beam due to a load
at the tip (see any strength of materials text) as illustrated in Figure 1.28.

y Figure 1.28 The static

p m x(0)  deflection of a beam

of modulus, E, cross

=~ sectional moment of

=~ x(1) inertia, 7, length, /, and

u(y) = W (3l=y) \\\ mass density, p, with tip
mass m, for those cases

mg where the mass of the

beam is significant.
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Figure 1.28 is roughly the same as Figure 1.25 with the static deflection indicated
and the mass density of the beam, p, taken into consideration. The static deflection
is given by

mgy*
6E1

u(y) = Bl —y) (1.68)

Here u is the deflection of the beam perpendicular to its length and y is the distance
along the length from the fixed end (left end in Figure 1.28). At the tip, the value

of uis
p = "8y gy = et 1.69
u(l) = <gr ¢ ) = 3E] (1.69)
Using equation (1.69), equation (1.68) can be written in terms of the maximum de-
flection as
u(l)y®
u(y) = -Gl ) (1.70)

The maximum value of u is the displacement of the tip so it must be equal to x(¢).
Thus the velocity of a differential element of the beam will be of the form

d . xny
™= 8

(3l - y) (1.71)

Substitution of this velocity into the expression for kinetic energy of the beam yields

l 1 1 . 2 2
I O T B P | [X(t)y B }
Toeam = ) /0 pv-dy = ) /0 pusdy = ) /() P 23 (Bl —y)| dy (1.72)

Here v is velocity and p is the mass per unit length of the beam. Substitution of
equation (1.71) into (1.72) yields

!l .o .0
_p X" 4 2 _plx 33 7_1(33 )_2
T; == —=y'@l—y)ydy="7—2-1'"=-\——p! t 1.73
beam 2/(; 4l6y( y) y 24[635 2 1409 x() ( )

Thus the mass of the beam, M = pl, adds this amount to the kinetic energy of the
beam and tip-mass arrangement and the total kinetic energy of the system is

1/33

1/ 33 1
— + [ 2 + = V) — + £2 .
T = Toeam + T, = 2<140 pl)x ) 2mx (H) = 2<140M m)x (H (1.74)
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From equation (1.45), the equivalent mass of the single-degree-of-freedom system
of a beam with a tip mass is
33

=M+ 1.
Meq = 120 m (1.75)

and the corresponding natural frequency is

(1.76)

This of course reduces to equation (1.67) if the mass, m, of the tip is much larger
then the mass, M, of the beam.

Example 1.5.3

Referring to the airplane/wing tank of Example 1.5.2, if the wing has a mass of 500 kg,
how much does this change the frequency from that calculated for a wing with a full
tank (1000 kg)? Does the frequency still change by a factor of 10 when comparing full
versus empty?

Solution Since the wing weight is equal to half of the fuel tank when full and 50 times
the fuel tank when empty, the mass of the wing is clearly a significant factor in the fre-
quency calculation. The two frequencies using equation (1.76) are

3)(6.9 x 10°)(5.2 x 107
Wy = 33 3EI = ( )(33 )( ) = 1097 rad/s
- 3 el 3
(1401\4 + m)l (140 (500) + 1000)(2)
3)(6.9 x 10°)(5.2 x 107
Oempty = 3 3EI = ( )( 33 )( ) = 32.44 rad/s
It + 3 Y + 3
(140M m)l (140 (500) 10)(2)

Note that modeling the wing without considering the mass of the wing is very inaccu-
rate. Also note that the frequency shift with and without fuel is still significant (factor
of 3 rather than 10).

d

If the spring of Figure 1.26 is coiled in a plane as illustrated in Figure 1.29, the
stiffness of the spring is greatly affected and becomes

_El

k
)

1.77)

Several other spring arrangements and their associated stiffness values are
listed in Table 1.3. Texts on solid mechanics and strength of materials should be
consulted for further details.
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| = total length of spring

E = elastic modulus of spring Figure 1.29 The stiffness associated

I = moment of inertia of cross-sectional area  with a spring coiled in a plane.

TABLE 1.3 SAMPLE SPRING CONSTANTS

Axial stiffness of a rod of length /, cross-sectional area A, and k = EA
modulus E l

. . . GJp
Torsional stiffness of a rod of length /, shear modulus G, and torsion k = ——
constant Jp depending on the cross section (3r* for circle of radius r !
and 0.1406a" for a square of side a)
Bending stiffness of a cantilevered beam of length /, modulus E, cross- &k = 3—61
sectional moment of inertia / l

. . ﬂEdldz

Axial stiffness of a tapered bar of length /, modulus E, and end &k = m
diameters d; and d,

. . , wG(d} — di)
Torsional stiffness on a hollow uniform shaft of shear modulus G, k =
length /, inside diameter dq, and outside diameter d, 32
Transverse stiffness of a pinned-pinned beam of modulus E, area k = — SEN 3
moment of inertia /, and length [ for a load applied at point a from a(l - a)
its end

. 192E1

Transverse stiffness of a clamped-clamped beam of modulus E, area k = 2

moment of inertia 7, and length / for a load applied at its center

Example 1.5.4

As another example of vibration involving fluids, consider the rolling vibration of a
ship in water. Figure 1.30 illustrates a schematic of a ship rolling in water. Compute the
natural frequency of the ship as it rolls back and forth about the axis through M.

In the figure, G denotes the center of gravity, B denotes the center of buoyancy,
M is the point of intersection of the buoyant force before and after the roll (called the
metacenter), and 4 is the length of GM. The perpendicular line from the center of
gravity to the line of action of the buoyant force is marked by the point Z. Here W de-
notes the weight of the ship, J denotes the mass moment of the ship about the roll axis,
and 6(¢) denotes the angle of roll.
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Centerline of

ship
Water level
@y \VARS
W = buoyant force
G = center of gravity
M = metacenter Figure 1.30 The dynamics of
B = center of buoyance a ship rolling in water.

Solution Summing moments about M yields
J6(t) = —-WGZ = —Wh sin 8()
Again, for small enough values of 6, this nonlinear equation can be approximated by
Jo(t) + Who(r) = 0

Thus the natural frequency of the system is

hw
w, = T
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Springs in series

k k
Ao AN g ] = laky
a b c T Uky+Uky T ke + ky
Springs in parallel
ky
kap =Ky + ky Figure 1.31 The rules for calculating
a b the equivalent stiffness of parallel and
ko series connections of springs.

All of the spring types mentioned are represented schematically as indicated
in Figure 1.2. If more than one spring is present in a given device, the resulting
stiffness of the combined spring can be calculated by two simple rules, as given in
Figure 1.31. These rules can be derived by considering the equivalent forces in the
system.

Example 1.5.5

Consider the spring-mass arrangement of Figure 1.32(a) and calculate the natural fre-
quency of the system.

Solution To find the equivalent single stiffness representation of the five-spring
system given in Figure 1.32(a), the two simple rules of Figure 1.31 are applied. First,
the parallel arrangement of k; and k; is replaced by the single spring, as indicated at

k] k2 k1+k2% k1+k2 k

m —_— m —_— m —_— m
k3 [
1 1 X
ks Uk + kg ks s+ s+ Uk,
(a) (b) (© (d)

Figure 1.32 The reduction of a five-spring, one-mass system to an equivalent single-spring—mass
system having the same vibration properties.
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the top of Figure 1.32(b). Next, the series arrangement of k3 and k4 is replaced with a
single spring of stiffness

1
1/ks + 1/k,

as indicated in the bottom left side of Figure 1.32(b). These two parallel springs on the
bottom of Figure 1.32(b) are next combined using the parallel spring formula to yield
a single spring of stiffness

1 ksky

o = ks +
ks + 1/ky 7k + ky

ks

as indicated in Figure 1.32(c). The final step is to realize that both the spring acting at
the top of Figure 1.32(c) and the spring at the bottom attach the mass to ground and
hence act in parallel. These two springs then combine to yield the single stiffness

k=1k +k + ks + kaky
=K 2 ST et
kky  (ky + ky + ks)(ks + k) + ksky
=k + ky + ks + =
PR g+ ky (ks + k)

as indicated symbolically in Figure 1.32(d). Hence the natural frequency of this system is

_ \/ kiks + koks + ksky + kiky + koky + ksky + ksky
@n = m(k3 + k4)
Note that even though the system of Figure 1.32 contains five springs, it consists of
only one mass moving in only one (rectilinear) direction and hence is a single-degree-

of- freedom system.
d

Springs are usually manufactured in only certain increments of stiffness val-

ues depending on such things as the number of turns, material, and so on (recall
Figure 1.25). Because mass production (and large sales) brings down the price
of a product, the designer is often faced with a limited choice of spring constants
when designing a system. It may thus be cheaper to use several “off-the-shelf”
springs to create the stiffness value necessary than to order a special spring with
specific stiffness. The rules of combining parallel and series springs given in
Figure 1.31 can then be used to obtain the desired, or acceptable, stiffness and
natural frequency.

Example 1.5.6

Consider the system of Figure 1.32(a) with k5 = 0. Compare the stiffness and fre-
quency of a 10-kg mass connected to ground, first by two parallel springs (k3 = k4 = 0,
ki = 1000 N/m, and k, = 3000 N/m), then by two series springs (k; = k; = 0,
k3 = 1000 N/m, and k4 = 3000 N/m).
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Solution First, consider the case of two parallel springs so that k3 = k4 = 0, ky =
1000 N/m, and k, = 3000 N/m. Then the equivalent stiffness is given by Figure 1.31
to be the simple sum given by

keq = 1000N/m + 3000N/m = 4000N/m

and the corresponding frequency is

4000 N/m
Wparallel — W =20 rad/s

In the case of a series connection (k; = k, = 0), the two springs (k3 = 1000 N/m,
k4 = 3000 N/m) combine according to Figure 1.31 to yield

1 3000 3000

Keq = 1/1000 +1/3000 3 +1 4

= 750 N/m

The corresponding natural frequency becomes

750 N/m
Wgeries — W = 8.660 rad/s

Note that using two identical sets of springs connected to the same mass in the two dif-
ferent ways produces drastically different equivalent stiffness and resulting frequency. A
series connection decreases the equivalent stiffness, while a parallel connection increases
the equivalent stiffness. This is useful in designing systems.

d

Example 1.5.6 illustrates that fixed values of spring constants can be used in vari-
ous combinations to produce a desired value of stiffness and corresponding frequency.
It is interesting to note that an identical set of physical devices can be used to create a
system with drastically different frequencies simply by changing the physical arrange-
ment of the components. This is similar to the choice of resistors in an electric circuit.
The formulas of this section are intended to be aids in designing vibration systems.

In addition to understanding the effect of stiffness on the dynamics—that is,
on the natural frequency—it is important not to forget static analysis when using
springs. In particular, the static deflection of each spring system needs to be checked
to make sure that the dynamic analysis is correctly interpreted. Recall from the dis-
cussion of Figure 1.14 that the static deflection has the value

mg

A:
k

where m is the mass supported by a spring of stiffness k in a gravitational field
providing acceleration of gravity g. Static deflection is often ignored in introduc-
tory treatments but is used extensively in spring design and is essential in nonlinear
analysis. Static deflection is denoted by a variety of symbols. The symbols 8, A, 3,
and x( are all used in vibration publications to denote the deflection of a spring
caused by the weight of the mass attached to it.
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1.6 MEASUREMENT

Measurements associated with vibration are used for several purposes. First, the
quantities required to analyze the vibrating motion of a system all require measure-
ment. The mathematical models proposed in previous sections all require knowledge
of the mass, damping, and stiffness coefficients of the device under study. These coef-
ficients can be measured in a variety of ways, as discussed in this section. Vibration
measurements are also used to verify and improve analytical models. Other uses for
vibration testing techniques include reliability and durability studies, searching for
damage, and testing for acceptability of the response in terms of vibration param-
eters. This chapter introduces some basic ideas on measurement. Further discussion
of measurement can be found throughout the book, culminating with all the various
concepts on measurement summarized in Chapter 7

In many cases, the mass of an object or device is simply determined by using
a scale. Mass is a relatively easy quantity to measure. However, the mass moment
of inertia may require a dynamic measurement. A method of measuring the mass
moment of inertia of an irregularly shaped object is to place the object on the plat-
form of the apparatus of Figure 1.33 and measure the period of oscillation of the
system, 7. By using the methods of Section 1.4, it can be shown that the moment of
inertia of an object, J (about a vertical axis), placed on the disk of Figure 1.33 with
its mass center aligned vertically with that of the disk, is given by

g (my + m)
41l
Here m is the mass of the part being measured, m is the mass of the disk, r( the
radius of the disk, / the length of the wires, Jj, the moment of inertia of the disk, and
g the acceleration due to gravity.

The stiffness of a simple spring system can be measured as suggested in
Section 1.1. The elastic modulus, E, of an object can be measured in a similar

T (1.78)

[V AVAVAS VAVAVAS

Suspension wires
! S/ of length /

Disk of known moment J, Figure 1.33 A Trifilar suspension

mass m, and radius r, system for measuring the moment
of inertia of irregularly shaped
objects.
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Stress

Figure 1.34 An example of a stress—strain
€  curve of a test specimen used to determine
Strain the elastic modulus of a material.

fashion by performing a tensile test (see, e.g., Shames, 1989). In this method, a
tensile test machine is employed that uses strain gauges to measure the strain, €, in
the test specimen as well as the stress, o, both in the axial direction of the specimen.
This produces a curve such as the one shown in Figure 1.34. The slope of the curve
in the linear region defines the Young’s modulus, or elastic modulus, for the test
material. The relationship that the extension is proportional to the force is known
as Hooke’s law.

The elastic modulus can also be measured by using some of the formulas
given in Section 1.5 and measurement of the vibratory response of a structure or
part. For instance, consider the cantilevered arrangement of Figure 1.26. If the mass
at the tip is given a small deflection, it will oscillate with frequency o, = Vk/m.If
w,, is measured, the modulus can be determined from equation (1.67), as illustrated
in the following example.

Example 1.6.1

Consider a steel beam configuration as shown in Figure 1.26. The beam has a length [ =
1 m and moment of inertia / = 10~ m* with a mass m = 6 kg attached to the tip. If the
mass is given a small initial deflection in the transverse direction and oscillates with a
period of T = 0.62 s, calculate the elastic modulus of steel.

Solution Since 7' = 21 /w,, equation (1.67) yields

[ml?
T ="2m E
Solving for E yields

_ 4w?mlP  4m*(6kg)(1 m)’
3721 3(0.625)%(107° m*)

=205 X 10° N/m?
O

The period T, and hence the frequency w,,, can be measured with a stopwatch for
vibrations that are large enough and last long enough to see. However, many vibrations
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Displacement (mm)

1.0 —

05 [\
N~ |
0.0 2 \/ 5 \/’—___\/_/_}s— Time (S)

Figure 1.35 The response of
an underdamped system used
—-1.0 — to measure damping.

of interest have very small amplitudes and happen very quickly. Hence several very
sophisticated devices for measuring time and frequency have been developed, requir-
ing more sophisticated concepts presented in the chapter on measurement.

The damping coefficient or, alternatively, the damping ratio is the most diffi-
cult quantity to determine. Both mass and stiffness can be determined by static tests;
however, damping requires a dynamic test to measure. A record of the displace-
ment response of an underdamped system can be used to determine the damping
ratio. One approach is to note that the decay envelope, denoted by the dashed line
in Figure 1.35, for an underdamped system is Ae **. The measured points x(0),
x(t1), x(t,), x(3), and so on can then be curve fit to A, Ae %1, Ae™* Ae ™t and
so on. This will yield a value for the coefficient {w,,. If m and k are known, { and ¢
can be determined from {w,,.

This approach also leads to the concept of logarithmic decrement, denoted by
d and defined by

x(1)

= (1.79)

where T is the period of oscillation. Substitution of the analytical form of the under-
damped response given by equation (1.36) yields
Ae ¥sin (gt + d)

s 1.80
Ae‘l%;("*’ﬂsin(mﬂ + 0,7 + d)) ( )

Since wyT = 2, the denominator becomes e " D sin(w,t + &), and the expres-
sion for the decrement reduces to

8 = Inet! = {w,T (1.81)
The period T in this case is the damped period (27/w,) so that

2 2

8 = Lw, =
Vi E VI-T

(1.82)
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Solving this expression for { yields

d
= 1.83
Ve (59
which determines the damping ratio given the value of the logarithmic decrement.
Thus if the value of x(¢) is measured from the plot of Figure 1.35 at any two
successive peaks, say x(¢;) and x(f,), equation (1.79) can be used to produce a mea-
sured value of 3, and equation (1.83) can be used to determine the damping ratio.
The formula for the damping ratio [equations (1.29) and (1.30), also listed in the
inside front cover] and knowledge of m and k subsequently yield the value of the
damping coefficient c. Note that peak measurements can be used over any integer
multiple of the period (see Problem 1.95) to increase the accuracy over measure-
ments taken at adjacent peaks.
The computation in Problem 1.95 yields

= m)

where 7 is any integer number of successive (positive) peaks. While this does tend
to increase the accuracy of computing 8, the majority of damping measurements
performed today are based on modal analysis methods (Chapters 4 and 6) pre-
sented later in Chapter 7.

Example 1.6.2

The free response of the damped single-degree-of-freedom system in Figure 1.9 with
a mass of 2 kg is recorded to be of the form given in Figure 1.35. A static deflection
test is performed and the stiffness is determined to be 1.5 X 10> N/m. The displace-
ments at #; and f, are measured to be 9 and 1 mm, respectively. Calculate the damp-
ing coefficient.

Solution From the definition of the logarithmic decrement

igﬂ _ ln[%} = 21972

BZIn{

From equation (1.83),
2.1972

(= 77—
VAan? + 219722

=033 or 33%

Also,

o = 2Vkm = 2V(1.5 x 10°N/m)(2 kg) = 1.095 X 102kg/s
And from equation (1.30) the damping coefficient becomes

¢ = c,l = (1.095 X 102)(0.33) = 36.15 kg/s



62 Introduction to Vibration and the Free Response Chap. 1

Example 1.6.3

Mass and stiffness are usually measured in a straightforward manner as shown in
Section 1.3. However, there are certain circumstances that preclude using these simple
methods. In these cases, a measurement of the frequency of oscillation both before and
after a known amount of mass is added can be used to determine the mass and stiffness
of the original system. Suppose then that the frequency of the system in Figure 1.36(a)
is measured to be 2 rad/s and the frequency of Figure 1.36(b) with an added mass of
1 kg is known to be 1 rad/s. Calculate m and k.

LLL L LLLL LS
wy = 1rad/s
k< w; =2rad/s k
my = 1kg
m m
e Figure 1.36 A schematic of using added
mass (b) and frequency measurements to
determine an unknown mass, m, and
(a) (b) stiffness, k, of the original system (a).

Solution From the definition of natural frequency

k k
(1)1:2: Z and (J.)O:l: m+ 1

Solving for m and k yields

or

1 4
ngkg and k=§N/m

This formulation can also be used to determine changes in mass of a system. As
an example, the frequency of oscillation of low amplitude vibration of a hospital patient
in bed can be used to monitor the change in the patient’s weight (mass) without hav-
ing to move the patient from the bed. In this case the mass m is considered to be the
change in mass of the original system. If the original mass and frequency are known,
measurement of the frequency wg can be used to determine the change in mass .
Given that the original weight is 120 1b (54.4 kg), the original frequency is 100.4 Hz, and
the frequency of the patient-bed system changes to 100 Hz, determine the change in the
patient’s weight.
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From the two frequency relations
olm =k
and
wg(m + my) = k

Thus, w3m = wf(m + my). Solving for the change in mass m yields

of
my =m 7271
o

Multiplying by g and converting the frequency to hertz yields

2
w-w(i )
fo
or
100.4 Hz \?
=120b|{ —+-—) -1
Wy = 1201 (HEEE) -1

= 0.96 1b (0.4kg)

Since the frequency decreased, the patient gained almost a pound. An increase in fre-
quency would indicate a loss of weight.
|

Measurement of m, ¢, k, w,, and { is used to verify the mathematical model
of a system and for a variety of other reasons. Measurement of vibrating systems
forms an important aspect of the activity in industry related to vibration technology.
Chapter 7 is specifically devoted to measurement, however comments on vibration
measurements are mentioned throughout the remaining chapters.

1.7 DESIGN CONSIDERATIONS

This section introduces the idea of designing vibration systems, which forms the topic
of Chapter 5. Design in vibration refers to adjusting the physical parameters of a device
to cause its vibration response to meet a specified shape or performance criteria. For
instance, consider the response of the single-degree-of-freedom system of Figure 1.9.
The shape of the response is somewhat determined by the value of the damping ratio
in the sense that the response is either overdamped, underdamped, or critically damped
(€ > 1,¢ < 1,L = 1,respectively). The damping ratio, in turn, depends on the values
of m, ¢, and k. A designer may choose these values to produce the desired response.
Section 1.5 on stiffness considerations is actually an introduction to design
as well. The formulas given there for stiffness, in terms of modulus and geometric
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dimensions, can be used to design a system that has a given natural frequency.
Example 1.5.2 points out one of the important problems in design, that often the
properties that we are interested in designing for (frequency in this case) are very
sensitive to operational changes. In Example 1.5.2, the frequency changes a great
deal as the airplane consumes fuel.

Another important issue in design often focuses on using devices that are
already available. For example, the rules given in Figure 1.31 are design rules for
producing a desired value of spring constant from a set of “available” springs by
placing them in certain combinations, as illustrated in Example 1.5.6. Design work
in engineering often involves using available products to produce configurations
(or designs) that suit a particular application. In the case of spring stiffness, springs
are usually mass produced, and hence inexpensive, in only certain discrete values
of stiffness. The formulas given for parallel and series connections of springs are
then used to produce the desired stiffness. If cost is not a restriction, then formulas
such as those given in Table 1.3 may be used to design a single spring that meets the
stated stiffness requirements. Of course, designing a spring-mass system to have a
desired natural frequency may not produce a system with an acceptable static de-
flection. Thus, the design process becomes complicated. Design is one of the most
active and exciting disciplines in engineering because it often involves compromise
and choice with many acceptable solutions.

Unfortunately, the values of m, ¢, and k have other constraints. The size and
material of which the device is made determine these parameters. Hence, the de-
sign procedure becomes a compromise. For example, geometric limitations might
cause the mass of a device to be between 2 and 3 kg, and for static displacement
conditions, the stiffness may be required to be greater than 200 N /m. In this case,
the natural frequency must be in the interval

8.16rad/s = w, = 10rad/s (1.84)

This severely limits the design of the vibration response, as illustrated in the follow-
ing example.

Example 1.7.1

Consider the system of Figure 1.9 with mass and stiffness properties as summarized by
inequality (1.84). Suppose that the system is subject to an initial velocity that is always
less than 300 mm /s, and to an initial displacement of zero (i.e.,xy = 0,99 = 300 mm/s).
For this range of mass and stiffness, choose a value of the damping coefficient such that
the amplitude of vibration is always less than 25 mm.

Solution This is a design-oriented example, and hence, as is typical of design calcula-
tions, there is not a nice, clean formula to follow. Rather, the solution must be obtained
using theory and parameter studies. First, note that for zero initial displacement, the
response may be written from equation (1.38) as

x(t) = D e tont gin (wgat)
W4
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Also note that the amplitude of this periodic function is

0 plwnt
Wgq

Thus, for small w,, the amplitude is larger than for larger w,;. Hence for the range of
frequencies of interest, it appears that the worst case (largest amplitude) will occur for
the smallest value of the frequency (w, = 8.16 rad/s). Also, the amplitude increases
with v, so that using vy = 300 mm/s will ensure that amplitude is a large as possible.
Now, vy and , are fixed, so it remains to be investigated how the maximum value of
x(t) varies as the damping ratio is varied. One approach is to compute the amplitude of
the response at the first peak. From Figure 1.10 the largest amplitude occurs at the first
time the derivative of x(7) is zero. Taking the derivative of x(f) and setting it equal to
zero yields the expression for the time to the first peak:

e 5 cos (wgt) — Lw,e s sin (wyt) = 0
Solving this for ¢ and denoting this value of time by T, yields
1 1 V1-¢
T, = ftan’l(ﬁ) = —tan’! (7€)
Wyq gwn W4 C

The value of the amplitude of the first (and largest) peak is calculated by substituting
the value of T, into x(¢), resulting in

-1 -2 — 2
o) = a1 = — i (U anfar (V5

Simplifying yields

v t a(V1=¢
Am(c>=;°e*wgz‘“( )

For fixed initial velocity (the largest possible) and frequency (the lowest possible), this
value of A,,({) determines the largest value that the highest peak will have as { varies.
The exact value of { that will keep this peak, and hence the response, at or below 25 mm,
can be determined by numerically solving A,,({) = 0.025 (m) for a value of {. This
yields { = 0.281. Using the upper limit of the mass values (m = 3 kg) then yields the
value of the required damping coefficient:

¢ = 2mo,{ = 2(3)(8.16)(0.281) = 13.76 kg /s

For this value of damping, the response is never larger than 25 mm. Note that if
there is no damping, the same initial conditions produce a response of amplitude
A = vy/w, = 37 mm.

d

As another example of design, consider the problem of choosing a spring that
will result in a spring—mass system having a desired or specified frequency. The formu-
las of Section 1.5 provide a means of designing a spring to have a specified stiffness in
terms of the properties of the spring material (modulus) and its geometry. The follow-
ing example illustrates this concept.
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Example 1.7.2

Consider designing a helical spring such that when attached to a 10-kg mass, the result-
ing spring—mass system has a natural frequency of 10 rad/s (about 1.6 Hz).

Solution From the definition of the natural frequency, the spring is required to have
a stiffness of

k = wZm = (10)>(10) = 10 N/m
The stiffness of a helical spring is given by equation (1.66) to be
Ga* Ga*

> or 64X10'=——
64nR nk

k=10°N/m =

This expression provides the starting point for a design. The choices of variables that
affect the design are: the type of material to be used (hence various values of G); the
diameter of the material, d; the radius of the coils, R; and the number of turns, n. The
choices of G and d are, of course, restricted by available materials, # is restricted to be an
integer, and R may have restrictions dictated by the size requirements of the device. Here
it is assumed that steel of 1-cm diameter is available. The shear modulus of steel is about

G = 8.0 X 10""N/m?
so that the stiffness formula becomes
(80 x 10" N/m?) (102 m)*

6.4 X 10*N/m
/ nR3

or
nR> =125 x 1072
If the coil radius is chosen to be 10 cm, this yields that the number of turns should be

125 X 102 m?
n=-—— 5

102 =1250r13

Thus, if 13 turns of 1-cm-diameter steel are coiled at a radius of 10 cm, the resulting
spring will have the desired stiffness and the 10-kg mass will oscillate at approximately
10 rad/s. To get an exact answer, the modulus of steel must be modified. This can be
done through the use of different alloys of steel, but would become expensive. So de-
pending on the precision needed for a given application, modifying the type of steel used
may or may not be practical.

O

In Example 1.7.2, several variables were chosen to produce a desired design.
In each case the design variables (such as d, R, etc.) are subject to constraints. Other
aspects of vibration design are presented throughout the text as appropriate. There
are no set rules to follow in design work. However, some organized approaches to
design are presented later in Chapter 5. The following example illustrates another
difficulty in design by examining what happens when operating conditions are
changed after the design is over.
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Example 1.7.3

As a final example, consider modeling the vertical suspension system of a small sports
car, as a single-degree-of-freedom system of the form

mx +cx +kx =0

where m is the mass of the automobile and c and k are the equivalent damping and stiff-
ness of the four-shock-absorber—spring systems. The car deflects the suspension system
0.05 m under its own weight. The suspension is chosen (designed) to have a damping
ratio of 0.3. a) If the car has a mass of 1361 kg (mass of a Porsche Boxster), calculate the
equivalent damping and stiffness coefficients of the suspension system. b) If two pas-
sengers, a full gas tank, and luggage totaling 290 kg are in the car, how does this affect
the effective damping ratio?

Solution The mass is 1361 kg and the natural frequency is
_ k
“n =\ 1361

k = 1361 w2

so that

At rest, the car’s springs are compressed an amount A, called the static deflection, by
the weight of the car. Hence, from a force balance at static equilibrium, mg = kA,
so that

and

_ [k _ |8 _ |98 _
‘*’"*\/m*\/;*\/o.osfmrad/S

The stiffness of the suspension system is thus
k = 1361(14)* = 2.668 X 10° N/m
For { = 0.3, equation (1.30) becomes
¢ = 2lmo, = 2(0.3)(1361)(14) = 1.143 x 10*kg/s

Now if the passengers and luggage are added to the car, the mass increases to 1361 +
290 = 1651 kg. Since the stiffness and damping coefficient remain the same, the new
static deflection becomes

mg  1651(9.8)

A = =
k2668 x 10°

~ 0.06 m
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The new frequency becomes

_ 18 _ 98
0, = \/Z =, /70.06 12.78 rad/s

From equations (1.29) and (1.30), the damping ratio becomes

c 1143 x10* 1143 x 10*

= 2me,  2(1651)(12.78)

=027

Thus the car with passengers, fuel, and luggage will exhibit less damping and hence
larger amplitude vibrations in the vertical direction. The vibrations will take a little

longer to die out.
d

Note that this illustrates a difficulty in design problems, in the sense that
the car cannot be damped at exactly the same value for all passenger situations.
In this case, even if { = 0.3 is desirable, it really cannot be achieved. Designs
that do not change dramatically when one parameter changes a small amount are
said to be robust. This and other design concepts are discussed in greater detail
in Chapter 5, as the analytical skills developed in the next few chapters are re-
quired first.

1.8 STABILITY

In the preceding sections, the physical parameters m, c, and k are all considered to
be positive in equation (1.27). This allows the treatment of the solutions of equation
(1.27) to be classified into three groups: overdamped, underdamped, or critically
damped. The case with ¢ = 0 provides a fourth class called undamped. These four
solutions are all well behaved in the sense that they do not grow with time and their
amplitudes are finite. There are many situations, however, in which the coefficients
are not positive, and in these cases the motion is not well behaved. This situation
refers to the stability of solutions of a system.

Recalling that the solution of the undamped case (¢ = 0) is of the form A
sin(w,t + &), it is easy to see that the undamped response is bounded. That is, if |x(7)|
denotes the absolute value of x, then

|x(f)] = Alsin(w,t + d)| = A = 0% \V wix} + v} (1.85)

n

for every value of . Thus |x(f)| is always less than some finite number for all time
and for all finite choices of initial conditions. In this case, the response is well be-
haved and said to be stable (sometimes called marginally stable). If, on the other
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hand, the value of k in equation (1.2) is negative and m is positive, the solutions are
of the form

x(t) = Asinhw,t + B coshw,t (1.86)

which increases without bound as ¢ does. In this case |x(¢)| no longer remains finite
and such solutions are called divergent or unstable. Figure 1.37 illustrates a stable
response and Figure 1.38 illustrates an unstable, or divergent, response.

Consider the response of the damped system of equation (1.27) with positive
coefficients. As illustrated in Figures 1.10, 1.11, 1.12, and 1.13, it is clear that x(¢)
approaches zero as t becomes large because of the exponential-decay terms. Such
solutions are called asymptotically stable. Again, if c or k is negative (and m is posi-
tive), the motion grows without bound and becomes unstable, as in the undamped
case. In the damped case, however, the motion may be unstable in one of two ways.
Similar to overdamped solutions and underdamped solutions, the motion may grow
without bound and may or may not oscillate. The nonoscillatory case is called diver-
gent instability and the oscillatory case is called flutter instability, or sometimes just
flutter. Flutter instability is sketched in Figure 1.39. The trend of growing without
bound for large ¢ continues in Figures 1.38 and 1.39, even though the figure stops.
These types of instability occur in a variety of situations, often called self-excited
vibrations, and require some source of energy. The following example illustrates
such instabilities.

Displacement (mm)

1.0

-NAN T
SRVRAYA

Figure 1.37 An example response of a stable single-degree-of-freedom system.

Displacement (mm)
A

Figure 1.38 An example response
of a unstable single-degree-of-freedom
Time (s)  system (divergence).
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Figure 1.39 An example response of a unstable single-degree-of-freedom system
which also oscillates, called flutter instability.

Example 1.8.1

Consider the inverted pendulum connected to two equal springs, shown in Figure 1.40.

Figure 1.40 (a) An inverted pendulum
oscillator and (b) its free-body diagram.
Here fp is the total reaction force at
(a) (b) the pin. The pendulum has length /.

Solution Assume that the springs are undeflected when in the vertical position and
that the mass m of the ball at the end of the pendulum rod is substantially larger than
the mass of the rod itself, so that the rod is considered to be massless. The total length
of the rod is / and the springs are attached at the point //2. Summing the moments
around the pivot point (point O) yields

m129 = EMO

There are three forces acting. The spring force is the stiffness times the displacement
(kx) where the displacement x is (//2) sin 6. There are two such springs, so the total
force acting on the pendulum by the springs is k/ sin 6. This force acts through a moment
arm of (//2) cos 6. The gravitational force acting on the mass m is mg acting through a
moment arm of / sin 6. Thus summing moments about point O yields

- kI ,
ml9 = — 751116 cos® + mglsin®
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and the equation of motion becomes

(kP
mi%o + (7 sine) cos® — mglsin® = 0 (1.87)

For values of 6 less than about 1 /20, sin § and cos 6 can be approximated by sin6 = 6
and cos 6 = 1. Applying this approximation to equation (1.87) yields
o kP
mi*6 + 79 —mgle =0
which upon rearranging becomes
2mlb(t) + (kI — 2mg)o(t) = 0

where 6 is now restricted to be small (smaller than w/20). If k, [, and m are all such that
the coefficient of 8, called the effective stiffness, is negative, that is, if

kl —2mg <0

the pendulum motion will be unstable by divergence, as illustrated in Figure 1.38.
a

Example 1.8.2

The vibration of an aircraft wing can be crudely modeled as
mx + cx + kx = yx

where m, ¢, and k are the mass, damping, and stiffness values of the wing, respectively,
modeled as a single-degree-of-freedom system, and where the term +yx is an approxi-
mate model of the aerodynamic forces on the wing (y > 0 for high speed).

Solution Rearranging the equation of motion yields
mx+ (c—vy)x+kx=0

If v and c are such that ¢ — vy > 0, the system is asymptotically stable. However, if y
is such that ¢ — y < 0, then { = (¢ — v)/2mw, < 0 and the solutions are of the form

x(t) = Ae "' sin(wgt + )

where the exponent (—{w,f) > 0 for all > 0 because of the negative damping term.
Such solutions increase exponentially with time, as indicated in Figure 1.39. This is an
example of flutter instability and self-excited oscillation.

d

This brief introduction to stability applies to systems that can be treated as lin-

ear and homogenous. More complex definitions of stability are required for forced
systems and for nonlinear systems. The notions of stability can be thought of in terms
of changing energy: stable systems having constant energy, unstable systems having in-
creasing energy, and asymptotically stable systems having decreasing energy. Stability
can also be thought of in terms of initial conditions and this is discussed in Section 1.10
where a brief introduction to nonlinear vibrations is given. An essential difference be-
tween linear and nonlinear systems lies in their respective stability properties.
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1.9 NUMERICAL SIMULATION OF THE TIME RESPONSE

So far, most of the vibration problems examined have all been cast as linear dif-
ferential equations that have solutions that can be determined analytically. These
solutions are often plotted versus time in order to visualize the physical vibration
and obtain an idea of the nature of the response. However, there are many more
complex and nonlinear systems that are either difficult or impossible to solve
analytically (i.e., that do not have closed-form solutions for the displacement as
a function of time). The nonlinear pendulum equation given in Example 1.1.1 is
“linearized” by making the approximation sin(6) = 6 to provide a system which is
simple to solve (having the same analytical form as a linear spring-mass system).
The approximation made to linearize the pendulum equation is only valid for cer-
tain, relatively small initial conditions. The approximation of sin(6) = 6 requires
that the initial displacement and velocity are such that 6(¢) remains less than about
10°. For cases with larger initial conditions, a numerical integration routine may be
used to compute and plot a solution of the nonlinear equation of motion. Numerical
integration can be used to compute the solutions of a variety of difficult problems
and is introduced here on simple problems that have known analytical solutions so
that the nature of the approximation can be discussed. Later, numerical integration
will be used for problems not having closed-form solutions.

The free response of any single-degree-of-freedom system may easily be
computed by simple numerical means such as Euler’s method or Runge-Kutta
methods. This section examines the use of these common numerical methods for
solving vibration problems that are difficult to solve in closed form. Runge-Kutta
schemes can be found on calculators and in most common mathematical software
packages such as Mathematica, Mathcad, Maple, and MATLAB. Alternately the
numerical schemes may be programmed in more traditional languages, such as
FORTRAN, or into spreadsheets. This section reviews the use of numerical meth-
ods for solving differential equations and then applies these methods to the solution
of several vibration problems considered in the previous sections. These tech-
niques are then used in the following section to analyze the response of nonlinear
systems. Appendix F introduces the use of Mathematica, Mathcad, and MATLAB
for numerical integration and plotting. Many modern curriculums introduce these
methods and codes early in the engineering curriculum, in which case this section
can be skipped or used as a quick review.

There are many schemes for numerically solving ordinary differential equa-
tions, such as those of vibration analysis. Two numerical solution schemes are pre-
sented here. The basis of numerical solutions of ordinary differential equations is to
essentially undo calculus by representing each derivative by a small but finite differ-
ence (recall the definition of a derivative from calculus given in Window 1.6). A nu-
merical solution of an ordinary differential equation is a procedure for constructing
approximate discrete values: xq, X, . . ., X, of the solution x(¢) at the discrete values
of time: ty) < 1 < f... <t, Thus a numerical procedure produces a list of discrete
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values x; = x(f;) that approximate the exact solution, which is the continuous func-
tion of time x(f). The initial conditions of the vibration problem of interest form the
starting point of computing a numerical solution. For a single-degree-of-freedom
system of the form

mx + cx + kx = 0, x(0) =x  x(0) = vy (1.88)

the initial values x; and v, form the first two points of the numerical solution. Let
Ty be the total length of time over which the solution is of interest (i.e., the equation
is to be solved for values of ¢ between ¢ = 0 and ¢ = Ty). The time interval 7y — 0
is then divided up into 7 intervals (so that At = Ty/n). Then equation (1.88) is cal-
culated at the values of 1y = 0, 1y = A, b = 2As,. .., 1, = nAt = Ty to produce an
approximate representation, or simulation, of the solution.

The concept of a numerical solution is easiest to grasp by first examining the
numerical solution of a first-order scalar differential equation. To this end, consider
the first-order differential equation

x(t) = ax(t) x(0) = x (1.89)

The Euler method proceeds from the definition of the slope form of the derivative
given in Window 1.6, before the limit is taken:

Xi+1 — X
— = ax; 1.90
At 1 ( )
where x; denotes x(t;), x;;1 denotes x(¢;11), and At indicates the time interval be-
tween ¢; and ;44 (i.e., At = t;.1 — t;). This expression can be manipulated to yield

Xir1 — X + At(axi) (191)

This formula computes the discrete value of the response x;.1 from the previous
value x;, the time step At, and the system’s parameter a. This numerical solution is
called an Euler or tangent line method. The following example illustrates the use of
the Euler formula for computing a solution.

Window 1.6
Definition of the Derivative

The definition of a derivative of x(¢) att = ¢; is

dx(t;) _ lim x(tiv1) — x(t;)
dt a0 At

where ;1 = t; + At and x(¢) is continuous.
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Example 1.9.1

Use the Euler formula to compute the numerical solution of x = —3x, x(0) = 1 for
various time increments in the time interval 0 to 4, and compare the results to the exact
solution.

TABLE 1.4 COMPARISON OF THE EXACT SOLUTION OF x = —3x, x(0) = 1
TO THE SOLUTION OBTAINED BY THE EULER METHOD WITH LARGE TIME
STEP (At = 0.5) FOR THE INTERVALt = 0 TO 4

Elapsed Absolute
Index time Exact Euler error
0 0 1.0000 1.0000 0
1 0.5000 0.2231 -0.5000 0.7231
2 1.0000 0.0498 0.2500 0.2002
3 1.5000 0.0111 -0.1250 0.1361
4 2.0000 0.0025 0.0625 0.0600
5 2.5000 0.0006 -0.0312 0.0318
6 3.0000 0.0001 0.0156 0.0155
7 3.5000 0.0000 -0.0078 0.0078
8 4.0000 0.0000 0.0039 0.0039

Solution First, the exact solution can be obtained by direct integration or by assum-
ing a solution of the form x(f) = Ae™. Substitution of this assumed form into the equa-
tion x = —3x yields ANeM = —3A4¢€M, or A\ = —3, so that the solution is of the form
x(1) = Ae73'. Applying the initial conditions x(0) = 1yields A = 1. Hence the analyti-
cal solution is simply x(r) = ¢

Next, consider a numerical solution using the Euler method suggested by equation
(1.91). In this case the constant a = —3, so that x;;; = x; + A#(—3x;). Suppose that a
very crude time step is taken (i.e., Az = (.5) and the solution is formed over the interval
from¢ = Otot = 4. Then Table 1.4 illustrates the values obtained from equation (1.91):

X =1
x1 = xy + (0.5)(=3)(x) = —0.5
Xy =

—0.5 — (1.5)(—0.5) = 0.25

forms the column marked “Euler.” The column marked “Exact” is the value of e at
the indicated elapsed time for a given index. Note that while the Euler approximation
gets close to the correct final value, this value oscillates around zero while the exact
value does not. This points out a possible source of error in a numerical solution. On
the other hand, if At is taken to be very small, the difference between the solution ob-
tained by the Euler equation and the exact solution becomes hard to see, as Figure 1.41
illustrates. Figure 1.41 is a plot of x(¢) obtained via the Euler formula for Az = 0.1. Note
that it looks very much like the exact solution x(f) = ¢,

O
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Figure 1.41 A plot of x(¢;) versus ¢; for x(f) = —3x using various time steps in
equation (1.91) with x(0) = 1.

It is important to note from the example that two sources of error are present
in computing the solution of a differential equation using a numerical scheme such
as the Euler method. The first is called the truncation error, which is the difference
between the exact solution and the solution obtained by the Euler approximation.
This is the error indicated in the last column of Table 1.4. Note that this error accu-
mulates as the index increases because the value at each discrete time is determined
by the previous value, which is already in error. This can be somewhat controlled by
the time step and the nature of the formula. The other source of error is the round-
off error due to machine arithmetic. This is, of course, controlled by the computer
and its architecture. Both sources of error can be significant. The successful use of
a numerical method requires an awareness of both sources of errors in interpreting
the results of a computer simulation of the solution of any vibration problem.

The Euler method can be improved upon by decreasing the step size, as
Example 1.9.1 illustrates. Alternatively, a more accurate procedure can be used
to improve the accuracy (smaller formula error) without decreasing the step size
At. Several methods exist (such as the improved Euler method and various Taylor
series methods) and are discussed in Boyce and DiPrima (2009), for instance. Only
the Runge—Kutta method is discussed and used here.

The Runge-Kutta method was developed by two different researchers from
about 1895 to 1901 (C. Runge and M. W. Kutta). The Runge-Kutta formulas (there
are several) involve a weighted average of values of the right-hand side of the dif-
ferential equation taken at different points between the time intervals ¢; and ¢; + At.
The derivations of various Runge-Kutta formulas are tedious but straightforward
and are not presented here (see Boyce and DiPrima 2009). One useful formulation
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can be stated for the first-order problem x = f(x, f), x(0) = x,, where fis any scalar
function (linear or nonlinear) as

At
Xn+1 — Xp + ?(knl + anz + 2kn3 + kn4) (192)

where
knl = f(xm tn)

At At
kn2 = f(xn + 7kn1, L, + )

2 2

At At
Ky = + ko by +
n3 f(xn 2 n2s *n 2)

kn4 = f(xn + Atknf” Iy + At)

The sum in parentheses in equation (1.92) represents the average of six numbers,
each of which looks like a slope at a different time; for instance, the term k,, is the
slope of the function at the “left” end of the time interval.

Such formulas can be enhanced by treating At as a variable, At;. At each time
step ¢;, the value of At; is adjusted based on how rapidly the solution x() is changing.
If the solution is not changing very rapidly, a large value of At is allowed without
increasing the formula error. On the other hand, if x(¢) is changing rapidly, a small
At; must be chosen to keep the formula error small. Such step sizes can be chosen
automatically as part of the computer code for implementing the numerical solu-
tion. The Runge—Kutta and Euler formulas just listed can be applied to vibration
problems by noting that the most general (damped) vibration problem can be put
into a first-order form.

Returning to a damped system of the form

mx(t) + cx(t) + kx(t) = 0 x(0) = xo, x(0) = xg (1.93)

the Euler method of equation (1.91) can be applied by writing this expression as
two first-order equations. To this end, divide equation (1.93) by the mass m, and
define two new variables by x; = x(f) and x, = x(¢). Then differentiate the defini-
tion of x1(¢), rearrange equation (1.93), and replace x and its derivative with x; and
X, to get

x1(1) = x(1)

) = —S () — X0 (199

subject to the initial conditions x;(0) = xy and x,(0) = X,. The two coupled first-
order differential equations given in (1.94) may be written as a single expression by
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using a vector and matrix form determined by first defining the vector 2 X 1 x(¥)
and the 2 X 2 matrix A by

0 1
Aok | o= o=[g] e

The matrix A defined in this way is called the state matrix and the vector x is called
the state vector. The position x; and the velocity x;, are called the state variables.
Using these definitions (see Appendix C), the rules of vector differentiation (ele-
ment by element) and multiplication of a matrix times a vector, equations (1.95)
may be written as

x(f) = Ax(1) (1.96)

subject to the initial condition x(0). Now the Euler method of numerical solution
given in equation (1.91) can be applied directly to this vector-matrix formulation
of Equation (1.96), by simply calling the scalar x;, the vector x;, and replacing the
scalar a with the matrix A to produce

x(t;41) = x(8;) + AtAx(t)) (1.97)

This, along with the initial condition x(0), defines the Euler formula for integrating
the general single-degree-of-freedom vibration problem described in equation (1.92).
Equation (1.97) allows the time response to be computed and plotted.

As suggested, the Euler-formula method can be greatly improved by using a
Runge—Kutta program. For instance, MATLAB has two different Runge-Kutta-based
simulations: ode23 and ode45. These are automatic step-size integration methods (i.e.,
At is chosen automatically). The Engineering Vibration Toolbox has one fixed-step
Runge—Kutta-based method, VTB1_3, for comparison. The M-file ode23 uses a simple
second- and third-order pair of formulas for medium accuracy and ode45 uses a fourth-
and fifth-order pair for greater accuracy. Each of these corresponds to a formulation
similar to that expressed in equations (1.92) with more terms and a variable step size
At. In general, the Runge—Kutta simulations are of a higher quality than those obtained
by the Euler method.

Example 1.9.2

Use the ode45 function to simulate the response to 3X¥ + x + 2x = 0 subject to the
initial conditions x(0) = 0, x(0) = 0.25 over the time interval 0 = ¢ = 20.

Solution The first step is to write the equation of motion in first-order form. This
yields

).CIZXZ

. _2 1
Xy = _§X1 - ng
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Next, an M-file is created to store the equations of motion. An M-file is created by
choosing a name, say, sdof.m, and entering

function xdot = sdof(t,x);

xdot = zeros(2,1);

xdot(1) = x(2);

xdot(2) = -(2/3)*x(1)-(1/3)*x(2);

Next, go to the command mode and enter

t0 = 0;tf = 20;

x0 = [0 0.25];

[t,x] = ode45(‘sdof’,[t0 tf],x0);
plot(t,x)

The first line establishes the initial, (t0), and final, (tf), times. The second line creates
the vector containing the initial conditions x0. The third line creates the two vectors t,
containing the time history, and x, containing the response at each time increment in ¢,
by calling ode45 applied to the equations set up in sdof. The fourth line plots the vector
x versus the vector ¢. This is illustrated in Figure 1.42.
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Figure 1.42 A plot of the displacement x(¢) of the single-degree-of freedom system
of Example 1.9.2 (solid line) and the corresponding velocity x() (dashed line).

d

The preceding example may also be solved using Mathematica, Mathcad, and
Maple, by writing a FORTRAN routine, or by using any number of other com-
puter codes or programmable calculators. The following example illustrates the
commands required to produce the result of Example 1.9.2 using Mathematica and
again using Mathcad. These approaches are then used in the next section to exam-
ine the response of certain nonlinear vibration problems.
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Example 1.9.3

Solve Example 1.9.2 using the Mathematica program.

Solution The Mathematica program uses an iterative method to compute the solu-
tion and accepts the second-order form of the equation of motion. The text after the
prompt In[1]:=is typed by the user and returns the solution stored in the variable
x[t]. Mathematica has several equal signs for different purposes. In the argument of
the NDSolve function, the user types in the differential equation to be solved, followed
by the initial conditions, the name of the variable (response), and the name of the inde-
pendent variable followed by the interval over which the solution is sought. NDSolve
computes the solution and stores it as an interpolating function; hence the code returns
the plot following the output prompt Out[1]=. The plot command requires the name
of the interpolating function returned by NDSolve, x[t] in this case, the independent
variable, t, and the range of values for the independent variable.

In[1]:=
NDSolve[{x''[t]+(1/3)*x"'[t]+(2/3)*x[t]==0,x"'[0]==0.25,x[0]==0},
x,{t,0,20}]1;

Plot[Evaluate[x[t]/.%],{t,0,20}]
Out[1]={{x->InterpolatingFunction[{{0.,20.}},<>1}}

Out[2]=

01 [

0.05 |

-0.05 |

0.1 [

Example 1.9.4
Solve Example 1.9.2 using the Mathcad program.

Solution The Mathcad program uses a fixed time step Runge—Kutta solution and
returns the solution as a matrix with the first column consisting of the time step, the
second column containing the response, and the third column containing the velocity
response.
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First type in the initial condition vector:

el
Y2 =Y =025

Then type in the system in first-order form:

D(t,y): = D(t,y) :=

Solve using Runge-Kutta:
Z := rkfixed(y,0,20,1000,D)
Name the time vector from the Runge-Kutta matrix solution:
t = Z<0>
Name the displacement vector from the Runge-Kutta matrix solution:
x = Z<>
Name the velocity vector from the Runge-Kutta matrix solution:
dxdt := 7<%

Plot the solutions.

|

The use of these computational programs to simulate the response of a vibrating
system is fairly straightforward. Further information on using each of these programs
can be found in Appendix F or by consulting manuals or any one of numerous books
written on using these codes to solve various math and engineering problems. You
are encouraged to reproduce Example 1.9.4 and then repeat the problem for various
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different values of the initial conditions and coefficients. In this way, you can build
some intuition and understanding of vibration phenomena and how to design a system
to produce a desired response.

A note about the use of the codes presented in this text is in order. At the
time of printing this edition, all the codes ran as typed. However, each year, or
sometimes more frequently, companies who provide these codes update them and
in so doing they often change syntax. These changes can be found on the compa-
nies’ websites and should be checked if difficulty is encountered in using the codes
presented here.

1.10 COULOMB FRICTION AND THE PENDULUM

In the previous sections, all of the systems considered are linear (or linearized)
and have solutions that can be obtained by analytical means. In this section, two
common systems are analyzed that are nonlinear and do not have simple ana-
lytical solutions. The first is a spring-mass system with sliding friction (Coulomb
damping), and the second is the full nonlinear pendulum equation. In each case a
solution is obtained by using the numerical integration techniques introduced in
Section 1.9. The ability to compute the solution to general nonlinear systems using
these numerical techniques allows us to consider vibration in more complicated
configurations.

Nonlinear vibration problems are much more complex than linear systems.
Their numerical solutions, however, are often fairly straightforward. Several new
phenomena result when nonlinear terms are considered. Most notably, the idea of
a single equilibrium point of a linear system is lost. In the case of Coulomb damp-
ing, a continuous region of equilibrium positions exists. In the case of the nonlinear
pendulum, an infinite number of equilibrium points result. This single fact greatly
complicates the analysis, measurement, and design of vibrating systems.

Coulomb damping is a common damping effect, often occurring in machines,
that is caused by sliding friction or dry friction. It is characterized by the relation

N x>0
fe=Fx =9 0 =0
pN o x <0

where f, is the dissipation force, N is the normal force (see any introductory physics
text), and  is the coefficient of sliding friction (or kinetic friction). Figure 1.43 is
a schematic of a mass m sliding on a surface and connected to a spring of stiffness
k. The frictional force f, always opposes the direction of motion causing a system
with Coulomb friction to be nonlinear. Table 1.5 lists some measured values of the
coefficient of kinetic friction for several different sliding objects. Summing forces
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X0

|—> x(1)

Figure 1.43 A spring-mass system
I\ g M sliding on a surface of kinetic coefficient
of friction .

TABLE 1.5 APPROXIMATE COEFFICIENTS OF FRICTION
FOR VARIOUS OBJECTS SLIDING TOGETHER

Material Kinetic Static
Metal on metal (lubricated) 0.07 0.09
Wood on wood 0.2 0.25
Steel on steel (unlubricated) 0.3 0.75
Rubber on steel 1.0 1.20

in part (a) of Figure 1.44 in the x direction yields that (note that the mass changes
direction when the velocity passes through zero)

mX + kx = wmg for x<0 (1.98)

Here the sum of the forces in the vertical direction yields the fact that the normal
force N is just the weight, mg, where g is the acceleration due to gravity (not the
case if m is on an inclined plane as N is no longer along the same direction as W). In
a similar fashion, summing forces in part (b) of Figure 1.44 yields

mxX + kx = —pumg for x>0 (1.99)

fe—— () ()

W =mg W= mg
— e+ Jox <—— l —

kx <-——

> fc= N = fC: —pN
= —pmg

N N
(@) (b)
Figure 1.44 A free-body diagram of the forces acting on the sliding block system

of Figure 1.43: (a) mass moving to the right (x < 0), (b) mass moving to the right
(x > 0). From the y direction: N = mg.
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Since the sign of x determines the direction in which the opposing frictional force
acts, equations (1.98) and (1.99) can be written as the single equation

mX + pmgsgn(x) + kx =0 (1.100)

where sgn(t) denotes the signum function, defined to have the value 1 fort > 0, — 1
for T < 0, and O for = 0. This equation cannot be solved directly using methods such
as the variation of parameters or the method of undetermined coefficients. This is be-
cause equation (1.100) is a nonlinear differential equation. Rather, equation (1.100) can
be solved by breaking the time intervals up into segments corresponding to the changes
in direction of motion (i.e., at those time intervals separated by x = 0). Alternatively,
equation (1.100) can be solved numerically, as is done in the following. Because the sys-
tem’s equation of motion is linear in two ranges, that is, equations (1.98) and (1.99) are
linear, such systems are also called bilinear.

The sliding block in Figure 1.44 requires nonzero initial conditions to set it in
motion. Suppose first that the initial velocity is zero. The motion will result only if
the initial position x is such that the spring force kx is large enough to overcome
the static friction force pgng (kxg > pgmg). Here g is the coefficient of static fric-
tion, which is generally larger than the kinetic or dynamic coefficient of friction for
sliding surfaces. If x is not large enough, no motion results. The range of values
of x for which no motion results defines the equilibrium position. If, on the other
hand, the initial velocity is nonzero, the object will move. One of the distinguishing
features of nonlinear systems is their multiple equilibrium positions. The solution
of the equation of motion for the case when motion results can be obtained by con-
sidering the following cases.

With x to the right of any equilibrium, the mass is moving to the left, the fric-
tion force is to the right, and equation (1.98) holds. Equation (1.98) has a solution
of the form

_ . wmg
x(f) = Ajcos w,t + Bysin o,t + v (1.101)
where o, = Vk/m and A; and By are constants to be determined by the initial
conditions. Here we have dropped the distinction between static and kinetic fric-
tion. Applying the initial conditions yields

X(0) = Ay + “ng =x (1.102)
£(0) = ,B, = 0 (1.103)

Hence B; = 0 and Ay = xy — wmg/k specifies the constants in equation (1.101).
Thus when the mass starts from rest (at xy) and moves to the left, it moves as

x(t) = < - Mkmg> cos w,t + Mng (1.104)
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This motion continues until the first time x(¢) = 0. This happens when the deriva-
tive of equation (1.104) is zero, or when

m

() = - wn(x() - “kg) sin @, = 0 (1.105)

Thus when #; = 7/w,, X(f) = 0 and the mass starts to move to the right provided that
the spring force, kx, is large enough to overcome the maximum frictional force pmg.
Hence equation (1.99) now describes the motion. Solving equation (1.99) yields

_ . wmg
x(t) = Ay cos w,t + B, sin w,t — v (1.106)

for m/w, < t < t, where ¢, is the second time that x becomes zero. The initial
conditions for equation (1.106) are calculated from the previous solution given by
equation (1.104) at #;

=
N
£|a
N———
|

2
—<m—%>cosw+%= P«I:ng_xo (1.107)

(T = _ _ kmgy L
x(w,,)_ wn<x0 X )smw 0 (1.108)

From equation (1.106) and its derivatives it follows that

B, =0 (1.109)

The solution for the second interval of time then becomes

3 2
x(f) = (Xo _ “kmg> c0S wyt — ““ng T i< T (1110

Wy, Wy,

This procedure is repeated until the motion stops. The motion will stop when the
velocity is zero (x = 0) and the spring force (kx) is insufficient to overcome the
maximum frictional force (wmg). The response is plotted in Figure 1.45.

Several things can be noted about the free response with Coulomb friction
versus the free response with viscous damping. First, with Coulomb damping the
amplitude decays linearly with slope

2pmgw,

— (1.111)

rather than exponentially as does a viscously damped system. Second, the motion
under Coulomb friction comes to a complete stop, at a potentially different equi-
librium position than when initially at rest, whereas a viscously damped system
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X0

[r0—%")
(2

Figure 1.45 A plot of the free response, x(t), of a spring-mass system with
Coulomb friction.

oscillates around a single equilibrium, x = 0, with infinitesimally small amplitude.
Finally, the frequency of oscillation of a system with Coulomb damping is the same
as the undamped frequency, whereas viscous damping alters the frequency of
oscillation.

Example 1.10.1

The response of a mass oscillating on a surface is measured to be of the form indicated
in Figure 1.45. The initial position is measured to be 30 mm from its zero rest position,
and the final position is measured to be 3.5 mm from its zero rest position after four
cycles of oscillation in 1 s. Determine the coefficient of friction.

Solution First, the frequency of motion is 4 Hz, or 25.13 rad/s, since four cycles were
completed in 1 s. The slope of the line of decreasing peaks is

—30 + 3.
¥=—26.5mm/s

Therefore, from expression (1.111),

—2pmgw -2 -2
265 mmys = 2P _ “2ug on _ g
wk T Wl T,

Solving for w yields

_ w(25.13 rad/s) (—26.5 mm/s) ~
b (<2 (981 x 100 mm/s?) 0.107

This small value for p indicates that the surface is probably very smooth or lubricated.
O



86

Introduction to Vibration and the Free Response Chap. 1

The response of the system of equation (1.100) can also be obtained by the
numerical integration techniques of the previous section, which is substantially
easier than the preceding construction of the solution. For example, VIB1_5 uses
a fixed-step Runge—Kutta method to integrate equation (1.100). The second-order
equation of motion can be reformulated into two first-order equations somewhat
like equation (1.96) and integrated by the Euler method of equation (1.97), or stan-
dard Runge-Kutta methods may be employed. Figure 1.46 illustrates the response
of a system subject to Coulomb friction for two different initial conditions using
Mathcad’s fixed-time-step Runge—Kutta routine. Note in particular that the system
comes to rest at a different value of x; depending on the initial conditions. Such
a system has the same frequency, yet could come to rest anywhere in the region
bounded by the two vertical lines (x = * wmg/k). The response will come to rest
at the first time the velocity is zero and the displacement is within this region.

Comparing the response of a linear spring—mass system with viscous damping
(say the underdamped response of Figure 1.10) to the response of a spring-mass
system with Coulomb damping given previously, an obvious and significant differ-
ence is the rest position. These multiple rest positions constitute a major feature of
nonlinear systems: the existence of more than one equilibrium position.

\S)

Displacement (mm)

Time (s)

Figure 1.46 A plot of the free response (displacement versus time) of a system
subject to Coulomb friction with two different initial positions (the solid line is
Xxo = 5 mm and the dashed line is x; = 4.5 mm, both with v, = 0) for the same
physical parameters (im = 1000 kg, . = 0.3 and k = 5000 N /m).
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The equilibrium point of a system, or of a set of governing equations, may
be defined best by first placing the equation of motion in state space, as was done
in the previous section for the purpose of numerical integration. A general single-
degree-of-freedom system may be written as

¥(@) + f(x(0), x(t)) =0 (1.112)

where the function f can take on any form, linear or nonlinear. For example, for
a linear spring-mass system the function f is just f(x, x) = cx(¢) + kx(¢), which
is a linear function of the state variables of position and velocity. On the other
hand, in a nonlinear system f will be some nonlinear function of the state variables.
For instance, the pendulum equation derived and discussed in Example 1.1.1,
6 + (g/0)sin® = 0, can be written in the form of equation (1.112) by defining f to
be £(0,8) = (g/I) sin(0), where 0 is the displacement variable.

Using the approach following equations (1.94) and (1.95). the general state-
space model of equation (1.112) is written by defining the two state variables x; = x(¢)
and x, = x(¢). Then equation (1.112) can be written as the first-order pair

xi(1) = x(2)
(1) = —f(x1, %) (1.113)

This state-space form of the equation is used both for numerical integration (as
before for the Coulomb friction problem) as well as for formally defining an equilib-
rium position by defining the state vector, x, used in equation (1.96) and a nonlinear
vector function, F, as

_ x(1)
F= [_f(xl»XZ)J (1.114)

Equations (1.113) may now be written in the simple form
x = F(x) (1.115)

An equilibrium point of this system, denoted by x,, is defined to be any value of x
for which F(x) is identically zero (called zero phase velocity). Thus the equilibrium
point is any vector of constants that satisfies the relations

F(x,) = 0 (1.116)

A mechanical system is in equilibrium if its state does not change with time (i.e.,
X and X are both zero).

For Coulomb friction, the equilibrium position cannot be directly determined
by using the signum function (see below equation 1.100) because of the discontinuity
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at zero velocity. To compute the equilibrium position, consider equation (1.116) for
the system of Figure 1.44. This yields

X2

N
TN 0
m m
Solving yields the two conditions:
Xy = 0
and
ﬁ - k)C] =0

Realize that this last expression is static, so that the expression is satisfied as long as

J1 J1
g g

As discussed earlier, the friction force is static, or in equilibrium, until the spring
force kx; is large enough to overcome the friction force as expressed by this
inequality.

This describes the condition that the velocity (x,) is zero and the position lies
within the region defined by the force of friction. Depending on the initial conditions,
the response will end up at a value of x, somewhere in this region. Usually, the equi-
librium values are a discrete set of numbers, as the following example illustrates.

Example 1.10.2

Calculate the equilibrium position for the nonlinear system defined by ¥ + x — p2x> = 0,
or in state equation form, letting x; = x as before,

X =X
B =x(pi-1)

Solution These equations represent the vibration of a “soft spring” and correspond to
an approximation of the pendulum problem of Example 1.4.2, where sin x = x — x°/6.
The equations for the equilibrium position are

XZZO
x1(82x21 - ) =0

There are three solutions to this set of algebraic equations corresponding to the three
equilibrium positions of the soft spring. They are

SHHI
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The next example considers the full nonlinear pendulum equation illustrated
in Figures 1.1 and 1.47. Physically the pendulum may swing all the way around its
pivot point and has equilibrium positions in both the straight-up and straight-down
positions, as illustrated in Figure 1.47(b) and 1.47(c).

Unstable
equilibrium

:é+§sin9 =0 | Stable
| l | equilibrium
§ I
B B . |
x; = 0,2m,4m, ... :
X =0 I
: x; = m, 3w, 5,
1x,=0
(a) (b) (0)

Figure 1.47 (a) A pendulum consisting of a massless rod of length / and a tip mass m.
(b) The straight-down equilibrium position. (c) The straight-up equilibrium position.

Example 1.10.3

Calculate the equilibrium positions of the pendulum of Figure 1.47 with the equation
of motion given in Example 1.1.1.

Solution The pendulum equation in state-space form is given by

)’Cl =X
X, = —% sin (x7)

so that the vector equation F(x) = 0 yields the following equilibrium solutions:
x, = 0and x; = 0, m, 2, 3, 4w, S7...

since sin(x;) is zero for any multiple of . Note that there are an infinite number of
equilibrium positions, or vectors x,. These are all either the up position corresponding
to the odd values of  [Figure 1.47(c)], or the down position corresponding to even
multiples of = [Figure 1.47(b)]. These positions form two distinct types of behavior.
The response for initial conditions near the even values of m is a stable oscillation
around the down position, just as in the linearized case, while the response to initial
conditions near odd values of m moves away from the equilibrium position (called un-
stable) and the value of the response increases without bound.

a

The stability of equilibrium of a nonlinear vibration problem is very important
and is based on the definitions given in Section 1.8. However, in the linear case,
there is only one equilibrium value and every solution is either stable or unstable.
In this case, the stability condition is said to be a global condition. In the nonlinear
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case, there is more than one equilibrium point, and the concept of stability is tied to
each particular equilibrium point and is therefore referred to as local stability. As
in the example of the nonlinear pendulum equation, some equilibrium points are
stable and some are not. Furthermore, the stability of the response of a nonlinear
system depends on the initial conditions. In the linear case, the initial conditions
have no influence on the stability, and the system parameters and form of the equa-
tion of motion completely determine the stability of the response. To see this, look
again at the pendulum of Figure 1.47. If the initial position and velocity are near the
origin, the system response will be stable and oscillate around the equilibrium point
at zero. On the other hand, if the same pendulum (i.e., same /) is given initial condi-
tions near the equilibrium point at & = r rad, the response will grow without bound.
Hence, 6 = w rad is an unstable equilibrium.

Even though nonlinear systems have multiple equilibria and more exotic be-
havior, their response may still be simulated using the numerical-integration methods
of the previous section. This is illustrated for the pendulum in the following example,
which compares the response to various initial conditions of both the nonlinear pendu-
lum equation and its corresponding linearization treated in Examples 1.1.1 and 1.4.2.

Example 1.10.4

Compare the responses of the nonlinear and linear pendulum equations using numeri-
cal integration and the value (g/€) = (0.1)%, for (a) the initial conditions x, = 0.1 rad
and vy = 0.1 rad/s, and (b) the initial conditions x, = 1 rad and vy = 1 rad/s, by plot-
ting the responses. Here x and v are used to denote 6 and its derivative, respectively, in
order to accommodate notation available in computer codes.

Solution Depending on which program is used to integrate the solution numerically,
the equations must first be put into first-order form, and then either Euler integration
or Runge—Kutta routine may be implemented and the solutions plotted. Integrations
in MATLAB, Mathematica, and Mathcad are presented. More details can be found in
Appendix F. Note that the response to the linear system is fairly close to that of the full
nonlinear system in case (a) with slightly different frequency, while case (b) with larger
initial conditions is drastically different. The Mathcad solution follows.

First, enter the initial conditions for each response:
v =1 Xp =1 vl := 0.1 x1lg := 0.1

Next, define the frequency and the number of and size of the
time steps:

(e}
El

o = 0.1 N := 2000 i

]
o
=
=

!

€
=2

The nonlinear Euler integration is

|:X1'+1 __|: VitA A+ X
Vil L—e?-sin(xi) A+ v;
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The linear Euler integration is
|:x11-+1 . [ vl A + x1;
Vl‘i+1 o _(DZ'(A)'X-il + Vl-i

The plot of these two solutions yields

_2 £

Here the dashed line is the linear solution. Next, compute these solutions again using
initial conditions close to unstable equilibrium values:

Xp = vog := 0.1 xly 1= m vl, := 0.1

|:X1'+1 __|: Vi A+ X; |:X11'+1 __|: vli-A + x1;
Vis1 ] L—e?.sin(x) A+ v; Lvliq ] L-0?  (A)-x51 + vl

-20 +

The MATLAB code for running the solutions (using Runge-Kutta this time) and
plotting is obtained by first creating the appropriate M-files (named 1in_pend_dot.m
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and NL_pend_dot.m, defining the linear and nonlinear pendulum equations,
respectively).

function xdot = Tlin_pend_dot(t,x)

omega = 0.1; % define the natural frequency
xdot(1,1) x(2);

xdot(2,1) = -omegaA2*x(1);

function xdot = NL_pend_dot(t,x)

omega = 0.1; % define the natural frequency
xdot(1,1) = x(2);

xdot(2,1) = -omegaA2*sin(x(1));

In the command mode type the following

% Overplot linear & nonlinear simulations of the free
% response of a pendulum.

x0 0.1; vO 0.1;
ti = 0; tf = 200;

% Tinear
[time_Tin,sol_lin]=0de45('1in_pend_dot',[ti tf],[x0 v0]);

% nonlinear
[time_NL,sol1_NL]=ode45('NL_pend_dot"',[ti tf],[x0 v0]);

% overplot displacements
figure
plot(time_lin,sol_1in(:,1),'-")
hold
plot(time_NL,sol_NL(:,1),'-")

xlabel('time (s)')

ylabel('theta')

title(['Linear vs. nonlinear pendulum with x0 =
num2str(x0) ' and vO = ' num2str(v0)])

Tegend('Tinear', "nonlinear')

Here the plots have been suppressed as they are similar to those from the Mathcad
solution. Next, consider the Mathematica code to solve the same problem.
First, we load the add-on package that will enable us to add a legend to our plot.

In[1]:= <<PlotLegends'
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Define the natural circular frequency, o

In[2]:= »=0.1;
The following cell solves the linear differential equation, then the nonlinear dif-
ferential equation, and then produces a plot containing both responses.
In[3] := x1in=NDSolve[{x1''[t]+w?*x1[t]==0, x1[0]==.1, x1'[0]==.1},

x1[t],{t,0,200}]
xnon1in=NDSolve[{xn1''[t]+®?*Sin[xn1[t]]==0, xn1[0]==.1, xnl1'[0]==.1},
xn1[t], {t,0,200}]
Plot[{Evaluate[x1[t]/.x1in], Evaluate[xnl1[t]/.xnonlin]}, {t,0,200},
PlotStyle — {Dashing[{}], Dashing[{.01,.01}]1}, PlotLabel — "Linear and
Nonlinear Response, Stable Equilibrium",
AxeslLabel — {"time,s",""}, PlotLegend — {''Linear","Non-Linear"},
LegendPosition — {1,0}, LegendSize— {.7, .3}]
Out[3]= {{x1[t] — InterpolatingFunction[{{0., 200.3}},<>]1[t]1}}
Out[4]= {{xn1[t] — InterpolatingFunction[{{0., 200.3}},<>]1[t]1}}
Out[5]=

Linear and Nonlinear Response, Stable Equilibrium
1

0.5 Linear

........ Non-Linear

—0.5 |

_1:

In[6]:= Clear[x1in, xnonlin, x1, xnl1]
x1in=NDSolve[{x1' ' [t]+w?*x1[t] == 0, x1[0] ===, x1'[0] ==.1}, x1[t],
{t, 0, 200}]
xnon1in=NDSolve[{xn1''[t]+w?*Sin[xn1[t]] ==0, xn1[0] ===, xn1'[0] ==.1},
xn1[t], {t, 0, 200}]
Plot[{Evaluate[x1[t]/.x1in], Evaluate[xn1[t]/.xnonlin]}, {t, 0, 200},
PlotStyle — {Dashing[{}], Dashing[{.01,.01}]1}, PlotRange — {-20, 40},
PlotLabel — "Linear and Nonlinear Response, Unstable Equilibrium",
AxesLabel — {"time,s", ""},
PlotLegend — {"Linear", "Nonlinear"}, LegendPosition— {1, 0},
LegendSize—{.7, .3}]
Out[7]= {{x1[t] — InterpolatingFunction[{{0., 200.}},<>][t]}}
Out[8]= {{xn1[t] — InterpolatingFunction[{{0., 200.3}},<>]1[t]1}}
Out[9]=
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OLinear and Nonlinear Response, Unstable Equilibrium
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Note from the plots in Example 1.10.4 that even in the case where the initial
conditions are small, the linear response is not exactly the same as the full nonlinear
system response. However, if the initial velocity is changed to zero, the solutions
are very similar. This is illustrated in Figure 1.48.

In summary, nonlinear systems have several interesting aspects that linear
systems do not. In particular, nonlinear systems have multiple equilibrium posi-
tions rather than just one, as in the linear case. Some of these extra equilibrium
points may be unstable and some may be stable. The stability of a response de-
pends on the initial conditions, which can send the solution to different equilib-
rium positions and hence different types of response. Thus the behavior of the

Displacement (m)

-15 - iA
Time (s)

Figure 1.48 Plots of the response of both the linear (dashed line) and nonlinear
(solid line) systems of Example 1.10.4 with the initial velocity set to zero in
each case.
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response depends on the initial conditions, not just the parameters and form of the
equation, as is the case for the linear system. This is illustrated in Example 1.10.4.

Even though the response of a nonlinear system is much more complicated
and closed-form analytical solutions are not always available, the response can
be simulated using numerical integration. In modeling real systems, some degree
of nonlinearity is always present. Whether or not it is important to include the
nonlinear part of the model in computing, the response depends on the initial
conditions. If the initial conditions are such that the system’s nonlinearity comes
into play, then these terms should be included. Otherwise a linear response is
perfectly acceptable. The same can be said for whether or not to include damp-
ing in a system model. Which effects to include and which not to include when
modeling and analyzing a vibrating system form one of the important aspects of
engineering practice.

This section has introduced a little bit about the vibrations of systems with non-
linearities. The important points are that nonlinear systems potentially have multiple
equilibrium positions, each with potentially different stability behavior. Nonlinear
systems typically do not have closed-form solutions so that the time history is often
computed by numerical integration. Not addressed here, but nontheless very impor-
tant, is that the principle of superposition, used extensively in Chapters 3 and 4, does
not apply to nonlinear systems. The majority of this text focuses on linear vibration
problems. With this brief introduction to nonlinear systems, it is important to empha-
size that when solving linear problems, initial conditions must be limited such that
only the linear range is excited. Students are encouraged to take a course in nonlinear
systems and/or nonlinear vibrations to learn more about the analysis and behavior of
nonlinear vibrations.

PROBLEMS

Those problems marked with an asterisk are intended to be solved using computational
software.

Section 1.1 (Problems 1.1 through 1.26)

1.1. Consider a simple pendulum (see Example 1.1.1) and compute the magnitude of the
restoring force if the mass of the pendulum is 2 kg and the length of the pendulum is
0.5 m. Assume the pendulum is at the surface of the earth at sea level.

1.2. Compute the period of oscillation of a pendulum of length 1 m at the North Pole where
the acceleration due to gravity is measured to be 9.832 m/s’.
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1.3. The spring of Figure 1.2, repeated here as Figure P1.3, is loaded with mass of 15 kg and

1.4.

1.5.

1.6.

1.7.

the corresponding (static) displacement is 0.01 m. Calculate the spring’s stiffness.

be

n b

x(1)

Figure P1.3

The spring of Figure P1.3 is successively loaded with mass and the corresponding
(static) displacement is recorded below. Plot the data and calculate the spring’s
stiffness. Note that the data contain some errors. Also calculate the standard
deviation.

m(kg) 10 11 12 13 14 15 16
x(m) 114 125 137 1.48 1.59 1.7 1.82

Consider the pendulum of Example 1.1.1 reproduced in Figure P15 and compute the
amplitude of the restoring force if the mass of the pendulum is 2 kg and the length of
the pendulum is 0.5 m if the pendulum is at the surface of the moon.

AF

y

’ =g

— m
m
Q Figure P1.5 (a) The pendulum
mg of Example 1.1.1 and (b) its free-
(a) (b) body diagram.

Consider the pendulum of Example 1.1.1 and compute the angular natural frequency
(radians per second) of vibration for the linearized system if the mass of the pendulum
is 2 kg and the length of the pendulum is 0.5 m if the pendulum is at the surface of the
earth. What is the period of oscillation in seconds?

Derive the solution of mx + kx = 0 and plot the result for at least two periods for the
case with w, = 2rad/s,xy = 1 mm,and vy = V5 mm/s.
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1.8.
1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

Solve mx + kx = Ofork = 4N/m,m = 1kg,xy = 1 mm,and vy = 0.Plot the solution.

The amplitude of vibration of an undamped system is measured to be 1 mm. The phase
shift from ¢ = 0 is measured to be 2 rad and the frequency is found to be 5 rad/s.
Calculate the initial conditions that caused this vibration to occur. Assume the response
is of the form x(¢) = A sin (w,t + b).

Determine the stiffness of a single-degree-of-freedom spring—mass system with a mass
of 100 kg such that the natural frequency is 10 Hz.

Find the equation of motion for the system of Figure P1.11, and find the natural fre-
quency. In particular, using static equilibrium along with Newton’s law, determine
what effect gravity has on the equation of motion and the system’s natural frequency.
Assume the block slides without friction.

Frictionless
surface

Figure P1.11
An undamped system vibrates with a frequency of 10 Hz and amplitude 1 mm.
Calculate the maximum amplitude of the system’s velocity and acceleration.

Show by calculation that A sin(w,t + ¢) can be represented as A; sin w,t + A, cos w,t
and calculate A and A, in terms of A and ¢.

Using the solution of equation (1.2) in the form x(f) = A; sin w,t + A, cos w,t, calcu-
late the values of A; and A, in terms of the initial conditions xy and v.

Using the drawing in Figure 1.7 verify that equation (1.10) satisfies the initial velocity
condition.

A 0.5 kg mass is attached to a linear spring of stiffness 0.1 N/m. (a) Determine the natu-
ral frequency of the system in hertz. (b) Repeat this calculation for a mass of 50 kg and a
stiffness of 10 N/m. Compare your result to that of part (a).

Derive the solution of the single-degree-of-freedom system of Figure 1.4 by writing
Newton’s law, ma = —kx, in differential form using adx = dv and integrating twice.

Determine the natural frequency of the two systems illustrated in Figure P1.18.

ky
ky ky ks
m m
ky

(a) (b)
Figure P1.18
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*1.19.

*1.20.

1.21.

1.22.
1.23.

1.24.

1.25.

1.26.

Introduction to Vibration and the Free Response Chap. 1

Plot the solution given by equation (1.10) for the case k = 1000 N/m and m = 10 kg
for two complete periods for each of the following sets of initial conditions:a) x, = Om,
vg = 1m/s,b) xg = 0.01 m,vy = 0m/s,and ¢) xy = 0.0l m,vy = 1 m/s.

Make a three dimensional surface plot of the amplitude A of an undamped oscilla-
tor given by equation (1.9) versus xq and v, for the range of initial conditions given
by -0.1 = xy = 0.1 m and -1 = vy = 1 m/s for a system with natural frequency of
10 rad/s.

A machine part is modeled as a pendulum connected to a spring as illustrated in
Figure P1.21. Ignore the mass of the pendulum’s rod and derive the equation of mo-
tion. Then following the procedure used in Example 1.1.1, linearize the equation of
motion and compute the formula for the natural frequency. Assume that the rotation
is small enough so that the spring only deflects horizontally.

Figure P1.21

A pendulum has length of 250 mm. What is the system’s natural frequency in hertz?

The pendulum in Example 1.1.1 (see Figure P1.5) is required to oscillate once every
second. What length should it be?

The approximation of sin § = 6, is reasonable for 6 less than 10°. If a pendulum of
length 0.5 m, has an initial position of 6(0) = 0, what is the maximum value of the
initial angular velocity that can be given to the pendulum without violating this small-
angle approximation? (Be sure to work in radians.)

A machine, modeled as a simple spring—mass system, oscillates in simple harmonic
motion. Its acceleration is measured to have an amplitude of 10,000 mm /s> with a fre-
quency of 8 Hz. Compute the maximum displacement the machine undergoes during this
oscillation.

Derive the relationships given in Window 1.4 for the constants a; and a,, used in the
exponential form of the solution, in terms of the constants A; and A,, used in sum of
sine and cosine form of the solution. Use the Euler relationships for sine and cosine in
terms of exponentials as given following equation (1.18).
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Sect

ion 1.2 (Problems 1.27 through 1.40)

1.27. The acceleration of a machine part modeled as a spring—mass system is measured and

1.28

1.29.

*1.30.

*1.31.

1.32.

1.33.

recorded in Figure P1.27 Compute the amplitude of the displacement of the mass.

Acceleration in m/s?

1.2
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Figure P1.27

. A vibrating spring-mass system has a measured acceleration amplitude of 8 mm /s’ and
measured displacement amplitude of 2 mm. Calculate the system’s natural frequency.

A spring—mass system has a measured period of 5 s and a known mass of 20 kg. Calculate
the spring stiffness.

Plot the solution of a linear spring-mass system with frequency w, = 2rad/s,xy = 1 mm,
and vy = 2.34 mm /s for at least two periods.

Compute the natural frequency and plot the solution of a spring—mass system with
mass of 1 kg, stiffness of 4 N/m, and initial conditions of xy = 1 mm and vy = 0 mm/s
for at least two periods.

When designing a linear spring—mass system it is often a matter of choosing a spring
constant such that the resulting natural frequency has a specified value. Suppose that
the mass of a system is 4 kg and the stiffness is 100 N/m. How much must the spring
stiffness be changed in order to increase the natural frequency by 10%?

The pendulum in the Chicago Museum of Science and Industry has a length of 20 m,
and the acceleration due to gravity at that location is known to be 9.803 m/ s2. Calculate
the period of this pendulum.



100

1.34.

1.35.

1.36.

1.37.
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Calculate the RMS values of displacement, velocity, and acceleration for the un-
damped single-degree-of-freedom system of equation (1.19) with zero phase.

A foot pedal mechanism for a machine is crudely modeled as a pendulum connected
to a spring as illustrated in Figure P1.35. The purpose of the spring is provide a return
force for the pedal action. Compute the spring stiffness needed to keep the pendulum at
1° from the horizontal and then compute the corresponding natural frequency. Assume
that the angular deflections are small, such that the spring deflection can be approxi-
mated by the arc length; that the pedal may be treated as a point mass; and that pendu-
lum rod has negligible mass. The pedal is horizontal when the spring is at its free length.
The values in the figure are m = 0.5kg,g = 9.8 m/s%,/; = 0.2m, and , = 0.3 m.

Figure P1.35

An automobile is modeled as a 1000-kg mass supported by a spring of stiffness k =
400,000 N/m. When it oscillates it does so with a maximum deflection of 10 cm. When
loaded with passengers, the mass increases to as much as 1300 kg. Calculate the change
in frequency, velocity amplitude, and acceleration amplitude if the maximum deflection
remains 10 cm.

The front suspension of some cars contains a torsion rod as illustrated in Figure P1.37 to
improve the car’s handling. (a) Compute the frequency of vibration of the wheel assembly

Wheel

Frame

Figure P1.37



Chap. 1

Problems 101

1.38.

1.39.

1.40.

given that the torsional stiffness is 2000 N m/rad and the wheel assembly has a mass of
38 kg. Take the distance x = 0.26 m. (b) Sometimes owners put different wheels and tires
on a car to enhance the appearance or performance. Suppose a thinner tire is put on with
a larger wheel raising the mass to 45 kg. What effect does this have on the frequency?

A machine oscillates in simple harmonic motion and appears to be well modeled by
an undamped single-degree-of-freedom oscillation. Its acceleration is measured
to have an amplitude of 10,000 mm/s2 at 8 Hz. What is the machine’s maximum
displacement?

A simple undamped spring-mass system is set into motion from rest by giving it an
initial velocity of 100 mm//s. It oscillates with a maximum amplitude of 10 mm. What is
its natural frequency?

An automobile exhibits a vertical oscillating displacement of maximum amplitude 5 cm
and a measured maximum acceleration of 2000 cm /s%. Assuming that the automobile
can be modeled as a single-degree-of-freedom system in the vertical direction, calculate
the natural frequency of the automobile.

Section 1.3 (Problems 1.41 through 1.64)

1.41.

1.42.

1.43.

1.44.

1.45.

1.46.

1.47.

1.48.

1.49.

1.50.

1.51.

Consider a spring-mass—damper system, like the one in Figure 1.9, with the following
values: m = 10 kg, c = 3 N/s,and k = 1000 N/m. (a) Is the system overdamped, un-
derdamped, or critically damped? (b) Compute the solution if the system is given initial
conditions xy = 0.0l mand ¢ = 0.

Consider a spring-mass—damper system with equation of motion given by
X + 2x + 2x = 0. Compute the damping ratio and determine if the system is over-
damped, underdamped, or critically damped.

Consider the system ¥ + 4x + x = 0 for x = 1 mm, vy = 0 mm/s. Is this system
overdamped, underdamped, or critically damped? Compute the solution and de-
termine which root dominates as time goes on (that is, one root will die out quickly
and the other will persist).

Compute the solution to X + 2x + 2x = 0 for xp = 0 mm, vy = 1 mm/s and write
down the closed-form expression for the response.

Derive the form of \; and \; given by equation (1.31) from equation (1.28) and the
definition of the damping ratio.

Use the Euler formulas to derive equation (1.36) from equation (1.35) and to deter-
mine the relationships listed in Window 1.4.

Using equation (1.35) as the form of the solution of the underdamped system, calculate
the values for the constants a; and a, in terms of the initial conditions xy and v.
Calculate the constants A and ¢ in terms of the initial conditions and thus verify equa-
tion (1.38) for the underdamped case.

Calculate the constants a; and a; in terms of the initial conditions and thus verify
equations (1.42) and (1.43) for the overdamped case.

Calculate the constants a; and a, in terms of the initial conditions and thus verify
equation (1.46) for the critically damped case.

Using the definition of the damping ratio and the undamped natural frequency, derive
equation (1.48) from (1.47).
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1.52.

1.53.

1.54.

1.55.

1.56.

1.57.

1.58.

*1.59.
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For a damped system, m, ¢, and k are knowntobe m = 1kg,c = 2kg/s,k = 10 N/m.
Calculate the value of { and w,,. Is the system overdamped, underdamped, or critically
damped?

Plot x(r) for a damped system of natural frequency w,, = 2 rad/s and initial conditions
X9 = 1 mm, vy = 1 mm, for the following values of the damping ratio:

{=001,{=02,=01¢=04and{ = 08.

Plot the response x(f) of an underdamped system with w,, = 2rad/s,{ = 0.1, and
vo = 0 for the following initial displacements: x, = 10 mm and xy = 100 mm.

Calculate the solution to ¥ + x + x = 0 with xy = 1 and vy = 0 for x(f) and sketch
the response.

A spring-mass—damper system has mass of 100 kg, stiffness of 3000 N /m, and damping
coefficient of 300 kg/s. Calculate the undamped natural frequency, the damping ratio,
and the damped natural frequency. Does the solution oscillate?

A rough sketch of a valve-and-rocker-arm system for an internal combustion engine is
give in Figure P1.57 Model the system as a pendulum attached to a spring and a mass and
assume the oil provides viscous damping in the range of { = 0.01. Determine the equa-
tions of motion and calculate an expression for the natural frequency and the damped
natural frequency. Here J is the rotational inertia of the rocker arm about its pivot point,
k is the stiffness of the valve spring, and m is the mass of the valve and stem. Ignore the
mass of the spring.

Rocker arm J

Oil

/
m
Valve
X

Figure P1.57

A spring—mass—damper system has mass of 150 kg, stiffness of 1500 N /m, and damping
coefficient of 200 kg /s. Calculate the undamped natural frequency, the damping ratio,
and the damped natural frequency. Is the system overdamped, underdamped, or criti-
cally damped? Does the solution oscillate?

The spring-mass system of 100 kg mass, stiffness of 3000 N/m, and damping coeffi-
cient of 300 Ns/m is given a zero initial velocity and an initial displacement of 0.1 m.
Calculate the form of the response and plot it for as long as it takes to die out.
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*1.60.

*1.61.

1.62.

1.63.

1.64.

The spring—mass system of 150 kg mass, stiffness of 1500 N /m, and damping coefficient
of 200 Ns/m is given an initial velocity of 10 mm /s and an initial displacement of -5 mm.
Calculate the form of the response and plot it for as long as it takes to die out. How long
does it take to die out?

Choose the damping coefficient of a spring—-mass—damper system with mass of 150 kg
and stiffness of 2000 N/m such that its response will die out after about 2 s, given a
zero initial position and an initial velocity of 10 mm/s.

Derive the equation of motion of the system in Figure P1.62 and discuss the effect of
gravity on the natural frequency and the damping ratio.

ko[ ]e lg

Figure P1.62

Derive the equation of motion of the system in Figure P1.63 and discuss the effect
of gravity on the natural frequency and the damping ratio. You may have to make
some approximations of the cosine. Assume the bearings provide a viscous-damping
force only in the vertical direction. (From A. Diaz-Jimenez, South African Mechanical
Engineer,Vol. 26, pp. 65-69, 1976) (1976)

Figure P1.63

Consider the response of an underdamped system given by
x(t) = e %A sin (wyt + )

where A and ¢ are given in terms of the initial conditions xy = 0, and vy # O.
Determine the maximum value that the acceleration will experience in terms of v.
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Section 1.4 (Problems 1.65 through 1.81)

1.65. Calculate the frequency of the compound pendulum of Figure P1.65 if a mass mr is
added to the tip, by using the energy method. Assume the mass of the pendulum is evenly
distributed so that its center of gravity is in the middle of the pendulum of length /.

I

I

: Figure P1.65 A compound

| pendulum with a tip mass.

1.66. Calculate the total energy in a damped system with frequency 2 rad /s and damping ratio
{ = 0.01 with mass 10 kg for the case xo = 0.1 m and vy = 0. Plot the total energy ver-
sus time.

1.67. Use the energy method to calculate the equation of motion and natural frequency of
an airplane’s steering mechanism for the nose wheel of its landing gear. The mecha-
nism is modeled as the single-degree-of-freedom system illustrated in Figure P1.67

(Steering wheel)

(Tire-wheel

ky assembly)

Figure P1.67

The steering wheel and tire assembly are modeled as being fixed at ground for this
calculation. The steering rod gear system is modeled as a linear spring—mass system (1,
ky) oscillating in the x direction. The shaft-gear mechanism is modeled as the disk of
inertia J and torsional stiffness k,. The gear J turns through the angle 6 such that the
disk does not slip on the mass. Obtain an equation in the linear motion x.

1.68. Consider the pendulum-and-spring system of Figure P1.68. Here the mass of the pen-
dulum rod is negligible. Derive the equation of motion using the energy method. Then
linearize the system for small angles and determine the natural frequency. The length
of the pendulum is /, the tip mass is m, and the spring stiffness is k.

m k

> |
~

Figure P1.68 A simple pendulum
connected to a spring.

—_————m e ——
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1.69. A control pedal of an aircraft can be modeled as the single-degree-of-freedom system
of Figure P1.69. Consider the lever as a massless shaft and the pedal as a lumped mass
at the end of the shaft. Use the energy method to determine the equation of motion
in 6 and calculate the natural frequency of the system. Assume the spring to be un-
stretched at 8 = 0 and gravity points down.

Figure P1.69

1.70. To save space, two large pipes are shipped, one stacked inside the other, as indicated in
Figure P1.70. Calculate the natural frequency of vibration of the smaller pipe (of radius
Ry) rolling back and forth inside the larger pipe (of radius R). Use the energy method
and assume that the inside pipe rolls without slipping and has a mass of m.

Large pipe

Small pipe

| oo 00 |

Truck bed

mg
(a) (b)
Figure P1.70 (a) Pipes stacked in a truck bed. (b) Vibration model of the inside pipe.
1.71. Consider the example of a simple pendulum given in Example 1.4.2. The pendulum

motion is observed to decay with a damping ratio of { = 0.001. Determine a damping
coefficient and add a viscous-damping term to the pendulum equation.
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1.72.

1.73.

1.74.

1.75.

1.76.

1.77.

Introduction to Vibration and the Free Response Chap. 1

Determine a damping coefficient for the disk-rod system of Example 1.4.3. Assuming
that the damping is due to the material properties of the rod, determine ¢ for the rod if
it is observed to have a damping ratio of { = 0.01.

The rod and disk of Window 1.1 are in torsional vibration. Calculate the damped natu-
ral frequency if / = 1000 m?-kg,¢ = 20 N-m-s/rad, and k = 400 N - m /rad.

Consider the system of Figure P1.74, which represents a simple model of an aircraft
landing system. Assume, x = rf. What is the damped natural frequency?

Figure P1.74

Consider Problem 1.74 with k = 400,000 N/m, m = 1500 kg, J = 100 m?- kg/rad, r =
25 cm, and ¢ = 8000 kg/s. Calculate the damping ratio and the damped natural frequency.
How much effect does the rotational inertia have on the undamped natural frequency?

Use Lagrange’s formulation to calculate the equation of motion and the natural fre-
quency of the system of Figure P1.76. Model each of the brackets as a spring of stiffness
k,and assume the inertia of the pulleys is negligible.

(@

Figure P1.76

Use Lagrange’s formulation to calculate the equation of motion and the natural fre-
quency of the system of Figure P1.77 This figure represents a simplified model of a
jet engine mounted to a wing through a mechanism which acts as a spring of stiffness
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k and mass m;,. Assume the engine has inertia J and mass m and that the rotation of
the engine is related to the vertical displacement of the engine, x(¢) by the “radius” ry
(i.e.,x = rg0).

Wing, ground |

|
o
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5 —RETC
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Figure P1.77

1.78. Consider the inverted simple pendulum connected to a spring of Figure P1.68. Use

Lagrange’s formulation to derive the equation of motion.

1.79. Lagrange’s formulation can also be used for non-conservative systems by adding the

applied non-conservative term to the right side of equation (1.63) to get

d <6T) oT oU OR;
— |- =4+ =+ =0
aq;

dr dq;  dq;  9q;
Here R; is the Rayleigh dissipation function defined in the case of a viscous damper

attached to ground by

R = EC('LZ
Use this extended Lagrange formulation to derive the equation of motion of the
damped automobile suspension driven by a dynamometer illustrated in Figure P1.79.
Assume here that the dynamometer drives the system such thatx = r6.

Figure P1.79
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1.80.

1.81.
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Consider the disk of Figure P1.80 connected to two springs. Use the energy method to
calculate the system’s natural frequency of oscillation for small angles 6(z).

0(1)

A X
1> x(0)

m = mass

Figure P1.80

A pendulum of negligible mass is connected to a spring of stiffness k at halfway along its
length, /, as illustrated in Figure P1.81. The pendulum has two masses fixed to it: one at
the connection point with the spring and one at the top. Derive the equation of motion
using the Lagrange formulation, linearize the equation, and compute the system’s natural
frequency. Assume that the angle remains small enough so that the spring only stretches
significantly in the horizontal direction.

my

my

Figure P1.81

Section 1.5 (Problems 1.82 through 1.93)

1.82.

A bar of negligible mass fixed with a tip mass forms part of a machine used to punch
holes in a sheet of metal as it passes the fixture as illustrated in Figure P1.82. The im-
pact to the mass and bar fixture causes the bar to vibrate and the speed of the process
demands that frequency of vibration not interfere with the process. The static design
yields a mass of 50 kg and that the bar be made of steel of length 0.25 m with a cross
sectional area of 0.01 m. Compute the system’s natural frequency.

EA Yo
m | <l -

Figure P1.82 A bar model of a punch fixture.
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1.83.

1.84.

1.85.

1.86.

1.87.

1.88.

1.89.

*1.90.

1.91.

Consider the punch fixture of Figure P1.82. If the system is giving an initial velocity
of 10 m/s, what is the maximum displacement of the mass at the tip if the mass is
1000 kg and the bar is made of steel of length 0.25 m with a cross sectional area of
0.01 m*?

Consider the punch fixture of Figure P1.82. If the punch strikes the mass off center, it
is possible that the steel bar may vibrate in torsion. The mass is 1000 kg and the bar
0.25-m long, with a square cross section of 0.1 m on a side. The mass polar moment of
inertia of the tip mass is 10 kg/m?. The polar moment of inertia for a square bar is b*/6,
where b is the length of the side of the square. Compute both the torsion and longitudi-
nal frequencies. Which is larger?

A helicopter landing gear consists of a metal framework rather than the coil spring based
suspension system used in a fixed-wing aircraft. The vibration of the frame in the vertical
direction can be modeled by a spring made of a slender bar as illustrated in Figure 1.23
where the helicopter is modeled as ground. Here / = 0.4 m, E = 20 X 10'° N/m?, and
m = 100 kg. Calculate the cross-sectional area that should be used if the natural fre-
quency is to be f,, = 500 Hz.

The frequency of oscillation of a person on a diving board can be modeled as the trans-
verse vibration of a beam as indicated in Figure 1.26. Let m be the mass of the diver
(m = 100 kg) and / = 1.5 m. If the diver wishes to oscillate at 3 Hz, what value of ET
should the diving board material have?

Consider the spring system of Figure 1.32. Let ky = ks = k; = 100N/m, k3 = 50 N/m,
and k4, = 1 N/m. What is the equivalent stiffness?

Springs are available in stiffness values of 10, 100, and 1000 N/m. Design a spring
system using these values only, so that a 100-kg mass is connected to ground with fre-
quency of about 1.5 rad/s.

