OOOOO ENGINEERING ECONOMY APPLYING THEORY TO PRACTICE

THIRD EDITION

Ted G. Eschenbach

University of Alaska Anchorage

Oxford University Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education.

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2011, 2003, 2002 by Oxford University Press, Inc.

First edition © 1995 by Richard D. Irwin/McGraw-Hill.

Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016
http://www.oup.com

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

Eschenbach, Ted.
Engineering economy : applying theory to practice / Ted G. Eschenbach. - 3rd ed. p. cm.

ISBN 978-0-19-976697-0

1. Engineering economy. I. Title.

TA177.4.E833 2010
658.15-dc22

Printing number: 987654321
Printed in the United States of America
on acid-free paper

CASES IN Engineering Economy $2^{\text {nd }}$

William R. Peterson
Minnesota State University, Mankato
With cases contributed by
Kate Abel
E. R. "Bear" Baker, IV
Michael Dunn
Daniel Franchi
J oseph Hartman
Paul Kauffmann
Neal Lewis
Donald Merino
Lee McFarland
Karen Schmahl
Herb Schroeder
Andrés Sousa-Poza
William Truran
Ted G. Eschenbach
University of Alaska Anchorage
Stevens Institute of Technology
University of Alaska Anchorage
Petrotechnical Resources of Alaska
California Polytechnic State University -
San Luis Obispo
University of Florida
East Carolina University
University of Bridgeport
Stevens Institute of Technology
California Polytechnic State University -
San Luis Obispo
Miami University
University of Alaska Anchorage
Old Dominion University
Stevens Institute of Technology

Oxford University Press New York Oxford

Oxford U niversity Press

Oxford New Y ork
Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul K arachi K olkata K uala Lumpur M adrid M elbourne M exico City M umbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto

Copyright © 2009, by Oxford University Press, Inc.
Published by Oxford U niversity Press, Inc.
198 M adison A venue, New Y ork, New Y ork, 10016
http://www.oup-usa.org
Oxford is a registered trademark of Oxford University Press
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press.

Library of C ongress C ataloging-in-Publication Data

Eschenbach, Ted G.
Cases in engineering economy / W illiam R. Peterson \& Ted G. Eschenbach. - $2^{\text {nd }}$ ed.
p. cm.
ISBN 9780195397833
1. Engineering economy - case studies. I. Title.
$\begin{array}{llll}T A 177.4 . E 83 & 2009 & 658.1^{\prime} 52-d c 19 & 88-22764\end{array}$

Printed in the U nited States of A merica
10987654321

Preface

Abstract

This text introduces the basic theory and application of engineering economy. It is suitable for a first course in engineering economy, for self-study by practicing engineers, and for reference during the practice of engineering. This text includes enough material so that instructors have some choices for a first course at the undergraduate level. At the graduate level, instructors might add supplementary material, such as the cases which are found on the CD accompanying this text. Examples from all major engineering disciplines are included, with both private- and public-sector applications.

Highlights of Third Edition Changes

Users of the first two editions, reviewers specifically chosen for this revision, and colleagues and coauthors for other texts and articles in engineering economy have suggested the following improvements.

- Cases in Engineering Economy $2^{\text {nd }}$ by Peterson and Eschenbach, with contributed cases from 13 others, is on the student CD that comes with this text. Specific cases are suggested at the end of each chapter's list of problems.
- A new Appendix B supports the use of financial calculators. This coverage conceptually matches the use of the tabulated factors, but it allows students to focus more on concepts by reducing the time needed for financial arithmetic.
- Ethics has been added to the material on decision-making in Chapter 1.
- The use of uniform flow and gradient assumptions in feasibility and preliminary economic analysis has been emphasized in Chapter 3.
- The flexibility of spreadsheets to more accurately model reality is emphasized in Chapter 4.
- Chapter 4 introduces breakeven and what-if analyses. (If instructors need to skip parts of the book, this coverage makes it possible to skip Chapters 8 and 17 and to still include basic sensitivity analysis.)
- Chapter 5 now includes a simple formula for a perpetual geometric gradient, as well as the formulas for a perpetual arithmetic gradient and a perpetual annual series.
- Chapter 10 now includes a spreadsheet approach that greatly simplifies the task of finding the optimal economic life.
- Chapter 11 now addresses one approach for including mutually exclusive alternatives in the investment opportunity schedule by breaking them into incremental investments.
- Chapter 12 now includes the 50% initial "bonus" depreciation that has been used to stimulate economic activity.
- Chapter 13 now includes a 1-period example that provides a clearer and simpler introduction to leverage.
- Chapter 14 now opens with an exhibit that provides multiple examples of benefits and disbenefits for public projects.
- Chapter 17 now includes a section on creating tornado diagrams, and the student website includes the file TornadoTemplateEschenbach3rd.xls.
- Chapter 18 now includes a section that provides an overview of real options.
- Appendix A has completely revamped examples and problems that more realistically reflect typical firms.
- Appendix D has been added to provide a set of practice problems for the FE exam.
- The addition of more and more difficult problems within most problem sets.
- Numerous improvements in wording, in the numerical results of examples and problems, and in the exhibits used to illustrate concepts.

Key Features Of the Text

The first edition was based on studying what other texts have done well, surveying nearly 250 teachers of engineering economy, and responding to the comments of four sets of reviewers. Since then users and many reviewers have helped improve on the key features from the first edition. The following points are still the text's foundation:

1. Conceptually linking theory and practice.
2. Breadth and depth of coverage matched to introductory courses.
3. Emphasis on mutually exclusive alternatives while maintaining the discussion of constrained project selection.
4. Pedagogical support for the students.
5. Modern computational tools.
6. Conceptually Linking Theory and Practice. Often the realism of engineering economy texts stops with the numbers plugged into examples and problems. This text presents the theory, and then it examines common practical violations of theoretical assumptions.

For example, most texts define payback period and demonstrate its inferiority to time value of money measures. This text also explains why payback continues to be used and why its use does not lead to bankruptcy. Similarly, this text, like most, explains the assumptions of repeated lives or salvage values that are needed for valid present worth comparisons. This text adds a thorough discussion of the impact of failing to satisfy the assumption of identical cost repetition while using equivalent annual techniques.

I believe that understanding how and why basic principles are applied is more important and interesting than fine theoretical nuances. In practice and in this text, ranking on the internal rate of return is used for constrained project selection, and present worth and equivalent annual cost are used for the selection of mutually exclusive alternatives. This text now includes complete coverage of incremental internal rate of return and benefit/cost ratios for mutually exclusive alternatives.

Because students learn best when theory is clearly linked to real-world applications, the examples and homework problems are specifically chosen to illustrate practical realities and to include situations in which students can apply engineering economy concepts in their own lives.
2. Coverage Matched to Introductory Engineering Economy Courses. Engineering economy relies on concepts and tools that are developed in accounting, finance, management science, probability, and statistics. Many topics have far more depth than can be included in an introductory course, and many engineering economy courses have no specific prerequisites. To best choose what to include here, I analyzed a list of needs established by a survey of nearly 250 faculty members in engineering economy.

For example, depreciation methods, income taxes, the distinction between assets and income, and use of cost accounting data are covered, but more advanced accounting topics are not. Similarly, the weighted cost of capital is discussed, but finance models for risk and stock prices are not. Basic models for multiple criteria are included, while utility theory is not. The application of expected value and decision trees is included from probability, and learning-curve models for cost estimation from statistics; however, general forecasting models are omitted.

The survey led to a text that has more material than most instructors will cover in one semester. Thus, instructors have choices in the topics they will cover. To support this flexibility, topics that were found to be "elective" were presented as independently as possible. For example, the text includes cost estimating, inflation, sensitivity analysis, multiple criteria evaluation, and economic decision trees, but each presentation is completely independent. Appendices of more advanced material are also included with several chapters.
3. Emphasis on Mutually Exclusive Alternatives while Maintaining Coverage of Constrained Project Selection. Engineering students will first apply the tools of engineering economy in engineering design. These problems require choices between mutually exclusive alternatives. More design examples have been included in Chapters 1 through 8 , mutually exclusive alternatives are the subject of Chapter 9 , and the special case of replacement analysis is the subject of Chapter 10.

The discussion of mutually exclusive alternatives still focuses on the use of present worth and equivalent annual measures. However, incremental IRRs and B/C ratios are now covered completely, even though they are not the technique of choice.

Constrained project selection is placed in Chapter 11, rather than the choice of many authors who relegate capital budgeting to the back of engineering economy texts, where the presentation focuses on theoretical models and advanced techniques that are rarely used. However, the capital budgeting problem is often solved in the real world by ranking on the internal rate of return. Discussing this constrained project selection problem in Chapter 11 provides a solid, intuitive foundation for selecting the interest rate for the time value of money. This is applied in the comparison of mutually exclusive alternatives.
4. Pedagogical Support. It is clear that students learn more when the presentation's structure and the expectations are clear. Chapter objectives, key words and concepts, and lists of major points are used to facilitate student understanding.

Realistic examples can engage student interest, and problems drawn from student life can motivate high performance. To support continuity of understanding and development of realistic problems, some examples and homework problems are carried through a sequence of chapters.

Exhibits are used liberally. It is possible and sometimes desirable to combine tables and graphics to form more powerful exhibits. A single numbering scheme for the exhibits is used to make it easier to find a referenced exhibit, whether table or figure.
5. Modern Computational Tools. Spreadsheets enhance the student's analytical capabilities, allow the inclusion of more realistic problems, and better prepare students to use engineering economy after graduation. For these reasons spreadsheets are used in the examples, and they can be applied to the homework problems. The power of spreadsheets allows students to learn more and to address problems in realistic detail. Real-world engineering economy almost universally relies on spreadsheets as an analytical tool.

For simpler problems TVM calculators have been used for decades by engineering economy professors, but not by a large fraction of their students. As detailed in Appendix B, properly programmed scientific calculators can be used on the FE exam while classes can permit use of financial calculators or smart phones with a downloaded financial calculator "app." As shown in Appendix B, these TVM calculators require the same conceptual understanding as the tables, but they allow students to spend much less time on arithmetic.

I believe that engineering economy students should understand and be able to use all of these tools: tables, TVM calculators, and spreadsheets. Then the choice of the tool can be matched to the situation, the instructor's requirements, and the student's preference.

This text is designed to support use of spreadsheets and TVM calculators as instructors prefer. Spreadsheets and calculators can be (1) an integral part of the course, including instruction on their use; (2) required or encouraged for homework without use in class; or (3) used by students on their own to do homework. Obviously each instructor will define what is permitted on exams. The spreadsheet instruction sections are placed at the ends of chapters, so that they may be skipped if desired.

Organization of the Text

The overall flow of the material is shown in Exhibit P.1. The first three parts are included in most courses, but the last chapters in each part (Chapters 4, 8, 10, and 11) can be skipped without a loss of continuity. Of the chapters that can be skipped without a loss of continuity, 19 on multiple objectives is the most suitable for self-study. Chapters 10 on replacement analysis, 13 on income taxes, and 17 on sensitivity analysis are the most difficult for selfstudy.

Some chapters or sections are more important for specific groups of engineers, such as Chapter 14 on public sector applications for civil engineers, Chapter 10 on replacement analysis for industrial engineers, and Section 16.7 on capacity functions for chemical engineers.

Part One presents concepts that form the fundamental basis for engineering economic calculations. Part Two reinforces this material for increasingly complex cash flows. Part Three compares alternatives-those that are mutually exclusive and those that are constrained by a limited budget. Part Four includes the effect of income taxes on the private sector, special concerns of the public sector, and inflation. Part Five explains tools that are needed to deal with the complexities of the real world.

Acknowledgments

I have had an enormous amount of help in completing this text. The authors of the numerous other texts that I have used have provided fine examples and shaped my understanding of the subject. Similarly, students at the University of Alaska Anchorage, the University of Missouri-Rolla, and Merrimack College have endured classroom testing of drafts and patiently pointed out where further work was needed.

EXHIBIT P. 1 Organization of the Text (Shaded material can be skipped)

Part One Basic Concepts and Tools 1 Making Economic Decisions 2 The Time Value of Money 3 Equivalence—A Factor Approach		

Nearly 250 faculty responded to a six-page survey about their current texts, courses, and desired material for an introductory text. Their responses directed me to the best and worst aspects of existing texts and provided great insight into their courses. Their responses specifically guided me in the addition and deletion of topics in my outline.

Other faculty members have provided material, reviewed the manuscript, or tested it in class. They have provided many helpful comments and criticisms. I would like to thank the following individuals in particular for their help with the first edition:

James A. Alloway, Jr., Syracuse University
Daniel L. Babcock, University of Missouri-Rolla
Susan Burgess, University of Missouri-Rolla
John R. Canada, North Carolina State University
Barry Clemson, Old Dominion University
William J. Foley, Rensselaer Polytechnic Institute
Timothy J. Gallagher, Colorado State University
Carol S. Gattis, University of Arkansas, Fayetteville
Jarad Golkar, Texas A\&M University
Joseph E. Gust, Jr., Northern Arizona University
Kim Hazarvartian, Merrimack College
Donald P. Hendricks, Iowa State University
Ken Henkel, California State University, Chico
Leonard Hom, California State University, Sacramento
Robert G. Lundquist, Ohio State University
Richard W. Lyles, Michigan State University
W. J. Kennedy, Clemson University

Anthony K. Mason, California State Polytechnic University at San Luis Obispo Paul R. McCright, University of South Florida
Nancy L. Mills, University of Southern Colorado
Murl Wayne Parker, Mississippi State University
Louis Plebani, Lehigh University
Jang W. Ra, University of Alaska Anchorage
James Rice, University of Illinois, Chicago
Herbert P. Schroeder, University of Alaska Anchorage
Jack W. Schwalbe, Florida Institute of Technology
Paul L. Shillings, Montana State University
Sanford Thayer, Colorado State University
David Veshosky, Lafayette College
Ed Wheeler, University of Tennessee, Martin
Bob White, Western Michigan University
Henry Wiebe, University of Missouri-Rolla

For the second edition, the following individuals as users or reviewers provided specific suggestions for improvement:

David G. Alciatore, Colorado State University
Richard Bernhard, North Carolina State University
Ed Dodson, University of California at Santa Barbara
William Girouard, California State Polytechnic University at Pomona
Unknown, University of Arizona

S. M. Gupta, Northeastern University

Dennis Kroll, Bradley University
Jerome Lavelle, North Carolina State University
Gene H. Lee, University of Central Florida
Robert G. Lundquist, Ohio State University
Paul R. Munger, University of Missouri-Rolla
Steven R. Maberry, University of New Mexico
Donald G. Newnan
David C. Slaughter, University of California at Davis
Richard Monroe, Old Dominion University
Bill Moor, Arizona State University
William Peterson, Old Dominion University
Karen Schmahl, Miami University
Maureen Sevigny, Oregon Institute of Technology
Alice Smith, Auburn University
John Whittaker, University of Alberta
Rochelle Young, University of Colorado at Boulder
The following individuals provided insights, reviews, and contributed problems that have significantly improved this third edition:

M. Affan Badar, Indiana State University
Paul Componation, University of Alabama in Huntsville
Vincent Duffy, Purdue University
Allen Eschenbach, Glenn, Burdette, Phillips \& Bryson: Certified Public Accountants
Joseph R. Herkert, Arizona State University
Richard Hoffman, University of Nebraska
Jerome Lavelle, North Carolina State University
Neal Lewis, University of Bridgeport
D. Peter Loucks, Cornell University
William Peterson, Minnesota State University, Mankato
Hamid R. Parsaei, University of Houston
SClaudina Vargas, Western New England College
John Whittaker, University of Alberta

Three of my most-valued colleagues have helped with material that is new with this edition. William Peterson coauthored the casebook that is included with this text, Jerome Lavelle authored the appendix of FE problems, and Neal Lewis coauthored and classtested the TVM calculator appendix.

One of the advantages this text has is that it is part of a market leading group of engineering economy texts published by Oxford University Press that can jointly support the development of products that support all texts. Thus, I would like to thank the professors (and their students) who have developed the supplements that are available on the web to students and distributed by CD to adopting professors. These include:

Julie Fortune, University of Alabama in Huntsville
Thomas Lacksonen, University of Wisconsin-Stout
Willam Peterson, Minnesota State University, Mankato
Paul Schnitzler, University of South Florida
William Smyer, Mississippi State University
Meenakshi Sundaram, Tennessee Technological University
Ed Wheeler, University of Tennessee, Martin

Textbooks are produced through the efforts of many people. Patrick Lynch, Rachael Zimmermann, Jennifer Bossert, and Claire Sullivan have been a pleasure to work with throughout the editorial and production process. Brenda Griffing has done the best job of copyediting that I've received.

I would appreciate being told of errors or receiving other comments about the book. I would also like to add material in the next edition that adopters have found effective for their students. Please write me at Oxford University Press, 198 Madison Avenue, New York, NY 10016 or email me at aftge@uaa.alaska.edu.

Ted Eschenbach
Anchorage, Alaska

00000 00000 00000
 Brief Contents

Preface xxi
PART ONE BASIC CONCEPTS AND TOOLS
1 Making Economic Decisions 目
2 The Time Value of Money 30
3 Equivalence-A Factor Approach 54
4 Spreadsheets and Economic Analysis 92
PART TWO ANALYZING A PROJECT
5 Present Worth 119
6 Equivalent Annual Worth 147
7 Internal Rate of Return 175
8 Benefit/Cost Ratios and Other Measures 204
PART THREE COMPARING ALTERNATIVES AND PROJECTS
9 Mutually Exclusive Alternatives 227
10 Replacement Analysis 257
11 Constrained Project Selection 285
PART FOUR ENHANCEMENTS FOR THE REAL WORLD
12 Depreciation 321
13 Income Taxes 350
14 Public-Sector Engineering Economy 378
15 Inflation 407
PART FIVE DECISION-MAKING TOOLS
16 Estimating Cash Flows 445
17 Sensitivity Analysis 469
18 Uncertainty and Probability 502
19 Multiple Objectives 534
Appendixes
A. Accounting Effects in Engineering Economics 560
B. Time Value of Money (TVM) and Calculators 583
C. End-of-Period Compound Interest Tables 591
D. Fundamentals of Engineering (FE) Exam Practice Problems 624
Index 640

Contents

PART ONE BASIC CONCEPTS AND TOOLS

1 Making Economic Decisions

1.1 What Is Engineering Economy?

1.2 Principles for Decision Making 6

Common Measure 6
Include All Consequences 6
Only Differences Matter 6
Make Separable Decisions Separately 8
Adopt a Systems Viewpoint 8
Use a Common Planning Horizon 8
Address Uncertainty 8
1.3 The Decision-Making Process 9

1. Define Problem 10
2. Choose Objective(s) 10
3. Identify Alternatives 11
4. Evaluate Consequences 11
5. Select 11
6. Implement 12
7. Audit 12
Summary of the Decision Process 12
1.4 The Environment for Decisions 13
Nonlinear Process 13
Iterative Modeling and Spreadsheets 14
One Decision in a Continuing Stream 15
Importance of Communication Skills 15
Analysis vs. Action 16
Private and Public Politics 16
1.5 Ethics and Decision Making 17
Gaining Knowledge and Building Trust vs. Favors for Influence 18
Cost, Quality, and Functionality 18
The Environment We Live In 19
Safety and Cost 19
Emerging Issues and "Solutions" 20
Importance of Ethics in Engineering and Engineering Economy 20
1.6 The Role of Engineering Economy 20
Problem Too Small to Merit Engineering Economy 21
Time Period Too Short to Merit Engineering Economy 21 21
Engineering Economy Dominates Decision Making 21
Engineering Economy Is One Factor in Decision Making 21
1.7 Operational Economics 22
1.8 Summary 24
References 25
Problems 25
2 The Time Value of Money 30
2.1 What Is Interest? 30
Interest Rates Vary 31
2.2 Simple vs. Compound Interest 33
Simple Interest 33
Compound Interest 33
2.3 Cash Flow Diagrams 35
Categories of Cash Flows 35
Timing of Cash Flows 36
It Is Better Not to Simplify the Cash Flow Diagrams 37
Drawing Cash Flow Diagrams with a Spreadsheet 38
2.4 Equivalence for Four Loans 38
Equivalence Defined 38
Calculating the Interest for Each Year 40
Finding an Equivalent Present Worth 41
2.5 Limits on Equivalence 41
Equivalence Depends on the Interest Rate 41
Equivalence with Respect to Time Value of Money Only 41
2.6 Compounding Periods Shorter than a Year 43
Compounding Periods Are M per Year 43 Nominal vs. Effective Interest Rates 45 Continuous Compounding 48
2.7 Summary 48
References 49
Problems 49
3 Equivalence-A Factor Approach 54
3.1 Definitions and Assumptions 55
Assumptions 55
Definitions 56
Reality and the Assumed Uniformity of A and G 57
3.2 Tables of Engineering Economy Factors 57
Factor Notation 57
Expanded Factors as Calculator Functions 58
Names of the Engineering Economy Factors 58
Format for the Interest Rate 59
Interpolation 59
Formulas vs. Factors 61
3.3 Single-Payment Factors (P and F) 61
Formula Development 61
Tabulated Factors 62
(P / F) and (F / P) as a Function of i and N 63
3.4 Uniform Flows 64
Formula Development 64
Tabulated Factors 65
Calculating an Interest Rate 67
$(A / P),(A / F),(P / A)$, and (F / A) vs. i and N 68
3.5 Combining Factors 70
Deferred Annuities 70
Annuities Due for Prepaid Expenses and Other Beginning-of-Year Cash Flows 71
Constructing Formulas from Cash Flow Diagrams 72
Deriving One Factor's Formula from Another's 74
3.6 Arithmetic Gradients 74
Definition 74
Using the Arithmetic Gradient Factors 75
Arithmetic Gradient Formulas 78
3.7 Geometric Gradients 78
Geometric Gradients Change at a Constant Rate 78
The Basic Geometric Formula 79
The Four Geometric Rates 80
Inflation 80
Mathematical Model for $P W$ 81
Present Worth Formula for a Single Geometric Gradient 81
Using Equivalent Discount Rates for Geometric Gradients 84
3.8 Summary 85
Reference 86
Problems 86
4 Spreadsheets and Economic Analysis 92
4.1 Using Spreadsheets for Economic Analysis 93
Why Use Spreadsheets 93
Reality and the Flexibility of Spreadsheet Models 93
The Elements of a Spreadsheet 93
Relative and Absolute Addresses 94
4.2 Spreadsheet Modeling 94
Using a Data Block 95
Defining Variables in a Spreadsheet 95
Use Relative and Absolute Addresses in Your Formulas 96
Explaining and Labeling Your Formulas 97
Formatting Your Spreadsheets 99
4.3 Financial Functions in Spreadsheets 99
Spreadsheet Annuity Functions 99
Spreadsheet Block Functions 102
4.4 Examples Show Spreadsheet Models Can Be More Realistic 105
4.5 Using Spreadsheets to Get a Project Funded 108
Sensitivity Analysis 109
Creating Graphs 110 Documenting Data Sources 112
4.6 Summary 112
References 112
Problems 113
PART TWO ANALYZING A PROJECT
5 Present Worth 119
5.1 The PW Measure 119
Is $P W>0$? 119
Standard Assumptions 121
5.2 Examples of When to Use Present Worth 121
5.3 Rolling Back Irregular Cash Flows for PW Calculations 125
5.4 Salvage Values 128
5.5 Capitalized Cost and Perpetual Life 129
5.6 Staged Projects 132
5.7 Cost of Underutilized Capacity 134
5.8 Spreadsheets and Shorter Periods 135
5.9 Spreadsheets and More Exact Models 137
5.10 Summary 139
References 140
Problems 140
6 Equivalent Annual Worth 147
6.1 The Equivalent Annual Worth Measure 148
6.2 Assumption and Sign Conventions 148
6.3 Examples of Annual Evaluations 149
6.4 Finding the EAC of "Irregular" Cash Flows 151
EAC of a Single Interior Cash Flow 151 Deferred Annuities to Regular Annuities 153
6.5 EAC Formulas for Salvage Values and Working Capital 154
Capital Recovery with Salvage Values 154 Working Capital 155
6.6 Perpetual Life 156
Assumption and Formulas 156 N vs. Infinity 157 Arithmetic Gradients and Perpetual Life 157
6.7 Repeated Renewals 159
Repetition for Every Subperiod 160Capitalized Costs 161
Repeated Renewals with Neither an Initial nor a Final Cash Flow 161
6.8 Spreadsheets and Analyzing Loan Repayments 164
Finding the Balance Due 165
Shortening the Time to Payoff by Increasing Payments 165
How Much Goes to Interest? How Much Goes to Principal? 168
6.9 Summary 170
Reference 170
Problems 170
7 Internal Rate of Return 175
7.1 Internal Rate of Return 176
7.2 Assumptions 177
Loans 178
Investments 178
Multiple Sign Changes 179
Reinvestment Assumption 179
Applying the IRR Measure 179
7.3 Finding the IRR 181
Hints and Shortcuts for Finding the IRR 182
7.4 Loans and Leases 185
7.5 Spreadsheets and the IRR 190
RATE Investment Function 190
IRR Block Function 191
7.6 Multiple Sign Changes 193
Mineral Extraction 194
Environmental Restoration 194
Staged Construction or Expansion 196
Summary of Multiple Sign Change Consequences 196
7.7 Project Balances over Time 197
7.8 Modified Internal Rate of Return (MIRR) 198
7.9 Summary 199
References 200
Problems 200
8 Benefit/Cost Ratios and Other Measures 204
8.1 Measures of Economic Attractiveness 205
Conceptual Definitions 205 Frequency and Patterns of Use 205
8.2 Benefit/Cost Ratio 206
8.3 Present Worth Indexes 208 Mathematical Definition of PW Indexes 208
8.4 Future Worth 211
8.5 Payback Period 211
Difficulties with Payback Period 213 When Can Payback Be Used? 214
8.6 Discounted Payback 215
Why to Use or Not Use 215 Examples of Use 215
8.7 Breakeven Volume 218
8.8 Summary 219
References 220
Problems 221
PART THREE COMPARING ALTERNATIVES AND PROJECTS
9 Mutually Exclusive Alternatives 227
9.1 Applying Engineering Economy to Engineering Design 228
9.2 Key Assumption Is the Interest Rate or Minimum Attractive Rate of Return 228 Common Assumptions 228
9.3 Comparing Alternatives with Lives of the Same Length 229
9.4 PWs and Explicitly Comparing Different-Length Lives 231
Approaches For Defining a Problem Horizon 231 Choosing the Best Horizon 234 Mutually Exclusive Alternatives without a Common Horizon 234
9.5 EAWs and EACs and Implicitly Comparing Different-Length Lives 234
9.6 Using EAC for Different-Length Lives Is a Robust Approach 238
Robustness Due to Discounting 238
Robustness Due to Estimated Lives 240
9.7 Benefit/Cost and IRR Comparisons of Mutually Exclusive Alternatives Require Incremental Analysis 240
9.8 Defender/Challenger Analysis 244
9.9 PW, EAW, and IRR Have the Same Interest Rate Assumption 246
9.10 Using the Spreadsheet GOAL SEEK Tool to Calculate Incremental IRRs 249
9.11 Summary 249
References 250
Problems 250
10 Replacement Analysis 257
10.1 Why Is Equipment Replaced, Retired, or Augmented? 258
Reduced Performance 258
Altered Requirements 258
Obsolescence 259
Risk of Catastrophic Failure or Unplanned Replacement 260
Lease or Rental vs. Ownership 260
Summary of Reasons for Replacement 260
10.2 Old and New Are Mutually Exclusive 261
Different-Length Lives 261
Economic Life 261
10.3 Sunk Costs, Risks, and Short-Term Cost Savings 262
Sunk Costs 262
Risks of the New Often Far Exceed Those of Extending the Old 263
Short-term Cost Savings Are Not Enough to Compare Repair vs. Replace 264
10.4 Optimal Challengers 265Challenger's Optimal or Economic Life 265
Spreadsheets for Challenger's Economic Life 267
Cost Curve for the Challenger's Economic Life 267
10.5 Optimal Defenders 268
Typical Defender's Economic Life 268Incorrect Assumptions for Minimizing the Defender's EAC 270
When to Calculate the Defender's Best EAC 272
Flowchart to Summarize the Decision Rules 274
10.6 Optimal Capacity Problems 274
10.7 Estimating Future Challengers 276
A Simple Rule of Thumb 276 MAPI 277
10.8 Replacement and Repair Models 277
Classifying Replacement Models 278 Block Replacement 279
10.9 Summary and Conclusions 280
References 281
Problems 281
11 Constrained Project Selection 285
11.1 The Constrained Project Selection Problem 286
Mutually Exclusive Choices vs. Constrained Project Selection 286
Budgets and Project Selection 287
Problem Size and Solution Approach 288
Budget Flexibility and Contingency Allowances 290
11.2 Ranking Projects 290
Investment Opportunity Schedule 291
Ranking by PW or EAW Does Not Work 291
Strengths and Weaknesses of IRR 292
11.3 Determining the Minimum Attractive Rate of Return Using the Opportunity Cost of Capital 293
Minimum Attractive Rate of Return (MARR) 294
11.4 A Theoretically Optimal Approach for Determining the Capital Budget 296
11.5 Capital Limits in the Real World 298
Why Capital Are Imposed 298 Budget Limits and the Cost of Capital 299
11.6 Matching Assumptions to the Real World 301
Assumption of Indivisible Projects and Increments of Financing 301 Assumption of Project Independence 303 Assumption of Simultaneous Evaluation 305 Stability and Reinvestment Assumptions 306
11.7 Present Worth Indexes and Benefit/Cost Ratios 307
11.8 Using the SORT Spreadsheet Tool 307
Using Spreadsheet Investment and Block Functions 308 Using the SORT Tool 309
11.9 Summary 309
References 310
Problems 310
Appendix 11A Mathematical Programming and Spreadsheets
Using Spreadsheets to Solve Linear Programs 316 Disadvantages of Mathematical Programming Models 317315
PART FOUR ENHANCEMENTS FOR THE REAL WORLD
12 Depreciation 321
12.1 Introduction 322
Definitions 323
12.2 Basic Depreciation Methods 324Straight-Line Method 324
Declining Balance Method 326
SOYD Method 327
Units-of-Production Method 329
12.3 Modified Accelerated Cost Recovery System (MACRS) 329
Based on Accelerated Cost Recovery System (ACRS) 329
MACRS 330
Alternate MACRS 333
12.4 Gains and Losses on Sales and Recaptured Depreciation 334
12.5 Optimal Depreciation Strategies 335
12.6 PW of a Depreciation Schedule 337
Straight-Line Method 337
Declining Balance Method 337
SOYD Method 338
MACRS 338
12.7 Depletion of Resources 340
Cost Depletion 340 Percentage Depletion 340
12.8 Section 179 Deduction and Bonus Depreciation 341
Recapture for Section 179 Assets 342 Bonus Depreciation 343
12.9 Spreadsheet Functions for Depreciation 343
Using VDB for MACRS
12.10 Summary 345
References 346
Problems 347
13 Income Taxes 350
13.1 Principles of Income Taxes 351
Income, Property, Sales, and Value-Added Taxes 351 Point of View 351 Principles of Calculation 352
13.2 Progressive Marginal Tax Rates 352
Effective Tax Rate for State, Local, and Federal Taxes 354
13.3 Finding Taxable Income When Depreciation Is Included 354 Categorizing Before-Tax Cash Flows 355
13.4 Calculating After-Tax Cash Flows and EACs Using Tables or Spreadsheets 357 Selecting an After-Tax IRR 359
13.5 Calculating ATCFs and EACs Using Formulas 359
Straight-Line Depreciation 360 MACRS Depreciation 360 Sum-of-the-Years'-Digits (SOYD) Depreciation 361
13.6 Investment Tax Credits and Capital Gains 362
History of ITC 362
Computing and Using an ITC 363
Capital Gains 364
13.7 Interest Deductions and an After-Tax IRR 364
Leverage 367
13.8 Summary 369
References 369
Problems 370
Appendix 13A Individual Income Taxes 375
14 Public-Sector Engineering Economy 378
14.1 Defining Benefits, Disbenefits, and Costs 379
Agencies That Do Not Serve the Public Directly 380
"Benefits to Whomsoever They Accrue" 380
14.2 Why Are Public-Sector Problems Difficult? 381
Quantifying and Valuing Benefits 382
Long Problem Horizons 382
Probabilities of Rare Events 382
Multiple Objectives That May Conflict 383
Interest Groups with Differing Perspectives 384
Selecting an Interest Rate 384
Summary 385
14.3 Correct Methods and Interest Rates 385
Evaluating a Single Project 385
Criteria for Mutually Exclusive Alternatives 387
Criteria for Constrained Project Selection 388
Deferred Maintenance
Deferred Maintenance 389 389
14.4 Whose Point of View? 390
What Is Internal? What Is External? 390
Federal Subsidies 391
Consumers'Surplus 392
14.5 Allocating Costs to Benefit Recipients 393
14.6 Valuing the Benefits of Public Projects 395
A Life's Present Value 395
Standards of Federal Agencies 397
Risk and Valuing Public Benefits 398
14.7 Cost-Effectiveness 398
14.8 Summary 400
References 401
Problems 401
15 Inflation 407
15.1 Defining and Measuring Inflation and Deflation 408
The Consumer Price Index (CPI) 408 Annual Inflation Rate 410 Producer Price Indexes 412
15.2 Consistent Assumptions for Interest Rates and Cash Flow Estimates 413
Inflation Terminology 413
Matching Interest Rates to Inflation Assumptions 413
Differential Inflation 414
Estimating Differential Inflation 415
Accuracy of Inflation Estimates 416
15.3 Solving for PW or EAC When Inflation Is Included 417
15.4 Inflation Examples with Multiple Inflation Rates 420
15.5 Leases and Other Prepaid Expenses 423
15.6 Depreciation and Loan Payments 426
15.7 Inflation and Other Geometric Gradients 432
The Four Geometric Gradients 432
Formulas Based on the Equivalent Discount Rate 434
15.8 Summary 436
References 437
Problems 437
PART FIVE DECISION-MAKING TOOLS
16 Estimating Cash Flows 445
16.1 Introduction 446
Importance of Cost Estimating 446 Impact of Early Project Decisions 446
16.2 Cash Flow Estimating and Life-Cycle Stages 448
Hidden Costs 448 Costs During the Project Life Cycle 448
16.3 Cash Flow Estimating Standards 450
Stages of Cash Flow Estimating 450
Conceptual Design 450
Preliminary Systems Design 451
Final Systems Design 451
Cost Estimate Definitions and Accuracy 451
16.4 Design Criteria and Specifications 452
Design Criteria 452 Specifying Performance 452
16.5 Modeling the Base Case 454
16.6 Using Indexes for Order-of-Magnitude Estimates 455
16.7 Using Capacity Functions for Order-of-Magnitude Estimates 457
16.8 Using Growth Curves 459
16.9 Using Learning Curves 462
16.10 Using Factor Estimates 464
16.11 Summary 465
References 465
Problems 466
17 Sensitivity Analysis 469
17.1 What Is Sensitivity Analysis? 470
Sources of Uncertainty 470
Breakeven Charts 470
Why Do Sensitivity Analysis? 472
17.2 Uncertain Data and Its Impact 473
Defining the Limits of Uncertain Data 473 Estimating Sensitivities 475
17.3 Techniques for Sensitivity Analysis 475
Scenarios 475
Relative Sensitivity of the Economic Criteria to Different Variables 476
Tabulating Relative Sensitivity Analysis 477
Tornado Diagram 477
Spiderplot 478
More Advanced Techniques 479
17.4 Spiderplots 479
Defining Spiderplots 479
Interpreting a Spiderplot 479
17.5 Constructing a Spiderplot 481
By Hand 481
Using a Spreadsheet 482
Choosing a y-Axis 485
17.6 Constructing Tornado Diagrams 485
Tornado Diagrams with Positive Values Only 485
Tornado Diagrams with Positive and Negative Values 487
Using the Tornado Diagram Template 489
17.7 Multiple Alternatives 492
Spiderplots 492
Scenarios 495
17.8 Sensitivity Analysis with Multiple Variables 495
17.9 Summary 497
References 497
Problems 498
18 Uncertainty and Probability 502
18.1 Probabilities 503
18.2 Computing Expected Values 505
18.3 Choosing Alternatives Using Expected Values 507
18.4 Economic Decision Trees 509
Sequential Decisions 511
Cash Flows that Occur over Time 512
18.5 Risk 514
18.6 Risk/Return Trade-offs 517
Buying Insurance 517
Balancing Risks and Returns 517
Efficient Frontier for Risk/Return Trade-offs 520
Approaches to Risk/Return Trade-offs 520
18.7 Real Options 521
18.8 Probability Distributions for Economic Outcomes 522
Probability Distributions with Multiple Independent Variables 522
N and i Need Complete Distributions for Exact Answers 524
Continuous and Discrete Probability Distributions 526
Simulation 527
18.9 Summary 528
References 529
Problems 529
19 Multiple Objectives 534
19.1 Multiple Attributes 535
Definitions and Trade-offs 535
Attribute Categories 536
Selecting Multiple Objectives 537
Summary 539
19.2 Process of Evaluating Multiple Objectives 539
Eliminating Dominated and Unsatisfactory Alternatives 539 Decision Rules for Choosing the Best Alternative 541
19.3 Identifying the Attributes 541
19.4 Evaluating the Alternatives 543
19.5 Graphical Techniques 546
Shaded Circles and Squares 546
Polar Graph 546
19.6 Numerical Scales for Evaluation 547
Numerical Variables 547
Choosing the Best and Worst Case 548
Verbal Variables 550
Missing Values 550
19.7 Additive Models 551
Direct Assignment of Weights 551
Subjective Assignment of Importance Ratings 551
Tabular Additive Models 552
Graphical Additive Models 553
Closing Comment on Additive Models 553
19.8 Hierarchical Attributes and Objectives 554
19.9 Summary 556
References 557
Problems 557
Appendixes
A. Accounting Effects in Engineering Economics 560
A. 1 Role of Accounting 561
A. 2 General Accounting 562
Business Transactions 562
A. 3 Balance Sheet 563
Assets 564
Liabilities
Equity 564
Financial Ratios Derived from Balance Sheet Data 565
A. 4 Income Statement 566
Definition 566
Financial Ratios Derived from Income Statement Data 567
Linking the Balance Sheet, Income Statement, and Capital Transactions 568
A. 5 Traditional Cost Accounting 568
Direct and Indirect Costs 569
Indirect Cost Allocation 569
Problems with Traditional Cost Accounting 570
A. 6 Activity-Based Costs 570
Definition 571
ABC Provides More Accurate Costs 573
Using ABC 573
Economic Justification Using ABC Data 575
Timely and Accurate Data 576
A. 7 Summary 576
References 577
Problems 577
B. Time Value of Money (TVM) and Calculators 583
B. 1 Advantages and Types of TVM Calculators 583
B. 2 Notation for TVM Calculators 584
B. 3 Examples with TVM Calculators \& Tabulated Factors 585
Problems 589
C. End-of-Period Compound Interest Tables 591
D. Fundamentals of Engineering (FE) Exam Practice Problems 624
Problems 626
Index 640

PART ONE

$$
\begin{aligned}
& \text { BASIC CONCEPTS } \\
& \text { AND TOOLS }
\end{aligned}
$$

ne of the most important skills in engineering economy is structuring the problem. Data, objectives, and alternatives must flow in a logical process so the engineer can choose the best projects and designs (Chapter 1).

Engineering projects involve different cash flows at different times. The cost to build or buy occurs now, and the benefits occur for the next 10 to 50 years. Since $\$ 1$ is worth more now than later, we need engineering economy to calculate equivalent cash flows. Using compound interest allows us to compare cash flows that occur at different times (Chapter 2).

Because cash flows often occur in consistent patterns, engineering economy factors have been developed to find equivalent present worths and annual costs. These factors greatly simplify the task of economic evaluation (Chapter 3).

Spreadsheets make engineering economy easier to do and support far more realistic models. Chapter 4 shows this is particularly true for cash flows that grow by a constant amount or at a constant rate each year.

Making Economic Decisions

- THE SITUATION AND THE SOLUTION

Engineering decisions must consider money-both in the short term and in the long term. The choice between alternatives must balance economics, performance, esthetics, resources, etc.

The solution is to apply engineering economy as part of a well-structured decisionmaking process.

- CHAPTER OBJECTIVES

After you have read and studied these sections, you should be able to:
SECTION 1.1 Define engineering economy, and provide example applications.
SECTION 1.2 State the principles of economic decision making.
SECTION 1.3 Structure and solve a problem.
SECTION 1.4 Recognize the realities of decision making in the real world.
SECTION 1.5 Make ethical decisions through an ethical process.
SECTION 1.6 Distinguish between problems in which engineering economy is unnecessary, crucial, or a contributing factor.
SECTION 1.7 Identify current costs, and make correct operational decisions.

- KEY WORDS AND CONCEPTS

Time value of money The principle that $\$ 1$ today has more value than $\$ 1$ in the future.
Engineering economy Making engineering decisions by balancing expenses and revenues that occur now and in the future.
Irreducibles Consequences that cannot be quantified.
Sunk costs Costs that have been incurred or dollars that have already been spent.
Stakeholders Those affected by the engineering project, including employees, customers, users, managers, owners, and stockholders.
Satisficing Choosing a satisfactory alternative rather than searching for the best alternative.

1.1 What Is Engineering Economy?

Engineering economy uses mathematical formulas to account for the time value of money and to balance current and future revenues and costs.

Engineering economy evaluates the monetary consequences of the products, projects, and processes that engineers design. These products, projects, and processes usually require spending money now, and they have long lives. Often, two designs are compared, and the question is: "Which is cheaper in the long run?"

This question cannot be answered by comparing only physical efficiencies. Electric baseboard heating is nearly 100% efficient at converting input energy to heat, while a fuel oil furnace may have an efficiency as low as 45%. Nevertheless, fuel oil may be economically more efficient-if the cost of fuel oil is low enough. Economic efficiency is measured by dividing the dollar value of the outputs by the dollar value of the inputs.

In other cases, one alternative may be cheaper to build and the other cheaper to operate. For example, a building without insulation is cheaper to build, but a building with thick insulation is cheaper to heat and to air-condition. Engineering design must answer the question, "How much insulation is the best?" Combining current building costs with future operating costs requires the tools of engineering economy, because having $\$ 1$ today is more valuable than having $\$ 1$ a year or 10 years in the future. The principle that $\$ 1$ today is more valuable than $\$ 1$ a year in the future is called the time value of money.

The time value of money can be explained through the earning power of money. Having the $\$ 1$ today allows interest or income to be earned over the next year or 10 years. Having money sooner allows more interest or income to be earned; thus, sooner is more valuable.

The following definition of engineering economy will be expanded in later chapters. The real world of engineering economy includes uncertainty, risk, and performance tradeoffs whose value cannot be measured in dollars.

Engineering economy adjusts for the time value of money to balance current and future revenues and costs. Beginning with the next chapter, interest will be defined and used, but for now, we need only recognize that having $\$ 1$ today has more value than having $\$ 1$ in a year. If you doubt that money has time value, why are you not eager to loan someone $\$ 1000$ now to be repaid $\$ 1000$ at the end of the year?

This text also includes examples of using engineering economy in your life. Examples include comparing a new with a used car, borrowing money to buy a car or house, buying parking permits a semester or a year at a time, and Example 1.1.

EXAMPLE 1.1 Joe Miner's Student Loan

Joe Miner has been offered a student loan by a hometown engineering firm. He will borrow $\$ 5000$ each year for 4 years. He is required to maintain a 3.0 GPA, major in some engineering discipline, and graduate within 5 years. Beginning 1 year after graduation and continuing for 3 more years, he is required to repay this loan at $\$ 5000$ per year. Is this a good deal?

[^0]$\$_{0} \neq \$_{1} \neq \$_{1-10}$. Adding these together requires an interest rate, which is the exchange rate for the time value of money.

Adding $\$ 25$ to $25 £$ to $¥ 25$ to $€ 25$ does not yield $\$ 100$. Calculating the correct dollar value requires 3 exchange rates. Similarly, if we put a subscript on our $\$$ sign to denote when the money would be spent or received, then we would know $\$_{0} \neq \$_{1} \neq \$_{1-10}$, and we would never add dollars that differ by being at different times. The interest rate that is defined in Chapter 2 is our exchange rate for the time value of money.

The applications of engineering economy are many and varied. Examples include the choice between a concrete and a steel structure, between various insulation thicknesses, between possible loans for a car or a robot, and between prices at which to sell a duplex, a firm, or a product. Engineering economy can be applied by an engineer to size a pump or to buy a home. It can be applied by a design firm to analyze the purchase of engineering software. (Will the value of time saved or new capabilities achieved exceed the cost of adding the software?) It can be applied by a major corporation to analyze plans for a new manufacturing facility or a new research and development (R\&D) thrust. In each case, as depicted in Exhibit 1.1, engineering economy balances expenses and revenues that occur now and in the future.

The importance of money or engineering economy to engineering has long been recognized. To paraphrase Arthur M. Wellington from 1887:

Engineering is the art of doing well with one dollar what any bungler can do with two after a fashion.

The literature provides a review of the history of engineering economy [Lesser], as well as a broader perspective on the discipline of engineering economy [Horowitz with commentary by Bernhard].

EXHIBIT 1.1 Engineering economy balances current and future revenues and costs

1.2 Principles for Decision Making

Decisions must consider all consequences, including those that can be expressed in monetary terms, those that can be measured even if not in monetary terms, and those irreducibles that cannot be quantified.

Exhibit 1.2 highlights principles that will be applied repeatedly in the economic evaluation of alternatives.

EXHIBIT 1.2 Decision-making principles

- State consequences in a common measure.
- Include consequences that cannot be measured.
- Consider only differences between alternatives. (Implies that sunk costs are ignored.)
- Make separable decisions separately.
- Adopt a systems viewpoint.
- Use a common planning horizon.
- Address uncertainty.

Common Measure. The emphasis of engineering economy is on money's time value or, in other words, converting dollars at different times into a common measure. This principle implies that consequences such as time savings, reductions in accidents or pollution, and improvements in quality will be stated in dollar terms if possible.

Include All Consequences. The time value of money provides the mechanism for stating most outcomes in a common measure. Some quantifiable measures and irreducibles or intangibles are difficult to state in monetary terms, yet these consequences must be included.

From the perspective of engineering economy, the criterion is the time value of money (benefits and costs measured in dollars). From a broader perspective, money may not be the most important criterion. Some important outcomes, such as lives saved or months until a new product is introduced, can be quantified, but they are very difficult to state in monetary terms. Examples of other quantifiable measures include rate of growth, stability of rate of return, risk, decibel level, number of billboards torn down, market share, number of customers served, visitor days, and short-term cash flow situations.

Irreducibles are not quantifiable. For example, maintaining morale by avoiding layoffs is difficult/impossible to measure. Other examples include yes/no categories; subjective estimates for entry into a new market; organizational image (for innovation, good treatment of personnel, or quality); admitting error; corporate culture; and legal, ethical, and political factors.

Chapter 19 will discuss how quantifiable and irreducible criteria can be combined with the time value of money. Important consequences cannot be ignored simply because they are difficult to state in dollar terms.

Only Differences Matter. This principle simplifies evaluating alternatives. Many engineering design problems focus on different alternatives to accomplish the same end. For example, since each roof design ensures a dry interior, the value of a dry interior need not be determined. Instead, only differences in cost are relevant. To compare asphalt shingles and metal roofing, these differences include the original installation costs, annual maintenance costs, and how soon the roof must be replaced.

Sunk costs are

 spent and should be ignored.Current worth is what matters. Past worth does not.

These differences focus on the design choice. However, to support managerial decision making, it may be necessary to include the cost of the roof trusses, plywood, and other costs that are required for all designs. Such comparisons help to put the cost difference between the design choices in perspective.

One crucial application of the principle that only differences matter is that sunk costs should be ignored. Sunk costs are defined as money that has been spent or irrevocably committed. Even if buying a robot, buying stock in Fly-by-Night Operators, or buying a particular computer was a mistake, the money spent on the original purchase is sunk. That action is done. When considering alternatives, the robot's salvage value, the stock's current price, and the computer's resale value are the relevant concerns. Example 1.2 describes possible sources of pressure to consider sunk costs erroneously.

Defining sunk costs does not take long, but recognizing them and overcoming the pressure to consider them can be quite difficult. The inclusion of sunk costs is one of the most common mistakes in economic decision making. It is often easier (yet wrong) to use the original (and sunk) cost of equipment, a building, or a project-even if it was spent years ago-than it is to estimate the asset's current value. In evaluating sale vs. continuing use of an asset, it is the current value which is relevant.

EXAMPLE 1.2 HiTek's Computer Workstations

HiTek Engineering purchased 8 computer workstations from Lemon Technologies late last year. Last week, the government announced a standard format for computer-based drawings and specifications. Unfortunately, none of the various software packages that currently meet that standard will run on the 8 Lemons. Last year, the machines cost $\$ 250 \mathrm{~K}$ (K stands for thousands), including software. Buying new Lemons would cost $\$ 190 \mathrm{~K}$ today. If HiTek sells the Lemons on the used-machine market, HiTek would receive only $\$ 80 \mathrm{~K}$. If HiTek buys new workstations from another vendor, the 8 Lemons could be shifted to another use, which has a value of $\$ 90 \mathrm{~K}$.

Which of the following arguments on what to do with the old machines when new ones are purchased is true?

- Argument 1. HiTek must sell the Lemons, because it cannot justify using $\$ 190 \mathrm{~K}$ worth of machines for a $\$ 90 \mathrm{~K}$ use.
- Argument 2. HiTek must keep the Lemons, because it cannot afford to lose $\$ 110 \mathrm{~K}$ ($=\$ 190 \mathrm{~K}-\$ 80 \mathrm{~K}$) by selling them.
- Argument 3. HiTek cannot afford to sell the Lemons, because then it would be admitting that it made a $\$ 250 \mathrm{~K}$ mistake.
- Argument 4. Even though the alternative use is worth only $\$ 90 \mathrm{~K}$, HiTek should keep the Lemons, since they will be worth only $\$ 80 \mathrm{~K}$ if sold.

SOLUTION

Argument 4 is true. It ignores the sunk costs of $\$ 250 \mathrm{~K}$ and the costs of a separate decision, which is whether to spend $\$ 190 \mathrm{~K}$ for new workstations.

- Argument 1. False, since the Lemons are not worth $\$ 190$ K.
- Argument 2. False, since the only relevant cost is the $\$ 80 \mathrm{~K}$ that could be received for sale of the workstations.
- Argument 3. False. The $\$ 250 \mathrm{~K}$ is a sunk cost that cannot be recovered. Buying the workstations may or may not have been a mistake. How much value was received from having them for the past year? Was it possible to predict the forthcoming standard?

Even if this decision was a mistake, failing to admit and to correct a mistake is yet another mistake-often with larger consequences.

Even if a decision was a mistake, failing to admit and to correct a mistake is yet another mistakeoften with larger consequences.

Make Separable Decisions Separately. This principle avoids justifying a lowquality result for decision B by combining it with a high-quality result for decision A . Why not get a high-quality result for both A and B by examining them separately?

Applying this principle separates most financing and investing decisions for firms and public agencies. Firms and governments raise funds (finance) through a variety of mechanisms, including sale of stocks and bonds, loans, user fees, and taxes. How firms and agencies select projects to implement (invest in) is a separable question. Choosing which investments to make requires the tools of engineering economy.

At a personal level, the price of a car, the value of a trade-in, and the financing arrangement are often separable decisions. Car dealers may want to combine them, because what matters is the profit on the total transaction. They can offer a high trade-in and a low purchase price if they can get a high interest rate on the loan. Does the value of your trade-in really depend on which car you are buying? Of course not.

Adopt a Systems Viewpoint. For private-sector problems, the viewpoint should be that of the firm as a whole, not just a department, a plant, or a division. For the public sector, the viewpoint should be that of the agency and the public it serves and taxes, not that of one department.

For example, a firm's R\&D group must consider potential revenues from new products to the entire firm, not just the interesting challenges the star researchers are eager to tackle. Similarly, a hospital's physical therapy unit might be well advised to purchase improved equipment, which would increase the unit's costs and cause its bottom line to suffer, if that improved equipment would allow patients to be discharged from the hospital more quickly.

Use a Common Planning Horizon. To avoid introducing misleading differences into the comparison of alternatives, the same time period for project justification should be used for all alternatives. For example, a stainless steel pump may have a longer life than a brass pump, but the comparison should be made with the same time horizon for each pump.

Address Uncertainty. Engineering economy is an essential tool for engineering design, but the economic data are often much less certain than the physical data used for other design calculations. Because engineering economy focuses on the future consequences of current decisions, much of the data analyzed are estimates rather than exact quantities. Thus, the uncertainty in these estimates should be explicitly addressed (see Chapters 17 and 18 on sensitivity and probability analyses).

1.3 The Decision-Making Process

Steps 1-5 = resources out Step $6=$ returns in Step $7=$ lessons learned

The real world contains messes [Ackoff], not problems. A chaotic conglomeration of conflicting objectives, undefined constraints, and incomplete or contradictory data is a mess, not a problem. A well-structured decision-making process is needed to turn a mess into a problem.

The steps shown in Exhibit 1.3 can be used to solve a mess. These steps are not unique to engineering economy. They also can and should be applied to engineering design and to managerial and personal decisions. In Example 1.3, they are applied to a simple mess in engineering design and economics.

The linear flow chart in Exhibit 1.3 is most useful to define the steps for decision making. As detailed in Section 1.4, real-world decision-making processes usually are and should be nonlinear, with numerous feedback loops. Whether the process is linear or nonlinear, steps 1 to 5 involve expending resources. These resources include money, material, the time of personnel, and "clock" time. Step 6 also expends resources, but it is where the payoff comes from. Step 7 identifies lessons learned, so that future decisions and results can be better and the process (steps 1-6) can be more effective.

EXHIBIT 1.3 Decision-making flowchart

EXAMPLE 1.3 Charlene Selects a Pump

Charlene is a newly hired chemical engineer. She has been asked to select a pump to move 15,000 liters of slurry a day to the pollution treatment center. What process should she use to select the pump?

SOLUTION

1. Define Problem. Key problem characteristics include but are not limited to: (1) slurry characteristics, such as particle size and corrosiveness; (2) pipe sizes and flow velocities for input and output; (3) any size, power, and location restrictions; (4) time horizon for using the pump and how soon is it needed; (5) cost limits; (6) vendor selection processpurchase order, competitive bid, or request for proposal (RFP); and (7) how many pumps (identical, similar, or by the same vendor) are needed.
2. Choose Objective(s). Cost over the pump's life and technical performance will usually dominate, but Charlene must also consider other factors, such as vendor and pump reliability, similarity to current practice, maintainability, and flexibility for changed conditions.
3. Identify Alternatives. If the pump will be purchased from a catalog or other vendor material, then Charlene must assemble and examine those materials from all appropriate vendors. If an RFP will be issued, then possible alternative specifications must be developed.
4. Evaluate Consequences. Charlene must enumerate each alternative's advantages and disadvantages with respect to the objectives.
5. Select. Charlene must select a pump based on costs and benefits adjusted for the time value of money. Technical performance objectives must be completely satisfied, so that any pump with deficiencies is eliminated from consideration.
6. Implement. The pump must be ordered and installed.
7. Audit. This step evaluates the pump and the decision-making process after the pump is in use. The intent is to provide "lessons learned" to assist in future decisions.

The importance of each step can be shown by examples in which an engineer has either erred or missed the opportunity to excel. The consequences to the firm, the public agency, the public, and the engineer can be severe. It is also useful to focus on how to do each step correctly.

1. Define Problem. In Example 1.3, Charlene's problem was narrowly defined. This narrow definition precludes creative alternatives that might be outstanding solutions. For example, there might be another process design that would generate no slurry, or it might be better to dewater the slurry and use a conveyor to transport a sludge. If the problem is defined too broadly, then the new engineer may be left floundering; if it is defined too narrowly, then better solutions may be prohibited.

The key skills in problem definition seem to be in asking questions and correctly pulling together information from a variety of sources. This step can lead to changes in procedures that remove the need for the project. In other cases, completely new alternatives may be suggested.
2. Choose Objective(s). The most common error is considering only the cost to purchase or build. The correct objective considers the time value of money and all costs and benefits. These include purchase, installation, overhaul, operation, and disposal costs, and the benefits that occur over the project's life.

At times, the decision maker must consider factors in addition to the time value of money. Factors such as uncertainty, risk, and other multiple objectives are the focus of Chapters 18 and 19. The extra consideration is sometimes described by distinguishing between effectiveness and efficiency. Effectiveness can be defined as doing the right things, while efficiency can be defined as doing things the right way. Often, effectiveness focuses on the firm's strategic direction, while efficiency is more of a tactical choice.

To illustrate the difference between efficiency and effectiveness, consider a student studying for an exam. Memorizing for an open-book exam, wasting time by daydreaming, and redoing easy homework problems are clearly inefficient. However, studying the wrong

Creating better choices can replace detailed analysis of existing choices.
material is ineffective. Success in competitive environments requires both effectiveness and efficiency.
3. Identify Alternatives. The best alternative may be overlooked if the problem is defined too narrowly. Or, the problem might be defined properly, but creativity is missing.

As many alternatives as possible should be suggested. Even those with obvious defects may lead to better alternatives. Processes involving groups of individuals and specific techniques, such as brainstorming, are useful.

Innovative alternatives often have far greater benefits than more accurately analyzing existing alternatives. Choosing between two alternatives whose costs differ by 10% may require accurate estimates and detailed analysis-all to achieve a maximum payoff of 10%. A new alternative that is 50% better can be justified and implemented with less detailed analysis, because it is clearly superior.

Creativity in identifying alternatives has such a high payoff that it is worthwhile to study methods to improve your creativity and that of your coworkers. One such technique is called brainstorming, in which a group generates as many ideas as possible. The focus is building on previous ideas and creating new ones. No one is allowed to say, "It won't work because . . ." or "We tried that," etc. After idea generation is completed, then skeptical evaluation can begin. This and other techniques are discussed [de Bono].

Value engineering or value management can be defined as:

> The systematic application of recognized techniques which seek to improve the value of a product or service by identifying and evaluating its functions, and provide the necessary functions to meet the required performance at the lowest overall cost. [Stewart]

For example, the function analysis system technique (FAST) is structured to help team members identify missing functions, show the relationships between all functions, and clarify the key elements in providing value. To capture these benefits some public and private decision-making processes have a specific step of value engineering. SAVE International, the professional society for value management, is both a source for information and the certifying organization for value management professionals.
4. Evaluate Consequences. A common mistake when evaluating alternatives is a shortsighted focus on which consequences to include. A department considering buying a computer might consider its needs alone, without considering whether other departments might use the computer (or might have surplus computers available).

For example, one dam on the Colorado River was built primarily to regulate the flow from a group of upstream states to a group of downstream states. The dam helped satisfy a legal minimum flow requirement. From a broader perspective, however, the increased evaporation and leakage into the canyon walls were important consequences that damaged the entire system.

At first, consequences may be evaluated in a cursory way, because this may be enough to eliminate obviously inferior alternatives. Then, consequences for the better alternatives may be evaluated in more detail. Finally, uncertainties in a project's costs and benefits are evaluated using the tools of Chapters 17 and 18.
5. Select. Selecting the best alternative and choosing the correct objective are closely linked. The selection criteria are based on the identified objective. If the wrong objective

Stakeholders are the people affected, including employees, customers, users, managers, owners, and stockholders.

1. Define problem
 2. Choose objective(s)
 \downarrow 3. Identify alternatives
 \downarrow
 4. Evaluate
 consequences \downarrow 5. Select \downarrow 6. Implement \downarrow 7. Audit

(minimizing first cost) is used, then often the wrong alternative will be selected. Even if a correct objective (minimizing life-cycle costs) is identified, departmental infighting may result in second- or third-best selections.

It is unrealistic and inappropriate to expect estimates of costs and revenues to always determine the best alternative. Often, the selection process will have to account for other factors, such as a corporate policy to minimize layoffs or a public agency's desire to have projects in every region.

Sometimes it is unclear who has made the selection. An engineer may forward two alternatives to a higher organizational level for a decision. However, there are often other alternatives that are not put forward. The engineer's decision not to include those alternatives may be based on safety (great!) or self-interest (questionable at best). If an engineering group forwards a clearly acceptable solution and one that is unacceptably "gold plated," then it has already "made" the decision.
6. Implement. The selection process may determine the success or failure of implementation. Capital projects require efforts from many individuals. If all believe that the best alternative was chosen, then all are likely to work to overcome problems. On the other hand, if some believe that another alternative was better, they may not work as hard to make the implementation a success.

In some cases, the users of engineering projects have not been consulted. Numerous projects in third-world countries have been designed and selected by engineers and bureaucrats from developed countries. In some cases, the project fails because maintenance expertise is lacking. In other cases, implementation fails because the project violates local customs or power structures.

The key here seems to be involvement of stakeholders (those who will be affected by the engineering project) in the earlier steps.
7. Audit. This step is often omitted. The pressure to move on and complete the next project is substantial. Besides, comparing actual with predicted performance can be embarrassing, with few rewards. If an organization punishes those who show that actual results were worse than predicted, then no one will want do the audit step.

An audit trail can be helpful later. Record the source for each data item. This can be a column added to your spreadsheet or a page to the file. Some organizations add a formal sign-off or signature on data values.

The reward for auditing is learning. What should you do differently next time? Besides, if you know that someone will check your work later, you have an extra incentive to do it right now.

Summary of the Decision Process. These seven steps provide a logical framework for making engineering economy decisions and solving other problems. Chapter problems will focus on the economic evaluation of alternatives, but the real world requires that you deal with the entire decision-making process. [See Hammond, Keeney, and Raiffa for a detailed description of a similar process.]

1.4 The Environment for Decisions

The model of Exhibit 1.3 is useful as a guide. However, effective real-world decision making must modify it and consider other factors. This section clarifies how decisions are and should be made:

- Nonlinear process has feedback loops and simultaneous activities.
- Iterative modeling is supported by spreadsheets.
- One decision affects the future continuing stream of decisions.
- Communication skills are crucial.
- Analysis produces paper, and action produces results.
- Private and public politics matter.

Nonlinear Process. Exhibit 1.3 outlined a linear flow from step to step. At times, some of these steps are executed simultaneously rather than sequentially. Often, there are feedback loops, and steps are repeated.

Example 1.4 expands on the first several steps that were outlined in Example 1.3. This expansion includes several feedback loops in which information from a later stage is used to "redo" an earlier stage. Example 1.4 also illustrates that some work may be undertaken simultaneously rather than sequentially, which is difficult to show in a flow chart. It is difficult to show that an activity such as identifying alternatives or implementing has been started but not finished.

EXAMPLE 1.4 Charlene Selects a Pump (revisited)

What is a reasonable chronology for the early days of the project in Example 1.3?

SOLUTION

Day 1: Charlene is assigned the job by her boss and given a brief overview. Her boss states that a 10 -year use period, an interest rate of 15%, and minimizing equivalent annual costs are specified for engineering economy studies. Some (1) defining problem and some (2) choosing objectives.

Later on Day 1: The project's senior engineer provides Charlene with information on the pump's technical specifications, including the manufacturer's name for a similar pump purchased last year. Some more (1) defining problem and some (3) identifying alternatives.

Day 2: Charlene visits the website for the pump manufacturer to get current pricing, performance, and specifications. Then she asks the senior engineer whether some piping and controls are part of her project. She is told that they are not and that final design specifications on those items should be available in a week. Some (3) identifying alternatives and some (1) defining problem.

Day 3: Charlene calculates the requirements that the pump must fulfill and finds three possible models. They differ substantially in their expected lives, which must be explicitly recognized in her calculation of equivalent annual costs. (3) Identifying and (4) evaluating alternatives.

Day 4: Charlene drafts a memo recommending a pump for this application. (5) Selecting and (6) beginning implementation for her recommendation.

Day 8: Charlene's boss shows her a memo from the maintenance department earlier this year. That memo severely criticizes the reliability of the recommended manufacturer's pumps
and complains bitterly about the poor support that is provided. Charlene's boss asks her to weight reliability and service more heavily and to recheck for new alternatives. Back to (3) identifying alternatives.

Days 9-30: The process continues.

Build a simple model first, and iteratively add detail as needed.

Example 1.4 shows that no single step is "make the decision." The entire process shapes the decision. The engineer often decides which alternatives reach the final comparison. Eliminating an alternative is a decision, and it may determine that only one alternative remains. This may happen on day 8 of a month-long process, so determining when a decision was made can be difficult.

Iterative Modeling and Spreadsheets. Refining the uncertain data and recalculating the model are common feedback loops in the decision-making process. The first four decision-making steps are often conducted as a loop, where each pass through the loop is an iteration. Each iteration adds more detail to the model.

This modeling philosophy builds simple models first and then adds detail only where needed. If a deadline is reached, then there is at least a simple model to use for decision making.

The iterative nature of engineering economic modeling and decision making is one reason that spreadsheets are popular. A new estimate of a project's cost, revenue, or life can easily be entered, and then the computer updates all calculations. As explained in Chapter 17 on sensitivity analysis, the results of one iteration can be used to decide which data estimates should be refined for the next iteration.

Spreadsheets also allow the results of simple and complex models to be displayed graphically. Exhibit 1.4 illustrates the cost of the slurry pipeline vs. a sludge conveyor for Charlene's design problem. For volumes greater than 16,000 liters per day, the sludge conveyor is less expensive, but its capacity is limited to less than 17,000 liters per day. For the expected volume of 15,000 liters per day, as well as for smaller volumes, the pipeline is more cost effective.

EXHIBIT 1.4 How does annual cost depend on the volume/year?

By establishing a reputation for thorough analysis and reasonable assumptions, you will build trust with decision makers.

One Decision in a Continuing Stream. With rare exceptions, each engineering project is only one of many implemented each year-and firms and agencies go on year after year. Consequently, the decision-making process might emphasize building a relationship between two departments, or the recommended alternative might focus on maximizing future possibilities rather than current returns.

If the manufacturing and engineering departments disagree over which specification should be adopted, it might be useful for you in engineering to simply accept manufacturing's proposal. Admitting that someone else might know more or be a better judge than you can be humbling-but effective. It also makes your vehement arguments on the next issue more convincing. Building trust between units that must cooperate is an effective goal.

Building trust also works at a personal level. As an engineer, you will put together and evaluate proposals. If you establish a reputation for thorough analysis and reasonable assumptions, you will build trust with decision makers and finance personnel. This increases the credibility of your work.

Introducing a new product or new process may not be cost-effective when considered in isolation. Rather, it may be justified by the knowledge that is acquired. This knowledge may determine whether future products or processes are considered and adopted, and it may also support effectively implementing later alternatives.

Importance of Communication Skills. Engineering schools have asked employers on many occasions, "What needed skills and/or knowledge are our graduates missing?" The overwhelming reply is, "They need better communication skills and the ability to work in groups or teams." The accrediting agency for engineering programs ensures that engineering graduates will have had courses in both written and oral communication. Most courses in the latter emphasize speaking, not listening; thus, Exhibit 1.5 emphasizes listening skills.

EXHIBIT 1.5 The skills of active listening
If the assignment is unclear or incomplete, do you ask your boss or professor questions to clarify the assignment? (Yes)

Do you: (1) state what the objectives or alternatives are, and ask if you are correct; or (2) do you listen after you ask questions to elicit others' views of objectives and alternatives? (2 is better.)

Suppose colleagues disagree with you on the objective, on an alternative's performance, or on the viewpoint you should adopt. Can you restate their viewpoint in your own words to their satisfaction? (Yes)

In the middle of your presentation to the board of directors, someone asks a question. Do you: (1) ignore it, (2) label it as stupid, (3) say "I'll get to that," or (4) restate it in your own words before answering it? (4 is best, because it ensures that you are answering the right question and that others heard the question.)

The decision-making process requires that others provide data. You must ask the right questions of the right people and then listen to the answers. The selection and implementation steps depend on your ability to write and to speak (at least before a small group). The audit step depends on your ability to ask the right questions and to listen.

Analysis uses resources of time, people, and money. Action produces results.

Satisficing is
choosing a satisfactory alternative rather than searching for the best alternative.

When engineering economic evaluations are audited, some communication weaknesses are common. These include documenting: (1) which alternatives were considered and rejected, (2) data sources, and (3) assumptions.

Analysis vs. Action. As shown in Exhibit 1.6, instructors and students are often concerned with the quality of analysis. Firms and agencies are concerned with the benefits of action. Once an alternative has been identified as the best, then the cost of delay and further analysis usually exceeds the expected improvement in results.

Often, the best choice is obvious early in the analysis. For instance, a process analysis during the definition stage may identify improved operating procedures that remove the need for capital expenditures. The decision-making process is properly stopped at the first step.

EXHIBIT 1.6 Analysis paralysis vs. the benefits of action

Since results come from implementation and not analysis, sometimes firms and agencies rely on weak data rather than wait for more analysis. This can frustrate engineers who are schooled to seek the best answer. Managers are often rewarded for acting and punished for failing to act.

The emphasis on action over analysis implies that firms often seek satisfactory rather than optimal solutions. This behavior has been termed satisficing. The description of how and why firms and individuals act as they do (including satisficing) was the basis for the 1978 Nobel Prize for Economics to Professor Herbert Simon.

Often, the best solutions place a premium on flexibility to accommodate learning and changed conditions. In this way, current recommendations can be improved as conditions evolve.

Private and Public Politics. The role of interest groups or stakeholders in public decision making is obvious. Individuals, organized special-interest groups, political parties, agencies (city, state, and federal) with competing departments, citizens, and firms
attempt to influence regulations, laws, and policies. Some regulations, laws, and policies mandate engineering projects to reduce pollution. Others fund engineering projects to improve national competitiveness or national security. Still others select buildings, roads, and dams to be built.

Political activity is also common in private firms. Individuals, departments, and divisions have their own agendas. HiTek's departments for new-product engineering and for manufacturing engineering may differ in their solutions for product-quality problems. HiTek's customers, suppliers, production department, and purchasing agents might have still other solutions.

The conflicting interests of all stakeholders emphasize the importance of adopting a systems viewpoint. For a government agency, the system includes all stakeholders. For a private firm, the system is often defined based on the firm's bottom line-both now and as influenced in the future by relationships with employees, vendors, customers, and government agencies.

These conflicting interests also increase the importance of communication skills within the decision-making process. You must communicate to define problems, select objectives, identify alternatives, evaluate consequences, and audit results. You must also convince others to select and to implement.

1.5 Ethics and Decision Making

Business and personal decision-making is guided by ethics. This includes establishing systems of beliefs and moral obligations, defining values and fairness, and determining duty and guidelines for conduct. While the ethical choice is often clear, there are problems that require trade-offs between different ethics-based goals and ethical dilemmas with conflicting moral imperatives. Ethical decision making requires the understanding of problem context, choices, and associated outcomes.

Ethics are so important that professional engineering societies, small and large organizations, and every individual possess ethical codes or standards for conduct. Written professional codes are common in the engineering profession, serving as a reference basis for new engineers and a basis for legal action against engineers who violate the code.

For example, the Code of Ethics of the National Society of Professional Engineers (NSPE) has as its fundamental canon:

Engineers, in the fulfillment of their professional duties, shall:

- Hold paramount the safety, health and welfare of the public.
- Perform services only in areas of their competence.
- Issue public statements only in an objective and truthful manner.
- Act for each employer or client as faithful agents or trustees.
- Avoid deceptive acts.
- Conduct themselves honorably, responsibly, ethically and lawfully so as to enhance the honor, reputation and usefulness of the profession.
In addition, NSPE goes on to describe Rules of Practice and Professional Obligations for its members. Most engineering organizations have similar written standards.

As shown in Exhibit 1.7, there are ethical issues that can arise at every step of the decisionmaking process described in Exhibit 1.3.

EXHIBIT 1.7 Example ethical lapses by decision process step

Decision Process Step	Example Ethical Lapses
1. Define problem	- "Looking the other way" or not recognizing the problem - because of bribes or perhaps fear of retribution for being a whistle-blower
2. Choose objectives	Favoring one group of stakeholders by focusing on their objective for a project
3. Identify alternatives	Leaving legitimate alternatives out of consideration
4. Evaluate consequences	- Considering only monetary consequences when there are other significant consequences
5. Select	Using a short horizon that favors one alternative over another
6. Implement	- Choosing an inferior alternative, one that is unsafe, adds unnecessary cost for the end user, harms the environment, etc.
7. Audit	- Hiding past mistakes

It is useful to describe some of the situations in which ethics are critical for engineering economic analysis.

Gaining Knowledge and Building Trust vs. Favors for Influence. Here are three typical examples:

- The salesman for a supplier of HVAC (heating, ventilating, and air conditioning) equipment invites a mechanical engineer and spouse to come along on the company jet for a users conference at a vacation resort.
- Same salesman and same engineer but for a day of golfing at an exclusive club.
- Same salesman and same engineer but for lunch.

In each case the salesman is trying to "get the order" and there is likely to be some mix of business - discussing specifications - and pleasure. The first case, which has the largest ethical questions, also has the largest business justification since the engineer will meet other users of the products and see displays of the product line. Often, firms and government agencies have strict guidelines that dictate behavior in these situations.

Cost, Quality, and Functionality. One of the most common conflicts in the conceptual and design phase involves the trade-offs among cost, quality, and required functionality. For most modern products, designers make many thousands of decisions that ultimately affect the cost and quality available to the end user.

- A designer in an engineering consulting firm knows that an expensive solution would be very profitable for his firm (and for his bonus). This solution may also provide excellent reliability and require little maintenance cost. Some would argue that it is "gold plated."
- Engineers in a large manufacturing firm know that using lower-quality parts will lower costs so that more customers will find the product to be a "good" value. They also know that the firm's most profitable business is repairs and extended warranties.

The Environment We Live In. Projects for transportation and power generation typically must consider environmental impacts in their design and in deciding whether the project should be done in any form. Who incurs the costs for the project, and who receives the benefits? Many other engineering products are designed to promote recycling, reduce energy usage, and reduce pollution. Ethical issues can be particularly difficult because there are often stakeholders with opposing viewpoints and some of the data may be uncertain and hard to quantify.

Examples of difficult choices include:

- Protecting the habitat of an endangered species versus flood control projects that protect people, animals, and structures.
- Meeting the needs for electrical power where all choices have some negative environmental impacts:
- Hydroelectric - reservoir covers land and habitat
- Coal - underground mining can be dangerous, open pit mining damages habitat, and burning the coal can cause air pollution
- Nuclear - disposal of radioactive waste
- Fuel oil - air pollution and economic dependence
- Wind — visual pollution of wind farms and birds killed by whirling blades
- Standards for pollutants is 1 part per million OK or is 1 part per billion needed?

Safety and Cost. Some of the most common and most difficult ethical dilemmas involve trade-offs between safety and cost. If a product is "too safe," then it will be too expensive, and it will be unused. Also sometimes the cost is incurred by one party, and the risk by another.

- Should the oil platform be designed for the 100 -year, 500 -year, or 1000 -year hurricane?
- Should the auto manufacturer add run-flat tires, stability control, side-cushion airbags, and rear-seat airbags to every car?
- Should this product design go through another month of testing?
- Are stainless steel valves required or is it economically better to more frequently replace valves that are less corrosion resistant?
- Is it safe to launch the Space Shuttle today?

Emerging Issues and "Solutions." Breaches of the law by corporate leaders of Enron, Tyco, and other companies have led to attempts to prevent, limit, and expose financial wrongdoing within firms. This includes the Sarbanes-Oxley Act, which has imposed requirements on firm executives and auditing accounting firms and penalties for violations.

Globalization and ethics are also part of economic decision making. First, different countries and regions differ in ethical expectations. Second, jobs may be moved to another country based on differences in cost, productivity, environmental standards, etc. What may be viewed as a sweat shop from a first-world perspective may be viewed as a wonderful opportunity to support a family from a third-world perspective.

Importance of Ethics in Engineering and Engineering Economy. There are many examples in which engineers and firms tried to act ethically, but a mistake was madethe data was wrong, the design was changed, or the operating environment was not as expected. In other cases, a choice was made between expediency (profit) and ethics. The firm and management are driven by the need to make a profit, and they expect the engineer to identify circumstances in which safety will be compromised.

Ethics in engineering economic analysis focuses on how well and how honestly the decision-making process is conducted-the data, method of analysis, recommendations, and follow-up. The first step in avoiding problems is to recognize that ethical issues exist and to make them an explicit part of your decision-making process.

As a student you've been part of discussions about cheating on exams, plagiarism on written reports, violating university drinking and drug use policies, accepting one job while continuing to interview for others, and selling student sports tickets to nonstudents. You've made your own decisions about your behavior, and you've established patterns of behavior.

While people can and do decide to change, most of the time we continue our patterns of behavior. While engineering professors care about ethics in the classroom, a much larger concern is your work and personal behavior after graduation.

When recent engineering graduates are asked, "What is the most important thing you want from your supervisor?" The most common response is mentoring and opportunities to learn and progress. When employees with $5,15,25$, or more years of experience are asked the same question the most common response at all experience levels is integrity. This is what your subordinates, peers, and superiors will expect and value the most from you. Integrity is the foundation for long-term career success.

1.6 The Role of Engineering Economy

Problems can be divided into three broad categories with respect to engineering economy:

- Too small to merit applying engineering economy.
- Solution determined by engineering economy.
- So big that engineering economy is only one factor.

The general principle is that the scale of the analysis needs to match the scale of the problem. Only if the dollars per year are small and the time is short can the time value of money be ignored. Spreadsheets are reducing the number of problems that are too small to warrant engineering economy. When a simple model can be built in 5 minutes or less, it is hard to justify skipping economic analysis. When new data can be substituted in seconds, economic analysis is easy to justify.

Problem Too Small to Merit Engineering Economy. When you are grocery shopping and considering two package sizes, the time value of money is not significant. Instead, the money value of time, your available cash, or your storage space dominates the decision making. You simply compare unit prices and consider how fast the package will be used.