Calculate the natural frequency of the system in Figure 1.32(a) if k; = k, = 0. Choose
m and nonzero values of k3, k4, and ks so that the natural frequency is 100 Hz.

Example 1.4.4 examines the effect of the mass of a spring on the natural frequency of
a simple spring-mass system. Use the relationship derived there and plot the natural
frequency (normalized by the natural frequency, o, for a massless spring) versus the
percent that the spring mass is of the oscillating mass. Determine from the plot (or by
algebra) the percentage where the natural frequency changes by 1% and therefore the
spring’s mass should not be neglected.

Calculate the natural frequency and damping ratio for the system in Figure P1.91 given the
values m = 10 kg, ¢ = 100 kg /s, k; = 4000 N/m, k, = 200 N/m, and k3 = 1000 N/m.
Assume that no friction acts on the rollers. Is the system overdamped, critically damped, or
underdamped?

Figure P1.91
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1.92. Calculate the natural frequency and damping ratio for the system in Figure P1.92.
Assume that no friction acts on the rollers. Is the system overdamped, critically damped,
or underdamped?

2 kN/m 3 kN/m 10 kN/m
AAAANA —a—AAAAA AAAAA
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Figure P1.92

1.93. A manufacturer makes a cantilevered leaf spring from steel (E = 2 X 10'! N/m?) and
sizes the spring so that the device has a specific frequency. Later, to save weight, the
spring is made of aluminum (E = 71 X 101 N /mz). Assuming that the mass of the
spring is much smaller than that of the device the spring is attached to, determine if the
frequency increases or decreases and by how much.

Section 1.6 (Problems 1.94 through 1.101)

1.94. The displacement of a vibrating spring—-mass—damper system is recorded on an x — y
plotter and reproduced in Figure P1.94. The y coordinate is the displacement in cm and
the x coordinate is time in seconds. From the plot determine the natural frequency, the
damping ratio, and the damped natural frequency.

P
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Figure P1.94 A plot of displacement versus time for a vibrating system.
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1.95.

1.96.
1.97.

1.98.

1.99.
1.100.

1.101.

Show that the logarithmic decrement is equal to

1. X
nox,

S =

where x,, is the amplitude of vibration after n cycles have elapsed.
Derive the equation (1.78) for the trifalar suspension system.

A prototype composite material is formed and hence has an unknown modulus. An
experiment is performed consisting of forming it into a cantilevered beam of length 1 m
and I = 10~ m* with a 6-kg mass attached at its end. The system is given an initial dis-
placement and found to oscillate with a period of 0.5 s. Calculate the modulus E.

The free response of a 1000-kg car with stiffness of £k = 400,000 N/m is observed to
be of the form given in Figure 1.35. Modeling the car as a single-degree-of-freedom
oscillation in the vertical direction, determine the damping coefficient if the displace-
ment at ¢ is measured to be 2 cm and 0.22 cm at 2,.

A pendulum decays from 10 cm to 1 cm over one period. Determine its damping ratio.

The relationship between the log decrement & and the damping ratio { is often approx-
imated as 8 = 2m{. For what values of { would you consider this a good approximation
to equation (1.82)?

A damped system is modeled as illustrated in Figure 1.9. The mass of the system is
measured to be 5 kg and its spring constant is measured to be 5000 N /m. It is observed
that during free vibration the amplitude decays to 0.25 of its initial value after five
cycles. Calculate the viscous-damping coefficient, c.

Section 1.7 (Problems 1.102 through 1.110, also see Problem Section 1.5)

1.102.

1.103.

1.104.
1.105.

1.106.

1.107.

1.108.

Consider the system of Example 1.72 consisting of a helical spring of stiffness 10° N /m
attached to a 10-kg mass. Place a dashpot parallel to the spring and choose its viscous-
damping value so that the resulting damped natural frequency is reduced to 9 rad/s.

For an underdamped system, x; = 0 mm and vy = 10 mm/s. Determine m, c, and k
such that the amplitude is less than 1 mm.

Repeat Problem 1.103 if the mass is restricted to be between 10 kg < m < 15 kg.

Use the formula for the torsional stiffness of a shaft from Table 1.1 to design a 1-m shaft
with torsional stiffness of 10° N - m /rad.

Consider designing a helical spring made of aluminum, such that when it is attached to
a 10-kg mass the resulting spring-mass system has a natural frequency of 10 rad/s. Thus
repeat Example 1.72 which uses steel for the spring and note any difference.

Try to design a bar that has the same stiffness as the helical spring of Example 1.72 (i.e.,
k = 10> N/m). This amounts to computing the length of the bar with its cross sectional
area taking up about the same space at the helical spring (R = 10 cm). Note that the
bar must remain at least 10 times as long as it is wide in order to be modeled by the
stiffness formula given for the bar in Figure 1.23.

Repeat Problem 1.107 using plastic (E = 1.40 X 10° N/m?) and rubber (E = 7 X
10° N /m?). Are any of these feasible?
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1.109.

1.110.
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Consider the diving board of Figure P1.109. For divers, a certain level of static deflec-
tion is desirable, denoted by A. Compute a design formula for the dimensions of the
board (b, 4, and /) in terms of the static deflection, the average diver’s mass, m, and the
modulus of the board.

3
;= b
12
b
C—nh end view

Figure P1.109

In designing a vehicle suspension system using a “quarter car model” consisting of a
spring, mass, and damper system, studies show the desirable damping ratio is { = 0.25.
If the model has a mass of 750 kg and a frequency of 15 Hz, what should the damping
coefficient be?

Section 1.8 (Problems 1.111 through 1.115)

1.111.

1.112.

Consider the system of Figure P1.111. (a) Write the equations of motion in terms of the
angle, 6, the bar makes with the vertical. Assume linear deflections of the springs and
linearize the equations of motion. (b) Discuss the stability of the linear system’s solu-
tions in terms of the physical constants, m, k, and /. Assume the mass of the rod acts at
the center as indicated in the figure.

Figure P1.111

Consider the inverted pendulum of Figure 1.40 as discussed in Example 1.8.1 and
repeated in Figure P1.112. Assume that a dashpot (of damping rate c) also acts on the
pendulum parallel to the two springs. How does this affect the stability properties of
the pendulum?
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1.113.

1.114.

*1.115.

0=

Figure P1.112 The inverted pendulum of Example 1.8.1.

Replace the massless rod of the inverted pendulum of Figure P1.112 with a solid object
compound pendulum of Figure 1.20(b). Calculate the equations of vibration and dis-
cuss values of the parameter relations for which the system is stable.

A simple model of a control tab for an airplane is sketched in Figure P1.114. The equa-
tion of motion for the tab about the hinge point is written in terms of the angle 6 from
the centerline to be

Jo+(c—f)0+ko=0

Here J is the moment of inertia of the tab, k is the rotational stiffness of the hinge, c is
the rotational damping in the hinge, and f,6 is the negative damping provided by the
aerodynamic forces (indicated by arrows in the figure). Discuss the stability of the solu-
tion in terms of the parameters ¢ and f;,.

Figure P1.114 A simple model of an airplane control tab.

In order to understand the effect of damping in design, develop some sense of how the
response changes with the damping ratio by plotting the response of a single-degree-
of-freedom system for a fixed amplitude, frequency, and phase as { changes through
the following set of values { = 0.01,0.05,0.1,0.2,0.3, and 0.4. That is, plot the response
x(t) = e "% sin (101 — %) for each value of ¢.
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Section 1.9 (Problems 1.116 through 1.123)

*1.116.

*1.117.

*1.118.

*1.119.

*1.120.
*1.121.

*1.122.
*1.123.

Compute and plot the response to x = —3x, x(0) = 1 using Euler’s method for time
steps of 0.1 and 0.5. Also plot the exact solution and hence reproduce Figure 1.41.

Use numerical integration to solve the system of Example 1.73 with m = 1361 kg, k =
2.688 X 10° N/m, ¢ = 3.81 X 10’ kg/s subject to the initial conditions x(0) = 0 and
v(0) = 0.01 mm/s. Compare your result using numerical integration to just plotting the
analytical solution (using the appropriate formula from Section 1.3) by plotting both on
the same graph.

Consider again the damped system of Problem 1.117 and design a damper such that
the oscillation dies out after 2 seconds. There are at least two ways to do this. Here it is
intended to solve for the response numerically, following Examples 1.9.2, 1.9.3, or 1.9.4,
using different values of the damping parameter ¢ until the desired response is achieved.

Consider again the damped system of Example 1.9.2 and design a damper such that
the oscillation dies out after 25 seconds. There are at least two ways to do this. Here
it is intended to solve for the response numerically, following Examples 1.9.2, 1.9.3, or
1.9.4, using different values of the damping parameter ¢ until the desired response is
achieved. Is your result overdamped, underdamped, or critically damped?

Repeat Problem 1.119 for the initial conditions x(0) = 0.1 m and v(0) = 0.01 mm//s.

A spring and damper are attached to a mass of 100 kg in the arrangement given in
Figure 1.8. The system is given the initial conditions x(0) = 0.1 m and »(0) = 1 mm/s.
Design the spring and damper (i.e., choose k and ¢) such that the system will come to rest
in 2 s and not oscillate more than two complete cycles. Try to keep c as small as possible.
Also compute (.

Repeat Example 1.71 by using the numerical approach of the previous 5 problems.
Repeat Example 1.71 for the initial conditions x(0) = 0.01 m and »(0) = 1 mm/s.

Section 1.10 (Problems 1.124 through 1.136)

1.124.

1.125.

*1.126.

A 2-kg mass connected to a spring of stiffness 10> N /m has a dry sliding friction force (F)
of 3 N. As the mass oscillates, its amplitude decreases 20 cm. How long does this take?
Consider the system of Figure 1.44 withm = Skgand k = 9 X 10°N /m with a friction
force of magnitude 6 N. If the initial amplitude is 4 cm, determine the amplitude one
cycle later as well as the damped frequency.

Compute and plot the response of the system of Figure P1.126 for the case where xy =
0.1 m, vy = 0.1 m/s, p = 0.05, m = 250 kg, 6 = 20°, and k¥ = 3000 N/m. How long
does it take for the vibration to die out?

: '

Figure P1.126
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*1.127.

*1.128.

*1.129.

1.130.
1.131.
*1.132.

*1.133.
1.134.

*1.135.

*1.136.

Compute and plot the response of a system with Coulomb damping of equation (1.100)
for the case where xy = 0.5m,vy = 0, . = 0.1,m = 100 kg, and £k = 1500 N/m. How
long does it take for the vibration to die out?

A mass moves in a fluid against sliding friction as illustrated in Figure P1.128. Model the
damping force as a slow fluid (i.e., linear-viscous damping) plus Coulomb friction because
of the sliding, with the following parameters: m = 250 kg, . = 0.01, ¢ = 25 kg/s, and
k = 3000 N/m. (a) Compute and plot the response to the initial conditions: xy = 0.1 m,
vy = 0.1 m/s. (b) Compute and plot the response to the initial conditions: xy = 0.1 m,
vy = 1 m/s. How long does it take for the vibration to die out in each case?

‘ Fluid AAAAA
m VV
k2 k/2
Figure P1.128

Consider the system of Problem 1.128 part (a), and compute a new damping coeffi-
cient, ¢, that will cause the vibration to die out after one oscillation.

Compute the equilibrium positions of ¥ + w2x + Bx> = 0. How many are there?
Compute the equilibrium positions of ¥ + w2x — B%* + yx° = 0. How many are there?

Consider the pendulum of Example 1.10.3 with length of 1 m and initial conditions
of 8y = m/10 rad and 6, = 0. Compare the difference between the response of the
linear version of the pendulum equation (i.e., with sin(6) = 6) and the response of the
nonlinear version of the pendulum equation by plotting the response of both for four
periods.

Repeat Problem 1.132 if the initial displacement is 6 = /2 rad.

If the pendulum of Example 1.10.3 is given an initial condition near the equilibrium
position of 8y = m rad and §, = 0, does it oscillate around this equilibrium?

Calculate the response of the system of Problem 1.121 for the initial conditions of
xo = 0.01 m, vy = 0, and a natural frequency of 3 rad /s and for § = 100,y = 0.

Repeat Problem 1.135 and plot the response of the linear version of the system (8 = 0)
on the same plot to compare the difference between the linear and nonlinear versions of
this equation of motion.

MATLAB® ENGINEERING VIBRATION TOOLBOX

Dr. Joseph C. Slater of Wright State University has authored a MATLAB Toolbox
keyed to this text. The Engineering Vibration Toolbox (EVT) is organized by chapter
and may be used to solve the Toolbox problems found at the end of each chapter.
In addition, the EVT may be used to solve those homework problems suggested
for computer usage in Sections 1.9 and 1.10, rather than using MATLAB directly.
MATLAB and the EVT are interactive and are intended to assist in analysis, para-
metric studies, and design, as well as in solving homework problems. The Engineering
Vibration Toolbox is licensed free of charge for educational use. For professional use,
users should contact the Engineering Vibration Toolbox author directly.
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The EVT is updated and improved regularly and can be downloaded for free.
To download, update, or obtain information on usage or current revision, go to the
Engineering Vibration Toolbox home page at

http://www.cs.wright.edu/~vtoolbox

This site includes links to editions that run on earlier versions of MATLAB,
as well as the most recent version. An email list of instructors who use the EVT is
maintained so users can receive email notification of the latest updates. The EVT is
designed to run on any platform supported by MATLAB (including Macintosh and
VMS) and is regularly updated to maintain compatibility with the current version of
MATLAB. A brief introduction to MATLAB and UNIX is available on the home
page as well. Please read the file Readme. txt to get started and type help vtoolbox
after installation to obtain an overview. Once it is installed, typing vtbud will display
the current revision status of your installation and attempt to download the current
revision status from the anonymous FTP site. Updates can then be downloaded in-
crementally as desired. Please see Appendix G for further information.

TOOLBOX PROBLEMS

TB1.1. Fix [your choice or use the values from Example 1.3.1 with x(0) = 1 mm] the values of
m, ¢, k, and x(0) and plot the responses x(¢) for a range of values of the initial velocity
x(0) to see how the response depends on the initial velocity. Remember to use num-
bers with consistent units.

TB1.2. Using the values from Problem TB1.1 and x(0) = 0, plot the response x(t) for a
range of values of x(0) to see how the response depends on the initial displacement.

TB1.3. Reproduce Figures 1.10,1.11, and 1.12.

TB1.4. Consider solving Problem 1.53 and compare the time for each response to reach and
stay below 0.01 mm.

TB1.5. Solve Problems 1.121, 1.122, and 1.123 using the Engineering Vibration Toolbox.
TB1.6. Solve Problems 1.126, 1.127 and 1.128 using the Engineering Vibration Toolbox.


http://www.cs.wright.edu/~vtoolbox

Response to Harmonic
Excitation

This chapter focuses on the most
fundamental concept in vibration
analysis: the concept of resonance.
Resonance occurs when a periodic
external force is applied to a system
having a natural frequency equal
to the driving frequency. This often
happens when the excitation force
is derived from some rotating part,
such as the helicopter shown in the
top left. The rotating blade causes

a harmonic force to be applied to
the body of the helicopter. If the
frequency of the blade rotation
corresponds to the natural frequency
of the body, resonance will occur as
described in Section 2.1. Resonance
causes large deflections, which may
exceed the elastic limits and cause
the structure to fail. An example
familiar to most is the resonance
caused by an out-of-balance tire

on a car (boftom photo). The
speed of tire rotation corresponds
to the driving frequency. At a
certain speed, the out-of-balance
fire causes resonance, which is felt
as shaking of the steering-wheel
column. If the car is driven slower,

or faster, the frequency moves away
from the resonance condition and
the shaking stops.

117
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This chapter considers the response to harmonic excitation of the single-degree-
of-freedom spring-mass—damper system presented in Chapter 1. Harmonic
excitation refers to a sinusoidal external force of a single frequency applied to
the system. Recall from introductory physics that resonance is the tendency of a
system to absorb more energy when the driving frequency matches the system’s
natural frequency of vibration. This phenomenon commonly occurs in mechani-
cal, acoustic, biological, and electrical systems. Examples include acoustic reso-
nance in musical instruments, the tidal resonance in bays, basilar membranes in
biological transduction of auditory input, and shaking of the front suspension
of a car caused by an out-of-balance wheel. As a child, one discovers resonance
when learning to swing on a playground swing (modeled as the pendulum consid-
ered in Chapter 1).

Harmonic excitations are a common source of external force applied to ma-
chines and structures. Rotating machines such as fans, electric motors, and reciprocat-
ing engines transmit a sinusoidally varying force to adjacent components. In addition,
the Fourier theorem indicates that many other forcing functions can be expressed as
an infinite series of harmonic terms. Since the equations of motion considered here
are linear, knowing the response to individual terms in the series allows the total re-
sponse to be represented as the sum of the response to the individual terms. This is
the principle of superposition. In this way, knowing the response to a single harmonic
input allows the calculation of the response to a variety of other input disturbances of
periodic nature. General periodic disturbances are discussed in Chapter 3.

A harmonic input is also chosen for study because it can be solved math-
ematically with straightforward techniques. In addition, the response of a single-
degree-of-freedom system to a harmonic input forms the foundation of vibration
measurement, the design of devices intended to protect machines from unwanted
oscillation, and the design of transducers used in measuring vibration. Harmonic
excitations are simple to produce in laboratories, hence they are very useful in
studying damping and stiffness properties.

2.1 HARMONIC EXCITATION OF UNDAMPED SYSTEMS

Consider the system of Figure 2.1 for the case of negligible damping (¢ = 0). There
are several ways to model the harmonic nature of the applied force, F(f). A har-
monic function can be represented as a sine, a cosine, or a complex exponential. In
the following, the driving force F(¢) is chosen to be of the form

F(t) = Fycosot (2.1)

where Fj represents the magnitude, or maximum amplitude, of the applied force
and o denotes the frequency of the applied force. The frequency w is also called the
input frequency, or driving frequency, or forcing frequency and has units of rad/s.
Note that some texts use () rather than w to denote the driving frequency.
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cx -—
m —— F(1) | . F
kx <—

-z

=)

Figure 2.1 A schematic of a single-degree-of-freedom system acted on by an
external force, F(f), and sliding on a friction-free surface. The figure on the right is a
free-body diagram of the friction-free spring-mass—damper system.

mg

Alternately, the harmonic forcing function can be represented as the sinusoid
F(t) = Fysinot
or as the complex exponential
F(t) = Fye'*!

where j is the imaginary unit. Each of these three forms of F(f) yields the same
phenomenon, but in some cases one form may be easier to manipulate than others.
Each is used in the following.

From the right side of Figure 2.1, the sum of the forces in the y direction yields
N = mg, with the result of no motion in that direction. Summing forces on the mass
of Figure 2.1 in the x direction for the undamped case yields the result that the dis-
placement x(f) must satisfy

mx(t) + kx(t) = F,coswt (2.2)

where the harmonic driving force is represented by the cosine function. Note that this
expression is a linear equation in the variable x(7). As in the homogeneous (unforced)
case of Chapter 1, it is convenient to divide this expression by the mass, m, to yield

¥(t) + w2x(t) = fy coswt (2.3)

where fy = F,/m. The magnitude f; is called the mass-normalized force with units
N/kg. A variety of techniques can be used to solve this equation, which are com-
monly studied in a first course in differential equations.

First, recall from the study of differential equations that equation (2.3) is a
linear nonhomogeneous equation and that its solution is therefore the sum of the
homogeneous solution (i.e., the solution for the case f; = 0) and a particular solu-
tion. The particular solution can often be found by assuming that it has the same
form as the forcing function. This is also consistent with observation. That is, the
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oscillation of a single-degree-of-freedom system excited by f; cos wt is observed to
be of the form

x,(t) = X cosot (2.4)

where x,, denotes the particular solution and X is the amplitude of the forced re-
sponse. Substitution of the assumed form of the solution (2.4) into the equation of
motion (2.3) yields (note X, = —w? X cos f)

—w’X coswt + 02X coswt = f coswt (2.5)
Factoring out cos wt yields
(—0’X + 02X — fy) coswt = 0

Since coswt cannot be zero for all ¢ > 0, the coefficient of coswt must vanish.
Setting the coefficient to zero and solving for X yields

X=—"_ (2.6)

provided that w,, # w. Thus, as long as the driving frequency and natural frequency
are different (i.e., as long as w,, # w), the particular solution will be of the form

fo

xp(t) = m Cos wt 2.7)
This approach, of assuming that x, = X cos wt, to determine the particular solution
is called the method of undetermined coefficients in differential equations courses.
Since the system is linear, the total solution x(¢) is the sum of the particular solu-
tion of equation (2.7) plus the homogeneous solution given by equation (1.19). Recalling
that A sin(w,? + ¢) can be represented as A; sinw,t + A, cosw,t (see Window 2.1), the
total solution can be expressed in the form

x(t) = A;sinw,t + Ay cosw,t + %cosmt (2.8)
W, — W

where it remains to determine the values of the coefficients A; and A,. These are

determined by enforcing the initial conditions. Let the initial position and velocity

be given by the constants xj and ( as before. Then equation (2.8) yields

fo

02 — o’

x(0) = A, + = Xy (2.9)

and
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Window 2.1
Review of the Solution of the an Undamped Homogeneous
Vibration Problem from Chapter 1

mx + kx = 0 subjectto x(0) = xp, x(0) = v,

has solution x(f) = A sin(w,t + ¢), which becomes, after evaluating the con-
stants A and ¢ in terms of the initial conditions,

/2.2 2
Xow, + vj . [O)
x(t) = IO T Gn( wpt + tan ! 22
o n
n Vo

where w, = Vk/m is the natural frequency. Via some simple trigonometry,
this solution can also be written as

. 0 .
x(t) = Aysinw,t + Ay cosw,t = —Ssinw,t + Xy COS w,t
"")n

where the constants A, Ay, A, and ¢ are related by

A
A= VA + A, tand =2
1

A

Solving equations (2.9) and (2.10) for A; and A, and substituting these values into
equation (2.8) yields the total response

0
x(t) = — sin w,t + ( - zfo2> cosw,t + %cos ot (2.11)
Wy w; — W, — o

Note that the coefficients A, and A, for the total response given in equation (2.11)
are different than those given for the free response as reviewed in Window 2.1. Also
note that if the driving force is zero, fy = 0 in equation (2.11), then A; and A, for
the total response reduce to the values for the free response. Figure 2.2 illustrates
a plot of the total response of an undamped system to a harmonic excitation and
specified initial conditions.

Note that both the second and third terms in equation (2.11) are not valid if the
driving frequency happens to be equal to the natural frequency (i.e., if o = o). Also
note that as the driving frequency gets close to the natural frequency the amplitude
of the resulting vibration gets very large. This large increase in amplitude defines
the phenomenon of resonance, perhaps the most important concept in vibration
analysis. Resonance is defined and discussed in detail in the paragraphs following
the examples.
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)
Sy

Time (s)

Figure 2.2 The response of an undamped system with w, = 1 rad/s to harmonic
excitation at o = 2 rad/s and nonzero initial conditions of xy = 0.01 m and

o = 0.01 m/s and magnitude fy = 0.1 N /kg. The motion is the sum of two sine
curves of different frequencies.

Example 2.1.1

Compute and plot the response of a spring-mass system modeled by equation (2.2) to
a force of magnitude 23 N, driving frequency of twice the natural frequency, and initial
conditions given by x) = 0 m and vy, = 0.2 m/s. The mass of the system is 10 kg and
the spring stiffness is 1000 N /m.

Solution First, compute the various coefficients for the response as given in equa-
tion (2.11). The natural frequency, driving frequency, and mass-normalized force
magnitude are

_ JIOONIM s o = 26, = 20tad/s, fy = 2N = 23Nk
w, = 0kg rad/s, o = 2w, = ra/s,fo—lokg—. /kg

The coefficients of the three terms in the response (note x, = 0) become

02m/s 2.3 N/k
Y 02 /ke

= = = —7.6667 X 10°m
o, 10rad/s 02— w? (107 — 20%) rad?/s?

With these values, equation (2.11) becomes
x(f) = 0.02sin10¢ + 7.667 X 107> (cos 10t — cos20f)m

The plot of the time response is given in Figure 2.3. Any of the software packages de-
scribed in Section 1.9 or Appendix G can be used to generate this time history.
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Figure 2.3 The time response of the undamped system of Example 2.1.1 illustrating
the effect of both initial conditions and the forcing function on the response.
O
Example 2.1.2

Consider the forced vibration of a mass m connected to a spring of stiffness 2000 N /m
being driven by a 20-N harmonic force at 10 Hz (20w rad/s). The maximum amplitude
of vibration is measured to be 0.1 m and the motion is assumed to have started from
rest (xp = o = 0). Calculate the mass of the system.

Solution From equation (2.11) the response with x; = ( = 0 becomes

fo

x(t) = — 5 (coswt — cosw,t) (2.12)
W, —

Using the trigonometric identity

coSu — COSv = ZSin(U — u) sin(v a u)
2 2

equation (2.12) becomes

2fo ‘(mn—m>,(wn+m)
x(t) = sin t | sin t 213
e ; (213)
The maximum value of the total response is evident from (2.13) so that
2
B —
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Solving this for m from w2 = k/m and fy = Fy/m yields

~ (0.1m)(2000N/m) = 2(20N) 4
© (01m)(10 X 2wrad/s? @ 0.405 kg

|

Two very important phenomena occur when the driving frequency becomes
close to the system’s natural frequency. First, consider the case where (w, — ®)
becomes very small. For zero initial conditions, the response is given by equation
(2.13), which is plotted in Figure 2.4. Since (w, — w) is small, (0, + w) is large by
comparison and the term sin[(w, — w)/2]¢ oscillates with a much longer period than
does sin[(w,, + ®)/2]¢. Recall that the period of oscillation, 7, is defined as 27/ w, or
in this case 27 /(w, + ®)/2 = 47 /(w, + ). The resulting motion is a rapid oscilla-
tion with slowly varying amplitude that is called a beat.

The beat frequency is based on the period of oscillation of the solid line in
Figure 2.4. This is based on the time between two successive maximums, which is
half the time for one complete oscillation of the dashed line in Figure 2.4, or

Wpeat — |wn - (’Jl

To see this more clearly, note that the mathematical definition of a period, 7, is
the smallest time such that f(t + T) = f(¢). From the solid line in Figure 2.4, this
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Figure 2.4 The response of an undamped system of equation (2.13) for small
®, — o illustrating the phenomenon of beats. Here fj = 10 N, ,, = 10 rad/s,

. zﬁ) . w, — 0
and w = 1.1 w, rad/s. The dashed line is a plot of — 5 sin > t).

W, —
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occurs at half the period of the dashed line. This period corresponds to a frequency
of lw,, — wl.

As o becomes exactly equal to the system’s natural frequency, the solution
given in equation (2.11) is no longer valid. In this case, the choice of the function X
cos wt for a particular solution fails because it is also a solution of the homogeneous
equation. Therefore, the particular solution is of the form

x,(t) = tX sinwt (2.14)

as explained in Boyce and DiPrima (2009). Substitution of (2.14) into equation (2.3)
and solving for X yields

x,(t) = Zf—z)t sin wt (2.15)
Thus the total solution is now of the form (0 = ,)
x(t) = A;sinwt + Aycosot + Zj%t sin wf (2.16)
Evaluating the initial displacement x and velocity  as before yields

v
x(t) = “sinwt + Xp coswt + ffot sin of (2.17)
) 2w

A plot of x(¢) is given in Figure 2.5, where it can be seen that x(¢) grows without
bound. This defines the phenomenon of resonance (i.e., that the amplitude of vi-
bration becomes unbounded at w = w, = Vk/m). This would cause the spring to
break and fail.

0.15
0.1 fo . o --7
? 005 - zw’i_B‘—' u
g e
0 —
[0} =~
BN vaY
g —005 ~--
A ;f()t/ TN
-0.1 — 2w, oM
~015 | | | | 1
0 2 4 6 8 10

Time (s)

Figure 2.5 The forced response of a spring—mass system driven harmonically at its
natural frequency (o = ,), called resonance.
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Example 2.1.3

A security camera is to be mounted on a building in an alley and will be subject to wind
loads producing an applied force of F, coswt, where the largest value of F is measured
to be 15 N. This is illustrated on the left side of Figure 2.6. It is desired to design a mount
such that the camera will experience a maximum deflection of 0.01 m when it vibrates un-
der this load. The wind frequency is known to be 10 Hz and the camera mass is 3 kg. The
mounting bracket is made of a solid piece of aluminum, 0.02 X 0.02 m in cross section.
Compute the length of the mounting bracket that will keep the vibration amplitude less
than the desired 0.01 m (ignore torsional vibration and assume the initial conditions are
both zero). Note that the length must be at least 0.2 m in order to have a clear view.

Wind =0

m— Camera —» m —— Fycos ot
I—> x(1)

Mounting

bracket \

— [ cos wt

= k

mx(t) + kx(t) = F,cos wt

Figure 2.6 Simple models of a camera and mounting bracket subject to a harmonic
wind load. The sketch is on the left, the strength-of-materials model is in the middle,
and the spring-mass model is on the right.

Solution The sketch on the left in Figure 2.6 suggests the beam—mass, transverse-
vibration model of Figure 1.26, repeated in the middle of Figure 2.6, for modeling this
system. The beam—-mass model, in turn, suggests the spring—mass system on the right in
Figure 2.6. The equation of motion is then given by equation (2.2) with the beam stiff-
ness suggested in the figure or

3EI
mX(t) + Tx(t) = Fycoswt

From strength of materials, the value of / for a rectangular beam is

b
="
12

Thus the natural frequency of the system is given by

o;

3Ebh® _ Ebh’ (radz)

12mB  4mB\ &

Note that the length / is the quantity we need to solve for in the design.
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Next, consider the expression for the maximum deflection of the response com-
puted in Example 2.1.2. Requiring this amplitude to be less than 0.01 m yields the fol-
lowing two cases:

2fo 2fo 2fo

‘ m% — < 0.01 =>(a) —-0.01 < m and (b) m < 0.01

First, consider case (a), which holds for w2 — w? < 0:
2 Ebh’

-0.01 < M =2f) < 0.01lw? — 0.0l02 = 0.01w® — 2f, > 0.01
2 2 3
W, — ® 4ml
3
=P > 0.01# =0.02 =1>0272m
4m(0.0lw” — 2fy)

Next, consider case (b), which holds for w? — w? > 0:
2fy Ebh®
S < 0.01 =2f) < 0.01w? — 0.0lw?> = 2f) + 0.0lw? < 0.01 e
S <00l 012 51 <0229m

4m(2fy + 0.010?)

Here the value of E for aluminum is taken from Table 1.2 (7.1 X 10'°N/m?) and o
is changed to rad/s. To conserve material, case (b) is chosen. Given the constraint
that the length of the bracket must be at least 0.2 m, 0.2 < [/ < 0.229 so the value of
[ = 0.22 is chosen for the solution.

Next, a couple of simple checks are performed to make sure the assumptions
made in solving the problem are reasonable. First, compute the value of w, for this
value of / to see that the solution is consistent with the inequality:

3
ol — o = 3Ebh
12mi?

— (20m)? = (74.543)> — (20m)%> = 1609 > 0

Thus case (b) is satisfied.

Note that the mass of the mounting bracket was neglected. It is always impor-
tant to check assumptions. Using the density for aluminum given in Table 1.2, the mass
of the bracket is

= plbh = (2.7 X 10°) (0.22) (0.01) (0.01) = 0.149 kg

This is less than the mass of the camera (about 5%), so according to Example 1.4.4 it is
reasonable to ignore the spring’s mass in these calculations.
d



128 Response to Harmonic Excitation Chap. 2

Example 2.1.4

In solving the security camera design problem of Example 2.1.3, torsional vibration,
illustrated in Figure 2.7 was not considered. The purpose of this example is to examine if
the assumption of ignoring torsion is correct or not. To decide this, determine if a wind
load of 15 N vibrating at 10 Hz causes the end to move more than 0.01 m.

Wind M cos ot

. Fycos wt L
\m\ Camera S ‘.—ﬂ s
E Mounting 0(¢) + Lr

bracket — '

- 1
k:ijﬂ g .@
= I = !

! GJ
S

Figure 2.7 A torsional model of a camera and mounting bracket subject to a harmonic
wind load. The sketch on the left is the system of Figure 2.6 showing blowing across
the side of the camera causing an applied moment resulting in torsional motion. The
schematic is shown in the middle and the free-body diagram is on the right.

Solution Here we model the wind load as acting at a point on the tip of the camera, a dis-
tance r; = 0.09 m from its center, creating an applied moment of M(t) = r{F, cos 20t
Nm. Summing the moments diagram of in Figure 2.6, the equation of motion is

Jo(t) + k6(t) = r K cos(20mr)

Here 0 is the rotational displacement of the camera about the center where the bracket
connects to the camera. Modeling the camera as a solid cylinder, the mass moment of
inertia is (see a dynamics text or perform a Google search)

M 2
J 12(3r +12)

where m is the mass, r = 0.05 m is the radius, and L = 2r; = 0.18 m is the length of
the cylinder. From Figure 1.24, the torsional stiffness of the mounting bracket is

GJ,

P

k=—

l

Here G is the shear modulus of aluminum (G = 2.67 X 10! N/m?, from Table 1.2) and
the polar moment of inertia of a square “rod” is J, = 0.1406a*, where a = 0.01 m is the

length of the side of the square bracket (from Table 1.3). The value of / is taken from the
solution of Example 2.1.3 to be / = 0.22 m. Substitution of the appropriate values yields

Gy (267 x 1010)(%)((0.1406)(0.014)) (m*)

I _ =273 x 10°
. 0 m 2.73 X 10° Nm

k 273 X 10°N
w0, = \[ = J — = 523.67rad/s
J 9.975 X 10 kg mx

k =
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Following the expression for the maximum value of the response for zero initial condi-
tions given in Example 2.1.2 applied to the torsional vibration problem yields

nk | (009)(15)

J —3
- - 9975 X 10 = 1.003 X 107 rad

Ormax
e w? — o (523.167)% — (62.832)>

The maximum linear displacement of the tip is then
Xax = "1Omax = (0.09)(1.003 X 1073) = 9.031 X 10 m

This is much less than the required 0.01 m so that the assumption of ignoring torsion
was a reasonable one. This is largely because the torsional frequency (523 rad/s) is
much higher then the bending frequency (75 rad/s), making the denominator in the
maximum deflection calculation larger and hence the deflection smaller.

|

The previous development assumed that the harmonic forcing function was
described by the cosine function. As pointed out earlier, the harmonic forcing func-
tion may also be represented in terms of the sine function. In this case, equation (2.2)
becomes

mx(t) + kx(t) = Fysinot or X(f) + w2x(f) = fysinot (2.18)

Proceeding as before, using the method of undetermined coefficients, the particular
solution for the case of sinusoidal excitation becomes

x,(t) = X sinot (2.19)
Substitution of this assumed solution form into equation (2.18) yields
—0’X sinwt + 02 X sinot = f sinwt (2.20)

Factoring out sin wf(#0) and solving for X yields

fo
X = 2.21
o — (221)
so that the particular solution is
fo .
xp(t) = msmmt (222)

n

The total solution is the sum of the homogenous solution and the particular solution, or

x(t) = Ajsinw,t + A coso,t + %
W, — O

sin wf (2.23)
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It remains to evaluate the constants A; and A, in terms of the given initial
conditions xy and . To this end set ¢+ = 0 in equation (2.23) and its first deriva-
tive to get

X0)=xy= A, and #0) = w,A; + % = (2.24)
wW, — W

n
Vo () fo

=4 = s 5

and A2 = Xy
Wy, Wy W, —

The total solution for a sinusoidal harmonic input is thus

Vo w fo ) . fo .
x(t) = xpcosw,t +| —— ——— | sinw,f + —— sinwt 2.25
® =% " (wn Wy u),zl - " u)f, - ( )

It is important to note the differences between equations (2.11) and (2.25). Equation
(2.11) is the response due to a cosine input, and equation (2.25) is the response due to
a sine input. In particular, note that the input force term modifies the initial condition
response differently in each case.

Note that equation (2.17) can also be obtained from equation (2.11) by taking
the limit as w — w,, using the limit theorems from calculus.

2.2 HARMONIC EXCITATION OF DAMPED SYSTEMS

As noted in Chapter 1, some sort of damping or energy dissipation is always present
(see Window 2.2). In this section, the response of a viscously damped single-degree-
of-freedom system subjected to harmonic excitation is considered. Summing forces
on the mass of Figure 2.1 in the x direction yields

mX + cx + kx = Fycoswt (2.26)
Dividing by the mass m yields
¥ + 2{w,x + wix = fycoswt (2.27)

where w,, = Vk/m,{ = ¢/(2mw,), and fy = Fy/m. The calculation of the particu-
lar solution for the damped case is similar to that of the undamped case and follows
the method of undetermined coefficients.

From differential equations it is known that the forced response of a damped
system is of the form of a harmonic function of the same frequency as the driving
force with a different amplitude and phase. The phase shift is expected because
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Window 2.2
Review of the Solution of the Damped Homogeneous
Vibration Problem (0 < { < 1) from Chapter 1

mX + cx + kx = 0subject to x(0) = xp, x(0) = v has the solution
x(t) = Ae *sin (wgt + b)

where

€
S
I

[k
P is the undamped natural frequency

is the damping ratio
2mw,, ping

wg = w, V1 — (*is the damped natural frequency

and the constants A and ¢ are determined by the initial conditions to be

A = \/x2 4 (% + Lw,Xy \?
o\ T,

XoWq
Vo + C(")nx()

b = tan’!

Alternately, the solution can be written as

Vo + cwnx()

sinw,t + Xy cos wdt}
Wg

x(t) = el"’"’{

of the effect of the damping force. Following the method of undetermined coeffi-
cients, the particular solution is assumed to be of the form

x,(t) = X cos (ot — 0) (2.28)

To make the computations easy to follow, this is written in the equivalent form
x,(t) = A;coswt + B sinwt (2.29)
where the constants A; = X cos 6 and B; = X sin 0 satisfying

B
X=VA+ B’ and 6 =tan! j (2.30)
)

are the undetermined constant coefficients.
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Taking derivatives of the assumed form of the solution given by (2.29) yields
%,(t) = —wA; sinot + 0B, coswt (2.31)
and
%,(f) = —w*(A coswt + By sinowr) (2.32)

Substitution of x,, X,, and X, into the equation of motion given by equation (2.27) and
grouping terms as coefficients of sin wf and cos wt yields

(—u)zAS + 2lw,w B, + w2 A, — fo) coswt + (—u)zBS — 2w, wA; + u),les) sinwt = 0
(2.33)

This equation must hold for all time, in particular for t = 7 /2w, so that the coefti-
cient of sin wf must vanish. Similarly, for ¢+ = 0 the coefficient of cos wz must vanish.
This yields the two equations

(o)%, - o)z)AS + (ZCwnw)Bs =/
(—ZCwnw)As + (m,zl - mz)Bs =0

(2.34)

in the two undetermined coefficients A and B;. These two linear equations may be
written as the single matrix equation

u),% - 2{w,w } {AS} _ {ﬁ)}
2 2 Bs - 0

22w,0 o, — o

which has solution (compute the matrix inverse and multiply; see Appendix C)

P
s T (2 2)2 2
(u)n u)) + (ZCwnw) (235)
. 2Lw,0f)

(wf, - w2)2 + (2@(1),,(1))2

Substitution of these values into equations (2.30) and (2.28) yields that the particular
solution is

X 0
[
Xp(l) B \/(m% - mz)g + (2@(1),,(1))2

2
cos <wt — tan! 2C<Dn®2>
W, — 0 (236)




Sec. 2.2 Harmonic Excitation of Damped Systems 133

The total solution is again the sum of the particular solution and the homoge-
neous solution obtained in Section 1.3. For the underdamped case (0 < { < 1)
this becomes

x(f) = Ae Lt sin(wdt + d)) + X cos (wt - 9) (2.37)

where X and 6 are the coefficients of the particular solution as defined by equation
(2.36), and A and ¢ (different from those of Window 2.2) are determined by the
initial conditions. Note that for large values of ¢, the first term, or homogeneous
solution, approaches zero and the total solution approaches the particular solution.
Thus x,(7) is called the steady-state response and the first term in equation (2.37) is
called the transient response.

The values of the constants of integration in equation (2.37) can be found
from the initial conditions by the same procedure used in the development for com-
puting the response of an undamped system given in equation (2.11). Following the
development from equation (2.29), write the transient term as A sin oyt + C cos w t
rather than writing the constants of integration as a magnitude and phase and the
particular solution in the form given in equation (2.37). The resulting response for
the underdamped case is

folw? — o?)

— p Loyt _
W= {<x° (7 — o)’ +(zg%w)2>“’s‘”‘”

+(§wn <x0 - folw? — o?) ) (2.38)

Wy W, — w2)2 + (2@(1),,(1))2

- 20,0 + v0> sin o t}
wd[(w% - u)2>2 + (2@00,,00) 2} Wq ¢

: (02 — o?) 2f°+ (2Lw,w)? ({0 = w?) cosor + 2w,w sin of]

This is an alternate form of equation (2.37) showing the direct influence of the
forcing function on the transient part of the response (i.e., the coefficient of the
exponential term). Note that the expression for the forced response of an under-
damped system given here collapses to the forced response of an undamped sys-
tem given by equation (2.11) when the damping is set to zero in equation (2.38).
Problem 2.20 requires the calculation of the constants A and ¢ for equation (2.37).
A summary of phase and amplitude formulas is given in Window 2.3 for both the
free and forced response.

Note that A and ¢, the constants describing the transient response in equa-
tion (2.37), will be different from those calculated for the free-response case given
in equation (1.38) or Window 2.2. This is because part of the transient term in
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Window 2.3
Summary of Phase and Amplitude Relationships for Undamped and
Underdamped Single-Degree-of-Freedom Systems for Both the Free Response,
F(t) = 0, and for the Forced Response, F(t) = F, cos wt, Cases

The general response for the undamped case has the form
x(f) = Asin (wnt + ¢) + X cos wt
where for the free response

>
) v
¢ = tan! "—xo, A=q[|3+ =2

b
Vo (,0%

and for the forced response:

o (xn — 2
b = tanﬁlin(xo X),A = \/<v0) + (- X)X = 72]00 5

Vo Wy,

The general response in the underdamped case has the form
x(t) = Ae *sin (0 + &) + X cos (ot — 6)

where the free response:

004 A= i\/(?)0 + Cwnxo)z + (xowd>2,X =0

Cb = t3.1171 —
Vo + Cwnxﬂ W4

and for the forced response

2
6 = tan! %, X = fo ’
W, — ® \/(wf, _ wz)z T (Zgwnw)z
W, — X cos6 - X 0
¢ = tan! (0 ) ——and A = To = A COST
v t+ (Xo - XCOSO)Cwn — wXsin® sin

equation (2.37) is due to the magnitude of the excitation force and part is due to the
initial conditions as indicated in equation (2.38).

Example 2.2.1

Examine the units for computing the forced response of a damped system. Often the
equation-of-motion quantities (forces) are given in Newtons, whereas the initial displace-
ment and velocity are given in mm. It is important to write the initial conditions in the
correct units.
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Solution First, examine units in the mass-normalized equation of motion as given in
equation (2.27) repeated here:

¥ + 2lw,x + 0ix = fycos of

The units for fy are N/kg = m/s’, the units of acceleration, agreeing with the first
term in the equation. The damping ratio { has no units, so the units of the damping
term are those of w, or rad/s, which when multiplied by the velocity yields m/ 2.
Likewise, the units of the natural frequency squared are rad’ / s? so the stiffness term
also has units of m /s?. Thus equation (2.27) is consistent in terms of units.

Next, consider the solution. Since the amplitude of the particular solution, X,
has the units of m (the units of f; are N/Kg or m/s?)

_ fo e _ fo o
*= \/(u)ﬁ - w2)2 + <2§mnm)2<rad/sz) \/((uf, - m2)2 + (2{(1),,(1))2

the initial condition xy must also be given in m because the value of amplitude A contains
the numerator term xy — X cos(6). The same is true for the phase angle ¢, which also con-
tains the initial velocity added to X{w, which will have units of m/s. Thus in solving for
the force response of a damped system it is important that the initial conditions are stated
in terms of the same units that the equation of motion is expressed in.

a

Example 2.2.2

A damped spring-mass system with values of ¢ = 100 kg/s, m = 100 kg, and k =
910 N/m, is subject to a force of 10 cos (3f) N. The system is also subject to initial
conditions: xp = 1 mm and ( = 20 mm/s. Compute the total response, x(¢), of the
system.

Solution Following equation (2.26) with the values given here, the system to be solved is
100X(f) + 100x(r) + 910x(f) = 10 cos 3¢, xy = 0.001 m, vy = 0.02 m/s

where the units (and thus numerical values) of the initial conditions have been changed
to agree with the equation of motion per the previous example. Dividing by the mass
yields the vibration properties

K 10 m k \/m rad

== =01— = . /—=./—=23.017T—

7= = 100 2" \m 100 s
c 100

T 2Vmk  2V/100-910
w; = 0,V1 - =3017V1 — 0.166> = 2.975 rad /s

Since w = 3 rad/s, the system is near resonance. Computing the amplitude and phase
for the particular solution from the values given in Window 2.3 yields

= 0.166,

X = Jo = 01 = 0.033 m

Vi(w: — o)+ (2lw,0)®  V(3.0172 = 3%)% + (2:0.166-3.017-3)?
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2 2:0.166-3.017-3
9 = tan’! % =tan ' — = 1537rad
W, — O 3.017 - 3

Next, compute phase for the transient response

cant! wd(xo - Xcose)

<
Il

vy + (xo — Xcose)éu)n — wXsin®

B 2.975(0.001 — 0.033-0.033) 4089 X 10° rad
~0.02 + (0.001 — 0.033-0.033)0.166+3.017 — 3-0.033-0.999 ra

The amplitude of the transient is

X — Xcos® 0.001 — 0.033-0.0333

= —0.027
sind 4,089 x 1073 m

A

The total response is then written from equation (2.37) as

x(f) = Ae *"sin (0 + &) + X cos (wf — 6)
= —0.027¢ " sin (2.975¢ + 4.089 X 107) + 0.033 cos (3t — 1.537)m

Example 2.2.3

Compute the constants of integration A and ¢ of equation (2.37) and compare these
values to the values of A and ¢ for the unforced case given in Window 2.2 for the param-
eters w, = 10 rad/s, ® = 5 rad/s, { = 0.01, F; = 1000 N, m = 100 kg, and the initial
conditions xo = 0.0Smand o = 0.

Solution First, compute the values of X and 6 from equation (2.36) for the particular
solution (forced response). These are

fo L4f 2w,
X = =0.133m and 6 = tan - 5 )= 0.013rad
\/((1)3, — 0?)? + 2Lw,0)? W, — @

so that the phase for the particular solution is nearly zero (0.76°). Thus the solution
given by equation (2.37) is of the form

x(f) = Ae™®5sin (9.999 + &) + 0.133 cos (5t — 0.013)

Differentiating this solution yields the velocity expression

v(f) = —0.14¢7 %Y 5in (9.999¢ + &) + 9.999A4¢ %Y cos (9.999¢ + b) — 0.665 sin (5¢ — 0.013)
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Setting + = 0 and x(0) = 0.05 in the expression for x(¢) and solving for A yields

A= 0.005 — 0.133 cos (—0.013) _ —0.083
o sin () ~ sin(d)

Substitution of this value of A, setting t = 0 and (0) = 0 in the expression for the
velocity yields

0 = —0.1(—0.083) + 9.999(—0.083) cot(d) + 0.665sin(0.013)

Solving for the value of ¢ yields ¢ = 1.55 rad (88.8°) and thus A = —0.083 m, the
values of the amplitude and phase of the transient part of the solution (including the
effects of the initial conditions and the applied force).

Next, consider the coefficients A and ¢ evaluated for the homogenous case
Fy = 0, but keeping the same initial conditions. Using these values (see Window 2.2),
the incorrect magnitude and phase become

B L [(0.01)(10)(0.05) >
A= \/(0.05) + {wm} = 0.05m

and

9.999
= 71 _— = ©
¢ = tan (0.05(10)) 1.521rad (87.137°)

Comparing these two sets of values for the magnitude A and the two sets of values
for the phase ¢, we see that they are very different. Thus the values of the constants
of integration are greatly affected by the forcing term. In particular, the amplitude
of the transient is greatly increased and its phase is reduced by the influence of the
driving force.

|

It is common to ignore the transient part of the total solution given by equa-
tion (2.37) and to focus only on the steady-state response: X cos (ot — 6). The
rationale for considering only the steady-state response is based on the value of the
damping ratio {. If the system has relatively large damping, the term e ¢ causes
the transient response to die out very quickly —perhaps in a fraction of a second. If,
on the other hand, the system is lightly damped ({ is very small), the transient part
of the solution may last long enough to be significant and should not be ignored.
The decision whether to ignore the transient part of the solution should also be
based on the application. In fact, in some applications (such as earthquake analysis
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or satellite analysis) the transient response may become even more important than
the steady-state response. An example is the Hubble space telescope, which origi-
nally experienced a transient vibration that lasted over 10 minutes, causing the
telescope to be unusable every time it passed out of the earth’s shadow, until the
system was corrected.

The transient response can also be very important if it has a relatively large
amplitude. Usually, devices are designed and analyzed based on the steady-state
response, but the transient should always be checked to determine whether it is
reasonable to ignore it or if it should be considered seriously.

With this caveat in mind, it is of interest to consider the magnitude, X, and
the phase, 60, of the steady-state response as a function of the driving frequency.
Examining the form of equation (2.36) and comparing it to the assumed form
X cos (wgt — 0) yields the fact that the amplitude, X, and the phase, 6, are

2
X = fo , 6 — tap ! 220

\/(o),% - 0)2) + (2(:(;)”0))2 o — o

(2.39)

After some manipulation (i.e., factoring out w2 and dividing the magnitude by F,/m),
these expressions for the magnitude and phase can be written as

Xk Xo? 1 2
o2 , 6= tan! b

B h V(1= r)2+ (20) L=

(2.40)

2

Here r is the frequency ratio r = o/w,, a dimensionless quantity. Equations (2.40)
for the magnitude and phase are plotted versus the frequency ratio r in Figure 2.8
for several values of the damping ratio {. Note that as the driving frequency ap-
proaches the undamped natural frequency (r — 1), the magnitude approaches a
maximum value for those curves corresponding to light damping ({ = 0.1). Also
note that as the driving frequency approaches the undamped natural frequency, the
phase shift crosses through 90°. The phase lies between zero and mr, as discussed in
Window 2.4. This defines resonance for the damped case. These two observations
have important uses in both vibration design and measurement. As w approaches
zero, the amplitude approaches f)/w? and as w becomes very large, the amplitude
approaches zero asymptotically.

It is also important from the design point of view to note how the ampli-
tude of steady-state vibration is affected by changing the damping ratio. This is
illustrated in Figure 2.9 and Example 2.2.4. Figure 2.9 is a repeat of the magni-
tude curve presented in Figure 2.8, except that here the magnitude is plotted on
a log scale so that the curves for both small and large values of damping may be
detailed on the same graph. The use of a log scale for vibration amplitude is com-
mon in vibration analysis and measurement. Note that as the damping ratio is
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Figure 2.8 A plot of the (a) normalized magnitude (X w2 /fy = Xk/ FO) and
(b) phase of the steady-state response of a damped system versus the frequency ratio
for several different values of the damping ratio { as determined by equation (2.40).
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Window 2.4
The Phase Shift in the Particular Solution
for the Forced Response of an Underdamped System

The particular solution for a driving force of F cos wt is assumed to be of
the form

x,(t) = X cos (wt — 0)
as illustrated in (a). Here the phase shift 6 is determined by
2
0= tan‘l(fw"wz)
w,; — O

Since the numerator of the argument is always positive, the quadrant that 6 lies

in is determined by the sign of w3 — w?.

F, cos (wf) .
! 0 X cos (wr—8)
X t—0 !
0 cos (of—0) : :
- 2w, o E f i 2lo,0
wnz_ ) "’n2_ )
0> o<w

n n

(a) (b)

The phase shift is calculated from the arctangent function, which must be com-
puted assuming that 6 lies between 0 < 6 =< , as the polar plot in (b) shows.
The simple definition of the arctangent, however, looks for values of 6 between
—m/2 = 6 = w/2.Thus, when using a code or calculator, use the “atan2” func-
tion, which treats the negative value of the tangent to be in the fourth quadrant
rather than the second.

increased, the peak in the magnitude curve decreases and eventually disappears.
As the damping ratio decreases, however, the peak value increases and becomes
sharper. In the limit as { goes to zero, the peak climbs to an infinite value in
agreement with the undamped response at resonance (see Figure 2.5). Also note
that the peak value of the amplitude at resonance varies a full order of magnitude
as the damping changes.
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Figure 2.9 The magnitude (log scale) of the steady-state response versus the
frequency ratio for several values of the damping ratio .

Example 2.2.4

Consider a simple spring-mass—damper system with m = 49.2 X 10~ > kg,¢ = 0.11 kg/s,
and k£ = 8578 N/m. Calculate the value of the steady-state response if = 132 rad/s
for fy = 10 N/kg. Calculate the change in amplitude if the driving frequency changes to
o = 125rad/s.

Solution The frequency and damping ratio are determined from the given values as

[k
w, = Z =132 rad/s, c = ﬁ = 0.0085
m

respectively. From equation (2.39) the magnitude of x,(f) is

_ fo
V(@) = o) + @o,0)
10
{1322 — (132)2]% + [2(0.0085)(132)(132)]2}1/2

‘xp(t)‘ =X

10
2(0.0085)(132)>

= 0.034 m
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If the driving frequency is changed to 125 rad /s, the amplitude becomes

10
({032 — (125)2]2 + [2(0.0085)(132)(125) |2} 12

= 0.005 m

So a slight change in the driving frequency from near resonance at 132 rad/s to
125 rad/s (about 5%) causes an order-of-magnitude change in the amplitude of
the steady-state response.

d

It is important to note that resonance is defined to occur when o = w, (ie.,
when the driving frequency becomes equal to the undamped natural frequency). This
also corresponds with a phase shift of 90°(/2). Resonance does not, however, exactly
correspond with the value of o at which the peak value of the steady-state response
occurs. This can be seen by the simple calculation in the following example.

Example 2.2.5

Derive equation (2.40) for the normalized magnitude and calculate the value of r = o/,
for which the amplitude of the steady-state response takes on its maximum value.

Solution From equation (2.36) the magnitude of the steady-state response is

X = fo _ Fy/m

\/(w%, - w2)2 + (2§wnw)2 \/(wf, - wz) + (2§wnw)2

Factoring w2 out of the denominator and recalling that w2 = k/m yields

ky/m ky/k

TR Ve

where r = o/w,. Dividing both sides by Fy/k yields equation (2.40). The maximum
value of X will occur where the first derivative of X/F vanishes, that is

d ( Xk d
;(?0) = L=+ em =0

Thus

w
Foek = V1 — 20 = (2.41)

n

defines the value of the driving frequency, o, at which the peak value of the mag-
nitude occurs. This holds only for underdamped systems for which { < 1/V?2.
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Otherwise, the magnitude does not have a maximum value or peak for any value
of w > 0 because V1 — 2¢{*> becomes an imaginary number for values of { larger
than 1/V2. Note also that this peak occurs a little to the left of, or before, reso-
nance (r = 1) since

rpeak: \/1 _2§2<1
This can be seen in both Figures 2.8 and 2.9. The value of the magnitude at ryeqy is

Xe_ 1

B aV1-¢

which is obtained simply by substituting rpe,c = V1 — 2¢% into the expression for the
normalized magnitude Xk /F.

(2.42)

|

Note that for damped systems resonance is usually defined, as in the un-
damped case,by r = 1 or w,, = w. However, this condition does not define precisely
the peak value of the magnitude of the steady-state response as defined by equation
(2.40) and as plotted in Figure 2.9. This is the point of Example 2.2.5, which illus-
trates that the maximum value of Xk/F, occurs at r = V1 — 200if0=¢ < 1 /V2
and at r = 0 if { > 1/V/2. For the small damping case (C < 1/\/§) the value of
the driving frequency corresponding to the maximum value of Xk/F is called the
peak frequency, denoted by w,, which has the value derived previously:

w, = 0,V1 -2 for 0=(=

1
V3 (2.43)
Note that as the damping decreases, w, approaches w,, resulting in the usual undamped
resonance condition. As { increased from zero, the curves in Figure 2.9 have peaks that
occur farther and farther away from the vertical line » = 1. Eventually, the damping
ratio increases past the value 1/V/2 and the largest value of Xk/F, occurs at r = 0 In
many applications { is small, so that the value V1 — 2¢? is very close to 1. Hence the
undamped resonance condition ® = w, (i.e., r=1 ) is often used for resonance in the
(lightly) damped case as well. As an example, for { = 0.1 a system with an undamped
natural frequency of 200 Hz would have a peak value of 198 Hz, which is less than a 1%
error (i.e.,r = 0.9899 instead of r = 1). Hence, in practice, the value of the frequency
corresponding to the peak is often taken to be simply the undamped natural frequency.

It is interesting to examine the peak value of the magnitude response as
a function of the damping ratio for underdamped systems. The bottom plot in
Figure 2.10 shows how the damping affects the peak amplitude by plotting Xk /F
as a function of { as given by equation (2.41).The plot in the upper right shows how
the peak frequency ratio changes with the damping ratio. Note from the figure that
the magnitude varies across three orders of magnitude as the damping is increased
(0 = ¢ = 0.707). Also note that the peak value moves to the left of » = 1 for high
values of the damping ratio.
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Figure 2.10 The lower graph is a plot of equation (2.41) on a log scale indicating
how the increased damping reduces the peak response. The plot on the upper right
shows how much the peak amplitude shifts from » = 1 as the damping increases.
(Note that these plots are only defined for { = 0.707.)

To explain physically the phenomena of resonance, consider the steady-state
forced response of the system where the applied force is F cos (wf), the displacement
is x,(t) = X cos(wt — 6), and the velocity is x,(f) = —wX sin(wt — 0). Atresonance,
6 = m /2. Thus %,(f) resonance) = ®X cos (wt). This shows that at resonance the veloc-
ity and the force are exactly in phase but have different magnitudes. Physically, this
means that the force is always pushing in the direction of the velocity and that the
force changes magnitude and direction just as the velocity does. This condition will
cause the vibration amplitude of the system to reach its maximum value because at
resonance the external force never opposes the velocity.

2.3 ALTERNATIVE REPRESENTATIONS

As you may recall from the theory of differential equations, there are a variety of
methods useful for calculating solutions of a spring—-mass—damper system excited
by a harmonic force as described by equation (2.26). In Section 2.2, the method of
undetermined coefficients was used. In this section, three other approaches to solve
this problem are discussed: a geometric approach, a frequency response approach,
and a transform approach.
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2.3.1 Geometric Method

The geometric approach consists of solving equation (2.26) by treating each force as
a vector. Recall that x,,, X, and X, will each be 90° out of phase with each other. Each
of these are plotted in Figure 2.11 for the assumed solution x, = X cos(wt — 6),
X, = wX cos(wt — 6 + 90°), and X, = —w?’Xcos (wt — 0). Adding these three
quantities as vectors indicates that X can be solved in terms of F, by combining the
sides of the right triangle ABC to yield

F3 = (k — mo?)’X? + (co)?X? (2.44)
or
F
X = (2.45)
V(k = me?)? + (co)?
and
6 =tan! — (2.46)
— M

Substituting in the values for ) = mf and ¢ = 2mw,( illustrates that this solution
is identical with equation (2.36) derived by the method of undetermined coefficients.
Note from the figure that at resonance o> = k /m causing line AB to be zero, lines
CD and AE become the same length and the angle 6 becomes a right angle. Thus at
resonance the phase shift is 90°.

The graphical method of solving equation (2.26) is more illustrative than useful,
as it is difficult to extend to other forms of the forcing function or to more compli-
cated problems. It is presented here because the method potentially helps clarify and
illustrate the forced vibration of a simple single-degree-of-freedom system. In par-
ticular, Figure 2.11 makes it easy to see that at resonance (6 = 90°) the applied force
and damping force are acting in the same direction and the stiffness force is equal and
opposite to the inertial force.

Im C
D
me?X £
C coX coX
F,
0
E A ay:]
! X (k—mw?)X
0
B Figure 2.11 A graphical
A Re representation of the
<~ kX cos(ot—0) ———> solution of equation (2.26).
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An alternative method that is similar to the graphical approach is to treat
the solution of equation (2.26) as a complex function. This leads to a frequency
response description of forced harmonic motion and is more useful for complicated
problems involving many degrees of freedom. Complex functions are reviewed in
Appendix A.

2.3.2 Complex Response Method

Euler’s formula for trigonometric functions relates the exponential function to har-
monic motion by the complex relation

Ael® = A cos ot + (A sin wt)j (2.47)

where j = V—1. Thus Ae/ is a complex function with a real part (A cos wt) and
an imaginary part (A sinw?). Appendix A reviews complex numbers and functions.
With this notation in mind, Ae’’ represents a harmonic function and can be used to
discuss forced harmonic motion by rewriting the equation of motion (2.26)

mx + cx + kx = Fy coswt
as the complex equation
mx(f) + cx(t) + kx(t) = Fye™ (2.48)

Here, the real part of the complex solution corresponds to the physical solution
x(1). This representation is extremely useful in solving multiple-degree-of-freedom
systems (Chapter 4), as well as in understanding vibration measurement systems
(Chapter 7).

This method proceeds by assuming that the complex particular solution of
equation (2.48) is of the exponential form

x,(1) = Xe' (2.49)

where X is now a complex-valued constant to be determined. Substitution of this
into equation (2.48) yields

(—w’m + cjo + k)Xe = Fye/*! (2.50)
Since ¢/ is never zero, it can be canceled and this last expression can be rewritten as

_ ) R
X = (6 mod) + (e H(jw)F, (2.51)

The complex quantity H(jw), defined by

1
(k — mo?) + (coj)

H(jo) = (2.52)
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is called the (complex) frequency response function. Following the rules for ma-
nipulating complex numbers (i.e., multiplying by the complex conjugate over itself
and taking the modulus of the result as outlined in Appendix A) yields

)

X = e 2.53
[(k _ mwz)z + (Cw)z]uz ( )
where
co

f=tan ! ——— 2.54
(k = ma?) (34)

Substituting the value for X into equation (2.49) yields the solution
fo Hwr=0) (2.55)

w0 =

k — mwz)2 + (cu))z] 12 ¢

The real part of this expression corresponds to the solution given in equation (2.36) ob-
tained by the method of undetermined coefficients. The complex exponential approach
for obtaining the forced harmonic response corresponds to the graphical approach
described in Figure 2.11 by labeling the x axis as the real part of ¢’ and the y axis as the
complex part.

Example 2.3.1

Use the frequency response approach to compute the amplitude of the particular solu-
tion for the undamped system of equation (2.2) defined by

mX(t) + kx(t) = Fycoswt
Solution First, write equation (2.2) with the forcing function modeled as a complex
exponential:
mx(t) + kx(t) = Fye'*
Dividing by the mass, m, yields the monic form
¥(t) + wix(t) = frel

Assume a particular solution of the exponential form given in equation (2.49) and sub-
stitute into the last expression to get

(—w2 + wﬁ)Xej‘”’ = f, Xelo!

Solving for X yields

oo b

w2 — o’

This is in perfect agreement with equation (2.7) derived using the cosine representation of
the forcing function and (2.21) derived using the sine representation. This also agrees with
solution given in equation (2.36) for the damped case, by setting { = 0 in that expression.

d
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The method used here to derive the solution for the forced response and the
resulting frequency response function is very similar to the eigenvalue approach
to solving vibration problems. This approach, introduced in Section 1.3, is used
extensively in Chapter 4 and consists of assuming solutions with exponential time
dependence, as illustrated previously.

2.3.3 Transfer Function Method

Next consider using the Laplace transform (see Appendix B and Section 3.4 for
a review) approach to solve for the particular solution of equation (2.26). The
Laplace transform method is a powerful approach that can be used for a variety
of forcing functions (see Section 3.4) and can be readily applied to multiple-
degree-of-freedom systems. Taking the Laplace transform of the equation of
motion (2.26)

mX(t) + cx(t) + kx(t) = FKycoswt
assuming that the initial conditions are zero, yields

Fys
2 + o?

(ms> + cs + k) X(s) = (2.56)

where s is the complex transform variable and X(s) denotes the Laplace transform of
the unknown function x(). Solving algebraically for the unknown function X(s) yields

Fys

Xs) = (ms2 + cs + k)(s2 + wz)

(2.57)

which represents the transformed solution. To calculate the inverse Laplace trans-
form of X(s), the right side of equation (2.57) can be found in a table of Laplace
transform pairs, or the method of partial fractions can be used to reduce the right-
hand side of equation (2.57) to simpler quantities for which the inverse Laplace
transform is known. The solution obtained by the inversion procedure is, of course,
equivalent to the solution given in (2.36) and again in (2.55). This solution technique
is discussed in more detail in Section 3.4.

Of particular use is the frequency response function defined by equation (2.52).
This function is related to the Laplace transform for a vibrating system. Consider
equation (2.26) and its Laplace transform

(ms® + cs + k) X(s) = F(s) (2.58)

where F(s) symbolically denotes the Laplace transform of the driving function [i.e., the
right-hand side of (2.26)]. Manipulating equation (2.58) yields

X(s) _ 1
F(s)  (ms*+ cs + k)

— H(s) (2.59)
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which expresses the ratio of the Laplace transform of the output (response) to the
Laplace transform of the input (driving force) for the case of zero initial conditions.
This ratio, denoted by H(s), is called the transfer function of the system and provides
an important tool for vibration analysis, design, and measurement as discussed in the
remaining chapters.

Recall that the Laplace transform variable s is a complex number. If the value
of s is restricted to lie along the imaginary axis in the complex plane (i.e., if s = jo),
the transfer function becomes

1

H(jo) = ——F5——
(o) k — mo? + coj

(2.60)
which, upon comparison with equation (2.52), is the frequency response function
of the system. Hence the frequency response function of the system is the transfer
function of the system evaluated along s = jw. Both the transfer function and the
frequency response function are used in Chapters 4 and 7.

Example 2.3.2

Consider the system of Figure 2.12. Let J denote the inertia of the wheel and hub about
the shaft, and let £ denote the torsional stiffness of the system. The suspension system
is subjected to a harmonic excitation as indicated. Compute an expression for the
forced response using the Laplace transform method (assuming zero initial conditions
and that the tire is not touching the ground).

Fysin ot

Figure 2.12 A schematic of a torsional
Frame suspension.

Solution Modeling the system as a torsional vibration problem and summing mo-
ments about the shaft, the equation of motion becomes

Jo + k6 = aF,sinot
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Taking the Laplace transform (see Appendix B) of the equation of motion yields

o)
2+ w?

Js*X(s) + kX(s) = aF,

where X(s) is the Laplace transform of 6(¢). Algebraically solving for X(s) yields

1
(s> + 0?)(Js* + k)

X(s) = aoF,

Next use a table (see Appendix B) to compute the inverse Laplace transform to get

0(H) = LY(X(s)) = amE)L1< ! )

(s> + 0?)(Js* + k)

awk, L_1< 1 > ank, 1 <1 . 1 . l>
= = —sinwt — —sinw,
P\ ) r0)) T @ -we on
Here L~ ! denotes the inverse Laplace transform and the natural frequency is

o = . |=
" J
Note that the solution computed here using the Laplace transform agrees with the so-
lution obtained using the method of undetermined coefficients expressed in equation
(2.25) for the case of zero initial conditions.

The transfer function for the system is simply

X(s) 1
Fo) O =50 %

This result is in agreement with equation (2.59) for the case ¢ = 0.

Example 2.3.3

As an example of using Laplace transforms to solve a homogeneous differential equa-
tion, consider the undamped single-degree-of-freedom system described by

¥(E) + 0ix(t) =0, x(0) =1x, x(0) =,

Solution Taking the Laplace transform of ¥ + w2x = 0 for these nonzero initial
conditions results in

$?2X(s) — sxp — vy + 02X(s) =0

by direct application of the definition given in Appendix B and the linear nature of the
Laplace transform. Algebraically solving this last expression for X(s) yields

_XO““SUO

X(s) 2+ wﬁ
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Using L™ ![X(s)] = x(¢) and entries (6) and (5) of Table B.1 yields that the solution is

0 .
x(f) = xgcosw,t + —sinw,t
("')Vl

This is, of course, in total agreement with the solution obtained in Chapter 1.
O

This section presented three alternative methods for calculating the particular
solution for a harmonically excited system. Each was shown to yield the same result.
The concepts presented in these solution techniques are generalized and used for
more complicated problems in later chapters.

2.4 BASE EXCITATION

Often, machines, or parts of machines, are harmonically excited through elastic mount-
ings, which may be modeled by springs and dashpots. For example, an automobile
suspension system is excited harmonically by a road surface through a shock absorber,
which may be modeled by a linear spring in parallel with a viscous damper. Other
examples are the rubber motor mounts that separate an automobile engine from its
frame or an airplane’s engine from its wing or tail section. Such systems can be mod-
eled by considering the system to be excited by the motion of its support. This forms
the base-excitation or support-motion problem modeled in Figure 2.13.

Summing the relevant forces on the mass, m, Figure 2.13 yields (i.e., the iner-
tial force mx is equal to the sum of the two forces acting on m, and the gravitational
force is balanced against the static deflection of the spring as before)

mX +cx—y)+k(x—y)=0 (2.61)

Here note that the spring deflects a distance (x — y) and the damper experiences
a velocity of (x — y). For the base-excitation problem it is assumed that the base
moves harmonically, that is, that

y(f) = Y sinwyt (2.62)

where Y denotes the amplitude of the base motion and w;, represents the frequency
of the base oscillation. Substitution of y(f) from equation (2.62) into the equation of
motion given in (2.61) yields, after some rearrangement,

I x(1)
o
m x(H)T mx(r)
m
Figure 2.13 (a) Base-excitation

k Lle l o) \ J problem models the motion of an

object of mass m as being excited by a
prescribed harmonic displacement
Base k(x —y) c(x —y) acting through the spring and damper.
(b) A free-body diagram of the base
(a) (b) motion problem in (a).
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mxX + cx + kx = cYwy, cos wpt + kY sinwyt (2.63)

This can be thought of as a spring-mass—damper system with rwo harmonic inputs.
The expression is very similar to the problem stated by equation (2.26) for the
forced harmonic response of a damped system with Fy = cYw, and o = wy, except
for the “extra” forcing term kY sin wpt. The solution approach is to use the linearity
of the equation of motion and realize that the particular solution of equation (2.63)
will be the sum of the particular solution obtained by assuming an input force of
cYw, coswyt, denoted by x(1, and the particular solution obtained by assuming an
input force of kY sin w,t, denoted by xl(,z).

Calculating these particular solutions follows directly from the calculation
made in Section 2.2. Dividing equation (2.63) by m and using the definitions of
damping ratio and natural frequency yields

¥+ 2w,k + 0ix = 2lw,0,Y coswyt + oY sinwyt (2.64)

Thus substituting f = 2{w,w,Y into equation (2.36) yields that the particular solu-
tion xl(,l) due to the cosine excitation is

2 Y
x},l) = Lonty cos (wyt — ;) (2.65)
\/(w% - w%)z + (2§wnwh)2
where
2
0, = tan"! % (2.66)

(,0,,_(,0;2)

To calculate xl(,z), the method of undetermined coefficients is applied again with the
harmonic input »?Y sinw,t. Following the procedures used to calculate equation
(2.36) results in

Y

\/(oof, - w%)z + (2§wnwb)2

xﬁz) = sin (wyt — ) (2.67)

Note that equation (2.67) with { = 0 agrees with equation (2.22) for the undamped
case, as it should.

Here the particular solution is assumed to be of the form xl(,z) = Xsin (mbt - 61).
Here the angle 6, is the same as given in equation (2.66) because the phase angle
is independent of the excitation amplitude (i.e., {,®,, and w, have not changed).
The phase difference between the two particular solutions is accounted for
by using the sine and cosine solution. Because the arguments of the two par-
ticular solutions are the same (wpt — 61), they can be easily added using simple
trigonometry.
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From the principle of linear superposition, the total particular solution is the
sum of equations (2.65) and (2.67) (i.e., x, = ng) + xi(,z)). Adding solutions (2.65)

and (2.67) yields
02 + (2@0);,)2 1/2
Xt = w,Y cos (wpt — 6, — 0 2.68
v (w%l - w%)z + (Zémnmb)z ( b ! 2) ( )
where
= —1 ©n
0, = tan Yo, (2.69)

It is convenient to denote the magnitude of the particular solution, x,(t), by X so that
{ 1+ (2¢r)? ]1/2
X =
(1 — r2)2 + (2§r)2

where the frequency ratio r = w,/w,. Dividing this last expression by the magni-
tude of base motion, Y, yields

X [ 1+ (2¢r)? T/z
Y (1-r2)%+ (20r)?

which expresses the ratio of the maximum response magnitude to the input dis-
placement magnitude. This ratio is called the displacement transmissibility and is
used to describe how motion is transmitted from the base to the mass as a function
of the frequency ratio wj,/w,. This ratio is plotted in Figure 2.14. Note that near
r = wp/w, = 1, or resonance, the maximum amount of base motion is transferred
to displacement of the mass.

Note from Figure 2.14 that for r < V2 the transmissibility ratio is greater
than 1, indicating that for these values of the system’s parameters (w,) and base
frequency (wp), the motion of the mass is an amplification of the motion of the
base. Notice also that for a given value of r, the value of the damping ratio { deter-
mines the level of amplification. Specifically, larger { yields smaller transmissibility
ratios.

For values r > /2 the transmissibility ratio is always less than 1 and the mo-
tion of the mass will be of smaller amplitude than the amplitude of the exciting
base motion. In this higher-frequency range, the effect of increasing damping is
just the opposite of that in the low-frequency case. Increasing the damping actually
increases the amplitude ratio in the higher-frequency range. However, the ampli-
tude is always less than 1 for underdamped systems. The frequency range defined
by r > V2 forms the important concept of vibration isolation discussed in detail in
Section 5.2.

For a fixed amount of damping, say { = 0.01, the important aspect of base
motion is that the mass experiences larger amplitude oscillations than the base
excitation provides for r < V2 and experiences smaller amplitude oscillations

(2.70)

@2.71)
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Figure 2.14 Displacement transmissibility as a function of the frequency ratio,
illustrating how the dimensionless deflection X /Y varies as the frequency of the
base motion increases for several different damping ratios.

than the base excitation provides for > V/2. Near resonance, most of the motion
of the base is amplified into motion of the mass, causing it to have large amplitude
oscillations.

It is interesting to compare the transmissibility plot of Figure 2.14 and equa-
tion (2.71) for base excitation with the steady-state magnitude plot for harmonic
excitation of the mass as given in Figure 2.9 and equation (2.40). First, note that the
frequency ratio, r, is independent of the damping ratio by definition in both cases.
However, the dependence of the peak value, rpe,k, on the damping ratio is different
in each case (recall the computation in Example 2.2.5 for the peak value). In partic-
ular, Figure 2.10 will be different for base excitation than for harmonic excitation of
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the mass directly. This difference is caused by the numerator having an additional
term in the base-excitation problem. This term, 2{r, comes from the load carried
through the damper which is not present when the mass is excited directly, as in
equation (2.40).

Another quantity of interest in the base-excitation problem is the force trans-
mitted to the mass as the result of a harmonic displacement of the base. The force
transmitted to the mass is done so through the spring and damper. Hence, the force
transmitted to the mass is the sum of the force in the spring and the force in the
damper, or from the free-body diagram, Figure 2.13,

F(t) = k(x — y) + c(x — y) (2.72)
This force must balance the inertial force of the mass »; thus
F(t) = —mX(t) (2.73)

In the steady state, the solution for x is given by equation (2.68). Differentiating
equation (2.68) twice and substituting into equation (2.73) yields

2 2 1/2
F@) = mw%wnY{ o + (2os) ) } cos(wyt — 0; — 0,) (2.74)

(0f = 03)” + (2Uwu0)’
Again using the frequency ratio r, this becomes
F(t) = FT COS((J.)bt - 61 - 92) (275)

where the magnitude of the transmitted force, Fr, is given by

Fr= kY 2[ L+ (20 Tﬂ (2.76)
= kYr .
! (1 - r2)2 + (2§r)2
Equation (2.76) is used to define force transmissibility by forming the ratio
F. 1+ (2¢r)? 172
L= r{ () } 2.77)
kY (1-7r2)2+ (20r)?

This force transmissibility ratio, Fr/kY, expresses a dimensionless measure of how
displacement in the base of amplitude Y results in a force magnitude applied to the
mass. Note from equations (2.75) and (2.68) that the force transmitted to the mass
is in phase with the displacement of the mass. Figure 2.15 illustrates the force trans-
missibility as a function of the frequency ratio for four values of the damping ratio.
Note that unlike the displacement transmissibility, the force transmitted does not
necessarily fall off for » > /2. In fact, as the damping increases, the force transmit-
ted increases dramatically for r > V2.
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Example 2.4.1

Consider the base-excitation problem with the following data: m = 100kg,c =

30 kg/s,

k =2000N/m,Y = 0.03m,and w, = 6rad/s. Compute the magnitude of the transmis-

sibility ratio and then the force transmissibility ratio.

Solution First, define the usual vibration properties by dividing by the mass to get

2000 c 30
w, = |- =4472rad/s, { = = = 0.034
100 2\/mk 2\ /2 X 105
_w_ 6
T, a4~ 138

Then use equation (2.71) to compute the magnitude of the particular solution:

X [ 1+ (20r)? ]/z B [ 1+ (2-0.034-1.342)?
Yo L(1-72)2+ (20r)2) (1 - (1.342)2)% + (2-0.034-1.342)

The force transmissibility ratio becomes

Fr _ o2 X 2 _
P r v (1.342)~(0.557) = 1.003

0.557

Note that if the damping value is changed to ¢ = 300 kg/s, the force transmissibility
ratio is 1.203 and the transmissibility is 0.669. So increasing the damping increases both

the force and the displacement transmissibility.

d
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A comparison between force transmissibility (force applied to the mass nor-
malized by the magnitude of the displacement of the base) and displacement trans-
missibility (displacement of the mass normalized by the magnitude of the displace-
ment of the base) is given in Figure 2.16.

The formulas for transmissibility of force and displacement are very useful in
the design of systems to provide protection from unwanted vibration. This is dis-
cussed in detail in Section 5.2 on vibration isolation, where the transmissibility ratio
is derived for a fixed base and compared to the development here in Window 5.1.
The following example illustrates some practical values of transmissibility for the
base-excitation problem.

100 T T T

Log of transmissibility

| I I
0 1 2 3 4

r
Frequency ratio

0.01

Figure 2,16 A comparison between force transmissibility (dashed line) and
displacement transmissibility (solid line) for a damping ratio of { = 0.05 on a
semilog plot using equations (2.71) and (2.77).

Example 2.4.2

A common example of base motion is the single-degree-of-freedom model of an auto-
mobile driving over a road or an airplane taxiing over a runway, indicated in Figure 2.17
The road (or runway) surface is approximated as sinusoidal in cross section providing a
base motion displacement of

y(®) = (0.01 m) sin wpt
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where

1 hour \ /2w rad
= o(km/h =02
wp = v(km/ )(0.006 km)(3600 s)< cycle ) 02909v rad/s

where denotes the vehicle’s velocity in km /h. Thus the vehicle’s speed determines
the frequency of the base motion. Determine the effect of speed on the amplitude
of displacement of the automobile as well as the effect of the value of the car’s mass.
Assume that the suspension system provides an equivalent stiffness of 4 X 10* N /m
and damping of 20 X 10> N -s/m.

x (1)

m = mass of car |4[—‘ Velocity of car

k

<——— Suspension system
c

—<— Neglected unsprung mass

Figure 2.17 A simple
model of a vehicle
traveling with constant
velocity on a wavy surface

v that is approximated as a
6m Road surface sinusoid.

1
0.02m

Solution First, to determine the effect of speed on the amplitude of the vehicle’s
motion, note that from the previous calculations, w;,, and hence r, vary linearly with
the car’s velocity. Hence the deflection ratio versus velocity curve will be much like
the curve of Figure 2.14. Some sample values can be calculated from equation (2.70).
At 20 km/h, wp, = 5.818. If the car is small or a sports car, its mass might be around
1007 kg, so that the natural frequency is

*w/4X]O4N/m*63O3 d 1H
w, = 1007kg rad/s (=1 Hz)

so that r = 5.818/6.303 = 0.923 and

¢ 2000 N-s/m
2Vkm 2N/ (4 x 10* N/m)(1007 kg)

¢ = 0.158

Equation (2.70) then yields that the deflection experienced by the car will be

X — (001 \/ 1+ [2(0.158)(0.923)]° — 00s1o
- oom [1 - (0923)*]2 + [2(0.158)(0.923)]*
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This means that a 1-cm bump in the road is transmitted into a 3.2-cm “bump” experi-
enced by the chassis and subsequently transmitted to the occupants. Hence the suspen-
sion system amplifies the rough road bumps in this circumstance and is not desirable.

Table 2.1 lists several different values of the vehicle displacement for two dif-
ferent vehicles traveling at four different speeds over the same 1-cm bump. Car 1 with
frequency ratio rq is a 1007-kg sports car, while car 2 is a 1585-kg sedan with frequency
ratio r,. The same suspension system was used on both cars to illustrate the need to de-
sign suspension systems based on a given vehicle’s specifications (see Chapter 5). Note
that with higher speed, negligible vibration is experienced by the occupants of the car.
Also, notice that the suspension system parameters chosen (k and ¢) work better in
general for the larger car except at very low speeds.

TABLE 2.1 COMPARISON OF CAR VELOCITY, FREQUENCY,
AND DISPLACEMENT FOR TWO DIFFERENT CARS

Speed (km/h) p r r x1 (cm) X, (cm)
20 5.817 0.923 1.158 3.19 2.32
80 23.271 3.692 4.632 0.12 0.07
100 29.088 4.615 5.79 0.09 0.05
150 43.633 6.923 8.686 0.05 0.03
|
Example 2.4.3

A large rotating machine causes the floor of a factory to oscillate sinusoidally. A punch
press is to be mounted on the same floor (Figure 2.18). The displacement of the floor
at the point where the punch press is to be mounted is measured to be y(f) = 0.1 sin
wpt (cm). Using the base support model of this section, calculate the maximum force
transmitted to the punch press at resonance if the press is mounted on a rubber fitting
of stiffness k = 40,000 N/m; damping, ¢ = 900 N -s/m; and mass, m = 3000 kg.

Excitation source: Punch press
Rotating machine

ie, k
Floor \@ Support: c,
e
4

‘ i/ Figure 2.18 A model of a
Base motion y(f) machine causing support motion.

Solution The force transmitted to the punch press is given by equation (2.77). At
resonance, r = 1, so that equation (2.77) becomes

kY
Fp=—
L)

; (1 +422)'2
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From the definition of { and the values given previously for m, ¢, and k,

e 900 _
2Vkm  2[(40,000)(3000) |/

£

From the measured excitation Y = 0.001 m, so that

40,000 N /m)(0.001
Fr= % (1 + a2y = 4 2(/0121() ™11+ 40,047 ]2
= 501.6 N

|

The analysis presented here for base motion is very useful in design. This
forms the topic of Chapter 5, which includes as Section 5.2 a more detailed analysis
of base motion in the context of the vibration isolation problem for both fixed-base
and moving-base models. Section 5.2 also includes a discussion of shock isolation.
Some may prefer to jump to Section 5.2 at this point to examine how the concepts
of transmissibility are applied to the base isolation problem.

2.5 ROTATING UNBALANCE

A common source of troublesome vibration is rotating machinery. Many machines
and devices have rotating components, usually driven by electric motors. Small
irregularities in the distribution of the mass in the rotating component can cause sub-
stantial vibration. This is called a rotating unbalance. A schematic of such a rotating
unbalance of mass, m, a distance e from the center of rotation is given in Figure 2.19.

Guide Guide

x(1)

Machine of total mass m

f\ e > mo
//
M / e \\
/ oty Ll

\
N \ / G
U A N - - 7
> I Y Friction-free
7 . Rubber floor mounting |:j \\\ surface
; c
N modeled as a spring )
So < and a damper 7

Figure 2.19 A model of a machine causing support motion.
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x(1) + x,(1)

r

T x(0)

m — mg

kx cx
(a) (®)
Figure 2.20 A free-body diagram of the unbalance (a) and the machine (b).

The frequency of rotation of the machine is denoted by w,. Summing forces
in the vertical direction (x) from the free-body diagram of the out-of-balance mass
given in Figure 2.20(a) yields

my(¥ + %) = —F, (2.78)

Summing forces from the free-body diagram of the machine given in Figure 2.20(b)
yields

(m —myx =F — cx — kx (2.79)
Combining equations (2.78) and (2.79) yields
mx + mgX, + cx + kx =0 (2.80)

The forces in the horizontal direction are canceled by the guides and are not con-
sidered here.

Assuming that the machine rotates with a constant frequency, w,, the x com-
ponent of the motion of the mass, m, is x, = e sin w,f, so that

¥, = —ew?sinw,t (2.81)
Substitution of equation (2.81) into (2.80) yields
mx + cx + kx = myew? sinw, (2.82)

after rearranging the terms. Equation (2.82) is similar to equation (2.26) with
Fy = myew?, with the exception of the phase shift of the forcing function (i.e., sin w,t
instead of cos wf). The sine excitation is discussed as the second particular solution
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in the previous section and the solution is given in equation (2.67). The solution
procedure is the same and results in a particular solution of the form
x,(t) = X sin(w,t — 0) (2.83)

Letr = 0,/w,, as before, to get

X =" (2.84)

and

. 2L
1—r2

0 = tan (2.85)
These last two expressions yield the magnitude and phase of the motion of the
mass, m, due to the rotating unbalance of mass . Note that the mass m in equa-
tion (2.84) is the total mass of the machine and includes the unbalance mass 1.
The magnitude of the steady-state displacement, X, as a function of the ro-
tating speed (frequency) is examined by plotting the dimensionless displacement
magnitude mX /mge versus r, as indicated in Figure 2.21 for various values of the
damping ratio {. Note that equation (2.84) is similar to the magnitude analyzed
in Example 2.2.4. From the form of the denominator, which is identical to that of
Example 2.2.4, it is observed that the maximum deflection is less than or equal to
1 for any system with { > 1. This indicates that the increase in amplification of the
amplitude caused by the unbalance can be eliminated by increasing the damping in

mx

m()e

5 —

(=01
[ 4=
o
2
k=
P 3
g
2 =025
N
S 2
£
=]
z L {=0.707
=10
0 | | | | | | = %
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 n

Frequency ratio

Figure 2.21 Magnitude of the dimensionless displacement versus frequency ratio
caused by a rotating unbalance of mass m and radius e.
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the system. However, large damping is not always practical. Note from Figure 2.21
that the magnitude of the dimensionless displacement approaches unity if r is large.
Hence, if the running frequency w, is such that r >> 1 the effect of the unbalance is
limited. For large values of 7, all the magnitude curves for each value of { approach
unity, so that the choice of damping coefficient for large r is not important. These
results can be obtained from examining the plots of Figure 2.21 or from investigat-
ing the limit of mX/mgye as r goes to infinity. These observations have important
implications in the design of rotating machines.

The rotating unbalanced model can also be used to explain the behavior of
an automobile with an out-of-balance wheel and tire. Here w, is determined by the
speed of the car and e by the diameter of the wheel. The deflection x, can be felt
through the steering mechanism as shaking of the steering wheel. This usually only
happens at a certain speed (near r = 1). As the driver increases or decreases speed,
the shaking effect in the steering wheel reduces. This change in speed is equivalent
to operating conditions on either side of the peak in Figure 2.21.

Example 2.5.1

Consider a machine with rotating unbalance as described in Figure 2.19. At resonance,
the maximum deflection is measured to be 0.1 m. From a free decay of the system,
the damping ratio is estimated to be { = 0.05. From manufacturing data, the out-of-
balance mass, my, is estimated to be 10%. Estimate the radius e and hence the ap-
proximate location of the unbalanced mass. Also determine how much mass should be
added (uniformly) to the system to reduce the deflection at resonance to 0.01 m.

Solution At resonance, r = 1, so that

mX _ 1 1

mee 20 2(0.05)

Hence

so that e = 0.1 m. Again at resonance

X
2(55) -
mo \0.1m
If it is desired to change m, say by Am, so that X = 0.01 m, the foregoing resonance
expression becomes

= 100

m + Am (0.01 m+ Am
0 \01 =10 or —

My (0.1)ym
which implies that Am = 9m. Thus the total mass must be increased by a factor of 9 in

order to reduce the deflection to a centimeter.
O
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Example 2.5.2

Rotating unbalance is also important in rotorcraft such as helicopters and prop planes.
The tail rotor of a helicopter (the small rotor rotating in a vertical plane at the back of
a helicopter used to provide yaw control and torque balance) as sketched in Figure 2.22
can be modeled as a rotating-unbalance problem discussed in this section with stiffness
k =1 X 10° N/m (provided by the tail section in the vertical direction) and mass of
20 kg. The tail section providing the vertical stiffness has a mass of 60 kg. Suppose that
a 500-g mass is stuck on one of the blades at a distance of 15 cm from the axis of rota-
tion. Calculate the magnitude of the deflection of the tail section of the helicopter as
the tail rotor rotates at 1500 rpm. Assume a damping ratio of 0.01. At what rotor speed
is the deflection at maximum? Calculate the maximum deflection.

Figure 2.22 A schematic of a
helicopter tail section illustrating a
r  tail rotor. The tail rotor provides a
“counterclockwise” thrust (when
looking at the top of the helicopter)
to counteract the “clockwise” thrust
created by the main rotor, which
provides lift and horizontal motion.
An out-of-balance rotor can cause
damaging vibrations and limit the
helicopter’s performance.

0.5kg

Solution The rotor system is modeled as a machine of mass 20.5 kg attached to a
spring, as indicated in Figure 2.23. Here only the vibration of the tail section in the
vertical direction is modeled and the helicopter body is modeled as ground. The spring

my

5 K X /

m

my,

(a) (b)

Figure 2.23 (a) The vertical vibration model of a tail section modeled as a spring
consisting of a long, slender bar with machine mounted on it with a rotational
unbalance. (b) This sketch is the equivalent spring-mass model used for unbalance
problems (note that to be consistent with Figure 2.19, m includes my).
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used to represent the tail section has significant mass, so equation (1.76) of Section 1.5
for a heavy beam is used to find the equivalent mass of the system. Using the equiva-
lent mass concept yields that the natural frequency is

10°N/m
= T = 53.727 rad/s
205 + —— 60k
0.5 140 60 kg
The frequency of rotation in rad/s is
in 2 rad
, = 1500 rpm = 1500 — =0 ZTTAC _ 157 rad/s

min 60s rev
Hence, the frequency ratio, r, becomes

o,  157rad/s >0
" e, $3727radjs

With r = 2.92 rad/s and { = 0.01, equation (2.84) yields that the magnitude of oscilla-
tion of the tail rotor is

2

mype r
X=—
MmN =)+ (20r)
0.5 kg)(0.15m 2.92)%
_ (05kg)(015m) 292) oo
3464kg V1 - (292)°] - [2(0.01)(2.92) ]2
Here the equivalent mass is meq = m + my = 34.64 kg.
The maximum deflection occurs at about r = 1 or
d 60
0, = w, = 53.721ad/s = 53.72 o= TV _ 5131 rpm

s 2wrad min
In this case, the (maximum) deflection becomes

_ (05kg)(0.15) 1
T 3434kg  2(0.01)

= 0.108m = 10.8 cm

which represents a large unacceptable deflection of the rotor. Thus the tail rotor
should not be allowed to rotate at 513.1 rpm.
O

More on the special nature of rotating systems is discussed in Section 5.5.

Additional discussion of vibration problems associated with rotating machinery is
given in Section 5.7 on critical speeds. Some treatments include the discussion of criti-
cal speeds in rotating shafts immediately following the discussion of unbalance, and it
is possible to skip to Section 5.7 before continuing. Vibration problems associated with
rotor dynamics are both important and vast enough to study as a separate course.
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2.6 MEASUREMENT DEVICES

An important application of the forced-harmonic-vibration analysis and base-
excitation problem presented in Sections 2.2 and 2.4, respectively, is in the design of
devices used to measure vibration. A device that changes mechanical motion into
a voltage (or vice versa) is called a transducer. Several transducers are sketched in
Figures 2.24 to 2.26. Each of these devices changes mechanical vibration into a volt-
age proportional to acceleration.

Referring to the accelerometer of Figure 2.24, a balance of forces on the seis-
mic mass m yields

mxX = —c(x —y) — k(x —y) (2.86)

Here it is assumed that the base that is mounted to the structure being measured
undergoes a motion of y = Y cos wpt (i.e., that the structure being measured is un-
dergoing simple harmonic motion). The motion of the accelerometer mass relative
to the base, denoted by z(¢), is defined by

z2(0) = x(1) — y(1) (2.87)

mi(t)

Casing Figure 2.24 A schematic of

an accelerometer mounted
on a structure. The insert

" indicates the relevant forces
acting on the mass m. The
force k(x — y) is actually

k(x—y) c(x—y) parallel to the damping force

3 because they are both
y(t) = motion of structure connected to ground.
t

y() Voltage-generating
T strain gauges x(1)
R N
m
Elastic beam (k)

Figure 2.25 A schematic
of a seismic accelerometer
Mounted to vibrating structure made of a small beam.
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§>T§k\é

x(1)

—N %/ Piezoelectric crystal
Voltage -

— R A W
y(0)

Mounted to structure

Figure 2.26 A schematic of a piezoelectric accelerometer and a photograph of a
commercially available version.

Equation (2.86) can then be written in terms of the relative displacement z(¢). Hence
equation (2.86) becomes the familiar expression

mz + ¢z + kz = mojY coswyt (2.88)

This expression has exactly the same form as equation (2.26). Thus the solu-
tion in steady state will be of the same form as given by equation (2.36) or

(1) wpY { t+< tan ! ZC"’”‘”bﬂ (2.89)
z2(r) = cos | wy, —tan " ——— .
V(0 = 0})? + (2w,0p)? wp — of

The difference between equations (2.36) and (2.89) is that the latter is for the rela-
tive displacement (z) and the former is for the absolute displacement (x).
Further manipulation of the magnitude of equation (2.89) yields

Z r?
- = (2.90)
Yo N -2+ )
for the amplitude ratio as a function of the frequency ratio r = w;/w,, and
2
6 = tan 2 2.91)

- r

for the phase shift.

Consider the plot of the magnitude of Z/Y versus the frequency ratio as given
in Figure 2.27. Note that for larger values of r (i.e., for r = 3) the magnitude ratio
approaches unity, so that Z/Y = 1 or Z = Y and the relative displacement and the
displacement of the base have the same magnitude. Hence the accelerometer of
Figure 2.24 can be used to measure harmonic base displacement if the frequency of
the base displacement is at least three times the accelerometer’s natural frequency.
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% Accelerometer
25 — /reglon

o
E 2 - Seismometer
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§ 15
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Frequency ratio

Figure 2.27 The magnitude versus frequency of the relative displacement for a
transducer used to measure acceleration and for seismic measurements.

Next, consider the equation of the system in Figure 2.24 for the case when r is
small. Factoring w? out of the denominator, equation (2.89) can be written as

1
V(- + eu)

wiz(f) = w3 Y cos (wyt — 0) (2.92)

Since y = Y cos (wpt — 8), the last term is recognized to be —3(f) so that

wz(1) =

0 (2.93)

-1 .
V(1 = 22 + Q) Y

This expression illustrates that, for small values of 7, the quantity w2z() is propor-
tional to the base acceleration, y(¢), since

lim ! =1 (2.94)

r—0 \/(1 - r2)2 + (2¢r)?

In practice, this coefficient is taken as close to 1 for any value of r < 0.5. This indi-
cates that, for these frequencies of base motion, the relative position z(¥) is propor-
tional to the base acceleration. The effect of the accelerometer internal damping, ¢,
in the constant of proportionality between the relative displacement and the base ac-
celeration is illustrated in Figure 2.28, which consists of a plot of this constant versus
the frequency ratio for a variety of values of {, for values of r < 1. Note from the
figure that the curve corresponding to { = 0.7 is closest to being constant at unity
over the largest range of r < 1. For this curve, the magnitude is relatively flat for
values of r between zero and about 0.2. In fact, within this region, the curve varies
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Figure 2.28 The effect of damping on the constant of proportionality between base
acceleration and the relative displacement (voltage) for an accelerometer.

from one by less than one percent. This defines the useful range of operation for the
accelerometer:

0<2 <02 (2.95)

n

where w, is the natural frequency of the device. Multiplying this inequality by the
device frequency yields

0<w, <020, or 0<Ff, <02f (2.96)

where f,, is the frequency to be measured by the accelerometer in hertz. For the
mechanical accelerometer of Figure 2.24, the device frequency may be on the order
of 100 Hz. Thus inequality (2.96) indicates that the highest frequency that can be
effectively measured by the device would be 20 Hz (0.2 X 100).

Many structures and machines vibrate at frequencies larger than 20 Hz. The
piezoelectric accelerometer design indicated in Figure 2.26 provides a device with a
natural frequency of about 8 X 10* Hz. In this case, the inequality predicts that vibra-
tion with frequency content up to 16,000 Hz can be measured. Vibration measurement
is discussed in more detail in Chapter 7, where practical problems, such as phase and
amplitude distribution of signals measured with accelerometers, are discussed.

Example 2.6.1

This example illustrates how an independent measurement of acceleration can provide
a measurement of a transducer’s mechanical properties. An accelerometer is used to
measure the oscillation of an airplane wing caused by the plane’s engine operating at
6000 rpm (628 rad/s). At this engine speed the wing is known, from other measure-
ments, to experience 1.0-g acceleration. The accelerometer measures an acceleration
of 10 m/s2. If the accelerometer has a 0.01-kg moving mass and a damped natural
frequency of 100 Hz (628 rad/s), the difference between the measured and the known
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acceleration is used to calculate the damping and stiffness parameters associated with
the accelerometer.

Solution From equation (2.93), the amplitude of the measured values of acceleration
|w2z(£)] is related to the actual values of acceleration |3(f)| by

loaz()| 1 _10m/s

Ol V-2 + eup  98m/s
Rewriting this expression yields one equation in { and r:

1 -5 + (2tr)? = 0.96

1.02

A second expression in { and r can be obtained from the definition of the damped
natural frequency:

o W 1 B 1 _ 628rad/s
o wN1-g Ni-g 628radfs
Thus r = V1 — {2, providing a second equation in £ and r. This can be manipulated

to yield £ = (1 — r?), which when substituted with the preceding expression for r
and { yields

AP - %) =096
This is a quadratic equation in {*
3¢ — 402+ 096 = 0

This quadratic expression yields the two roots { = 0.56, 1.01. Using { = 0.56, the
damping constant is (V1 — > = 0.83, 0, = w,/ V1 — {* = 758.0rad/s)

¢ = 2mw,{ = 2(0.01)(758.0)(0.56) = 849N -s/m
Similarly, the stiffness in the accelerometer is

k = mo? = (0.01)(758.0)> = 5745.6 N/m

2.7 OTHER FORMS OF DAMPING

The damping used in previous sections has been treated as linear-viscous damping,
with the exception of the treatment of Coulomb damping in Section 1.10. In this
section, the discussion of Coulomb damping is continued and other forms of damp-
ing are introduced. Because damping is both difficult to model mathematically
and difficult to measure, choosing the correct form of damping is not an easy task.
Hence damping is often approximated as a linear dependence on velocity, as done
in the previous sections. Other models, though not mathematically convenient, may
provide a more accurate description of the damping in a vibrating system. Coulomb,
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or friction, damping is one example of such a form. A number of other mathemati-
cal forms of damping exist. In this section, these damping forms are all treated in
the forced-response case by examining an equivalent linear system based on the
energy dissipated during vibration. In Section 2.9, these systems are numerically
integrated in their nonlinear form and compared to the equivalent linear response
discussed here.

First, consider the response of a system with Coulomb damping, introduced in
Section 1.10, to a harmonic driving force. Recall the systems of Figures 1.43 and 1.44
described in the free-response case by equation (1.101). The equation of motion in
the forced-response case becomes

mX + pmgsgn(X) + kx = Fysinot (2.97)

Rather than solving this equation directly, one can approximate the solution
of equation (2.97) with the solution of a viscously damped system that dissipates an
equivalent amount of energy per cycle. This is a reasonable assumption if the magni-
tude of the applied force is much larger than the Coulomb force (£, >> pmg). This
approximation is accomplished by again assuming that the steady-state response will
be of the form

Xs(t) = Xsinowt (2.98)

The energy dissipated, AFE, in a viscously damped system per cycle with viscous-
damping coefficient c is given by

27/w dx 27/w
AE = f{ Fydx = / cx —dt = / cx’dt (2.99)
0 dt 0

At steady state, x = X sin wf, X = wX coswt, and equation (2.99) becomes
27/w
AE =c¢ / (0?X? cos’wt)dt = mcwX? (2.100)
0

This is the energy dissipated per cycle by a viscous damper. On the other hand, the
energy dissipated by the Coulomb friction on a horizontal surface per cycle is

27/w
AE = pmg / [sen(x)x | dt (2.101)
0

Substitution of the steady-state velocity into this expression and splitting the inte-
grations up into segments corresponding to the sign change in x yields

/2 3w/2 2w
AE = pmgX(/ cosu du — / cosu du + / cosu du) (2.102)
0 /2 3m/2
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where u = ot and du = wdt. Completing the integration yields that the energy dis-
sipated by Coulomb friction is

AE = 4umgX (2.103)

To create a viscously damped system of equivalent energy loss, the energy-loss
expression for viscous damping of equation (2.100) is equated to the energy loss as-
sociated with Coulomb friction, given by equation (2.103) to yield

TCeq X = dumg X (2.104)
where c.q denotes the equivalent viscous-damping coefficient. Solving for c.q yields

_ dpmg
Ceq = X

(2.105)

In terms of an equivalent damping ratio, {.q, equation (2.105) must also equal 2{.qw,m,
so that

2pg
= — 2.106
bea = o wX (2.106)

Thus the viscously damped system described by
X + 2eqw,k + 0px = fysinwt (2.107)

will dissipate as much energy as does the Coulomb system described by equation (2.97).

Considering (2.107) as an approximation of equation (2.97), the approximate
magnitude and phase of the steady-state response of equation (2.97) can be calcu-
lated. Substitution of the equivalent viscous-damping ratio given in equation (2.106)
into the magnitude of equation (2.40) yields the result that the magnitude X of the
steady-state response is

X = fo/k = Fo/k 2.108
TV @ [0 2 (g ST

Solving this expression for the amplitude X yields

_ K V1 - (4umg/nE)’

2.109
£ Ja- ) 1)
with phase shift given by equation (2.40) as
2Leqt 4
0 =tan ! —2 = tan! — 8 (2.110)

anl — P8
1-r? mhkX(1 — r?)
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The expression for the phase can be further examined by substituting for the value
of X from equation (2.109). This yields

t4pmg
TR\V1 — (4pmg/wk)

6 = tan ! (2.111)

where the * originates from the absolute value in equation (2.109). Thus 6 is posi-
tive if » < 1 and negative if » > 1. Also note from equation (2.111) that 6 is constant
for a given Fj and p. and is independent of the driving frequency.

Several differences are apparent in the behavior of the approximate phase and
amplitude of the response with Coulomb friction compared with that of viscous friction.
First, at resonance, r = 1, the magnitude in equation (2.109) becomes infinite, unlike
the viscously damped case. Second, the phase is discontinuous at resonance, rather than
passing through 90° as in the viscous case. Note also from equation (2.111) that the ap-
proximation is good only if the argument in the radical of (2.109) is positive, that is, if

dumg < whky (2.112)

This confirms and quantifies the physical statement made at the outset (i.e., that the
applied force must be larger in magnitude than the sliding friction force in order to
overcome the friction to provide motion).

Example 2.7.1

Consider a spring-mass system with sliding friction described by equation (2.97) with
stiffness k = 1.5 X 10* N/m, driving harmonically a 10-kg mass by a force of 90 N at
25 Hz. Calculate the approximate amplitude of steady-state motion assuming that both
the mass and the surface are steel (unlubricated).

Solution First, look up the coefficient of friction in Table 1.5, which is w = 0.3. Then
from inequality (2.112),

4p.mg = 4(0.3)(10kg)(9.8m/s*) = 117.6N
< (90N)(3.1415) = 282.74 = wF,

so that the approximation developed previously for the steady-state-response ampli-
tude is valid. Converting 25 Hz to 157 rad /s and using equation (2.109) then yields

90 N V1 - (117.6 N/282.74 N )?

= " =353 X 10%m
1.5 X 10*N/m |1 — (2467 x 10*/1.5 x 10°)|

Thus the amplitude of oscillation will be less than 1 mm.
O

Several other forms of damping are available for modeling a particular mechan-
ical device or structure in addition to viscous and Coulomb damping. It is common to
study damping mechanisms by examining the energy dissipated per cycle under a har-
monic loading. Often, force versus displacement curves, or stress versus strain curves,



174

Response to Harmonic Excitation Chap. 2

are used to measure the energy lost and hence determine a measure of the damping
in the system.

The energy lost per cycle, given in equation (2.100) to be wcwX?, is used to
define the specific damping capacity as the energy lost per cycle divided by the
peak potential energy, AE/U. A more commonly used quantity is the energy lost
per radian divided by the peak-potential, or strain, energy Up,,. This is defined to
be the loss factor or loss coefficient, denoted by m, and given by

AE
27U pax

n= (2.113)

where U,y is defined as the potential energy at maximum displacement of X (or
strain energy).

The loss factor is related to the damping ratio of a viscously damped system at
resonance. To see this, substitute the value for AE from (2.100) into (2.113) to get

mewX?
=1—F—— 2.114
T on (bkx?) (@114)
At resonance, ® = o, = Vk/m so that (2.113) becomes
=S =19 (2.115)
mn om .

Hence, at resonance, the loss factor is twice the damping ratio.

Next, consider a force-displacement curve for a system with viscous damp-
ing. The force required to displace the mass is that force required to overcome the
spring and damper forces, or

F=kx +cx (2.116)
At steady state, as given by equation (2.98), this becomes
F=kx + cX o cosot (2.117)
Using a trigonometric identity (sin?¢ + cos’p = 1) on the cos wf term yields
F=kx T coX(1 — sin*or)!/?
= kx * co[X? — (Xsinwt)? |12 (2.118)
= kx £ coVX?: — 12
Squaring this expression yields, upon rearrangement,

F? + (0? + K*)x* — (2k)xF — 20’X?> =0 (2.119)

I+

which can be recognized as the general equation for an ellipse (c’w® > 0) rotated
about the origin in the F-x plane (see a precalculus text). This is plotted in Figure 2.29.
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F(t) = cx(t) + kx(t)

100

-100 —

Figure 2.29 A plot of force versus displacement defining the hysteresis loop for a
viscously damped system.

The ellipse in the Figure 2.29 is called a hysteresis loop, and the area enclosed is the
energy lost per cycle as calculated in equation (2.100) and is equal to wcw X2, Note that
if ¢ = 0, the ellipse of Figure 2.29 collapses to the straight line of slope & indicated by
the dashed line in the figure.

Materials are often tested by measuring stress (force) and strain (displacement)
under carefully controlled steady-state harmonic loading. Many materials exhibit
internal friction between various planes of material as the material is deformed.
Such tests produce hysteresis loops of the form shown in Figure 2.30. Note that, for

Stress

A

Loading 7 /
B~ Strain  Figure 2.30 An experimental stress—

. strain plot for one cycle of harmonically
Unloading loaded material for steady state illustrating

a hysteresis loop associated with internal
damping.
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increasing strain (loading), the path is different than for decreasing strain (unloading).
This type of energy dissipation is called hysteretic damping, solid damping, or struc-
tural damping.

The area enclosed by the hysteresis loop is again equal to the energy loss. If
the experiment is repeated for a number of different frequencies at constant ampli-
tude, it is found that the area is independent of frequency and proportional to the
square of the amplitude of vibration and stiffness:

AE = wkpX? (2.120)

where k is the stiffness, X is the amplitude of vibration, and { is defined as the Ays-
teretic damping constant. Note that some texts formulate this equation differently
by defining # = kP to be the hysteretic damping constant.

Next, apply the equivalent viscous-damping concept used for Coulomb damping.
If this concept is applied here, equating the energy dissipated by a viscously damped
system to that of a hysteretic system is equivalent to finding the ellipse of Figure 2.29
that has the same area as the loop of Figure 2.20. Thus equating (2.120) with the en-
ergy calculated in (2.100) for the viscously damped system yields

TCeqwX? = ThBX? (2.121)

Solving this expression yields that the viscously damped system dissipating the
same amount of energy per cycle as the hysteretic system will have the equivalent
damping constant given by

Coq = — (2.122)

where B is determined experimentally from the hysteresis loop.

The approximate steady-state response of a system with hysteretic damping
can be determined from substitution of this equivalent damping expression into the
equation of motion to yield

k
mx + %x + kx = F,coswt (2.123)

In this case, the steady-state response is approximated by assuming the response
is of the form xi(f) = X cos (ot — ). Following the procedures of Section 2.2, the
magnitude of the response, X, is given by equation (2.40) to be

Fo/k
X = — : (2.124)
V(=) + 2Ly
where (.4 is nOW c¢q/ (2 \/km) and r = o/w,. Substituting for {4 yields
F/k
X = o/ (2.125)
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Similarly, the phase becomes

b = tan! (2.126)

1—r?
These are plotted in Figure 2.31 for several values of B.

Compared to a viscously damped system, the hysteretic system’s magnitude
obtains a maximum of F;/Bk. This is obtained by setting r = 1 in equation (2.125)
so that the maximum value is obtained at the resonant frequency rather than below
it, as is the case for viscous damping. Examination of the phase shift shows that the
response of a hysteretic system is never in phase with the applied force, which is not
true for viscous damping.

In Section 2.3, the complex exponential was used to represent a harmonic in-
put. Using equation (2.48), the equivalent hysteretic system can be written as

., Bk . 4
my¥ + " =X+ kx = Fye'! (2.127)

Substitution of the assumed form of the solution given by x(¢) = Xel“ for just the
velocity term yields

m¥ + k(1 + jB)x = Fe™ (2.128)

Phase (rad)

Frequency ratio, r

Normalized displacement

| | I ]
0 1 2 3 4

Frequency ratio, r

Figure 2.31 Steady-state magnitude and phase versus frequency ratio for a system with
hysteretic damping coefficient B approximated by a system with viscous damping.
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This gives rise to the notion of complex stiffness or complex modulus. The damped
problem is represented in equation (2.128) as an undamped problem with complex
stiffness coefficient k(1 + jB). This approach is very popular in the material engi-
neering literature on damping.

Example 2.7.2

An experiment is performed on a hysteretic system with known spring stiffness of
k = 4 X 10* N/m. The system is driven at resonance, the area of the hysteresis loop is
measured to be AE = 30 N - m, and the amplitude, X, is measured to be X = 0.02 m.
Calculate the magnitude of the driving force and the hysteretic damping constant.

Solution At resonance, equation (2.125) yields
F
X=-—
kB
or kB = Fy/X. The area enclosed by the hysteresis loop is equal to wkBX?2, so that

R
30N-m = mkpX? = ﬂ}on

and hence

~30N‘m _ 30N-m

= = 4775N
wX w(0.02m)

F

From the resonance expression,

R 4715

=—= = 0.60
Xk (0.02m)(4 X 10*N/m)

B

which is the hysteretic damping constant calculated based on the principle of equiva-
lent viscous damping.
d

Several other useful models of damping mechanisms can be analyzed by using
the equivalent viscous-damping approach. For instance, if an object vibrates in air
(or a fluid), it often experiences a force proportional to the square of the velocity
(Blevins, 1977). The equation of motion for such a vibration is

mx + asgn(x)x’ + kx = Fycoswt (2.129)

The damping force is

F, = asgn(x)i? = sgn(x)x?

which opposes the direction of motion, similar to Coulomb friction, and depends
on the square of the velocity, x; the drag coefficient of the mass, C; the density of
the fluid, p; and the cross-sectional area, A, of the mass. This type of damping is
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referred to as air damping, quadratic damping, or velocity-squared damping. As in the
Coulomb friction case, this is a nonlinear equation that does not have a convenient
closed-form solution to analyze. While it can be solved numerically (see Section 2.8),
an approximation to the behavior of the solution during steady-state harmonic excita-
tion can be made by the equivalent viscous-damping method. Assuming a solution of
the form x = X sin wt and computing the energy integrals following the steps taken
in equation (2.102) yields that the energy dissipated per cycle is

AE = gaX%oz (2.130)
Again, equating this to the energy dissipated by a viscously damped system given in
equation (2.100) yields
8
Ceq = gamX (2.131)

This equivalent viscous-damping value can then be used in the amplitude and phase
formulas for a linear viscously damped forced harmonic motion to approximate the
steady-state response.

Example 2.7.3

Calculate the approximate amplitude at resonance for velocity-squared damping.

Solution Using the magnitude expression for viscous damping at resonance (r = 1 and
o = w,), equation (2.40) and the expression for the damping ratio given in equation
(1.30) yields

o mfy

- 200w,  Ceqw

Substitution of (2.131) yields

x=_"h
(8/3m)aw’X

X = 3mmfy 3mfym?
"V 8aw? N 8kCpa
As expected, for larger values of the mass density of the fluid, the drag coefficient of
the cross-sectional area produces a smaller amplitude at resonance.

so that

|

If several forms of damping are present, one approach to examining the har-
monic response is to calculate the energy lost per cycle of each form of damping
present, add them up, and compare them to the energy loss from a single viscous
damper. Then the formulas for magnitude and phase from equation (2.40) are used
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TABLE 2.2 DAMPING MODELS

Name Damping Force Ceq Source

Linear-viscous damping cx c Slow fluid

Air damping asgn (¥)i? BawX Fast fluid

3m

Coulomb damping Bsgni 4B Sliding friction
TwX

Displacement-squared damping dsgn (X)x? 4dXx Material damping
3mw

Solid, or structural, damping bsgn (¥)x| 2b Internal damping
W

to approximate the response. For n damping mechanisms dissipating energy per
cycle of AE;, for the ith mechanism, the equivalent viscous-damping constant is

n
_ Ei:IAEi
TwX?

A study of various damping mechanisms is presented by Bandstra (1983) and sum-
marized in Table 2.2.

Ceq (2.132)

2.8 NUMERICAL SIMULATION AND DESIGN

In the previous sections, great effort was put forth to derive analytical expressions for
the response of various single-degree-of-freedom systems driven by a harmonic load.
These analytical expressions are extremely useful for design and for understanding
some of the physical phenomena. Plots of the time response and of the steady-state
magnitude and phase were constructed to realize the nature and features of the
response. Rather than plotting the analytical function describing the response, the
time response may also be computed numerically using an Euler or Runge—Kutta
integration and computational software packages as introduced in Section 1.8. While
numerical solutions such as these are not exact, they do allow nonlinear terms to be
considered. In addition, these packages may be used to generate all of the plots of
phase and magnitude and the time responses given in the previous sections (in fact, all
plots in this text are generated using MATLAB or, in some cases, Mathcad). The com-
putational packages will also help you derive expressions, such as equation (2.38), by
using symbolic algebra. Perhaps the most advantageous use of computational software
is the ability to resolve quickly the time response for various values of parameters. The
ability to plot the solution quickly allows engineers to examine what would happen if
the damping changes or the input force level changes. Such parametric studies of the
time response are useful for design and for building intuition about a given system.



Sec. 2.8

Numerical Simulation and Design 181

In order to solve for the forced response to a harmonic input numerically,
equation (1.97) needs to be modified slightly to incorporate the applied force. The
first-order, or state-space, form of equation (2.27) becomes

x1(1) = (1)
B() = —2lw,x(1) — wix () + f)coswt (2.133)

where x, denotes the velocity x(¢) and x; denotes the position x(¢), as before. This
is subject to the initial conditions x;(0) = x; and x,(0) = v,. Given o, o, {, fy, Xo,
and |, the solution of equation (2.133) can be determined numerically. The matrix
form of equation (2.133) becomes

x(t) = Ax(t) + f(¢) (2.134)

where x and A are the state vector and state matrix as defined previously in equa-
tion (1.96). The vector fis the applied force and takes the form

f(z)={ 0 } (2.135)

fo coswt

The Euler form of equation (2.134) is
x(t; + 1) = x(t;) + Ax(t;))Ar + 1(z;) At (2.136)

This expression can also be adapted to the Runge—Kutta formulation, and most of the
codes mentioned in Appendix G have built-in commands for a Runge—Kutta solution.

The numerical integration to determine the response of a system is an ap-
proximation, whereas the plotting of the analytical solution is exact. So why bother
to integrate numerically to find the solution? Because closed form solutions often do
not exist, such as in the treatment of nonlinear terms as was illustrated in Section 1.10.
This section discusses the solution of the forced response using numerical integration
in an environment where the exact solution is available for comparison. The examples
in this section introduce numerical integration to compute the forced response and to
compare these to the exact solution.

The following example illustrates the use of various programs to compute and
plot the solution.

Example 2.8.1
Numerically integrate and plot the response of an underdamped system determined
by m = 100 kg, k = 2000 N/m, and ¢ = 200 kg /s, subject to the initial conditions of
X9 = 0.0lmand , = 0.1 m/s,and the applied force F(f) = 150 cos 10z. Then plot the
exact response as computed by equation (2.38). Compare the plot of the exact solution
to the numerical simulation.

Solution This is first worked out in Mathcad. The equivalent commands for MATLAB and
Mathematica are given at the end of this example. Start by entering the relevant numbers.

x0 := 0.01 vO := 0.1 m := 100 c := 200 k := 2000

== = FO := 150 =10
wh " 18 N ®
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. \/ 2 Y
wd 1= on-V1-¢( fO.—W
_ f0
(on? — 02)? + (2-{-on-w)? |Def1’ nes one coefficient
xTc(t) 1= e 4ot [x0 — (wn? — w?)-B]-cos(wd-t) |Write out equation
(2.38) 1in parts
teon {-wn w? VO} .
r= @ {ent, — 2 _ %) -B]- — .- Mg . .
xTs(t) := e [x0 — (0n? — ?) -B] og ~ 2trontgeB ot —l-sin(ed- 1)

xSS(t) := B-[(wn? — 0?)-cos(w-t) + 2-{-wn-w-sin(wd- )]

x(t) := xTc(t) + xTs(t) + xSS(t)

Next compute the same response using Runge-Kutta by setting up a
state-space representation, use rkfixed to solve, and save the

solution in x, t vectors

X = {:g} DCE,X) == {—Z-C-mn-xl—wnzx-lxo + fO-cos(m-t)}
Z := rkfixed (X, 0, 6, 2000, D)
t =279 xs :=7°1>
X 1= x(—ts |Change exact solution into a vector for plotting
0.04

A N AN S
WY

—0.02

-0.04 -
t

Figure 2.32 The exact solution (dashed line) and a Runge-Kutta solution (solid
line) plotted on the same graph.

From Figure 2.32, note that the numerical solution and the exact solution are the same.
However, it is always important to remember that the numerical integration yields

only an approximate solution.
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Next the MATLAB code for computing these plots is given. First an M-file is
created with the equation of motion given in first-order form.

function v=Ff(t,x)
m=100; k=2000; c=200; Fo=150; w=10;
v=[x(2); x(1).*-k/m+x(2).*-c/m+Fo/m*cos(w*t)];

Then the following is entered into the command window:

clear all

x0=0.01; vo=0.1; m=100; c=200; k=2000;
Fo=150; w=10;
t=0:0.01:5;

wn=sqrt(k/m);
z=c/(2*sqrt(k*m));
wd=wn*sqrt(1-zA2);
fo=Fo/m;

% Defines one coefficient
B=fo/((WnA2-wA2)A2 + (2*z*wn*w)A2) ;

for i=1l:max(Tength(t))

%Write out equation (2.38) in parts
xTc(i)=exp(-z*wn*t(i)) * (xo-(wnA2-wA2)*B) *cos(wd*t(i));
xTs(i)=exp(-z*wn*t(i)) * ((xo-(wnA2-wA2)*B)*z*wn/wd -
2*%z*wn*wA2/wd*B + vo/wd) * sin(wd*t(i));

xSs (i)=B*((wnA2-wA2)*cos(W*t(i)) + 2*z*wn*w*sin(w*t(i)));
X(i)=xTc(i) +xTs(i) +xSs(i);

end

figure(l)
plot(t,x)

clear all

x0=[0.01; 0.1];
ts=[0 5];
[t,x]=0de45('f',ts,x0);

figure (2)
plot(t,x(:,1))
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In Mathematica, the exact solution and numerical solution are computed and
plotted by the following list of commands.

In[1l] := m = 100;
k = 2000;
c = 200;
x0 = .01;
vo = .1;
\/?
wh = —
m
= _ < .
T 2vkEa
w = 10
od = on*V1 - {?;
FO = 150;
fo = F*0;
m
fo
X = ;
\/(mnz _ w2)2 + Q*{*on* w)z

6 = ArcTan[wn® — o?, 2*{*on* w];

¢ = ArcTan[v0O — X * o * Sin[06] + { * wn *
(x0 — X * Cos[08]), wd * (X0 —X * Cos[06])];
A< x0 = X * Cos[6]

Sin[4]
xanal[t_] = A * Exp[-¢ * on * t] * Sinfod * t + ¢] + X
* Cos[o * t - 0];
numerical = NDSolve[{x"[t] + 2 * { * on * x'[t] + wn? *
x[t] == fO * Cos[w * t], x[0] == x0, x'[0] == vO},
x[t], {t, 0, 5}1;

Plot[{Evaluate[x[t] /. numerical], xanal[t]}, {t, O, 5},
PTotRange — {-0.04, 0.04}]

|

With the ability to compute numerical solutions, either by solving a differen-
tial equation and plotting it or by plotting the analytical solution, comes the abil-
ity to perform parametric studies of the response quickly. Once a response plot is
written into a code, it is a trivial matter to reproduce the plot with new values of
the physical parameters (mass, damping, stiffness, initial conditions, and the driv-
ing force magnitude and frequency). Such parametric studies can be used both to
understand the physical nature of the response and to design. Here design refers to
choosing the physical parameters to obtain a more desirable response. Chapter 5
focuses on design. The following example illustrates how the computer may be used
to determine design parameters.
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Example 2.8.2

An electronics module is mounted on a machine and is modeled as a single-degree-
of-freedom spring, mass, and damper. During normal operation, the module (having a
mass of 100 kg) is subject to a harmonic force of 150 N at 5 rad/s. Because of material
considerations and static deflection, the stiffness is fixed at 500 N/m and the natural
damping in the system is 10 kg/s. The machine starts and stops during its normal opera-
tion, providing initial conditions to the module of x; = 0.0l m and o = 0.5 m/s. The
module must not have an amplitude of vibration larger than 0.2 m even during the tran-
sient stage. First, compute the response by numerical simulation to see if the constraint
is satisfied. If the constraint is not satisfied, find the smallest value of damping that will
keep the deflection less than 0.2 m.

Solution This requires the numerical integration of a second-order differential equa-
tion. Codes for these are given in Example 2.8.1. Use either equation (2.136) or a
Runge-Kutta equivalent to integrate numerically the equation of motion and plot the
result to see if the response is larger than 0.2 m. Here Mathcad is used to generate the
response plot of Figure 2.33.

x0 := 0.01 vOo := 0.5 m := 100 k := 500 c :=10

k c
FO := 150 = \/: =
on m ¢ 2Vk-m
fo := Fo
m
{ =0.022
w =5 wnh = 2.236
x0
X 1= |:v0:|

D(t, X) = Lz-g-mn-xl—mnz-xo+fo-cos(m-t)
Z := rkfixed(X, 0, 40, 4000, D)

t = 20>

x 1= z7<P>

Note from the simulated response that the transient term is larger than the steady
state and has violated the constraint that x(¢) = 0.2 m. Thus the damping must
be increased to bring down the amplitude of the transient response. The design is
performed by simply increasing the value of ¢ in the preceding code and running it
again. This is repeated until the response falls below 0.2 m. Because damping is ex-
pensive to add to a system, the increment of damping at each iteration is very small.
This “design” procedure produces the plot shown in Figure 2.34 for a damping coef-
ficient of ¢ = 195 kg/s (£ = 0.436).

A value of the damping coefficient that is a few kg /s less than 195 kg /s will pro-
duce a response larger than the desired 0.2 m. This is a fairly large value of damping, a
source of concern for the designer.

Next the MATLAB code for computing these plots is given. First an M-file is
created with the equation of motion given in first-order form.
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Figure 2.33 The simulated response for ¢ = 10 kg/s illustrating that the transient
response exceeds 0.2 m.
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Figure 2.34 The simulated response for ¢ = 195 kg/s illustrating that the transient
does not exceed 0.2 m.

function v=Ff(t,x)
m=100; k=500; c=10; Fo=150; w=5;
v=[x(2); x(1).*-k/m+x(2).*-c/m + Fo/m*cos(w*t)];
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Then the following is typed in the command window:
clear all
xo=[0.01; 0.5];
ts=[0 40];

[t,x]=0de45('f',ts,x0);

figure(1)
plot(t,x(:,1))

This is repeated with different values of damping until the desired amplitude is reached.
In Mathematica, the exact solution and numerical solution are computed and

plotted by the following list of commands:

In[1] := m = 100;

k = 500;
c = 10;
x0 .01;
v0 = .5;
k
on = [/—;
m
_ c
¢ = 2 k*m’
o = 5;
od = on*V1 - %
FO = 150;
f0 =@;
m
X = fo

\/(u)nz —w?)? + (2*{*@1*03)2;

s

6 = ArcTan[wn? — 0%, 2 * { * on * o];

¢ = ArcTan[v0 — X* 0 *Sin[06] + {*on* (X0 — X * Cos [6]),
wd* (X0 — X*Cos[6])];
_ X0 — X * Cos[6]
Sin[] ’
xanal[t_] = A* Exp[—{ * on * t] * Sinfwd * t + $] + X
* Cos[w * t —0];
numerical = NDSolve[{x"[t] + 2 * { * on * x'[t] + wn? * x[t] == fO
* Cos[w * t], x[0] == x0, x'[0] == vO}; x[t], {t,0,40}];
Plot[{Evaluate[x[t]/.numerical]l, xanal[t]l}, {t,0,40},
PlotRange — {-4, .4},
PTlotStyle — {RGBColor[1,0,0], RGBColor[0,1,0]3}]
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2.9 NONLINEAR RESPONSE PROPERTIES

The use of numerical integration as introduced in the previous section allows us to
consider the effects of various nonlinear terms in the equation of motion. As noted
in the free-response case discussed in Section 1.10, the introduction of nonlinear
terms generally results in an inability to find exact solutions, so we must rely on
numerical integration and qualitative analysis to understand the response. Several
important differences between linear and nonlinear systems are as follows:

1. A nonlinear system has more than one equilibrium point and each may be
either stable or unstable.

2. Steady-state behavior of a nonlinear system does not always exist, and the nature
of the solution is strongly dependent on the value of the initial conditions.

3. The period of oscillation of a nonlinear system depends on the initial condi-
tions, the amplitude of excitation, and the physical parameters, unlike the lin-
ear response, which depends only on mass, damping, and stiffness values and
is independent from the initial conditions.

4. Resonance in nonlinear systems may occur at excitation frequencies that are
not equal to the linear system’s natural frequency.

5. We cannot use the idea of superposition, used in Section 2.4, in a nonlinear
system.

6. A harmonic excitation may cause a nonlinear system to respond in a nonperi-
odic, or chaotic, motion.

Many of these phenomena are very complex and require analysis skills be-
yond the scope of a first course in vibration. However, some initial understanding
of nonlinear effects in vibration analysis can be observed by using the numerical
solutions covered in the previous section. In this section, several simulations of the
response of nonlinear systems are numerically computed and compared to their
linear counterparts.

Recall from Section 1.10 that, if the equations of motion are nonlinear, the
general single-degree-of-freedom system may be written as

X(t) + flx(@@),x0)] =0 (2.137)

where the function, f, can take on any form, linear or nonlinear. In the forced re-
sponse case considered in this chapter, the equation of motion becomes

X(t) + flx(t), x(t)] = fy coswt (2.138)
Formulating this last expression into the state-space, or first-order, equation (2.138)
takes on the form

x1(1) = x(1)
() = —f(x;, %) + fy coswt (2.139)
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This state-space form of the equation is used for numerical simulation in several of
the codes. By defining the state vector, x = [x;(£), x2(¢)]”, used in equation (1.96)
and a nonlinear vector function F as

X(t
koo =) (2,140
equations (2.139) may now be written in the first-order vector form
x = F(x) + () (2.141)
Equation (2.141) is the forced version of equation (1.116). Here f(¢) is simply
£(r) = [ 0 ] (2.142)
fo coswt

Then the Euler integration method for the equations of motion in the first-order
form becomes

x(t;41) = x(t;) + F[x(#;)]Ar + £(t;) At (2.143)

This expression forms a basic approach to numerically integrating to compute the
forced response of a nonlinear system and is the nonlinear, forced-response version
of equations (1.100) and (2.134).

Nonlinear systems are difficult to analyze numerically as well as analytically.
For this reason, the results of a numerical simulation must be examined carefully.
In fact, using a more sophisticated integration method, such as Runge-Kutta, is
recommended for nonlinear systems. In addition, checks on the numerical results
using qualitative behavior should also be performed whenever possible.

In the following we consider the single-degree-of-freedom system illustrated
in Figure 2.35, with nonlinear spring or damping elements. A series of examples is
presented using numerical simulation to examine the behavior of nonlinear systems
and to compare them to the corresponding linear systems.

Example 2.9.1

Compute the response of the system in Figure 2.35 for the case that the damping is lin-
ear and viscous and the spring is a nonlinear softening spring of the form

fillx) = kx — kyx®

and the system is subject to a harmonic excitation of 1500 N at a frequency of approximately
one-third the natural frequency (0 = w,/2.964) and initial conditions of x, = 0.01 m and

=

k

}
c _® @ ©®

m — F (1)

Figure 2.35 A spring-mass—damper system
with potentially nonlinear elements.
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o = 0.1 m/s. The system has a mass of 100 kg, a damping coefficient of 170 kg/s, and a lin-
ear stiffness coefficient of 2000 N /m. The value of k; is taken to be 520 N /m>. (a) Compute
the solution and compare it to the linear solution (k; = 0). (b) Examine the response for
the case that the driving force is near linear resonance (o = w,,/1.09).

Solution The equation of motion becomes
m¥(t) + cx(t) + kx(t) — kyx*(¢) = 1500 cos wt
Dividing by the mass yields
¥(t) + 2Lw,i(1) + w2x(t) — ax’(f) = 15 coswt
Next, write this equation in state-space form to get
x1() = x(0)
() = —2Llwx(t) — o) + axi(f) + 150 coswt

This last set of equations can be used in MATLAB or Mathcad to integrate numeri-
cally for the time response. Mathematica uses the second-order equation directly.
Figures 2.36 and 2.37 illustrate three plots. The straight line in each is the magnitude
of the linear steady-state response for the parameters given as computed by equation
(2.39). The solid line in each is the response of the nonlinear system, while the dashed
line is the response of the linear system. In case (a), the response of the nonlinear
system exceeds that of the linear system and appears to be in resonance even though
the driving frequency is almost one-third that of the natural frequency. However, in
case (b) for the system near resonance (Figure 2.37), the nonlinear system response

2 —
1L
KL A L A A
5 A ’ \i 2 i;' “ 't,' ‘i [ ' ‘ '4 ‘\
Q (
g
8 Il Il |
< T U 1 1
= of | 10 20 30} ‘ 40
5 I i 1 W \
/ \ i N y ! % \/] \/
-1 4+
72 4

Time, ¢

Figure 2.36 The solid line is a plot of the response of the nonlinear system, the
dashed line is a plot of the response of the linearized system, and the straight dashed
line is the magnitude of the steady-state amplitude of the linear system as given by
equation (2.39) for a driving frequency near one-third of the natural frequency.
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Figure 2.37 The solid line is a plot of the response of the nonlinear system, the
dashed line is a plot of the response of the linearized system, and the straight dashed
line is the magnitude of the steady-state amplitude of the linear system as given by
equation (2.39) for a driving frequency near the natural frequency of the linear system.

is lower in amplitude than the linear system response and appears to be oscillating at
two frequencies. An essential difference between linear and nonlinear systems is that
a harmonically excited nonlinear system may oscillate at frequencies other than the
frequency of excitation.

The codes for numerically simulating and plotting the curves given in Figures 2.36
and 2.37 are given next. In Mathcad the code is

x0 := 0.01 vlo := 0.1 m := 100 k:= 2000 c := 170
a 1= 5.2 FO := 1500
k C FO wn
wh = m 1= i ‘FO-:F ® =S
x0
X '=[v0} Y :=X

D(t,X) := X1

|:72'§'u)n'X1 — o2 Xo + a- (X3 + f0~cos(m-t):|

. Y1
L(E,Y) == |:(—2-§~mn-Yl—wn2-Y0) +f0~cos(m-t):|

Z := rkfixed(X,0,40,4000,D)
t = 2 x 1= Z<1>

W := rkfixed(Y,0,40,4000,L)
f0 —
xL 1= W d(t) : F:=d(t)
\/((»n2 - 0?2+ 2 on-w)?
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In MATLAB the code is

% (a)

clear all

xo=[0.01; 0.17;

ts=[0 40];
[t,x]=0de45('f',ts,x0);
plot(t,x(:,1)); hold on
[t,x1]=o0de45('f1',ts,x0);
plot(t,x1(:,1),'r"'); hold off

function v=Ff(t,x)
m=100; k=2000; k1=0; c=170; Fo=1500; w=sqrt(k/m)/2.964;
v=[x(2); x(1).*-k/m+x(2).*-c/m + x(1)A3*kl/m + Fo/m*cos(w*t)];

function v=f1(t,x)
m=100; k=2000; k1=520; c=170; Fo=1500; w=sqrt(k/m)/2.964;
v=[x(2); x(1).*-k/m+x(2).*-c/m + x(1)A3*kl/m + Fo/m*cos(w*t)];

%(b)

clear all

x0=[0.01; 0.1];

ts=[0 20];
[t,x]=0de45("'f',ts,x0);
figure(2)

plot(t,x(:,1)); hold on
[t,x1]=0de45('fl',ts,x0);
plot(t,x1(:,1),'r"); hold off

function v=f(t,x)
m=100; k=2000; k1=0; c=170; Fo=1500; w=sqrt(k/m)/1.09;
v=[x(2); x(1).*-k/m + x(2).*-c/m + x(1)A3*kl/m + Fo/m*cos(w*t)];

function v=f1(t,x)
m=100; k=2000; k1=520; c=170; Fo=1500; w=sqrt(k/m)/1.09;
v=[x(2); x(1).*-k/m+x(2).*-c/m + x(1)A3*kl/m + Fo/m*cos(w*t)];
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In Mathematica the code is

In[1] := <<PlotlLegends'
In[2] := m = 100;
k = 2000;
c = 170;
FO = 1500;
FO = @;
m
a = 5.2;
\/T
wn = —
m
j— c -
T revioew
x0 = 0.01;
vO = 0.1;
on
T 2.964’
. f0
ssmagnitude = ;
\/(wnz — 02+ QR *L* on* 0)?
In[14] := nonlinear = NDSolve[{x"[t] +2 * { * wn * x'[t] + on?

*x[t] - a* (x[t])? == fO * Cos[w * t], x[0] == X0,
x'[0] == vO0}, x[t], {t, O, 40}, MaxSteps — 2000];
Tinear = NDSolve[{x1"[t]+2 * { * on * x1'[t]+wn?]
* x1[t] == fO * Cos[o * t],
x1[0] == x0, x1'[0] == vO}, x1[t], {t, O, 40},
MaxSteps — 2000];
Plot[{Evaluate[x[t] /. nonlinear],
Evaluate[x1[t] /. linear], ssmagnitude}, {t, 0, 40},
PTlotRange — {-2,2},
PlotStyle — {RGBColor[1,0,0], RGBColor[0O, 1, 0],
RGBColor([0, 0, 113,
PlotLegend — {Nonlinear", "Linear",
"Steady State Amp."}, LegendPosition — {1, 03},
LegemdSize — {1, .3}]

A very important point is that the initial conditions are critical in determining
the nature of the response (recall the pendulum of Example 1.10.4). If the initial posi-
tion and/or velocity are increased, the nonlinear solution will grow without bound and
the numerical integration will fail. On the other hand, the linear solution will still oscil-
late with amplitude less than the straight line in Figures 2.36 and 2.37.

O

Example 2.9.2

Compare the forced response of a system with velocity-squared damping as defined in
equation (2.129) using numerical simulation of the nonlinear equation to that of the
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response of the linear system obtained using equivalent viscous damping as defined by
equation (2.131).

Solution Velocity-squared damping with a linear spring and harmonic input is de-
scribed by equation (2.129), repeated here:

m¥ + asgn(x)i? + kx = F, cosot

The equivalent viscous-damping coefficient is calculated in equation (2.131) to be

Ceq = gaw/\’

The value of the magnitude, X, can be approximated for near resonance conditions.
The value is computed in Example 2.7.3 to be

3mm 0

X =

8aw?

Combining these last two expressions yields an equivalent viscous-damping value of

8ma 0

Ceq 37

Using this value as the damping coefficient results in a linear system of Figure 2.34
that approximates equation (2.131). Figures 2.38 and 2.39 are plots of the linear
system with equivalent viscous damping and a numerical simulation of the full
nonlinear equation (2.129) for two different values of the parameter a depend-
ing on the drag coefficient. Several conclusions can be made from these two plots.

40 —

20 + 3

720 —

—40 -+

Figure 2.38 The displacement of the equivalent viscous damping (dashed line) and the
displacement of the nonlinear system (solid line) versus time for the case of « = 0.005.



Sec. 2.9 Nonlinear Response Properties 195

5__

75 4
t
Figure 2.39 The displacement of the equivalent viscous damping (dashed line) and the
displacement of the nonlinear system (solid line) versus time for the case of « = 0.5.

First, the larger the drag coefficient, the greater the error is in using the concept of
equivalent viscous damping. Second, the frequency of the response looks similar,
but the amplitude of oscillation is greatly overestimated by the equivalent viscous-
damping technique.

The computer codes for solving and plotting both the linear and nonlinear equa-
tions follow.

The code in Mathcad is
m := 10 k := 200 a = .0050 FO := 150
on = k f0 _fo o 1= 1l-on ceq := 8amf0
m m 3-m
ceq 1
= = Y 1= X
¢ 2Vk-m |:0 1:|
X1
‘o X
DCE.X) —on?-Xo — o+ (X2t + F0+ cos (- t)
m [ X1

. Y1
L(E,Y) == |:(—2-§~mn-Yl—wn2-Y0) +f0~cos(m~t):|
Z := rkfixed(X, 0, 40, 2000, D)
t: = 70> X 1= Z<b> W := rkfixed(Y, 0, 40, 2000, L)

xL 1= W<
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The MATLAB code consists of the following commands and M-files:
% «=0.005
clear all

xo=[1; 0.1];

ts=[0 20];
[t,x]=0de45('f',ts,x0);
figure(l)

plot(t,x(:,1)); hold on
[t,x1]=0ded45('f1l',ts,x0);
plot(t,x1(:,1),'r"); hold off

function v=Ff(t,x)

m=10; k=200; alpha=0.005; Fo=150; w=sqrt(k/m);
ceg=sqrt(8*m*alpha*Fo/m/3/pi);

v=[x(2); x(1).*-k/m+x(2).*-ceq/m + Fo/m*cos(w*t)];

function v=Ff1(t,x)
m=10; k=200; alpha=0.005; Fo=150; w=sqrt(k/m);
v=[x(2); x(1).*-k/m + x(2)A2.*-alpha/m * sign(x(2)) + Fo/m*cos(w*t)];

The Mathematica code is

In[1] := <<PlotLegends'
In[2] :=m = 10;

k = 200;

FO = 150;

fo = Eg;
m

In[13] := velsquared = NDSolve[{x''[t] + 2w Sign[x'[t]] * (x'[t])?
+ on? ¥ x[t] == fO * Cos[w*t] x[0] == xO0,
x'[0] == vO0}, x[t], {t, O, 20}, MaxSteps — 2000];
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2

N

equivdamping = NDSolve[{xeq''[t] + 2 * { * on
* xeq[t] == f0 * Cos[w * t],
xeq[0] == x0, xeq’[0] == v0}, xeq[t], {t, 0, 20},
MaxSteps — 2000];

Plot[{Evaluate[x[t] /. velsquared],
Evaluate[xeq[t] /. equivdamping]l}, {t, 0, 20},
PTotRange — {-40, 40},

PlotStyle — {RGBColor[1l, O, 0], RGBColor[O, 1, 0],
RGBColor[0, 0, 1]},

PlotLegend — {"Velocity Squared", "Equivalent Damping",
LegendPosition — {1, 0}, LegendSize — {1, .3}]

xeq'[t] + on

PROBLEMS

Those problems marked with an asterisk are intended to be solved using computational
software.

Section 2.1 (Problems 2.1 through 2.19)

2.1. The forced response of a single-degree-of-freedom, spring—mass system is modeled by
(assume the units are Newtons)

3%(f) + 12x(f) = 3 cos wt

Compute the magnitude of the forced response for the two cases o = 2.1 rad/s and
o = 2.5 rad/sec. Comment on why one value is larger then the other.

2.2. Consider the forced response of a single-degree-of-freedom, spring—mass system that
is modeled by (assume the units are Newtons)

3%(¢) + 12x(¢) = 3 cos wt

Compute the total response of the system if the driving frequency is 2.5 rad/s and the
initial position and velocity are both zero.

2.3. Compute the response of a spring-mass system modeled by equation (2.2) to a force of
magnitude 23 N, driving frequency of twice the natural frequency, and initial conditions
given by xo = 0 m and v, = 0.2 m/s. The mass of the system is 10 kg, the spring stiff-
ness is 1000 N /m, and the mass of the spring is considered and known to be 1 kg. What
percent does the natural frequency change if the mass of the spring is not taken into
consideration?

coswt — cos m,,z] can be written

2.4. Show that the solution x(f) = fioz [
o)

(1)2—

n

0 fo in ot + w,t in W, — ot
() =
2(0? — 0?) 2 2

n
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2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

Response to Harmonic Excitation Chap. 2

A spring-mass system is driven from rest harmonically such that the displacement
response exhibits a beat of period of 0.21 s. The period of oscillation is measured to be
0.027 s. Calculate the natural frequency and the driving frequency of the system.

An airplane wing modeled as a spring-mass system with natural frequency 40 Hz is
driven harmonically by the rotation of its engines at 39.9 Hz. Calculate the period of
the resulting beat.

Compute the total response of a spring-mass system with the following values: k
1000 N/m,m = 10 kg, subject to a harmonic force of magnitude /) = 100 N and fre-
quency of 8.162 rad/s, and initial conditions given by x; = 0.01 m and vy = 0.01 m/s.
Plot the response.

Consider the system in Figure P2.8, write the equation of motion, and calculate the
response assuming (a) that the system is initially at rest, and (b) that the system has an
initial displacement of 0.05 m.

= x(2)

—» 10sin 10N

Friction-
free

2000Nm  @E) @@ surface

Figure P2.8

Consider the system in Figure P2.9, write the equation of motion, and calculate the
response assuming that the system is initially at rest for the values k; = 100 N/m,
k, = 500 N/m,and m = 89 kg.

ky ks
m fF—— 10sin10rN

S —

Figure P2.9

Consider the system in Figure P2.10, write the equation of motion, and calculate the re-
sponse assuming that the system is initially at rest for the values 6 = 30°,k = 1000 N/m,
and m = 50 kg.

90 sin 2.5t N

Figure P2.10
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2.11.

2.12.

2.13.

2.14.

Compute the initial conditions such that the response of
mX + kx = Fycosot

oscillates at only one frequency, (o).

The natural frequency of a 65-kg person illustrated in Figure P2.12 is measured along
vertical, or longitudinal, direction to be 4.5 Hz. (a) What is the effective stiffness of this
person in the longitudinal direction? (b) If the person, 1.8 m in length and 0.58 m? in cross-
sectional area, is modeled as a thin bar, what is the modulus of elasticity for this system?

x(1)

!

Figure P2.12 The longitudinal vibration of a person.

If the person in Problem 2.12 is standing on a floor vibrating at 4.49 Hz with an amplitude
of 1 N (very small), what longitudinal displacement would the person “feel”? Assume that
the initial conditions are zero.

Vibration of body parts is a significant problem in designing machines and structures.
A jackhammer provides a harmonic input to the operator’s arm. To model this situa-
tion, treat the forearm as a compound pendulum subject to a harmonic excitation (say
of mass 6 kg and length 44.2 cm) as illustrated in Figure P2.14. Consider point O as a
fixed pivot. Compute the maximum deflection of the hand end of the arm if the jack-
hammer applies a force of 10 N at 2 Hz.

Fcos wt

Figure P2.14 A vibration model of a forearm driven by a jackhammer.
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2.15.

2.16.

2.17.
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An airfoil is mounted in a wind tunnel for the purpose of studying the aerodynamic
properties of the airfoil’s shape. A simple model of this is illustrated in Figure P2.15
as a rigid inertial body mounted on a rotational spring fixed to the floor with a rigid
support. Find a design relationship for the spring stiffness, k, in terms of the rotational
inertia, J; the magnitude of the applied moment, My; and the driving frequency, o, that
will keep the magnitude of the angular deflection less then 5°. Assume that the initial
conditions are zero and that the driving frequency is such that w2 — »* > 0.

u(t) = Mycos ot

Figure P2.15 A vibration model of a wing in a wind tunnel.

The spar of an airplane wing is a relatively rigid beam extending along the length of
the wing inside the wing to provide strength. It is typical to model a spar as a cantilever
beam with the fixed end at the body of the aircraft. An example is given in Figure P2.16.
Using the modeling methods given in Section 1.5, determine a single-degree-of-freedom
model for the spar and compute its natural frequency. The spar here is modeled as a
cantilever beam of dimensions length 560 mm, width 38 mm, and thickness 3.175 mm,
and has a mass of 13.975 grams. The beam’s Young’s modulus is 10.29 GPa and its shear

modulus is 1.65 GPa.

Figure P2.16 A small, unmanned air vehicle with a rigid spar, modeled as a beam.

Compute the response of a shaft-and-disk system to an applied moment of
M = 10sin312¢

as indicated in Figure P2.17 Assume that the shaft is initially at rest (zero initial condi-
tions) and J = 0.5 kg m?, the shear modulus is G = 8 X 10!° N/m?, the shaft is 1 m
long of diameter 5 cm, and made of steel.
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2.18.

2.19.

k
J ¥
w 10 sin 312¢

Figure P2.17

Fixed base

Consider a spring—mass system with zero initial conditions described by
X(t) + 4x(f) = 12 cos 2t, x(0) = 0,x(0) =0

and compute the form of the response of the system.

Consider a spring—mass system with zero initial conditions described by
X(t) + 4x(f) = 10sin 5¢, x(0) = 0,x(0) =0

and compute the form of the response of the system.

Section 2.2 (Problems 2.20 through 2.38)

2.20.

2.21.

2.22.

2.23.

2.24.

2.25.

Calculate the constants A and ¢ for arbitrary initial conditions, xy and , in the case of
the forced response given by

x(t) = Ae "' sin (o4t + ¢) + X cos (of — 0)
Compare this solution to the transient response obtained in the case of no forcing func-
tion (i.e., Fy = 0).
Consider the spring—mass—damper system defined by (use basic SI units)
4%(t) + 24x(t) + 100x(¢) = 16 cos 5t
First, determine if the system is underdamped, critically damped, or overdamped. Then

compute the magnitude and phase of the steady-state response.

Show that the following two expressions are equivalent:

x,(t) = X cos(wt — 0) and x, (1) = A, cos wt + B, sin wt

Calculate the total solution of
¥+ 2wk + wix = f)cosot
for the case that m = 1kg,{ = 0.01, w, = 2rad/s, fy = 3N/kg, and o = 10rad/s,

with initial conditions x, = 1 m and vy, = 1 m/s, and then plot the response.

A 100-kg mass is suspended by a spring of stiffness 30 X 10° N/m with a viscous-
damping constant of 1000 Ns/m. The mass is initially at rest and in equilibrium.
Calculate the steady-state displacement amplitude and phase if the mass is excited by a
harmonic force of 80 N at 3 Hz.

Plot the total solution of the system of Problem 2.24 including the transient.
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2.26.

2.27.

2.28.

2.29.
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A damped spring-mass system modeled by (units are Newtons)
100x(¢) + 10x(r) + 1700x(f) = 1000 cos 4t

is also subject to initial conditions: xy = 1 mm and , = 20 mm/s. Compute the total
response, x(t), of the system.

Consider the pendulum mechanism of Figure P2.27 which is pivoted at point O.
Calculate both the damped and undamped natural frequency of the system for small
angles. Assume that the mass of the rod, spring, and damper are negligible. What driv-
ing frequency will cause resonance?

k
i
I, = 0.05m
b
P
L, =0.07m
\
SN

[=010m| @ = \

@<— F(1)

Figure P2.27

Consider the pivoted mechanism of Figure P2.27 with k = 4 X 10° N/m, [; = 0.05m,
I, = 0.07m,/ = 0.10 m, and m = 40 kg. The mass of the beam is 40 kg. It is pivoted
at point 0 and assumed to be rigid. Design the dashpot (i.e., calculate c¢) so that the
damping ratio of the system is 0.2. Also determine the amplitude of vibration of the
steady-state response if a 10-N force is applied to the mass, as indicated in the figure, at
a frequency of 10 rad/s.

Compute the response of a shaft-and-disk system to an applied moment of
M = 10sin 312¢

as indicated in Figure P2.29. Assume that the shaft is initially at rest (zero initial condi-
tions) andJ = 0.5 kg m?, the shear modulusis G = 8 X 10!'N / m?, the shaft is 1-m long
of diameter 5 cm, and made of steel. Assume the damping ratio of steel is { = 0.01.

k

J 7,

wlo sin 312¢

Figure P2.29

Fixed base
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2.30.

2.31.

2.32.

2.33.

2.34.

2.35.

Compute the forced response of a spring-mass—damper system with the following
values: ¢ = 200 kg/s,k = 2000 N/m,m = 100 kg, subject to a harmonic force of mag-
nitude Fy = 15 N and frequency of 10 rad/s and initial conditions of x, = 0.01 m and
vy = 0.1m/s. Plot the response. How long does it take for the transient part to die off?

Compute a value of the damping coefficient, ¢, such that the steady-state response am-
plitude of the system in Figure P2.31 is 0.01 m.

= x(2)

c
100 kg — 20 cos 6.3t N

Friction-
free

2,000 N/m @) @@ surface

Figure P2.31

Consider a spring—-mass—damper system like the one in Figure P2.31 with the follow-
ing values: m = 100 kg, ¢ = 100 kg/s, k = 3000 N/m, F, = 25 N, and the driving
frequency o = 5.47 rad/s. Compute the magnitude of the steady-state response and
compare it to the magnitude of the forced response of an undamped system.

Compute the response of the system in Figure P2.33 if the system is initially at rest for
the values k; = 100 N/m, k, = 500 N/m, c = 20 kg/s,and m = 89 kg.

ky ky
m | 25cos3t

! — S o —

Figure P2.33
Write the equation of motion for the system given in Figure P2.34 for the case that

F(t) = Fcoswt and the surface is friction free. Does the angle 6 affect the magnitude
of oscillation?

F(r)

Figure P2.34

A foot pedal for a musical instrument is modeled by the sketch in Figure P2.35:
k =2000 N/m, ¢ = 25 kg/s, m = 25 kg, and F(f) = 50 cos2mt N. Compute the
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steady-state response assuming the system starts from rest. Also use the small-angle
approximation.

E(1)
= 0.05m 0.05m 0.05m l
0) .
k c LH
Figure P2.35

2.36. Consider the system of Problem 2.15, repeated here as Figure P2.36 with the effects

of damping indicated. The physical constants are J = 25 kg m?, k = 2000 Nm/rad,
and the applied moment is 5 Nm at 1.432 Hz acting through the distance » = 0.5 m.
Compute the magnitude of the steady-state response if the measured damping ratio
of the spring system is { = 0.01. Compare this to the response for the case where the
damping is not modeled ({ = 0).

u(t) = My cos wt

Figure P2.36 Model of an airfoil in a wind tunnel including the effects of damping.

2.37. A machine, modeled as a linear spring—mass—damper system, is driven at resonance

(0, = ® = 2 rad/s). Design a damper (that is, choose a value of ¢) such that the
maximum deflection at steady state is 0.05 m. The machine is modeled as having a
stiffness of 2000 kg/m, and the excitation force has a magnitude of 100 N.

2.38. Derive the total response of the system to initial conditions xy and ( using the homo-

genous solution in the form x,(f) = e (A sinw,t + A, cosw,t) and hence verify
equation (2.38) for the forced response of an underdamped system.

Section 2.3 (Problems 2.39 through 2.44)
2.39. Referring to Figure 2.11, draw the solution for the magnitude X for the case m = 100 kg,

¢ = 4000 N s/m, and £k = 10,000 N/m. Assume that the system is driven at resonance by
a 10-N force.
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2.40.

2.41.

2.42.

2.43.

2.44.

Use the graphical method to compute the phase shift for the system with m = 100 kg,
¢ = 4000Ns/m,k = 10,000 N/m, and Fy; = 10N, if ® = o,/2 and again for the case
o = 2m,.

A body of mass 100 kg is suspended by a spring of stiffness of 30 kN /m and dashpot of
damping constant 1000 N s/m. Vibration is excited by a harmonic force of amplitude
80 N and a frequency of 3 Hz. Calculate the amplitude of the displacement for the
vibration and the phase angle between the displacement and the excitation force using
the graphical method.

Calculate the real part of equation (2.55)
)
[(k - mooz)2 + (cu))z]V2

Jj(wt=6)

() =

to verify that this is consistent with the equation (2.36)

fo
! \/(u)%, - w2)2 + (2§w,,w)2

and hence establish the equivalence of the exponential approach to solving the
damped vibration problem with method of undetermined coefficients.

Referring to equation (2.56)
Fos

(ms2 +cs + k)X(s) = R

and a table of Laplace transforms (see Appendix B), calculate the solution x(¢) by us-
ing a table of Laplace transform pairs, and show that the solution obtained this way is
equivalent to (2.36).

Solve the following system using the Laplace transform method and the table in
Appendix B:

mx(t) + kx(tf) = Fycoswt, x(0) = xp, x(0) = v,

Check your solution against equation (2.11) obtained via the method of undetermined
coefficients.

Section 2.4 (Problems 2.45 through 2.60)

2.45.

2.46.

For a base motion system described by
mX + cx + kx = cYowp, coswyt + kY sinwpt

with m = 100 kg, ¢ = 50 kg/s, kK = 1000 N/m, Y = 0.03 m, and w;, = 3 rad/s, com-
pute the magnitude of the particular solution. Last, compute the transmissibility ratio.

For a base motion system described by
mx + cx + kx = cYw, coswyt + kY sinwpt

withm = 100kg,c = S0N/m,Y = 0.03 m, and w, = 3 rad/s, find largest value of the
stiffness k£ and that makes the transmissibility ratio less than 0.75.
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2.47. A machine weighing 2000 N rests on a support as illustrated in Figure P2.47 The sup-

2.48.

2.49.

2.50.

port deflects about 5 cm as a result of the weight of the machine. The floor under the
support is somewhat flexible and moves, because of the motion of a nearby machine,
harmonically near resonance (r = 1) with an amplitude of 0.2 cm. Model the floor as
base motion, assume a damping ratio of { = 0.01, and calculate the transmitted force
and the amplitude of the transmitted displacement.

Rubber mount Machine of mass m B _ . .
modeled as a ﬁA = Static deflection
stiffness k and

=

Flexible floor T
y()

Figure P2.47

Derive equation (2.70)

B 1+ () 172
X= {(1 - r2)2 + (2§r)2}
from (2.68)

w2 + (2Lwp)?
xp(t)=mnY{( : (28orp)

1/2
cos(wpt — 6y — 0
W, — w%)Z + (2Cwn(’)b)2:| ( ’ ' 2)

to see if the author has done it correctly.

From the equation describing Figure 2.14, show that the point (2, 1) corresponds to
the value TR > 1 (i.e., forall r < V2, TR > 1).

Consider the base-excitation problem for the configuration shown in Figure P2.50. In this
case, the base motion is a displacement transmitted through a dashpot or pure damping
element. Derive an expression for the force transmitted to the support in steady state.

N N\ Support

T x(1)
I

T‘ ¢ Ty(t) =Y sin wpt

L 1

Figure P2.50
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2.51.

2.52

2.53.

2.54.

2.55.

2.56.

2.57.

A very common example of base motion is the single-degree-of-freedom model of
an automobile driving over a rough road. The road is modeled as providing a base
motion displacement of y(f) = (0.01)sin(5.818f) m. The suspension provides an
equivalent stiffness of k = 3.273 X 10* N /m, a damping coefficient of ¢ = 231 kg/s,
and a mass of 1007 kg. Determine the amplitude of the absolute displacement of the
automobile mass.

A vibrating mass of 300 kg mounted on a massless support by a spring of stiffness
40,000 N/m and a damper of unknown damping coefficient is observed to vibrate
with a 10-mm amplitude while the support vibration has a maximum amplitude of only
2.5 mm (at resonance). Calculate the damping constant and the amplitude of the force
on the base.

Referring to Example 2.4.2, at what speed does Car 1 experience resonance? At what
speed does Car 2 experience resonance? Calculate the maximum deflection of both
cars at resonance.

For cars of Example 2.4.2, calculate the best choice of the damping coefficient so that the
transmissibility is as small as possible by comparing the magnitude of { = 0.01,{ = 0.1,
and { = 0.2 for the case r = 2. What happens if the road “frequency” changes?

A system modeled by Figure 2.13, has a mass of 225 kg with a spring stiffness of
3.5 X 10* N/m. Calculate the damping coefficient, given that the system has a deflec-
tion (X) of 0.7 cm when driven at its natural frequency while the base amplitude (Y)
is measured to be 0.3 cm.

Consider Example 2.4.2 for Car 1 illustrated in Figure P2.56 if three passengers total-
ing 200 kg are riding in the car. Calculate the effect of the mass of the passengers on
the deflection at 20, 80, 100, and 150 km /h. What is the effect of the added passenger
mass on Car 27

y(®)

Figure P2.56 A model of a car suspension with the mass of the occupants,
my, included.

Consider Example 2.4.2. Choose values of ¢ and k for the suspension system for Car 2 (the
sedan) such that the amplitude transmitted to the passenger compartment is as small as
possible for the 1-cm bump at 50 km /h. Also calculate the deflection at 100 km/h for your
values of ¢ and k.
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2.58.

2.59.

2.60.
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Consider the base motion problem of Figure 2.13. (a) Compute the damping ratio needed
to keep the displacement magnitude transmissibility less than 0.55 for a frequency ratio
of r = 1.8. (b) What is the value of the force transmissibility ratio for this system?

Consider the effect of variable mass on an aircraft landing suspension system by mod-
eling the landing gear as a moving base problem similar to that shown in Figure P2.56
for a car suspension. The mass of a regional jet is 13,236 kg empty and its maximum
takeoff mass is 21,523 kg. Compare the maximum deflection for a wheel motion of
magnitude 0.50 m and frequency of 35 rad/s for these two different masses. Take the
damping ratio to be { = 0.1 and the stiffness to be 4.22 X 105 N/m.

Consider the simple model of a building subject to ground motion suggested in Figure
P2.60. The building is modeled as a single-degree-of-freedom spring—-mass system
where the building mass is lumped atop two beams used to model the walls of the
building in bending. Assume the ground motion is modeled as having amplitude of
0.1 m at a frequency of 75 rad/s. Approximate the building mass by 10° kg and the
stiffness of each wall by 3.519 X 10°® N/m. Compute the magnitude of the deflection
of the top of the building.

= x(
]

_3EI'||, _3EI

—y(1)

Figure P2.60 A simple model of a building subject to ground motion, such
as an earthquake.

Section 2.5 (Problems 2.61 through 2.68)

2.61. A lathe can be modeled as an electric motor mounted on a steel table. The table plus the

2.62.

2.63.

motor have a mass of 50 kg. The rotating parts of the lathe have a mass of 5 kg at a distance
0.1 m from the center. The damping ratio of the system is measured to be { = 0.06 (viscous
damping) and its natural frequency is 75 Hz. Calculate the amplitude of the steady-state
displacement of the motor, assuming o, = 30 Hz.

The system of Figure 2.19 produces a forced oscillation of varying frequency. As the
frequency is changed, it is noted that at resonance the amplitude of the displace-
ment is 10 mm. As the frequency is increased several decades past resonance, the
amplitude of the displacement remains fixed at 1 mm. Estimate the damping ratio
for the system.

An electric motor (Figure P2.63) has an eccentric mass of 10 kg (10% of the total
mass of 100 kg) and is set on two identical springs (k = 3200/m). The motor runs at
1750 rpm, and the mass eccentricity is 100 mm from the center. The springs are
mounted 250 mm apart with the motor shaft in the center. Neglect damping and deter-
mine the amplitude of the vertical vibration.
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2.64.

2.65.

2.66.

2.67.
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e=0.1m
ot Kk =3200N/m
r _
m = 10kg

p 4 7/

1

1

I<—>
125mm ' 125 mm

Consider a system with rotating unbalance as illustrated in Figure P2.63. Suppose the
deflection at 1750 rpm is measured to be 0.05 m and the damping ratio is measured to
be { = 0.1. The out-of-balance mass is estimated to be 10%. Locate the unbalanced
mass by computing e.

Figure P2.63 A vibration model for an
electric motor with an unbalance.

A fan of 45 kg has an unbalance that creates a harmonic force. A spring-damper system
is designed to minimize the force transmitted to the base of the fan. A damper is used
having a damping ratio of { = 0.2. Calculate the required spring stiffness so that only
10% of the force is transmitted to the ground when the fan is running at 10,000 rpm.

Plot the normalized displacement magnitude versus the frequency ratio for the out-of-
balance problem (i.e., repeat Figure 2.21) for the case of { = 0.05.

Consider a typical unbalanced machine problem as given in Figure P2.67 with a ma-
chine mass of 120 kg, a mount stiffness of 800 kN /m, and a damping value of 500 kg /s.

Guide Guide
. x(1)
Machine of total mass m
N T R N
M e /3N M
/ o\ §
i T RREEEEE -
N N
\ AN O\
s - T - Friction-free
e Rubber floor mounting || | ~~
k . c N surface
N modeled as a spring ]
Sog and a damper o

Figure P2.67 A typical unbalance machine problem.
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The out-of-balance force is measured to be 374 N at a running speed of 3000 rev/min.
(a) Determine the amplitude of motion due to the out-of-balance force. (b) If the out-
of-balance mass is estimated to be 1% of the total mass, estimate the value of e.

Plot the response of the mass in Problem 2.67 assuming zero initial conditions.

Section 2.6 (Problems 2.69 through 2.72)

2.69.

2.70.

2.71.

2.72.

Calculate damping and stiffness coefficients for the accelerometer of Figure 2.24 with mov-
ing mass of 0.04 kg such that the accelerometer is able to measure vibration between 0 and
50 Hz within 5%. (Hint: For an accelerometer it is desirable for Z/w3Y = constant.)

The damping constant for a particular accelerometer of the type illustrated in Figure 2.26
is 50 N's/m. It is desired to design the accelerometer (i.e., choose m and k) for a maximum
error of 3% over the frequency range 0 to 75 Hz.

The accelerometer of Figure 2.24 has a natural frequency of 120 kHz and a damping
ratio of 0.2. Calculate the error in measurement of a sinusoidal vibration at 60 kHz.

Design an accelerometer (i.e., choose m, ¢, and k) configured as in Figure 2.24 with
very small mass that will be accurate to 1% over the frequency range 0 to 50 Hz.

Section 2.7 (Problems 2.73 through 2.89)

2.73.

2.74.

2.75.

2.76.

2.77.

2.78.

2.79.

Consider a spring-mass sliding along a surface providing Coulomb friction, with stiff-
ness 1.2 X 10* N/m and mass 10 kg, driven harmonically by a force of 50 N at 10 Hz.
Calculate the approximate amplitude of steady-state motion assuming that both the
mass and the surface that it slides on are made of lubricated steel.

A spring—mass system with Coulomb damping of 10 kg, stiffness of 2000 N /m, and co-
efficient of friction of 0.1 is driven harmonically at 10 Hz. The amplitude at steady state
is 5 cm. Calculate the magnitude of the driving force.

A system of mass 10 kg and stiffness 1.5 X 10* N/m is subject to Coulomb damping.
If the mass is driven harmonically by a 90-N force at 25 Hz, determine the equivalent
viscous-damping coefficient if the coefficient of friction is 0.1.

a. Plot the free response of the system of Problem 2.75 to initial conditions of x(0) = 0
and %(0) = |F/m| = 9 m/s using the solution in Section 1.10.

b. Use the equivalent viscous-damping coefficient calculated in Problem 2.75 and plot the
free response of the “equivalent” viscously damped system to the same initial conditions.

Referring to the system of Example 2.7.1; a spring—mass system with sliding friction
described by equation (2.97) with stiffness k = 1.5 X 10* N/m, driving harmonically
a 10-kg mass by a force of 90 N at 25 Hz, calculate how large the magnitude of the
driving force must be to sustain motion if the steel is lubricated. How large must this
magnitude be if the lubrication is removed?

Calculate the phase shift between the driving force and the response for the system of
Problem 2.77 using the equivalent viscous-damping approximation.

Derive the equation of vibration for the system of Figure P2.79 assuming that a viscous
dashpot of damping constant c is connected in parallel to the spring. Calculate the en-
ergy loss and determine the magnitude and phase relationships for the forced response
of the equivalent viscous system.
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k x(1)
m [ Focoswt
Coulomb
c friction
Figure P2.79

2.80.

2.81.

2.82.

2.83.

2.84.

2.85.

2.86.

2.87.

2.88.

2.89.

A system of unknown damping mechanism is driven harmonically at 10 Hz with an
adjustable magnitude. The magnitude is changed, and the energy lost per cycle and
amplitudes are measured for five different magnitudes. The measured quantities are

AE(T) | 025 045 08 116 3.0

X(M) | 0.01 0.02 0.04 0.08 0.15

Is the damping viscous or Coulomb?
Calculate the equivalent loss factor for a system with Coulomb damping.

A spring-mass system (m = 10kg, k = 4 X 10°N /m) vibrates horizontally on a surface
with coefficient of friction p = 0.15. When excited harmonically at 5 Hz, the steady-state
displacement of the mass is 5 cm. Calculate the amplitude of the harmonic force applied.

Calculate the displacement for a system with air damping using the equivalent viscous-
damping method.

Calculate the semimajor and semiminor axis of the ellipse of equation (2.119). Then
calculate the area of the ellipse. Use ¢ = 10kg/s, 0 = 2rad/s,and X = 0.01 m.

The area of a force deflection curve of Figure 2.29 is measured to be 2.5 N+ m, and
the maximum deflection is measured to be 8 mm. From the “slope” of the ellipse, the
stiffness is estimated to be 5 X 10* N /m. Calculate the hysteretic damping coefficient.
What is the equivalent viscous damping if the system is driven at 10 Hz?

The area of the hysteresis loop of a hysterically damped system is measured to be
5 N-m and the maximum deflection is measured to be 1 cm. Calculate the equiva-
lent viscous-damping coefficient for a 20-Hz driving force. Plot c.q,versus o for
27 = o = 1007 rad/s.

Calculate the nonconservative energy of a system subject to both viscous and hyster-
etic damping.

Derive a formula for equivalent viscous damping for the damping force of the form,
F; = c(x)", where n is an integer.

Using the equivalent viscous-damping formulation, determine an expression for the

steady-state amplitude under harmonic excitation for a system with both Coulomb and
viscous damping present.

Section 2.8 (Problems 2.90 through 2.96)

*2.90.

Numerically integrate and plot the response of an underdamped system determined
by m = 100 kg, k = 20,000 N/m, and ¢ = 200 kg /s, subject to the initial conditions of
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*2.91.

*2.92.

*2.93.

*2.94.

*2.95.
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xop = 0.0l mand , = 0.1 m/s, and the applied force F(t) = 150 cos 5t. Then plot the
exact response as computed by equation (2.33). Compare the plot of the exact solution
to the numerical simulation.

Numerically integrate and plot the response of an underdamped system determined by
m = 150 kg and k = 4000 N/m, subject to the initial conditions of x; = 0.01 m and
vy = 0.1 m/s, and the applied force F(f) = 15 cos 10z, for various values of the damp-
ing coefficient. Use this “program” to determine a value of damping that causes the
transient term to die out within 3 seconds. Try to find the smallest such value of damp-
ing remembering that added damping is usually expensive.

Compute the total response of a spring-mass system with values £ = 1000 N/m,
m = 10 kg, subject to a harmonic force of magnitude Fy = 100 N and frequency
of 8.162 rad/s, and initial conditions given by xy; = 0.01 m and ( = 0.01 m/s, by
numerically integrating rather than using analytical expressions, as was done in
Problem 2.7 Plot the response.

A foot pedal for a musical instrument is modeled by the sketch in Figure P2.93. With
k = 2000 N/m,c = 25 kg/s,m = 25 kg, and F(f) = 50 cos 2t N, numerically simulate
the response of the system assuming the system starts from rest. Use the small-angle
approximation.

F(1)
- 0.05 m 0.05 m 0.05 m 1
O) ‘ N
k c L‘J
Figure P2.93

Numerically integrate and plot the response of an underdamped system determined
by m = 100 kg, kK = 2000 N/m, and ¢ = 200 kg/s, subject to the applied force F(f) =
150 cos 10t for the following sets of initial conditions:

(@ xg=00mand (= 0.1m/s

(b) xg=00lmand (= 00m/s

(¢) xg=005mand 5= 0.0m/s

(d) xo=00mand o= 05m/s

Plot these responses on the same graph and note the effects of the initial conditions on
the transient part of the response.

A DVD drive is mounted on a chassis and is modeled as a single-degree-of-freedom
spring, mass, and damper. During normal operation, the drive (having a mass of 0.4 kg)
is subject to a harmonic force of 1 N at 10 rad/s. Because of material considerations
and static deflection, the stiffness is fixed at 500 N/m and the natural damping in the
system is 10 kg /s. The DVD player starts and stops during its normal operation provid-
ing initial conditions to the module of xy; = 0.001 m and ( = 0.5 m/s. The DVD drive
must not have an amplitude of vibration larger then 0.008 m even during the transient
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2.96.

stage. First, compute the response by numerical simulation to see if the constraint is
satisfied. If the constraint is not satisfied, find the smallest value of damping that will
keep the deflection less than 0.008 m.

Use a plotting routine to examine the base motion problem (see Figure 2.13) by plotting
the particular solution (for an undamped system) for the three cases £ = 1500 N/m,
k = 2500 N/m, and k = 700 N/m. Also note the values of the three frequency ratios
and the corresponding amplitude of vibration of each case compared to the input. Use
the following values: o, = 4.4 rad/s,m = 100kg,and Y = 0.05 m.

Section 2.9 (Problems 2.97 through 2.102)

*2.97.

*2.98.

*2.99.

Compute the response of the system in Figure P2.93 for the case that the damping is
linear viscous, the spring is a nonlinear soft spring of the form

k(x) = kx — kgx®

and the system is subject to a harmonic excitation of 300 N at a frequency of approxi-
mately one third the natural frequency (o = w, /3) and initial conditions of x; = 0.01 m
and o = 0.1 m/s. The system has a mass of 100 kg, a damping coefficient of 170 kg/s,
and a linear stiffness coefficient of 2000 N /m. The value of k; is taken to be 10,000 N /m?>.
Compute the solution and compare it to the linear solution (k; = 0). Which system has
the largest magnitude?

Compute the response of the system in Figure P2.97 for the case that the damping is
linear viscous, the spring is a nonlinear hard spring of the form
k(x) = kx + kx®

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the
natural frequency (w = w,) and initial conditions of x, = 0.0l m and , = 0.1 m/s. The
system has a mass of 100 kg, a damping coefficient of 170 kg /s, and a linear stiffness coef-
ficient of 2000 N /m. The value of k; is taken to be 10,000 N/m>. Compute the solution
and compare it to the linear solution (k; = 0). Which system has the largest magnitude?

F~x ()

m — F (1)

c _ @ ® ®

Figure P2.97

Compute the response of the system in Figure P2.97 for the case that the damping is
linear viscous, the spring is a nonlinear soft spring of the form

k(x) = kx — kyx®

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the
natural frequency (w = ,) and initial conditions of xy = 0.01 m and ( = 0.1 m/s.
The system has a mass of 100 kg, a damping coefficient of 15 kg/s, and a linear stiffness
coefficient of 2000 N/m. The value of k; is taken to be 100 N/m>. Compute the solu-
tion and compare it to the hard spring solution (k(x) = kx + k;x°).
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*2.100. Compute the response of the system in Figure P2.97 for the case that the damping is
linear viscous, the spring is a nonlinear soft spring of the form

k(x) = kx — kyx®

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the
natural frequency (w = w,) and initial conditions of x) = 0.01 m and ( = 0.1 m/s.
The system has a mass of 100 kg, a damping coefficient of 15 kg/s, and a linear stiffness
coefficient of 2000 N /m. The value of k; is taken to be 1000 N/m?>. Compute the solu-
tion and compare it to the quadratic soft spring (k(x) = kx + k;x?).

*2,101. Compare the forced response of a system with velocity-squared damping with equa-
tion of motion given by

m¥ + asgn(x)i> + kx = F,coswt

using numerical simulation of the nonlinear equation to that of the response of the lin-
ear system obtained using equivalent viscous damping as defined by equation (2.131)

= —awX

Ceq 3

Use as initial conditions, x) = 0.01 m and ( = 0.1 m/s with a mass of 10 kg, stiffness
of 25 N /m, applied force of 150 cos (w,t), and drag coefficient of « = 250.

*2.102. Compare the forced response of a system with structural damping (see Table 2.2) using
numerical simulation of the nonlinear equation to that of the response of the linear
system obtained using equivalent viscous damping as defined in Table 2.2. Use as initial
conditions, x) = 0.0l mand = 0.1 m/s with a mass of 10 kg, stiffness of 25 N /m, ap-
plied force of 150 cos (w,f), and solid damping coefficient of b = 25.

MATLAB® ENGINEERING VIBRATION TOOLBOX

If you did not use the Engineering Vibration Toolbox for Chapter 1, refer to that
section for information regarding using MATLAB files or refer to Appendix G.
The files for Chapter 2, entitled VITB2_1, VIB2_2, and so on, can be found
in folder VTB2. The files in VTB2 can be used to help solve the preceding home-
work problems and to help gain information about the nature of the response of
single-degree-of-freedom systems to harmonic inputs. The following problems are
intended to help you gain some experience with the concepts in this chapter.

TOOLBOX PROBLEMS

TB2.1. Using file VTB2_1, reproduce Figure 2.2.

TB2.2. Carefully investigate the response of an undamped system near resonance by try-
ing several values of w near w,, for the values of Figure 2.2. Do you get the beats of
Figure 2.3?
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TB2.3.

TB2.4.

TB2.5.

Using file VIB2_3, reproduce Figure 2.9. Also plot Xk/f, versus r for the values
given in Example 2.2.3 and plot the associated time response, x,(z), for a value of
r = 0.5 using VITB2_2. Do these plots again for { = 0.01 and { = 0.1 and comment
on how the time response changes as the damping ratio, ¢, changes by an order of
magnitude.

Using file VTB2_5 for rotating unbalance, make a plot of x versus r for the helicop-
ter of Example 2.4.2.

Using file VIB2_6 for damping mechanisms, compare the time response of a system
(with physical parameters of m = 10, k = 100, « = 0.05, X = 1) with air damping
as given by equation (2.129) with initial conditions xy = 1 and ( = 0 to that of an
equivalent viscously damped system using equation (2.131) for an input of 10 sin 3.



General Forced
Response

This chapter starts out by considering the response
to systems subject to a shock loading or impulse.
An example of such a load occurs during landing
an airplane. The aircraft landing gear, pictured at
the top, provides stiffness and damping designed
(see Chapter 5) to mitigate the effect of the shock
on the aircraft. The input to the structure is not
completely periodic, as examined in Chapter 2,
but has random shock and other components, as
discussed in this chapter.

Another source of vibration that is not
at a single frequency (as in Chapter 2) is the
human heart. The heart vibrates at a variety of
different rates depending on the level of activity
and emotional state of the person. Some hearts
need regulating by using a device such as the
pacemaker, pictured at the bottom. These are
run by batteries, which require replacement
every seven to ten years, involving major surgery.
Vibration researchers have recently developed
energy harvesting devices that tfransduce the
heart-induced, chest-cavity vibrations into
electrical energy. This energy is then used o
recharge the pacemaker battery. Fitting such a
device inside the pacemaker required a basic
understanding of vibration and, in particular
models, of the vibration response of a structure
(the harvester in this case) to inputs that have
energy at many different frequencies, as
discussed in this chapter.

216
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In Chapter 2 the forced response of a single-degree-of-freedom system was con-
sidered for the special case of a harmonic driving force. Harmonic excitation refers
to an applied force that is sinusoidal of a single frequency. In this chapter, the
response of a system to a variety of different types of forces is considered, as well
as a general formulation for calculating the forced response for any type of applied
force. If the system considered is linear, the principle of superposition can be used
to calculate the response to various combinations of forces based on the individual
response to a specific force.

Superposition refers to the fact that for a linear equation of motion, say
¥ + w2x = 0, if x; and x, are both solutions of the equation, then x = a;x; + a»x,
is also a solution where a; and a, are any constants. This concept also implies that if
x1 is a particular solution to ¥ + w’x = f; and x; is a solution to ¥ + w’x = f,, then
X1 + Xxyisasolution of ¥ + w2x = f; + f,. Thus this method of superposition can be
used to construct the solution to a complicated forcing function by solving a series
of simpler problems. Superposition was used to solve the base-excitation problem of
Section 2.3. The principle of superposition in linear systems is a very powerful tech-
nique and is used extensively.

A variety of forces are applied to mechanical systems that result in vibra-
tion. Earthquake forces are sometimes modeled as sums of decaying periodic
or harmonic forces. High winds can be a source of impulsive or step loadings to
structures. Rough roads provide a variety of forcing conditions to automobiles.
The ocean waves and wind provide forces to ships at sea. Various manufacturing
processes produce applied forces that are random, periodic, nonperiodic, or tran-
sient in nature. Air and relative motion provide forces to the wing of an aircraft that
can cause it to oscillate. All of these forces can cause vibration.

Periodic forces are those that repeat in time. An example is an applied force
consisting of the sum of two harmonic forces at different frequencies. A nonperi-
odic force is one that does not repeat itself in time. A step function is an example
of a force that is a nonperiodic excitation. A transient force is one that reduces to
zero after a finite, usually small, time. An impulse or a shock are examples of tran-
sient excitations. All of the aforementioned classes of excitation are deterministic
(i.e., they are known precisely as a function of time). On the other hand, a random
excitation is one that is unpredictable in time and must be described in terms of
probability and statistics. This chapter introduces a sample of these various classes
of force excitations and how to calculate and analyze the resulting motion when
applied to a single-degree-of-freedom spring-mass—damper system.

3.1 IMPULSE RESPONSE FUNCTION

A very common source of vibration is the sudden application of a short-duration
force called an impulse. An impulse excitation is a force that is applied for a very
short, or infinitesimal, length of time and represents one example of a shock loading.
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An impulse is a nonperiodic force. The response of a system to an impulse is identical
to the free response of the system to certain initial conditions, as shown in this section.
In many useful situations the applied force F(f) is impulsive in nature (i.e., acts with
large magnitude for a very short period of time).

First, consider a mathematical model of an impulse excitation. A graphical
time history of a model of the impulse is given in Figure 3.1. This is a rectangular
pulse of very large magnitude and very small width (duration).

F(r)

A
I
2e
Figure 3.1 The time history of an
0 VT > ¢ impulse force used to model impulsive
TT€ Tte loading consisting of a large magnitude
T —> applied over a short time interval.

The rule of describing the force in Figure 3.1 is stated symbolically as

0 t=7t-—¢
F
F@) = BN T—e<t<T+te 3.1)
£
0 t=T1+ e

where ¢ is a small positive number. This simple rule, F(¢), can be integrated to
define the impulse. The impulse of the force F(¢) is defined by the integral, denoted

by I(¢), by

Tt+e
I(e) = / F(t) dt
which provides a measure of the strength of the forcing function, F(¢). Since the
rule, F(¢), is zero outside the time interval from 7 — e to 7 + &, the limits of integra-
tion on I(¢g) can be extended to yield

©

I(e) = /_ F@) dt (3.2)

which has the units of N - s.
In this case, the integral of equation (3.2) is evaluated by calculating the area
under the curve using equation (3.1), which becomes

I(s) = / xF(t)dt = %28 =F (3.3)
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independent of the value of € as long as & # 0. In the limit as ¢ =0 (but & # 0),
the integral takes the value /(¢) = F. This is used to define the impulse function as
the function F(¢) with the two properties

Fit—-—1)=0 t# T (34)

and

/ wF(t —1)dt =F (3.5)

If the magnitude of Fis unity, this becomes the definition of the unit impulse func-
tion, denoted by 8(¢), also called the Dirac delta function (Boyce and DiPrima, 2009).

The solution for response of the single-degree-of-freedom system (see
Window 3.1)

mi(t) + cx(r) + kx(t) = F(r), x(0) =0, x(0)=0

to an impulsive load for the system initially at rest is calculated by recalling from
physics that an impulse imparts a change in momentum to a body. For the sake

Window 3.1
Review of the Free Response of the Single-Degree-of-Freedom System
of Chapter 1

) *0) mx + cx + kx =.F(t)
%—T/\/\/Vj_ P x(0) = xg x0) = v,
k ¥+ 20w,X + 0ix = f(f)

This system has free response [i.e., f(t) = 0] in the underdamped case
(i.e.,0 < { < 1) given by

n 24 2
() = Vg + Lo,x0) + (xg,) e 0 sin (i + )
o \/1-0?

n

where

Xy
w; = u)n\/l—§2 and ¢=tan ! ——

L) + Cwnxo

Here o, =\/k/m, { = ¢/(2mw,),and 0 < { < 1 must hold for the preceding
solution to be valid [from equations (1.36) to (1.38)].
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of simplicity, take T = 0 in the definition of an impulse. Consider the mass to be
at rest just prior to the application of an impulse force. This instant of time is de-
noted by 0. Likewise the instant of time just after r = 0 is denoted by 0. The
initial conditions are both zero, so that x(07) = x(07) = 0, since the system is
initially at rest. However, the velocity just after the impulse is x(07), denoted here
as . Thus the change in momentum at impact is mx(07) — mx(07) = mv,, so
that F = FAr = mvy — 0 = my,, while the initial displacement remains at zero.
By this physical line of thought, an impulse applied to a single-degree-of-freedom
spring—mass—damper system is the same as applying the initial conditions of zero
displacement and an initial velocity of = FAt/m.

Referring to Window 3.1, the response of an underdamped single-degree-of-
freedom system (0 < { < 1) with zero initial displacement (xy = 0) is just

x(t) = KZe_Lw"’ sin w,t

Substitution of vy = F /m (f’ = FAt, with units of N s) into this last expression yields

ﬁe —Lopt

x(t) = sin gt (3.6)

mwg;

as predicted by equations (1.36) and (1.38), repeated in Window 3.1. It is convenient
to write this solution in the form

x(t) = Fh(r) (3.7)
where A(¢) is defined by

h(t) =

1
7§wn[ 1
o e *'sin w4t (3.8)
Note that the function /(¢) is the response to a unit impulse applied at time ¢ = 0. If
applied at time ¢t = 7, 7 # 0, this can also be written as (replace ¢ in the foregoing
witht — 1)

h(t — 1) =

~Lwa(t=7)gj — t> 3.9
oy e sinwg(t — 1) T (3.9)

and zero for the interval 0 < ¢ < 7. The functions A(¢) and A(¢t — 7) are each called
the impulse response function of the system.

While the impulse is a mathematical abstraction of an infinite force applied
over an infinitesimal time, in applications it presents an excellent model of a large
force applied over a short period of time. The impulse response is physically inter-
preted as the response to an initial velocity with no initial displacement (hence no
phase shift for = = 0). The impulse response function, combined with the principle
of superposition, is also useful for calculating the response of a system to a general
applied force excitation as discussed in Section 3.2.
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A common occurrence that causes an impulse excitation is an impact. In vibra-
tion testing, a mechanical device under test is often given an impact, and the response
is measured to determine the system’s vibration properties. The impact is often cre-
ated by hitting the test specimen with a hammer containing a device for measuring the
force of the impact. Use of the impulse response for vibration testing is also discussed
in Chapter 7. In practice, a force is considered to be an impulse if its duration (A¢) is
very short compared with the period, T = 21/ w,, associated with the structure’s un-
damped natural frequency. In typical vibration tests, At is on the order of 10~ s.

Example 3.1.1

Consider a spring-mass—damper system with m = 100 kg, ¢ = 20 kg/s, and k =
2000 N/m with an impulse force applied to it of 1000 N for 0.01 s. Compute the
resulting response.

Solution A 1000 N force acting over 0.01 s provides (area under the curve) a value
of F = FAt = 1000-0.01 = 10 N -s. Using the values given, the equation of motion is

100x(r) + 20x(¢) + 2000x(r) = 108(¢)

Thus the natural frequency, damping ratio, and damped natural frequency are

2000 20
= | = 4427 rad/s, { = ———— = 0.022,
“n =\ 100 rad/s. &= 5 /1002000
wg = 4472V 1 — 0.0222 = 4471 rad/s

Using equation (3.6), the response becomes

7 e—{wnt

x(t) = sin wgt = 0.022¢™%1 sin (4.471¢)

mowg

Example 3.1.2

Suppose a 1-kg bird flies into the 3-kg security camera of Example 2.1.3, repeated in
Figure 3.2. If the bird is flying at 72 kmph, compute the maximum deflection the impact
causes based on the design given in Example 2.1.3. Does the maximum deflection vio-
late the design constraint? Ignore damping.

Solution From the design solution of Example 2.1.3, the stiffness of the camera’s
mounting bracket is (I = bh>/12):

3Ebh (7.1 X 10'°N/m?)(0.02m)(0.02m)?
= 3 =( /me)( - )\ ) = 1.707 X 10*N/m
121 4(0.55m)
The mass of the camera is m, = 3kg, so the natural frequency is 75.43 rad/s.
Combining equations (3.7) and (3.8) for { = 0, the response is

FAt .
SiInw,t =
mc"‘)n mcwn

sin w,,t

x(t) =
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-~ Wind }_’ x(1)
m— Camera —» m = F3(t)

i

}—» (1)

Mounting

bracket \

L 3EL

= g

— F3(1)

mi(t) + kx(t) = F3 (1)

Figure 3.2 A vibration model of a security camera and mount.

where my, is the linear momentum of the bird, which imparts the impact force F. The
impulse is thus

km .1000m hour

=1kg-72 . =20kg-
" 8 hour  km 3600 grm/s
This has maximum amplitude of
FAt mpv 20kg-m/s
X = = = = 0.088
‘mcu)n ’mcwn ‘ 3 kg 7543 rad/s m

Thus, the design constraint of holding the vibration of the camera within 0.01 m required
in Example 2.1.3 is violated under a bird strike.
O

Example 3.1.3

In vibration testing, an instrumented hammer is often used to hit a device to excite it and
to measure the impact force simultaneously. If the device being tested is a single-degree-
of-freedom system, plot the response given that m = 1kg,c = 0.5kg/s,k = 4 N/m, and
F = 02 N-s. It is often difficult to provide a single impact with a hammer. Sometimes a
“double hit” occurs, so the exciting force may have the form

F(t) = 0.25(¢) + 0.18(t — 7)

Plot the response of the same system with a double hit and compare it with the
response to a single impact. Assume that the initial conditions are zero.

Solution The solution to the single unit impact and time r = 0 is given by equations (3.7)
and (3.8) with w,, = V4 = 2rad/sand { = ¢/(2mw,) = 0.125. Thus, with F = 0.23(¢)

2
x(t) = 0 e (0129 5in 2/ 1 — (0.125)
(1)(2 1- (0.125)2)

= (.1008¢ 9% sin(1.9841)m
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Load cell

: Impact
signal \. hammer
f(l)l
e (o] T
structure
c k

0.15 T
o1+ /
1
E
= 0.05 +
=
()
g
[
g
g
A 0
—-0.05 +
-0.1 -+
Time (s)
(a)
f(N)
Area 2
Area 1
I ) 1)
0 0.5
(b)

Figure 3.3 (a) The response of a single-degree-of-freedom system to a single impact (solid line) and a
double impact for 1 = 0.5 s (dashed line). Plot (b) indicates the force-versus time curve for the applied
double impact. Note the larger amplitude of the double hit.
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which is plotted in Figure 3.3(a). Similarly, the response to 0.13(¢ — 7) is calculated
from equations (3.7) and (3.9) as

(f) = 0.0504¢ 020D §in1.984(t — T)m t> 1

and x,(r) = 0 for 0 < ¢t < 1 = 0.5. The force input f(¢) is indicated in Figure 3.3(b).
It is important to note that no contribution from x; occurs until time ¢ = 7. Using the
principle of superposition for linear systems, the response to the “double impact” will
be the sum of the preceding two impulse responses:

x(1) = x(0) + ()

0.1008¢ "% sin (1.9841) 0<t<-r
0.1008¢ "% sin (1.984f) + 0.0504¢ 02 D sin1.984(t — 7) >

This is plotted in Figure 3.3(a) for the value T = 0.5s.
Note that the obvious difference between the two responses is that the “double-
hit” response has a “spike” at T = ¢t = 0.5, causing a larger amplitude. The time, T,
represents the time delay between the two hits.
|

The following example illustrates the calculation of the response due to both

an applied impulse and initial conditions, forming the total response of the system.
The example also introduces the concept of using a Heaviside step function to rep-
resent the response.

Example 3.1.4

Consider the system (mass normalized)
X(@) + 2x(f) + 4x(r) = 3(t) — d3(t — 4)
and compute and plot the response with initial conditions x) = 1 mmand ( = —1mm/s.

Solution By inspection, the natural frequency is w,, = 2rad/s. Examining the veloc-
ity coefficient yields

2 =2w, or (=05

Thus, the system is underdamped and the response given in Window 3.1 applies.
Computing the damped natural frequency yields

2
og=o0,V1-2=2 1—(%) =V3

First, compute the response for the time interval 0 =< ¢ < 4 s. In this interval, only the
first impulse is active. The corresponding impulse solution is, by equation (3.6),

A

F . 1 .
x(t) = —e ¥ sinwgt = —=e 'sin Vi3t 0=t<4

mowgy \/g
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The total solution for the first time interval is then equal to the sum of the homoge-
neous and impulse solutions. The homogeneous solution is

x,(t) = e '(Asinwg + Beoswgt), 0=t<4

where A and B are the constants of integration to be determined by the initial
conditions and the subscript 4 denotes the solution due to the initial conditions.
Differentiating the displacement yields the velocity:

X(t) = —e (A sin\V/31 + Bcos\@t)
+ 67’(\/§A cos\V3t — V3B sin \/’J;t)

Setting t = 0 in these last two expressions and using the initial conditions yields the
following two equations:

x0)=1=B

44(0) = -1=-B+ V34
Solving for A and B yields A = 0 and B = 1, so that x,(f) = e cos V. Next, com-
pute the response due to the impulse at t = 0, which is equivalent to solving the initial

value problem for x;(0) = 0 and x;(0) = 1. Following the same procedure to compute
the constants of integration for the impulse yields

1 -t
B =1and A = —= sothatx/(r) = £ sinV3

V3 V3

Adding the homogenous response and the impulse response yields

x @) = eft(cos\@t + Lsin\@t), 0=r<4
V3

Next, compute the response of the system to the second impulse, which starts at t = 4s.
Using equation (3.9) with T = 4s, the response to the second impulse is

F 1
B(t) = — e D sinwy(t — 1) = ——=e sin\/g(t -4), t>4
V3

mwg

The Heaviside step function defined by

0, t<r
Ot —-1)=14.
( ) {1, t= T}
is perfect for writing functions that “turn on” after some time has evolved. Heaviside
functions are also denoted by H(¢ — 7). Using superposition, the total solution is
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(=3
W
1
T

Displacement, x() (mm)

-0.5 L+
Time, 7 (s)

Figure 3.4 A plot of displacement versus time for a double impact, with the second impact applied
att = 4s.

X = x1 + x,, and the Heaviside function is used to indicate that x, “starts” after
7 = 4. The solution can be written as

sin\/g(t —4) |®(t — 4) mm

—(t—4

x(t) = 67’<cos\/§t + Lsin\/gt) - { e

V3 V3

This is plotted in Figure 3.4. Note the sharp change in the response as the second

impact is applied. This is in contrast to the double hit in the previous example. In the

previous example, the second impulse occurs in the same “direction” as the current

response. However, in this example, the second impact occurs out of phase with the
response of the first impact and causes an abrupt change in direction.

d

3.2 RESPONSE TO AN ARBITRARY INPUT

The response of a single-degree-of-freedom system to an arbitrary, general excita-
tion is examined in this section. The response of a single-degree-of-freedom system
to an arbitrary force of varying magnitude can be calculated from the concept of



Sec. 3.2

Response to an Arbitrary Input 227

(1)

F(ty)

> ¢ Figure 3.5 An arbitrary excitation
force F(¢) split up into n impulse
forces.

the impulse response defined in Section 3.1. The procedure is to divide the excit-
ing force up into impulses of infinitesimal area, calculate the responses to these
individual impulses, and add the individual responses to calculate the total response
using the concept of superposition. This is best shown in Figure 3.5, which illustrates
an arbitrary applied force F(f) divided into n time intervals of length Af so that each
time increment is defined by Ar = ¢/n. At each time interval ¢;, the solution can be
calculated by considering the response to be due to an impulse Af in duration and of
force magnitude F(¢) [i.e., an impulse of magnitude F(t;)Af].