Similarly, to focus on designing a $\$ 150,000$ storage tank, an engineer may select the first acceptable alternative for a $\$ 10,000$ pump. If the number of hours for engineering design and economic analysis is limited, they should be expended where the payoff is highest.

The money value of time may dominate decision making.

Many engineering design problems focus on which design is more cost effective.

Time Period Too Short to Merit Engineering Economy. Section 1.7 considers problems in which the time value of money is not significant because all consequences occur in a short time interval. Choosing between shipping by express air, regular air, or truck is one example. Deciding whether it is better to pay more for faster delivery does not require considering the time value of money. (The money value of time is dominant.)

Engineering Economy Dominates Decision Making. The solution to many problems is dominated by money. If money is to be spent or received over a year or more, then engineering economy is required to evaluate the alternatives. If money is dominant, then engineering economy should dominate the decision-making process.

A very large number of engineering design problems fall in this category. Two designs achieve the same end, but which is more cost-effective?

Engineering Economy Is One Factor in Decision Making. One of the decisionmaking principles was that all consequences must be considered. In some problems, all three types of criteria are important: (1) the time value of money, (2) other quantifiables, and (3) irreducibles.

At the level of an engineer, the first job after graduation would be an example. One offer might represent less money initially but more growth potential, or a government job might offer a better pension-in 30 years. This comparison requires that the time value of money be considered. The distance to friends and family could be measured in time or kilometers, but it is hard to convert that to money. Finally, the attractiveness of the job's locale-the night life, the skiing, and the climate-are irreducibles.

Similar details exist for a firm evaluating a new product for a new market and for a government agency evaluating a new road, school, dam, super collider, or space station. Chapter 19 details how multiattribute or multiobjective methods can be used to address these more complicated problems.

1.7 Operational Economics

For some problems, the time value of money is simply not an issue. As examples, consider the following problems.

- Sending a document by FedEx costs about 30 times as much as a first-class stamp, but if the bid is due by 5 PM tomorrow, . . .
- The closest airport is 160 miles from the project site. You are renting a car for a 2-day visit. Which is better: (1) unlimited mileage at $\$ 35.95 /$ day or (2) $\$ 25.95 /$ day and $25 \phi /$ mile with 100 free miles/day?

These dollar amounts are small, the problems simple, and the answers apparent. Even so, they illustrate a common problem in engineering. Which operational choice will be more cost-effective?

Before developing more complex examples, there are some definitions and concepts that will be useful. These definitions describe a variety of ways of categorizing costs.

- Recurring vs. nonrecurring costs

Recurring \equiv more than once (usually every period)
Nonrecurring \equiv one-time

- Life-cycle costs (subject of rest of book)

Includes all costs for purchase, use, repair, and sale

- Fixed vs. variable costs

Fixed \equiv all-or-nothing cost
Variable \equiv depends on volume or use

- Average vs. marginal vs. incremental cost

Average \equiv total cost/\# of units
Marginal \equiv cost for one more unit
Incremental \equiv cost for specified number of incremental units

- Direct vs. indirect vs. overhead costs (more detail in Appendix A)

Direct \equiv costs for labor or material for each unit
Indirect \equiv costs for electricity, insurance, and maintenance
Overhead \equiv allocated cost for sales, administration, and management
Example 1.5 illustrates that the most difficult question can be deciding which costs should be compared to choose between alternatives. Usually, the choice is between incremental and marginal costs and, more rarely, average costs. The key question is what costs (and revenues) change with the choice between these alternatives. Example 1.5 also illustrates the definitions of direct, indirect, and overhead costs.

EXAMPLE 1.5 Overtime vs. a Second Shift

Demand is so high for ElectroToy's newest product that either overtime or a second production shift is needed. The labor rate is $\$ 13.85 /$ hour for a normal shift. There is a 50% premium for overtime and a 10% shift differential. Productivity is 5% lower for overtime, and there is a 4-hour
minimum for a second shift. Sick leave, retirement, vacation, and insurance benefits add 19% to the direct hourly cost.

For this product, 60 units per hour are produced on the first shift. Each unit has $\$ 1.25$ in material and $\$ 4.50$ in purchased parts. The indirect cost for each is $\$ 2.12$ for other assembly line costs. The firm's administrative, sales, and managerial costs are charged at 35% of total labor cost.

Mario has been asked to recommend the most cost-effective way to produce an extra 120 units per week beyond the 480 produced on the regular shift. Based on his experience and talking with others, he concludes the following:

1. The cost for the first 480 and the average cost of the 600 per week are irrelevant. What matters is the marginal cost for another unit.
2. The direct labor cost for each unit produced on the second shift will be $30.2 \not \subset(=\$ 13.85$ $\times 1.1 \times 1.19 / 60$). This includes the shift differential and the cost for employee benefits.
3. The lower productivity of overtime hours decreases output to 57 per hour $(=60 \times .95)$. Thus, producing 60 takes 1.053 hours, which is the inverse of .95 . Thus, the direct labor cost for overtime units is $43.4 ¢(=\$ 13.85 \times 1.5 \times 1.19 \times 1.053 / 60)$.
4. The $\$ 5.75$ ($=\$ 1.25+\$ 4.50$) in material and purchased-parts cost can be ignored, since it is the same for both alternatives.
5. The indirect assembly line costs are determined by how long the assembly line runs. Thus, the unit cost is $\$ 2.12$ for the second shift and $\$ 2.232$ ($=\$ 2.12 / .95$) for overtime.
6. The overhead costs of 35% can be ignored. These costs are allocated based on labor costs, but they will not change between alternatives.

Based on this analysis, Mario concludes that the second shift will save a marginal cost of $29.6 \notin$ per unit $(=43.4 \varnothing+\$ 2.232-30.2 \notin-\$ 2.12)$. Thus, he recommends using a second shift. Is this conclusion correct?

SOLUTION

Mario's analysis has one error and two weaknesses.

1. The error is that he did not allow for the second shift's minimum length of 4 hours. This introduces a fixed cost for the incremental 120 units. Because of this, Mario should have computed the cost for the incremental 120 units. See below.
2. It is likely that some of the benefit costs (19%) do not increase with overtime. For example, vacation time usually accrues at a fixed number of weeks (2 or 3) per year. Similarly, most insurance and sick benefits are fixed per year. If retirement benefits are based on annual pay, then overtime would increase the firm's cost. Mario's firm matches retirement contributions up to a maximum of 8%.
3. Hiring individuals for a second shift will increase administrative and managerial expenses. The detailed computation must include the cost for advertising, interviews, initial training, and time to reach full productivity. If the second shift is temporary, then shutdown or termination costs must be included. These costs are estimated at 25% of total labor costs.

The correct incremental cost for overtime includes the 50% premium, the lower productivity, and the 8% increase in retirement expenses.

$$
\text { cost }_{\text {overtime }}=120[\$ 13.85 / 60 \times 1.5 \times 1.08 \times 1.053+\$ 2.232]=\$ 315.09 \text { or } \$ 2.63 / \text { unit }
$$

For the second shift, the incremental cost is for 4 hours of labor and the indirect costs of the assembly line. This includes the 10% shift premium, the 19% benefit expense, and the 25% increase in administrative and managerial expenses.

$$
\operatorname{cost}_{2 \text { nd }} \text { shift }=4 \times \$ 13.85 \times 1.1 \times 1.19 \times 1.25+120 \times \$ 2.12=\$ 345.05 \text { or } \$ 2.88 / \text { unit. }
$$

Thus, for shifts of about 2 hours, overtime is cheaper. However, the second shift will be more cost effective as the 4-hour minimum is approached. Note that longer overtime shifts reduce productivity by more than 5%.

1.8 Summary

Engineering economy considers the time value of money to decide which alternatives to implement. Examples from personal, corporate, and governmental situations show the broad applicability of engineering economy.

Correct economic analysis satisfies several principles: (1) state consequences in a common measure, (2) consider only differences between alternatives (ignore sunk costs), (3) make separable decisions separately, (4) adopt a systems viewpoint, and (5) use a common planning horizon.

Correct economic analysis includes the following steps in the decision-making process: (1) define the problem, (2) choose the objective, (3) identify the alternatives, (4) evaluate their consequences, (5) select, (6) implement, and (7) audit.

In reality, these steps must accommodate the environment in which decisions are made. (1) The decision-making process often includes parallel activities and feedback loops with repeated steps. (2) The modeling process is iterative, in which the data are refined and the evaluation recalculated. This is one of the reasons for using spreadsheets. (3) Each decision is only one of many to be made. (4) Communication skills are essential. (5) Organizations emphasize action rather than analysis. (6) Politics are important in both public- and private-sector decision making.

One of the gravest responsibilities of an engineer is protecting the safety of the public, clients, and/or employees. In addition, the engineer can be responsible for the economic performance of projects and products on which bonuses and jobs depend. Not surprisingly, in this environment one of the most valued personal characteristics is integrity.

Problems can be categorized as too small to justify engineering economic analysis, as likely to be dominated by engineering economy, and as large enough that engineering economy is one of several factors to be considered. The use of spreadsheets is reducing the number of problems in the "too small" category.

REFERENCES

Ackoff, Russell L., The Art of Problem Solving: Accompanied by Ackoff's Fables, 1978, WileyInterscience.
de Bono, Edward, Six Thinking Hats: Revised \& Updated, 1999, Little Brown.
Lesser, Arthur Jr., "Engineering Economy in the United States in Retrospect—An Analysis," The Engineering Economist, Volume 14, Number 2, Winter 1969, pp. 109-116.
Hammond, John S., Ralph L. Keeney, and Howard Raiffa, Smart Choices: A Practical Guide to Making Better Decisions, 2002, Broadway.
Horowitz, Ira, "Engineering Economy: An Economist's Perspective," AIIE Transactions, Volume 8, Number 4, December 1976, pp. 430-437 and "Comments on . . ." Richard Bernhard, pp. 438-442.
Stewart, Robert B., Fundamentals of Value Methodology, 2005, Xlibris.
Wellington, Arthur M., The Economic Theory of the Location of Railways, 1887, Wiley.

Problems

1.1 In which of the following problems do you need engineering economy?
(a) To compare a 4-year and a 5-year car loan.
(b) To decide whether a new or a used car is cheaper.
(c) To decide whether to pay your car insurance quarterly or annually.
1.2 An engineer for HiTek Manufacturing will use engineering economy for which comparisons?
(a) A robot's and a person's cost per part produced.
(b) Overhauling a forklift or buying a new one.
(c) Leasing or buying a tractor trailer.
(d) Buying a new drill press to make a part or buying the part.
1.3 Rank the following from most to least suitable for engineering economic analysis? Why?
(a) The purchase of a new automobile.
(b) The selection of a major in college.
(c) The lease vs. buy decision for a new milling machine.
(d) The decision of whether to purchase collision insurance for your automobile.
1.4 Using Exhibit 1.2, analyze your choice of college or university.
1.5 Analyze (audit) a major decision that you have made in the last year. Which steps in Exhibit 1.3 did you include? Which did you skip? Did you make a mistake in any step?
1.6 Analyze (audit) your choice of an academic major using the decision-making model of Exhibit 1.3.
1.7 Apply the steps of the decision-making process to your situation as you decide what to do after graduation.
1.8 Identify the stakeholders for a public project at the city, state, or national level.
1.9 George has just finished the cost analysis of a brass pump with and without an interior coating. The brass pump will last 3 years, but if an interior coating is applied, less energy will be needed for pumping. The interior coating costs $\$ 300$, and the energy savings is $\$ 120$ per year. George claims that the coating will save $\$ 60$. Is George's work correct? If not, what has George done wrong?
1.10 The brass pump of Problem 1.9 would cost $\$ 5000$ installed. Instead, George could use a stainless steel pump that has been sitting in the maintenance shop for a year. The pump should last 3 more years. The pump cost $\$ 15,000$, but it was used for 2 years before being put on the shelf. The accountants say the pump is worth $\$ 6000$. The maintenance supervisor says that it will cost an extra $\$ 500$ to reconfigure the pump for the new use and that he could sell it used (as is) for $\$ 3000$. How much would George save or spend by using the stainless steel pump?
1.11 You had great intentions last January when you purchased a $\$ 450$ piece of fitness equipment. However,
your use averages only one time per week. It is December, and you can sell it for $\$ 300$ (to someone with a New Year's resolution) and rely on the university gym until you graduate at the end of the semester. If you sell it in May, you will only get $\$ 100$. If you keep it, you'll have to pay $\$ 25$ to move it to the city of your new job (where you interned last summer). There is no convenient gym at the new location. What costs and irreducibles are relevant to your decision making? What decision do you recommend?
1.12 You are reevaluating the electrical-generator choice that was made last year-when your boss had your job. The promised cost savings have not materialized because the generator is too small. You have identified two alternatives. Alternative A is replacing the generator with one that is the right size and selling the old one. That will cost $\$ 50 \mathrm{~K}$. Alternative B is buying a small generator to use in addition to the one purchased last year. This will cost $\$ 60 \mathrm{~K}$. The twogenerator solution has slightly higher maintenance costs, but it is more flexible and reliable. What criteria (including irreducibles) should you use? Which alternative would you recommend and why?
1.13 Give an example in which you, your firm, or your city has made an incorrect decision because of sunk costs.
1.14 Apply the steps of the decision-making process to your situation as you decide what to do after graduation.
1.15 Suppose you are an engineer working in a private engineering firm and you are asked to sign documents verifying information that you believe is not true. You like your work, your colleagues in the firm, and your family depends on your income. What criteria can you use to guide your decision regarding this issue? Contributed by D.P. Loucks, Cornell University
1.16 Find the ethics code for the professional society of your major.
(a) Summarize its key points.
(b) What are its similarities and differences in comparision to NSPE's ethics code?
1.17 Analyze what went wrong or right with respect to ethics at the assigned stage(s) of the decision-making process. Use a personal example or a published source.
(a) Define problem.
(b) Choose objective(s).
(c) Identify alternatives.
(d) Evaluate consequences.
(e) Select.
(f) Implement.
(g) Audit.
1.18 Engineers have skills, knowledge, and perspectives that can improve public decision making. For example, serving on municipal assemblies and school boards involves decisions on roads and schools. Often the public role is a part-time one, and engineers who accept such assignments will also have full-time jobs as employees or owners of engineering firms.
(a) What are some of the ethical issues that can arise from conflicts between the public- and privatesector roles?
(b) What guidelines for process or outcomes are there in your hometown?
(c) Summarize and analyze an example from the news.
1.19 Increasing population and congestion often are addressed through road improvement projects. These may pit the interests of homeowners and business owners in the project area against the interests of people traveling through the improvement project.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes exist to help address the ethical issues of your example?
1.20 Economic development and redevelopment often require significant acreage that is assembled by acquiring smaller parcels. Sometimes this is done through simple purchase, but the property of an "unwilling seller" can be acquired through the process of eminent domain.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes exist to help address the ethical issues in your city or state?
1.21 State governments use a variety of advisory and regulatory bodies. Example responsibilities include oversight of professional engineering licensing, pricing and operation of regulated utilities, etc. Often the public role is a part-time one, and engineers who accept such assignments will also have full-time jobs as employees or owners of engineering firms.
(a) What are some of the ethical issues that can arise from conflicts between the public- and privatesector roles?
(b) What guidelines for process or outcomes are there in your home state?
(c) Summarize and analyze an example from the news.
1.22 Many engineers work in state governments, and some are in high profile roles as legislators, department commissioners, etc. Many of these individuals move between jobs in the private- and public-sectors.
(a) What are some of the ethical issues that can arise as individuals shift between the public- and private-sector roles?
(b) What guidelines for process or outcomes are there in your home state?
(c) Summarize and analyze an example from the news.
1.23 In the U.S. regulation of payment for overtime hours is done at the state and federal levels. Because most engineering work is accomplished through projects, it is common for engineers to be asked or required to work overtime as projects near deadlines. Sometimes the overtime is paid at time and a half, sometimes as straight time; and sometimes the engineer's salary is treated as a constant even when overtime occurs. In a particular firm, engineering interns, engineers, and partners may be treated the same or differently.
(a) What are some of the legal and ethical issues that can arise?
(b) What is the law or regulation in your state or home state?
(c) Summarize and analyze an example firm's policies or data on how common the problem is.
1.24 At the federal government level, the economic consequences of decisions can be very large. Firms hire lobbyists, legislators may focus on their constituents, and advocacy organizations promote their own agendas. In addition, sometimes some of the players are willing to be unethical.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes are there for the agency or legislative body involved in your example?
1.25 At both state and federal levels, legislators can be involved in "pork barrel" funding of capital projects. These projects may even bypass the normal economic evaluation.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes are there for the agency or legislative body involved in your example?
1.26 At the international level, a common ethics issue important to engineering and project justification is that of environmental regulation. Different nations have different environmental standards, and often a project or product could be built in either location.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes exist to help address the ethical issues of your example?
1.27 At the international level, a common ethics issue important to engineering and project justification is that of worker health and safety. Different nations have different standards, and often a project or product could be built in either location.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes exist to help address the ethical issues of your example?
1.28 At the international level, "sustainable development" is a common ethics issue for which engineering decisions are critical.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes exist to help address the ethical issues of your example?
1.29 At the international level, some have questioned whether the U.S. ban on bribery is practical or appropriate. In some countries government workers are very poorly paid and can support their families only by accepting money to "grease" a process.
(a) What are some of the ethical issues that can arise?
(b) Summarize and analyze an example from the news.
(c) What guidelines for process or outcomes exist to help address the ethical issues of your example?
1.30 For a road improvement project (such as in Problem 1.19), identify the major costs and benefits. Which are economic consequences, which are other quantifiable consequences, and which are irreducible consequences?
1.31 For the project in Problem 1.8, identify the major costs and benefits. Which can be measured in monetary terms, which can be quantified, and which are irreducibles?
1.32 You must fly to another city for a Friday meeting. If you stay until Sunday morning, your ticket will be $\$ 200$ rather than $\$ 800$. Hotel costs are $\$ 100$ per night. Compare the economics with reasonable assumptions for meal expenses. What irreducibles may dominate the decision?
1.33 Electricity is sold for $\$.12$ per kilowatt-hour (kWh) for the first 10,000 units each month and $\$.09 / \mathrm{kWh}$ for all remaining units. If a firm uses $14,000 \mathrm{kWh} /$ month, what is its average and marginal cost?
(Answer: average cost is $\$.111 / \mathrm{kWh}$.)
1.34 A vendor discounts prices if the quantity is larger. The first 1000 parts are $\$ 43$ each. The next 2000 are $\$ 41$ each. All parts over 3000 cost $\$ 40$ each. What are the average cost and marginal cost per part for the following quantities?
(a) 500 .
(b) 1500 .
(c) 2500 .
(d) 3500 .
1.35 A new piece of equipment comes with 100 free service hours over the first year. Additional hours cost $\$ 100$ per hour. What are the average and marginal costs per hour for the following quantities?
(a) 75 .
(b) 125 .
(c) 250 .
1.36 An assembly line can produce 60 units per hour. The line's hourly cost is $\$ 3600$ on straight time (the first 8 hours). Workers are guaranteed a minimum of 6 hours. There is a 50% premium for overtime, and productivity for overtime drops by 5%. What are the average and marginal costs per unit for the following daily quantities?
(a) 300 .
(b) 400 .
(c) 500 .
(d) 600 .

Minicases

1.37 Describe ethical questions that may arise for an engineer at each stage of the decision-making process.
(a) For a problem that you choose.
(b) For a situation that your instructor chooses.
(c) In general.
1.38 Problems 1.18-1.23 can also be classified and assigned as minicases.
1.39 In the 1970s the Ford Motor Company sold its subcompact Pinto model with known design defects. In particular, the gas tank's design and location led to rupture, leaks, and explosion in low-speed rearimpact collisions. Fifty-nine people burned to death in Pinto accidents. Ford had conducted a cost-benefit analysis weighing the cost of fixing the defects (\$11 per vehicle) versus their potential liability for lawsuits on behalf of accident victims, where Ford placed the value of a human life at $\$ 200,000$. Ford eventually recalled 1.4 million Pintos to fix the gas tank problem at a total cost of $\$ 30$ to $\$ 40$ million. In addition the company ultimately paid out millions more in liability settlements and incurred substantial damage to its reputation.
(a) Critique Ford's actions from the perspective of the NSPE Code of Ethics.
(b) One well-known ethical theory, utilitarianism, suggests that an act is ethically justified if it results in the "greatest good for the greatest number" when all relevant stakeholders are considered. Did Ford's cost-benefit analysis validly apply this theory?
(c) What should engineers do when the product they are designing has a known safety defect with an inexpensive remedy?
Contributed by Joseph R. Herkert, Arizona State University.
1.40 Pick an intersection of two roads that satisfies two conditions. First, the side street has a stop sign and traffic on the 4-lane arterial street travels without stopping. Second, traffic on the side street has grown to the point at which traffic control may be upgraded from a stop sign in that direction. Provide guidance for a new engineer for each step of the decisionmaking process. For example, what criteria and what alternatives should be used?
1.41 Engineering and the need for engineering economy has been heavily affected by federal legislation. Examples include the Apollo program, the interstate highway system, the Clean Air Act, and the Americans with Disabilities Act. What legislation or programs may have major impacts within the next 3 to 5 years? How can the size of that impact be estimated? Which engineering specialties will see demand increase or decrease?
1.42 A team of engineering students is traveling to the regional student design competition. Develop the data, analyze the problem, and recommend a choice between travel by (1) private car, (2) university vehicle, and (3) a rental vehicle.

Cases

The following cases from Cases in Engineering Economy, $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 1 New Office Equipment

Student develops requirements with little given data for new copier machines. Organizational thinking required.

Case 2 Budgeting Issues

Strategies for a group's operating budget request. One focus is ethics.

CHAPTER

The Time Value of Money

- THE SITUATION AND THE SOLUTION

A dollar today, a dollar a year from now, and a dollar 10 years from now differ in value. To evaluate engineering projects, we must combine these dollars at different times. How do we account for the time value of money?

The solution is to use compound interest to validly measure economic worth and cost.

- CHAPTER ObJECTIVES

After you have read and studied these sections, you should be able to:
SECTION 2.1 Define the interest rate for calculating the time value of money.
SECTION 2.2 Contrast simple and compound interest.
SECTION 2.3 Draw a cash flow diagram.
SECTION 2.4 Apply the concept of equivalence to cash flow diagrams.
SECTION 2.5 Explain what equivalence does not include.
SECTION 2.6 Calculate nominal and effective interest rates.

- KEY WORDS AND CONCEPTS

Interest Return on capital.
Capital Invested money and resources.
Cash flow diagram Pictorial description of when dollars are received and spent.
Equivalence When different cash flows at different times are equal in economic value at a given interest rate.
Present worth (PW) A time-0 cash flow that is equivalent to one or more later cash flows. Nominal interest rate Rate per year that must be compounded to calculate the effective interest rate.
Effective interest rate True annual interest rate that can be compared with other interest rates.

2.1 What Is Interest?

Interest is what you pay the bank for your car loan or your unpaid credit card balance. Interest is what the bank pays you for the money in your savings account. Interest is a rental fee for money. Interest is a fee paid or a fee earned for the use of money.

Interest is the return on capital.

Engineering economy generalizes this definition. Interest is the return on capital. Capital is the invested money and resources. Whoever owns the capital should expect a return on it from whomever uses it. For example, if a firm owns the capital and invests it in a project, then the project should return that capital plus interest as cost savings or added revenues.

When you borrow from the bank, you pay interest. When you loan money to the bank by depositing it, the bank pays you interest. When a firm invests in a project, that project should earn a return on the capital invested.

This interest is typically expressed as an annual interest rate. That rate equals the ratio of the interest amount and the capital amount. For example, if $\$ 100$ is borrowed for a year and $\$ 5$ in interest is paid at the year's end, then the interest rate is $5 \%(=\$ 5 / \$ 100)$. If the amount borrowed and the amount of interest paid are doubled, then the interest rate is still 5%, since $\$ 10 / \$ 200=5 \%$.

When the bank owns the capital, a loan document will state the interest rate. When the owner of the capital buys shares in a firm, the interest is earned through dividends and increasing share values. The return to the shareholder is less certain, but it is still the earning power of money. It is still interest.

Similarly, when a firm or an individual invests money or resources in an engineering project, that project must earn a return on the invested capital. This return is earned by increasing future revenues and/or by decreasing future costs, as shown in Example 2.1. Interest is used to calculate the time value of money, and it is crucial to the practice of engineering. A history of engineering economy shows the parallel development of engineering and engineering economy [Lesser, 1969].

EXAMPLE 2.1 Interest Is Needed to Evaluate Engineering Projects

The engineering group of Baker Designs must decide whether to spend $\$ 90 \mathrm{~K}$ (K for thousands) on a new project. This project will cost $\$ 5 \mathrm{~K}$ per year for operations, and it will increase revenues by $\$ 20 \mathrm{~K}$ annually. Both the costs and the revenues will continue for 10 years. Should the project be done?

SOLUTION

The project costs $\$ 140 \mathrm{~K}(=\$ 90 \mathrm{~K}+10 \times \$ 5 \mathrm{~K})$ and earns $\$ 200 \mathrm{~K}(=10 \times \$ 20 \mathrm{~K})$ over the 10 years. To decide which is worth more, Baker Designs must include the time value of money. Initially, $\$ 90 \mathrm{~K}$ is spent immediately, and the revenues come later-as much as 10 years later. An interest rate must be used to compare the costs and the revenues. Does the $\$ 90 \mathrm{~K}$ earn enough interest if it is invested in this project?

Interest Rates Vary. The interest rate that is appropriate depends on many factors, including risks, security, economic conditions, regulations, and time frame.

For a lender, an unsecured loan made to a person is riskier than a similar loan made to Microsoft, and a mortgage secured by a house is less risky than a student loan secured only by a promise to pay. A loan made in a South American currency has a higher inflation risk
than one made in U.S. dollars. Banks and credit unions are regulated by different agencies and may have different limits on the interest rates they can charge and pay. A loan to be repaid over 20 years is more vulnerable to inflation than one to be repaid over 5 years.

Some example rates are included in Exhibit 2.1. In principle, higher risks are matched with higher rates. Thus, the interest rate on an adjustable-rate mortgage is initially lower than the rate on a fixed-rate mortgage. The risk to the bank is lower with adjustable rates, since the bank can raise the interest rate to match inflation and interest-rate increases. These market interest rates change over time as inflation rates change and the relative demand for and supply of borrowed money changes. These changes can be rapid. For example, the typical rate for adjustable-rate mortgages changed from 4.2% in December 1993 to 7\% in May 1994.

EXHIBIT 2.1 Example interest rates

August $\mathbf{1 9 9 1}$	March $\mathbf{2 0 0 2}$	Feb $\mathbf{2 0 1 0}$	Type of Investment or Loan
6.75%	4.07	$\mathbf{1 . 2 0 \%}$	Series EE savings bond
5.25	3.76	.50	Daily passbook savings account
6.5	4.92	1.65	1-Year certificate of deposit
8.5	4.75	3.25	Prime rate (loans to corporations)
7.25	4.84	4.25	Adjustable-rate mortgage
9.0	6.38	4.95	Fixed-rate mortgage
10.75	7.07	6.43	New car loan
12.25	7.72	6.99	Used car loan
$16-18$	14	13.50	Credit card account

The interest rates in Exhibit 2.1 are affected by the risk of future inflation, and they include an allowance for current inflation. For example, if inflation is 2% and a savings account pays 3% interest, then the true increase in buying power by depositing the money in the account is only 1% per year.

The interest rates shown in Exhibit 2.1 include an inflation allowance, which is often true for cost of capital measures (see Chapter 11). Thus, considering the inflation rate would lead to a lower true interest rate for the time value of money. Chapter 15 details how inflation can

Until Chapter 15, assume that the interest rate is the time value of money over and above inflation. Assume costs are stated in current monetary terms.

Usually assume the interest rate is constant. be included in economic analysis and why the following common practice is appropriate.

In most engineering economic analyses, the interest rate is the true time value of money-that is, over and above inflation. Similarly, most costs are stated in current monetary terms. For example, for a 20 -year problem, electricity costs might be stated as $\$ 2500$ per year and the interest rate as a real rate of 8%. These are compatible assumptions, and they are the easiest to use.

The interest rate is assumed to be the rate over inflation, and it is usually assumed to be constant over time. One factor in fluctuating interest rates over time (such as those shown in Exhibit 2.1) is fluctuations in current and anticipated inflation levels.

Engineering projects represent different risks and potential returns. Drilling an oil well, developing a new computer chip, and building a new municipal transit system are
relatively risky. Opening a new gas station, redesigning a production line, and building a new elementary school are less risky. Firms and agencies can and do use different interest rates to evaluate projects in different classes of risk. Riskier projects are often expected to generate a higher rate of return.

From now through Chapter 17, a single interest rate is assumed for money's time value. Chapter 11 discusses how to find this rate, but until then, the interest rate will be given in each example or problem.

2.2 Simple vs. Compound Interest

Compound, not simple, interest is used in engineering economy. The following terms will be used throughout the text. For this introductory discussion, we assume that time is measured in periods of a year. (In Section 2.6, this assumption is relaxed.)
$i \equiv$ interest rate per year
$N \equiv$ number of years
$P \equiv$ initial deposit
$F \equiv$ future value after N years
Simple Interest. With simple interest, the interest calculated for years $2,3, \ldots$ is based on the initial deposit. No interest is computed on the accrued interest. In Equation 2.1, the interest rate is simply multiplied by the number of years. Simple interest should not be used in engineering economy problems. Its principal use is in short-term loans, but compound interest is the norm even then.

$$
\begin{equation*}
F=P(1+N i) \tag{2.1}
\end{equation*}
$$

Compound Interest. The standard assumption is that interest is computed on the current balance, which includes accrued interest that has not yet been paid. Savings accounts, loans, credit cards, and engineering economy rely on this assumption. In Equation 2.2, the number of years is a power of the factor that includes the interest rate.

$$
\begin{equation*}
F=P(1+i)^{N} \tag{2.2}
\end{equation*}
$$

This formula is developed in Exhibit 2.23, then its use is illustrated in Examples 2.2 and 2.3. As shown in these examples, the difference between simple and compound interest increases as the interest rate and/or the number of years increases.

EXHIBIT 2.2 Development of Equation 2.2

Period	Beginning-of-Period Value	End-of-Period Value
1	P	$P(1+i)$
2	$P(1+i)$	$P(1+i)(1+i)$
3	$P(1+i)^{2}$	$P(1+i)^{2}(1+i)$
\ldots	\cdots	\cdots
N	$P(1+i)^{N-1}$	$P(1+i)^{N}$

If $\$ 100$ is deposited in a savings account, how much is in the account at the end of each year for 20 years if the interest is deposited? The account earns 5\% interest compounded annually.

SOLUTION

The easiest way to compute each end-of-year value is to simply multiply the previous year's value by 1.05 (which is $1+i$). Exhibit 2.3 includes the tabular results and a graph that shows the geometric nature of compound interest. Note that if simple interest were used, it would result in a linear increase in the amount in the bank.

Compound interest at 5\% for 20 years

Year	\boldsymbol{F}	Year	\boldsymbol{F}
0	$\$ 100$	11	171.05
1	105.00	12	179.60
2	110.25	13	188.58
3	115.76	14	198.01
4	121.55	15	207.91
5	127.63	16	218.31
6	134.01	17	229.23
7	140.71	18	240.69
8	147.75	19	252.72
9	155.14	20	265.36
10	162.90		

How large is the difference between future values with simple and compound interest if $N=20$ years, $i=5 \%$, and $P=\$ 24$? Suppose this is the $\$ 24$ Peter Minuit paid for the rights to Manhattan Island in 1626; what are the corresponding values in 2006?

SOLUTION

$$
\begin{array}{lll}
F_{\text {simple-20 }} & =\$ 24(1+20 \times .05) & =\$ 48 \\
F_{\text {compound }-20} & =\$ 24 \times 1.05^{20} & =\$ 63.68
\end{array}
$$

Thus, the compounding increases the accrued interest by $\$ 15.68$. In percentage terms, the compound interest that totals $\$ 39.68$ is 65.3% larger than the $\$ 24$ that accrues with simple interest.

From 1626 until 2006 is 380 years, and the power of compounding is such that compound interest has an F that is over 5.6 million times larger.

$$
\begin{array}{rll}
F_{\text {simple }-380} & =\$ 24(1+380 \times .05) & =\$ 480 \\
F_{\text {compound }-380} & =\$ 24 \times 1.05^{380} & \\
=\$ 2,704,860,602
\end{array}
$$

2.3 Cash Flow Diagrams

Cash flow diagrams show the timing and amount of expenses and revenues for engineering projects.

The picture of how much money is spent or received and when is a cash flow diagram. This diagram summarizes an engineering project's economic aspects.

As shown in Exhibit 2.4, the cash flow diagram's horizontal axis represents time. The vertical axis represents dollars, and arrows show the timing and amount of receipts and expenses. Positive cash flows are receipts (those arrows point up). Negative cash flows are expenses (those arrows point down).

EXHIBIT 2.4 Cash flow diagrams for bank and depositor

Exhibit 2.4 also shows that in some cases, the diagram can simply be reverseddepending on which viewpoint is taken. The depositor and the bank have opposite perspectives on cash in and cash out for the initial deposit and the final withdrawal.

More complex cash flow diagrams involve more than two parties. For example, labor expenses are paid to employees, machine purchases to a manufacturer, and power purchases to a utility company, while revenues are received from customers. These complex diagrams are not mirror images, because each party sees a different set of cash flows.

Categories of Cash Flows. The expenses and receipts due to engineering projects usually fall into one of the following categories. Costs and expenses are drawn as cash outflows (negative arrows), and receipts or benefits are drawn as cash inflows (positive arrows).

- First cost \equiv expense to build or to buy and install
- Operations and maintenance $(\mathrm{O} \& \mathrm{M}) \equiv$ annual expense, which often includes electricity, labor, minor repairs, etc.
- Salvage value \equiv receipt at project termination for sale or transfer of the equipment (can be a salvage cost)
- Revenues \equiv annual receipts due to sale of products or services
- Overhaul \equiv major capital expenditure that occurs during the asset's life
- Prepaid expenses \equiv annual expenses, such as leases and insurance payments, that must be paid in advance

Individual projects will often have specific categories of costs, revenues, or user benefits that will be added as needed. For example, annual O\&M expenses on an assembly line might be divided into direct labor, power, and other. Similarly, a public-sector dam project might have its annual benefits (revenues) divided into flood control, agricultural irrigation, and recreation.

Timing of Cash Flows. For money's time value, there has to be an assumption for when cash flows occur. Cash flows could be assumed to occur at the beginning, middle, or end of the year, or they could be distributed throughout the year. In fact, tables of engineering economy factors have been constructed for all of these assumptions. This text and normal practice assume end-of-period timing for most cash flows.

The assumption that cash flows occur at an instant in time is valid for loans, where this assumption originated. For engineering projects, this is clearly an approximation since costs and benefits are distributed over time. This simplification has always been the usual practice in engineering economy. This assumption is also made by the spreadsheet functions for economic analysis. Thus, virtually every economic analysis now assumes that cash flows occur at an instant in time.

The computational power of spreadsheets allows shorter periods, such as months, to be easily used. These shorter periods mean that the approximation is more accurate. However, cash flows are still assumed to occur either at the period's end or its beginning. This instant or point in time can be described as either the end of period t or the beginning of period $t+1$.

Also, the designation of time 0 is arbitrary. When analyzing a project, time 0 could be (1) at the beginning of analysis, (2) when the project is expected to be approved, (3) when design is started, (4) when materials are first ordered, (5) when construction begins, (6) when use begins, or . . . Most often, the installation or construction time is assumed to be short, and the first costs are assumed to occur at time 0 . Then operation is often assumed to begin in the first period, with the associated costs and revenues occurring at the first period's end.

This text-matching usual practice-will make the following assumptions:

- End-of-period cash flows: Overhauls, salvage values, and annual receipts and expenses, such as O\&M costs.
- Time 0 or beginning of period 1: First cost.
- Beginning-of-period cash flows: Prepaid expenses. Landlords and lessors insist that rent and lease payments be made in advance. Insurance companies insist that insurance be paid for in advance. Most universities require tuition to be paid at the start of the school term.

In Example 2.4, all of the cash flows except the initial purchase cost are drawn as end-of-period cash flows. Example 2.5 modifies this diagram for leasing rather than purchasing the heavy equipment.

Ernie's Earthmoving is considering the purchase of a piece of heavy equipment. What is the cash flow diagram if the following cash flows are anticipated?

```
- First cost $120K
- O&M cost $30K per year
- Overhaul cost $35K in year 3
- Salvage value $40K after 5 years
```


SOLUTION

The first three types of cash flows are costs, so they are drawn as negative arrows in Exhibit 2.5. The salvage value is a receipt, so it is drawn as a positive arrow.

EXHIBIT 2.5 Ernie's Earthmoving with purchased equipment

EXAMPLE 2.5 Ernie's Earthmoving Leases the Equipment

Rather than purchasing the heavy equipment, as in Example 2.4, Ernie's Earthmoving is planning on leasing it. The lease payments will be $\$ 25 \mathrm{~K}$ per year. Ernie's Earthmoving is still responsible for the overhaul and O\&M costs. What is the cash flow diagram?

SOLUTION

The changes in the cash flow diagram shown in Exhibit 2.6 are three: (1) the lease payments are added at the beginning of years 1 through 5; (2) no first cost is incurred; (3) no salvage value is received, since Ernie's Earthmoving does not own the equipment.

EXHIBIT 2.6 Ernie's Earthmoving with leased equipment

Translating problem statement words into a cash flow diagram is clearer if cash flows are NOT combined.

It Is Better Not to Simplify the Cash Flow Diagrams. Often, two or more cash flows occur in the same year. In Example 2.4, in year 3 the overhaul expense of $\$ 35 \mathrm{~K}$ and O\&M expense $\$ 30 \mathrm{~K}$ are clearer if they are shown separately. It seems that combining these into one total cash flow per year would simplify the cash flow diagram. It would. However, don't combine. Translating words into the diagram is clearer if the cash flows are not combined. The engineering economy factors (see Chapter 3) are also easier to apply to the separate cash flow series.

The cash flow diagram ensures that all cash flows are included and that all are properly placed. For Example 2.4, combined cash flows of $-\$ 65 \mathrm{~K}$ in year 3 and $\$ 10 \mathrm{~K}$ in year 5 are not as clear as $-\$ 30 \mathrm{~K},-\$ 35 \mathrm{~K}$, and $\$ 40 \mathrm{~K}$. For Example 2.5, combined cash flows of $-\$ 55 \mathrm{~K}$ and $-\$ 90 \mathrm{~K}$ are not as clear as separate entries of $-\$ 25 \mathrm{~K},-\$ 30 \mathrm{~K}$, and $-\$ 35 \mathrm{~K}$.

Drawing Cash Flow Diagrams with a Spreadsheet. One simple way to draw cash flow diagrams with "arrows" sized to the magnitude of the cash flows is to use a spreadsheet bar chart. (I would like to thank Michelle Lubo and Kristine Swanson of my 1997 UAA class for showing me this.)

If this is drawn using the basic bar chart, it is quite easy, but the limit of a single bar means only combined net cash flows can be shown. Exhibit 2.7 illustrates this for the data of Example 2.4. To make a quick graph, select the cells from a net cash flow of -120 to a net cash flow of 10. Then, select the graph menu, and choose bar chart. Except for labeling axes (using the cells for year 0 to year 5), choosing the scale for the y-axis, and adding titles, the cash flow diagram or bar chart is done.

If a stacked bar chart is used, then different series can represent capital costs (first cost and salvage value), $\mathrm{O} \& \mathrm{M}$ costs, etc. This is shown in Exhibit 2.8 for the data of Example 2.4.

EXHIBIT 2.7 Spreadsheet bar chart to draw net cash flow diagram for Example 2.4

EXHIBIT 2.8 Stacked spreadsheet bar chart to draw cash flow diagram for Example 2.4

2.4 Equivalence for Four Loans

Equivalence equates two or more dollar values that occur at different times.

Equivalence Defined. Equivalence adjusts for the time value of money. Equivalence means that different cash flows at different times are equal in economic value at a given interest rate. In Exhibit 2.4, the $\$ 100$ deposited at year 0 and the $\$ 127.63$ in the savings account at year 5 were equivalent at 5% per year.

Equivalence uses an interest rate or discount rate to adjust for the time value of money. Since $\$ 1$ today and $\$ 1$ a year from now have different values, this adjustment must occur before the cash flows can be added together.

One way to understand equivalence is through a loan. Money is borrowed, interest accrues on the unpaid balance, payments are made, and eventually, the loan is repaid and the payments stop. The initial borrowing and the payments are equivalent at the loan's interest rate.

Exhibit 2.9 illustrates four ways to repay an initial loan of \$1000 at 10% interest over 5 years. The business loan is repaid with a final payment of principal and interest. The bond has annual interest payments and a final principal payment.

EXHIBIT 2.9 Cash flow diagrams and tables for four loans

[^1]The consumer loan (used for cars, houses, furniture, etc.) has a constant total payment with a shifting mix of interest and principal. For example, in Exhibit 2.9 year 1's interest and principal are $\$ 100$ and $\$ 163.80$, respectively, and year 2's are $\$ 83.62$ and $\$ 180.18$, respectively. Note that the cash flow diagram for the consumer loan illustrates that identical cash flows are sometimes labeled with a single value and arrows of the same length.

The fourth pattern of constant principal payments with decreasing interest is rarely used, because the early payments are more burdensome than in the other patterns.

Since each of these payment plans repays $\$ 1000$ at 10% interest, they are equivalent at 10%. Interest is included in the cash flow diagrams when it is paid, not when it accrues.

Calculating the Interest for Each Year. For each loan in Exhibit 2.9, \$100 in interest accrues in year 1, which is 10% of the initial amount borrowed. Since each loan has a different year 1 payment, the remaining amount owed is different, and so is the interest that accrues in year 2. In all cases, the interest accruing in a year equals 10% of the amount owed at the year's beginning.

The calculation for the business loan uses the compound interest equation (Equation 2.2: $\left.F=P(1+i)^{N}=\$ 1000 \times 1.1^{5}=\$ 1610.51\right)$. Since no payments are made in years 1 to 4 , the amount owed increases by 10% each year.

The interest on the bond is constant at $\$ 100$. Since this is paid each year, the amount owed remains constant, and so does the interest. In the last year, the $\$ 1000$ in principal is repaid along with $\$ 100$ of interest.

Formulas for calculating the constant total payment used for the consumer loan will be presented in Chapter 3. Exhibit 2.10 includes a column for the amount owed at the year's start. The year's interest equals 10% of this amount owed. Also, the drop in the amount owed equals the principal payment. Since all is repaid at 10%, the payment of $\$ 263.80$ is the right amount. Between years 1 and 2, the interest portion drops and the principal portion increases by $\$ 16.38$. Between years 4 and 5 , the interest portion drops and the principal portion increases by $\$ 21.80$. Thus, the mix of principal and interest changes at an increasing rate as payments are made.

For the constant principal payment loan, there are five equal principal payments to repay $\$ 1000$, so each is $\$ 200$. The interest owed each year decreases by $\$ 20$, which is the interest rate (10%) times the decrease in amount owed each year (\$200).

EXHIBIT 2.10 Annual repayment table for consumer loan

Year	Amount Owed at Start of Year	Interest	Principal Payment	Total Payment
1	$\$ 1000.00$	$\$ 100.00$	$\$ 163.80$	$\$ 263.80$
2	836.20	83.62	180.18	263.80
3	656.02	65.60	198.20	263.80
4	457.82	45.78	218.02	263.80
5	239.80	23.98	239.82	263.80
6	-0.02	Not 0 due to slight round-off error in $\$ 263.80$		

EXHIBIT 2.11 Present worth for consumer loan payments to repay \$1000 at 10%

Year	Payment	$(\mathbf{1}+\boldsymbol{i})^{\text {year }}$	Present Worth
1	$\$ 263.797$	1.1000	$\$ 239.82$
2	263.797	1.2100	218.01
3	263.797	1.3310	198.19
4	263.797	1.4641	
5	263.797	1.6105	
			Total
	$\$ 1000.00$		

Finding an Equivalent Present Worth. The compound interest formula (Equation 2.2: $\left.F=P(1+i)^{N}\right)$ can be applied to each loan payment. The payments occur later, so they are the $F_{1}, F_{2}, \ldots, F_{5}$. Then, a P is calculated for each payment by dividing F_{t} by $(1+i)^{t}$. This P is the amount of initial borrowing that could be repaid by that F_{t}.

Exhibit 2.11 shows this calculation for the consumer loan. The payment is listed as $\$ 263.797$ to avoid a round-off error. Each payment is divided by the entry in the $(1+i)^{t}$ column to compute its present worth (PW). In the final column, each present worth is the amount of initial borrowing that could be repaid by each payment. Each present worth amount is equivalent at 10% to a payment.

Each equivalent amount is called a present worth because each is at the loan's start or time 0 . If the present worths of all the payments are summed, the total is $\$ 1000$, which was the initial loan amount.

The series of five payments of $\$ 263.797$ is equivalent to a present worth of $\$ 1000$ at 10%. Similar calculations for the other three loan patterns would show the same total present worth. Because all four loan patterns are equivalent to a present worth of \$1000 at 10%, they are also equivalent to each other at 10%.

2.5 Limits on Equivalence

Equivalence Depends on the Interest Rate. The present worth of each set of loan payments can be calculated at other interest rates. For this, we use the payments in years 1 through 5 that are shown in Exhibit 2.9. The method matches Exhibit 2.11, with a different interest rate used for the $(1+i)^{\text {year }}$ calculation. The results are shown in Exhibit 2.12.

The only interest rate at which the four sets of loan payments have the same present worth is 10%. When two cash flows or two sets of cash flows are equivalent, that equivalence is at a particular interest rate. If the cash flows are compared at a different interest rate, they will not be equivalent.

Exhibit 2.12 shows that the present worth of the business loan changes the most with the interest rate. This happens because the business loan has the maximum cash flow at the latest date. The pattern with the largest payments in the early years, the constant principal pattern, is the least affected.

Equivalence with Respect to Time Value of Money Only. When two cash flow patterns are described as equivalent at 10%, this equivalence is limited to the time value of

EXHIBIT 2.12 Equivalence depends on i

money. The four example loans apply to different situations, because the risks of default and how long the borrowed money is available are different and not equivalent.

A large firm can borrow funds with a single final payment of principal and interest, because the lender is sure that the business can repay. When the federal government borrows money from you through a Series EE savings bond, you receive the principal and interest in a single final payment. The firm and the government use all of the money for the loan's entire period instead of having to begin paying it back immediately.

Governments and firms issue bonds for which interest payments are made annually or semiannually and the principal is paid off in one lump sum at the end of the last period. Again, the lender who buys the bond is sure that payment will be made at the end of the last period.

Loans to individuals or consumers, and often to businesses, have level or constant payments. Almost all car loans, home mortgages, and in-store financing have this pattern, because the lender wants to minimize the risk of a loan default. Suppose a home mortgage did not require monthly payments. How many of us would save the $\$ 1.47$ million that would be required in year 30 to pay off a $\$ 100,000$ loan (30 -year term at 9%, compounded monthly)?

Consumer loans often require security or collateral. For example, many car loans are structured so that the car's value is always greater than the amount owed on the loan. If payments are missed, the lender has some protection from complete default.

Constant principal payments, with interest on the outstanding balance, lead to declining payments. The high payment required in the first year limits the total amount that can be borrowed. Often, both borrowers and lenders want to maximize the amount borrowed. If this pattern were applied to home mortgages and car loans, many people would still be renting apartments and driving old cars.

In summary, equivalence is defined using the time value of money at a specified interest rate. Cash flows may not be equivalent to the firm in terms of risk or usefulness. As seen in Example 2.6, this also applies to individuals.
year. The "play later" plan requires deposits of $\$ 7368$ per year for the first 9 years and nothing for the next 31 years. Are these plans equivalent?

SOLUTION

Since both plans accumulate $\$ 1$ million after 40 years, they are economically equivalent at 8%. However, they are not the same from the student's perspective. Which is better, "playing" for the first 9 years or for the next 31 years?

2.6 Compounding Periods Shorter than a Year

The interest rate and the number of periods must use the same length period-both must be in years, in months, in quarters, or

Compounding Periods Are M per Year. Often, students and firms want to compute monthly loan payments or the amount in a savings account that accumulates monthly deposits. In this case, the interest rate will probably be stated as $r \%$ per year with monthly compounding. Since there are 12 months in a year, $M=12$. For example, a common credit card rate is 18% per year with monthly compounding.

To generalize this for periods that are weeks, biweekly, semimonthly, quarters, semiannually, etc. the following definitions are used. The nominal interest rate, 18% in the example, is the annual rate that is not adjusted for compounding. In each compounding period, the interest is compounded, which means it is computed and then added to the total owed or deposited. (The next subsection defines an effective interest rate, which does adjust for compound interest.) The standard symbols of the American National Strandards Institute (ANSI) are

$$
\begin{aligned}
r & \equiv \text { nominal interest rate per year } \\
M & \equiv \text { number of compounding periods per year }
\end{aligned}
$$

For pedagogical clarity, an additional symbol is defined:

$$
\begin{aligned}
i_{M} & \equiv \text { interest rate per compounding period } \\
& =r / M
\end{aligned}
$$

When cash flows occur more often than once per year, then the most accurate model uses a corresponding period. If monthly loan payments are made, then the length of a period is 1 month, and there are 12 periods per year. If automatic deposits to a savings account are made with each paycheck, then for semimonthly and biweekly paychecks there are, respectively, 24 and 26 periods per year.

As shown in Example 2.7, the main requirement is that the same period length be used for both stating the interest rate and for counting the number of periods. If interest is stated as 6% per year but deposits to the savings account are made monthly, then the interest rate must be restated as $\frac{1}{2} \%$ per month. The 6% is r, the nominal interest rate, and the $\frac{1}{2} \%$ is i_{12}, the monthly interest rate.

Monthly cash flows cannot be modeled with annual periods, but they can be approximated by assuming all cash flows occur at the year's end.

Generally, the period length corresponds to the interval for the cash flows that are being modeled. Monthly cash flows are easiest to model, with 12 monthly periods. They can be modeled with 365 daily periods, but it is more work. Monthly cash flows cannot be modeled with annual periods, but they can be approximated by assuming all cash flows occur at the year's end.

While details will be supplied later, please note that the easiest way to construct the kind of table shown in Example 2.7 is to use spreadsheet software. The solution describes how such a table is constructed.

A new engineer plans on depositing $\$ 250$ per month in an account that pays 6% annual interest with monthly compounding. How much of a down payment for a house has the engineer accumulated after a year?

SOLUTION

The easiest way to compute the $\$ 3084$ accumulated is to build a table that shows the deposit each month, the interest earned each month on the money already on deposit, and the total on deposit at month's end. In building this table, there are two "data elements," which are the deposit and interest rate. There are two formulas, which are to calculate the monthly interest and the monthly total.

```
\(\$ 250=\) monthly deposit
\(\frac{1}{2} \%=\) monthly interest rate
Monthly interest \(=\frac{1}{2} \%\) of previous month's total
Monthly total \(=\) previous month's total + deposit + interest.
```

Month	Deposit	Interest	Total
1	$\$ 250.00$	$\$ 0.00$	$\$ 250.00$
2	250.00	1.25	501.25
3	250.00	2.51	753.76
4	250.00	3.77	1007.53
5	250.00	5.04	1262.56
6	250.00	6.31	1518.88
7	250.00	7.59	1776.47
8	250.00	8.88	2035.35
9	250.00	10.18	2295.53
10	250.00	11.48	2557.01
11	250.00	12.79	2819.79
12	250.00	14.10	3083.89

A nominal interest

rate is an annual rate that must be compounded to calculate the effective interest rate.

If two nominal interest rates have different numbers of compounding periods, they cannot be directly compared. However, each combination of a nominal interest rate and a number of compounding periods corresponds to an effective interest rate. Since these effective interest rates include compound interest, they can be directly compared.

To show the relationship between the nominal and effective interest rates, we restate the definition of r and M and define i :
$r \equiv$ nominal interest rate per year
$M \equiv$ number of compounding periods per year
$i \equiv$ effective interest rate per year.
The sequence is to convert the nominal rate to the interest rate per compounding period, i_{M}, which equals r / M. That interest rate is then compounded for M periods and set equal to $1+i$. Mathematically, this is stated as

$$
1+i=(1+r / M)^{M}=\left(1+i_{M}\right)^{M}
$$

Moving the 1 to the right-hand side allows us to state Equation 2.3 for the effective interest rate:

$$
\begin{equation*}
i=(1+r / M)^{M}-1 \tag{2.3}
\end{equation*}
$$

If 12 compounding periods per year are assumed for the nominal interest rate of 12% per year, then the effective interest rate of 12.68% is calculated as follows:

$$
i=(1+.12 / 12)^{12}-1=(1.01)^{12}-1=.1268=12.68 \%
$$

Example 2.8 illustrates the difference between cash flow assumptions and use of an effective interest rate.

EXAMPLE 2.8 Why Doesn't an Effective Interest Rate Duplicate \$3084 Saved for Example 2.7?

Use an effective interest rate to calculate the savings at year's end for Example 2.7. In this case, $\$ 250$ is saved each month and deposited in a savings account that earns 6% per year with monthly compounding. Why does this differ from the $\$ 3084$ calculated in Example 2.7?

SOLUTION

The first step is to calculate the effective interest rate for a nominal rate of 6% per year with monthly compounding.

$$
\begin{aligned}
r & =6 \% \\
M & =12 \\
i & =(1+.06 / 12)^{12}-1=1.005^{12}-1=6.168 \%
\end{aligned}
$$

The 12 cash flows of $\$ 250$ total a deposit of $\$ 3000$. If this is assumed to flow (be deposited) at the year's beginning, then the total at the end of the year is $\$ 3000 \times 1.06168=\$ 3185.03$. If this is assumed to flow at the year's end, then no interest is earned and the total is $\$ 3000$.

Assuming all $\$ 3000$ is deposited at the year's beginning or end is about 6 months different from assuming $\$ 250$ is deposited each month. Thus, the value in Example 2.7 , which corresponds to the reality of the cash flows, is about halfway between the two values calculated for an accurate interest rate but a less accurate cash flow pattern.

An effective interest rate does not correct for annual vs. monthly cash flows.

Exhibit 2.13 shows that for a nominal interest rate of 12%, the effective interest rates range from 12% to 12.75% for different compounding periods. A nominal interest rate after compounding produces an effective interest rate. These effective interest rates can be compared without knowing the number of compounding periods. If there is only one compounding period, then the nominal and effective interest rates are the same. Note that shifting from annual to semiannual compounding has about the same impact as shifting from semiannual to daily compounding.

Example 2.9 uses effective interest rates to compare nominal interest rates with different compounding periods. The federal government mandates that an annual percentage rate (APR) be stated for all loans. As shown in Example 2.10, this is the nominal interest rate. Savings accounts and certificates of deposit often also state the annual percentage yield (APY), which is the higher effective interest rate. Example 2.11 illustrates finding a nominal interest rate given an effective interest rate.

EXHIBIT 2.13 Effective interest rates ($r=12 \%$)

\boldsymbol{i}	Number of Compounding Periods	
.12	1	annual
.1236	2	semiannual
.1255	4	quarterly
.1268	12	monthly
.1273	52	weekly
.1275	365	daily

Which savings account pays interest at a higher effective rate? New York Savings (NYS) compounds interest daily at a nominal rate of $5 \frac{1}{4} \%$. Montana Sky Bank (MSB) compounds interest annually at a nominal rate of $5 \frac{3}{8} \%$.

SOLUTION

$$
\begin{aligned}
& i_{\mathrm{NYS}}=(1+.0525 / 365)^{365}-1=5.390 \% \\
& i_{\mathrm{MSB}}=(1+.05375 / 1)^{1}-1=5.375 \%
\end{aligned}
$$

The NYS effective interest is higher

EXAMPLE 2.10 APR and Effective Credit Card Interest Rates

Many credit cards charge interest at $1 \frac{1}{2} \%$ per month. What are the nominal and effective interest rates? Which one is the APR that the federal government mandates be stated on loan agreements?

SOLUTION

Since the interest rate is already stated as a rate per month, nothing needs to be divided by 12 .
Nominal rate $=r=12(.015)=.18$ or 18%
Effective rate $=i=1.015^{12}-1=.1956$ or 19.56%
The APR is the nominal interest rate of 18%.

Federal government mandated use of APR-the nominal interest rate.

With the Truth in Lending Act of 1969, the federal government mandated the use of APRs in describing loans and savings accounts. The effective interest rate is the best rate to evaluate a loan's cost or a saving account's yield. However, mandating use of the nominal rate or APR is better public policy. It is easier to understand.

The government mandated use of APR because of the variety of ways-some extremely misleading-that were used to calculate interest [Canada and Lavelle]. For example, if you borrow $\$ 1000$ for 1 year at 20% add-on interest, you would owe $\$ 1200$. Repaying $\$ 100$ per month for 12 months leads to an APR of 35.07% (see Chapter 3 or 7). From this chapter, the APR of 35.07% with monthly compounding corresponds to an effective interest rate, i, of $41.3 \%\left(=1.0292^{12}\right)$.

The government did not mandate a particular way of computing interest. You could advertise a 20% add-on interest rate. However, you also must state the much higher APR. Thus the attempted deception of some other ways of calculating interest became much more apparent-and less common.

EXAMPLE 2.11 What Nominal Rate Equals an Effective Rate?

If interest is compounded monthly, what nominal interest rate will result in an effective interest rate of 9.3% ?

SOLUTION

The first step is to rearrange Equation 2.3 so that r is on the left-hand side as follows:

$$
1+r / M=(1+i)^{1 / M} \text { or } r=M\left[(1+i)^{1 / M}-1\right]
$$

In this case, the result is

$$
r=12\left(1.093^{1 / 12}-1\right)=8.926 \% .
$$

Continuous Compounding. It is possible to let the number of compounding periods approach infinity; this is called continuous compounding. Let $k=M / r$, then Equation 2.3 becomes

$$
i=(1=1 / k)^{k r}-1 \quad \text { as } k \rightarrow \infty
$$

The limit of the $(1+1 / k)^{k}$ term is e, so the effective interest rate for continuous compounding is

$$
\begin{equation*}
i=e^{r}-1 \tag{2.4}
\end{equation*}
$$

In the case of the 12% rate used for Exhibit 2.13, the effective interest rate is

$$
i=e^{.12}-1=12.7497 \% .
$$

For comparison, daily compounding yields an effective interest rate of 12.7475%.
Continuous compounding is used in the computation of interest for some savings accounts. In engineering economy, its largest use was in conjunction with the distributed cash flow assumptions, which are very rarely used now that most problems in the real world are solved with spreadsheets.

2.7 Summary

Interest is defined as the rate of return on capital. Engineering projects typically require that money or capital be spent to build, buy, and assemble capital equipment. Interest is used to determine the time value of money so that the costs can be compared with the benefits that may occur over the next 10 to 80 years.

Engineering economy relies on compound interest, not on simple interest. Simple interest does not properly account for the time value of money.

Cash flow diagrams have been used to describe the cash flows that often occur in engineering problems. These cash flows are first cost, annual operations and maintenance, salvage value, revenues, overhauls, and prepaid expenses.

Economic equivalence was illustrated using four common loan patterns. Each set of loan payments was equivalent to an initial borrowing of $\$ 1000$ at an interest rate of 10%. Equivalence means that different sets of cash flows are equal in economic value at a given interest rate.

The economic equivalence of two sets of cash flows is at a specified interest rate and for the time value of money only. For example, two different loan payment schedules may allow different initial loans amounts, may provide different patterns of funds for use, and may represent different levels of risk that the loan will not be repaid.

Effective interest rates consider the number of compounding periods that are applied to a nominal interest rate. Effective interest rates can be used to compare loans or investments, as they are comparable even when the number of compounding periods are different. Effective interest rates are used throughout the text.

REFERENCES

Canada, John R., and Jerome P. Lavelle, "Deceptive Pitches to Borrow Rather than Pay CashA Student Tutorial," The Engineering Economist, Volume 37 Number 2, Winter 1992, pp. 161-165.
Lesser, Jr., Arthur, "Engineering Economy in the United States in Retrospect—An Analysis," The Engineering Economist, Volume 14 Number 2, Winter 1969, pp. 109-116.
Lesser, Jr., Arthur, "Reminiscences of the Founder and Editor of the Engineering Economist," The Engineering Economist, Volume 20 Number 4, Summer 1975, pp. 314-318.

Problems

2.1 Define interest in your own words, and provide an example.
2.2 What are the interest rates for the different kinds of savings accounts at your bank, credit union, or savings and loan? Why are they different?
2.3 What are the interest rates this week for the different kinds of loans at your bank, credit union, or savings and loan? What other differences between the loans are there (security, term, etc.)?
2.4 What are the interest rates at three different financial institutions in your area:
(a) For similar new car loans?
(b) For home mortgages?
2.5 Use the Internet to find the interest rates on government securities with different terms. What are the interest rates on a savings bond, a 90-day note, and a 1-year note?
2.6 A 10-year loan is available from a relative at 10% simple interest. The amount borrowed will be $\$ 2000$, and all interest and principal will be repaid at the end of year 10. How much more interest would be paid if the interest were compounded?
(Answer: \$1187)
2.7 If $\$ 100$ is deposited in a savings account that pays 6% annual interest, what amount has accumulated by the end of the eighth year? How much of this is interest and how much is principal?
(Answer: \$159.4, \$59.4, and \$100)
2.8 Sam Boilermaker borrows $\$ 4000$ from his parents for his final year of college. He agrees to repay it at 7% interest in one payment 3 years later. How much does he repay? How much of this is interest and how much is principal?
2.9 Joe Miner has $\$ 3000$ in his savings account from an inheritance 10 years ago. If the savings account pays interest annually at a rate of 5%, how much was deposited? (Answer: \$1842)
2.10 Susan Cardinal deposited $\$ 500$ in her savings account, and 6 years later, the account has $\$ 600$ in it. What compound rate of interest has Susan earned on her capital? (Answer: 3.1\%)
2.11 Draw the cash flow diagram for:
(a) Problem 2.7.
(b) Problem 2.8.
(c) Problem 2.9.
(d) Problem 2.10.
2.12 Identify your major cash flows for the current school term as first costs, O\&M expenses, salvage values, revenues, overhauls, or prepaid expenses. Using a week as the time period, draw the cash flow diagram.
2.13 A robot will be purchased for $\$ 18,000$. It will cost $\$ 2500$ per year to operate and maintain for 6 years. At the end of year 6, it will be donated to Metro U's School of Engineering. The donation will save $\$ 2000$ in taxes. Draw the cash flow diagram.
2.14 The robot in Problem 2.13 requires an overhaul at the end of year 4 that will cost $\$ 5000$. Draw the cash flow diagram.
2.15 A computer system will be leased for his last 2 years of school by Richard Husky. Paper and printer cartridges will cost him $\$ 120$ per year. The lease payments are $\$ 80$ per month, and there is a security deposit of $\$ 500$. Draw the monthly cash flow diagram.
2.16 Grand Junction expects the cost of maintaining its sewer lines to be $\$ 20 \mathrm{~K}$ in the first year after reconstruction and to increase by $\$ 2 \mathrm{~K}$ each year thereafter until another major reconstruction after 8 years. Draw the cash flow diagram for the first 8 years.
2.17 Mary Tipton is buying an auto that costs $\$ 12,000$. She will pay $\$ 2000$ immediately and the remaining $\$ 10,000$ in four annual end-of-year principal payments of $\$ 2500$ each. In addition to the $\$ 2500$, she must pay 15% interest on the unpaid balance of the loan each year. Prepare a cash flow diagram.
2.18 Geske Sausage Company has just purchased a new meat-grinding machine. The machine's purchase price was $\$ 22,500$. Geske made a 20% down payment and agreed to make nine monthly principal payments of $\$ 2000$ each. Geske also agreed to pay 1% interest on the unpaid principal each month. Prepare a cash flow diagram.
2.19 Draw the cash flow diagram if Strong Metalworking borrows $\$ 100 \mathrm{~K}$ to be repaid in 5 years. The interest rate is 11%, and the only payment is at the end of year 5 .
2.20 Draw the cash flow diagram if Strong Metalworking issues a $\$ 100 \mathrm{~K}$ bond that pays 11% annual interest. The bond is repaid in 5 years.
2.21 Draw the cash flow diagram if Strong Metalworking repays a $\$ 100 \mathrm{~K}$ loan with five annual payments of $\$ 27,057$. Construct an interest table similar to

Exhibit 2.10 to show that this repays the loan at an interest rate of 11%.
2.22 Draw the cash flow diagram if Strong Metalworking repays a $\$ 100 \mathrm{~K}$ loan with five annual payments. Each payment includes one-fifth of the principal, plus interest on the unpaid balance. The interest rate is 11%.
2.23 Draw the cash flow diagram for City Utilities if it borrows $\$ 50 \mathrm{~K}$ to be repaid over 10 years at an interest rate of 4% and:
(a) One final payment is made.
(b) Interest is paid annually, and the principal is paid at the end.
(c) $\$ 6164.55$ is paid annually. What interest is paid in year 3?
(d) $\$ 5000$ plus interest on the unpaid balance is paid each year.
2.24 Complete a table similar to Exhibit 2.11 for Exhibit 2.9's business loan.
2.25 Complete a table similar to Exhibit 2.11 for Exhibit 2.9's bond.
2.26 Complete a table similar to Exhibit 2.11 for Exhibit 2.9's constant principal payment, with interest on the outstanding balance.
2.27 Compute the present worth of the principal and interest payments in Problem 2.19 at an interest rate of:
(a) 7%. (Answer: $-\$ 120.1 \mathrm{~K}$)
(b) 11%.
(c) 15%.
2.28 Compute the present worth of the principal and interest payments in Problem 2.20 at an interest rate of:
(a) 7%. (Answer: $-\$ 116.4 \mathrm{~K})$
(b) 11%.
(c) 15%.
2.29 Compute the present worth of the principal and interest payments in Problem 2.21 at an interest rate of:
(a) 7%. (Answer: $-\$ 110.9 \mathrm{~K})$
(b) 11%.
(c) 15%.
2.30 Compute the present worth of the principal and interest payments in Problem 2.22 at an interest rate of:
(a) 7%.
(b) 11%.
(c) 15%.
2.31 Which of the loan patterns in Problems 2.19 to 2.22 has its present worth most strongly affected by the interest rate? Which is least affected?
(a) Graph the values for Problem 2.27.
(b) Graph the values for Problem 2.28.
(c) Graph the values for Problem 2.29.
(d) Graph the values for Problem 2.30.
2.32 An investment compounds interest annually at 10%. What amount has accumulated for retirement at age 65 if $\$ 10,000$ is deposited at:
(a) Age 25?
(b) Age 35? (Answer: $\$ 174,494$)
(c) Age 45?
(d) Age 55? (Answer: \$25,937)
2.33 Ramon has set a goal for his retirement fund at age 65 of $\$ 500 \mathrm{~K}$. His one deposit is $\$ 100 \mathrm{~K}$. What interest rate is required if the deposit is made at:
(a) Age 25? (Answer: 4.11\%)
(b) Age 35?
(c) Age 45?
(d) Age 55?
2.34 A certificate of deposit has a nominal interest rate of 10%. If interest is compounded quarterly, what amount has accumulated for retirement at age 65 if $\$ 10,000$ is deposited at:
(a) Age 25?
(b) Age 35? (Answer: \$193,581)
(c) Age 45?
(d) Age 55? (Answer: $\$ 26,851$)
2.35 The nominal interest rate is 12% compounded quarterly. What is the APR? What is the APY? Which does the government require to be stated?
2.36 A certificate of deposit has a nominal interest rate of 6%, and it allows money to be added once per month. Rachel will deposit $\$ 200$ at the end of each month. How much will she have after:
(a) 6 months? (Answer: $\$ 1215.10$)
(b) 1 year?
2.37 Goldin Engineering is a small firm with a cash flow problem. The owner is planning on putting the monthly travel costs of $\$ 4000$ on his corporate credit card. If the nominal interest rate is 18%, what does he owe after 4 months? Assume charges become effective at the end of the month.
2.38 If the nominal interest rate is 18%, what is the effective interest rate when interest is compounded:
(a) Annually?
(b) Semiannually? (Answer: 18.81\%)
(c) Quarterly?
(d) Monthly? (Answer: 19.56\%)
(e) Daily?
(f) Continuously?
2.39 If the nominal interest rate is 24%, what is the effective interest rate when interest is compounded:
(a) Annually?
(b) Semiannually? (Answer: 25.44\%)
(c) Quarterly?
(d) Monthly?
(e) Daily?
(f) Continuously?
2.40 If the nominal interest rate is 9%, what is the effective interest rate when interest is compounded:
(a) Annually?
(b) Semiannually? (Answer: 9.20\%)
(c) Quarterly?
(d) Monthly?
(e) Daily?
(f) Continuously?
2.41 The following savings plans are offered at various banks in Skullbone, Tennessee. Which one is the best?
(a) 7% compounded annually.
(b) $6 \frac{7}{8} \%$ compounded semiannually.
(c) $6 \frac{15}{16} \%$ compounded quarterly.
(d) $6 \frac{3}{4} \%$ compounded monthly.
(e) $6 \frac{13}{16} \%$ compounded weekly.
(f) $6 \frac{31}{32} \%$ compounded daily (360 days).
2.42 If the effective rate equals 6.14% with monthly compounding, determine the nominal annual interest rate. (Answer: .5\%)
2.43 What monthly interest rate is equivalent to an effective annual interest rate of 12% ?
2.44 The local loan shark will loan a person $\$ 1000$ if the person agrees to repay the loan in two weeks with a payment of $\$ 1020$. What is the nominal interest rate on this loan? The effective interest rate?
2.45 If the effective interest rate is 18%, what is the nominal interest rate when interest is compounded
(a) Annually?
(b) Semiannually? (Answer: 17.26\%)
(c) Quarterly?
(d) Monthly?
(e) Daily?
(f) Continuously?
2.46 Complete the following table for one nominal interest rate:

Compounding		Effective
Period	Formula	Interest Rate

Annual

$$
(1.025)^{4}-1
$$

Monthly
Continuously
2.47 Compute a dollar-year measure of the amount owed for the four loan patterns in Exhibit 2.9. For example, the business loan has $\$ 1000$ owed for the first year for 1000 dollar-years. For the second year, $\$ 1100$ is owed, so this year has 1100 dollar-years for a cumulative total of 2100 dollar-years. Continue through 5 years. Then, divide the sum of the interest paid over the 5 years by the total dollar-year measure of the amount owed. What is the result?
2.48 The rule of $72 s$ states that the number of years for an investment to double is approximately 72 divided by the interest rate percentage. For example, about 12 years are required for an investment to double at 6% interest $\left(12\right.$ years $\left.=\frac{72}{6}\right)$. Find the exact rate required to double an investment in $6,8,9,12,18$, and 24 years, and compare this with the approximate rule of $72 s$ rate.
2.49 A sum of money invested at 6% interest, compounded monthly, will double in how many months? (Answer: 139 months)
2.50 At what nominal interest rate will money double in 6 years if interest is compounded quarterly? What is the effective interest rate?
2.51 Arrange the letters for the following interest rates from the least attractive loan to you to the most
attractive loan (left to right). If two or more rates are the same, draw a circle around their letters in the sequence.
(a) 12% per year.
(b) 12% per year, compounded monthly.
(c) 6% per year, compounded semiannually.
(d) 1% per month.
(e) 1% per year.
(f) 12% APR, compounded quarterly.
(g) $.3 \%$ per quarter.
2.52 Many mortgages are computed using a 360-day year, and all months are assumed to have 30 days. Interest is computed as though all payments arrive on the first of the month, so that this is equivalent to monthly compounding. What is the effective interest rate if the nominal interest rate is 8.375% ?

Minicases

2.53 Using the financial section of a newspaper and/or the Internet, update Exhibit 2.1.
2.54 Choose a lab in your school or firm, and estimate the cash flows to build and operate it. Summarize the results with a short report and a cash flow diagram.
2.55 Research the costs of car ownership for a car that you own (or would like to own). Summarize the assumptions and costs in a report. Draw a cash flow diagram for the life cycle of the new car.
2.56 Most engineering students own a computer even though there are computer labs all over campus. Estimate your costs to buy, maintain, and use your computer. Estimate the benefits of ownership? Has it been worth it?
2.57 Estimating benefits is often more difficult than cost estimation. Use car ownership to describe the complicating factors in estimating the costs and benefits.
2.58 It has been suggested that the rule of $72 s$ (see Problem 2.48) be replaced by the rule of $76 s$ for interest rates exceeding 10%. Compare the estimated time to double your money with the two "rules" with the actual number of years from Equation 2.2 at an interest rate of:
(a) 9%
(b) 12%
(c) 15%
(d) 20%
2.59 Find the interest on a $\$ 200$ payday loan with a 2 -week term (use the Internet or visit a local payday lender). What is the nominal annual rate? What is the effective annual rate?

Case

The following case from Cases in Engineering Economy, $2^{\text {nd }}$ is suggested as matched with this chapter.

Case 4 Balder-Dash Inc.

Standard cost and allocated costs vs. true marginal cost (IEs).

CHAPTER

Equivalence-A Factor Approach

- THE SITUATION AND THE SOLUTION

Considering the time value of money must be quick and easy. If long calculations using formulas are needed, then engineering economy will not be applied everywhere it should be. A solution is to use standardized engineering economy factors.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 3.1 Define the variables, and state the assumptions to calculate equivalence.
SECTION 3.2 Understand the notation of the tabulated engineering economy factors.
SECTION 3.3 Apply the factors to single-payment cash flows.
SECTION 3.4 Apply the factors to uniform-series cash flows.
SECTION 3.5 Combine the factors for more complex cash flows.
SECTION 3.6 Apply the factors for arithmetic gradients.
SECTION 3.7 Apply the formulas and factors for geometric gradients.

- KEY WORDS AND CONCEPTS

Engineering economy factors The tabulated values to convert from one cash flow quantity (P, F, A, or G) to another.
Annuity A series of uniform cash flows that begins at the end of period 1 and continues through the end of period N.
Arithmetic gradient Constant period-by-period change in cash flows, which is an arithmetically increasing cash flow series.
Deferred annuity A series of uniform cash flows that begins later than period 1 and continues through period N. There are no cash flows from period 1 to period D.
Annuity due A series of uniform cash flows that occur at the beginning, not the end, of each period, such as leases and insurance.
End-of-period cash flow Assumed for all cash flows except first costs and prepaid expenses.
Geometric gradients Cash flows that change at a constant rate, g.
Inflation An increase in the prices of purchased items due to decreases in the value of the dollar.

3.1 Definitions and Assumptions

Engineering

 economy factors are the tabulated values for calculating equivalent values.Chapter 2 introduced cash flow diagrams, compound interest, and equivalence. Here, we introduce the engineering economy factors that apply compound interest to calculate equivalent values for cash flows. These factors are tabulated and are used more often than the formulas they represent.

Like all formulas, those for the engineering economy factors are based on assumptions and variables that must be defined. This text uses the notation that has been developed by engineering economists for the American National Standards Institute [The Engineering Economist].

Assumptions. The following assumptions are made:

1. Interest is compounded once per period.
2. Cash flows (except first costs and prepaid expenses) occur at the end of a period.
3. Time 0 is the beginning of period 1 .
4. All periods are the same length.

Cash flow diagrams often assume that each period is a year. That assumption is not needed. A period can be a year, a month, a quarter, etc. Both the interest rate and the number of periods must use the same period length. If the nominal interest rate is 6% per year but periods are counted in quarters, then using a rate of 6% per quarter instead of $1 \frac{1}{2} \%$ per quarter in the formulas leads to nonsense.

Interest is compounded at the end of each period. The cash flow diagram in Example 3.1 assumes that cash flows also occur at the end of each period. The first costs occur at time 0 , the beginning of period 1 . This is the stock assumption for engineering economy factors.

The timing of cash flows could be assumed to occur continuously or at the beginning (see Section 3.5) or in the middle (see Problem 3.46) of each period. However, it may be easiest to redefine the period's length. For a midyear convention, simply use 6 -month periods. For continuously flowing cash flows, approximate with monthly or weekly periods.

EXAMPLE 3.1 Cash Flows for a Heat Exchanger

Perfect Temp is a mechanical engineering design firm that specializes in heating and cooling systems for factories and warehouses. What is the client's cash flow diagram for the following costs and savings of an air-to-air heat exchanger?

First cost $=\$ 12,000$
O\&M cost $=\$ 2000$ more per year
Energy savings $=\$ 5000$ saved per year
Heat-exchanger life $=10$ years

SOLUTION

As in Chapter 2, savings are shown as positive income (upward arrows), and expenses are shown as negative cash flows (downward arrows).

A is a uniform end-of-period amount for periods 1 through N, often called an annuity (for equal annual payments). G is an arithmetic gradient that begins at 0 at the end of period 1 and increases to $(N-1) G$ at the end of period N.

Definitions. Four of the variables $(P, F, i$, and N) were defined in Chapter 2 on a yearly basis. Here, they are defined more generally in terms of periods. Each period is usually, but not always, a year. Definitions are also added for two more cash flow patterns (A and G). Exhibit 3.1 illustrates these definitions and the assumption of end-of-period cash flows.
$i \equiv$ interest rate per period.
$N \equiv$ number of periods (sometimes called study period or horizon).
$P \equiv$ present cash flow or present value equivalent to a cash flow series.
$F \equiv$ future cash flow at the end of period N or future worth at the end of period N equivalent to a cash flow series.
$A \equiv$ uniform periodic cash flow at the end of every period from 1 to N (often called an annuity; thus, the A is used). A is also used for a uniform constant amount equivalent to a cash flow series.
$G \equiv$ arithmetic gradient or constant period-by-period change in cash flows (so that cash flows form an arithmetically increasing series) from period 1 through period N. The amounts are 0 at end of period $1, G$ at the end of period $2,2 G$ at the end of period 3, etc.