The part of the response due to the impulse acting during the time interval
between ¢; and ¢, is then given by equation (3.7) as the increment

Ax(t;) = F(t)h(t — t;) At (3.10)

so that the total response after n intervals is the sum

x(t,) = iF(r,-)h(z — 1) At (3.11)
i=1

This again uses the fact that the equation of motion is linear, so that the principle of
superposition applies. Forming the sequence of partial sums and finding the limit as
At — 0 (n — =) yields

x(t) = /OF(T)h(t - T1)d7 (3.12)

from the first fundamental theorem of integral calculus. The integral in equation (3.12)
is called the convolution integral. A convolution integral is simply the integral of
the product of two functions, one of which is shifted by the variable of integration.
Convolution is used again in Section 3.4 as a useful technique in using transforms.
Additional properties of the convolution integral are given in Window 3.2.

For an underdamped single-degree-of-freedom system, the impulse response
function A(t — 7) is given by equation (3.9). Substitution of the impulse response
function of equation (3.9) into equation (3.12) then yields the result that the re-
sponse of an underdamped system to an arbitrary input F(¢) of the form

mx(t) + cx(t) + kx(¢t) = F(t),x = 0,99 = 0
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Window 3.2
Useful Properties of the Convolution Integral

Leta = t — 7,50 that da. = —d- for fixed ¢. Since T ranges from 0 to ¢, « ranges
from ¢ to 0. Substitution of this change of variables into the definition

x(t) = /(]F(’T)]’l(t — 1)d7

yields

0 t
x(t) = —/ F(t — a)h(o)da = /OF(I — a)h(a)da

Thus,

/OF(T)h(t — T)dt = /OF(I — Dh(7)dr

is given by
1 t
x(t) = e, e b /0 [F(t)e"™ sin wy(t — 7)]d7
_ 1 tF(t — T)e “ 7 sinwyTdT (3.13)
mwg; 0

as long as the initial conditions are zero. The integral in equation (3.13) is a convo-
lution integral where one of the functions is the impulse response function—hence
the shift in the integral. A convolution integral used to compute a system response
is called a Duhamel integral, after the French mathematician J. M. C. Duhamel
(1797-1872). The Duhamel integral can be used to calculate the response to an
arbitrary input as long as it satisfies certain mathematical conditions. The following
example illustrates the procedure.

Example 3.2.1

Consider an excitation force of the form given in Figure 3.6. The force is zero until time ¢,
when it jumps to a constant level, F,. This is called the step function, and when used to
excite a single-degree-of-freedom system, it might model some machine operation or an
automobile running over a surface that changes level (such as a curb). The step function
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» ¢ Figure 3.6 Step function of
fo magnitude Fj, applied at time ¢t = &,

of unit magnitude is called the Heaviside step function as defined in Example 3.1.4.
Calculate the solution of

0 ty>1t>0
mx + cx + kx = F(t) = { o0 } (3.14)
1705 =1
with xg = ( = 0and F(¢) as described in Figure 3.6. Here it is assumed that the values

of m, ¢, and k are such that the system is underdamped (0 < { < 1).

Solution Applying the convolution integral given by equation (3.13) directly yields

1 t t
x(t) = e ot / (0)e*™ sinwy(t — T)dt + / Foe"™ sinwy(t — 7)dt
0 0}

mwgy

Fy !
= ——¢tod / e“r'sinwy(t — T)dt
fo

mwg

Using a table of integrals to evaluate this expression yields

— 2 el eos[wy(t — 1) — 8] = 1 (3.15)

_h fo
x(t) = X . T_CZ

where

4

0 =tan | ———— (3.16)
Vi-¢
Note that if f; = 0, equation (3.15) becomes just
K K
x(t) = ;‘) - o lodeos(wyt — 0) (3.17)

kV1-¢

and if there is no damping ({ = 0), this expression simplifies further to

F,
x(t) = ;(1 — COS w,f) (3.18)
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Figure 3.7 The response of an underdamped system to the step
excitation of Figure 3.6 for { = 0.1 and w,, = 3.16 rad/s (with F; = 30 N,

k = 1000 N/m, 1y = 0).

Examining the damped response given in equation (3.17), it is obvious that for large
time the second term of the response dies out and the steady state is just

I

X0 =5 (3.19)
In fact, the underdamped step response given by equations (3.15) and (3.17) consists
of the constant function F/k minus a decaying oscillation, as illustrated in Figure 3.7.
Often in the design of vibrating systems subject to a step input, the time it takes
for the response to reach the largest value, called the time to peak and denoted ¢, in
Figure 3.7, is used as a measure of the quality of the response. Other quantities used
to measure the character of the step response are the overshoot, denoted by O.S. in
Figure 3.7, which is the largest value of the response “over” the steady-state value, and
the settling time, denoted by ¢, in Figure 3.7. The settling time is the time it takes for
the response to get and stay within a certain percentage of the steady-state response.
For the case of t; = 0, t, and t, are given by ¢, = m/w, and £, = 3.5/{w,. The peak
time is exact (see Problem 3.25), and the settling time is an approximation of when the

response stays within 3% of the steady-state value.
O

Example 3.2.2

Another common excitation in vibration is a constant force that is applied for a short
period of time and then removed. A rough model of such a force is given in Figure 3.8.
Calculate the response of an underdamped system to this excitation.

Solution This pulse-like loading can be written as a combination of step functions
calculated in Example 3.2.1, as illustrated in Figure 3.8. The response of a single-
degree-of-freedom system to F(t) = Fi(t) + F»(¢) is just the sum of the response
to Fi(¢) and the response of F,(¢), because the system is linear. First, consider the
response of an underdamped system to Fi(¢). This response is just that calculated in
Example 3.2.1 for {; = 0 and given by equation (3.17). Next, consider the response of
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F(1) = Fi(1) + Fy(1)
A A A
Fy Fy
t
0 > 0 >t 0 ! >
0 I
—Fy

Figure 3.8 Square-pulse excitation of magnitude Fj lasting for #; seconds can be written
as the sum of a step function starting at zero of magnitude F and a step function starting
at t; of magnitude —Fj [i.e., F(t) = F(t) + F,(1)].

0.04

0.02

Displacement (m)

Time (s)

Figure 3.9 Response of an underdamped system to a pulse input of width #. The
dashed line is for t; = 0.1 < 7/w, and the solid line is for { = 1.5 > 7 /w,. Both
plots are for the case £y = 30N, k = 1000 N/m, { = 0.1, and w,, = 3.16 rad/s.

the system to F,(#). This is just the response given by equation (3.15) with F, replaced
by —F, and ¢, replaced by #;. Hence, subtracting equation (3.15) from equation (3.17)
yields the result that the response to the pulse of Figure 3.8 is

FO efgu),,t

O Wise

where 6 is as defined in equation (3.16). A plot of this response is given in Figure 3.9
for different pulse widths #;. Note that the response is much different for #; > 7/w,
and has a maximum magnitude of about five times the maximum magnitude of the time
response for t; < m/w,. Also, note that the steady-state response (i.e., the response for
large time) is zero in this case.

(et cos [wy(t — t1) — 8] — cos(wyt — 0)}, t> 4

|
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Example 3.2.3

A load of dirt of mass m,; is dropped on the floor of a truck bed. The truck bed is modeled
as a spring-mass—damper system (of values k, m, and c, respectively). The load is modeled
as a force F(f) = myg applied to the spring-mass—damper system, as illustrated in
Figure 3.10. This allows a crude analysis of the response of the truck’s suspension when
the truck is being loaded. Calculate the vibration response of the truck bed, and compare
the maximum deflection with the static load on the truck bed.

F=m;g

I(l)

|c \g = 9.8 m/s?
77
Truck being filled with dirt Vibration model

(a) (b)

Figure 3.10 A model of a truck being filled with a load of dirt of weight m,g and a vibration model
that considers the mass of the dirt as an applied constant force.

Solution In this case, the input force is just a constant [i.e., F(f) = mgg], so that the
equation of vibration becomes

mgg t>0

¥+ et + kx =
mx cxX X {O (=0

From equation (3.17) of Example 3.2.1, the response (let Fy = m, g) is just

m, 1
x(t) = a8 1 — ———=e“cos(wyt — 0)

k «/1_c2

To obtain a rough idea about the nature of this expression, its undamped value is

m
x(t) = %g(l — Cosw,t)

which has a maximum amplitude (when 7 is such that cos w,t = —1) of
myg
=2
xde k

This is twice the static displacement (i.e., twice the distance the truck would be
deflected if the dirt were placed gently and slowly onto it). Thus, if the truck were
designed with springs based only on the static load, with no margins of safety, the



Sec. 3.2 Response to an Arbitrary Input 233

springs in the truck would potentially break, or permanently deform, when subjected
to the same mass applied dynamically (i.e., dropped) to the truck. Hence, it is impor-
tant to consider the vibration (dynamic) response in designing structures that could be
loaded dynamically.

O

It should be noted that the response of a single-degree-of-freedom system
to an arbitrary input can be calculated numerically, even if the integral in
equation (3.12) cannot be evaluated in closed form as done in the preceding
examples. Such general numerical procedures, based roughly on equation (3.10),
are discussed in Section 3.8, in which the numerical solutions discussed in
Section 2.8 are applied. Numerical integration is often used to solve vibration
problems with arbitrary forcing functions.

The response calculations for a general external disturbance (input) force
do not include the response that might exist because of nonzero initial conditions.
The total response for an impulse disturbance with nonzero initial conditions is
given in Example 3.1.4. The total response to an arbitrary input force as well as
nonzero initial conditions for an undamped system is given using the convolution
integral by

t
(¥
x(t) = xycosw,t + ;Osinwnt + /h(t — 1)F(1) dr
n 0

Note that the effect of the applied force on the homogeneous response is zero be-
cause the value of the convolution form of the particular solution and its derivative
(velocity) are both zero at time ¢ = 0. On the other hand, if the particular solution
X,(t) or its derivative do not vanish at ¢ = 0, the form of the total response is

x(t) = A cosw,t + Bsinw,t + x,(t)

Here the constants A and B must be determined by the initial conditions and will be
affected by the value of x,, and its derivative at ¢ = 0. In this last case, the constants
of integration A and B become

Vo — XP(O)

n

A=x —x,0) and B =

A similar result holds for damped systems.

The analytical calculations made with the convolution integral are not always
easy to evaluate, and in many cases must be evaluated numerically. Laplace trans-
form methods are often useful in convolution-type evaluations but, in practice,
solutions are often found through numerical integration and simulation. While
numerical simulation is used in practice, the concept of convolution is essential to
understanding signal processing and for understanding the results of numerical
simulations.
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Example 3.2.4

Solve X(t) + 16x(f) = cos2t for the response to arbitrary initial conditions xy and
using the convolution integral. Next, compare this to the result obtained by solving this
problem using the method of undetermined coefficients explained in Section 2.1 and
given in equation (2.11).

Solution From the equation of motion, m = 1, w, =4, ® = 2, and Fy = fy = 1,
where the units are assumed to be consistent. Using the convolution expression, equa-
tion (3.12), the particular solution has the form

t
x,(t) = /h(l — 7)F(7)dT
0
The impulse response function, A(t — 1), for an undamped system is found from equa-

tion (3.8) with { = 0. With the values given above for mass and frequency, the impulse
response function is

h(t — 1) = % sin (4t — 47)

Thus the convolution expression for the particular solution is

1 t
x,(t) = 1 / sin (4t — 47) cos (27)dT
0
Integrating (using a symbolic code or repeated use of trig identities) yields

1
== +
%) 4( 4 12

The total solution is of the form

cos (4t — 21 cos (4t — 61)\! 1
( ) ( )) = — (cos2t — cos4r)
o 12
. 1
x(t) = Asindt + B cos4t + E(cosZt — cos4t)

Using the initial conditions to evaluate the constants of integration A and B yields

x(0) = xy = Asin(0) + B cos(0) + llfz(cos (0) — cos(0)),

2 4
x(0) = vy = 4A cos(0) + 4xysin (0) — ) sin (0) + T sin (0)

Solving this set of equations for A and B yields

A=-" and B= Xo
4
The total solution is then

x(t) = @sin4t + (% — i) cosdt + icosZt
4 D) 12
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This is in total agreement with the solution given in equation (2.11) withm = 1, w,, = 4,
o=2F=7f=1andw’ — o =12
The purpose of this is example is to show that two different methods yield the
same answer, as they should. The method of undetermined coefficients is a much
simpler calculation to make, but only works for harmonic forcing functions. The con-
volution approach is more complicated, but can be used for any forcing function and
is thus a more general approach.
a

3.3 RESPONSE TO AN ARBITRARY PERIODIC INPUT

The specific case of periodic inputs is considered in this section. The response to
periodic inputs can be calculated by the methods of Section 3.2. However, periodic
disturbances that occur quite often merit special consideration. In Chapter 2, the
response to a harmonic input is considered. The term harmonic input refers to a
sinusoidal driving function at a single frequency. Here, the response to any periodic
input is considered. A periodic function is any function that repeats itself in time
[i.e., any function for which there exists a fixed time, 7, called the period, such that
f(t) = f(t + T) for all values of t]. A simple example is a forcing function that is the
sum of two sinusoids of different frequency with a rational frequency ratio. An ex-
ample of a general periodic forcing function, F(t), of period T is given in Figure 3.11.
Note from the figure that the periodic force does not look periodic at all if exam-
ined in an interval less than the period 7. However, the forcing function does repeat
itself every T seconds.

According to the theory developed by Fourier, any periodic function F(z),
with period T, may be represented by an infinite series of the form

a o0
F@) = ?0 + ' (a, cos nost + b, sin not) (3.20)
n=1
F(1)
Figure 3.11 An example of

a general periodic function of
period 7.
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where wy = 2m/T and where the coefficients ay, a,, and b, for a given periodic
function F(¢) are calculated by the formulas

2 T
ag = — / F(r)dt (3.21)
T 0
2 T
a, = T/ F(tH)cosnwptdt n=1,2,... (3.22)
0
2 T
b, = T/ F()sinnortdt n=1,2,... (3.23)
0

Note that the first coefficient ag is twice the average of the function F(¢) over one
cycle. The coefficients ay, a,, and b,,, are called Fourier coefficients. The series of
equation (3.20) is the Fourier series. A more complete discussion of Fourier series
can be found in most introductory differential equation texts (e.g., Boyce and
DiPrima, 2009).

The Fourier series is useful and relatively straightforward to work with
because of a special property of the trigonometric functions used in the series. This
special property, called orthogonality, can be stated as follows:

g 0 m# n
/0 sin nwyt sin mort dt = {T/Z m=n (3.24)
/OTcos nwpt cos moyt dt = {(;/2 Z j : (3.25)
and
T
/0 cos nwpt sin mopt dt = 0 (3.26)

The m and n here are integers. The truth of these three orthogonality conditions
follows from direct integration. The orthogonality property (i.e., the integral of the
product of two functions is zero) is used repeatedly in vibration analysis. In particu-
lar, orthogonality is used extensively in Chapters 4, 6, 7, and 8. Orthogonality is also
used in statics and dynamics (i.e., the unit vectors are orthogonal).

In Fourier analysis, the orthogonality of the sine and cosine functions on the
interval 0 < ¢t < T is used to derive the formulas given in equations (3.21), (3.22),
and (3.23). These coefficient values are derived as follows. The Fourier coefficients
a, are determined by multiplying equation (3.20) by cos mw7t and integrating over
the period 7. Similarly, the coefficients b,, are determined by multiplying by sin mw 7t
and integrating. The summation on the right side of equation (3.20) vanishes except
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for one term because of the orthogonality properties of the trigonometric function.
Using the orthogonality conditions given previously determines that all terms of the
integrated product f UTF(t) sin mw7t dt will be zero except for the term containing b,,,.
This yields equation (3.23). Likewise, all the terms in the series f JF(t) cos mot dt
are zero, except for the term containing a,,,. This yields equation (3.22). Furthermore,
this procedure can be repeated for each of the values of n in the summation in the
Fourier series. The procedure for calculating the Fourier coefficient of a simple force
is illustrated in the following example.

Example 3.3.1

A triangular wave of period 7 is illustrated in Figure 3.12 and is described by

Determine the Fourier coefficients for this function.
F(t)
1

[~

(SIS S
~3
<ﬂ

Figure 3.12 Plot of a triangular

-1 wave of period 7.

Solution Straightforward integration of equation (3.21) yields

: T/2(4 ) : T{ 4< T)}
-z Si-1)a+= [ |1- 2= Z)|dr=0
o T/O T T/T/2 T 2

which is also the average value of the triangular wave over one period. Similarly, in-
tegration of equation (3.23) yields the result that b,, = 0 for every n. Equation (3.22)

yields
/2 T
2 4 2 4 T
an =7 . (?l - 1) cos noqt dt + T T/il - ?<l - 5)} cos nogt dt

)0 neven
-8
5 n odd
TN

Thus the Fourier representation of this function becomes

F(t)——i szlt+los6lz+ic sloiz
2| 9057 9SS S5Cos Tt
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05 +

F(1)

—-0.5 +

71 £

Figure 3.13 Plots of F(¢) for one (long dashed line), two (short dashed line), and
four (solid line) terms of the Fourier series indicate how close each series gets to the
plot of Figure 3.12.

which has frequency 27/ T. It is instructive to plot F(f) by adding one term at a time
to make clear how many terms of the infinite series are needed to obtain a reasonable
representation of F(¢) as plotted in Figure 3.12. (Run VTB3_3 to observe this conver-
gence.) This is done in Figure 3.13, which is a plot of F(¢) for one, two, and four terms
of the Fourier series. Computer codes for computing the series and plotting the results
are given in Section 3.8 and VTB3_3. Toolbox file VTB3_3 can be used to obtain the
coefficients of an arbitrary signal and for plotting the results. Substitution of the values
a, and b, into VTB3_5 will visually verify the result.

|

Note that when a Fourier series is used to approximate a periodic function
with discontinuities, an overshoot (or ringing) of the Fourier series occurs at the
discontinuity. This overshoot is called Gibbs phenomenon.

Since a general periodic force can be represented as a sum of sines and co-
sines, and since the system under consideration is linear, the response of a single-
degree-of-freedom system is calculated by computing the response to the individual
terms of the Fourier series and adding the results. This is similar to the procedure
used to solve the base-excitation problem of equation (2.63), where the input to a
single-degree-of-freedom system consisted of the sum of a single sine term and a
single cosine term. This is how superposition and Fourier series are used together
to compute the solution for any periodic input. Thus, the particular solution x(¢) of

mX(t) + cx(t) + kx(t) = F(¢) (3.27)

where F(¢) is periodic, can be written as

(1) = x(0) + ni[xm(r) + x0)] (3.28)
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Here the particular solution x4(¢) satisfies the equation
a
my (1) + cxy () + k() = ?O (3.29)

the particular solution x,,(f) satisfies the equation

mXx,,(t) + cx,(t) + kx,(t) = a, cosnozt (3.30)
for all values of n, and the particular solution x,(t) satisfies the equation

mXg,(f) + cxg,(t) + kxg,(f) = b, sinnot (3.31)

for all values of n. The solutions to equations (3.30) and (3.31) are calculated
in Section 2.2, and the solution to equation (3.29) is calculated in Section 3.2. If
the system is subject to nonzero initial conditions, this must also be taken into
consideration.
The particular solution to equation (3.29) is that of the step response calcu-
lated in equation (3.17) with Fy = a/2. This yields
&)

x() = o (3.32)

The particular solution of equation (3.30) is calculated in equation (2.36) to be

a,/m

[[wf = (nor)’F + (2Lomnwr)’]?

Xen(t) = cos(nwgt — 6,) (3.33)

where

2w,
6, = tan~ o0
W, — (an)
Similarly, the particular solution of equation (3.31) is calculated to be
b,/m

[[wf = (nop)’T + (2Lwmor)’]?

X(t) = sin(nwt — 0,,) (3.34)

The total particular solution of equation (3.27) is then given by the sum of equa-
tions (3.32), (3.33), and (3.34) as indicated by equation (3.28). The total solution
x(t) is the sum of the particular solution x,() calculated previously and the homo-
geneous solution obtained in Section 1.3. For the underdamped case (0 < { < 1),
this becomes

X() = Ae @ sin (o + &) + ;’—10( + zw:[xm(t) + x,,(1)] (3.35)
n=1

where A and ¢ are determined by the initial conditions. As in the case of a simple
harmonic input as described in equation (2.37), the constants A and ¢ describing the
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transient response will be different than those calculated for the free-response case
given in equation (1.38). This is because part of the transient term of equation (3.35)
is the result of initial conditions and part is due to the excitation force F(z).

Example 3.3.2
Consider the base-excitation problem of Section 2.4 (see Window 3.3), and calculate
the total response of the system to initial conditions x; = 0.0l m and ( = 3.0 m/s.

Assume that w, = 3rad/s,m = 1kg,c = 10kg/s,k = 1000 N/m,and Y = 0.05 m.

Window 3.3
Review of the Base-Excitation Problem of Section 2.4

The base-excitation problem is to solve the expression

X+ 2o, x + wrzzx = 2{o,w,Y cos wyt + w%lein wpt

for the motion of a mass, x(¢), excited by a harmonic displacement of
frequency w;, and amplitude Y through its spring-damper connections. This
has the particular solution indicated by the second term on the right-hand
side of equation (3.37).

o

y(1)=Y sin wyt

Solution The equation of motion is given by equation (2.63), which has a periodic
input of

F(t) = cYwp coswpt + kY sinwpt (3.36)

Comparing coefficients with the Fourier expansion of equation (3.20) yields ag = 0,
a, = b, = 0,foralln > 1, and

a; = ¢Yo, = (10kg/s)(0.05 m)(3rad/s) = 1.5N
by = kY = (1000 N/m)(0.05 m) = 50 N

The solution for x.(¢) from equation (3.30) is given by equations (2.65) and (2.66), and
the solution for x(¢) from equation (3.31) is given by equations (2.66) and (2.67). The
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summation of solutions indicated in equation (3.28) is then given by equation (2.68),
and the total solution becomes

1/2

2+ (2Lwp)?
wn + (2oy) cos(wyt — 0; — 6,) (3.37)

x(t) = Ae ' sin(wyt + d) + 0,V
(@2 — ) + (o)’

where A and ¢ are to be determined by the initial conditions, and 6; and 6,
are as defined by equations (2.66) and (2.69). Since { = ¢/(2Vkm) = 0.158 and
o, = Vk/m = 31.62 rad/s, these phase angles become

L (20158)(3L62)3)
O1 = tan 1( (31.62)° — (3)°

N R
0, = tan I(W) = 1.541 rad

) = 0.03 rad

and the magnitude becomes

w2 + (2Lwp)? 2 (31.62)> + [2(0.158)(3)]? "

(02 + 07)? + (2Lo,wp)? = (3L62)(0.05) [(31.62)2 — (3)*]% + [2(0.158)(3)(31.62)]?

w,Y]

= 0.05m
The solution given in equation (3.37) takes the form

x(f) = Ae™'sin(31.22¢ + ) + 0.05 cos (3t — 1.571) (3.38)
where w; = wnm = 31.225rad/s. Att = 0, this becomes
x(0) = Assin(p) + 0.05cos(—1.571)
or
0.0l m = Asind + (0.05)(—0.00204) (3.39)
Differentiating x(¢) yields
x(f) = Ae™ cos(31.225t + $)(31.225) — 5Ae™ sin(31.225t + $) — 0.15 sin (3t — 1.571)
At t = 0, this becomes
3 = (31.225) A cos () — 5A sin () — 0.15 sin(—1.571) (3.40)
Equations (3.39) and (3.40) represent two equations in the two unknown constants of
integration, A and ¢. Solving these yields A = —0.0096 m and ¢ = 0.1083 rad, so that

the total solution is

x(f) = 0.0096¢ sin (31.225¢ + 0.1083) + 0.05 cos (3t — 1.571)



242

General Forced Response Chap. 3

Displacement
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Figure 3.14 The total time response of a

I I I I Time ¢ (s)  spring-mass—-damper system under base
1 2 3 4 excitation as calculated in Example 3.3.1.

This is plotted in Figure 3.14. Note that the transient term is not noticeable after 1 s. A
comparison with a numerical solution of the same problem is given in Example 3.8.3
of Section 3.8.

d

The computation of the response to complicated inputs becomes tedious
when using the analytical approach. With the advent of computational software,
practicing engineers are more likely to use a numerical approach to compute the
solution. While numerical approaches are approximations, they do allow quick
calculation of the response to systems with complicated inputs consisting of step
functions and long periodic disturbances. Numerical approaches are discussed in
Section 3.9.

3.4 TRANSFORM METHODS

The Laplace transform was introduced briefly in Section 2.3 as an alternative
method of solving for the forced harmonic response of a single-degree-of-freedom
system. The Laplace transform technique is even more useful for calculating the
responses of systems to a variety of force excitations, both periodic and nonperiodic.
The usefulness of the Laplace transform technique of solving differential equa-
tions and, in particular, solving for the forced response lies in the availability of
tabulated Laplace transform pairs. Using tabulated Laplace transform pairs reduces
the solution of forced vibration problems to algebraic manipulations and table
“lookup.” In addition, the Laplace transform approach provides certain theoretical
advantages and leads to a formulation that is very useful for experimental vibration
measurements.
The definition of a Laplace transform of the function of time f(¢) is

L[f(t)] = F(s) = /0 f)e™'dt (341)
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for an integrable function f(¢) such that f(f) = 0 for ¢+ < 0. The variable s is com-
plex valued. The Laplace transform changes the domain of the function from the
positive real-number line (¢) to the complex-number plane (s). The integration in
the Laplace transform changes differentiation into multiplication, as the following
example illustrates.

Example 3.4.1

Calculate the Laplace transform of the derivative f().

Solution

. OO. e d
Llj0] = [ iwesa= [0

Integration by parts yields

LIf(®] = e™f () ) + s /0 e (f) dt

Recognizing that the integral in the last term of the preceding equation is the defini-
tion of F(s) yields

L{f(t)] = sF(s) = £(0)

where F(s) denotes the Laplace transform of f(f). Repeating this procedure on f(r)
yields

L[f()] = s*F(s) — sf(0) — f(0).

Example 3.4.2
Calculate the Laplace transform of the unit step function defined by the right-hand
side of equation (3.41) and denoted by ®(¢) for the case #y = 0.

Solution

—st | —o0 -0

L[@(z)}=/mem:_e _ et et

0 s o s s s

d

The procedure for solving for the forced response of a mechanical system is first
to take the Laplace transform of the equation of motion. Next, the transformed
expression is algebraically solved for X(s), the Laplace transform of the response.
The inverse transform of this expression is found by using a table of Laplace trans-
forms to yield the desired time history of the response x(¢). This is illustrated in the
following example. A sample table of Laplace transform pairs is given in Table 3.1.
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TABLE 3.1 COMMON LAPLACE TRANSFORMS FOR ZERO INITIAL CONDITIONS?

F(s) fo
1.1 3(0) unit impulse
2. 1/s 1, unit step P(r)
3. 1 ot
s+ a
1 1
4. —at __ _—bt
(s + a)(s + b) b—a(e e
5 Wy sin w,t
T8+ mﬁ
6 S cos w,t
T8+ (1)3,
1 1
7T ——" — (1 — cos w,t
5+ o) 2 )
1 1
8 55— — el sinogt, L < 1,0y = 0, V1 —
s° + 2lw,s + o wq
9 w; 1- &e_g"’"’ sin(wgt + ¢), ¢ = cos 'L, < 1
" s(s? + 2Lw,s + ) ©d
10. e ¥ d3(t—a)
11. F(s — a) ef( =0
12. e “F(s) ft — a)®(t — a)

2A more complete table appears in Appendix B. Here the Heaviside step function or unit
step function is denoted by ®. Other notations for this function include p and H.

Example 3.4.3

Calculate the forced response of an undamped spring—mass system to a unit step func-
tion. Assume that both initial conditions are zero.

Solution The equation of motion is
mX(t) + kx(t) = ®(t)

Taking the Laplace transform of this equation yields
) 1
(ms” + k)X (s) = S

Solving algebraically for X(s) yields

1 1/m

Xs) = s(ms? + k) - s(s? + w2)
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Examining the definition of the Laplace transform, note that the coefficient 1/m
passes through the transform. The time function corresponding to the value of X(s) in
the preceding equation can be found as entry 7 in Table 3.1. This implies that

1/m 1
x(t) = =5 (1 — cosw,t) = (1 — cosw,t)
o k

n

which, of course, agrees with the solution given by equation (3.18) with Fy = 1.

Example 3.4.4

Calculate the response of an underdamped spring-mass system to a unit impulse.
Assume zero initial conditions.

Solution The equation of motion is

mx + cx + kx = 3(¢)

Taking the Laplace transform of both sides of this expression using the results of
Example 3.4.1 and entry 1 in Table 3.1 yields

(ms2 +cs + k)X(s) =1
Solving for X(s) yields

XGs) 1/m
S o e
§2 + 2w,s + ol

Assuming that { < 1 and consulting entry 8 of Table 3.1 yields

1/m 1
x(t) = /7(5‘”"‘ sin (w,ﬂ/ﬁt) = —— ¢ ' sinay

in agreement with equation (3.6).

Example 3.4.5

Compute the solution of the spring-mass—damper system subject to an impulse at time
t = s defined by the following equation of motion:

X(@) + 2x(f) + 2x(t) = 8(t — w), % = vy =0
Solution From the coefficients

w, = \@rad/s,{zﬁ :%andwd: V2V1 = (1/V2)? = 1rad/s

Taking the Laplace transform of the equation of motion yields

(> + 25+ 2)X(s) = e ™
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Solving algebraically for X(s) yields

o™ 1
Xs)=—"—"=(EE€™)\ ——
) 2425 +2 ( )(52+2s+2)

The inverse Laplace transform of the last term is (from entry 8 in Table 3.1)

L_1<71 ) = ¢ 'sint
2
sc+ 25+ 1

From entry 12 of Table 3.1, the inverse Laplace transform of X(s) then becomes

o 0. t<m
x(f) = e Psin(t — WDt — w) = {e—(f‘“) sin(t —m), t=m
O

It should be noted that the Laplace transform may be used for problems with
untabulated pairs by inverting the integration indicated in equation (3.41). The in-
version integral is

x(t) = 2111_] /wX(s)e”ds (3.42)

where j = V—1. The inverse Laplace transform is discussed in greater detail in
Appendix B.

An often-used tool in Laplace transform analysis is the idea of convolution,
introduced in Section 3.2. In fact, the convolution integral is often defined first in
terms of the Laplace transform. Consider the response written as the convolution
integral as given in equation (3.12), and take the Laplace transform assuming zero
initial conditions. This yields

X(s) = F(s)H(s) (3.43)

called Borel’s theorem. Here F(s) is the Laplace transform of the driving force, f(¢),
and H(s) is the Laplace transform of the impulse response function A(¢). Taking the
transform of 4(¢) defined by equation (3.8) and using entry 8 of Table 3.1 yields

1
s2 + 2w, + 02

H(s) = (3.44)
which is the transfer function of a single-degree-of-freedom oscillator as defined in
Section 2.3, equation (2.59).

A related transform is the Fourier transform, which arises from considering

the Fourier series of a nonperiodic function. The Fourier transform of a function
x(¢) is denoted by X(w) and is defined by

X(w) = i / mx(t)e*fwfdz (3.45)
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which transforms the variable x(¢) from a function of time into a function of fre-
quency w. The inversion of this transform is performed by the integral

x(t) = / ooX(w)ej“"dm (3.46)

The Fourier transform integral defined by equation (3.45) arises from the Fourier
series representation of a function described by equation (3.20) by writing the se-
ries in complex form and allowing the period to go to infinity. [See Newland (1993),
page 39, for details.]

Note that the definitions of the Fourier transform and the Laplace transform
are similar. In fact, the form of the Fourier transform pairs given in equations (3.45)
and (3.46) can be obtained by substituting s = jo into the Laplace transform pair
given by equations (3.41) and (3.42). Although this does not constitute a rigorous
definition, it does provide a connection between the two types of transforms.

Fourier transforms are not used as frequently for solving vibration problems
as are Laplace transforms. However, the Fourier transform is used extensively in
discussing random vibration problems and in the measurement of vibration param-
eters. Appendix B discusses additional details of transforms. A rigorous description

of the use of various transforms, their properties, and their applications can be
found in Churchill (1972).

3.5 RESPONSE TO RANDOM INPUTS

So far, all the driving forces considered have been deterministic functions of time. That
is, given a value of the time ¢, the value of F() is precisely known. Here the response
of a system subject to a random force input F(¢) is investigated. Disturbances are often
characterized as random if the value of F() for a given value of ¢ is known only statisti-
cally. That is, a random signal has no obvious pattern. For random signals it is not pos-
sible to focus on the details of the signal, as it is with a pure deterministic signal. Hence
random signals are classified and manipulated in terms of their statistical properties.
Randomness in vibration analysis can be thought of as the result of a series of
experiments, all performed in an identical fashion under identical circumstances, each
of which produces a different response. One record or time history is not enough to
describe such a vibration; rather, a statistical description of all possible responses is
required. In this case, a vibration response x(¢) should not be thought of as a single
signal, but rather as a collection, or ensemble, of possible time histories resulting from
the same conditions (i.e., same system, same controlled environment, same length of
time). A single element of such an ensemble is called a sample function (or response).
Consider a random signal x(¢), or sample, as pictured in Figure 3.15(d). The
first distinction to be made about a random time history is whether or not the sig-
nal is stationary. A random signal is stationary if its statistical properties (usually
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Figure 3.15 (a) A simple sine function; (b) its autocorrelation; (c) its power spectral density.
(d) A random signal; (e) its autocorrelation; (f) its power spectral density.

its average or mean square) do not change with time. The average of the random
signal x(¢) is defined and denoted by

1 T
x = lim / x(t)dt (3.47)
T 0

as introduced in Section 1.2, equation (1.20), for deterministic signals. Here, it is
convenient to consider signals with a zero average or mean [i.e., x(t) = 0]. This is
not too restrictive an assumption, since if x(f) # 0, a new variable x’ = x — x can
be defined. The new variable x’ now has zero mean. o

The mean-square value of the random variable x(f) is denoted by x? and is
defined by

— 1 T
x? = lim / x*(t)dt (3.48)
T Jo

T —o
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as introduced in Section 1.2, equation (1.21), for deterministic signals. In the case of
random signals, this is also called the variance and provides a measure of the magnitude
of the fluctuations in the signal x(¢). A related quantity, called the root-mean-square
(rms) value, is just the square root of the variance:

s = V2 (3.49)

This definition can be applied to the value of a single response over its time history
or to an ensemble value at a fixed time.

Another measure of interest in random variables is how fast the value of the
variable changes. This addresses the issue of how long it takes to measure enough
samples of the variable before a meaningful statistical value can be calculated.
Many measured vibration signals are random and, as such, an indication of how
quickly a variable changes is very useful. The autocorrelation function, denoted by
R, (7) and defined by

Ru(x) = lim % /O Tx(t)x(t + 7)dt (3.50)

provides a measure of how fast the signal x(¢) is changing. The value 7 is the time
difference between the values at which the signal x(¢) is sampled. The prefix auto re-
fers to the fact that the term x(¢)x(¢ + 7) is the product of values of the same sample
at two different times. The autocorrelation is a function of the time difference 7
only in the special case of stationary random signals. Figure 3.15(e) illustrates the
autocorrelation of a random signal, and Figure 3.15(b) illustrates that of a sine
function. The Fourier transform of the autocorrelation function defines the power
spectral density (PSD). Denoting the PSD by S, (») and repeating the definition of
equation (3.45) results in

0

1 .
Ser(w) = 2’1T/ R (w)edr (3.51)

Note that this integral of R, (1) changes the real number T into a frequency-domain
value w. Figure 3.15(c) illustrates the PSD of a pure sine signal, and Figure 3.15(f)
illustrates the PSD of a random signal. The autocorrelation and power spectral den-
sity, defined by equations (3.50) and (3.51), respectively, can be used to examine
the response of a spring—mass system to a random excitation.

Recall from Section 3.2 that the response x(f) of a spring—mass—damper sys-
tem to an arbitrary forcing function F(f) can be represented by using the impulse
response function A(t — 7) given by equation (3.9) for underdamped systems. The
Fourier transform of the function /(¢ — 7) can be used to relate the PSD of the ran-
dom input of an underdamped system to the PSD of the system’s response. First note
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from equation (3.8), Example 3.4.4, and entry 8 of Table 3.1 that the Laplace trans-
form of A(¢) for a single-degree-of-freedom system is

1 1
Ll — el gingt| = —— Lle ™t gin ot 3.52
mwde sin wy oy [e s1nu)d] (3.52)

! H(s)
= = K
ms? + cs + k

L[]

where H(s) is the system transfer function as defined by equation (2.59). In this
case, the Fourier transform of /(f) can be obtained from the Laplace transform by
setting s = jw in equation (3.52). This yields simply

1

H(jwo)=———
(o) k — o’m + coj

(3.53)
which, upon comparison with equations (2.60) and (2.52), is also the frequency
response function for the single-degree-of-freedom oscillator. Let X(w) denote
the Fourier transform of the impulse response function, 4(¢); then, from equations
(3.45) and (3.53)

[

X(w) = % / h(t)e 7' dt = H(w) (3.54)

where the j is dropped from the argument of H for convenience. Thus the fre-
quency response function of Section 2.3 can be related to the Fourier transform
of the impulse response function. This becomes extremely significant in vibration
measurement as discussed in Chapter 7.

Next, recall the formulation of the solution of a vibration problem using the
impulse response function. From equation (3.12), the response x(f) to a driving
force F(t) is simply

() = /0 F(r)h(t — 7)dr (3.55)

Note that since A(t — 7) = 0 for t < T, the upper limit can be extended to plus
infinity. Since F(f) = 0 for t < 0, the lower limit can be extended to minus infinity.
Thus, expression (3.55) can be rewritten as

o0

x(f) = / F()h(t — T)dr (3.56)

Next, the variable of integration T can be changed to 6 by using T = ¢ — 6, and hence
dtr = —d0. Using this change of variables, the previous integral can be written

o

x(t) = —/mF(t — 0)h(0)d(6) = / F(t — 0)h(6)do (3.57)
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which provides an alternative form of the solution of a forced vibration problem in
terms of the impulse response function.
Finally, consider the PSD of the response x(¢) given by equation (3.51) as

©

S(w) = 21“_/ R (7)e7*dr (3.58)

Upon substitution of the definition of R, (t) from equation (3.50), this becomes

Se(w) = i /_ :[ lim lT /O Tx(a)x(o + T)do’}ej"”d’r (3.59)

T—x

The expressions for x(¢) in the integral are evaluated next using equation (3.57),
which results in

SXJC(O‘)) =

% :[ Tim lT /0 T[ / :F(o — B)A(6)do / :F((r — 9+ T)h(e)dﬁ]do}e_f“”d*r
(3.60)

T o o
= lim % / [F(f)F(? +7) / h(8)e *°d6 / h(ﬁ)ef“’ede}d(re_f‘“d*r
0 — —%
(3.61)

where ¢~ 1J® = 1 has been inserted inside the inner integrals and a subsequent
change of variables (i = ¢ — 0) has been performed on the argument of F, which is
subsequently moved outside the integral. The two integrals inside the brackets in equa-
tion (3.61) are H(w) and its complex conjugate H(—w), according to equation (3.54).
Recognizing the frequency response functions H(w) and H(—w) in equation (3.61), this
expression can be rewritten as

©

Suto) = H| 5= [ Ryerwas]

or simply
Su(w) = [H(w)]” Sy(w) (3.62)

Here Ry denotes the autocorrelation function for F(¢) and Sy denotes the PSD of
the forcing function F(). The notation | H(w)|? indicates the square of the magni-
tude of the complex frequency response function. A more rigorous derivation of
the result can be found in Newland (1993). It is more important to study the result
[i.e., equation (3.62)] than the derivations at this level.
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Equation (3.62) represents an important connection between the power
spectral density of the driving force, the dynamics of the structure, and the power
spectral density of the response. In the deterministic case, a solution was obtained
relating the harmonic force applied to the system and the resulting response
(Chapter 2). In the case where the input is a random excitation, the statement
equivalent to a solution is equation (3.62), which indicates how fast the response
x(t) changes in relation to how fast the (random) driving force is changing. In the
deterministic case of a sinusoidal driving force, the solution allowed the conclusion
that the response was also sinusoidal with a new magnitude and phase, but of the
same frequency as the driving force. In a way, equation (3.62) makes the equiva-
lent statement for a random excitation (see Window 3.4). It states that when the
excitation is a stationary random process, the response will be a stationary random
process and the response changes as rapidly as the driving force, but with a modified
amplitude. In both the deterministic case and the random case, the amplitude of the
response is related to the frequency response function of the structure.

Example 3.5.1

Consider the single-degree-of-freedom system of Window 3.1 subject to a random
(white noise) force input F(¢). Calculate the power spectral density of the response x()
given that the PSD of the applied force is the constant value .

Solution The equation of motion is
mx + cx + kx = F(1)

From equation (2.59) or equation (3.53), the frequency response function is

1
H(w) = ol + cor
— mw” + cwj
Thus,
2
)P = [ = b
k — mo® + coj (k — mo?) + coj (k- mo?) — cwj

1

(k — mm2)2 + 2w?

From equation (3.62), the PSD of the response becomes
So

S ‘H(‘*’)‘zsff B (k - mw2)2 + o?

This states that if a single-degree-of-freedom system is excited by a stationary random
force (of constant mean and rms value) that has a constant power spectral density
of value Sy, the response of the system will also be random with nonconstant (i.e.,
frequency-dependent) PSD of S (0) = So/[(k — mw?)? + c?w?].

|
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Another useful quantity in discussing the response of a system to random
vibration is the expected value. The expected value (or more appropriately, the en-
semble average) of x(¢) is denoted by E[x] and defined by
T x(t

E[x] = lim
T —x 0

(3.63)

which, from equation (3.47), is also the mean value, x. The expected value is also
related to the probability that x(¢) lies in a given interval through the probability
density function p(x). An example of p(x) is the familiar Gaussian distribution func-
tion (bell-shaped curve). In terms of the probability density function, the expected
value is defined by

E[x] = /xxp(x)dx (3.64)

The average of the product of the two functions x(¢) and x(¢ + 7) describes how the
function x(¢) changes with time and, for a stationary random process, is the autocor-
relation function

1 T
E[x()x(t +1)] = Thinw T /O x()x(t + 7)dt = R (7) (3.65)

upon comparison with equation (3.50). From equation (3.48), the mean-square
value becomes

¥ = R, (0) = E[+?] (3.66)

The mean-square value can, in turn, be related to the power spectral density func-
tion by inverting equation (3.51) using the Fourier transform pair of equations (3.45)
and (3.46). This yields

©

Ruro = [ Sutordo = B[] (3.67)
Equation (3.62) relates the PSD of the response x(¢) to the PSD of the driving force
F(¢) and the frequency response function. Combining equations (3.62) and (3.67) yields

oo

E[*] = / |H(w)|*Si (w) dw (3.68)

This expression relates the mean-square value of the response to the PSD of the (ran-
dom) driving force and the dynamics of the system. Equations (3.68) and (3.62) form
the basis for random vibration analysis for stationary random driving forces. These ex-
pressions represent the equivalent of using the impulse response function and frequency
response functions to describe deterministic vibration excitations (see Window 3.4).
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Window 3.4
Comparison between Calculations for the Response of a
Spring—-Mass-Damper System and Deterministic and Random Excitations

|_. x(1)

m —= f(1)

j_

k

1
Transfer function: G(s) = ———
ms? +cs + k
1
k-mo?+cwj
e~onl sin ot
d

Frequency response function: G(jw) = H(w) =

Impulse response function: 2(1) = -~
The Laplace transform of the impulse response function is
1
Llh({t)]) = —— = G(s)
ms2 +cs + k

and the Fourier transform of the impulse response function is just the
frequency response function H(w). These quantities relate the input and
response by

For deterministic f(z): For random f{(¢):

X(s) = G(s)F(s) 5.0 = |HE) s

x(t) = f h(t = D)f(7)dr E[x2] = / ) | Sip(w)do
0

To use equation (3.68), the integral involving | H(w)|? must be evaluated. In
many useful cases, Sy(w) is constant. Hence, values of | |H(w)|” have been tabulated

(see Newland, 1993). For example

” B 2 B}
/ 70, = T (3.69)
—wlAg T jwAy Ap Ay
and
” By + joB, 2 w(AyB} + A, B})
- 3 = (3.70)
— AO + ](1)A1 - W A2 AOAlAZ

Such integrals, along with equation (3.68), allow computation of the expected value,
as the following example illustrates.
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Example 3.5.2

Calculate the mean-square value of the response of the system described in Example
3.5.1 with equation of motion mX + cx + kx = F(f), where the PSD of the applied
force is the constant value §.

Solution Since the PSD of the forcing function is the constant Sy, equation (3.68)

becomes
EI:XZ} = So/

Comparison with equation (3.70) yields By = 1, B = 0,Ag = k, Ay = ¢c,and A, = m.
Thus,

1 2

k — mo;, + jcw

mm ’ITS()
E[xX*|=S—=——
[x ] O kem kc
Hence, if a spring-mass—damper system is excited by a random force described by a
constant PSD, S, it will have a random response, x(¢), with mean-square value mSy/kc.
O

Two basic relationships used in analyzing spring—mass—damper systems ex-
cited by random inputs are illustrated in this section. The output or response of a
randomly excited system is also random and, unlike deterministic systems, cannot
be exactly predicted. Hence, the response is related to the driving force through the
statistical quantities of power spectral density and mean-square values. See Window
3.4 for a comparison of response calculations for deterministic and random inputs.
In deterministic vibrations, the concern in design is usually to compute the magni-
tude and phase of the response to a known deterministic forcing function. This sec-
tion addressed the same problem when the forcing function has a random nature.
Given a statistical property of the forcing function, say the average magnitude, then
the best we can do is to compute the average value of the magnitude of the response.

3.6 SHOCK SPECTRUM

Many disturbances are abrupt or sudden in nature. The impulse is an example of a
force applied suddenly. Such a sudden application of a force or other form of dis-
turbance resulting in a transient response is referred to as a shock. Because of the
common occurrence of shock inputs, a special characterization of the response to a
shock has developed as a standard design and analysis tool. This characterization is
called the response spectrum and consists of a plot of the maximum absolute value
of the system’s time response versus the natural frequency of the system.

The impulse response discussed in Section 3.1 provides a mechanism for
studying the response of a system to a shock input. Recall that the impulse response
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function, A(¢), was derived from considering a force input, 8(¢), of large magnitude
and short duration and can be used to calculate the response of a system to any
input. The impulse response function forms the basis for calculating the response
spectrum introduced here.

Recall from equation (3.12) that the response of a system to an arbitrary input
F(t) can be written as

() = /0 F(r)h(t — 7)dr (3.71)

where A(t — ) is the impulse response function for the system. For an underdamped
system, A(t — 7) is given by equation (3.9):

h(t — 1) = e =D sin wy(t — 1) > (3.72)

mwg

which becomes

h(t — 1) =

o, sin w,(t — 1) (3.73)

in the undamped case. The response spectrum is defined to be a plot of the peak
or maximum value of the response versus frequency. For an undamped system,
equations (3.71) and (3.73) can be combined to yield the maximum value of the
displacement response as

1
x(t)max = %

n

/IF(T) sin [o,(t — 7)]dT (3.74)
0

max

Calculating a response spectrum then involves substitution of the appropriate F(¢)
into equation (3.74) and plotting x(f)ax versus the undamped natural frequency.
This is usually done numerically on a computer; however, the following example
illustrates the procedure by hand calculation.

Example 3.6.1

Calculate the response spectrum for the forcing function given in Figure 3.16 applied
to the linear spring—mass system. The abruptness of the response is characterized by
the time #.

; Figure3.16 A step disturbance
with rise time of #; seconds.
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Solution As in Example 3.2.2, the forcing function F(f) sketched in Figure 3.16 can
be written as the sum of two other simple functions. In this case, the input is the sum of

t
F() =K
n

and

0 0<tr<n
= t—t
B -—1RK =4
4
Following the steps taken in Example 3.2.2, the response is calculated by evaluating
the response to Fi(¢) and separately to F,(f). Linearity is then used to obtain the total
response to F(f) = Fi(f) + F,(¢). The response to Fi(f), denoted by x(¢), calculated
using equations (3.71) and (3.73), becomes

A= w, /tFo’T . , dr — Fo<t Sinm,,t) 375
x(t) = k), sinw,(t — 1) dt = x \s; " (3.75)
Similarly, the response to F,(f), denoted by x,(¢), becomes
t t
1 -k -t
x(t) = /OFZ(T) e, sinw,(t — T)dt = miu)i . i ’ 1 sinw,(t — T)dT

which becomes

Fb t— tl Sin(:)n(l - tl):|
£ =—— - 3.76
w0 = -2 . (376)
so that the total response becomes the sum x() = x1(f) + x,(¢):
F(t sin w,t
VY, f=h
x(r) = ! il (3.77)
£

—— [0, — sinw,t + sinw,(t — )] t=1
ku)ntl

Alternately, the Heaviside step function may be used to write this solution as

F/(t sinm,,t) K (t - sinw,(t — zl)>
)=—\— - - — - Ot — ¢ 3.78
X( ) k <l1 (")ntl k tl (L)nll ( 1) ( )

Equation (3.77) is the response of an undamped system to the excitation of Figure 3.16.
To find the maximum response, the derivative of equation (3.77) is set equal to zero
and solved for the time ¢, at which the maximum occurs. This time ¢, is then substituted
into the response x(t,) given by equation (3.77) to yield the maximum response x(t,).
Differentiating equation (3.77) for t > t; yields x(¢,) = 0 or

— coswyt, + cosw,(t, —t;) =0 (3.79)
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V2(1 — cos w,t1)

sin w,,t;

u)nlp

Figure 3.17 A graphical representation of

1— cosw,t
@l equations (3.80) and (3.81).

Using simple trigonometry formulas and solving for w,, yields

1 — cos w,t 1 — cos o,
tanw,,zp = W or u)ntp = tan — Y (380)
nl1 sin (1)”[1

where ¢, denotes the time to the first peak [i.e., the time for which the maximum value
of equation (3.77) occurs]. Expression (3.80) corresponds to a right triangle of sides
(1 — cos w,t1), and sin w,t;, and hypotenuse

\/Sinzu)ntl + (1 — cos w,ty)? = \/2(1 — COS wyt1) (3.81)

This relationship is illustrated in Figure 3.17. Hence, sin w1, can be calculated from

1
sin w,t, = —, '5 (1 — cos wpty) (3.82)

—sin W,
COSwyt, = — L (3.83)

? V2(1 — coswyty)

Substitution of this expression into solution (3.77) evaluated at ¢, yields, after some
manipulation [here x(¢,) = Xmax],

and

k 1
Tma® _ 4 V2(1 - cosanty) (3.84)

where the left side represents the dimensionless maximum displacement. It is custom-
ary to plot the response spectrum (dimensionless) versus the dimensionless frequency
h Wyl

= (3.85)

where T is the structure’s natural period. This provides a scale related to the characteris-
tic time, #1, of the input. Figure 3.18 is a plot of the response spectrum for the ramp input
force of Figure 3.16. Note that each point on the plot corresponds to a different rise time,
t1, of the excitation. The vertical scale is an indication of the relationship between the
structure and the rise time of the excitation.
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2.0

(7)
Fy/max

4!

1.0

0 1 2 3 4

Figure 3.18 Response spectrum for the input force of Figure 3.16. The
vertical axis is the dimensionless maximum response, and the horizontal axis
is the dimensionless frequency (or delay time).

=
—_
W

©
=

0.05

Displacement x(¢), maximum displacement,

and normalized input force

Time, ¢

Figure 3.19 A plot of the time response (solid line) of an undamped system to the
input given in Figure 3.16. Also shown are the maximum magnitude (long dashed
line) and the input function (short dashed line) for the parameters kK = 10 N/m,
m = 10kg, Fp = 1 N,andt; = 1s.

The response is plotted using equation (3.77) along with the maximum magni-
tude as given by equation (3.84) and the ramp input function in Figure 3.19. Note from
these plots that the amplitude of the response is magnified, or larger than the level of
the input force. If ¢ is chosen to be near a period (the minimum in Figure 3.18), then
the response is lower than this value and the maximum response will be equal to the
input level. The effects of the various parameters form the topic of shock isolation
(Section 5.2, which can be read now) and are examined numerically in Section 3.9.

d
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3.7 MEASUREMENT VIA TRANSFER FUNCTIONS

The forced response of a vibrating system is very useful in measuring the physical
parameters of a system. As indicated in Section 1.6, the measurement of a system’s
damping coefficient can only be made dynamically. In some systems the damping is
large enough that the vibration does not last long enough for a free decay measure-
ment to be taken. This section examines the use of the forced response, transfer
functions, and random vibration analysis introduced in previous sections to measure
the mass, damping, and stiffness of a system.

The use of transfer functions to measure the properties of structures comes
from electrical engineering. In circuit applications, a function generator is used to
apply a sinusoidal voltage signal to a circuit. The output is measured for a range of
input frequencies. The ratio of the Laplace transform of the two signals then yields
the transfer function of the test circuit. A similar experiment may be performed on
mechanical structures. A signal generator is used to drive a force-generating device
(called a shaker) that drives the structure sinusoidally through a range of frequencies
at a known amplitude and phase. Both the response (either acceleration, velocity,
or displacement) and the input force are measured using various transducers. The
transform of the input and output signal is calculated and the frequency response
function for the system is determined. The physical parameters are then derived
from the magnitude and phase of the frequency response function. The details of
the measurement procedures are discussed in Chapter 7. The methods of extracting
physical parameters from the frequency response function are introduced here.

Several different transfer functions are used in vibration measurement, de-
pending on whether displacement, velocity, or acceleration is measured. The various
transfer functions are illustrated in Table 3.2. The table indicates, for example, that
the accelerance transfer function and corresponding frequency response function are
obtained from dividing the transform of the acceleration response by the transform of
the driving force.

TABLE 3.2 TRANSFER FUNCTIONS USED IN VIBRATION

MEASUREMENT

Response Transfer Inverse Transfer
Measurement Function Function
Acceleration Accelerance Apparent mass
Velocity Mobility Impedance
Displacement Receptance Dynamic stiffness

The three transfer functions given in Table 3.2 are related to each other by simple
multiplications of the transform variable s, since this corresponds to differentiation.
Thus, with the receptance transfer function (also called the compliance or admittance)
denoted by

X(s) _ 1

o " (3.86)
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the mobility transfer function becomes

sX(s) B s
F(s) H(s) = ms® + cs + k

(3.87)

because sX(s) is the transform of the velocity. Similarly, s?X(s) is the transform of
the acceleration, and the accelerance transfer function (inertance) becomes

s2X(s) s2
= H(s) = —————
E(s) SHs) ms® + ¢s + k

(3.88)

Each of these also defines the corresponding frequency response function by sub-
stituting s = jo.

Consider calculating the magnitude of the complex compliance H(jw) from
equation (2.53) or (3.86). As expected from equation (2.70), this yields

1
Vik = mo?) + (cw)?

|H(jo)| = (3.89)

Note that the largest value of this magnitude occurs near k — mo? = 0, or when the
driving frequency is equal to the undamped natural frequency, ® = w, = Vk/m.
Recall from Section 2.2 that this also corresponds to a phase shift of 90°. This
argument is used in testing to determine the natural frequency of vibration of a
test particle from a measured magnitude plot of the system transfer function. This
is illustrated in Figure 3.20. The exact value of the peak frequency is derived in
Example 2.2.5.

In principle, each of the physical parameters in the transfer function can
be determined from the experimental plot of the frequency response function’s
magnitude. The natural frequency, ,, is determined from the position of the

Mag H(jw)

x|
L—

Figure 3.20 A magnitude plot for a
0 spring-mass—damper system for the
0.01 0.1 1 log(w) 10 compliance transfer function indicating

the determination of the natural
— o N1 =202 ~w. =\
w=o,V1 =2 ©n kim frequency and stiffness.
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peak. The damping constant c is approximated from the value of the frequency
and a measurement of the magnitude |H(jo)| at o = Vk/m, since, from
equation (3.89)

1) = Vi~

This formulation for measuring the damping coefficient provides an alternative
to the logarithmic decrement technique presented in Section 1.6. Next, the stiff-
ness can be determined from the zero frequency point. For ® = 0, equation (3.87)
yields

(3.90)

1 1
|H(0)| = Vi Tk (3.91)

Since 0, = V k/m, knowledge of w, and k yields the value for m. In this way, m, c,
k, w,, and { can all be determined from measurements of | H(jo)|. More practical
methods are discussed in Chapter 7. Of course, m and k can usually be measured by
static experiments as well, for comparison.

The preceding analysis all depends on the experimentally determined func-
tion | H(jo)|. Most experiments contain several sources of noise, so that a clean
plot of | H(jw)| is hard to get. The common approach is to repeat the experiment
several times and essentially average the data (i.e., use ensemble averages). In
practice, matched sets of input force time histories, f{(¢), and response time histories,
x(t), are averaged to produce R,(f) and Ry(¢) using equation (3.48). The Fourier
transform of these averages is then taken using equation (3.51) to get the PSD
functions S, () and Sy(w). Equation (3.62) is then used to calculate | H(jw)| from
the PSD values of the measured input and response. This procedure works for aver-
aging noisy data as well as for the case of using a random excitation (zero mean) as
the driving force. The transforms and computations required to calculate | H(jw)|
are usually made digitally in a dedicated computer used for vibration testing. This is
discussed in Chapter 7 in more detail.

3.8 STABILITY

The concept of stability was introduced in Section 1.8 in the context of free vibra-
tion. Here the definitions of stability for free vibration are extended to include the
forced-response case. Recall from equation (1.86) that the free response is stable if
it stays within a finite bound for all time (see Window 3.5). This concept of a well-
behaved response can also be applied to the forced motion of a vibrating system. In
fact, in a sense, the inverted pendulum of Example 1.8.1 is an analysis of a forced
response if gravity is considered to be the driving force.
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Window 3.5
Review of Stability of the Free Response from Section 1.8

A solution x(2) is stable if there exists some finite number M such that
x(0] < M

for all ¢+ > 0. If this bound cannot be satisfied, the response x(z) is said to be
unstable.

If a response x(¢) is stable and x(¢) approaches zero as ¢ gets large, the so-
lution x(¢) is said to be asymptotically stable. An undamped spring—mass system
is stable as long as m and k are positive and the value of M is just the amplitude
A [ie.,, M = A,where x(t) = A sin (w,, + ¢)]. A damped system is asymptoti-
cally stable if m, ¢, and k are all positive [i.e., x(f) = Ae “'sin(w,t + &) goes
to zero as t increases).

The stability of the forced response of a system can be defined by considering
the nature of the applied force or input. The system

mx + cx + kx = F(¢) (3.92)

is defined to be bounded-input, bounded-output stable (or simply BIBO stable)
if, for any bounded input, F(¢), the output, or response x(f), is bounded for any
arbitrary set of initial conditions. Systems that are BIBO stable are manageable at
resonance and do not “blow up.”

Note that the undamped version of equation (3.92) is not BIBO stable. To
see this, note that if F(z) is chosen to be F(r) = sin[(k/m)"*] for the case ¢ = 0, the
response x(¢) is clearly not bounded as indicated in Figure 2.5. Also recall that the
magnitude of the forced response of an undamped system is Fy/[w2 — w?], which
approaches infinity as w approaches o, (see Window 3.6). However, the input force

F(¢) is bounded since
( [k
sm( mz)‘ =1 (3.93)

for all time. Thus, there is some bounded force for which the response is not
bounded and the definition of BIBO stable is violated. This situation corresponds
to resonance. Clearly, an undamped system is poorly behaved at resonance.

Next, consider the damped case (¢ > 0). Immediately, the preceding example
of resonance is no longer unbounded. The forced-response magnitude curves given
in Figure 2.8 illustrate that the response is always bounded for any bounded peri-
odic driving force. To see that the response of an underdamped system is bounded

[F(o] =
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Window 3.6
Review of the Response
of a Single-Degree-of-Freedom System to Harmonic Excitation

The undamped system
mX + kx = Fycos ot x(0) = x, x(0) = v,
has the solution
v
x(t) = QTO sinw,t + (xo - % ) cosw,t + _h coswt  (2.11)
(’)n

n (1)3,_(,02

where fy = Fy/m, and w,, = V'k/m, and xy and  are initial conditions. The
underdamped system

mx + cx + kx = Fycos ot

has the steady-state solution

fo
V(0} - 0?) + (2Lw,0)?

x(1) =

2
cos (u)t — tan ! % ) (2.36)
W, — O

where the damping ratio  satisfies 0 < ¢ < 1.

for any bounded input, recall that the solution for an arbitrary driving force is given
in terms of the impulse response in equation (3.12) to be

x(t) = /Of(T)h(t — 7)dt (3.94)

where f(t) = F(t)/m. Taking the absolute value of both sides of this expression yields

lx(2)| = ‘/Of(ﬂr)h(t — 7)dt| = /O[f(T)h(t — 7)|d7 (3.95)

where the inequality results from the definition of integrals as a limit of summa-
tions. Noting that |hf| =< |h||f] yields

()| = /0 ) At = ) |dr = M/O Ih(c = )| dr (396)

where f(r) [and hence F()] is assumed to be bounded by M [i.e., |f(t)| < M].
Note that the choice of the constant M is arbitrary and is always chosen as a
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matter of convenience. Next consider evaluating the integral on the right of in-
equality (3.96) for the underdamped case. The impulse response for an under-
damped system is given by equation (3.9). Substitution of equation (3.9) into
(3.96) yields

t
1
x()] = M / eI [ sinwg(e = 7)|dr (3.97)
0 d

t
<= M e tont | plontgr — M (1 — e*@‘l’nt) =M
moy 0 miw,wy

since |sin wy(t—7)| = 1forallt > 0, mlw,w; > 1and 1 — e %> < 1. Thus
x| = M

Hence as long as the input force is bounded (say, by M) the preceding calculation
illustrates that the response x(¢) of an underdamped system is also bounded, and
the system is BIBO stable.

The results of Section 2.1 clearly indicate that the response of an un-
damped system is well behaved, or bounded, as long as the harmonic input is
not at or near the natural frequency (see Window 3.6). In fact, the response
given by equation (2.11) illustrates that the maximum magnitude will be less
than some constant as long as ® # w,. To see this, take the absolute value of
equation (2.11), which yields

fi
+ —_
"‘0 o2 — o

x(9)] = % <M (3.98)

where M is finite since each term is finite as long as o # w,. Here ( and x( are
the initial velocity and displacement, respectively. Thus the undamped forced
response is sometimes well behaved and sometimes not. Such systems are said to be
Lagrange stable. Specifically, a system is defined to be Lagrange stable, or bounded,
with respect to a given input if the response is bounded for any set of initial condi-
tions. Undamped systems are Lagrange stable with respect to many inputs. This
definition is useful when F(¢) is known completely or known to fall into a specific
class of functions. Both the damped and undamped solutions given in Window 3.6
are Lagrange stable for o, # o.

In general, if the homogeneous solution is asymptotically stable, the forced
response will be BIBO stable. If the homogeneous response is stable (marginally
stable), the forced response will only be Lagrange stable. The forced response of an
unstable homogeneous system can still be BIBO stable, as illustrated in the follow-
ing example.
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Example 3.8.1

Consider the inverted pendulum of Example 1.8.1, illustrated in Figure 3.21, and discuss
its stability properties.

mg

Figure 3.21 The spring-supported
inverted pendulum of Example 3.8.1.

Solution Summing the moments about the pivot point yields

> My = ml*6(t) = [kl sin 0(1)][/ cos 6(¢)] + mg[l sin 6(7)]

Considering the small-angle approximation of the inverted pendulum equation results
in the equation of motion

ml?6(t) + ki26(t) = mglo(?)

If mgle is considered to be an applied force, the homogeneous solution is stable since
m, [, and k are all positive. Writing the equation of motion as a homogeneous equation
yields

mi*8(t) + [kI*> — mgl]e(t) = 0

The forced response, however, is not bounded unless kI > mg and was shown in
Example 1.8.1 to be divergent (unbounded) in this case. Hence the forced response of
this system is Lagrange stable for F(¢) = mgl if kIl > mg, and unbounded (unstable)
if kI < mg.

d

Example 3.8.2

Consider again the inverted pendulum of Example 3.8.1. Design an applied force F(¢)
such that the response is bounded for kI < mg.

Solution The problem is to find F(f) such that 6 satisfying
ml?0(t) + (kI* — mghe(t) = F(r)
is bounded. As a starting point, assume that F(¢) has the form

F(f) = —ab(t) — bd(r)
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where a and b are to be determined by the design for stability. This form is attractive
because it changes the inhomogeneous problem into a homogeneous problem. The
equation of motion then becomes

mi?6(t) + (kI — mgh)o(t) = —ab(t) — bb(¢)
This can be written as a homogenous equation:
mi%(r) + b® + (kI — mgl + a)p = 0

From Section 1.8, it is known that if each of the coefficients is positive, the response is
asymptotically stable, which is certainly bounded. Hence, choose b > 0 and a such that

k> — mgl +a >0
and the forced response will be bounded.

|

An applied force can also cause a stable (or asymptotically stable) system response
to become unstable. To see this, consider the system

X(@) + x(2) + 4x(t) = f(¥) (3.99)
where f(t) = ax(f) + bx(¢). If ais chosen to be 2 and b = 2, the equation of motion
becomes

X(@) — x(t) + 2x(t) = 0 (3.100)

which has a solution that grows exponentially and illustrates flutter instability. At
first glance, this seems to violate the earlier statement that asymptotically stable
homogeneous systems are BIBO stable. This example, however, does not violate
the definition because the input f{¢) is not bounded. The applied force is a function
of the displacement and velocity, which grow without bound.

3.9 NUMERICAL SIMULATION OF THE RESPONSE

Numerical simulation, as introduced in Section 1.9 for the free response and
Section 2.8 for the response to harmonic inputs, can be used to compute and plot
the response to any arbitrary forcing function. Numerical simulation has become
the preferred method for computing the response, as it requires a minimum amount
of analysis and can be applied to any type of input force, including experimental
data (such as time histories of earthquakes). Numerical solutions may also be used
to check analytical work, and analytical work should be used to check numerical
results as often as possible. This section presents some common codes for simulating
and plotting the response of systems to a general force.

In the previous sections, great effort was put forth to derive analytical expres-
sions for the response of various single-degree-of-freedom systems driven by a
variety of forces. These analytical expressions are extremely useful for design and
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for understanding some of the physical phenomena. Plots of the time response were
constructed to realize the nature and features of the response. Rather than plotting
the analytical function describing the response, the time response may also be com-
puted numerically using an Euler or Runge—Kutta integration and computational
software packages as introduced in Sections 1.8 and 2.8. While numerical solutions
such as these are not exact, they do allow nonlinear terms to be considered, as well
as the solution of systems with complicated forcing terms that do not have analyti-
cal solutions.

In order to solve for the force response to an arbitrary input numerically,
equation (2.133) needs to be modified slightly to incorporate an arbitrary applied
force. It is possible to generate an approximate numerical solution of

mx(t) + cx(t) + kx(t) = F(t) (3.101)
subject to any initial conditions for any arbitrary force F(f). For most codes, equa-
tion (3.101) must be cast into the first-order, or state-space, form by renaming x as
x1 and writing

x1(t) = (1)
() = —2L00(1) — () + f(r) (3.102)

where x, denotes the velocity x(¢) and x; denotes the position x(f) as before and
f(t) = F(t)/m. This is subject to the initial conditions x1(0) = xy and x,(0) = .
Given w,, {, fo, X9, 0, and either the analytical or numerical form of F(¢), the solution
of equation (3.101) can be determined numerically. The matrix form of equation
(3.102) becomes

x(1) = Ax(¥) + () (3.103)

where x and A are the state vector and state matrix as defined previously in equa-
tion (1.96) and repeated here:

X1 0 1
X = xz}’ and A= —? _2@)"}

The vector fis the applied force and takes the form

0
f(r) = [f(z)} (3.104)
The Euler form of equation (3.103) is
x(t;41) = x(t;) + Ax(t;)Ar + £(¢;) At (3.105)

In this case, where f(¢) is an arbitrary force, either f(z;) is f evaluated at each time
instant, if the analytical form of f is known, or it is a discrete time history of data
points, if f is known numerically or experimentally. This expression can also be
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adapted to the Runge-Kutta formulation, and most of the codes mentioned in
Appendix G have built-in commands for a Runge-Kutta solution.

The numerical integration to determine the response of a system is an approxi-
mation, whereas the plotting of the analytical solution is exact. So the question arises,
“Why bother to integrate numerically to find the solution?” The answer lies in the
fact that many practical problems do not have exact analytical solutions, such as the
treatment of nonlinear terms, as was illustrated in Section 1.10. This section discusses
the solution of the forced response using numerical integration in an environment
where the exact solution is available for comparison. The examples in this section
introduce numerical integration to compute forced responses and to compare them
with the exact solution.

The following examples illustrate the use of various programs to compute and
plot the solution. Note that VITB1_3 and VTB1_4 allow the use of data points as a
forcing function.

Example 3.9.1
Solve for the response of the system in Example 3.2.1, using the parameters given in
Figure 3.7 numerically. Recall the equation of motion is

0, tL>t>0

m'x'-i—cjc-i-kx:F(t):{F f=
0> =1t

[Use the values { = 0.1 and w,, = 3.16 rad/s (with F; = 30 N, kK = 1000 N/m, #y = 0).]
Compare the numerical solution with the analytical solution given in Example 3.2.1.

Solution The analytical solution given in equation (3.15) with the parameter values
given in Figure 3.7 becomes

x(f) = (0.03 — 0.03¢703160"0)cos[3.144( — 1) — 0.101])D(r — £5)  (3.106)

where ® denotes the Heaviside step function used to indicate that x(¢) is zero until ¢
reaches #. The state equations for the equation of motion are written as

| R 0
X1
= + | K
L‘j ke L‘J (1 - 1) (3.107)
m m m

The result of plotting the analytical solution of equation (3.106) and numerically integrat-
ing and plotting equation (3.107) is given in Figure 3.22. Note that this is virtually identi-
cal to the plot of Figure 3.7, which is the analytical solution. The codes for producing the
numerical solution follow.

In Mathcad, the code for solving equation (3.107) is

FO:=30 k:=1000 on:=316 (:=01 t0:=0

— =003 —F—=0.03015 ¢{-on= 0316

k k-V1-¢

} FO FO

S
0: = atan{ 1 gz
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0.06 +

0.04 +

Displacement

0.02 +

Time, ¢

Figure 3.22 A plot of the numerical solution of the system of Examples 3.2.1 and 3.9.1.

2

wd:=on-V1— od=314416 6 = 0101 m:=(£)

on
FO FO
s = e hen(t-10) o(t — — . —
xa(t) : K k-m e .cos[wd (t — t0) — 0] d(t — t0)
_ X
X: = 0 D X): =
Lo (t.X): = —2~§'wn-X1—wn2~X0+I%O-CD(t—tO)

Z : = rkfixed (X, 0, 12, 2000, D)
t: =272 x:=xat) xn:=272~"

The MATLAB code for computing the solution and plotting equation (3.107) is

clear all
%% Analytical solution

FO=30; k=1000; wn=3.16; zeta=0.1; t0=0;
theta=atan(zeta/(1l-zetaA2));
wd=wn*sqrt(l-zetaA2);

t=0:0.01:12;

Heaviside=stepfun(t,t0); % define Heaviside step
function for 0 <t < 12
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xt=(F0/k-F0/(k*sqrt(1-zetaAr2)) * exp(-zeta*wn*(t - t0)).
*cos (wd* (t-t0)-theta)).*Heaviside;

plot(t,xt);’Hold on’

%% Numerical Solution

xo=[0; 0];

ts=[0 12];

[t, x]=oded45('f',ts,x0);
plot(t,x(:,1),'r"'); hold off

function v=f(t,x)

Fo=30; k=1000; wn=3.16; zeta=0.1; to=0; m=k/wnA2;
v=[x(2); x(2).*-2*zeta*wn + x(1).*-wnA2 + Fo/m*stepfun(t, to)];

The Mathematica code for computing the solution and plotting equation (3.107) is

In[1]:= <<PlotLegends'

In[2]:= FO = 30;
k = 1000;
own = 3.16;
{=0.1;
t0 = 0;
# = ArcTan [V1 -2, 1;
we ko
wh
od = on * V1 - (%
In[10]:= xanal[t_]
FO FO
=|— - —— *Exp[-{*on*(t — t0)]*Cos[wd*(t — t0)—0]

* UnitStep[t - t0];

In[11]:= xnumer=NDSolve [{x"[t] + 2 * { * wn * x'[t] + on?® * x[t]
== %0 * UnitStep[t - t0], x[0] == 0, x'[0] == 0}, x[t],
{t, 0, 12}1;
Plot[{Evaluate[x[t] /. xnumer], xanal[t]}, {t, 0, 12},
PlotStyle — {RGBColor[1l, O, 0], RGBColor[O, 1, 0]},
PlotLegend — {"Numerical", "Analytical"},
LegendSize — {1, .3}, LegendPosition— {1, 0}]
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Next, consider computing the response to systems where the force is applied
for only a specified amount of time. Such problems are difficult to solve analytically
because they require the use of a change of variables in the convolution integral.
Alternately, a number of analytical responses must be calculated, as indicated in
Example 3.2.2. In the next example, numerical integration is used to solve for the
response to these types of forcing functions.

Example 3.9.2

Numerically compute the solution to Example 3.2.2 using the data given in Figure 3.9
(Fy = 30N,k = 1000 N/m, { = 0.1, and », = 3.16 rad/s). Plot the result for the two
pulse times given in the figure (i.e., for #;{ = 0.5 and for t; = 1.55).

Solution First, write the equation of motion using a Heaviside step function to rep-
resent the driving force. The equation of motion written with Heaviside functions to
describe the applied force is

mx(t) + cx(t) + kx(t) = F[1 — (¢t — 11)] (3.108)

This can be solved numerically directly in this form using Mathematica or by putting
equation (3.108) into state-space form and solving via Runge-Kutta in Mathcad or
MATLAB. The response for two different values of #; is given in Figure 3.23. The
codes follow.

0.05

—0.05 +

t

Figure 3.23 The response of a spring-mass—damper system to a square input of
pulse duration t; = 0.1 s (dashed line) and t; = 1.5 s (solid line), with & = 1000 N /m,
m = 100.14 kg, { = 0.1, and Fy = 30N.
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The Mathcad code for solving for the response is
tl =15 k := 1000 on = 3.16 FO := 30
k
¢ :=0.1 m:=-— m = 100.144
wh
X: = [g} f(t) := FO - FO-®d(t - tl) f2(t) := FO - FO ®(t - 0.1)
Y :=X
Xl Y1
1= f(t = ft
D(t, 0 —wnz-Xo—ZC-wn'Xl-i— (m) D2(t, ) *wnz-Y072§-wn-Yl+ (m)
Z := rkfixed (X, 0, 8, 2000, D) Z2 :=rkfixed (Y, 0, 8, 2000, D2)
t 1= 270> x 1= 271> x2 1= 72~

The MATLAB code for solving for the response is

clear all
xo=[0; 0];
ts=[0 8];

[t, x]=0ded45('f', ts, x0);
plot(t,x(:,1),"'--"); hold on

[t, x]=0de45('f1', ts, x0);
plot(t,x(:,1)); hold off

function v=Ff(t, x)
Fo=30; k=1000; wn=3.16; zeta=0.1; to=0.1; m=k/wnA2;

v=[x(2); x(2).*-2*zeta*wn + x(1).*-wnA2 + Fo/m*(1-stepfun(t, to))];

function v=Ff1(t,x)
Fo=30; k=1000; wn=3.16; zeta=0.1; to=1.5; m=k/wnA2;

v=[x(2); x(2).*-2*zeta*wn + x(1).*-wnA2 + Fo/m*(1l-stepfun(t,to))];

The Mathematica code for solving for the response is

In[1]:= <<PlotLegends'
In[2]:= FO = 30;
k = 1000;
on = 3.16;
{=0.1;
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t2 = 0.1;
me K.
- u)nz,

In[9]:= xpointone =

NDSoTve [{x1''[t] + 2 * { * on * x1'[t] + wn? * x1[t] == ij
* (1 - UnitStep[t - t1]), x1[0] == 0, x1°[0] == 0}, x[t],
{t, 0, 8}]

xonepointfive =

NDSolve [{x2''[t] + 2 * { * on * x2'[t] + on? * x1[t] == Fm—o

* (1 - UnitStep[t - t2]), x2[0] == 0, x2'[0] == 0}, x2[t],
{t, 0, 8}1;

Plot[{Evaluate[x1[t] /. xpointone], Evaluate[x2[t] /.
xonepointfivel}, {t, 0, 8},

PlotStyle — {RGBColor[1, O, 0], RGBColor[O0, 1, 0]},
PlotRange — {-.06, .06},

PlotLegend — {"t1=1.5", "t2=0.1"}, LegendSize— {1, .3},
LegendPosition — {1, 0}];

Example 3.9.3

Consider the base-excitation problem of Example 3.3.2 and compute the response
numerically. Compare the result to the analytical solution computed in Example 3.3.2
by plotting both the analytical solution and the numerical solution on the same graph.

Solution The equation of motion to be solved in this example is
X(t) + 10x(f) + 1000x(¢) = 1.5 cos3t + 50 sin3¢ (3.109)
From Example 3.3.2, the analytical solution is
x(£) = 0.09341¢ sin (31.225¢ + 0.1074) + 0.05 cos (3t — 1.571)

The equation of motion can be solved numerically in the form given by equation
(3.109) directly in Mathematica or by putting equation (3.109) into state-space form
and solving via Runge—Kutta in Mathcad or MATLAB. The plots of both the numeri-
cal solution and analytical solution are given in Figure 3.24.

The code for solving this system numerically and for plotting the analytical solu-
tion in Mathcad follows:

I
w
3

I
=
gl

I
=
o
+
o

I
o

x0 := 0.01 vl := 3 wb :

k C
k := 1000 on 1= J% N wn=31.623 Y := 0.05

od 1= on V1 -2 wd = 31.22499 0 := 1.53
A := 0.09341 ¢ = —0.1074
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Figure 3.24 The numerical solution (solid line) and analytical solution (dashed
line) for the system of Example 3.3.2 indicating almost perfect agreement.

xa(t) = A-e L Ot gin(ed-t - ¢) + 0.05-cos(3-t - 6) X := [

D(t, X) := X

Z := rkfixed (X, 0, 6, 2000, D)

X :xa(t) t 1= 70> xn 1= Z7<1>
The MATLAB code for solving for the response is

clear all

%% Analytical solution

t=0:0.01:5;

xt=0.09341*%exp(-5*t) .*sin(31.225*t+0.1074)+0.05*cos(3*t-1.571);
plot(t, xt,'--"');’hold on’

%% Numerical Solution
xo=[0.01; 3];
ts=[0 5];

[t, x]=ode45('f', ts, xo);plot(t, x(:,1)); hold off

function v=f(t, x)
m=1; c=10; k=1000; wb=3; wn=sqrt(k/m); zeta=c/2*sqrt(m*k);
wd=wn*sqrt(l-zetaA2); Y=0.05;

v=[x(2); x(2).*-2*zeta*wn + x(1).*-wnA2 + c/m*Y*wb*cos(wb*t) +...

k/m*Y*sin(wb*t)];

=2+ wn-X; — on®- Xy + % *Y-wb-cos(wb-t) + %—~Y-sin(mb~t)
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The Mathematica code for solving for the response is

In[1]:= <<PlotLegends'
In[2]:= xanal[t_]= .09341 * Exp[-5 * t] * Sin[31.225 * t + .1074]
+ .05 * Cos[3 * t - 1. 571];

xnum = NDSolve[{x''[t] + 10 * x'[t] + 1000 * x[t] == 1.5 *
Cos[3 * t] + 50 * Sin[3 * t], x[0] == .01, x’[0] == 3},
x[t], {t, 0, 4.5}];

Plot [{Evaluate [x[t] /. xnum], xanal[t]}, {t, O, 4.5},
PlotStyle — {RGBColor[1l, 0, 0], RGBColor[0, 1, 0]},
PlotLegend — {“Numerical”, “Analytical”},
LegendPosition — {1, 0}, LegendSize— {1, .5}];

O
Example 3.9.4

Consider the problem of Example 3.6.1 and compute the response numerically.
Compare the result to the analytical solution computed in Example 3.6.1 by plotting
both the analytical solution and the numerical solution on the same graph.

Solution The equation of motion to be solved in this example is

10x(r) + 10x(r) = i - (%)cb(r - 1) (3.110)

where @ is the Heaviside step function used to “turn on” the second term in the forc-
ing function at ¢ > ;. The parameter #; is used to control how steep the disturbance is.
See Figure 3.16 for a plot of the driving force. The analytical solution is given in equa-

tion (3.78) to be
K <t sinwnt> F <z -4 sinw,(t — zl)>
x(t) = % \1, ot U ot &t —1)  (3.111)

Again, the equation of motion can be solved numerically in the form given by equation
(3.110) directly in Mathematica or by putting equation (3.110) into state-space form
and solving Runge—Kutta in Mathcad or MATLAB. The plots of both the numerical
solution and analytical solution are given in Figure 3.25.

The Mathcad code for this solution follows:

k := 10 wn:=\/% on = 1 FO := 1

1 - cos (mn-tl))

sin Con-tD) on-tp =0.5 tp=0.5

1
t = — -atan
P whn (

'\/2- (1 - cos (wn-tl))

xm(t) := @[ L

1+
wn-tl
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02 T
0.15 +
X
xn 0.1 +
0.05 +
f f {
0 5 10 15
t
Figure 3.25 The numerical solution (solid line) and analytical solution (dashed line)
for the system of Example 3.6.1 indicating almost perfect agreement.
FO [ t sin (wn-t)) FO [t —t1 sinfon-(t - tl)]}
xa(t) = (tl wn-t1 k |t wn-t1 et -t
t FO t-—tl FO 0
f(t) := H'T—T'F'qlct—tl) X = {0}
D(t, X) := [ X1 } xm(0) = 0.196
’ T L=(wn?-Xy) + f(t) o
Z := rkfixed (X, 0, 15, 2000, D)
t 1= 7<0> x = xa(t) xn = Z<1> F := f(©) Xmax := xm(t)

The MATLAB code for solving for the response is
clear all

%% analytical solution
t=0:0.01:15;

m=10; k=10; Fo=1; tl=1;
wn=sqrt(k/m);

Heaviside=stepfun(t, tl);% define Heaviside Step function for 0<t<15



278

General Forced Response Chap. 3

for i=1l:max(length(t)),
xt(i)=Fo/k*(t(i)/tl - sin(wn*t(i))/wn/t1) - Fo/k*((t(i)-tl)/tl -
sin(wn*(t(i)-tl))/wn*tl)*Heaviside(i);

end

plot(t,xt,'- -"); hold on

%% Numerical Solution

xo=[0; 0];

ts=[0 15];
[t, x]=ode45('f', ts, x0);
plot(t, x(:,1)); hold off

function v=Ff(t, x)
m=10; k=10; wn=sqrt(k/m); Fo=1; tl=1;
v=[x(2); x(1).*-wnA2 + t/tl*Fo/m-(t-tl)/t1*Fo/m*stepfun(t, tl)];

The Mathematica code for solving for the response is

In[1]:

In[2]:

In[10]

<<PlotLegends'
x0 = 0;
v0 = 0;
m = 10;
k = 10;
\ﬁ
wh = —s
m
tl = 1;
FO = 1;
tp = 0.5;

xanal[t_] = —*(— —

FO;(t Sin[mn*t]>__fg*(t —tl Sinfon*(t - t1)]>

k \tl wnh*tl k tl wh*tl
* UnitStep[t - tl];

t

xnum = NDSolve[{10 * x''[t] + 10 * x[t] == = 47<t T t1>

tl tl

* UnitStep[t - t1], x[0] == x0, x'[0] == vO}, x[t],
{t, 0, 15}]1;

Plot[{Evaluate[x[t] /. xnum], xanal[t]}, {t, 0, 15%,

PlotStyle — {RGBColor[1l, O, 0], RBColor[0, 1, 0]},
PlotLegend — {"Numerical", "Analytical"},
LegendPosition — {1, 0}, LegendSize— {1, 0.5}];
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Using numerical integration, the response of a system to a variety of different
forcing functions may be computed relatively easily. Furthermore, once the solu-
tion is programmed, it is a trivial matter to change parameters and solve the system
again. By visualizing the response through simple plots, one can gain the ability to
design and understand the system’s dynamic behavior.

3.10 NONLINEAR RESPONSE PROPERTIES

The use of numerical integration as introduced in the previous section allows us to con-
sider the effects of various nonlinear terms in the equation of motion. As noted in the
free-response case discussed in Section 1.10 and the response to a harmonic load dis-
cussed in Section 2.9, the introduction of nonlinear terms results in an inability to find
exact solutions, so we must rely on numerical integration and qualitative analysis to un-
derstand the response. Several important differences between linear and nonlinear sys-
tems are outlined in Section 2.9. In particular, when working with nonlinear systems, it
is important to remember that a nonlinear system has more than one equilibrium point
and each may be either stable or unstable. Furthermore, we cannot use the idea of su-
perposition, used in all of the previous sections of this chapter, in a nonlinear system.

Many of the nonlinear phenomena are very complex and require analysis
skills beyond the scope of a first course in vibration. However, some initial un-
derstanding of nonlinear effects in vibration analysis can be observed by using the
numerical solutions covered in the previous section. In this section, several simula-
tions of the response of nonlinear systems are numerically computed and compared
to their linear counterparts.

Recall from Section 2.9 that if the equations of motion are nonlinear, the gen-
eral single-degree-of-freedom system may be written as

X + flx(0), x(6)) = F(¢) (3.112)

where the function f can take on any form, linear or nonlinear, and the forcing term
F(t) can be almost anything (periodic or not), each term of which has been divided
by the mass. Formulating this last expression into the state space, or first-order,
equation (3.112) takes on the form

x1(f) = x(2)
() = —f(x, %) + F(f) (3.113)

This state-space form of the equation is used for numerical simulation in several of
the codes. By defining the state vector, x = [x1(f) x,(¢)], used in equation (3.113)
and the nonlinear vector function F as

X% (1)
F(x) = [—f(xl,Xz)} (2.140)
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equations (3.113) may now be written in the first-order vector form
x = F(x) + () (3.114)

Equation (3.114) is the forced version of equation (1.115). Here £(¢) is simply

0
F(t)} (3.115)

Then the Euler integration method for the equations of motion in the first-order
form becomes

f(r) = {

x(t;11) = x(t;) + F(x(t;))Ar + £(¢;) At (3.116)

This expression forms a basic approach to integrating numerically to compute the
forced response of a nonlinear system and is the nonlinear, general forced-response
version of equations (1.98) and (2.134). This is basically identical to equation
(2.143) except for the interpretation of the force f.

Nonlinear systems are difficult to analyze numerically as well as analytically.
For this reason, the results of a numerical simulation must be examined carefully.
In fact, use of a more sophisticated integration method, such as Runge—Kutta, is
recommended for nonlinear systems. In addition, checks on the numerical results
using qualitative behavior should also be performed whenever possible.

In the following examples, consider the single-degree-of-freedom system il-
lustrated in Figure 3.26, with a nonlinear spring element subject to a general driving
force. A series of examples are presented using numerical simulation to examine
the behavior of nonlinear systems and to compare them to the corresponding linear
systems.

b x(1)

T} m —> F(!) Figure 3.26 A spring-mass—damper system with
c ONEOENO ?otentially nonlinear elements and general applied
orce.

Example 3.10.1

Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous, the spring is a nonlinear “hardening” spring of the form

k(x) = kx + kx® (3.117)
and the system is subject to an applied excitation of the form
F(t) = 1500[®(t — t;) — ®(t — 1,)]N (3.118)

and initial conditions of xy = 0.01 m and ( = 1 m/s. Here ® denotes the Heaviside
step function and the times 4 = 1.5 s and #, = 5 s. This driving function is plotted in
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Figure 3.27 The pulse input function defined by equation (3.118).

Figure 3.27. The system has a mass of 100 kg, a damping coefficient of 20 kg/s, and
a linear stiffness coefficient of 2000 N/m. The value of k; is taken to be 300 N/m>.
Compute the solution and compare it to the linear solution (k; = 0).

Solution Summing forces in the horizontal direction, the equation of motion becomes
mx(t) + cx(t) + kx(t) + kx*() = 1500[D(t — t;) — Dt — 1,)]

Dividing by the mass yields
¥(t) + 2Lw,x(f) + 02x(f) + ax’(f) = 15[®(t — 1) — P(t — 1,)]

Next write this equation in state-space form to get

Xi(t) = x(t)
B(f) = 200,00 — wix(t) — axi(r) + 15[P( — ;) — Ot — 1)]

This last set of equations can be used in MATLAB or Mathcad to integrate numeri-
cally for the time response. Mathematica uses the second-order equation directly.
Figure 3.28 illustrates the response to both the linear and nonlinear system. The solid
line is the response of the nonlinear system while the dashed line is the response of the
linear system. The difference between linear and nonlinear systems is that, in this case,
the nonlinear spring has smaller response amplitude than the linear system does. This
is useful in design as it illustrates that the use of a hardening spring reduces the ampli-
tude of vibration to a shock type of input.

One possibility for designing a nonlinear isolation spring is to use the numerical
codes listed later in this example to vary parameters (damping, mass, and stiffness)
until a desired response is obtained.

It is important to remember, however, that if designing with a nonlinear ele-
ment, new equilibriums are introduced that may be unstable. Hence care must be
taken to assure that additional difficulties are not introduced when using a nonlinear
spring to reduce the response. The following codes can be used to generate and plot
the solution just given.
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Figure 3.28 The response of the system of Figure 3.26 to the input force given in
Figure 3.27. The solid line is the response of the nonlinear system while the dashed
line is the response of the linear system.

In Mathcad, the code is

x0 := 0.01 vO =1 m :=100 k := 2000 c := 20
a =3 FO := 1500 tl := 1.5 t2 =5
k C FO
N = 4[— L = fo := — { =0.022
m 2Vk-m

X := m] Y := X £() := FO-B(t - t1) - fO-d(t - t2)

D(t, X)

X1
[72-§~mn-X14—mn2-X0+—[*Q-(X0)3+— f(t)]}
L(t, Y) := [_

Z-Q-wn-Yl—ng-Y0)+f(t)
Z := rkfixed (X, 0, 10, 2000, D) W := rkfixed (Y, 0, 10, 2000, L)

t =279 xs :=71" xL:=w<1>
The MATLAB code is

clear all
xo=[0.01; 1];
ts=[0 8];

[t,x]=0de45('f',ts,x0);

plot(t, x(:,1)); hold on % The response of nonlinear system
[t,x]=0de45("'f1l',ts,x0);

plot(t,x(:,1),'——"); hold off % The response of linear system
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function v=Ff(t,x)

m=100; k=2000; c=20; wn=sqrt(k/m); zeta=c/2/sqrt(m*k); Fo=1500;
alpha=3; tl1=1.5; t2=5;

v=[x(2); x(2).*-2*zeta*wn + x(1).*-wnA2 - x(1)A3.*alpha+...
Fo/m*(stepfun(t,tl)-stepfun(t,t2))];

function v=Ff1(t,x)

m=100; k=2000; c=20; wn=sqrt(k/m); zeta=c/2/sqrt(m*k); Fo=1500;
alpha=0; tl1l=1.5; t2=5;

v=[x(2); x(2).*-2*zeta*wn + x(1).*-wnA2 - x(1)A3.*alpha+...
Fo/m*(stepfun(t,tl)-stepfun(t,t2))];

The Mathematica code is

In[1]:= <<PlotLegends'
In[2]:= x0 = .01;
vO = 1;
m = 100;
k = 2000;
k1l = 300;
c = 20;
\ﬁ
oh = —»
m
1-
a = —;
m
tl = 1.5;
t2 = 5;
FO = 1500;
fo = Eg;
m
{ = i

In[21]:= x1in = NDSolve [{x1''[t] + 2 * { * wn * Xx1'[t] + wn?
* x1[t] == 15 * (UnitStep[t - tl] - UnitStep[t - t2]),
x1[0] == x0, x1'[0] == vO}, x1[t], {t, O, 8}1;
xnonl =

NDSolve [{xnl''[t] + 2 * { * wn * xnl'[t] + wn? * xnl[t]
+ a * (xnl[t])A3 == 15 * (UnitStep[t - tl]
- UnitStep[t - t2]1), xnl[0] == x0, xnl1l'[0] == vO0}, xnl[t],
{t, 0, 8}, Method — “ExplicitRungeKutta”];

Plot[{Evaluate[x1[t] /. x1lin], Evaluate[xnl[t] /. xnonl]l},
{t, 0, 8}, PlotRange — {-2, 2},



284 General Forced Response Chap. 3

PlotStyle — {RGBColor[1l, O, 0], RGBColor[0, 1, 0]},
PlotLegend — {"Linear", "NonLinear"},
LegendPosition — {1, 0}, LegendSize— {1, .5}]

Example 3.10.2

Compare the forced response of a system with velocity-squared damping, as defined in
equation (2.129) using numerical simulation of the nonlinear equation, to that of the
response of the linear system obtained using equivalent viscous damping, as defined by
equation (2.131), where the input force is given by

F(f) = 150[®(t — ) — D(t — t)Im

and initial conditions are xy = 0 and ; = 1 m/s. Here ® denotes the Heaviside step
function and the times #; = 0.5sand#, = 2s.

Solution This is essentially the same as Example 2.9.2 except that the driving force is
a pulse here rather than harmonic as in Section 2.9. Velocity-squared damping with a
linear spring and pulsed input is described by

m¥ + asgn(x)x? + kx = 150[®(t — ;) — ®(t — 1,)]

The equivalent viscous-damping coefficient is calculated in equation (2.131) to be

= —awX

Ceq 3

This value assumes that the motion is harmonic, which is somewhat violated here. The
value of the magnitude, X, can be approximated for near resonance conditions. The
value is computed in Example 2.9.2 to be

3mmfy

X =

8aw?

Combining these last two expressions yields an equivalent viscous-damping value of

8ma fy
=\ 5

Using this value as the damping coefficient results in a linear system that approximates
equation (2.131). Figure 3.29 illustrates the linear and nonlinear response for the values
m = 10kg, kK = 200 N/m, and o = 5. Note that the linear response underestimates the
actual response maximum by about 10%. For large times, the response of the linear sys-
tem dies out much sooner than that of the nonlinear system, indicating a large error.
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Figure 3.29 The response of a nonlinear system (solid line) and a linear system
(dashed line) formed by using the concept of equivalent viscous damping.

The computer codes for generating the solutions and plotting Figure 3.29 are

given next.
The Mathcad code is
x0 :=0 vl =1 m := 10 k := 200 a =5 FO := 150
wh = LS fo := Fo
m m
tl := 0.5 2 i= 2 ceq = /3™ £
3-m
x0 ceq
X = Y :=X f(t) := fO-d(t - tl) - fO-d(t - t2
{VO} L s O (t -t (t - )
D(t, X) := . X
—on?+ Xy — —+ (X1)?- — + f(t
0 P T 1)
. Y,
L, YD = [(—Z-Q-wn-Yl - wn?+Yy) + £(t)

Z :=

t =279 x:

rkfixed (X, 0, 20, 2000, D) W
— Z<1>

:=rkfixed
xL:

(y, 0, 20, 2000,
=W<l>

L
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The MATLAB code is
clear all

xo=[0; 1];
ts=[0 8];

[t,t]=0de45('f',ts,x0);
plot(t,x(:,1)); hold on % The response of nonlinear system

[t,x]=0de45('f1',ts,x0);
plot(t,x(:,1),"'--"); hold off % The response of linear system

function v=Ff(t,x)

m=10; k=200; wn=sqrt(k/m); Fo=150; alpha=5; t1=0.5; t2=2;
v=[x(2); x(1).*-wnA2 + x(2)A2.*-alpha/m.*sign(x(2))+...
Fo/m*(stepfun(t, tl)-stepfun(t,t2))];

function v=f1(t,x)

m=10; k=200; wn=sqrt(k/m); Fo=150; alpha=5; t1=0.5; t2=2;
ceg=sqrt(8*alpha*m/3/pi*Fo/m); zeta=ceq/2/sqrt(m*k);
v=[x(2); x(2).*-2*zeta*wn + x(1).*-wnA2+...
Fo/m*(stepfun(t,tl)-stepfun(t,t2))];

The Mathematica code is

In[1] :=<<PlotLegends'

In[2]:= x0 = 0; vO = 1; m = 10; k = 200; o =5; FO = 150; f0 = %?;
wh = ‘E; tl = 0.5; t2 = 2;
m
8*a*m
£ .
ceq 3om f0;
ceq
£7 aviom

In[6]:= xnonlin = NDSolve[{x''[t] + ﬁ% * Sign[x'[t]]

* (X"[t])A2 + wnA2 * x[t] == fO * (UnitStep[t - tl]
- UnitStep[t - t2]), x[0] == 0, x’[0] == 1},
x[t], {t, 0, 20}1;
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In[7]:= x1in = NDSolve[{x"'[t] + 2 * { * wn * x"[t] + wnA2
* x[t] == fO * (UnitStep[t - t1l] - UnitStep[t - t2]),
X[O] == 0! X'[O] == 1}5 X[t]! '{t! 0! 20}];

In[8]:= Plot[{x[t]/.xnonlin, x[t]/.x1in},{t, 0, 8},

PlotStyle — {GraylLevel [0], Dashing[{.03}]1}]

PROBLEMS

Those problems marked with an asterisk are intended to be solved using computational
software.

Section 3.1 (Problems 3.1 through 3.17)

3.1. Calculate the solution to
1000x(z) + 200x(¢) + 2000x(r) = 1005(z), xp = 0, vy = 0

3.2. Consider a spring-mass—damper system with m = 1kg,c = 2kg/s,and k = 2000 N/m
with an impulse force applied to it of 10,000 N for 0.01 s. Compute the resulting
response.

3.3. Calculate the solution to

X+ 2% + 2x = d(t — m)
x(0) = 1 ¥(0) = 0

and plot the response.
3.4. Calculate the solution to

X + 2x + 3x = sint + 3(t — m)

x(0)=0 i(0)=1

and plot the response.
3.5. Calculate the response of a critically damped system to a unit impulse.
3.6. Calculate the response of an overdamped system to a unit impulse.
3.7. Derive equation (3.6) from equations (1.36) and (1.38).

3.8. Consider a simple model of an airplane wing given in Figure P3.8. The wing is ap-
proximated as vibrating back and forth in its plane and is massless compared to
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3.10.
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Carriage

Missile | ﬂ

Top view with
wing modeled
Jet with missiles as cantilevered

(a) (b)

I
) 3EI
E B
F3(1)
m T
x(t
}—» () ()
Simplified beam model Vibration model
(c) (d)

Figure P3.8 Modeling of wing vibration resulting from the release of a missile.
Figure (a) is the system of interest; (b) is the simplification of the detail of interest;
(c) is a crude model of the wing: a cantilevered beam section (recall Figure 1.26);
and (d) is the vibration model used to calculate the response neglecting the mass
of the wing.

the missile carriage system (of mass m). The modulus and the moment of inertia
of the wing are approximated by E and I, respectively, and [ is the length of the
wing. The wing is modeled as a simple cantilever for the purpose of estimating the
vibration resulting from the release of the missile, which is approximated by the
impulse function F 8(¢). Calculate the response and plot your results for the case of
an aluminum wing 2-m long with m = 1000 kg, { = 0.01,and I = 0.5 m* Model F
as 1000 N lasting for 107%s.

A cam in a large machine can be modeled as applying a 10,000 N-force over an inter-
val of 0.005 s. This can strike a valve that is modeled as having the physical parameters
m = 10 kg, ¢ = 18 N s/m, and stiffness & = 9000 N/m. The cam strikes the valve
once every 1 s. Calculate the vibration response, x(f), of the valve once it has been im-
pacted by the cam. The valve is considered to be closed if the distance between its rest
position and its actual position is less than 0.0001 m. Is the valve closed the very next
time it is hit by the cam?

The vibration of a package dropped from a height of # meters can be approximated
by considering Figure P3.10 and modeling the point of contact as an impulse applied
to the system at the time of contact. Calculate the vibration of the mass m after the
system falls and hits the ground. Assume that the system is underdamped.
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3.11.

3.12.

3.13.

3.14.

m— |

c k

/ Figure P3.10 The vibration model of a package
4 being dropped onto the ground.

Calculate the response of
3%(r) + 12x(r) + 12x(r) = 33(z)
for zero initial conditions. The units are in Newtons. Plot the response.
Compute the response of the system
3%(r) + 12x(r) + 12x(r) = 33(2)
subject to the initial conditions x(0) = 0.0l m and (0) = 0.The units are in Newtons.
Plot the response.

Calculate the response of the system
3%(r) + 6x(¢r) + 12x(f) = 38(¢) — d(r — 1)

subject to the initial conditions x(0) = 0.0l mand (0) = 1 m/s.The units are in Newtons.
Plot the response.

A chassis dynamometer is used to study the unsprung mass of an automobile as illus-
trated in Figure P3.14, and discussed in Example 1.4.1. Compute the maximum magni-
tude of the center of the wheel due to an impulse of 5000 N applied over 0.01 seconds in
the x direction. Assume the wheel mass is m = 15 kg, the spring stiffness is £ = 500,000

Figure P3.14 A simple model of an
automobile suspension system mounted on

a chassis dynamometer. The rotation of the
car’s wheel /tire assembly (of radius r) is
given by 6(¢) and is vertical deflection by x(t).
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3.15.

3.16.

3.17.
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N/m, the shock absorber provides a damping ratio of { = 0.3, and the rotational inertia
is J = 2323 kg m% Assume that the dynamometer is controlled such that x = r6.
Compute and plot the response of the wheel system to an impulse of 5000 N over 0.01 s.
Compare the undamped maximum amplitude to that of the maximum amplitude of the
damped system (use r = 0.457 m).

Consider the effect of damping on the bird strike problem of Example 3.1.2. Recall
from the example that the bird strike causes the camera to vibrate out of limits. Adding
damping will cause the magnitude of the response to decrease but may not keep the
camera from vibrating past the 0.01 m limit. If the damping in the aluminum is mod-
eled as { = 0.05, approximately how much time will pass before the camera vibration
reduces to the required limit? (Hint: Plot the time response and note the value for time
after which the oscillations remain below 0.01 m.)

Consider the jet engine and mount indicated in Figure P3.16 and model it as a mass on
the end of a beam, as done in Figure 1.26. The mass of the engine is usually fixed. Find
an expression for the value of the transverse mount stiffness, k, as a function of the
relative speed of the bird, , the bird mass, the mass of the engine, and the maximum
displacement that the engine is allowed to vibrate.

Wing, ground |

F3(1) x(1)

Figure P3.16 A model of a jet engine in
transverse vibration due to a bird strike.

A machine part is regularly subject to a force of 350 N lasting 0.01 seconds, as part of a
manufacturing process. Design a damper (i.e., choose a value of the damping constant,
¢, such that the part does not deflect more that 0.01 m), given that the part has a mass
of 100 kg and a stiffness of 1250 N/m.

Section 3.2 (Problems 3.18 through 3.29)

3.18.

3.19.

Calculate the analytical response of an overdamped single-degree-of-freedom system
to an arbitrary nonperiodic excitation.

Calculate the response of an underdamped system to the excitation given in Figure P3.19
where the pulse ends at 7 s.

f(0)

|+ Figure P3.19 Plot of a pulse input of
0 T 2w the form f(r) = Fysint.
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3.20.

3.21.

3.22,

Speed bumps are used to force drivers to slow down. Figure P3.20 is a model of a car
going over a speed bump. Using the data from Example 2.4.2 and an undamped model
of the suspension system (i.e., k = 4 X 10° N/m, m = 1007 kg), find an expression for
the maximum relative deflection of the car’s mass versus the velocity of the car. Model
the bump as a half sine of length 40 cm and height 20 cm. Note that this is a moving-
base problem.

-
Velocity v

Ty(t) = Y sinwyt

Speed bump

40 cm Figure P3.20 Model of a car driving
over a speed bump.

Calculate and plot the response of an undamped system to a step function with a finite
rise time of #; for the case m = 1kg,k = 1 N/m,# = 4s,and Fy = 20 N.This function
is described by

Fyt

— =t=4Hy
F(t) =4 1

Fy t> 4

A wave consisting of the wake from a passing boat impacts a seawall. It is desired to
calculate the resulting vibration. Figure P3.22 illustrates the situation and suggests a
model. The force in Figure P3.22 can be expressed as

t
Rl1-—) 0=r=1
F(r) = 0( to) ’

0 t >t

Calculate the response of the seawall-dike system to such a load.
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3.24.

3.25.

3.26.

3.27.

3.28.
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Dike

Concrete Hr)
seawall k
W m | «—rp
k=EA m
Water /
|-+ ,
Wake 0
Physical setting Model Input model

Figure P3.22 A wave hitting a seawall modeled as a nonperiodic force exciting an
undamped single-degree-of-freedom, spring-mass system.

Determine the response of an undamped system to a ramp input of the form F(z) = Fyt,
where F is a constant. Plot the response for three periods for the case m = 1 kg,
k = 100 N/m, and Fy = 50 N.

A machine resting on an elastic support can be modeled as a single-degree-of-freedom,
spring—mass system arranged in the vertical direction. The ground is subject to a motion
y(t) of the form illustrated in Figure P3.24. The machine has a mass of 5000 kg, and the
support has stiffness 1.5 X 10> N/m. Calculate the resulting vibration of the machine.

(1) (mm)

t(s) Figure P3.24 Triangular pulse
0.2 0.6 input function.

Consider the step response described in Figure 3.7 and Example 3.2.1. Calculate the
analytical value of £, by noting that it occurs at the first peak, or critical point, of the
curve.

Calculate the value of the overshoot (O.S.), for the system of Example 3.2.1. Note from
the example that the overshoot is defined as occurring at the peak time defined by
t, = wo, and is the difference between the value of the response at ¢, and the steady-
state response at 7.

It is desired to design a system so that its step response has a settling time of 3 s and a
time to peak of 1 s. Calculate the appropriate natural frequency and damping ratio to

use in the design.

Plot the response of a spring-mass—damper system to a square input of magnitude
Fy = 30 N, illustrated in Figure 3.8 of Example 3.2.1, for the case that the pulse width is
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3.29.

the natural period of the system (i.e., t; = 7 w,). Recall that k = 1000 N/m, { = 0.1,
and o, = 3.16 rad/s.

Consider the spring—mass system described by
mXx(t) + kx(t) = Fysinwt, xp = 0.0lmand vy = 0

Compute the response of this system for the values of m = 100 kg, K = 2500 N/m,
o = 10 rad/s, and Fy = 10 N, using the convolution integral approach outlined in
Example 3.2.4. Check your answer using the results of equation (2.25).

Section 3.3 (Problems 3.30 through 3.38)

3.30.

3.31.

3.32.

3.33.

Derive equations (3.24), (3.25), and (3.26) and hence verify the equations for the
Fourier coefficient given by equations (3.21), (3.22), and (3.23).

Calculate b,, from Example 3.3.1 for the triangular force given by

—t—1 0=r=
T

1-%-1) Tei=r
T 2 2

and show that b, = 0,n = 1,2,...,%. Also verify the expression a, by completing the
integration indicated. (Hint: Change the variable of integration from ¢ to x = 2mnt/T.)

4 T
F(t) = 2

Determine the Fourier series for the rectangular wave illustrated in Figure P3.32.

[
1

1 I Figure P3.32 A rectangular
periodic signal.

Determine the Fourier series representation of the sawtooth curve illustrated in
Figure P3.33.

f(0)
1

21 4 6 8
Figure P3.33 A sawtooth periodic signal.
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3.34.

3.35.

3.36.

*3.37.

*3.38.

General Forced Response Chap. 3

Calculate and plot the response of the base-excitation problem with base motion speci-
fied by the velocity

y(1) = 3¢ D) m/s
where ®(¢) is the unit step function and m = 10 kg, { = 0.01, and k = 1000 N/m.
Assume that the initial conditions are both zero.

Calculate and plotthe total response of the spring-mass—damper system withm = 100kg,
{ = 0.1,and k = 1000 N/m to the signal defined by

4
—t—1 OszsZ
T 2
o = 4 ™ T
1——(t——) —=t=T
T 2 2

with maximum force of 1 N. Assume that the initial conditions are zero,and let 7' = 2 s.

Calculate the total response of the system of Example 3.3.2 for the case of a base motion
driving frequency of w;, = 3.162 rad /s with amplitude Y = 0.05 m subject to initial con-
ditions x; = 0.01 m and o = 3.0 m/s. The system is defined by m = 1kg,c = 10kg/s,
and £k = 1000 N/m.

Validate your solution to the square wave Problem 3.32 by calculating a,, and b,, using
VTB3_3 in the Vibration Toolbox. Print the function and its Fourier series approxima-
tion for 5, 20, then 100 terms. The Toolbox makes this easy. The purpose is to illustrate
the Gibbs effect in approximation by Fourier series.

Validate your solution to the sawtooth wave of Problem 3.33 by calculating a,, and
b, using VIB3_3 in the Vibration Toolbox. Print the function and its Fourier series
approximation for 5, 20, and 100 terms. The Toolbox makes this easy. The purpose is to
illustrate the Gibbs effect in approximation by Fourier series.

Section 3.4 (Problems 3.39 through 3.43)

3.39.

3.40.

3.41.

Calculate the response of
mX + cx + kx = Fy®(r)

where ¢(#) is the unit step function for the case with xy = = 0. Use the Laplace
transform method and assume that the system is underdamped.
Using the Laplace transform method, calculate the response of the system

mx(t) + cx(t) + kx(t) = 8(t), % =0, vg=0
for the overdamped case ({ > 1). Plot the response for m = 1 kg, k = 100 N/m, and
{ =15
Calculate the response of the underdamped system given by

mx + cx + kx = Fe™

using the Laplace transform method. Assume a > 0 and the initial conditions are both
Zero.
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3.42.

3.43.

Solve the following system for the response x(¢) using Laplace transforms:
100x(r) + 2000x(r) = 503(¢)

where the units are in Newtons and the initial conditions are both zero.

Use the Laplace transform approach to solve for the response of the spring-mass sys-
tem with equation of motion and initial conditions given by

X(@) + x(r) = sin2t, =0, vy =1

Assume the units are consistent. (Hint: See the example in Appendix B.)

Section 3.5 (Problems 3.44 through 3.48)

3.44.

3.45.

3.46.

3.47.

3.48.

Calculate the mean-square response of a system to an input force of constant PSD, S,
and frequency response function H(w) = 10/(3 + 2jw).

Consider the base-excitation problem of Section 2.4 as applied to an automobile model
of Example 2.4.2 and illustrated in Figure 2.17 Recall that the model is a spring—mass—
damper system with values m = 1007 kg, ¢ = 2000 kg/s, k = 40,000 N/m. In this
problem let the road have a random stationary cross section producing a PSD of Sj,.
Calculate the PSD of the response and the mean-square value of the response.

To obtain a feel for the correlation functions, compute autocorrelation R, (1) for the
deterministic signal A sin w,t.

The autocorrelation of a signal is given by

4

R()=10+ —
() 3+ 21 + 472

Compute the mean-square value of the signal.

Verify that the average x — x is zero by using the definition given in equation (3.47) to
compute the average.

Section 3.6 (Problems 3.49 through 3.50)

3.49.

A power line pole with a transformer is modeled by
mx + kx = =y

where x and y are as indicated in Figure P3.49. Assuming the initial conditions are zero,
calculate the response of the relative displacement (x — y) if the pole is subject to an
earthquake-based excitation of

t
B A(1——) 0=1t= 2t
y@) = )

0 t > 2ty
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m = Effective mass

—— x()

k = Effective stiffness

| (1) Figure P3.49 A vibration model of
l a power-line pole with a transformer
iz mounted on it.

3.50. Calculate the response spectrum of an undamped system to the forcing function

.t
Fsin— 0O0=t=¢f
F(it) = 1
0 t> 1

assuming the initial conditions are zero.

Section 3.7 (Problems 3.51 through 3.58)
3.51. Using complex algebra, derive equation (3.89) from (3.86) with s = jo.

3.52. Using the plot in Figure P3.52, estimate the system’s parameters m, c, and k, as well as
the natural frequency.

Mag H(jw)

x|=
—

0.01 0.1 1 log(w) 10
o=,V -2 ~o,=Vkim

Figure P3.52 The magnitude plot of a spring-mass—damper system.
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3.53.

3.54.

3.55.

3.56.

*3.57.

3.58.

From a compliance transfer function of a spring-mass—damper system the stiffness
is determined to have a value of 0.5 N/m, a natural frequency of 0.25 rad/s, and a
damping coefficient of 0.087 kg/s. Plot the inertance transfer function’s magnitude and
phase for this system.

From a compliance transfer function of a spring-mass—damper system the stiffness is
determined to have a value of 0.5 N/m, a natural frequency of 0.25 rad/s, and a damp-
ing coefficient of 0.087 kg/s. Plot the mobility transfer function’s magnitude and phase
for the system.

Calculate the compliance transfer function for a system described by

d*x(1) d*x(t) d’x(t) dx(t)
a P +b PR +c % + i + ex(r) = f(¥)

where f(?) is the input force and x() is a displacement.

Calculate the frequency response function for the compliance for the system defined by

d*x(1) d>*x(1) d’x(1) dx(r) _
a P +b P +c % + o + ex(t) = f(o).

Plot the magnitude of the frequency response function for the system of Problem 3.56
for

a=1 b=4 c=11, d=16,and e =8.
An experimental (compliance) magnitude plot is illustrated in Fig. P3.58. Determine

o, {, ¢, m, and k. Assume that the units correspond to m /N along the vertical axis.

Mag H(jw)
0.16

0.14

0.12
0.10 A\

0.08 / \
0.06 / \

0.04
\

0.02 N

\\~

0.00
0.1 1 log () 10

Figure P3.58 An experimentally determined compliance magnitude plot.
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Section 3.8 (Problems 3.59 through 3.64)

3.59.
3.60.
3.61.
3.62.

3.63.

3.64.

Show that a critically damped system is bounded-input, bounded-output stable.
Show that an overdamped system is bounded-input, bounded-output stable.
Is the solution of 2X¥ + 18x = 4 cos2t + cost Lagrange stable?

Calculate the response of the system described by
X(t) + x(¢) + 4x(f) = ax(t) + bx(t)

for xy) = 0,uy = 1 for the case thata = 4 and b = 0. Is the response bounded?
A crude model of an aircraft wing can be modeled as

100x%(¢) + 25x(¢) + 2000x(r) = ax(t)
Here the factor a is determined by the aerodynamics of the wing and is proportional to
the air speed. At what value of the parameter a will the system start to flutter?

Consider the inverted pendulum of Figure P3.64 and compute the value of the stiffness
k that will keep the linear system stable. Assume that the pendulum rod is massless.

Figure P3.64 An
(a) (b) inverted pendulum.

Section 3.9 (Problems 3.65 through 3.72)

*3.65.

*3.66.

*3.67.

Numerically integrate and plot the response of an underdamped system determined by
m = 100kg,k = 1000 N/m,and ¢ = 20kg/s,subject to the initial conditions of x; = 0
and ( = 0, and the applied force F(f) = 30@(¢ —1). Then plot the exact response as
computed by equation (3.17). Compare the plot of the exact solution to the numerical
simulation.

Numerically integrate and plot the response of an underdamped system determined by
m = 150 kg and k& = 4000 N/m subject to the initial conditions of xo = 0.01 m and

o = 0.1 m/s, and the applied force F(t) = ®(r) = 15 (t —1), for various values of the
damping coefficient. Use this “program” to determine a value of damping that causes
the transient term to die out within 3 seconds. Try to find the smallest such value of
damping remembering that added damping is usually expensive.

Calculate the total response of the base isolation problem given in Example 3.3.2, with
the parameters o, = 3rad/s,m = 1kg,c = 10kg/s,k = 1000 N/m,and Y = 0.05 m,
subject to initial conditions xy = 0.01 m and ( = 3.0 m/s, by numerically integrating
rather than using analytical expressions. Plot the response, reproduce Figure 3.14, and
compare the results to see that they are the same.
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*3.68.

*3.69.

*3.,70.

*3.71.

*3.72.

Numerically simulate the response of the system of a single-degree-of-freedom spring—
mass system subject to the motion y(¢) given in Figure P3.68 and plot the response. The
mass is 5000 kg and the stiffness is 1.5 X 10° N/m.

y(2) (mm)

R

> t(s) FigureP3.68 The base
0.2 0.6 motion for Problem 3.68.

Numerically simulate the response of an undamped system to a step function with a
finite rise time of ¢; for the case m = 1 kg, k = 1 N/m, #t; = 4 s,and Fy = 20 N. This
function is described by

Fyt
F(Z) = ll
F, t> 1

0=t=1n

plot the response.

Numerically simulate the response of the system of Problem 3.22 for a 2-meter concrete
wall with cross section 0.03 m? and mass modeled as lumped at the end of 1000 kg. Use
Fy = 100 N, and plot the response for the case {5 = 0.25s.

Numerically simulate the response of an undamped system to a ramp input of the form
F(t) = Fyt, where Fj is a constant. Plot the response for three periods for the case
m = 1kg, k = 100 N/m, and F, = 50 N.

Compute and plot the response of the following system using numerical integration:
10x(r) + 20x(f) + 1500x(¢) = 20 sin25¢ + 10sin15¢ + 20 sin2¢

with initial conditions of xg = 0.0l mand ¢ = 1.0 m/s.

Section 3.10 (Problems 3.73 through 3.79)

*3.73.

Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous, the spring is a nonlinear soft spring of the form

k(x) = kx — kyx®
the system is subject to an excitation of the form (¢, = 1.5 and t, = 1.6)
F(t) = 1500[®(t — t1) — (¢t — )] N

and initial conditions of xo = 0.01 m and ¢ = 1.0 m/s. The system has a mass of
100 kg, a damping coefficient of 30 kg /s, and a linear stiffness coefficient of 2000 N /m.
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*3.74.

*3.75.

*3.76.

*3.71.
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The value of k; is taken to be 300 N/m?>. Compute the solution and compare it to the
linear solution (k; = 0). Which system has the largest magnitude? Compare your solu-
tion to that of Example 3.10.1.

Compute the response of a spring-mass system for the case that the damping is linear
viscous, the spring is a nonlinear soft spring of the form

k(x) = kx — kyx®
the system is subject to an excitation of the form (¢; = 1.5 and r, = 1.6)

F(t) = 1500[®(t — t;) — ®(t — )] N

and initial conditions of xo = 0.01 m and ¢ = 1.0 m/s. The system has a mass of
100 kg, a damping coefficient of 30 kg /s, and a linear stiffness coefficient of 2000 N /m.
The value of k; is taken to be 300 N/m>. Compute the solution and compare it to the
linear solution (k; = 0). How different are the linear and nonlinear responses? Repeat
this for £, = 2. What can you say regarding the effect of the time length of the pulse?

Compute the response of a spring—-mass—damper system for the case that the damping
is linear viscous, the spring stiffness is of the form

k(x) = kx — kyx?
the system is subject to an excitation of the form (1 = 1.5 and , = 2.5)
F(f) = 1500[®(t — t;) — P(t — 1,)] N

and initial conditions of xy = 0.0l mand ( = 1 m/s.The system has a mass of 100 kg,
a damping coefficient of 30 kg/s, and a linear stiffness coefficient of 2000 N/m. The
value of k; is taken to be 450 N/ m?>. Which system has the largest magnitude?

Compute the response of a spring-mass—damper system for the case that the damping
is linear viscous, the spring stiffness is of the form

k(x) = kx + kix?
the system is subject to an excitation of the form (¢ = 1.5 and t, = 2.5)
F(t) = 1500[®(t — t1) — ®(t — )] N

and initial conditions of x; = 0.0l mand ( = 1 m/s.The system has a mass of 100 kg,
a damping coefficient of 30 kg/s, and a linear stiffness coefficient of 2000 N/m. The
value of k; is taken to be 450 N /m>. Which system has the largest magnitude?
Compute the response of a spring—-mass—damper system for the case that the damping
is linear viscous, the spring stiffness is of the form

k(x) = kx — kix?
the system is subject to an excitation of the form (¢ = 1.5 and ¢, = 2.5)
F(t) = 150[®(t — t;) — ®(t — )]N

and initial conditions of x; = 0.0l mand ( = 1 m/s.The system has a mass of 100 kg,
a damping coefficient of 30 kg/s, and a linear stiffness coefficient of 2000 N/m. The
value of k; is taken to be 5500 N/m?>. Which system has the largest transient magni-
tude? Which has the largest magnitude in steady state?
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*3,78. Compare the forced response of a system with velocity-squared damping, as defined in
equation (2.129) using numerical simulation of the nonlinear equation, to that of the
response of the linear system obtained using equivalent viscous damping, as defined
by equation (2.131). Use the initial conditions xy = 0.0l m and ¢ = 0.1 m/s with a
mass of 10 kg, stiffness of 25 N /m, applied force of the form (1; = 1.5 and t, = 2.5)

F(t) = 15[®(t — 1) — ®(t — )] N
and drag coefficient of a = 25.

*3.,79. Compare the forced response of a system with structural damping (see Table 2.2) using
numerical simulation of the nonlinear equation to that of the response of the linear
system obtained using equivalent viscous damping as defined in Table 2.2. Use the ini-
tial conditions xy = 0.0l mand ( = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m,
applied force of the form (#; = 1.5 and #, = 2.5)

F(t) = 15[®(t — 1) — (¢t — )] N

and solid damping coefficient of b = 8. Does the equivalent viscous-damping linear-
ization overestimate the response or underestimate it?

MATLAB ENGINEERING VIBRATION TOOLBOX

You may use the files contained in the Engineering Vibration Toolbox, first dis-
cussed at the end of Chapter 1 (immediately following the problems) and discussed
in Appendix G, to help solve many of the preceding problems. The files contained
in folder VIB3 may be used to help understand the nature of the general forced
response of a single-degree-of-freedom system as discussed in this chapter and the
dependence of this response on various parameters. VIB1_3 and VTB1_4 must be
used if an arbitrary forcing function is applied (one other than a simple function
call). The following problems are suggested to help build some intuition regarding
the material on general forced response and to become familiar with the various
formulas.

TOOLBOX PROBLEMS

TB3.1. Use file VTB3_1 to solve for the response of a system with a 10-kg mass, damping
¢ = 2.1 kg/s, and stiffness k = 2100 N/m, subject to an impulse at time ¢ = 0 of
magnitude 10 N. Next, vary the value of ¢, first increasing it, then decreasing it, and
note the effect in the responses.

TB3.2. Use file VTB3_2 to reproduce the plot of Figure 3.7 Then see what happens to the
response as the damping coefficient is varied by trying an overdamped and critically
damped value of { and examining the resulting response.
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TB3.3. If you are confident with MATLAB, try using the plot command to plot (say, for 7 = 6)

then

8 2 1 6 1 10w
—|(cos—t+ —cos—t+ —-cos——t

w? T 9 T 25 T

and so on, until you are satisfied that the Fourier series computed in Example 3.3.1
converges to the function plotted in Figure 3.13. If you are not familiar enough with
MATLAB to try this on your own, run VI'B3_3, which is a demo that does this for you.

TB3.4. Using VIB3_3, rework Problem 3.32 for first 5, then 10, and finally 50 terms.

TB3.5. Using file VIB3_4, examine the effect of varying the system’s natural frequency on
the response spectrum for the force given in Figure 3.16. Pick the frequencies f =
10 Hz, 100 Hz, and 1000 Hz and compare the various response spectrum plots.



Multiple-Degree-
of-Freedom Systems

This chapter infroduces the analysis
needed to understand the vibration

of systems with more than one degree

of freedom. The number of degrees of
freedom of a system is determined by the
number of moving parts and the number
of directions in which each part can
move. More than one degree of freedom
means more than one natural frequency,
greatly increasing the opportunity for
resonance to occur. This chapter also
infroduces the important concept of

a mode shape, and the highly used
method of modal analysis for studying the
response of multiple-degree-of-freedom
(MDOF) systems. Most structures are
modeled as MDOF systems. The all-terrain
vehicle suspension shown in the photo
at the top forms an example of a system
that can be modeled as two or more
degrees of freedom. Designers need o
be able to predict the vibration response
in order to improve the ride and ensure
durability. The blades of a jet engine
pictured atf the bottom also require
MDOF analysis but with a much larger
number of degrees of freedom. Airplanes,
satellites, automobiles, and so on, all
provide examples of vibrating systems
well modeled by the MDOF analysis
infroduced in this chapter.
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In the preceding chapters, a single coordinate and single second-order differen-
tial equation sufficed to describe the vibratory motion of the mechanical device
under consideration. However, many mechanical devices and structures cannot
be modeled successfully by single-degree-of-freedom models. For example, the
base-excitation problem of Section 2.4 requires a coordinate for the base as well
as the main mass if the base motion is not prescribed, as assumed in Section 2.4.
If the base motion is not prescribed and if the base has significant mass, then the
coordinate, y, will also satisfy a second-order differential equation, and the system
becomes a two-degree-of-freedom model. Machines with many moving parts have
many degrees of freedom.

In this chapter, a two-degree-of-freedom example is first used to introduce
the special phenomena associated with multiple-degree-of-freedom systems. These
phenomena are then extended to systems with an arbitrary but finite number of
degrees of freedom. To keep a record of each coordinate of the system, vectors are
introduced and used along with matrices. This is done both for the ease of notation
and to enable vibration theory to take advantage of the disciplines of matrix theory,
linear algebra, and computational codes.

4.1 TWO-DEGREE-OF-FREEDOM MODEL (UNDAMPED)

This section introduces two-degree-of-freedom systems and how to solve for the
response of each degree of freedom. The approach presented here is detailed
because the goal is to provide background for solving systems with any number
of degrees of freedom. In practice, computer methods are most commonly used
to solve for the response of complex systems. This was not the case when most
vibration texts were written. Hence, the approach here is a bit different than the
approach found in the more traditional and older texts on vibration; the focus
here is in setting up vibration problems in terms of matrices and vectors used in
computer codes for solving practical problems.

In moving from single-degree-of-freedom systems to two or more degrees of
freedom, two important physical phenomena result. The first important difference is
that a two-degree-of-freedom system will have two natural frequencies. The second
important phenomenon is that of a mode shape, which is not present in single-degree-
of-freedom systems. A mode shape is a vector that describes the relative motion be-
tween the two masses or between two degrees of freedom. These important concepts
of multiple natural frequencies and mode shapes are intimately tied to the mathemat-
ical concepts of eigenvalues and eigenvectors of computational matrix theory. This
establishes the need to cast the vibration problem in terms of vectors and matrices.

Consider the two-mass system of Figure 4.1(a). This undamped system is
similar to the system of Figure 2.13 except that the base motion is not prescribed
in this case and the base now has mass. Figure 4.1(b) illustrates a single-mass
system capable of moving in two directions and hence provides an example of a
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X1

(a) (b) (c)

Figure 4.1 (a) A simple two-degree-of-freedom model consisting of two masses
connected in series by two springs. (b) A single mass with two degrees of freedom
(i.e., the mass moves along both the x; and x, directions). (c) A single mass with
one translational degree of freedom and one rotational degree of freedom.

two-degree-of-freedom system as well. Figure 4.1(c) illustrates a single rigid mass
that is capable of moving in translation as well as rotation about its axis. In each of
these three cases, more than one coordinate is required to describe the vibration of
the system. Each of the three parts of Figure 4.1 constitutes a two-degree-of-freedom
system. A physical example of each system might be (a) a two-story building, (b) the
vibration of a drill press, or (c) the rocking motion of an automobile or aircraft.

A free-body diagram illustrating the spring forces acting on each mass in
Figure 4.1(a) is illustrated in Figure 4.2. The force of gravity is excluded following
the reasoning used in Figure 1.14 (i.e., the static deflection balances the gravita-
tional force and no friction is present). Summing forces on each mass in the hori-
zontal direction yields

mix; = —kixy + k(o — xp) (4.1)
myX, = —ky(x; — x;)
Rearranging these two equations yields
mlk'l + (k1 + kz)xl - k2X2 =0 (4 2)

mz..x.z - kle + k2X2 =0

Equations (4.2) consist of two coupled second-order ordinary differential equations,
with constant coefficients, each of which requires two initial conditions to solve.
Hence these two coupled equations are subject to the four initial conditions:

x1(0) = x9 1(0) = X0 0(0) = x0 %(0) = i (43)
ky(xy = x1) . .
kix; my - m Figure 4.2 Free-body diagrams of
kp(xy — x1) each mass in the system of Figure 4.1(a),
indicating the restoring force provided
e 2 by the springs.
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where the constants x;, X,, and xj(, X represent the initial velocities and displace-
ments of each of the two masses. These initial conditions are assumed to be known
or given and provide the four constants of integration needed to solve the two
second-order differential equations for the free response of each mass.

There are several approaches available to solve equations (4.2) given (4.3)
and the values of my, m,, ky, and k; for the responses x(f) and x,(¢). First, note that
neither equation can be solved by itself because each equation contains both x; and
x, (i.e., the equations are coupled). Physically, this states that the motion of x; affects
the motion of x;, and vice versa. A convenient method of solving this system is to
use vectors and matrices. The vector approach to solving this simple two-degree-
of-freedom problem is also readily extendable to systems with an arbitrary finite
number of degrees of freedom and is compatible with computer codes. Vectors and
matrices were introduced in Section 1.9 in order to enter a single-degree-of-freedom
vibration problem into a numerical equation solver such as MATLAB. Vectors and
matrices are reviewed here briefly and more details can be found in Appendix C.
Here vectors and matrices are used to compute a solution of equation (4.1).

Define the vector x(¢) to be the column vector consisting of the two responses

of interest:
| (@)
() = |:x2(t):| @9

This is called a displacement or response vector and is a 2 X 1 array of functions.
Differentiation of a vector is defined here by differentiating each element so that

x(1) = [xl(’)] and () = [xl(’)] (4.5)

%(1) % (1)

are the velocity and the acceleration vectors, respectively. A square matrix is a square
array of numbers, which could be made, for instance, by combining two 2 X 1 col-
umn vectors to produce a 2 X 2 matrix. An example of a2 X 2 matrix is given by

ny 0
w=[m 0] 0
Note here that italic capital letters are used to denote matrices and bold lowercase
letters are used to denote vectors.

Vectors and matrices can be multiplied together in a variety of ways. In vibra-
tion analysis the method most useful to define the product of a matrix times a vector
is to define the result to be a vector with elements consisting of the dot product of
the vector with each “row” of the matrix (i.e., by treating the row as a vector). The
dot product of a vector is defined by

x'x =[x x2]|:xl] = x} + x} 4.7)
X
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which is a scalar. The symbol x” denotes the transpose of the vector and changes
a column vector into a row vector. Equation (4.7) is also called the inner product
or scalar product of the vector x with itself. A scalar, a, times a vector, X, is simply
defined as ax = [ax; ax,]’ (i.e., a vector of the same dimension with each ele-
ment multiplied by the scalar). (Recall that a scalar is any real or complex number.)
These rules for manipulating vectors should be familiar from introductory mechan-
ics (i.e., statics and dynamics) texts.

The following example illustrates the rules for multiplying a matrix times a
vector.

Example 4.1.1

Consider the product of the matrix M of equation (4.6) and the acceleration vector X of
equation (4.5). This product becomes

e [m O E] <[] [ma)

0 ny RY) Oxl + npx, npx,
where the first element of the product is defined to be the dot product of the row vector
[m; 0] with the column vector X, and the second element is the dot product of the row

vector [0 m,] with X. Note that the product of a matrix and a vector is a vector.
a

Example 4.1.2
Consider the 2 X 2 matrix K defined by

k + k )
K = 4.
[ ok (49)

and calculate the product Kx.

Solution Again, the product is formed by considering the first element to be the in-
ner product of the row vector [k; + k, —k;] and the column vector x. The second
element of the product vector Kx is formed from the inner product of the row vector
[k, k] and the vector x. This yields

ki +k -k |:x1 |:(kl + k)x — kx
Kx = = 4.10
X [ —ky ka J ) —kpx; + kyx, (4.10)
O

Two vectors of the same size are said to be equal if and only if each element
of one vector is equal to the corresponding element in the other vector. With this in
mind, consider the vector equation

Mx + Kx = 0 (4.11)
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where 0 denotes the column vector of zeros:

R

Substitution of the value for M from equation (4.6) and the value for K from
equation (4.9) into equation (4.11) yields

K IR R IR

These products can be carried out as indicated in Example 4.1.1 and equation (4.10)

to yield
|:m1§c'1 n |:(k1 + k2)x1 - kzX2 - [0
mz..X.'Q - k2x1 + k2X2 0
Adding the two vectors on the left side of the equation, element by element,
yields

|:m1k'1 + (ky + ky)xy — kzxz} _ [0] (4.12)

mzxz - kle + kzXz 0

Equating the corresponding elements of the two vectors in equation (4.12) yields
mpc'l + (kl + kz)xl - k2X2 =0 (413)
mZ.'X'z - k2x1 + k2X2 =0

which are identical to equations (4.2). Hence the system of equations (4.2) can be writ-
ten as the vector equation given in (4.11), where the coefficient matrices are defined
by the matrices of equations (4.6) and (4.9). The matrix M defined by equation (4.6) is
called the mass matrix, and the matrix K defined by equation (4.9) is called the stiffness
matrix. The preceding calculation and comparison provide an extremely important
connection between vibration analysis and matrix analysis. This simple connection al-
lows computers to be used to solve large and complicated vibration problems quickly
(discussed in Section 4.10). It also forms the foundation for the rest of this chapter
(as well as the rest of the book).

The mass and stiffness matrices, M and K, described previously have the
special property of being symmetric. A symmetric matrix is a matrix that is equal
to its transpose. The transpose of a matrix, denoted by A7, is formed from inter-
changing the rows and columns of a matrix. The first row of A7 is the first col-
umn of A and so on. The mass matrix M is also called the inertia matrix, and the
force vector Mx corresponds to the inertial forces in the system of Figure 4.1(a).
Similarly, the force Kx represents the elastic restoring forces of the system de-
scribed in Figure 4.1(a).
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Example 4.1.3
Consider the matrix A defined by

where a, b, ¢, and d are real numbers. Calculate values of these constants such that the
matrix A is symmetric.

Solution For A to be symmetric, A = AT or

a b a c
A= = = AT
L dJ [b J
Comparing the elements of A and A7 yields that ¢ = b must hold if the matrix A is to
be symmetric. Note that the elements in the ¢ and b position of the matrix K given in

equation (4.9) are equal so that K = K.
O

It is useful to note that if x is a column vector

—_ |

X
then x” is a row vector (i.e., x’ = [x; x]). This makes it convenient to write
a column vector in one line. For example, the vector x can also be written as
x =[x, x]7, a column vector. The act of forming a transpose also undoes it-

self, so that (AT)T = A.
The initial conditions can also be written in terms of vectors as

_ | .(0) . _ | %(0)

velio) o=[h6] ¢

Here x( denotes the initial displacement vector and x, denotes the initial velocity

vector. Equation (4.12) can now be solved by following the procedures used for

solving single-degree-of-freedom systems and incorporating a few results from
matrix theory.

Recall from Section 1.2 that the single-degree-of-freedom version of equation

(4.11) was solved by assuming a harmonic solution and calculating values for the

constants in the assumed form. The same approach is used here. Following the argu-
ment used in equations (1.13) to (1.19), a solution is assumed of the form

x() = ue/*’ (4.15)

T

Here u is a nonzero vector of constants to be determined, w is a constant to be deter-
mined, and j = V—1. Recall that the scalar ¢/*’ represents harmonic motion since

/! — coswt + j sin wt. The vector u cannot be zero; otherwise no motion results.

e
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Substitution of this assumed form of the solution into the vector equation of
motion yields

(—w’M + K)ue = 0 (4.16)

where the common factor ue/®’ has been factored to the right side. Note that the
scalar ¢ # 0 for any value of ¢ and hence equation (4.16) yields the fact that
and u must satisfy the vector equation

(—Mw? + K)u = 0,u # 0 (4.17)

Note that this represents two algebraic equations in the three unknown scalars: ,
uq, and uy where u = [u; uz]T.

For this homogeneous set of algebraic equations to have a nonzero solution
for the vector u, the inverse of the coefficient matrix (-Mw” + K) must not exist.
To see that this is the case, suppose that the inverse of (-Mw? + K) does exist.
Then multiplying both sides of equation (4.17) by (-Mw? + K)~! yields u = 0,
a trivial solution, as it implies no motion. Hence the solution of equation (4.11)
depends in some way on the matrix inverse. Matrix inverses are reviewed in the
following example.

Example 4.1.4
Consider the 2 X 2 matrix A defined by

=[]

Solution The inverse of a square matrix A is a matrix of the same dimension, denoted
by A™!, such that

and calculate its inverse.

AA' = ATA =1

where [ is the identity matrix. In this case [ has the form

L

The inverse matrix for a general 2 X 2 matrix is

1 d —-b
71 —
A detA [—c a:| (4.18)

provided that det A # 0, where det A denotes the determinant of the matrix A. The
determinant of the matrix A has the value

det A = ad — bc
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To see that equation (4.18) is in fact the inverse, note that

1 d —bila b
A—lA —
ad — bc |:fc a:|[c d}
1 |:ad—bc bd — bd _[1 0
ad — bc | ac —ac ad — bc 0 1
It is important to realize that the matrix A has an inverse if and only if det A # 0.
Thus, requiring det A = 0 forces A not to have an inverse. Matrices that do not have

an inverse are called singular matrices. Note that if the matrix A is symmetric, c = b
and A7! is also symmetric.

d

Applying the condition of singularity to the coefficient matrix of equation
(4.17) yields the result that for a nonzero solution u to exist,

det(—w’M + K) =0 (4.19)

which yields one algebraic equation in one unknown (w?). Substituting the values of
the matrices M and K into this expression yields

—mzml + k1 + k2 _k2
det =0 4.20
¢ |: _k2 —w2m2 + kz ( )

Using the definition of the determinant yields that the unknown quantity o must
satisfy

m1m2w4 - (m1k2 + m2k1 + n’lzkz)(l)z + k1k2 =0 (421)

This expression is called the characteristic equation for the system and is used to de-
termine the constants w in the assumed form of the solution given by equation (4.15)
once the values of the physical parameters mq, m,, k1, and k, are known.

Example 4.1.5

Calculate the solutions for w of the characteristic equation given by equation (4.21) for the
case that the physical parameters have the values my = 9 kg, m, = 1 kg, ky = 24 N/m,
and k, = 3N/m.

Solution For these values the characteristic equation (4.21) becomes
0! = 6w’ +8 = (0 = 2)(w? —4) =0

so that w7 = 2 and w3 = 4. There are two roots and each corresponds to two values of
the constant w in the assumed form of the solution:

oy = *V2rad/s, ;= *2rad/s
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Note that in the statement of equation (4.17) w® appears, not w. However, in
proceeding to the solution in time, the frequency of oscillation will become w and
the plus and minus signs on w are absorbed in changing the exponential into a trigo-
nometric function, as described in the following pages.

Once the value of w in equation (4.15) is established, the value of the constant
vector u can be found by solving equation (4.17) for u given each value of . That
is, for each value of w? (i.e., o} and w3) there is a vector u satisfying equation (4.17).
For w?, the vector u; satisfies

(—0?M + K)u; =0 (4.22)
and for w3, the vector u, satisfies
(—03M + K)u, = 0 (4.23)

These two expressions can be solved for the direction of the vectors u; and w,, but
not for the magnitude. To see that this is true, note that if u; satisfies equation (4.22),
so does the vector auy, where a is any nonzero number. Hence the vectors satisfying
(4.22) and (4.23) are of arbitrary magnitude. The following example illustrates one
way to compute u; and u, for the values of Example 4.1.5.

Example 4.1.6

Calculate the vectors u; and w, of equations (4.22) and (4.23) for the values of w, K,
and M of Example 4.1.5.

Solution Letu; = [uy; uy]7. Then equation (4.22) with o> = w? = 2 becomes

720 ) L=l

Performing the indicated product and enforcing the equality yields the two equations
9U11 - 31121 =0 and —3u11 + Uy = 0
Note that these two equations are dependent and yield the same solution; that is,

ui 1 1
— =7 or Upp = 7 U
Usy 3 3

Only the ratio of the elements is determined here [i.e., only the direction of the vector
is determined by equation (4.17), not its magnitude]. As mentioned previously, this
happens because if u satisfies equation (4.17), then so does au, where a is any nonzero
number.
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A numerical value for each element of the vector u may be obtained by arbitrarily
assigning one of the elements. For example, let up; = 1; then the value of uy is

This procedure is repeated using w5 = 4 to yield that the elements of u, must satisfy
1
_9L£]2 - 3”22 =0 or Uy = _g Uy

Choosing uy, = 1 yields

which is the vector satisfying equation (4.23). There are several other ways of fixing
the magnitude of a vector besides the one illustrated here. Some other methods are
presented in Example 4.2.3 and equation (4.44). A more systematic method called nor-
malizing will be used with larger problems and is presented in the next section.

d

The solution of equation (4.11) subject to initial conditions x, and x, can be con-
structed in terms of the numbers *+ w;, = w, and the vectors u; and u,. This is similar
to the construction of the solution of the single-degree-of-freedom case discussed in
Section 1.2. Since the equations to be solved are linear, the sum of any two solutions
is also a solution. From the preceding calculation, there are four solutions in the form
of equation (4.15) made up of the four values of w and the two vectors:

x(t) = we 7, wer we 7 and  uye™e (4.24)
Thus a general solution is the linear combination of these:
x(f) = (ae™' + be7uy + (c/ + de ), (4.25)

where a, b, ¢, and d are arbitrary constants of integration to be determined by the
initial conditions.

Applying Euler formulas for the sine function to equation (4.25) yields an
alternative form of the solution (provided neither w; is zero):

X(t) = Al sin ((x)lt + d)l)ul + A2 sin ((1)21 + d)z)llz (426)
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where the constants of integration are now in the form of two amplitudes, A and
A,, and two phase shifts, ¢; and ¢,. Recall that this is the same procedure used
in equations (1.17), (1.18), and (1.19). These constants can be calculated from the
initial conditions x, and x,. Equation (4.26) is the two-degree-of-freedom analog of
equation (1.19) for a single-degree-of-freedom case.

The form of equation (4.26) gives physical meaning to the solution. It states
that each mass in general oscillates at two frequencies: w; and w,. These are
called the natural frequencies of the system. Furthermore, suppose that the initial
conditions are chosen such that A, = 0. With such initial conditions, each mass
oscillates at only one frequency, w, and the relative positions of the masses at
any given instant of time are determined by the elements of the vector u;. Hence
u; is called the first mode shape of the system. Similarly, if the initial conditions
are chosen such that A is zero, both coordinates oscillate at frequency w,, with
relative positions given by the vector w,, called the second mode shape. The
mode shapes and natural frequencies are clarified further in the following exer-
cises and sections. Mode shapes have become a standard in vibration engineering
and are used extensively in vibration analysis. The concepts of natural frequen-
cies and mode shapes are extremely important and form one of the major ideas
used in vibration studies.

In the derivation of equation (4.26) it is assumed that neither of the values of
w is zero. One or the other may have the value zero in some applications, but then
the solution takes on another form. The value of u, however, cannot be zero. A
frequency can be zero, but a mode shape cannot be zero. The zero frequency case
corresponds to rigid body motion and is the topic of Problem 4.12. The concept of
rigid body motion is detailed in Section 4.4.

Note that the positive and negative sign on o resulting from the solution of
equation (4.19) is used in going from equation (4.25) to equation (4.26) when invok-
ing the Euler formula for trig functions. Thus in equation (4.26) o is only a positive
number. Equation (4.26) also provides the interpretation of  as a frequency of vibra-
tion, which is now necessarily a positive number. This is similar to the explanation
provided in the single-degree-of-freedom case following equation (1.19).

Example 4.1.7
Calculate the solution of the system of Example 4.1.5 for the initial conditions x;(0) =
1 mm, x,(0) = 0,and x,(0) = %(0) = 0.

Solution To solve this, equation (4.26) is written as

[xl(t):| ~ u, uz][Al sin (wif + ;)

xz(t) A2 sin ((J)zt + d)z)

%A] Sin(\/jl + C])]) - %Az Sin(ZZ + C])z)

(4.27)
Ay sin(V2t + ) + Aysin (2t + by)
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Att = 0 this yields
1 . 1 .
|:1j| | 3 Aisind, — gAzsmd)z

3
0 Al sin (1)1 + A2 sin (1)2

(4.28)

Differentiating equation (4.27) and evaluating the resulting expression at ¢ = 0 yields
V2 2
[561(0)} _ [0} _ | 3 Arcosdr — Ay cosdy (4.29)
#(0) 0 V2A; cosd; + 2A, cosd,

Equations (4.28) and (4.29) represent four equations in the four unknown constants of
integrations A1, A, ¢1, and ¢,. Writing out these four equations yields

3 = A;sind; — Ay sind, (4.30)
0 = A;sind; + Ay sind, (4.31)
0 = V2A; cosd; — 24, cosd, (4.32)
0 = V2A, cosd; + 24, cosd, (4.33)

Adding equations (4.32) and (4.33) yields that
2V2A, cosd; = 0
so that ¢; = /2. Since ¢ = /2, equation (4.33) reduces to
2A,cosd, =0

so that ¢, = w/2. Substitution of the values of ¢ and ¢, into equations (4.30) and
(4.31) yields

3:141_142 and O:A1+A2

which has solutions A; = 3/2 mm, A, = —3/2 mm. Thus

x(t) = 0.5 sin(\@t + g) + 0.5 sin(2t + g) = 0.5(cos V2t + cos2t) mm
(4.34)

() = %sin(\@t + g) - %sin(Zl + g) = 1.5(cos V2t — cos2t) mm

These are plotted in Figure 4.3. More efficient ways to calculate the solutions are pre-
sented in later sections. The numerical aspects of calculating a solution are discussed
in Section 4.10.
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Note that in this case, the response of each mass contains both frequencies of
the system. That is, the responses for both x;(¢) and x,(¢) are combinations of signals
containing the two frequencies w; and w; (i.e., the sum of two harmonic signals). Note
from the development of equation (4.34) that the mode shapes determine the relative
magnitude of these two harmonic signals.

O

In the previous example, the arbitrary choice of the magnitude of the mode-
shape vectors u; and u;, made in Example 4.1.6 does not affect the solution because
these vectors are multiplied by the constants of integration A and A,, respectively.
The initial conditions then scale the magnitude of these vectors, so that the solution
given in equation (4.34) will be the same for any choice of fixing the vector magni-
tude made in Example 4.1.6.

Frequencies 1t is interesting and important to note that the two natural frequen-
cies w; and w, of the two-degree-of-freedom system are not equal to either of the
natural frequencies of the two single-degree-of-freedom systems constructed from
the same components. To see this, note that in Example 4.1.5, Vk;/m; = 1.63,
which is not equal to w; or w, (i.e., »; = V2, 0, = 2). Similarly, Vik,/m, = 1.732,
which does not coincide with either frequency of the two-degree-of-freedom system
composed of the same springs and masses, each attached to ground.

Beats The beat phenomenon introduced in Example 2.1.2 for the forced response of a
single-degree-of-freedom system can also exist in the free response of a two- (or more)
degree-of-freedom system. If the mass and stiffness of the system of Figure 4.1(a) are
such that the two frequencies are close to each other, then solutions derived in Example
4.1.7 will produce beats. In fact, a close examination of the plots of the response in
Figure 4.3 shows that the response x,(¢) is close to the shape of the beat illustrated in
Figure 2.4. This happens because the two frequencies of Example 4.1.7 are reasonably
close to each other (1.414 and 2). As the two natural frequencies become closer, the
beat phenomenon will become more evident (see Problem 4.17). Thus, beats in vibrat-
ing systems can occur in two separate circumstances: first, in a forced-response case as
the result of a driving frequency being close to a natural frequency (Example 2.1.2) and,
second, as the result of two natural frequencies being close together in a free-response
situation (Problem 4.18).

Calculations The method used to compute the natural frequencies and mode
shapes presented in this section is not the most efficient way to solve vibration
problems. Nor is the approach presented here the most illuminating of the physi-
cal nature of vibration of two-degree-of-freedom systems. The calculation method
presented in Examples 4.1.5 and 4.1.6 are instructive, but tedious. The approach
of these examples also ignores the key issues of orthogonality of mode shapes and
decoupling of the equations of motion, which are key concepts in understanding
vibration analysis, design, and measurement. These issues are discussed in the fol-
lowing section, which connects the problem of computing natural frequencies and
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mode shapes to the symmetric eigenvalue and eigenvector calculations of math-
ematics. Once the natural frequency and mode-shape formulation is connected to
the algebraic eigenvalue—eigenvector problem, then mathematical software pack-
ages can be used to compute the mode shapes and natural frequencies without go-
ing through the tedious computations of the preceding examples. This connection
to the algebraic eigenvalue problem is also a key in understanding the topics of
vibration testing discussed in Chapter 7.

4.2 EIGENVALUES AND NATURAL FREQUENCIES

The method of solution indicated in Section 4.1 can be extended and formalized to
take advantage of the symmetric algebraic eigenvalue problem. This allows the power
of mathematics to be used in solving vibration problems, allows the use of mathemati-
cal software packages, and sets the background needed for analyzing systems with an
arbitrary number of degrees of freedom. In addition, the important concepts of mode
shapes and natural frequencies can be generalized by connecting the undamped-
vibration problem to the mathematics of the algebraic eigenvalue problem.

There are many ways to connect the solution of the vibration problem with
that of the algebraic eigenvalue problem. The most productive approach is to cast
the vibration problem as a symmetric eigenvalue problem because of the special
properties associated with symmetry. Note that the physical nature of both the
mass and stiffness matrices is that they are usually symmetric. Hence preserving
this symmetry is also a natural approach to solving the vibration problem. Since M
is symmetric and positive definite, it may be factored into two terms:

M=LILT

where L is a special matrix with zeros in every position above the diagonal (called
a lower triangular matrix). A matrix M is positive definite if the scalar formed from
the product

x'Mx > 0

for every nonzero choice of the vector x. The factorization L is called the Cholesky
decomposition and is examined, along with the notion of positive definite, in more
detail in Appendix C and Section 4.9. In the special case that M happens to be
diagonal, as in the examples considered so far, the Cholesky decomposition just
becomes the notion of a matrix square root, and the notion of positive definite just
means that the diagonal elements of M are all positive, nonzero numbers.

In solving a single-degree-of-freedom system it was useful to divide the equation
of motion by the mass. Hence, consider resolving the system of two equations described
in matrix form by equation (4.19) by making a coordinate transformation that is equiva-
lent to dividing the equations of motion by the mass in the system. To that end, consider
the matrix square root defined to be the matrix M'/? such that M'/”?M'/? = M, the mass



Sec. 4.2 Eigenvalues and Natural Frequencies 319

matrix. For the simple example of the mass matrix given in equation (4.6), the mass
matrix is diagonal and the matrix square root becomes simply

\/ﬁlo}

0 v (4.35)

L=M1/2=|:

This factors M into M = M'?M'/? (or into M = LLT) in the common case of a
diagonal mass matrix. If M is not diagonal, the notion of a square root is dropped
in favor of using the Cholesky decomposition L, which is discussed in Section 4.9
under dynamically coupled systems. The use of the Cholesky decomposition L is
preferred because it is a single command in most codes, and hence more convenient
for numerical computation.

The inverse (Example 4.1.4) of the diagonal matrix M'/?, denoted by M/,
becomes simply

1
— 0
A (4.36)
0 —
my

The matrix of equation (4.36) provides a means of changing coordinate systems
to one in which the vibration problem is represented by a single symmetric matrix.
This allows the vibration problem to be cast as the symmetric eigenvalue problem
described in Window 4.1. The symmetric eigenvalue problem has distinct advan-
tages both computationally and analytically, as will be illustrated next. The ana-
lytical advantage of this change of coordinates is similar to the advantage gained
in solving the inclined plane problem in statics by writing the coordinate system
along the incline rather than along the horizontal.

To accomplish this transformation, or change of coordinates, let the vector x
in equation (4.11) be replaced with

x(1) = M'2q(r) (4.37)
and multiply the resulting equation by M~/2, This yields
MVPMMV24(t) + MTVPKM ' q() = 0 (4.38)
Since M~'2?MM~'? = [, the identity matrix, expression (4.38) reduces to
I4(t) + Kq(r) = 0 (4.39)

The matrix K = MV2KMY 2, like the matrix K, is a symmetric matrix. The matrix
K is called the mass-normalized stiffness and is analogous to the single-degree-of-
freedom constant, k/m.
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Window 4.1
Properties of the Symmetric Eigenvalue Problem

The algebraic eigenvalue problem is the problem of computing the scalar \
and the nonzero vector v satisfying

Av = \v

Here, A is an n X n real valued, symmetric matrix, the vector v is n X 1, and
there will be n values of the scalar \, called the eigenvalues, and n values of the
corresponding vector v, one for each value of \. The vectors v are called the
eigenvectors of the matrix A.

The eigenvalues of A are all real numbers.

The eigenvectors of A are real valued.

The eigenvalues of A are positive numbers if and only if A is positive
definite.

The eigenvectors of A can be chosen to be orthogonal, even for repeated
eigenvalues.

Symmetry also implies that the set of eigenvectors are linearly independent and
can be used like a Fourier series to expand any vector into a sum of eigenvectors.
This forms the basis of modal expansions used in both analysis and experiments
(Chapter 7). In addition, the numerical algorithms used to compute the eigenval-
ues and eigenvectors of A are faster and more efficient for symmetric matrices.

Example 4.2.1

Show that K is a symmetric matrix if K and M are symmetric. Note that if M is sym-
metric so is M~! and M~"/2. This is trivial in the cases used here where M is diagonal,
but this is also true for fully populated symmetric matrices. Also show the matrix is
symmetric using the Cholesky factors of M.

Solution To show that a matrix is symmetric, use the rule that for any two square
matrices of the same size (AB)T = BTAT. Applying this rule twice yields

kT — (M*I/ZKM*I/Z)T — (KMfl/Z)TMfl/Z — M*l/ZKTMfl/Z — M*l/ZKM*l/Z — I’Z

Thus K = K" andis a symmetric matrix.
d

Equation (4.39) is solved, as before, by assuming a solution of the form
q(t) = ve/® where v # 0 is a vector of constants. Substitution of this form into
equation (4.39) yields

Kv = o’ (4.40)



Sec. 4.2 Eigenvalues and Natural Frequencies 321

upon dividing by the nonzero scalar ¢/’. Here it is important to note that the con-
stant vector v cannot be zero if motion is to result. Next let A = w? in equation
(4.40). This yields
Kv = \v (4.41)

where v # 0. This is precisely the statement of the algebraic eigenvalue problem.
The scalar \ satisfying equation (4.41) for nonzero vectors v is called the eigenvalue
and v is called the (corresponding) eigenvector. Since the matrix K is symmetric,
this is called the symmetric eigenvalue problem. The eigenvector v generalizes the
concept of a mode shape u used in Section 4.1.

If the system being modeled has n degrees of freedom, each free to move with
a single displacement labeled x;(¢), the matrices M, K, and hence K will be n X n,
and the vectors x(¢), q(¢), and v will be n X 1 in dimension. Each subscript i denotes
a single degree of freedom where i ranges from 1 to n, and the vector x(f) denotes the
collection of the »n degrees of freedom. It is also convenient to label the frequencies w
and eigenvectors v with subscripts i, so that w; and v; denote the ith natural frequency
and corresponding ith eigenvector, respectively. In this section, only # = 2 is consid-
ered, but the notation is useful and valid for any number of degrees of freedom.

Equation (4.41) connects the problem of calculating the free vibration re-
sponse of a conservative system with the mathematics of symmetric eigenvalue
problems. This allows the developments of mathematics to be applied directly to
vibration. The theoretical advantage of this relationship is significant and is used
here. These properties are summarized in Window 4.1 and reviewed in Appendix C.
The computational advantage, which is substantial, is discussed in Section 4.9.

Example 4.2.2

Calculate the matrix K for

9 0 27 -3
M‘Bl} K‘La J

as given in Example 4.1.5.

Solution Matrix products are defined here for matrices of the same size by extending
the idea of a matrix times a vector outlined in Example 4.1.1. The result is a third ma-
trix of the same size. The first column of the matrix product AB is the product of the
matrix A with the first column of B considered as a vector, and so on. To illustrate this,
consider the product KM ~'/2 where M~"/? is defined by equation (4.36).

3 =
0 1 (—3)(9 +300) (=31 + 3)(1)

[ 9 -3
-1 3

27_3}10 e3)+ 0 @0 + )

KM = [ 3
-3 3
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Multiplying this by M~/ yields

B

1

M*l/ZKMfl/Z —

S W=

[G)orocn (e oo 2]

L (OO + M1  O)(=3) + (DHE) 3

Note that (M~2KM~1?)T = M~'2KM~'7 50 that K is symmetric.

It is tempting to relate equation (4.11) to the algebraic eigenvalue problem by
simply multiplying equation (4.17) by M~ to get \u = M~' Ku. However, as the fol-
lowing computation indicates, this does not yield a symmetric eigenvalue problem.
Computing the product yields

1 —
0127 -3 30—
= # = KM!
i 3] 3 |

so that this matrix product is not symmetric. The use of MK also becomes computa-
tionally more expensive, as discussed in Section 4.9.
d

Alternately, the Cholesky factorization may be used as described in Window 4.2.

The symmetric eigenvalue problem has several advantages. A summary of prop-
erties of the symmetric eigenvalue problem is given in Window 4. 1. For example, it can
readily be shown that the solutions of equation (4.41) are real numbers. Furthermore, it
can be shown that the eigenvectors satisfying equation (4.41) are orthogonal and never
zero just like the unit vectors (i, j, k, é;, é,, é3) used in the vector analysis of forces
(regardless of whether or not the eigenvalues are repeated). Two vectors v; and v, are
defined to be orthogonal if their dot product is zero, that is, if

viv, =0 (4.42)

(Ortho comes from a Greek word meaning straight.) The eigenvectors satistying (4.41)
are of arbitrary length just like the vectors u; and u, of Section 4.1. Following the anal-
ogy of unit vectors from statics (introductory mechanics), the eigenvectors can be nor-
malized so that their length is 1. The norm of a vector is denoted by [ x| and defined by

n 1/2
il = VAT = | S| (a4

=1
A set of vectors that satisfies both (4.42) and |x| = 1 are called orthonormal. The
unit vectors from a Cartesian coordinate system form an orthonormal set of vectors
(recall that i i-i=1i- J = 0, etc.). A summary of vector inner products is given in
Appendix C.
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Window 4.2
Symmetric Eigenvalue Problem by Cholesky Factorization

The Cholesky factorization of the mass matrix is M = LL for any symmetric M,
even if it is not necessarily diagonal. Consider the substitution x(f) = (L7)™z(r)
into equation (4.11) and multiply by L~/ This yields

LYLLYY(LYY %) + LKLY '2(r) = 0
The action of taking the transpose and taking the inverse are interchangeable.

This, combined with the rule that (AB)” = BTAT, yields that the first coeffi-
cient is the identity matrix:

LHLLY(LN)™ = (L)L) = (D)D) = 1

The coefficient of z is symmetric and used as an alternate definition of the mass-
normalized stiffness matrix. To see that it is symmetric, calculate its transpose:

IZ'T — [L—IK(LT)—I]T — [(LT)—l]T(L—lK)T — L—lKT(L—])T — I?
Nt

since K = K'. Combining all three equations and substitution of z = e
yields the symmetric eigenvalue problem Kv = \v. Using L rather the M'/?
to form the mass-normalized stiffness matrix has numerical advantages which
come into play for larger problems.

To normalize the vector u; = [1/3 1]7, or any vector for that matter, an
unknown scalar « is sought such that the scaled vector auy has unit norm, that is,
such that

(cy)"(omy) =1
Writing this expression foru; = [1/3 1] yields

o(1/9+1)=1
or a = 3/V/10. Thus the new vector au; = [1/V10 3/V10]” is the normalized
version of the vector u;. Remember that the eigenvalue problem determines only
the direction of the eigenvector, leaving its magnitude arbitrary. The process of

normalization is just a systematic way to scale each eigenvector or mode shape. In
general, any vector x can be normalized simply by calculating

1

X TX

x (4.44)

Equation (4.44) can be used to normalize any nonzero real vector of any length.
Note again that since x here is an eigenvector, it cannot be zero so that dividing by
the scalar x'x is always possible.
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The normalizing of the eigenvectors to remove the arbitrary choice of one ele-
ment in the vector is the systematic method mentioned at the end of Example 4.1.6.
Normalizing is an alternative to choosing one element of the vector to have the value 1,
as was done in Example 4.1.6.

The following example illustrates the eigenvalue problem, the process of nor-
malizing vectors, and the concept of orthogonal vectors.

Example 4.2.3

Solve the eigenvalue problem for the two-degree-of-freedom system of Example 4.2.2

where
~ 3 -1
K=
[—1 3}

Normalize the eigenvectors, check if they are orthogonal, and compare them to the
mode shapes of Example 4.1.6.

Solution The eigenvalue problem is to calculate the eigenvalues A and eigenvectors v
that satisfy equation (4.41). Rewriting equation (4.41) yields

(K= N)v=0

3-N 1
[ L 3_Jv=0 (4.45)

where v must be nonzero. Hence the matrix coefficient must be singular and therefore
its determinant must be zero.

3-x -1
det =N -60+8=0
e[—l 3—J

or

This last expression is the characteristic equation and has the two roots
N =2 and A =4

which are the eigenvalues of the matrix K. Note that these are also the squares of the
natural frequencies, w?, as calculated in Example 4.1.5.

The eigenvector associated with \; is calculated from equation (4.41) with
A= 7\1 = 2 and vV = ['1)11 ?)zl]T:

(K= NI)v; =0 = [3__12 3__1212;} N [8}

This results in the two dependent scalar equations
Vi1 — Uy — 0 and —V;1 T vy = 0

Hence 11 = 51, which defines the direction of the vector v;.
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To fix a value for the elements of v, the normalization condition of equation
(4.44) is used to force v; to have a magnitude of 1. This results in (setting 11 = 51)

1= vl = V3 + 03 = V2uy

Solving for , yields

RV

so that the normalized vector v; becomes

Similarly, substitution of A\, = 4 into (4.41), solving for the elements of v, and normal-

izing the result yields
o] [ 1
vzl

Now note that the product v/v, yields

e - L 1 L

so that the set of vectors v; and v, are orthogonal as well as normal. Hence the two vec-
tors vy and v, form an orthonormal set as described in Window 4.3.

Next, consider the mode-shape vectors computed in Example 4.1.6 directly from
equations (4.22) and (4.23):u; = [1/3 1]Tandu, = [-1/3 1]7. The following cal-
culation shows that these vectors are not orthogonal:

Next, normalize u; and u, using equation (4.44) to get

B [0.31623
\ /rlul /7 0.94868

where the “hat” is used to denote a unit vector, a notation that is usually dropped in
favor of renaming the normalized version u; as well. Following a similar calculation, the
normalized version of w, becomes w, = [—0.31623  0.948681]”. Note that the normal-
ized versions of u; and u, are not orthogonal either. Only the eigenvectors computed
from the symmetric matrix K are orthogonal. However, the vectors w; computed in

u =

e
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Example 4.1.6 can be normalized and made orthogonal with respect to the mass matrix
M, as discussed later. The mode shapes u; and eigenvectors v; are related by the square
root of the mass matrix as discussed next.

d

The previous example showed how to calculate the eigenvalues and eigen-
vectors of the symmetric eigenvalue problem related to the vibration problem. In
comparing this to the mode shape and natural frequency calculation made earlier,
the eigenvalues are exactly the squares of the natural frequencies. However, there
is some difference between the mode shapes of Example 4.1.6 and the eigenvec-
tors of the previous example. This difference is captured by the fact that the mode
shapes as calculated in Example 4.1.6 are not orthogonal, but the eigenvectors are
orthogonal. The property of orthogonality is extremely important in developing
modal analysis (Section 4.3) because it allows the equations of motion to uncouple,
reducing the analysis to that of solving several single-degree-of-freedom systems
defined by scalar equations.

The eigenvectors and the mode shapes are related through equation (4.37) by

u; = M_l/zvl and vV = Ml/zul

To see this, note that

30
Ml/z‘”:[o 1}

using the values from the examples. Thus the mode shapes and eigenvectors are
related by a simple matrix transformation, M'/2. The important point to remember
from this series of examples is that the eigenvalues are the squares of the natural
frequencies and that the mode shapes are related to the eigenvectors by a factor of
the mass matrix.

As indicated in Example 4.2.3, the eigenvectors of a symmetric matrix are
orthogonal and can always be calculated to be normal. Such vectors are called
orthonormal, as summarized in Window 4.3. This fact can be used to decouple the
equations of motion of any order undamped system by making a new matrix P out
of the normalized eigenvectors, such that each vector forms a column. Thus the
matrix P is defined by

R
Il
1
— =
L 1
I
<
=

p=1I[vi v» wv3...v,]] (4.46)

where n is the number of degrees of freedom in the system (n = 2 for the examples
of this section). Note the matrix P has the unique property that P7P = I, which fol-
lows directly from considering the matrix product definition that the ijth element
of PTP is the product of the ith row of P’ with the jth column of P. Matrices that
satisfy the equation PTP = I are called orthogonal matrices.
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Window 4.3
Summary of Orthonormal Vectors

Two vectors x; and x, are normal if
x/x; =1 and xix, =1

and orthogonal if x/x, = 0. If x; and x, are normal and orthogonal, they are
said to be orthonormal. This is abbreviated

I i=1,2 j=12

X'X; = 9

i %y ij

where §;; is the Kronecker delta, defined by

5 _{Oifi;éj}
P iti =

If a set of n vectors {x } ?:1 is orthonormal, it is denoted by

XiTX‘ = 8,]

the Kronecker delta used here, with 8 = In[x(¢)/

ij=12..n

Be careful not to confuse 3,

x(t + T)], the logarithmic decrement of Section 1.6, or with 3(¢ — ¢;), the Dirac
delta or impulse function of Section 3.1, or with the static deflection &g of
Section 5.2.

Example 4.2.4
Write out the matrix P for the system of Example 4.2.3 and calculate PTP.

Solution Using the values for the orthonormal vectors v; and v, from Example 4.2.3
yields

1 1 1

P=[v w|= V3 [1 _J

1 11 11 1
PTP:(%X%)L —J[l —1}
_1[1+1 11}_[1 0}_
T2l1-1 1t+1] Lo 1|

Another interesting and useful matrix calculation is to consider the product of
the three matrices PTKP. It can be shown (see Appendix C) that this product results

so that PTP becomes

d
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in a diagonal matrix. Furthermore, the diagonal entries are the eigenvalues of the ma-
trix K and the squares of the system’s natural frequencies. This is denoted by

A = diag(\,) = PTKP (4.47)

and is called the spectral matrix of K. The following example illustrates this calculation.

Example 4.2.5
Calculate the matrix PT KP for the two-degree-of-freedom system of Example 4.2.2.

~ 1|1 1 3 1111 1
PTKP = — —
i B
_1[1 1[2 4
21 -1 2 4
1{4 0 2 0
_'5[0 8} _'{0 4} -A
Note that the diagonal elements of the spectral matrix A are the natural frequen-
cies w; and w, squared. That is, from Example 4.2.3, o} = 2 and o} = 4, so that

A = diag(w? 3) = diag(2 4).
a

Examining the solution of Example 4.2.5 and comparing it to the natural fre-
quencies of Example 4.1.3 suggests that in general

A = diag()\;) = diag(w?) (4.48)

This expression connects the eigenvalues with the natural frequencies (i.e., \; = o?).
The following example illustrates the matrix methods for vibration analysis presented
in this section and provides a summary.

Example 4.2.6

Consider the system of Figure 4.4. Write the dynamic equations in matrix form, calcu-
late K, its eigenvalues and eigenvectors, and hence determine the natural frequencies
of the system (use m; = 1kg,my = 4kg, ky = k3 = 10N/m, and k, = 2 N/m). Also
calculate the matrices P and A, and show that equation (4.47) is satisfied and that
PP =1.

ky k, ks

Figure 44 A two-degree-of-

|—> |—> freedom model of a structure

X1 X, fixed at both ends.




Sec. 4.2

Eigenvalues and Natural Frequencies

329

Solution Using free-body diagrams of each of the two masses yields the following

equations of motion:
mlx'l + (kl + kz)xl - kzXz =0
mz..?éz - kle + (kz + k3).7€2 =0

In matrix form this becomes

ny 0 .. kl + kZ _kz
+ =
[ 0 mz}((t) [ —k, ky + k3 x® =0

Using the numerical values for the physical parameters m; and k; yields that

10 2 -2
M_[o 4] K_[—z 12}

The matrix M~ "2 becomes

1 0
M2 = 1
0 —
2
so that
1 0
- 12 -1 12 -1
K= M2 (KM™?) = [ = [
( ) % -2 6 -1 3

(4.49)

(4.50)

Note that K is symmetric (i.e., K" = K), as expected. The eigenvalues of K are calcu-

lated from

12 =\ -1

det(K — ) = det
et( ) e[ -1 3-2

J=>\2—15>\+35=0

This quadratic equation has the solution

N

5 V85

N | =

so that
N = 2.8902 N, = 12.1098

Thus w; = VA = 1.7and v, = V\, = 3.48rad/s.
The eigenvectors are calculated from (for \;)

[12 - 2.8902 -1 |:1)11 _ [0
-1 3 —2.8902 || vy 0
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so that the vector v; = [vy; 2] satisfies
9.10981}11 = Uy

Normalizing the vector v, yields

1= HV]H = \/v%] + ’U%] = \/U%l + (91098)21)%1

so that
1
vy =———=01091
V1 + (9.1098)%
and

vy = 9.1098v;, = 0.9940

Thus the normalized eigenvector v; = [0.1091 0.9940].

Similarly, the vector v, corresponding to the eigenvalue A, in normalized form
becomes v, = [-0.9940 0.1091]7. Note that v{v, = 0 and V'v{v; = 1. The matrix of
eigenvectors P becomes

Py v = [0.1091 —0.9940
v 0.9940  0.1091

Thus the matrix A becomes

Ao PTI?P—[ 0.1091  0.9940 [12 -1 [0.1091 —0.9940 _[2.8402 0
—-0.9940 0.1091 [ -1  3]/0.9940  0.1091 0 121098

This shows that the matrix P transforms the mass-normalized stiffness matrix into a
diagonal matrix of the squares of the natural frequencies. Furthermore,

PTP—[ 0.1091  0.9940 [0.1091 —0.9940 _[1 0]
—0.9940 0.1091 ][ 0.9940  0.1091 0 1

as it should.
O

The computations made in the previous example can all be performed easily
in most programmable calculators as well as in the mathematics software packages
used in Sections 1.9, 2.8, and 3.9, in the Toolbox, and as illustrated in Section 4.9. It
is good to work a few of the calculations for frequencies and eigenvectors by hand.
However, larger problems require the accuracy of using a code.

An alternative approach to normalizing mode shapes is often used. This
method is based on equation (4.17). Each vector u; corresponding to each
natural frequency w; is normalized with respect to the mass matrix M by scaling
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the mode-shape vector, which satisfies equation (4.17) such that the vector
w; = o;u; satisfies

() M(ou;) =1 (4.51)
or
ou/ Mu; = w/Mw,; = 1

This yields the special choice of o; = 1/Vu!Mu,.
The vector w; is said to be mass normalized. Multiplying equation (4.17) by
the scalar q; yields (for i = 1 and 2)

—w’Mw; + Kw; = 0 (4.52)
Multiplying this by w/ yields the two scalar relations (for i = 1 and 2)
w? =w/Kw;, i=1,2 (4.53)

where the mass normalization w/Mw, = 1 of equation (4.51) was used to evaluate
the left side.

Next, consider the vector v; = M'/?u;, where v, is normalized so that v/v; = 1.
Then by substitution

vivi = (Ml/zui)TMl/zui
= u/ M2 My,
= uiTMui =1

so that the vector u; is mass normalized. In this last argument, the property of the
transpose is used [i.e., (M"?u)” = u’(M'/?)7] and the fact that M'/? is symmetric,
so that (M'/?)T = M'/2,

As vibration problems become more complex, more degrees of freedom are
needed to model the system’s behavior. Thus the mass and stiffness matrices in-
troduced in Section 4.1 become large and the analysis becomes more complicated,
even though the basic principle of eigenvalues /frequencies and eigenvectors/mode
shapes remains the same. Increased understanding of the vibration problem can be
obtained by borrowing from the theory of matrices and computational linear alge-
bra. There are three different methods of casting the undamped-vibration problem
in terms of the matrix theory. They are

() o’Mu = Ku (i) o’nu = M 'Ku  (jii) 0’>v = M PKM %y

Each of these methods results in identical natural frequencies and mode shapes to
within numerical precision. Each of these three eigenvalue problems is related by a
simple matrix transformation. The following summarizes their differences.

(1) The Generalized Symmetric Eigenvalue Problem This is the simplest method to
compute by hand. However, when using a code, u must be further normalized
with respect to the mass matrix to obtain an orthonormal set. In addition, the
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matrix transformation from (i) to (iii) must be used to prove that the resulting
w; are real and to prove the existence of orthogonal mode shapes. This is the
second most expensive computational algorithm, requiring 7n° floating-point
operations per second (flops) where n is the number of degrees of freedom.

(ii) The Asymmetric Eigenvalue Problem When using a code, u must be further
normalized with respect to the mass matrix to obtain an orthonormal set. This
is the most expensive computational algorithm, requiring 151> flops.

(iii) The Symmetric Eigenvalue Problem Because symmetry is preserved, this,
or its Cholesky equivalent, is the best method to use for larger systems or
when using a code. The resulting eigenvectors v; form an orthonormal set.
Algorithms require only n’ flops, including transforming to the symmetric
form and transforming the result to physical mode shapes (computed by a
simple matrix multiplication).

The question remains: Which approach should be used? The symmetric form
(iii) is used here because computational algorithms produce orthonormal eigen-
vectors without additional calculation and because the algorithm for (iii) is less
computationally intensive. In addition, the analytical properties of the symmetric
eigenvalue problem can be used directly. For two-degree-of-freedom systems, com-
putation should be done by hand, and the most straightforward hand calculation
is to proceed with the generalized eigenvalue problem AMu = Ku, as analyzed in
Section 4.1. For problems with more than two degrees of freedom, a code should be
used to avoid numerical mistakes and ensure accuracy. In these practical cases, the
most efficient approach is to use the symmetric eigenvalue problem (iii) presented
in this section. N

The symmetric eigenvalue problem for the mass-normalized stiffness matrix (K)
provides the transformation (P) that diagonalizes K and uncouples the equations of
motion. This process of transforming K into a diagonal form is called modal analysis
and forms the topic of the next section.

4.3 MODAL ANALYSIS

The matrix of eigenvectors P calculated in Section 4.2 can be used to decouple the
equations of vibration into two separate equations. The two separate equations
are then second-order-single-degree-of-freedom equations that can be solved and
analyzed using the methods of Chapters 1 through 3. The matrices P and M~ /2 can
be used again to transform the solution back to the original coordinate system. The
matrices P and M~ '/ can also be called transformations, which is appropriate in this
case because they are used to transform the vibration problem between different
coordinate systems. This procedure is called modal analysis, because the transfor-
mation § = M~ /2P, often called the modal matrix, is related to the mode shapes of
the vibrating system.
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Consider the matrix form of the equation of vibration
Mx(t) + Kx(t) = 0 (4.54)
subject to the initial conditions
x(0) = xo x(0) = xg

Here xy = [4(0) x(0)]7 is the vector of initial displacements, and
Xy = [11(0) 1,(0)]” is the vector of initial velocities. As outlined in Section 4.2,
substitution of x = M~'2q(¢) into equation (4.54) and multiplying from the left
by M~/ yields

I§()) + Kq() = 0 (4.55)
where X = M_l/z'q', since the matrix M is constant, and where K = MV2KM™V2,

as before. The transformation M~ '/? simply transforms the problem from the co-
ordinate system defined by x = [x1(f) x»(¢)]” to a new coordinate system, q =

[91(t) g2(1)]", defined by

q(t) = M"’x(1) (4.56)
Next, define a second coordinate system r(r) = [r1(f) r,()]” by
q(®) = Pr(v) (4.57)

where P is the matrix composed of the orthonormal eigenvectors of K as defined in
equation (4.46). Substitution of the vector q = Pr(f) into equation (4.55) and multi-
plying from the left by the matrix P7 yields

PTPi(t) + PTKPr(t) = 0 (4.58)
Using the result P/P = [ and equation (4.47), this can be reduced to
I¥(t) + Ar(t) = 0 (4.59)

Equation (4.59) can be written out by performing the indicated matrix calculations as

R e R e ] Y

[:r;(r) +Hoin() ] _ [o “61)
rz(t) + (1)2}’2([) 0

The equality of the two vectors in this last expression implies the two decoupled
equations

and

Fo(t) + wiry(f) = 0 (4.63)



334

Multiple-Degree-of-Freedom Systems Chap. 4

These two equations are subject to initial conditions which must also be transformed
into the new coordinate system r(¢) from the original coordinate system x(). Following
the preceding two transformations applied to the initial displacement yields

Ky = [”OJ = P'q(0) = P"M"’x, (4.64)
20

where q(7) = Pr(r) was multiplied by P to get r(r) = P’q(f), since PTP = I.
Likewise the initial velocity in the decoupled coordinate system, r(¢), becomes

iy = [ZWJ = PT4(0) = PTM'?%, (4.65)
20

Equations (4.62) and (4.63) are called the modal equations, and the coordinate
system r(f) = [r1(t) ry(t)]” is called the modal coordinate system. Equations (4.62)
and (4.63) are said to be decoupled because each depends only on a single coor-
dinate. Hence each equation can be solved independently by using the method of
Sections 1.1 and 1.2 (see Window 4.4). Denoting the initial conditions individually
by r10, 710, 720, and iy and using equation (1.10), the solution of each of the modal
equations (4.62) and (4.63) is simply

N/ 2.2 )
Oirig + r wr
r(t) = Msin(wlt + tan ! 2 > (4.66)
g 10
N/ 2.2 %)
wiryy T ryy . _{ Wl
r(t) = sm<w2t + tan ! — > (4.67)
w) 20

provided w{ and w, are nonzero.

Window 4.4
Review of the Solution to a Single-Degree-of-Freedom Undamped System
Jrom Section 1.1 and Window 1.2

The solution to m¥ + kx = 0 or ¥ + wix = 0 subject to x(0) = x; and
x(0) = vy is

/ 2
v
x(t) = [x% + gsin<wnt + tan! mnxo) (1.10)
w;, Yo

where w, = Vk/m # 0.
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Once the modal solutions (4.66) and (4.67) are known, the transformations M'/?
and P can be used on the vector ¥(r) = [r1(f) r(t)]” to recover the solution x(f)
in the physical coordinates x{(f) and x,(¢). To obtain the vector x from the vector r,
substitute equations (4.56) into q(t) = Pr(¢) to get

x(f) = M 2q(r) = M'2Pr() (4.68)
The matrix product M~ /P is again a matrix, which is denoted by
S =M'p (4.69)

and is the same size as M and P (2 X 2). The matrix § is called the matrix of mode
shapes, each column of which is a mode-shape vector. This procedure, referred to
as modal analysis, provides a means of calculating the solution to a two-degree-of-
freedom vibration problem by performing a number of matrix calculations. The use-
fulness of this approach is that these matrix computations can easily be automated in
a computer code (even on some calculators). In addition, the modal-analysis proce-
dure is easily extended to systems with an arbitrary number of degrees of freedom,
as developed in the next section. Figure 4.5 illustrates the coordinate transformation
used in modal analysis. The following summarizes the procedure of modal analysis
using the matrix transformation S. This is followed by an example that re-solves
Example 4.1.6 using modal methods.

Figure 4.5 summarizes how computing the matrix of mode shapes S transforms the
vibration problem from a coupled set of equations of motion into a set of single-degree-
of-freedom problems. Effectively, the matrix S transforms multiple-degree-of-freedom
problems that are complicated to solve into single-degree-of-freedom problems that are
easy to solve (from Chapter 1). Furthermore, the single-degree-of-freedom problems

N

ORI S AVAVAVAVASS )

r=5"x |_> "

x = Sr
Modal coordinates

Physical coordinates
(uncoupled)

(coupled)

— where —>
S=Mm"12p

Figure 4.5 Schematic illustration of decoupling equations of motion using modal
analysis and the matrix of mode shapes S.
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obtained by the modal transformation S all have unit mass and each has a stiffness cor-
responding to one of the system’s natural frequencies squared. Not only is the modal
description given on the right side of Figure 4.5 easy to solve, but it forms the basis of
most vibration tests, called modal testing, as discussed in Chapter 7. The idea of modal
analysis is one of the foundations of vibration analysis (the others being the concepts
of natural frequency and resonance), and as such the properties of the matrix S are
extremely important.
Taking the transpose of equation (4.69) yields

ST = M'2P)T = pTpm1/? (4.70)

since (AB)” = BTAT (see Appendix C). In addition, the inverse of a matrix prod-
uct is given by (AB) ™' = B™'A™! (see Appendix C), so that

St = M'"2p)yt = pMY? (4.71)

However, the matrix P has as its inverse P’ since PTP = I. Thus equation (4.71)
yields that the inverse of the matrix of mode shapes is

S = pTM'/? (4.72)

These matrix results are useful for solving equation (4.54) by modal analysis.
The modal analysis of equation (4.54) starts with the substitution of x(¢) =
Sr(7) into equation (4.54). Multiplying the result by S7 yields

STMS¥(t) + STKSr(t) = 0 (4.73)

Expanding the matrix S in equation (4.73) into its factors as given by equation
(4.69) yields

P"M'PMM™2P¥(t) + PTM™\2PKM™'2Pr(t) = 0 (4.74)
or
PTP¥(r) + PTKPr(r) = 0 (4.75)
Using the properties of the matrix P, this becomes
() + Ar(r) = 0 (4.76)

which represents the two decoupled equations (4.62) and (4.63). Recall that these
are called the modal equations, ¥(¢) is called the modal coordinate system, and the
diagonal matrix A contains the squares of the natural frequencies.

The initial conditions for r(¢) are calculated by solving for r(¢) in equation (4.68).
Multiplying equation (4.68) by S™! yields r(f) = S~'x(¢), which becomes, after using
equation (4.72),

r(r) = PTM'?x(t) = S7'x(7) (4.77)
The initial conditions on r(¢) are thus

r(0) = PT/M'?x, and i(0) = PTM'%k, (4.78)
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as derived in equations (4.64) and (4.65). With the initial conditions transformed
into modal coordinates by equations (4.78), the modal equations given by equation
(4.76) yield the solution vector in modal coordinates r(¢). In order to obtain the so-
lution in the original physical coordinate system, x(¢), the transformation S is again
used. Multiplying r(f) = S™'x(f) by S to get

x(t) = Sr(¢) = M~2Pr(r) (4.79)

yields the solution in physical coordinates. Equation (4.79) effectively takes the
solution from the right side of Figure 4.5 back to the left side. The basic idea
is that the matrix S™! takes the problem from the physical coordinates, where
the equations of motion are coupled and hard to solve, to modal coordinates,
where the equations are uncoupled and easy to solve. Then the modal matrix §
takes the solution back to the physical coordinates corresponding to the original
problem. These steps are summarized in Window 4.5 and illustrated in the fol-
lowing examples.

Window 4.5
Steps in Solving Equation (4.54) by Modal Analysis

. Calculate M1/,

. Calculate K = M '2KM™Y/ 2. the mass-normalized stiffness matrix.

. Calculate the symmetric eigenvalue problem for K to get w? and v;.

Normalize v; and form the matrix P = [v; vp].

. Calculate S = M~ ?Pand §™' = PTM'/2,

. Calculate the modal initial conditions: r(0) = S~ 'x,, #(0) = S~ 'x,.

. Substitute the components of r(0) and 1(0) into equations (4.66) and
(4.67) to get the solution in modal coordinate r(¢).

8. Multiply r(¢) by S to get the solution x(f) = Sr(¢).

SN R W=

Note that S is the matrix of mode shapes and P is the matrix of eigenvectors.

Example 4.3.1

Calculate the solution of the two-degree-of-freedom system given by

M=|:(9) ﬂ K=|:_2; _ﬂ x(O):[(ﬂ %(0) = 0

using modal analysis. Compare the result to that obtained in Example 4.1.6 for the
same system and initial conditions.
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Solution From Examples 4.1.5,4.2.2,4.2.4, and 4.2.5 the following have been calculated

1
YR 0 T<=[ 3 -1
01 -1 3

111 1 .
P—%L _]J A = diag(2,4)

which provides the information required in the first three steps of Window 4.5. The
next step is to calculate the matrix S and its inverse.

0[1 1] 1
L W V)

1 11[3 0 1[3 1
-1 — pTagl2 — - =
S P \/2[1 —J[o 1} \@[3 —J

The reader should verify that SS' = I, as a check. In addition, note that STMS = I.
The modal initial conditions are calculated from equations (4.78):

1
S=M"Vp=—"1
V2

S W
— W=
| w‘y—l
—_

—

3

13 171 V2

r(0) = 7 = W[z —JM - v3§
2

H0) =S"'%=5"'0=0

so that r1(0) = r,(0) = 3/V2 and i(0) = #(0) = 0. Equations (4.66) and (4.67) yield
that the modal solutions are

r(t) = sm(\ft + ) = %cos V2t

r(t) = sm (2t + > ) \2 cos2t

The solution in the physical coordinate system x(¢) is calculated from

3
1) = Sr(¢ -1 % % %COS\TZI‘ _ |:(0.5)(Cos\ﬁt+0052t)
X0 =50 = V2 1 -1 icosZt B (1.5)(cos V2t — cos2t)
V2

This is, of course, identical to the solution obtained in Example 4.1.7 and plotted in
Figure 4.3.
|
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Example 4.3.2

Calculate the response of the system

B 2:|'X'(t)+|:_]§ _é}((t)=0

of Example 4.2.6, illustrated in Figure 4.4, to the initial displacement x(0) = [1 1]
and x(0) = 0 using modal analysis.

T

Solution  Again following the steps illustrated in Window 4.5, the matrices M ~1/2 and
K become
1 0
~ 12 -1
M2 = K= [
0 % -1 3

Solving the symmetric eigenvalue problem for K (this time using a computer and com-
mercial code as outlined in Section 4.9) yields

_ [—0.1091 —0.9940

09940 0.109J A = diag(2.8902, 12.1098)

Here the arithmetic is held to eight decimal places, but only four are shown. The ma-
trices S and S™! become

_[—0.1091 —0.4970 _1_[—0.1091 —0.9940
- L—0.9940  0.0546 19881 02182

As a check, note that

2.8902 0

TN =
PTKP |: 0 12.1098

J PP =1

The modal initial conditions become

~0.1091  —0.9940 ][ 1 ~2.0972
= 1 = =
0) =5 [—0.9881 0.2182] [1} [—0.7758}
i0) = S'xg =0

Using these values of r1(0), 7,(0), 71(0), and 7,(0) in equations (4.66) and (4.67) yields
the modal solutions

ri(t) = —2.0972 cos (1.7001¢)
ra(f) = —0.7758 cos (3.47997)

Using the transformation x = Sr(7) yields that the solution in physical coordinates is

() = [0.2288 cos (1.7001¢) + 0.7712 cos (3.4799¢)
1.0424 cos (1.7001¢) — 0.0424 cos (3.4799¢)
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Note that x(¢) satisfies the initial conditions, as it should. A plot of the responses is given

in Figure 4.6.
x,(0) x,(5)
1.5 — 1.5 —

0.0

~15 | | | | I 15 | | | | Iy
Figure 4.6 Plot of the solutions given in Example 4.3.2.

The plot of x,(¢) in the figure illustrates that the mass m; is not much affected
by the second frequency. This is because the particular initial condition does not cause
the first mass to be excited very much in the second mode, i.e., at w; = 3.4799 rad/s
[note the coefficient of cos (3.4799¢) in the equation for x,(¢)]. However, the plot of x;(¢)
clearly indicates the presence of both frequencies, because the initial condition strongly
excites both modes (i.e., both frequencies) in this coordinate. The effects of changing
the initial conditions on the response can be examined by using the program VIB4_2 in
the Engineering Vibration Toolbox to solve Problem TB4.3 at the end of the chapter.
Changing initial conditions is also discussed in Section 4.9.

d

This section introduces the computations of modal analysis for a two-degree-
of-freedom system. This entire approach is easily extended to any number of degrees
of freedom, as discussed in the following section. Furthermore, the process of modal
analysis is easily performed using any of the modern mathematical software pack-
ages, as discussed in Section 4.9, or as indicated in the Toolbox associated with this
text. This section forms the foundation for the rest of this chapter and is applied to
damped systems (in Section 4.5) and forced systems (in Section 4.6). The idea of
modal analysis is used again in studying distributed systems (Chapter 6) and vibration
testing (Chapter 7). All of this material depends on understanding the modal matrix
S, how to compute it, and the physical interpretation of S given in Figure 4.5.

4.4 MORE THAN TWO DEGREES OF FREEDOM

Many structures, machines, and mechanical devices require numerous coordinates
to describe their vibrational motion. For instance, an automobile suspension was
modeled in earlier chapters as a single degree of freedom. However, a car has
four wheels; hence a more accurate model is to use four degrees of freedom or
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coordinates. Since an automobile can roll, pitch, and yaw, it may be appropriate to
use even more coordinates to describe the motion. Systems with any finite number
of degrees of freedom can be analyzed by using the modal analysis procedure out-
lined in Window 4.5.

For each mass in the system and/or for each degree of freedom, there cor-
responds a coordinate, x,(¢), describing its motion in one dimension; this gives rise
toann X 1 vector x(f), with n X n mass matrix M and stiffness matrix K satisfying

Mx(t) + Kx(t) = 0 (4.80)

The form of equation (4.80) also holds if each mass is allowed to rotate or move in
the y, z, or pitch and yaw directions. In this situation, the vector x could reflect up to
six coordinates for each mass, and the mass and stiffness matrices would be modi-
fied to reflect the additional inertia and stiffness quantities. Figure 4.7 illustrates the
possibilities of coordinates for a simple element. However, for the sake of simplicity
of explanation, the initial discussion is confined to mass elements that are free to
move in only one direction.

As a generic example, consider the n masses connected by # springs in Figure 4.8.
Summing the forces on each of the n masses yields n equations of the form

mi%; + k(% = x-1) = k(e —x) =0 i=1,2...,n (4.81)

where m; denotes the ith mass and k; the ith spring coefficient. In matrix form these
equations take the form of equation (4.80) where

M = diag(m,, my, ..., m,) (4.82)

| Figure 4.7 A single mass element illustrating
: all the possible degrees of freedom. The six

1 degrees of freedom of the rigid body consist
Pl o X2 of three rotational and three translational

g R motions. If the predominant forward motion

? of the body is in the x; direction, such as in an
1

airplane, then 0, is called roll, 05 is called yaw,
and 6, is called pitch.

ky ky ky— ky
m VWA my = A, FAAAAA
— — — —
Xq X Xn—-1 Xn

Figure 4.8 An example of an n-degree-of-freedom system.
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and
ki + k, —k, 0 0 0
—k, ky + ks —k3 :
K= 0 —k; ks + ky (4.83)
. k,_1 + k, k,
0 -k, k,

The n X 1 vector x(¢) becomes

x1(7)

Xz‘(t)

x(f) = (4.84)

0

The notation of Window 4.5 can be directly used to solve n-degree-of-freedom
problems. Each of the steps is exactly the same; however, the matrix computa-
tions are all n X n and the resulting modal equation becomes the n decoupled
equations

Fi(f) + wir(f) = 0
7o(f) + w%rz(t). =0 (455)

ralt) + wirn@ =0

There are now n natural frequencies, w;, which correspond to the eigenvalues of the
n X nmatrix M~V2KM ™12,
The n eigenvalues are determined from the characteristic equation given by

det(\ — K) =0 (4.86)
which gives rise to an nth-order polynomial in \. The determinant of an n X n ma-
trix A is given by

detA = Zaps|ApS| (4.87)
f=

for any fixed value of p between 1 and n. Here a, is the element of the matrix A at
the intersection of the pth row and sth column, and |A| is the determinant of the
submatrix formed from A by striking out the pth row and sth column, multiplied by
(—1)?**. The following example illustrates the use of equation (4.87).
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Example 4.4.1
Expand equation (4.87) for p = 1 to calculate the following determinant:

1 -2
detA = det 0
2

W = W

1

3

= 1[MHE) = ME)] = 3[(OE) — @)D)] = 2[(OE) — (DER)] =8

O

Once the w? are determined from equation (4.86), the normalized eigenvectors
are obtained following the methods suggested in Example 4.2.3. The key differences
between using the modal approach described by Window 4.5 for multiple-degree-
of-freedom systems and for a two-degree-of-freedom system is in the computation
of the characteristic equation, its solution to get w?, and solving for the normalized
eigenvectors. With the exception of calculating the matrix P and A, the rest of the
procedure is simple matrix multiplication. The following example illustrates the pro-
cedure for a three-degree-of-freedom system.

Example 4.4.2

Calculate the solution of the n-degree-of-freedom system of Figure 4.8 for n = 3 by
modal analysis. Use the values m; = m, = m3z = 4kgand k; = k, = k3 = 4N/m,and
the initial condition x1(0) = 1 m with all other initial displacements and velocities zero.