EXHIBIT 3.1 Diagrams for P, F, A, and G

Reality and the Assumed Uniformity of A and G. The reality of engineering projects is that the annual revenues from selling a new product or annual benefits from using a new highway change each year as demand and traffic levels change. Most annual cash flows are not really uniform.

Thus, why do we define and start with an A that is a uniform annual cost and a G that is a uniform annual gradient?

1. It is easier to start with simpler models. When we get to Chapter 4 we can use cash flow tables and spreadsheets for more complex models.
2. These model cash flows are the basis of the tabulated factors that are used in engineering economic analysis.
3. Often in the real world, engineering economy is applied in a feasibility or preliminary analysis. At this stage annual cash flows for costs and revenues are typically estimated using A and/or G. Not enough is known about the problem to permit more detailed estimates.

3.2 Tables of Engineering Economy Factors

Factor Notation. Before computers and electronic calculators, engineering economists needed tabulated conversion factors to speed their work. These factors are often still the fastest, easiest way to solve problems. The factor notation has been standardized with mnemonics that assist in their use. The variables, i, N, P, F, A, and G, are used as reminders of what each factor does.

The format of the engineering economy factors is $(X / Y, i, N)$. This is often read aloud as
$P=A(P / A, i, N)$ with cancellations through the As or $P=A$ times "find P given $A .{ }^{\prime \prime}$
"find X given Y at i over N periods" or as " X given Y." The X and Y are chosen from the cash flow symbols, P, F, A, and G. If Y is multiplied by the factor, then the equivalent value of X results (for N years at i per year). Thus, it may be useful to think of the multiplication as clearing fractions, where the Y s cancel and X is left. So, to convert from a cash flow in year 10 (an F) to an equivalent present value (a P), the factor is ($P / F, i, 10$).

Appendix C provides tables of these factors-one for each interest rate. Exhibit 3.2 is a simplified version of the 10% table that includes the columns for four factors: $(F / P, 10 \%, N)$, $(P / F, 10 \%, N),(A / P, 10 \%, N)$, and $(P / A, 10 \%, N)$. If N is 20 years, the factor to convert to an F from a P is 6.727 and to an A from a P is .1175 . Example 3.2 applies these factors.

EXHIBIT 3.2 Simplified table of factors for 10%

N	$(F / P, 10 \%, N)$	$(P / F, 10 \%, N)$	$(A / P, 10 \%, N)$	$(P / A, 10 \%, N)$
1	1.100	.9091	1.1000	0.909
2	1.210	.8264	.5762	1.736
3	1.331	.7513	.4021	2.487
4	1.464	.6830	.3155	3.170
5	1.611	.6209	.2638	3.791
10	2.594	.3855	.1627	6.145
15	4.177	.2394	.1315	7.606
20	6.727	.1486	.1175	8.514

EXAMPLE 3.2 Finding Loan Payments for a $\mathbf{\$ 1 0 0 0}$ Loan

Exhibit 2.9 showed repaying a loan of $\$ 1000$ at 10% over 5 years. Use Exhibit 3.2 to find the payment amount for the business loan with a single final payment. Repeat for the consumer loan with five equal payments.

SOLUTION

In both cases, the initial borrowing of $\$ 1000$ is a P. For the business loan, an F must be found. (In Chapter 2, we used Equation 2.2 to find that $F=1610.51$.)

$$
F=1000(F / P, 10 \%, 5)=1000(1.611)=\$ 1611
$$

For the consumer loan, five equal or uniform payments, which is an A, must be found.

$$
F=1000(A / P, 10 \%, 5)=1000(.2638)=\$ 263.8
$$

Expanded Factors as Calculator Functions. Appendix B describes financial calculators and programmable scientific calculators that can be used instead of or in addition to the tables. The programmable scientific calculators can be used on the FE exam.

These TVM calculators make the same assumptions as the tabulated factors, and the notation is very similar. But fewer numbers have to be entered, and many calculations can be completed much more quickly. Many problems can be solved by entering four values chosen from i, N, P, A, and F, and solving for the fifth value.

Names of the Engineering Economy Factors. It is easy and clear to rely on the letters for each cash flow type and the mnemonic factors. However, it is also useful to know the names of these factors. These are:

Find	Given		
P	F	$(P / F, i, N)$	Present worth factor
F	P	$(F / P, i, N)$	Compound amount factor
P	A	$(P / A, i, N)$	Series present worth factor
A	P	$(A / P, i, N)$	Capital recovery factor
A	F	$(A / F, i, N)$	Sinking fund factor
F	A	$(F / A, i, N)$	Series compound amount factor

Most of these names are obvious, but the capital recovery factor and the sinking fund factor may need some explanation. An (A / P) or capital recovery factor is used to calculate how much the machine needs to save or earn each year to recover the capital that was invested in it (ignoring any salvage value).

A sinking fund is a savings account in which an annual deposit would be made to accumulate funds for the future replacement of machinery, such as a steam engine. Thus, if you knew the machine's future cost, then you could calculate the annual deposit using a sinking fund or (A / F) factor.

State interest rates only as \% or decimal-never as an integer.

Mental checks. The interpolated value is: (1) between other two, and (2) closer to the correct one.

Format for the Interest Rate. Interest rates are stated as percentages or decimals, not integers. If the interest rate is 10% or .1 , it is harder to confuse it with the integer number of periods. Since i and N are not interchangeable, this small precaution is very important. For example:

$$
(P / A, 10 \%, 5)=3.791 \neq(P / A, 5 \%, 10)=7.722
$$

Interpolation. The tables in Appendix B are comprehensive, but they do not include every possible interest rate or life. For example, there is no table for $i=5.25 \%$, nor for $i=$ 32%, and no row for $N=37$. For these values, the factors are found using (1) interpolation, (2) the formulas in Sections 3.3 through 3.6, (3) a calculator with financial functions, or (4) a spreadsheet.

Examples 3.3 and 3.4 illustrate interpolation. Since Equation 2.2, $F=P(1+i)^{N}$, has already been covered, it is used for the first interpolation examples. However, this formula is so simple that using it may be easier than interpolation. Examples 3.9 and 3.10 further illustrate interpolation.

To mentally double-check the accuracy of your interpolations, use two rules. First, the interpolated value should lie between the tabulated values. In Example 3.3, the value for $(F / P, 10 \%, 7), 2.004$, is between the values for $N=5$ and 10 . Second, the interpolated value should be closer to one of the tabulated values, and only occasionally will it be exactly in the middle. In Example 3.3, 7 is closer to 5 than to 10, so the interpolated value is closer to the tabulated value for $N=5$ than to the one for $N=10$.

EXAMPLE 3.3 Interpolating for N

Using the values of Exhibit 3.2, interpolate to find $(F / P, 10 \%, 7)$. How close to the exact value is this?

SOLUTION

The two closest values are for years 5 and $10,(F / P, .1,5)=1.611$ and $(F / P, .1,10)=2.594$. Rather than relying on an interpolation formula, it is better to sketch simple diagrams, such as Exhibit 3.3. Then, it is possible to rely on similar triangles and simple geometric analogies.

EXHIBIT 3.3 Example interpolation for ($F / P, .1,7$)

Thus, the interpolated value for

$$
\begin{aligned}
(F / P, .1,7) & =(F / P, .1,10)-\mathrm{b}=(F / P, .1,10)-\mathrm{ad} / \mathrm{c} \\
& =2.594-(10-7)(2.594-1.611) /(10-5) \\
& =2.004
\end{aligned}
$$

Using Equation 2.2, $(F / P, .1,7)=1.1^{7}=1.948717$. The error in the interpolated value is 2.8%. This difference occurs because the linear interpolation does not exactly match the true nonlinear relationship. The value tabulated in Appendix C, 1.949, due to round-off differs from the exact value by .001287 or $.015 \%$.

While geometry and similar triangles are easy for some students to see, others prefer an approach that relies on the same ratios-with a simpler diagram:

The ratios for the years and the factors are equal for linear interpolation; therefore,

$$
\begin{aligned}
2 / 5 & =\Delta / .983 \Rightarrow \Delta=.393 \\
(F / P, .1,7) & =x=1.611+.393=2.004
\end{aligned}
$$

EXAMPLE 3.4 Interpolating for an Interest Rate

Using the tables in Appendix C, interpolate for the value of $(P / F, 22 \%, 10)$. How much does this differ from the results of the exact formula?

SOLUTION

The two closest interest rates, 20% and 25%, have values of $(P / F, 20 \%, 10)=.1615$ and $(P / F, 25 \%, 10)=.1074$. Rather than relying on a formula to ensure the correct interpolation, it is better to sketch simple diagrams, such as Exhibit 3.4. Then, it is possible to rely on similar triangles and simple geometric analogies.
Thus, the interpolated value is

$$
\begin{aligned}
(P / F, .22,10) & =(P / F, .2,10)-\mathrm{b}=(P / F, .2,10)-\mathrm{ad} / \mathrm{c} \\
& =.1615-(.22-.2)(.1615-.1074) /(.25-.2)=.1399
\end{aligned}
$$

EXHIBIT 3.4 Example interpolation for ($P / F, .22,10$)

Using the inverse of Equation 2.2, $(P / F, .2,10)=1.22^{-10}=.1369$. The exact and the interpolated values differ by about 2%.

While geometry and similar triangles are easy for some students to see, others prefer an approach that relies on the same ratios-with a simpler diagram:

The ratios for the years and the factors are equal for linear interpolation; therefore,

$$
\begin{aligned}
2 \% / 5 \% & =\Delta / .0541 \Longrightarrow \Delta=.0216 \\
(P / F, .22,10) & =x=.1615-.0216=.1399
\end{aligned}
$$

Formulas vs. Factors. Factors are so useful that some engineering economists remember only Equation 2.2, $F=P(1+i)^{N}$. To solve problems, they use the symbols and the tabulated factors. If you need the equations of Sections 3.3, 3.4, and 3.6, then look up the formula-don't rely on memory.

The main advantage of formulas is that calculating an exact value may be easier than interpolating for an approximate answer.

3.3 Single-Payment Factors (\boldsymbol{P} and \boldsymbol{F})

Formula Development. The basic formula relating the two single-payment quantities, P and F, was used and developed in Chapter 2. Developed for compound interest in Exhibit 2.2 (and also for population and demand), it is Equation 2.2, $F=P(1+i)^{N}$. Because of its importance, this is repeated in Exhibit 3.5. In each period, interest at rate i is earned so that end-of-period quantities are $(1+i)$ times the beginning-of-period quantities.

EXHIBIT 3.5 Development of $(F / P, i, N)$
Value at

Period	Beginning of Period	End of Period
1	P	$P(1+i)$
2	$P(1+i)$	$P(1+i)(1+i)$
3	$P(1+i)^{2}$	$P(1+i)^{2}(1+i)$
\ldots	\cdots	\cdots
N	$P(1+i)^{N-1}$	$P(1+i)^{N}$

Tabulated Factors. Equation 2.2 is the basis for two inverse factors tabulated in Appendix $\mathrm{C},(F / P, i, N)$ and $(P / F, i, N)$. The first is called the compound amount factor, since it compounds a present amount into the future with the factor $(1+i)^{N}$. Equation 3.1 is basically the right-hand side of Equation 2.2.

$$
\begin{equation*}
(F / P, i, N)=(1+i)^{N} \tag{3.1}
\end{equation*}
$$

The second is the present worth factor. It discounts a single future value in period N to a present worth. Equation 3.2 is the inverse of Equation 3.1. Exhibit 3.6 illustrates these factors in a cash flow diagram. Example 3.5 applies them.

$$
\begin{equation*}
(P / F, i, N)=(1+i)^{-N} \tag{3.2}
\end{equation*}
$$

EXHIBIT 3.6 Factors for P and F

EXAMPLE 3.5 Which Loan?

NewTech has asked three banks for a loan of \$15,000. Each bank has its own rate and compounding interval, but each loan would be paid back by a single, lump-sum payment of principal and interest at the end of 5 years. Which loan has the smallest payment? How much better than the next best is this?

- First Federal Bank: Annual compounding at 10% per year
- Second State Bank: Monthly compounding at a nominal 9% per year
- City Credit Union: Quarterly compounding at a nominal 8\% per year

SOLUTION

The final payment for First Federal has 5 periods at 10% per period.

$$
F=-15,000(F / P, 10 \%, 5)=-15,000 \times 1.611=-\$ 24,165
$$

The final payment for Second State has 60 monthly periods at $.75 \%$ per period.

$$
F=-15,000(F / P, .75 \%, 60)=-15,000 \times 1.566=-\$ 23,490
$$

The final payment for City Credit has 20 quarterly periods at 2% per period.

$$
F=-15,000(F / P, 2 \%, 20)=-15,000 \times 1.486=-\$ 22,290
$$

The City Credit loan is the most attractive, and its final payment is $\$ 1200$ lower than the Second State loan. In this simple case, the question of which loan is better could be answered using effective interest rates. If loan origination or other service fees are included, then calculating present or future values is easier.
(P / F) and (F / P) as a Function of i and N. Exhibit 3.7 summarizes these factors for $i=5 \%$ and 10% as N is varied. Exhibit 3.8 summarizes them for $N=5$ and 10 as i is varied. These functions are nonlinear in both i and N, which is why a linear interpolation is only an

EXHIBIT 3.7 Graph of (P / F) and (F / P) as a function of $N, i=5 \%$ and 10%

EXHIBIT 3.8 Graph of (P / F) and (F / P) as a function of $i, N=5$ and 10

approximation. The simplicity of Equations 2.2, 3.1, and 3.2 also imply that it can be easier to calculate an interest rate using the formulas, as in Example 3.6. Plots like these are easy to do with spreadsheets.

The limit for these single-payment factors is 1 as i and/or N approaches 0 . As i and/or N approach infinity, the present worth factors approach 0 , and the future worth factors approach infinity.

EXAMPLE 3.6 The Value of a Dam

An earth-filled dam of the U.S. Department of Reclamation cost $\$ 850,000$ to build in 1965. In 2010 , it is in mint condition and worth about $\$ 5$ million. At what annual interest rate has the value of the dam increased?

SOLUTION

$$
\begin{aligned}
F & =P(1+i)^{N} & & \\
5,000,000 & =850,000(1+i)^{45} & & \\
(1+i)^{45} & =5,000,000 / 850,000 & & =5.8824 \\
(1+i) & =\sqrt[45]{5.8824} & & =1.04016 \\
i & =4.02 \% & &
\end{aligned}
$$

3.4 Uniform Flows

Formula Development. This section develops the formula to convert from a uniform series (A) to a present worth (P). This formula is combined with the earlier $(F / P, i, N)$ formula to produce the ($F / A, i, N$) formula.

A uniform series is identical to N single payments, where each single payment is the same and there is one payment at the end of each period. Thus, the ($P / A, i, N$) factor is derived algebraically by summing N single-payment factors, tom. The derivation of Equation 3.3 is shown in Exhibit 3.9.

$$
\begin{equation*}
P=A\left[(1+i)^{N}-1\right] /\left[i(1+i)^{N}\right] \tag{3.3}
\end{equation*}
$$

The easiest way to derive Equation 3.4, which connects the uniform series, A, with the future single payment, F, is to multiply both sides of Equation 3.3 by $(1+i)^{\mathrm{N}}$.

$$
\begin{align*}
(1+i)^{N} P & =A\left[(1+i)^{N}-1\right] / i \\
F & =A\left[(1+i)^{N}-1\right] / i \tag{3.4}
\end{align*}
$$

EXHIBIT 3.9 Derivation of $(P / A, i, N)$

$$
\begin{aligned}
P & =\mathrm{A}\left[\quad 1 /(1+i)^{1}+1 /(1+i)^{2}+\cdots+1 /(1+i)^{N-1}+1 /(1+i)^{N}\right] \\
(1+i) P & =\mathrm{A}\left[1 /(1+i)^{0}+1 /(1+i)^{1}+1 /(1+i)^{2}+\cdots+1 /(1+i)^{N-1}\right] \\
(1+i) P-P & =\mathrm{A}\left[1 /(1+i)^{0}\right. \\
i P & =\mathrm{A}\left[1-1 /(1+i)^{N}\right] \\
& \left.=\mathrm{A}\left[(1+i)^{\mathrm{N}}-1\right] /(1+i)^{N}\right] \\
P & =\mathrm{A}\left[(1+i)^{N}-1\right] /\left[i(1+i)^{N}\right]
\end{aligned}
$$

Tabulated Factors. Equations 3.3 and 3.4 are each the basis for two factors tabulated in Appendix C. The series present worth factor, $(P / A, i, N)$, and the capital recovery factor, $(A / P, i, N)$, as shown in Equations 3.5 and 3.6, are inverses based on Equation 3.3. The capital recovery factor's name comes from asking, "How much must be saved or earned in each period, A, to recover the capital cost of the initial investment, P ?"

$$
\begin{align*}
(P / A, i, N) & =\left[(1+i)^{N}-1\right] /\left[i(1+i)^{N}\right] \tag{3.5}\\
(A / P, i, N) & =1 /(P / A, i, N) \\
& =i(1+i)^{N} /\left[(1+i)^{N}-1\right] \tag{3.6}
\end{align*}
$$

The series compound amount factor, $(F / A, i, N)$, and the sinking fund factor, $(A / F, i, N)$, as shown in Equations 3.7 and 3.8, are inverses based on Equation 3.4. The name of the sinking fund factor comes from an old approach to saving enough funds to replace capital equipment, which would cost F after N years. In each period, an amount, A, would be placed in a savings account (called a sinking fund), and then, after N years, a total of F would have accumulated through deposits and interest.

EXHIBIT 3.10 Factors for A with P or F

$$
\begin{align*}
(F / A, i, N) & =\left[(1+i)^{N}-1\right] / i \tag{3.7}\\
(A / F, i, N) & =1 /(F / A, i, N) \\
& =i /\left[(1+i)^{N}-1\right] \tag{3.8}
\end{align*}
$$

Exhibit 3.10 illustrates these factors in cash flow diagrams, where both A and F are end-of-period cash flows. In Examples 3.7 and 3.8, these factors are applied to loan payments and to calculating the present worth of an investment. Example 3.8 exemplifies a common class of simple engineering economy problems. Given four of N, i, A, P, and F; solve for the fifth value.

EXAMPLE 3.7 Loan Payments

A loan of $\$ 8000$ is borrowed to be repaid with uniform periodic payments at a nominal rate of 12% over 5 years. What is the payment if made annually? What is the payment if made monthly? Why isn't the annual payment 12 times the monthly payment?

SOLUTION

For annual payments, $i=12 \%$, and $N=5$.

$$
A=8000(A / P, .12 .5)=8000 \times .2774=\$ 2219
$$

For monthly payments, $i=1 \%$, and $N=60$.

$$
A=8000(A / P, .01,60)=8000 \times .0222=\$ 177.6
$$

Twelve times the monthly payment is $\$ 2131$, which is $\$ 88$ less than the annual payment. There is a different cash flow pattern and a different interest rate. Twelve payments per year means the first payment is only 1 month away, not 1 year away. With monthly payments from months 1 to 12 , the "average" is at month 6.5 . Since this is sooner than the end of the year, less interest accrues, and the monthly payment is lower than $1 / 12$ of the annual payment.

The effective interest rates of the two loans differ as well. The annual loan has a rate of 12%, while the monthly payment loan has an effective interest rate of $12.68 \%\left(=1.01^{12}-1\right)$.

EXAMPLE 3.8 Present Worth of Investment Returns

Northern Construction and Engineering plans on opening an office in Duluth. Over the next 25 years, the office is expected to have a positive cash flow of $\$ 250,000$ per year. In year 25 ; the office can be sold for $\$ 1 \mathrm{M}$. At an interest rate of 12%, what is the equivalent present worth (PW)?

SOLUTION

$$
\begin{aligned}
\mathrm{PW} & =250 \mathrm{~K}(P / A, .12,25)+1000 \mathrm{~K}(P / F, .12,25)=250 \mathrm{~K} \times 7.843+1000 \mathrm{~K} \times(.0588) \\
& =\$ 1961 \mathrm{~K}+58.8 \mathrm{~K}=\$ 2019.8 \mathrm{~K}
\end{aligned}
$$

Using a TVM calculator (See Appendix C), this can be solved as:

$$
\mathrm{PW}=\mathrm{PV}(i, N, A, F)=\mathrm{PV}(12 \%, 25,250000,1000000)=-\$ 2,019,608
$$

with the required sign change $=\$ 2,09,608$

Calculating an Interest Rate. Equations 3.3 and 3.4 cannot be solved for i unless $N=2$ or 3 . However, the equations can be solved numerically for specific values of i and N. The process is to:

1. Write an equation, including the factor.
2. Solve for the factor's value.
3. Find the i 's that straddle the factor's value.
4. Interpolate.

Example 3.9 illustrates this process to find a loan's interest rate.

EXAMPLE 3.9 Finding a Loan's Interest Rate

If $\$ 10,000$ is borrowed and payments of $\$ 2000$ are made each year for 9 years, what is the interest rate?

SOLUTION

This is equivalent to asking "For what i does $(A / P, i, 9)$ equal .2 ?" First, draw the cash flow diagram.

Second, write the equation to calculate the nine end-of-year payments to repay a loan of $\$ 10,000$, where i is an unknown. Set this equation equal to the given payment of $\$ 2000$, and solve.

$$
\begin{aligned}
9 \text { payments } & =10,000(A / P, i, 9) \\
\$ 2000 & =10,000(A / P, i, 9) \\
(A / P, i, 9) & =.2
\end{aligned}
$$

By paging through Appendix C, we find that the interest rate is between 13% and 14%. These capital recovery factors,

$$
(A / P, .13,9)=.1949 \quad \text { and } \quad(A / P, .14,9)=.2022
$$

straddle the value of .2 .
Using Exhibit 3.11, we interpolate for the value of i. In particular,

$$
i=.13+(.2-.1949)(.14-.13) /(.2022-.1949)=13.699 \% \text { or } 13.7 \%
$$

From a financial calculator or spreadsheet, the exact value is 13.704%.
EXHIBIT 3.11 Interpolating for i when $(A / P, i, 9)=.2$

$(A / P),(A / F),(P / A)$, and (F / A) vs. i and N. Exhibit 3.12 shows how these factors vary with N. If N equals 1 , then the capital recovery factor, $(A / P, i, 1)$, equals $(1+i)$ and the series present worth factor, $(P / A, i, 1)$, equals $1 /(1+i)$. As N approaches infinity, the (A / P) factors approach i and the (P / A) factors approach $1 / i$.

EXHIBIT 3.12 Graph of (P / A) and (A / P) as function of $N, i=5 \%$ and 10%

EXHIBIT 3.13 Graph of (P / A) and (A / P) as function of $i, N=5$ and 10

Exhibit 3.13 shows how these factors vary with i. For i equal to 0%, the series present worth factor, $(P / A, 0 \%, N)$, equals N. Thus, $(P / A, 0 \%, 5)=5$ and $(P / A, 0 \%, 10)=10$. The capital recovery factor, $(A / P, 0 \%, N)$, for $i=0 \%$ is $1 / N$. Thus, $(A / P, 0 \%, 5)=1 / 5=.2$ and $(A / P$, $0 \%, 10)=1 / 10=.1$. As i approaches infinity, the (P / A) and (A / P) factors approach 0 and infinity, respectively.

Clearly, Equations 3.7 and 3.8 are nonlinear in i and N. However, the quality of the linear interpolation is very high, as illustrated in Example 3.10.

EXAMPLE 3.10 Interpolation Accuracy with (P/A) Factors

Compare exact and interpolated values for $(P / A, i, 10)$ for $i=1.6 \%, 5.6 \%, 10.6 \%$, and 20.6%.

SOLUTION

The exact values are calculated with Equation 3.5 and are shown in Exhibit 3.14:

$$
(P / A, i, 10)=\left[(1+i)^{10}-1\right] /\left[i(1+\mathrm{i})^{10}\right]
$$

The interpolated values in Exhibit 3.14 are calculated as follows:

$$
\begin{aligned}
(P / A, 20.6 \%, 10) & \approx(P / A, 20 \%, 10)-(.206-.2)[(P / A, 20 \%, 10)-(P / A, 25 \%, 10)] /(.25-.2) \\
& \approx 4.192-.006 \times[4.192-3.571] / .05=4.1175
\end{aligned}
$$

EXHIBIT 3.14 Interpolation quality for $(P / A, i, 10)$

\boldsymbol{i}	Exact	Interpolated	Difference
1.6%	9.1735	9.1742	$.007 \%$
5.6	7.5016	7.5048	.043
10.6	5.9893	5.9914	.035
20.6	4.1085	4.1175	.22

The interpolated values for 1.6% are the most accurate (and, for 20.6%, the least accurate) for two reasons. First, Equation 3.5 is more nearly linear when i is close to 0 . Second, the tabulated values are only $.5 \%$ apart around $i=1.6 \%$, and they are 5% apart around $i=20.6 \%$. Notice that all the accuracies are much higher than was the case for the interpolations with (P / F) factors.

3.5 Combining Factors

A deferred annuity is a series of uniform cash flows that begins in period $D+1$ and continues through period N.

Many engineering economy problems require combinations of factors. This section introduces this with deferred annuities and annuities due, and Section 3.6 discusses factors for arithmetic gradients, which are usually used together with annuity factors. This section also recommends how to convert cash flow diagrams to equations and discusses how the formulas for different factors are related.

Deferred Annuities. A deferred annuity starts in a later period, not in period 1. Examples include revenues delayed by a multiyear construction period and maintenance costs that begin after the warranty expires.

To find the present worth of a deferred annuity, a pair of factors must be combined. Let the last period with no cash flow be period D, and let the periodic cash flows A_{D} occur from the end of period $D+1$ to period N. Then, Equation 3.9 describes the present worth. Equation 3.10 defines a second, equivalent approach.

$$
\begin{equation*}
P=A_{D}(P / A, i, N-D)(P / F, i, D) \tag{3.9}
\end{equation*}
$$

The equivalent P found with a (P/A) factor is one period earlier than the first A. (Time 0 vs. time 1.)

Example 3.11 applies this formula. Exhibit 3.15 depicts this in the cash flow diagram. A t^{\prime} time series is defined for the 5-year annuity. Its P becomes the F for the 2-year (P / F) factor.

A common mistake is to use $(P / F, i, D+1)$, since the first cash flow of the deferred annuity occurs in year $D+1$. This is wrong. The $(P / A, i, N-D)$ factor "moves" the annuity to a present equivalent at $t^{\prime}=0$ or $t=D$. This is clear when the factors are placed on the cash flow diagram, as in Exhibit 3.15.

Imitate Exhibit 3.15 until using the factors correctly is automatic.

Revenues of $\$ 100$ begin in year 3 and continue through year 7 . What is the PW, if i is 6% ?

SOLUTION

Apply Equation 3.9 with $D=2$ and $N=7$. The number of cash flows is $5(=N-D)$.

$$
\begin{aligned}
P & =100(P / A, 20.6 \%, 5)(P / F, 6 \%, 2)=100 \times 4.212 \times .8900 \\
& =\$ 374.9
\end{aligned}
$$

EXHIBIT 3.15 Combining factors for deferred annuities

Equation 3.10 is another approach to deferred annuities. Here, one factor includes all N years and the other subtracts the D years that are not included. Example 3.12 applies Equation 3.10 to the data of Example 3.11 with the same result.

$$
\begin{equation*}
P=A_{D}[(P / A, i, N)-(P / A, i, D)] \tag{3.10}
\end{equation*}
$$

EXAMPLE 3.12 Delayed Revenues (Revisited)

As in Example 3.11, revenues of $\$ 100$ begin in year 3 and end in year 7. If the interest rate is 6%, what is the present worth of the cash flows?

SOLUTION

To apply Equation 3.10, $D=2$ and $N=7$.

$$
\begin{aligned}
P & =100[(P / A, 6 \%, 7)-(P / A, 6 \%, 2)] \\
& =100(5.582-1.833)=100 \times 3.749=\$ 374.9
\end{aligned}
$$

An annuity due is a cash flow that occurs at the beginning, not the end, of each period, such as lease and insurance payments.

Annuities Due for Prepaid Expenses and Other Beginning-of-Year Cash Flows. Lease payments, rent, insurance premiums, and tuition are prepaid expenses that occur at each period's beginning. Payment is made before the period of service begins. This beginning-of-period annuity is called an annuity due, while the standard end-of-period annuity is called an annuity in arrears or an ordinary annuity.

To use tables that assume end-of-period cash flows for prepaid expenses, either Equation 3.11 or 3.12 must be used. Example 3.13 applies these formulas to a lease.

$$
\begin{align*}
& P=A_{1}(P / A, i, N)(1+i) \tag{3.11}\\
& \left.P=A_{1}+(P / A, i, N-1)\right] \tag{3.12}
\end{align*}
$$

EXHIBIT 3.16 Combining factors for prepaid expenses

As shown in Exhibit 3.16, Equation 3.11 with the $(P / A, i, N)$ finds the equivalent value at $t=-1$ and then uses $(1+i)$, which equals $(F / P, i, 1)$, to convert that to $t=0$. Equation 3.12 relies on the first cash flow already occurring at $t=0$, and then it calculates a present equivalent for the remaining $N-1$ periods.

Calculate a present equivalent at 12% for the lease of a crane. The lease fee will be $\$ 40,000$ per year for 5 years.

SOLUTION

Using Equation 3.11,

$$
\begin{aligned}
P & =-40,000(P / A, 12 \%, 5)(1+.12)=-40,000 \times 3.605 \times 1.12 \\
& =-\$ 161,500
\end{aligned}
$$

Using Equation 3.12,

$$
\begin{aligned}
P & =-40,000[1+(P / A, 12 \%, 4)]=-40,000[1+3.037] \\
& =-\$ 161,500
\end{aligned}
$$

Constructing Formulas from Cash Flow Diagrams. Considering a cash flow diagram, such as in Example 3.14, as a whole can be intimidating. If considered step-by-step, then the task is much simpler.

Construct equivalence equations by beginning with the earliest cash flow and working to the latest (left to right on the cash flow diagram).

Begin with period 0, and consider the cash flows one at a time. Determine whether the cash flow is a single payment or part of an annuity, and then select the correct factor(s) for that cash flow. Then, proceed to the next cash flow.

By proceeding from left to right, no cash flows will be overlooked. By considering the cash flows one at a time, the factors are easier to choose.

EXAMPLE 3.14 (Example 2.4 Revisited)

Calculate the present worth for the following cash flow diagram if the interest rate is 12%.

SOLUTION

Begin with year 0 , where the factor is 1 , since P is at year 0 .

$$
P=-120,000
$$

The year 1 cash flow of $-\$ 30,000$ is the first of a 5 -year annuity, which uses $(P / A, 12 \%, 5)$ to find the present equivalent.

$$
P=-120,000-30,000(P / A, 12 \%, 5)
$$

The next cash flow is $\$ 35,000$ in year 3 , since the $\$ 30,000$ in years 2 through 5 were included in the last factor. This $\$ 35,000$ is a single payment at the end of year 3 .

$$
P=-120,000-30,000(P / A, 12 \%, 5)-35,000(P / F, 12 \%, 3)
$$

The only remaining cash flow is the positive $\$ 40,000$ in year 5 . This is also a single payment, but notice that its sign differs from the earlier cash flows.

$$
P=-120,000-30,000(P / A, 12 \%, 5)-35,000(P / F, 12 \%, 3)+40,000(P / F, 12 \%, 5)
$$

Now that the equation is complete, it is time to plug in values from Appendix C.

$$
\begin{gathered}
P=-120,000-30,000 \times 3.605-35,000 \times .7118+40,000 \times .5674 \\
=-120,000-108,150-24,913+22,696=-\$ 230,367
\end{gathered}
$$

Deriving One Factor's Formula from Another's. The paired factors derived so far have been inverses of each other. Specifically, $(P / F, i, N)=1 /(F / P, i, N)$, $(P / A, i, N)=1 /(A / P, i, N)$, and $(F / A, i, N)=1 /(A / F, i, N)$.

Other relationships, such as Equations 3.13 and 3.14, can be verified algebraically or by substituting values. For example, let $i=10 \%$ and $N=20$. Then, to check Equation 3.13, $(A / F, 10 \%, 20)=.0175$, and the $(A / F, 10 \%, 20)=.0175$, and the (A / P) factor is .1 greater at .1175. To check Equation 3.14,

$$
(F / A, 10 \%, 20)=[(F / P, 10 \%, 20)-1] / .1=(6.727-1) / .1=57.27
$$

and the tabulated value is 57.275 .

$$
\begin{align*}
& (A / F, i, N)=(A / P, i, N)-i \tag{3.13}\\
& (F / A, i, N)=[(F / P, i, N)-1] / i \tag{3.14}
\end{align*}
$$

Finally, two relationships, Equations 3.15 and 3.16, can be justified intuitively, verified algebraically (see Exhibit 3.9 for Equation 3.16), or graphed, as shown in Exhibit 3.17. The intuitive justification is that the increased present worth of adding another period to a cash flow series can be found by adding the present worth for that one period, N, to the present worth for periods 1 to $N-1$.

$$
\begin{align*}
& (P / F, i, N)=(P / A, i, N)-(P / A, i, N-1) \tag{3.15}\\
& (P / A, i, N)=(P / F, i, 1)+(P / F, i, 2)+\cdots+(P / F, i, N) \tag{3.16}
\end{align*}
$$

EXHIIBIT 3.17 Linking formulas for (P / A) and (P / F) factors

3.6 Arithmetic Gradients

Definition. A typical application of an arithmetic gradient is: "Revenue is $\$ 4000$ the first year, increasing by $\$ 1000$ each year thereafter." The arithmetic gradient is the $\$ 1000-$ per-year change in cash flows. The $\$ 4000$ per year is an annuity or uniform annual series. For the first period, the arithmetic gradient's zero cash flow is added to the uniform series' cash flow of $\$ 4000$. In the second period, the total cash flow is $\$ 4000+\$ 1000$. In the third,

EXHIBIT 3.18 Example gradient

it is $\$ 4000+2(\$ 1000)$. This is why the tabulated arithmetic gradient series begins with a zero cash flow for period 1 .

The arithmetic gradients in Exhibits 3.1 and 3.18 have cash flows of zero at the end of the first period. The first nonzero cash flow occurs at the end of period 2 , and an N -period arithmetic gradient has $N-1$ nonzero cash flows, which change by G per period.

A common mistake is to visualize an arithmetic gradient series as $N-1$ periods long. The arithmetic gradient series is N periods long, but the first period has zero cash flow. This assertion can be confirmed by examining the tables in Appendix C for any interest rate. The two factors at the right of the tables are the $(P / G, i, N)$ and ($A / G, i, N$) factors. Both equal zero for $N=1$. Thus, the arithmetic gradient and annuity series in Exhibit 3.18 both have a length of 5 or N periods-even though the arithmetic gradient has only 4 nonzero cash flows.

Using the Arithmetic Gradient Factors. The arithmetic gradient factors describe the change in a periodic cash flow, such as increasing by $\$ 1000$ per year. Thus, the factors are typically used along with an annuity factor.

The first period's cash flow defines the annuity series, and the period-by-period change defines the arithmetic gradient series. Since the annuity and the arithmetic gradient can be positive or negative, there are four possible combinations. Exhibit 3.19 illustrates these in terms of cash flows:

- Positive and increasing $(A>0 \& G>0)$
- Positive but decreasing $(A>0 \& G<0)$
- Negative but becoming less so $(A<0 \& G>0)$
- Negative and becoming more so ($A<0 \& G<0$)

Examples 3.15 and 3.16 illustrate that solving arithmetic gradients requires remembering the definitions. The first period's cash flow is the A for the annuity series, and the change each period is the G for the arithmetic gradient series.

EXHIBIT 3.19 Arithmetic gradient and annuity combinations

Find the present worth of $\$ 4000$ the first year, increasing by $\$ 1000$ per year. The interest rate is 8%, and N equals 5.

SOLUTION

Arithmetic gradient example

$$
\begin{aligned}
P & =4000(P / A, 8 \%, 5)+1000(P / G, 8 \%, 5) \\
& =4000 \times 3.993+1000 \times 7.372 \\
& =15,972+7372 \\
& =\$ 23,340
\end{aligned}
$$

Find the present worth, from the bank's perspective, of the constant principal payment loan in Exhibit 2.9. The interest rate was $10 \%, N$ was 5 , and payments began at $\$ 300$ and declined to $\$ 220$.

SOLUTION

$$
\begin{gathered}
\mathrm{P}=300(\mathrm{P} / A, 10 \%, 5)-20(\mathrm{P} / \mathrm{G}, 10 \%, 5) \\
=300 \times 3.791-20 \times 6.862=1137.2-137.2=\$ 1000
\end{gathered}
$$

EXHIBIT 3.21 Arithmetic gradient example for constant principal payment loan

The present worth of the payments equals the amount that was initially borrowed. Note that if the diagram is drawn from the viewpoint of the borrower, then $A=-\$ 300$ and $G=+\$ 20$.

EXAMPLE 3.17 Shifted Arithmetic Gradient

Operating and repair costs for some equipment will be $\$ 15,000$ per year for the 3-year warranty period. Beginning in year 4 , costs will climb by $\$ 2500$ per year. The equipment will be retired after 10 years. Find the present worth of these costs if the firm's interest rate is 12%.

SOLUTION

The first step is to recognize that the gradient begins with a zero value at the end of year 3 , so it is an 8 -year gradient (all but years 1 and 2). The " P " for gradient flows in years 3 through 10 is the end of year 2 , so a 2 -year (P / F) completes the calculation.

$$
\begin{aligned}
\mathrm{P} & =-15,000(P / A, 12 \%, 10)-2500(P / G, 12 \%, 8)(P / F, 12 \%, 2) \\
& =-15 \mathrm{~K} \times 5.650-2.5 \mathrm{~K} \times 14.471 \times .7972=-\$ 113.6 \mathrm{~K}
\end{aligned}
$$

EXHIBIT 3.22 Shifted arithmetic gradient

Arithmetic Gradient Formulas. The formulas for the arithmetic gradient can be derived just as the annuity formulas were (see Problem 3.58). They are shown in Equations 3.17 through 3.21.

$$
\begin{align*}
(A / G, i, N) & =1 / i-N /\left[(1+i)^{N}-1\right] \tag{3.17}\\
& =\left[(1+i)^{N}-i N-1\right] /\left[i(1+i)^{N}-i\right] \\
(P / G, i, N) & =1 / i^{2}-N /\left[i(1+i)^{N}\right]-1 /\left[i^{2}(1+i)^{N}\right] \tag{3.18}\\
& =\left[(1+i)^{N}-i N-1\right] /\left[i^{2}(1+i)^{N}\right]
\end{align*}
$$

These formulas can be derived by beginning with

$$
(F / G, i, N)=(F / A, i, N-1)+(F / A, i, N-2)+\cdots+(F / A, i, 1)
$$

which, through algebra, can be shown to lead to Equation 3.19.

$$
\begin{equation*}
\left.(F / G, i, N)=\left[(1+i)^{N}-1\right] / i^{2}-N / i\right] \tag{3.19}
\end{equation*}
$$

The gradient formulas can also be restated using the previously derived factors:

$$
\begin{align*}
(A / G, i, N) & =(N / i)[1 / N-(A / F, i, N)] \\
& =1 / i-N(A / F, i, N) / i \tag{3.20}\\
(P / G, i, N) & =(1 / i)[(P / A, i, N)-N(P / F, i, N)] \tag{3.21}
\end{align*}
$$

3.7 Geometric Gradients

A geometric

gradient is a cash flow that increases or decreases at a constant rate.

Geometric Gradients Change at a Constant Rate. The last section presented factors for an arithmetic gradient, G, that changed by a constant amount each period. The real world often has cash flows that have a constant rate of change. This type of cash flow is a geometric gradient (also known as an escalating series). A salary that increases 6% per year is increasing geometrically, just as a market demand that decreases 15% per year is decreasing geometrically.

Many geometric gradients come from population levels where changes over time are best modeled as a percentage of the previous year. The percentage or rate is constant over time, rather than the amount of the change, as in the arithmetic gradient.

Consider an engineer whose starting salary is $\$ 30,000$ per year, with an expected increase of 6% per year for the next 15 years. Six percent of $\$ 30,000$ is $\$ 1800$, and an arithmetic gradient of $\$ 1800$ leads to a final salary of $\$ 55,200$. However, as shown on the geometric curve of Exhibit 3.23, a constant 6% rate of increase leads to a final salary of $\$ 67,827$. Thus, a geometric gradient leads to a final salary that is 23% larger than that of an arithmetic gradient.

The difference between arithmetic and geometric gradients is greater for larger rates of change and longer time periods. For a short time interval at a low percentage change, it

EXHIBIT 3.23 Geometric and arithmetic salary increases

may not matter which model we use. Often, the geometric model will be more accurate, and the simpler arithmetic model might be misleading.

The Basic Geometric Formula. To calculate the values that are graphed in Exhibit 3.23 , we rely on the basic compound interest equation. The only change is that the value at the end of the first year is the base. Thus, the $\$ 30,000$ salary is assumed to occur at the end of the first year rather than at time 0 .

The formula for the value in year t is Equation 3.22, where g is the rate of the geometric gradient. This formula is easy to use, but restating it recursively makes the constant rate of change even clearer (see Equation 3.23). This recursive format is easier to use in spreadsheets.

$$
\begin{gather*}
\mathrm{A}_{t}=A_{1}(1+g)^{(t-1)} \tag{3.22}\\
\mathrm{A}_{t}=A_{t-1}(1+g) \tag{3.23}
\end{gather*}
$$

For example, applying the recursive model to the engineer's salary leads to $A_{1}=\$ 30,000$, $A_{2}=A_{1} \times 1.06=\$ 31,800$, and $A_{3}=A_{2} \times 1.06=\$ 33,708$. The raise for year 2 is $\$ 1800$, and for year 3 it is $\$ 1908$. This also illustrates why we need geometric gradients. The raise for the second year will be based on many factors (the engineer's performance, the firm's profitability, the rate of inflation, and the current market for that engineering specialty). However, it will almost certainly be thought of by both the firm and the engineer as a percentage increase over the current salary. This is a geometric gradient, and it is compound growth.

Growth at a constant rate is often the best model of future product sales, of traffic on a new highway, or of the population served by a public project. Often, as shown in Example 3.18 , the average growth rate for the past is projected into the future.

EXAMPLE 3.18 Growth Rate for Engineering Services

Exhibit 3.24 details the number of engineering person-years in your department over the last 6 years. Estimate the average rate of change so that you can project needs over the next 10 years.

SOLUTION

The year-by-year percentage increases cannot be averaged to get the average rate of change. That wrong answer would be 14.44%. Using Equation 3.22, where $A_{1}=10.5$ and $A_{6}=20.3$ is the correct way to find the average rate of change, g.

The Four Geometric Rates. Future costs and revenues are often estimated as changing at the same rate as in the past. For example, to find the present worth of computing costs in a growing engineering department over the next decade, we need to estimate the geometric rates for:

- Number of computers needed (growing with the number of staff)
- Cost of each computer (historically this is falling)
- Inflation (which decreases the value of each dollar)
- Interest rate (time value of money)

To generalize this example, geometric rates are used to model:

- Changing volume
- Changing prices for an item (commodity's inflation rate)
- Changing value of the dollar (economy's inflation rate)
- Interest rate

This chapter covers two of these geometric gradients-those for changes in volume and for compound interest. The next subsection briefly discusses inflation.
$g \equiv$ rate of change in the volume of the item
$i \equiv$ interest rate for money's time value

Inflation is an increase in the prices of purchased items due to decreases in the value of the dollar (or other monetary unit).

Inflation. The two geometric gradients linked to inflation-those for an item's price and for the value of a dollar-are detailed in Chapter 15. The salary increase for the engineer in Exhibit 3.23 is an example of increases in the dollars per unit-in this case, dollars per year of work. To calculate the purchasing power or real value of the engineer's salary, an estimate of inflation in the economy is also needed.

If the price of an item is inflating, then more dollars (pesos, yen, etc.) will be needed to buy it in the future than now. If an economy is inflationary, then the prices of most or all items are increasing. Deflation (prices are falling) is rarer than inflation for an economy, but it does occur. Falling prices also occur for computers and some commodities.

When the inflation rate is 5\%, most goods cost 5\% more each year. Even though a particular item might have a different inflation rate, the best possible forecast may still be 5\% per year.

For example, if a salvage value is stated as 10% of the first cost or if the operating cost of a chemical plant is forecast to be $\$ 15 \mathrm{M}$ per year for 10 years, then these costs have been adjusted for inflation. Costs have been estimated in constant-value dollar terms. We need only ensure that the interest rate is for a real rate of return, without an allowance for inflation.

Suppose those same operating costs are described as \$15M the first year, with yearly increases of 3%. Then, we examine the basis of the 3% rate of increase. If the equipment is operating at a 3% greater volume each year or it needs 3% more maintenance each year, then maintenance has a volume-related geometric gradient (covered here). If the 3\% increase is due to inflation, then the more complex analysis presented in Chapter 15 is needed to consider both the inflation rate in the operating costs and the inflation rate in the economy. If the 3% rate includes changes in volume and differential inflation (the difference between the inflation rate for the item and for the economy), then we have a single geometric gradient, g.

Mathematical Model for PW. Finding the PW of a cash flow with a geometric gradient, g, can be expressed mathematically as shown in Exhibit 3.25. Notice that Equation 3.22 is used, since the years 3 to $t-1$ are not included. If every year will be included, then it may be easier to use the recursive formula, Equation 3.23.

Present Worth Formula for a Single Geometric Gradient. Algebra can be used to develop Equations 3.24 and 3.25 (see Problem 3.76). This formula defines g as the constant rate of geometric change for a uniform periodic cash flow-that is, the A_{1} at the end of the first period. Thus, the cash flow is $(1+g) A_{1}$ at the end of period 2 , and $(1+g)^{t-1} A_{1}$ for period t.

For $i \neq g$,

$$
\begin{equation*}
(P / A, g, i, N)=\left[1-(1+g)^{N}(1+i)^{-N}\right] /(i-g) \tag{3.24}
\end{equation*}
$$

For $i=g$,

$$
\begin{equation*}
(P / A, g, i, N)=N /(1+i) \tag{3.25}
\end{equation*}
$$

Example 3.19 applies Equation 3.24. Whether $(P / A, g, i, N)$ is smaller or greater than N depends on the relative importance of the difference between the two rates and the one-period

EXHIBIT 3.25 Mathematical model of volume change and present worth

Period	Base Amount	\boldsymbol{g} \% Volume Change	\boldsymbol{i} PW Factor	Present Worth (PW)
1	100	1.0	$1 /(1+i)^{1}$	$100 /(1+i)$
2	100	$1+g$	$\frac{1}{(1+i)^{2}}$	$\frac{100(1+g)}{(1+i)^{2}}$
t	100	$(1+\mathrm{g})^{(t-1)}$	$\frac{1}{(1+i)^{t}}$	$\frac{100(1+g)^{(t-1)}}{(1+i)^{t}}$

delay before g starts. If g is greater than i, then $(P / A, g, i, N)$ will generally exceed N, as in Example 3.20. Note that an easy check for this formula is to let $g=0$ (see Problem 3.75).

These formulas can also be used for problems with different gradient rates over time, but as shown in Example 3.21, there must be separate calculations for the year(s) when the gradient rates change.

Susan works in the electrical and mechanical engineering department of MidWestTech. She is evaluating the benefits of installing a more efficient motor on one of the assembly lines. The line is producing (and operating) 8\% more each year. The more efficient motor has no salvage value after a life of 5 years, costs $\$ 3000$ more installed, and will save $\$ 800$ the first year. What is the PW if MidWestTech uses an i of 10% ?

SOLUTION

In this case, $A_{1}=\$ 800, N=5, g=8 \%$, and $i=10 \%$

$$
\begin{aligned}
(P / A, 8 \%, 10 \%, 5) & =\left[1-(1+.08)^{5}(1+.1)^{-5}\right] /(.1-.08) \\
& =(1-.9123) / .02=4.3831
\end{aligned}
$$

Since $g<i$, a check on our calculations shows that 4.3831 is less than $N=5$.

$$
P W=-3000+800 \times 4.3831=\$ 506.5
$$

Susan (of Example 3.19) can install the same more-efficient motor in another assembly line. This other line is producing (and operating) 25% more each year. The more efficient motor has no salvage value after a life of 5 years, costs $\$ 3000$ more installed, and will save $\$ 800$ the first year. What is the PW if MidWestTech uses an i of 10% ?

SOLUTION

In this case, $A_{1}=\$ 800, N=5, g=25 \%$, and $i=10 \%$.

$$
\begin{aligned}
(P / A, 25 \%, 10 \%, 5) & =\left[1-(1+.25)^{5}(1+.1)^{-5}\right] /(.1-.25) \\
& =(1-1.8949) /(-.15)=5.9660
\end{aligned}
$$

Since g is much greater than i, a check on our calculations shows that 5.9660 exceeds $N=5$.

$$
\mathrm{PW}=-3000+800 \times 5.9660=\$ 1773
$$

EXAMPLE 3.21 Northern Machine Tools

Jose is evaluating whether a new product should go through final design and into production, which will cost $\$ 225 \mathrm{~K}$. Revenues will be $\$ 30 \mathrm{~K}$ higher than production costs for the first year. This net revenue will increase at 20% per year for 3 years and then at 10% per year for the last 6 years of its life. If Northern Machine Tools uses an i of 12%, should the product be developed?

SOLUTION

The first step is to calculate the net revenue for year 5, Revenue ${ }_{5}$, which is the first or base year for the second gradient. This includes a 10\% geometric gradient for year 5 .

$$
\text { Revenue }_{5}=30 \mathrm{~K} \times 1.2^{3} \times 1.1=\$ 57,024
$$

The second step is to draw the cash flow diagram. Note that only the first cost of $\$ 225 \mathrm{~K}$ and two values for the revenue stream $(\$ 30 \mathrm{~K}$ and $\$ 57,024)$ are shown. The other revenue cash flows do not need to be calculated.

The third step is to calculate the two P / A factors for the geometric gradients (20% for 4 years and 10% for 6 years). Remember that both geometric gradients are zero for their first year.

$$
\begin{aligned}
&(P / A, 20 \%, 12 \%, 4)=\left[1-(1+.2)^{4}(1+.12)^{-4}\right] /(.12-.2) \\
&=(1-1.3178) /(-.08)=3.9726 \\
&(\mathrm{P} / \mathrm{A}, 10 \%, 12 \%, 6)=\left[1-(1+.1)^{6}(1+.12)^{-6}\right] /(.12-.1) \\
&=(1-.8975) / .02=5.1236 \\
& \mathrm{PW}=-225 \mathrm{~K}+30 \mathrm{~K}(P / A, 20 \%, 12 \%, 4) \\
&+57.0 \mathrm{~K}(P / A, 10 \%, 12 \%, 6)(P / F, 12 \%, 4) \\
&=-225 \mathrm{~K}+30 \mathrm{~K} \times 3.9726+57.024 \mathrm{~K} \times 5.1236 \times .6355=\$ 79,851
\end{aligned}
$$

Using Equivalent Discount Rates for Geometric Gradients. Geometric gradients assume a constant rate of change, g, applied to a base amount. This assumption permits development of an equivalent discount rate, x, which is a single interest rate, that replaces both g and i. This interest rate is usually not an integer, so it is most useful with financial calculators and spreadsheets.

As before, A_{1} is defined as the base periodic cash flow at the end of the first period. To find the PW, Equations 3.26 and 3.27 are developed from the following equation:

$$
\begin{align*}
& \qquad \begin{aligned}
\mathrm{PW} & =A_{1}\left[1 /(1+i)+(1+g)^{1} /(1+i)^{2}+\cdots+(1+g)^{N-1} /(1+i)^{N}\right] \\
& =A_{1}\left[(1+g)+(1+i) /(1+g)^{2} /(1+i)^{2}+\cdots+(1+g)^{N} /(1+i)^{N}\right] /(1+g) \\
\mathrm{PW} & =\frac{A_{1}}{(1+g)} \sum_{t=1}^{N} \frac{(1+g)^{t}}{(1+i)^{t}}
\end{aligned} \\
& \text { If } g<i, \text { let }(1+x)=(1+i) /(1+g) . \\
& \qquad \mathrm{PW}=\left[A_{1} /(1+g)\right](P / A, x, N)
\end{align*}
$$

If $\mathrm{g}=i$,

$$
\begin{equation*}
\mathrm{PW}=\left[A_{1} /(1+g)\right] N \tag{3.27}
\end{equation*}
$$

If $g>i$, where volume is increasing rapidly, then the x as calculated in Equation 3.26 would be negative. We have no tables for negative interest rates. However, defining x inversely and forming a summation for a future worth calculation leads to a similar result. First, the limits of the summation are reduced by 1 by pulling $(1+g) /(1+i)$ outside of the summation. Then,

$$
\mathrm{PW}=\frac{A_{1}}{(1+i)} \sum_{t=0}^{N-1} \frac{(1+g)^{t}}{(1+i)^{t}}
$$

If $g>i$, let $(1+x)=(1+g) /(1+i)$.

$$
\begin{align*}
\mathrm{PW} & =\frac{A_{1}}{(1+i)} \sum_{t=0}^{N-1}(1+x)^{t} \\
& =\left[\mathrm{A}_{1} /(1+i)\right](F / A, x, N) \tag{3.28}
\end{align*}
$$

Note 1: We are using a future worth factor to calculate a PW.
Note 2: If $g<i$, we divide A_{1} by $1+g$, but if $g>i$, we divide A_{1} by $1+i$.

Susan works in the electrical and mechanical engineering department of MidWestTech. She is evaluating the benefits of installing a more efficient motor on one of the assembly lines. The line is producing (and operating) 8\% more each year. The more efficient motor has no salvage value
after a life of 5 years, costs $\$ 3000$ more installed, and will save $\$ 800$ the first year. What is the PW if MidWestTech uses an i of 10% ?

SOLUTION

In this case, $A_{1}=\$ 800, N=5, g=8 \%$, and $i=10 \%$. Since $g<i$, then

$$
\begin{aligned}
x= & (1+i) /(1+g)-1=1.1 / 1.08-1=1.85 \% \\
& (P / A, 1.85 \%, 5)=4.7338 \\
P W=- & -3000+800 \times 4.7338 / 1.08=\$ 506.5
\end{aligned}
$$

Note: This answer matches those of Example 3.19.

EXAMPLE 3.23 High Geometric Gradients (based on Example 3.20)

Susan (of Example 3.19) can install the same more-efficient motor in another assembly line. This other line is producing (and operating) 25% more each year. The more efficient motor has no salvage value after a life of 5 years, costs $\$ 3000$ more installed, and will save $\$ 800$ the first year. What is the PW if MidWestTech uses an i of 10% ?

SOLUTION

In this case, $A_{1}=\$ 800, N=5, g=25 \%$, and $i=10 \%$. Since $g>i$, then

$$
\begin{aligned}
x= & (1+g) /(1+i)-1=1.25 / 1.1-1=13.64 \% \\
& (F / A, 13.64 \%, 5)=6.5626 \\
\mathrm{PW}= & -3000+800 \times 6.5626 / 1.1=\$ 1772.8
\end{aligned}
$$

which matches the answer to Example 3.20.

3.8 Summary

In this chapter, the basic cash flow elements $(P, F, A, i, N$, and G) were defined. P occurs at time 0 or the beginning of period $1 . F$ occurs at the end of period N. A occurs at the ends of periods 1 through N. Finally, an arithmetic gradient series has end-of-period cash flows of 0 , $G, 2 G, \ldots,(N-1)$. These cash flow elements are the basis of the tabulated factors, and a match for the level of detail in many feasibility analyses and preliminary economic analyses.

These elements are combined into the engineering economy factors: $(P / F, i, N)$, $(F / P, i, N),(P / A, i, N),(A / P, i, N),(A / F, i, N)$, and $(F / A, i, N)$. The periods for i and N must be the same, and the proper notation for i is percentages or decimals- 5% or .05 , not 5 . Interpolation for values of factors, where i or N is not tabulated, is best done using similar triangles.

The single-payment factors, $(P / F, i, N)$ and $(F / P, i, N)$, were applied to the problem of finding an interest rate. Representative values of the factors were graphed, and the limits over i and N were discussed.

The formulas for the annuity factors, $(P / A, i, N),(A / P, i, N),(A / F, i, N)$, and $(F / A, i, N)$, were developed. Representative values of the factors were graphed, and the limits over i and N were discussed. Interpolation for an unknown i was presented.

Deferred annuities, such as annual repair costs after a warranty period, and beginning-of-period annuities, such as lease payments, were developed as examples of the many ways the factors are used in combination. Cash flow equations that combine (P / A) and (P / F) factors were linked to the cash flow diagrams. Formulas that permit the calculation of one factor from another were presented.

Two factors for the arithmetic gradient series, $(A / G, i, N)$ and $(P / G, i, N)$ were developed. These series assume a $\$ 0$ cash flow at the end of the first period, because the arithmetic gradient series is usually combined with an annual series. The formulas for the arithmetic gradient factors were given.

This chapter has covered geometric gradients, which are cash flows modeled by a constant rate of change. Geometric gradients due to changes in a physical volume, such as the number of items manufactured and sold each year or the amount of electricity generated each year, and due to the time value of money were covered. Geometric gradients due to inflation are covered in Chapter 15.

REFERENCE

"Report of the Engineering Economy Subcommittee (Z94.5) of the ANSI Z94 Standards Committee on Industrial Engineering Terminology," The Engineering Economist, Volume 33 Number 2, Winter 1988, pp. 145-151.

Problems

$3.1 \quad(P / F 8 \%, 43)$ is not tabulated.
(a) Find the value using the appropriate formula.
(b) Find the value by interpolating between $N=40$ and $N=45$.
(c) How far off is the interpolation?
(Answer: absolute error of .00095 , relative error of 2.6%)
$3.2 \quad(P / F, 10 \%, 37)$ is not tabulated.
(a) Find the value using the appropriate formula.
(b) Find the value by interpolating between $N=35$ and $N=40$.
(c) How far off is the interpolation?
$3.3 \quad(P / F, 8.6 \%, 10)$ is not tabulated.
(a) Find the value using the appropriate formula.
(b) Find the value by interpolating between 8% and 10%.
(c) How far off is the interpolation?
(Answer: absolute error of .00017 , relative error of $.38 \%$)
$3.4 \quad(P / F, 12.3 \%, 20)$ is not tabulated.
(a) Find the value using the appropriate formula.
(b) Find the value by interpolating between 12% and 13%.
(c) Find the value by interpolating between 10% and 15%.
(d) How much better is the tighter interpolation?
3.5 HiTek Manufacturing has agreed to license an industrial process to another firm. That firm will pay $\$ 5$ million when it licenses the process, which may happen at any time during the next 10 years. The firm's interest rate is 8%. What is the present worth if
the license is issued at the end of year 3? Year 5? Year 10? (Answer: $\mathrm{PW}_{5}=\$ 3.40 \mathrm{M}$)
3.6 Graph the answer for Problem 3.5 for years 1 to 10 .
3.7 If you can make 6% interest on your money, how much is $\$ 1000$ paid to you 6 years in the future worth to you now? Assume annual compounding.
3.8 Johnny B. Good wishes to have $\$ 3000$ after 3 years in an account that draws 6% nominal interest compounded monthly. How much must he deposit each month, starting in 1 month?
3.9 Paul Randolph, a first-round NFL draft selection, signs a contract that pays him \$750,000 for signing. If Paul's agent invests the total sum at 12% nominal interest compounded monthly, how much will Paul have at the end of 2 years? (Answer: $\$ 952,500$)
3.10 A company in Texas will "buy" inheritances before they are actually received. If you will receive $\$ 20,000$ when a rich aunt dies, how much would you accept now for this future inheritance? Money is worth 8% to you, and you "guesstimate" that your aunt will live 6 more years. (Answer: $\$ 12.60 \mathrm{~K}$)
3.11 George expects to inherit $\$ 500,000$ someday from his grandparents. Assuming that it happens in 10 years, graph the present worth as a function of the interest rate. Include rates of $0 \%, 5 \%, 10 \%, 15 \%$, and 20%. (George does not know what interest rate he should use.)
3.12 George (of Problem 3.11) does not really know when the inheritance will come. Assume 10 years and a 10% interest rate. Consider the present worth again.
(a) Which has more effect: halving the life or halving the interest rate?
(b) Which has more effect: doubling the life or doubling the interest rate?
3.13 What is the monthly payment for a 3-year new car loan when the nominal interest rate is 12% ? After rebates, down payments, and other charges, the amount borrowed was $\$ 10,500$. (Answer: $\$ 348.6$)
3.14 A young engineer wishes to buy a house, but she can only afford monthly payments of $\$ 500$. Thirty-year loans are available at 12% interest with monthly payments. If she can make a $\$ 5000$ down payment, what is the most expensive house she can afford?
3.15 Using a credit card, Tim Settles has just purchased a stereo system for $\$ 975$. If he makes payments of $\$ 45$ per month and the interest rate is 18% compounded monthly, how long will it take to pay off the loan?
3.16 Murphy Morsels just bought a new chocolate-chipmaking machine for $\$ 25,000$. Murphy's old machine was taken as a trade and was valued at $\$ 5000$. Also, Murphy received a 5% discount on the new machine's price after the trade-in allowance. Murphy plans on making monthly payments for 3 years with 12% nominal interest. What is the monthly payment?
3.17 Nichols Electric expects to replace a $\$ 500,000$ piece of equipment in 4 years. It plans to accumulate the necessary funds by making equal monthly deposits into a bank fund that earns $\frac{3}{4} \%$ per month. What is the monthly deposit? (Answer: \$8700)
3.18 To buy a new automobile, Brian Williams takes out a loan of $\$ 12,000$ at 6% interest with monthly payments over 5 years. How much is each monthly payment? How much interest is paid over the loan's life?
3.19 Barb Jones wants to buy a new home, which costs $\$ 87,500$. Barb is planning to make a 10% down payment. If Barb can obtain a loan at 9% with monthly payments, how much will each payment be if the loan is paid off over 30 years? Ignoring the time value of money, how much money could Barb save if the loan was for 20 years at 9% interest and a 15\% down payment?
3.20 Cranford Cranberry Bogs just purchased new waterwhipping equipment for $\$ 100,000$. Cranford agreed to repay the loan over a period of 10 years with semiannual payments. The loan's interest rate is 8%. Determine the payment amount and the total finance charge. (Answer: total finance charge $=\$ 47.2 \mathrm{~K}$)
3.21 Bob and Mary Johnson are expecting their first child. They have decided to deposit $\$ 1000$ into a savings account that pays 6% interest compounded annually on the day the child is born. They will then deposit $\$ 1000$ on each birthday through the child's 18th birthday. How much money will be in the account on the child's 19th birthday to finance a college education? (Answer: $\$ 35,786$)
3.22 HiTek Manufacturing is purchasing a large tract of land for a new facility. Its loan is for $\$ 3$ million, and it will be paid off in 15 equal annual payments. If the interest rate is 10%, how much is each payment?
$3.23(P / A, .064,10)$ is not tabulated.
(a) Find the value using the appropriate formula.
(b) Find the value by interpolation.
(c) How far off is the interpolation?
$3.24(P / A, i, 10)$ is 6.503 . What is i ?
3.25 E.Z. Money, who owns a chain of nightclubs, needs to borrow $\$ 20,000$ to remodel the local dive. Ima Shark offers to loan the $\$ 20,000$ to Money for 24 months. Money must make monthly payments of $\$ 1118$. Determine the loan's (a) monthly interest rate and (b) effective annual interest rate.
3.26 A new product will generate net revenues of $\$ 600,000$ per year. The interest rate is 10%.
(a) What is the present worth of the revenue stream if the life is 6 years? 12 years?
(b) Graph the present worth for lives of 1 to 20 years.
3.27 A lottery pays the winner $\$ 1$ million, in 20 equal payments of $\$ 50,000$. The payments are received at the end of the year, and the winner's interest rate is 12%. What is the present worth of the winnings?
3.28 Graph the answer for Problem 3.27 for interest rates ranging from 0% to 20%.
3.29 For the new product in Problem 3.26, the interest rate is also uncertain. Assume the interest rate is 10% and the life is 6 years.
(a) Which has more effect: halving the life or doubling the interest rate?
(b) Which has more effect: doubling the life or halving the interest rate?
(c) Do your answers to parts a and b change if the life is 20 years rather than 6 years?
3.30 What is the present worth of the following cash flows?
(a) $\$ 1400$ per year for 8 years at 9%.
(b) $\$ 1400$ per year starting in year 4 and continuing through year 11 at 9%.
3.31 The first lottery payment in Problem 3.27 will not be received until the end of the third year. What is the present worth if the interest rate is 12% ?
3.32 Determine the present value of 10 monthly lease payments of $\$ 1000$ if the nominal interest rate is 9%. (Answer: \$9672)
3.33 Creekside Engineering will pay $\$ 24,000$ per year for errors and omissions liability insurance. What is the present worth of the coverage for 10 years? (Firms similar to Creekside average one claim every 10 years.) The interest rate is 9%.
3.34 Creekside Engineering pays $\$ 3000$ per month to lease its office space. If the nominal annual interest rate is 12%, what is the present worth of 1 year's lease payments?
3.35 How can the tables of single-payment factors be used to compute $(P / F, i, 200) ?(P / F, i, 150)$?
3.36 How can the tables be used to compute $(P / A, i, 200)$? ($P / A, i, 150)$?
3.37 Matuk Construction has purchased some earthmoving equipment that comes with a 2 -year warranty. Repair costs are expected to be $\$ 1500$ per year, beginning in year 3 and continuing through the equipment's 10 -year life. What is the PW of the repair expenses if the interest rate is 9% ?
(Answer:-\$6988)
3.38 MicroTech expects to receive royalties of $\$ 750 \mathrm{~K}$ per year on a patent. The royalties begin at the end of year 4 and continue through year 11. If the interest rate is 8%, what is the PW of the royalties?
3.39 Harry recently graduated in engineering. His employer will give him a raise of $\$ 2500$ per year if he passes the FE (Fundamentals of Engineering exam). Over a career of 40 years, what is the PW of the raise at $i=7 \%$?
3.40 Sylvia graduated 5 years ago in civil engineering. If she passes the PE (Professional Engineering exam), her employer will give her a raise of $\$ 10,000$ per year. Over the remaining 35 years in her career, what is the PW of the raise at $i=8 \%$?
3.41 You want to bank enough money to pay for 4 years of college at $\$ 15,000$ per year for your child. The savings account will pay an effective rate of 6% per year. The first annual payment for tuition and for room and board is made on your child's 18 th birthday. If you deposit the money on your child's 3rd birthday, how much must you deposit?
3.42 Helen pays rent of $\$ 400$ per month for the academic year (September through May). She is going to Australia for the summer and won't be working. How much must she set aside in her savings account on June 1 to pay her rent for the next year? The account pays 6% interest with monthly compounding.
3.43 A factory reorganization is expected to save $\$ 40,000$ per year. It will cost $\$ 225,000$ at time 0 . If the interest rate is 12%, how many years does it take to recover the capital cost?
3.44 A heat exchanger costs $\$ 36,000$, but it will save $\$ 5000$ per year in energy costs. If the interest rate is 10%, how many years does it take to recover the capital cost?
3.45 How much difference is there when the assumption changes from beginning- to end-of-period payments in:
(a) Problem 3.33?
(b) Problem 3.34?
3.46 Equation 3.11 multiplied the end-of-period factor by $(1+i)$ to calculate a value for beginning-of-period cash flows. For a middle-of-period cash flow, the adjustment is $\sqrt{(1+i)}$. Apply this principle to calculate the present worth of the annual payroll of HiTek Manufacturing over the next 10 years. Employees are paid every 2 weeks, so on average, they are paid in the middle of the year, not at the end. The annual payroll is $\$ 650,000$. The interest rate is 12%.
3.47 Prove the following relationships algebraically:
(a) $(A / F, i, N)=(A / P, i, N)-\mathrm{i}$
(b) $(P / F, \mathrm{i}, N)=(P / A, i, N)-(P / A, i, N-1)$
(c) $(P / A, i, N)=(P / F, i, 1)+(P / F, i, 2)+\cdots$ $+(P / F, i, N)$
(d) $(F / A, i, N)=[(F / P, i, N)-1] / i$
3.48 What is the PW of the following cash flows?
(a) $\$ 2800$ per year for 9 years at 8%.
(b) $\$ 2800$ per year starting in year 4 and continuing through year 12 at 8%.
(c) $\$ 2800$ for the first year and decreasing by $\$ 150$ for each of the next eight years at 8%.
3.49 Determine the present value at 9% interest of the following cash flow:

Year	1	2	3	4	$5-10$
Payment	$\$ 100$	100	150	175	200

3.50 Determine the present worth, at 12% interest, of the following maintenance costs.

Year	Cost
$1-4$	$\$ 10,000$
$5-8$	15,000
$9-10$	18,000

3.51 What is the present worth (at 7\%) of maintenance costs that start at $\$ 3500$ per year and then climb by $\$ 825$ per year over a 10 -year life?
(Answer: - $\$ 47,450$)
3.52 Determine the maximum amount that could be loaned at 8% interest if it is repaid as follows:

Year	1	2	3	4	5
Payment	$\$ 200$	400	600	800	1000

3.53 What is the present worth (at 8%) of an inheritance that begins at $\$ 8000$ per year next year and then falls by $\$ 500$ per year over its 16 -year life?
(Answer: \$44,676)
3.54 What is the present worth (at 12%) of maintenance costs that start in year 1 at $\$ 4500$ per year and then climb by $\$ 225$ per year when the warranty expires. Since the warranty expires at the end of year 3, the maintenance costs for year 4 are $\$ 4725$. The machine has a 10-year life.
3.55 Given the following cash flows, determine the equivalent uniform cash flow at 6% interest.

Year	1	2	3	4	5
Payment	$\$ 200$	300	400	500	600

3.56 The R\&D period for a new product will be 3 more years. Income of $\$ 350 \mathrm{~K}$ will be received at the end of year 4 . Beginning in year 5 and continuing through year 10 , income will rise $\$ 50 \mathrm{~K}$ per year. What is the equivalent present worth, if the interest rate is 12% ?
3.57 A new highway will take 2 years to construct. User benefits of $\$ 7$ million ($\$ 7 \mathrm{M}$) per year will start in year 3. Beginning in year 5, user benefits will increase by $\$ 1 \mathrm{M}$ per year. What is the present worth of the benefits over 20 years if $i=6 \%$?
3.58 Derive Equation 3.19 for the arithmetic gradient.
3.59 Show that Equation 3.20 is always positive for $i>0$.
3.60 Show that Equations 3.17 and 3.18 equal zero when N is 1 .
3.61 Find the limit for Equation 3.18 as N approaches infinity.
3.62 If the following two cash flows have the same present worth at i, which is preferred at $2 i$?

3.63 If the following two cash flows have the same present worth at i, which is preferred at $2 i$?
a.

b.

3.64 Sam receives a starting salary offer of $\$ 30,000$ for year 1 . If he expects a 4% raise each year, what is his salary for year 10? Year 20? Year 30? Year 40?
(Answer: $F_{30}=\$ 93,560$)
3.65 Assume that Sam (of Problem 3.64) receives an annual raise of $\$ 1200$. Compared with Problem 3.64, how much less is his salary in year 10? Year 20? Year 30? Year 40?
3.66 Smallville is suffering annual losses of taxable properties and property values of 1% each. Even so, Smallville must maintain its tax collections at a constant value of $\$ 3.2$ million to maintain services. What is the required rate of increase in the tax rate? Note: While Smallville uses a rate of 6% for the time value of money, that rate is irrelevant to this problem.
3.67 Net revenues at an older manufacturing plant will be $\$ 2 \mathrm{M}$ for this year. The profitability of the work will decrease 15% per year for 5 years, until the assembly plant will be closed (at the end of year 6). If the firm's interest rate is 10%, calculate the PW of the revenue stream.
3.68 What is the present worth of cash flows that begin at $\$ 10,000$ and increase at 8% per year when N is 4 years? The interest rate is 6%.
(Answer: \$38,817)
3.69 What is the present worth of cash flows that begin at $\$ 30,000$ and decrease by 15% per year ($N=6$ years)? The interest rate is 10%.
3.70 The ABC Block Company anticipates receiving from its investments $\$ 4000$ next year with increases of 5% per year. N equals 5 years. If ABC's interest rate is 8%, determine the present worth of the cash flows.
3.71 Felix Jones, a recent engineering graduate, expects a starting salary of $\$ 35,000$ per year. His future employer has averaged 5\% per year in salary increases for the last several years. What is the PW and equivalent annuity for Felix's salary over the next 5 years? Felix uses an interest rate of 6%.
(Answer: $\mathrm{PW}=\$ 162,009$)
3.72 Redo Problem 3.67.
(a) Using Equation 3.24 or 3.25 .
(b) Using Equation 3.26, 3.27, or 3.28.
3.73 Redo Problem 3.70.
(a) Using Equation 3.24 or 3.25 .
(b) Using Equation 3.26, 3.27, or 3.28.
3.74 Redo Problem 3.71.
(a) Using Equation 3.24 or 3.25 .
(b) Using Equation 3.26, 3.27, or 3.28.
3.75 Check Equation 3.24 by setting $g=0$ and comparing the result with the equation for $(P / A, i, N)$.
3.76 Derive Equation 3.24 for $(P / A, g, i, N)$.

Minicases

3.77 A sports star has the opportunity to defer some of his income. One choice is a contract for the next 6 years that starts at $\$ 1.2 \mathrm{M}$ with increases of $\$.3 \mathrm{M}$ each year thereafter. The deferred option starts at $\$.8 \mathrm{M}$ for the first year, and then it increases at $\$.2 \mathrm{M}$ each year for 10 years. If his interest rate for the time value of money is 8%, what is the value of each choice? Assume that he plays for the next 6 years.
3.78 Assume that you plan to retire 40 years from now and that you expect to need $\$ 2 \mathrm{M}$ to support the lifestyle that you want.
(a) If the interest rate is 5%, is the following statement approximately true? "Waiting 5 years to start saving doubles what you must deposit each year." What is the multiplier for the increase in the deposit?
(b) If the interest rate is 12%, is the required multiplier higher or lower than for the 10% rate in (a)?
(c) At what interest rate is the following statement exactly true? "Waiting 5 years to start saving doubles what you must deposit each year."
3.79 For winners of the California SuperLotto Plus, the choice is between a lump sum and annual payments that increase from 2.5% for the first year, to 2.7% for the second year, and then increasing by $.1 \%$ per year to 5.1% for the 26 th payment. The lump sum is equal to the net proceeds of bonds purchased to fund the 26 payments. This is estimated at 45% to 55% of the lump sum amount.

At what interest rate is the present worth of the two payment plans equivalent? For a preliminary answer assume the annual payment is $1 / 26$ of a total win of $\$ 13$ million. Since this means higher payments in early years, assume that the lump sum is 80% of the $\$ 13$ million. (For an exact answer see Problem 4.37.)
3.80 One retirement option is to buy an annuity that "lasts as long as you do." In other words you receive an annual payment each year until you die. The firm that offers the annuity bases its cost on the percentage of people in your rating class that are expected to die each year. By buying the annuity, you are reducing the chance that you will "outlive your savings." You can also buy an annuity that is for a specified period, such as 15 years. The annuity is
paid to you or your beneficiaries for that period and then it stops.

For example, suppose that you are 70 and you have $\$ 100,000$ to buy a 15 year specified life annuity. If it pays $\$ 9500$ annually, what is the present worth of the annuity at 5% ?

If you buy at age 70 a simple annuity that ends with your death, it has the same annual payout. In comparing the two annuities, what is the breakeven year for your death for the firm that offers the annuity?
3.81 Problem 3.46 presented an adjustment factor of $\sqrt{(1+i)}$ to increase factors based on an end-ofperiod assumption to better match cash flows that really occur spread evenly over a year. On a percentage basis, how important is this adjustment for a problem with a life of 20 years, an interest rate of 8%, and an annual cost of $\$ 10,000$? Does
doubling or halving the life make the adjustment more important? Does doubling or halving the interest rate make the adjustment more important? Does the life or the interest rate matter more in this case?

Cases

The following cases from Cases in Engineering Economy, $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 4 Balder-Dash Inc.

Standard cost and allocated costs vs. true marginal cost (IEs).

Case 5 Can Crusher

Basic time value of money, costs, and breakeven analysis.

Spreadsheets and Economic Analysis

- THE SITUATION AND THE SOLUTION

The last chapter covered single, uniform, linearly, and geometrically changing cash flows, but many cash flows do not fit these patterns. For example, population growth and product sales may increase at a constant rate while the cost or revenue per unit is changing by a constant amount-the cash flow is a product of the two gradients. Other problems have geometric and arithmetic gradients that change over time.

The solution is to model and evaluate these cash flows using spreadsheets. Since spreadsheets were developed for economic analysis, they have powerful tools to make modeling and analysis easy.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 4.1 Define the terms associated with spreadsheets.
SECTION 4.2 Create well-structured spreadsheet models efficiently.
SECTION 4.3 Demonstrate the power of spreadsheet financial functions.
SECTION 4.4 Model complex problems.
SECTION 4.5 Use spreadsheets to support funding requests.

- KEY WORDS AND CONCEPTS

Cell The basic element of a computerized spreadsheet. It corresponds to an entry in a table made up of columns and rows.
Absolute address Column and/or row reference that is fixed, so it does not change when the cell is copied to another location.
Relative address Column and/or row reference that is not fixed at that column or row. Amortization schedule Lists the principal paid, interest paid, and remaining balance for each period of a loan.