Solution The mass and stiffness matrices for n = 3 for the values given become

8 —4 0
M=4 K=|-4 8 —4
0 —4 4

Following the steps suggested in Window 4.5 yields

1
L M=
2
g8 40 2 -1 0
2. K= M"VKM? = 4 8 A= 2 -
0 -4 4 0 -1 1
N-2 0 1 0
3. det(A\ — K) = det 1 A=-2 1
0 1 ax-1

:()\—Z)det([)\lz )\il])
_ (1)det([(1) \ ! J) + (O)det(|:(1) \ - 2})
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= (=2 -2 — 1) = 1] = [ = 1) - 0]
=A-DA=-2-(A-2)—-r+1
=N-5+60-1=0
The roots of this cubic equation are
A = 0.1981 N = 1.5550 N3 = 3.2470
Thus the system’s natural frequencies are
w; = 0.4450 wy = 1.2470 w3 = 1.8019

To calculate the first eigenvector, substitute A\; = 0.1981 into (K — N)v; = 0
and solve for the vector vi = [ 11 1o 13)’.This yields

2 — 0.1981 -1 0 vy 0
-1 2 — 0.1981 -1 vy | =10
0 -1 1 — 0.1981 V31 0

Multiplying out this last expression yields three equations, only two of which are
independent:

(1.8019)v1; — vy =0
—vy + (1.8019)vy; — v31 = 0
—vy + (0.8019)v3; = 0
Solving the first and third equations yields
v = 0.4450v3; and vy = 0.8019v3;

The second equation is dependent and does not yield any new information.
Substituting these values into the vector vy yields

0.4450
Vi = U3 0.8019
1

. Normalizing the vector yields

viv, = v3,[(0.4450)? + (0.8019)* + ] =1

Solving for 3; and substituting back into the expression for vy yields the normal-
ized version of the eigenvector v; as

0.3280
v, = | 05910
0.7370

Similarly, v, and v3 can be calculated and normalized to be

—0.7370 —0.5910
v, = | —0.3280 V3 = 0.7370
0.5910 —0.3280
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The matrix P is then

03280 —0.7370 —0.5910
P =105910 -0.3280 0.7370
0.7370 0.5910 —0.3280

(The reader should verify that PTP = Jand PT KP = A.)

1
5. The matrix S = M~1/2p = EIP or

0.1640 —0.3685 —0.2955
S =10295 —0.1640 0.3685
0.3685 0.2955 —0.1640

and

0.6560  1.1820  1.4740
S = pIMY2 = 2PT] = | —1.4740 —0.6560  1.1820
—1.1820  1.4740 —0.6560

(Again the reader should verify that 71§ = I.)
6. The initial conditions in modal coordinates become

i0) =S =510=0

and
0.6560 1.1820 1.4740 (| 1 0.6560
r(0) = Sxy = | —1.4740 —0.6560 1.1820 || 0 | = | —1.4740
—1.1820 14740 —-0.6560 || O -1.1820

7. The modal solutions of equation (4.85) are each of the form given by equation (4.67)
and can now be determined as

r(t) = (0.6560) sin(0.4450t + g) = 0.6560 cos (0.4450r)
ra(f) = (—1.4740) sin<1.247t + g) = —1.4740 cos (1.2470¢)

r3(f) = (—1.1820) sin<1.8019t + g) = —1.1820 cos(1.8019¢)

8. The solution in physical coordinates is next calculated from

0.1640 —0.3685 —0.2955 [ 0.6560 cos (0.4450r)
X =Sr(H) = | 02955 —0.1640 03685 || —1.4740 cos (1.2470¢)
03685  0.2955 —0.1640 || —1.1820 cos(1.8019¢)
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x(1) 0.1075 cos (0.4450¢) + 0.5443 cos (1.2470¢) + 0.3492 cos (1.8019¢)
%(t) | = | 0.1938 cos (0.4450¢) + 0.2417 cos (1.2470t) — 0.4355 cos (1.8019¢)
x3(2) 0.2417 cos (0.4450¢) — 0.4355 cos (1.2470¢) + 0.1935 cos (1.8019¢)

The calculations in this example are a bit tedious. Fortunately, they are easily made using
software as done in Section 4.9 and in the Engineering Vibration Toolbox. In fact, com-
puting the frequencies, the matrix of eigenvectors P, and subsequently the mode-shape
matrix S starting with the determinant is not the recommended way to proceed. Rather,
the symmetric algebraic eigenvalue problem should be solved directly, and this is best
done using the software methods covered in Section 4.9. The solution in this example is
plotted and compared to a numerical simulation in Section 4.10.

|

Mode Summation Method

Another approach to modal analysis is to use the mode summation or expansion
method. This procedure is based on a fact from linear algebra—that the eigenvec-
tors of a real symmetric matrix form a complete set (see Window 4.1; i.e., that any
n-dimensional vector can be represented as a linear combination of the eigenvec-
tors of an n X n symmetric matrix). Recall the symmetric statement of the vibra-
tion problem:

I4(r) + Kq(t) = 0 (4.88)

Let v; denote the n eigenvectors of the matrix K, and let \; # 0 denote the cor-
responding eigenvalues. According to the argument preceding equation (4.41), a
solution of (4.88) is

qi(f) = ve VNIt (4.89)

since \; = w?. This represents two solutions that can be added together following
the argument used for equation (1.18) to yield

qi(0) = (g, + peVNityy, (4.90)
or, using Euler’s formula,
qz(t) = dl-sin ((,\)it + d)i)vi (491)

where d; and ¢; are constants to be determined by initial conditions. Since the set
of vectors v, i = 1,2, ..., n are eigenvectors of a symmetric matrix, a linear com-
bination can be used to represent any n X 1 vector, and in particular, the solution
vector (). Hence

q(t) = En:dl Sin((.l)l‘t + d)i)vi (492)
i=1
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The constants d; and &; can be evaluated from the initial conditions

q(O) = Edl Sin(bivi (493)
i=1
and
q(0) = Dlwd,; cosdyy, (4.94)
i=1

Multiplying equation (4.93) by v/ and using the orthogonality (see Window 4.3) of
the vector v; (i.e., vavi = 0 for all values of the summation indexi = 1,2,...,n
except for i = j) yields

v/q(0) = d;sin¢; (4.95)
for each value of j = 1,2, ..., n. Similarly, multiplying equation (4.94) by va yields
v]»T(](O) = w;d; cos d; (4.96)

foreachj = 1,2, ..., n. Combining equations (4.95) and (4.96) and renaming the
index yields

iViT 0
¢; = tan! wv-Tq(z(())) i=1,2,...n (4.97)
and (if ¢; # 0)
T
Tq(0
d,-zvsig(d)) i=1,2...n (4.98)

Equations (4.92), (4.97), and (4.98) represent the solution in modal summation
form. Equation (4.92) is sometimes called the expansion theorem and is equivalent
to writing a function as a Fourier series. The constants d; are sometimes referred to
as expansion coefficients.

Note as an immediate consequence of equation (4.97) that if the system has zero
initial velocity, ¢ = 0, each coordinate has a phase shift of 90°. The initial conditions
in the coordinate system q(¢) can also be chosen such that d; = Oforalli = 2,...,n.
In this case the summation in equation (4.92) reduces to the single term

q(t) = d;sin(ot + by)v; (4.99)

This states that each coordinate g;(f) oscillates with the same frequency and phase.
To obtain the solution in physical coordinates, recall that x = M~ !/?q so that

x(f) = d; sin (ot + b))M Fy, (4.100)
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The product of a matrix and a vector is another vector. Defining w; = M~/

equation (4.100) becomes

Vi,

X(t) = dl sin ((x)lt + d)l)ul (4101)

This states that if the system is given a set of initial conditions such that d, =
dz; = --- =d, = 0, then (4.101) is that total solution and each mass oscillates at
the first natural frequency (w). Furthermore, the vector u; specifies the relative
magnitudes of oscillation of each mass with respect to the rest position. Hence u;
is called the first mode shape. Note that the first mode shape is related to the first
eigenvector of K by

u, = My, (4.102)

This argument can be repeated for each of the indices i so that u, = My,
=M ’1/2V3, etc., which become the second, third, etc., mode shapes. The series
solution

x(t) = id,- sin (o + &;)u; (4.103)
=1

illustrates how each mode shape contributes to forming the total response of the
system.

The constants of integration d; represent a scaling of how each mode par-
ticipates in the total response. The larger d; is, the more the ith mode affects the
response. Hence the d; are called modal participation factors.

The initial condition required to excite a system into a single mode can be
determined from equation (4.98). Because of the mutual orthogonality of the eigen-
vectors, if q(0) is chosen to be one of the eigenvectors, v;, then each d; is zero except
for the index i = j. Hence to excite the structure in, say, the second mode, choose
q(0) = v, and q(0) = 0. Then the solution for equation (4.92) becomes

q(t) = d, sin(mzt + ;>v2 (4.104)

and each coordinate of q oscillates with frequency w,. To transform q(0) = v, into
physical coordinates, note that x = M~'/?q, so that x(0) = M~ 2q(0) = M~ /2
v, = uy. Hence exciting the system by imposing an initial displacement equal to the
second mode shape results in each mass oscillating at the second natural frequency.
The modal summation method is illustrated in the next example.

Example 4.4.3

Consider a simple model of the horizontal vibration of a four-story building as illus-
trated in Figure 4.9, subject to a wind that gives the building an initial displacement of
x(0) = [0.001 0.010 0.020 0.025]7 and zero initial velocity.
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k4/2 k4/2 - k4(X4 - X3)

_— k4(X4 - x3)

ky/2 -

ky/2 S u— NN

X m, — » k3(x3— xz)

Y a2

- kz()(z - Xl)

X1 my

—_— kZ(XZ - Xl)

/2 k/2
A
- kX
7,
(a) (b)

Figure 49 (a) A simple model of the horizontal vibration of a four-story building.
Here each floor is modeled as a lumped mass, and the walls are modeled as
providing horizontal stiffness. (b) The restoring forces acting on each mass (floor).

Solution In modeling buildings, it is known that most of the mass is in the floor of
each section and that the walls can be treated as massless columns providing lateral
stiffness. From Figure 4.9 the equations of motion of each floor are
ml..le + (kl + kz)xl - kzXz =0
lex'z - kle + (kz + k3)X2 - k3X3 =0
m3'f3 - k3X2 + (k3 + k4)X3 - k4X4 =0

m4'x'4 - k4.X3 + k4X4 =0

In matrix form, these four equations can be written as

m, 0 0 0 ki +k  —k 0 0

0 m 0 0| | “kh khtkh -k 01—,
0 0 m; O 0 —ky ks + ky —ky

0 0 0 my 0 0 -k, Ky

Some reasonable values for a building are m; = m, = m3 = my = 4000 kg and
ki1 =k, = k3 = k4 = 5000 N/m. In this case, the numerical values of M and K become

10,000 —5000 0 0
—-5000 10,000 —5000 0
M = 40001 K = 0 —5000 10,000 —5000

0 0 —5000 5000
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To simplify the calculations, each matrix is divided by 1000. Since the equation of motion
is homogeneous, this corresponds to dividing both sides of the matrix equation by 1000
so that the equality is preserved. The initial conditions are

0.001 0
0010 . |0
X0 =1 020 o
0.025 0
The matrices M~ /2 and K become
2.5 -1.25 0 0
1 ~ -1.25 2.5 -1.25 0
a1 _
M 2 4 K 0 -1.25 2.5 -1.25
0 0 -1.25 1.25

The matrix M'/? and the initial condition on q(¢) become

0.002
0.020
0.040
0.050

M2 =21 q0) = M"x(0) = q(0) = M0 =0

Using an eigenvalue solver (see Section 4.9 for details or use the files discussed at the
end of this chapter and contained in the Toolbox), the eigenvalue problem for K yields

A = 01508 N, = 12500 A3 =29341 A, = 44151

0.2280 0.5774 0.6565 —0.4285
0.4285 0.5774 ~0.2280 0.6565
Y17 05774 271 00 V37| —0.5774 Y47 | —0.5774
0.6565 ~0.5774 0.4285 0.2280

Converting this into natural frequencies and mode shapes (o; = V\; and w; = M~ '/?v;)
yields w; = 0.3883, w, = 1.1180, w3 = 1.7129, wg = 2.1012, and

0.1140 0.2887 0.3283 —0.2143

0.2143 0.2887 —0.1140 0.3283
u = u = u; = u =

0.2887 0.0 —0.2887 —0.2887

0.3283 —0.2887 0.2143 0.1140

Since ¢(0) = 0, equation (4.96) yields that each of the phase shifts is ¢; = w/2 and
equation (4.98) becomes

_ viq0)

P Sin(m/2) v/4(0)
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Substituting v/ and q(0) into the expansion above yields the following values for the

modal participation factors:

d, = 0.065

d, = —0.016 —49 x 1073

d; =58 %x107*

The solution given by equation (4.103) then becomes (in meters)

[0.007 —4.67 X 107
0.014 ~4.67 X 107
X(0) = | g opg |c05(0-38830) + cos (1.1180¢)
| 0.021 467 % 107
161 x 107 ~124 x 10°*
5.60 x 107* 191 x 107
+ . - .
142 x 103 |COSTI290 + | ge | cOs(2:1010)
| —1.05 x 107 6.62 X 107

The mode shapes uy, w,, u3, and uy are plotted in Figure 4.10. Note that the modal par-
ticipation factor d, is much smaller than the others. Thus oscillation at 2.102 rad /s will
not be too evident. The response of x3 will be dominated almost completely by the first

natural frequency.

=
=
1

=
W

=
[N)

Coordinate

=

T

0

Mode number 1

Nodes of a Mode

Figure 4.10 Plot of the four mode shapes
associated with the solution for the system
of Figure 4.9 (not to scale).

d

A node of a mode shape is simply the coordinate of a zero entry in the mode shape.
For instance, the second mode shape in Example 4.4.3 has a zero value in the loca-
tion of coordinate x3(¢). Thus the third coordinate is a node of the second mode. This
means that if the system is excited by an initial condition to vibrate only at the sec-
ond natural frequency, the third coordinate will not move! Thus a node has a place
of no motion for certain initial conditions. If a sensor were to be placed on the third
mass, it would not be able to measure any vibration at the second natural frequency,
because that mass does not have a response at w,. Nodes also make excellent mount-
ing points for machines. Note the word node is also used in finite elements to mean

something different (see Chapter 8).
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It often happens that a vibrating system is also translating, or rotating, away
from its equilibrium position in one coordinate while the other coordinates are
vibrating about their equilibrium point. Such systems are said to be unrestrained
and technically violate the stability conditions given in Section 1.8. An example
is a train (see Problem 4.13), where the coupling between each car may be mod-
eled as a spring, the cars themselves as lumped masses. As the train rolls down
a track it is moving with rigid-body, unrestrained motion while the cars vibrate
relative to each other. Figure 4.11 is an example of an unrestrained, two-degree-
of-freedom system.

|—>+ |—>+

mg
= = | |
my J/\r* my my  k(x, — x)) < m,
TR T T

Ny N,

Figure 4.11 An unrestrained, two-degree-of-freedom system illustrating both rigid-
body translation and vibration.

The existence of the unrestrained degree of freedom in the equations of mo-
tion changes the analysis slightly. First, the motion consists of a translation plus a
vibration. Second, the stiffness matrix becomes singular and the eigenvalue problem
results in a value of zero for one of the natural frequencies. The zero frequency
renders equation (4.66) incorrect and requires the modal participation factors given
by equations (4.95) and (4.96) to be altered. The following example illustrates how
to compute the response for a system with unrestrained motion and how to correct
these equations for a zero natural frequency.

Example 4.4.4
Compute the solution of the unrestrained system given in Figure 4.11 using both the
eigenvector method and modal analysis. Let my = 1,m, = 4, k = 4,x9 = [1 0],

and vy = 0. Assume that the units are consistent.

Solution Summing forces in the horizontal direction on each of the free-body dia-
grams given in Figure 4.11 yields

m¥ = k(o — x;)

m¥y = —k(x, — x;)
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Bringing all the forces to the left side and writing in matrix form yields

[1 0 [xl N 4[ 1 -1 [xl _ [0
0 4 X -1 1 X 0
Note that the determinant of the stiffness matrix K is zero, indicating that it is singular

and hence has a zero eigenvalue (see Appendix C). Following the steps of Window 4.5
and substituting the values for M and K yields the following:

L MYV2= [1 0
0 3
- 1 o]l 1 —-1][1 o0 4 =2
2. K=M"KM 'V = 4[ [ [ = [
o iJL-1 1 |lo 1} -2 1

3. Calculating the eigenvalue problem for 2 yields

det (K — \I) = det<|:4__2)\ 1__2)\}) =(N-5)=0

This has solutions A\; = 0 and N\, = 5, so that oy = 0 and w, = V5 =
2.236 rad/s. Note the zero eigenvalue/frequency. However, the eigenvector
for Aq is not zero (eigenvectors are never zero) as the following calculation
for the eigenvector for \; = 0 yields

4-0 -2 v 0
|: 21— OJ |:U;:| = |:O] or dv;; — 2vy =0
Thus 2 11 = ,,0orvy =[1 2] T Repeating the procedure for \, yields v, =

2 -1
4. Normalizing both eigenvectors yields

v [0.4472 and ve — [—0.8944
P L0.8944 g 0.4472
Note that the eigenvector v associated with the eigenvalue Ay = 0 is not zero.
Combining these to form the matrix of eigenvectors yields

_ [0.4472 —0.8944
0.8944  0.4472

As a check note that
P'P = Jand PT KP = diag[0 5]
5. Calculating the matrix of mode shapes yields

S = yp = [1 0 [0.4472 —0.8944 :[0.4472 —0.8944
0 1]L08944 04472 04472 0.2236

0.4472  1.7889
~1 _ pTagl/2 _
S PM |:—0.8944 0.8944:|
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6. Calculating the modal initial conditions yields

04472 1788971

= _] =
H0) = 5% [70.8944 0.8944} [o}
7[ 0.4472

r = _l =
0.8944}’ H0)=5"v =0

7. Here is where the zero eigenvalue makes a difference as equations (4.66) and

(4.67) only apply for the second natural frequency. The modal equation for the
first mode becomes 7; = 0, which has solution r{(f) = a + bt. Here a and b are
the constants of integration to be determined from the modal initial conditions.
Applying the modal initial conditions yields the two equations

ri(0) = a = 0.4472
71(0) = b = 0.0
Thus the first modal equation has solution
ri(t) = 0.4472

a constant. The solution for the second mode follows directly from equations (4.66)
and (4.67) as before and yields

ry(f) = —0.894 cos (V/51)

Thus the modal response vector is

0.447
() = [—0.894 cos (V/5t) }

. Transforming back into the physical coordinates yields the solution

() = Sr()) = [0.4472 —0.8944 [ 0.447
MO =00 = 04472 02236 | L —0.894 cos (V/5)

_ |:0.2 + 0.8 cos (\751):|
~ 102 = 02cos(V3r)

Note that each of the two physical coordinates moves a constant distance 0.2
units and then oscillates at the second natural frequency.

Next consider the effect of the zero frequency in using the mode summation
method. In this case, equation (4.90) becomes

q.(1) = (a + b)vy

and equations (4.93) and (4.94) become
n n
q(0) = (a + bO)v; + E d;sinpyy; and q(0) = bv; + E w;d; cos d;v;
= i=

Following the same steps as before and using orthogonality yields

a=vlq0) and b = viq(0)
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which replace the modal constants of integration d; and ¢; for the zero valued
mode. Computing d; and ¢, following equations (4.97) and (4.98), and combin-
ing the modes according to equation (4.103), again yields the solution

02+ 08 Cos(\fSI)J

x(1) = au; + d, cos (V50u, = [0.2 ~ 02cos (V1)

The solutions are plotted in Figure 4.12.

-1~

t

Figure 4.12  Plots of the solution versus time (s) for Example 4.4.4 showing
vibration superimposed over a rigid-body mode.

d

Note that in all the previous examples of more than two-degrees-of freedom,
the stiffness matrix K is banded (i.e., the matrix has nonzero elements on the diago-
nal and one element above and below the diagonal, the other elements being zero).
This is typical of structural models but is not necessarily the case for machine parts
or other mechanical devices.

The concept of mode shapes presented in this section and illustrated in
Example 4.4.3 is extremely important. The language of modes, mode shapes, and
natural frequencies forms the basis for discussing vibration phenomena of com-
plex systems. The word mode generally refers to both the natural frequency and
its corresponding mode shape. A mode shape is a mathematical description of a
deflection. It forms a pattern that describes the shape of vibration if the system
were to vibrate only at the corresponding natural frequency. It is neither tangible
nor simple to observe; however, it provides a simple way to discuss and understand
the vibration of complex objects. Its physical significance lies in the fact that every
vibrational response of a system consists of some combinations of mode shapes.
An entire industry has been formed around the concept of modes.
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4.5 SYSTEMS WITH VISCOUS DAMPING

Viscous energy dissipation can be introduced to the modal analysis solution suggested
previously in two ways. Again, as in modeling single-degree-of-freedom systems,
viscous damping is introduced more as a mathematical convenience rather than a
physical truth. However, viscous damping provides an excellent model in many physi-
cal situations and represents a significant improvement over the undamped model.
The simplest method of modeling damping is to use modal damping. Modal damping
places an energy dissipation term of the form

2G0i7(1) (4.105)

in equations (4.85). Here 7,(f) denotes the velocity of the ith modal coordinate, w; is
the ith natural frequency, and {; is the ith modal damping ratio. The modal damping
ratios, {;, are assigned by “experience” or measurement (see Chapter 7) to be some
number between 0 and 1, or by making measurements of the response and estimat-
ing ;. Usually, {; is small unless the structure contains viscoelastic material or a hy-
draulic damper is present. Common values are 0 = { < 0.05 (see Section 5.6). An
automobile shock absorber, which uses fluid, may yield values as high as { = 0.5.
Once the modal damping ratios are assigned, equations (4.85) become

Ft) + 2Lowit) + wir(H) =0 i=1,2,....n (4.106)
which have solutions of the form (0 < {; < 1)
ri(t) = Ae 5 sin (wgt + &) i=12,...,n (4.107)

where A; and ¢; are constants to be determined by the initial conditions and
wg = o;V1 — (7 as given in Window 4.6. Once this modal solution is established,

Window 4.6
Review of a Damped Single-Degree-of-Freedom System

The solution of mX + cx + kx = 0, x(0) = xg, X(0) = Xy, or ¥ + 2Lw, % + w2x =0
is (for the underdamped case 0 < { < 1)

x(t) = Ae *sin (wgt + 0)

where 0, = Vk/m,{ = ¢/2mwy,),w; = ©,V1 — %, and

_ (XO + Cwnx())z + (xﬂwd)z 172 _ -1 XoWq
= 3 6 = tan

A _ Mo
Wy X0 + C(")H'XO

from equations (1.36), (1.37), and (1.38).
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the modal analysis method of solution suggested in Window 4.5 is used to transform
the response into the physical coordinate system.
The only difference is that equation (4.107) replaces step 7 where (w; # 0)

(o + Lioirio)? + (rwa)* V2

A = 3 (4.108)
Wg;
_ TipWq;
d)A = tan 17' ! 4109
' Fio + Lo ( )

Here r; and 7, are the ith elements of r(0) and r(0), respectively. Equations (4.108)
and (4.109) are derived directly from equation (1.38) for a single-degree-of-freedom
system of the same form as equation (4.107). These equations are correct only if each
modal damping ratio is underdamped and no rigid-body modes are present. If a zero
frequency exists, then the method of Example 4.4.4 must be used. The following ex-
ample illustrates the solution technique for a system with assumed modal damping.

Example 4.5.1

Consider again the system of Example 4.3.1, which has equation of motion

R A T

and calculate the solution of the same system if modal damping of the form {; = 0.05
and {, = 0.1 is assumed.

Solution From Example 4.3.1, o; = V2 and w, = 2. Since vy = w;V1 — {7 for un-
derdamped systems, then the damped natural frequencies become

wg = V2[1 — (0.05)%]"? = 1.4124 and 0y, = 2[1 — (0.1)%]"> = 1.9900.

The modal initial conditions calculated in Example 4.3.1 are r;y = ry = 3/V2 and
19 = 0 = 0. Substitution of these values into equations (4.108) and (4.109) yields

A =21240 ¢, = 152rad  (87.13°)
Ay =21340 &, = 147rad  (84.26°)

Note that compared to the constant A; and ¢; in the magnitude and phase of the un-
damped system, only a small change occurs in the amplitude. The phase, however, changes
3° and 6°, respectively, because of the damping. The solution is then of the form

(1) = Sr(f) 1 1 2.1240e 00706 gjn (1.4124r + 1.52)
x(t) = = 4124
V2 2.1320e 0% sin (1.9900¢ + 1.47)

—_— |

or

) = [0.5006(0070%111(1.4124; + 1.52) + 0.5025¢%%5sin (1.9900¢ + 1.47)
~ [1.5019¢ 7007 sin (1.4124¢ + 1.52) — 1.5076e % sin (1.9900¢ + 1.47)
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A plot of x1(f) versus ¢ and x,(f) versus ¢ is given in Figure 4.13.

x,(0) x,(1)

1.0

05 1.0

0.0 0.0

0.5 -1.0
| | | | | ¢ I | | | It
0 20 40 60 80 100 0 20 40 60 80 100

Figure 413 Plot of the damped response of the system of Example 4.5.1.
a

The modal damping ratio approach is also easily applicable to the mode summation
method of Section 4.4. In this case, equation (4.91) is replaced by the damped version

q,() = de 5 sin (wyt + &)V (4.110)
The initial displacement condition calculation becomes
q:0) = d;sin(d)v; (4.111)

so that equation (4.95) still holds. However, the velocity becomes
Q1) = di[wge " cos (gt + &) — Lwe ¥ sin(wt + )y (4.112)
oratt = 0,
qi(0) = d;(0g cosd; — Liw;sind,)v; (4.113)

Multiplying equations (4.111) and (4.113) by v/ from the left and solving for the
constants ¢; and d; yields

T
ivi q(0
d)i _ tanﬂ - w4V q( )T
viq(0) + Liwv; q(0)
. (4.114)
_ Y q(0)
sin &,

Again, the values of {; are assigned based on experience or on measurement; then
the calculations of Section 4.4 are used with the initial conditions given by equa-
tions (4.114). The solution given by equation (4.103) is replaced by
n
X(t) = Edie_gi‘”it sin (wdit + d)i)ui (4115)
=1

which yields the damped response.
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Example 4.5.2

x(r) =

Recall Example 4.4.3, and the model of building vibration defined by the equation of
motion

10,000 —5000 0 0
y ~5000 10,000 —-5000 O
+ =
40007() 0 —s000 10000 —so00 <=9
0 0 -5000 5000

subject to a wind that gives the building an initial displacement of x(0) =
[0.001 0.010 0.020 0.025]7 and zero initial velocity, and assume that the damping
in the building is measured to be about { = 0.01 in each mode.

Solution Each of the steps of the solution to Example 4.4.3 is the same until the
initial conditions are calculated. From equation (4.114) with q(0) = M"/*%(0) = 0,
for each i,

Wy t ! V1 - Lzz
Lio; G
For {; = 0.01, this becomes
&; = 89.42° i=1,2,3,4 (or 1.56 rad)

Since 1/sin(89.42°) = 1.00005, the expansion coefficients d; are taken to be v/q(0),
as calculated in Example 4.4.3 because of the small damping. The natural frequencies
are w; = 0.3883, w, = 1.1180, w3 = 1.7129, and w4 = 2.1012 rad/s. With a damp-
ing ratio of 0.01 assigned to each mode, the damped natural frequencies become
(wgz = 0; V1 — 7) nearly the same to the third decimal place as the natural frequen-
cies. The value of the exponent in the exponential decay terms become

—w; = —0.004, —Loy = —0.011, —lw; = —0.017, and —{w, = —0.021

The mode shapes are unchanged, so the solution becomes

[0.007 —4.67 X 107
0.014 —4.67 X 1073
0.019 e 0004 05 (0.388¢ + 1.56) + 0 e 00 co5(1.118¢ + 1.56)
| 0.021 467 x 1073
[—1.61 x 1073 -1.24 x 107
5.60 X 107 1.91 x 107*
142 % 10-3 e 007 cos (1.713¢ + 1.56) + 168 x 10-* e 002 cos (2.101¢ + 1.56)
| —1.05 X 1073 6.62 X 107

Each coordinate of x(¢) is plotted in Figure 4.14. Note that each plot shows the effects of
multiple frequencies and is lightly damped. Window 4.7 summarizes this use of modal
damping in the mode summation method.
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Figure 4.14 A plot of the damped response of the system of Example 4.5.2, which is the
building of Example 4.4.3 with damping of { = 0.01 in each mode. The plot was made in
Mathcad so that x;(¢) is denoted by x(t)g, x,(¢) is x(t)1, etc.

a
Damping can also be modeled directly. For instance, consider the system of
Figure 4.15. The equations of motion of this system can be found from summing

the forces on each mass, as before. This yields the following equations of motion in
matrix form:

ny O .. C1 + Cy —Cy |. k1 + k2 _kz
+ + =0 4.116
[ 0 mz:|X |: —C &) :|X |: —k, ky . ( )

where x = [x1(f) x,(£)]". Equation (4.116) yields an example of a damping matrix C,
defined by
+ —
C = [Cl © 62} (4.117)
%) C2

Here cq and ¢, refer to the damping coefficients indicated in Figure 4.15. The damp-
ing matrix C is symmetric and, in a general n-degree-of-freedom system, will be an
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Window 4.7
Modal Damping in the Mode Summation Method

First transform the undamped equations of motion into the q coordinate sys-
tem and calculate w; and v;. Choose the modal damping ratios and write

q(t) = Didie " sin(wgt + dy)v;
=

v/q(0)

where MV2KM ™%y, = wiv, wy = o;V1 — 0, d; = o,
1

and

‘DdiViT q(0)

¢; = tan!

viq(0) + Lo/ q(0)
Recall the initial conditions are found from
q(0) = M'2x(0)  and  q(0) = M'*%(0)
Once q(¢) is computed, transform back to the physical coordinate system by

x(1) = M~'q(1)

ky ky
7,
FAAAMA
m n;
ji
B €
|—> |—> Figure 4.15 A two-degree-of-freedom
X Xy system with viscous damping.

n X n matrix. Thus a damped n-degree-of-freedom system is modeled by equations
of the form

Mi+ Cx+Kx=0 (4.118)

The difficulty with modeling damping in this fashion is that modal analysis cannot
in general be used to solve equation (4.118) unless CM 'K = KM 'C holds. This
is true because the damping provides additional coupling between the equations
of motion that cannot always be decoupled by the modal transformation S (see
Caughey and O’Kelly, 1965). Other methods can be used to solve equation (4.118),
as discussed in Sections 4.9 and 4.10.
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Modal analysis can be used directly to solve equation (4.118) if the damping ma-

trix C can be written as a linear combination of the mass and stiffness matrix, that is, if
C=aM + BK (4.119)

where « and B are constants. This form of damping is called proportional damping.
Substitution of equation (4.119) into equation (4.118) yields

Mx(t) + (aM + BK)x(t) + Kx(t) = 0 (4.120)
Substitution of x(f) = M~ /2q(t) and multiplying by M~1/? yields
G(0) + (af + BK)§(r) + Kq(t) = 0 (4.121)

Continuing to follow the steps of Window 4.5, substituting q(¢) = Pr(#) and premul-
tiplying by P” where P is the matrix of eigenvectors of K, yields

¥(t) + (o + BA)E() + Ar(f) = 0 (4.122)
This corresponds to the n decoupled modal equations
1) + 2LwiAt) + ofr(H) =0 (4.123)
where 2(;w; = a + Bo? or
a | Bo; .
;= o > i=12,...,n (4.124)

Here o and B can be chosen to produce some measured (or desired, in the design
case) values of the modal damping ratio {;. On the other hand, if « and B are known,
equation (4.124) determines the value of the modal damping ratios ;. The solution
of equation (4.123) for the underdamped case (0 < {; < 1) is

ri(t) = Aie_giwit Sin ((,l)d['t + (bl) (4125)

where A; and ¢; are determined by applying the initial conditions on r(¢). The solu-
tion in physical coordinates is then calculated from x(f) = Sr(f), where S = M~ '/?
P as before. The most general case of proportional damping is if CM 'K = KM™'C
holds. Note that if equation (4.119) holds, then CM 'K = KM 'C is satisfied.

4.6 MODAL ANALYSIS OF THE FORCED RESPONSE

The forced response of a multiple-degree-of-freedom system can also be calculated
by use of modal analysis. For example, consider the building system of Figure 4.9
with a force Fy(¢) applied to the fourth floor. For example, this force could be the
result of an out-of-balance rotating machine on the fourth floor. The equation of
motion takes the form

Mx + Cx + Kx = BF(1) (4.126)
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where F(f) = [0 0 0 Fy(¢)]” and the matrix B is given by

oS o o O
o O O O
S O O O
— o O O

On the other hand, if the different forces are applied at each degree of freedom, B
and F(¢) would take on the form

1 00 0 F()

o1 0 o0 | B®

B=lg 0 1 of FO=|p © (4.127)
00 0 1 E(f)

Alternately, if only a single force is applied at one coordinate, the matrix B may be
collapsed to the vector b and the applied force reduces to the scalar F(¢). For ex-
ample, the single force Fy(¢) applied to the fourth coordinate may also be written in
equation (4.126) as bFy(r), whereb = [0 0 0 1]7.

The approach of modal analysis again follows Window 4.5 and uses transfor-
mations to reduce equation (4.126) to a set of n decoupled modal equations, which
in this case will be inhomogeneous. Then the methods of Chapter 3 can be applied
to solve for the individual forced response in the modal coordinate system. The
modal solution is then transformed back into the physical coordinate system.

To this end, assume that the damping matrix C is proportional of the form given

by equation (4.119). Following the procedure in Window 4.5, let x(r) = M~"/?q(¢) in
equation (4.126) and multiply by M~'/2. This yields
I4(t) + Cq(¢) + Kq(r) = M~'2BF(r) (4.128)

where C = M~'2CM~"/2. Next, calculate the ‘eigenvalue problem for K. Let q(t) =
Pr(f), where P is the matrix of eigenvectors of K and multiply by P7. This yields
¥(f) + diag [2Lw]i(r) + Ar(t) = PTMV2BF(r) (4.129)
where the matrix diag[2{;w;] follows from equation (4.123). The vector PTM /2
BF(¢) has elements f;(¢) that will be linear combinations of the forces F; applied to
each mass. Hence the decoupled modal equations take the form
(1) + 2L (1) + wirit) = £(0) (4.130)

Referring to Section 3.2, this has the solution (reviewed in Window 4.8 for the un-
derdamped case)

1 t
ri(t) = de 5 sin (wyt + &;) + — e e / fi(r)e"  sinwy(t — t)dr  (4.131)
di 0

(O]
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Window 4.8
Forced Response of an Underdamped System from Section 3.2

The response of an underdamped system
mX(t) + cx(t) + kx(t) = F(¢)

(with zero initial conditions) is given by (for 0 < ¢ < 1)

1

mwg;

t
x(t) = eg"’"’f/ F(1)e*™ sinwy(t — ) dr
0

where w, = Vk/m, { = ¢/(2mw,), and w; = w,\V1 — {*. With nonzero ini-
tial conditions this becomes

1 t
x(f) = Ae % sin(wgt + d) + mec‘*""/f('r)eg"""T sinwy(t — 7)dr
d 0

where f = F/m and A and ¢ are constants determined by the initial conditions.

where d; and ¢; must be determined by the modal initial conditions and w,; =

;V'1 — {7 as before. Note that f; may represent a sum of forces if more than one
force is applied to the system. In addition, if a force is applied to only one mass of
the system, this force becomes applied to each of the modal equations (4.131) by
the transformation S, as illustrated in the following example.

Example 4.6.1

Consider the simple two-degree-of-freedom system with a harmonic force applied to
one mass as indicated in Figure 4.16.

For this example, let m; = 9kg,m, = 1kg, ky = 24 N/m, and k, = 3 N/m. Also
assume that the damping is proportional witha = Oand B = 0.1,sothatc; =24 N-s/m
and ¢; = 0.3 N -s/m. Calculate the steady-state response.

F5(t) = 3 cos 2t
ki k |—> 2(1)

FAAAAM
my ny
+— ——
S 5]

|—> |—> Figure 416 A damped two-degree-

X X5 of-freedom system for Example 4.6.1.
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Solution The equations of motion in matrix form become

R I S S

The matrices M2 and M~/2 become

30
M1/2 — |: :| M—l/Z —
0 1

S W

so that

~ 03 —01 N 3 -1
— al2eal2 =
C =M [_0.1 0-3} and K [_1 3}

The eigenvalue problem for K yields

1 -1
M=2 A =4 10:0.7071[1 J

Hence the natural frequencies of the system are o, = V2 and w, = 2; the matrices
PTCP and PT KP become

~ 02 0 ~ 2.0
T — T =
P CP [0 0.4:| and P'KP [0 4}

The vector £(f) = PTM~'2BF(r) becomes
0.2357 0.7071 0 E(1)
f(r) = = 0.7071
@ |:—0.2357 0.7071J [FZ(I)J |:F2(t)
Hence the decoupled modal equations become
71 + 021 + 2r; = 0.7071(3) cos2t = 2.1213 cos 2t

¥, + 0.4r, + 4r, = 0.7071(3) cos2t = 2.1213 cos 2t

Comparing the coefficient of 7; in each case to 2{;w; yields

02
= —— = 0.0707
4=
0.4
& = 5y = 01000

Thus the damped natural frequencies become

w1 = o V1 — & = 14106 = 1.41
wpn =0 V1 — 5 =19899 =~ 1.99
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Note that while the force F; is applied only to mass my,, it becomes applied to both
coordinates when transformed to modal coordinates. The modal equations for r; and
r, can be solved by equation (4.131), or in this case of a simple harmonic excitation, the
particular solution is given directly by equation (2.36) as

) = 21213 cos{2¢ — a1 20TV
P N2 — 4+ 2000707)V2Q2) R V2 -2

= (1.040) cos (2t + 0.1974) = 1.040 cos (2t — 2.9449)

Note that the argument of the arctangent function is negative (\/272 -2 < O) so that
the fourth quadrant angle must be used (see Window 2.4), yielding 2.9449 radians. The
second mode particular solution is

2.1213 52002
Via - 47 + 20D ool - 557057)

r2p(t) =

= 26516 cos(Zt - g) = 2.6516 sin2¢

Here ry, is used to denote the particular solution of the ith modal equation. Note that
ry(¢) is excited at its resonance frequency but has high damping, so that the larger but
finite amplitude for ry,(?) is not unexpected. If the transient response is ignored [it dies
out per equation (2.30)], the preceding solution yields the steady-state response. The
solution in the physical coordinate system is

0.2357 —0.2357} [1.040 cos (2t — 2.9442)}

) = M 2Pr(t) = [
X(0) O=lozm o707 2.6516 sin 2t

so that in the steady state
x1(¢) = 0.2451 cos (2t — 2.9442) — 0.6249 sin2t
0(f) = 0.7354 cos (2t — 2.9442) + 8749 sin2t

Note that even though there is a fair amount of damping in the resonant mode, the
coordinates each have a large component vibrating near the resonant frequency.
a

Resonance

The concept of resonance in multiple-degree-of-freedom systems is similar to that
introduced in Section 2.2 for single-degree-of-freedom systems. It is based on the
idea that a harmonic driving force is exciting the system at its natural frequency,
causing an unbounded oscillation in the undamped case and a response with a
maximum amplitude in the damped case. However, in multiple-degree-of-freedom
systems, there are n natural frequencies, and the concept of resonance is compli-
cated by the effects of mode shapes. Basically, if a force is applied orthogonally to
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the mode of the exciting frequency, the system will not resonate at any frequency,
a fact that can be used in design. The following example illustrates resonance in a
two-degree-of-freedom system.

Example 4.6.2

Consider the following system and determine if the driving frequency will cause the
system to experience resonance.

[ [ o =[ e

If so, which mode experiences resonance? Does this cause both degrees of freedom to
experience resonance?

Solution First, compute the mass-normalized stiffness matrix and then the eigenvalue
problem for this system

1 1
- 1 ol[3 =514 o 75 —0.833
K= MV2KM1? = [2 |: [2 = [

o +fL-5 s5]lo 1% -0.833  0.556

Solving the eigenvalue problem for this matrix yields Ay = 0.456956 and A, = 7.5986 so
that w; = 0.676 rad/s and w, = 2.757 rad/s. Note that the second frequency is within
round off to the driving frequency so that this is a resonant system. Next, compute the
modal equations. From equation (4.129), the modal force vector is computed from

0.118 0993 ][ o1 0.059
Th-1/2h — 2 =
PEMh [0.993 —0.118}[0 §:|[OJ [0.497}
Thus the modal equations are
71(t) + (0.676)%r,(t) = sin(2.57¢)
7o(t) + (2.57)%ry(t) = sin(2.571)

Thus the second mode is clearly in resonance. Note however that once transformed
back to physical coordinates, each mass will be affected by both modes. That is, both
x1(¢) and x,(¢) are a linear combination of 7(¢) and r,(¢). Thus each mass will experience
resonance. This is because the transformation back to physical coordinates couples the
modal solutions.

a
Forced Response via Mode Summation
First, compute the particular solution of the forced response. Consider
MXx(t) + Kx(t) = F(¢) (4.132)

Here F(¢) is a general force input. Let x,, denote the particular solution computed for
a given force input. Next, consider the free response using mode summation. First
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consider the transformation of coordinates x(f) = M~/?q() substituted into equa-
tion (4.132), and then premultiplying (4.132) by M~/ yields

q() + Kq(r) = MR (1) (4.133)

where K = M~'/2KM™'/ as before. From equation (4.92) the homogeneous solu-
tion in mode summation form is

qH(t) = idl sin ((.l)l‘t + d)i)vi (4134)
i=1

where v, are the eigenvectors of the symmetric matrix K. Rewriting this last expres-
sion in orthogonal form (i.e., sine plus cosine instead of magnitude and phase) and
adding in the particular solution yields the total solution:

n

q) = > [b,- sinw;t + ¢; cos m,-t]vl- + q,(?) (4.135)
i=1
homogeneous particular

Now it remains to find an expression for q, and to evaluate the constants of inte-
gration b; and ¢; in terms of the given initial conditions. From the coordinate trans-
formation x(f) = M~'2q(%), q, is related to x,, by q,() = Ml/zxp(t). Thus equation
(4.135) becomes

q(®) = E(bi sinw + ¢; coswit)v; + M1/2xp(t) (4.1306)
i=1
The initial conditions can now be used to compute the constants of integration.
Setting t = 0 in equation (4.136) yields
n
q(0) = qo = X (b;sinw,0 + ¢;cosw;0)v; + M'*x,(0) (4.137)
=1
Premultiplying this last expression by v/ yields
viqy = ¢; + v/ M"*x,(0) (4.138)
Likewise, differentiating equation (4.136), setting t = 0, and multiplying by v/ yields
vIqy = ob; + vIMY*%,(0) (4.139)
Solving equations (4.138) and (4.139) for the constants of integration yields

c=vliqy — viTMl/zxp(O) (4.140)

1 . .
by = — (v/dg = v/M'7%,(0))

L
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Substitution of these values into equation (4.136) yields the expression for q(¥).
Premultiplying by M~'/? then yields the displacement in physical coordinates:

x(t) = D (b;sin ot + ¢; coswit)u; + x,(1) (4.141)
i=1

where the constants are given by equation (4.140), u; are the mode shapes, w; are
the natural frequencies, and x,, is the particular solution.

4.7 LAGRANGE’S EQUATIONS

Lagrange’s equation was introduced in Section 1.4 as a follow-on to the energy
method of deriving equations of motion. Equations (1.62) and (1.63) along with
Example 1.4.7 introduced the method for single-degree-of-freedom systems. Just
as in the single-degree-of-freedom case, the Lagrange formulation can be used to
model multiple-degree-of-freedom systems as an alternative to using Newton’s law
(summing forces and moments) for those cases where the free-body diagram is not
as obvious. Recall that the Lagrange formulation requires identification of the en-
ergy in the system, rather than the identification of forces and moments acting on the
system, and requires the use of generalized coordinates. A brief working account of
the Lagrange formulation is given here. A more precise and detailed account is given
in Meirovitch (1995), for instance.

The procedure begins by assigning a generalized coordinate to each moving part.
The standard rectangular coordinate system is an example of a generalized coordinate,
but any length, angle, or other coordinate that uniquely defines the position of the part
at any time forms a generalized coordinate. It is usually desirable to choose coordi-
nates that are independent. It is customary to designate each coordinate by the letter
q with a subscript so that a set of n generalized coordinates is written as g1, g2, - - . , G-
Note that we have run out of symbols and that the g; used here are different than the g;
used to denote mass-normalized coordinates in previous sections.

An example of generalized coordinates is illustrated in Figure 4.17. In the fig-
ure, the location of the two masses can be described by the set of four coordinates

Figure 417 An example of generalized
coordinates for a double pendulum
(%5, ¥,) 2 illustrating an example of constraints.
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X1, 1, X2, and y, or the two coordinates 6; and 6,. The coordinates 6; and 6, are
taken to be generalized coordinates because they are independent. The Cartesian
coordinates (x1, X, y1, ¥2) are not independent and hence would not make a desir-
able choice of generalized coordinates. Note that

xt+yi =10 and —x)+Mm-—y)=05 (4.142)

express the dependence of the Cartesian coordinates on each other. The relation-
ships in equation (4.142) are called equations of constraint.

A new configuration of the double pendulum of Figure 4.17 can be obtained
by changing the generalized coordinates ¢g; = 61 and g, = 6, by an amount 3¢,
and 3q,, respectively. Here d8¢q; are referred to as virtual displacements, which
are defined to be infinitesimal displacements that do not violate constraints and
such that there is no significant change in the system’s geometry. The virtual
work, denoted by 8W, is the work done in causing the virtual displacement. The
principle of virtual work states that if a system at rest (or at equilibrium) under
the action of a set of forces is given a virtual displacement, the virtual work done
by the forces is zero. The generalized force (or moment) at the ith coordinate,
denoted by Q;, is related to the work done in changing g; by the amount 8¢g; and
is defined to be

_ W

Q= 54,

(4.143)

The quantity Q; will be a moment if g; is a rotational coordinate and a force if it is a
translational coordinate.

The Lagrange formulation follows from variational principles and states that
the equations of motion of a vibrating system can be derived from

T\ T
d(@)_a+w=Qi i=12....n (4.144)
dt\oq;)  9q;  9q;

where g; = dq;/0t is the generalized velocity, T is the kinetic energy of the sys-
tem, U is the potential energy of the system, and Q; represents all the noncon-
servative forces corresponding to g;. Here d/dq; denotes the partial derivative
with respect to the coordinate g;. For conservative systems, Q; = 0 and equation
(4.144) becomes

d (0T T 0
(.>—+U:0 i=12....n (4.145)
dt \dg; dq;  9q;

Equations (4.144) and (4.145) represent one equation for each generalized coordi-
nate. These expressions allow the equations of motion of complicated systems to
be derived without using free-body diagrams and summing forces and moments.
The Lagrange equation can be rewritten in a slightly simplified form by defining the
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Lagrangian, L, to be L = (T — U), the difference between the kinetic and potential
energies. Then if 0U/¢q; = 0, the Lagrange equation becomes [this is equation (1.63)]

d (oL oL
(.)—:0 i=12....n (4.146)
dr \dg; 0q;

The following examples illustrate the procedure.

Example 4.7.1

Derive the equations of motion of the system of Figure 4.18 using the Lagrange equation.

|_> x(f)

| N
Frictionless shaft /
M(1)

Figure 4.18 A vibration model of a simple machine part. The quantity M(z)
denotes an applied moment. The disk rotates without translation.

Frictionless surface

Solution The motion of this system can be described by the two coordinates x and 6,
so a good choice of generalized coordinates is g1(f) = x(¢) and g,(¢) = 6(¢). The kinetic
energy becomes

1 . 1 .
Tzamq% +5Jq%

The potential energy becomes

_1

v=3

1
kgt + Ekz(’% - q)
Here Q1 = 0 and Q, = M(¢). Using equation (4.145) yields, for i = 1,

d .
E(mﬁh +0) -0+ kg + k(rg, — q)(—=1) =0

or
mqy + (ki + k)q1 — kyrgy = 0 (4.147)

Similarly, for i = 2, equation (4.144) yields
T + kor’q, — korqy = M(t) (4.148)
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Combining equations (4.147) and (4.148) into matrix form yields

7 o [ Alh]

Here the vector x(¢) is
a0 _ [x(r)}
<o =o)L

Example 4.7.2

A machine part consists of three levers connected by lightweight linkages. A vibration
model of this part is given in Figure 4.19. Use the Lagrange method to obtain the equa-
tion of vibration. Take the angles to be the generalized coordinates. Linearize the result
and put it in matrix form.

Figure 419 A vibration model of
three coupled levers. The lengths of the
levers are /, and the springs are attached
at o units from the pivot points.

Solution The kinetic energy is

1 o1 L1 .
T= 5mlzze% + 5mZFe% + Em3126§

The potential energy becomes
U = mgl(1 — cos8;) + mygl(1 — cos6,) + msgl(1 — cosb3)

1 1
+ Ekl(olez - 0(61)2 + Ekz((xe; - 0&92)2

Applying the Lagrange equation for i = 1 yields
m %0, + myglsin®; — aki(ab, — aby) =0
For i = 2, the Lagrange equation yields
myl?0, + mygl sin®, + aky(aby — ab;) — aky(ab; — aby) =0
and for i = 3, the Lagrange equation becomes

m31263 + m3gl Sin93 + OLk2(0L93 - OLez) =0



Sec. 4.7 Lagrange’s Equations 373

These three equations can be linearized by assuming 6 is small so that sin 6~6. Note
that this linearization occurs after the equations have been derived. In matrix form
this becomes

ml> 0 0
0 ml> 0 |X()
0 0 myl?

mlgl + Olzkl _0(2k1 0
+ —o%ky mygl + o2(ky + ky) —o?k, x(1) =0
0 -k, magl + o?k,

where x(¢1) = [q1 g2 ¢q3]” = [061 6, 63]” is the generalized set of coordinates.
|

Example 4.7.3

Consider the wing vibration model of Figure 4.20. Using the vertical motion of the point
of attachment of the springs, x(f), and the rotation of this point, 6(¢), determine the equa-
tions of motion using Lagrange’s method. Use the small-angle approximation (recall the
pendulum of Example 1.4.6) and write the equations in matrix form. Note that G denotes
the center of mass and e denotes the distance between the point of rotation and the cen-
ter of mass. Ignore the gravitational force.

ky

ky

o)

x(1)
(a) (b)

Figure 420 An airplane in flight (a) presents a number of different vibration
models, one of which is given in part (b). In (b) a vibration model of a wing in flight
is sketched which accounts for bending and torsional motion by modeling the wing
as attached to ground (the aircraft body in this case) through a linear spring k; and
a torsional spring k.

Solution Let m denote the mass of the wing section and J denote the rotational iner-
tia about point G. The kinetic energy is

1 . 1 .
T=meZG+EJ62
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where x¢ is the displacement of the point G. This displacement is related to the coordi-
nate, x(f), of the point of attachment of the springs by

x5(t) = x(f) — esin6(¢)

which is obtained by examining the geometry of Figure 4.20. Thus x5(f) becomes
. . do . .
xg(t) = x(t) — ecosb(r) o x(t) — eb cos®

The expression for kinetic energy in terms of the generalized coordinates g; = x and
g, = 6 then becomes

T = %m[ﬁc — eb cosh]® + %Jéz
The expression for potential energy is
U= %klﬁ + %kze2
which is already in terms of the generalized coordinates. The Lagrangian, L, becomes
L=T-U= lm[x — eb cosh) + lJéz - lklx2 - lk262

2 2 2 2
Calculating the derivatives required by equation (4.146) for i = 1 yields

AL _ oL _

— = — = m[x — ef cos 0]
0q1 ox

d (oL .. .
(*) = m¥ — meb cos® + mebh?sino

dr \ ox
aL oL
—=—=—kx
q1 0x

so that equation (4.146) becomes
mx — meb cos® + emb® sin® + kx =0

Assuming small motions so that the approximations cos 6 — 1, and sin § — 6 hold, and
assuming that the term 620 is small enough to ignore, results in a linear equation in x(7)
given by

mx — mef + kix =0
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Calculating the derivatives of the Lagrangian required by equation (4.146) for i = 2
yields

oL _ oL _
oq, 99
4y _d (i)
dt \og, dr\ o0
= —me cosBX + mex sin00 + me0 cos20 — 2me?6* sind cos® + JO

oL dL . :
— = — = m|[x — €6 cos0](ed sinh) — k0
an a0

m[x — ed cosB](—e cosB) + JO = —me cos0x + me?d cos?0 + JO

= mexf sin® — me?”sin 6 cos® — k,0
so that equation (4.146) becomes
J6 — me cosOX + me?cos?00 — me0%sinf cosh + k6 = 0

Again if the small-angle, small-motion approximation (i.e., sin 6 =6, cos 6 — 1,
620 — 0) is used, a linear equation in 6(¢) results given by

(J + me®)o — mex + k0 =0

Combining the expression for i = 1 and i = 2 into one vector equation in the general-
ized vector x = [q1(1) q2(t)]" = [x(¢) 6(0)] yields

ENEA AR R IR
—me me* +J | 8(2) 0 kLo | Lo
Note here that the two equations of motion are coupled, not through stiffness terms, as
in Example 4.7.2, but rather through the inertia terms. Such systems are called dynami-
cally coupled, meaning that the terms that couple the equation in 6(¢) to the equation
in x(¢) are in the mass matrix (i.e., meaning that the mass matrix is not diagonal). In all
previous examples, the mass matrix is diagonal and the stiffness matrix is not diagonal.
Such systems are called statically coupled. Dynamically coupled systems have nondiago-
nal mass matrices, and hence require the use of the Cholesky decomposition for factor-
ing the mass matrix (M = LTL) in the modal analysis steps of Window 4.5 (replacing
M~2 with L). This is discussed in Section 4.9. The programs in the Toolbox and the
various codes given in Section 4.9 are capable of solving dynamically coupled systems as
easily as those that have a diagonal mass matrix.

a

Example 4.7.3 not only illustrates a dynamically coupled system but also

presents a system that is easier to approach using Lagrange’s method than by
using a force balance to obtain the equation of motion. Several vibration texts
have reported an incorrect set of equations of motion for the problem of the
preceding example by using the sum of forces and moments rather than taking a
Lagrangian approach.
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Damping

Viscous damping is a nonconservative force and may be modeled by defining the
Rayleigh dissipation function. This function assumes that the damping forces are
proportional to the velocities. The Rayleigh dissipation function then takes the form
(recall Problem 1.79)

1 nn o
5 Z ZlcrsCIrqs (4150)

Here the damping coefficients ¢,; = ¢, and n is again the number of generalized
coordinates. With this form, the generalized forces for viscous damping can be de-
rived from

oF
Q;= ——foreachj=1,2,...,n (4.151)

Then to derive equations of motion with viscous damping, substitute equation (4.150)
into (4.151) and (4.151) into equation (4.144). The following example illustrates the
procedure.

Example 4.7.4

Consider again the system of Example 4.7.1 and assume that there is a viscous damper
of coefficient ¢y, parallel to ky, and a damper of coefficient c,, parallel to k,. Derive the
equations of motion for the system using Lagrange’s equations.

Solution The dissipation function given by equation (4.150) becomes

1. . . .
F= 5 [e1gt + cx(rgr — ¢1)°)]

Substitution into equation (4.151) yields the generalized forces

or

0= T = —c1q1 — &(rgy — q)(—1) = —(c1 + &)q1 + cr gy
oF . . . .
0, = s = —o)(rgy — q1)(r) = —cor’qy + rexqy

Adding the moment as indicated in Example 4.7.1, the second generalized force becomes
0, = M(1) — ¢’y + rex

Next, using 7 and U as given in Example 4.7.1, recalculate the equations of motion us-
ing equation (4.144) to get, fori = 1:

mgy + (ki + kg1 — korg, = Q1 = —(c1 + )¢y + corgp or:
mgy + (¢ + ¢)q1 — gy + (ki + ka)q1 — kog, = 0
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and fori = 2:

Jigy + kor’qy — korqy = Qy = M(1) — cor’qy + reyq, or:
Jgy + cor’qy — reagy + kar’qy — korqy = M(t)

Combining the expressions for i = 1 and i = 2 yields the matrix form of the equations
of motion:

m 0. a+te —re . ki +kp =k |0
[0 J:| X0+ [ 1—rC22 rzc;:|X(l) ! [ l_’kzz V2k22:| X0 = [M(t)}

4.8 EXAMPLES

Several examples of multiple-degree-of-freedom systems, their schematics, and
equations of motion are presented in this section. The “art” in vibration analysis and
design is often related to choosing an appropriate mathematical model to describe
a given structure or machine. The following examples are intended to provide ad-
ditional “practice” in modeling and analysis.

Example 4.8.1

A drive shaft for a belt-driven machine such as a lathe is illustrated in Figure 4.21(a).
The vibration model of this system is indicated in Figure 4.21(b), along with a free-body
diagram of the machine. Write the equations of motion in matrix form and solve for
the case J; = J, = J3 = 10 kg m?/rad, k; = k, = 10’ N-m/rad,c = 2 N-m-s/rad
for zero initial conditions, and where the applied moment M(f) is a unit impulse
function.

Solution In Figure 4.21(a) the bearings and shaft lubricant are modeled as lumped vis-
cous damping, and the shafts are modeled as torsional springs. The pulley and machine
disks are modeled as rotational inertias. The motor is modeled simply as supplying a
moment to the pulley. Figure 4.21(b) illustrates a free-body diagram for each of the
three disks, where the damping is assumed to act in proportion to the relative motion
of the masses and of the same value at each coordinate (other damping models may be
more appropriate, but this choice yields an easy form to solve).

Examining the free-body diagram of Figure 4.21(b) and summing the moments
on each of the disks yields

J18; = ky(6;, — 07) + c(6, — )
Dy = ky(03 — 0y) + c(83 — 0,) — ky(8; — 0;) — (8, — b))
By = —ky(B3 — 0;) — (63 — 6) + M(2)
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Bearings Bearings

(a)

J, J3

k(6 —

M
F (b, — 91) [/—: /
k(6 — 0y) KK y(65 — 92) \\
(b, — ) (b3 —

2(93 _.92)
(b) c(63 — 6,)

Figure 4.21 (a) Schematic of the moving parts of a lathe. The bearings that
support the rotating shaft are modeled as providing viscous damping while the
shafts provide stiffness and the belt drive provides an applied torque. (b) Free-
body diagrams of the three inertias in the rotating system of part (a). The shafts
are modeled as providing stiffness, or as rotational springs, and the bearings are
modeled as rotational dampers.

where 61, 0,, and 05 are the rotational coordinates as indicated in Figure 4.21. The unit
for 6 is radians. Rearranging these equations yields
Jlél + Cél + k191 - Céz - k192 =0
]262 + 2C62 - Cél - 663 + (kl + kZ)BZ - klel - k293 =0
]363 + Cé3 - Céz - k262 + k293 = M(l)

In matrix form this becomes
Ji 0 0 ¢c —c¢ 0 ky -k 0 0

0 5 00+ —-—c 22 —c|0+| -k k+k -klo=| 0
0 O ]3 0 —C C 0 _k2 k2 M(t)
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where 0(r) = [01(f) 0,(t) 653(t)]”. Using the values for the coefficients given previ-
ously, this becomes

0 0 0 1 -1 0 1 -1 0 0
0 10 0 |6 +2 -1 2 —11(6+10% -1 2 —-116=1] 0
0 0 10 0 -1 1 0 -1 1 3(t)

Note that the damping matrix is proportional to the stiffness matrix so that modal
analysis can be used to calculate the solution. Also note that

1 -1 o 1 -1 0 L [o
C=02-1 2 -1 K=10% -1 2 -1 M-2F = Vil
0 -1 1 0 -1 1 5(1)

Following the steps of Example 4.6.1, the eigenvalue problem for K yields
)\1 =0 )\2 = 100 )\3 = 300

Note that one of the eigenvalues is zero, thus the matrix Kis singular. The physical
meaning of this is interpreted in this example. The normalized eigenvectors of K

yield
0.5774  0.7071  0.4082 0.5774 05774  0.5774
P = 0.5774 0 —-0.8165 PT =1 07071 0 —-0.7071
0.5774 —0.7071  0.4082 0.4082 —0.8165  0.4082

Further computation yields
PTCP = diag[0 02 0.6]
PTKP = diag[0 100 300]

0.1826
PTM™V?R(1) = | —0.2236 |3(¢)
0.1291

The decoupled modal equations are

71() = 0.18263(¢)
72(t) + 0.2i(¢) + 100r,(f) = —0.22363(r)
75(t) + 0.675(¢) + 300r5(f) = 0.12913(¢)

Obviously, w; = 0, w, = 10rad/s, and w3 = 17.3205 rad/s.
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Comparing coefficients of 7; with 2{; w; yields the three modal damping ratios

=0
02
= = 0.01
£ =500
0.6
&= 2(17.3205) 001732

so that the second two modes are underdamped. Hence the two damped natural fre-
quencies become

Wp = Wy V 1- C% = 9.9995 rad/s

opn = o;V1 — 3 =173179rad/s
As was the case in Example 4.6.1, while the moment is applied to only one physical
location, it is applied to each of the three modal coordinates. The modal equations for
r, and r3 have solutions given by equation (3.6). The solution corresponding to the zero

eigenvalue (w; = 0) can be calculated by direct integration or by using the Laplace
transform method. Taking the Laplace transform yields

0.1826
§2

s%r(s) = 01826 or r(s) =

The inverse Laplace transform of this last expression yields (see Appendix B)
ri(t) = (0.1826)t

Physically, this is interpreted as the unconstrained motion of the shaft (i.e., the shaft

rotates or spins continuously through 360°). This is also called the rigid-body mode

(see Example 4.6.2) or zero mode and results from K being singular (i.e., from the zero

eigenvalue). Such systems are also called semidefinite, as explained in Appendix C.
Following equation (3.6), the solution for r,(¢) and r3(¢) becomes

r(t) = w—;e—wsm wpt = —0.0224e%15in 9.9995¢
r3(t) = 0fie*lamsfsin%z = 0.0075¢ %2 sin 17.3179¢
d3

The total solution in physical coordinates is then calculated from 6(f) = M~ /2Pr(f) =

(1/V10)Pr(¢) or

0.0333¢ — 0.0050e %1 sin (9.9995¢) + 0.0010e %2 sin (17.3179¢)
0(t) = 0.0333¢ — 0.0019¢ %29 sin (17.3179)
0.0333¢ — 0.0053¢ %1 5in (9.9995¢) + 0.0010e %2 sin (17.3179¢)
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The three solutions 61(¢), 8,(¢), and 65(¢) are plotted in Figure 4.22. Figure 4.23 plots

the three solutions without the rigid-body term. This represents the vibrations experi-
enced by each disk as it rotates.

x1073

T
=)
-
X

01(0) 0,(0)
0.16
30
0.12 -
= 20
0.08 =
X
0.04 10
0.00 | | | | It 0 | | It
0 1 2 3 4 5 00 02 04 06 08 1.0
05(1)
0.16
0.12
0.08
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0.00 | | | | |t
0 1 2 3 4 5

Figure 4.22 The response of each of the disks of Figure 4.21 to an impulse
at 03, illustrating the effects of a rigid-body rotation.
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Figure 4.23 The response of each of the disks of Figure 4.21 to an impulse

at 63 without the rigid-body mode, illustrating the vibration that occurs in
each disk.
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Example 4.8.2

In Figure 2.17 a vehicle is modeled as a single-degree-of-freedom system. In this ex-
ample, a two-degree-of-freedom model is used for a vehicle that allows for bounce
and pitch motion. This model can be determined from the schematic of Figure 4.24.
Determine the equations of motion, solve them by modal analysis, and determine the
response to the engine being shut off, which is modeled as an impulse moment applied
to 6(z) of 10° Nm.

Bounce

Pitch

Good Humor

Figure 424 A sketch of the side section
ky of a vehicle used to suggest a vibration
model for examining its angular (pitch)
and up-and-down (bounce) motion. The
I I center of gravity is denoted by c.g.

Solution The sketch of the vehicle of Figure 4.24 can be simplified by modeling the
entire mass of the system as concentrated at the center of gravity (c.g.). The tire-and-
wheel assembly is approximated as a simple spring—dashpot arrangement as illustrated in
Figure 4.25. The rotation of the vehicle in the x—y plane is described by the angle 6(¢), and
the up-and-down motion is modeled by x(f). The angle 6(7) is taken to be positive in the
clockwise direction, and the vertical displacement is taken as positive in the downward
direction. Rigid translation in the y direction is ignored for the sake of concentrating on
the vibration characteristics of the vehicle (e.g., Example 4.8.1 illustrates the concept of
ignoring rigid-body motion).
Summing the forces in the x direction yields

mx = _Cl().C - 119) - Cz().C + 129) - k](.x - 119) - k2(x + 126) (4152)

x =19 Ng' ¢ Figure 425 The vehicle of Figure 4.24

+ x + L6  modeled as having all of its mass at its
? c.g. and two-degrees-of-freedom,
ky “ x(0) ky €@ consisting of the pitch, 6(¢), about the

c.g. and a translation x(¢) of the c.g.
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since the spring k; experiences a displacement x — /10 and k, experiences a displace-
ment x + 5,0. Similarly, the velocity experienced by the damper c; is X — ;6 and that
of ¢c; is x + L,0. Taking moments about the center of gravity yields

J@ = Clll().C - 119) - Czlz().c + 129) + klll(x - 116) - kzlz(x + 129) (4153)

where J = mr?. Here r is the radius of gyration of the vehicle (recall Example 1.4.6).
Equations (4.152) and (4.153) can be rewritten as

mx + (Cl + Cz)).C + (1262 - llcl)é + (kl + kz)x + (lzkz - llkl)ﬁ = 0
mr? + (coly — el )k + (e, + Be)d + (kol, — kil)x + (I3 + Bly)d = 0 (4.154)
In matrix form, these two coupled equations become
m|:1 0,x,+|:6‘1+6'2 1202_1161 )'(+|:k1+k2 kzlz_klll x=0
0 }’2 lzCz - l]C] Z%CZ + l%cl kzlz - k]l] l%kl + l%kz
(4.155)

where the vector x is defined by
o [xm
6(1)

r?=0.64m*> m =4000kg c¢; = c, = 2000N-s/m
ki =k, =20000N/m [, =09m L =14m

Reasonable values for a truck are

With these values, equation (4.155) becomes
[4000 0 | . [4000 1000 | [40,000 10,000 ] [o (4.156)
0 2560 [* " L1000 ss40 ¥ T [10000 55400 % " Lo

Note that C = (0.1)K, so that the damping is proportional. If a moment M(¢) is ap-
plied to the angular coordinate 6(¢) the equations of motion become

4000 0 .. 4000 1000 |. 40,000 10,000 0 5
X + X + X = 10
0 2560 1000 5540 10,000 55,400 3(1)

Following the usual procedures of modal analysis, calculation of M~'/?

00158 0
—1/2 _
M [ 0 0.0198}

yields

Thus

~ [1.0000 0.3125J ~ [10.000 3.1250}

03125 2.1641 and  K=131250  21.6406
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Solving the eigenvalue problem for K yields

[0.9698 0.2439 d _ [0.9698 —0.2439
—0.2439  0.9698 4 02439 0.9698

with eigenvalues Ay = 9.2141 and \, = 22.4265, so that the natural frequencies are
oy = 3.0355rad/s and o, = 4.7357 rad/s
Thus
PTKP = diag [9.2141 22.4265] and PTCP = diag[0.9214 2.2426]
Comparing the elements of PTCP to w; and w, yields the modal damping ratios

0.9214 2.2426

1= m = 0.1518 and 2 = W = 0.2369

Using the formula from Window 4.8 for damped natural frequencies yields wy =
3.0003 rad/s and wg, = 4.6009 rad/s. The modal forces are calculated from

e Jo =[50 n” ) =[oaty
The decoupled modal equations become
() + (0.9214)i(r) + (9.2141)r((r) = —4.83(¢)
Fo(f) + (2.2436)i5(1) + (22.4265)r,(1) = 19.23(¢)

From equation (3.6) these have solutions

—4.8 1
£ = —Lioit o { = —(0.1518)(3.035)t ; 3.0003
ri(t) o e sinwy (1)(3.0003) e sin ( 1)
= —1.6066¢ 247 sin (3.00037)
19.2
) = enoe ¢ T sin (4.60097)

= 4.1659¢1121% sin (4.6009¢)

The solution in physical coordinates is obtained from
t
[x() = M'2Pr(s)
0(1)
which yields
x(f) = —2.41 X 1072704607 5in (3.00037) + 1.606 X 1021213 in (4.6009¢)
0(r) = 7.744 X 1074 04607 gin (3.00037) + 7.915 X 10721213 sin (4.6009¢)
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These coordinates are plotted in Figure 4.26.

X 1072

7 T T T T T T T T T

6 B ]

x(¢) in meters and 6(¢) in radians

_3 Il Il Il Il

1
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Time (s)

Figure 4.26 Plot of the bounce and pitch vibrations of the vehicle of Figure 4.24 as
the result of the engine being shut off.

Example 4.8.3

The punch press of Figure 4.27 can be modeled for vibration analysis in the x direction
as indicated by the three-degree-of-freedom system of Figure 4.28. Discuss the solution
for the response due to an impact at m using modal analysis.

Solution The mass and stiffness of the various components can be easily ap-
proximated using the static methods suggested in Chapter 1. However, it is very
difficult to estimate values for the damping coefficients. Hence, an educated guess
is made for the modal damping ratios. Such guesses are often made based on ex-
perience or from measurements such as the logarithmic decrement. In this case,
the values of various masses and stiffness coefficients are [in mks units and f(r) =
10003(¢)]

m; = 400kg m, = 2000kg my = 8000kg
ki = 300,000N/m  k, = 80,000N/m k3 = 800,000 N/m
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X
| z
@ Tool y

Tool base
l:‘:i Isolation mounting pad

Platform

Rubber mounting

Floor

<«—————————— Foundation ——————— >

af
ny

ky LIJC = ?7<—— Mounting pad

machine.

«—— Tool-base mass

«—— Platform mass

ky LIJC = 7<«—— Rubber mounting

‘> Floor

c="7?

Chap. 4

Figure 4.27 A schematic of a punch-press

Figure 4.28 A vibration model of the punch
press of Figure 4.27.

From free-body diagrams of each mass, the summing of forces in the x direction yields

the three coupled equations
mx; = —ki(q — x) + f()
my = ki(x1 — x) — ky(x — x3)
my¥s = —ksxy + ky(x, — x3)
Rewriting this set of coupled equations in matrix form yields
my 0 0 kl _k] 0

0 ny 0 |X+ _kl kl + k2 _kz
0 0 ns 0 _k2 k2 + k3
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where x = [x(f) x(f) x3(t)]. Substituting the numerical values for m; and k; yields

04 0 0 30 -30 0 10005(r)
(10)| 0 2 o0 |x+ (10 =30 38 -8 |x= 0
0 0 8 0 -8 88 0

Following the modal analysis procedure for an undamped system yields

20 0 0 0.0500 0 0
MY2=1| 0 447214 0 M2 = 0 0.0224 0
0 0 89.4427 0 0 0.0112
and
750 —335.4102 0
K =| —335.4102 190 -20
0 -20 110

Solving the eigenvalue problem for K yields

—0.4116 —0.1021 0.9056 —0.4116 —0.8848 —0.2185
P=|-0.8848 —0.1935 —0.4239 PT =] —0.1021 -0.1935 0.9758
—0.2185 0.9758 0.0106 0.9056 —0.4239 0.0106

and
A = 29.0223 w; = 5.3872
A, = 113.9665 w, = 10.6755
A3 = 907.0112 w3 = 30.1166

The modal force vector becomes

10005(¢) —20.5805
PTMV2 0 =| —5.1026 [3(r)
0 45.2814

Hence, the undamped modal equations are

71(0) + 29.0223r1(f) = —20.58055(7)
Po(1) + 113.9665r5(f) = —5.10263(7)
Fa(1) + 907.0112r5(f) = 45.28143(7)

To model the damping, note that each mode shape is dominated by one element.
From examining the first column of the matrix P, the second element is larger than
the other two elements. Hence if the system were vibrating only in the first mode,
the motion of x,(f) would dominate. This element corresponds to the platform mass,
which receives high damping from the rubber support. Hence it is given a large damp-
ing ratio of {; = 0.1 (rubber provides a lot of damping). Similarly, the second mode
is dominated by its third element, corresponding to the motion of x3(¢). This is a
predominantly metal part, so it is given a low damping ratio of {, = 0.01. The third
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mode shape is dominated by the first element, which corresponds to the mounting
pad. Hence it is given a medium damping ratio of {3 = 0.05. Recalling that the veloc-
ity coefficient in modal coordinates has the form 2{;w;, the damped modal coordi-
nates become 2{;m1 = 2(0.1)(5.3872), 2{,w, = 2(0.01)(10.6755), and 23wz = 2(0.05)
(30.1166). Therefore, the damped modal equations become
71(f) + 1.07747(t) + 29.0223r1(r) = —20.58055(¢)
7o(f) + 0.21357,(¢) + 113.9665r,(f) = —5.10265(¢)

75(f) + 3.0117#5(r) + 907.0112r5(r) = 45.28143(¢)
These have solutions given by equation (3.6) as

ri(f) = —3.8395¢7%3%7 sin (5.36021)
r(f) = —0.4780e%19%% sin (10.6750¢)
r3(f) = 1.5054¢71998 sin (30.0789¢)
Using the transformation x(f) = M~ "/?Pr() yields
x(f) = 0.0790e03387 5in (5.3602f) + 0.0024¢ 0198 sin (10.6750¢) + 0.0682¢1305% sin (30.0789¢)

() = 0.0760e %37 sin (5.3602¢) + 0.0021e 198 sin (10.6750¢) — 0.0143¢ 13058 sin (30.0789¢)
x(f) = 0.0094¢703387 5in (5.3602f) — 0.0052¢ 0198 sin (10.6750¢) + 0.0002¢13058 sin (30.0789¢)

These solutions are plotted in Figure 4.29.

x(1) x,(1)
0.10 60
0.05 w W
: 5 20
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0.00 x 0F
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—0.05 l l l l | 40 Y l l l |
0 2 4 6 8 10 0 2 4 6 8 10
Time Time
x3(1)
10
. 5
5
= 0
X
_5 -
~10 | | | | |

Time

Figure 429 A numerical simulation of the vibration of the punch press of Figures 4.27
and 4.28 as the result of the machine tool impacting the tool base.
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This example illustrates a method of assigning modal damping to an analytical
model. This is a somewhat arbitrary procedure that falls in the category of an educated
guess. A more sophisticated method is to measure the modal damping. This is dis-
cussed in Chapter 7. Note that the floor, x3(¢), vibrates much longer than the machine
parts do. This is something to consider in designing how and where the machine is
mounted to the floor of a building.

a

4.9 COMPUTATIONAL EIGENVALUE PROBLEMS FOR VIBRATION

This section examines the various approaches to solving eigenvalue problems and
how vibration problems may be solved using these eigenvalue problems. This is
presented in the context of the three computer codes Mathematica, MATLAB, and
Mathcad. The Engineering Vibration Toolbox also contains a variety of ways of
calculating mode shapes, natural frequencies, and damping ratios based on M-files
created in MATLAB. The books by Datta (1995), Golub and Van Loan (1996), and
Meirovitch (1995) should be consulted for more detail. Additional detail can be
found in Appendix C. Each of the matrix computations and manipulations made in
the previous sections can be obtained easily by standard functions of most math-
ematical software packages. Hence the tedious solutions of modal analysis and the
eigenvalue problem can be automated and used to solve systems with large num-
bers of degrees of freedom. Here we introduce the various eigenvalue problems
and illustrate how to use various software packages to obtain the needed computa-
tion. We refer the reader to Appendix C and references there for details on how
the algorithms actually work.

Consider the undamped-vibration problem of equation (4.11) with n degrees
of freedom, repeated here:

Mx(6) + Kx(f) = 0 (4.157)

Here the displacement vector x is n X 1, and the matrices M and K are n X n and
symmetric. There are a number of different ways to relate equation (4.157) to the
mathematics of eigenvalue problems and these are presented next along with exam-
ples and computer steps for solving them.

Dynamically Coupled Systems

The matrix M is positive definite (see Window 4.9) in most cases and up until
Example 4.73 was considered to be diagonal, so that factoring M and taking its
inverse amounted to scalar arithmetic on the diagonal entries. In Example 4.73,
the mass matrix was not diagonal, in which case the system is called dynamically
coupled, and more sophisticated means are needed to handle the inverse and
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Window 4.9
The Definition of Positive Definite

A symmetric matrix M (M = M T) is positive definite if, for every nonzero vec-
tor x, the scalar x” Mx > 0. In addition, M is positive definite if and only if all
of the eigenvalues of M are positive numbers. The matrix A is said to be posi-
tive semidefinite if, for every nonzero vector x, the scalar x'Ax = 0. A matrix
is positive semidefinite if and only if all of the eigenvalues of the matrix A are
greater than or equal to zero. In particular, A could have one or more zero
eigenvalues, as in the case of rigid-body motion.

factoring of the matrix M used in vibration analysis. The method of factoring a
positive definite matrix is called Cholesky decomposition, which finds a lower tri-
angular matrix L such that M = LL”. Cholesky decomposition can also be formed
from two upper triangular matrices, say U, such that M = U’ U. Some codes use
upper triangular and others use lower triangular, but the results applied to vibra-
tion problems are the same. Both calculating the inverse and computing the factors
are simple commands in most computational software programs (and calculators).
The algorithms in these codes use the most sophisticated methods. However, one
way to compute any function of a matrix is by decomposing the matrix using the
eigenvalue problem.

Let M be a symmetric, positive definite matrix and let f be any function
defined for positive numbers. Denote the eigenvalues of the matrix M (not the
M, K system, just the matrix M) by p and let R denote the matrix of normalized
eigenvectors of M. Then

fw) 0 .0
M) = R (:) f (%2) ? RT (4.158)
0 0 ... flm)
In particular
1/m 0 . 0
mi=g O Ve o0 e

0 0 1/.pvn



Sec. 4.9 Computational Eigenvalue Problems for Vibration 391

and

YV 0 ... 0
mie=gl O Ve .- O &
0 0 ... 1V

which provides one method of computing the matrices used in modal analysis.
These decompositions can also be used to prove that the inverse and the square
root of a symmetric matrix is symmetric. However, the codes use more numeri-
cally sophisticated techniques beyond the scope of this book. In fact, it is bet-
ter not to compute the inverse directly but to use a modified form of Gaussian
elimination to compute the inverse (M\I in MATLAB, for instance). Computing
the matrix square root is best not done in the dynamically coupled case, but
rather the Cholesky factorization should be used. These are illustrated in the
following example.

Example 4.9.1

Consider the nondiagonal mass matrix

Il
S N W
—_ AN
W = O

and compute the inverse and factors.

Solution The matrix inverse is computed via the following commands:

In MATLAB inv(M)

In Mathematica Inverse[M]

In Mathcad Mt (typed MA-1)

The Cholesky factors of a matrix are computed via the following commands:
In MATLAB Cho1 (M) or Chol(M, ’Tower’)

In Mathematica CholeskyDecomposition[M]

In Mathcad cholesky(M)

Using any one of these yields the inverse of the mass matrix:

0.2558 —0.1395 0.0465
M =|-01395 0.3488 —0.1163
0.0465 —0.1163 0.3721
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The factors of the mass matrix are

2.23607 0 0 2.23607 0.89443 0
L = 0.89443 1.78885 0 and LT = 0 1.78885 0.55902
0 0.55902 1.63936 0 0 1.63936

such that M = LL”. Also note that L'M(L?)™! = I, the identity matrix. Note that
MATLAB uses an upper triangular Cholesky decomposition. Thus the mass matrix is
factored as M = cho1 (M) ' *cho1(M) and inv(chol (M) ')*M*inv(cho1(M)) = I. So when
using MATLAB, the following code has to be modified accordingly. Alternately use the
command L = choT(M, 'Tower ') which creates the lower triangular Cholesky factor.

O

In order to perform modal analysis on equation (4.157) for a dynamically
coupled system, replace M ~"/? with the matrix L using Window 4.5 in the following
manner:

2. Calculate the mass-normalized stiffness matrix by
K = L'K@IH™ (4.159)

and note that this is a symmetric matrix.
5. Compute the matrix of mode shapes S from

S= NP and S'=PILT (4.160)

Using Codes

Several examples are given next that illustrate how to use math software to com-
pute the eigenvalues and eigenvectors of a system and then to solve for frequen-
cies and mode shapes. Calculation of the algebraic eigenvalue problem formed
the object of intensive study over a 30-year period, resulting in very sophisticated
methods. Many of these studies were funded by government agencies and hence
are in the public domain. As computer technology advanced, several high-level
codes evolved to enable engineers to make eigenvalue calculations simply and
accurately. Today almost every code and calculator contains eigensolvers. The
Toolbox contains M-files for computing frequencies and mode shapes using
MATLAB. The only small difficulty in using math software is that mathemati-
cians always number eigenvalues starting with the largest first and engineers like
the frequencies to be numbered with the smallest value first. So in some codes
you may want to sort the eigenvalues and eigenvectors accordingly. The following
examples illustrate how to use Mathcad, MATLAB, and Mathematica to solve for
natural frequencies and mode shapes. Please note that the developers of these
codes often update their codes and syntax, so it is wise to check their websites for
updates if you have troubles with syntax errors.
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Example 4.9.2

Compute the solution of Example 4.2.6 using math software.

Solution First consider Mathcad. This program enters the elements of a matrix by
selecting the appropriate size from the matrix pallet. Note that Mathcad starts count-
ing elements of vectors and matrices with O rather than 1. The following illustrates the
remaining steps:

Enter the values of M and K:

1 0 12 -2
: '_[0 4} « '_[—2 12}

Compute the root of M, then K tilde:

10 R ,l _[12 -1
Ms := [0 2} Kt := Ms K-Ms Kt = 1 3

Compute the eingenvalues:

12.109772
2.890228

N := eingenvals(Kt) A :|:
Compute the eigenvectors and reorder with the Towest first and
compute frequencies:
v2 := eigenvec(Kt,\g) V1 := eigenvec(Kt,\) ol := VN 02 := Vg

Display the results:

vl [0.109117 _ [—0.994029
~ 10.994029 [ 0.109117

:| wl=1.7 w2 =3.48

Check to see the eigenvectors are orthonomal:
vl =1 V2| =1 wvl1:-v2=0
Form the matrix P:

. [0.1091 -0.9947 . [ 0.1090.994
P := augment (v1,v2) P*[0.994 0.1091J - [—0.9940.109}

Show that P is orthoganal and diagonalizes K tilde

10 2.8902 0
T.p = T. P =
PP [0 1} PloKe-p [0 12.1098}

Next consider using MATLAB. MATLAB enters matrices using spaces be-
tween elements of a row and semicolons to start a new row. Like Mathcad, MATLAB
produces the eigenvalues from highest to lowest, so care must be taken to mind the
order of eigenvalues and eigenvectors. This is handled here by using the f1ip1r(V)
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command, which is used to reorder the eigenvectors with the one corresponding to A\q
first rather than \,,, as produced from the eigensolver in the code.

% enter M and K, compute K tilde
M=[1 0;0 4];K=[12 -2;-2 12];
Mr=sqrtm(M) ; Kt=inv(Mr) *K*inv(Mr) ;
% solve eigenvalue problem puts eigenvectors in the
% matrix V, eigenvalues in the diagonal matrix D
[V,D]=eig(Kt);
%check and reorder eigenvalues, smallest first
eignvalues=V'*Kt*V
eignvalues =

2.8902 -0.0000

0 12.1098
V'*V % check to see that V1 is orthogonal
ans =

1.0000 O

0 1.0000

In Mathematica the code is as follows:

Input mass and stiffness matrices:

10
In[1] .=M=(O 4>,

12 -2
K= <72 12)’
Calculate inverse square root of mass matrix then find K.

In[3]:= Mnegsqrt = MatrixPower[M, -0.5];
Khat = Mnegsqrt.K.Mnegsqrt
MatrixForm[Mnegsqrt]
MatrixForm[Khat]

Out[5]//Matrix Form=
G o)
0 0.5
Out[6]//MatrixForm=
(12 71>
-1 3
Calculate eingenvalues and eigenvectors. Note that Mathematica returns eigenvectors
in rows, not columns as in Mathcad and MATLAB.
In[7]:= {\, v} = Eigensystem[Khat];

MatrixForm[A]
MatrixForm[v]
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Out[8]//MatrixForm=
(12 . 1098>
2.89023
Out[9]//MatrixForm=

(0.994029 70.109117>
0.109117 0.994029

Arrange eigenvectors from least to greater and find natural frequencies. Mathematica
usually returns eigenvectors normalized to 1.

In[10]:= v2 = v[[1, All]l]
vl = v[[2, All]]

ol = VA[[2]]
02 = VAL[1]]

Out[10]= {0.994029, -0.109117}
Out[11]= {0.109117, 0.994029}
Out[12]= 1.70007
Out[12]= 3.47991

In[14]:= vl.vl

v2.v2
Chop[vl.v2]
Out[14]= 1.
Out[15]= 1.
Out[16]= O.

Since the eigenvectors are in rows in Mathematica, it is easiest to form PT first, then
transpose to get P.

In[17]:= PT = {vl, v2}
P = Transpose[PT]
MatrixForm[PT]
MatrixForm[P]

Out[19]//MatrixForm=
(0.109117 0.994029>
0.994029 -0.109117

Out[20]//MatrixForm=
(0.109117 0.994029>
0.994029 -0.109117

Show that P is orthogonal and that P diagonalizes k

In[21]:= MatrixForm[Chop[PT.P]]
MatrixForm[Chop[PT.Khat.P]]
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Out[21]//MatrixForm=

(0 3)

Out[22]//MatrixForm=

<2 .89023 0 )
0 12.1098

Note that Mathematica produces eigenvalues for the highest to the lowest, so an alter-
native way to reorder them is to use the Reverse command. For example

{vals, vecs} = Eigensystem[Khat]
valsr = Reverse[vals]
vecsr = Reverse[vecs]

Transpose[vecsr]
P = Transpose[vecsr]

will reorder the eigenvalues and eigenvectors.

Example 4.9.3

Compute the coefficients for the modal equations for the damped, forced-response
problem given in Example 4.6.1.

Solution The solution in Mathcad is as follows:
Enter the matrices M, C, K and the force vector b
9 0 2.7 -0.3 27 -3 0
M= [o 1] €= [—0.3 O.J K== [—3 3} b := [3}

Note that the damping is proportional, so modal analysis may be used

-1.78-107%

MK - K-ML.C =
C-M"K—-K-M™=-C [0

8:| effectively zero
L := cholesky(M)

Kt := L1-K- (LD Kt=|:73 _IJ

Ct :=L1C- (LD Ct=[7 '

o o
R ow

|
o o
w R
[
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N := eigenvals (Kt) vl := eigenvec(Kt, A1) V2 := eigenvec(Kt, \g)

0.707 -0.707
0.707 0.707

10 0.2 0 2 0
T.p = T. P = T, P =
pT.p [o J PT-Ct-P [0 0.4} PT-Kt-P [0 4]

Next compute the modal force amplitudes:

P := augment(vl, v2) P :|:

bt: =P"-L1-b bt=[

2.121
2.121

The solution in MATLARB is as follows:

% enter M, C, and K
M=[9 0;0 1];K=[27 -3;-3 3];C=K/10;b=[0;3];
%compute L and the mass normalized quantities
L=choT(M) ;Kt=inv(L)*K*inv(L"') ;Ct=inv(L)*C*inv(L');
% Compute eigensolution, reorder eigenvectors
[V,D]=eig(Kt); P=V
P =

-0.7071 -0.7071

-0.7071 0.7071
P'*P
ans =

1.0000 O

Jany

.0000
P'*Kt*P

ans
.0000 O

O N
N

.0000
P'*C*p
ans =
1.2000
1.2000
P'*Ct*P
ans =
0.2000 O
0 0.4000
bt=P'*inv(L)*b
bt =
-2.1213
2.1213

[

.2000
.8000

[

Note that in MATLAB, the first eigenvector is the negative of that produced in
Mathcad. This is not a problem as both are correct. In the MATLAB version, note that
the mass-normalized input vector also has a sign change. When the modal equations are
written out and transformed back to physical coordinates, these signs will recombine to
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give the same solution as given in Mathcad. Remember that an eigenvector may always
be multiplied by a scalar (in this case —1) without changing its direction, and the value 1

does not change its magnitude.
The solution in Mathematica is as follows:

9 0
In[l]:=M=<0 1);
2.7 -0.3)\,
(—0.3 0.3)’
27 -3\,
(55 3)
0
b= (3):

Note that the damping is proportional, so modal analysis may be used.

C

K

In[5]:= MatrixForm[Chop[c.Inverse[M].K-K.Inverse[M].c]]
Out[5]//MatrixForm=
(@ o)
0 0
Calculation of X and C

In[6]:= L = CholeskyDecomposition[M];
Khat = Inverse[L].K.Inverse[Transpose[L]];
Chat = Inverse[L].c.Inverse[Transpose[L]];
MatrixForm[Khat]
MatrixForm[Chat]

Out[10]//MatrixForm=
(23
-1 3
Out[11]//MatrixForm=
( 0.3 -0. 1)
-0.1 0.3
Calculate eigenvalues and eigenvectors. Note that Mathematica returns
eigenvectors in rows, not columns as in Mathcad and Matlab. For this particular

system, the eigenvalues were found in the correct order and the eigenvectors must
be normalized to 1.

In[11]:= {A,v}=Eigensystem[Khat];
MatrixForm[A]
MatrixForm[v]
vl = Normalize[v[[1l, A11]11];
v2 = Normalize[v[[2, A11]]1];
N[MatrixForm][{ v1, v2}]
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Out[12]//MatrixForm=
(&)
4
Out[13]//MatrixForm=
w2:= VRe(\D? + Im(r\;)2

Out[16]//MatrixForm=
( 0.707107 O.707107>
-0.707107 0.707107

In[17]:= PT = {vl, v2};
P = Transpose[PT];

In[19]:= MatrixForm[Chop[PT.P]]
MatrixForm[Chop[PT.Khat.P]]
MatrixForm[Chop[PT.Chat.P]]

Out[19]//MatrixForm=
(0 7)

0 1

Out[20]//MatrixForm=
@ %)

0 4

Out[21]//MatrixForm=

(0.2 0 )
0 0.4
Compute modal force ampTlitudes.

Tn[22]:= bt = PT.Inverse[L].b;
N[MatrixForm[bt]]

Out[23]//MatrixForm=

(2.12132)
2.12132

Various Eigenvalue Problems

There are several ways to relate the vibration problem to the eigenvalue problem.
The simplest way is unfortunately the worst in terms of computational effort. This is
to use the generalized eigenvalue problem, formed from equation (4.157) by substi-
tution of x = ¢/“fu, which results in

Ku = \Mu (4.161)
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Here A = 2, and the u are the mode shapes. This is the most direct approach but
suffers from computational burden (four times as much as using the Cholesky ap-
proach for a two-degree-of-freedom example). The solution of equation (4.157)
then becomes

x(t) = ici sin (wit + ¢;)u; (4.162)
=1

Here c; and ¢, are constants determined by initial conditions.
Next multiply equation (4.161) by the matrix M. Again, assuming a solution
of the form x(7) = ¢“'u yields

—w’u+ M 'Ku=0 (4.163)
or
(M'K)u = \u (4.164)

This is the standard algebraic eigenvalue problem. The matrix M~ 'K is neither sym-
metric nor banded. Again there are n eigenvalues \;, which are the squares of the
natural frequencies w?, and n eigenvectors u;. The solution of equation (4.157), x(¢),
is again in the form

x(t) = ici sin (w;it + o;)u; (4.165)
=1

where ¢; and ¢; are constants to be determined by the initial conditions. Thus the
eigenvectors u; are also the mode shapes. Since M 'K is not symmetric, the solution
of the algebraic eigenvalue problem could yield complex values for the eigenval-
ues and eigenvectors. However, they are known to be real valued because of the
generalized eigenvalue problem formulation, equation (4.161), which has the same
eigenvalues and eigenvectors.

Next, consider the vibration problem (following Window 4.5) obtained by sub-
stitution of the coordinate transformation x(f) = (L) 'q() into equation (4.161)
and multiplying by L™, This yields the form

4(1) + Kq(t) = 0 (4.166)

where the matrix K is symmetric but not necessarily sparse or banded unless M is
diagonal. The solution of equation (4.166) is obtained by assuming a solution of the
form q(f) = ¢/“'v where v is a nonzero vector of constants. Substituting this form
into equation (4.166) yields

~0?v + Kv =0 (4.167)
or

Kv = \v (4.168)
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where again A = w?. This is the symmetric eigenvalue problem and again results in n
eigenvalues \;, which are the squares of the natural frequencies w?, and n eigenvec-
tors v;. The solution of equation (4.166) becomes

q(t) = ici Sin((.l)l't + d)l')vi (4169)
i=1

where ¢; and ¢; are again constants of integration. The solution in the original coordi-
nate system x is obtained from this last expression by multiplying by the matrix (L7)™":

x(t) = (LN q@t) = ici sin (wt + &)(L1) 7, (4.170)
=

Hence the mode shapes are the vectors (LT) v, where v, are the eigenvectors of the
symmetric matrix K. Since the eigenvalue problem here is symmetric, it is known that
the eigenvalues and eigenvectors are real valued, as are the mode shapes. In addition,
the orthogonality of the v; allows easy computation of the modal initial conditions.
The numerical advantage here is that the eigenvalue problem is symmetric, so more
efficient numerical algorithms can be used to solve it. Computationally this is the most
efficient method of the four possible formulations presented here.
Again consider the vibration problem defined in equation (4.161), which is

X(1) + M'Kx(1) = 0 (4.171)

This equation can be transformed to a first-order vector differential equation by
defining two new n X 1 vectors, y;(¢) and y,(¢), by

yi) = x@0),  yar) = x(1) (4.172)
Note that y; is the vector of displacements and y,(¢) is a vector of velocities.
Differentiating these two vectors yields

yi(0) = x(t) = y2(9) (4.173)
ya(0) = X(1) = =M "'Ky(1)

where the equation for y,(¢) has been expanded by solving equation (4.171) for X(¢).
Equations (4.173) can be recognized as the first-order vector differential equation

y(t) = Ay(¢) (4.174)
Here

0 I
A= [—MlK o} (4.175)

is called the state matrix. The 0 denotes an n X n matrix of zeros, I denotes the n X n
identity matrix, and the state vector y(t) is defined by the 2n X 1 vector

w07 [0
¥ = [mﬂ = [X@J (4.176)
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The solution of equation (4.174) proceeds by assuming the exponential form y(r) =
zeM, where z is a nonzero vector of constants and \ is a scalar. Substitution into equa-
tion (4.174) yields A\z = Az or

Az = \z z#0 (4.177)

This is again the standard algebraic eigenvalue problem. While the matrix A has
many zero elements, it is now a 2n X 2n eigenvalue problem. It can be shown that
the 2n eigenvalues \; again corresponds to the n natural frequencies w; by the rela-
tion \; = w;j, where j = V/—1. The extra n eigenvalues are \; = —wj, so that there
are still only n natural frequencies, w;. The 2n eigenvectors, z of the matrix A, how-

ever, are of the form
u4
= : 4.178
& [)\i“l] ( )

where u; are the mode shapes of the corresponding vibration problem. The matrix A
(see Window 4.10) is not symmetric and the eigenvalues \; and eigenvectors z; would
therefore be complex. In fact, the eigenvalues A; in this case are imaginary numbers
of the form w;j.

Window 4.10
Various Uses of the Symbol A

Do not be confused by the matrix A. The symbol A is used to denote any matrix.
Here, A is used to denote

A=M'K

0 I 0 I
A= A=
[—M‘lK —M—lc] [M‘lK 0}

to name a few. Which matrix A is being discussed should be clear from the
context.

Damped Systems

For large-order systems, computing the eigenvalues using equation (4.177) becomes
numerically more difficult because it is of order 2n rather than n. The main advan-
tage of the state-space form is in numerical simulations and in solving the damped
multiple-degree-of-freedom vibration problem, which is discussed next. Now consider
the damped vibration problem of the form

MX(1) + Cx(t) + Kx() = 0 (4.179)
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where C represents the viscous damping in the system (see Section 4.5) and is as-
sumed only to be symmetric and positive semidefinite. The state-matrix approach
and related standard eigenvalue problem of equation (4.177) can also be used to
describe the nonconservative vibration problem of equation (4.179). Multiplying
equation (4.179) by the matrix M~ yields

X() + M'Cx(t) + M7'Kx(t) = 0 (4.180)

Again it is useful to rewrite this expression in a first-order or state-space form by
defining the two n X 1 vectors, y;(¢) = x(¢) and y,(¢) = x(¢), as indicated in equa-
tion (4.172). Then equation (4.173) becomes

yi() = x(1) = y2()
Vo) = X(¢) = —M'Kx(t) — M~'Cx(¢) (4.181)

where the expression for X(¢) in equation (4.181) is taken from equation (4.180) for
the damped system by moving the terms M~'Cx(f) and M'Kx(¢) to the right of the
equal sign. Renaming x(f) = y;(¢) and x(f) = y,(¢) in equation (4.181) and using
matrix notation yields

| @] _ Oy1(2) + Iy>(2) [ o I i
o= [Yi(f)} - [—M lKlyl(t)—l\/lleyz(tJ - [—MlK —MlC:| [y;(t)} -0
(4.182)

where the vector y(¢) is defined as the state vector of equation (4.176), and the state
matrix A for the damped case is defined as the partitioned form

0 I
A= [—M‘IK _M_1C} (4.183)

The eigenvalue analysis for the system of equation (4.182) proceeds directly as for
the undamped state-matrix system of equation (4.176).