4.1 Using Spreadsheets for Economic Analysis

This section discusses why we use spreadsheets, and it introduces key terms. This chapter does not give a complete tutorial on spreadsheets. Such a tutorial is built into modern spreadsheets, along with copious help explanations and easy-to-use menus. It is easier and faster to learn by trying to build spreadsheets than it is to learn by reading about them. However, teaching experience has shown that some explanations are helpful.

Why Use Spreadsheets? Spreadsheets are the principal tool for the practice of engineering economy. In fact, spreadsheets were originally developed to analyze the financial data of businesses, and they are often credited with having fueled the explosive early growth in demand for desktop computing. The main advantages of spreadsheets are:

- They make it easy to construct year-by-year cash flow tables.
- Those cash flow tables are easily analyzed by functions to find the present worth and rate of return.
- Spreadsheet annuity functions are more powerful than the tabulated engineering economy factors.
- They allow easy "what if" calculations for different circumstances.
- The available graphics are useful for analysis and for convincing presentations.
- Their electronic format makes it easy for teams to share information and work together.
- They support more realistic models than can be solved with the tabulated engineering economy factors.

Reality and the Flexibility of Spreadsheet Models. The reality of engineering projects is that the annual revenues from selling a new product or annual benefits from using a new highway change each year as demand and traffic levels change. Often this follows a geometric gradient, which spreadsheets can easily include; but more complex patterns are common. For example, cumulative sales and market penetration of a new product often follow a technology growth curve or S-curve (see Chapter 16), where the volume in each year must be individually estimated.

Similarly, if a monthly model of energy use is built, then fluctuations in air-conditioning and heating costs can be accurately modeled in a spreadsheet. As a final example, consider the construction cost for a large project such as a new tunnel under the Hudson River, the new airport that Denver built, a new nuclear power plant, or a new professional sports stadium. The construction period may be from 3 to 10 years long, and the costs will be spread in a project-unique way over that time span. Spreadsheets are the correct way to model and analyze complex projects.

The Elements of a Spreadsheet. A spreadsheet's two-dimensional table labels the columns in alphabetical order: A to Z, AA to AZ, BA to BZ, etc. The rows are numbered. Thus, a cell of the spreadsheet is specified by its column letter and row number. For example, B7 is the 2nd column in the 7th row, and AA6 is the 27th column in the 6th row. Cells can contain a label, a numerical value, or a formula. Formulas can be a mix of functions, addresses, numerical values, and operators, such as *,),,+- , and \wedge.

A label is any cell in which the contents should be treated as text. Arithmetic cannot be performed on labels. Labels are used for row and column headings, to label variables, and as explanatory notes. In Excel ${ }^{\mathrm{TM}}$, any cell that contains more than a simple number is a

An absolute address is a column and/or row for a referenced cell that is fixed so it does not change when the cell is copied to another location. Often used for variables in the data block.

A relative address

is a column and/or row for a referenced cell that is not fixed at that column or row.
label, unless it begins with an = for a formula. Meaningful labels can be wider than a normal column. One solution is to let wide labels overlap into blank cells. Another is to "wrap" text, which is one of the "alignment" options.

A numerical value is any number. Acceptable formats for entry or display include percentages, currency, accounting, scientific, fractions, date, and time. It is possible to specify the number of decimal digits, the display of \$ symbols, and commas for "thousands" separators. The format for cells can be changed by selecting a cell, a block of cells, a row, a column, or the entire spreadsheet. Next, right click on the selected area, and a menu that includes "format cells" will appear. Then, number formats, alignment, borders, fonts, and patterns can be selected.

Formulas can include many functions-trigonometric, financial, statistical, etc.-that are part of a spreadsheet package (and others that can be defined by the user). These formulas can use numbers, such as 1.07 , or they can reference other cells by their address, such as B7. In Excel, formulas must begin with an $=$, such as $=3 * 4^{\wedge} 2$ or $=\mathrm{B} 7^{*} \mathrm{~A} 3$. The formula for the "current" cell is displayed in the formula bar at the top of the spreadsheet. The value resulting from the formula is displayed in the cell in the spreadsheet.

Relative and Absolute Addresses. A cell's address is its row and column designation, such as B7. This address is used in formulas that occur in other cells, such as having the formula $=\mathrm{A} 7 * \mathrm{~B} 7$ in the cell C 7 . For convenience in copying formulas from cell to cell, cell addresses can be relative, absolute, or a mixture.

An absolute address is denoted by adding dollar (\$) signs before the row and/or column, for example, $\$ \mathrm{~A} \$ 7$. When an absolute address is copied, the row and/or column that is fixed by the $\$ \operatorname{sign}$ (fixed means it does not change) is copied exactly. Thus, $\$ \mathrm{~A} 7 \mathrm{7}$ is completely fixed, \$A7 fixes the column, A\$7 fixes the row, and A7 fixes neither. When editing a formula, the F4 key toggles cell addresses through these four possibilities. One common use for absolute addresses is any data-block entry, such as the interest rate.

In contrast, a relative address is best interpreted as directions from one cell to another. For example, suppose cell C 4 contains $=\mathrm{A} 1 * \mathrm{~B} 1$. Cell A 1 is three rows higher and two columns to the left of cell C 4 , so the formula is really: "contents of ($3 \mathrm{up}, 2$ to the left) times contents of (3 up, 1 to the left)." When a cell containing a relative address is copied to a new location, it is these directions that are copied to determine any new relative addresses.

Example 4.1 in the next section will show how relative and absolute addresses are the key to writing formulas that can be copied to other rows and columns without needing further editing.

4.2 Spreadsheet Modeling

The following discussion emphasizes general principles and understanding rather than the details of how to do each item. Modern spreadsheets have easy-to-understand menus, and they seem to be revised relatively frequently. Thus, how-to explanations are both unneeded and likely to become outdated. So, for example, this text does not cover how to insert a row or select a range of cells.

The principles of good spreadsheet modeling include:

- Use data blocks.
- Define variables.
- Use relative and absolute addresses to effectively COPY.
- Label and annotate your spreadsheets.
- Format your spreadsheet.

Data blocks
prevent errors and save time.

Using a Data Block. A data block is simply a place where all input data are entered. The intent is to ensure that anyone using the spreadsheet can easily find what data has been entered into the model. The data block is typically found in the top-left corner of the spreadsheet, but on larger models, the data block may be an entire worksheet.

Because rows and columns can be inserted into the worksheet, it is easy to insert new data items in a logical order. Thus, each data item in the spreadsheet is entered in one and only one place.

Why is this recommended? Quite simply, it prevents errors and saves time. Spreadsheet models may be modified many times, so if there is no data block, it is easy to have two places where a data item is entered. Then, during modifications, only one may be changed-leading to errors. In addition, both in the classroom and the real world, different problems with an identical or similar structure are solved. With a data block it is easy to update for a new set of data.

In summary, data blocks are needed because

- Spreadsheet may be used for other problems.
- They prevent errors due to hard coded data.
- Solutions to simple problems grow into solutions for complex problems.
- Good habits, like using data blocks, are easy to maintain once established.
- Assumptions and values used are clear.

Defining Variables in a Spreadsheet. A basic principle of spreadsheet modeling is to use variables in your models. If your interest rate is 7%, define i as a variable whose value is .07 . Then, instead of using 1.07 in a formula, use $1+i$. That allows you to change the value of i and to instantly recompute every value in your spreadsheet. Entering numbers, such as 1.07 , into a formula is called "hard coding" your data, and it should never be done.

When you are solving real problems, using variables is essential, because it allows you to make better decisions. Basically, your data will not be exact, and you must try other possible values. This is called sensitivity analysis (see Chapter 17). For homework problems, you can use the same spreadsheet with only small changes from one problem to the next.

To use i as a variable, choose a cell such as B7 to contain the value of i. Then, in any formula that uses i, specify the cell (B7) rather than the value of $i(7 \%)$. To change i, only the value in B7 is changed; the rest of the spreadsheet is automatically recalculated.

The set of variables are placed together in the data block. It is possible to label the variables, such as i and N. This is done by clicking on the "name" for the current cell at the bottom left of the menu bar. These labels can then be used when entering formulas. However, the cell address replaces the name when editing formulas, which limits the usefulness of these names.

Using Relative and Absolute Addresses in Your Formulas. Relative and absolute addresses are the key to effective use of the COPY command. The COPY command is what makes economic models easy to build with spreadsheets.

If the cell or range of cells to be copied contains only labels, numbers, and functionsand no addresses - then the COPY command is easy to use and understand. The result is an exact copy at a new location.

If cell addresses are part of a formula that is being copied, then the process is more complicated. Any absolute addresses remain unchanged, while all relative addresses are updated for every cell the formula is copied to. Example 4.1 illustrates this.

Use a spreadsheet to create a table of present worth factors for $i=5 \%$ and $N=1$ to 10 .

SOLUTION

The first step in creating the spreadsheet shown in Exhibit 4.1 is to build the data block. In this case, that is simply the 5\% interest rate, in cell A1, and its label in cell B1. Then, the column of years and the heading for the (P / F) factors are created.

Copying formulas

	A	B	C	D
1	5%	Interest rate		
2				
3	Year	(P/F,i,N)	$=1 /(1+\mathrm{i})^{\wedge} \mathrm{N}$	
4	1	0.95238	$=1 /(1+\$ \mathrm{~A} \$ 1)^{\wedge} \$ \mathrm{~A} 4$	
5	2	0.90703		
6	3	0.86384		
7	4	0.82270		
8	5	0.78353		
9	6	0.74622		
10	7	0.71068		
11	8	0.67684		
12	9	0.64461		
13	10	0.61391	$=1 /(1+\$ A \$ 1)^{\wedge} \$ \mathrm{~A} 13$	

Then, the formula $\left(=1 /(1+\$ A \$ 1)^{\wedge} \$ A 4\right)$ is entered only into cell B4. This formula has been entered as a label in the adjacent cell C4. The formula references the interest rate using the absolute address $\$ A \$ 1$.

The year, in cell A4, is referenced with a mixed address of \$A4. In this case, we want the row reference to be a relative address (since A4 is one cell to the left of B4, where the formula is entered); when the formula is copied down into cells B5 to B13, the relative address for the year will increment from A5 to A13.

The COPY command can be invoked from the edit menu or by simply dragging the corner of the cell B6 down into B13. Thus, proper use of relative and absolute addresses supported writing one formula and copying to create the other nine needed.

An amortization schedule divides each scheduled payment into principal and interest, and it includes the outstanding balance for each period.

Explaining and Labeling Your Formulas. As you build your spreadsheet, you should label each variable in the data block. Similarly, results such as PW should also be labeled.

If your spreadsheet will be printed, like the ones in this text, then you should also annotate the spreadsheet to explain your formulas. This is unnecessary if the spreadsheet is used only on the computer, because the formulas are readily accessible. Annotating to explain formulas should be done as the spreadsheet is nearing completion. Once you're done inserting rows and columns into your spreadsheet, there is an easy way to add annotations to explain your formulas in printed copies of the spreadsheet. Explaining your spreadsheet formulas can be done by:

1. Converting the cell with the formula to a label (insert any character including a space before the $=$).
2. Copying that label to an adjacent cell.
3. Converting the original formula back into a formula from a label (delete the inserted character).

Many copy functions are easier using the "drag the right-hand corner" feature; however, this should not be used for copying labels. Some addresses will be incremented by the drag.

These explanatory notes make it easier for you to remember what you've done and for others to find any errors. If you later insert rows or columns so that the addresses in your formulas change, then you will need to update your labels. In Example 4.1, this is how the label in C4 was created. The formula in B4 was simply modified with a space before the $=$ to make it a label. In Exhibit 4.2 the label in B5 was created from the formula in A4.

Example 4.2 provides another example of using a data block, working with relative and absolute addresses, and labeling your spreadsheet. It calculates a loan repayment schedule or amortization schedule. Here, the first two payment periods are created, and then the second is copied for the remaining periods.

EXAMPLE 4.2 Creating a Loan Repayment (Amortization) Schedule

Create an amortization schedule for a 10-year loan with annual payments. The amount borrowed is $\$ 10,000$, and the interest rate is 5%.

SOLUTION

As shown in Exhibit 4.2, the first step is to create a data block with the interest rate, amount borrowed, and number of periods. This is the given data. The next entry, the annual payment, is the derived data. From Chapter 3, the annual payment is:

$$
\text { payment }=\$ 10,000(\mathrm{~A} / \mathrm{P}, .05,10)=10,000(.1295)=\$ 1295
$$

The PMT formula shown in the spreadsheet will be explained in the next section, but it calculates a payment for the given information (to more significant digits than available with the tabulated factors).

Creating an amortization table

	A	B	C	D	E
1	5\%	Interest rate			
2	\$10,000	Amount borrowed			
3	10	Number of periods			
4	\$1,295.05	Annual payment $=$ AmtBorrowed* $(\mathrm{A} / \mathrm{P}, \mathrm{i}, \mathrm{N})$			
5		$=-\mathrm{PMT}(\$ \mathrm{~A}$ 1,\$ A \$3,\$A\$2)			
6					
7		Beginning	Interest	Principal	Ending
8	Year	Balance	for Year	for Year	Balance
9	1	10000.00	500.00	795.05	9204.95
10					
11		$=\$ \mathrm{~A} \$ 2$		=\$A\$4-C9	
12			=\$A\$1*B9		=B9-D9

Completing an amortization schedule

	A	B	C	D	E
1	5\%	Interest rate			
2	\$10,000	Amount borrowed			
3	10	Number of periods			
4	\$1,295.05	Annual payment $=$ AmtBorrowed* $(\mathrm{A} / \mathrm{P}, \mathrm{i}, \mathrm{N})$			
5		$=-\mathrm{PMT}(\$ \mathrm{~A}$ 1,\$A\$3,\$A\$2)			
6					
7		Beginning	Interest	Principal	Ending
8	Year	Balance	for Year	for Year	Balance
9	1	10000.00	500.00	795.05	9204.95
10	2	9204.95	460.25	834.80	8370.16
11	3	8370.16	418.51	876.54	7493.62
12	4	7493.62	374.68	920.36	6573.25
13	5	6573.25	328.66	966.38	5606.87
14	6	5606.87	280.34	1014.70	4592.17
15	7	4592.17	229.61	1065.44	3526.73
16	8	3526.73	176.34	1118.71	2408.02
17	9	2408.02	120.40	1174.64	1233.38
18	10	1233.38	61.67	1233.38	0.00
19					
20		= E17		= \$A\$4-C	
21			= \$A\$1*B18		= B18-D18

Logic is used to define the columns. The beginning balance for period 1 (cell B9) is the amount of the loan ($=\$ \mathrm{~A} \$ 2$). The interest for year 1 (cell C9) is the interest rate $(\$ \mathrm{~A} \$ 1)$ times the beginning balance (B9). The principal payment (cell D9) is what is left over of the payment $(\$ A \$ 4)$ after paying the interest (C9). Finally, the ending balance (E9) is the beginning balance (B9) minus the principal payment (D9). Notice that data block items are given absolute addresses, and entries in the amortization table are given relative addresses.

Once the first year is complete, in the cell for the beginning balance in year 2 (cell B10) the formula equating it to the ending balance in year $1(=\mathrm{E} 9$) must be added. All other formulas are created by copying. As shown in Exhibit 4.3, each row in the table now references the correct cells. The absolute addresses have remained fixed, and the relative addresses have been incremented row by row.

Formatting Your Spreadsheets. Spreadsheets are easier to read and use if they are properly formatted. This includes:

- Numbers in the correct format-currency, \%, decimal.
- Numbers stated with appropriate accuracy-number of decimal digits.
- Default is usually two decimal digits, but only in loans (Example 4.2) does engineering economy need pennies. Thus, the default must often be changed.
- Numbers properly aligned.
- Centered under the label for their column.
- Aligned by the decimal point.
- Blank lines inserted as needed to separate major blocks of material.

Most of the commands for this formatting appear automatically in the top menu. Some can also be invoked by "right-clicking" on the cell, row, or column that you want to format.

As another example, the data blocks of these spreadsheets are laid out to use the default alignments of numbers and labels. The default alignment of numbers is right justified, while the default alignment of labels is left justified. That is why these data blocks place the values on the left and the labels on the right. This also allows long labels to spill over into adjacent cells.

Spreadsheets often become attachments to requests for funding or other documents. Thus, they should be neat and easy to follow.

4.3 Financial Functions in Spreadsheets

Among the many spreadsheet functions are two groups specifically designed for economic analysis. The first group is made up of the annuity functions, which are more powerful and flexible but closely analogous to the engineering economy factors that were presented in Chapter 3. The second group of functions are the block functions, which are used with a table of cash flows. In later chapters, we will talk about other groups of functions for loan calculations and for depreciation.

Spreadsheet Annuity Functions. In the tabulated engineering economy factors that are in Appendix C, i is the table, N is the row, and then two of P, F, A, and G define a

The Excel functions PV and FV use V for value, so $P V=P W$ and $F V=F W=$ future worth. NPER is the number of periods. RATE is the interest rate.
column. The corresponding spreadsheet annuity functions for P, F, and A are shown in Exhibit 4.4, along with additional functions for i and N. (See Problem 4.36 for G functions.) Exhibit 4.5 substitutes 0 s and 1 s in the functions of Exhibit 4.4 to state the equivalents of the engineering economy factors.

EXHIBIT 4.4 Summary of spreadsheet annuity functions

General Parameter order $(\boldsymbol{i}, \boldsymbol{N}, \mathbf{A}, \boldsymbol{P}, F)$
$-\mathrm{PV}(i, N, A, \quad F)$
$-\mathrm{PMT}(i, N, \quad P, F)$
$-\mathrm{FV}(i, N, A, P)$
$\operatorname{NPER}(i, \quad A, P, F)$
$\operatorname{RATE}(N, A, P, F)$

EXHIBIT 4.5 Converting factors to functions

ANSI factor	Excel equivalent
$(P / F, i, N)$	$-\mathrm{PV}(i, N, 0,1)$
$(F / P, i, N)$	$-\mathrm{FV}(i, N, 0,1)$
$(P / A, i, N)$	$-\mathrm{PV}(i, N, 1)$
$(F / A, i, N)$	$-\mathrm{FV}(i, N, 1)$
$(A / P, i, N)$	$-\mathrm{PMT}(i, N, 1)$
$(A / F, i, N)$	$-\mathrm{PMT}(i, N, 0,1)$

In Example 4.2, the PMT function was used to find the annual loan payment, $-\mathrm{PMT}(i, N, P)$, or using cell addresses, $-\mathrm{PMT}(\$ \mathrm{~A} \$ 1, \$ \mathrm{~A} \$ 3, \$ \mathrm{~A} \$ 2)$. Do not try to memorize the order of the parameters. Instead, rely on the helpful menu that pops up when the f_{x} button is clicked.

These spreadsheet functions can include four values from P, A, F, i, and N as nonzero values rather than assuming that one of P, A, and $F=0$. The capability to have four nonzero values makes the functions more powerful than the tabulated engineering economy factors. The optional Type variable switches between a default end-of-period assumption and a beginning-of-period assumption for the A argument or the PMT result.

These more powerful functions have the same sign convention and the same power as the functions built into many business calculators (such as those made by HewlettPackard). The sign convention is to calculate the value that leads to a present worth of zero for all cash flows, including the unknown value that is being found. Thus, the PV of positive cash flows is negative. For example, $=\mathrm{PV}(5 \%, 10,200)$ has a value of $-\$ 1,544.35$. Thus, a minus sign must often be used to correct the sign.

PV, PMT, and FV need a minus sign to match the normal sign conventions of engineering economy.

Commas can be used in spreadsheet functions only to separate parameters. Thus 10 million must be entered as 10000000.

In Exhibit 4.4, there is a minus sign with the PV, so that the payment is stated in positive dollars. The sign convention for the annuity functions is arbitrary and can be confusing. However, with the very large number of existing spreadsheets, the cost of changing to a more intuitive sign convention is prohibitive.

The easiest way to deal with this sign convention is use the normal sign convention for all cash flows-positive cash flows are receipts. Then, place a minus sign in front of the Excel functions that find the PV, PMT, and FV. Another choice is to place the minus symbol in front of each cash flow for PV, PMT, and FV. There is no problem with the sign convention for the NPER and RATE annuity function; however, if A, P, and F all have the same sign, there is no valid answer.

Sometimes, a simple, one-line spreadsheet equation will answer a homework problem or a question in engineering practice. For example, how much will you have on deposit after 5 years if you deposit $\$ 500$ now, then $\$ 100$ every month into an account with a nominal interest rate of 6%. There are 60 monthly periods and a monthly interest rate of $1 / 2 \%$. The unknown is a future value.

$$
\text { Total deposit }=-\mathrm{FV}(.005,60,100,500)=\$ 7651.43
$$

As another example, a car dealer is offering 0% down financing. With all taxes, registration, and license fees, the new car costs $\$ 21,782$. If there are 60 payments of $\$ 499$, what is the effective annual interest rate?

Monthly interest rate $=\operatorname{RATE}(60,-499,21782)=1.11 \%$
Effective annual interest rate $=(1.0111)^{12}-1=14.16 \%$

$$
=\operatorname{EFFECT}(.0111 * 12,12)=.1416
$$

where the function for the effective rate is EFFECT (nominal_rate_per_year, number_periods_per_year)

As will be shown in Chapters 6 and 7, this RATE function and the function to find N, NPER, are often much easier to use than the tables of engineering economy factors. When an optional guess is entered with the RATE function, often a value of 10% to 15% is appropriate.

Example 4.3 illustrates that a single spreadsheet function or the engineering economy factors may be easiest way to answer some classroom and homework problems. However, in engineering practice, a more developed spreadsheet model will be immediately updated with no effort when any of the items is reestimated.

These annuity functions provide the capability to write equations for PW, which can be far more effective than building cash flow tables. While spreadsheets can easily model a 30-year mortgage with monthly payments, a cash flow table will have hundreds of lines. A simple equation with annuity functions may provide the same answer. These spreadsheet functions expand on the understanding needed for the tabulated engineering economy factors. They both have the same assumptions about when cash flows occur and what the meaning of P, A, F, i, and N are.

Tim is evaluating a more efficient conveyor that will cost $\$ 7500$ to install. The cost savings will be $\$ 1700$ each year. After 8 years, the conveyor will be sold for $\$ 1000$. The interest rate is 12%. What is the PW?

SOLUTION

One way to solve this is with a one-line spreadsheet equation:

$$
\mathrm{PW}=-7500-\mathrm{PV}(12 \%, 8,1700,1000)=-7500+8848.9=\$ 1348.9
$$

The factors from Chapter 3 can be used to check this work. Two factors replace the one spreadsheet function.

$$
\begin{aligned}
\mathrm{PW} & =-7500+1700(P / A, 12 \%, 8)+1000(P / F, 12 \%, 8) \\
& =-7500+1700 \times 4.968+1000 \times .4039=\$ 1349.5, \text { which checks }
\end{aligned}
$$

In the real world, these data are only the first step; thus, a data block is appropriate. The first step is to define a data block for the $\$ 7500$ first cost, the $\$ 1700$ annual savings, the $\$ 1000$ salvage value, the 8 -year life, and the 12% interest rate.

The second step is to use the PV function to find the PW of the annual savings and salvage value. As shown in Exhibit 4.6, the formula in cell A7 starts with the first cost, which has a negative sign, since it is a cost, not a receipt. Then, the PV function has a negative sign to correct for its sign convention. The signs for the annual savings (A2) and the salvage value (A3) are both positive, since both are receipts. The PW is $\$ 1349$, so the more efficient conveyor is justified.

Spreadsheet to find a conveyor's PW

	A	B	C
1	\$7500	First cost	
2	\$1700	Annual savings	
3	\$1000	Salvage value	
4	8	Life	
5	12\%	Interest rate	
6			
7	\$1349	PW	
8		$=-\mathrm{A} 1-\mathrm{PV}(\mathrm{A} 5, \mathrm{~A} 4, \mathrm{~A} 2, \mathrm{~A} 3)$	

Spreadsheet Block Functions. Cash flows can be specified period by period. These cash flows are analyzed by block functions that identify the row or column entries for which a present worth (NPV) or an internal rate of return (IRR) should be calculated. In Excel's documentation, these cells are called values, and the functions are NPV (i,values) and IRR(values,guess). Guess is an optional starting point to find the interest rate.
$=$ NPV (i, period 1 : period N)
$=I R R($ period $0:$ period N , guess)

NPV assumes periods 1 to N, IRR assumes periods 0 to N.

For cash flows involving only P, F, and A, this block approach seems to be inferior to use of the annuity functions. However, this is a conceptually easy approach for more complicated cash flows, such as arithmetic and geometric gradients. Suppose the years (row 3) and the cash flows (row 4) are specified in columns B through E.

Year	0	1	2	3	4
Cash flow	$\$ 17,000$	6000	8000	9000	5000

If the interest rate is in cell A1, then the present worth of the cash flows can be calculated in Excel with $=\mathrm{B} 4+\mathrm{NPV}(\mathrm{A} 1, \mathrm{C} 4: \mathrm{F} 4)$. The NPV function assumes:

- Cash flows are at the end of periods 1 to N.
- Cash flows at time 0 are not part of the specified block of cells.
- Each time period is the same length.
- The same interest rate applies to each time period.

The internal rate of return is the interest rate at which the cash flows have a PW of zero. This can be calculated in Excel with the IRR function. For the above example:

$$
=\operatorname{IRR}(\mathrm{B} 4: \mathrm{F} 4, \text { guess }) .
$$

It is worth emphasizing that the two block functions for PW and IRR make different assumptions about the range of periods included. NPV(i,values) assumes time 0 is not included, while IRR(values,guess) assumes time 0 is included.

Both NPV and IRR assume that all time periods are the same length. For both functions, the cash flows for periods 1 to N are assumed to be end-of-period flows.

EXAMPLE 4.4 Spreadsheet for Energy Conservation (Based on Examples 3.19 and 3.20)

Susan of MidWestTech is evaluating a more efficient motor for two assembly lines. One is operating 8% more each year and the other 25% more each year. The more efficient motor has no salvage value after 5 years, costs $\$ 3000$ more installed, and will save $\$ 800$ the first year. Build a spreadsheet to find the PW at MidWestTech's i of 10%.

SOLUTION

The first step is to define a data block for the geometric gradient, the $\$ 3000$ first cost, the $\$ 800$ year 1 savings, the 10% interest rate, and the number of years, 5 .

The second step is to build the cash flow table, and then the third step is to use the NPV function to find the PW, $\$ 506.51$ with $g=8 \%$. These steps are summarized in Exhibit 4.7, the PW (not shown), is $\$ 1773$ when the geometric gradient is 25%. The answers are the same as when the
equations for geometric gradients were used in Chapter 3. However, the table is easier to explain when justifying the project, and both problems can be solved by changing the value in one cell.

The annual savings are generated using the recursive formula, Equation 3.23, for the geometric gradient. This formula is easy to generate and copy in a spreadsheet.

Spreadsheet for geometrically increasing energy savings

	A	B	C
1	\$3000	First cost	
2	\$800	Savings in year 1	
3	8\%	Gradient for savi	
4	5	Life	
5	10\%	Interest rate	
6			
7	Year	Cash flow	
8	0	-\$3000	$=-\mathrm{Al}$
9	1	800	$=\mathrm{A} 2$
10	2	864	$=\mathrm{B} 9 *(1+\$ \mathrm{~A} \$ 3)$
11	3	933	
12	4	1008	
13	5	1088	$=\mathrm{B} 12 *(1+\$ \mathrm{~A}$ \$ 3$)$
14	PW	\$506.51	
15		$=+\mathrm{B} 8+\mathrm{NPV}(\mathrm{A} 5, \mathrm{~B} 9: \mathrm{B} 13)$	

MicroTech has been offered the opportunity to buy into a product development effort of one of its suppliers, who is short on capital. Investing $\$ 800 \mathrm{~K}$ now should generate returns in year 5 of $\$ 700 \mathrm{~K}$. Those returns will drop by 20% for 5 years, until they stop after year 10 . MicroTech uses an interest rate of 12%. What is the PW?

SOLUTION

Many spreadsheets emphasize nonzero entries by using blanks instead of entering zeros. This is shown in column B of Exhibit 4.8. In column C, those blanks are replaced by zeros. The same NPV function is used to evaluate both columns, but the answers differ.

The NPV function treats blank cells ($\mathrm{B} 9: \mathrm{B} 12$) as though they were not there. Thus, the PW in column B assumes that returns starts at the end of year 1 and continue until year 6 . The correct PW is $\$ 1.435 \mathrm{M}$. The incorrect answer is 170% larger.

EXHIBIT 4.8 Spreadsheet with years without cash flows

	A	B	C	D
1	\$800	First cost (in		
2	\$700	Returns in ye	5 (in \$K)	
3	-20\%	Gradient for	urns	
4	10	Life		
5	12\%	Interest rate		
6				
7	Year	Cash flow	Cash flow	
8	0	-800	-800	
9	1		0	
10	2		0	
11	3		0	
12	4		0	
13	5	700	700	=\$A\$2
14	6	560	560	$=\mathrm{C} 13 *(1+\$ \mathrm{~A} 3$)
15	7	448	448	
16	8	358	358	
17	9	287	287	
18	10	229	229	
19		-\$1097	\$406	= $\mathrm{C} 8+\mathrm{NPV}(\$ \mathrm{~A}$ \$5,C9:C18)
20				
21	$=\mathrm{B} 8+\mathrm{NPV}(\$ \mathrm{~A} \$ 5, \mathrm{~B} 9: \mathrm{B} 18)$			
22	wrong because $\mathrm{B} 9: \mathrm{B} 12$ ignored			

Problems can have one or more geometric gradients for volume changes. The production volume may increase by 10% per year, but productivity improvements of 6% per year may keep total labor-hour increases to 4% per year. Meanwhile, conservation measures may cause energy use to fall by 2% per year.

Example 4.6 illustrates finding the PW for a new product with multiple gradients over its life. Example 4.7 has multiple geometric gradients, some of which interact. Example 4.8 illustrates finding the equivalent annual worth of a new public park with several gradients.

EXAMPLE 4.6 Spreadsheet for Northern Machine Tools (Based on Example 3.21)

Jose of Northern Machine Tools is evaluating a new product. The cost of completing and introducing the product will be $\$ 225 \mathrm{~K}$. Revenues will be $\$ 30 \mathrm{~K}$ higher than production costs in year 1 and will increase by 20% per year for 3 years and then by 10% per year for 6 years. Use a spreadsheet to find the product's PW at Northern Machine Tools' i of 12%.

SOLUTION

The first step is to build a data block, consisting of the $\$ 225 \mathrm{~K}$ first cost, the $\$ 30 \mathrm{~K}$ in initial net revenues, the 20% geometric gradient for years 2 through 4 , the 10% geometric gradient for years 5 through 10 , the 10 -year life, and the 12% interest rate.

The calculations of the PW are summarized in Exhibit 4.9. As shown by the formulas for cells B11 and B14, the recursive Equation 3.23 is used to build the geometric gradient.

Spreadsheet for Northern Machine Tools

	A	B	C	D
1	$\$ 225$	First cost (in \$K)		
2	$\$ 30$	Annual net revenue in yr 1 (in \$K)		
3	20%	Gradient for first 3 years		
4	10%	Gradient for next 6 years		
5	10	Life		
6	12%	Interest rate		
7				
8	Year	Cash flow		
9	0	-225.0		
10	1	30.0	$=\mathrm{A} 2$	
11	2	36.0	$=\mathrm{B} 10^{*}(1+\$ \mathrm{~A} \$ 3)$	
12	3	43.2		
13	4	51.8		
14	5	57.0	$=\mathrm{B} 13^{*}(1+\$ \mathrm{~A} \$ 4)$	
15	6	62.7		
16	7	69.0		
17	8	75.9		
18	9	83.5		
19	10	91.8		
20	NPV	$\$ 79.9$	$=\mathrm{B} 9+$ NPV	

George works in the sales engineering department of MidWestTech. He is evaluating a proposed new product. Final design and assembly line tooling and setup will cost $\$ 150,000$. Sales are expected to begin at 10,000 units the first year, with 12% annual growth for 5 years. The selling
price will be $\$ 6$ per unit the first year, then it will fall by 5% per year to remain competitive. The production cost will begin at $\$ 2$ per unit the first year, with a 2% annual decline due to productivity increases. The product should have a life of 5 years. MidWestTech uses an i of 10%. What is the product's PW?

SOLUTION

In this case, nine different data items will be treated as variables. Exhibit 4.10 computes the values for all three gradients and then calculates the net revenue for each year.

EXHIBIT 4.10 Spreadsheet for new product's multiple geometric gradients

	A	B	C	D	E	F
1	\$150,000	First cost				
2	\$10,000	Sales in first year				
3	12\%	Gradient for sales				
4	\$6	Initial price				
5	-5\%	Gradient for price				
6	\$2	Initial production cost				
7	-2\%	Gradient for production cost				
8	10\%	Interest rate				
9	5	Life				
10						
11	Year	Sales	Selling Price	Production Cost	Net Revenue	
12	0				-150000	$=-\mathrm{A} 1$
13	1	10000	6.00	2.00	40000	= B13*(C13-D13)
14	2	11200	5.70	1.96	41888	
15	3	12544	5.42	1.92	43831	
16	4	14049	5.14	1.88	45827	
17	5	15735	4.89	1.84	47871	
18	NPV	\square		7	\$14,937	
19			6* $1+\$$		$=\mathrm{E} 12+\mathrm{NP}$	\$A\$8,E13:E17)
20	= B16*	(1+\$A\$3)		D16* $1+$ \$		

EXAMPLE 4.8 Annual Worth for a Park with Geometrically Increasing Use

MetroCity is growing rapidly and expanding its freeway network. It expects to use a 10 -acre land parcel for a highway connection in 5 years. Meanwhile, the land could be developed as a set of playing fields with parking. The spring soccer leagues and the fall football leagues need additional room.

The development cost is $\$ 40,000$, and the annual operating cost is $\$ 4000$. The soccer fields would serve 3000 people in the first year, with annual increases of 20%. The football fields would serve 5000 people in the first year, with annual increases of 3%. Assume each user receives a
benefit of $\$ 3$. Compare the number of soccer and football users, and find the PW if MetroCity uses an i of 6%.

SOLUTION

The data block in Exhibit 4.11 has nine variables, but the spreadsheet is still easy to follow. The number of soccer players exceeds the number of football players beginning in year 5. The PW is $\$ 65,260$.

MetroCity's playing fields with multiple geometric gradients

	A	B	C	D	E	F
1	\$40,000	First cost				
2	\$4,000	Annual operating cost				
3	\$3	Benefit per user				
4	3000	Initial soccer use				
5	20\%	Gradient for soccer				
6	5000	Initial football use				
7	3\%	Gradient for football use				
8	6\%	Interest rate				
9	5	Life				
10					$=\mathrm{D} 12+\$ \mathrm{~A} \$ 3 *(\mathrm{~B} 12+\mathrm{C} 12)$	
11	Year	Soccer Users	Football Users	Costs	Net Benefit	
12	0			-40000	-40000	
13	1	3000	5000	-4000	20000	
14	2	3600	5150	-4000	22250	
15	3	4320	5305	-4000	24874	
16	4	5184	5464	-4000	27943	
17	5	6221	5628	-4000	31545	
18	NPV				\$65,260	
19			$=\mathrm{C} 16 *$ (1		$=\mathrm{E} 12+$	8,E13:E17)
20		/ B $16 *$ (1	\$A\$5)			

In these examples, the base amount has been constant, and a variety of gradients have been used. However, spreadsheets can model any other pattern that fits reality. For example, a manufacturer might have a jump in output when a new facility is opened or another shift of workers added. One important advantage of these cash flow spreadsheet models is the flexibility to accurately model the expected reality.

4.5 Using Spreadsheets to Get a Project Funded

As shown in the last section, spreadsheets have the flexibility to model reality and the ability to clearly communicate what cash flows have been assumed. This is important in getting projects funded, but the following suggestions have also been shown to be effective:

- Analyze the sensitivity of key variables.
- Use graphs to communicate those results.
- Document the data sources in your data block.

Sensitivity Analysis. This topic will be revisited in Chapter 17, but Example 4.9 illustrates the value of specifically addressing the uncertainty that is linked to estimates of future cash flows. Sensitivity analysis is an excellent approach to ensuring that the results of an economic analysis accurately portray the range of outcomes that may reasonably occur. This supports better decision making. The two specific sensitivity analysis tools introduced in Example 4.9 are:

- What-if analysis
- Breakeven analysis

Spreadsheets make sensitivity analysis easy, because variables can be quickly changed to see what if? Doing this by hand with the tabulated factors simply does not make sense. Moreover, it is easy to create a breakeven chart, to show the breakeven value of a variable.

EXAMPLE 4.9 Spreadsheet for Energy Conservation (Based on Example 4.4)

Susan of MidWestTech is evaluating a more efficient motor for two assembly lines. One is operating 8% more each year and the other 25% more each year. The more efficient motor has no salvage value after 5 years, costs $\$ 3000$ more installed, and will save $\$ 800$ the first year. Build a spreadsheet to find the PW at MidWestTech's i of 10%. Future product demand and the estimated growth rates are uncertain. In fact a decline of 5% in demand for one product and its assembly line is a realistic possibility. Analyze the PW for growth rates between -5\% and 25%.

SOLUTION

The starting point is the spreadsheet for Example 4.4. To ask what if and to analyze for different growth rates, the gradient values are entered into cell A3, and the resulting PW is recorded. The results are summarized in Exhibit 4.12a, and they show that the more efficient motor can be justified even if the growth rate is 0%, but not if demands decline by 5%.

In Exhibit 4.12a, column D contains a set of values for the gradient. Note that only 0% and 5% were entered by hand. Then, cells D8 and D9 were selected, and by dragging the lower right corner, the pattern of incrementing by 5% was copied, up to the max value of 25%.

The PW values were entered into the table by copying the value of cell B14. However, instead of using PASTE, the PASTE SPECIAL command was used. This is found in the Edit menu or by right-clicking on the cell where you want to paste. With the PASTE SPECIAL command, the value of the cell rather than the formula can be copied. So the sequence is: (1) enter value for gradient, (2) copy the PW value, (3) PASTE SPECIAL the value into the correct cell of column E, and (4) repeat for new value of gradient.

PW vs. g for energy savings with PASTE SPECIAL VALUES

	A	B	C	D	E
1	\$3000	First cost			
2	\$800	Savings in year			
3	25\%	Gradient for sav			
4	5	Life			
5	10\%	Interest rate			
6				Gradient	PW
7	Year	Cash flow		-5\%	-229
8	0	-\$3000		0\%	33
9	1	800		5\%	320
10	2	1000		10\%	636
11	3	1250		15\%	982
12	4	1563		20\%	1360
13	5	1953		25\%	1773
14	PW	\$1772.81			
15		$=+\mathrm{B} 8+\mathrm{NPV}(\mathrm{A} 5, \mathrm{~B} 9: \mathrm{B} 13)$			

Exhibit 4.12b uses a row of gradient values to calculate the different PW values over the range. This approach is easier to update with new data than the PASTE SPECIAL VALUES approach.

PW vs. g for energy savings

	A	B	C	D	E
1	\$3000	First cost			
2	\$800	Savings in ye:			
3		Gradient for s	vings		
4	5	Life			
5	10\%	Interest rate			
6	Gradient	-5\%	5\%	15\%	25\%
7	Year	Cash flow	Cash flow	Cash flow	Cash flow
8	0	-\$3000	-\$3000	-\$3000	-\$3000
9	1	800	800	800	800
10	2	760	840	920	1000
11	3	722	882	1058	1250
12	4	686	926	1217	1563
13	5	652	972	1399	1953
14	PW	-\$229	\$320	\$982	\$1773

Creating Graphs. Often, the relationship between two variables is of interest, for example, the PW vs. g in Example 4.9. Other examples include the number and size of payments to repay a loan, and the PW of an M.S. degree, and how long until we retire. This kind of two-variable relationship is best shown with a graph.

EXHIBIT 4.13 PW vs. g

Most graphs in engineering economy are done with the xy chart, not the line chart.

As shown in Exhibit 4.13, the goal is to place one variable on each axis of the graph and to plot the relationship. Modern spreadsheets automate most steps of drawing a graph, so that it is quite easy. However, there are two very similar types of chart, so we must be careful to choose the $x y$ chart and not the line chart. Both charts, measure the y variable; however, they treat the x variable differently. The $x y$ chart measures the x variable; thus, its x value is measured along the x-axis. For the line chart, each x value is a lable that is placed an equal distance along the x-axis. Thus, x values of $1,2,4,8$ would be spaced evenly rather than doubling each distance. The line chart is really designed to plot y values for different categories, such as prices for models of cars or enrollments for different universities.

It is easier to draw an $x y$ plot with Excel if the table of data lists the x values before the y values. This convention makes it easy for Excel to specify one set of x values and several sets of y values. The block of $x y$ values is selected, and then the chart tool is selected. Then, the spreadsheet guides the user through the rest of the steps.

To construct Exhibit 4.13, the spreadsheet table shown in Exhibit 4.12a is constructed first. Cells D7:E13 are selected (including the names of the data series). To construct the graph using Exhibit 4.12b, cell ranges A6:E6 and A14:E14 are selected. To select the second part of a disconnected range use the CONTROL key while clicking with your mouse. Then for either spreadsheet, the Chart Wizard icon is selected. The first step is to select an $x y$ (scatter) plot with smoothed lines and without markers as the chart type. (The other choices are no lines, straight lines, and adding markers for data points that represent real data, not just points for plotting.) The second step shows us the graph and allows the option of changing the data cells selected. The third step is for chart options. Here, we add titles for the two axes and turn off the option for showing the legend. (Since we have only one line in our graph, the legend is not needed. Deleting it leaves more room for the graph.) In the fourth step, we choose where the chart is placed.

In Exhibit 4.13, the background color has been changed from the default grey to none. The y-axis upper limit has been changed from an automatic 30% to 25%.

Because $x y$ plots are normally graphed with the origin set to $(0,0)$, an attractive plot sometimes requires that the minimum and maximum values be changed for each axis. This is done by placing the cursor over the axis and left-clicking. Handles or small black boxes should appear on the axis to show that it has been selected. Right-clicking brings up a menu to select the format axis. The scale tab allows us to change the minimum and maximum values.

For most chart elements, a left click will select it. Then, a right click will bring up a menu appropriate to that item. Drawing attractive charts that are easy to read takes more time than simply accepting the default choices, but it does support effectively presenting the results of an engineering economic analysis.

Effective graphical presentations have been the subject of research and teaching. Thus, your library or bookstore may have some good references. A good starting point is a classic in the field [Tufte].

Documenting Data Sources. The data block of a spreadsheet is an ideal place to document the vendor, file, or person that was the source of the value entered. That way, the spreadsheet has documented support. This increases the credibility of the model.

As part of this documentation, it is worthwhile to note the date that the value was entered. This is one way to identify which estimates might need to change when a design or scope change occurs.

In some case, engineers have also printed out a hard copy of the data block with its documentation entries and an additional column for signatures. Then, they ask people who have supplied estimates to sign next to the values they have supplied. This is highly credible documentation for later meetings on which projects should be funded. In addition, when asked to provide a signature, most people will be somewhat more careful in their estimating-which increases accuracy.

Engineering projects may spend several years in the design and approval process before being implemented. Thus, documentation is needed, because memory may fail and the personnel on the project may change. Another reason to document data sources is that many organizations audit project justifications for engineering projects.

4.6 SUMMARY

Spreadsheets are useful for many engineering economy problems. First, they permit flexible models whose cash flows are estimated for each year. Second, they can be updated easily to analyze new estimated values for the data. Third, they have financial functions that specifically support economic analysis. Fourth, their clarity, detail, and graphs are useful in the approval process for new projects.

However, the detail in the spreadsheets does not imply the results are accurate. The quality of the data and assumptions used determines the accuracy of the results. It is better to build a simple model with more accuracy in key items than to build an exhaustive model based on poorer-quality data.

The power of spreadsheets is almost required for after-tax problems that use the current tax code (see Chapter 13), and it is essential for others, such as complex geometric gradients (see Section 4.4) and sensitivity analysis (see Chapter 17). Finally, the spreadsheet skills useful in engineering economy have many other applications [Lavelle].

REFERENCES

Lavelle, Jerome P., "Enhancing Engineering Economy Concepts with Computer Spreadsheets, The Engineering Economist, Volume 41 Number 4, Summer 1996, pp. 381-386.
Tufte, Edward R., The Visual Display of Quantitative Information, Graphics Press, 1983.

Problems

4.1 The traffic over Route 44 has been increasing 6% per year. In year 1 , the traffic will average 25,000 vehicles per day. Estimate the annual traffic in year 5. In year 10 .
4.2 The transportation department has estimated that better bus service would reduce the growth rate from 6\% to 4\% for Route 44 (of Problem 4.1). Estimate the reduction in traffic in year 5. In year 10 .
4.3 Cash flows begin at $\$ 20,000$ the first year and increase each year until the horizon of 10 years. What is the present worth if the interest rate is 8% ?
(a) The annual increase is $\$ 2000$.
(b) The annual increase is 10%.
(Answer: \$201,405)
4.4 Cash flows begin at $\$ 40,000$ the first year and increase for 14 more years. What is the present worth if the interest rate is 9% ?
(a) The annual increase is $\$ 5000$.
(b) The annual increase is 10%.
4.5 First-year sales for a new product are estimated at $\$ 70,000$. Sales are expected to increase 6% annually over the 15 -year horizon. If the interest rate is 10%, what is the present worth?
4.6 Fred is evaluating whether a more efficient motor with a life of 5 years should be installed on an assembly line. Energy savings are $\$ 400$ for the first year with an estimated annual increase of 6%. If the interest rate is 10%, what is the present worth of the energy savings?
4.7 The cost of garbage pickup in Green Valley is $\$ 4.5 \mathrm{M}$ in year 1. Estimate the cost each year for the first 5 years. The population is increasing at 6%, and the tons per resident are increasing at a rate of 1%.
4.8 If the residents of Green Valley (of Problem 4.3) reduce their individual trash generation by 2% per year, how much does the cost in each year decrease? (Answer: Year 3 savings $=\$.30 \mathrm{M}$)
4.9 (a) Redo Problem 4.3 for $N=10$. For $N=25$.
(b) Redo Problem 4.4 for $N=10$. For $N=25$.
4.10 Calculate and print out an amortization schedule for a used car loan. The nominal interest rate is 12% per year, compounded monthly. Payments are made monthly for 3 years. The original loan is for $\$ 11,000$. (Answer: monthly payment $=\$ 365.36$)
4.11 Calculate and print out an amortization schedule for a new car loan. The nominal interest rate is 9% per year, compounded monthly. Payments are made monthly for 5 years. The original loan is for $\$ 17,000$.
4.12 Calculate and print out an amortization schedule to repay a student loan. The nominal interest rate is 6% per year, compounded monthly. Payments are made monthly for 3 years. The original loan is for $\$ 12,000$.
4.13 For the used car loan in Problem 4.10, graph the monthly payment:
(a) As a function of the interest rate (from 5% to 15%).
(b) As a function of the number of payments (24-48).
4.14 For the new car loan in Problem 4.11, graph the monthly payment:
(a) As a function of the interest rate (4% to 14%).
(b) As a function of the number of payments (36-84).
4.15 For the student loan in Problem 4.12, graph the monthly payment:
(a) As a function of the interest rate (4% to 10%).
(b) As a function of the number of payments (24-60).
4.16 You deposit $\$ 250$ per month (10% of your salary) in a savings account that earns 6% nominal interest. Your deposit increases by $\$ 25$ per month each year as your salary increases. What do you have saved after 5 years?
4.17 Your salary in year 1 is $\$ 30,000$. You deposit 10% at the end of each year in a savings account that earns 6% interest. Your salary increases by 5% per year. What value does your savings account show after 40 years? (Answer: $\$ 973,719$)
4.18 Your salary in year 1 is $\$ 30,000$. You deposit a fixed percentage at the end of each year in a savings account that earns 6% interest. Your salary increases by 5% per year. What percentage must you deposit to have $\$ 1 \mathrm{M}$ after 40 years?
4.19 The market volume for widgets is increasing by 15% per year from current profits of $\$ 200,000$. Investing in a design change will allow the profit per widget to stay steady; otherwise, it will drop 3% per year. The interest rate is 10%. What is the present worth of the savings over the next 5 years? Over the next 10 years?
4.20 The net revenue for a new product will be $\$ 300 \mathrm{~K}$ this year, and it will grow at 20% per year for 3 years.

Then, it will begin dropping by 15% per year. After 7 years, there will be no demand. The first cost to complete design and tooling will be $\$ 950 \mathrm{~K}$. The interest rate is 10%. What is the present worth of the new product?
4.21 The coal deposit that your firm is mining is becoming less profitable every year. Profit for the next year is estimated to be $\$ 2.2 \mathrm{M}$, with an expected drop of $\$ 300 \mathrm{~K}$ per year. The firm will stop mining when it is no longer profitable. To continue operating, the firm must rebuild its dragline, which will cost $\$ 3 \mathrm{M}$ immediately and have no salvage value. The interest rate is 12%. What is the present worth of rebuilding the dragline?
4.22 Bob lost his job and had to move back in with his mother. She agreed to let Bob have his old room back on the condition that he pay her $\$ 1000$ rent per year, and an additional $\$ 1000$ every other year to pay for her biannual jaunt to Florida. Since he is down on his luck, she will allow him to pay his rent at the end of the year. If Bob's interest rate is 15%, how much is the present cost for a 5-year contract? (Trips are in years 2 and 4.) (Answer: \$4680)
4.23 City University's enrollment is 12,298 full-timeequivalent students (at 12 credit-hours each), with 3% annual increases. The university's cost per credit-hour is now $\$ 105$, which is increasing by 8% per year. State funds are decreasing by 4% per year. State funds currently pay half of the costs for City U., while tuition pays the rest. What is tuition per credithour each year for the next 5 years?
4.24 A 30-year mortgage for $\$ 120,000$ has been issued. The interest rate is 10%, and payments are made monthly. Print out an amortization schedule.
4.25 A 30-year mortgage for $\$ 120,000$ has been issued. The interest rate is 10%, and payments are made monthly. Calculate the monthly payment for principal and interest. If an extra $\$ 50$ principal payment is made at the end of month 1 and this extra amount increases by 1% per month, how soon is the mortgage paid off? (Hint: Construct an amortization schedule.)
4.26 For Problem 4.25, graph the number of years until payoff:
(a) For an initial extra payment of $\$ 20$ to $\$ 100$.
(b) For a geometric gradient of 0% to 3%.
4.27 Specialty Chemicals has a new plastic formulation that should have a market life of 10 years. First costs will be $\$ 15 \mathrm{M}$. Initial raw materials costs will be
\$4.3M per year, with a constant 3\% rate of increase. Production costs for labor, energy, and facility maintenance are $\$ 1.8 \mathrm{M}$ per year initially, with a 2% rate of increase as the facility ages. If revenue is constant at $\$ 11 \mathrm{M}$ per year, what is the PW at Specialty's interest rate of 10% ? (Answer: $\$ 11.06 \mathrm{M}$)
4.28 In Problem 4.27, how fast would revenue have to fall (or increase) for the PW to be $\$ 0$?
4.29 A homeowner is considering an upgrade from a fuel oil-based furnace to a natural gas unit. The investment in the fixed equipment, such as a new boiler, will be $\$ 2500$ installed. The cost of the natural gas will average $\$ 60$ per month over the year, instead of the $\$ 145$ per month that the fuel oil costs. If the interest rate is 9% per year, how long will it take to recover the initial investment?
4.30 John earns a salary of $\$ 40,000$ per year, and he expects to receive increases at a rate of 4% per year for the next 30 years. He is purchasing a home for $\$ 80,000$ at 10.5% for 30 years (under a special veterans' preference loan with 0% down). He expects the home to appreciate at a rate of 6% per year. He will also save 10% of his gross salary in savings certificates that earn 5\% per year. Assume that his payments and deposits are made annually. What is the value of each of John's two investments at the end of the 30-year period?
4.31 In Problem 4.30, how much does the value of each investment change if the appreciation rate, rate of salary increases, fraction of salary saved, or savings account interest rate are halved? What is the relative importance of the changes?
4.32 An arithmetic gradient is to be used to approximate a geometric gradient for an engineer's salary, which is $\$ 35,000$ initially. Both models assume the same raise for the second year. What is the maximum annual raise and corresponding rate of increase that result in less than a 10% difference between the two final values at the end of 5 years?
4.33 Redo Problem 4.32 for $10,15,20,30$, and 50 years. 4.34 Using the data developed in Problems 4.32 and 4.33, construct a graph of the maximum rate of increase vs. the life. Label the areas above and below the graphed line as "Within 10\%" and "Approximation Fails."
4.35 By spending $\$ 4 \mathrm{M}$ to rebuild and extend its dragline, the firm in Problem 4.21 can reduce the annual drop in net revenue to $\$ 200 \mathrm{~K}$. Should the firm do this? Should the firm spend $\$ 5 \mathrm{M}$ to rebuild and extend the
dragline even further? This would reduce the annual drop in net revenues to $\$ 150 \mathrm{~K}$.
4.36 Construct a spreadsheet function for an arithmetic gradient that relies on existing spreadsheet annuity functions (see Equations 3.20 and 3.21):
(a) For $(A / G, i, N)$.
(b) For $(P / G, i, N)$.

Minicases

4.37 For your academic discipline, find data for starting salaries with B.S. and M.S. degrees. Find data on average salary increases. How long does earning a M.S. take at your school, and what is the cost? Assume you will retire at age 65 . What is the PW of earning the M.S. degree with an interest rate 5% ? How did you account for inflation?
4.38 Find the PW of proceeding with rollout of a new product. The first cost of the production facilities will be $\$ 225$ K. Salvage values will about equal removal costs after production is terminated.

Sales are estimated to be 8000 units the first year, with an annual gradient of 2000 per year for 3 years. Then, demand will fall by 20% per year. The variable cost per unit will be $\$ 35$ initially, and productivity improvements will lower this by 3% per year. The fixed costs for the production line will be $\$ 80 \mathrm{~K}$ the first year, and these will climb by 2% per year. Overhead, sales, and administrative costs are estimated to be 35% of the fixed and variable production costs for each year.

The initial sales price to wholesalers is $\$ 85$. It is expected that price cuts of 4% per year will be required to remain competitive. How long will this product be profitable? All the above estimates are in constant value dollars so that inflation has been
accounted for. If the interest rate is 12%, what is the PW of this product?
4.39 A sports star has the opportunity to defer some of his income. One choice is a contract for the next 6 years that starts at $\$ 1.2 \mathrm{M}$ with increases of 20% each year thereafter. The deferred option starts at $\$.8 \mathrm{M}$ for the first year, and then it increases at 20\% each year for 10 years. If at athlete's interest rate for the time value of money is 8%, what is the value of each choice? Assume that he plays for the next 6 years.
4.40 For winners of the California SuperLotto Plus the choice is between a lump sum and annual payments that increase from 2.5% for the first year, to 2.7% for the second year, and then increasing by $.1 \%$ per year to 5.1% for the 26th payment. The lump sum is equal to the net proceeds of bonds purchased to fund the 26 payments. This is estimated at 45% to 55% of the lump sum amount. At what interest rate is the present worth of the two payment plans equivalent if the lump sum is 45% ? If it is 55% ?

Cases

The following cases from Cases in Engineering Economy, $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 4 Balder-Dash Inc.

Standard cost and allocated costs vs. true marginal cost (IEs).

Case 5 Can Crusher

Basic time value of money, costs, and breakeven analysis.

PARTTWO

ANALYZING A PROJECT

Introduction to Selection of a Measure

When correctly applied, all of the following evaluation methods lead to the same result. However, the audience, principal cash flows, or situation may imply that one measure is preferred.

- PW—present worth. An example is: "How much should we pay for these patent rights?" This measure is commonly preferred for purchasing decisions, for problems in which first costs are particularly important, and for problems in which benefits and costs are included. (Chapter 5)
- EAC—equivalent annual cost. An example is: "Is it worth $\$ 20,000$ per year for the added reliability of a new machine?" This measure is commonly preferred for the comparison of known costs vs. annual benefits that can only be approximated, for the evaluation of operating improvements, and for presentation to operating personnel such as foremen. (Chapter 6)
- IRR—internal rate of return. Examples include: "Which loan is better?" and "Which capital projects should be done if the total budget equals $\$ 1.5 \mathrm{M}$?" This measure is commonly preferred for evaluation of loans and financing, for presentation to top management, and for comparing dissimilar projects that are competing for limited funds. (Chapter 7)
- B/C—benefit/cost ratio. An example is: "Should this dam be built?" Government uses this measure, although some firms use a similar PW index. (Chapter 8)

Present Worth

- THE SITUATION AND THE SOLUTION

Equivalence can be applied to cash flows that occur at different times. However, which equivalent measure should be calculated, and how should it be evaluated?

Often, the solution is to calculate a time 0 equivalent value or a PW. If the PW is greater than zero, the project exceeds the minimum return on investment.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 5.1 Define PW, state its standard assumptions, and use it to measure the economic attractiveness of a project or an alternative.
SECTION 5.2 Apply PW to a variety of examples.
SECTION 5.3 Calculate PW using a rollback procedure.
SECTION 5.4 Include and evaluate the significance of salvage values and salvage costs.
SECTION 5.5 Calculate capitalized cost for perpetual life.
SECTION 5.6 Compare the advantages of different approaches to building projects in stages.
SECTION 5.7 Include the cost of underutilized capacity in a PW model.
SECTION 5.8 Use spreadsheets for more accurate models built with shorter periods.
SECTION 5.9 Use spreadsheets for more accurate models that detail irregular cash flows.

- KEY WORDS AND CONCEPTS

Present worth (PW) The equivalent value at time 0 of a set of cash flows.
Salvage value (S) Net realizable value on disposal.
Capitalized cost The PW of annual costs that are assumed to occur in perpetuity (forever).

5.1 The PW Measure

Is PW >0 ? The PW measure is easy to understand, easy to use, and matched to our intuitive understanding of money. The very name, present worth, conjures an image of current value. More formally, present worth ($\mathbf{P W}$) is the value at time 0 that is equivalent to the cash flow series of a proposed project or alternative.

Present worth

(PW) is the equivalent value at time 0 of a set of cash flows.

Engineering economists and this text often use present worth (PW), present value (PV), net present worth (NPW), and net present value (NPV) as synonyms. Sometimes the net is included to emphasize that both costs and benefits have been considered.

Present worth is easy to use because of the sign convention for cash flows. Cash flows that are revenues are greater than zero, and cash flows that are costs are less than zero. Thus, the standard for a desirable PW is $\mathrm{PW}>0$. $(\mathrm{PW}=0$ represents economic indifference, and a PW <0 should be avoided if possible.)

Present worth is an attractive economic measure, because we have an intuitive feel for the result's meaning. We have an image of what $\$ 100, \$ 1000$, or $\$ 1,000,000$ is worth right now. A similar intuitive feel for future dollars is difficult to develop, as illustrated in Example 5.1.

Abstract

Aretha expects a $\$ 10,000$ bonus when the product her team is developing is marketed in 4 years. She will then invest the bonus in a money market fund that earns 8% per year. She plans to use the money as a down payment on a house, or to start a business, or for traveling during retirement. Assume these occur 10, 20, and 40 years, respectively, after she receives the bonus. At 8%, what equivalent values can be calculated? Which one is the most meaningful? Least meaningful?

SOLUTION

Of all the possible equivalent values, the four most appropriate are at time 0 and at the ends of years 14,24 , and 44 . These are calculated as follows:

$$
\begin{aligned}
P_{0} & =10,000(P / F, 8 \%, 4)=10,000 \times .7350=\$ 7350 \\
F_{14} & =10,000(F / P, 8 \%, 10)=10,000 \times 2.159=\$ 21,590 \\
F_{24} & =10,000(F / P, 8 \%, 20)=10,000 \times 4.661=\$ 46,610 \\
F_{44} & =10,000(F / P, 8 \%, 40)=10,000 \times 21.725=\$ 217,250
\end{aligned}
$$

Of these, the time 0 value (PW of \$7350) is the easiest for Aretha to "put meaning to." The year 44 value of $\$ 217,250$ is the least meaningful, simply because it is the furthest in time from "now." Because Aretha and we understand what $\$ 7350$ will buy now, the PW is the one that we should use.

Because each of these values is equivalent to $\$ 10,000$ at the end of year 4, the values are also equivalent to each other.

Standard Assumptions. The present worth measure is commonly applied by making the following assumptions:

1. Cash flows occur at the end of the period, except for first costs and prepayments like insurance and leases.
2. Cash flows are known values. These known values are certain, or deterministic, values.
3. The interest rate, i, is given.
4. The problem's horizon or study period, N, is given.

These assumptions imply that a problem can be summarized as a cash flow diagram plus an interest rate. These assumptions often simplify reality. Nevertheless, the conclusions of the engineering economic analysis are generally not affected. These simplifications also imply that we need a sense of proportion. If the first cost and total revenues are in the tens of millions of dollars, then a PW of $\$ 100,000$ may be better thought of as plus or minus 0 . The uncertainty in the data is probably larger than 1% of the tens of millions.

5.2 Examples of When to Use Present Worth

Because it is easy to understand, the PW measure is often effective. In fact, in many cases, this is the best measure of an alternative's value. This is especially true for: (1) setting a price to buy or sell a project or an alternative, as in Example 5.2; (2) evaluating an investment or project where the price to invest or the first cost is given as in Example 5.3, and (3) calculating an equivalent value for an irregular series of cash flows as in Example 5.4. Example 5.5 sets a price for buying a bond, and it requires the use of semiannual periods.

EXAMPLE 5.2 Buying a Patent

MoreTech Drilling may buy a patent with 14 years of life left. If MoreTech spends $\$ 1.5 \mathrm{M}$ to implement the technology, it expects net revenues of $\$ 650,000$ per year for the patent's life. If MoreTech's discount rate for money's time value is 10%, what is the maximum price that MoreTech can pay for the patent?

SOLUTION

This maximum amount is the PW of the cash flows to be paid and received.

$$
\begin{gathered}
\mathrm{PW}=-1500 \mathrm{~K}+650 \mathrm{~K}(\mathrm{P} / \mathrm{A}, 10 \%, 14) \\
=-1500 \mathrm{~K}+650 \mathrm{~K} \times 7.367=3289 \mathrm{~K} \text { or } \$ 3.3 \mathrm{M}
\end{gathered}
$$

Suppose that a price of $\$ 3 \mathrm{M}$ has been set for the patent in Example 5.2. In addition, a more accurate model of net revenues is that they begin at $\$ 300,000$ per year and increase by $\$ 100,000$ per year for the 14 years. At a discount rate of 10%, is this an attractive project?

SOLUTION

This is easily evaluated by computing the project's PW at 10%. The cash flows at time 0 total $\$ 4.5 \mathrm{M}$ ($\$ 3 \mathrm{M}$ purchase cost plus $\$ 1.5 \mathrm{M}$ for implementation).

$$
\begin{aligned}
\mathrm{PW} & =-4500 \mathrm{~K}+300 \mathrm{~K}(P / A, .1,14)+100 \mathrm{~K}(P / G, .1,14) \\
& =-4500 \mathrm{~K}+300 \mathrm{~K} \times 7.367+100 \mathrm{~K} \times 36.800 \\
& =1390 \mathrm{~K}=\$ 1.4 \mathrm{M}
\end{aligned}
$$

Since the PW is positive at 10%, this is an attractive project.

A large construction job will take 4 years to complete. The costs of the many required inspections can be reduced by purchasing a voice recognition system to act as the "front end" for a word processor. Then, inspectors can be trained to record their comments and revise the written output of an automated form.

The firm's interest rate is 12%. What is the PW of the cash flows for the voice recognition system? The first cost for purchase and training is $\$ 100 \mathrm{~K}$. Savings are estimated at $\$ 30 \mathrm{~K}, \$ 40 \mathrm{~K}$, $\$ 65 \mathrm{~K}$, and $\$ 35 \mathrm{~K}$ for the 4 years of construction.

SOLUTION

The first step is to draw the cash flow diagram.

Calculating the PW must be done by considering each cash flow individually, because there is no uniform or gradient series.

$$
\begin{aligned}
& \mathrm{PW}= \\
&=-100 \mathrm{~K}+30 \mathrm{~K}(P / F, .12,1)+40 \mathrm{~K}(P / F, .12,2)+65 \mathrm{~K}(P / F, .12,3)+35 \mathrm{~K}(P / F, .12,4) \\
&=-100 \mathrm{~K}+30 \mathrm{~K} \times .8929+40 \mathrm{~K} \times .7972+65 \mathrm{~K} \times .7118+35 \mathrm{~K} \times .6355 \\
&=\$ 27.2 \mathrm{~K}
\end{aligned}
$$

This is an attractive investment, because the $\mathrm{PW}>0$.

EXAMPLE 5.5 Buying a Bond

A 15-year municipal bond was issued 5 years ago. It pays 8% interest semiannually on its face value of $\$ 15,000$. At the end of 15 years, the face value is paid. If your time value of money, or i, is 12.36%, what price should you offer for the bond?

SOLUTION

The first 5 years are past, and there are 20 more semiannual payments. The price you should offer is the PW of the cash flows that will be received if the bond is purchased. The semiannual interest is 4% of $\$ 15,000$, or $\$ 600$. Thus, the cash flows are $\$ 600$ at the ends of each semiannual
period for years 6 through 15 and an additional $\$ 15,000$ in year 15. In the cash flow diagram, the periods are labeled as the number of periods from now.

Since the $\$ 600$ in interest is received semiannually, the effective interest rate, i, must be converted to a semiannual rate. Using Equation 2.3:

$$
\begin{aligned}
\left(1+i_{2}\right)^{2} & =1+i=1.1236 \\
\left(1+i_{2}\right) & =1.06 \\
i_{2} & =6 \% \\
\mathrm{PW} & =600(P / A, 6 \%, 10)+15,000(P / F, 6 \%, 20) \\
& =600 \times 11.470+15,000 \times .3118=\$ 11,559
\end{aligned}
$$

The $\$ 11,559$ is the discounted price-that is, the PW at 12.36% of the cash flows from the $\$ 15,000$ bond. The $\$ 3441$ discount raises the investment's rate of return from a nominal 8% for the face value to 12.36% on an investment of \$11,559.

This example also illustrates why it is better to separately state cash flows. At the end of period 20 from now (or year 15), there are two cash flows, $\$ 600$ and $\$ 15,000$. The $\$ 600$ is part of the 20 -period uniform series, and the $\$ 15,000$ is a single cash flow. All of these numbers come directly from the problem statement. If the two final cash flows are combined into $\$ 15,600$, then the $\$ 600$ uniform series has only 19 periods-and it is easy to err and forget that change.

The calculation in Example 5.5 is done routinely when bonds are bought and sold during their life. Bonds are issued at a face value and a face interest rate, and the face value is received when the bonds mature. A cash flow diagram for the remaining interest payments and the final face value is used with a current interest rate to calculate a price. However, as shown in Exhibit 5.1, interest rates do vary over the 10 to 50 years between when bonds are issued and when they mature.

EXHIBIT 5.1 Interest rate for industrial AAA bonds

Source: Federal Reserve Statistical Release H. 15

5.3 Rolling Back Irregular Cash Flows for

In Example 5.4, where an irregular set of cash flows was evaluated, it was necessary to look up and use a different (P / F) factor for each period. For a problem of 10,15 , or 20 periods, the chance of an arithmetic error is unacceptably high. Another approach is needed for irregular cash flows to be evaluated without a computer.

Rather than looking up $N(P / F)$ factors, it is much easier to divide N times by $(1+i)$. Starting with the last period, the single-period (P / F) factor, $(1+i)^{-1}$, is used repeatedly to "roll back" to the PW. The rollback value for any period is the next period's rollback value divided by $(1+i)$ plus that period's cash flow. Example 5.6 uses this technique for the data in Example 5.4. Example 5.7 considers the economics of graduate study in engineering.

More generally, intermediate rollback values for periods t through N, V_{t}, are calculated at the ends of each period. The formula for the value from t to N is Equation 5.1. V_{N} equals the cash flow (CF) in period N, which is CF_{N}. The PW is the value from periods 0 to N.

$$
\begin{equation*}
V_{t}=V_{t+1} /(1+i)+\mathrm{CF}_{t} \tag{5.1}
\end{equation*}
$$

This approach is simplified by storing $1+i$ in the calculator's memory and then recalling it. This calculation is so easy that it can be done in some word-processing packages using the math functions included as a feature for constructing tables.

EXAMPLE 5.6 Voice Recognition Revisited (Based on Example 5.4)

Calculate the PW at 12% of the cash flows for the computerized voice recognition system. Use a rollback approach. The cash flows are $-\$ 100 \mathrm{~K}, \$ 30 \mathrm{~K}, \$ 40 \mathrm{~K}, \$ 65 \mathrm{~K}$, and $\$ 35 \mathrm{~K}$.

SOLUTION

Because there is no uniform or gradient series, the rollback approach is easier than using the tabulated factors.

$$
\begin{aligned}
& V_{4}=35 \mathrm{~K} \\
& V_{3}=35 \mathrm{~K} / 1.12+65 \mathrm{~K}=96.25 \mathrm{~K} \\
& V_{2}=96.25 \mathrm{~K} / 1.12+40 \mathrm{~K}=125.94 \mathrm{~K} \\
& V_{1}=125.94 \mathrm{~K} / 1.12+30 \mathrm{~K}=142.44 \mathrm{~K} \\
& V_{0}=142.44 \mathrm{~K} / 1.12-100 \mathrm{~K}=27.18 \mathrm{~K} \text { or } \$ 27.2 \mathrm{~K}
\end{aligned}
$$

This final value is the PW of the cash flows from periods 0 to N, and it is the same as the value calculated in Example 5.4.

Considering the data in Exhibit 5.2, what is the PW of completing an M.S. degree in engineering? Assume a horizon of 40 years, an i of 5%, and that the degree can be completed in 1 year. Assume that a graduate assistant's income is $\$ 12,000$ and that a tuition waiver is included.

Salary vs. number of years since graduation

	Annual Salary Difference between	
Years since B.S.	B.S. and M.S.	M.S. and Ph.D.
		Too little
$1-4$	$\$ 2407$	data
$5-9$	2308	$\$ 8322$
$10-14$	4297	4203
$15-19$	2470	5400
$20-24$	6600	12,700
$25-29$	5771	13,200
$30+$	6270	11,980

SOLUTION

The salaries increase, but the pattern is neither an arithmetic gradient nor a geometric gradient. Because there is no pattern, the economic model must treat each cash flow individually. To show the order of calculations, Exhibit 5.3 is constructed with the years from 0 to 40 in reverse order. In fact, the cash flows for the salary differences are entered from the bottom up. The assumed

EXHIBIT 5.3 PW calculation for M.S. in engineering
Salary Difference

Year	between M.S. and B.S.	$\boldsymbol{V}_{\boldsymbol{t}}$
40	$\$ 6270$	$\$ 6,270$
39	6270	12,241
38	6270	17,929
37	6270	23,345
36	6270	28,503
35	6270	33,416
34	6270	38,095
33	6270	42,551
32	6270	46,794

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
6270
50,836
5771
54,186
$5771 \quad 57,377$
$5771 \quad 60,416$
$5771 \quad 63,310$
$5771 \quad 66,066$
$6600 \quad 69,520$
$6600 \quad 72,810$
$6600 \quad 75,942$
$6600 \quad 78,926$
$6600 \quad 81,768$
$2470 \quad 80,344$
$2470 \quad 78,988$
$2470 \quad 77,697$
$2470 \quad 76,467$
$2470 \quad 75,296$
$4297 \quad 76,007$
$14 \quad 4297 \quad 76,685$
$\begin{array}{lll}13 & 4297 & 77,330 \\ 12 & 4297 & 77,945\end{array}$
$11 \quad 4297 \quad 78,530$
$10 \quad 2308 \quad 77,099$
$9 \quad 2308$ 75,735
$8 \quad 2308 \quad 74,437$
$7 \quad 2308 \quad 73,200$
$6 \quad 2308 \quad 72,022$
$5 \quad 2407 \quad 71,000$
$4 \quad 2407 \quad 70,026$
$3 \quad 2407 \quad 69,098$
$\begin{array}{lrr}2 & 2407 & 68,215 \\ 1 & -21,816 & 43,151\end{array}$
$0 \quad 0 \quad \$ 41,096 \quad=\mathrm{PW}>0$
salary for year 1 is $\$ 33,816$ if employed as an engineer and $\$ 12,000$ if employed as a graduate assistant, for a net loss of $\$ 21,816$ for the year in graduate school. Then, the $\$ 2407$ difference for the first 4 years since receiving the B.S. are entered for years 2 to 5 . All other salary differences apply to 5 -year blocks.

The first rollback value, V_{40}, equals the final cash flow of $\$ 6270$. Exhibit 5.3 illustrates that it is easier to divide by 1.05 forty times than to look up $40(P / F)$ factors. For example, V_{39} equals V_{40} rolled back one period plus the cash flow for period 39, which is $V_{39}=6270 / 1.05+6270=$ \$12,241.

The last rollback value, $V_{0}=\$ 41.1 \mathrm{~K}$, is the PW. This is positive, so graduate school is economically justifed at $i=5 \%$

5.4 Salvage Values

Salvage value, \boldsymbol{S}, is the net realizable value on disposal (NRV).

Section 2.3 defined salvage value, \boldsymbol{S}, as a net receipt in period N for the sale or transfer of equipment (which can be a salvage cost). Theoretically, salvage values are simple. The salvage value is simply the amount received minus the cost of removal. Some writers emphasize this by using net realizable value on disposal (NRV) instead of the more common salvage value. Calculating its PW is simple, since a single $(P / F, i, N)$ factor will do the job.

For most projects, including salvage values in the calculation of PW is easy. Equipment that has been used for 5 or 10 years will usually have a salvage value that is 20% or less of its first cost. Even if there are no removal costs, this is usually a small part of a project's PW (see Example 5.8).

The difficulties with salvage value arise on projects whose positive or negative termination value is large. When this is true, the salvage value is also likely to be uncertain. Examples with positive salvage values include land or a business's goodwill (the economic value of established customer relationships and general reputation).

Examples with negative salvage values or salvage costs often focus on environmental reclamation. For example, substantial salvage costs are associated with restoring an open-pit coal mine or decommissioning a nuclear power facility. In a specific example, when the Trans-Alaska Pipeline is finally shut down, plugging buried sections of pipe and removing aboveground sections, pump stations, and processing facilities are expected to cost about \$2B (\$B = billion dollars).

Nuclear power facilities, as shown in Example 5.9, provide another use of salvage value-representing the value of costs to manage nuclear wastes that occur after the horizon or study period. Other examples of relevant benefits that occur after the study period include the value of an improved market position to a private firm and the residual value of infrastructure improvements beyond a 20 -year horizon that may have been used to evaluate a public project.

Assume that the salvage value is 20% of the $\$ 100,000$ first cost for a 5 -year life and 10% of the first cost for a 10 year life. If $i=7 \%$, compare the PW of the salvage values with the first cost.

SOLUTION

$$
\begin{gathered}
\mathrm{PW}_{s \text { at } 5}=.2 \times 100 \mathrm{~K}(P / F, 7 \%, 5)=.2 \times .7130 \times 100 \mathrm{~K}=\$ 14,260 \\
\mathrm{PW}_{s \text { at } 10}=.1 \times 100 \mathrm{~K}(P / F, 7 \%, 10)=.1 \times .5083 \times 100 \mathrm{~K}=\$ 5083
\end{gathered}
$$

While these two values differ by nearly a factor of 3 , even the larger is less than 15% of the first cost. Thus, if the life of a piece of equipment is even moderately long, the PW of the salvage value should be relatively small.

EXAMPLE 5.9 Decommissioning a Nuclear Facility

Nuclear power facilities must be rebuilt or shut down about 30 to 40 years after they begin operating. The shutdown in August 1989 of the 330-MW Ft. St. Vrain power plant in Colorado provides an example of salvage costs. These costs are linked to partially dismantling the facility to remove high-level radioactive material, to closing the facility for about 50 years, to the final decommissioning of the facility, and to caring for the hazardous wastes generated during operation and dismantling. The initial dismantling cost is a typical salvage value at the end of the study period. The cost of caring for the waste is really the present value of costs over a centuries-long period. These costs are estimated to exceed $\$ 200 \mathrm{M}$ after 20 years of use of a facility that cost $\$ 1 \mathrm{~B}$ [Barrett].

In the United States, about $\$ 180 \mathrm{~B}$ had been spent on nuclear power plant construction by the early 1990s. The total cost to shut down these facilities was estimated to be \$50B to $\$ 100 \mathrm{~B}$ [Energy Journal]. Using an interest rate of 5% and an operating period of 30 years, what is the PW at project start-up of the salvage costs?

SOLUTION

The total cost to shut down the facility is the value at the end of year 30 of the costs into the future. Using the total figures of $\$ 50 \mathrm{~B}$ to $\$ 100 \mathrm{~B}$, the PW of these costs are:

$$
\begin{aligned}
& \mathrm{PW}=-50 \mathrm{~B}(P / F, 5 \%, 30)=-50 \mathrm{~B} \times .2314=-\$ 11.57 \mathrm{~B}, \text { or } \\
& \mathrm{PW}=-100 \mathrm{~B}(P / F, 5 \%, 30)=-100 \mathrm{~B} \times .2314=-\$ 23.1 \mathrm{~B}
\end{aligned}
$$

Even though these costs are very large, their PW is only 6.4% to 12.8% of the first costs.

5.5 Capitalized Cost and Perpetual Life

Chapter 3 mentioned that the limit of $(P / A, i, N)$ as N approaches infinity is $1 / i$. Assuming that N equals infinity is assuming perpetual life, which is covered in more detail in

Capitalized cost is the PW of annual costs that are assumed to occur in perpetuity.