A solution of equation (4.183) is again assumed of the form y(f) = ze and
substituted into equation (4.183) to yield the eigenvalue problem of equation (4.177)
(i.e., Az = \z). This again defines the standard eigenvalue problem of dimension
2n X 2n. In this case, the solution again yields 2n values \; that may be complex
valued. The 2n eigenvectors z; described in equation (4.178) may also be complex
valued (if the corresponding A; is complex). This, in turn, causes the physical mode
shape u; to be complex valued as well as the free-response vector x(f).

Fortunately, there is a rational physical interpretation of the complex eigenvalue,
modes and the resulting solution determined by the state-space formulation of the ei-
genvalue problem given in equation (4.183). The physical time response x(¢) is simply
taken to be the real part of the first n coordinates of the vector y(¢) computed from

2n
x(f) = D cueM (4.184)
i=1
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The time response is discussed in more detail in Section 4.10 and was introduced in
equation (4.115). The physical interpretation of the complex eigenvalues \; is taken
directly from the complex numbers arising from the solution of an underdamped single-
degree-of-freedom system given in equations (1.33) and (1.34) of Section 1.3. In par-
ticular, the complex eigenvalues \; will appear in complex conjugate pairs in the form

N = —Lw; — "Jiﬂj
Nt = —Goy + o V1 — & (4.185)

where j = V—1, w; is the undamped natural frequency of the ith mode and ¢; is the
modal damping ratio associated with the ith mode. The solution of the eigenvalue
problem for the state matrix A of equation (4.183) produces a set of complex num-
bers of the form \; = o; + B;j, where Re(\;) = o; and Im()\;) = B;. Comparing
these expressions with equations (4.185) yields

o; = Vo + B2 = VRe(\)? + Im(\,)? (4.186)
_ oy _ —Re(\)

Vi + 87 VRe(\) + Im(\,)?
which provides a connection to the physical notions of natural frequency and damp-
ing ratios for the underdamped case. (See Inman, 2006, for the overdamped and
critically damped cases.)

The complex-valued mode-shape vectors u; also appear in complex conjugate
pairs and are referred to as complex modes. The physical interpretation of a com-
plex mode is as follows: each element describes the relative magnitude and phase of
the motion of the degree of freedom associated with that element when the system
is excited at that mode only. In the undamped real-mode case, the mode-shape
vector is real (recall Section 4.1) and indicates the relative positions of each mass
at any given instant of time at a single frequency. The difference between the real-
mode case and the complex-mode case is that if the mode is complex, the relative
position of each mass can also be out of phase by the amount indicated by the com-
plex part of the mode shapes entry (recall that a complex number can be thought of
as a magnitude and a phase rather than a real part and an imaginary part).

The state-space formulation of the eigenvalue problem for the matrix A given
by equation (4.183) is related to the most general linear vibration problem. It also
forms the most difficult computational eigenvalue problem of the five problems
discussed previously. The following example illustrates how to compute the natural
frequencies and damping ratios using the state-matrix approach.

G (4.187)

Example 4.9.4

Consider the following system and compute the natural frequencies and damping
ratios. Note that the system will not uncouple into modal equations and has complex
modes. The system is given by

R R Il R B O
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Solution In each of the following codes, the M, C, and K matrices are entered, put
into state-space form, and solved. The frequencies and damping ratios are then ex-
tracted using equations (4.186) and (4.187).

The solution in Mathcad is as follows:

o2 e 08 e A 7]
0::[8 g} I::[(l) ﬂ

A := augment(stack(0,-M1K),stack(I,-M1 ©))

0 0 1 0 —0.417 + 1.3451
0o o0 0 1 . | —0.417 - 1.3451
A=l 15 0.5 —0.5 o0.25| T elgenvals A=l g3 1 0.705]
1 -1 0.5 -0.5 —0.083 — 0.7051
—Re(\
ol 1= VRe(\)? + Im(\3)?2 1= 7(1 )
w
—Re(\
w2 1= \/Re()\l)z + Im()\l)z §2 = %
wl=0.71 w2 = 1.408
(1=0.117 {2 =0.296
U := eigenvecs(A)
0.193 + 0.3411 0.193 — 0.341i 0.37 + 0.0421 0.37 — 0.0421
U= —0.126 — 0.407i —-0.126 + 0.4071 0.725 0.725
| -0.539+0.1187i -0.539 — 0.118f -0.061 + 0.257i —0.061 — 0.2571
0.6 0.6 —-0.06 + 0.5121 —-0.06 — 0.512i

The solution in MATLAB requires defining the real and imaginary parts (also
see VTB4_3) and is as follows:

% enter data

n=2;M=[2 0;0 1];C=[1 -0.5;-0.5 0.5];K=[3 -1;-1 1];

% compute the state matrix

A=[zeros(n) eye(n); -M\K -M\(C];

[V,D]=eig(A) ;% computes eigenvalues and eigenvectors
% compute the real and imaginary parts
ReD=(D+D')/2;ImD=(D"'-D)*i/2;

W=(ReDA2+ImDA2) .A.5, Zeta=-ReD/W

W =
1.4078 0 0 0
0 1.4078 0 0
0 0 0.7103 0
0 0 0 0.7103
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Zeta =
0.2962 0 0 0
0 0.2962 0 0
0 0 0.1169 0
0 0 0 0.1169

The solution in Mathematica is as follows:

2 0
In[1]:=M = (0 1>,

o0 = (0 0)_
“\0 o0/’
i = IdentityMatrix[2];

Formation of A matrix.

In[6]:= A = ArrayFlatten[{o, i}, {-Inverse[M].K, -Inverse[M].c}}]1;

MatrixForm[A]
Out[7]//MatrixForm=
0 0 1 0
0 0 0 1
3 1
> 3 -0.5 0.25

Solution of the eigenvalue problem.

In[8]:= {\, v} = Eigensystem[A];
MatrixForm[\]
MatrixForm[v]

Out[9]//MatrixForm=

—0.416934 + 1.344641
—0.416934 — 1.344641
—0.0830665 + 0.7054541
—0.0830665 — 0.7054541

Out[10]//MatrixForm=
0.193156+0.3410441 —0.126254—-0.40718 —0.539116+0.1175341 0.600152+0.01
0.193156—-0.3410441 —0.126254+0.40718i —-0.539116—-0.1175341 0.600152+0.01
0.369554+0.04226881 0.725456+0.1 —0.0605163+0.2571931 —-0.060261+0.5117761

0.369554-0.04226881 0.725454+0.1 —0.0605163-0.2571931 -0.060261-0.5117761
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Calculation of natural frequencies and damping ratios.

In[11]:= ol = VRe[A[[3111? + Im[A[31112
2 = VRe[A[1]111% + Im[A[1]1]?

;1 - ~ReM[311]
wl

(2 — ~ReDAL1I1]
w2

Out[11]= 0.710328
Out[12]= 1.4078

Out[13]= 0.116941
Out[14]= 0.29616

4.10 NUMERICAL SIMULATION OF THE TIME RESPONSE

This section is a simple extension of Sections 1.9, 2.8, and 3.9, which examine
the use of numerical integration to simulate and plot the response of a vibra-
tion problem. Simulation is a much easier way to obtain the system’s response
when compared to computing the response by modal decomposition, which was
stressed in the last nine sections. However, the modal approach is needed to per-
form design and to gain insight into the dynamics of the system. Important de-
sign criteria are often stated in terms of modal information, not directly available
from the time response. In addition, the modal properties may be used to check
numerical simulations. Likewise, numerical solutions may also be used to check
analytical work.

Consider the forced response of a damped linear system. The most general
case can be written as

Mx + Ck + Kx = BF(t)  x(0) = x5, x(0) = %, (4.188)

Following the development of equation (4.181), define y;(f) = x(¢) and y,(¢) = x(¢)
so that y;(¢) = y,(¢). Then multiplying equation (4.188) by M ! yields the coupled
first-order vector equations

y1() = y2(0)

V2(t) = =M 'Ky, (1) — M~'Cy,(1) + M"'BF(1) (4.189)

with initial conditions y;(0) = x, and y,(0) = x,. Equation (4.189) can be written as
the single first-order equation

y( = Ay + ) y(0) = yo (4.190)
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where A is the state matrix given by equation (4.183):

0 I
A =
|:—M‘1K —M—IC]

_ |y _ 0 _ [y | _ %
¥ = [yZ@J £ [MlBF(r)J Yo [yzanJ [J

Here y(¢) is the (2n X 1) state vector, where the first n X 1 elements correspond
to the displacement x(f) and where the second n X 1 elements correspond to the
velocities x(¢).

The Euler method of the numerical solution given in Section 3.9, equation
(3.105) can be applied directly to the vector (state-space) formulation given in
equation (4.190), repeated here:

y(tii1) = y(1;) + AtAy(1) (4.191)

which defines the Euler formula for integrating the general vibration problem de-
scribed in equation (4.190) for the zero-force input case. This can be extended to
the forced-response case by including the term f; = f(z,):

Y1 TV + AtAy[ + f[' (4192)

and

where y;, | denotes y(¢;+1), and so on, using y(0) as the initial value.

As before in Sections 1.9, 2.8, and 3.9, Runge—Kutta integration methods are
used in most codes to produce a more accurate approximation to the solution. The
following examples illustrate how to use MATLAB, Mathcad, and Mathematica to
perform numerical integration to solve vibration problems.

Example 4.10.1

Consider the system given by

4 01 %@ [30 -5 |:x1(t) [0.23500 ,
+ = 2.756556¢
[0 9} [x'z(t) -5 5 |Ln0) 297022 | S0 )
A quick computation shows that the driving frequency is also the natural frequency of
the second mode. However, because of the force distribution vector b is proportional
to the first mode shape, no resonance will occur. The system does not resonate because

the force is distributed orthogonal to the second mode. The simulation will verify that
this prediction is correct.

Solution The problem is first put into state-space form and then solved numerically.

In Mathcad the code becomes

4 0 30 5 0.23500
M= [0 9i| K := [5 5i| B := [2.97922:| w:= 2.75655
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£ mi.p M‘l-K=K=[ 7.5 —1.25] 1C:[o.osg]

-0.556 0.556 0.331
0 0 0 10 0
0 0 0 0 1 0
X:=1o| M 7.5 125 0 o] DB T ALXE L oD
0 0.556 —-0.556 0 O fi-sin(o-t)
Z := rkfixed (X, 0, 20, 3000, D) t := Z<%> x1 := Z<¥> x2 := 7<%
The MATLAB code to produce the solution is as follows:
clear all
xo=[0; 0; 0; 01;
ts=[0 20];
[t,x]=0de45('f',ts,x0);
plot(t,x(:,1),t,x(:,2),"'--")
O e
function v=Ff(t,x)
M=[4 0; 0 9];
K=[30 -5; -5 5];
B=[0.23500; 2.97922];
w=2.75655;
Al=[zeros(2) eye(2); -inv(M)*K zeros(2)];
f=inv(M)*B;
v=A1l*x+[0;0; f]l*sin(w*t);
0.25 +
02 + ,’\ P ’
1 \ [BY ]
015 + ¢ ‘oo 1 ey Il
n V2aE 1 N/ \ h
1 \ ! 1 1
01+ \ I y ’
1 1 " \ 1
g 0.05 + 'I “ ,' ‘| I'
2(% = . 7 \ . ] '
8_ 0 \ .10 \ / 20
2 005 v / \ -
~ \ II ‘\ !
—-0.1 + \ . NN !
RN 1 \ !
= 1
-0.15 + \\ I’ “ !
\ 1 \ 1
02 4 NS o
Nz \.,I
—-0.25 -

T (s)
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The Mathematica code to produce the solution is as follows:

In[1]:= <<PlotLegends'

S
(% )

o = 2.756556;

£ _< .23500*Sin[w*t] )
T \2.97922#Sin[w*t]

B (xl[t])_
*=\x2rt1)’

_(x1IE]N .
de‘<x2"[t]>’

In[2]:

system = m.xdd + k.x;

In[9]:= num = NDSolve [{system[[1]] == f[[1]], x1'[0] == O,
x1[0] == 0, system[[2]] == f[[2]], x2[0] == O,
x2'[0] == 0}, {x1[t], x2[t1}, {t, O, 20%}1;

Plot[{Evaluate[x1[t] /. num], Evaluate[x2[t] /. num]},

{ t, 0, 20},
PlotStyle — {RGBColor[1, 0, 0], RGBColor[O, 1, 0]},
PlotLegend — {"x1[t]", "x2[t]"},
LegendPosition — {1, 0}, LegendSize— {1, .3}]

Example 4.10.2

Compute and plot the time response of the system (newtons)
[2 0 [?cll(t) +[ 3 05 [)'il(t) +[3 -1 |:x1(l) :[1 sin (o)
1 1 ]L%®0 =05 0.5 |Lxx(?) -1 1 |Lxn® 1
subject to the initial conditions

X) = |:001:|m, \ [(1):|m/s

Solution This amounts to formulating the system into the state-space equations given
by (4.190) and running a Runge—Kutta routine. The solution in Mathcad is

2 0 3 -0.5 3 -1
M'_[o 1} C'_[—0.5 0.5} K'_|:71 1}

0 0
0:=[0 ¢
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0
1 " o1
A : = augment(stack(0,-M*-K),stack(I,-M O)) X:= 1
0
0.5
. = ML -
foews e [%]
0
0 .
D(t, X) : =A-X+ £ ‘sin(w-t)
0
f1
Z : = rkfixed (X, 0, 20, 3000, D) t : = 2<®> x1 : = z<I> x2 : = 7<%
1.5
A
1 \
L 1 \
1.0+ ,’ ‘\
- I \
1 1
1 \
1 \
- \
05k / \
II “ // \‘ -
4 \ RN ! \ RN ¢
1 ’ \ 1 \ 1 \ , \ N \‘
X_Z . N .’A.‘\l /. AL AN\ L I}/—\ |
\\ II - \\ /, \\ II s
\ ! N -
b \ 1
—0.5.- " /)
-1.0%-

The MATLAB code to produce the same plot is as follows:

clear all

xo=[0; 0.1; 1; 0];

ts=[0 20];

[t,x]=0de45('f",ts,x0);
plot(t,x(:,1),t,x(:,2),"'--")

O e

function v=Ff(t,x)

M=[2 0; 0 1];

C=[3 -0.5; -0.5 0.5];
K=[3 -1; -1 1];

B=[1; 1];
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w=2;

Al=[zeros(2) eye(2); -inv(M)*K -inv(M)*C];
f=inv(M)*B;

v=A1l*x+[0;0; fl*sin(w*t);

The Mathematica code for simulating and plotting the response is as follows:

In[1]:= <<PlotLegends'

N

In[2]:

_[xtm
xdd = |:x2”[t]:|’
system = m.xdd + c.xd + k.x;

In[11]:= num = NDSolve [{system[[1]1] == f[[1]], x1'[0] == 1,
x1[0] == 0, system[[2]] == f[[2]1], x2[0] == .1,
x2'[0] == 0}, {x1[t], x2[t1}, { t, O, 20} 1;

Plot [{Evaluate [x1[t] /. num], Evaluate[x2[t] /. numl},

{t, 0, 20%,
PlotStyle — {RGBColor[1, 0, 0], RGBColor[O0, 1, 0]},
PlotLegend — {"x1[t]", "x2[t]"},
LegendPosition — {1, 0}, LegendSize— {1, .3}]

Example 4.10.3

Consider the following system excited by a pulse of duration 0.1 s (units in newtons):

S R R e

= [ﬂ[(b(z —1) — ot — 1.1)]
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and subject to the initial conditions

0 0
Xy = o1 m, Vo = 0 m/s

Compute and plot the response of the system. Here @ indicates the Heaviside
step function introduced in Section 3.2.

Solution This again follows the same format as the previous examples of putting the
equations of motion into state-matrix form and solving using one of the software pro-
grams. In Mathcad the code and solution are

2 0 0.3 -0.05 3 -1
M'_[o 1} C'_[—0.05 0.05} K'_|:71 1}

SR

B: = [ﬂ A : = augment (stack (o, -M1-K), stack (I, -M1 Q)
0
f:=M1.B f=[ﬂ X:= (01'1)
0
0
D(t, X): =A-X+ 180 (@t - 1) - dCt - 1.1))
f1
Z : = rkfixed (X, 0, 30, 3000, D) t : = Z<O> x1 : = zI> x2 : = 7<&

The MATLAB code for producing the same plot is as follows. Note that in this
case it is necessary to set the tolerance for ODE45 in order to clearly define the “impulse”
as the difference between two step functions. This is done using the options command
listed in the following.

clear all

xo = [0; -0.1; 0; 0];
ts = [0 30];

options=odeset('RelTol"',Te-4);
[t,x] = ode45('f',ts,x0);
plot(t,x(:,1),t,x(:,2),"'- -")

M=1[20; 01];

C = [0.3 -0.05; -0.05 0.05];
K=1[3-1; -1 1];

B=[0; 1];t1 = 1; t2 = 1.1;
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0.2
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= [zeros(2) eye(2); -inv(M)*K -inv(M)*C];
f = inv(M)*B;

= Al*x + [0;0; f]l*(stepfun(t,tl)-stepfun(t,t2));

-0.2

The Mathematica code for simulating and plotting the response is as follows. As
in the MATLAB case, the tolerances must be set in order to define the impulse. In this
case, the command is PrecisionGoal->10 as listed below:

In[1]:= <<PlotLegends'

In[2]:= m =<; 2),

< —0. 05)
0.05  0.05
(4 )
r~( " )
UnitStep[t — 1] — UnitStep[t — 1.1] /)’
_ |:x1[t]:|.
T Lx2r
B [xl'[t]j|.
T lx2'

=
xdd = |:x2”[t]:|’

system = m.xdd + c.xd + k.x;
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In[10]:= num = NDSolve [{system[[1]1] == f[[1]1], x1'[0] == O,
x1[0] == 0, system[[2]] == f[[2]], x2[0] == -.1,
x2'[0] == 0}, {x1[t], x2[t]1}, {t, O, 30%,
PrecisionGoal->10];

Plot [{Evaluate [x1[t] /. num], Evaluate[x2[t] /. num]l},

{t, 0, 30%},
PlotStyle — {RGBColor[1, 0, 0], RGBColor[0, 1, 0]},
PlotRange — {-.2,.2},
PlotLegend — {"x1[t]", "x2[t]"},
LegendPosition — {1, 0}, LegendSize— {1, .3}]

415

d

The preceding examples illustrate the basic features of using math software
to solve vibration problems. These examples are all simple two-degree-of-freedom
systems, but the methods and routines work for any number of degrees of freedom,
limited only by the array size for a particular code. The Toolbox provides addi-

tional solution possibilities.

PROBLEMS

Those problems marked with an asterisk are intended to be solved using computational

software.

Section 4.1 (Problems 4.1 through 4.19)

4.1. Consider the system of Figure P4.1. For ¢; = ¢; = ¢; = 0, derive the equation of
motion and calculate the mass and stiffness matrices. Note that setting k3 = 0 in your

solution should result in the stiffness matrix given by equation (4.9).

ky ks ks
AN
my my
— — —
S

)
X1 X2 Figure P4.1

4.2. Calculate the characteristic equation from Problem 4.1 for the case
my =9kg my=1kg k =24N/m k =3N/m k =3N/m

and solve for the system’s natural frequencies.

4.3. Calculate the vectors uy and u, for Problem 4.2.

4.4. For initial conditions x(0) = [1 0] and x(0) = [0  0]” calculate the free response

of the system of Problem 4.2. Plot the response x1(f) and x,(¢).
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4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

Multiple-Degree-of-Freedom Systems Chap. 4

Calculate the response of the system

B ?]X([)-ﬁ-[i; _33}([):0

described in Example 4.1.7 to the initial condition x(0) = 0, x(0) = [1  0]7, plot the
response, and compare the result to Figure 4.3.

Write the equations of motion for the system of Figure P4.1 for the case thatky = k3 = 0
and identify the mass and stiffness matrix for this case.

Calculate and solve the characteristic equation for the following system:

B ﬂ'x'(z)ﬂo[_ll _11:|x(t)=0

Compute the natural frequencies of the following system:

B ﬂx‘(;ﬂ[i 11}(@):0.

Calculate the solution

B (1):|X(t) + [373 _33}(:) =0, x(0) = % x(0) = 0
1
Compare the response with that of Figure 4.3.
Calculate the solution
9 0 27 -3 L
|:0 1:|'x'(t) + [_3 3 :|x(t) =0, x(0) = 13 x(0) =0

Compare the response with that of Figure 4.3.If you worked Problem 4.9, compare
your solution to that response also.

Compute the natural frequencies and mode shapes of the following system:

[g ﬂ'x'(t)ﬂo[_“z _12}((:):0

Determine the equation of motion in matrix form, then calculate the natural frequen-
cies and mode shapes of the torsional system of Figure P4.12. Assume that the torsional
stiffness values provided by the shaft are equal (k; = k,) and that disk 1 has three times
the inertia as that of disk 2 (J; = 3.,).

0,(2) 0,(1)
I
ky @ k, @ Figure P4.12 Torsional system with two disks
and, hence, two degrees of freedom.
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4.13.

4.14.

4.15.

4.16.

4.17.

Two subway cars of Figure P4.13 have 2000 kg mass each and are connected by a
coupler. The coupler can be modeled as a spring of stiffness & = 280,000 N/m. Write
the equation of motion and calculate the natural frequencies and (normalized) mode
shapes.

x1(1) |X_2(2
‘DDDmOMODDmD’ Tk
O O O QO P75

Figure P4.13 Vibration model of two subway cares connected by a coupling device
modeled as a massless spring.

Suppose that the subway cars of Problem 4.13 are given the initial position of xiy = O,
X9 = 0.1 m, and initial velocities of 1y = ,y = 0. Calculate the response of the cars.

A slightly more sophisticated model of a vehicle suspension system is given in
Figure P4.15. Write the equations of motion in matrix form. Calculate the natural
frequencies for k; = 10° N/m, k, = 10*N/m,m, = 50 kg, and m; = 2000 kg.

. IR
Car mass e
ky ky
Car spring
ixz(l)
my
my
ky Tire mass .
Tire stiffness ky Figure P4.15 A two-degree-

of-freedom model of a vehicle
suspension system.

Examine the effect of the initial condition of the system of Figure 4.1(a) on the responses
x1(¢) and x,(¢) by repeating the solution of Example 4.1.7 given by

1 1
[xl(f)J |34 sin (V21 + ¢) — 3 Asin (2 + ¢)
(0 Ay sin(V2t + &) + Aysin(2t + ¢y)

first for x19 = 0, xp9 = 1 with Xy = X590 = 0 and then for x;yp = xy = X0 = 0 and
X590 = 1.Plot the time response in each case and compare your results against Figure 4.3.

Consider the system defined by

9 0 24+ 1k -
|: X + |: 2 ko x=0
0 1 —k, ky
Using the initial conditions x1(0) = 1 mm, x,(0) = 0, and x;(0) = x,(0) = 0, resolve

and plot x;(t) for the cases that k, takes on the values 0.3, 3, 30, and 300. In each case,
compare the plots of x; and x,. What can you conclude?
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4.18. Consider the system defined by

|:m1 0 |:X1 4 |:k1 + kz _k2 |:X1 _ |:O

0 nmy ..X.z _kz kZ 89) 0
Determine the natural frequencies in terms of the parameters my, my, k1, and k,. How
do these compare to the two single-degree-of-freedom frequencies w; = Vk;/m; and
wy; = 'V k2 / ny ?

4.19. Consider the problem of Example 4.1.7 with the first degree-of-freedom response
given by x;(£) = 0.5(cos V2t + cos2f). Use a trig identity to show the x;(¢) experiences
a beat. Plot the response to show the beat phenomena in the response.

Section 4.2 (Problems 4.20 through 4.35)

4.20. Calculate the square root of the matrix
13 -10
M =
[ —10 8 J

b
J; calculate (M"/?)? and compare to M ]
c

[ 1 [0 [—0.1
=21 L5y 0.1
first with respect to unity (i.e., x’x = 1) and then again with respect to the matrix M

(i.e,x"Mx = 1), where
3 -0.1
M=
[—0.1 2 J

4.22. Consider the vibrating system described by

[3 ﬂ'x'(rwr[_; ﬂx(r)=0

Compute the mass-normalized stiffness matrix, the eigenvalues, the normalized eigen-
vectors, the matrix P, and show that PPMP = I and PTKP is the diagonal matrix of
eigenvalues A.

4.23. Calculate the matrix K for the system defined by

ny 0 .. kl + k2 _kz
+ =
[ 0 m2i|X(t) [ —k; ky + k3 x® =0

and see that it is symmetric.

[Hint: Let M'? = [_a

4.21. Normalize the vectors

4.24. Consider the vibrating system described by

[g ﬂ'x'(rw[_;‘ _ﬂx(t)=o
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4.25.

4.26.
4.27.

4.28.

4.29.

4.30.

4.31.

Compute the mass-normalized stiffness matrix, the eigenvalues, the normalized eigen-
vectors, the matrix P, and show that PPMP = I and PTKP is the diagonal matrix of
eigenvalues A.

Discuss the relationship or difference between a mode shape of equation (4.54) and an
eigenvector of K.

Calculate the units of the elements of matrix K.

Calculate the spectral matrix A and the modal matrix P for the vehicle model of
Problem 4.15 described by

[2000 0 "(t)+[ 1000 —1000 =0
0o s0 ¥ ~1000 11,000 |*V ~

Calculate the spectral matrix A and the modal matrix P for the system given by

[2000 0 <0 J{ 280,000  —280,000 <) = 0
0 2000 —280,000 280,000

Calculate K for the torsional vibration problem given by

3 0. 2 -1
JZ[O 1:|0(t) + k[—l 1Je(r) =0

What are the units of K ?

Consider the system in Figure P4.30 for the case where m; = 1 kg, m, = 4 kg, ky =
240 N/m, and k, = 300 N/m. Write the equations of motion in vector form and compute
each of the following:

(a) the natural frequencies

(b) the mode shapes

(c) the eigenvalues

(d) the eigenvectors

(e) show that the mode shapes are not orthogonal

(f) show that the eigenvectors are orthogonal

(g) show that the mode shapes and eigenvectors are related by M~
(h) write the equations of motion in modal coordinates

1/2

Note that the purpose of this problem is to help you see the difference between these
various quantities.

e U e X0

my A m;
ky k,

Figure P4.30 A two-degree-of-freedom
system.

Consider the following system:

[(1) ﬂx‘(zw[_i’ _ﬂx(z)—o
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where M is in kg and K is in N/m. (a) Calculate the eigenvalues of the system.
(b) Calculate the eigenvectors and normalize them.

4.32. The torsional vibration of the wing of an airplane is modeled in Figure P4.32. Write
the equation of motion in matrix form and calculate analytical forms of the natural
frequencies in terms of the rotational inertia and stiffness of the wing.

01(0) 0,(7)

Airplane wing with engines Wing modeled as two shafts and two
disks for torsional vibration

Figure P4.32 A crude model of the torsional vibration of a wing consisting of a two-
shaft, two-disk system similar to Problem 4.12 used to estimate the torsional natural
frequencies of the wing where the engine inertias are approximated by the disks.

4.33. Calculate the value of the scalar a such thatx; = [a -1 1]Tandx, =[1 0 1]7
are orthogonal.

4.34. Normalize the vectors of Problem 4.33. Are they still orthogonal?
4.35. Which of the following vectors are normal? Orthogonal?

1
V2 0.1 0.3
xi=1| 0 x, = | 0.2 x3 = | 04
1 03 03
V2

Section 4.3 (Problems 4.36 through 4.46)

4.36. Decouple the following equation of motion into two decoupled equations of motion:

[3 ﬂ'x'(zwr[_; _ﬂx(z)=o

4.37. Solve the system of Problem 4.12 given by

307, 2 -1
+ =
12[0 Je k|:_1 Jo 0
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4.38.

4.39.

4.40.

4.41.

4.42.

Using modal analysis for the case where the rods have equal stiffness (i.e.,k; = k), J; = 34,
and the initial conditions are x(0) = [0 1]” and x(0) = 0.

Consider the system
9 0. 27 -3
+ =
[0 1}((0 |:_3 3}((l) 0

of Example 4.3.1. Calculate a value of x(0) and x(0) such that both masses of the system
oscillate with a single frequency of 2 rad/s.

Consider the system of Figure P4.39 consisting of two pendulums coupled by a spring.
Determine the natural frequency and mode shapes. Plot the mode shapes as well as
the solution to an initial condition consisting of the first mode shape for k = 20 N/m,
I = 0.5m,and m; = mp = 10kg,a = 0.1 m along the pendulum.

Figure P4.39 Two pendulums of the
same length connected by a spring used
to model a machine part.

Compute and plot the response of

[ oo [3 Zo-s

subject to x(0) = [1  1]7 and x(0) = 0. Compare your result to Example 4.3.2 and
Figure 4.6.

Use modal analysis to calculate the solution of

[(1) g]'x'(twr[_i _ﬂx(r)=0

for the initial conditions x(0) = [0  1]” (mm) and x(0) = [0  0]7 (mm/s).

For the matrices

1

— 0 111
M2 = d Pz—[

\f ) an Vil 1 1

calculate M~V2P, (M~2P) 7, and PTM~"/? and hence verify that the computations in
equation (4.70) make sense.
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4.43.

4.44.

4.45.

4.46.
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Consider the two-degree-of-freedom system defined by

[(9) ﬂ'ﬁ(tﬂ[zz _2}((00

Calculate the response of the system to the initial conditions

1
L3 % =0
Xy = —— =
0 \@1 0

What is unique about your solution compared to the solution of Example 4.3.1?
Consider the two-degree-of-freedom system defined by

[(9) ﬂx‘(z)Jr[_z; _ﬂx(z)—o

Calculate the response of the system to the initial conditions

1L
xo =0 and Xo=—+| 3

\/2—1

What is unique about your solution compared to the solution of Example 4.3.1 and to
Problem 4.40, if you also worked that?

Consider the system defined by

[100 0 "(t)+[ 25,000 —15,000 =0
0o 100 ¥ ~15000 25000 |\ T

Solve for the free response of this system using modal analysis and the initial conditions.

Consider the model of a vehicle given in Problem 4.15 illustrated in Figure P4.15

defined by
[2000 0 ')i-i-[ 1000 —1000] _ o
0 50 —1000 11,000
Suppose that the tire rolls over a bump modeled as the initial conditions of

x(0) = [0 0.01]T and x(0) = 0. Use modal analysis to calculate the response of the
car x1(¢). Plot the response for three cycles.

Section 4.4 (Problems 4.47 through 4.59)

4.47. A vibration model of the drive train of a vehicle is illustrated as the three-degree-of-

freedom system of Figure P4.47 Calculate the undamped free response [i.e., M(t) =

F(t) = 0,¢; = ¢, = 0] for the initial condition x(0) = 0,%(0) = [0 0 1]7. Assume
that the hub stiffness is 10,000 N/m and that the axle/suspension is 20,000 N/m.
Assume the rotational element J is modeled as a translational mass of 75 kg.
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Rotational Tire damping
‘ A
Hub damping
— xl(l) — xz(t) — x;(1)
— Equivalent — — Vehicle
M(1) Torque convertor igertia of equivalent ‘F(t)
Clutch Inertia PV transmission V'V inertia Wind and
torque J=75 kg-m%rad m,=100 kg m3=3000 kg road load
[OIONNOIO) [OIONHOI0) [OIONNOIO)
/ / /
Hub stiffness Axle and suspension
stiffness ,
Y
Translational

Figure P4.47 A simplified model of an automobile for vibration analysis of the drive train.
The parameter values given are representative and should not be considered as exact.

4.48. Calculate the natural frequencies and normalized mode shapes of

4 0 0 4 -1 0
0 2 0|x+|-1 2 -1x=0
0 0 1 0 -1 1

4.49. The vibration is the vertical direction of an airplane and its wings can be modeled as
a three-degree-of-freedom system, with one mass corresponding to the right wing, one

xl(t) xz([) x3(t)
! I
"k \49 g\
(a) (b)
NG {0 x50

=

m NV Am VWV

(©)

Figure P4.49 A model of the wing vibration of an airplane: (a) vertical wing
vibration; (b) lumped mass/beam deflection model; (c) spring-mass model.
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4.50.

4.51.

4.52.

4.53.
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mass for the left wing, and one mass for the fuselage. The stiffness connecting the three
masses corresponds to that of the wing and is a function of the modulus E of the wing.
The equation of motion is

Lo offxe] [ 3 -3 o]« 0
ml 0 4 015 [+ 5| 3 6 =3 |n@ | =0
0 0 1] %0 0 -3  3]Lx0 0

The model is given in Figure P4.49. Calculate the natural frequencies and mode
shapes. Plot the mode shapes and interpret them according to the airplane’s
deflection.

Solve for the free response of the system of Problem 4.49, where E = 6.9 X 10°N / m?,
[ =2m,m = 3000kg,and I = 5.2 X 10~ %m* Let the initial displacement correspond
to a gust of wind that causes an initial condition of x(0) = 0,x(0) = [02 0 0]T m.
Discuss your solution.

Consider the two-mass system of Figure P4.51. This system is free to move in the x; — x,
plane. Hence, each mass has two degrees of freedom. Derive the linear equations of
motion, write them in matrix form, and calculate the eigenvalues and eigenvectors for
m = 10kgand k = 100 N/m.

Figure P4.51 A two-mass system
free to move in two directions.

Consider again the system discussed in Problem 4.51. Use modal analysis to calculate
the solution if the mass on the left is raised along the x, direction exactly 0.01 m and
let go.

The vibration of a floor in a building containing heavy machine parts is mod-
eled in Figure P4.53. Each mass is assumed to be evenly spaced and signifi-
cantly larger than the mass of the floor. The equation of motion then becomes
(my = my = m3 = m).
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4.54.

4.55.

4.56.

4.57.

7] [ [
- - > > >/~  Figure P4.53 A lumped-mass model of
l ! l ! boxes loaded on the floor of a building.
(o 1 1]
64 6 192
X1
EIf{ 1 1 1
mix + —| - = = x| =0
Pl 6 3 6 |7
X;
B 19
1192 6 64 |

Calculate the natural frequencies and mode shapes. Assume that in placing box m,
on the floor (slowly) the resulting vibration is calculated by assuming that the initial
displacement at m, is 0.05 m. If / =2 m, m = 200 kg, E = 0.6 X 10° N/m? I =
4.17 X 107> m* calculate the response and plot your results.

Recalculate the solution to Problem 4.53 for the case that mi, is increased in mass
to 2000 kg. Compare your results to those of Problem 4.53. Do you think it makes a
difference where the heavy mass is placed?

Repeat Problem 4.49 for the case that the airplane body is 10 m instead of 4 m as indi-
cated in the figure. What effect does this have on the response, and which design (4 m
or 10 m) do you think is better for reduced vibration?

Often in the design of a car, certain parts cannot be reduced in mass. For example, con-
sider the drive train model illustrated in Figure P4.47 The mass of the torque converter
and transmission are relatively the same from car to car. However, the mass of the car
could change as much as 1000 kg (e.g., a two-seater sports car versus a family sedan).
With this in mind, resolve Problem 4.47 for the case that the vehicle inertia is reduced
to 2000 kg. Which case has the smallest amplitude of vibration?

Use the mode summation method to compute the analytical solution for the response
of the two-degree-of-freedom system:

1 0], 540 -3007 .
[0 4}‘([)+ [—300 300}‘([)_0

to the initial conditions of
B [ 0 . [o
= loot] 7 |o
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4.58.

4.59.
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For a zero value of an eigenvalue and hence frequency, what is the corresponding time
response? Or asked another way, the form of the modal solution for a nonzero fre-
quency is A sin(w,t + ¢), what is the form of the modal solution that corresponds to
a zero frequency? Evaluate the constants of integration if the modal initial conditions
are r1(0) = 0.1, and #1(0) = 0.01.

Consider the system described by

1 0], 400 —4007
[0 4}‘(’” [7400 400}‘@_0

subject to the initial conditions x(0) = [1  0]7,x(0) = 0. Plot the displacements
versus time.

Section 4.5 (Problems 4.60 through 4.72)

4.60.

4.61.

4.62.

4.63.

Consider the following two-degree-of-freedom system and compute the response
assuming modal damping rations of {; = 0.01 and {; = 0.1 :

[(5) ﬂ'x‘(z) + [fg _33}(:) =0, xp= [(2615}”“0 =0

Plot the response.

Consider the example of the automobile drive train system discussed in Problem 4.47,
modeled by

750 0 1 -1 0

0 100 O |[x+ 10,000| —1 3 2I|x=0

0 0 3000 0 -2 2

x(0) =0andx(0) =[0 0 1]"m/s

Add 10% modal damping to each coordinate, calculate and plot the system response.

Consider the following two-degree-of-freedom system and compute the response
assuming modal damping ratios of {; = 0.05 and ¢, = 0.01 :

[5(? ‘ﬂ'x'(r) + [_2(9) Zj|x(t) =0, x)= [8;83}&0 =0

Plot the response.

Consider the model of an airplane discussed in Problem 4.49, Figure P4.49 modeled by
3000 0 0 13,455 —13,455 0
0 12,000 0 |Xx + | —13,455 26910 —13455 |x =0
0 0 3000 0 —13,455 13,455

subject to the initial conditions x(0) = [0.02 0 0]"m and x(0) = 0. (a) Calculate
the response assuming that the damping provided by the wing rotation is {; = 0.01 in
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4.64.

4.65.

4.66.

4.67.

4.68.

4.69.

4.70.

each mode. (b) If the aircraft is in flight, the damping forces may increase dramatically
to ¢; = 0.1. Recalculate the response and compare it to the more lightly damped case
of part (a).

Repeat the floor vibration problem of Problem 4.53 given by

9 1 13]
64 6 192
11 1
200 +3.197 x 1074 —  ~  — |x=
00X + 3197 X 107 = = |x=10
1319
1192 6 64 |

x(0) =[0 0.05 0]"m and x(0) = 0
by assigning modal damping ratios of

Repeat Problem 4.64 with constant modal damping of {;, {», {3 = 0.1. If you worked
the previous problem, compare this solution with the solution of Problem 4.64.
Consider the damped system of Figure P4.66. Determine the damping matrix and use
the formula of equation (4.119) to determine values of the damping coefficient c¢; for
which this system would be proportionally damped.

Figure P4.66 A damped two-degree-
of-freedom system fixed at each end.

Let k3 = 0in Figure P4.66. Also let m; = 1,m, = 4,k; = 2,k, = 1, and calculate cy, c;,
and c3 such that {; = 0.01 and {, = 0.1.

Calculate the constants a and B for the two-degree-of-freedom system given by

[(1) 2:|'X + (aM + BK)X + [_i ﬂx =0

such that the system has modal damping of {; = {, = 0.3.

Equation (4.124) represents n equations in only two unknowns and hence cannot
be used to specify all the modal damping ratios for a system with n > 2. If the floor
vibration system of Problem 4.53 has measured damping of {; = 0.01 and ¢, = 0.05,
determine (3.

If you worked the previous problem, calculate the damping matrix for the system of
Problem 4.69. What are the units of the elements of the damping matrix?
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4.71. Does the following system decouple? If so, calculate the mode shapes and write the
equation in decoupled form.

[1 o..+[5—3.+[5—1 o
o 1 =3 3|1 1|*7

4.72. Show that if the damping matrix satisfies C = aM + BK, then the matrix CM 'K is
symmetric and hence that CM™'K = KM™'C.

Section 4.6 (Problems 4.73 through 4.83)

4.73. Calculate the response of the system of Figure P4.73 discussed in Example 4.6.1 if
F,(t) = 3(¢) and the initial conditions are set to zero. This might correspond to a two-
degree-of-freedom model of a car hitting a bump.

|—> F5(t) = 3 cos 2t
ky ke ’

FAAAMA
m my
— —F—
“ ) Figure P4.73 A damped
two-degree-of-freedom
X1 X2

system.

4.74. Calculate the response of the system of Figure P4.73 discussed in Example 4.6.1 if
Fi(f) = 3(¢) and the initial conditions are set to zero. This might correspond to a two-
degree-of-freedom model of a car hitting a bump.

4.75. For an undamped two-degree-of-freedom system, show that resonance occurs at one
or both of the system’s natural frequencies.

4.76. Use modal analysis to calculate the response of the drive train system of Problem 4.44

given by
75 0 0 1 -1 0
0 100 0 |X+ 10,000 —1 3 2|x=0
0 0 3000 0 -2 2

to a unit impulse on the car body (i.e., at location x3). Use the modal damping of
10% in each mode. Calculate the solution in terms of physical coordinates, and after
subtracting the rigid-body modes, compare the responses of each part.

4.77. Consider the machine tool of Figure 4.28 with a floor mass of m = 1000 kg, subject to
a force of 10 sinz (in newtons) so that the equation of motions is

04 0 0 30 =30 0 0
(10°)] 0 2 0 |%(r + (10*)] =30 38 -8 |x(®)=| O
0 0 1 0 -8 88 10sin¢

Calculate the response. How much does this floor vibration affect the machine’s tool-
head compared to the solution given in Example 4.8.3?
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4.78. Consider the airplane of Figure P4.49 with modal damping of 0.1 in each mode. Suppose
that the airplane hits a gust of wind, which applies an impulse of 33(¢) at the end of the
left wing and 3(¢) at the end of the right wing. Calculate the resulting vibration of the
cabin [xy(?)].

4.79. Consider again the airplane of Figure P4.49. with 10% modal damping in each mode.
Suppose that this is a propeller-driven airplane with an internal combustion engine
mounted in the nose. At a cruising speed, the engine mounts transmit an applied force
to the cabin mass (4m at x,) which is harmonic of the form 50 sin10¢. Calculate the
effect of this harmonic disturbance at the nose and on the wing tips after subtracting
out the translational or rigid motion.

4.80. Consider the automobile model of Problem 4.15 illustrated in Figure P4.15 with equa-

tions of motion:
[2000 0 ..J{ 1000 —1000 | _
o 50X 7 | -1000 11000 |¥ "

Add modal damping to this model of {; = 0.01 and {, = 0.2 and calculate the response
of the body [x,(¢)] to a harmonic input at the second mass of 10 sin3¢ N.

4.81. Determine the modal equations for the following system and comment on whether or
not the system will experience resonance.

X+ [_f _ﬂx = [ﬂ sin (0.618¢)

4.82. Consider the following system and compute the solution using the mode summation method.

9 0 27 -3 1] . 0
M:[o 1} K:[—3 3} "(0):[0_ "(O):M

4.83. Consider the following two systems, and in each case determine if a resonance response
occurs.

ny 0 x.] k] + k2 _k2 |:X1 |:0642_ .
+ _ )
(a) [ 0 mj |:x2:| [ —k, k2:| % 0.761 sin (2¢)
m 0415 k+hk —k [xl [0.23500 _
+ = 2.
(b) [ 0 mj L‘j [ ko hklle 29702 | S (2:7365561)

where my = 4kg, k; = 25N/m,m, = 9kg,and k, = SN/m.

Section 4.7 (Problems 4.84 through 4.87)
4.84. Use Lagrange’s equation to derive the equations of motion of the lathe of Figure 4.21
for the undamped case.

4.85. Use Lagrange’s equations to derive the equations of motion for the automobile of
Example 4.8.2 illustrated in Figure 4.25 for the case ¢; = ¢, = 0.

4.86. Use Lagrange’s equations to derive the equations of motion for the building model
presented in Figure 4.9 of Example 4.4.3 for the undamped case.
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4.87. Consider again the model of the vibration of an automobile of Figure 4.25. In this case, in-
clude the tire dynamics as indicated in Figure P4.87 Derive the equations of motion using
Lagrange formulation for the undamped case. Let 13 denote the mass of the car acting at c.g.

X3_

Figure P4.87 A simple car model including tire dynamics.

Section 4.9 (Problems 4.88 through 4.98)

10 -1
M= [—1 J

and calculate M~ !, M~1/2 and the Cholesky factor of M. Show that

*4.88. Consider the mass matrix

LL"=M
M*I/ZM*1/2 =7
M1/2M1/2 =M

*4.,89, Consider the matrix and vector

a-[ ] -]

use a code to solve Ax = b for ¢ = 0.1,0.01,0.001,10° and 1.

*4,90. Calculate the natural frequencies and mode shapes of the system of Example 4.8.3.
Use the undamped equation and the form given by equation (4.161).

*4,91. Compute the natural frequencies and mode shapes of the undamped version of
the system of Example 4.8.3 using the formulation of equation (4.164) and (4.168).
Compare your answers.

*4,92, Use a code to solve for the modal information of the following system

B (1)}(’(1‘)+|:_2; _ﬂx(t)=0
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*4.93.
*4.94,

*4.95.

*4.96.

*4.97.

*4.98.

Write a program to normalize the vector x = [0.4450 0.8019 1]7.
Use a code to calculate the natural frequencies and mode shapes obtained for the

system
1 0], 12 -2
[O 4}x(t) + |:72 12}((0 =0

Following the modal analysis solution of Window 4.5, write a program to compute the
time response of the system of Problem 4.94.

Use a code to solve the damped vibration problem

[9 0,x,+[2.7 —0.35”[27 3o
0 1 -0.3 0.3 -3 3
by calculating the natural frequencies, damping ratios, and mode shapes.

Consider the vibration of the airplane of Problems 4.46 and 4.47 as given in Figure P4.46.
The mass and stiffness matrices are given as

100 3 -3 0
EI

M=ml0 4 0 K=-7|-3 6 -3

00 1 0 -3 3

where m = 3000kg,/ = 2m,/ = 52 X 10" °m* E = 6.9 X 10° N/m?, and the damp-
ing matrix C is taken to be C = (0.002)K. Calculate the natural frequencies, normalized
mode shapes, and damping ratios.

Consider the proportionally damped, dynamically coupled system given by

e-[3] e[2 ] w2 3]

and calculate the mode shapes, natural frequencies, and damping ratios.

Section 4.10 (Problems 4.99 through 4.106)

*4.99.

*4,100.

Recall the system of Example 1.7.3 for the vertical suspension system of a car modeled by
mx(1) + cx(f) + kx(r) = 0,withm = 1361 kg, k = 2.668 X 10°N/m,and ¢ = 3.81 X
10* kg/s subject to the initial conditions of x(0) = 0 and v(0) = 0.01 m/s?. Solve this
and plot the solution using numerical integration.

Solve for the time response of Example 4.4.3 (i.e., the four-story building of Figure 4.9)
modeled by

100 0 10,000 —5000 0 0
01 0 0. ~5000 10,000 —5000 0

+ =

40001 g 1 o MO 0 —5000 10000 —5000 <=9
00 0 1 0 0 —5000 5000
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subject to an initial displacement of x(0) = [0.001 0.010 0.020 0.025]" and zero
initial velocity. Compare the solutions obtained with using a modal analysis approach
to a solution obtained by numerical integration.

*4,101. Reproduce the plots of Figure 4.13 for the two-degree-of-freedom system of Example
4.5.1 given by

B g:|k‘(t) + [_2; _§:|x(t) =0, x(0)= B}X(z) =0

using a numerical integration code.

*4,102. Consider Example 4.8.3 and (a) using the damping ratios given, compute a damping
matrix in physical coordinates, (b) use numerical integration to compute the response
and plot it, and (c) use the numerical code to design the system so that all three physical
coordinates die out within 5 seconds (i.e., change the damping matrix until the desired

response results).
*4,103. Compute and plot the time response of the system (newtons)
1
in (4¢
|:1j| sin (4f)

H R S M R

subject to the initial conditions

Xo = [0?1} o Y= [(ﬂ m/s

using numerical integration.

*4,104. Consider the following system excited by a pulse of duration 0.1 s (in newtons):

i R Byl R

= B_[cp(z —1) — ot — 1.1)]

and subject to the initial conditions

0 K
Xy = [—01} m, vy = 0} m/s

Compute and plot the response of the system using numerical integration. Here ® indi-
cates the Heaviside step function introduced in Section 3.2.

*4,105. Use numerical integration to compute and plot the time response of the system
(newtons)

R AR el PR ] MR
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subject to the initial conditions

m/s

0 1]
=l ™ Y7o

*4,106. Use numerical integration to compute and plot the time response of the system (newtons)

4 0 0 O0fx 4 -1 0 0| x
03 0 0|l X% N -1 2 -1 0|l &
0 0 25 0]} 3 0 -1 2 -1l
0 0 0 64Lx 0 0 -1 1L %
500 —100 0 0 X 0
-100 200 —100 0 || % 01 .
= 4t
0 —100 200 —100 || x o [ Sin(4)
0 0 —100 100 [ x4 1
subject to the initial conditions
0 1
X, 0 m v 0 m/s
0 0 ) 0 0
0.01 0

MATLAB ENGINEERING VIBRATION TOOLBOX

If you have not yet used the Engineering Vibration Toolbox program, return to the
end of Chapter 1 or Appendix G for a brief introduction to using MATLAB files.

TOOLBOX PROBLEMS

TB4.1.

TB4.2.

TBA4.3.

Calculate the natural frequencies and mode shapes of the system of Example 4.1.5
using file VITB4_1.

Recalculate Example 4.2.6 using file VIB4_1 and compare your answer with that of
the example obtained with a calculator. Verify that P' KP = A and PTP = I.

Consider Example 4.3.1 and investigate the effect of the initial condition on the
response by using file VIB4_2 and plotting the responses to the following initial
displacements (initial velocities all zero):

1 0 1 0.1 0.2
Xp = [1:| Xp = |:1:| Xp = [_1} X) = [09:| X) = |:08:| etc.

Discuss the results by formulating a short paragraph summarizing what you observed.
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TB4.4.
TBA4.5.

TBA4.6.

Multiple-Degree-of-Freedom Systems Chap. 4

Check the calculation of Example 4.4.2.

Using file VTB4_2, examine the effect of increasing the mass my in the building
vibration problem of Example 4.4.3. Do this by doubling m,4 and recalculating the
solution. Notice what happens to the various responses. Try doubling n, until the
response does not change or the program fails. Discuss your observations.

Consider the system of Example 4.73. Choose the values m = 10,J = 5,e¢ = 1, and
k1 = 1000 and calculate the eigenvalues as k, varies from 10 to 10,000, in increments
of 100. What can you conclude?



Design for Vibration
Suppression

This chapter infroduces the techniques useful
in designing structures and machines so they
vibrate as little as possible. Often this happens
after a product is designed, prototyped, and
tested. In many cases, vibration problems are
found late in the process so redesign is often
needed. In this chapter the important concepts
of shock and vibration isolation and vibration
absorption are infroduced, as they are key
methods in vibration design. Optimization as a
design tool, use of adding damping and the
concept of critical speeds in rotating machines
are also infroduced.

The cable spacer-damper used on power
lines and pictured at the fop is used to cut down
the cable whistling caused by vibration induced
by moderate winds and stop the conductors from
hitting one another in strong winds (or resonance)
as the cables vibrate. The ideas introduced in the
chapter are fundamental to the design of such
devices. The cables themselves are modeled in
Chapter 6.

The suspension system of any ground
vehicle is an example a common design
problem. A spring and damper system for an off-
road vehicle is shown in the picture at the bottom.
A vehicle’s size, mass, and road conditions all
affect the ability of the suspension system to
perform its function of isolating passengers from
shock and vibration induced by road conditions
and speed.

435
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In this chapter, it is assumed that vibration is undesirable and is to be suppressed.
The topics of the previous chapters present a number of techniques and methods
for analyzing the vibration response of various systems subject to various inputs.
Here the focus is to use the skills developed in the preceding chapters to determine
ways of adjusting the physical parameters of a system or device in such a way that
the vibration response meets some specified shape or performance criteria. This is
called design; design was introduced in Section 1.7, and it is the focus of this chapter.

Vibration can often lead to a number of undesirable circumstances. For
example, vibration of an automobile or truck can lead to driver discomfort and,
eventually, fatigue. Structural or mechanical failure can often result from sustained
vibration (e.g., cracks in airplane wings). Electronic components used in airplanes,
automobiles, machines, and so on may also fail because of vibration, shock, and /or
sustained vibration input.

The “fragility level” of devices, how much vibration a given device can
withstand, is addressed by the International Organization of Standards (ISO) as
well as by some national agencies. Almost every device manufactured for use by
the military must meet certain military specifications (“mil specs”) regarding the
amount of vibration it can withstand. In addition to government and international
agencies, manufacturers also set desired vibration performance standards for some
products. If a given device does not meet these regulations, it must be redesigned
so that it does. This chapter presents several formulations that are useful for de-
signing and redesigning various devices and structures to meet desired vibration
standards.

Design is a difficult subject that does not always lend itself to simple formu-
lations. Design problems typically do not have a unique solution. Many different
designs may all give acceptable results. Sometimes a design may simply consist of
putting together a number of existing (off-the-shelf) devices to create a new device
with desired properties. Here we focus on design as it refers to adjusting a system’s
physical parameters to cause its vibration response to behave in a desired fashion.

5.1 ACCEPTABLE LEVELS OF VIBRATION

To design a device in terms of its vibration response, the desired response must
be clearly stated. Many different methods of measuring and describing acceptable
levels of vibration have been proposed. Whether or not the criteria should be es-
tablished in terms of displacement, velocity, or acceleration, and exactly how these
should be measured needs to be clarified before a design can begin. These choices
often depend on the specific application. For instance, in practice, it is generally
accepted that the best indication of potential structural damage is the amplitude
of the structure’s velocity, while acceleration amplitude is the most perceptible by
humans. Some common ranges of vibration frequency and displacement are given
in Table 5.1.
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TABLE 5.1 RANGES OF FREQUENCY AND DISPLACEMENT OF VIBRATION

Frequency Displacement amplitude
(Hz) (mm)
Atomic vibration 1012 1077
Threshold of human perception 1-8 1072
Machinery and building vibration 10-100 1072-1
Swaying of tall buildings 1-5 10-1000

The ISO (International Organization for Standardization, www.iso.org) pro-
vides a published standard of acceptable levels of vibration that has the intent of
providing a mechanism to facilitate communications between manufacturers and
consumers. The standards are tested in terms of root mean-square (rms) values of
displacement, velocity, and acceleration. Recall that the value (defined in Section 1.2)
is the square root of the time average of the square of a quantity. For the displace-
ment x(¢), the rms value is given in equation (1.21) as

i 1 T 5 1/2
= | = t)dt
Xrms |:T T /0 X () :|

A convenient way to express the acceptable values of vibration allowed under
ISO standards is to plot them on a nomograph, as illustrated in Figure 5.1. Several
examples and further details of nomographs can be found in Niemkiewicz, J.
(2002).

The nomograph of Figure 5.1 is a graphical representation of the relationship
among displacement, velocity, acceleration, and frequency for an undamped single-
degree-of-freedom system. Figure 5.1 is representative and is based on vibration
induced around machines as an example of how ISO attempts to classify vibration
levels. Acceptable vibration levels are then stated in terms of all three physical
responses: displacement, velocity, and acceleration, as well as the frequency. The
solution for the displacement is given by equation (1.19) as

x(t) = Asinw,t

(for zero phase), which has amplitude A. Differentiating the displacement solution
yields the velocity

v(t) = x(t) = Aw, cosw,t
which has amplitude w,A. Differentiating again yields the acceleration
a(t) = ¥(t) = —Aw? sinw,t

which has amplitude Aw?2. These three expressions for the magnitude, along with
the definition of rms value, allow the nomograph of Figure 5.1 to be constructed.
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Velocity (mm/s)

(peak)
2000 — 100 80 60 40 20
/
Dislﬁcement (mm)
(peak)”
1000 10
800 8
600 6
400 4
\/ 2
200
2 4 6 8 10 10000
requency (H: 8000
1000 2000 4000 6000
Acceleration (mm/s?)
(peak)

Figure 5.1 An example of a nomograph for specifying acceptable levels of vibration.

From equation (1.21) the average value of x(f) = A sinw,t is

A 1 A A
= Th_r)nw / A% sin? w,tdt = Th_1>nm o, w,T — ) To, —— (sinw,T cosw,T) | = =5

so that x = A/V2. Likewise, v = Amn/\@ and a = Awn/\@.

Example 5.1.1

A machine part is subject to an rms amplitude of vibration of 6 mm. The mass and
stiffness are measured to be 5 kg and 20,000 Nm, respectively. Use Figure 5.1 to deter-
mine if there is any concern with these values based on the acceptable region marked
on the figure. Determine the velocity and acceleration experienced by the part. If the
standard represented by Figure 5.1 is not met, then suggest a means of redesigning the
bearing cap so that the response does meet the standard.
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Solution The natural frequency of a simple spring-mass system is

[k /
®, = ,|— = %N/m = 63.246radls, f, = Dn = 10.066 Hz
m 5kg 21

This frequency is outside the acceptable range and must be adjusted. Thus, the stan-
dard is not met and some redesign is required.

In order to bring the frequency to an acceptable range, the mass or stiffness of
the bearing must be changed to reduce the frequency. For instance, if a 45-kg mass is
added to the bearing, and a 2500-N/m spring is added in series with the bearing stiff-
ness (recall Figure 1.31), the resulting frequency is

1

1/k + 1200
Yk +1/200 _ JI9802N/M _ 353y s 7 = &0 ~ 61y
m+ 2 Tkg 21

This brings the design in line with the acceptable frequency range, but is quite a reduc-
tion in stiffness, which may not be acceptable for other reasons. Looking at the chart,
the 6 mm line crosses 6 Hz inside the box, at an acceleration of about 8000 mm /s> and
a velocity of about 200 mm /s. Using the formulas to get a more precise value yields

v = w,x = (37.231 rad/s)(6 mm) = 223.4 mm/s
a = wzx = (37.231 rad/s)}(6 mm) = 8.317 X 10’ mm/s’

While the redesign achieves the goal of reducing the vibration levels of the bearing,
it is an order-of-magnitude change in the bearing stiffness. This could have negative
effects on other parts of the machine (see critical speeds in Section 5.7, for instance).
This example is what makes design so difficult and challenging. Changing the design to
meet one specification could cause another specification to be violated.

O

The design procedure just suggested is oversimplified but helps introduce the
ad hoc nature of many design problems. Analysis is used as a tool. Here the desired
vibration criteria are provided by an ISO standard represented in a nomograph.
This plot, together with the formula w, = Vk/m and the series spring formula,
provides the analysis tools.

In using any thought process to perform a design, it is important to think
through potential flaws in the procedure. In the preceding example there are
several possible points of error. One important issue is how well the simple single-
degree-of-freedom spring—mass model captures the dynamics of the part. It might
be that a more sophisticated multiple-degree-of-freedom model is required (recall
Example 4.8.2). Another possible problem with a proposed design change is that
the stiffness of the part may not be allowed to be lower than a certain value because
of load requirements (static deflection) or other design constraints. In this case,
the mass might be changed, but that too may have other constraints on it. In some
cases it just may not be possible to design a system to have this desired vibration
response. That is, not all design problems have a solution.



440 Design for Vibration Suppression

The range of vibrations with which an engineer is concerned is usually from
about 10~* mm at between 0.1 and 1 Hz for objects such as optical benches or so-
phisticated medical equipment, to a meter displacement for tall buildings in the
range of 0.1 to 5 Hz. Machine vibrations can range between 10 and 1000 Hz, with
deflections between fractions of a millimeter and several centimeters. As technol-
ogy advances, limitations and acceptable levels of vibration change. Thus these

numbers should be considered as rough indications of common values.

Example 5.1.2

Calculate and compare the natural frequency, damping ratio, and damped natural
frequency of the single-degree-of-freedom model of a stereo turntable and of the auto-
mobile given in Figure 5.2. Also plot and compare their frequency response functions
and their impulse response functions. Discuss the similarities and differences of these

two devices.

Solution To calculate the undamped natural frequency, damping ratio, and damped

natural frequency of the car is simple. From the definitions

W, = 4 IE =, l400’000 = 20rad/s
m 1000

c 8000
2mw,  2(1000)(20)

0.2

c:

wg = 0, V1 = 2 =20V1 — (02) = 19.5959 rad/s

The same calculations for the stereo turntable are

[k /400
W, = ;— T—ZOrad/s
c 8

" 2me,  2@0) 2

wg = 0, V1 — 2 =20V1 — (02)? = 19.5959 rad/s

m = 1000 kg m=1ke

k = 400,000 N/m ¢ = 8000 N-s/m

@ ?ITI @ CZSN'S/mH'J §k1400N/m

/

Automobile model Stereo turntable model

Figure 5.2 A single-degree-of-freedom model of an automobile and a stereo turntable,

each with the same frequency.
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Figure 5.3 The frequency response function and the impulse response of that for
the car and stereo turntable of Figure 5.2.

This illustrates that two objects of very different size can have the same natural fre-
quencies and damping ratios.

In Figure 5.3 the transfer function of each device is plotted as well as the impulse
response function for each. Note that these plots do indicate a difference in devices.
The phase plots of the transfer function of both the car and the stereo are identical,
while the magnitude plots differ by a constant. The impulse response function of the
car has a smaller amplitude, although the responses both die out at the same time
since the decay rate ({) and hence log decrement are the same for each device. The
acceptable levels of vibration for the car will be much larger than those of the stereo.
For instance, a displacement amplitude of 10 mm for the stereo would cause its needle
to skip out of the groove in a record and, hence, not perform properly (a reason why
phonograph records never made it in automobiles—thank goodness for Bluetooth
technology and mp3 players). On the other hand, a similar amplitude of vibration for
the car is below the perception level on a nomograph.

d

An important consideration in specifying vibration response is to specify the
nature of the input or driving force that causes the response. Disturbances, or in-
puts, are normally classified as either shock or as vibration, depending on how long
the input lasts. An input is considered to be a shock if the disturbance is a sharp,
aperiodic one lasting a relatively short time. In contrast, an input is considered to be
a vibration if it lasts for a long time and has some oscillatory features.

The distinction between shock and vibration is not always clear as the sources
of shock and vibration disturbances are numerous and very difficult to place into cat-
egories. In Chapter 2 only vibration inputs (e.g., harmonic inputs) are discussed. In
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Input force

A
200N

Figure 5.4 A sample of a shock input to
an automobile, illustrating that the form
™ is not entirely known—that only the
10 100 , . .
] 3 bounds of the force’s magnitude and time
Time (s X 1077) history are known.

Chapter 3 the response of a single-degree-of-freedom system to a variety of inputs,
including an impulse, which is a shock, and general periodic inputs (vibration) are
discussed. These input signals may result from bumps in the road (for cars), turbu-
lence (for airplanes), rotating machinery, or simply from dropping something.

Often, inputs are a combination of the types just discussed and those discussed
in Chapter 3. In addition, inputs are often not known precisely but rather are known
to be of less than a certain magnitude and lasting less than a certain time. For instance,
a given shock input to an automobile due to its hitting a bump may take the form of a
single-valued curve falling somewhere inside the shaded region of Figure 5.4.

Vibrations that are not harmful exist in many devices. For instance, auto-
mobiles continually experience vibration without being damaged or causing harm
to passengers. However, some vibrations are extremely damaging, such as severe
vibration from an earthquake or a badly out-of-balance tire on a car. The difficult
issue for design engineers is deciding between acceptable levels of vibration and
those that will cause damage or become so annoying that consumers will not use
the device. Once acceptable levels are established, several techniques can be used
to limit and alter the shock and vibration response of mechanical systems and struc-
tures. These are discussed in the following section.

5.2 VIBRATION ISOLATION

The most effective way to reduce unwanted vibration is to stop or modify the source
of the vibration. If this cannot be done, it is sometimes possible to design a vibra-
tion isolation system to isolate the source of vibration from the system of interest or
to isolate the device from the source of vibration. This can be done by using highly
damped, compliant materials, such as rubber, to change the stiffness and damping
between the source of vibration and the device that is to be protected from the
vibrations. The problem of isolating a device from a source of vibration is analyzed
in terms of reducing vibration displacement transmitted through base motion, as
discussed in Section 2.3 and summarized in Window 5.1. The problem of isolating a
source of vibration from its surroundings is analyzed in terms of reducing the force
transmitted by the source through its mounting points, as discussed in Section 2.4
and summarized in Window 5.1. Both force transmissibility and displacement trans-
missibility are called isolation problems.
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Window 5.1
Summary of Vibration Isolation Formulas for Both Force
and Displacement Transmissibility

The moving-base model on the left is used in designing isolation to protect the
device from motion of its point of attachment (base). The model on the right is
used to protect the point of attachment (ground) from vibration of the mass.

Displacement Transmissibility Force Transmissibility

i F(t) = FU sin (o)

DeVlce x(f) = X'sin (0,t — ) Source of x(t)
Vibration isolator vibration Vibration isolator
g y(l) = Ysin () g
Moving base (source of vibration) Fixed base
Vibration source modeled as base motion Vibration source mounted on isolator
Here y(f) = Y sin wt is the Here F(t) = Fysin ot is the
disturbance and from disturbance and
equation (2.71)
12 12
X _[1rew Fr_ [+ @y
Y a -2+ Qu) Fo a-m~"+ ey
defines the displacement defines the force transmissibility
transmissibility and is for isolating the source
plotted in Figure 2.13. of vibration as derived
From equation (2.77), in Section 5.2.
12
Fr o[ 1+ @u)
kY 1=+ Qo)

defines the related force
transmissibility and is
plotted in Figure 2.15.

The analysis tool used to design isolators is the concept of force and/or dis-
placement transmissibility introduced in Section 2.4. By way of review, consider
the problem of calculating the transmissibility ratio, denoted T.R., defined as the
ratio of the magnitude of the force transmitted through the spring and dashpot
to the fixed base to the sinusoidal force applied (see Window 5.1) by the machine
(modeled as a mass). Symbolically, T.R. = Fy/F,. To calculate the value of T.R.,
first consider the force transmitted. The force transmitted to the fixed base in
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Window 5.1 is denoted by Fr(¢) and is the force applied to the base acting through
the spring and dashpot, that is,

Fr() = kx(t) + ci(r) (5.1)

The solution for the case that the driving force is harmonic of the form F; cos wt is
given in Section 2.2, equation (2.37), to be of the form

x(t) = Ae ¥ sin(wgt + 0) + X cos(wt — ¢)
In steady state (i.e., after some time has elapsed), the first term decays to zero and
the response is modeled by
x(t) = Xcos(wt — ¢) (5.2)
Differentiating equation (5.2), the velocity in steady state becomes
x(t) = —oXsin(of — ¢) (5.3)

Substitution of equations (5.2) and (5.3) into equation (5.1) for the force transmitted
at steady state yields

Fr(t) = kX cos(wt — ¢) — coX sin(of — ¢) 54)

= kX cos(wt — ¢) + coX cos(wt — & + 7/2)
The magnitude of Fy(f), denoted by Fr, can be calculated from equation (5.4) by
noting that the two terms are 90°(w/2) out of phase with each other and hence
can be thought of as two perpendicular vectors (recall Figure 2.11 of Section 2.3).

Hence the magnitude of Fy(¢) is calculated by taking the vector sum of the two
terms on the right of equation (5.4). This yields that the magnitude of the transmit-

ted force is
Fr=\ (kX)2 + (cooX)2 = XVk? + 20’ (5.5)

Window 5.2
Review of the Steady-State Response of an Underdamped System
Subject to Harmonic Excitation as Discussed in Section 2.2

The steady-state response of

¥ + 2{w,x + wix = fycoswt

where w, = Vk/m,{= c/(2mw,) and fy = Fy/m, is x(t) = X cos (ot — ).
Here

Jo

, & =tan!

B \/(wﬁ — 0?)? + (2w,0?) W, o
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The value of X, the amplitude of vibration at steady state, is given in Window 5.2
to be

f _ F/k
(7 = o+ (ol (1= 7+ ()]

where r = o/, as before. Substituting this value of X into equation (5.5) yields

_ Fy/k
T
V1 + ?o?/k? \/ 1+ (20r)?
k= N2 vz = B 2\2 2
[(1 =72+ (2¢r)?] (1-r2)"+ (2tr)

(5.6)

where ?0w?/k? = 2mw,{)*w?/k* = (2{r)*. The transmissibility ratio, or transmission
ratio, denoted T.R., is defined as the ratio of the magnitude of the transmitted force
to the magnitude of the applied force. By a simple manipulation of equations (5.6),
this becomes

_Fr 1+ (20r)?
TR. = B \/(1 1 () (5.7)

A comparison of this force transmissibility expression with the displacement trans-
missibility given in Window 5.1 indicates that they are identical. It is important to
note, however, that even though they have the same value, they come from differ-
ent isolation problems and hence describe different phenomena.

The displacement transmissibility ratio given in the left column of Window 5.1
describes how a steady-state displacement (Y) of the base of a device mounted on
an isolator is transmitted into motion of the device (X). Figure 5.5 is a plot of the
T.R. for various values of the damping ratio { and frequency ratio r. The larger the
value of T.R., the larger the amplitude of motion of the mass. These curves are use-
ful for designing the isolators. In particular, the design process consists of choosing
{ and r, within the available isolator’s material, such that T.R. is small.

Note from Figure 5.5 that if the frequency ratio r is greater than V2, the
magnitude of vibration of the device is smaller than the disturbance magnitude Y
and vibration isolation occurs. For r less than V2, the amplitude X increases (i.e.,
X is larger than Y). The value of the damping ratio (each curve in Figure 5.5 cor-
responds to a different {) determines how much smaller the amplitude of vibration
is for a given frequency ratio. Near resonance, the T.R. is determined completely
by the value of { (i.e., by the damping in the isolator). In the isolation region, the
smaller the value of {, the smaller the value of T.R. and the better the isolation.
Also note that as 7 is increased for a fixed w, the value of T.R. decreases. This cor-
responds to increasing the mass or decreasing the stiffness of the isolator.
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Amplification occurs V' 2 Isolation occurs

Magnification of the isolation area

{ increasing

1.0
0.8 :
TR. 0.6 : £=10 Figure 5.5 Plot of the transmissibility
04 I { =05 ratio, T.R., indicating the value of T.R.
02 | =02 foravariety of choices of the damping
| ! | | r ratio { and the frequency ratio r. This is
1.0 12 14 16 18 20 22 24 a repeat of Figure 2.14 and is a plot of
V equation (5.7).
2 quation (5.7
Example 5.2.1

An electronic control system for an automobile engine is to be mounted on top of the
fender inside the engine compartment of the automobile as illustrated in Figure 5.6. The
control module electronically computes and controls the engine timing, fuel /air mixture,
and so on, and completely controls the engine. To protect it from fatigue and breakage, it
is desirable to isolate the module from the vibration induced in the car body by road and
engine vibration, hence the module is mounted on an isolator. Design the isolator (i.e.,
pick ¢ and k) if the mass of the module is 3 kg and the dominant vibration of the fender
is approximated by y(f) = (0.01) (sin35¢) m. Here it is desired to keep the displacement
of the module less than 0.005 m at all times. Once the design values for isolators are cho-
sen, calculate the magnitude of the force transmitted to the module through the isolator.

Solution Since it is desired to keep the vibration of the module, x(), less than 0.005 m,
the response amplitude becomes X = 0.005 m. The amplitude of y(f) is Y = 0.01 m;
hence the desired displacement transmissibility ratio becomes

X _ 0.005
T.R.—?—W—O.S

Examining the transmissibility curves of Figure 5.5 yields several possible solutions
for { and w,. A straight horizontal line through T.R. = 0.5, illustrated in Figure 5.7,
crosses at several values of { and r. For instance, the { = 0.02 curve intersects the
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Figure 5.6 (a) A cutaway sketch of the engine compartment of an automobile
illustrating the location of the car’s electronic control module. (b) A close-up of the
control module mounted on the inside fender on an isolator. (c) A vibration model
of the module isolator system.

T.R. = 0.5 line at r = 1.73. Thus r = 1.73, { = 0.02 provides one possible design

solution.

Recalling that r = 0/w, = 1.73 and o = 35 rad/s, the isolation system’s natu-
ral frequency is about w,, = 35/1.73 = 20.231 rad/s. Since the mass of the module is
m = 3 kg, the stiffness is (recall o, = Vk/m)

k = mo? = (3kg)(20.231 rad/s)> = 1228 N/m

Thus the isolation mount must be made of a material with this stiffness (or add a stiff-
ener). The damping ratio { is related to the damping constant ¢ by equation (1.30):

¢ = 2lmo, = 2(0.02)(3 kg)(20.231 rad/s)

= 2.428 kg/s
¢
0.01| 1.73231
0.05| 1.73855
1 ¢ 0.1 | 1.75803
: 0.2 | 1.83580
10 0.5 | 2.35401
’ 1 3.76976
0.8
TR. 0.6 —
0.4 —
02 &:
0.0 | | | |
0 1 2 3 4

=05
=02

Figure 5.7 The transmissibility curve of Figure 5.6, repeated here, indicating
possible design solutions for Example 5.2.1. Each point of intersection with one of
the curves of constant { yields the desired T.R.
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These values for ¢ and k, together with the geometric size of the module and fender
shape, can now be used to choose the isolation mount material. At this point, the de-
signer would look through vendor catalogs to search for existing isolation mounts and
materials that have approximately these values. If none exactly meet these values, the
curves in Figure 5.7 are consulted to see if one of the other solutions corresponds more
closely to an existing isolation material. Of course, equation (2.71) or (5.7) can be used
to calculate solutions lying in between those illustrated in Figure 5.7.

If many solutions are still available after a search of existing products is made,
the choice of a mount can be “optimized” by considering other functions, such as cost,
ease of assembly, temperature range, reliability of vendor, availability of product, and
quality required. Eventually, a good design must consider all of these aspects.

The electronic module may also have a limit on the amount of force it can
withstand. One way to estimate the amount of force is to use the theory developed in
Section 2.4, in particular in equation (2.77), which is reproduced in Window 5.1. This
expression relates the force transmitted to the module by the motion of the fender
through the isolator. Using the values just calculated in equation (2.77) yields

1+ (20r) 172
1=+ Qu)
= (1228 N/m)(0.01 m)(1.73)%(0.5) = 18.375 N

Fr = kYr?

= kYr?(T.R.)

If this force happens to be too large, the design must be redone. With the maximum
force transmitted as an additional design consideration, the curves of Figure 2.15 must
also be consulted when choosing the values of r and { to meet the required design
specifications. The static deflection caused by this design is & = mg/k = 0.024 m.
The static deflection and the ratio X/Y define the rattle space or physical dimensions
needed for the isolator to vibrate in. In a car, the 2.4 cm might be acceptable. If the
application were to isolate a CD drive in a laptop computer, this distance would be
unacceptable because it is large compared to the thickness of the laptop. Static deflec-
tion and rattle space are important design considerations and often limit the ability to
design a good isolator.

|

Example 5.2.1 may have seemed very reasonable. However, many assump-
tions were made in reaching the final design, and all of these must be given careful
thought. For example, the assumption that the motion of the fender is harmonic of
the form y(f) = (0.01) sin 35¢ is very restrictive. In reality, it is probably random,
or at least the value of w varies through a range of frequencies. This is not to say
that the solution presented in Example 5.2.1 is useless, just that the designer should
keep in mind its limitations. Even though the real input to the system is random, the
chosen amplitude of Y = 0.01 m and frequency of » = 35 rad/s might represent a
deterministic bound on all possible inputs to the system (i.e., all other disturbance
amplitudes may be smaller than Y = 0.01 m, and all other driving frequencies
might be larger than o = 35 rad/s). Hence in many practical cases the designer is
faced with choosing an isolator that will protect the part from, say, 5 g between 20
and 200 Hz, or the designer will be given a plot of PSD versus w, (recall Section 3.5)
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and try to design the isolator to service these types of inputs. Section 5.9 examines
the isolation problem from the practical aspect of working with manufacturers of
isolation products.

The design of shock isolation systems is performed by examining the shock
spectrum, as introduced in Section 3.6. To make the comparison to vibration isola-
tion clear, the shock spectrum is reconsidered here as a plot of the ratio of the maxi-
mum motion of the response acceleration amplitude (i.e., >X) to the disturbance
acceleration amplitude [i.e., the amplitude of ()] versus the product of the natural
frequency and the time duration of the pulse, #;. Here the disturbance y(¢) is mod-
eled as a half sinusoid of the form

. T
Ysinogt 0=t=t =—
P ®

¥(0) = 7 (538)

0 t> tl = ;

P

as indicated in Figure 5.8. This type of disturbance is often called a shock pulse. The

frequency w, and the corresponding time #; = 7/w), determine how long the shock

pulse lasts. The product w,t is used for plotting shock transmissibility rather than
plotting the frequency ratio used to design vibration isolators.

A plot of the acceleration amplitude ratio versus the product wt; is given in
Figure 5.8. This figure is determined by calculating the acceleration amplitude of
the response and comparing it to the magnitude of the acceleration of the input dis-
turbance. Note that as the abscissa increases, corresponding to a longer pulse width,
the acceleration experienced by the module is larger than the input acceleration. By
examining the plots in Figure 5.8, it can be seen that reduction of the acceleration

Response of half-sine
shock pulse

©,/w, = /T

Figure 5.8 A plot of the ratio of output acceleration magnitude to input acceleration
magnitude versus a frequency ratio (w,, / u)p) for a single-degree-of-freedom system
and a base excitation consisting of a shock pulse for different values of damping
ratios. Note that a large ,, value corresponds to a short pulse width.
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through isolation occurs only if the transmissibility falls below the horizontal
line passing through the number 1. So, for instance, consider the line defined by
{ = 0.5. For shock isolation to occur, this would require

() tl n’l"lT2
—= <10, or k<-—5-
e [1

Thus shock isolation enforces a bound on the stiffness of the isolation material.

Next consider the effects of damping on shock isolation. Examination of
the plots in Figure 5.8 shows that increasing the damping greatly reduces the
maximum acceleration to the point that for critical damping ({ = 1.0) isola-
tion occurs for any pulse duration (#1). Thus, good shock isolators require high
damping.

Next consider the problem of isolating a source of harmonic vibration
from its surroundings. This is the fixed-base isolation problem illustrated in
Window 5.1, where the right side is concerned with reducing the force trans-
mitted through the isolator due to harmonic excitation at the mass. The com-
mon example is a rotating machine generating a harmonic force at a constant
frequency (recall Figure 2.18). Examples of such machines are electric motors,
steam turbines, internal combustion engines, generators, washing machines, and
disk drive motors.

Examination of the transmissibility curve of Figure 5.5 indicates that
vibration isolation begins for isolation stiffness values such that o/w,>V?2.
This gives transmissibility ratios of less than 1, so that the force transmitted to
ground is less than the force generated by the rotating machine. Since the mass
is usually fixed by the nature of the machine, the isolation mounts are generally
chosen based on their stiffness, so that r>V/2 is satisfied. If this does not give
an acceptable solution (for low-frequency excitation), mass can sometimes be
added to the machine (w, = Vk/m). Since r = o/ Vk/m, lower stiffness val-
ues correspond to larger values of r, which yields better isolation (lower T.R.
values).

As damping is increased for a fixed r, the value of T.R. increases, so that
low damping is often used. However, some damping is desirable, since when
the machine starts up and causes a harmonic disturbance through a range of
frequencies, it generally passes through resonance (r = 1) and the presence of
damping is required to reduce the transmissibility at resonance. Examination
of the transmissibility curve indicates that for a large enough frequency ratio
(about r > 3) and small enough damping ({ < 0.2) the T.R. value is not affected
by damping. Since most springs have very small internal damping (e.g., less than
0.01), the term (2¢r)? is very small [e.g., for r = 3, (2¢r)?> = 0.0036]. Hence it
is common to design a vibration isolation system by neglecting the damping in
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equation (5.7). In this case T.R. becomes (taking the negative square root for
positive values of T.R.)

TR. = r > 3) (5.9)

rz -
Equation (5.9) can be used to construct design charts for use in choosing vibration
isolation pads for mounting rotating machinery.

The driving frequency of a machine is usually specified in terms of its speed of

rotation, or revolutions per minute (rpm). If # is the motor speed in rpm,

_ 2mn

© =" (5.10)

In addition, springs are often classified in terms of their static deflection defined by
A = W/k = mg/k, where m is the mass of the machine and g the acceleration due
to gravity. It has become very common to design isolators in terms of the machine’s
rotating speed n and the static deflection A. A third quantity, R, defined as the re-
duction in transmissibility,

R=1-TR (5.11)

is commonly used to quantify the success of the vibration isolator.
Substitution of the (undamped) value of T.R. into equation (5.11) and solving
for r yields

2—-R

“ Vigm VI-R

Substitution of (5.10) for w and replacing k = mg/ A yields

30 /g2 —R) 2—-R
= —n| - =299093\ | ———— 5.13
"TaNaa—r PN A - g (513)
which relates the motor speed to the reduction factor and the static deflection of

the spring. Equation (5.13) can be used to generate design curves, by taking the log
of the expression. This yields

r (5.12)

1 2-R
1 = ——logA + log| 29. — .14
ogn 5 log og( 9.9093 = R) (5.14)
which is a straight line on a log—log plot for each value of R. This expression is then
used to provide the design chart of Figure 5.9, consisting of plots of motor speed
versus static deflection.
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Figure 5.9 Design curves consisting of plots of running speed versus static deflection
(or stiffness) for various values of percent reduction in transmitted force.

Example 5.2.2

Consider the computer disk drive of Figure 5.10. The disk drive motor is mounted to
the computer chassis through an isolation pad (spring). The motor has a mass of 3 kg
and operates at 5000 rpm. Calculate the value of the stiffness of the isolator needed
to provide a 95% reduction in force transmitted to the chassis (considered as ground).
How much clearance is needed between the motor and the chassis?

Solution From the chart of Figure 5.9, the line corresponding to a speed of # = 5000 rpm
hits the curve corresponding to 95% reduction at a static deflection of 0.03 in. or 0.0762 cm.

This corresponds to a spring stiffness of

mg  (3kg)(9.8 m/s?

K=y = 0000762 m

Computer chassis /

)

= 38,582 N/m

Figure 5.10 A schematic model of a
personal computer illustrating the motor
running the disk drive system. A small
amount of out-of-balance in the motor
can transmit harmonic forces to the
chassis and onto circuit boards and other
components if not properly isolated.
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The choice of clearance (i.e., distance needed between the motor and the chassis)
should be more than twice the static deflection so that the spring has room to extend
and compress, providing isolation.

d

The issue of vibration isolation against harmonic forces for large (heavy) ma-
chines quickly becomes one of static deflection. For machines requiring extreme
isolation, coiled springs often must be used to provide the large static deflection
required at low frequency. This can be seen by examining the 98% curves in
Figure 5.9 for low values of n. In some cases, the static deflection required may be
too large to be physically obtainable even in small devices. An example of a simi-
lar design constraint is the miniaturization of computers. Manufacturers of laptop
computers believe sales are tied to how compact and, in particular, how thin the
chassis can be. One constraint could be the isolation system required for the disk
drive motor or other components.

In designing isolators, it is often difficult to design an isolator that works
effectively against both shock and vibration (harmonic) excitations. One reason
for this can be seen by examining Figure 5.7 for vibration isolation and Figure 5.8
for shock isolation. In Figure 5.7, isolation occurs in the region r>V2, and in this
region it is clear that increased damping reduces the effective isolation. Thus, low
damping is required for vibration isolation. However, examining the shock isola-
tion plots in Figure 5.8 shows that large damping is required for effective shock
isolation. These two requirements are often at odds, as the following example
points out.

Example 5.2.3

In this example the design goal is to develop an effective isolator for base-induced
shock motion that will also provide an acceptable level of vibration isolation in terms
of force transmissibility from the vibrating equipment supported by the isolation sys-
tem to the base. In actual isolation applications it is often difficult to design an effective
combined shock and vibration isolation system. As mentioned earlier and is clear from
Figures 5.7 and 5.8, this is due to the fact that an effective vibration isolator must be
very lightly damped, whereas an effective shock isolator tends to require large damping
forces. Typically in design problems, a main constraint is that parts such as isolators are
available only in discrete values of stiffness and damping. Here we suppose that a set of
three off-the-shelf isolators (mounts) are available for use, that their natural frequen-
cies are 5 Hz, 6 Hz, and 7 Hz, and all have 8% damping. The shock input that is being
isolated is a 15-g, half-sine pulse as shown in Figure 5.8 for the case #{ = 40 ms. With
this as input, it is desired to limit the mount response to 15 g’s and the mount deflection
to 3 in. (76.2 mm). The vibration isolation goal is 20 dB of isolation from an above-
mount vibration source of 15 Hz.

Figures 5.11 and 5.12 show the time simulation results to shock input in terms of
mount deflection and above-mount response for the three mount possibilities. From
Figures 5.11 and 5.12, it is clear that only the 7-Hz mount satisfies all the shock isola-
tion goals, that is, <15 g’s above mount and <3 in. of deflection.
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Figure 5.11 A simulated response [relative displacement, z(¢)].
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Figure 5.12 A simulated response [absolute acceleration, ¥(7)].
Now consider the vibration isolation performance using the same mount. A

minimum of 20 dB of vibration isolation to the 15-Hz above-mount vibration source
is desired. Recall that the mount has an inherent damping that can adequately be
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Figure 5.13 Force transmissibility (above-mount source to base).

approximated as 8% viscous damping. To determine the vibration isolation perfor-
mance, the force transmissibility is plotted in Figure 5.13 for an 8% damped isolator.
The frequency ratio of interest is r = o/w, = 2-mw+ 15/2-w-7 = 2.1 for this
example. Recall that a minimum of 20 dB of isolation is required, but from Figure 5.13
only about 9.4 dB of isolation is achieved. To achieve the required vibration isolation
would require a lower damping ratio (see Figure 5.7) than is inherent to the isolator.
It is not possible to lower the damping ratio, as damping is a fixed property of the iso-
lation material. Damping can be raised by adding external dampers, adding layers of
damping material, and so forth, but it cannot be decreased without significantly modi-
fying the mount design. As such, these shock and vibration isolation design parameters

cannot simultaneously be met using the devices at hand, a typical situation in design.
d

In designing isolation mounts, two factors are key. The first is deciding whether
to design for vibration or to design for shock. The next is to check the static deflec-
tion. The following section examines the use of absorbers to reduce vibrations from
harmonic disturbances.

5.3 VIBRATION ABSORBERS

Another approach to protecting a device from steady-state harmonic disturbance
at a constant frequency is a vibration absorber. Unlike the isolator of the previous
sections, an absorber consists of a second mass-spring combination added to the
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Optical table Primary mass F(t) = Fsin(wr)
| | }Ji
m
k X
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system - Legs ki2 k/2
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Figure 5.14 An optical table protected by an added vibration absorber. The table
and its supporting legs are modeled as a single-degree-of-freedom system with mass
m and stiffness k.

primary device to protect it from vibrating. The major effect of adding the second
mass—spring system is to change from a single-degree-of-freedom system to a two-
degree-of-freedom system. The new system has two natural frequencies (recall
Section 4.1). The added spring—mass system is called the absorber. The values of the
absorber mass and stiffness are chosen such that the motion of the original mass is a
minimum. This is accompanied by substantial motion of the added absorber system,
as illustrated in the following:

Absorbers are often used on machines that run at constant speed, such as
sanders, compactors, reciprocating tools, and electric razors. Probably the most
visible vibration absorbers can be seen on transmission lines and telephone
lines. A dumbbell-shaped vibration absorber is often used on such wires to
provide vibration suppression against wind blowing, which can cause the wire
to oscillate at its natural frequency. The presence of the absorber prevents the
wire from vibrating so much at resonance that it breaks (or fatigues). Figure
5.14 illustrates a simple vibration absorber attached to a spring-mass system.
The equations of motion [summing forces in the vertical direction (refer to
Chapter 4)] are

|:m 0 [x +|:k+ka -k, |:x _|:Fosinmt
0 m, |LX%, —k, k, |lx, | 0

where x = x(¢) is the displacement of the table modeled as having mass /2 and stiff-
ness k, x, is the displacement of the absorber mass (of mass m, and stiffness k,),
and the harmonic force Fjsinwt is the disturbance applied to the table mass. It is
desired to design the absorber (i.e., choose m, and k,) such that the displacement
of the primary system is as small as possible in steady state. Here it is desired to re-
duce the vibration of the table, which is the primary mass.

(5.15)
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Window 5.3

Recall that the inverse of a 2 X 2 matrix A given by

=[]

is defined to be

1 d -b
Al =
det A |:—c a:|

det A = ad — bc

where

In contrast to the solution technique of modal analysis used in Chapter 4, here
it is desired to obtain a solution in terms of parameters (m, k, m,, and k,) that can
then be solved for as part of a design process. To this end, let the steady-state solu-
tion of x(7) and x,(f) be of the form

x(t) = Xsinwt (5.16)
x,(t) = X, sinwt

Substitution of these steady-state forms into equation (5.15) yields (after some
manipulation)

k + k, — mo? -k, X | . R .
|: “k, K, — mawzJ[XaJ sin ot = [0 :| sin wt (5.17)

which is an equation in the vector [X  X,]7. Dividing by sin wt, taking the inverse of the
matrix coefficient of [X  X,]” (see Window 5.3), and multiplying from the left yields

[X} N |:ku ) mawz ka :||:E):|
X, (k + k, — mo?) (k, — mgw?) — k2 k, k + k, — mw?]| 0
1 (k, — maw2>Fo]
= 5.18

(k + ky — ma?) (ks — muo?) —kﬁ{ kFy (5.18)

Equating elements of the vector equality given by equation (5.18) yields the result
that the magnitude of the steady-state vibration of the device (table) becomes
(ka B ma(")z)FO

X = 5.19
(k + k, — mo?) (k, — mgw?) — k2 (5-19)
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while the magnitude of vibration of the absorber mass becomes

X, = Kako (5.20)
“ (k+ ky — mo?)(k, — mgw?) — K2 '

Note from equation (5.19) that the absorber parameters k, and m, can be chosen
such that the magnitude of steady-state vibration, X, is exactly zero. This is accom-
plished by equating the coefficient of Fj in equation (5.19) to zero:

k,
o= (5.21)

Hence if the absorber parameters are chosen to satisfy the tuning condition of
equation (5.21), the steady-state motion of the primary mass is zero (i.e., X = 0). In
this event the steady-state motion of the absorber mass is calculated from equations
(5.20) and (5.16) with k, = m, »® to be

g .
x,(t) = —;smmt (5.22)

a

Thus the absorber mass oscillates at the driving frequency with amplitude X, =
Fy/k,.

Note that the magnitude of the force acting on the absorber mass is just
kox, = ko (—Fy/k,) = —F,. Hence when the absorber system is tuned to the driv-
ing frequency and has reached steady state, the force provided by the absorber
mass is equal in magnitude and opposite in direction to the disturbance force.
With zero net force acting on the primary mass, it does not move and the motion
is “absorbed” by motion of the absorber mass. Note that while the applied force
is completely absorbed by the motion of the absorber mass, the system is not ex-
periencing resonance because Vk,/m, is not a natural frequency of the two-mass
system.

The success of the vibration absorber discussed previously depends on several
factors. First, the harmonic excitation must be well known and not deviate much
from its constant value. If the driving frequency drifts much, the tuning condition
will not be satisfied, and the primary mass will experience some oscillation. There
is also some danger that the driving frequency could shift to one of the combined
systems’ resonant frequencies, in which case one or the other of the system’s co-
ordinates would be driven to resonance and potentially fail. The analysis used to
design the system assumes that it can be constructed without introducing any ap-
preciable damping. If damping is introduced, the equations cannot necessarily be
decoupled and the magnitude of the displacement of the primary mass will not
be zero. In fact, damping defeats the purpose of a tuned vibration absorber and is
desirable only if the frequency range of the driving force is too wide for effective
operation of the absorber system. This is discussed in the next section. Another key
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factor in absorber design is that the absorber spring stiffness k, must be capable of
withstanding the full force of the excitation and hence must be capable of the cor-
responding deflections. The issue of spring size and deflection, as well as the value
of the absorber mass, places a geometric limitation on the design of a vibration
absorber system.

The issue of avoiding resonance in absorber design in case the driving fre-
quency shifts can be quantified by examining the mass ratio ., defined as the ratio
of the absorber mass to the primary mass:

In addition, it is convenient to define the frequencies

the original natural frequency of the primary system without the
absorber attached

1)

e}

Il
=

m

k .
—% the natural frequency of the absorber system before it is attached to

Ma  the primary system

W,

With these definitions, also note that

k 2
(L 2 5.23
P o np (5:23)

where the frequency ratio B is B = w,/w),. Substitution of the values for w, ), and
w, into equation (5.19) for the amplitude of vibration of the primary mass yields
(after some manipulation)

Xk _ 1 - 0)2/0)%1
B [1+ p(wd/w)? = (0/0,)?][1 = (0/0)® = n(w/w,)?]

The absolute value of this expression is plotted in Figure 5.15 for the case w = 0.25.
Such plots can be used to illustrate how much drift in driving frequency can be toler-
ated by the absorber design. Note that if w should drift to either 0.781 w, or 1.28 w,,
the combined system would experience resonance and fail, since these are the natural
frequencies of the combined system. In fact, if the driving frequency shifts such that
| Xk/Fy| > 1, the force transmitted to the primary system is amplified and the ab-
sorber system is not an improvement over the original design of the primary system.
The shaded area of Figure 5.15 illustrates the values of »/w, such that | Xk/F)| < 1.
This illustrates the useful operating range of the absorber design (i.e., 0.908 w, < » <
1.118 w,). Hence if the driving frequency drifts within this range, the absorber design
still offers some protection to the primary system by reducing its steady-state vibration
magnitude.

(5.24)



460

Design for Vibration Suppression Chap. 5

|

(5]
o
2
‘g
g
E
o
8
s
g
S
Z
_________________ 1-- ——pm——————-

I I

I I

I I

I I

I I

I I

05+ | |

I I

I I

I I

I I

I I

0.0 | | | | J
0.0 0.5 0.781 1.0 1.281 1.5 2.0
0.908 1.118
goy
("’a>
Frequency

Figure 5.15 A plot of normalized magnitude of the primary mass versus the
normalized driving frequency for the case u = 0.25. The two natural frequencies of
the system occur at 0.781 and 1.281.

The design of an absorber can be further illuminated by examining the mass
ratio . and the frequency ratio B. These two dimensionless quantities indirectly
specify both the mass and stiffness of the absorber system. The frequency equa-
tion (characteristic equation) for the two-mass system is obtained by setting the
determinant of the matrix coefficient in equation (5.17) [i.e., the denominator of
equation (5.18)] to zero and interpreting w as the system natural frequency w,,.
Substitution for the value of B and rearranging yields
oy
,

2“’%2 2 _
BOTZ —[1+B(1+p)}—g+1_o (5.25)
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which is a quadratic equation in (u)f, / w%) Solving this yields

<wn)2 _ 1At 1
W, 282 - 2[32
which illustrates how the system’s natural frequencies vary with the mass ratio
and the frequency ratio . This is plotted for § = 1 in Figure 5.16. Note that as . is
increased, the natural frequencies split farther apart, and farther from the operat-
ing point w = w, of the absorber. Therefore, if . is too small, the combined system
will not tolerate much fluctuation in the driving frequency before it fails. As a rule
of thumb, w is usually taken to be between 0.05 and 0.25 (i.e., 0.05 = n = 0.25),
as larger values of w tend to indicate a poor design. Vibration absorbers can also
fail because of fatigue if x,(¢) and the stresses associated with this motion of the
absorber are large. Hence limits are often placed on the maximum value of X, by
the designer. The following example illustrates an absorber design.

\/34(1 +p)?—2B%1 — ) +1 (5.26)

Figure 5.16 A plot of mass ratio versus
system natural frequency (normalized to the
frequency of the absorber system), illustrating
that increasing the mass ratio increases the
useful frequency range of a vibration absorber.
Here w and w; indicate the normalized value
of the system’s natural frequencies.

Example 5.3.1

A radial saw base has a mass of 73.16 kg and is driven harmonically by a motor that
turns the saw’s blade as illustrated in Figure 5.17 The motor runs at constant speed and
produces a 13-N force at 180 cycles/min because of a small unbalance in the motor. The
resulting forced vibration was not detected until after the saw had been manufactured.
The manufacturer wants a vibration absorber designed to drive the table oscillation
to zero simply by retrofitting an absorber onto the base. Design the absorber assum-
ing that the effective stiffness provided by the table legs is 2600 N/m. In addition, the
absorber must fit inside the table base and hence has a maximum deflection of 0.2 cm.

Q Handle
Motor

Blade

] Base

Legs Figure 5.17 A schematic of a radial
saw system in need of a vibration
absorber.
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Solution To meet the deflection requirement, the absorber stiffness is chosen first.
This is calculated by assuming that X = 0, so that |X,k,| = |F| [i.., so that the mass
m, absorbs all of the applied force, see equation (5.20) with k, = m,w?]. Hence

K _ 13N _ 13N

== = = N
ko= = 02em ~ 0002m _ O0ON/m
Since the absorber is designed such that o = w,,
k, 6500 N/m
m,=—=—"——-->=1829kg

o> [(180/60)>]°

Note in this case that w = 18.29/73.16 = 0.25.