Section 6.6. Tunnels, roadbeds, rights-of-way, earthworks, and dams often have lives that are very close to perpetual in an economic sense. If the annual costs of these facilities are assumed to be perpetual, then the corresponding PW is defined to be the capitalized cost. Note that accountants commonly use a different definition of capitalized cost, which is costs to be depreciated (see Chapter 12).

The very long lives of tunnel or roadbed are rare in the private sector, but a similar assumption of "indefinitely long" horizons is sometimes made. This assumes, for example, that the facility will need electric motors, mechanical HVAC equipment, and forklifts as long as it operates, and that the life of the facility is far longer than this equipment. So the equipment can be analyzed as though the problem horizon is infinite or indefinitely long and the capitalized cost of this equipment is calculated.

The capitalized cost, P, equals A / i. The relationship can be derived mathematically using formulas and limits, or it can be derived intuitively using a savings account that lasts forever. If amount P is in the account, then the annual interest is $A=i \times P$. That exact amount may be withdrawn each year without changing the problem for later years. If less than $i \times P$ is withdrawn each year, then capital accumulates; if more than $i \times P$ is withdrawn each year, then eventually, the principal is all gone.

Mathematically, Equation 3.6 for the (A / P) factor can be restated as:

$$
(A / P, i, N)=i /\left[(1+i)^{N}-1\right]+i
$$

Clearly, for positive interest rates, the first term goes to 0 as N approaches infinity. Thus, the factor approaches i. Equation 5.2 states this in terms of the factors, and Example 5.10 calculates a capitalized cost. Equations 5.3 and 5.4, for finding the capitalized cost of a perpetual arithmethic gradient and a perpetual geometric gradient, respectively, are stated without proof and is then applied in Example 5.11.

$$
\begin{align*}
(P / A, i, \infty) & =1 / i \tag{5.2}\\
(P / G, i, \infty) & =1 / i^{2} \tag{5.3}\\
(P / A, g, i, \infty) & =\frac{1}{(i-g)} \text { for } i>g \quad(\text { if } g \geq i \text { then PW equals } \infty) \tag{5.4}
\end{align*}
$$

Creekside Engineering wants to establish an engineering scholarship in honor of its founder, Jane Freeborn. The endowment will be placed in a savings account by the university, and the interest income will be available for the scholarship. The account's interest rate is 6%, and the scholarship amount is $\$ 3000$ per year. What is the required endowment?

SOLUTION

The perpetual life assumption is appropriate here, and the required endowment is the capitalized cost of the scholarship.

$$
\mathrm{PW}=3000(P / A, i, \infty)=3000 / i=3000 / .06=\$ 50 \mathrm{~K}
$$

EXAMPLE 5.11 Perpetual Maintenance Gradient

A state historic park has maintenance costs of $\$ 40 \mathrm{~K}$ for the first year. Due to increased use, these costs increase by $\$ 2 \mathrm{~K}$ or 4 K , per year. Assuming an interest rate of 5% and perpetual life, what is the capitalized cost?

SOLUTION

If the gradient is $\$ 2 \mathrm{~K}$ per year (an arithmetic gradient), then Equation 5.2 applies to the annual amount and Equation 5.3 to the gradient.

$$
\begin{aligned}
\mathrm{PW} & =-40 \mathrm{~K}(P / A, i, \infty)-2 \mathrm{~K}(P / G, i, \infty) \\
& =-40 \mathrm{~K} / i-2 \mathrm{~K} / i^{2}=-40 \mathrm{~K} / .05-2 \mathrm{~K} / .0025 \\
& =-800 \mathrm{~K}-800 \mathrm{~K} \\
& =-1600 \mathrm{~K}=-\$ 1.6 \mathrm{M}
\end{aligned}
$$

If the gradient is 4% per year, then Equation 5.4 applies.

$$
\begin{aligned}
\mathrm{PW} & =-40 \mathrm{~K}(P / A, g, i, \infty) \\
& =-40 \mathrm{~K} /(i-g)=-40 \mathrm{~K} /(.05-.04) \\
& =-4000 \mathrm{~K}=-\$ 4 \mathrm{M}
\end{aligned}
$$

Note that the increase in year 2 with the arithmetic gradient is $\$ 2000$, and with the geometric gradient it is $\$ 1600$; but that by 6 years later the geometric increase is $\$ 2025$ and it keeps on growing.

5.6 Staged Projects

There are many projects for which some alternatives involve building in stages. Often, these alternatives can be divided into three sets, based on what is built now vs. what will be built later. Capacity can be matched: (1) to current needs with later additional projects, (2) to future needs, or (3) to current needs with some provision for future expansion.

Meeting only current requirements requires that future needs be met by future projects. On the other hand, matching capacity to future needs means building excess capacity that will be fully used only later. Between these extremes are alternatives that include the ability to more easily modify or add onto the structure in the future. On a building, this could mean designing the foundation and the structure for additional floors. For a manufacturing plant, this could mean building a large structure with space for five assembly lines but installing only three. For a hydroelectric dam, this could mean installing two of the four turbines that the powerhouse is designed to hold. Example 5.12 illustrates these three possibilities.

Metro University must choose from among three plans for a new classroom building. (1) Spending $\$ 21 \mathrm{M}$ now will meet the needs of the next 10 years. (2) Spending $\$ 13 \mathrm{M}$ now will meet the needs of the next 6 years. After 6 years, $\$ 12 \mathrm{M}$ would be spent on another building to meet the needs of the last 4 years. (3) For $\$ 15 \mathrm{M}$ now, the new building can be designed for expansion later at a cost of $\$ 7 \mathrm{M}$. If Metro U uses an interest rate of 5%, find the PW of each alternative.

SOLUTION

$$
\begin{aligned}
\mathrm{PW}_{\text {all now }} & =-\$ 21 \mathrm{M} \\
\mathrm{PW}_{\text {minimal }} & =-\$ 13 \mathrm{M}-\$ 12 \mathrm{M}(P / F, 5 \%, 6) \\
& =-\$ 13 \mathrm{M}-\$ 12 \mathrm{M} \times .7462=-\$ 22.0 \mathrm{M} \\
\mathrm{PW}_{\text {staged }} & =-\$ 15 \mathrm{M}-\$ 7 \mathrm{M}(P / F, 5 \%, 6) \\
& =-\$ 15 \mathrm{M}-\$ 7 \mathrm{M} \times .7462=-\$ 20.2 \mathrm{M}
\end{aligned}
$$

In this case, the staged construction would be the cheapest. However, Arizona State University's main library [Moor] is an example of potential problems with staged construction. In 1964 the new main library was built to four stories, but the foundation and structure were
designed for six stories. In 1984, it was time to expand the library, but different earthquake standards meant that the two top floors could not be added. While this "wasted" the extra money spent on the original foundation and structure, that money probably made the four story library somewhat safer in an earthquake-and certainly safer than a six-story library built to 1964 standards.

Example 5.12 illustrated finding the PW of the construction costs for the three approaches. Its discussion of the Arizona State University library illustrates how each strategic approach has advantages and disadvantages that cannot be incorporated into the cash flow diagram. Exhibit 5.4 summarizes these.

In general, alternatives that meet current requirements tend to minimize current costs and debt loads but maximize the cost of later expansion-especially when disruption of activities during later construction is important. Expanding later as a separate project provides flexibility in the size and timing of the additional capacity. The later project can be built when it is needed and sized appropriately, but it may be harder to mesh that later capacity with what was built earlier.

EXHIBIT 5.4 Advantages and disadvantages of staged projects

	Current Needs (Minimal Now)	Foundation for Later Expansion (Staged)	All Now
Advantages	Lowest cost now	Flexible timing, so can be matched to actual growth in need Maximum flexibility facility	Fully uses economies of scale
Disadvantages	Difficult to integrate original and later facilities	Can use the most cost- effective investments for later expansion	No disruption for later construction
	Lncurs largest costs for later construction	Later expansion will cause some disruption for original facility	capacity may be unneeded or poorly suited

Alternatives that emphasize excess capacity reduce the costs of building that capacity, because there are many economies of scale in construction. This minimizes later costs and may minimize total costs (PW at $i=0 \%$) due to economies of scale and minimal disruption of activities. Since the capacity is already built, however, there is no flexibility in the size of the capacity increment, nor in its timing. In fact, there is even the risk that the excess capacity will never be needed.

Laying the foundation for future expansion has the advantages and disadvantages of compromise. For example, the timing of the expansion is flexible, but the expansion's exact size may be heavily constrained by current immediate decisions.

5.7 Cost of Underutilized Capacity

One difficulty in evaluating projects or alternatives is that firms and agencies may have excess capacity due to changed plans or changed situations. Once-busy warehouses or schools may now be only half-full. Unused excess capacity has no direct economic return, but using that excess capacity for a marginal project means that capacity will be unavailable for more attractive alternatives.

Common sense suggests that if a warehouse costs $\$ 85$ per square foot to build, then each project that uses warehouse space should include a cost of $\$ 85$ per square foot. However, once the warehouse is built, the $\$ 85$ is a sunk cost. Unless excess space can be rented or the warehouse sold, there is a problem in evaluating projects that would use some of the excess capacity.

Suppose that no current project proposal is justifiable if the full $\$ 85$ is used but that several alternatives can contribute $\$ 20$ to $\$ 60$ per square foot. If no alternative is accepted, then the warehouse keeps its excess capacity and does not earn even that $\$ 20$ to $\$ 60$ per square foot. The capacity is unused for longer periods_perhaps forever. If a standard of less than $\$ 85$ per square foot is used, then the excess capacity may be assigned to marginal projects before a "good" project can be approved. If a price below $\$ 85$ is used, it must at least cover additional operating costs for the facility. In a warehouse, this would include additional staffing, heating, insurance, etc.

The following are rough guidelines for the maximum period of cheap pricing. The period should be: (1) less than 5 years (long for dynamic industries, but the other two criteria will automatically reduce it), (2) less than one-third of the life of the alternative receiving the cheap pricing, and (3) less than the time until better alternatives could start. Guidelines 1 and 2 have appeared in the literature [Ruel; in Grant, Ireson, and Leavenworth]. Example 5.13 illustrates these guidelines.

MoreTech Drilling has had a downturn in business, causing it to lay off one of its six engineers. One of its computer workstations has been idle for 3 months. A proposal has come forward to use the workstation for process control in the plant.

MoreTech Drilling has identified the cost to buy and operate this workstation at $\$ 55$ per hour. If the machine is idle, the cost is $\$ 40$ per hour. If the machine is used for process control, it will be worn out in 9 years. How should this proposal be evaluated?

SOLUTION

The guidelines suggest that the "cheap" rate of $\$ 40$ per hour should be limited to the smallest of: (1) 5 years, (2) one-third of 9 years, or 3 years, and (3) the predicted time for returning to six engineers. After that point, the process control should be able to repay a charge of $\$ 55$ per hour to be worthwhile.

These guidelines are not universally applicable. For example, many school systems rent out classrooms, gyms, pools, and assembly halls for use outside of school hoursin the evenings, on weekends, and during the summer. Often, there is no possibility of an alternative use by the school system, and any fee above the cost of setting up and cleaning the room may be much-needed revenue.

5.8 Spreadsheets and Shorter Periods

One advantage of using spreadsheets to calculate PW is that greater complexity or detail can be included efficiently. This allows more accurate models with shorter time periods. The same situation can be modeled using 10 years, 120 months, or even 260 biweekly pay periods. Accuracy can be enhanced by estimating the cash flows for each time period rather than assuming that years 1 through 10 will be the same. The more accurate model is easier to evaluate if a spreadsheet is used.

More numbers, however, do not guarantee accuracy. They simply make it possible. The accuracy of a model and its PW depend on how well cash flows are estimated (see Chapter 16 for more on estimating cash flows). If cash flows are guessed at rather than carefully estimated, then the PW will not be accurate whether calculated with factors or spreadsheets.

Spreadsheets can easily use monthly rather than yearly periods, and any interest rate is entered exactly. Thus, no interpolation is needed. The resulting economic models are more accurate, because the assumption of end-of-period cash flows is not the best approximation of most real-world problems.

For example, if you are modeling the repayment schedule for a car loan or a house mortgage, it is more accurate to use monthly periods rather than an annual approximation. Similarly, firms may build more accurate models using 26 biweekly pay periods rather than an annual approximation. These more accurate models can include energy costs that vary by the season, employment levels that vary by the month, and construction equipment rentals that vary by the week.

Example 5.14 models the construction period for a project. The more accurate assumption of monthly cash flows increases the absolute value of the PW by more than 5%. This increase happens because the cash flows at the ends of months 1 to 11 occur sooner than the cash flows at the end of year 1 (month 12). The solution to Example 5.14 also includes formulas for solving the problem, but as the problem grows in size and complexity, this method becomes more and more cumbersome.

EXAMPLE 5.14 AAA Construction

AAA Construction is bidding on a project whose costs are divided into $\$ 20,000$ for start-up, $\$ 120,000$ for the first year, and $\$ 180,000$ for the second year. If the interest rate is 1% per month, or 12.68% per year, what is the PW with annual compounding? With monthly compounding?

SOLUTION

Exhibit 5.5 illustrates the spreadsheet solution for this problem with the assumption that costs are distributed evenly throughout the year.

Monthly vs. annual periods

	A	B	C	D	E
1		Annual		Monthly	
2	1	12.68\%	$=(1+\mathrm{D} 2)^{\wedge} 12-1$	1.00\%	
3	First cost	-\$20,000		-\$20,000	
4	A 1st yr	-120,000		-10,000	
5	A 2nd yr	-180,000		-15,000	
6					
7	PW	-\$268,256		-\$282,375	
8	= B10	PV(B2,B11:		$=\mathrm{D} 10+\mathrm{NPV}(\mathrm{D}$	
9	Year	Cash flow	Month	Cash flow	
10	0	-\$20,000	0	-\$20,000	
11	1	-120,000	1	-10,000	
12	2	-180,000	2	-10,000	
13			3	-10,000	
14			4	-10,000	
15			5	-10,000	
16			6	-10,000	
17			7	-10,000	
18			8	-10,000	
19			9	-10,000	
20			10	-10,000	
21			11	-10,000	
22			12	-10,000	
23			13	-15,000	
24			14	-15,000	
25			15	-15,000	
26			16	-15,000	
27			17	-15,000	
28			18	-15,000	
29			19	-15,000	
30			20	-15,000	
31			21	-15,000	
32			22	-15,000	
33			23	-15,000	
34			24	-15,000	

Since the costs are uniform, a factor solution is also reasonable.

$$
\begin{aligned}
\mathrm{PW}_{\text {annual }} & =-20 \mathrm{~K}-120 \mathrm{~K} / 1.1268-180 \mathrm{~K} / 1.1268^{2}=-\$ 268.3 \mathrm{~K} \\
\mathrm{PW}_{\text {monthly }} & =-20 \mathrm{~K}-10 \mathrm{~K}(P / A, 1 \%, 12)-15 \mathrm{~K}(P / A, 1 \%, 12)(P / F, 1 \%, 12)=-\$ 282.4 \mathrm{~K}
\end{aligned}
$$

Why do these two values differ by more than $\$ 14,000$? The interest rates are equivalent, so that is not the answer. The answer involves different assumptions about when cash flows occur. For example, $\$ 10 \mathrm{~K}$ at the ends of months 1 through 12 is not the same as $\$ 120 \mathrm{~K}$ at the end of year 1 (month 12).

Shorter time periods may or may not be better.

Just because spreadsheets can use more periods does not mean it is better to do so. The best time period for the model depends on the pattern of cash flows and how accurately they can be estimated. A mortgage should be modeled monthly, because the cash flows are exact and they flow monthly. However, many engineering projects should be modeled with years. Ten years of data is easier to model, analyze, and explain than 120 months of data.

5.9 Spreadsheets and More Exact Models

The factor approach to engineering economy problems works well as long as most cash flows are part of uniform or gradient series. If a more exact model is produced and that model involves different cash flows in most periods, then a spreadsheet is the best approach.

Many problems cannot be analyzed easily using factors for uniform flows, arithmetic gradients, and single payments. For example, production from oil fields and most mineral resources start slowly, accelerate rapidly, and then decline in a complex pattern over time. Demand for manufactured products typically starts low, increases rapidly for a period of months to years, and then declines more slowly. Demand for municipal services such as sewer, water, and roads grows irregularly as subdivisions and major industrial facilities are built. For problems with this level of detail, a spreadsheet is much preferred; a second choice is the rollback approach explained in Section 5.3. This divides repeatedly by $1+i$ rather than using $N(P / F)$ factors.

Example 5.15 converts Example 5.14 's data into a monthly pattern, with heavier summer construction activities (month 1 is June). Example 5.16 calculates the PW for a new product, for which the demand first increases and then declines more slowly. The unit price is first stable, and then it declines.

EXAMPLE 5.15 AAA Construction (Revisited)

Assume that the project is initiated on June 1 (time 0), that the maximum monthly cost is $\$ 14 \mathrm{~K}$ for the first year and $\$ 21 \mathrm{~K}$ for the second year, and that the minimums are $\$ 6 \mathrm{~K}$ and $\$ 9 \mathrm{~K}$. The detailed monthly costs are shown in Exhibit 5.6. What is the PW for the monthly model?

SOLUTION

Detailed time-varying cash flow estimates

	A	B	C	D	E
1		Annual		Monthly	
2	i	12.68\%	$=(1+\mathrm{D} 2)^{\wedge} 12-1$	1.00\%	
3	First cost	-\$20,000		-\$20,000	
4	A 1st yr	-120,000		-10,000	
5	A 2nd yr	-180,000		-15,000	
6					
7	PW	-\$268,256		-\$283,970	
8	= B10	V (B2,B11:		= D10+NPV(D11:D34)
9	Year	Cash flow	Month	Cash flow	
10	0	-\$20,000	0	-\$20,000	
11	1	-120,000	1	-14,000	
12	2	-180,000	2	-14,000	
13			3	-14,000	
14			4	-12,000	
15			5	-10,000	
16			6	-8,000	
17			7	-6,000	
18			8	-6,000	
19			9	-6,000	
20			10	-8,000	
21			11	-10,000	$=$ SUM(D11:D22)
22			12	-12,000	-120,000
23			13	-21,000	
24			14	-21,000	
25			15	-21,000	
26			16	-18,000	
27			17	-15,000	
28			18	-12,000	
29			19	-9,000	
30			20	-9,000	
31			21	-9,000	
32			22	-12,000	
33			23	-15,000	$=$ SUM(D23:D34)
34			24	-18,000	-180,000

The PW calculated in Exhibit 5.6 is not significantly different from the monthly PW calculated in Example 5.14; however, the pattern is quite different. The heavy cash flows in the early summer months may require more working capital (see Section 6.5).

EXAMPLE 5.16 PW for Hi-Tech's New Product

Hi-Tech Industries has a new product whose sales are expected to be $1.2,3.5,7,6,5,4$, and 3 million units per year over the next 7 years. Production, distribution, and overhead costs are stable at $\$ 120$ per unit. The price will be $\$ 200$ per unit for the first 3 years and then $\$ 180, \$ 160, \$ 140$, and $\$ 130$ for the next 4 years. The remaining R\&D and production costs are $\$ 400 \mathrm{M}$. If i is 15%, what is the PW of the new product?

SOLUTION

Column D in Exhibit 5.7 is the yearly net revenue per unit (= price $-\$ 120$) before building the spreadsheet. Note that it would be easy to include costs per unit that varied with time and production volume.

EXHIBIT 5.7 PW of a new product with growing and declining demand

	A	B	C	D	E	F
1		Data block				
2		-\$400	First cost (\$M)			
3		\$120	Cost per unit			
4		15\%	i			
5				Net	Cash	
6	Year	Sales	Unit Price	Revenue	Flow	
7	0	0.0			-\$400	
8	1	1.2	\$200	\$80	96	
9	2	3.5	200	80	280	
10	3	7.0	200	80	560	
11	4	6.0	180	60	360	
12	5	5.0	160	40	200	
13	6	4.0	140	20	80	
14	7	3.0	130	10	30	
15				$\mathrm{PW}=$	\$615	
16				= E7 +	(B4,E8:E	

5.10 Summary

This chapter has defined and applied the PW measure to problems of setting a price for a patent or a bond and of evaluating private- and public-sector projects. This included salvage values, capitalized cost of perpetual annuities, staged projects, and underutilized capacity. Finally, spreadsheets have been used to improve model accuracy by using more and shorter periods and by using cash flow estimates that change each period.

The standard is to accept projects whose PW is positive at the specified interest rate. Cash flows are assumed to be known and certain and to occur at the end of the period, except for first costs and prepayments such as leases or insurance. Computations are usually made using engineering economy factors, but if each cash flow is different, then a spreadsheet or rollback procedure is recommended.

The PWs were calculated to compare staged projects where the current project (1) meets only current needs (minimal now), (2) meets future and current needs (all now), and (3) includes some provision for later expansion (staged). Other advantages and disadvantages were also summarized.

Guidelines were developed for pricing underutilized capacity. These guidelines are that "cheap" pricing should always exceed the added operating costs and that the maximum period for "cheap" pricing should be less than the smallest of: (1) 5 years, (2) onethird of the project's life, or (3) the starting point for better alternatives.

Spreadsheets were used to build more accurate models that use monthly or biweekly periods rather than years. These models can also accommodate estimates for each year or period rather than assuming that cash flows are uniform series or arithmetic gradients.

REFERENCES

Barrett, Amy, "The Big Turnoff," Financial World, Volume 160, Number 15, July 23, 1991, pp. 30-32.
Energy Journal, Volume 12, special issue, decommissioning articles, 1991.
Grant, Eugene L., W. Grant Ireson, and Richard S. Leavenworth, Principles of Engineering Economy, 7th ed., 1982, Wiley, p. 385.
Moor, Bill [private communication], described Arizona State University library example.
Reul, Ray I., "Profitability Index for Investments," Harvard Business Review, Volume 35, Number 4, July-August 1957, p. 122.

Problems

5.1 Cathy, a graduating civil engineering student, is offered a job at a remote construction project overseas. If Cathy is still with the project when it is completed at the end of year 5 , she will receive a bonus of $\$ 100,000$. Her discount rate is 12%. What is the present worth of the bonus?
(Answer: $\$ 56,740$)
5.2 Graph the answer for Problem 5.1 for discount rates \square ranging from 0% to 20%.
5.3 Installing a sprinkler system will reduce insurance premiums by $\$ 1800$ annually. The salvage value of the existing system is 20%, when it is renovated after 15 years. The firm's interest rate is 8%. Using the 15 -year horizon, how much can the firm afford to pay for the system?
5.4 An R\&D project for a new product has already required the expenditure of $\$ 200 \mathrm{~K}$. Spending another $\$ 100 \mathrm{~K}$ for a license on another firm's patent will complete the project. Net returns from the product will be $\$ 20 \mathrm{~K}$ per year for 10 years. If the firm's i is 10%, what is the PW for continuing? Should the firm continue?
5.5 The annual income from an apartment house is $\$ 20,000$. The annual expenses are estimated to be $\$ 2000$. If the apartment house can be sold for $\$ 100,000$ at the end of 10 years, how much can you afford to pay for it if the time value of money is 10% ?
5.6 Hollingsworth Machine Group needs a new precision grinding wheel. If 12% is the acceptable return for Hollingsworth, determine the net present worth of one of the best alternatives.

Cost	$\$ 80,000$
Useful life	5 years
Annual cost	$\$ 12,000$
Salvage value	$\$ 10,000$

(Answer: -\$117.6K)
5.7 A road's maintenance costs $\$ 30,000$ annually. Redoing the surface would reduce annual maintenance to $\$ 5000$ per year for 5 years, and to $\$ 15,000$ per year for the next 5 years. Then maintenance costs return to $\$ 30,000$ annually. If the interest rate is 6%, what first cost can be justified?
5.8 The Burger Barn is evaluating the Quick Fry french fryer, which has an initial cost of $\$ 6000$. The new equipment will allow Burger Barn to save on costs and sell more fries. The annual expected net income increase is $\$ 1380$. The machine has a salvage value of $\$ 250$ at the end of its 5 -year useful life. Determine the present worth at an interest rate of 5%.
5.9 We-Clean-U will receive $\$ 32,000$ each year for 15 years from the sale of its newest soap, Rub-A-DubDub. The initial investment is $\$ 150,000$. Manufacturing and selling the soap will cost $\$ 7350$ per year. Determine the investment's PW if interest is 12%.
5.10 A new drill press has a first cost of $\$ 10,000$. The net annual income is $\$ 1500$ the first year, which decreases by $\$ 250$ each year thereafter. After 6 years, the press can be sold for $\$ 500$. What is the press' present worth at an interest rate of 12% ?
5.11 MoreTech Drilling is considering the sale of its Alaskan subsidiary to another company. The subsidiary is expected to produce profits of $\$ 800,000$ next year, which drops by $\$ 50,000$ per year for the following 14 years. If MoreTech's interest rate is 12%, what price should MoreTech charge for the subsidiary? (Answer: $\mathrm{PW}=\$ 3.75 \mathrm{M}$)
5.12 What is the PW (at $i=10 \%$) of the following electric-power-generating project? There is a $\$ 180,000$ overhaul cost in year 8 . The first cost is $\$ 420,000$, and the annual operating cost is $\$ 30,000$. Revenue from power sales is expected to be $\$ 100,000$ per year. The facility will have a salvage value of $\$ 75,000$ at the end of year 15. (Answer: $\mathrm{PW}=\$ 46.4 \mathrm{~K})$
5.13 A project has a first cost of $\$ 10,000$, net annual benefits of $\$ 2000$, and a salvage value after 10 years of $\$ 3000$. The project will be replaced identically at the end of 10 years and again at the end of 20 years. What is the present worth of the entire 30 years of service if the interest rate is 10% ?
5.14 Pass-Time Pool Hall may buy 10 of the finest slate pool tables available. Each table will cost $\$ 12,000$ and have an unknown residual value. Pass-Time's management is certain that business will increase and that the hall will be able to host a number of tournaments. The expected increase in net revenues is $\$ 22,000$ each year for the next 8 years. Determine each table's residual value if the PW is to equal zero. The cost of money for Pass-Time is 10%.
5.15 What is the PW (at $i=5 \%$) of SuperTool's new test equipment? The development cost is $\$ 1.2 \mathrm{M}$. Net revenues will begin at $\$ 300,000$ for the first 2 years and then decline at $\$ 50,000$ per year. SuperTool will terminate sales when net revenues decline to zero.
5.16 A 10-year, 9% bond, issued by Cheap Motors Manufacturing on January 1, 2010, matures on December 31, 2019. If investors require a 12% return, how much should they be willing to pay on January 1, 2014? (Face value of the bond is $\$ 10,000$, and interest is paid annually.) (Answer: \$8766)
5.17 A 10-year, $\$ 10,000$ bond will be issued at an interest rate of 8%. Interest is paid annually. Interest rates have fallen since the planning for this bond was completed, and interest rates are now 7%. At what price should this bond sell?
5.18 A 10-year, $\$ 20,000$ bond was issued at a nominal interest rate of 8% with semiannual compounding. Just after the fourth interest payment, the bond will be sold. Assume that an effective interest rate of $10 \frac{1}{4} \%$ will apply, and calculate the price of the bond. (Answer: \$17,832)
5.19 A 10-year, $\$ 30,000$ bond was issued at a nominal interest rate of 6% with semiannual compounding. Just after the fourth interest payment, the bond will be sold. Assume that an effective interest rate of $10 \frac{1}{4} \%$ will apply, and calculate the price of the bond.
5.20 The head coach at State University has received an offer to buy out his contract. The offer is $\$ 175,000$ now and a semiannual annuity of $\$ 75,000$ for the next 3 years. If money is worth 6.1% to the coach, what is the buyout worth?
5.21 Determine the purchase price of a new home if it was financed with a 10% down payment and payments of $\$ 539.59$ per month for 30 years at 6% interest.
(Answer: \$100K)
5.22 Determine the down payment that must be made on an automobile that cost $\$ 20,000$ if payments are limited to $\$ 375$ per month for 48 months at 9% interest.
5.23 Firerock Tire and Rubber Company can invest $\$ 2.6 \mathrm{M}$ to receive the cash flows shown in the table. If money costs Firerock 8\%, determine the investment's PW.

Year	Cash Flow	Year	Cash Flow
1	$\$ 125 \mathrm{~K}$	5	$\$ 1000 \mathrm{~K}$
2	250 K	6	750 K
3	500 K	7	500 K
4	750 K	8	250 K
(Answer: $\$ 258 \mathrm{~K})$			

5.24 Determine the PW of the following cash flows (CF) at 6\% interest.

Year	0	1	2	3	4	5	6
CF	$-\$ 14 \mathrm{~K}$	-8 K	13 K	22 K	-14 K	-4 K	12 K

5.25 What is the PW of the following cash flows (CF) at an interest rate of 8% ?

Year	0	1	2	3	4	5	6	7	8	9
CF (K)	$-\$ 40$	3	5	7	9	11	13	11	9	7

(Answer: $\mathrm{PW}=\$ 9.70 \mathrm{~K}$)
5.26 What is the PW of the following cash flows (CF) at an interest rate of 6% ?

Year	0	1	2	3	4	5	6	7
CF	$-\$ 40 \mathrm{~K}$	8 K	9 K	10 K	11 K	12 K	10 K	8 K

5.27 The Ding Bell Import Company requires a return of 15% on all projects. If Ding is planning an overseas development project with the following cash flows (CF), what is the project's present worth?
$\begin{array}{lllllllll}\text { Year } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ CF $\quad \$ 0-100 \mathrm{~K}-40 \mathrm{~K} \quad-20 \mathrm{~K} \quad 30 \mathrm{~K} \quad 80 \mathrm{~K} \quad 100 \mathrm{~K} \quad 30 \mathrm{~K}$
5.28 Recalculate the present worth of a M.S. degree using the data from Example 5.7. Assume that graduate school takes 2 years to complete.
5.29 Calculate the PW of a Ph.D. degree over a B.S. degree using the data from Example 5.7. Assume that graduate school takes 5 years to complete.
5.30 Graph the PW vs. the interest rate for the following equipment. (Use $i=4 \%, 6 \%, 8 \%$, and 10%.) What conclusions can you draw concerning the net PW and the interest rate at which the PW is evaluated.

First cost

Net savings per year
Useful life
\$10,000
\$2500
5 years
5.31 A common standard of significant change is 10%. A project's first cost is $\$ 20,000$, the expected life is 15 years, and the interest rate is 8%.
(a) How large must the salvage value be so that its PW is 10% of the first cost?
(b) If the salvage value is $\$ 4000$, how short must the life be so that the salvage value's PW is 10% of the first cost?
(c) If the salvage value is $\$ 4000$, how low must the interest rate be so that the salvage value's PW is 10% of the first cost?
5.32 The industrial engineering department for Invade Air Fresheners has found that a new packing machine should save $\$ 45,000$ for each of the next 8 years. The machine will require a major overhaul at the end of 5 years costing $\$ 12,000$. The machine's expected salvage value after 8 years is 7.5% of its original cost. If money is worth 5%, determine the amount Invade should be willing to pay for the machine.
5.33 Western Coal, Inc., is considering an open-pit mine. The rights to mine on public land are expected to cost $\$ 25 \mathrm{M}$, and development of the infrastructure will cost another $\$ 12 \mathrm{M}$. The mine should produce a net revenue of $\$ 8 \mathrm{M}$ per year for 20 years. When the mine is closed, $\$ 15 \mathrm{M}$ will be spent for reclamation. If Western Coal uses an interest rate of 15%, what is the PW of this mine?
5.34 Western Coal is considering a modification of its plans for the open-pit mine described in Problem 5.33. Adding a coal-slurry pipeline (its life is also 20 years) will increase the first cost by $\$ 4 \mathrm{M}$, increase annual net revenues by $\$ 750 \mathrm{~K}$, and increase closure costs by $\$ 1 \mathrm{M}$. If the interest rate is 15%, what is the PW of the slurry pipeline?
(Answer: $\mathrm{PW}=\$ 633.2 \mathrm{~K}$)
5.35 MidCentral Light and Power is planning a nuclear facility. Expected first costs are $\$ 1.2 \mathrm{~B}$, and the annual net revenue is estimated to be $\$ 75 \mathrm{M}$. The life is 40 years, and the interest rate is 7%. Shut-down costs are estimated to be $\$ 400 \mathrm{M}$, and the cost of caring for the hazardous wastes is $\$ 10 \mathrm{M}$ per year for the 100 years after the facility is shut down. What is the PW of the facility?
5.36 Baker and Sons specializes in land development and construction management. It is considering whether to develop a research park near a major engineering school. The land will cost $\$ 20 \mathrm{M}$, and the design and construction of the infrastructure will cost $\$ 25 \mathrm{M}$.

The plan is to build a new building each year for 15 years at an average cost of $\$ 10 \mathrm{M}$. Operating costs for the buildings will be paid by the tenants. In year 20, the research park will be sold for $\$ 250 \mathrm{M}$ (land, buildings, and goodwill). Tenants will pay 15% of the cost of the buildings each year in rent. If Baker and Sons uses an interest rate of 8%, what is the PW of the research park? (Assume 1 year for infrastructure construction and 1 year for each building.)
5.37 The Moo-Cow Dairy may purchase new milking equipment for its milking barn. The equipment costs $\$ 135,000$. The annual savings due to increased production and decreased labor costs will be $\$ 25,000$. The equipment requires a minor overhaul every 2 years that costs $\$ 5000$. At the end of the sixth year, a major overhaul costing $\$ 15,000$ will be required. The equipment is expected to last 10 years with scheduled overhauls. No salvage value is anticipated. If money is worth 7% to the dairy, determine the equipment's PW. (Answer: $\$ 19.56 \mathrm{~K}$)
5.38 National Motors must build a bridge to access land for its manufacturing plant expansion. If made of normal steel, the bridge would initially cost $\$ 30,000$, and it should last 15 years. Maintenance (cleaning and painting) will cost $\$ 1000$ per year. If a more cor-rosion-resistant steel were used, the annual maintenance cost would be only $\$ 100$ per year (with the same life). If the firm's cost of money is 12%, what is the maximum amount that should be spent on the corrosion-resistant bridge?
5.39 Fishermen's Bay used to have a thriving fishing industry, but the boats got bigger and now few fit in the harbor's protected area. The city council would like to attract the boats back, and it believes a new breakwater and docking area would do the job. The city engineer's estimated first cost is $\$ 900,000$, and the annual expenses are estimated at $\$ 85,000$. The planning department estimates annual benefits to be $\$ 150,000$. The city uses a 5\% interest rate and a study period of 20 years. How large does the salvage or residual value have to be for the project to have a PW >0 ?
5.40 What is the capitalized cost to endow an engineering scholarship of $\$ 3500$? The endowment will be invested at 7%.
5.41 A leading firm in artificial limbs wants to establish an endowed chair in biomedical engineering at Research University. The annual cost of the chair is $\$ 150,000$. If the endowment will be invested at 5%, how large must the endowment be?
5.42 A water aqueduct costs $\$ 4$ million to build and $\$ 300,000$ annually to operate and maintain. At 5\% what is the capitalized cost?
5.43 Computer Colleagues, Inc., wants its name on the computer engineering building planned for the campus. For naming, the university requires that 60% of the first cost of the building and 20% of the maintenance be covered by an endowment. The building should initially cost $\$ 14 \mathrm{M}$, and maintenance will cost $\$ 350,000$ per year. If the endowment will be invested at 8%, how large a donation must Computer Colleagues make?
5.44 The maintenance for the computer engineering building (in Problem 5.43) will climb at $\$ 5000$ per year. How much larger a donation must Computer Colleagues make?
5.45 A successful alumnus wants to endow a chaired professorship. What amount must be deposited today if the salary and support cost to the university starts at $\$ 200,000$ a year from now? Assume the endowment earns 8% interest.
(a) Assume the costs are level.
(b) Assume the costs increase by $\$ 8000$ per year.
(c) Assume the costs increase by 3% per year.
5.46 You want to endow a memorial garden with a theme that changes every year (so it must be replanted every year). What amount must be deposited today, if the cost starts at $\$ 2500$ a year from now? Assume the endowment earns 5\% interest.
(a) Assume the costs are level.
(b) Assume the costs increase by $\$ 200$ per year.
(c) Assume the costs increase by 4% per year.
5.47 A lump sum of \$50,000 is deposited into an endowment for a scholarship that earns 4% interest compounded quarterly. What initial scholarship can be awarded a year from now so that it can be awarded in perpetuity?
(a) Assume the scholarship amount does not change.
(b) Assume the scholarship amount increases by $\$ 100$ per year.
(c) Assume the scholarship amount increases by 1\% per year.
5.48 An open-pit mine must fund an account now to pay for maintenance of a tailing pond in perpetuity (after the mine shuts down in 20 years). The costs until shutdown are part of the mine's operating costs. The maintenance costs begin in 20 years at $\$ 200,000$ annually. How much must be deposited now if the fund will earn 7\% interest?
(a) Assume the maintenance costs do not change.
(b) Assume the maintenance costs increase by \$10,000 per year.
(c) Assume the maintenance costs increase by 3% per year.
5.49 A firm wants to sponsor a new engineering lab at a local university. The venture requires $\$ 1.5 \mathrm{M}$ to construct the lab, $\$ 800 \mathrm{~K}$ to equip it, and $\$ 400 \mathrm{~K}$ every 5 years for new equipment. If the university endowment earns 5% interest, what is the endowment?
5.50 Lazy Links Country Club has been more successful than expected in the 3 years since it opened. The owners believe that this growth will continue for 10 years before leveling off. The pool, racquet, and golf facilities (both indoor and out) can be expanded during each sport's off-season. However, the locker rooms, sports shop, and dining facilities are used year-round. These facilities are approaching capacity (4 years sooner than projected), so an expansion is required.

If all of the work is done immediately, it will cost $\$ 4.5 \mathrm{M}$ to build and $\$.6 \mathrm{M}$ per year to maintain. If capacity is matched to the 5 -year forecast, then the capital cost will be $\$ 2 \mathrm{M}$ now and $\$ 5 \mathrm{M}$ in 5 years. (These cost estimates include a "cost of disruptions.") For the staged alternative, maintenance costs are estimated to be $\$.2 \mathrm{M}$ and $\$.6 \mathrm{M}$ before and after expansion, respectively. If the owners' interest rate is 12%, what is the PW of each option over the next 5 years? Will costs after 5 years make a difference?
5.51 National Motors is planning a new manufacturing facility to support a three-wheeled car called the Trio. Once the car is introduced, demand is expected to grow 40% per year. Much of this growth can be handled by adding shifts of workers, but clearly, the manufacturing facilities will need to be expanded at some point. Find the PW for the following options. Assume that the interest rate is 12% and that expansion will be required in year 6 .

	Build Now with Now	Build Now Expansion Plans	without Expansion Plans
First cost Expansion	$\$ 200 \mathrm{M}$ 0	$\$ 120 \mathrm{M}$	$\$ 100 \mathrm{M}$
	0	120 M	180 M

5.52 A new aqueduct will be tunneled through a mountain to meet the city's water needs. A full-capacity tunnel will cost $\$ 2.3 \mathrm{M}$ to build. Another choice is to build a
half-capacity tunnel now for $\$ 1.8 \mathrm{M}$, and then to build a second parallel half-capacity tunnel in 20 years for the same cost. Pumping costs are $\$ 40 \mathrm{~K}$ per year higher for each of the smaller-diameter tunnels. The interest rate is 5%.
(a) Based on a 40-year life, which size should be built now?
(b) Based on capitalized cost, which size should be built now?
5.53 Midwest Manufacturing has had to downsize by about 25%. As a result, one of its warehouses is currently unused. Insurance, security, and minimal heating and lighting cost $\$ 170,000$ per year. When it was in use, the facility costs for these items and normal maintenance were $\$ 425,000$ per year. The building and land are valued at $\$ 3 \mathrm{M}$.

Midwest expects to begin using the warehouse again in 4 years. Another firm wants to lease the warehouse for 5 years with an option to renew. If Midwest uses an interest rate of 10%, what should the Midwest charge the firm? The firm will pay all costs for insurance, security, heating, lighting, and maintenance. If needed, Midwest can lease or build another warehouse for equivalent costs.
5.54 Assume mortgage payments of $\$ 1000$ per month for 30 years and an interest rate of 1% per month. What initial principal will these figures repay? (That is, find the PW.) If annual payments of $\$ 12,000$ are assumed with an interest rate of 12.68% per year, what initial principal will be repaid? Why do these differ?
5.55 A construction project has the following end-of month costs. Calculate the PW at a nominal interest rate of 18%.

January	$\$ 20,000$	May	$\$ 400,000$
February	40,000	June	360,000
March	90,000	July	225,000
April	330,000	August	75,000

5.56 A factory has averaged the following monthly heating and cooling costs over the last 5 years. Calculate the PW at a nominal interest rate of 12%.

January	$\$ 20,000$	July	$\$ 25,000$
February	15,000	August	30,000
March	12,000	September	17,000
April	6,000	October	9,000
May	8,000	November	18,000
June	15,000	December	21,000

A new product is planned. Annual sales, unit costs, and unit revenues are in the table. The first cost of R\&D and setting up the assembly line is $\$ 55,000$. If i is 10%, what is the PW?

Year	Annual Sales	Cost per Unit	Price per Unit
1	2,000	4.50	7.00
2	6,000	4.25	6.75
3	12,000	4.00	6.50
4	11,000	3.75	6.25
5	7,000	3.50	5.50
6	3,000	3.25	4.00

5.58 Engineering is analyzing a mining project. Annual production, unit costs, and unit revenues are in the table. The first cost of the mine setup is $\$ 8$ million. If i is 15%, what is the PW

Year	Annual Production (tons)	Cost/ton	Price/ton
1	50,000	35	45
2	90,000	30	44
3	150,000	32	43
4	130,000	34	44
5	90,000	36	45
6	60,000	38	46
7	20,000	40	47

5.59 Richard Snooty wants to ensure that at least some of his descendants are well educated in perpetuity. He is planning for 5 college students each generation at $\$ 125,000$ each. He estimates that the generations will be spaced every 25 years, but the first generation will be in 10 years. If the trust will earn 6%, how much money should be deposited now?
5.60 Bayview's growth is constrained by mountains on one side and the bay on the other. A bridge across the bay is planned, but which plan is best? It can be built with a single deck to meet the needs of the next 20 years, or it can be built with two decks to meet the needs of the next 50 years. The piers can also be built to support two decks, but with only one deck being built now.

Building it all now will cost $\$ 160 \mathrm{M}$, and leaving the top deck for later will save $\$ 40 \mathrm{M}$. Building that top deck later will cost $\$ 70 \mathrm{M}$ including the cost of traffic disruption. A single deck bridge will cost \$100M now and \$115M in 20 years. Deck maintenance is $\$ 1.4 \mathrm{M}$ per year per deck. Pier maintenance
is $\$ 1.2 \mathrm{M}$ per year per bridge. If the interest rate is 5%, which design should be built?

If the two-deck bridge is built immediately, then dedicated lanes for buses, carpools, and bicycles can be added. To economically evaluate this use, estimate the cost of the underutilized capacity for the bridge.

Minicase

5.61 Mai Ling is evaluating a mining prospect. Leasing the land and the mineral rights from the government will cost $\$ 450 \mathrm{~K}$ to win the lease and $\$ 50 \mathrm{~K}$ annually as the lease payment for 22 years. In the first year developing the deposit will require $\$ 300 \mathrm{~K}$ for initial planning and $\$ 400 \mathrm{~K}$ for core drilling to better delineate the deposit.

In year $2, \$ 1.25 \mathrm{M}$ will be required to purchase and install the dragline. Its salvage value will be zero, and it will cost $\$ 200 \mathrm{~K}$ per year to operate. Roads and buildings will cost another $\$ 950 \mathrm{~K}$ in year 1 and $\$ 175 \mathrm{~K}$ annually. At the start of year 3, the following equipment will be purchased: 16 off-road dump trucks for $\$ 150 \mathrm{~K}$ each, 6 pickups for $\$ 25 \mathrm{~K}$ each, 4 loaders for $\$ 190 \mathrm{~K}$ each, and 2 conveyors for $\$ 325 \mathrm{~K}$ each. The pickups will last for 5 years, and the other equipment will last for 10 years. Each has a salvage value estimated to be 10% of its first cost. Annual operating and maintenance costs are estimated to be 35% of the first cost for the vehicles and 20% for the conveyors.

In year 3, the production volume will be 3 M tons. This will increase to 4 M tons for years 4 through 6 , but then it will fall by 2% per year. The initial yield from the deposit will be 1.3%, but this will fall by $.04 \%$ per year. The minerals are worth $\$ 1.80$ per pound now, which is expected to increase by $\$.03$ per year.

If the firm's interest rate is 9%, find the project's PW.

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 7 The Board Looks to You

Bond valuation with realistic business details including early-call premium. Medium difficulty. Good example of employer taking a small fact and making big assumptions about
individual talents, leading to reasons for engineering students to keep learning.

Case 8 Picking a Price

Simplified real estate analysis. Demonstrates analysis to screen before acquiring more data and further decision making.

Case 9 Recycling?

Financial analysis of recycling cardboard and selling unusable pallets to recycler.

Case 54 Whirlwind Exploration Company

Modeling required economic size for development of an oil field. Detailed data in tables.

Equivalent Annual Worth

- THE SITUATION AND THE SOLUTION

Decision makers often think in terms of annual expenses, annual receipts, and annual budgets-not present worths. In other cases, the benefits are not studied and only the costs of alternatives are compared.

The solution is to state equivalence in yearly terms-that is, as an equivalent annual worth (EAW) or an equivalent annual cost (EAC).

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 6.1 Define EAW, and explain when that measure is preferred.
SECTION 6.2 Explain the assumptions and sign conventions of EAW and EAC.
SECTION 6.3 Understand typical examples of EAC use.
SECTION 6.4 Find the EAC of an overhaul or a deferred annuity.
SECTION 6.5 Find the EAC with salvage values and working capital.
SECTION 6.6 Calculate EACs for perpetual life, including perpetual gradients.
SECTION 6.7 Calculate EAWs if some costs occur periodically, such as a road that is restriped every 3 years.
SECTION 6.8 Analyze loan repayments and balances due using spreadsheets.

- KEY WORDS AND CONCEPTS

Equivalent annual worth (EAW) The uniform dollar amounts at the ends of periods 1 through N that are equivalent to a project's cash flows.
Equivalent annual cost (EAC) The uniform dollar amounts at the ends of periods 1 through N that are equivalent to the project's costs. For EAC, costs are positive, which reverses the signs of a project's cash flows.
Deferred annuity A uniform cash flow that first occurs at the end of period $D+1$ rather than at the end of period 1 . It continues until the end of period N.
Working capital Money required to implement a project that is recovered at the project's end.
Principle of repeated renewals Implies that if cash flows occur every T periods and this repeats for N years, where N is an integer multiple of T, then the EAWs or EACs for one cycle over T periods and for all cycles over N periods are the same.

6.1 The Equivalent Annual Worth Measure

Equivalent annual worth is the uniform dollar amounts at the ends of periods 1 through N that are equivalent to a project's cash flows.

6.2 Assumptions and Sign Conventions

Equivalent annual
cost is the uniform dollar amount at the ends of periods 1 through N that is equivalent to the project's costs. This reverses the signs of the cash flows.

Equivalent annual worth (EAW) is the value per period. More rigorously, EAW represents N identical cash flow equivalents occurring at the ends of periods 1 through N. A desirable project or alternative has an EAW >0, just as a desirable project or alternative has a $\mathrm{PW}>0$, since the EAW equals the $\mathrm{PW} \times(A / P, i, N)$

The "equivalent annual" or annuity approach is the most convenient method for comparing project evaluations with an annual budget. For example, equipment to automate a manual process is best evaluated by comparing an equivalent annual amount for automation with the annual labor savings.

Equivalent annual is often the best approach, because saying that this project will cost or save $\$ 3500$ per year makes intuitive sense even to people who have never heard of engineering economy.

Chapter 9 will show that equivalent annual measures are particularly convenient when alternatives with lives of different length are compared. For example, a stainless steel design may be considered precisely because it will last longer than a brass design. The question to be answered is: "Does the longer life of the stainless steel design make up for its higher first cost?" Or: "Which is cheaper over its life, stainless steel or brass?" Comparing the EACs is comparing the costs per year, which is clear and easy to understand.

As another example of the usefulness of the EAC measure, consider a commercial building. The foundation will last for the life of the structure, but walls will be painted frequently, carpets replaced periodically, and roofs redone at long intervals. By stating all costs in terms of EAC, it is easy to compare or combine costs for different items over different intervals.

Equivalent annual measures are commonly applied using exactly the same assumptions used with present worth measures. As noted in Section 5.1, these are:

1. Cash flows occur at time 0 and at the ends of periods 1 through N.
2. Cash flows are known; the horizon, N, is known; and there is no uncertainty.
3. The interest rate, i, is known.

Two sign conventions are used with equivalent annual measures. Equivalent annual worth (EAW) uses the same sign convention as PW: positive or incoming cash flows have positive signs.

The second convention is that of equivalent annual costs (EAC): negative cash flows have positive signs. Logically, a cost, when it is positive, represents a negative cash flow.

The EAC convention exists because many problems consider only costs. The question is: "Which is the most cost-effective solution?" For example, a civil engineer may design a roof, an electrical engineer may design a power transmission system, a mechanical engineer may design a heating and ventilation system, and an industrial engineer may design an assembly line. In each case, the design engineer searches for the most cost-effective solution. Often, the only positive cash flow considered is the salvage value, and all other cash flows are costs. Example 6.1 illustrates the EAC convention.

However, within a problem, be consistent. Do not mix EAC and EAW. For each problem, pick EAW or EAC, and use it for all terms. If there are benefits and costs, use EAW. If the only positive cash flow is the salvage value, then EAC can be used.

Other terminology that is sometimes used for EAW and EAC includes EUAW and EUAC, which stand for equivalent uniform annual worth and cost, respectively. Both EAWs and EACs are annuities. Even though all of these terms have the word annual as part of their names, they are used to describe uniform amounts for each month, each quarter, or each of another time period. In engineering economy, however, the year or annual period is most common.

EXAMPLE 6.1 Measuring the Cost of a New Pump

Alice is a recent chemical engineering graduate. One of her first jobs is to calculate a large pump's cost using the following data. The first cost will be $\$ 54,000$, the annual operating costs for energy and maintenance will be $\$ 18,000$, the expected life is 10 years, the expected salvage value is 0 , and the firm's interest rate is 9%. What is the EAC?

SOLUTION

Since the $\$ 18,000$ is already an annuity, we only have to add the equivalent annuity for the first cost.

$$
\mathrm{EAC}=54 \mathrm{~K}(A / P, 9 \%, 10)+18 \mathrm{~K}=54 \mathrm{~K} \times .1558+18 \mathrm{~K}=\$ 26.41 \mathrm{~K}
$$

6.3 Examples of Annual Evaluations

Example 6.2 illustrates the use of EAW and EAC to evaluate automating a process, and Example 6.3 illustrates the use of EAC to evaluate a road improvement.

EXAMPLE 6.2 The EAW of a Robot

Jose is evaluating the payoff for using two robots in place of one person on each shift at an assembly station. The robots together cost $\$ 135,000$, and they are expected to have a life of 10 years, with a salvage value of zero. This life is based on economic obsolescence, not on wearing out. Their maintenance and operating costs are expected to be $\$ 5000$ per year per shift operated. Each person per shift costs Jose's company $\$ 25,000$ per year. If the firm's interest rate is 12%, what is the EAW for the robots, assuming two shifts for the 10-year period? One shift? Three shifts?

SOLUTION

The cash flow diagram is drawn with the number-of-shifts assumption shown as $N_{\text {shift }}$. Because the two robots are replacing a person per shift, the personnel cost of $\$ 25,000$ per shift is a cost savings-which is shown as a positive cash flow.

Substituting 1, 2, or 3 for the number of shifts leads to the EAWs.

$$
\begin{aligned}
\mathrm{EAW}_{1} & =-135 \mathrm{~K}(A / P, .12,10)+1(25 \mathrm{~K}-5 \mathrm{~K}) \\
& =-135 \mathrm{~K} \times .1770+20 \mathrm{~K}=-3.9 \mathrm{~K}=-\$ 3900 \\
\mathrm{EAW}_{2} & =-135 \mathrm{~K}(A / P, .12,10)+2(25 \mathrm{~K}-5 \mathrm{~K}) \\
& =-135 \mathrm{~K} \times .1770+40 \mathrm{~K}=16 \mathrm{~K}=\$ 16,100 \\
\mathrm{EAW}_{3} & =-135 \mathrm{~K}(A / P, .12,10)+3(25 \mathrm{~K}-5 \mathrm{~K}) \\
& =-135 \mathrm{~K} \times .1770+60 \mathrm{~K}=36.1 \mathrm{~K}=\$ 36,100
\end{aligned}
$$

These EAWs show that the robots can be justified only if two or three shifts will be used. This problem could also be analyzed by using the EAC for buying the two robots:

$$
\mathrm{EAC}_{\text {buy }}=-135 \mathrm{~K}(A / P, .12,10)=135 \mathrm{~K} \times .1770=\$ 23,895
$$

This number could then be compared with the $\$ 20,000$ per year per shift that the robots would save, to reach the same conclusion that at least two shifts are required to justify the robot.

For 40 years, Wishbone Hill has been notorious for the accidents that have occurred there. Railings, signs, wider shoulders, etc., have only managed to keep the increasing level of traffic from increasing the rate of accidents. The highway department uses an interest rate of 6% and a study period of 40 years. What is the EAC for building another two-lane road to separate the traffic by direction?

Purchasing the right-of-way is expected to cost $\$ 15 \mathrm{M}$, and construction is expected to cost $\$ 60 \mathrm{M}$. Snowplowing, painting, repair of guardrails, and periodic pavement work is expected to cost \$3M per year.

SOLUTION

The right-of-way and the construction costs occur at time 0 , while the $\$ 3 \mathrm{M}$ occurs every year.

$$
\mathrm{EAC}=(15 \mathrm{M}+60 \mathrm{M})(A / P, 6 \%, 40)+3 \mathrm{M}=75 \mathrm{M} \times .0665+3 \mathrm{M}=\$ 7.99 \mathrm{M}
$$

6.4 Finding the EAC of "Irregular" Cash Flows

EAC of a Single Interior Cash Flow. There are often single cash flows that occur neither at time 0 nor at the end of period N. These "interior" cash flows may be due to equipment overhauls or staged construction. To calculate an equivalent annual amount, first calculate an equivalent P at period 0 or F at period N; then, the EAW or EAC for each of the N periods can be found.

Exhibit 6.1 illustrates the calculations defined in Equations 6.1 (using P) and 6.2 (using F). Example 6.4 applies these formulas and shows the error in not calculating P or F first. Let F_{t} equal the cash flow in year t.

$$
\begin{align*}
\mathrm{EAC} & =F_{t}(P / F, i, t)(A / P, i, N) \tag{6.1}\\
\mathrm{EAC} & =F_{\mathrm{t}}(F / P, i, N-t)(A / F, i, N) \tag{6.2}
\end{align*}
$$

EXHIBIT 6.1 EAC for a single, interior cash flow

Find the EAC for a 5 -year life of a $\$ 680$ overhaul at the end of year 3 . Let $i=8 \%$.

SOLUTION

Applying Equation 6.1 converts the overhaul cost to time 0 and then to an annual equivalent, which results in the following:

$$
\mathrm{EAC}=680(P / F, .08,3)(A / P, .08,5)=680 \times .7938 \times .2505=\$ 135.2
$$

Applying Equation 6.2 results in the same answer, but it converts the overhaul cost to a future cost at the end of year 5 and then to an annual equivalent:

$$
\mathrm{EAC}=680(F / P, .08,2)(A / P, .08,5)=680 \times 1.166 \times .1705=\$ 135.2
$$

As shown in Exhibit 6.2, this EAC of $\$ 135.2$ that occurs for years 1 through 5 does not match either of the two incorrect approaches sometimes used. A common mistake is to spread the overhaul costs just over the years before it (years $1-3$ here) or over the years after it (years 4

EAC for Example 6.4 (correctly and incorrectly)
Correct

Incorrect

and 5 here). These respectively find an equivalent annual amount for years 1 through 3 and years 4 to 5 , rather than for years 1 through 5 as required.

$$
\begin{aligned}
& \mathrm{EAC}_{1-3}=680(A / F, .08,3)=680 \times .3080=\$ 209.4 \text { and years } 4 \text { and } 5=\$ 0 \\
& \mathrm{EAC}_{4-5}=680(A / P, .08,2)=680 \times .5608=\$ 381.3 \text { and years } 1 \text { through } 3=\$ 0
\end{aligned}
$$

A deferred

 annuity is a uniform cash flow in periods $D+1$ to N.Deferred Annuities to Regular Annuities. The difficulty with a deferred annuity is that the uniform cash flows occur in periods $D+1$ to N but not at the ends of the first D periods. Example 6.5 illustrates a common situation for a deferred annuity, in which a warranty covers all repair costs for an initial period of 1, 2, or more years. The warranty period equals D periods.

Another example of a deferred annuity would be project revenues that are $\$ 300 \mathrm{~K}$ per year once a 4 -year development period is completed. Thus, the deferred annuity would start in year 5 , and D would equal 4 .

Exhibit 6.3 illustrates an application of Equation 6.3, which converts a deferred annuity to a regular annuity. A formula with three factors that relied on P 's rather than F 's could easily be developed by finding a worth at the end of period D, then the PW, and then the annuity (see Problem 6.17).

$$
\begin{equation*}
\mathrm{EAC}=\mathrm{A}_{\mathrm{D}}(F / A, i, N-D)(A / F, i, N) \tag{6.3}
\end{equation*}
$$

EXHIBIT 6.3 EAC for a deferred annuity

EXAMPLE 6.5 EAC for Repair Costs after Warranty

North Central Power \& Light has just purchased a generating unit that comes with a 2 -year warranty. Once the warranty expires, repair costs are expected to average $\$ 3500$ per year. Find the EAC for the repair costs over the 15 -year life of the generating unit. The interest rate is 7%.

SOLUTION

This is a deferred annuity, since the warranty covers repair costs during the initial 2 years. Repair costs are incurred only for the last 13 years. As shown in Exhibit 6.4, even this short 2-year warranty lowers the EAC for repairs to 20% below the $\$ 3500$ per year.

$$
\mathrm{EAC}=3500(F / A, 7 \%, 13)(A / F, 7 \%, 15)=3500 \times 20.141 \times .0398=\$ 2805
$$

6.5 EAC Formulas for Salvage Values and Working Capital

Capital Recovery with Salvage Values. A project's capital costs are its first cost and its salvage value, S. The EAC of these two cash flows is the capital recovery cost. If there is no salvage value, then only the $(A / P, i, N)$, or capital recovery factor, is needed.

The intuitive way to compute the capital recovery cost, Equation 6.4, is illustrated in Exhibit 6.5. The initial cash flow, P, and the final cash flow or salvage value, S, are multiplied by (A / P) and (A / F) factors, respectively. Note that Exhibit 6.5 is drawn as though the salvage value is positive; however, Equations 6.4 and 6.5 are correct even for negative salvage values ($S<0$), such as for a salvage or demolition cost.

$$
\begin{equation*}
\mathrm{EAC}=P(A / P, i, N)-S(A / F, i, N) \tag{6.4}
\end{equation*}
$$

EXHIBIT 6.5 EAC for capital recovery

A second formula can be derived by substituting $(A / F, i, N)=(A / P, i, N)-i$ into Equation 6.4.

$$
\begin{gather*}
\mathrm{EAC}=P(A / P, i, N)-S[(A / P, i, N)-i] \\
\mathrm{EAC}=(P-S)(A / P, i, N)+S \times i \tag{6.5}
\end{gather*}
$$

This second formula can be visualized as the drop in the asset's value $(P-S)$ that must be recovered over its life plus the interest on the capital that is "tied up" in the asset during its life. Some students find this visualization useful, but the main point of having Equation 6.5 is for calculations of EAC where $P=S$.

Working capital is

 money that is required at a project's beginning and is recovered at the project's end.If an item's salvage value is assumed to equal its first cost, then Equation 6.5 is particularly useful, since its first term goes to zero. Two common examples are a project's land and its working capital. The value of land after adjusting for inflation is often assumed to be constant. Also, the U.S. income tax code does not allow land to be depreciated.

Working capital, the money required for operations, is best explained by example. A manufacturing firm pays for its supplies, energy, labor, and purchased parts with working capital, which is recovered 6 weeks or 6 months later, when customers pay for the goods that have been manufactured and delivered. Working capital is even required by engineering design firms, whose principal cost is employee labor. These employees must be paid every 2 weeks, but the firm may not receive payment from the client until 6 weeks after the job is complete, when all accounts are cleared. Thus, a firm or a project requires working capital to pay for costs that will be recovered once the firm's product or service is paid for.

Working capital is important in practice, but it is often mistakenly omitted by engineers who are unfamiliar with accounting and finance. It is also often omitted from texts on engineering economy [Weaver]. In accounting and finance, a definition of working capital that is based on the firm's current assets (cash + inventory + receivables + prepaid expenses) is used. However, for engineering economy, a definition that is linked to individual projects is needed.

For the examples and end-of-chapter problems, the reality of working capital is simplified by assuming that the amount needed is constant over the project's life. In practice, more working capital may be needed during initial construction than during continuing operations.

EXAMPLE 6.6 EAC for HeavyMetal's Working Capital

HeavyMetal Recovery specializes in removing transuranic elements from hazardous waste streams. It is considering a large expansion of an existing facility in eastern Washington. The expansion requires $\$ 3 \mathrm{M}$ in working capital. If HeavyMetal's interest rate is 12%, find the EAC for its required working capital.

SOLUTION

The working capital requirement is best found using Equation 6.5, since working capital's salvage value equals its first cost.

$$
\begin{aligned}
\mathrm{EAC}_{\text {working capital }} & =(3 \mathrm{M}-3 \mathrm{M})(A / P, .12,30)+3 \mathrm{M} \times .12 \\
& =0+360 \mathrm{~K}=\$ 360 \mathrm{~K}
\end{aligned}
$$

Using Equation 6.4 leads to the same answer.

$$
\begin{aligned}
\mathrm{EAC}_{\text {working capital }} & =3 \mathrm{M}(A / P, .12,30)-3 \mathrm{M}(A / F, .12,30) \\
& =3 \mathrm{M} \times .12414-3 \mathrm{M} \times .00414=372.42 \mathrm{~K}-12.42 \mathrm{~K} \\
& =\$ 360 \mathrm{~K}
\end{aligned}
$$

6.6 Perpetual Life

Assumption and Formulas. Chapter 3 mentioned that the limit of $(A / P, i, N)$ as N approaches infinity is i. Assuming that N equals infinity is assuming perpetual life. Thus, assuming perpetual life allows substituting i for a table lookup or the more complicated $(A / P, i, N)$ formula. This assumption was very useful before calculators and computers existed, and it can still provide a very close approximation. Tunnels, roadbeds, rights-ofway, earthworks, and dams often have lives that are very close to perpetual in an economic sense. Capitalized cost was defined in Chapter 5 to support calculations for these longlived assets. With Equations 5.3, 5.4 and 5.5; respectively for perpetual annuities, arithmetic gradients, and geometric gradients.

This relationship can be derived intuitively from a savings account perspective, as shown in Chapter 5. If you have amount P in the bank, then the annual interest is $A=i \times P$. That exact amount may be withdrawn each year without changing the problem for later years. If less than $i \times P$ is withdrawn each year, capital accumulates; if more than $i \times P$ is withdrawn, then eventually, the principal is all gone. Equation 6.6 states (as did Equations 5.2 and 5.3) this in terms of the factors, and Example 6.7 applies this assumption.

$$
\begin{equation*}
(A / P, i, \infty)=i \tag{6.6}
\end{equation*}
$$

This relationship can be derived mathematically by starting with Equation 3.5, which is defined for $i>0$.

$$
\begin{align*}
(P / A, i, N) & =\left[(1+i)^{N}-1\right] /\left[i(1+i)^{N}\right] \\
& =(1+i)^{N} /\left[i(1+i)^{N}\right]-1 /\left[i(1+i)^{N}\right] \\
& =1 / i-1 /\left[i(1+i)^{N}\right] \tag{3.5}
\end{align*}
$$

As N approaches infinity, the second term approaches zero for $i>0$, so

$$
\begin{equation*}
(P / A, i, \infty)=1 / i \tag{6.7}
\end{equation*}
$$

The Department of Highways will be widening a two-lane road into a four-lane freeway this summer. The project requires the purchase of $\$ 22 \mathrm{M}$ worth of land for the additional two lanes. If the department uses an interest rate of 6\%, what is the EAC of the right-of-way?

SOLUTION

Rights-of-way do not wear out, and roads tend to be used for centuries. Thus, the perpetual life assumption seems particularly appropriate here:

$$
\mathrm{EAC}=i \times P=.06 \times 22 \mathrm{M}=\$ 1.32 \mathrm{M}
$$

N vs. Infinity. Using infinity as an approximation of N can be a good approximation for the right combination of i and N. The higher i is, the lower N can be for a good approximation. Exhibit 6.6 illustrates how the $(A / P, i, N)$ factor approaches its limit of i for $i=5 \%$, 10%, and 20%. Exhibit 6.7 illustrates the difference between i and $(A / P, i, N)$ if perpetual life is assumed as an approximation.

EXHIBIT $6.6(A / P, i, N)$ vs. N (approaching i)

EXHIBIT 6.7 Approximation error if perpetual i is used rather than $(A / P, i, N)$

Arithmetic Gradients and Perpetual Life. As shown in Exhibit 6.8, perpetual life for a gradient can be viewed as a series of conversions from uniform amounts of G to single payments. The first G begins at period 2's end and continues in perpetuity. Dividing by i converts this to a single payment at the end of period 1 .

The second G begins at period 3's end and continues in perpetuity. Dividing by i converts this to a single payment at the end of period 2 . This continues for periods 4,5 , etc. Each single payment is the same, and the first one is in period 1. Thus, the series of single payments is an A. The result is Equation 6.8.

$$
\begin{equation*}
(A / G, i, \infty)=1 / i \tag{6.8}
\end{equation*}
$$

EXHIBIT 6.8 Perpetual gradient to perpetual uniform series

Multiplying Equation 6.8 by $(P / A, i, \infty)=1 / i$ leads to Equation 6.9. Example 6.8 illustrates one potential application.

$$
\begin{equation*}
(P / G, i, \infty)=1 / i^{2} \tag{6.9}
\end{equation*}
$$

The National Monuments Commission is considering the imposition of viewing fees for several monuments. At one monument, these fees would bring in $\$ 800 \mathrm{~K}$ for the first year, and this should increase by $\$ 50 \mathrm{~K}$ per year as the number of tourists increases. If the government uses an interest rate of 10% and perpetual life is assumed, what is the EAW for the income stream?

SOLUTION

$$
\mathrm{EAW}=800 \mathrm{~K}+50 \mathrm{~K}(A / G, i, \infty)=800 \mathrm{~K}+50 \mathrm{~K} / .1=\$ 1.3 \mathrm{M}
$$

Note that the capitalized present worth of this is $1.3 \mathrm{M} / i$, or $\$ 13 \mathrm{M}$.

Exhibit 6.9 shows that $(P / G, i, N)$ gradient factors have a larger approximation error if i^{2} is used, since they approach their limits somewhat more slowly than $(A / P, i, N)$ factors do. Note that the curves for $(A / P, i, N)$ in Exhibit 6.7 match the curves that would represent $(A / G, i, N)$, since both are $1 / i$.

EXHIBIT 6.9 Approximation error if perpetuity is assumed and $1 / i^{2}$ used for $(P / G, i, N)$

6.7 Repeated Renewals

Often, the EAC must be found for a cost that will be repeated. In Example 6.9, the project has a 35 -year design life, and a series of five pumps, each with a life of 7 years, will be used. Since each pump lasts 7 years and has the same cost, the EAC calculation for each pump is the same.

EXAMPLE 6.9 Replacing Pumps in a Sewage Treatment Plant

Crystal Lake Village is building a sewage treatment facility that has a 35 -year design life. This facility includes a pump that costs $\$ 13,000$ and will last 7 years. The pump has no salvage value, and its energy costs are included with other energy costs. If $i=8 \%$, find the EAC for the series of five pumps.

SOLUTION

If you were asked to find the first pump's cost over its 7-year life, the answer would be obvious:

$$
\mathrm{EAC}=13 \mathrm{~K}(A / P, 8 \%, 7)=13 \mathrm{~K} \times .1921=\$ 2497
$$

This equals the EAC for the second pump over its 7 -year life, which is years 8 through 14. In fact, $\$ 2497$ is the EAC for all five pumps over each of their 7-year lives. Together, these EACs jointly cover the 35 -year period. Since $\$ 2497$ is uniform over all 35 periods, this is the EAC for the full 35 -year life.

$$
\mathrm{EAC}_{1-35}=\$ 2497
$$

This principle can be generalized for the costs in a major project that are incurred periodically but not every year. For example, a road is resurfaced every 8 years over a 40year life, a building is painted every 5 years over a 30 -year life, or an assembly line is

If cash flows occur every T periods and this repeats for N years, where N is an integer multiple of T, then the principle of repeated renewals implies that the EAW or EAC over T or over N periods is the same.
reconfigured every 2 years over a 20-year life. However, all of these costs are incurred over the life of the road, the building, or the assembly line. Furthermore, the same life must be used for computing the total cost of all components.

A more complex example would be purchasing a machine that must be maintained, overhauled, and sold for a salvage value over T years. What is the annual cost of six of these machines purchased one after another every T years over a period of $N=6 T$ years?

Both EAW and EAC provide a substantial shortcut for problems in which repeated renewals occur. However, for the shortcut to work, the repetition should be consistent. In other words, the repeated cost must be constant, and the interval must be constant. Then, the principle of repeated renewals is that the EAW or EAC for one machine over T years equals the EAW or EAC for six successive machines over $6 T$ years.

Repetition for Every Subperiod. The easiest case has a repeated cost every T years, a first cost that occurs at time 0 or at year T, and a study period, N, that is an integer multiple of T. In this case, the EAC or EAW over the T-year period exactly matches the EAC or EAW over the N-year period. In Example 6.9, the repeated cash flow occurred at time 0 , so the EAC for T or N periods is computed using $(A / P, i, T)$. If the first cash flow to be repeated occurred at year T, then the factor would be $(A / F, i, T)$.

If there are multiple items in a large project, then the EAC can be found for each, and they can simply be added together, as in Example 6.10.

George graduated in civil engineering 10 years ago, and his mother and her two sisters are ready to let him open a branch office of their firm in another state. Their pattern is to own only one grader, one Caterpillar tractor (cat), one loader, and two tractor trailers for hauling at any time. If more machinery is needed, they hire it, just as they hire all dump trucks or belly dumps.

Use an interest rate of 10% and a study period of 30 years to find the EAC of the owned equipment.

	Grader	Cat	Loader	Tractor Trailer (each)
First cost	$\$ 195 \mathrm{~K}$	$\$ 365 \mathrm{~K}$	$\$ 270 \mathrm{~K}$	$\$ 140 \mathrm{~K}$
O\&M	$\$ 28 \mathrm{~K}$	$\$ 40 \mathrm{~K}$	$\$ 50 \mathrm{~K}$	$\$ 18 \mathrm{~K}$
Salvage value	$\$ 40 \mathrm{~K}$	$\$ 90 \mathrm{~K}$	$\$ 40 \mathrm{~K}$	$\$ 21 \mathrm{~K}$
Life (years)	6	5	10	15

SOLUTION

The easiest solution is to compute EACs over 6, 5, 10, and 15 years, respectively, for the grader, cat, loader, and each tractor trailer. Over the 30 years, five graders will be purchased one after another. Since each one has the same EAC of $\$ 67.6 \mathrm{~K}$, that cost is constant over the 30 years. Similarly, the cost of purchasing six cats every 5 years over 30 years will cost $\$ 122 \mathrm{~K}$ per year over 30 years.

Since 30 years is a multiple of each life, the total EAC equals the sum of two tractor trailers and one of each of the other pieces of equipment. In fact, 30 years is the least common multiple of the four lives, so it is the shortest horizon in which this approach will work.

$$
\begin{aligned}
\mathrm{EAC}_{\text {grader }} & =195 \mathrm{~K}(A / P, .1,6)+28 \mathrm{~K}-40 \mathrm{~K}(A / F, .1,6) \\
& =195 \mathrm{~K} \times .2296+28 \mathrm{~K}-40 \mathrm{~K} \times .1296=\$ 67.59 \mathrm{~K} \\
\mathrm{EAC}_{\mathrm{cat}} & =365 \mathrm{~K}(A / P, .1,5)+40 \mathrm{~K}-90 \mathrm{~K}(A / F, .1,5) \\
& =365 \mathrm{~K} \times .2638+40 \mathrm{~K}-90 \mathrm{~K} \times .1638=\$ 121.55 \mathrm{~K} \\
\mathrm{EAC}_{\text {loader }} & =270 \mathrm{~K}(A / P, .1,10)+50 \mathrm{~K}-40 \mathrm{~K}(A / F, .1,10) \\
& =270 \mathrm{~K} \times .1627+50 \mathrm{~K}-40 \mathrm{~K} \times .0627=\$ 91.42 \mathrm{~K} \\
\mathrm{EAC}_{\text {truck }} & =140 \mathrm{~K}(A / P, .1,15)+18 \mathrm{~K}-21 \mathrm{~K}(A / F, .1,15) \\
& =140 \mathrm{~K} \times .1315+18 \mathrm{~K}-21 \mathrm{~K} \times .0315=\$ 35.75 \mathrm{~K}
\end{aligned}
$$

Adding these together, including two trucks, gives a total of $\$ 352 \mathrm{~K}$.

Capitalized Cost. One application of repeated renewals is in problems with an assumption of perpetual life. Obviously, infinity is a multiple of any shorter life. Thus, the EAC is found for each item in the problem, then the total EAC is computed. The capitalized cost is found using $P=A / i$, as shown in Example 6.11.

EXAMPLE 6.11 Capitalized Cost for a Dam

A hydroelectric dam has a design life of 90 years. The dam will cost $\$ 275 \mathrm{M}$ to build. The electric turbines will last 30 years and cost $\$ 45 \mathrm{M}$. The interest rate is 8%, and all salvage values are zero. What is the EAC? What is the capitalized cost?

SOLUTION

The EAC is found by using the 90 -year study period, and then the capitalized cost is found by assuming that this EAC will continue forever.

$$
\begin{aligned}
\mathrm{EAC} & =275 \mathrm{M}(A / P, 8 \%, 90)+45 \mathrm{M}(A / P, 8 \%, 30) \\
& =275 \mathrm{M} \times .0801+45 \mathrm{M} \times .0888=\$ 26.02 \mathrm{M} \\
\text { Capitalized cost } & =\$ 26.02 \mathrm{M} / .08=\$ 325.3 \mathrm{M}
\end{aligned}
$$

Repeated Renewals with Neither an Initial nor a Final Cash Flow. In the previous examples, each T-year cycle was repeated throughout. However, a repainting or
repaving cost will occur neither at time 0 nor at time N. You do not repave as part of the initial construction, nor just as the project is terminated.

The technique of repeated renewals, however, can still be applied by partitioning the first cost among the different series (see Example 6.12a). Another similar, and mathematically equivalent, approach is to create two balancing cash flows that are opposite in sign in year N and to partition one (see Example 6.12b). A third approach is demonstrated in Example 6.12c. While this last approach is mathematically equivalent to the first two, it is usually more complex and requires more factors. However, all three approaches are presented, because each has been the clearest for some students.

Find the EAC for a building that has a life of 90 years, a first cost of $\$ 1.2 \mathrm{M}$, and no salvage value. The building will be repainted every 5 years for $\$ 80 \mathrm{~K}$, reshingled every 15 years for $\$ 225 \mathrm{~K}$, and replumbed and rewired every 30 years for $\$ 750$ K. Find the EAC if $i=10 \%$.

SOLUTION

The three periodic repairs occur neither at time 0 nor at year 90 . The $\$ 1.2 \mathrm{M}$ in first cost can be partitioned into four separate cash flows, as shown in Exhibit 6.10. These are, respectively, $\$ 80 \mathrm{~K}$, $\$ 225 \mathrm{~K}, \$ 750 \mathrm{~K}$, and $\$ 145 \mathrm{~K}$. The first three are chosen to match the repair series, and the fourth is chosen so that the total time 0 cash flow is still $\$ 1.2 \mathrm{M}$. (Note that this last cash flow can be whichever sign is required.)

Cash flow diagrams for repeated maintenance using (A / P) factors

If the four cash flow diagrams in Exhibit 6.10 are added together, then the original cash flows result. Thus, the EAC of 25 different cash flows can be found by the following simple equation:

$$
\begin{aligned}
\mathrm{EAC} & =80 \mathrm{~K}(A / P, .1,5)+225 \mathrm{~K}(A / P, .1,15)+750 \mathrm{~K}(A / P, .1,30)+145 \mathrm{~K}(A / P, .1,90) \\
& =80 \mathrm{~K} \times .2638+225 \mathrm{~K} \times .1315+750 \mathrm{~K} \times .1061+145 \mathrm{~K} \times .1000 \\
& =\$ 144.8 \mathrm{~K}
\end{aligned}
$$

EXAMPLE 6.12b Building Maintenance Using (A/F) Factors

Re-solve Example 6.12a without partitioning the initial cash flow. Assume instead that the costs of repainting, reshingling, etc., occur in period T for each repetition.

SOLUTION

The solution is to compute the EACs using (A / F) factors. However, in year 90 (since the project is being terminated), none of the costs are really incurred. The solution, shown in Exhibit 6.11, is

EXHIBIT 6.11 Cash flow diagrams for repeated maintenance using (A / F) factors

to create two cash flows of $\$ 1055 \mathrm{~K}$ in year 90 . The negative cash flow is partitioned among the three repair series so that each has a "cash flow" in year 90 that yields the following equation. The positive cash flow is equated to a 90-year annuity.

$$
\begin{aligned}
\mathrm{EAC}= & 1200 \mathrm{~K}(A / P, .1,90)+80 \mathrm{~K}(A / F, .1,5)+225 \mathrm{~K}(A / F, .1,15) \\
& +750 \mathrm{~K}(A / F, .1,30)-1055 \mathrm{~K}(A / F, .1,90) \\
= & 120,023+13,104+7082+4559-20 \\
= & \$ 144.748
\end{aligned}
$$

Re-solve Example 6.12 a without partitioning the cash flow at time 0 or creating balancing cash flows in year 90.