Example 5.3.2

Calculate the bandwidth of operation of the absorber design of Example 5.3.1. Assume
that the useful range of an absorber is defined such that | Xk/F| < 1. For values of
Xk/Fy, > 1, the machine could easily drift into resonance and the amplitude of vibra-
tion actually becomes an amplification of the effective driving force amplitude.

Solution From equation (5.24) with Xk/Fy = 1,

I I LR 3 Rl ol B G AR )

Solving this for w/w, yields the two solutions

L= VT T

For the system of Example 5.3.1, w = 0.25, so that the second solution becomes

£~ 11180

W,

The condition that | Xk/Fy| = 1 is also satisfied for Xk/F, = —1. Substitution of this
into equation (5.24) followed by some manipulation yields

2 4 2 2
() ) =[er oG E) <20
®, W, ®, W,
which is quadratic in (w/w,)?. Using the values of o2 = 6500/18.29, w; = 2600/73.16,
and . = 0.25, this simplifies to

4 2
10(‘*’) - 14.5<°’> +2=0
ma ("‘)ll
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Solving for o/, yields

w 2 (O]
— ) =0.1544,1.2956 or — = 0.3929,1.1382
W, W,

Hence the three roots satisfying | Xk/Fy| = 1 are 0.3929, 1.1180, and 1.1382. Following

the example of Figure 5.15 indicates that the driving frequency may vary between
0.3929w, and 1.1180w,, or, since w, = 18.857,

7.4089 < o < 21.0821 (rad/s)

before the response of the primary mass is amplified or the system is in danger of ex-
periencing resonance.
|

The preceding discussion and examples illustrate the concept of performance
robustness; that is, the examples illustrate how the design holds up as the parameter
values (k, k,, etc.) drift from the values used in the original design. Example 5.3.2 il-
lustrates that the mass ratio greatly affects the robustness of absorber designs. This
is stated in the caption of Figure 5.16; up to a certain point, increasing p increases
the robustness of the absorber design. The effects of damping on absorber design
are examined in the next section.

5.4 DAMPING IN VIBRATION ABSORPTION

As mentioned in Section 5.3, damping is often present in devices and has the poten-
tial for destroying the ability of a vibration absorber to protect the primary system
fully by driving X to zero. In addition, damping is sometimes added to vibration
absorbers to prevent resonance or to improve the effective bandwidth of operation
of a vibration absorber. Also, a damper by itself is often used as a vibration absorber
by dissipating the energy supplied by an applied force. Such devices are called vi-
bration dampers rather than absorbers.

First consider the effect of modeling damping in the standard vibration
absorber problem. A vibration absorber with damping in both the primary and ab-
sorber system is illustrated in Figure 5.18. This system is dynamically equal to the
system of Figure 4.15 of Section 4.5. The equations of motion are given in matrix
form by equation (4.116) as

RN —r—

L|rl § k, Fosin(or)

C(I
x(fi | |i<7 Excitation force
m
C

LIJ

Absorber system

k Primary system Figure 5.18 A schematic of a vibration
absorber with damping in both the
primary and absorber system.
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[m 0 [x(t) N [c +c, —cg, [x(t)
0 n, -.x.a(t) —Cq Cq ).Ca(t)
k + ka _ka X(l) [E) .
+ = .
|: K, K, :||:xa(t):| 0 j| sin ot (5.27)

Note, as was mentioned in Section 4.5, that these equations cannot necessarily be
solved by using the modal analysis technique of Chapter 4 because the equations
do not decouple (KM 'C # CM'K). The steady-state solution can be calcu-
lated, however, by using a combination of the exponential approach discussed
in Section 2.3 and the matrix inverse used in previous sections for the undamped

case.
o101

To this end, let F{ sin ot be represented in exponential form by F in equa-
tion (5.27) and assume that the steady-state solution is of the form
. X | .
x(f) = X' = |: }e"“’ (5.28)
X,

where X is the amplitude of vibration of the primary mass and X, is the amplitude
of vibration of the absorber mass. Substitution into equation (5.27) yields

[(k + k, — mmz) + (¢ + c,)of —k, — c,wj ”:X}ejwt _ [Fo]ejwt
—k, — c,wj (ka - mawz) + c,wj IL X, 0

(5.29)

Note that the coefficient matrix of the vector X has complex elements. Dividing
equation (5.29) by the nonzero scalar ¢/’ yields a complex matrix equation in the
amplitudes X and X,. Calculating the matrix inverse using the formula of Example
4.1.4, reviewed in Window 5.3, and multiplying equation (5.29) by the inverse from
the right yields

|:<ka — mamz) + c,wj k, + c,0f ]|:FO:|

X k, + c,0j k+ k, — mo?> + (c + c)oj |L0

[ J _ wj o’ + ( Jwj (5.30)
X, det (K — o’M + wjC)

Here the determinant in the denominator is given by (recall Example 4.1.4)

det(K — o’M + ij) = mm* + (cac + my(k, + k) + kam)m2 + kk
+ [(kca + cky)w — (ca(m + m,) + cma)o)3]j (5.31)
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and the system coefficient matrices M, C, and K are given by

m 0 c+c, —c |kt Kk, —k,
M_|:O ma} C_|:_ca Ca} K_|:_ka ka:|

Simplifying the matrix vector product yields

k, — muo? |
X = [( . — MW ) + caw]} 0 (532)
det(K — o’M + wjC)

(ko + cqw)Fy
X, = (5.33)
det(K — 0*M + wjC)

which expresses the magnitude of the response of the primary mass and absorber
mass, respectively. Note that these values are now complex numbers and are multi-
plied by the complex value ¢/’ to get the time responses.

Equations (5.32) and (5.33) are the two-degree-of-freedom version of the
frequency response function given for a single-degree-of-freedom system in equa-
tion (2.52). The complex nature of these values reflects a magnitude and phase.
The magnitude is calculated following the rules of complex numbers and is best
done with a symbolic computer code, or after substitution of numerical values for
the various physical constants. It is important to note from equation (5.32) that un-
like the tuned undamped absorber, the response of the primary system cannot be
exactly zero even if the tuning condition is satisfied. Hence the presence of damp-
ing ruins the ability of the absorber system to exactly cancel the motion of the
primary system.

Equations (5.32) and (5.33) can be analyzed for several specific cases. First,
consider the case for which the internal damping of the primary system is neglected
(¢ = 0). If the primary system is made of metal, the internal damping is likely to be
very low and it is reasonable to neglect it in many circumstances. In this case, the
determinant of equation (5.31) reduces to the complex number

det(K — w’M + C)) (5.34)
= [(—mmz + k) (—maoo2 + ka) — makawz] + [(k - (m + ma)mQ)caw]j

The maximum deflection of the primary mass is given by equation (5.32) with the
determinant in the denominator evaluated as given in equation (5.34). This is the
ratio of two complex numbers and hence is a complex number representing the
phase and the amplitude of the response of the primary mass. Using complex arith-
metic (see Window 5.4) the amplitude of the motion of the primary mass can be
written as the real number

X2 <ka - mawz)z + (,‘)ZCLZJ (5 35)
F} [(k - mwz) (ka - mau)2> - mukaw2]2 + [k - (m + ma)wz]zcgm2 .
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Window 5.4
Reminder of Complex Arithmetic

The response magnitude given by equation (5.32) can be written as the ratio of
two complex numbers:

X A +Bj
K Ay + Byj

where Ay, A;, By, and B, are real numbers and j = V—1. Multiplying this by
the conjugate of the denominator divided by itself yields

X (A +Bj)(A - Bj) (AA + BiBy)  BiA, — AB,

Fy (Ay + By)(Ay — Byj) A2+ B} A+ B

which indicates how X/ Fj is written as a single complex number of the form
X/Fy = a + bj.This is interpreted, as indicated, that the response magnitude
has two components: one in phase with the applied force and one out of phase.
The magnitude of X/Fj is the length of the preceding complex number (i.e.,

| X/E)| = Va® + b?).This yields
‘X _ AT+ B
Rl A+ B

which corresponds to the expression given in equation (5.35). (Also see
Appendix A.)

It is instructive to examine this amplitude in terms of the dimensionless ratios
introduced in Section 5.3 for the undamped vibration absorber. The amplitude X is
written in terms of the static deflection A = F/k of the primary system. In addi-
tion, consider the mixed “damping ratio” defined by

Cq

= 5.36
C= S (5.36)
where w, = Vk/m is the original natural frequency of the primary system with-
out the absorber attached. Using the standard frequency ratio r = w/w,, the ra-
tio of natural frequencies B = w,/w, (Where 0, = Vk,/m,), and the mass ratio

. = m,/m, equation (5.35) can be rewritten as

X _ Xk _ \/ oy + (P = )’
A Fy (ZCr)z(r2 -1+ ;er)z + [pjzﬁz — (r2 — 1) (r2 — [32)}

5 (537)
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which expresses the dimensionless amplitude of the primary system. Note from
examining equation (5.37) that the amplitude of the primary system response is
determined by four physical parameter values:

i the ratio of the absorber mass to the primary mass

B the ratio of the decoupled natural frequencies
r  the ratio of the driving frequency to the primary natural frequency

{ the ratio of the absorber damping and 2m,w),

These four numbers can be considered as design variables and are chosen to give
the smallest possible value of the primary mass’s response, X, for a given applica-
tion. Figure 5.19 illustrates how the damping value, as reflected in ¢, affects the
response for a fixed value of . = 0.25 and B = 1, as r varies.

As mentioned at the beginning of this section, damping is often added to
the absorber to improve the bandwidth of operation. This effect is illustrated in
Figure 5.19. Recall that if there is no damping in the absorber ({ = 0), the magnitude
of the response of the primary mass as a function of the frequency ratio 7 is as illus-
trated in Figure 5.15 (i.e., zero at r = 1 but infinite at » = 0.781 and r = 1.281). Thus
the completely undamped absorber has poor bandwidth (i.e., if  changes by a small
amount, the amplitude grows). In fact, as noted in Section 5.3, the bandwidth, or use-
ful range of operation of that undamped absorber, is 0.908 = r = 1.118. For these
values of r, | Xk/Fy| = 1. However, if damping is added to the absorber ({ # 0),
Figure 5.19 results, and the bandwidth, or useful range of operation, is extended. The
price for this increased operating region is that | Xk/Fy| is never zero in the damped
case (see Figure 5.19).

Examination of Figure 5.19 shows that as { is varied, the amplification of
| Xk Fy| over the range of r can be reduced. The design question now becomes: For

Xk
FU
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Figure 5.19 The normalized amplitude of vibration of the primary mass as a function
of the frequency ratio for several values of the damping in the absorber system for the
case of negligible damping in the primary system [i.e., a plot of equation (5.37)].
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0.6 0.8 1.0 1.2 1.4 1.6

Figure 520 Repeat of the plot of Figure 5.19 with w = 0.25 and B = 0.9 for
several values of {. Note that in this case, { = 0.4 yields a lower magnitude than
does { = 0.1.

what values of the mass ratio w, the absorber damping ratio {, and the frequency
ratio B is the magnitude | Xk/Fy| smallest over the region 0 < r < 2? Just increas-
ing the damping with p and  fixed does not necessarily yield the lowest amplitude.
Note from Figure 5.19 that { = 0.1 produces a smaller amplification over a larger
region of r than does the higher ratio, { = 0.4. Figures 5.20 and 5.21 yield some hint
of how the various parameters affect the magnitude by providing plots of | Xk/F|
for various combinations of ¢, ., and B.

A solution of the best choice of w and ¢ is discussed again in Section 5.5. Note
from Figure 5.21 that . = 0.25, B = 0.8, and { = 0.27 yield a minimum value of
| Xk/Fy| over a large range of values of r. However, amplification of the response

0
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 5.21 Repeat of the plots of Figure 5.19 with p = 0.25, B = 0.8 for several
values of {. In this case, { = 0.27 yields the lowest amplification over the largest
bandwidth.
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Primary system Viscous absorber

—— e e

added to a primary mass (with no
damping) to form a viscous vibration

I
I
I
I

1 " : Figure 5.22 Damper—mass system
I
I
I

_____“7Z_1 absorber.

X still occurs (i.e., | Xk/Fy| > 1 for values of r < V/2), but no order-of-magnitude
increase in | X| occurs as in the case of the undamped absorber.

Next consider the case of an appended absorber mass connected to an un-
damped primary mass only by a dashpot, an arrangement illustrated in Figure 5.22.
Systems of this form arise in the design of vibration reduction devices for rotating
systems such as engines, where the operating speed (and hence the driving fre-
quency) varies over a wide range. In such cases a viscous damper is added to the
end of the crankshaft (or other rotating device) as indicated in Figure 5.23. The
shaft spins through an angle 6; with torsional stiffness k and inertia J;. The damp-
ing inertia J, spins through an angle 6, in a viscous film providing a damping force
c,(8; — 6,). If an external harmonic torque is applied of the form Mye“?, the equa-
tion of motion of this system becomes

o B . Y '
|:J1 0 |:61 + |: Cq Cqy |:el + |:k 0 |:el — |: 0 ewt] (538)

0 ]2 62 —C, C, 62 0 0 62 0
This is a rotational equivalent to the translational model given in Figure 5.22. It is
easy to calculate the undamped natural frequencies of this two-degree-of-freedom

system. They are
k
0, = \/;and w, =0

Torsional stiffness, k&

Casing of

/ rotational inertia J;

6

Internal disk
of inertia J,
and rotational
4 coordinate 6,

Viscous oil with
damping coefficient c,

Figure 5.23 A viscous damper and mass added to a rotating shaft for broadband
vibration absorption. Often called a Houdaille damper.
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Figure 5.24 The amplitude curves for a system with a viscous absorber, a plot of
equation (5.39), for the case w = 0.25 and for three different values of ¢.

The solution of this set of equations is given by equations (5.32) and (5.33) with m
and m, replaced by J; and J,, respectively, c = 0, k, = 0, and Fj replaced by M,,.
Equation (5.32) is given in nondimensional form as equation (5.37). Hence letting
B = w,/w, = 0in equation (5.37) yields that amplitude of vibration of the primary
inertia Jp [i.e., the amplitude of 6(¢)] is described by

Xk A + r?
=\/22 i (5.39)
M, 40 + pre = D)7+ (r* = 1)°r

where { = ¢/(2/,w),),r = 0/0,, and w = J,/J;. Figure 5.24 illustrates several plots
of Xk /M for various values of { for a fixed p as a function of r. Note again that the
highest damping does not correspond to the largest amplitude reduction.

The various absorber designs discussed previously, excluding the undamped
case, result in a number of possible “good” choices for the various design param-
eters. When faced with a number of good choices, it is natural to ask which is the
best choice. Looking for the best possible choice among a number of acceptable or
good choices can be made systematic by using methods of optimization introduced
in the next section.
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5.5 OPTIMIZATION

In the design of vibration systems, the best selection of system parameters is often
sought. In the case of the undamped vibration absorber of Section 5.3 the best
selection for values of mass and stiffness of the absorber system is obvious from
examining the expression for the amplitude of vibration of the primary system. In
this case, the amplitude could be driven to zero by tuning the absorber mass and
stiffness to the driving frequency. In the other cases, especially when damping is
included, the choice of parameters to produce the best response is not obvious. In
such cases, optimization methods can often be used to help select the best perfor-
mance. Optimization techniques often produce results that are not obvious. An
example is in the case of the undamped primary system or the damped absorber
system discussed in the preceding section. In this case Figures 5.19 to 5.21 indicate
that the best selection of parameters does not correspond to the highest value of the
damping in the system, as intuition might dictate. These figures essentially represent
an optimization by trial and error. In this section a more systematic approach to
optimization is suggested by taking advantage of calculus.

Recall from elementary calculus that minimums and maximums of particular
functions can be obtained by examining certain derivatives. Namely, if the first
derivative vanishes and the second derivative of the function is positive, the func-
tion has obtained a minimum value. This section presents a few examples where
optimization procedures are used to obtain the best possible vibration reduction for
various isolator and absorber systems. A major task of optimization is first deciding
what quantity should be minimized to best describe the problem under study. The
next question of interest is to decide which variables to allow to vary during the op-
timization. Optimization methods have developed over the years that allow the pa-
rameters during the optimization to satisfy constraints, for example. This approach
is often used in design for vibration suppression.

Recall from calculus that a function f(x) experiences a maximum (or minimum)
at value of x = x,, given by the solution of

F'o) = o )] = 0 (540)

If this value of x causes the second derivative, f"'(x,,), to be less than zero, the value
of f(x) at x = x,, is the maximum value that f(x) takes on in the region near x = x,,,.
Similarly, if f”(x,,) is greater than zero, the value of f(x,,,) is the smallest or minimum
value that f(x) obtains in the interval near x,,. Note that if f”"(x) = 0, at x = x,,, the
value f(x,,) is neither a minimum or maximum for f(x). The points where f’(x) vanish
are called critical points.

These simple rules were used in Section 2.2, Example 2.2.5, for computing
the value (rpeqak) Where the maximum value of normalized magnitude of the steady-
state response of a harmonically driven single-degree-of-freedom system occurs.
The second derivative test was not checked because several plots of the function
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clearly indicated that the curve contains a global maximum value rather than a min-
imum. In both absorber and isolator design, plots of the magnitude of the response
can be used to avoid having to calculate the second derivative (second derivatives
are often unpleasant to calculate).

If the function fto be minimized (or maximized) is a function of two variables
[i.e., f = f(x, y)], the preceding derivative tests become slightly more complicated
and involve examining the various partial derivatives of the function f(x, y). In this
case, the critical points are determined from the equations

feey) =280 g
£l y) = af(;y’y ) o (5.41)

Whether or not these critical points (x, y) are a maximum of the value f(x, y) or a
minimum depends on the following:

1 If fix(x, y) > 0 and fi (x, y)fyy(x, y) > fﬁy(x, y), then f(x, y) has a relative
minimum value at x, y.

2 If fiox, y) < 0 and fi(x, y)fyy(x, y) > f,zcy(x, y), then f(x, y) has a relative
maximum value at x, y.

31If f)%y(x, y) > fulx, )fy(x, y), then f(x, y) is neither a maximum nor a mini-
mum value; the point x, y is a saddle point.

4 If f)%y(x, y) = fu(x ¥)fyy(x, ), the test fails and the point x, y could be any or
none of the above.

Plots of f(x, y) can also be used to determine whether or not a given critical
point is a maximum, minimum, saddle point, or none of these. These rules can be
used to help solve vibration design problems in some circumstances. As an example
of using these optimization formulations for designing a vibration suppression
system, recall the damped absorber system of Section 5.4. In this case, the magni-
tude of the primary mass-normalized displacement with respect to the input force
(moment) magnitude is given in equation (5.39) to be

Xk w2 r
M, = 542
My \/422(r2+ w?— 1)+ (r2—1)%2 fir, 9 (5.42)

which is considered to be a function of the mixed damping ratio { and the frequency
ratio r for a fixed mass ratio .

In Section 5.4, values of f(r) are plotted versus r for several values of { in an
attempt to find the value of { that yields the smallest maximum value of f(r, {).
This is illustrated in Figure 5.24. Figure 5.25 illustrates the magnitude as a function
of both { and r. From the figure it can be concluded that the derivative 9f/or = 0
yields the maximum value of the magnitude for each fixed {.
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Figure 5.25 A plot of the normalized magnitude of the primary system versus
both { and r [i.e., a two-dimensional plot of equation (5.42) for p = 0.25]. This
illustrates that the most desirable response is obtained at the saddle point.

Looking along the { axis, the partial derivative d9f/d{ = 0 yields the minimum
value of f(r,{) for each fixed value of r. The best design, corresponding to the
smallest of the largest amplitudes, is thus illustrated in Figure 5.25. This point cor-
responds to a saddle point and can be calculated by evaluating the appropriate first
partial derivatives.

First consider d(Xk/M,)/dC. From equation (5.42), the function to be differen-
tiated is of the form

A1/2

where A = 4> + /2 and B = 402(* + w* — 1)2 + (P - 1)2r2. Differentiating
and equating the resulting derivatives to zero yields

of _1A'2dA

1 ,,dB
_Araa L apds
=2 gr 24 pE=0 (5.44)

Solving this yields the form [B dA — A dB]/2B3/? = 0 or
BdA = AdB (5.45)
where A and B are as defined previously and
dA =8 and dB=8((r*+ pr2—1)° (5.46)
Substitution of these values of A, dA, B, and dB into equation (5.45) yields
(1-r2)7=(1-r—w?)? (5.47)
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For w # 0, r > 0, this has the solution

s (5.48)

Similarly, differentiating equation (5.42) with respect to r and substituting the value
for r obtained previously yields

1
“r = Vol + D+ 2)

(5.49)

Equation (5.49) reveals the value of { that yields the smallest amplitude at the point
of largest amplitude (resonance) for the response of the primary mass. The maxi-
mum value of the displacement for the optimal damping is given by

Xk> 2
— =1+ — 5.50
(MO max P ( )

which is obtained by substitution of equations (5.48) and (5.49) into equation
(5.42). This last expression suggests that p should be as large as possible. However,
the practical consideration that the absorber mass should be smaller than the pri-
mary mass requires i = 1. The value p = 0.25 is fairly common.

The second derivative conditions for the function f to have a saddle point
(condition 3 in the preceding list) are too cumbersome to calculate. However,
the plot of Figure 5.25 clearly illustrates that these conditions are satisfied.
Furthermore, the plot indicates that f'as a function of { is convex and f as a function
of r is concave so that the saddle point condition is also the solution of minimizing
the maximum value f{(r, {), called the min—-max problem in applied mathematics and
optimization.

Example 5.5.1

A viscous damper—mass absorber is added to the shaft of an engine. The mass moment
of inertia of the shaft system is 1.5 kg-m?/rad and has a torsional stiffness of 6 X
10® N - m/rad. The nominal running speed of the engine is 2000 rpm. Calculate the
values of the added damper and mass moment of inertia such that the primary system
has a magnification (Xk /M) of less than 5 for all speeds and is as small as possible at
the running speed.

Solution Since w, = Vk/J, the natural frequency of the engine system is

f.o X 103 N'-m/rad
(,\)p =

5 = 63.24rad/s
1.5 kg-m"/rad
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The running speed of the engine is 2000 rpm or 209.4 rad/s, which is assumed to be
the driving frequency (actually, it is a function of the number of cylinders). Hence the
frequency ratio is

© 2094
=2 ="""=33
"T e, 6324

so that the running speed is well away from the maximum amplification as illustrated
in Figures 5.24 and 5.25 and the absorber is not needed to protect the shaft at its run-
ning speed. However, the engine spends some time getting to the running speed and
often runs at lower speeds. The peak response occurs at

® 2

(1)7[, 2+ p

r peak =

as given by equation (5.48), and has a value of

as given by equation (5.50). The magnification is restricted to be 5, so that
2
1+—=5 or w=05
v

Thus i = 0.5 is chosen for the design. Since the mass of the primary system is J; =
1.5 kg+-m?/rad and p. = J,/J;, the mass of the absorber is

1
b=k = 5(1.5) kg-m?/rad = 0.75 kg - m?- rad

The damping value required for equation (5.50) to hold is given by equation (5.49) or

1 1
= = = 0.3651
o V2w + D +2)  V2(1.5)(25)

Recall from Section 5.4 [just following equation (5.39)], that { = ¢/(2/,w),), so that the
optimal damping constant becomes

Cop = 2ophwy = 2(0.3651)(0.75)(63.24) = 34.638 N-m s /rad

The two values of J, and ¢ given here form an optimal solution to the problem of de-
signing a viscous damper—mass absorber system so that the maximum deflection of the
primary shaft is satisfied | Xk/M,| < 5. This solution is optimal in terms of a choice of
¢, which corresponds to the saddle point of Figure 5.25 and yields a minimum value of
all maximum amplifications.

O
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i Fycosot

Figure 5.26 Model of a machine
mounted on an elastic foundation
through an elastic damper to provide
vibration isolation.

Optimization methods can also be useful in the design of certain types of vi-
bration isolation systems. For example, consider the model of a machine mounted
on an elastic damper and spring system as illustrated in Figure 5.26. The equations
of motion of the system of Figure 5.26 are

mX; + c(x; — %) + kixyy = K cosot

C(jCl - X2) = kzXz (551)

Because no mass term appears in the second equation, the system given by equa-
tion (5.51) is of third order. Equation (5.51) can be solved by assuming periodic
motions of the form

x() = X and  x(f) = X! (5.52)

and considering the exponential representation of the harmonic driving force.
Substitution of equation (5.52) into (5.51) yields

(ky — mo? + jew)X, — jewX, = F,
jC(J)Xl - (k2 + jC(,O)Xz =0 (553)
Solving for the amplitudes X; and X, yields

Fy(ky + jew)
X = (5.54)
k (ki + mo?) + jew(ky + ky — mw?)

and

cokyj

X, =
2 kZ(kl +mw2) +C0)<k1 +k2—mw2)]

(5.55)

These two amplitude expressions can be simplified further by substituting the non-
dimensional quantities r = w/Vk;/m,y = ki/ko,and { = ¢/ (2\/k1m). The force
transmitted to the base is the vector sum of the two forces kix; and kyx,. Using
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complex arithmetic and a vector sum (recall Sections 2.3 and 2.4) the force trans-
mitted can be written as

_Fr_ V1 + 41 + v
Fo \/(1 —r2) +4§2r2(1 -I—y—rzy)z

which describes the transmissibility ratio for the system of Figure 5.26.

The force transmissibility ratio can be optimized by viewing the ratio Fr/F as
a function of r and . Figure 5.27 yields a plot of F/F; versus r for y = 0.333 and for
several values of ¢. This illustrates that the value of the damping ratio greatly affects
the transmissibility at resonance. A three-dimensional plot of F/F versus r and { is
given in Figure 5.28, which illustrates that the saddle point value of { and r yields the
best design for the minimum transmissibility of the maximum force transmitted.

T.R.

(5.56)

10*
10°
102
Fr
F

Figure 5.27 Plot of equation (5.56) illustrating the effect of damping on the magni-
fication of force transmitted to ground.
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Figure 5.28 Plot of equation (5.56) illustrating Fy/ Fy versus { versus . The plot shows
the point where damping minimizes the maximum transmissibility.
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The saddle point illustrated in Figure 5.28 can be found from the derivative of
T.R. as given in equation (5.56). These partial derivatives are

ATR) 0 vield Vo +y) S5
ag - yrields  rmax = m ( )

and

a(T.R.) V2(1 + 2y) /v

=0 vyield =
or yields  Lop 41 + v)

(5.58)

These values of r correspond to an optimal design of this type of isolation device.
At the saddle point, the value of T.R. becomes

(TR )y = 1 + 2y (5.59)

which results from substitution of equations (5.57) and (5.58) into equation (5.56).
This illustrates that as long as y < 1, T.R. < 3 and the isolation system will not
cause much difficulty at resonance.

Example 5.5.2

An isolation system is to be designed for a machine modeled by the system of Figure
5.26 (i.e., an elasticity coupled viscous damper). The mass of the machine is m = 100 kg
and the stiffness k; = 400 N/m. The driving frequency is 10 rad/s at nominal oper-
ating conditions. Design this system (i.e., choose k, and c¢) such that the maximum
transmissibility ratio at any speed is 2 (i.e., design the system for “startup” or “run
through”). What is the T.R. at the normal operating condition of a driving frequency
of 10 rad/s?

Solution For m = 100kg and k; =400N/m, ®,= V400/100 = 2rad/s,
2 rad/s, so that the normal operating condition is well away from resonance (i.e.,
r = o/w, = 10/2 = 5 at running conditions). Equation (5.59) yields that the maxi-
mum value for T.R. is

(TR)pax = 1 +2y =2

so that y = 0.5 and k, = (0.5)(k1) = (0.5)(400 N/m) = 200 N/m. With y = 0.5, the
optimal choice of damping ratio is given by equation (5.58) to be

V2(1 + 2v) /vy

=——F=04714
P 41 + v)

Hence the optimal choice of damping coefficient is

Cop = 2Uoporam = 2(0.4714)(2)(100) = 188.56 kg/s
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The T.R. value at nominal operating frequency of @ = 10 rad/s is given by equation (5.56)
tobe (r = 10/2 = 5)

V1 + 4(1 + 05)%(0.4714)%(5)?
TR. = = 0.12
V(1 - 52)? + 4(04714)%(5)*[1 + 0.5 — 5%(0.5)]?

Hence the design k, = 200 N/m and ¢ = 188.56 kg/s will protect the surroundings by
a T.R. of 0.12 (i.e., only 12% of the applied force is transmitted to ground) and limits
the force transmitted near resonance to a factor of 2.

|

5.6 VISCOELASTIC DAMPING TREATMENTS

A common and very effective way to reduce transient and steady-state vibration is to
increase the amount of damping in the system so there is greater energy dissipation. This
is especially useful in aerospace structures applications, where the added mass of an ab-
sorber system may not be practical. While a rigorous derivation of the equations of vibra-
tion for structures with damping treatments is beyond the scope of this book, formulas
are presented that provide a sample of design calculations for using damping treatments.

A damping treatment consists of adding a layer of viscoelastic material, such
as rubber, to an existing structure. The combined system often has a higher damp-
ing level and thus reduces unwanted vibration. This is standard in the auto industry
to reduce vibration-induced noise in the car’s interior and can be found under the
flooring carpet. This procedure is described by using the complex stiffness notation.
The concept of complex stiffness results from considering the harmonic response of
a damped system of the form

mx + cx + kx = Fyel*! (5.60)

Recall from Section 2.3 that the solution to equation (5.60) can be calculated by
assuming the form of the solution to be x(f) = Xe/*, where X is a constant and
j = V—1. Substitution of the assumed form into equation (5.60) and dividing by
the nonzero function /' yields

[—mo? + (k + joc) | X = R (5.61)

This can be written as

[—mwz + k(l + "’f jﬂX =F (5.62)
or

[—mo® + k¥]X = F (5.63)
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where k* = k(1 + mj). Here 1 = wc/k is called the loss factor and k* is called the
complex stiffness. This illustrates that in steady state, the viscous damping in a sys-
tem can be represented as an “undamped” system with a complex-valued stiffness.
The imaginary part of the stiffness, n, corresponds to the energy dissipation in the
system. Since the loss factor has the form

w= %w (5.64)
the loss factor depends on the driving frequency and hence is said to be frequency
dependent. Thus the value of the energy dissipation term depends on the value of
the driving frequency of the external force exciting the structure.

The concept of complex stiffness just developed is called the Kelvin—Voigt
model of a material. This corresponds to the standard spring—dashpot configura-
tion as sketched in Figure 5.29 and used extensively in the first four chapters. The
difference between the Kelvin—Voigt model used here and the viscous-damping
model of the previous chapters is that the Kelvin—Voigt model used here is valid
only in steady-state harmonic motion. The complex stiffness and the corresponding
frequency-dependent loss factor, f = wc/k, model the energy dissipation at steady
state during harmonic excitation of frequency w only. The viscous dashpot represen-
tation introduced in Section 1.3 models energy dissipation in free decay as well as in
other transient and forced-response excitation. However, the Kelvin—Voigt represen-
tation is a more accurate, though limited, model of the internal damping in materials.

The complex stiffness formulation can also be derived from the stress—strain
relationship for a linear viscoelastic material. Such materials are called viscoelastic
because they exhibit both elastic behavior and viscous behavior, as captured in the
Kelvin—Voigt model described in Figure 5.29. Other viscoelastic models exist in ad-
dition to this one, but such models are beyond the scope of this book [see Snowden
(1968)]. An alternative viscoelastic model is given in Figure 5.26, for instance.

The stress—strain relationship for viscoelastic material can be summarized by
extending the modulus of a material, denoted by E, to a complex modulus, denoted
E*, by the relation

E* = E(1 + m)) (5.65)

where j = V—1 as before and ) is the loss factor of the viscoelastic material. The
complex modulus of a material, as defined in equation (5.65), can be measured,

Material with viscoelastic properties

'

k

m F(t) = Fye jor  Figure 5..29 Kelvin—Voigt dampipg
{F— model gives rise to the complex stiffness
¢ concept of representing damping in

x(1) steady-state vibration.
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Figure 5.30 A sample plot of elastic modulus (solid lines) and loss factor (dashed
lines) versus frequency for several fixed temperatures.

and in general is both frequency and temperature dependent over a broad range of
values. Some sample values for frequency dependence are given in Figure 5.30 for
fixed temperatures.

Materials that exhibit viscoelastic behavior are rubber and rubber-like sub-
stances (e.g., butyl rubber, neoprene, polyurethane) as well as plexiglass, vinyl,
and nylon. A common use of these viscoelastic materials in design is as an additive
damping treatment to increase the combined structure’s damping or as an isolator.
Layers of viscoelastic material are often added to structures composed of lightly
damped material such as aluminum or steel to form a new structure that has suf-
ficient stiffness for static loading and sufficient damping for controlling vibration.
Table 5.2 lists some values of E and v for a viscoelastic material at two different
temperatures and several frequencies.

TABLE 5.2 SOME COMPLEX MODULUS DATA (l.E., E AND m) FOR PARACRIL-BJ
WITH 50 PHRC?

E (psi) " T (°F) o (Hz) o (rad/s) E (N/m?)

3 % 10° 021 75 10 62.8 2.068 x 107
4% 10° 0.28 75 100 628.3 2.758 x 107
7 % 10° 0.55 75 1000 6283.2 4.826 x 107
4% 10° 0.25 50 10 62.8 2758 x 107
6 X 10° 0.5 50 100 6283 4137 x 107
13 X 10° 1 50 1000 6283.2 8.963 X 107

“Nitrile rubber elastomeric material made by U.S. Rubber Company.
Source: Nashif, Jones, and Henderson, 1985, Data Sheet 27.
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The loss factor m defined in terms of the complex modulus as given in equa-
tion (5.65) is related to the loss factor m defined by examining the notion of com-
plex stiffness as defined in equation (5.64) in the same way that the stiffness and
modulus of a material are related in Table 1.1 and Section 1.5. For example, if the
specimen of interest is a cantilevered beam, the stiffness associated with the deflec-
tion of the tip in the transverse direction is related to the elastic modulus by

3EI
k:lT

(5.66)

where [ is the area moment of inertia and / is the length of the beam. Hence if the
beam is made of viscoelastic material,

_3Ef 3]

k* T ZTE(l + mj) = k(1 + mj)

so that = m and the two notions of loss factor are identical.

The notion of loss factor m is related to the definition of a damping ratio
{ only at resonance (i.e., ® = 0w, = Vk/m). When the driving frequency is the
same as the system’s natural frequency, n = 2{. This simple relationship is often
used to describe the free decay of a viscoelastic material (an approximation). The
design of structures for reduced vibration magnitude often consists of adding a
viscoelastic damping treatment to an existing structure. Many structures are made
of metals and alloys that have relatively little internal damping. A viscoelastic
damping material (such as rubber) is often added as a layer to the outside sur-
face of a structure (called free-layer damping treatment or unconstrained-layer
damping). A much more effective approach is to cover the free layer with another
layer of metal to form a constrained-layer damping treatment. In the constrained-
layer damping treatment, the damping layer is covered with a (usually thin)
layer of metal (stiff) to produce shear deformation in the viscoelastic layer. The
constrained-layer approach produces higher loss factors and generally costs more.
These damping treatments are manufactured as sheets, tapes, and adhesives for
ease of application.

A free-layer damping treatment for a pinned-pinned beam (see Table 6.4)
in transverse or bending vibration is illustrated in Figure 5.31. Material 1, the bot-
tom layer, is usually a metal providing the appropriate stiffness. The second layer,
denoted as having modulus E; and thickness Hj, is the damping treatment. Using

-~

H, I E,(1+m,/)  |<— Damping treatment

Figure 5.31 A simple supported
beam with an unconstrained damping
treatment illustrating the geometry and
physical parameters.

H, ¢ E/(1+m)) ~— Metal structure
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the notation of Figure 5.31, the combined stiffness EI is related to the original
stiffness E1/; by

EI
L 1+ eh3 + 3(1 + hy)?

eh,

Ee—— 5.67
1+ 62]’12 ( )

where e, = E,/E and h, = H,/H; are dimensionless. Note that since all the
quantities on the left side of equation (5.67) are positive, the damping treatment
increases the stiffness of the system a small amount (4, < 1). In addition, the com-
bined system’s loss factor, v, is given by [assuming that (e,h,)> << eh;]

eshy (3 + 6hy + 4h3 + 2e.h3 + e3h3)
(1 + €2h2>1 + 4€2h2 + 6€2h% + 462]’1% + E%hg e

n= (5.68)

Equation (5.68) yields a formula that can be used in the design of add-on damping
treatments, as illustrated in the following example.

Example 5.6.1

An electric motor that drives a cooling fan is mounted on an aluminum shelf (1 cm
thick) in a cabinet holding electronic parts (perhaps a mainframe computer) as illus-
trated in Figure 5.32. The vibration of the motor causes the mounting platform, and
hence the surrounding cabinet, to shake. The motor rotates at an effective frequency of
100 Hz. The temperature in the cabinet remains at 75°F. A damping treatment is added
to reduce the vibration of the shelf.

s /@/ Cabinet

A ]

Component ’l Cooling

shelves g —
¢ w7
N

Y

‘§< Damping
</

( treatment
|—I_| End view |—I_|

Figure 5.32 Electronic cabinet with cooling fan illustrating the use of a damping
treatment.

Solution The shelf is modeled as a simply supported beam so that equation (5.68)
can be used to design the damping treatment. If nitrile rubber is used as the damp-
ing treatment, calculate the loss factor of the combined system at 75°F if H, = 1 cm.
Referring to Table 5.2, the modulus of the rubber at 100 Hz and 75°F is

E, = 2758 X 10’ Pa
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The modulus of aluminum is £; = 7.1 X 10! Pa, so that

2758 x 107

e = o = 0.00039 = 3.885 X 107"
71 % 10

The thickness of both the shelf and the damping treatment are taken to be the same, so
that 4, = 1. From equation (5.68) the combined loss factor becomes

(0.00039)[3 + 6 + 4 + 2(0.00039) + (0.00039)?]
~(1.00039)[1 + 4(0.00039) + 6(0.00039) + 4(0.00039) + (0.00039)>
= 5.021 X 107n,

mn ]T]2

From Table 5.2, , = 0.28 at 100 Hz and 75°C, so that
n = 0.00141

which is about 50% higher than the loss factor given by pure aluminum.
The formula given in equation (5.68) is a bit cumbersome for design work. Often
it is approximated by

n = 14(eh3 ), (5.69)

which is reasonable for many situations. The values of e, and r, are fixed by the choice of
materials and the operating temperature. Once these parameters are fixed, the parameter
h, = H,/Hj is the only remaining design choice. Since H; is usually determined by stift-
ness considerations, the remaining design choice is the thickness of the damping layer, H,.

|

Example 5.6.2

An aluminum shelf is to be given a damping treatment to raise the system loss factor to
mn = 0.03. A rubber material is used with modulus at room temperature of 1% of that
of aluminum (i.e., e, = 0.01). What should the thickness of the damping material be if
its loss factor is mp = 0.261 and the aluminum shelf is 1 cm thick?

Solution From the approximation given by equation (5.69),
m = ldmye,h3

Using the values given, this becomes

H3

(1 cm)?

0.03 = 14(0.261)(0.01)

Solving this for H3 yields

) 0.03

_ 2 _ 2
2= 4(0.01)(0.261) ™) = 082¢em

so that H, = 0.91 cm will provide the desired loss factor.
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5.7 CRITICAL SPEEDS OF ROTATING DISKS

Of primary concern in the design of rotating machinery is the vibration phenom-
enon of critical speeds. This phenomenon occurs when a rotating shaft with a disk,
such as a jet engine turbine blade rotating about its shaft mounted between two
bearings, rotates at a speed that excites the natural bending frequency of the shaft-
disk system. This defines a resonance condition that causes large deflection of the
shaft, which in turn causes the system to fail violently (i.e., the engine blows apart).
The nature of the resonance and the factors that control the resonance values need
to be known and calculated by designers so that they can ensure that a given design
is safe for production. The analytical formulation of the critical speed problem also
provides some insight into how to avoid such resonance, or critical speeds.

If the rotating mass modeled by the disk is not quite homogeneous or sym-
metric due to some imperfection, its geometric center and center of gravity will be
some distance apart (say, a). This is illustrated in Figure 5.33, which presents a sim-
plified model of a large electric motor’s shaft-and-rotor system (or a bladed turbine
engine, for example). The shaft is constrained from moving in the radial direction
by two bearings. As the shaft rotates about its long axis with angular velocity w, the
offset center of gravity pulls the shaft away from the centerline, causing it to bow as
it rotates. This is called whirling.

The forces acting on the center of mass are the inertial force, any damping
force (internal or external), and the elastic force of the shaft. In vector form, the
force balance yields

m¥ = —kxi — kyj — cxi — ¢y (5.70)

where i and i are unit vectors, r the position vector defined by the line OG, m the
mass of the disk, ¢ the damping coefficient of the shaft system, and k the stiffness

Center of mass

|
|
Support Disk Support ) X
bearing bearing a=line EG  x+a

(a) (b)

Figure 5.33 A schematic of a model of a disk rotating on a shaft and the
corresponding geometry of the center of mass, G, of the disk relative to the neutral
axis of the shaft, O, and the center of the rotating shaft, E: (a) side view; (b) end
view. This diagram is useful in modeling the whirling of rotating machines (engines,
turbine compressors, etc.), which are not perfectly balanced (i.e.,a # 0).
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coefficient provided by the shaft system. From examining the end view of Figure 5.33,
the vector r can also be written in terms of the unit vectors i and j as

r = (x + acoswf)i + (y + asinwr)] (5.71)

Taking two derivatives yields that the acceleration vector of the center of mass is

2

¥ = (X — aw’coswi)i + (¥ — aw?sin oot)i (5.72)

Substituting equation (5.72) into equation (5.70) yields

(m'x' — maw’ coswt + cx + kx)f + (m'y — maw’ sinwt + ¢y + ky)j =0 (573)
Since this is a vector equation, it is equivalent to the two scalar equations

m¥ + cx + kx = maw? cosot (5.74)

my + ¢y + ky = maw’sinwt (5.75)
These two equations are exactly the form of equation (2.82) for the response of a
spring—mass system to a rotating unbalance discussed in Section 2.5. In this case,
the x and y motion corresponds to the bending vibration of the shaft instead of the
translational motion of a machine in the vertical direction discussed in Section 2.5.

Window 5.5
Solution of the Rotating Unbalance Equation from Section 2.5

The steady-state solution to

2

mx + cx + kx = mpew” sin wt

where o is the driving frequency of the unbalanced mass, 71y the mass of the un-
balance, and e the distance from m1 to the center of rotation, is X sin (o ¢ — ).
Here

x = r (2.84)
m \/(1 - r2)2 + (2§r)2
And
2
¢ =tan! - _Crrz (2.85)

where r = o/ Vk/mand { = c/(2mw,,).
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Referring to Window 5.5, equation (5.75) has steady-state response magni-
tude given by equation (2.84); that is, equation (5.75) has the steady-state solution
(since m = mgand e = a in this case)

_ ar? . _ o 2r
y(t) = \/(1 = r2)2 e s1n<u)t tan™! e r2> (5.76)

Similarly, equation (5.74) has steady-state solution of the form

ar2

\/(1 — r2)2 + (2§r)2

2
cos(wt — tan! 1 & ) (5.77)

r2

x(1) =

since the solution given by equations (2.84) and (2.85) is 90° out of phase and the
phase angle ¢ does not depend on the phase of the exciting force. The angle ¢
given by equation (2.85) becomes the angle between the lines OF and EG. From
Figure 5.33, the angle 6 made between the x axis and the line OF is

Y Sin(wt—d>)_ B
tan6 = P 7&5(@ “ o) tan(wt — &) (5.78)

or
0=of—d (5.79)

Differentiating equation (5.79) with respect to ¢ yields 6 = .

The velocity 8 is the velocity of whirling. Whirling is the angular motion of the
deflected shaft rotating about the neutral axis of the shaft. The calculation leading
to equation (5.79) and its derivative shows that the whirling velocity is the same as
the speed with which the disk rotates about the shaft (i.e., 8 = ). This is called
synchronous whirl.

The amplitude of motion of the center of the shaft about its neutral axis is
the line r = OF in the end view of Figure 5.33. Note that vector OF =r = x:
OF = r = xi + yj. The magnitude of this vector is just

()] = Va2 + y* = XV sin(of — ¢) + cosX(of — ) = X (5.80)

where X is the magnitude of x(¢). Note that X = Y, where Y is the magnitude of
y(?) as given in equation (5.76). This calculation indicates that the distance between
the shaft and its neutral axis is constant and has magnitude

ar2

X = (5.81)
\/<1 — r2)2 + (2¢r)?
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Figure 5.34 A plot of the ratio of radius of deflection (OF) to the distance to the
center of mass of the disk (a) versus the frequency ratio for four different values of
the damping ratio for the disk and shaft system of Figure 5.33.

This, of course, is exactly the same form as the magnitude plot of equation (2.84)
given in Figure 2.21 for a spring-mass—damper system driven by a rotating out-of-
balance mass. This plot is repeated for the rotational amplitude case of interest in
Figure 5.34. Note that a resonance phenomenon occurs near r = 1, as expected.
For lightly damped shafts this corresponds to unacceptably high amplitudes of rota-
tion. The special case of r = 1 (i.e., , = Vk/m) is called the rotor system’s critical
speed. If a rotor system runs at its critical speed, the large deflection will cause a
large force to be transmitted to the bearings and eventually lead to failure. From
the design point of view, the running speed, mass, and stiffness are examined for
a given rotor and redesigned until r > 3, so that the deflections are limited to the
size of the distance to the center of the mass of the disk. However, when the rotor
system is started up, it must pass through the region near r = 1. If this startup pro-
cedure occurs too slowly, the resonance phenomena could damage the rotor bear-
ings. Hence some damping in the system is desirable to avoid excessive amplitude
at resonance. Note from Figure 5.34 that as { increases, X /a at resonance becomes
substantially smaller.

Example 5.7.1

Consider a 55-kg compressor rotor with a shaft stiffness of 1.4 X 10’ N/m, with an
operation speed of 6000 rpm, and a measured internal damping providing a damping
ratio of { = 0.05. The rotor is assumed to have a worst-case eccentricity of 1000 um
(a = 0.001 m). Calculate (a) the rotor’s critical speed, (b) the radial amplitude at oper-
ating speed, and (c) the whirl amplitude at the system’s critical speed.
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Solution

(a) The critical speed of the rotor is just the rotor’s natural frequency, so that

1.4 X 10’ N/m

we = Vik/m = 55 kg

= 504.5rad/s

which corresponds to a rotor speed of

cycle
5045 734 5 608 L YEC  4e17 6 rpm
S min 2 rad

(b) The value of r at running speed is just

 _ (2m/60) 6000

Vijm  @u/60)\k/m 48176

or about 1.25. The value of the radial amplitude of whirl at the operating speed is
then given by equation (5.81) with this value of r:

= 1.2454

X = [r(1) ar? (0.001)(1.25)?

= le(n)| = _
\/(1 - r2)2 + 2u)? \/[1 - (1.25)2]2 + [2(0.05)(125)]2
= 0.0027116 m

or about 2.7 mm. Here r = 1.25,{ = 0.05,and a = 0.001. Note thatif » = 1.2454
isused, X = 0.0027455 m results. This gives some feeling for the sensitivity of the
value of X to knowing exact values of r. Minor speed variation of, say, 10% in the
running speed would cause r to vary between 1.12 and 1.37.

(c) Atcritical speed,» = 1 and X becomes

or 1 cm, an order of magnitude larger than the whirl amplitude at running speed.
d

Example 5.7.2

In designing a rotor system, there are many factors besides the deflection calculation
indicated previously that determine the damping, stiffness, mass, and operating speed
of the rotor system. Hence the designer concerned about dynamic deflections and
critical speeds is often only allowed to change the design a little. Otherwise, an entire
redesign must be performed, which may become very costly. With this in mind, again
consider the rotor of Example 5.71. The clearance specification for the rotor inside
the compressor housing limits the whirl amplitude at resonance to be 2 mm. Since
the whirl amplitude at operating speed is greater than the allowable clearance, what
percent of change in mass is required to redesign this system? What percent change in
stiffness would result in the same design? Discuss the feasibility of such a change.
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Solution The required mass for a2-mm deflection can be calculated from equation (5.81)
by first determining a value of r corresponding to 2 mm. This yields

(0.001)r>

X =0.002m =
RV (1 — r)? + [2(0.05)r2]?

or r must satisfy #* — 2.653r> + 1.3332 = 0. This is a quadratic equation in r2, which
has solutions % = 0.6737,1.979 or r = 0.8207, 1.406, since the values of frequency ra-
tio must be positive and real. Examination of the plot in Figure 5.34 of the magnitude
yields that the value of r of interest is r = 1.406. At running speed,

min 2wrad

6000 rpm —— -+
,— 60s rev. _ 628.12 — 1406

Vk/mrad/s V1.4 X 10" /m

Solving for the mass m yields

m = 70.15 kg

Since the original design value of the mass of the disk is 55 kg, the mass must be in-
creased by 27.5% to produce a design that has its running speed deflection limited to
2 mm.

If the compressor is to be used in an application fixed to ground (such as a building),
then adding 15 kg of mass to the disk may be a perfectly reasonable solution, provided that
the bearings are capable of the increased force. However, if the compressor is to be used in
a vehicle where weight is a consideration, such as an airplane, a 27% increase in mass may
not be an acceptable design. In this case equation (5.81) can be used to examine a possible
redesign by making a change in stiffness. Equation (5.81) with the appropriate parameter
values yields

_ 628.12rad/s

Vk/55

r = 1.406

Solving for k yields
k =1.0977 X 10’ N/m

This amounts to about a 27% change in the stiffness. Unfortunately, the stiffness of
the shaft cannot be changed very easily. It is determined by geometric and material
properties. The material is often determined by temperature and cost considerations
as well as toughness. It can be difficult to change the stiffness by 27%.

a

Note from Example 5.7.2 that the amplitude of whirling is sensitive to changes

in mass and changes in stiffness. Also note from Figure 5.34 that the damping
value is of little concern when choosing the design for whirl amplitude if chosen
far enough from resonance (i.e., r > 2). Rather, damping is chosen to limit the
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amplitude near resonance, which should occur only during startup and run down
(i.e., X = a/2( at resonance). The analysis of critical speeds and rotor dynamics
presented here provides a quick introduction to the topic with simplifying assump-
tions. The topic of rotor dynamics constitutes a separate field of study, and a text on
rotor dynamics should be consulted for complete details [see, for example, Ehrich
(1992), or Childs (1993)].

PROBLEMS

Section 5.1 (Problems 5.1 through 5.5)

5.1.

5.2.

5.3.

5.4.

5.5.

Using the nomograph of Figure 5.1, determine the frequency range of vibration for
which a machine oscillation remains at a satisfactory level under rms acceleration of
8000 mm /s,

Using the nomograph of Figure 5.1, determine the frequency range of vibration for
which a structure’s rms acceleration will not cause wall damage if vibrating with an rms
displacement of 2 mm or less.

What natural frequency must a hand drill have if its vibration must be limited to a min-

imum rms displacement of 10 m and rms acceleration of 0.1 m/s>? What rms velocity
will the drill have?

A machine part has a maximum rms acceleration of 5 m/ s at a frequency of 4 Hz,
however its rms amplitude must be less than 1 cm. Will this part satisfy these vibration
requirements?

Using the expression for the amplitude of the displacement, velocity, and acceleration
of an undamped single-degree-of-freedom system, calculate the velocity and accelera-
tion amplitude of a system with a maximum displacement of 10 cm and a natural fre-
quency of 10 Hz. If this corresponds to the vibration of the wall of a building under a
wind load, is it an acceptable level?

Section 5.2 (Problems 5.6 through 5.26)

5.6.

5.7.
5.8.

A 100-kg machine is supported on an isolator of stiffness 700 X 10°> N/m. The ma-
chine causes a vertical disturbance force of 350 N at a revolution of 3000 rpm. The
damping ratio of the isolator is { = 0.2. Calculate (a) the amplitude of motion caused
by the unbalanced force, (b) the transmissibility ratio, and (c) the magnitude of the
force transmitted to ground through the isolator.

Plot the T.R. of Problem 5.6 for the cases { = 0.001,¢ = 0.025,and { = 1.1.

A simplified model of a washing machine is illustrated in Figure P5.8. A bundle of wet
clothes forms a mass of 10 kg (11;,) in the machine and causes a rotating unbalance.
The rotating mass is 20 kg (including m,) and the diameter of the washer basket (2¢) is
50 cm. Assume that the spin cycle rotates at 300 rpm. Let & be 1000 N/m and { = 0.01.
Calculate the force transmitted to the sides of the washing machine. Discuss the assump-
tions made in your analysis in view of what you might know about washing machines.
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5.9.

5.10.

5.11.

5.12.

5.13.
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Top view
k/2 c/2
™~ 2
N N
™~ N
N N
Figure P5.8 A simple model of the vibration
k /2 LlJ 2 of a washing machine induced by a rotating
imbalance such as commonly caused by an
Frictionless uneven distribution of wet clothes during a
support rinse cycle.

Referring to Problem 5.8, let the spring constant and damping rate become variable. The
quantities m, my, e, and o are all fixed by the previous design of the washing machine.
Design the isolation system (i.e., decide on which value of £ and ¢ to use) so that the force
transmitted to the side of the washing machine (considered as ground) is less than 100 N.

A harmonic force of maximum value 25 N and frequency of 180 cycles/min acts on a ma-
chine of 25 kg mass. Design a support system for the machine (i.e.,choose ¢, k) so that only
10% of the force applied to the machine is transmitted to the base supporting the machine.

Consider a machine of mass 70 kg mounted to ground through an isolation system of to-
tal stiffness 30,000 N /m, with a measured damping ratio of 0.2. The machine produces a
harmonic force of 450 N at 13 rad /s during steady-state operating conditions. Determine
(a) the amplitude of motion of the machine, (b) the phase shift of the motion (with
respect to a zero phase exciting force), (c) the transmissibility ratio, (d) the maximum
dynamic force transmitted to the floor, and (e) the maximum velocity of the machine.

A small compressor weighs about 70 Ib and runs at 900 rpm. The compressor is mounted

on four supports made of metal with negligible damping.

(a) Design the stiffness of these supports so that only 15% of the harmonic force pro-
duced by the compressor is transmitted to the foundation.

(b) Design a metal spring that provides the appropriate stiffness using Section 1.5 (refer
to Table 1.2 for material properties).

Typically, in designing an isolation system, one cannot choose any continuous value
of k and c but rather works from a parts catalog wherein manufacturers list isolators
available and their properties (and costs, details of which are ignored here). Table 5.3
lists several made-up examples of available parts. Using this table, design an isolator
for a 500-kg compressor running in steady state at 1500 rev/min. Keep in mind that as
a rule of thumb compressors usually require a frequency ratio of r = 3.

TABLE 5.3 CATALOG VALUES OF STIFFNESS AND DAMPING PROPERTIES OF
VARIOUS OFF-THE-SHELF ISOLATORS

Part No.* R-1 R-2 R-3 R-4 R-5 M-1 M-2 M-3 M4 MS

k(10°N/m) 250 500 1000 1800 2500 75 150 250 500 750
c¢(N-s/m) 2000 1800 1500 1000 500 110 115 140 160 200

“The “R” in the part number designates that the isolator is made of rubber, and the “M”
designates metal. In general, metal isolators are more expensive than rubber isolators.
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5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

An electric motor of mass 10 kg is mounted on four identical springs as indicated in
Figure P5.14. The motor operates at a steady-state speed of 1750 rpm. The radius of
gyration (see Example 1.4.6 for a definition) is 100 mm. Assume that the springs are
undamped and choose a design (i.e., pick k) such that the transmissibility ratio in the ver-
tical direction is 0.0194. With this value of k, determine the transmissibility ratio for the
torsional vibration (i.e., using 6 rather than x as the displacement coordinates).

250 mm

-

‘Ki 2k(r0) — £
mg
2

+ 2k(r6)

Figure P5.14 A vibration model of an electric motor mount.

A large industrial exhaust fan is mounted on a steel frame in a factory. The plant man-
ager has decided to mount a storage bin on the same platform. Adding mass to a sys-
tem can change its dynamics substantially and the plant manager wants to know if this
is a safe change to make. The original design of the fan support system is not available.
Hence measurements of the floor amplitude (horizontal motion) are made at several
different motor speeds in an attempt to measure the system dynamics. No resonance
is observed in running the fan from zero to 500 rpm. Deflection measurements are
made and it is found that the amplitude is 10 mm at 500 rpm and 4.5 mm at 400 rpm.
The mass of the fan is 50 kg, and the plant manager would like to store up to 50 kg on
the same platform. The best operating speed for the exhaust fan is between 400 and
500 rpm depending on environmental conditions in the plant.

A 350-kg rotating machine operates at 800 cycles/min. It is desired to reduce the trans-
missibility ratio by one-fourth of its current value by adding a rubber vibration isola-
tion pad. How much static deflection must the pad be able to withstand?

A 68-kg electric motor is mounted on an isolator of mass 1200 kg. The natural fre-
quency of the entire system is 160 cycles/min and has a measured damping ratio of
{ = 1. Determine the amplitude of vibration and the force transmitted to the floor if
the out-of-balance force produced by the motor is F(t) = 100 sin (31.4¢) in newtons.

The force exerted by an eccentric (e = 0.22 mm) flywheel of 1000 kg, is 600 cos (52.4¢)
in newtons. Design a mounting to reduce the amplitude of the force exerted on the
floor to 1% of the force generated. Use this choice of damping to ensure that the maxi-
mum force transmitted is never greater than twice the generated force.

A rotating machine weighing 4000 1b has an operating speed of 2000 rpm. It is desired
to reduce the amplitude of the transmitted force by 80% using isolation pads. Calculate
the stiffness required of the isolation pads to accomplish this design goal.

The mass of a system may be changed to improve the vibration isolation characteris-
tics. Such isolation systems often occur when mounting heavy compressors on factory
floors. This is illustrated in Figure P5.20. In this case the soil provides the stiffness of
the isolation system (damping is neglected) and the design problem becomes that of
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5.21.

5.22.

5.23.

5.24.

5.25.

5.26.
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choosing the value of the mass of the concrete block /compressor system. Assume that
the stiffness of the soil is about & = 2.0 X 10’ N/m and design the size of the concrete
block (i.e., choose m) such that the isolation system reduces the transmitted force by
75%. Assume that the density of concrete is p = 23,000 N/ m?>. The surface area of the
cement block is 4 m?. The steady-state operating speed of the compressor is 1800 rpm.

m = 2000-1b
Compressor F,sin wt
Asphalt Asphalt
+ M
Floor M Floor m
.- |g./,o‘..u |(.)'_(
O T S0 1 O 5 o ¢
QS5 ol SelY T 5 k of soil
0 -D‘ol.O S UO'O . UO'C‘
N Do T O ¢
= 92

Figure P5.20 A model of a floor-mounted compressor illustrating the use of added
mass to design a vibration-isolation system.

The instrument board of an aircraft is mounted on an isolation pad to protect the panel
from vibration of the aircraft frame. The dominant vibration in the aircraft is measured
to be at 2000 rpm. Because of size limitation in the aircraft’s cabin, the isolators are
only allowed to deflect 1/8 in. Find the percent of motion transmitted to the instru-
ment panel if it weighs 50 Ib.

Design a base isolation system for an electronic module of mass 5 kg so that only 10%
of the displacement of the base is transmitted into displacement of the module at 50 Hz.

What will the transmissibility be if the frequency of the base motion changes to 100 Hz?
What if it reduces to 25 Hz?

Redesign the system of Problem 5.22 such that the smallest transmissibility ratio pos-
sible is obtained over the range 50 to 75 Hz.

A 2-kg printed circuit board for a computer is to be isolated from external vibration
of frequency 3 rad/s at a maximum amplitude of 1 mm, as illustrated in Figure P5.24.
Design an undamped isolator such that the transmitted displacement is 10% of the
base motion. Also calculate the range of transmitted force.

Printed circuit board

/ \
Isolator
I [ /l_]<—>

Base

Ao
b

Chassis
Figure P5.24 Isolation system for a printed circuit board.

Change the design of the isolator of Problem 5.24 by using a damping material with
damping value { chosen such that the maximum T.R. at resonance is 2.

Calculate the damping ratio required to limit the displacement transmissibility to 4 at
resonance for any damped isolation system.
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Section 5.3 (Problems 5.27 through 5.36)

5.27. A motor is mounted on a platform that is observed to vibrate excessively at an op-

5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.

erating speed of 6000 rpm, producing a 250-N force. Design a vibration absorber
(undamped) to add to the platform. Note that in this case, the absorber mass will only
be allowed to move 2 mm because of geometric and size constraints.

Consider an undamped vibration absorber with B = 1 and w = 0.2. Determine the
operating range of frequencies for which | Xk/F | =< 0.5.

Consider an internal combustion engine that is modeled as a lumped inertia attached
to ground through a spring. Assuming that the system has a measured resonance of
100 rad/s, design an absorber so that the amplitude is 0.01 m for a (measured) force
input of 102 N.

A small rotating machine weighing 50 Ib runs at a constant speed of 6000 rpm. The ma-
chine was installed in a building, and it was discovered that the system was operating at
resonance. Design a retrofit undamped absorber such that the nearest resonance is at
least 20% away from the driving frequency.

A 3000-kg machine tool exhibits a large resonance at 120 Hz. The plant manager at-
taches an absorber to the machine of 600 kg tuned to 120 Hz. Calculate the range of
frequencies at which the amplitude of the machine vibration is less with the absorber
fitted than without the absorber.

A motor-generator set is designed with steady-state operating speed between 2000 and
4000 rpm. Unfortunately, due to an imbalance in the machine, a large violent vibration
occurs at around 3000 rpm. An initial absorber design is implemented with a mass of
2 kg tuned to 3000 rpm. This, however, causes the combined system natural frequen-
cies to occur at 2500 and 3500 rpm. Redesign the absorber so that oy < 2000 rpm and
wy > 4000 rpm, rendering the system safe for operation.

A rotating machine is mounted on the floor of a building. Together, the mass of the
machine and the floor is 2000 1b. The machine operates in steady state at 600 rpm and
causes the floor of the building to shake. The floor-machine system can be modeled as
a spring-mass system similar to the optical table of Figure 5.14. Design an undamped
absorber system to correct this problem. Make sure you consider the bandwidth.

A pipe carrying steam through a section of a factory vibrates violently when the
driving pump hits a speed of 300 rpm. (See Figure P5.34.) In an attempt to design
an absorber, a trial 9-kg absorber tuned to 300 rpm was attached. By changing the
pump speed, it was found that the pipe—absorber system has a resonance at 207 rpm.
Redesign the absorber so that the natural frequencies are 40% away from the driving
frequency.

Ceiling
/
!|) ) T Plpe
Pump é Absorber ) . .
Figure P5.34 A schematic of a steam-pipe
\ system with an absorber attached.

A machine sorts bolts according to their size by moving a screen back and forth us-
ing a primary system of 2500 kg with a natural frequency of 400 cycle /min. Design a
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vibration absorber so that the machine—absorber system has natural frequencies below
160 cycles/min and above 320 rpm. The machine is illustrated in Figure P5.35.

600-cycle/min

Screen Loose bolts to be sorted motor
O O
O o
LAAAA — [l O U System

Parts tray
Absorber "\/\/\/'

@) @)

Figure P5.35 Model of a parts sorting machine. The parts (bolts here) are placed
on a screen that shakes. Parts that are small enough fall through the screen into the
tray below. The larger ones remain on the screen.

A dynamic absorber is designed with p. = 1/4 and w, = w),. Calculate the frequency
range for which the ratio | Xk/F| < 1.

Section 5.4 (Problems 5.37 through 5.52)

5.37. A machine, largely made of aluminum, is modeled as a simple mass (of 100 kg) at-

5.38.

5.39.

*5.40.

*5.41.
*5.42.

tached to ground through a spring of 2000 N/m. The machine is subjected to a 100-N
harmonic force at 20 rad/s. Design an undamped tuned absorber system (i.e., calculate
m, and k,) so that the machine is stationary at steady state. Aluminum, of course, is
not completely undamped and has internal damping that gives rise to a damping ratio
of about { = 0.001. Similarly, the steel spring for the absorber gives rise to internal
damping of about {, = 0.0015. Calculate how much this spoils the absorber design by
determining the magnitude X using equation (5.32).

Plot the magnitude of the primary system calculated in Problem 5.37 with and without
the internal damping. Discuss how the damping affects the bandwidth and perfor-
mance of the absorber designed without knowledge of internal damping.

Derive equation (5.35) for the damped absorber from equations (5.34) and (5.32)
along with Window 5.4. Also derive the nondimensional form of equation (5.37) from
equation (5.35). Note that the definition of { given in equation (5.36) is not the same as
the { values used in Problems 5.37 and 5.38.

(Project) If you have a three-dimensional graphics routine available, plot equation (5.37)
[i.e., plot (X/A) versus both rand { for 0 < { < 1 and 0 < r < 3, and a fixed . and B].
Discuss the nature of your results. Does this plot indicate any obvious design choices? How
does it compare to the information obtained by the series of plots given in Figures 5.19 to
5.21? (Three-dimensional plots such as these are commonplace.)

(Project) Repeat Problem 5.40 by plotting | X/A| versus r and B for a fixed { and .

(Project) The full damped vibration absorber equations (5.32) and (5.33) have not his-
torically been used in absorber design because of the complicated nature of the complex
arithmetic involved. However, if you have a symbolic manipulation code available to you,
calculate an expression for the magnitude X by using the code to calculate the magnitude
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and phase of equation (5.32). Apply your results to the absorber design indicated in
Problem 5.37 by using m,, k,, and {, as design variables (i.e., design the absorber).

5.43. A machine of mass 200 kg is driven harmonically by a 100-N force at 10 rad/s. The stiffness
of the machine is 20,000 N /m. Design a broadband vibration absorber [i.e., equation (5.37)]
to limit the machine’s motion as much as possible over the frequency range 8 to 12 rad/s.
Note that other physical constraints limit the added absorber mass to be, at most, 50 kg.

5.44. Often, absorber designs are afterthoughts, such as indicated in Example 5.3.1. Add a
damper to the absorber design of Figure 5.17 to increase the useful bandwidth of oper-
ation of the absorber system in the event the driving frequency drifts beyond the range
indicated in Example 5.3.2 (Recall that m = 73.16 kg, k = 2600 N/m, m, = 18.29 kg,
k, = 6500 N/m, and 74059 < o < 21.0821 rad/s).

5.45. Again consider the absorber design of Example 5.3.1 (m = 73.16 kg, k = 2600 N/m
subject to a force of 13 N at 180 cycles/min constrained to a maximum deflection of
0.2 cm). If the absorber spring is made of aluminum and introduces a damping ratio
of { = 0.001, calculate the effect of this on the deflection of the saw (primary system)
with the design given in Example 5.3.1.

5.46. Consider the undamped primary system with a viscous absorber as modeled in
Figure 5.22 and the rotational counterpart of Figure 5.23 repeated in Figure P5.46.
Calculate the magnification factor |Xk/M,| for a 400-kg compressor having a natu-
ral frequency of 16.2 Hz if driven at resonance, for an absorber system defined by
w = 0.133 and { = 0.025.
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Figure P5.46 A repeat of Figures 5.22 and 5.23.

5.47. Recalculate the magnification factor | Xk/M,| for the compressor of Problem 5.46 if
the damping factor is changed to { = 0.1. Which absorber design produces the smallest
displacement of the primary system { = 0.025 or { = 0.1?

5.48. Consider a one-degree-of-freedom model of the nose of an aircraft (A-10) as illustrated
in Figure P5.48. The nose cracked under fatigue during battle conditions. This problem
has been fixed by adding a viscoelastic material to the inside of the skin to act as a
damped vibration absorber as illustrated in Figure P5.48. This fixed the problem and the
vibration fatigue cracking disappeared in the A-10s after they were retrofitted with vis-
coelastic damping treatments. While the actual values remain classified, use the following
data to calculate the required damping ratio given the following: M = 100 kg, f = 31 Hz,
Fy, =100 N, and k = 3.533 X 10° N /m such that the maximum response is less than
0.25 mm. Since mass always needs to be limited in an aircraft, use w = 0.1 in your design.
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5.49.

5.50.

5.51.

5.52.
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Damping layer Fcos wt
m[l
’ Fycos ot
—= |
3 Gun |
[\ ,
[X
Skin 4
Nose cannon of Vibration model Vibration model with
A-10 aircraft without damping damping layer treatment

Figure P5.48 Simplified model of the A-10 nose cannon vibration problem. The
nose cannon of the A-10 aircraft can be modeled as applying a harmonic force of
Fj cos wt to the skin of the aircraft nose. The skin can be modeled as a spring—mass
system based on the stiffness model of Figure 1.26 (i.e., k = 3EI/P).

Plot an amplification curve (such as Figure 5.24) by using equation (5.39) for { = 0.02
after several values of . (n = 0.1,0.25,0.5, and 1). Can you form any conclusions about
the effect of the mass ratio on the response of the primary system? Note that as . gets
large, |(Xk/M,)| gets very small. What is wrong with using very large w in an absorber
design?

A Houdaille damper is to be designed for an automobile engine. Choose a value for {
and . if the magnification |(Xk/M,)| is to be limited to 4 at resonance. (One solution
isp =1, =0.129.)

Determine the amplitude of vibration for the various dampers of Problem 5.46 if
{ =0.1and Fy = 100N.

(Project) Use your knowledge of absorbers and isolation to design a device that will
protect a mass from both shock inputs and harmonic inputs. It may help to have a par-
ticular device in mind such as the module discussed in Figure 5.6.

Section 5.5 (Problems 5.53 through 5.66)

5.53.

5.54.

5.55.

Design a Houdaille damper for an engine modeled as having an inertia of 1.5 kg + m?
and a natural frequency of 33 Hz. Choose a design such that the maximum dynamic
magnification is less than 6:

Xk

—| <6
M,

The design consists of choosing J, and ¢, the required optimal damping.

Recall the optimal vibration absorber of Problem 5.53. This design is based on a
steady-state response. Calculate the response of the primary system to an impulse of
magnitude M, applied to the primary inertia J;. How does the maximum amplitude of
the transient compare to that in steady state?

Consider the damped vibration absorber of equation (5.37) with B fixed at B = 1/2
and p fixed at p = 0.25. Calculate the value of { that minimizes |X/A|. Plot this func-
tion for several values of 0 < { < 1 to check your design. If you cannot solve this ana-
lytically, consider using a three-dimensional plot of | X/A| versus r and { to determine
your design.
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5.56.

5.57.

5.58.

5.59.

5.60.

5.61.

5.62.

5.63.

5.64.

5.65.

For a Houdaille damper with mass ratio p = 0.25, calculate the optimum damping ra-
tio and the frequency at which the damper is most effective at reducing the amplitude
of vibration of the primary system.

Consider again the system of Problem 5.53. If the damping ratio is changed to { = 0.1,
what happens to | Xk/M|?

Derive equation (5.42) from equation (5.35) and derive equation (5.49) for the optimal
damping ratio.

Consider the design suggested in Example 5.5.1 (mass moment of inertia of 1.5 kg
m?/rad, torsional stiffness of 6 X 10> N m/rad, and a running speed of 2000 rpm).
Calculate the percent change in the maximum deflection if the damping constant
changes 10% from its optimal value. If the optimal damping is fixed but the mass of the
absorber changes by 10%, what percent change in | Xk /M| max results? Is the optimal
absorber design more sensitive to changes in ¢, or m,?

Consider the elastic isolation problem described in Figure 5.26 and repeated in Figure
P5.60. Derive equations (5.54) and (5.55) from equation (5.53).

F coswt

Figure P5.60 A repeat of Figure 5.26
for reference in the following problems.

Use the derivative calculation for finding maximum and minimum to derive equations
(5.57) and (5.58) for the elastic damper system.

A 1000-kg mass is suspended from ground by a 40,000-N/m spring. A viscoelastic
damper is added, as indicated in Figure P5.60. Design the isolator (choose k, and c)
such that when a 70-N sinusoidal force is applied to the mass, no more than 100 N is
transmitted to ground.

Consider the isolation design of Example 5.5.2 (¢ = 188.56 kg /s and k, = 200 N/m
with r = 5Sand y = 0.5). If the value of the damping coefficient changes 10% from the
optimal value (of 188.56 kg/s), what percent change occurs in (T.R.)yax? If ¢ remains
at its optimal value and k, changes by 10%, what percent change occurs in (T.R.)ax?
Is the design of this type of isolation more sensitive to changes in damping or stiffness?

A 3000-kg machine is mounted on an isolator with an elastically coupled viscous damper
such as indicated in Figure P5.60. The machine stiffness (k;) is 2.943 X 10°N/m,y = 0.5,
and ¢ = 56.4 X 10° N -s/m.The machine, a large compressor, develops a harmonic force
of 1000 N at 7 Hz. Determine the amplitude of vibration of the machine.

Again consider the compressor isolation design given in Problem 5.64. If the isolation
material is changed so that the damping in the isolator is changed to { = 0.15, what
is the force transmitted? Next determine the optimal value for the damping ratio and
calculate the resulting transmitted force.
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5.66.
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Consider the optimal vibration isolation design of Problem 5.65. Calculate the optimal
design if the compressor’s steady-state driving frequency changes to 24.7 Hz. If the
wrong optimal point is used (i.e., if the optimal damping for the 7-Hz driving frequency
is used), what happens to the transmissibility ratio?

Section 5.6 (Problems 5.67 through 5.73)

5.67.

5.68.

5.69.

5.70.

5.71.

5.72.

5.73.

Compare the resonant amplitude at steady state (assume a driving frequency of 100 Hz)
of a piece of nitrile rubber at 50°F versus the value at 75°F. Use the values for n from
Table 5.2.

Using equation (5.67), calculate the new modulus of a 0.05 X 0.01 X 1 m piece of
pinned-pinned aluminum covered with a 1-cm-thick piece of nitrile rubber at 75°F
driven at 100 Hz.

Calculate Problem 5.68 again at S0°F. What percent effect does this change in tempera-
ture have on the modulus of the layered material?
Repeat the design of Example 5.6.1 (recall E; = 7.1 X 10" N/m? and &, = 1) by

(a) changing the operating frequency to 1000 Hz, and
(b) changing the operating temperature to 50°F.

Discuss which of these designs yields the most favorable system.

Reconsider Example 5.6.2. Make a plot of thickness of the damping treatment versus
loss factor.

Calculate the maximum transmissibility coefficient of the center of the shelf of
Example 5.6.1. Make a plot of the maximum transmissibility ratio for this system fre-
quency using Table 5.1 for each temperature.

The damping ratio associated with steel is about { = 0.001. Does it make any difference

whether the shelf in Example 5.6.1 is made out of aluminum or steel? What percent im-
provement in damping ratio at resonance does the rubber layer provide the steel shelf?

Section 5.7 (Problems 5.74 through 5.80)

5.74.

5.75.

5.76.

5.77.

A 100-kg compressor rotor has a shaft stiffness of 1.4 X 10’ N/m. The compressor is
designed to operate at a speed of 6000 rpm. The internal damping of the rotor shaft
system is measured to be { = 0.01.

(a) If the rotor has an eccentric radius of 1 cm, what is the rotor system’s critical speed?
(b) Calculate the whirl amplitude at critical speed. Compare your results to those of
Example 5.71.

Redesign the rotor system of Problem 5.74 such that the whirl amplitude at critical
speed is less than 1 cm by changing the mass of the rotor.

Determine the effect of the rotor system’s damping ratio on the design of the whirl
amplitude at critical speed for the system of Example 5.71 (r = 1 and a = 0.001 m) by
plotting X at » = 1 for { between 0 < { < 1.

Consider the design of the compressor rotor system of Example 5.71 (r = 1 and a =
0.001 m). The amplitude of the whirling motion depends on the parameters a, {, m, k,
and the driving frequency. Which parameter has the greatest effect on the amplitude?
Discuss your results.
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5.78. The flywheel of an automobile engine has a mass of about 50 kg and an eccentricity of
about 1 cm. The operating speed ranges from 1200 rpm (idle) to 5000 rpm (red line).
Choose the remaining parameters so that the whirling amplitude is never more than 1 mm.

5.79. At critical speed the amplitude is determined entirely by the damping ratio and the ec-
centricity. If a rotor has an eccentricity of 1 cm, what value of damping ratio is required
to limit the deflection to 1 cm?

5.80. A rotor system has damping limited by { < 0.05. What is the maximum value of eccen-
tricity allowable in the rotor design if the maximum amplitude at critical speed must be
less than 1 cm?

MATLAB ENGINEERING VIBRATION TOOLBOX

If you have not yet used the Engineering Vibration Toolbox program, return to the
end of Chapter 1 or Appendix G for a brief introduction to using MATLAB files.

The files contained in folder VITBS may be used to help solve the preceding
problems. The M-files from earlier chapters (VTBX.X.M, etc.) may also be useful.
The following Toolbox problems are intended to help you gain some experience
with the concepts introduced in this chapter for designing vibrating systems and to
build experience with the various formulas. These problems may also be solved us-
ing any of the codes introduced in Sections 1.9, 1.10, 2.8, 2.9, 3.8, 4.9, and 4.10.

TOOLBOX PROBLEMS

TBS.1. Use file VIB5_1 to reproduce the plots of Figure 5.5 by inputting various values of
m, ¢, and k. First fix m and k and vary c. Then fix m and c and vary k.

TBS.2. Use file VIBS5_2 to verify the solution of Example 5.2.1 for the magnitude of the
force transmitted to the electronic module.

TB5.3. Use file VIB5_3 to examine what happens to the shaded region in Figure 5.15 as
is varied. Do this by increasing the absorber mass (.. = m,/m) so that p varies in
increments of 0.1 from 0.1 to 1 for a fixed value of B.

TBS5.4. Examine the effect of B on Figure 5.16 by using file VTBS5_4 to plot Figure 5.16 over
again for several different values of B (B = 0.1,0.5, 1, 1.5). What do you notice? What
does changing B correspond to in terms of choosing the values of the absorber design?

TBS5.5. Consider the amplitude plot of the damped absorber given in Figure 5.19. Use file
VTBS5_5 to see the effect changing the primary mass m has on the design. Choose
m, = 10, ¢, = 1, k = 1000, k, = 1000. Plot | Xk/F, | for various values of the pri-
mary mass m (i.e.,m = 1,10,100, 1000) versus r. Can you draw any conclusions?

TBS.6. File VIB5_6 plots the three-dimensional mesh used to generate Figure 5.25, which il-
lustrates the optimal damped absorber design. Use this program to note the effects of
changing the spring-mass on the values of { corresponding to the absolute minimum
of the maximum response.
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Distributed-Parameter
Systems

So far this book has focused on the vibration
of rigid bodies. This chapter infroduces the
analysis needed to describe the vibration
of systems that have flexible components.
Flexibility of structural components arises
when the mass and stiffness properties are
modeled as being distributed throughout
the spatial definition of the component
rather than at lumped positions, as done

in Chapter 4. Examples of such systems are
the wings and panels of aircraft such as the
Reaper pictured on the left. The vibrations
of the wing of a commercial aircraft can
usually be seen during takeoff and landing
or during turbulence. The blades of the wind
turbine in the bottom photo form another
example of a distributed-parameter system.
Increased reliance on wind energy has
promoted larger, and hence more flexible,
wind fturbine blades. Many structures, such
as wings, blades, and other components,
can be modeled by the simple string, beam,
and plate models discussed in this chapter.
Many systems, such as truck chassis,
buildings, dance floors, and computer disk
drives, can be modeled and analyzed by
the methods presented in the chapter.

The major concept presented here is that
distributed-parameter systems have an
infinite number of natural frequencies. The
concepts of mode shapes and modal
analysis used in Chapter 4 are extended
here to freat the vibration of distributed-
parameter systems.
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In previous chapters, all systems considered are modeled as lumped-parameter
systems; that is, the motion of each point in the system under consideration is
modeled as if the mass were concentrated at that point. Multiple-degree-of-
freedom systems are considered as arrangements of various lumped masses
separated by springs and dampers. In this sense, the parameters of the system are
discrete sets of finite numbers. Hence, such systems are also called discrete sys-
tems or finite dimensional systems. In this chapter, the flexibility of structures is
considered. Here the mass of an object is considered to be distributed throughout
the structure as a series of infinitely small elements. When a structure vibrates,
each of these infinite number of elements move relative to each other in a con-
tinuous fashion. Hence these systems are called infinite-dimensional systems, con-
tinuous systems, or distributed-parameter systems. The choice of modeling a given
mechanical system as a lumped-parameter system or a distributed-parameter
system depends on the purpose at hand as well as the nature of the object. There
are only a few distributed-parameter models that have closed-form solutions.
However, these solutions provide insight into a large number of problems that
cannot be solved in closed form.

The time response of a distributed-parameter system is described spatially
by a continuous function of the relative position along the system. In contrast, the
time response of a lumped-parameter system is described spatially by labeling a
discrete number of points throughout the system in the form of a vector. Here the
terms lumped parameter and distributed parameter are used rather than discrete
and continuous to avoid confusion with discrete-time systems (used in numerical
integration and measurement). The specific cases considered here are the vibra-
tions of strings, rods, beams, membranes, and plates. Common examples of such
structures are a vibrating guitar string and the swaying motion of a bridge or tall
building. In addition, systems having both lumped parameters and distributed
parameters are considered.

The single-degree-of-freedom systems discussed in Chapters 1 through 3 have
only one natural frequency w, = Vk/m. In Chapter 4, multiple-degree-of-freedom
systems introduce the concept of multiple natural frequencies, denoted by w;, one
frequency for each degree of freedom. Design to avoid resonance becomes more
difficult with multiple natural frequencies because of the increased chance that a
harmonic driving frequency will correspond to one of the natural frequencies, caus-
ing resonance. The distributed-parameter systems considered in this chapter have
an infinite number of degrees of freedom and hence an infinite number of natural
frequencies, again increasing concern about resonance in design.

The numerous frequencies of a distributed-parameter system are also de-
noted by w, for one-dimensional structures and w,,, for structures defined in a
plane. There is thus a slight notational inconsistency that persists in the vibration
literature by using w,, for both the natural frequency of a single-degree-of-freedom
system and to mean the nth natural frequency of a distributed system. The distinc-
tion is ultimately clear from the context of usage.
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6.1 VIBRATION OF A STRING OR CABLE

String instruments (guitars, violins, etc.) provide an excellent and intuitive example
of the vibration of a distributed-parameter object. Strings are also the easiest sys-
tem to solve and provide a systematic way to approach other distributed-parameter
structures, much like the simple spring—mass system formed the basics for analysis
for the lumped-parameter system analysis. Consider the string of Figure 6.1 with
mass density p and cross-sectional area A, fixed at both ends and under a tension
denoted by 1. The string moves up and down in the y direction. The motion at any
point on the string must be a function of both the time, ¢, and the position along
the string, x. The deflection of the string is thus denoted by  (x, ¢). Let f(x, ¢) be an
external force per unit length also distributed along the string, and consider the in-
finitesimal element (Ax long) of the displaced string indicated in Figure 6.1.

The net force acting on the infinitesimal element in the y direction must be
equal to the inertial force in the y direction, pA Ax(¢%w/ar?) so that

—718in0; + T, sin0, + flx,0)Ax = pAAx (6.1)

Fw(x,1)
at?
Note that the acceleration is stated in terms of partial derivatives (¢*/0t%) because

is a function of two variables. The expressions in equation (6.1) can be approxi-
mated in the case of small deflections so that 6; and 6, are small. In this case, T; and
T, can easily be related to the initial tension in the string T by noting that the hori-
zontal component of the deflected string tension is T{ cos 07 at end 1, and 7, cos 6, at

j TIRTETOT, E .
m w(x, 1) ’

Infinitesimal element of string
displaced from rest

Figure 6.1 The geometry of a vibrating string with applied force f(x, ) and
displacement  (x, 7).
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end 2. In the small-angle approximation, cos6; = 1 and cos6, = 1, so it is reason-
able to set 1y = 1, = 1. Also, for small 61,

. dw(x, 1)

sinf; = tan6; = x|, (6.2)
and

. ow(x,1)

sinf, = tan6, = ™ (6.3)

X2

where (dw/dx)|,, is the slope of the string at point x; and (dw/dx)|,, is the slope of
the string at point x, = x; + Ax. The notation for partial and total derivatives is
reviewed in Window 6.1.

With these approximations, equation (6.1) now becomes

(),

The slopes can be evaluated further by recalling the Taylor series expansion for the
function T(dw/dx) around the point x; from calculus. This yields

ow ow d ow
T— =(7T— + Ax—| 17—
x /ly, ax /ly, 0x ax

Window 6.1
Notation for Vibrations Described by Distributed Mass and Stiffness

+ f(x,t)Ax = pA

7w(x,1) A 64
or? * ©4)

X1

+ O(AxX?) (6.5)

X1

Derivatives of a function of multiple variables, such as f(x, y), deal with partial
derivatives with the following notation:

af(x7Y) = lim (f(x + Ax’y) B f(x’y))
X Ax

0. Ax—0

filx,y) =

In contrast, the total derivative of a function of a single variable, say 7(¢), is
denoted by

ar@@ .. . T+ A — T(1)
a 0= fim At

The exact differential is
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where O(Ax?) denotes the rest of the Taylor series, which consists of terms of or-
der Ax? and higher. Since Ax is small, O(Ax?) is even smaller and hence neglected.
Substitution of expression (6.5) into equation (6.4) yields

9 ( aw)

B

ax \ ox
Dividing by Ax and realizing that since Ax is infinitesimal, the designation of point
1 becomes unnecessary, the equation of motion for the string becomes

Fw(x,1)
Ax + flx,)Ax = pA ——— Ax

v (6.6)
X1

0 < 6w(x,t)> t fen) " Fw(x,1) 67)
- x’l‘ = e .
' ax 7 P or?
Since the tension 7 is constant, and if the external force is zero, this becomes
2azw(x,t) _ Fw(x,1) or Fw(x,1) _ iazw(x,t) 68)
ax? ot’ ax? 2 o ’

where ¢ = V1/pA depends only on the physical properties of the string (called
the wave speed and is not to be confused with the symbol used for the damping
coefficient in earlier chapters). Equation (6.8) is the one-dimensional wave equa-
tion, also called the string equation, and is subject to two initial conditions in time
because of the dependence on the second time derivative. These are written as
w(x, 0) = wy(x) and w,(x,0) = wy(x), where the subscript ¢ is an alternative nota-
tion for the partial derivative 9/d¢, and where wy(x) and w(x) are the initial dis-
placement and velocity distributions of the string, respectively. The second spatial
derivative in equation (6.8) implies that two other conditions must be applied to
the solution w(x, f) in order to calculate the two constants of integration arising
from integrating these spatial derivatives. These conditions come from examining
the boundaries of the string. In the configuration of Figure 6.1 the string is fixed at
both ends (i.e., at x = 0 and x = /). This means that the deflection w(x, ) must be
zero at these points so that

w(0,1) = w(l,)) =0 >0 (6.9)

These two conditions at the boundary provide the other two constants of integra-
tion resulting from the two spatial derivatives of w(x, 7). Because these conditions
occur at the boundaries, the problem described by equations (6.8) and (6.9) and the
initial conditions is called a boundary-value problem.

Using the subscript notation for partial differentiation, the various deriva-
tives of the deflection, w(x, f), have the following physical interpretations. The
quantity w,(x, ) denotes the slope of the string, while Tw,,(x, t) corresponds to
the restoring force of the string (i.e., the string’s stiffness or elastic property). The
quantity w,(x, t) is the velocity and w,(x, t) is the acceleration of the string at any
point x and time ¢.
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The string vibration problem just described forms a convenient and simple
model to study the vibration of distributed-parameter systems. This is analogous
to the spring-mass model of Section 1.1, which provided a building block for the
study of lumped-parameter systems. To that end, the string with fixed endpoints is
used in the next section to develop general techniques of solving for the vibration
response of distributed-parameter systems. More about the string equation and its
use in wave propagation can be found in introductory physics texts. Note that these
developments apply to cables as well as strings.

Example 6.1.1

Consider the cable of Figure 6.2, which is pinned at one end and attached to a spring at
the other end held in a frictionless slider such that the cable remains in constant ten-
sion. Determine the governing equation for the vibration of the system.

L & IS
0

p.T
w(x,t) <-—

NN
i
k
y e
Figure 6.2 A cable fixed at one end and
attached to a spring at the other end with
a frictionless slide. Note that the motion
X w(x, 1) is in the y direction.

Solution The equations of motion for the spring and the cable are the same and
are given by equation (6.8). The initial conditions are also unaffected. However, the
boundary condition at x = [ changes. Writing a force balance in the y direction at
point x = [yields

> Fl,oy = 7sin® + kw(l,t) = 0

y
where k is the stiffness of the (lumped) spring. Again, enforcing the small-angle ap-
proximation, this becomes

ow(x, 1)
T = —kw(x )]
ax x=I

The boundary condition at x = 0 remains unchanged.
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6.2 MODES AND NATURAL FREQUENCIES

In this section the string equation is solved for the case of fixed—fixed boundary con-
ditions using the technique of separation of variables. This method leads in a natural
way to modal analysis and the concepts of mode shapes and natural frequencies
for distributed-parameter systems that are used extensively for lumped-parameter
systems in Chapter 4. The solution procedures are described in detail in introductory
differential equations (see Boyce and DiPrima, 2009, for instance) and reviewed
here. First, it is assumed that the displacement w(x, ) can be written as the product
of two functions, one depending only on x and the other depending only on ¢ (hence
separation of variables). Thus

w(x, t) = X(x)T(2) (6.10)
Substitution of this separated form into the string equation (6.8) yields
AX"(xX)T(1) = X(x)T (1) (6.11)

where the primes on X"(x) denote total differentiation (twice in this case) with
respect to x, and the overdots indicate total differentiation (twice in this case) with
respect to the time, ¢. These derivatives become total derivatives, instead of partial
derivatives, because the functions X(x) and 7(¢) are each a function of a single vari-
able. A simple rearrangement of equation (6.11) yields

X'(x) _ T()
X(x)  AT@)

(6.12)

Note that the choice of which side in equation (6.12) to put the constant ¢? is arbitrary.
Some choose to place it on the left side and some, as done here, on the right side. The
final solution remains the same.

Since each side of the equation is a function of a different variable, it is argued
that each side must be constant. To see this, differentiate with respect to x. This yields

4 () 6

which becomes, upon integration,

"

= constant = —¢? (6.14)

In this case —o” is the constant chosen to ensure that the quantity on the right side
of equation (6.14) is negative. Actually, all possible choices (negative, positive, and
zero) for this constant need to be considered. The other two choices (positive and
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zero) lead to physically unacceptable results as discussed in Example 6.2.1 to fol-
low. Equation (6.14) also requires that

(0 _
210 " —o? (6.15)

in order to satisfy equation (6.12).
Rearranging equation (6.14) yields the result that the function X(x) must satisfy

X"(x) + o*X(x) =0 (6.16)
Equation (6.16) has the solution (see Example 6.2.1)
X(x) = aysinox + a, cos ox (6.17)

where a; and a, are constants of integration. To solve for these constants of inte-
gration, consider the boundary conditions of equation (6.9) in the separated form
implied by equation (6.10). They become

X(O)T(®) =0 and XOT@E) =0 >0 (6.18)

Since it is assumed that 7(¢) cannot be zero for all ¢ [this would yield only the unin-
teresting solution w(x, f) = 0 for all time], equation (6.18) reduces to

X0)=0 X()=0 (6.19)

Applying these two conditions to the solution, equation (6.17), yields the two simul-
taneous equations

X0)=a,=0

X() = a;sinol =0 (6.20)

The first of these two expressions eliminates the cosine term in the solution, and
the last of these two expressions yields values of o by requiring that sin o/ = 0. This is
called the characteristic equation, which has solutions o/ = n1r. Since the sine function
vanishes when its argument is 0 and any integer multiple of r, there is one solution of
the characteristic equation for each value of n = 0, 1,2, 3, ... Hence, there exists an
infinite number of values of o that satisfy the condition o/ = nw. Thus, o is indexed to
be g, and takes on the following values (n = 0 implies a zero solution):

o, = ”T“ n=1.23,... (6.21)

The two simultaneous equations resulting from the boundary conditions given by
equation (6.20) can also be written in matrix form as

K HEH
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Recall from Section 4.1, equation (4.19), that this vector equation has a nonzero so-
lution (for a; and a,) as long as the coefficient matrix has a zero determinant. Thus
this alternative formulation yields the characteristic equation

sinal 0 . _
det[ 0 1:|—sm(rl—0

This provides a more systematic calculation of the characteristic equation from the
statement of the boundary conditions.

Since there are an infinite number of values of o, the solution (6.17) then
becomes the infinite number of solutions

X,(x) = a,sin (”l”x> n=12,... (6.22)

Here X is now indexed by n because of its dependence on o, and the a,, are still-
to-be-determined arbitrary constants, potentially depending on the index n as well.

Equation (6.22) forms the spatial solution of the vibrating string problem. The
functions X,,(x) satisfy the boundary value problem

az
('9)672 (Xn) = NX,

X,(0) = X,(I) = 0 (6.23)

where A\, are constants ()\n = (rﬁ) and where the function X, is never identically
zero over all values of x. Comparison of this with the definition of the matrix
eigenvalue and eigenvector problem of Section 4.2 yields some very strong
similarities. Instead of an eigenvector consisting of a column of constants, equa-
tion (6.23) defines the eigenfunctions, X,(x), which are nonzero functions of x
satisfying boundary conditions as well as a differential equation. The constants
N, are called eigenvalues just as in the matrix case. The differential operator
—a /ox* takes the place of the matrix in this eigenproblem. Similar to the eigen-
vector of Chapter 4, the eigenfunction is only known to within a constant. That
is, if X,,(x) is an eigenfunction, so is aX,,(x), where a is any constant. In fact, the
concept of eigenvector and that of eigenfunction are mathematically identical.
As is illustrated in the following, the eigenvalues, as determined by the charac-
teristic equation given in this case by expression (6.20), and the eigenfunctions,
described in (6.22), will determine the natural frequencies and mode shapes of
the vibrating string.

To this end, consider next the temporal equation given by (6.15) with the
quantities of (6.21) substituted for o,

T() + c2PT() =0 n=1,2,... (6.24)
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where T(¢) is now indexed because there is one solution for each value of o,,. The
coefficient of T),(¢) in the temporal equation defines the natural frequency by not-
ing that w,, = co,, and hence

nw T
w, = CO, = —— -

Y rad/s

The general form of the solution of (6.24) is given in Window 1.4 as
T,(t) = A,sinw,t + B, cosw,t (6.25)

where A, and B,, are constants of integration. Since both of the functions X,,(x) and
T,(t) are found to be dependent on n, the solution w(x, t) = X,,(x)7T,(¢) must also
be a function of n, so that

w,(x,t) = ¢, sin <nl1'rx> sin (nlwc t) + d, sin (n;Tx) cos (nlﬂ'ct> n=12,...

(6.26)

where ¢, and d,, are new constants to be determined. Note that an unknown con-
stant a,, times another unknown constant A,, is the unknown constant c,, (similarly,
d, = a,B,). Since the string equation is linear, any linear combination of solutions
is a solution. Hence the general solution is of the form

w(x, t) = 2 (c, sino,x sino,ct + d, sino,x coso,ct) (6.27)
n=1

The set of constants {c,} and {d,,} can be determined by applying the initial conditions
on (x, t) and the orthogonality of the set of functions sin (nmx//). The orthogonality
of the set of functions sin (nmx//) states that

1
/ sin ? sin 70 gy = (6.28)
0

[

O N~

which is identical to the orthogonality of mode shape vectors discussed in Section 4.2.
This orthogonality condition can be derived by simple trigonometric identities and
integration (as suggested in Section 3.3).

Consider the initial condition on the displacement applied to equation (6.27):

w(x,0) = wy(x) = id,,sin?cos(()) (6.29)
n=1
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Multiplying both sides of this equality by sin mmx /I and integrating over the length
of the string yields

! !
> l
/ wo(x) sin MY dx = >d, / sin o gin T gy = dm() (6.30)
0 l a1 Jo l ! 2

where each term in the summation on the right-hand side of equation (6.29) is zero
except for the mth term, by direct application of the orthogonality condition of
(6.28). Equation (6.30) must hold for each value of m, so that

5 [l
d, = / wo(x) sin
Lo

mmx

dc m=1,23,... (6.31)

It is customary to replace m by n in the preceding, since the index runs over all posi-
tive values [i.e., the index in equation (6.31) is a free index and it does not matter
what it is named]. It is most convenient to rename it d,,.

A similar expression for the constants {c,} is obtained by using the initial ve-
locity condition. Time differentiation of the summation of equation (6.27) yields

wy(x) = w,(x,0) = S c 0, sin @cos (0) (6.32)
n=1

Again, multiplying by sin mmx /I, integrating over the length of the string, and ap-
plying the orthogonality condition of (6.28) yields
5/

. . nmx _
= : Wo(x) sin ] dx n=1,2,3, ... (6.33)

where the index has been renamed n. Equations (6.31) and (6.33) combined with
equation (6.27) form the complete solution for the vibrating string (i.e., they de-
scribe the vibration response of the string at any point x and any time ).

Example 6.2.1

The solution of a second-order ordinary differential equation w