SOLUTION

Repainting happens at the end of years $5,10, \ldots, 85$. If an $(A / F, .1,5)$ factor were applied, an 85 -year series would be created. A PW can be computed and then a 90 -year EAC computed:

$$
\mathrm{EAC}=80 \mathrm{~K}(A / F, .1,5)(P / A, .1,85)(A / P, .1,90)=\$ 13.102
$$

The reshingling happens at the end of years $15,30,45,60$, and 75 . The calculation for the reshingling is:

$$
\mathrm{EAC}=225 \mathrm{~K}(A / F, .1,15)(P / A, .1,75)(A / P, .1,90)=\$ 7077
$$

The calculation for the rewiring and replumbing is:

$$
\mathrm{EAC}=750 \mathrm{~K}(A / F, .1,30)(P / A, .1,60)(A / P, .1,90)=\$ 4545
$$

The calculation for the initial construction is:

$$
\mathrm{EAC}=1200 \mathrm{~K}(A / P, .1,90)=\$ 120,023
$$

The total EAC is:

$$
\mathrm{EAC}=13,102+7077+4545+120,023=\$ 144,747
$$

6.8 Spreadsheets and Analyzing Loan Repayments

One of the most important periodic cash flows that firms, agencies, and individual engineers incur are payments on loans and bonds. Usually, these payments are constant for each period. Spreadsheets are not required to solve the following problems, but they provide a
powerful means of confirming that the factor-based approaches are correct. Three problems will be analyzed:

1. Finding the balance due on a loan.
2. Shortening the time to pay off a loan by making extra payments.
3. Deciding how a payment is split between principal and interest.

In Chapters 2, 3, and 4, some schedules of loan repayment or amortization were calculated. Here, the goal is to answer similar questions using spreadsheet functions.

Finding the Balance Due. To answer the question of how much is still owed after 12 monthly payments are made on a 3-year car loan, an amortization table (see Example 4.2) with nine more rows than are shown below could be constructed. In this case, the initial loan was for $\$ 6800$. The nominal interest rate is 12% compounded monthly. Each of the 36 payments equals $\$ 225.86$, or $6800(A / P, .01,36)$. The interest each month is 1% of the month's initial balance. The principal payment for each month is $\$ 225.86$ minus the interest payment.

Month	Beginning Balance	Interest	Principal Payment	Ending Balance
1	$\$ 6800.00$	$\$ 68.00$	$\$ 157.86$	$\$ 6642.14$
2	6642.14	66.42	159.44	6482.70
3	6482.70	64.83	161.03	6321.67

An easier approach is to recognize that after any payment is made, the remaining balance is the PW of the remaining payments, which is calculated using Equation 6.10. This is true because interest is paid in full after each payment, and later payments are simply based on the balance due.

$$
\begin{equation*}
F_{t}=(P / A, i, N-t) \times \text { payment } \tag{6.10}
\end{equation*}
$$

For the example above, the amount owed after 12 payments, F_{12}, is:

$$
\begin{aligned}
F_{12} & =\left(P / A, i, N_{\text {remaining }}\right) \times \text { payment } \\
& =(P / A, 1 \%, 24) 225.86=225.86 \times 21.240=\$ 4797.27
\end{aligned}
$$

Another approach is to compute the total principal paid between the next and the last period using the spreadsheet function CUMPRINC(rate, $N, P V, N_{1}, N_{2}$, type). Note that the type function ($0 \rightarrow$ end-of-period, $1 \rightarrow$ beginning-of-period) is not optional in some spreadsheet software. For the example above, the amount of principal that is still owed after the $12^{\text {th }}$ payment and which will be paid with the $13^{\text {th }}$ through the $36^{\text {th }}$ payments is:

$$
F_{12}=\operatorname{CUMPRINC}(1 \%, 36,6800,13,36,0)=-\$ 4797
$$

Note that the CUMPRINC function, like the PV, PMT, and FV functions, reverses the sign.
Shortening the Time to Payoff by Increasing Payments. Firms and individuals sometimes "invest" by paying off debt. For example, consider a 30 -year mortgage at a nominal 9% interest rate. There are 360 monthly payments, and the interest rate is $.75 \%$ per
month. Extra payments earn an effective annual interest rate of $9.38 \%=1.0075^{12}-1$, which may be the highest safe rate available for investments. Paying off the outstanding balance on a credit card is an even better investment.

One common question is: "How much sooner will the debt be paid off?" Until the debt is paid off, any early payments are essentially locked up. Those early payments reduce the balance owed, but until the debt is paid off, the same payment amount is owed each month.

There are two common questions in calculating shortened repayment schedules. The first is: "How much difference does one extra payment make?" The second is: "How much difference does increasing all payments by $x \%$ make?"

An extra payment is applied entirely to principal, so an intuitive approach for the first question is to compare the payment to the principal portion of the next payment(s). As illustrated in Example 6.13, early in a typical mortgage, the principal payment may be less than 10% of the total payment. Thus, an extra payment may reduce the principal payment as much as the next year's worth of scheduled payments-which shortens the total life of the mortgage by that year.

A more rigorous treatment is to treat $N_{\text {remaining }}$ as an unknown. The interest rate, remaining balance, and payment amounts are all known.

$$
\text { Balance }=\operatorname{payment}\left(P / A, i, N_{\text {remaining }}\right)
$$

If the interest rate is tabulated, this can be solved by calculating the value for the (P / A) factor and looking for the right row. Interest rates on loans are rarely $1 / 4 \%, 1 / 2 \%$ or 1% per month. A more typical example is 8.5% nominal with monthly compounding, or 8.5%, or $.7083 \%$ per month. Spreadsheets simplify the calculations. The Excel function for finding an unknown $N_{\text {remaining }}$ is NPER(i, payment, remaining balance), with optional arguments for beginning of period cash flows and balloon payments. The signs of the payment and the remaining balance must be different.

George has an 8.5% mortgage with monthly payments for 30 years. His original balance was $\$ 100 \mathrm{~K}$, and he just made his 12 th payment. Each month, he also pays into the reserve account managed by the bank to pay his fire and liability insurance ($\$ 840$ annually) and his property taxes ($\$ 1800$ annually). If he makes an extra loan payment, how much does he shorten the loan by? If the extra payment equals his total monthly payment, how much does he shorten the loan by?

SOLUTION

The first step is to calculate his normal loan payment, remaining balance after 12 such payments, and his total monthly payment.

Payment $=100 \mathrm{~K}(A / P, .70833 \%, 360)=100 \mathrm{~K} \times .0076891=\$ 768.91 / \mathrm{month}$
Balance $_{12}=768.91(P / A, .70833 \%, 360-12)=\$ 99,244$
Total payment $=768.91+840 / 12+1800 / 12=\$ 988.91 /$ month

As described in the accompanying text, an intuitive or approximate approach is to compare the extra payment to the principal portion of the next scheduled payment. Since the remaining balance is $\$ 99,244$, the interest portion of the next payment is $.0070833 \times 99,244=\$ 702.98$. The principal portion is the remaining $\$ 65.94$.

If George pays an extra loan payment of $\$ 769$, then this equals the principal payments of about the next $769 / 65.94=11.6$ months. If he makes an extra monthly payment of $\$ 989$, then this equals the principal payments of about the next $98965.94=15.0$ months. These calculations will overstate the reduction, since the principal portion of the payment increases slightly each month.

To calculate this exactly, the Excel function $\operatorname{NPER}(i$, payment, remaining balance) is used. In each case, the remaining balance equals the balance after 12 months minus the extra payment. Remember that the payment and the remaining balance must have different signs.

$$
\operatorname{NPER}(.0070833,-768.91,99244-768.91)=336.76
$$

There were 348 periods left before the extra payment, and there are 336.76 now. Thus, making an extra loan payment of $\$ 769$ saves 11.24 payments (about a year) from the end of the payment schedule.

If George makes an extra total payment of $\$ 989$, then the Excel function is

$$
\operatorname{NPER}(.0070833,-768.91,99244-988.91)=333.70
$$

In this case, the number of remaining payments has dropped from 348 to 333.70 , or a savings of 14.3 payments from the end of the payment schedule.

Exhibit 6.12 shows a spreadsheet to generalize this.

EXHIBIT 6.12 Number of remaining payments after an extra payment

	A	B	C
1	$\$ 100,000$	Initial amount	
2	360	N, monthly periods	
3	8.50%	Nominal annual interest rate	
4	0.7083%	i, monthly interest rate	$=\mathrm{A} 3 / 12$
5	$\$ 768.91$	PMT, monthly payment	$=-\mathrm{PMT}(\mathrm{A} 4, \mathrm{~A} 2, \mathrm{~A} 1)$
6	$\$ 840$	Insurance	
7	$\$ 1,800$	Property taxes	
8	$\$ 988.91$	Total monthly payment	$=\mathrm{A} 5+\mathrm{A} 6 / 12+\mathrm{A} 7 / 12$
9	12	Payments already made	
10	$\$ 99,244$	Remaining balance	$=-\mathrm{PV}(\mathrm{A} 4, \mathrm{~A} 2-\mathrm{A} 9, \mathrm{~A} 5)$
11	$\$ 336.76$	N remaining w/769	$=\mathrm{NPER}(\$ \mathrm{~A} \$ 4,-\$ \mathrm{~A} \$ 5, \$ \mathrm{~A} \$ 10-\$ \mathrm{~A} \$ 5)$
12	$\$ 333.70$	N remaining w/989	$=\mathrm{NPER}(\$ \mathrm{~A} \$ 4,-\$ \mathrm{~A} \$ 5, \$ \mathrm{~A} \$ 10-\$ \mathrm{~A} \$ 8)$

Example 6.14 illustrates the second question "How much is the payment schedule shortened if all payments are increased by the same percentage?" Exhibit 6.13 graphs the number of months required to pay off the loan for different increases in the payment amount.

Ilene has decided to celebrate earning her P.E. license by buying a condo. Her bank has told her that she can qualify for a $\$ 100,000,30$-year mortgage at the current nominal interest rate of 9%. The monthly payment at that rate is $\$ 822.68$. She believes she can afford to pay 10% more than that. If she makes the extra payment each month, how soon will her mortgage be paid off?

SOLUTION

Mathematically, the problem is simple. At time 0 , the $\$ 100,000$ is borrowed, and for periods 1 through N, payments of $\$ 904.95$ (equals 110% of $\$ 822.68$) are made. At an interest rate of $.0925 / 12$ or .0077083 , what is N ? Stated using a cash flow equation, it is:

$$
0=100,000(A / P, .0077083, N)-904.95
$$

This can be solved easily with a financial calculator (the answer is 249 payments, or 20-21 years).
This can also be solved with the Excel function, NPER.

$$
\operatorname{NPER}(.0077083,-1.1 * 822.68,100000)=248.6 \text { months }=20.7 \text { years }
$$

So, paying an extra 10% pays off the loan in 20.7 years rather than 30 years. Exhibit 6.13 graphs this for different percentages of extra payment.

Life of mortgage vs. size of payment

How Much Goes to Interest? How Much Goes to Principal? The split of any payment between principal and interest can be solved in one of three ways. First, and most laboriously, the amortization table can be constructed; this answers the question for all periods. However, spreadsheets with 240 or 360 lines are awkward to use.

Second, the split for period t can be constructed by calculating the balance owed at the end of period $t-1$. Then, the interest for period t is that balance multiplied by the interest rate, as shown in Equation 6.11. The principal equals the payment minus that interest or it can be calculated using Equation 6.12.

$$
\begin{align*}
I_{t} & =F_{t}-1 \times i=\text { payment } \times(P / A, i, N-t+1) \times i \\
& =P(A / P, i, N)(P / A, i, N-t+1) \times i \tag{6.11}\\
\text { Principal }_{t} & =F_{t-1}-F_{t} \\
& =P(A / P, i, N)[(P / A, i, N-t+1)-(P / A, i, N-t)] \tag{6.12}
\end{align*}
$$

The third approach uses functions available in most spreadsheets. To find the interest and principal portions of the payment in period t, the Excel functions are IPMT

EXHIBIT 6.14 Computing the interest/principal split on a payment

	A	B	C	D
1	\$100,000	Initial amount		
2	240	N, monthly periods		
3	9.25\%	Nominal annual inte		
4	0.77\%	i, monthly interest ra		
5	\$915.87	PMT, monthly paym	$=-\mathrm{PMT}(\mathrm{A} 4$,	
6				
7	Period	Principal	Interest	Total
8	12	\$157.82	\$758.05	\$915.87
9	24	173.05	742.82	
10	36	189.75	726.11	
11	48	208.07	707.80	
12	60	228.15	687.71	
13	72	250.17	665.69	
14	84	274.32	641.54	
15	96	300.80	615.07	
16	108	329.84	586.03	
17	120	361.67	554.19	
18	132	396.58	519.28	
19	144	434.86	481.00	
20	156	476.84	439.03	
21	168	522.86	393.00	
22	180	573.33	342.53	
23	192	628.67	287.19	
24	204	689.35	226.51	
25	216	755.89	159.97	
26	228	828.86	87.01	
27	240	-908.86	-7.01	
28				
29		$=-\mathrm{IPMT}(\$ \mathrm{~A} 4, \$ \mathrm{~A} 27, \$ \mathrm{~A}$ 2,\$A\$1,,		
30	$=-\mathrm{PPMT}(\$ \mathrm{~A} 4, \$ \mathrm{~A} 27, \$ \mathrm{~A} \$ 2, \$ \mathrm{~A} 1, \ldots)$			

and PPMT, respectively. For simple problems, both functions have the following format: $\operatorname{IPMT}(i, t, N,-P)$. Both functions have optional arguments that permit adding a balloon payment (an F) and changing from end-of-period payments to beginning-of-period payments. Exhibit 6.14 illustrates this approach using Excel functions to examine one payment per year for a 20-year mortgage.

6.9 Summary

This chapter defined and applied equivalent annual measures, which occur uniformly at the ends of periods 1 through N. Equivalent annuities were calculated for irregularly placed overhaul expenses, deferred annuities, and working capital.

For equivalent annual worth (EAW), the standard sign convention applies, and projects with EAW >0 are attractive. For equivalent annual cost (EAC), the sign convention is reversed, and projects with the lowest possible EAC are attractive.

To find the EAC of an overhaul or other expense that occurs between periods 0 and N, first a present or future value is calculated, and then the EAC is calculated. Similarly, to find the EAW for a deferred annuity, first a future value and then the EAW is calculated.

Calculating the EAC for working capital and real estate is simplified, since the salvage value is usually assumed to equal the first cost. Another simplification is to assume perpetual life, which also allows for calculation of the capitalized cost.

The use of EACs with periodic or repeated renewals greatly simplifies the calculation of economic worth for projects with periodic repainting, overhauls, etc. Similarly, the use of spreadsheets speeds calculations for different loan repayment approaches.

REFERENCE

Weaver, James B., "Analysis of Textbooks on Capital Investment Appraisal," AACE Technical Monograph Series, EA-1, 1990.

Problems

6.1 What is the EAW (at 8%) of an inheritance that begins at $\$ 8000$ per year and then falls by $\$ 500$ per year over its 15-year life? (Answer: \$5203)
6.2 What is the EAC (at 7\%) of maintenance costs that start at $\$ 3500$ per year and then climb by $\$ 825$ per year over a 10-year life?
6.3 The ABC Company may buy a heat exchanger for $\$ 80,000$ installed. The exchanger will save $\$ 20,000$ per year over an 8-year life. If ABC's cost of money is 8%, determine the EAW. (Answer: \$6080)
6.4 Burke Brake Shoes may buy a new grinding machine. The best alternative costs $\$ 10,500$. The operating cost for it is $\$ 6500$ per year. The expected
savings from the machine are $\$ 9600$ per year. The machine has no salvage value after 5 years. Determine the machine's EAW at 5\% interest.
6.5 Determine the first cost of a machine that has an EAC of \$4100 and annual operating costs of \$2012. The machine is expected to last 6 years, and money is worth 7\%. (Answer: \$9952)
6.6 Joe Smith is buying a new car for $\$ 15,000$. Maintenance the first year is expected to be $\$ 100$. In each year for the next 5 years, the costs are expected to increase by $\$ 75$ per year, so that in the last year (year 6), the maintenance cost will be $\$ 475$. If money is worth 10%, determine the EAC for the auto.
6.7 The Shout Soap Company's annual revenues will be $\$ 320,000$ for 15 years from its new soap, Rub-A-Dub-Dub. The soap requires an initial investment of $\$ 900,000$. The annual expenses of manufacturing and selling the soap equal $\$ 73,500$. Determine the EAW if the interest rate is 15%. (Answer: $\$ 92,600$)
6.8 The Sandwich Company may buy a new piece of equipment for $\$ 25,000$. The equipment's useful life is 4 years, and its salvage value is $\$ 5000$. The company's net annual earnings should increase by $\$ 8000$ for 4 years. Determine the EAW if Sandwich's cost of money is 10%.
6.9 A certain machine costs $\$ 30,000$. Expected revenues are $\$ 2500$ per quarter for the next 6 years. The quarterly operating cost is $\$ 500$. The machine can be sold for $\$ 1000$ at the end of the 6 years. If interest is 8% compounded quarterly, determine the equivalent quarterly worth and the EAW.
(Answer: EAW $=\$ 1842$)
6.10 Creekside Consulting and Construction (CCC) is considering the purchase of a minicomputer that costs $\$ 45,000$. The estimated salvage value for the computer at the end of 6 years is $\$ 6000$. Find the computer's EAC if CCC uses an interest rate of 15% for economic evaluation.
6.11 A new machine will cost $\$ 10,000$. Net savings will be $\$ 1000$ per year for 4 years, and then it will climb by \$200 per year until the machine wears out at the end of year 12. If $i=8 \%$, what is the machine's EAW?
6.12 A machine costs $\$ 35 \mathrm{~K}$ to buy and $\$ 5 \mathrm{~K}$ per year to operate. It will have a salvage value of $\$ 8 \mathrm{~K}$ in 9 years. It will generate $\$ 10 \mathrm{~K}$ per year in net revenue for 4 years, and then revenue will fall by $\$ 1 \mathrm{~K}$ per year. What is the EAW, if $i=7 \%$?
6.13 A new roof will be needed for the civil engineering labs at the 30 -year point of the labs' 50 -year life. If the new roof will cost $\$ 140,000$, what is the roof's EAC at $i=5 \%$? (Answer: \$1774)
6.14 A new piece of construction equipment will need an overhaul at the end of year 8 in a 15 -year life. The overhaul will cost $\$ 80,000$, and $i=12 \%$. What does the overhaul add to the total annual cost for owning the equipment?
6.15 There is a glut of office space in OilTown, and one potential landlord is offering 3 initial months free to new tenants who sign a 3-year lease. Oilfield Engineering's current offices are slated for demolition, and their potential new lease is for $\$ 4000$ per month.

If their interest rate is 1% per month, what is the equivalent monthly cost for a 3-year lease? What is a comparable monthly lease cost?
6.16 MicroMotors is evaluating a new line of products, that will require several years of R\&D. New lab equipment that costs $\$ 200,000$ is needed, and salaries and other expenses will cost $\$ 300,000$ per year for 4 years. Revenues from the new products begin at the end of year 5 , and they are $\$ 250,000$ per year higher than expenses. If MicroMotors uses an interest rate of 10% and a time horizon of 20 years, what is the EAW of this product line?
6.17 Develop an equation for deferred annuities that is similar to Equation 6.3 but that uses P 's rather than F 's.
6.18 Find the EAC for a process that costs $\$ 35,000$ to install and $\$ 2750$ per year to operate. At the end of its 9 -year life, the process has an $\$ 8000$ salvage value. In year 5, a major overhaul is required at a cost of $\$ 18,000$. The firm's discount rate is 8%.
(Answer: \$9674)
6.19 A project will cost $\$ 250,000$ to start, $\$ 80,000$ per year for operations, and $\$ 45,000$ for working capital. The annual income is $\$ 170,000$ per year for the 9 years the project will operate. Find the project's EAW at an interest rate of 10%.
6.20 A mining venture has a first cost of $\$ 6 \mathrm{M}$, annual operating costs of $\$ 2 \mathrm{M}$, annual revenues of $\$ 3.2 \mathrm{M}$, working capital requirements of $\$ 1.5 \mathrm{M}$, a life of 10 years, and a final reclamation cost of $\$ 4 \mathrm{M}$. If i is 15%, what is the EAW?
6.21 An engineering design firm is bidding on a designbuild contract that will last 2 years. New computer equipment costing $\$ 25,000$ per year will need to be leased. Annual salaries and overhead will total $\$ 450,000$. Working capital will equal 1 month's salary and overhead. If $i=12 \%$, what is the project's EAC? (Use annual periods.)
6.22 Does the annual cost of working capital depend on the project's time horizon?
6.23 A small town's sewer system costs $\$ 1 \mathrm{M}$ installed. With proper maintenance, it should last indefinitely. Twenty percent of the cost will be for the pumping system, which must be replaced every 20 years. Sixty percent of the cost will be for the tiles and pipes, which will be replaced every 30 years. Annual maintenance costs are estimated to be $\$ 3000$ per year. Right-of-way and earthworks account for
the rest of the cost. If the town uses 12% as its cost of money, determine the EAC.
(Answer: $\$ 128.3 \mathrm{~K}$)
6.24 The right-of-way and the roadbed for a new highway will cost $\$ 4.5$ million. The pavement will cost $\$ 2.5$ million, and it has a much shorter life of 20 years. If the discount rate is 9%, find the project's capitalized cost.
6.25 Bryson R. Tinfoot IV wants to endow a position in perpetuity for a chaired professor at Midstate University. Such a position requires $\$ 125,000$ per year. If the funds earn interest at 7%, what must he deposit now?
6.26 The State Parks Department is considering the purchase of a marsh to form a bird sanctuary. Bird watching is valued at $\$ 2$ per hour, the state's interest rate is 5%, and perpetual life is assumed. Viewing hours are estimated at 40,000 for the first year, with increases of 4000 per year. What is the EAW for the sanctuary? What fraction of the EAW is due to the expected increases?
6.27 By letting N approach infinity, show that the following is true:
(a) Equation 6.7 for $(A / P, i, \infty)$
(b) Equation 6.8 for $(A / G, i, \infty)$
(c) Equation 6.9 for $(P / G, i, \infty)$
6.28 A remote site can be protected from wildfires through earthworks and fire-resistant construction at a cost of $\$ 100,000$. Every 4 years after the initial constructions, brush clearing will cost $\$ 12,000$. Over the structure's 60 -year life at $i=8 \%$, what is the EAC of the fire protection?
6.29 What is the EAC of a road that costs $\$ 450,000$ to build and $\$ 12,000$ per year for street cleaning? The road is restriped every 2 years for $\$ 28,000$ and is repaved every 10 years for $\$ 290,000$. Assume the road will last 60 years and the interest rate is 8%. (Answer: $\$ 81.58 \mathrm{~K}$)
6.30 A proposed steel bridge has a life of 50 years. The initial cost is $\$ 350,000$, and the annual maintenance cost is $\$ 12,000$. The bridge deck will be resurfaced every 10 years (in years $10,20,30$, and 40) for $\$ 90,000$, and anticorrosion paint will be applied every 5 years (in years $5,10,15, \ldots, 45$) for $\$ 22,000$. If the interest rate is 5%, what is the EAC?
6.31 A golf complex has a first cost of $\$ 21 \mathrm{M}$, annual O\&M costs of $\$ 1.7 \mathrm{M}$, a salvage value in year 100 of
\$6M, clubhouse renovation every 20 years costing $\$ 3 \mathrm{M}$, and reseeding every 5 years starting in year 5 costing $\$.4 \mathrm{M}$. Find the EAC for a 100 -year horizon if $i=8 \%$.
6.32 A proposed tunnel has a first cost of $\$ 800 \mathrm{M}$, annual O\&M costs of $\$ 14 \mathrm{M}$, a salvage value in year 100 of $\$ 225 \mathrm{M}$, repaving every 10 years at $\$ 45 \mathrm{M}$, and repainting lines and mending railings every 5 years $\$ 1.2 \mathrm{M}$ (note that this cost is included in the repaving cost for the years where repaving is done). Find the EAC $i=5 \%$ for a 100-year horizon.
(Answer: \$57.92M)
6.33 "The Firm" is offering a new engineering graduate $\$ 65,000$ per year, a Mercedes worth $\$ 40,000$ every 6 years beginning at time 0 , a new 4×4 worth $\$ 25,000$ every 6 years beginning in year 3 , and a lump sum retirement in 30 years of $\$ 1$ million. The $\$ 1 \mathrm{M}$ is generous enough that there is no Mercedes in year 30. If $i=8 \%$, what is the EAW of this offer?
6.34 A tunnel cost $\$ 280 \mathrm{M}$. Every 10 years, it is repaved at a cost of $\$ 12 \mathrm{M}$. Halfway between the repavings, it is resurfaced at a cost of $\$ 7 \mathrm{M}$. It is rewired every 20 years at a cost of $\$ 15 \mathrm{M}$. With proper maintenance ($\$ 20 \mathrm{M}$ per year), the tunnel will last forever. If $i=5 \%$, what is the EAC for the tunnel?
6.35 A new airport expansion will cost $\$ 850$ million. Of the total, $\$ 550$ million is for land acquisition and major earthworks, which will last as long as the airport is used, and $\$ 200$ million is for terminal buildings, which will last 50 years. These buildings will cost $\$ 25$ million per year in O\&M. The last $\$ 100$ million will be spent on runways. These will also last forever, with a major repaving every 20 years at a cost of $\$ 40$ million. What is the expansion's EAC at $i=.08$ over a perpetual life?
6.36 A computerized design facility has a first cost of $\$ 750 \mathrm{~K}$. The annual O\&M is $\$ 100 \mathrm{~K}$. The salvage value in year 40 is $\$ 5 \mathrm{~K}$. Computer monitor replacement will cost $\$ 250 \mathrm{~K}$ every 8 years, and other hardware and software will need replacement every 4 years for $\$ 300 \mathrm{~K}$. If $i=12 \%$, find the EAC for the 40-year horizon.
6.37 Determine the EAW of the following cash flow at 12% interest:

Year	0	1	2	3	4	5	6
Cash flow	$-\$ 18 \mathrm{~K}$	5 K	6 K	3 K	7 K	4 K	3 K

6.38 Brown Boxboard is considering investing in new automated production equipment. What is the EAC of each alternative if $i=6 \%$?

	Stamp-It- Fast	Stamp- Quicker	Fast- Press
First cost	$\$ 75,000$	$\$ 60,000$	$\$ 55,000$
Annual benefit	$\$ 7500$	$\$ 6000$	$\$ 6500$
Annual cost	$\$ 3000$	$\$ 2000$	$\$ 1500$
Salvage value	$\$ 13,000$	$\$ 9000$	$\$ 6000$
Life (years)	8	8	8

6.39 A new automobile costs $\$ 28,000$. The car's value will decrease 15% the first year and 10% each year thereafter. The maintenance costs are expected to be $\$ 200$ the first year, with an annual increase of $\$ 75$. If an interest rate of 6% is used, determine the EAC if the car is sold after 5 years.
6.40 A new car is purchased for $\$ 10,000$ with a 0% down, 9% interest rate loan. The loan's length is 4 years. After making 30 monthly payments, the owner desires to pay off the loan's remaining balance. How much is owed? (Answer: \$4178)
6.41 A student loan of $\$ 48,000$ will be repaid in 72 payments beginning 1 month after graduation. If the nominal interest rate is 6%, what is the monthly payment? How much is owed after 1 year? After 2 years?
6.42 The student in Problem 6.41 received $\$ 4500$ as graduation presents. If it is all used as an extra loan payment at the end of month 1 , when is the final payment made? How much is it?
6.43 Sam can afford to spend $\$ 500$ per month on a car. He figures he needs half of it for gas, parking, and insurance. He has been to the bank, and they will loan him 100% of the car's purchase price. (Note: If he had a down payment saved, he could borrow at a lower rate.)
(a) If his loan is at a nominal 12% annual rate over 36 months, what is the most expensive car he can purchase?
(b) The car he likes costs $\$ 14,000$ and the dealer will finance it over 60 months at 12%. Can he afford it? If not, for how many months will he need to save his $\$ 500$ per month.
(c) What is the highest interest rate he can pay over 60 months and stay within his budget if he buys the $\$ 14,000$ car now?
6.44 EnergyMax Engineering constructed a small office building for their firm 5 years ago. They financed it
with a bank loan for $\$ 450,000$ over 15 years at 12% interest with quarterly payments and compounding. The loan can be repaid at any time without penalty. The loan can be refinanced through an insurance firm for 8% over 20 years-still with quarterly compounding and payments. The new loan has a 5% loan initiation fee which will be added to the new loan.
(a) What is the balance due on the original mortgage (20 payments have been made in last 5 years)?
(b) How much will their payments drop with the new loan?
(c) How much longer will the proposed loan run?
6.45 For a $\$ 85,000$ mortgage with a 30 -year term and a 12% nominal interest rate, write an equation using engineering economy factors for the outstanding balance after 2 years of payments?
6.46 For an $\$ 85,000$ mortgage with a 30 -year term and a 12% nominal interest rate, what is the monthly payment? After the first year of payments, what is the outstanding balance? After the first 10 years of payments, what is the outstanding balance?
6.47 For the mortgage in Problem 6.46, how much interest is paid in month 25 ? How much principal?
6.48 How much extra do you have to pay each month for the loan in Problem 6.46 if you want to pay it off in 20 years? (Answer: $\$ 61.60$)
6.49 A 30-year mortgage for $\$ 140,000$ is issued at a 9% nominal interest rate. What is the monthly payment? How long does it take to pay off the mortgage if $\$ 1500$ per month is paid? If $\$ 2000$ per month is paid? If double payments are made?
6.50 A construction firm owns a concrete batching plant on which there is a $\$ 150,000$ mortgage. The mortgage's interest rate is 7%, and it is to be paid off in 25 equal annual payments. After the 13th payment, the firm refinances the balance at 6%, to be paid off in 35 equal annual payments. What will be the firm's new annual payments?
6.51 Whistling Widgets (WW) may establish a line of credit at First Local Bank. The line of credit would permit WW to meet its short-term cash needs on a routine basis rather than having to process loan requests each time. A typical loan under either the old or the new basis is paid back 6 months later in a lump sum of principal and interest. Over the last 5 years, WW has had such loans outstanding about half the time.

A $\$ 100,000$ line of credit, however, requires that WW continuously maintain at least $\$ 20,000$ in an account that pays 6% compounded monthly. If invested internally, WW would earn a nominal 18% on this required deposit. What annual loan-processing cost is equivalent to the cost of the required deposit?

Minicases

6.52 In evaluating projects, NewTech's engineers use a discount rate of 15% for a before-tax analysis. One year ago, a robotic transfer machine was installed at a cost of $\$ 38,000$. At the time, a 10 -year life was estimated, but the machine has had a down-time rate of 28%, which is unacceptably high. A $\$ 12,000$ upgrade should fix the problem, or a labor-intensive process costing $\$ 3500$ in direct labor per year can be substituted. The plant estimates indirect plant expenses at 60% of direct labor costs, and it allocates front-office overhead at 40% of plant expenses (direct and indirect). The robot has a value in other uses of $\$ 15,000$. What is the EAC for upgrading? For switching to the labor-intensive process?
6.53 George buys a car every 6 years for $\$ 18,000$. He trades in his current car to count as the 20% down payment. The rest is financed at a nominal 12% interest with monthly payments over 6 years. When the loan is paid off, he trades in the car as the " 20% " down payment on the next car, which he finances the same way.

Jeanette has similar tastes in cars, and the dealer will count her trade-in vehicle as worth 20%. She has paid cash for old cars in the past, so she now has $\$ 14,400$ in cash for the other 80% cost of a new car. In 6 years, her vehicle will be worth the " 20% " down payment. She wants to make a monthly deposit so that she has the other 80% of the vehicle's cost in 6 years. Her savings account has a nominal annual interest rate of 6% with monthly compounding.

What is George's payment? What is Jeanette's deposit? If Jeanette also deposits the difference in a retirement account that pays 9% nominal interest with monthly compounding, what does she have for retirement after 40 years?
6.54 An office building should last 50 years, but this owner will sell it at 20 years for 40% of its construction cost. For the first 20 years it can be leased as Class A space, which is all this owner operates. When the building is sold, the land's cost will be recovered in full.
\$1.2M Land
\$3.1M Building
\$240,000 Annual operating and maintenance

4\%

Annual property taxes and insurance (\% of initial investment)
(a) If the owner wants a 12% rate of return, what is the required monthly leasing cost?
(b) Assume that the building is vacant 5% of the time, then what is the required monthly lease?
(c) What is an example monthly per square foot cost for Class A space in your community?
6.55 A 30-unit apartment building should last 40 years, when it will need to be either replaced or undergo major renovation. Assume the building's value will be 10% of its construction cost. Assume it will be sold, and that the land's cost will be recovered in full.
\$2.2M Land
\$4.3M Building
\$50,000 Annual operating and maintenance
2\% Annual property taxes and insurance (\% of initial investment)
6\% Vacancy rate
(a) If the owner wants a 6% rate of return, what is the required monthly leasing cost for each unit?
(b) If turning 2 units into an exercise facility would decrease the vacancy rate by 5%, would that be a good decision?
(c) Using rental rates in your community, how big are each of the 30 units?

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 6 Lease a Lot

Compares leasing and ownership. Both financing and investing decisions are needed.

Case 10 The Cutting Edge

Make vs. buy and machine selection.

Case 27 To Use or Not To Use?

Focus is treatment of sunk costs. More complicated than most. Some discoveries in the data gathering process. Solution uses equation rather than cash flow table.

CHAPTER

Internal Rate of Return

- THE SITUATION AND THE SOLUTION

A project's rate of return may have to be compared with other possible investments. Firms, government agencies, and individuals must compute the cost of financing projects through loans, bonds, leases, etc.

The solution is to calculate the internal rate of return (IRR) for a project or for a financing source. That rate can be compared with an interest rate for the time value of money.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 7.1 Define the internal rate of return (IRR).
SECTION 7.2 State the assumptions for the IRR.
SECTION 7.3 Calculate the IRR for simple problems.
SECTION 7.4 Calculate the IRR for a variety of loans and leases.
SECTION 7.5 Use spreadsheets to calculate the IRR.
SECTION 7.6 Identify problems with multiple sign changes in the cash flow diagram, in which case a meaningful IRR may not exist.
SECTION 7.7 Use the PW over time as a sufficient condition for a meaningful IRR when multiple sign changes exist.
SECTION 7.8 Use the modified internal rate of return (MIRR) to evaluate cash flow diagrams with multiple sign changes.

- KEY WORDS AND CONCEPTS

Internal rate of return (IRR) The interest rate that makes both PW and EAW $=0$.
Multiple sign changes When two or more switches occur between positive and negative cash flows in a sequence of cash flows.
Loan A cash flow sequence in which the initial cash flows are positive and there is a single sign change to a series of negative cash flows, which "repay" the initial cash flows.
Investment A cash flow sequence in which the initial cash flows are negative and there is a single sign change to a series of positive cash flows, which are the return on the initial cash flows.
Evaluating the IRR If a loan's IRR is $\leq i$, (the interest rate for the time value of money), then the loan is attractive. An attractive investment's IRR is $\geq i$.

RATE investment function Spreadsheet function that calculates the IRR given one each of P, A, F, and N (also called annuity function).
IRR block function Spreadsheet function that calculates the IRR given the cash flow in every period.
Project balances over time For a loan, the amounts owed at the end of each period. For an investment, the unrecovered investment balances.
Modified internal rate of rate (MIRR) A rate of return that relies on external rates for financing and investing to deal with multiple sign changes in the cash flow series.

7.1 Internal Rate of Return

The internal rate of return (IRR) is the interest rate that makes both the PW and $\mathrm{EAW}=0$.

The internal rate of return (IRR) is based only on a project's cash flows, which is the basis of the internal. As the interest rate that makes the $\mathrm{PW}=0$, it is the project's rate of return. Since the $\mathrm{PW}=0$, all other equivalent measures calculated at the IRR, such as the EAW, also equal zero.

For the IRR to exist, both costs and benefits must be defined. If only a project's benefits are defined, then the PW and EAW are positive for all interest rates. If there are only costs, then the PW and EAW are always negative. Only if there are costs and benefits can the PW and EAW $=0$ for some interest rate.

Example 7.1's IRR of 5.24% is easy to calculate, and it is a good measure of investment quality. We have an immediate, intuitive feel for how good the investment is. Other measures, such as PW, require an interest rate, a calculated PW, and some feel for the relative scale of the initial investment and the PW. An investment of $\$ 20 \mathrm{~K}$ with a PW of $\$ 8500$ is quite attractive, but an investment of $\$ 2 \mathrm{M}$ with the same PW is within roundoff error of $\mathrm{PW}=0$.

EXAMPLE 7.1 Interest Rate on an Investment

Suppose that Ralph invests $\$ 300$ in a Series E savings bond that is cashed in 10 years later for $\$ 500$. What is the IRR for this investment?

SOLUTION

The first step is to draw the simple cash flow diagram.

As shown in the cash flow diagram, only a P and an F are involved. The unknown IRR that equates the two cash flows can be found by using Equation 3.2:

$$
\begin{aligned}
\mathrm{PW} & =0=-300+500 /(1+\mathrm{IRR})^{10} \\
\mathrm{IRR} & =\sqrt[10]{(500 / 300)}-1=\sqrt[10]{1.667}-1=5.24 \%
\end{aligned}
$$

Multiple sign changes occur when there are two or more switches between positive and negative cash flows in a sequence of cash flows.

The IRR measures the attractiveness of a single project. As detailed in Chapter 9, the IRR's of two or more mutually exclusive alternatives cannot be compared. For example, evaluating the best height of a dam requires an incremental analysis (see Section 9.8). As detailed in Chapter 11, the IRR is useful for the following kind of problem. If a firm or an agency has $\$ 100 \mathrm{M}$ in capital funding but the 45 attractive projects have a total cost of $\$ 250 \mathrm{M}$, then the question is: "Which ones get funded?"

The IRR is also used to evaluate different ways of raising funds. The cost of a loan, bond, lease, etc., is the interest rate charged over its life. Firms, agencies, and individuals will economically prefer the financing source with the lowest cost. Why borrow at 18% if you can borrow at 8% ?

The chief disadvantage of the IRR approach has been removed by the general use of spreadsheets for economic analysis. Without a financial calculator or a spreadsheet, some problems require many computations and several interpolations to find an accurate answer.

The second disadvantage of the IRR sometimes occurs when the sequence of cash flows has multiple sign changes. For example, a problem with three negative cash flows, then four positive cash flows, and then two negative cash flows has two sign changes between positive and negative cash flows. As a result, it may not have a unique solution in i for $\mathrm{PW}=0$.

Section 7.6 details several problems where multiple sign changes are common, and Section 7.7 presents one approach for some multiple sign change problems. Section 7.8 presents a modified internal rate of return that can be used to evaluate projects with multiple sign changes.

7.2 Assumptions

Our first assumptions match the ones made with present worth and equivalent annual measures. Those were:

1. Cash flows occur at time 0 and at the ends of periods 1 through N.
2. Cash flows are known; the horizon, N, is known; and there is no uncertainty.
3. The interest rate, i, for the time value of money is known.

To allow calculation of the IRR, two other assumptions are made. Item 4 is a necessary condition; without, it the IRR cannot exist. Item 5 is a sufficient condition. Thus, if it is true, the IRR must exist in the $(-1, \infty)$ interval, but a unique IRR can exist even if item 5 is not true [Eschenbach].
4. Both positive and negative cash flows must be part of the cash flow equation.
5. The sequence of cash flows should have only one sign change between positive and negative cash flows.

These assumptions do not guarantee that the IRR is positive. Obviously, investments with a negative IRR are very unattractive, but the outcomes of projects are often uncertain, with a range from bad to good outcomes. Even the bad outcomes have an IRR. (See Chapter 18 for calculations of expected values with probabilities for bad and good outcomes.) Also, government agencies and family members sometimes offer loans where not all of the principal need be repaid. Such loans have negative IRRs, and they are economically very attractive.

A loan's initial cash flows are positive, and there is a single sign change to a series of negative cash flows, which "repay" the initial cash flow.

An investment's initial cash flows are negative, and there is a single sign change to a series of positive cash flows, which are the return on the initial cash flows.

EXHIBIT 7.1 Loans, investments, and multiple sign changes
(a) Loan
IRR $=10.0 \%$

(b) Investment

(c) Investment with Salvage Cost

$$
\operatorname{IRR}=11.62 \%
$$

Exhibit 7.1 illustrates three possibilities. All three satisfy assumptions 1 through 4, but only (a) and (b) satisfy assumption 5 . The first two illustrate the common cash patterns of loans and investments. The third pattern is one of the many possibilities with multiple sign changes.

Loans. Exhibit 7.1(a) corresponds to a standard loan, in which money is first borrowed and then repaid. The initial positive cash flow might be cash or an object. For example, it might be a car, where the dealer accepts the promise to repay the loan from the buyer. After the buyer's initial positive cash flow, there is one sign change to a series of loan payments, which are negative cash flows. A pattern of positive cash flows followed by negative cash flows is referred to as a loan whether or not they involve a bank or other money institution. Student loans are an example with many initial positive cashflows, each one of which is immediately spent on tuition.

Investments. Exhibit 7.1(b) corresponds to an investment in which the first costs are spread over a 3-year construction period. After the initial set of negative cash flows, there is a single sign change to a series of positive cash flows, which "repay" the initial investment. Most engineering projects are investments. The first cash flows are negative to pay for designing and building the engineered item (product, facility, dam, etc.)

To evaluate the

IRR, an attractive investment's IRR is $\geq i$ If a loan's IRR is $\leq i$ then the loan is attractive.

Then, sales of the product, use of the building, electricity generated, etc., are the positive cash flows or benefits that justify the initial investment. From a bank's perspective, the loans to individuals and firms are really investments by the bank that return future cash flows to the bank.

Multiple Sign Changes. Exhibit 7.1(c) corresponds to an investment project in which there is a salvage cost, such as might be required for environmental restoration. This is an example of a cash flow diagram that does not satisfy assumption 5 for calculation of the IRR. There are two sign changes in this sequence of cash flows. The initial negative cash flow of $\$ 180 \mathrm{~K}$ is followed by a series of six positive cash flows, and then there is a final negative cash flow-for a total of two sign changes.

This cash flow diagram has an IRR of 11.62% even though it has multiple sign changes. It also has a second root of -43.25%, which is not economically useful (see Section 7.6). This example shows that the condition of a single sign change is not necessary to calculate the IRR. However, assumption 5 is sufficient for the IRR to be defined (see also Section 7.6).

Reinvestment Assumption. The interest rate at which an investment is evaluated is the assumed reinvestment rate, or the rate for the time value of money. This rate is specifically used in computing the PW, EAW, or EAC. For the IRR method, the reinvestment rate is the standard of comparison for a good loan or a good investment [Lohmann].

Applying the IRR Measure. If the five assumptions are satisfied, then the IRR can be calculated. For investments such as Exhibit 7.1(b), the higher the IRR, the more attractive the project. For loans such as Exhibit 7.1(a), the lower the IRR, the more attractive the loan.

In both cases, the IRR is compared with i, the given interest rate for the time value of money. For an investment, if the IRR is greater than or equal to the interest rate, then the investment is attractive (see Example 7.2). For a loan, if the IRR is less than or equal to the interest rate, then the loan is attractive (see Example 7.3).

EXAMPLE 7.2 Golden Valley Manufacturing

By replacing its assembly line conveyor with an asynchronous conveyor, Golden Valley Manufacturing will save $\$ 50,000$ per year in rework, inspection, and labor costs. The asynchronous conveyor will cost $\$ 275,000$, and its life is 15 years. There is no salvage value. If Golden Valley uses a 10% interest rate, should the asynchronous conveyor be installed?

SOLUTION

The PW equation is

$$
\begin{aligned}
P W & =0=-275 \mathrm{~K}+50 \mathrm{~K}(P / A, \mathrm{IRR}, 15) \\
(P / A, \mathrm{IRR}, 15) & =275 \mathrm{~K} / 50 \mathrm{~K}=5.500
\end{aligned}
$$

By thumbing through the tables, we find that the IRR is between 16% and 17%. The next step is to interpolate for the IRR.

$$
(P / A, .16,15)=5.575 \text { and }(P / A, .17,15)=5.324
$$

So,

$$
\operatorname{IRR}=.16+.01(5.575-5.500) /(5.575-5.324)=.1629 \text { or } 16.3 \%
$$

This is an investment, and the IRR exceeds 10%. Thus, the asynchronous conveyor line should be installed. If knowing that the IRR exceeded 10% were enough, then the interpolation step could be skipped.

EXAMPLE 7.3 IRR for a Simple Loan

Suppose that $\$ 5000$ is borrowed at time 0 to be paid back in five equal annual payments of $\$ 1200$. What is the IRR?

SOLUTION

Writing an equation for the PW and setting it equal to zero yields the following:

$$
\begin{aligned}
0 & =5 \mathrm{~K}-1200(P / A, \mathrm{IRR}, 5) \\
(P / A, \mathrm{IRR}, 5) & =4.1667
\end{aligned}
$$

By thumbing through the tables, we find that the IRR is between 6% and 7%. The next step is to interpolate for the IRR.

$$
(P / A, .06,5)=4.212 \text { and }(P / A, .07,5)=4.100
$$

So,

$$
\operatorname{IRR}=.06+.01(4.212-4.1667) /(4.212-4.100)=.064 \text { or } 6.4 \%
$$

Mortgages often have interest rates of 7% or more, rates for car loans are higher, and credit card rates are higher yet. This is an attractive loan at a relatively low interest rate.

7.3 FInding the IRR

Graphing the PW versus the interest rate is often the clearest way to visualize the problem. At what interest rate does the $\mathrm{PW}=0$?

If only two cash flows exist, then the IRR problem can be solved using $F=$ $P(1+\mathrm{IRR})^{N}$ as in Example 7.1. However, if the problem involves even a uniform series (an A), then the equation is too complicated to solve directly, and table lookup is required. Examples 7.2 and 7.3 illustrated the table lookup and interpolation procedures. If two or more factors are required to set $\mathrm{PW}=0$, then an iterative solution or a spreadsheet is required, as in Examples 7.4 and 7.5.

EXHIBIT 7.2 Graphs of PW vs. i for loans and investments
(a) Loan

(b) Investment

(c) Investment with Salvage Cost

Exhibit 7.2 returns to the loan and investment examples of Exhibit 7.1. It shows the graphs of PW vs. interest rate that occur for the assumptions given in Section 7.2. All three examples have a single $\operatorname{IRR} \geq 0$ where the present worth is 0 . The graph in Exhibit 7.2(b) is used to simplify the calculations shown in Example 7.4.

As the interest rate increases, the relative importance of later cash flows decreases. The higher the interest rate, the more heavily later cash flows are discounted in the equivalence calculations. For example, in Exhibit 7.2(a), the loan payments of $\$ 1318.99$ per year are far less important at an interest rate of 20% than at 5%. Thus, the PW of the loan increases with i, as shown in Exhibit 7.2(a).

Similarly, if the investment in Exhibit 7.2(b) is evaluated, a higher interest rate decreases the value of the positive cash flows that come later. The PW of an investment decreases with i, as shown in Exhibit 7.2(b).

As the interest rate approaches infinity, the PW approaches the value of the period 0 cash flow. The limit of the curve for the loan in Exhibit 7.2(a) is $\$ 5000$, while the limit for the investment with salvage cost in Exhibit 7.2(c) is $-\$ 180 \mathrm{~K}$. The limit for the construction example shown in Exhibit 7.2(b) is $-\$ 90$ K. However, because there are construction costs in periods 2 and 3, which would be discounted to $\$ 0$ by an infinite interest rate, the PW at $i=100 \%$ is $\$ 178 \mathrm{~K}$, which is lower than $(-\$ 90 \mathrm{~K})$ the limit as i approaches infinity, and the limit is approached from below.

EXAMPLE 7.4 IRR for the Investment in Exhibits 7.1(b) and 7.2(b)

The information in the Exhibit 7.2(b) can save us several steps, because the IRR is known to be between 12% and 13%. Calculate the value of the IRR.

SOLUTION

First, the PWs at 12% and 13% are calculated, then the interpolation is done.

$$
\begin{aligned}
\mathrm{PW}_{12 \%}= & -90 \mathrm{~K}-180 \mathrm{~K} / 1.12-90 \mathrm{~K} / 1.12^{2} \\
& +[80 \mathrm{~K}+120 \mathrm{~K}(P / A, .12,3)] / 1.12^{3}+150 \mathrm{~K} / 1.12^{7} \\
= & 7.482 \mathrm{~K}=\$ 7482 \\
\mathrm{PW}_{13 \%}= & -90 \mathrm{~K}-180 \mathrm{~K} / 1.13-90 \mathrm{~K} / 1.13^{2} \\
& +[80 \mathrm{~K}+120 \mathrm{~K}(P / A, .13,3)] / 1.13^{3}+150 \mathrm{~K} / 1.13^{7} \\
= & -4.204 \mathrm{~K}=-\$ 4204 \\
\mathrm{IRR}= & .12+.01 \times 7482 /(7482+4204)=.1264=12.6 \%
\end{aligned}
$$

Hints and Shortcuts for Finding the IRR. Without the graphical hint that the IRR for Example 7.4 was between 12% and 13%, the calculation of many PWs might have been required. The following hints can speed the process:

1. Letting i approach infinity implies that the PW equals the period 0 cash flow. The value is useless for interpolation, but the sign can quickly define the search interval.
2. If and are opposite in sign, then the IRR is between i_{1} and i_{2}. Thus, we could guess at a starting point, such as 10%, and calculate $\mathrm{PW}_{10 \%}$. If $\mathrm{PW}_{10 \%}$ and PW_{∞} have different signs, then the IRR exceeds 10%.
3. If $\mathrm{PW}_{10 \%}$ and PW_{∞} have the same sign, then the IRR is less than 10%. The next rate to try is 0%, since it is an easy rate to evaluate (the PW equals the sum of the cash flows). If there is a uniform series, $(P / A, 0 \%, N)=N$ can be used.
4. Once the $\mathrm{PW}_{0 \%}$ and $\mathrm{PW}_{10 \%}$ values have been calculated, then rough interpolating or extrapolating can be used to estimate the next interest rate to try. For example, if $\mathrm{PW}_{0 \%}$ is 500 and $\mathrm{PW}_{10 \%}$ is -1000 , then the IRR is about 3% to 4%-a third of the distance between 0% and 10%. Similarly, if $\mathrm{PW}_{0 \%}$ is 500 and $\mathrm{PW}_{10 \%}$ is 100 , then the IRR is about 12% to 13%-a quarter of 10% higher than 10%.
5. The final interpolation should be between the two closest tabulated values (not between 0% and 10% or 10% and 20%). In Example 7.4, if $\mathrm{PW}_{10 \%}$ and $\mathrm{PW}_{20 \%}$ were used for the interpolation, then the answer would be much less accurate, because the curve of PW vs. the interest rate is nonlinear. In that case, $\mathrm{PW}_{10 \%}=\$ 33$, 721 , and $\mathrm{PW}_{20 \%}=-\$ 68,058$. The indicated IRR would not be the correct value of 12.6%; instead, it would be 13.3% [$=.1+.1 \times 33,721 /(33,721+68,058)]$.
6. For complicated cash flows, it may save time to use a single-factor series as an approximation, as shown in Example 7.6. This will not find the IRR, but it may identify an interval for the initial calculations.

EXAMPLE 7.5 Subsidized Student Loan

Golden Valley Manufacturing sponsors a student loan program for the children of employees. No interest is charged until graduation, and then the interest rate is 5%. Assume that George borrows $\$ 8000$ per year at the beginnings of years 1 through 4 and that he graduates at the end of year 4. If equal annual payments are made at the ends of years 5 through 9 , what is the internal rate of return for George's loan? Is this attractive to George?

SOLUTION

The first step is to calculate the five equal annual payments. When he graduates, he owes $\$ 32,000$, because no interest has been charged. The first payment is due 1 year after graduation, so each payment is:

$$
\mathrm{A}=\$ 32,000(A / P, 5 \%, 5)=32 \mathrm{~K} \times .2310=\$ 7392
$$

The cash flow series for the subsidized loan is:

Solving for the IRR for this loan is perhaps most easily done by using $t=4$ as the equivalence point. The first two interest rates used are 0% (because it is easy) and 3% (because the subsidized rate will be below the 5% that is charged after graduation). The equivalent value, F_{4}, at the end of year 4 is a function of i.

$$
F_{4}(i)=8000(F / A, i, 4)(F / P, i, 1)-7392(P / A, i, 5)
$$

Setting this equal to zero gives the equation where $i=\operatorname{IRR}$. It is slightly simpler to use $(1+i)$ rather than the 1-year (F / P) factor:

$$
\begin{aligned}
0 & =8000(F / A, \mathrm{IRR}, 4)(1+\mathrm{IRR})-7392(P / A, \mathrm{IRR}, 5) \\
F_{4}(0 \%) & =8000 \times 4-7392 \times 5=-\$ 4960 \\
F_{4}(3 \%) & =8000 \times 4.184 \times 1.03-7392 \times 4.580=\$ 620.8
\end{aligned}
$$

Since F_{4} has opposite signs for 0% and 3%, there is a value of i between 0% and 3% that is the IRR. Because the value for 3% is closer to 0 , the IRR will be closer to 3%. Try 2% next:

$$
F_{2}(2 \%)=8000 \times 4.122 \times 1.02 \times 7392 \times 4.713=-\$ 1203.0
$$

$F_{4}(2 \%)$ is negative, and $F_{4}(3 \%)$ is positive. Interpolating between 2% and 3% leads to:

$$
\begin{aligned}
\operatorname{IRR} & =2 \%+1 \%(1203 /(1203+620.8)) \\
& =2.6596 \% \text { or } 2.7 \%
\end{aligned}
$$

The exact value is $\operatorname{IRR}=2.66 \%$ This rate is quite low, and it makes the loan look like a good choice.

EXAMPLE 7.6 Using an Approximate Cash Flow Series

As a starting point in finding the IRR, find an initial approximation of the IRR for the following cash flows:

SOLUTION

The average positive cash flow is about $\$ 200$, so an approximate interest rate can be found using:

$$
\begin{aligned}
\mathrm{PW} & =0=-1000+200(P / A, \mathrm{IRR}, 10) \\
(P / A, \mathrm{IRR}, 10) & =5 \Rightarrow \mathrm{IRR} \approx 15+\%
\end{aligned}
$$

Since the cash flow series has smaller returns at the beginning and larger cash flows at the end, this is likely to slightly overstate the IRR. The next step is calculating the PW at $i=14 \%$. Since $\mathrm{PW}_{\infty}=-1000$, if $\mathrm{PW}_{14 \%}$ is greater than zero, then the IRR is between 14% and infinity. If $\mathrm{PW}_{14 \%}$ is less than zero, then the IRR is below 14%. (If you calculate the actual IRR, you should get 13.85%.)

7.4 Loans and Leases

Interest rates or internal rates of return on level-payment loans are conceptually and numerically clear. The same principles apply to other ways of borrowing money. Often, a problem's most difficult part is summarizing the words of a proposed loan in a cash flow diagram. In some cases, as shown in Examples 7.7 and 7.8, two cash flow diagrams are combined to show the difference between the choices.

Example 7.7 illustrates the impact of a cash discount, which is often available from sellers who also offer financing. Problem 7.22 is another example, in which a car dealer offers a low interest rate or a rebate. Example 7.8 illustrates that a lease is another way of borrowing money. In a lease, someone else's money is used to purchase equipment that you use. Example 7.9 illustrates finding the IRR for a bond that is being sold at a discount.

EXAMPLE 7.7 Interest Rate on a Loan with a Cash Discount

Golden Valley Manufacturing is considering the purchase of an adjacent property so that the warehouse can be expanded. If financed through the seller, the property's price is $\$ 40 \mathrm{~K}$, with 20% down and the balance due in nine annual payments at 12%. The seller will accept 10% less if cash is paid. Golden Valley does not have $\$ 36 \mathrm{~K}$ in cash, but it may be able to borrow it from another source. What is the IRR for the loan offered by the seller?

SOLUTION

One choice is to pay $\$ 36 \mathrm{~K}$ in cash. The other choice is to pay $\$ 8 \mathrm{~K}$ down and nine annual payments computed at 12% on a principal of $\$ 32 \mathrm{~K}$, or

$$
32 \mathrm{~K}(A / P, .12,9)=32 \mathrm{~K} \times .1877=\$ 6006
$$

annually. The cash flow diagrams are:

This choice between (1) $\$ 36 \mathrm{~K}$ now or (2) $\$ 8 \mathrm{~K}$ now and $\$ 6006$ annually for nine years can be stated in PW terms as follows:

$$
-36 \mathrm{~K}=-8 \mathrm{~K}-6006(P / A, \text { IRR, } 9)
$$

The true amount borrowed is the difference between the $\$ 8 \mathrm{~K}$ down payment and the $\$ 36 \mathrm{~K}$ cash price, or $\$ 28 \mathrm{~K}$. This is the amount that Golden Valley does not pay now. Collecting the terms, the PW equation is:

$$
0=28 \mathrm{~K}-6006(P / A, \operatorname{IRR}, 9)
$$

This can also be shown in a cash flow diagram, which is the difference of the two above.

In either case, the final equation for finding the IRR is:

$$
\begin{aligned}
\mathrm{PW} & =0=28 \mathrm{~K}-6006(P / A, \mathrm{IRR}, 9) \\
(P / A, \mathrm{IRR}, 9) & =4.6622 \Rightarrow \mathrm{IRR}=15.66 \%
\end{aligned}
$$

on a borrowed amount of $\$ 28 \mathrm{~K}$. This is a relatively high rate of interest, so borrowing from a bank and paying cash to the property owner is better.

The 12% interest that is stated will be tax deductible for a business, and it may be tax deductible for an individual. The 3.66% of unstated interest from the cash discount will usually not be tax deductible.

EXAMPLE 7.8 Leasing a Computer

Creekside Consulting is comparing the purchase of a computer network with leasing it. The purchase price is $\$ 36,000$, or the network can be leased for $\$ 3000$ per month. In either case, Creekside expects to use the network for 3 years, when it plans on an upgrade. If Creekside buys the network, its salvage value is $\$ 5000$ after 3 years. What is the IRR or cost of the lease?

SOLUTION

The first step is to draw the diagrams for the two choices.

Setting the PWs of these two diagrams equal to each other leads to:

$$
\begin{aligned}
-36 \mathrm{~K}+5 \mathrm{~K}\left(P / F, \mathrm{IRR}_{\mathrm{m}}, 36\right) & =-3 \mathrm{~K}-3 \mathrm{~K}\left(P / A, \mathrm{IRR}_{\mathrm{m}}, 35\right) \\
0 & =33 \mathrm{~K}-3 \mathrm{~K}\left(P / A, \mathrm{IRR}_{\mathrm{m}}, 35\right)-5 \mathrm{~K}\left(P / F, \operatorname{IRR}_{\mathrm{m}}, 36\right)
\end{aligned}
$$

In other words, if Creekside leases the computer, it avoids the expenditure of $\$ 33,000$ at time 0 . It incurs a cost of $\$ 3000$ at the ends of months 1 through 35 , and it gives up the salvage value of $\$ 5000$ at the end of month 36 . As shown in Section 7.5, this equation can be solved with $N=$ 36 for both $A=-\$ 3 \mathrm{~K}$ and $F=-\$ 2 \mathrm{~K}$, which is easier for calculators and spreadsheets. The cash flow diagram for this statement (or the combined equation above) is:

In either case, the final PW equation for the monthly interest rate is:

$$
0=33 \mathrm{~K}-3 \mathrm{~K}\left(P / A, \mathrm{IRR}_{\mathrm{m}}, 35\right)-5 \mathrm{~K}\left(P / F, \mathrm{IRR}_{\mathrm{m}}, 36\right)
$$

Ignoring the extra $\$ 2000$ in month 36 allows a quick calculation of the approximate monthly rate.

$$
0=33 \mathrm{~K}-3 \mathrm{~K}\left(P / A, \operatorname{IRR}_{\mathrm{m}}, 36\right) \text { or }\left(P / A, \operatorname{IRR}_{\mathrm{m}}, 36\right)=11 \text { so } \mathrm{i} \approx 8+\%
$$

Trying 9\% leads to:

$$
\mathrm{PW}_{9 \%}=33 \mathrm{~K}-3 \mathrm{~K} \times 10.567-5 \mathrm{~K} / 1.09^{36}=\$ 1054
$$

Since equals $\$ 33 \mathrm{~K}$, the next value to try is 8% :

$$
\mathrm{PW}_{8 \%}=33 \mathrm{~K}-3 \mathrm{~K} \times 11.665-5 \mathrm{~K} / 1.08^{36}=-\$ 2278
$$

Now, to interpolate for the monthly rate:

$$
\begin{aligned}
\mathrm{IRR}_{\mathrm{m}} & =.08+.01 \times 2278 /(2278+1054) \\
& =8.68 \% \text { per month }
\end{aligned}
$$

After converting this to an effective annual rate, we have the IRR:

$$
\operatorname{IRR}=1.0868^{12}-1=171.6 \%
$$

This extremely high interest rate suggests that this 3-year lease is a bad way to borrow money. Note that some computer rental rates are set to recover the cost in as few as 10 months rather than the 12 months used here. In other cases, the monthly rental fee is a more reasonable 3% to 5% of the first cost.

EXAMPLE 7.9 Calculate the IRR for a Discounted Bond

You own some municipal bonds that were issued at 8% with semiannual interest payments. They were to be repaid in 20 years. Calculate the effective interest rate for a $\$ 10 \mathrm{~K}$ bond that you can now sell for $\$ 8200$. The bond matures in 14 years.

SOLUTION

The semiannual interest payments are 4% of the bond's face value, or $\$ 400$. Selling the bond for $\$ 8200$ brings in that amount immediately. However, then you forgo the $\$ 400$ every 6 months and $\$ 10 \mathrm{~K}$ after 14 years. There are 28 six-month periods remaining. The following cash flow diagram emphasizes that selling the bond is a way to borrow funds, since it is a loan with an initial positive cash flow followed by negative cash flows for the forgone interest and principal payments.

The solution uses a subscript on the IRR to emphasize that it is for 6 months and it is not an annual rate. Setting PW $=0$ yields:

$$
0=8200-400\left(P / A, \mathrm{IRR}_{6}, 28\right)-10 \mathrm{~K}\left(\mathrm{P} / \mathrm{F}, \mathrm{IRR}_{6}, 28\right)
$$

Because the bond is being sold at a discount, the interest rate will be higher than 4% every 6 months. Try 5\% first.

$$
\begin{aligned}
\mathrm{P}_{5 \%} & =8200-400(P / A, 5 \%, 28)-10 \mathrm{~K}(P / F, 5 \%, 28) \\
& =8200-400 \times 14.898-10 \mathrm{~K} \times .2551=-\$ 310.2
\end{aligned}
$$

The negative cash flows are greater than $\$ 8200$, so $P_{0 \%}$ is negative. Because the PWs at 0% and 5% have the same sign, the IRR is greater than 5%. Try 6% next.

$$
\begin{aligned}
\mathrm{P}_{6 \%} & =8200-400(P / A, 6 \%, 28)-10 \mathrm{~K}(P / F, 6 \%, 28) \\
& =8200-400 \times 13.406-10 \mathrm{~K} \times .1956=\$ 881.6
\end{aligned}
$$

Interpolating for the 6-month interest rate yields:

$$
\operatorname{IRR}_{6}=.05+.01 \times 310.2 /(310.2+881.6)=5.26 \%
$$

Calculating the effective annual interest rate yields:

$$
\operatorname{IRR}=1.0522^{2}-1=10.8 \%
$$

(The exact IRR is 5.240% for 6 months, which yields an effective annual rate of 10.754%.)

7.5 Spreadsheets and the IRR

Investment or annuity functions account for one P, one A, and one F all over N periods. Block functions identify each cash flow.

The arithmetic required to calculate the IRR is an obvious reason to prefer the use of spreadsheets over calculations using the tables of factors. As described in Chapter 4, spreadsheets include two kinds of functions designed to calculate IRRs. There are investment or annuity functions, which are used for cash flows made up of one each of P, A, and F all over N periods, and there are block functions, which identify each cash flow individually.

RATE Investment Function. The investment function (or annuity function) is very similar to the engineering economy factors used so far in this chapter. The spreadsheet function, $\operatorname{RATE}(N, A, P, F$, type, guess), is more powerful, because values for all three of P, F, and A are allowed-not just for two, as in the engineering economy factors. The A, P, and F cannot all be the same sign. The F, type, and guess are optional arguments. The "type" is end or beginning of period cash flows (for A but not F), and the "guess" is the starting value in the search for the IRR.

For Example 7.7, the Excel function, with $P=28 \mathrm{~K}, A=-6006$, and $N=9$ and its value would be:

$$
\operatorname{RATE}(9,6006,-28000)=15.66 \%
$$

For Example 7.8, $P=33 \mathrm{~K}, A=-3 \mathrm{~K}, F=-2 \mathrm{~K}$, and $N=36$. If $F=-5 \mathrm{~K}$ is used, then the A series has $N=35$ and the F series has $N=36$. To calculate the monthly interest rate, 8.66\%, with Excel, use:

$$
\text { RATE }(36,-3000,33000,-2000)
$$

For Example 7.9, $P=8200, A=-400, F=-10 \mathrm{~K}$, and $N=28$. To calculate the semiannual interest rate, 5.240%, use:

$$
\operatorname{RATE}(28,-400,8200,-10000)
$$

Example 7.10 applies this function to a loan with a balloon payment. Example 7.11 illustrates that these functions work even when the IRR is negative. Unfortunately, investments with negative IRRs are sometimes required by government regulations. Or, as in Example 7.11, it could be the worst of several possible outcomes of an investment.

EXAMPLE 7.10 Loan with a Balloon Payment

A business is purchased for $\$ 250 \mathrm{~K}$. Payments of $\$ 50 \mathrm{~K}$ are required at the ends of years 1 through 4 , and a balloon payment of $\$ 150 \mathrm{~K}$ is required at the end of year 5 . What is the interest rate for this loan?

SOLUTION

In this case, $N=5$, which is used both for A and F. Thus, $A=-50 \mathrm{~K}$, and $F=-100 \mathrm{~K} . F \neq-150 \mathrm{~K}$, however, because -50 K in year 5 is allocated to the uniform series. The initial cash flow, P, for the loan is the $\$ 250 \mathrm{~K}$. The spreadsheet function for Excel can be entered, with cash flow stated in $\$ 1000$ s, as follows:

$$
\operatorname{RATE}(5,-50,250,-100)
$$

The calculation yields $\operatorname{IRR}=10.21 \%$.

EXAMPLE 7.11 Investment with a Negative IRR

An investment of $\$ 10 \mathrm{~K}$ in new machinery is required. After 5 years, the machinery will have no salvage value. Depending on how many shifts the machinery is used, it will save either $\$ 1250$, $\$ 2500$, or $\$ 3750$ per year. Calculate the IRRs for one-, two-, and three-shift operations.

SOLUTION

In each case, $P=-10 \mathrm{~K}$ and $N=5$, while $A=1250,2500$, or 3750 .

RATE $(5,1250,-10000)$ retutns -.1387 or -13.87% for the IRR.
RATE $(5,2500,-10000)$ retutns .0793 or 7.93% for the IRR.
RATE $(5,3750,-10000)$ retutns .2541 or 25.41% for the IRR.

If there is only one shift of operations, then the negative IRR implies that over 5 years, less than the original cost of $\$ 10 \mathrm{~K}$ is saved. In fact, only $5 \times \$ 1250$, or $\$ 6.25 \mathrm{~K}$, is saved.

IRR Block Function. Most spreadsheets have a function that is equivalent to the Excel IRR(values, guess). The values are the $N+1$ cells that contain the cash flows for periods 0 to N. The optional guess argument is simply a starting point in the search for the IRR. Cash flows that are zero must be explicitly entered as 0 .

The cash flows for Example 7.5 are summarized in the diagram and simply listed oneby -one in the spreadsheet cells.

	A	B	C	D	E	F	G	H	I	J
1	0	1	2	3	4	5	6	7	8	9
2	8000	8000	8000	8000	0	-7392	-7392	-7392	-7392	-7392
3	2.66\%	cell A3 contains $=\operatorname{IRR}(\mathrm{A} 2: \mathrm{J} 2)$								

The cash flows for Example 7.6 are summarized in the diagram and simply listed one-by-one in the spreadsheet cells.

	A	B	C	D	E	F	G	H	I	J	K
1	0	1	2	3	4	5	6	7	8	9	10
2	-1000	150	150	150	200	200	200	250	250	250	250
3	13.85\%	cell A3 contains $=\operatorname{IRR}(\mathrm{A} 2: \mathrm{K} 2)$									

Another advantage of spreadsheets is that it is easy to construct graphs of PW vs. i. This is done using another block function: NPV(values, i). However, as noted in Chapter 4, the NPV function's block is N cells for periods 1 to N. Time 0 is not included. Exhibit 7.3 is the spreadsheet that was used to calculate the IRRs in Exhibit 7.1 and to produce the graphs of PW vs. i in Exhibit 7.2.

EXHIBIT 7.3 Spreadsheet for computing IRRs and PW vs. i

	A	B	C	D
1	Year	a.Loan	b.Invest	c.INVw/SC
2	0	5000	-90000	-180000
3	1	-1318.99	-180000	50000
4	2	-1318.99	-90000	50000
5	3	-1318.99	80000	50000
6	4	-1318.99	120000	50000
7	5	-1318.99	120000	50000
8	6		120000	50000
9	7		150000	-60000
10	IRR	- 10.00\%	12.63\%	11.62\%
11		$=\operatorname{IRR}(\mathrm{B} 2: \mathrm{B} 9$,		
12				
13		$=\mathrm{B} \$ 2+\mathrm{NPV}$, B\$3:B\$9)	
14	i	NPVa	NPVb	NPVc
15	0\%	-1595	230000	60000
16	2\%	-1217	179100	47838
17	4\%	-872	134866	36512
18	6\%	-556	96335	25963
19	8\%	-266	62697	16135
20	10\%	0	33271	6974
21	12\%	245	7482	-1571
22	14\%	472	-15159	-9545
23	16\%	681	-35068	-16993
24	18\%	875	-52600	-23955
25	20\%	1055	-68058	-30469

The only disadvantage of the IRR function is that each cash flow must be explicitly stated. It is not possible to define the revenues as an A for years 1 to 15 , with an overhaul in year 5, a first cost, and a salvage value. Instead, 16 or $N+1$ values must be specified. Example 7.12 illustrates that the IRR function can be used even if there are multiple sign changes in the cash flow diagram.

If the IRR function returns an error, it may simply mean that it could not find an answer within a certain number of iterations. Try a new guess as the starting point.

EXAMPLE 7.12 IRR for an Investment with a Reclamation Cost [Based on Exhibit 7.1(c)]

Find the IRR for the following cash flow series:

SOLUTION

The simplest spreadsheet would be as follows:

	A	B	C	D	E	F	G	H
1	0	1	2	3	4	5	6	7
2	-180,000	50,000	50,000	50,000	50,000	50,000	50,000	-60,000
3	11.62\%	cell A3 contains $=\operatorname{IRR}(\mathrm{A} 2: \mathrm{H} 2,0)$						

7.6 Multiple Sign Changes

Cash flow diagrams, as in Example 7.12, may not have a unique IRR because the cash flow pattern has more than one sign change. In Example 7.12, there are two sign changes and two roots. The first sign change is between periods 0 and 1 , and the second sign change is between periods 6 and 7. In this case, only one root of the equation is greater than zero.

This root of 11.62% is an IRR, where the second root of -43.25% is not useful for economic analysis.

The possibility of difficulties in calculating the IRR is a commonly cited reason for not relying on the internal rate of return. However, some cases in which it is most likely to occur can readily be identified. These include problems in mineral extraction, environmental restoration, and staged construction.

Mineral Extraction. The classic example of problems with calculating the IRR is mineral extraction. For example, additional oil wells may be added to an oil field; the effect is to recover the oil sooner more than to increase the field's total recovery. Exhibit 7.4 illustrates an example (note that the 8 -year time span is compressed from the normal horizon). The initial cost of the wells is $\$ 4 \mathrm{M}$, which is more than the additional $\$ 3 \mathrm{M}$ in recovered oil due to the new wells. However, the main effect of the additional wells is to shift $\$ 4.5 \mathrm{M}$ worth of production from years 6,7 , and 8 to earlier years. If the well is justified, one reason is that the oil is recovered sooner. Note that the additional recovery corresponds to an investment, and the shifting of recovery to earlier years corresponds to a loan (positive cash flow now and negative cash flow later). Thus, the oil wells are neither an investment nor a loan; they are a combination of both.

As shown in Exhibit 7.5, this oil well example has two interest rates where $\mathrm{PW}=0$. However, neither can be usefully be interpreted as an IRR. In addition, this cash flow diagram cannot be interpreted as a loan or as an investment. Even if there were a unique IRR, the project is not a loan where a low rate is good, nor is the project an investment where a high rate is good. (Note: To find these rates with the spreadsheet IRR functions, one guess would be 10%, and the other guess would be 26%.)

In fact, even though the project has a positive PW at 25%, it may not be appropriate to conclude that such a project is attractive even when evaluated at that given interest rate. Small uncertainties in the interest rate might lead to a different conclusion. Also, as shown in Exhibit 7.6, when multiple roots exist, small uncertainties in the cash flows can substantially change the calculated interest rates.

Environmental Restoration. Example 7.12 which is based on Exhibit 7.1(c), can be modified to illustrate one problem that can occur when multiple sign changes cause multiple roots for the PW equation. Suppose the first cost in Example 7.12 is changed to $\$ 100 \mathrm{~K}$. The 6 years, worth of $\$ 50 \mathrm{~K}$ receipts are the same, and the cost in environmental restoration is changed to $\$ 180 \mathrm{~K}$ or greater. Exhibit 7.6 graphs PW vs. i for four different costs of environmental restoration. Not only can there be multiple roots, but "small" changes in the restoration cost can produce significant changes in the roots. If the cost of restoration exceeds $\$ 238.6 \mathrm{~K}$, then there are no real roots to the equation $\mathrm{PW}=0$.

This problem can be analyzed as: What combinations of P, A, and F values result in double roots? When this is done, it has been shown that only a very small subset of the values lead to multiple positive roots [Eschenbach, Baker, and Whittaker]. More importantly, because the uncertain remediation expenses are much larger than the initial costs, the sensitivity of the results means that the PW values are also unreliable guides for decisionmaking when there are two positive roots for the $\mathrm{PW}=0$ equation.

EXHIBIT 7.4 Cash flow diagram for oil well

EXHIBIT 7.5 Graph of PW vs. i for oil well

EXHIBIT 7.6 Graphs of PW vs. i for differing restoration costs

Staged Construction or Expansion. Example 7.13 illustrates staged construction, which typically has three sign changes. There is an initial construction period, which is followed by a profitable period. Then, additional capital costs are incurred to expand facilities. This is followed by another profitable period. If there are reclamation costs, then the problem ends with a fourth sign change.

EXAMPLE 7.13 Staged Expansion of a Project

Expansion of a proposed project is expected at the end of year 5. This will lead to a substantial loss in year 5, but it will allow the business to operate through the project's horizon in year 10. Can an interest rate be calculated? Does this project appear to be attractive?

The project's first cost is $\$ 100 \mathrm{~K}$, and the expansion cost is $\$ 75 \mathrm{~K}$. Net revenues begin at $\$ 30 \mathrm{~K}$ in year 1 , and they increase by $\$ 1.5 \mathrm{~K}$ per year.

SOLUTION

The first step is to draw the cash flow diagram.

Using the IRR function for this block of cash flows identifies an IRR of 24.19\%. Section 7.7 describes one way to show that this root is unique in the $(-1, \infty)$ interval. Since this project is an investment and 24.19% is a high IRR, the project is attractive.

Summary of Multiple Sign Change Consequences. Having multiple sign changes violates the sufficient condition for a unique IRR, which is a single sign change. The outcomes may include a unique root, which is an IRR and which is useful. The outcomes may also include double roots, no roots, positive and negative roots, and extreme sensitivity.

In general, we know from Descartes rule of signs that the number of roots cannot exceed the number of sign changes. Thus, a single sign change implies a unique root. However, unique roots [in the $(-1, \infty)$ interval] may exist even in the presence of multiple sign changes. Section 7.7 provides a test that is a sufficient condition for a unique root. Section 7.8 describes the modified internal rate of return, which uses external interest rates to ensure that a rate for the project can be calculated.

7.7 Project Balances Over Time

The project balances over time for a loan is the amount owed for each period. For an investment, it is the unrecovered investment balances.

This section describes a sufficient test for the uniqueness of the calculated root to and the root's meaningfulness as an IRR. The approach described here as the project balances over time $\left(\mathrm{PB}_{t}\right)$ is sometimes described as the unrecovered loan or investment balance [Bussey and Eschenbach; Thuesen and Fabrycky]. The project balances over time are calculated using a root of the $\mathrm{PW}=0$ equation. If all values of PB_{t} are less than or equal to zero, then the root is an $I R R$ for an investment. If all values of PB_{t} are greater than or equal to zero, then the root is an IRR for a loan.

This can be described mathematically by Equation 7.1, where PB_{0} equals the cash flow in period $0\left(\mathrm{CF}_{0}\right)$. The name of this function comes from calculating for each period the cumulative value of all cash flows through that period. In this application of project balances, the calculations are done at the IRR. Thus, $\mathrm{PB}_{N}=0$, since PB_{N} equals the future worth, and the IRR sets PW, EAW, and future worth equal to zero.

$$
\begin{equation*}
\mathrm{PB}_{t}=\mathrm{PB}_{t-1}(1+\mathrm{IRR})+\mathrm{CF}_{t} \tag{7.1}
\end{equation*}
$$

Exhibit 7.7 applies this equation to Example 7.13. All of the PB_{t} values are less than or equal to zero, so this is an investment. Furthermore, the 24.19% root is the unique IRR.

If the graph of the net project balances over time has both positive and negative values, then the cash flow diagram is described as a mixed investment or mixed loan. If a mixed investment or loan has a unique IRR (see Problem 9.48, which is a continuation of Problem 7.19), then the IRR may still be useful for decision making [Eschenbach], but it is beyond the scope of this text.

Another approach to analyzing cash flows, which are a mixed investment and loan, is the use of a modified internal rate of return (see Section 7.8).

EXHIBIT 7.7 Staged expansion of an investment (based on Example 7.13)

Year	0	1	2	3	4	5	6	7	8	9	10
Cash flow (K)	$-\$ 100$	30	31.5	33	34.5	-39	37.5	39	40.5	42	43.5
$\mathbf{P B}_{t}(\mathbf{K})$	$-\$ 100$	-94.2	-85.5	-73.2	-56.4	-109	-97.9	-82.6	-62.0	-35.0	0

7.8 Modified Internal Rate of Return (MIRR)

The modified internal rate of rate (MIRR) is a rate of return that relies on external rates for financing and investing to deal with multiple sign changes in the cash flow series.

There are a number of elaborations of the IRR that use external rates of return to deal with multiple sign change problems. The modified internal rate of return (MIRR) has the most consistent definition in the engineering economy literature, and there is an Excel function for it.

The MIRR can be computed using either a single external rate or an external financing rate and an external investment rate. The external qualifier emphasizes that these rates are external to the project being evaluated. They come from the rates at which the organization normally raises its financing and invests.

EXHIBIT 7.8 Modified internal rate of return (MIRR)

The approach starts with combining cash flows within each period, so that each period's net cash flow is a single net receipt or net expense. Then, as shown in Exhibit 7.8, the present worth of each net expense, E_{t}, is found using the external financing rate, $e_{\text {fin }}$. The future worth of each net receipt, R_{t}, is found using the external investing rate, $e_{\text {inv }}$. Finally, the MIRR is the rate that makes the total PW and the total future worth equivalent. This is stated mathematically in Equation 7.2.

$$
\begin{equation*}
(F / P, \operatorname{MIRR}, N) \times \sum_{t} E_{t}\left(P / F, e_{\mathrm{fin}}, t\right)=\sum_{t} R_{t}\left(F / P, e_{\mathrm{inv}}, N-t\right) \tag{7.2}
\end{equation*}
$$

The external financing rate is used for the net expenses, because finding the PW for these is finding an equivalent value earlier in time to pay something back. The investing rate is used for the net receipts, because it is assuming that those receipts are invested externally to the project until the end of period N.

Example 7.13 does not need to use external rates, because the graph of project balances shows that the IRR is unique and the project earns 24.2% on its investment. However, Example 7.12 (project with environmental restoration cost) and the oil well of Exhibit 7.4 start and end with cash flows of the same sign. Thus, both have positive and negative values in their graphs of project balances over time. In Examples 7.14 and 7.15, both are analyzed using the MIRR.

EXAMPLE 7.14 MIRR for an Investment with a Reclamation Cost (Based on Example 7.12)

Find the MIRR for the cash flow series of Example 7.12. Use an external financing rate of 8% and an external investment rate of 10%.

SOLUTION

The simplest spreadsheet would be as follows:

	A	B	C	D	E	F	G	H
1	8\%	External financing rate						
2	10\%	External investment rate						
3	0	1	2	3	4	5	6	7
4	-180,000	50,000	50,000	50,000	50,000	50,000	50,000	-60,000
5	10.20\%	cell A5 contains $=\operatorname{MIRR}(\mathrm{A} 4: \mathrm{H} 4, \mathrm{~A} 1, \mathrm{~A} 2)$						

EXAMPLE 7.15 MIRR for an Oil Well (Based on Exhibit 7.4)

Find the MIRR for the oil well cash flows shown in Exhibit 7.4. Use an external financing rate of 8% and an external investment rate of 14%.

SOLUTION

The simplest spreadsheet would be as follows:

	A	B	C	D	E	F	G	H	I
1	8\% External financing rate 14\% External investment rate								
2									
3	0	1	2	3	4	5	6	7	8
4	-4	3	2.25	1.5	. 75	0	-. 75	-1.5	-2.25
5	12.30\%		cell A 5 contains $=\operatorname{MIRR}(\mathrm{A} 4: \mathrm{I} 4, \mathrm{~A} 1, \mathrm{~A} 2)$						

The MIRR is representative of the class of composite rates of return. These approaches use one or two external rates to find equivalent values for enough cash flows to ensure a single sign change in the modified cash flow diagram [Newnan, Lavelle, and Eschenbach, pp. 252-254; Lang and Merino, pp. 182-185].

7.9 Summary

The chapter has discussed defining, calculating, and using the internal rate of return (IRR). It has focused on problems with the same assumptions as the chapters on present worth (PW) and equivalent annual worth/cost. Those assumptions are known cash flows and a
known time horizon. The interest rate for the time value of money is also assumed to be known, but it is applied through comparison with the calculated IRR. This IRR is the interest rate at which PW or $\mathrm{EAW}=0$.

Most problems correspond to evaluating loans or investments. In these cases, there is only one sign change in the cash flow diagram. This is a sufficient, but not a necessary, condition for the IRR to be defined. A low IRR is good for a loan, while a high IRR is good for an investment.

Calculating the IRR is done by calculating the value of the cash flow equation for different interest rates. Once negative and positive values have been found, it is possible to interpolate for the IRR. These calculations are automated through the financial functions of a spreadsheet. Some packages include investment functions that can solve for IRR given P, A, F, and N. All packages have the equivalent of IRR function that can be used with a block of cells that contain the cash flows.

If a cash flow diagram has multiple sign changes, then the project balances over time $\left(\mathrm{PB}_{t}\right)$ can be calculated. If the PB_{t} are less than or equal to zero for all t, then the project is an investment. If the values are always nonnegative, then a loan is being evaluated. This is a sufficient, but not a necessary, condition for the IRR to be meaningful.

If the project is a mixed investment and loan, then the MIRR can be used to provide a meaningful rate of return.

REFERENCES

Bussey, Lynn E., and Ted G. Eschenbach, The Economic Analysis of Industrial Projects, 2nd ed., Prentice-Hall, 1992.
Eschenbach, Ted G., "Multiple Roots and the Subscription/Membership Problem," The Engineering Economist, Volume 29, Number 3, Spring 1984, pp. 216-223.
Eschenbach, Ted G., Elisha Baker, and John Whittaker, "Characterizing the Real Roots for P, A, and F with Applications to Environmental Remediation and Home Buying Problems," The Engineering Economist, Volume 52, Number 1, 2007, pp. 41-65.
Lang, Hans J., and Donald N. Merino, The Selection Process for Capital Projects, Wiley, 1993.
Lohmann, Jack R., "The IRR, NPV, and the Fallacy of the Reinvestment Rate Assumptions," The Engineering Economist, Volume 33, Number 4, Summer 1988, pp. 303-330.
Newnan, Donald G., Jerome P. Lavelle, and Ted G. Eschenbach, Engineering Economic Analysis, 10th ed., Oxford University Press, 2009.
Thuesen, Gerald J., and Wolter J. Fabrycky, Engineering Economy, 9th ed., Prentice-Hall, 2001.

Problems

7.1 Burke Brake Shoes may buy a new milling machine. The industrial engineer has asked for your recommendation on the best alternative. What is the IRR? If Burke requires a return of 8%, what do you recommend?

First cost	$\$ 15,500$
Operating cost per year	$\$ 7300$
Savings per year	$\$ 11,600$
Useful life	5 years

(Answer: 12\%)
7.2 One share of Festival Cruise Line stock initially sells for $\$ 25$. Each year, the company pays dividends of $\$.75$. After holding the stock for 3 years, the investor sells it for $\$ 30$. What is the IRR for this investment?
7.3 Given the cost and benefits shown below, determine the IRR.

Year	0	1	2	3	4	5
CF $_{t}$	$-\$ 3000$	400	600	800	1000	1200

(Answer: 8.77%)
7.4 A lot on the outskirts of town costs $\$ 35,000$. The annual property taxes are calculated at 3.5% of the assessed value of $\$ 28,000$. Assume that the lot will not be reassessed for the next 4 years (property taxes remain constant) and that the value increases by 20% before it is sold at the end of 4 years. What is the IRR?
7.5 What is the rate of return for the following project? It costs $\$ 300,000$ to start and returns $\$ 45,000$ the first year, with a $\$ 5000$ increase each year thereafter. The project lasts 10 years. (Answer: 15.8%)
7.6 The Jafar Jewel Mining Company has just issued a 0% coupon bond priced at $\$ 423$. If the bond is bought today and in 2 years is sold for $\$ 502.50$, determine the rate of return.
7.7 A bond has semiannual interest payments at a nominal annual rate of 12%. It has a life of 10 years and a face value of $\$ 5000$. If it is currently selling for $\$ 4270$, what is the effective interest rate?
(Answer: 15.4%)
7.8 A 6.5% coupon bond of the E Z Money Corporation now sells for $\$ 876$. The bond's par or face value is $\$ 1000$, and it is due in 9 years. Determine the yield to maturity (IRR) of this bond. (Assume that interest is paid annually.)
7.9 A 10-year 8\% bond issued by Holiday Shipping sells for $\$ 679.40$ on January 1, 2011. The bond matures on December 31, 2017. Assume that the bond is held until its maturity, and determine the IRR. The bond's face value is $\$ 1000$, and interest is paid semiannually. (Answer: 16.3\%)
7.10 A 9% coupon bond of the ABC Company with a face value of $\$ 1000$ is selling for $\$ 1057.53$. If interest is paid annually and the bond matures in 8 years, determine the yield to maturity (IRR).
7.11 Acme Bond Trading receives a 10% commission on all bond transactions. If an 8% coupon bond selling for $\$ 933$ matures in 8 years and is bought from

Acme, what is the rate of return? The bond's face value is $\$ 1000$, and it pays interest annually.
7.12 NewTech has a new product that has incurred R\&D expenses of $\$ 375,000$. An additional $\$ 500,000$ is needed if the product is to proceed. Initial sales will be $\$ 50,000$ per month, and they will increase by $\$ 5000$ per month. The market is moving fast, and the product will be closed out in 2 years. What is the new product's IRR for deciding whether to proceed?
7.13 Disneyworld's 4-day pass costs $\$ 140$, and a 1-day pass is $\$ 50$. A family visits Disneyworld every 3 years for 2 days each time. If the family buys the 4 -day pass and uses 2 days on this visit and 2 days on the next visit, what IRR is earned? (Answer: 35.7\%)
7.14 Muddy Fields Earthmoving can buy a bulldozer for $\$ 30,000$. If lease payments are $\$ 1000$ per month for 36 months, what is the IRR for the lease? Lease payments occur at the beginning of each month. If the bulldozer is purchased, then it would have a salvage value of $\$ 5000$ after 3 years. The operating costs can be ignored, because they are the same for both leasing and buying.
7.15 My auto insurance can be paid in installments. If paid annually, it costs $\$ 450$. If paid in installments, 40% is paid at month 0 , and 15% at the ends of months $2,4,6$, and 8 . A delayed payment plan fee of $\$ 10$ is added to all 5 installment payments. If the installment plan is chosen, what is the effective annual interest rate being paid on the "loan"? (Answer: 53.7\%)
7.16 Fred is a sales engineer who conducts much of his business at an exclusive country club. If his dues are paid annually, they are $\$ 3600$. If paid quarterly, the payments are $\$ 1000$ each. If Fred's company pays the dues annually, what effective annual interest rate is it earning?
7.17 Whistling Widgets can pay the fire insurance premiums on its factory either quarterly or annually. If paid annually, the premium is $\$ 3600$. If paid quarterly, there is a $\$ 50$ fee added to each $\$ 900$ payment. If Whistling Widgets pays annually, what effective annual interest rate is it earning?
7.18 I purchased stock in Metal Stampings at $\$ 50$ per share 2 years ago. The stock is now selling for $\$ 70$ per share. Metal Stampings has paid annual dividends of $\$ 3$ per year for the last 10 years and seems likely to continue doing so. I just received this year's dividend payment. If I expect the stock to be
worth $\$ 90$ per share in 3 years, what is the IRR for keeping the stock? Should I keep or sell the stock if my interest rate is 15% ?
7.19 The Engineering Economist is a quarterly journal that once cost $\$ 20$ for 1 year, $\$ 38$ for 2 years, or $\$ 56$ for 3 years.
(a) What is the IRR for subscribing for 2 years rather than for 1 year at a time?
(b) What is the IRR for subscribing for 3 years rather than for 1 year at a time?
7.20 A 10-year, $\$ 10,000$ bond was issued at a nominal interest rate of 8% compounded semiannually. Last year, I bought it for $\$ 8580$, just after the previous owner had received the fourth interest payment. I just received my second interest payment. If I sell it now, the price would be set to yield a nominal 10% rate of return. I believe that interest rates will drop and that I can sell it in a year for $\$ 10,000$. What is my expected IRR for the year?
7.21 You want to borrow $\$ 300,000$ to start a business. The loan's initial balance is increased by 2% of the loan's face value (for loan origination fees, mortgage insurance, credit checks, title searches, etc.). Your annual payments are calculated using an initial balance of $\$ 306,000$, an interest rate of 9%, and a 20 -year term. The bank requires you to refinance the loan in 5 years by paying it off with a balloon payment. What interest rate are you paying?
7.22 A car dealer offers a $\$ 1500$ rebate if you pay cash (or borrow the money elsewhere) for a $\$ 9500$ car you are considering. Or, the dealer offers financing with $.75 \%$ per month interest with monthly payments for 3 years. The dealer also requires a 10% down payment. What is the effective annual rate for the dealer's car loan?
7.23 A bank is offering a foreclosed condominium for $\$ 35,000$. Its advertising on this property features a 7% mortgage (assume annual payments) with a 20-year term and no down payment. The bank charges 2 points (2%) for loan origination and closing costs. These fees are added to the initial balance of the loan. Nearly identical condominiums are selling for $\$ 33,000$. What is the annual payment and what is the true rate for the loan?
7.24 A $\$ 2500$ computer system can be leased for $\$ 79$ per month for 3 years. After 3 years, it can be purchased for $\$ 750$. This is also the salvage value if the system was purchased originally. What is the effective annual rate for leasing the computer?
7.25 Power Designs' professional liability insurance can be paid annually or semiannually. If paid annually, it costs $\$ 12,000$. If paid semiannually, $\$ 750$ is added to each payment. If the installment plan is chosen, what is the effective annual rate being paid on the "loan"? (Answer: 65.3\%)
7.26 MacroStructures' professional liability insurance can be paid in installments. If paid annually, it costs $\$ 20,000$. If paid quarterly, $\$ 1000$ is added to the three delayed payments. If the quarterly plan is chosen, what is the effective annual interest rate being paid on the "loan"?
7.27 Delta Engineering can buy a computer for $\$ 2200$ and sell it at the end of the year for $\$ 500$ or lease it for $\$ 500 /$ quarter. What effective annual interest rate are they paying if they lease the computer?
7.28 Delta Engineering pays $\$ 2500$ quarterly for errors and omissions insurance. If paid annually, the rate is $\$ 9000$. What effective annual interest rate is Delta paying?
7.29 You wish to buy a fancy mountain bike. You can either pay $\$ 800$ cash now or make end-of-month payments of $\$ 100,95,90,85, \ldots, 45$ over the next 12 months. What is the effective annual rate for the second payment plan?
7.30 A car dealer is offering a choice between a $\$ 1500$ rebate and 0% financing over 24 months. The price of the car is $\$ 11,000$. A minimum down payment of 20% is required. What is the effective interest rate? (Answer: 20.3\%)
7.31 A car dealer is offering a $\$ 1500$ rebate or financing at 2% APR over 36 months. The price of the car is $\$ 17,000$. A minimum down payment of 20% is required. What is the effective interest rate for the loan?
7.32 Briefly discuss the relationship between PW and the calculation of rate of return.
7.33 Identify the two roots for the PW equation of the following cash flows: Is either root a meaningful IRR? - \$50, \$123, and - \$75.
7.34 A coal deposit can be mined more rapidly if a third \square dragline and conveyor system is added. The initial cost would be $\$ 1.5 \mathrm{M}$. Annual revenues for each of the next 12 years would increase from $\$ 800 \mathrm{~K}$ to $\$ 1200 \mathrm{~K}$, and then for the next 6 years, revenues would drop from $\$ 800 \mathrm{~K}$ to $\$ 0$. Thus, the mining is 50% faster, and the deposit is depleted 6 years earlier. The system will have no salvage value. What
roots are there for the PW equation? Is there a meaningful IRR? Is the third dragline economically attractive if i is 20% ? Graph the PW for interest rates of 0% to 100% ?
(Answer: Roots are 7.23% and 19.20%)

7.35 Construct the PB_{t} graph for Problem 7.34.

7.36 A project's first stage will cost $\$ 250 \mathrm{~K}$, and its second stage at the end of 6 years will cost $\$ 200 \mathrm{~K}$. Net annual revenue will begin at $\$ 50 \mathrm{~K}$ and increase by $\$ 2 \mathrm{~K}$ per year. The time horizon is 10 years. Is there a meaningful IRR? Is the project attractive? Construct the PB_{t} graph.
7.37 Calculate the MIRR for Problem 7.34 if the external financing rate is 8% and the external investing rate is 15%.
7.38 Build a spreadsheet to calculate the MIRR for any problem in which the cash flow series and the external rates are entered.

Minicases

7.39 Some lenders charge an up-front fee on a loan, which the borrower pays or it can be subtracted from what the borrower receives. This is typically described as x points (where one point equals 1% of the loan amount). The federal government requires that this be included in the APR that discloses the loan's cost.
(a) A 5-year auto loan for $\$ 18,000$ has monthly payments at a 9% nominal annual rate. If the borrower must pay a loan origination fee of 2%, what is the true effective cost of the loan? What would the APR be?
(b) If the car is sold after 2 years and the loan is paid off, what is the effective interest rate and the APR?
(c) Graph the effective interest rate as the time to sell the car and pay off the loan varies from 1 to 5 years.
7.40 Some lenders charge an up-front fee on a loan, which the borrower pays, or the fee can be subtracted from what the borrower receives. This is typically described as x points (where one point equals 1% of the loan amount). The federal government requires that this be included in the APR that discloses the loan's cost.
(a) A 30-year mortgage for $\$ 220,000$ has monthly payments at a 6% nominal annual rate. If the
borrower must pay a loan origination fee of 3%, what is the true effective cost of the loan? What would the APR be?
(b) If the house is sold after 6 years and the loan is paid off, what is the effective interest rate and the APR?
(c) Graph the effective interest rate as the time to sell the house and pay off the loan varies from 1 to 15 years.
7.41 Gather information on a loan for which the true cost (measured as an interest rate) does not match the stated interest rate of the loan. Common reasons include origination fees, a difference between the cash price and the loan price, and interest costs that are paid by the government rather than the borrower.
(a) Draw a cash flow diagram for this loan and calculate the interest rate.
(b) Prepare a one-page presentation to describe this to the class.
7.42 Gather information on one- and two- semester parking passes at your institution for the different classes of parking. For each class of parking, what effective annual interest rate are you earning by buying a twosemester parking pass? What else must be considered to choose a parking pass? Prepare a one-page presentation to describe this to the class.

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 12 Buying a Dream:

Compare 3 alternative mortgages for a first-time home buyer.

Case 13 Guaranteed Return:

Risk vs. expected return \& choice of interest rate.

Case 14 Northern Gushers:

Incremental oil production investment with possible double-root.

Case 15 Pave the Stockpile Area:

Sensitivity analysis for IRR.

Case 17 A Free Lunch?

Is proposal too good-to-be true from two perspectives? Realistic (unordered) statement of facts.

CHAPTER

Benefit/Cost Ratios and Other Measures

- THE SITUATION AND THE SOLUTION

There are many different economic measures that decision makers can and do use to evaluate projects.

The solution is to understand the strengths, weaknesses, and underlying rationale of each economic measure and to know which ones are more reliable because they are theoretically better.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 8.1 Recognize the variety of economic measures that are used to evaluate private- and public-sector projects.
SECTION 8.2 Define and use the benefit/cost ratio for public-sector projects.
SECTION 8.3 Define and use a present worth index for private-sector projects.
SECTION 8.4 Define and use the future worth measure.
SECTION 8.5 Define and use payback period, and recognize its weaknesses as compared to discounted cash flow measures.
SECTION 8.6 Define and use discounted payback period.
SECTION 8.7 Define and use breakeven volume as an economic measure.

- KEY WORDS AND CONCEPTS

Benefit/cost ratio Benefits minus disbenefits, divided by the costs. (All terms as PW or equivalent annual values.)
Present worth index (1) the PW of periods 1 to N divided by first cost, or (2) the PW of revenues divided by the present value of costs.
Payback period The number of periods for a project's net revenues to equal or pay back its first cost.
Discounted payback period The number of periods until the compounded sum of net revenues equals the compounded value of the first cost.
Benefits Desired outcomes received by the public.
Disbenefits Outcomes that would be avoided if possible.
Costs Paid by the government.
Breakeven volume The number of units per period required for a PW of 0 .

8.1 Measures of Economic Attractiveness

The benefit/cost ratio and present worth index measure the return per dollar of investment. The payback period and discounted payback period measure how fast the initial investment is recovered.

Conceptual Definitions. Earlier chapters have focused on three measures of discounted cash flow (DCF) analysis: present worth, equivalent annual measures, and internal rate of return. This chapter discusses other discounted cash flow measures, such as benefit/cost (B/C) ratios and present worth indices. This chapter also discusses the weaknesses of measures, such as payback period, that ignore money's time value.

This chapter focuses on defining the measures; other chapters focus on their application. In particular, Chapter 11 discusses constrained project selection, in which these measures are often used for ranking projects by their desirability. Chapter 14 discusses the difficulties in calculating B/C ratios and many other topics in public-sector applications.

These measures will be defined more precisely in this chapter's other sections. For the moment, the focus is the underlying concepts. A common theme of these measures is how much return is there per dollar of investment or how fast the initial investment is recovered.

The return per dollar of investment is called a benefit/cost ratio in the public sector and a present worth index in the private sector. A return of more than $\$ 1$ per $\$ 1$ invested is wanted, so for good projects, the benefit/cost ratio or present worth index exceeds 1. For example, a road improvement project might have a present worth of $\$ 400,000$ for its benefits and a present cost of $\$ 300,000$, for a ratio of $4 / 3$ or 1.33 .

A payback period is the time required for cumulative net revenues (that is, income minus cost) to equal a project's first cost. For example, if automating an assembly line has a first cost of $\$ 200,000$ and saves $\$ 40,000$ per year, then the payback period is 5 yearsignoring money's time value. This is the same as using an interest rate of 0%. Using a realistic interest rate leads to the discounted payback period.

Frequency and Patterns of Use. Exhibit 8.1 summarizes how frequently some of these measures are used. This index of relative usage combines results from the seven studies listed in the references, so the percentages shown in Exhibit 8.1 should not be considered exact values. The index is the average percentage for those studies that asked about a particular measure. These studies focus on constrained project selection within a capital budget, which is detailed in Chapter 11. More recent research has not detailed the split between measures, but it does confirm the continuing shift to discounted cash flow measures, for example, one source states that " 90.9% use discounted cash flow as the primary method of evaluation, with a slight preference for the internal rate of return over the net present value method." [Block]

EXHIBIT 8.1 Frequency of use of economic measures

A more detailed analysis of the studies shows that firms with less than 1000 employees are much more likely to use payback period. Public-sector organizations are more likely to use benefit/cost ratios. Most firms use multiple measures.

There are also trends that can be expected to continue. For example, during the last 30 years, the use of PW and IRR has been steadily increasing, while the use of payback period has been declining. Spreadsheets make it easier to analyze complex cash flows correctly-rather than using simplistic and incorrect payback measures. Also, engineering economy and finance courses focus on correct economic measures.

8.2 Benefit/Cost Ratio

Benefits are desired outcomes received by the public, and disbenefits are outcomes that would be avoided if possible. Costs are paid by the government, and the benefit/ cost ratio is benefits minus disbenefits, divided by the costs.
$B-C=P W$ or EAW
$B / C \geq 1$ if and only if $B-C \geq 0$, for $C \geq 0$.

The first step in calculating a benefit/cost ratio, which is benefits minus disbenefits, divided by the costs, is to define these benefits and costs for government projects. For public projects such as dams and roads, the benefits are the consequences to the public. Positive outcomes include recreation, electricity, shorter trips, and fewer accidents. Negative outcomes, or disbenefits, include lost white-water kayaking in the dammed river, traffic delays during construction, and neighborhoods divided by new highways. The costs are paid by the government for construction and for operation.

Not all government projects involve the public. For example, the post office might be evaluating a new mail sorting machine. The cost to buy and install the new machine would be compared with the savings in operating costs. In this case, the savings would be the benefits for any benefit/cost ratio.

The difference between the benefits and the costs $(\mathrm{B}-\mathrm{C})$ is the PW calculated in Chapter 5 or the EAW calculated in Chapter 6. However, governments want a measure of investment efficiency. It is intuitively appealing to find the amount of benefit that a project produces per dollar of cost. This is the benefit/cost ratio.

The ratio can be calculated using PW (see Example 8.2) for both the numerator (benefits) and the denominator (costs) or by using equivalent annual measures for both the numerator and the denominator (see Example 8.1). As shown in Examples 8.1 and 8.2, the numerator includes public consequences, and the denominator includes government costs. A desirable project has a ratio greater than or equal to 1 . If the ratio is less than 1 , then the project is unattractive, because the costs are greater than the benefits.

The benefit/cost ratio is calculated at a known interest rate, and when applied properly, it will lead to the same recommendation as PW, EAW, or IRR measures. The benefit/cost ratio is a discounted cash flow measure, and its popularity is based on the intuitive sense of return per dollar of cost. Intuitively, the higher the return per dollar of cost, the better the project. However, as will be shown in Chapters 9 and 11, "when applied properly" is not always easy. Chapter 14 describes the application of engineering economy to public projects in more detail.
university economist has estimated the disbenefits of truck traffic, noise, and odor to be $\$ 120,000$ per year. The new landfill will cost $\$ 2.4$ million, and it will last 40 years. Shady Acres uses an interest rate of 6%. Calculate the benefit/cost ratio using equivalent annual measures.

SOLUTION

In the cash flow diagram, both the disbenefits and the construction cost are negative cash flows. However, for calculation of the benefit/cost ratio, they are assigned to the numerator and the denominator respectively.

The construction cost's EAC, or the ratio's denominator, is:

$$
C=2.4 \mathrm{M}(A / P, 6 \%, 40)=2400 \mathrm{~K} \times .0665=\$ 159.6 \mathrm{~K}
$$

The benefits equal annual savings to citizens minus the disbenefits.

$$
\mathrm{B}=250 \mathrm{~K}-120 \mathrm{~K}=\$ 130 \mathrm{~K}
$$

The benefit/cost ratio equals $130 \mathrm{~K} / 159.6 \mathrm{~K}$, or .815 . Since this is less than 1 , the landfill is not attractive.

EXAMPLE 8.2 Shady Acres Swimming Pool

A new municipal pool would cost $\$ 1.2 \mathrm{M}$ to build and $\$ 200 \mathrm{~K}$ per year to operate. The pool would have no salvage value after 25 years. The benefit of having the pool is about $\$ 450 \mathrm{~K}$ per year. Using PW, calculate the benefit/cost ratio with $i=6 \%$.

SOLUTION

The present value of the costs is:

$$
\begin{aligned}
C & =1.2 \mathrm{M}+200 \mathrm{~K}(P / A, 6 \%, 25) \\
& =1200 \mathrm{~K}+200 \mathrm{~K} \times 12.783=\$ 3757 \mathrm{~K}
\end{aligned}
$$

8.3 Present Worth Indexes

The dollar of return per dollar of cost is the benefit/cost ratio in the public sector. In the private sector, similar measures are called present worth indexes or, sometimes, benefit/cost ratios. There are numerous variations of these indexes, but each is a ratio of income over outgo, or ongoing net revenue over initial expenses.

For example, suppose a machine costing $\$ 500$ would save $\$ 200$ per year for 4 years. The return is the PW of four $\$ 200$ annual receipts. If i is $10 \%,(P / A, .1,4)$ is 3.170 , and the return's $P W$ is $\$ 634$. The PW index is $634 / 500$, or 1.27 . There is $\$ 1.27$ in benefits or returns for each $\$ 1$ of cost-over and above a 10% return on the investment.

The common assumption of PW indexes is that investment projects are being evaluated. This implies that at least the time 0 cash flow is negative and that the summation of net receipts exceeds the first cost. However, the division of costs and/or revenues between the numerator and the denominator is somewhat arbitrary. Two slightly different indexes are defined in Equations 8.1 and 8.2, and Example 8.5 illustrates another.

One present worth
index is the PW of net revenues (in periods 1 through N) divided by a project's first cost. Another present worth index is the PW for revenues divided by the present value of the costs.

Mathematical Definition of PW Indexes. The simplest PW index $\left(\mathrm{PWI}_{1}\right)$ divides the PW of all future cash flows by the cost at time 0 . This cost at time 0 includes the cost to purchase, ship, and install, minus any rebates or other immediate savings. In Equation 8.1, the time 0 cash flow is shown as an absolute value-which converts it to a cost. This index works best if a project's start-up costs occur only in period 0 .

$$
\begin{equation*}
\mathrm{PWI}_{1}=\sum_{t \geq 1} \mathrm{PW}\left(\mathrm{CF}_{t}\right) /\left|\mathrm{CF}_{0}\right| \tag{8.1}
\end{equation*}
$$

Since some projects have a construction or start-up phase that goes beyond period 0 , some firms use a different PW index that includes cash flows through the last period of construction, T, in the denominator. Some firms use yet another PW index $\left(\mathrm{PWI}_{2}\right)$. This index, defined in Equation 8.2, places all positive cash flows in the numerator and all costs in the denominator.

$$
\begin{equation*}
\mathrm{PWI}_{2}=\sum_{\mathrm{CF}_{\mathrm{i}}>0} \mathrm{PW}\left(\mathrm{CF}_{t}\right) /\left|\sum_{\mathrm{CF}_{t}<0} \mathrm{PW}\left(\mathrm{CF}_{t}\right)\right| \tag{8.2}
\end{equation*}
$$

Each of these indexes is defined so that a value of more than 1 corresponds to a project that is economically attractive. Some firms create other variations on these indexes.

For example, if each is multiplied by 100 , then they correspond to what percentage of the "costs" are recovered by the "revenues."

Because Example 8.3 is a simple problem, the two indexes defined by Equations 8.1 and 8.2 have the same value. Even though the indexes in Example 8.4 have different values, a project is attractive under both or neither criteria.

These PW indexes are often used to select projects in the presence of budget constraints. The indexes themselves are theoretically correct, but sometimes their application is flawed. Example 8.5 illustrates one common kind of error.

EXAMPLE 8.3 PW Indexes for a Simple Project

Heavy Metal Stamping is evaluating a project with a first cost of $\$ 150,000$, no salvage value, annual savings of $\$ 30,000$, and a life of 10 years. Using an interest rate of 10%, calculate the two PW indexes.

SOLUTION

Since the only negative cash flow is at time 0 , both indexes can be found as follows:

$$
\mathrm{PWI}=30 \mathrm{~K}(P / A, .1,10) / 150 \mathrm{~K}=30 \mathrm{~K} \times 6.145 / 150 \mathrm{~K}=1.23
$$

EXAMPLE 8.4 Present Worth Indexes for a Complex Project

Heavy Metal Stamping is evaluating a project with a first cost of $\$ 500,000$, which is split evenly between period 0 and period 1. Annual revenues of $\$ 120,000$ and $O \& M$ costs of $\$ 30,000$ begin at the end of year 2 and continue for 10 years. There is no salvage value at the end of 11 years. Using an interest rate of 10%, calculate both PW indexes.

SOLUTION

Since the first costs are spread over two periods, only $\$ 250 \mathrm{~K}$ occurs at time 0 , and that is the denominator for PWI_{1}. As examined in Problem 8.11, another PW index places all construction costs in the denominator. However, this index supports the same decision as the two indexes examined here.

$$
\begin{aligned}
\mathrm{PWI}_{1} & =\sum_{t \geq 1} \mathrm{PW}\left(\mathrm{CF}_{t}\right) /\left|\mathrm{CF}_{0}\right| \\
& =[-250 \mathrm{~K}+90 \mathrm{~K} \times(P / A, .1,10)](P / F, .1,1) / 250 \mathrm{~K} \\
& =[-250 \mathrm{~K}+90 \mathrm{~K} \times 6.145] \times .9091 / 250 \mathrm{~K}=1.102
\end{aligned}
$$

PWI_{2} places all positive cash flows in the numerator and the absolute value of all negative cash flows in the denominator.

$$
\begin{aligned}
\mathrm{PWI}_{2} & =\sum_{\mathrm{CF}_{t}>0} \mathrm{CF}_{t} /\left|\sum_{\mathrm{CF}_{t}<0} \mathrm{CF}_{t}\right| \\
& =\frac{120 \mathrm{~K}(P / A, .1,10)(P / F, .1,1)}{250 \mathrm{~K}+[250 \mathrm{~K}+30 \mathrm{~K}(P / A, .1,10)](P / F, .1,1)} \\
& =\frac{120 \mathrm{~K} \times 6.145 \times .9091}{250 \mathrm{~K}+[250 \mathrm{~K}+30 \mathrm{~K} \times 6.145] \times .9091} \\
& =1.040
\end{aligned}
$$

Note that for both indexes, the numerator minus the denominator equals the net PW of $\$ 25.5 \mathrm{~K}$.

A certain firm specifies that a variation on PWI_{2} be used. The change is that the index is multiplied by 100 , so that the income's PW is stated as a percentage of the cost's PW. The firm uses an interest rate of 10%. Attempting to select the best projects, the firm specifies that attractive projects must have an index value that exceeds 150 .

The first cost is $\$ 250 \mathrm{~K}$, annual O\&M costs are $\$ 50 \mathrm{~K}$, annual revenues are $\$ 120 \mathrm{~K}$, salvage yalue is 0 , and the time horizon is 15 years. Calculate the firm's Brand X index. Does it meet the 150 standard? What is this project's PW? What is its IRR?

SOLUTION

At 10%, the PW of the costs is:

$$
\mathrm{PW}_{\text {costs }}=-250 \mathrm{~K}-50 \mathrm{~K}(P / A, .1,15)=-\$ 630.3 \mathrm{~K}
$$

The PW of the revenues is

$$
P W_{\text {rev }}=120 \mathrm{~K}(P / A, .1,15)=\$ 912.7 \mathrm{~K}
$$

Using the firm's PW index, the project does not meet the " 150 " standard.

$$
\text { PWIx }=100 \times 912.7 \mathrm{~K} /|-630.3 \mathrm{~K}|=144.8
$$

However, the project has a PW of $\$ 282,400$ at $i=10 \%$ and an IRR of 27.2%. If the firm's interest rate of 10% is correct, then this appears to be an outstanding project.

Maximizing future worth is clearly similar to maximizing present worth or equivalent annual worth, as long as the same interest rate is used. In fact, multiplying a PW by ($F / P, i, N$) or an EAW by $(F / A, i, N)$ is the only mathematical step required.

Intuitively, maximizing future worth is closely linked to the theory of finance and to the rights and desires of the firm's owners. Emphasizing the "final" outcome de-emphasizes the exact pattern by which wealth is accumulated. It is also linked to the point in time when a firm, having created wealth, distributes that wealth to its owners-be they partners or stockholders. Future worth is also the natural measure for evaluating accumulated retirement savings for individual engineers.

The problem with future worth is that engineers and managers do not have an implicit scale for judging the results. A $\$ 10 \mathrm{~K}$ PW equates to a new car or a robot of a certain size and quality. A $\$ 50 \mathrm{~K}$ EAW equates to an annual salary for an engineer with a certain level of experience. But how can a future worth of $\$ 200,000$ in year 15 at $i=12 \%$ be judged?

Future worth is logically consistent with—and very similar to-PW and EAW, but psychologically, it is different. Future worth can be accused of compounding small amounts of money until the result appears to be large in absolute terms, but the result would still be small in relative terms. The larger the i or N, the more pronounced the "exaggeration" effect of future worth.

To quote Lazarus Long from one of Robert Heinlein's novels, Time Enough for Love: " $\$ 100$ placed at 7 percent interest compounded quarterly for 200 years will increase to more than $\$ 100,000,000$-by which time it will be worth nothing." The exact amount is $\$ 106,545,305$. Example 8.6 illustrates this difficulty.

EXAMPLE 8.6 Future Worth of a Cost Savings

A chemical engineer is proposing a process change that will save $\$ 2500$ per year at essentially no cost. The refinery has a remaining life of 20 years. If the firm's interest rate is 15%, what is this savings worth in the long run?

SOLUTION

The future worth (FW) at the end of year 20 of $\$ 2500$ per year is easy to calculate.

$$
\mathrm{FW}=2500(F / A, .15,20)=2500 \times 102.44=\$ 256,100
$$

Saving $\$ 2500$ per year is worthwhile, but viewing it as saving over $\$ 250 \mathrm{~K}$ seems to exaggerate its importance. Its PW of $\$ 15,648$ is much more meaningful.

8.5 Payback Period

The payback period equals the time required for net revenues from a project to "pay back" its initial cost. Because it is simpler than discounted cash flow techniques, it was

The payback period equals the number of periods for a project's net revenues to equal or pay back its first cost.
once the most common technique for evaluating projects. However, as was shown in Exhibit 8.1, this is no longer true.

If a project's net revenues are the same each period, then the payback period is easy to calculate. For example, a machine costs $\$ 8 \mathrm{~K}$ to buy, and it saves $\$ 800$ per month in costs. In this case, the payback period is $\$ 8 \mathrm{~K} / \$ 800$ per month, or 10 months. In Example 8.7 the payback period is calculated for a more complex project.

Rosenberg Engineering has offices in northern California, where a heat pump can be used for cooling in the summer and heating in the winter. Replacing the current system will cost $\$ 1500$ in May and $\$ 500$ in June. Starting in July, it will save $\$ 200$ per month for the summer months (June-August), $\$ 100$ for the fall and spring months, and $\$ 150$ for the winter months (November-March). What is the payback period for the heat pump?

SOLUTION

The month-by-month cumulative sum of the cash flows is shown in Exhibit 8.2. The system costs $\$ 1500$ in May and an additional \$500 in June, for a June-end total of \$2000. During July and August, $\$ 200$ is saved each month, for month-end totals of $\$ 1800$ and $\$ 1600$, respectively. Each month, the savings are subtracted from the cumulative total until payback is achieved.

Payback for a heat pump

	Year 1		Year 2	
Month	Cash Flow	Cumulative Total	Cash Flow	Cumulative Total
May	$-\$ 1500$	$-\$ 1500$	$\$ 100$	$-\$ 450$
June	-500	-2000	200	-250
July	200	-1800	200	-50
August	200	-1600		+150
September	100	-1500		
October	100	-1400		
November	150	-1250		
December	150	-1100		
January	150	-950		
February	150	-800		
March	150	-650		
April	100	-550		

The payback period is $15 \frac{1}{4}$ months, from the project's beginning at the start of May until the $\$ 2000$ has been recovered during August of the next year.

Difficulties with Payback Period. The main problems with payback period are:

1. Payback ignores the time value of money.
2. Payback ignores receipts and costs that occur between payback and the project's time horizon. Some writers have described this as ignoring a project's life.
Payback is not a discounted cash flow technique. The summation that occurred in Example 8.7 ignored the fact that the $\$ 2000$ in costs occurs first and has a higher PW than the savings. In other words, Example 8.7 assumed that $i=0 \%$, which is not true.

Example 8.8 illustrates the difficulties caused when payback ignores cash flows that occur after the payback period. One project may have a short payback period, but its positive cash flows may end shortly thereafter. Other projects may have somewhat longer payback periods that are followed by years or decades of positive cash flows.

Ignoring cash flows that occur after payback can cause an evaluation to ignore overhaul costs and environmental reclamation expenses. In addition, working capital is difficult to account for. Similarly, evaluation of projects with staged development is unreliable using payback period.

Project A in Example 8.8 illustrates that payback periods are often stated with a decimal or fractional year. Even though problems are drawn and analyzed assuming end-ofperiod cash flows, in most cases costs and revenues occur throughout the year, so 3.33 years makes sense as a payback period.

EXAMPLE 8.8 Comparing the Payback Periods of Three Projects

Calculate and compare the payback periods of the projects shown in Exhibit 8.3. For comparison purposes, calculate PWs at 10%, and calculate IRRs.

EXHIBIT 8.3 Projects for payback evaluation

	Project		
	A	B	C
First cost	$\$ 10,000$	$\$ 10,000$	$\$ 10,000$
Annual savings	$\$ 3000$	$\$ 2000$	$\$ 2000$
Life (years)	4	10	5
Salvage value	$\$ 0$	$\$ 0$	$\$ 5000$

SOLUTION

The payback periods are very easy to calculate, since the only requirement is to divide the first cost by the annual savings. Notice that since salvage values generally occur after payback, those salvage values are ignored by the payback period calculations.

EXHIBIT 8.4 Comparing payback, PW, and IRR

	Project		
Measure	A	B	C
Payback period	3.33 years	5 years	5 years
PW at 10%	$-\$ 490$	$\$ 2289$	$\$ 686$
IRR	7.7%	15.1%	12.2%

The PWs are easy to calculate using the equations from Chapter 5, as are the IRRs using the material from Chapter 7. The results are summarized in Exhibit 8.4.

The payback period is obviously wrong in suggesting that project A is the most attractive. While its payback is short, its benefits continue for only two-thirds of a year after payback. It does not even earn a 10% return.

When Can Payback Be Used? Payback should be limited to cases in which the time horizon is measured in months, not in years. If payback occurs within 4 to 6 months and benefits continue for 2 or more years, then the project is generally well worth doing. This occurs most often in capital-short firms, such as start-up businesses, that cannot tie up funds in long-term investments.

Sometimes, however, payback is used when other measures are far better. One possible reason is quite negative and short-sighted. Suppose the payback period measures the immediate returns from an investment project that the decision maker is supporting or approving. Those returns will be received before the decision maker moves to another job, so the decision maker will get some credit for them.

While engineering economists recommend against using the payback period, most projects that appear attractive on one criteria will also be attractive on others. Most investments with short payback periods also have high PWs and high IRRs. Example 8.9 describes the largest decision I know of that relied on payback period as the main economic measure.

EXAMPLE 8.9 Nihon Kokan Steel

During the late 1970s and very early 1980s, an island in Tokyo Harbor was greatly expanded to serve as the location for a new steel mill. Nihon Kokan described its then 13-year-old mill (the top-productivity mill in the world) as aging.

The cost of the island facility, which was financed by the firm, was over $\$ 5$ billion. The firm's investment evaluation standard was a payback of 7 years. In this case, the mill was built even though the estimated payback was 10 years. As described by the mill's management, "We are sure we will find ways to make it pay back sooner."

8.6 Discounted Payback

The discounted payback period is the number of periods until the compounded sum of net revenues equals the compounded value of the first cost.

As discussed above, the payback period does not account for money's time value. However, the discounted payback period does. To use the language of Chapter 7, the interest rate is used to compute the project balances, or the PB_{t}, over time. When the project balance first equals zero, the discounted payback equals the number of periods.

Notice that when Example 8.10 applies this measure to the data from Example 8.7, the payback period is extended from 15 months to a discounted payback period of 16 to 17 months.

Why to Use or Not Use. The discounted payback period is an improvement over the simple payback period, since the time value of money is considered. However, cash flows that occur after payback are still ignored, which is still wrong.

One of the reasons that payback period is a relatively popular measure is shown in Exhibit 8.5. Until the discounted payback period is reached, the project is "under water," or in a loss position if it is terminated. The lowest value of the cumulative PW is the predicted maximum exposure of the project.

Simulation of streams of projects has shown that PW and IRR more consistently identify risky projects, but there is no question that risk can be measured in multiple ways. Exhibit 8.5 is a popular way to do so.

Examples of Use. Example 8.11 applies discounted payback to the three projects of Example 8.8. Example 8.11 also applies Equation 8.3, which can be used to calculate discounted payback periods (N_{DPP}) when: (1) the only net negative cash flow is at time 0 and (2) the net revenue A in each period is constant.

$$
\begin{equation*}
\left(P / A, i, N_{\mathrm{DPP}}\right)=\left|\mathrm{CF}_{0}\right| / A \tag{8.3}
\end{equation*}
$$

EXHIBIT 8.5 Measuring risk with the discounted payback period

The heat pump for Rosenberg Engineering will cost $\$ 1500$ in May and $\$ 500$ in June. Starting in July, it will save them $\$ 200$ per month for summer months (June-August), $\$ 100$ for the fall and spring months, and $\$ 150$ for the winter months (November-March). What is the discounted payback period for the heat pump if $i=12.68 \%$ per year, or 1% per month?

SOLUTION

Discounted payback calculation for Examples 8.7 and 8.10

	Year 1		Year 2	
Month	Cash Flow	PB $_{t}$	Cash Flow	PB $_{t}$
May	$-\$ 1500$	$-\$ 1515$	$\$ 100$	$-\$ 634$
June	-500	-2035	200	-440
July	200	-1855	200	-244
August	200	-1674	200	-46
September	100	-1591	100	54
October	100	-1507		
November	150	-1372		
December	150	-1236		
January	150	-1098		
February	150	-959		
March	150	-819		
April	100	-727		

The month-by-month PB_{t} at 1% per month shown in Exhibit 8.5 are found using Equation 7.1 with $i=1 \%$.

$$
\mathrm{PB}_{t}=\mathrm{PB}_{t-1} \times(1+i)+C F_{t}
$$

The end-of-period values for May and June are higher than $\$ 1500$ and $\$ 2000$, because those cash flows were assumed to occur at the beginning of the month. Thus, the cash flows were also multiplied by $(1+i)$.

The discounted payback period is between 16 and 17 months, from the project's beginning at the start of May until September of the second year, when the $\$ 2000$ has been recovered with 1% interest per month.

This example also illustrates one attraction of the discounted (and undiscounted) payback periods. It was not necessary to estimate the life of the heat pump. Instead, an implicit comparison can be made. Is the expected life greater than the defined payback period? Almost certainly it is.

Calculate and compare the discounted payback periods of the projects shown in Exhibit 8.7 at $i=10 \%$. Compare the values with the payback periods, PWs, and IRRs from Example 8.8.

EXHIBIT 8.7 Data for payback period (Example 8.8 repeated)
Project

	A	B	C
First cost	$\$ 10,000$	$\$ 10,000$	$\$ 10,000$
Annual savings	$\$ 3000$	$\$ 2000$	$\$ 2000$
Life (years)	4	10	5
Salvage value	$\$ 0$	$\$ 0$	$\$ 5000$

SOLUTION

The discounted payback periods are calculated by multiplying the PB_{t} by $(1+10 \%)$ and adding on the annual savings (see Exhibit 8.8). Notice that since salvage values generally occur after "payback," those salvage values are ignored by the discounted payback period calculations. Note that the final PB_{t} for project $\mathrm{A},-\$ 718$, is the future worth at $i=10 \%$ in year 4 of project A's PW of $-\$ 490$.

As shown in Exhibit 8.9, the discounted payback period is obviously wrong in suggesting that project C is the most attractive, but it at least eliminates project A , unlike the simple payback period.

Equation 8.3 can be used to check these results for projects A and B, since both conditions are satisfied: (1) each project has a negative cash flow only in time 0 and (2) each project has a

EXHIBIT 8.8 Calculations for discounted payback period

	PB $_{\boldsymbol{t}}$		
Year	Project A	Project B	Project C
0	$-\$ 10,000$	$-\$ 10,000$	$-\$ 10,000$
1	-8000	-9000	-9000
2	-5800	-7900	-7900
3	-3380	-6690	-6690
4	-718	-5359	-5359
5		-3895	1105
6		-2285	
7		-514	
8		1435	

```
constant net revenue (the annual savings) for each period. Project C's discounted payback period cannot be checked using Equation 8.3, since its salvage value is needed to achieve payback. Thus, it violates the second condition.
```

For project A:

$$
\begin{aligned}
\left(P / A, 10 \%, \mathrm{~N}_{\mathrm{DPP}}\right) & =10 \mathrm{~K} / 3 \mathrm{~K}=3.3333 \\
(P / A, 10 \%, 4) & =3.170 \text { and }(P / A, 10 \%, 5)=3.791
\end{aligned}
$$

so the discounted payback is longer than the 4-year life.
For project B:

$$
\begin{aligned}
\left(P / A, 10 \%, \mathrm{~N}_{\mathrm{DPP}}\right) & =10 \mathrm{~K} / 2 \mathrm{~K}=5.000 \\
(P / A, 10 \%, 7) & =4.868 \text { and }(P / A, 10 \%, 8)=5.335 \\
N_{\mathrm{DPP}} & =7+(8-7)(5.000-4.868) /(5.335-4.868)=7.28 \text { years }
\end{aligned}
$$

Comparing discounted payback period with PW and IRR
Project

Measure	A	B	C
Discounted payback period	Does not payback	7.28 years	5 years
Payback period	3.33 years	5 years	5 years
PW at 10%	$-\$ 490$	$\$ 2289$	$\$ 686$
IRR	7.7%	15.1%	12.2%

8.7 Breakeven Volume

The breakeven

volume is the number of units per period required for $P W=0$.

Sometimes, the number of units to be sold or the number of operating hours per period is unknown. Rather than guessing a value, it is possible to calculate the volume required for $\mathrm{PW}=0$. This breakeven volume is the simplest of the sensitivity analysis techniques that are detailed in Chapter 17.

The concept of a breakeven volume can be generalized into a breakeven value for any element of an economic analysis. What is the minimum (or breakeven) product price that leads to a PW $=0$? What is the breakeven value for motorist's time that leads to a benefit/cost ratio of 1 ? What is the minimum number of years for a house to be owned for ownership to break even with leasing?

Exhibit 8.10 illustrates the breakeven number of rainy lecture days required to justify buying a central campus parking permit. Each day it rains, Joe drives his car and must either use the $\$ 2$ per entry lot or buy an annual permit for $\$ 60$. Obviously, if more than 30 rainy days occur, the annual permit is cheaper. The breakeven number of rainy days is 30 .

EXHIBIT 8.10 Breakeven number of rainy days

Find the breakeven volume for the annual demand (D) for a proposed project. The first cost is $\$ 30 \mathrm{~K}$, the salvage value is $0, N$ is 10 years, i is 10%, and the profit per item is $\$ 15$.

SOLUTION

The PW equation is:

$$
\begin{aligned}
\mathrm{PW} & =-30 \mathrm{~K}+15 \times \mathrm{D}(P / A, .1,10)=0 \\
\mathrm{D} & =30 \mathrm{~K} /[15 \times 6.145]=325.47
\end{aligned}
$$

or 326 items per year to break even.

8.8 Summary

This chapter has introduced several measures to evaluate the economic value of projects. Benefit/cost ratios are used for public projects, and when used correctly, they are consistent with PW, EAW, and IRR measures. Similar measures for the private sector are the various PW indexes. The ratios and indexes are used because they are based on an intuitively attractive question: "How much payoff per dollar of cost?" However, because these measures are often applied incorrectly, the results of comparisons between projects can be misleading.

Future worth is mathematically equivalent to PW and EAW. However, judging the true value of a future worth of $\$ 100,000$ in year 20 when $i=12 \%$ is very difficult.

The payback period is a very popular measure, but it is an incorrect approach. It ignores both the time value of money and any cash flows that occur after payback. The discounted payback period includes the time value of money, but it still ignores any cash flows that occur after payback. Neither measure should be used as the primary measure unless the time to payback can be measured in months rather than in years. The intuitive base for these measures is that the sooner a project covers its costs, the better. Discounted payback period does have some value as one measure of a project's risk.

Sometimes, the demand per year or per period is unknown or uncertain. In that case, the breakeven volume can be used to economically evaluate the project. This is the simplest sensitivity analysis technique.

Exhibit 8.11 summarizes some of the major points for each technique.

EXHIBIT 8.11 Summary of economic measures
Present Worth, Equivalent Annual Worth, and Internal Rate of Return Correct discounted cash flow techniques
See Chapters 5-7 and 9-11
Benefit/Cost Ratio
Used for government projects
Intuitive base is "bang for buck"
Easy to use incorrectly
Present Worth Indexes
Used for private sector
Intuitive base is "bang for buck"
Easy to use incorrectly
Future Worth
Mathematically equivalent to PW and EAW
Intuitively misleading
Payback Period
Ignores time value of money
Ignores cash flows after payback
Discounted Payback Period
Ignores cash flows after payback
Most useful as one measure of risk
Breakeven Volume
Useful if number of units per period is uncertain or unknown
Similar breakeven values useful for any uncertain or unknown economic parameter

REFERENCES

Block, Stanley, "Capital Budgeting Techniques Used by Small Business Firms in the 1990s," The Engineering Economist, Volume 42, Number 4, Summer 1997, pp. 289-302.
Block, Stanley, "Divisional Cost of Capital: A Study of Its Use by Major U.S. Firms," The Engineering Economist, Volume 48, Number 4, 2003, pp. 345-362.
Cook, Thomas J., and Ronald J. Rizzuto, "Capital Budgeting Practices for R\&D: A Survey and Analysis of Business Week's R\&D Scoreboard," The Engineering Economist, Volume 34, Number 4, Summer 1989, pp. 291-304.
Farragher, Edward J., "Capital Budgeting Practices of Non-Industrial Firms," The Engineering Economist, Volume 31, Number 4, Summer 1986, pp. 293-302.
Farragher, Edward J., Robert T. Kleiman, and Anandi P. Sahu, "Current Capital Investment Practices," The Engineering Economist, Volume 44, Number 2, 1999, pp. 137-150.

Kamath, Ravindra, and Eugene Oberst, "Capital Budgeting Practices of Large Hospitals," The Engineering Economist, Volume 37, Number 2, Spring 1992, pp. 203-232.
Khan, Aman, "Capital Budgeting Practices in Large U.S. Cities," The Engineering Economist, Volume 33, Number 1, Fall 1987, pp. 1-12.
Pike, Richard H., "Do Sophisticated Capital Budgeting Approaches Improve Investment Decision-Making Effectiveness?" The Engineering Economist, Volume 34, Number 2, Winter 1989, pp. 149-161.

Problems

8.1 Use PWs to calculate the benefit/cost ratio at $i=5 \%$ for a highway project. The first cost is $\$ 150 \mathrm{~K}$, and O\&M costs are $\$ 5 \mathrm{~K}$ per year. There is no salvage value after 20 years. Time savings to users are worth $\$ 35 \mathrm{~K}$ per year, and neighborhood disruption is a disbenefit of $\$ 10 \mathrm{~K}$ per year. Is this project attractive? (Answer: 1.47)
8.2 Use EAWs to calculate the benefit/cost ratio at $i=$ 6% for a new library. The first cost is $\$ 500 \mathrm{~K}$, and O\&M costs are $\$ 100 \mathrm{~K}$ per year. There is no salvage value after 30 years. Community benefits are estimated to be $\$ 130 \mathrm{~K}$ per year. Is the library economically justified? (Answer: .954)
8.3 A new power plant will cost Newburg $\$ 2.1 \mathrm{M}$ to build and $\$ 230 \mathrm{~K}$ per year to operate for its 25 -year life, when its salvage value is zero. The higher efficiency of the new plant will lower utility bills by $\$ 21$ per year for each of the 20,000 residents of Newburg. The plant's air pollution will cost residents $\$ 3$ each per year. If $i=5 \%$, should the new power plant be built?
8.4 Using PW, determine the benefit/cost ratio of a proposal with the following cash flows. Use an interest rate of 10%.

Year	0	1	2	3	4	5	6
Cash Flow	$-\$ 25 \mathrm{~K}$	4 K	5 K	6 K	7 K	8 K	9 K

8.5 Using EAW, determine the benefit/cost ratio for Problem 8.4.
8.6 A new water treatment plant proposed for Anytown, USA, has an initial cost of $\$ 6 \mathrm{M}$. The new plant will service the 7500 residential customers for the next 30 years. It is expected to save each customer $\$ 125$ per year. The plant will require a major overhaul every 5 years, costing $\$ 1 \mathrm{M}$. Determine the benefit/cost ratio at the city's interest rate of 6%.
8.7 ABC Block Co. may buy a new machine that has a first cost of $\$ 10 \mathrm{~K}$. It will produce benefits for each of
the next 6 years of $\$ 3000$ while requiring $\$ 1400$ to operate. ABC uses a PW index that is calculated by dividing the PW of benefits by the PW of costs. Determine the PW index at 8%. (Answer: .842)
8.8 A new milling machine with an 8 -year life will cost Brake-O-Matic $\$ 48,000$. Net revenues for the 8 years are $\$ 12 \mathrm{~K}, \$ 14 \mathrm{~K}, \$ 15 \mathrm{~K}, \$ 16 \mathrm{~K}, \$ 10 \mathrm{~K}, \$ 8 \mathrm{~K}$, $\$ 8 \mathrm{~K}$, and $\$ 6 \mathrm{~K}$. The machine has an expected salvage value of $\$ 7500$. Brake-O-Matic uses a present worth index that divides the PW of all future net revenues by the initial cost. If money costs Brake-O-Matic 12%, what is the present worth index?
8.9 NewTech uses a PW index that divides the PW of all future revenues by the cost in year $0\left(\mathrm{PWI}_{1}\right)$. What is the index value for the following project if $i=12 \%$? The first cost is $\$ 180 \mathrm{~K}$. Annual revenues are $\$ 25 \mathrm{~K}$ initially, and they increase by $\$ 2 \mathrm{~K}$ per year. Annual costs are $\$ 5 \mathrm{~K}$. The salvage value is zero after 10 years.
(Answer: .853)
8.10 Calculate PWI_{2} for Problem 8.9.
8.11 For Example 8.4, calculate a PW index that places the PW of all construction costs in the denominator. Assume that the other $\$ 250 \mathrm{~K}$ in construction costs occur at the end of period 1. \quad (Answer: $\mathrm{PWI}=1.053$)
8.12 Calculate all three (see Problem 8.11) PW indexes (at $i=15 \%$) for the following projects described in the table. What reason(s) are there to prefer one index over another? Each project is to be evaluated over 10 years.

Project

	B		
	A	B	
First cost(s)	$\$ 30 \mathrm{~K}$	$\$ 30 \mathrm{~K}$ in year 0,	$\$ 30 \mathrm{~K}$
		$\$ 20 \mathrm{~K}$ in year 1	
O\&M/year	13 K	10 K	46 K
Revenue	20 K	17 K	53 K
Salvage	0	20 K	0

8.13 For the projects described in Problem 8.12, calculate the PWs and the IRRs. Are the rankings of the three projects consistent with the rankings using any of the PW indexes? (Note: Chapters 9 and 11 will discuss when PW and when IRR should be used.)
8.14 Calculate the future worth (FW) at 10% of a project that will save $\$ 25 \mathrm{~K}$ per year for 20 years. The first cost is $\$ 120 \mathrm{~K}$, and the salvage value is $\$ 20 \mathrm{~K}$. Compare this with the PW and the EAW.
(Answer: $\mathrm{FW}=\$ 645 \mathrm{~K}$)
8.15 You inherit \$10K when you are 20. What is this worth when you are ready to retire at 65 ? Assume that the money can be invested at 7%, which is your interest rate for the time value of money. Compare this with an insurance policy that could be purchased with a lump-sum payment of $\$ 10 \mathrm{~K}$. That policy would pay you $\$ 100 \mathrm{~K}$ at age 65 and your survivors $\$ 100 \mathrm{~K}$ if you die sooner. How much value per year must you put on protecting your survivors for these to be equivalent?
8.16 A new plant can be constructed from the ground up, or an existing building can be purchased and retrofitted to suit the new plant requirements. Constructing a new plant will require a parcel of land costing $\$ 100 \mathrm{~K}$ and initial design and construction costs of $\$ 175 \mathrm{~K}$. The remaining construction costs will be payable at $\$ 800 \mathrm{~K}$ at the ends of years 1 and 2. Construction costs in year 3 decrease to $\$ 150 \mathrm{~K}$. If an existing building is retrofitted, the initial cost will be $\$ 1.25 \mathrm{M}$. The remodeling will also cost $\$ 175 \mathrm{~K}$ at the end of years 1 through 3. Determine the future value at the end of year 3 for each alternative at an interest rate of 15%. (Answer: new $\$ 2546 \mathrm{~K}$, renovate $\$ 2509 \mathrm{~K}$)
8.17 Calculate the future worth at 12% for the following investment proposal:

First cost	$\$ 140,000$
Annual income	$\$ 75,000$
Annual costs	$\$ 35,000$
Salvage value	$\$ 10,000$
Useful life	5 years

8.18 Chang is 20, and he smokes a carton of cigarettes per week. A carton of his favorite brand costs $\$ 31.25$. How much could he save by age 65 if he stops smoking and deposits the money monthly in a savings account? The account has a nominal rate of 6% compounded monthly.
8.19 A new soap press purchased by the Rub-a-Dub-Dub Soap Company costs $\$ 65$ K. Determine the payback
period in months if the press can produce 120 gross of bars each month and each bar is sold for $\$.96$ and costs $\$.42$ to produce. (Answer: 7.0 months)
8.20 The local hospital has just implemented a totally automated switchboard that cost $\$ 205,000$ to install. The switchboard replaced four operators who were paid $\$ 15 \mathrm{~K}$ annually. Fringe benefits (vacation, sick leave, insurance, etc.) cost the hospital 42% of each annual salary. Determine the payback period for the new switchboard. (Answer: 2.4 years)
8.21 A new electric power generation plant is expected to cost $\$ 43,250,000$ to complete. The revenues generated by the new plant are expected to be $\$ 3,875,000$ per year, while operational expenses are estimated to be $\$ 2,000,000$ per year. The plant will last 40 years, and the electric authority uses a 3% interest rate. Determine the benefit/cost ratio where the benefits equal net annual revenues. Determine the payback period for the plant.
8.22 What is the payback for an automated voice-mail system that will cost $\$ 25 \mathrm{~K}$ to install and $\$ 300$ per month to operate? It will save about 75% of the costs of a position that pays $\$ 12 \mathrm{~K}$ per year.
8.23 The voice-mail system in Problem 8.22 will incur training and inefficiency costs of $\$ 2500$ the first month, $\$ 1500$ the second month, and $\$ 500$ the third month. What is the payback period now?
8.24 Compute the payback periods for the three projects described in the table. Note that project B incurs its second first cost at the beginning of year 1, and its O\&M expenses and revenues begin with the end of year 1.

Project

\mathbf{A}	B	C

First cost(s)	$\$ 30 \mathrm{~K}$	\$30K in year 0, $\$ 20 \mathrm{~K}$ in year 1	\$30K
O\&M/year	$\$ 13 \mathrm{~K}$	$\$ 9 \mathrm{~K}$	\$10K
Revenue	$\$ 20 \mathrm{~K}$	$\$ 20 \mathrm{~K}$	\$7K in year 1, increasing by
			\$5K per year Life
Salvage	50	years	10 years

8.25 Determine the discounted payback period for the soap press in Problem 8.19 if the nominal interest rate is 12% per year. (Answer: 7.4 months)
8.26 Determine the discounted payback period months for the switchboard in Problem 8.20 if the interest rate is 18%. (Answer: 53.7 months)
8.27 Let $i=10 \%$; calculate the discounted payback period for Problem 8.22. If using the tables in Appendix B, assume annual periods, but if using a spreadsheet or financial calculator, assume monthly periods.
8.28 Let $i=10 \%$; calculate the discounted payback period for Problem 8.23. Assume monthly periods.
8.29 Let $i=10 \%$; calculate the discounted payback periods for Problem 8.24.
8.30 Carla will be renting a car to visit job sites in the Pacific Northwest over a 2-week period. The car can be rented for $\$ 198$ per week with 100 miles per day or for $\$ 218$ per week with unlimited miles. If extra miles are charged at 25ϕ per mile, what is the minimum mileage per day that she must spend visiting job sites to justify paying the higher rate? How many miles is this over the 2 weeks? (Answer: 111 miles per day)
8.31 How many widgets must be needed by Acme Manufacturing per year to justify buying the required machinery for widget manufacturing for $\$ 10 \mathrm{~K}$? The manufacturing cost is $\$.26$ each, and widgets can be purchased for $\$.35$ each. The machinery must be overhauled at the end of every third year for $\$ 3000$. Its salvage value after 12 years is zero. The firm uses an interest rate of 12%. (Answer: 26,430)
8.32 What must the annual royalty for rights to use a new invention be to justify proceeding with development? The development period will be 2 years, with $\$ 650 \mathrm{~K}$ to be spent at the beginning of each year. The firm expects the royalty period to be only 5 years due to the pace of technological development. Royalties would be received at the ends of years 3 to 7 . The firm uses an interest rate of 20% to evaluate $R \& D$ projects.
8.33 Determine the number of souvenir coins that must be sold per year to justify the purchase of a $\$ 6000$ stamping machine. Each coin will be sold for $\$ 5.00$ and cost $\$ 1.50$ to manufacture. The machine will have little or no salvage value at the end of its 4 -year useful life. Use an interest rate of 8%.
8.34 The demand for widgets has been determined to be 10,000 per year. Each widget sells for $\$ 4.00$ and costs $\$ 2.25$ to produce. Using breakeven analysis and an interest rate of 12%, determine the maximum purchase price that could be paid for the required machinery. The machine is expected to last 8 years and to have a salvage value of 5% of the purchase price.
8.35 Using corrosion-resistant parts would cost 60% more than the steel fittings that currently last 4 years. If the firm's interest rate is 12%, how long would the corrosion-resistant parts have to last to be more cost effective?

Minicases

8.36 The construction firm of Cathy Strong \& Daughters can purchase some construction equipment for $\$ 100 \mathrm{~K}$. After 5 years, it will have a salvage value of $\$ 15 \mathrm{~K}$. The firm can also lease the equipment for $\$ 25 \mathrm{~K}$ per year. If the equipment is leased for 5 years the firm has an option to buy the equipment for $\$ 10 \mathrm{~K}$. If a fair interest rate is 9%, what is the firm paying for the flexibility of being able to stop leasing the equipment after $1,2,3$, or 4 years? (Find the breakeven equivalent annual value of the difference between buying and leasing.)
8.37 Julio is a good engineer, but he is uninterested in earning a promotion. Thus, his salary will stay at $\$ 60,000$ per year until he retires. He currently has $\$ 82,345$ in his retirement fund, which earns 7% annually. He is now 43 , and he expects to live until he is 81 . (He found a website that predicted his life span based on his current health and lifestyle.) If he saves 15% of his salary each year, how soon can he retire? Assume that he wants his spendable income to stay the same until he dies.
8.38 A proposed steel mill may include a co-generation electrical plant. This plant will add $\$ 2.3 \mathrm{M}$ in first cost with net annual savings of $\$.27 \mathrm{M}$ considering operating costs and electrical bills. The plant will have a $\$.4 \mathrm{M}$ salvage value after 25 years. The firm uses an interest rate of 12% and PWI_{1} in its decision making.

The public utility offers a subsidy for co-generation facilities because it will not have to invest as much in new capacity. This subsidy is calculated as 20% of the co-generation facility's first cost, but it is paid annually. The utility calculates the subsidy using a benefit/cost ratio at 8% and a life of 20 years.
(a) Is the plant economically justifiable to the firm without the subsidy? What is the PWI_{1} ?
(b) What is the annual subsidy?
(c) Is the plant economically justifiable to the firm with the subsidy? Now what is the PWI_{1} ?
(d) How important is the difference in interest rates, and how does it affect these results?
(e) How important is the difference in horizons, and how does it affect these results?
8.39 Assume a cost improvement project has only a first cost of $\$ 100,000$ and a monthly net savings, M. There is no salvage value. Graph the project's IRR for payback periods from 6 months to the project's life of N years. The firm accepts projects with a 2 -year payback period or a 20% IRR. When are these standards consistent and when are they not?
(a) Assume that $N=3$ years.
(b) Assume that $N=5$ years.
(c) Assume that $N=10$ years.
(d) What recommendation do you have for the firm about its project acceptance criteria?

Cases

The following cases from Cases in Engineering Economy, $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 16 Great White Hall

Proposal comparison using B/C analysis for RFP with unclear specifications.

Case 17 A Free Lunch?

Is proposal too good to be true from two perspectives? Realistic (unordered) statement of facts.

PART THREE

$$
\begin{aligned}
& \text { COMPARING } \\
& \text { ALTERNATIVES } \\
& \text { AND PROJECTS }
\end{aligned}
$$

There are two broad categories of engineering economy problems-comparison of mutually exclusive alternatives and constrained project selection.

Engineering design is a choice between mutually exclusive alternatives. Each beam, fiber-optic cable, heat exchanger, pipeline, etc., has multiple sizes and materials that are considered. However, even if there are 20 alternatives, at most one design will be built. As detailed in Chapter 9, economic comparisons are easiest with PW, EAW, and EAC. If benefit/cost ratios or internal rates of returns are used, then incremental analysis is required.

Chapter 10 on replacement problems discusses a common special case of mutually exclusive alternatives. An aging existing asset is nearing the end of its economic life, and the replacement asset and its timing must be selected.

Chapter 11 presents the constrained project selection problem, in which there are many good projects but limited funds. The problem is choosing the best projects from the list of acceptable projects. This problem's solution can be used to determine the interest rate for evaluating mutually exclusive alternatives.

Mutually Exclusive Alternatives

- THE SITUATION AND THE SOLUTION

Often, only one of two or more alternatives can be implemented. For example, if a dam is built, it is one height—even though several other heights may have been considered.

The solution is to compare these mutually exclusive alternatives using present worth, equivalent annual worth, or equivalent annual cost. Internal rate of return and benefit/cost ratios can be applied, but an incremental analysis is required.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 9.1 Define and recognize problems with mutually exclusive alternatives.
SECTION 9.2 Identify the assumptions made when comparing mutually exclusive alternatives.
SECTION 9.3 Select the best alternative using PW, EAW, or EAC when the alternatives have lives of the same length.
SECTION 9.4 Use PW to explicitly match alternatives with lives of different lengths to a common horizon.
SECTION 9.5 Use EAW or EAC to implicitly match alternatives with lives of different lengths to a common horizon.
SECTION 9.6 Demonstrate the robustness of comparing the EAWs or EACs of alternatives with lives of different lengths.
SECTION 9.7 Show that IRR and B/C ratios must be calculated incrementally to correctly compare mutually exclusive alternatives.
SECTION 9.8 Apply IRR and benefit/cost ratios incrementally in a defender/challenger analysis for mutually exclusive alternatives.
SECTION 9.9 Show that IRR, PW, and EAW all use the same interest rate assumption.
SECTION 9.10 Use SOLVE FOR spreadsheet tools to find incremental IRRs for comparing mutually exclusive alternatives.

- KEY WORDS AND CONCEPTS

Mutually exclusive alternative Alternatives where, at most, one can be accepted from a set of choices.
Maximizing PW or EAW or minimizing EAC The criterion for selecting the best alternative from mutually exclusive possibilities.

Doing nothing or maintaining the status quo A mutually exclusive alternative that may or may not be specifically identified, and it may or may not be possible.
Problem horizon The life or study period for comparing all mutually exclusive alternatives.
Residual value The estimated value of an alternative at the problem horizon.
Incremental analysis Evaluates the difference between two or more mutually exclusive alternatives.

9.1 Applying Engineering Economy to Engineering Design

Engineering design is the first application of engineering economy for beginning engineers. Design requires that at most, one alternative can be selected. Because accepting any one alternative precludes accepting any other alternative, these are called mutually exclu-

Accepting a mutually exclusive alternative from a set of possibilities precludes accepting any other.
sive alternatives.

Mutual exclusivity usually occurs for a physical reason. For example, only one pump out of several sizes and from one of several manufacturers will be installed, or only one building can be built on a site, or only one roof design will be used for a building.

Mutual exclusivity can arise for other reasons. For example, organizational or political factors may require one accepted project at most for each group, district, or division. Market demand may support only one new product, or regulatory demands may only allow one new item through the permitting process. Similarly, scarce resources such as computer time, entrepreneurial talent, or R\&D facilities may be the basis for mutual exclusivity.

Engineering design requires selecting one out of several mutually exclusive alternatives, and this is the most common context for mutually exclusive alternatives. The engineered item's use defines a common study period or time horizon for economically evaluating all alternatives. Consequently, all alternatives must be evaluated over a single study period. This is automatic, or implicit, when equivalent annual techniques are used. However, it must be explicit when present worth techniques are used.

The best mutually exclusive alternative is found by comparing the PWs, EAWs, or EACs. The alternative with the highest worth or the lowest cost is the best.

9.2 Key Assumption Is the Interest Rate or Minimum Attractive Rate of Return

When mutually exclusive alternatives are analyzed, the interest rate or minimum attractive rate of return (MARR) or i^{*} (pronounced "i star") must be given. This interest rate is determined by constrained project selection or by the cost of capital (see Chapter 11).

Enough capital is available at this MARR to fund even the most expensive alternative-if justified by evaluation at the MARR. In other words, the choice between mutually exclusive alternatives is assumed not to influence the firm's other decisions nor to limit the amount of capital available elsewhere.

Common Assumptions. In Chapters 5 through 8, the assumptions of known cash flows, known lives, and a known interest rate were made. The same assumptions are made here.

There is only one interest rate, and it is used to evaluate all mutually exclusive choices. This known interest rate has been called the MARR, but it is also the reinvestment rate that is assumed to apply in the future (see Section 9.9).

These assumptions are associated with evaluating mutually exclusive choices, and they are unaffected by the choice of PW, EAW, IRR, or benefit/cost ratios. Thus, when correctly applied, each measure shows the same alternative as the best. Incremental analysis is required to properly apply IRR and benefit/cost ratio approaches. As noted in Section 9.9, some authors incorrectly believe that IRR has a different reinvestment assumption.

9.3 Comparing Alternatives with Lives of the Same Length

Maximizing PW or EAW or minimizing EAC are the criteria for selecting the best alternative from mutually exclusive possibilities.

Doing nothing or maintaining the status quo is a mutually exclusive alternative that may or may not be specifically identified, and it may or may not be possible.

When the lives of the mutually exclusive alternatives are the same, the criteria to select the best alternative are simple and intuitively clear. Those criteria are to choose the alternative with the largest or maximum PW or EAW or the alternative with the smallest or minimum EAC.

Examples 9.1 and 9.2 illustrate these criteria, which can be applied by private firms and by public agencies. Whether EAW or PW is used does not matter. For Example 9.2, the PWs could be converted to EAWs by multiplying by $(A / P, .12,25)$, so the relative differences would remain constant. Similarly, for Example 9.1, PWs equal the EACs multiplied by $-(P / A, .12,40)$.

Doing nothing or maintaining the status quo is a mutually exclusive alternative that may or may not be specifically identified, and it may or may not be possible. For example, in many cost-reduction efforts, it is possible to continue with the status quo even though that option may not be specifically identified. On the other hand, when choosing the most economical roof or heating system, doing nothing is not allowed. The building must have a roof, and it must be heated.

Example 9.1 has two alternatives. Example 9.2 has three listed alternatives and an implicit fourth one-doing nothing with the land for now. Other problems may have 20 mutually exclusive alternatives. The decision-making principle remains constant: Choose the most attractive alternative. It will have the largest PW or EAW or the smallest EAC.

EXAMPLE 9.1 Insulating City Hall

The city of Northern Lights is building a new city hall. The civil engineer for the walls and ceiling and the mechanical engineer for the heating system are evaluating two plans for insulating and heating the building. They have identified standard construction (SC) and energy-efficient construction (EEC) as the two alternatives. Northern Lights uses an interest rate of 10%, and the new city hall is expected to have a life of 40 years. Using EAC, which alternative is better?
Standard
Construction

Energy-Efficient
Construction

First cost: building	$\$ 2.45 \mathrm{M}$	$\$ 2.50 \mathrm{M}$
First cost: furnace	100 K	85 K
Annual heating cost	10,000	6000

SOLUTION

$$
\begin{aligned}
\mathrm{EAC}_{\mathrm{SC}} & =(2450 \mathrm{~K}+100 \mathrm{~K})(A / P, .1,40)+10 \mathrm{~K}=2550 \mathrm{~K} \times .1023+10 \mathrm{~K}=\$ 270.9 \mathrm{~K} \\
\mathrm{EAC}_{\mathrm{EEC}} & =(2500 \mathrm{~K}+85 \mathrm{~K})(\mathrm{A} / \mathrm{P}, .1,40)+6 \mathrm{~K}=2585 \mathrm{~K} \times .1023+6 \mathrm{~K}=\$ 270.4 \mathrm{~K}
\end{aligned}
$$

The EEC cost is lower, so that is the preferred alternative. Since EEC does not change the majority of the $\$ 2.45 \mathrm{M}$ in construction costs, the savings appear to be small relative to the project's cost. However, engineering design is the accumulation of many small decisions.

As the following incremental analysis shows, the $\$ 50 \mathrm{~K}$ for extra insulation (EI) is easily justified by the savings in furnace and heating costs. Separating out the incremental costs and savings focuses on the costs and consequences of this decision.

$$
\mathrm{EAC}_{\mathrm{EI}}=(50 \mathrm{~K}-15 \mathrm{~K})(\mathrm{A} / \mathrm{P}, .1,40)-4 \mathrm{~K}=35 \mathrm{~K} \times .1023-4 \mathrm{~K}=-\$.42 \mathrm{~K}
$$

Since the EAC of the extra insulation is negative, it is certainly desirable.
In this case, doing nothing is not an option. The decision has been made to build a new city hall. It must have walls and a roof, and it must be heated.

EXAMPLE 9.2 Developing an Industrial Property

HDP Development owns the last vacant parcel in a thriving industrial park. There are three proposals for developing the property (see table). In each case, HDP builds and maintains the structure and receives income from it. HDP Development uses an interest rate of 12% and a horizon of 25 years for its analyses. Which proposal is preferred using a PW criteria?

	R\&D Lab	Instrument Maintenance (IM)	Snowboard Manufacturing (SM)
First cost	$\$ 3.0 \mathrm{M}$	$\$ 3.3 \mathrm{M}$	$\$ 4.6 \mathrm{M}$
Annual O\&M costs	750 K	200 K	400 K
Annual income	1200 K	750 K	1100 K
Salvage value	1.0 M	.4 M	.5 M

SOLUTION

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{R} \& \mathrm{D}} & =-3 \mathrm{M}+(1200 \mathrm{~K}-750 \mathrm{~K})(P / A, .12,25)+1 \mathrm{M}(P / F, .12,25) \\
& =-3000 \mathrm{~K}+450 \mathrm{~K} \times 7.843+1000 \mathrm{~K} \times .0588=\$ 588.2 \mathrm{~K} \\
\mathrm{PW}_{\mathrm{IM}} & =-3.3 \mathrm{M}+(750 \mathrm{~K}-200 \mathrm{~K})(P / A, .12,25)+400 \mathrm{~K}(P / F, .12,25) \\
& =-3300 \mathrm{~K}+550 \mathrm{~K} \times 7.843+400 \mathrm{~K} \times .0588=\$ 1037.2 \mathrm{~K} \\
\mathrm{PW}_{\mathrm{SM}} & =-4.6 \mathrm{M}+(1100 \mathrm{~K}-400 \mathrm{~K})(P / A, .12,25)+500 \mathrm{~K}(P / F, .12,25) \\
& =-4600 \mathrm{~K}+700 \mathrm{~K} \times 7.843+500 \mathrm{~K} \times .0588=\$ 919.5 \mathrm{~K}
\end{aligned}
$$

Thus, the instrument maintenance facility is the most attractive mutually exclusive choice. It has the largest PW. If no alternative had a positive PW, then doing nothing would be best (at least for a while).

9.4 PWs and Explicitly Comparing Different-Length Lives

The problem

horizon is the life or study period for comparing all mutually exclusive alternatives.

In many cases, mutually exclusive alternatives do not have lives that are the same length. Sometimes, the main difference between two alternatives may be their lives. Examples include items made with stainless steel rather than with brass, aluminum, or steel. The higher-cost material allows use for a longer period before the item is replaced. Similarly, new equipment or vehicles should have a longer life than used equipment or vehicles.

Another example is purchasing memberships, subscriptions, or insurance. These can be bought 6 months at a time or for $1,2,3,5$, or even 10 years at a time. Buying a longer period of coverage costs less per year, and it postpones the next purchase until the longer period expires.

Usually, these comparisons are made using equivalent annual techniques (maximize EAW or minimize EAC) with an implicit assumption for the study period. While this is the easiest and most common approach, PW techniques are described first to show the different explicit assumptions about lives and residual values. This also matches a specific, explicit PW assumption with the implicit assumption of the EAW or EAC approach.

One problem horizon or time period is used for comparing all alternatives. For example, when comparing steel, brass, and stainless steel pumps, the starting point would be how long the pump is needed. Then, the cost for each pump and any replacements would be computed over that period.

Even though pumps may be needed for water or sewage for the next couple of centuries, a shorter time horizon for comparing alternatives can be used. However, the same horizon must be used for all mutually exclusive alternatives. Comparing alternatives without using a common horizon can distort the comparison. This is especially true if the benefits stream is not specified during engineering design. The goal is to minimize the cost of building and operating a project, but the project's value may not be given. Example 9.1 illustrates this-the goal is to minimize the cost of building and heating city hall, but the value of a warm city hall is not specified.

Approaches for Defining a Problem Horizon. When comparing alternatives with different-length lives, the problem horizon is defined by:

1. Explicitly or implicitly assuming that each alternative repeats itself over time with the same costs and benefits, or
2. Terminating one or more alternatives early, and using residual values to account for the remaining life.

Assuming that alternatives repeat themselves with the same costs and benefits implies a time horizon that is either infinite or equal to the least common multiple of the alternatives' lives. Both are illustrated in Example 9.3, in which a horizon of 12 years (the least common multiple of 3 and 4 years) is used. Example 9.3 also shows that the results from

Residual value is the estimated value of the item's remaining life at the problem's horizon.
assuming an infinite horizon are proportional to the least common multiple results, so the same alternative is the best.

In some cases, the assumption of an infinite or least common multiple horizon can be interpreted as a long but indefinite life. For example, alternatives with estimated lives of 3 and 5 years might be evaluated under the following horizon: "We're not really sure how long we'll need to do this. Maybe 10 years. Maybe 20." In this case, the 15 -year least common multiple is the best choice.

The second assumption for a horizon picks a specific number of years to be the study period or horizon. In this case, residual values are assigned for any alternative whose final replacement does not match the study period or horizon. Thus, residual values are estimated for one or more mutually exclusive alternatives. For this approach, the calculated PW depends on the assumed residual values. Possible study periods or horizons include:

- Expected service life.
- Life of the "shorter" alternative.
- Life of the "longer" alternative.
- Arbitrary values, such as 10 years.

The term residual value is used here because the residual value may not equal the object's salvage value. For example, a pump expected to last 4 years is likely to have little or no salvage value after 3 years. Yet, the problem horizon may require evaluating the pump as though it had a 3-year life. The residual value is used instead of assuming the fourth year of life has no value, which would distort comparisons between alternatives.

In Example 9.4, where there are two alternatives with lives of 3 and 4 years, a horizon of 3,4 , or 5 years would require that a residual value be estimated for one or more of the two alternatives. Often, an alternative will be most attractive in time horizons that are even multiples of its life. In Example 9.4, the brass pump is more attractive with a 3-year study period, and the stainless steel pump is more attractive with a 4-year study period. The subsection after Examples 9.3 and 9.4 suggests guidelines for choosing the best horizon.

EXAMPLE 9.3 PW with Least Common Multiple Horizon

A brass pump and a stainless steel pump are being compared for an application in which their operating costs will be the same. The firm uses an interest rate of 8%. Compare each alternative's PW with a 12-year horizon and with an infinite horizon.

The brass pump lasts 3 years and costs $\$ 12,000$. The stainless steel pump lasts 4 years and costs $\$ 15,000$. Neither will have a salvage value.

SOLUTION

The brass pump's PW over a 3-year life is $-\$ 12,000$, and the stainless steel pump's PW over a 4 -year life is $-\$ 15,000$. But, these are not comparable PWs. The stainless steel pump provides service for another year. Comparing the $-\$ 12 \mathrm{~K}$ and the $-\$ 15 \mathrm{~K}$ would mean nothing.

A 12-year horizon is the least common multiple of a 3-year life and a 4 -year life (12 is also the least common multiple for 4 and 6 years). Brass pumps are purchased at time 0 and at the ends of years 3,6 , and 9 . Stainless steel pumps are purchased at time 0 and at the ends of years 4 and 8 .

$$
\begin{aligned}
\mathrm{PW}_{\text {brass }} & =-12 \mathrm{~K}-12 \mathrm{~K}(P / F, i, 3)-12 \mathrm{~K}(P / F, i, 6)-12 \mathrm{~K}(P / F, i, 9) \\
& =-12 \mathrm{~K}\left[1+1 /(1+i)^{3}+1 /(1+i)^{6}+1 /(1+i)^{9}\right] \\
& =-12 \mathrm{~K}(1+.7938+.6302+.5003)=-12 \mathrm{~K}(2.9243)=-\$ 35.09 \mathrm{~K} \\
\mathrm{PW}_{\text {stainless }} & =-15 \mathrm{~K}[1+(P / F, i, 4)+(P / F, \mathrm{i}, 8)] \\
& =-15 \mathrm{~K}\left[1+1 /(1+i)^{4}+1 /(1+i)^{8}\right]=-15 \mathrm{~K}(1+.73503+.5403) \\
& =-15 \mathrm{~K}(2.2753)=-\$ 34.13 \mathrm{~K}
\end{aligned}
$$

The assumption of perpetual life has the same effect, since infinity is a multiple of 12 years. As shown in Section 6.6, the capitalized costs are computed by finding each EAW and dividing it by 8%.

$$
\begin{aligned}
\mathrm{PW}_{\text {brass }, \infty} & =-12 \mathrm{~K}(\mathrm{~A} / P, i, 3) / i \\
\mathrm{PW}_{\text {stainless }, \infty} & =-15 \mathrm{~K}(\mathrm{~A} / \mathrm{P}, i, 4) / i
\end{aligned}=-15 \mathrm{~K} \times .3880 / .08=-\$ 58,2009 / .08=-\$ 56,610
$$

Notice that the stainless steel pump's PW is 97.3% of the brass pump's PW for both the 12 -year comparison and the infinite-life comparison. Both comparisons assume that future brass pumps cost $\$ 12 \mathrm{~K}$ and future stainless steel pumps cost $\$ 15 \mathrm{~K}$.

EXAMPLE 9.4 PW with Assumed Residual Values

For the brass and stainless steel pumps of Example 9.3, use periods shorter than 12 years for the comparison. In particular, calculate comparable PWs for 3, 4, and 5 years.

SOLUTION

For these calculations, the residual value for the brass pump is assumed to be $\$ 6 \mathrm{~K}$ after 1 year of use, $\$ 2 \mathrm{~K}$ after 2 years, and $\$ 0$ after 3 years. Similarly, the residual values for the stainless steel pump are assumed to be $\$ 9 \mathrm{~K}, \$ 4.5 \mathrm{~K}, \$ 1.5 \mathrm{~K}$, and $\$ 0$ after $1,2,3$, and 4 years, respectively.

For the 3-year study period:

$$
\begin{aligned}
\mathrm{PW}_{\text {brass }} & =-\$ 12 \mathrm{~K} \\
\mathrm{PW}_{\text {stainless }} & =-15 \mathrm{~K}+1.5 \mathrm{~K} /(1.08) 3=-\$ 13.81 \mathrm{~K}
\end{aligned}
$$

For the 4-year study period:

$$
\begin{aligned}
\mathrm{PW}_{\text {brass }} & =-12 \mathrm{~K}-12 \mathrm{~K} /(1.08) 3+6 \mathrm{~K} /(1.08) 4=-\$ 17.12 \mathrm{~K} \\
\text { PWstainless } & =-15 \mathrm{~K}
\end{aligned}
$$

For the 5-year study period:

$$
\begin{aligned}
\mathrm{PW}_{\text {brass }} & =-12 \mathrm{~K}-12 \mathrm{~K} /(1.08) 3+2 \mathrm{~K} /(1.08)^{5}=-\$ 20.16 \mathrm{~K} \\
\mathrm{PW}_{\text {stainless }} & =-15 \mathrm{~K}-15 \mathrm{~K} /(1.08) 4+9 \mathrm{~K} /(1.08)^{5}=-\$ 19.90 \mathrm{~K}
\end{aligned}
$$

Thus, with these assumed residual values, the brass pump is best at 3 years, and the stainless steel pump is best at 4 or 5 years. Unless the expected need for pumping is 3,4 , or 5 years, there is no basis for preferring one of these horizons. Changing the assumed residual patterns could change the results.

Choosing the Best Horizon. Example 9.4 illustrates the difficulty in choosing the best horizon, since the best alternative depends on the assumed residual values and the horizon. If a life for the pumping service is known to be t years, then t would be the best choice for a horizon. (See the calculations in Example 9.4 for 3, 4, or 5 years.)

However, a horizon of 7 years might be most cost-effectively served by using a brass pump for 3 years and a stainless steel pump for 4 years. The best strategy for a 7 -year horizon is to choose the cheaper one now (stainless steel). Then, in about 4 years, another choice is made with a new, more accurate estimate of the remaining service life.

If the service period is longer than the lives of the alternatives, it will be somewhat indefinite. For example, the 40 -year life in Example 9.1 and the 25 -year life in Example 9.2 are clearly estimated lives. Only through a legal contract can an exact period of 10 or 20 years be defined, and even then, contracts can be extended or terminated early.

In most cases, using the assumption of an infinite horizon or of the least common multiple horizon is preferable to assuming somewhat arbitrary residual values.

Mutually Exclusive Alternatives without a Common Horizon. There are cases in which two or more mutually exclusive alternatives are compared without matching their lives to a study period. If the benefits and costs of each alternative are known and the alternatives are mutually exclusive for financial or political reasons, then the life of each alternative is used to calculate PWs. This does not apply to problems in engineering design, in which the alternatives are mutually exclusive for physical reasons.

For example, if a 10 -year manufacturing modernization and a 15 -year $\mathrm{R} \& \mathrm{D}$ project are mutually exclusive, it is unrealistic to assume that each would be followed by an identical or even similar project. As long as the study period is at least 15 years, the PWs for each project can be compared.

This is implicitly assuming (see Section 9.7) that all returns from each alternative will be invested at the firm's minimum attractive rate of return (MARR). In this case, EAWs matched to each life cannot properly be used, because as seen in Section 9.5, this would assume that projects repeat until a horizon that is equal to the least common multiple of the individual lives.

9.5 EAWs and EACs and Implicitly Comparing Different-Length Lives

A study period or time horizon can be implicitly selected by using EACs or EAWs, rather than being explicitly chosen. This implicit study period is based on the results of Section 6.7.

Specifically, the EAC for any alternative is the same for any integer multiple of its life if identical repetitions are assumed.

This is the most commonly used approach to comparing mutually exclusive alternatives with different-length lives. It is the easiest approach, and it is often the best. It is also consistent with the conclusions of Section 9.4 on explicitly choosing the horizon. The implicit study period is the least common multiple of the lives of the mutually exclusive alternatives, as illustrated in Exhibit 9.1.

Suppose the "short" alternative has an $\mathrm{EAC}_{S}=\$ 9750$ and the "long" alternative has an $\mathrm{EAC}_{\mathrm{L}}=\$ 8750$. When the difference is described as $\$ 1000$, then the implicit assumption of identical repetitions until the least common multiple has been made. The $\$ 1000$ difference assumes that both the $\$ 9750$ and $\$ 8750$ are accurate, which happens with identical repetitions and at a time horizon equal to the least common multiple.

If the service period is indefinite, then another approach is to simply say that one alternative has a lower EAC without trying to exactly specify the difference. The life of each alternative is estimated, and new alternatives will be available in the future. Thus, the EACs are approximations of the unknown values, and the exact difference is less important than its general magnitude.

EXHIBIT 9.1 Implicit horizons from least common multiples
3 vs. 4 years: implicit horizon of 12 years

2 vs. 5 years: implicit horizon of 10 years

15 vs. 20 years: implicit horizon of 60 years

13 vs. 20 years: implicit horizon of 260 years

Assuming

 identical repetitions is often better, and always easier, than assigning residual values that may be arbitrary.Assuming identical cost repetitions for 10 or 12 years may be reasonable. However, assuming identical repetitions for 60 years or 2.5 centuries is unrealistic. Nevertheless, as shown in Section 9.6, the implicit assumption is quite robust.

Example 9.5 applies this approach to the brass and stainless steel pumps examined in Example 9.3. It also confirms that the assumptions in Example 9.3 (identical repetitions within a 12-year horizon) are implicit when an EAC comparison is made.

Example 9.6 analyzes the costs of purchasing and operating a new vs. a used car. The ownership period is longer for the new car, and the horizon is indefinite-you will probably be driving a car that you own well past the age of 65 . Thus, to compare the new and used options, the best choice is the implicit one of identical repetitions until the least common multiple. Chapter 10 on replacement analysis will analyze the best life for the used and new options.

Example 9.7 shows a more complex analysis in which using EACs and making an implicit assumption of a 150-year problem horizon is much easier than using PWs. The implicit assumption of a 150-year life can be justified either through the robustness of the EAC assumption (see Section 9.6) or as a good approximation for a building whose life is indefinite (but at least 50 years). If the life is at least 50 years, then new alternatives and better estimates of remaining life will be available when either of the shingle roofs in Example 9.7 must be replaced. If the indefinite life is less than 50 years, then the indefinite life must be used to evaluate the metal roofing.

EXAMPLE 9.5 EAC Comparison with Implicit Least Common Multiple

In Example 9.3, the PWs for a brass and a stainless steel pump were calculated to be $-\$ 35.09 \mathrm{~K}$ and $-\$ 34.13 \mathrm{~K}$, respectively. Evaluate these pumps using EAC and the same 8% interest rate.

SOLUTION

$$
\begin{aligned}
\mathrm{EAC}_{\text {brass }} & =12 \mathrm{~K}(A / P, .08,3)=\$ 4656 \\
\mathrm{EAC}_{\text {stainless }} & =15 \mathrm{~K}(A / P, .08,4)=\$ 4529 \\
\mathrm{EAC}_{\Delta} & =\$ 127
\end{aligned}
$$

The EAC for the brass pump is valid for lives of $3,6,9$, etc., years, while the EAC for the stainless steel pump is valid for lives of $4,8,12$, etc., years. When they are compared and a difference is calculated, that difference is correct only for lives of $12,24,36$, etc., years. Thus, calculating the difference of $\$ 127$ per year implicitly assumes a study period of 12 years and identical repetitions.

Comparison with the PWs of Example 9.3 can confirm that claiming savings of $\$ 127.59$ for the stainless steel pump is equivalent to a 12 -year horizon with constant costs and repetition until the least common multiple of lives.

$$
\begin{aligned}
\mathrm{PW}_{\text {diff in } \mathrm{EAC}} & =127.59(\mathrm{P} / \mathrm{A}, .08,12)=\$ 961.5 \\
\mathrm{PW}_{\text {brass }}-\mathrm{PW}_{\text {stainless }} & =-34.13 \mathrm{~K}-(-35.09 \mathrm{~K})=\$ 960
\end{aligned}
$$

EXAMPLE 9.6 Comparing the Costs of New and Used Cars

Rebecca is moving away from New York City for her new job, so she must buy a car rather than rely on public transit. The new car she is considering will cost $\$ 18,000$ to buy, $\$ 1500$ per year to insure, and $\$ 500$ per year for maintenance after the 3-year warranty expires. She would keep the car for 7 years, when it will have a salvage value of $\$ 7000$.

She has found a 2 -year-old car that is the same model for $\$ 13,000$. The 3 -year warranty is transferable, so the annual maintenance cost of $\$ 500$ starts in year 2. Because the car is less valuable, insurance is $\$ 300$ per year less than for the new car. After 5 years, the vehicle will be 7 years old and will have the same salvage value of $\$ 7000$.

Rebecca is ignoring costs for fuel, oil, tires, and registration, because the two vehicles will have the same costs. If her interest rate is 9%, how much cheaper is the used car?

SOLUTION

This comparison is for a long, indefinite life, since she will own cars for longer than the 7- or 5 -year lives of the new and used alternatives. Thus, the best approach is to implicitly assume a horizon of 35 years, which is the least common multiple of 5 and 7 years.

$$
\begin{aligned}
\mathrm{EAC}_{\text {new }} & =18,000(A / P, 9 \%, 7)+1500+500(F / A, 9 \%, 4)(A / F, 9 \%, 7)-7000(A / F, 9 \%, 7) \\
& =18,000(.1987)+1500+500(4.573)(.1087)-7000(.1087) \\
& =3576.6+1500+248.5-760.9=\$ 4564 \\
\mathrm{EAC}_{\text {used }} & =13,000(A / P, 9 \%, 5)+1200+500(F / A, 9 \%, 4)(A / F, 9 \%, 5)-7000(A / F, 9 \%, 5) \\
& =13,000(.2571)+1200+500(4.573)(.1671)-7000(.1671) \\
& =3342.3+1200+382.1-1169.7=\$ 3755
\end{aligned}
$$

Buying a used car will save Rebecca about $\$ 809$ per year.

EXAMPLE 9.7 Selecting the Cheapest Roof

Charley is selecting materials for a state-subsidized housing development. The buildings will be maintained for at least 75 years, and the agency uses an i of 6%.

Which of the following two grades of shingles and metal roofing is the most cost-effective? All costs are per square (equals 100 square feet).

	Min.-Quality Shingles	Max.-Quality Shingles	Metal Roofing
Buy	$\$ 35$	$\$ 70$	$\$ 120$
Install	$\$ 70$	$\$ 70$	$\$ 100$
Annual maintenance	$\$ 5$	$\$ 3$	$\$ 1$
Life (years)	15	25	50

SOLUTION

Since there are three lives, theoretically the EACs are all comparable only if a 150-year horizon is used (the least common multiple for 15,25 , and 50). This 150 -year horizon is also required for a PW analysis. When engineering economy is used to solve real-world problems, however, comparing EACs is the tactic of choice.

$$
\begin{aligned}
& \mathrm{EAC}_{\text {minQ }}=105(A / P, 6 \%, 15)+5=\$ 15.81 \text { per square } \\
& \mathrm{EAC}_{\text {maxQ }}=140(A / P, 6 \%, 25)+3=\$ 13.95 \text { per square } \\
& \mathrm{EAC}_{\text {metal }}=220(A / P, 6 \%, 50)+1=\$ 14.96 \text { per square }
\end{aligned}
$$

Based on this comparison, Charley should choose the higher-quality shingles. Those shingles save $\$ 1$ per year per square over the metal roofing and nearly $\$ 2$ over the minimum-quality shingles.

9.6 Using EAC for Different-Length Lives Is a Robust Approach

Even though cash flows may not be identically repeated, EAC comparisons of alternatives with different-length lives are economically robust [Eschenbach and Smith]. This robustness or stability of conclusions is based on (1) discounting later cash flows more heavily due to money's time value and (2) the uncertainty in lives and study periods.

Since estimated lives are often $5,10,15,20,25$, or 50 years, being overly precise is not realistic. For example, a 50 -year horizon with a 15 -year alternative implies three complete lives and a fourth that is terminated after 5 years. This explicit pattern is less meaningful than simply using the EAC approach and picking the most cost-effective alternative.

Robustness Due to Discounting. Cash flows may change over the 60 years implied by comparing a 15 -year EAC with a 20 -year EAC. Usually, however, the largest changes from the estimated cash flows occur near the horizon of 60 years, and they are discounted heavily.

One of the largest changes that can occur is to "throw away" a repetition with no residual value only partway through its life. Example 9.8 compares 15 -year and 25 -year alternatives over a 50 -year study period rather than over the implicit 150 -year study period of the EAC comparison. Even though the last repetition of the 15 -year alternative is truncated after a third of its life, its EAC only increases by 1.7%. Larger annual O\&M costs or truncating both alternatives would make the comparison even more robust.

This robustness holds true even for the comparison of 3-year and 4-year EACs, in which the implicit study period is only 12 years. Example 9.9 returns to the data of Examples 9.3 through 9.5 , where the use of a 10 -year study period instead of the 12 -year period only increases the EACs by $\$ 159$, or 3.4%, for the brass pump and $\$ 247$, or 5.5%, for the stainless steel pump. The EAC difference changes by less than 2% of the roughly $\$ 4700$ in EAC values.

EXAMPLE 9.8 Fifty-Year Horizon for Selecting the Cheapest Roof

How much do the EACs from Example 9.7 change if a horizon of 50 years is used? The i is still 6%.

SOLUTION

Since 50 is a multiple of 25 and 50 , the EAC for the maximum-quality shingles is still $\$ 13.95$ per square, and the EAC for the metal roofing is still $\$ 14.96$ per square. To find the EAC for the minimum-quality shingles, replacement at years 15,30 , and 45 is assumed. Also, no residual value at the horizon of 50 years is assumed for the 5 -year-old shingles from the replacement in year 45 .

The PW for buying and installing the minimum-quality shingles can be found by assuming that the $\$ 105$ per square will be incurred in years $0,15,30$, and 45 . Then, the EAC for 50 years can be calculated, including the $\$ 5$ per year maintenance cost.

$$
\begin{aligned}
\mathrm{PW}_{\operatorname{minQ}} & =-105[1+(P / F, 6 \%, 15)+(P / F, 6 \%, 30)+(P / F, 6 \%, 45)]=-\$ 174.71 \\
\mathrm{EAC}_{\operatorname{minQ}} & =174.71(A / P, 6 \%, 50)+5=11.08+5=\$ 16.08 \text { per square }
\end{aligned}
$$

Thus, even though some 15 -year shingles are discarded after only 5 years, the EAC is increased by only $\$.27$, or 1.7%. This change is not significant.

EXAMPLE 9.9 Present Worth with Assumed Residual Values

For the brass and stainless steel pumps in Examples 9.3 through 9.5, use a 10-year study period. Compare the EACs with those calculated for a 12 -year study period and those for 3-, 4-, and 5-year periods.

SOLUTION

The residual value for the brass pump was assumed to be $\$ 6 \mathrm{~K}$ after 1 year of use, $\$ 2 \mathrm{~K}$ after 2 years, and $\$ 0$ after 3 years. Similarly, the residual values for the stainless steel pump are assumed to be $\$ 9 \mathrm{~K}, \$ 4.5 \mathrm{~K}, \$ 1.5 \mathrm{~K}$, and $\$ 0$ after $1,2,3$, and 4 years, respectively.

The PW values calculated in Example 9.4 are converted to EACs (shown in the following table) by multiplying them by the (A / P) factors for 3,4 , and 5 years. The EACs for 10 years are calculated directly as follows:

$$
\begin{aligned}
\mathrm{EAC}_{\text {brass }} & =\left[12 \mathrm{~K}+12 \mathrm{~K} /(1.08)^{3}+12 \mathrm{~K} /(1.08)^{6}+12 \mathrm{~K} /(1.08)^{9}-6 \mathrm{~K} /(1.08)^{10}\right](A / P, 8 \%, 10) \\
& =(35.09-2.78)(.1490)=\$ 4815 \\
\text { EAC }_{\text {stainless }} & =\left[15 \mathrm{~K}+15 \mathrm{~K} /(1.08)^{4}+15 \mathrm{~K} /(1.08)^{8}-4.5 \mathrm{~K} /(1.08)^{10}\right](A / P, 8 \%, 10) \\
& =(34.13-2.08)(.1490)=\$ 4776
\end{aligned}
$$

EAC

Period	Brass	Stainless Steel	Difference
3	$\$ 4656$	$\$ 5359$	$-\$ 703$
4	5169	4529	640
5	5049	4984	65
10	4815	4776	39
12 or ∞	4656	4529	127

Thus, with these assumed residual values, the brass pump is best with 3 years (where the stainless steel pump has a negligible residual value). The stainless steel pump is best with 4,5 , 10,12 , or a long but indefinite horizon.

Engineered products rarely have precisely defined lives.

Robustness Due to Estimated Lives. Engineered products and projects rarely have precisely defined lives. A life of 4 years may really be between 3 and 7 years. The period of use is often defined even less precisely. The 10- or 20- or 50-year horizon is chosen as a limit to how far in the future costs and revenues will be estimated and considered, but the actual use period may be much longer.

The life of each alternative is not precise, and the study period is also not precise. Thus, it is of little value to take the approach of Example 9.9, in which 3- and 4-year alternatives are evaluated over a 10 -year life using residual values for early terminations. However, this example was necessary to show that assuming a life of 3 years and a small residual value for the stainless steel pump can make a difference that should be avoided when possible. As stated earlier, the preferred approach is to assume an indefinite study period and to use EACs or EAWs.

Moreover, lives of alternatives are extended to match changed situations. For example, you might buy a used car with a plan of keeping it for 4 years. However, if after 4 years you are planning to move to a new part of the country, or the kind of vehicle that you need will be changing due to changes in family size or interests, then you are likely to keep the used car for another year or so. Repair costs may be a little high, but buying another car and then changing cars after a year would be much more expensive.

Think of the problem this way: The horizon for using the mutually exclusive alternatives (10 years) is well beyond the life of either alternative (3 or 4 years). Replacements will be purchased later, when better estimates will be available for the remaining use period and for the lives and costs of new alternatives. Still, why not compare the EACs of each alternative over its "best life" and choose the cheapest?

This can be restated as: Compare EACs (with the given life for each alternative) whenever the study period is indefinitely longer than the lives. Or, stretch the restatement slightly to assume that $N=\infty$ is the "same as" N that is longer than the lives of the alternatives.

There are exceptions when this approach should not be used. For example, a contract to supply items may run for exactly 3 years, with a low probability of follow-on work, or the exclusive term for a pharmaceutical product may run for exactly 8 more years. Also, when comparing very short-lived alternatives with much longer-lived alternatives, it may be necessary to carefully define a study period and then match alternatives to it. The replacement of aging assets with new ones is a common example of this short-life/long-life comparison (see Chapter 10 for details).

9.7 Benefit/Cost and IRR Comparisons of Mutually Exclusive Alternatives Require Incremental Analysis

Previous sections have shown that maximizing PW or EAW or minimizing EAC will select the best mutually exclusive alternative. As shown in Example 9.10, maximizing the IRR

Incremental

analysis evaluates
the difference between two or more mutually exclusive alternatives.
or the benefit/cost ratio does not work. Instead, incremental analysis, which evaluates the difference, or the increment, between two or more mutually exclusive alternatives is required—as shown in Example 9.11.

EXAMPLE 9.10 Nonincremental IRR and Benefit/Cost Measures Can Fail

A contractor operates Smallville's recycling center. Part of the incineration equipment is not working up to the original specifications, and the question is how much of a fix (if any) should be made now. That part of the facility is scheduled for a complete rebuild in 4 years. The quick-fix (QK) approach works pretty well for the first year, saving $\$ 4000$; but each year, the savings fall by $\$ 1000$. The quality-fix (QL) approach solves the problem for 4 years, with a savings of $\$ 4300$ per year.

Smallville uses an interest rate of 10%. Use IRR (for the contractor) and benefit/cost (B/C) ratios (for Smallville) to evaluate alternatives QK and QL. Compare these results with PW results. Which supports the correct decision?

SOLUTION

The first step is to draw the cash flow diagrams, and then the various measures are calculated.

The maximize PW criteria proves that QL, the quality-fix approach, is better. However, the quick-fix approach, QK, has both a higher IRR and benefit/cost ratio. Clearly, maximizing IRR or benefit/cost ratios can indicate the wrong decision.

EXAMPLE 9.11 Incremental IRR and Benefit/Cost Measures Are Correct (Example 9.10 Revisted)

Use incremental analysis for the IRR and benefit/cost calculations to compare approaches A and B. From Example 9.10, the quick-fix approach can be justified ($\mathrm{PW}_{\mathrm{QK}}>0, \mathrm{IRR}_{\mathrm{QK}}>10 \%, \mathrm{~B} / \mathrm{C}_{\mathrm{QK}}>1$). The only question is whether QL is better than QK .

SOLUTION

The first step is to draw the cash flow diagram for the incremental comparison, and then the various measures are calculated.

All three measures indicate that the incremental investment required to do QL rather than QK is worthwhile.

Example 9.12 illustrates that the values of the incremental benefit/cost ratio may not always indicate just how attractive an incremental investment is. The PW and IRR measures do show a very attractive incremental investment.

EXAMPLE 9.12 Comparing IRRs and Benefit/Cost Ratios

In this example, the interest rate is 10%, and X and Y are mutually exclusive. Compare their ratios and their IRRs for the total projects and for the correct incremental comparison.

	Project	
	X	Y
First cost	$\$ 10 \mathrm{M}$	$\$ 12 \mathrm{M}$
Annual benefit	$\$ 1.3 \mathrm{M}$	$\$ 8 \mathrm{M}$
Annual cost	$\$ 0$	$\$ 5.8 \mathrm{M}$
Life (years)	20	20

SOLUTION

Project

	X	
\mathbf{Y}		
B/C $\mathrm{C}_{10 \%}$	$11.07 / 10=1.107$	$68.11 /(12+49.38)=1.1097$
IRR	11.54%	17.62%
$\mathrm{~B}-\mathrm{C}_{10 \%}$	$\$ 1.07 \mathrm{M}$	$\$ 6.73 \mathrm{M}$

Incremental Analysis for $\mathrm{Y}-\mathrm{X}$

First cost	$\$ 2 \mathrm{M}$
Annual benefit	$\$ 6.7 \mathrm{M}$
Annual cost	$\$ 5.8 \mathrm{M}$
$\mathrm{B} / \mathrm{C}_{10 \%}$	$\$ 55.34 \mathrm{M} /(\$ 2 \mathrm{M}+\$ 49.38 \mathrm{M})=1.077$
$i_{\mathrm{Y}-\mathrm{X}}$	45.0%
$\mathrm{~B}-\mathrm{C}_{10 \%}$	$\$ 5.66 \mathrm{M}$

Even though all of the benefit/cost ratios are close to 1.1 at $i=10 \%$, the IRR for project Y at 17.6% is much better than the 11.5% IRR for project X. All three incremental values confirm that Y is the best choice. The incremental PW of $\$ 5.66 \mathrm{M}$ and the incremental IRR, $i_{\mathrm{Y}-\mathrm{x}}$, of 45% emphasize how much better Y is, while the incremental ratio of 1.077 does not.

The easiest way to make a mutually exclusive comparison is to rely on the present values of $\mathrm{B}-\mathrm{C}=\$ 1.07 \mathrm{M}$ for X and $\$ 6.73 \mathrm{M}$ for Y . The PW of project Y is $\$ 5.66 \mathrm{M}$ higher.

9.8 Defender/Challenger Analysis

Incremental analysis evaluates the difference, or the increment, between two or more mutually exclusive alternatives. With three or more alternatives, this approach is labeled as a defender/challenger analysis. This approach is required to correctly apply IRR, benefit/ cost ratio, or PW index measures to mutually exclusive alternatives.

The steps of incremental analysis are:

1. Order the alternatives in terms of increasing first costs.
2. Calculate the economic value of the do-nothing alternative or, if doing nothing is prohibited, the least expensive alternative.
3. One by one, evaluate the incremental difference between each alternative (the "challenger") and the best alternative found so far (the "defender").

Incremental analysis begins by ordering the alternatives in terms of increasing first costs, which ensures that the increments have cash flow patterns corresponding to investments. Thus, the IRRs that are greater than or equal to the MARR and the benefit/cost ratios that are greater than or equal to 1 represent incremental investments that should be made. In that case, the challenger is better than the defender.

There are two other standards that are incorrect (see Section 9.7) but are sometimes suggested. These are (1) maximizing the IRR or the benefit/cost ratio and (2) choosing the largest project with an acceptable IRR or benefit/cost ratio. As shown in Example 9.13, these approaches may not lead to a correct recommendation.

EXAMPLE 9.13 Incrementally Comparing Mutually Exclusive Alternatives

Each of alternatives X, Y, and Z has a life of 5 years. Which is the best if the MARR is 10% ? Doing nothing is allowed, but the alternatives are mutually exclusive.

Alternative	First Cost	Annual Return	IRR	PW at $\mathbf{1 0 \%}$ \%
X	$\$ 10 \mathrm{~K}$	$\$ 2913$	14.0%	$\$ 1043$
Y	15 K	4266	13.0	1171
Z	18 K	5037	12.4	1094

SOLUTION

Without using incremental analysis, this problem could be solved by choosing the alternative with the largest PW-that is, project Y .

The first step of incremental analysis, that of ranking in order of increasing first cost, has already been done. The order is alternative X, Y, and Z . The first defender is doing nothing. Alternative X, the first challenger, has an incremental first cost of $\$ 10 \mathrm{~K}$ and an incremental annual return of $\$ 2913$ over doing nothing. The incremental IRR for X is 14.0%, and X is preferred to doing nothing.

Next, Y is the new challenger, and X is the new defender. The incremental first cost is $\$ 5 \mathrm{~K}$, and the incremental return is $\$ 1353$ per year. Solving for the incremental IRR relies on a PW equation.

$$
P W=0=-5 K+1353\left(P / A, \operatorname{IRR}_{Y-X}, 5\right) \Rightarrow \operatorname{IRR}_{Y-X}=11.0 \%
$$

Since $11.0 \% 10 \%$, Y is preferred to X . The incremental PW is $\$ 1171-\$ 1043=\$ 128$, which also confirms that Y is preferred to X . Since X has the largest IRR, this shows that that criteria is incorrect.

Next, Z is the new challenger, and Y is the new defender. The incremental first cost is $\$ 3 \mathrm{~K}$, and the incremental annual return is $\$ 771$. Solving for the incremental IRR relies on:

$$
\mathrm{PW}=0=-3 \mathrm{~K}+771\left(P / A, \mathrm{IRR}_{\mathrm{Z}-\mathrm{Y}}, 5\right) \Rightarrow \mathrm{IRR}_{\mathrm{Z}-\mathrm{Y}}=9.0 \%
$$

Since $9.0 \%<10 \%$, the increment is not justified. The defender, Y , is preferred to the challenger, Z . Note the incremental PW is $-\$ 77$.

Z is the largest project, and it has an acceptable IRR (12.4% compared with doing nothing). Since Y is better, this example shows that the criterion of choosing the largest acceptable project is incorrect.

Exhibit 9.2 illustrates that these incremental rates correspond to where the $\mathrm{PW}_{\mathrm{X}}=\mathrm{PW}_{\mathrm{Y}}$ for $\operatorname{IRR}_{\mathrm{Y}-\mathrm{X}}$ and $\mathrm{PW} \mathrm{Y}_{\mathrm{Y}}=\mathrm{PW} \mathrm{Z}_{\mathrm{Z}}$ for $\mathrm{IRR}_{\mathrm{Z}-\mathrm{Y}} . \mathrm{Y}$ is the preferred alternative, since it has the highest PW at 10%, the MARR.

EXHIBIT 9.2a Comparing X, Y, and Z using PW and IRR

Exhibit 9.2a can also be restated as a choice table as in Exhibit 9.2b.
EXHIBIT 9.2b Choice table for Example 9.13

Best choice	Z	Y	X	Do nothing
Interest rate	$0-9 \%$	$9-11 \%$	$11-14 \%$	$14 \%+$

Defender/challenger analysis can be simplified by recognizing some relationships between the defender, the challenger, and the increment between them. These relationships are summarized in Exhibit 9.3, where the graphs assume that both alternatives are investments, that the initial cost of the challenger is larger, and that the sum of the cash flows for the challenger is larger. These assumptions ensure that neither choice is always dominant.

EXHIBIT 9.3 Possible defender, challenger, and incremental comparisons

Case	Defender	Increment	Challenger	Do
1	+	+	+	Challenger
2	+	-	+	Defender
3	+	-	-	Defender
4	-	+	+	Challenger 5
	-	+	-	None if possible; challenger if not
6	-	-	-	None if possible;
	+	+	-	defender if not
	-	-	+	Impossible

9.9 PW, EAW, and IRR Have the Same Interest Rate Assumption

The interest rate, i^{*}, used for PW, EAW, EAC, and benefit/cost ratio calculations is the assumed minimum attractive rate of return (MARR) or reinvestment rate. This rate for the time value of money is developed using the methods in Chapter 11.

This MARR is also the reinvestment assumption when the IRR technique is used [Lohmann], but some writers on engineering economy and finance have incorrectly said that the IRR approach assumes that the IRR is the reinvestment rate [Bussey and Eschenbach].

EXHIBIT 9.4 PW, IRR, and the MARR (Repeated from Example 9.11)

The confusion arises because the IRR approach requires incremental analysis (see Section 9.7) when applied to mutually exclusive alternatives. The fact is that the IRR uses the same interest rate as the other approaches. In PW, EAW, EAC, and benefit/cost ratio calculations, i^{*} appears in every factor. For the IRR approach, i^{*} is used as a standard of comparison.

For loans, a good IRR is below i^{*}; for investments, a good IRR is above i^{*}. The PW, EAW, EAC, benefit/cost ratio, and IRR approaches make the same assumptions; when applied properly, they support the same recommendations.

The confusion about the reinvestment rate for the IRR arises because of examples like projects QK and QL, whose cash flows are shown in Exhibit 9.4. Project QL has a PW of $\$ 1630$ at 10%, while project QK's PW is $\$ 1301$. Project QL has a higher PW at the given MARR of 10%, and it is the preferred project at that MARR. Project QK has a higher IRR, 20.5%, than project QL, 16.1%. Some authors have incorrectly argued this implies that project QK is preferred and that it assumes reinvestment at the IRR for project $\mathrm{QK}, i_{\mathrm{QK}}$.

Section 9.7 detailed how to apply IRRs in an incremental analysis. This analysis shows that in Exhibit 9.4, project QL is preferred for any interest rate less than the 12.3% rate, which is the rate at which projects QK and QL have the same PW. This includes the 10% MARR. The extra effort of incremental analysis is required to properly use IRRs (and benefit/cost ratios) for mutually exclusive alternatives. This extra effort explains why the PW, EAW, and EAC approaches are preferred for mutually exclusive alternatives.

The only limitation on the use of IRRs to compare mutually exclusive alternatives is whether a unique root exists for the PW or EAW equation that is used to find the IRR. This
is theoretically a problem for mutually exclusive comparisons, especially those involving different-length lives. However, the large number of problems solved by setting EAW Alt. 1 equal to $\mathrm{EAW}_{\text {Alt. } 2}$ suggests that the practical difficulties are minimal.

Example 9.14 illustrates how EAWs depend on the interest rate at which they are computed. If the MARR is known, as it must be for mutually exclusive alternatives, the preferred alternative has the highest PW or EAW or the lowest EAC - at that MARR.

EXAMPLE 9.14 The Cheapest Roof Depends on the MARR

In Example 9.7, Charley was selecting materials for a state-subsidized housing development with a life of 75 years and an i of 6%. For what MARRs besides 6% are the maximum-quality shingles the best? For MARRs between 0% and 15%, which roof has the lowest EAC?

	Min.-Quality Shingles	Max.-Quality Shingles	Metal Roofing
Buy	$\$ 35$	$\$ 70$	$\$ 120$
Install	$\$ 70$	$\$ 70$	$\$ 100$
Annual maintenance	$\$ 5$	$\$ 3$	$\$ 1$
Life (years)	15	25	50

SOLUTION

Calculating the EACs is easy, particularly if a spreadsheet is used. Exhibit 9.5 summarizes the results of applying the following equations.

$$
\begin{aligned}
& \mathrm{EAC}_{\text {minQ }}=105(\mathrm{~A} / P, i, 15)+5 \\
& \mathrm{EAC}_{\text {maxQ }}=140(A / P, i, 25)+3 \\
& \mathrm{EAC}_{\text {metal }}=220(\mathrm{~A} / \mathrm{P}, \mathrm{i}, 50)+1
\end{aligned}
$$

The best roof is the one with the lowest EAC. For MARRs between 0% and 4.86%, the metal roof is the best; for MARRs between 4.86% and 10.95%, the maximum-quality shingles are the best; and for MARRs above 10.95%, the minimum-quality shingle roof is the best. At a MARR of 6%, this graph confirms that the maximum-quality shingles are slightly cheaper than the metal roof.

EXHIBIT 9.5 Cheapest EAC depends on the MARR

9.10 Using the Spreadsheet GOAL SEEK Tool to Calculate Incremental IRRs

Several spreadsheets have equivalents to the GOAL SEEK tool in Excel. These tools identify a formula cell, a target value, and a variable cell. Then, the variable cell is changed automatically by the computer so that the formula cell has the target value.

Note that the variable cell must somehow affect the formula cell, although the variable cell need not appear directly in the formula cell. In Exhibit 9.6, the incremental interest rates (cells A8:A10) appears in the PMT formulas (cells B8 to D10) but not in the formula cells (cell E8:E10).

This problem would be extremely difficult to solve without the GOAL SEEK tool. If cash flows were identified so that incremental cash flows could be found, there would be 150 periods! On the other hand, financial functions make it easy to calculate EACs, and the formula cell can be the difference between two EACs. Then, for each (incremental interest rate) GOAL SEEK specifies a target cell in column E , a target value of 0 , and a value to vary.

EXHIBIT 9.6 Using GOAL SEEK to find incremental IRRs with EACs

	A	B	C	D	E	F
1		MinQ	MaxQ	Metal		
2	Buy	$\$ 35$	$\$ 70$	$\$ 120$		
3	Install	$\$ 70$	$\$ 70$	$\$ 100$		
4	O\&M	$\$ 5$	$\$ 3$	$\$ 1$		
5	Life	15	25	50		
6						
7	Incremental i	EAC MinQ	EAC MaxQ	EAC Metal		
8	10.95%	$\$ 19.56$	$\$ 19.56$		$\$ 0.00$	$=\mathrm{B} 8-\mathrm{C} 8$
9	6.68%	$\$ 16.30$		$\$ 16.30$	$\$ 0.00$	$=\mathrm{B} 9-\mathrm{D} 9$
10	4.86%		$\$ 12.80$	$\$ 12.80$	$\$ 0.00$	$=\mathrm{C} 10-\mathrm{D} 10$
11						
12		$=\mathrm{C} \$ 4-\mathrm{PMT}(\$ A 10, \mathrm{C} \$ 5, \mathrm{C} \$ 2+\mathrm{C} \$ 3)$				

Choosing the most economical design is one of the most common problems solved by engineers. Such problems allow only one alternative to be implemented, so the choice is between mutually exclusive alternatives. The interest rate must be given for this class of problem.

This chapter has shown that using PWs, EAWs, or EACs is the easiest way to compare mutually exclusive alternatives. If the lives of the different alternatives are the same, then present worth comparisons work as easily as annual measures.

If the alternatives have different-length lives, then comparing EAWs or EACs is much easier than comparing PWs. Usually, the best implicit assumption is that costs repeat identically until the least common multiple of the lives being compared, even though theoretically this may not be realistic. As shown in Section 9.6, the implicit assumption is quite robust. Assuming identical repetitions is often better-and always easier-than assigning residual values that may be arbitrary.

This chapter has shown that incremental analysis is required to apply IRR, benefit/ cost or present worth index measures to mutually exclusive alternatives. It has also emphasized that the reinvestment asssumptions of PW, EAW, and IRR are the same-that is, reinvestment at the MARR or i^{*}. This chapter has demonstrated that the spreadsheet GOAL SEEK tool is very useful in calculating incremental IRRs.

Exhibit 9.7 summarizes the use of evaluation techniques for mutually exclusive problems.

EXHIBIT 9.7 Selecting an evaluation technique for choosing at most one design from a mutually exclusive set (Chapter 9)

Best

Maximize PW—if lives match.
Maximize EAW—whether or not lives match.
Minimize EAC-whether or not lives match.
Acceptable with residual values
Maximize PW-if lives do not match.
Acceptable to use defender/challenger or incremental analysis
Is the incremental IRR better than i^{*} ?
Is the incremental benefit/cost >1 ?
Is the incremental PW index >1 ?
Not acceptable
Payback period (ignores money's time value and cash flows after payback).

REFERENCES

Bussey, Lynn E., and Ted G. Eschenbach, The Economic Analysis of Industrial Projects, 2nd ed., 1992, Prentice-Hall, Chapter 8.
Eschenbach, Ted G., and Alice E. Smith, "Sensitivity Analysis of EAC's Robustness," The Engineering Economist, Volume 37, Number 3, Spring 1992, pp. 263-276.
Lohmann, Jack R., "The IRR, NPV and the Fallacy of the Reinvestment Rate Assumptions," The Engineering Economist, Volume 33, Number 4, Summer 1988, pp. 303-330.

Problems

9.1 Which is more economical, heating with natural gas or with electricity? Assume that both the equipment and the building have a 25 -year life, that the salvage value is 0 for both, and that the interest rate is 8%.

Fuel	First Cost	Annual Heating Cost
Natural gas	$\$ 15,000$	$\$ 1200$
Electricity	8000	1900

9.2 Which is more economical, a tile floor or a wood floor? Assume that the public building has a life of 50 years, no salvage value, and either floor will last the 50 years with proper maintenance. Both floors cost $\$ 1500$ per year for cleaning and waxing. The interest rate is 4%. The tile floor will cost $\$ 35,000$ to install. The wood floor will cost $\$ 25,000$ to install. The wood floor must be refinished every 5 years for $\$ 6000$. (Answer: Tile floor saves $\$ 602$ per year.)
9.3 Flincham Fine Paints can buy new painting equipment for $\$ 10,000$. Its useful life is 5 years, after which it can be sold for $\$ 2000$. Estimated annual costs are $\$ 1000$, and it should save Flincham $\$ 3000$ per year. If Flincham's MARR is 6%, should the equipment be purchased? Use PW analysis.
9.4 Hagen Hardwood Floors must purchase new finishing equipment. The cash flows for each alternative are presented below. If Hagen's MARR is 10%, which setup should be chosen?

	First Cost	Annual Cost	Useful Life
Smoothie	$\$ 3000$	$\$ 1660$	4 years
Blaster	5000	1000	4 years

(Answer: Blaster saves \$29/year)
9.5 A manufacturer, whose MARR is 20\%, may replace a manual material handling system with one of two automated systems. What course of action is appropriate?

	Cost	Savings	Useful Life
System A	$\$ 100,000$	$\$ 10,290$	15 years
System B	115,000	16,880	15 years

9.6 The Do-Drop-Inn must choose between two alternatives for a new swimming pool. If Do-Drop's cost of capital is 10%, which alternative should be chosen?

	A	B
Cost	$\$ 30,000$	$\$ 38,000$
Annual operating cost	$\$ 3000$	$\$ 1750$
Rebuilding cost in year 6	$\$ 5000$	$\$ 3500$
Useful years	12	12

(Answer: B's PW is $\$ 1360$ better)
9.7 Green Acre Farms must replace the piping system in its milking barn. Based on EAW and a cost of capital of 12%, which of the following two alternatives should be chosen?

	Pamper Pipes	Fluid Flush
First cost	$\$ 75,000$	$\$ 90,000$
Operating costs per year	$\$ 5000$	$\$ 4000$
Savings per year	$\$ 1000$	$\$ 2000$
Salvage value	$\$ 0$	$\$ 2000$
Useful life	10	10

9.8 Ousley Sporting Goods, Inc., is planning to purchase a new computer system for its warehouse. MBI and TTA have submitted the two most attractive bids. Use incremental analysis to decide which one should be selected if $i=13 \%$.

	Year	MBI	TTA
Cost	0	$\$ 10,000$	$\$ 15,000$
Annual savings	$1-5$	2985	4160

(Answer: MBI saves \$246.5/year)
9.9 Better Burger must replace its current grill setup. The two best alternatives are the Burna-Burger and the Chara-Burger. The Burna-Burger costs $\$ 12,000$ to buy and $\$ 1000$ in annual operating costs. At the end of the 8 years, the setup can be sold as scrap for $\$ 500$. The Chara-Burger costs $\$ 15,000$ to buy and $\$ 500$ per year for operating costs. The setup can be sold for $\$ 1000$ at the end of 8 years. Using a MARR of 8%, which setup should be chosen?
9.10 The state highway department may purchase new lawn-mowing equipment. The best alternative requires an initial investment of $\$ 90,000$. Each year, the new equipment is expected to save the state $\$ 19,500$. The equipment will be used for 6 years and has little or no expected salvage value. Using benefit/cost analysis and an interest rate of 10%, should the equipment be purchased? (Answer: $\mathrm{B} / \mathrm{C}=.944$; no)
9.11 The Green Thumb Seed Company may purchase a new security system for its lab. Each alternative has a 10-year useful life. Which system should be purchased, based on payback analysis? Is the answer different using EAC at an i of 6% ?

Alternative	Cost	Annual Savings	Salvage Value
I Spy	$\$ 120,000$	$\$ 20,000$	$\$ 10,000$
Gotcha	140,000	22,000	25,000

9.12 The Tom Thumb Railroad Company is considering new automated ticketing equipment, which has a life of 20 years. The Kwik-Print ticket machine costs $\$ 50,000$ and is expected to produce net savings of $\$ 14,000$ the first year. Each year after the first, net savings will drop by $\$ 1000$ until they reach $\$ 6000$. These $\$ 6000$ savings will continue for the machine's remaining life. The Tick-Stamp costs $\$ 54,000$ and is expected to save $\$ 8000$ per year. Based on discounted payback analysis and a MARR of 8%,
which machine should be chosen? Does the EAC measure lead to the same decision?
9.13 Two proposals are presented to your company. Both proposals have a first cost of $\$ 20 \mathrm{~K}$. Proposal A has an annual cash flow of $\$ 5 \mathrm{~K}$ for 6 years. Proposal B has cash flows that begin at $\$ 3 \mathrm{~K}$ and that increases by $\$ 1 \mathrm{~K}$ per year for a 6-year life. If your company uses 12% as its cost of money, which would you recommend? (Answer: $\mathrm{EAW}_{\mathrm{B}}$ is $\$ 172$ higher)
9.14 The Oliver Olive Stuffing Company is considering the purchase of new, more efficient stuffing equipment. Which one should be purchased $(i=11 \%)$ if $N=20$?

	First Cost	Annual Operating Costs	Annual Savings
Stuff-It	$\$ 100 \mathrm{~K}$	$\$ 100 \mathrm{~K}$	$\$ 122 \mathrm{~K}$
Stuffer-Full	135 K	100 K	128 K

9.15 Which project should be selected if the following projects are mutually exclusive and the minimum attractive rate of return is 12% ? Each project has a life of 10 years.

Project	First Cost	Annual Benefit
A	$\$ 15,000$	$\$ 2800$
B	20,000	4200
C	10,000	2400
D	30,000	6200
E	40,000	7600

9.16 George is going to replace his car in 3 years when he graduates, but now he needs a radiator repair. The local shop has a used radiator, which comes with a 2 year guarantee; or the shop can install a new unit that is "guaranteed for as long as you own the car." The used radiator is $\$ 250$ and the new one is $\$ 450$. George's interest rate on his credit card is 20%.
(a) If he assumes the used radiator will last 2 years, which should he buy?
(b) If he assumes the used radiator will last 3 years, but will need to be replaced so he can sell the car, which should he buy?
9.17 A business magazine is available for $\$ 68$ for 1 year, $\$ 127$ for 2 years, or $\$ 224$ for 3 years. Assume you will read the magazine for at least the next 3 years. For what interest rates do you prefer each payment plan?
9.18 Three office furniture firms that offer different payment plans have responded to a request for bids. Using a 12% nominal interest rate, compounded monthly, which firm should be chosen?

	Price	Payment schedule
OfficeLess	$\$ 185,000$	50% now, 25\% in 6 months, 25% in 1 year
OfficeMore	$\$ 182,000$	50% now, 50% in 6 months
OfficeStation	$\$ 198,000$	100% in 1 year

9.19 Using the current specifications a new road will cost $\$ 1.5 \mathrm{M}$ initially, it will need $\$ 120 \mathrm{~K}$ in annual maintenance, and it will need to be resurfaced every 10 years for $\$ 1.1 \mathrm{M}$. A proposed new specification is expected to be more resistant to wear. The initial cost will be $\$ 2.1 \mathrm{M}$, it will need $\$ 90 \mathrm{~K}$ in annual maintenance, and it will need to resurfaced every 15 years for $\$ 1.3 \mathrm{M}$. At the highway department's 6% interest rate, which is preferred? Use capitalized cost.
9.20 The following projects are mutually exclusive. Which one should be done if the MARR is 12% ? All of the following projects have a life of 10 years.

Project	First Cost	Annual Benefit
A	$\$ 15,000$	$\$ 4350$
B	20,000	4770
C	10,000	2400
D	30,000	9200
E	40,000	8000
F	25,000	8100

9.21 The following projects each have a first cost of $\$ 2000$. If they are mutually exclusive and the MARR is 12%, which one(s) should be done? Why?

Proj.	$\begin{aligned} & \text { PW at } \\ & 12 \% \end{aligned}$	IRR	B/C Ratio	Benefits Each Year				
				1	2	3	4	5
A	\$605	25.0\%	1.30	\$900	\$800	\$700	\$600	\$500
B	803	25.8	1.40	600	700	800	900	1000
C	1405	24.6	1.70	0	0	0	0	6000
D	704	25.4	1.35	750	750	750	750	750
E	1128	40.8	1.56	1400	1100	800	500	200

(Answer: Do project C; it has the largest PW at 12\% MARR)
9.22 A city engineer must choose between two different routes for a new sewer line. Route 1 is a 20,000 -foot gravity line, which includes 8000 feet of tunneling at $\$ 250$ per foot. The remaining 12,000 feet will cost $\$ 80$ per foot. The annual maintenance cost is expected to be $\$ 2000$. Route 2 is a 23,000 -foot line requiring a pumping station, which will cost $\$ 840 \mathrm{~K}$ to build and $\$ 15 \mathrm{~K}$ annually to operate and maintain. The sewer line costs $\$ 80$ per foot and will cost $\$ 2100$ annually to maintain. The expected life of the station and both lines is 35 years. Using an interest rate of 8%, which route should be chosen?
9.23 The P\&J Brewery must select one of the four alternatives presented below. If money costs P\&J 8%, what decision should be made, based on EAW? Each investment is to be evaluated for 6 years.

Alternative	Cost	Annual Benefits
A	$\$ 10,000$	$\$ 2100$
B	15,000	3250
C	17,500	3800
D	20,000	4350

9.24 The local electric company may renovate a number of substations within its system. Various costs and savings can be anticipated, depending on the type of renovation performed. Using benefit/cost analysis and an interest rate of 12%, determine which alternative should be chosen.

Alternative	First Cost	Annual Cost	Annual Savings	Life
A	$\$ 1,100,000$	$\$ 24,000$	$\$ 180,000$	20 years
B	$1,500,000$	36,000	245,000	20 years
C	$1,750,000$	41,000	295,000	20 years

9.25 Which pump should be installed if the MARR is 12% ?

Type	First		
Cost		\quad	Annual
---	---	---	---
O\&M Costs	\quad Life	Brass	$\$ 13,000$
:---	---:	:---:	---:
Stainless steel	17,000	1950	12 years

(Answer: Stainless saves $\$ 123$ per year)
9.26 Compare the PWs of the following two pumps at an interest rate of 15%. Which one should be installed?

What horizon did you use? If necessary, assume that the salvage value for early termination is a linear interpolation between the given first cost and the salvage value.

Pump	First Cost	Annual O\&M Costs	Salvage Value	Life
Brass	$\$ 5500$	$\$ 450$	$\$ 1000$	6 years
Titanium	7500	350	2000	9 years

9.27 Which of the following two processing pumps should be purchased? The interest rate is 8%. How much better is the EAC for the recommended pump? What assumptions have you made?

Type	First Cost	Annual Operations	Life
Brass	$\$ 4875$	$\$ 1925$	10 years
Stainless steel	6450	1730	15 years

(Answer: Stainless steel saves $\$ 168$ per year)
9.28 For the pumps in Problem 9.27, graph the EACs as a function of i. Use rates between 0% and 25%.
9.29 Two alternative bridges have the same supports and approaches. However, one is made of a new galvanized steel, and the other is made of more conventional painted metal. The galvanized bridge has a life of 45 years, and the painted bridge has a life of 30 years. For the following costs, compare the PWs of the two choices. What life did you use, and what assumptions did you make? $\left(i^{*}=8 \%\right)$

Type	First Cost	Annual Operations
Galvanized steel	$\$ 85$ million 60 million	$\$ 1.5$ million Painted metal

9.30 If you drive 10,000 miles per year, which tire should you buy? Tire A costs $\$ 65$ and should last 40,000 miles. Tire B costs $\$ 85$ and should last 60,000 miles. You have an outstanding balance on your credit card, and you are paying 20% as an effective annual rate.
(a) What are comparable EACs for the two alternatives?
(b) What are comparable PWs for the two alternatives?
(Answer to part a: Save $\$.45$ per year or 1.8% with tire A.)
9.31 Which pickup should be purchased by Northwest Construction for use by its job superintendent? How much does this choice save (using either PW or EAC)? Northwest uses a 12% rate to evaluate its capital investments. What assumptions have you made, and why?

Pickup	First Cost	Maintenance Cost/Year	Salvage Value	Life
New	$\$ 18,000$	$\$ 300$	$\$ 5000$	5 years
Old	10,000	750	3000	3 years

9.32 Which facility should be built to produce a new chemical? The expected market for the chemical is 20 years. An 8% rate is used to evaluate new process facilities. How much does the better choice save (either PW or EAC)?

	First Cost	O\&M Cost/year	Salvage	Working	
Capital	Life				
A	$\$ 16 \mathrm{M}$	$\$ 4 \mathrm{M}$	$\$ 4 \mathrm{M}$	$\$ 2 \mathrm{M}$	10 years
B	24 M	3 M	6 M	1.3 M	20 years

9.33 Which equipment is preferred if the firm's interest rate is 9% ? In PW or EAC terms, how great is the difference?

	Alternative	A
B		
First cost	$\$ 30,000$	$\$ 25,000$
Annual O\&M	$\$ 2500$	$\$ 3500$
Salvage value	$\$ 0$	$\$ 5000$
Overhaul at end of year 6	$\$ 10,000$	Not required
Life	10	5

9.34 Which roofing material should be chosen for a remote military installation that will operate for at least 30 years? Metal roofing costs $\$ 8.50$ per square foot installed, with annual maintenance costs of \$.80. Its life is 40 years. Fiberglass shingles cost only $\$ 6$ per square foot installed, with annual maintenance costs of $\$.95$. Their life should be about 20 years. How much does the best choice save (either PW or EAC)? A 10% rate is used to evaluate its capital investments. What assumptions have you made, and why?
9.35 Which machine should be chosen if a firm uses an interest rate of 12% ? Machine A has a life of 15 years, a first cost of $\$ 45,000$, annual $O \& M$ of $\$ 8000$, a salvage value of $\$ 6000$, and an overhaul in year 9
that costs $\$ 16,000$. Machine B has a life of 20 years, a first cost of $\$ 50,000$, annual O\&M of $\$ 8400$, a salvage value of $\$ 4000$, and an overhaul in year 12 that costs $\$ 20,000$. The machines will be used for at least 25 years. How much does the best choice save (either PW or EAC)? What assumptions have you made and why?
9.36 State University must choose between two new snow-removal machines. The Sno-Blower has a $\$ 60,000$ first cost, a 20-year life, and a $\$ 5000$ salvage value. At the end of 9 years, the machine requires a major overhaul costing $\$ 14,000$. Annual maintenance and operating costs are $\$ 8000$. The SnoMover will cost $\$ 40,000$, has an expected life of 10 years, and has no salvage value. The annual maintenance and operating costs are expected to be $\$ 10,000$. Using a 12% interest rate, which machine should be chosen?
9.37 The Thunderbird Winery must replace its present grape-pressing equipment. Two alternatives are under consideration, the Quik-Skwish and the Stomp-Master. The annual operating costs increase by 15% each year as the machines age. If the MARR is 8%, which press should be chosen?

Quik-Skwish Stomp-Master

Cost	$\$ 250,000$	$\$ 400,000$
Annual operating costs	$\$ 18,000$	$\$ 12,500$
Salvage value	$\$ 25,000$	$\$ 40,000$
Useful life (years)	5	10

9.38 Two mutually exclusive investment opportunities have been presented to "Money Bags" Battle. Which project (if any) should Money Bags invest in if his MARR is 10% ? Assume that neither project can be repeated.

	A	B
Cost	$\$ 10,000$	$\$ 8000$
Annual operating costs	$\$ 1500$	$\$ 1300$
End of investment receipt	$\$ 10,000$	$\$ 8000$
Life of investment	10 years	5 years

9.39 Given the following mutually exclusive alternatives, which should be chosen? Assume that neither alternative can be repeated. Use an interest rate of 6%. Which measure should be used, and why?

	A	B
Cost	$\$ 15,000$	$\$ 10,000$
Annual savings	$\$ 6000$	$\$ 4000$
Annual costs	$\$ 2000$	$\$ 1000$
Salvage value	$\$ 0$	$\$ 1000$
Useful life	6 years	4 years

9.40 Westnorth Airlines may purchase a New York to London route from Divided Airlines for $\$ 1.5 \mathrm{M}$. The new route should generate income of $\$ 1.2 \mathrm{M}$, with associated costs of $\$ 850 \mathrm{~K}$ each year for the next 8 years. (Government regulations require all international routes to be rebid in 8 years.) If Westnorth requires a 14% return on all investments, should the route be purchased? Analyze using appropriate IRRs.
9.41 For the data in Problem 9.30, find the incremental IRR for buying the more expensive tire.
9.42 For the Binder Book Company, choose from the following mutually exclusive investment opportunities using an incremental IRR analysis. Each has an 8 -year life, and the MARR is 6%.

	A	B	C	D
First cost	$\$ 1000$	$\$ 1100$	$\$ 2000$	$\$ 1500$
Benefits	180.67	190.03	345.21	275.09

9.43 For each set of investments, determine which alternative is preferred (if either) at a MARR of 8%. Why is it preferred?

(a) | | A | | B |
| :--- | :---: | :---: | :---: |
| Investment | $\$ 500$ | | $\$ 700$ |
| IRR | 10% | | 10% |
| Incremental IRR | | 10% | |
| | A | | B |
| Investment | $\$ 300$ | | $\$ 600$ |
| IRR | 12% | | 9% |
| Incremental IRR | | 7% | |

9.44 Five mutually exclusive alternatives with 5-year lives are under consideration by the ABC Company. Using incremental IRR analysis, which should be chosen if the MARR is 12% ?

	A	B	C	D	E
Cost	$\$ 20,000$	$\$ 18,000$	$\$ 22,000$	$\$ 15,000$	$\$ 12,000$
Annual	5558.0	5756.4	6563.6	3957.0	4012.8
benefits					

9.45 Which one of the following mutually exclusive projects should be done if the MARR is 12% (all choices have lives of 20 years)? Solve the problem using incremental IRRs.

Project	First Cost	Annual Benefits
A	$\$ 15,000$	$\$ 2500$
B	22,000	3200
C	19,000	2800
D	24,000	3300
E	29,000	4100

9.46 For the data of Problem 9.45, define the ranges of MARRs within which each project is best. Let i^{*} range from 0% to 30%.
9.47 The lease of a computer system will cost $\$ 150$ per month for a 2 -year commitment. If the lease is renewed, it should cost less on each contract. The estimated price if renewed 2 years hence is $\$ 120$ per month and $\$ 90$ per month if renewed again in year 4. Buying the computer system will cost $\$ 7000$, and it will be worth $\$ 1500$ in year 6 , which is the horizon for this problem.

In deciding between leasing and buying the computer, what is the incremental rate of return? If the MARR is a nominal 12%, should the computer be leased or purchased? What are the noneconomic factors, and are they likely to favor leasing or buying?
9.48 The Engineering Economist is a quarterly journal that costs $\$ 20$ per year, or $\$ 38$ for 2 years, or $\$ 56$ for 3 years. Problem 7.19 calculated incremental rates of return for 2 years vs. 1 year at a time and for 3 years vs. 1 year at a time. Calculate the incremental rate of return for buying 3 years vs. 2 years at a time.
9.49 Each of the following projects has a first cost of $\$ 25 \mathrm{~K}$. They are mutually exclusive, and the MARR is 11%. Which one(s) should be done? Why? Does your answer depend on an assumption about whether the projects can be repeated? If so, answer the question again for the other assumption.

Proj- ect	Life (years)	PW at $\mathbf{1 1 \%}$	EAW at $\mathbf{1 1 \%}$	IRR	Annual Benefit	Gradient
1	10	$\$ 5973$	$\$ 1014$	18.3%	$\$ 8000$	$-\$ 750$
2	20	6985	877	13.8	1200	450
3	30	10,402	1196	15.4	3300	100
4	15	5413	753	12.6	-5000	1800
5	5	2719	736	15.2	7500	0
6	10	7391	1255	17.7	5500	0

Minicases

9.50 Develop the costs and benefits to compare owning a car with depending on public transit, friends, and/or a bicycle. Place a monetary value on each advantage or disadvantage. Make an economic comparison at an interest rate of 5%. Which is better?
9.51 Develop the costs and benefits to compare owning a new car with one that is 2 years old. Place a monetary value on each advantage or disadvantage. Make an economic comparison at an interest rate of 6%. Which is best?
9.52 For a vehicle that you or a friend owns, determine the number of miles driven per year. Find three alternative sets of four tires that differ in their tread warranty. Assume that the life of the tires equals the
tread warranty divided by the number of miles driven per year. Compare the EACs of the tires.
(a) For what interest rates is each choice the best?
(b) Develop an exhibit equivalent to Exhibit 9.5 to illustrate the results.
(c) For the interest rate that is in the "middle" of your range, how low and how high can the number of miles each year be without changing what is the best choice?

Cases

The following cases from Cases in Engineering Economy, $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 6 Lease a Lot

Compares leasing and ownership. Results show importance of separating financing and investing decisions.

Case 10 The Cutting Edge

Make vs. buy and machine selection.

Case 11 Harbor Delivery Service

Annual comparison of diesel vs. gasoline engines.

CHAPTER

Replacement Analysis

- THE SITUATION AND THE SOLUTION

Often, an aging existing asset must be evaluated for the timing of its replacement. For example, a 10 -year-old diesel generator costs more to run and to maintain than a new generator, but a new generator has much higher capital costs.

The solution is to find the best life and its equivalent annual cost for the most costeffective challenger and then to decide whether the existing asset's life can be extended at a lower cost.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 10.1 Explain why equipment is replaced, retired, or augmented.
SECTION 10.2 Recognize that replacement analysis involves mutually exclusive alternatives whose lives usually differ-often widely.
SECTION 10.3 Recognize the sunk costs of existing equipment, the risks of new and old equipment, and the required long-term perspective on repair vs. replace.
SECTION 10.4 Calculate the best economic life for new equipment.
SECTION 10.5 Calculate the best economic life for the existing equipment.
SECTION 10.6 Apply the techniques developed for optimal challengers to the problem of selecting the optimal design alternative.
SECTION 10.7 Include the estimated performance of future challengers in replacement analysis.
SECTION 10.8 Apply replacement and repair models, such as block replacement.

- KEY WORDS AND CONCEPTS

Replacement Purchasing and using new equipment instead of existing equipment, which is disposed of or shifted to another use.
Retirement Disposing of an existing asset of or shifting it to a backup status without purchasing a new asset.
Augment Purchasing new equipment to increase the capacity or capabilities of existing equipment, which is retained.
Defender The existing equipment, when considered for its economic life.
Challenger The potential new equipment, when considered for its economic life.

Economic life The time that equipment has the lowest costs (the minimum EAC for the challenger).
Physical life The time from creation to disposal.
Accounting life Based on depreciation.
Ownership life The time from purchase to sale or disposal.
Service period The time that equipment must be available for use.
Sunk costs Expenses that have been incurred, or dollars that have been spent.
Inferiority gradient The annual improvement in the costs of new challengers plus the annual increase in O\&M costs for existing defenders.
Block replacement A policy of replacing all units-failed and functioning-at the same time.

10.1 Why Is Equipment Replaced, Retired, or Augmented?

Existing equipment (1) may be replaced by new equipment, (2) may have its capacity augmented by new equipment, or (3) may be retired by disposal or by shifting to a backup status.

Replacement analysis focuses on situations in which aging equipment will be replaced by new or "newer" equipment. The aging equipment may be sold, donated to charity, dismantled for parts, or shifted to another use, such as backup status for emergencies. In some cases, a major overhaul of the aging equipment is an alternative to its replacement.

Replacement analysis also includes retirements, in which aging equipment is not replaced. This is common when fleet sizes are being reduced because the number of buses, trucks, railroad cars, or ships needed is shrinking. Finally, replacement analysis includes augmenting aging equipment with new equipment when additional capacity or capabilities are required. The choice may be between replacing current equipment with new, larger-capacity equipment or augmenting the current equipment with new, lower-capacity equipment.

The reasons that equipment may be replaced include:

- Reduced performance of the aging equipment.
- Altered requirements for using the equipment.
- Obsolescence due to a new, improved model.
- The risk of catastrophic failure or unplanned replacement.
- Shifts between renting/leasing and owning.

Reduced Performance. Older equipment is often less efficient or productive. Costs to repair or adjust it occur more often as it ages, but even more important, there may be downtime for an assembly line, an airplane, or an entire business until it is fixed. As shown in Exhibit 10.1, in early years the cost of equipment is often dominated by the cost to purchase and install the equipment and to train operators. However, in the long run, the increasing costs for aging equipment dominate.

The repair needs of a 10 -year-old car with 100,000 miles, a 7 -year-old machine tool, a 30 -year-old bridge, and a 10-year-old power generator are examples of equipment with reduced performance. In fact, almost every piece of mechanical equipment shows the effects of wear in reduced efficiency and productivity.

Altered Requirements. Sometimes, equipment is considered for replacement because the conditions of use have changed. If demand has increased, then a larger capacity may

EXHIBIT 10.1 Equipment
costs over time

be needed. A machine tool may be required to handle a new material or larger stock. At the personal level, an engineer who owns a sports car may marry and need more of a family car. An engineering professor might move from Alaska to Missouri-selling a four-wheel-drive car and buying one with air conditioning.

As another example, a manufacturer may need eight stamping lines for new products and one for spare parts. Thus, one set is shifted from producing new parts to producing spare parts when a model is revised, and seven sets of dies may be retired. All that has changed is the demand for the output of the dies.

In a variation on this, the requirements have not changed but the current equipment was incorrectly selected. It does not quite meet the original or the current requirements, and the question is whether to continue to use the "not-quite-right" equipment or to replace it.

Obsolescence. Substantial advances occur frequently in the capabilities of electronic equipment, and advances are significant for mechanical equipment as well. New computers, calculators, testing equipment, and software are often purchased because they offer new capabilities, not because the old equipment has become unreliable. In fact, the requirements may not have changed at all. It just may be that the new equipment can get the same job done faster (and, thus, save on labor costs).

Technological and market advances can revolutionize industries. Obvious examples include the shift from cassettes to CDs to MP3s, from mechanical cash registers to electronic point-of-sale terminals, from tubes to transistors to integrated circuits-even the shift from bias-ply tires to radial tires. Tire manufacturers had to discard and replace equipment before they could shift from producing mostly bias-ply tires to mostly radial tires. Because tire firms with leading market shares and competitive advantages were reluctant to replace their equipment, 4 years later a new set of firms were the market leaders [Foster].

Exhibit 10.2 shows the declining cost curves (with $\$$ signs) and the S-curves of increasing performance that characterize technological progress. When initially developed, the new generation of equipment does not have an advantage over the existing equipment, but it rapidly achieves superior performance as its technology matures. This superior technical performance translates into better economic performance. Depending on market conditions, the second generation may be marketed before or after its cost is lower than the first generation's cost.

EXHIBIT 10.2 Cost, performance, and technological innovation

Each firm in the industry must decide how rapidly to shift from the old to the new technology. The reluctance of firms that have large market shares to replace existing equipment has been termed the "attacker's advantage" [Foster]. Chapter 16 explains how growth or S-curves can be calculated and used in cost estimating.

Risk of Catastrophic Failure or Unplanned Replacement. A scheduled replacement can be planned so that it is rapid, inexpensive, and minimally disruptive. Equipment can be replaced at night, when the assembly line is not running. Parts can be ordered, contractors hired, and overtime scheduled so that an overhaul of a chemical process facility or an oil refinery can be completed in minimum time. In contrast, an unplanned replacement due to equipment failure can idle the assembly line or process plant for days, weeks, or even months (for fabrication of custom parts).

Even a short shutdown may require expedited, expensive transportation costs. Overnight delivery may be cheap compared to lost production time, but a normal shipment for a planned replacement is cheaper yet.

The operation of some equipment is so critical that it is replaced before it fails simply to reduce the possibility of failure during operation. Auto engines may be run until they throw a rod or blow a gasket, but engines in airplanes are replaced or overhauled before this occurs.

Lease or Rental vs. Ownership. It is common to replace leased equipment with purchased equipment. The original equipment may have been leased to permit testing in a particular application. Once it has demonstrated satisfactory performance and the long-term nature of the need has been demonstrated, then identical (or nearly so) equipment might be purchased. Sometimes, owned equipment will be replaced by leased equipment, but this is less common.

Summary of Reasons for Replacement. Equipment is replaced because the new equipment will be more economical or less risky. This may occur because the old equipment has deteriorated or was incorrectly chosen. It may occur because the new equipment has new features or the circumstances of use have changed. The old equipment may be disposed of, saved for backup use, or kept to be used in conjunction with new equipment that augments its capabilities.
10.2 Old and New Are Mutually Exclusive

The challenger is the potential new equipment; the defender is the existing equipment. Both are considered for their economic life.

An economic life is

 the time the equipment has the lowest costs (minimum EAC for the challenger); a physical life is the time from creation to disposal; the accounting life is based on depreciation; an ownership life is the time from purchase to sale; and a service period is the time that equipment must be available for use.Replacement analysis is a choice between mutually exclusive alternatives (discussed in Chapter 9). Either the existing equipment will continue to be used or new equipment will be purchased to replace it.

Different-Length Lives. In these comparisons, the remaining life of the existing asset is almost always shorter (often much shorter) than the life of the potential new equipment. The existing asset is usually nearing the end of its life, since its performance is decreasing, it is becoming obsolete, or requirements are changing. The new equipment is at the beginning of its life. Since the lives of the old and the new are different, the normal method of comparison is with EAWs or EACs.

Sometimes, the use of whichever equipment is chosen will cease in a short time, such as 3 years. Then, the lives will match, and comparison with PW, EAW, EAC, or incremental IRR is appropriate.

The language used in the comparison of the existing and the new equipment comes from incremental analysis (see Chapter 9). The existing equipment, because it is in place, is referred to as the defender. The potential new equipment that may replace the defender is the challenger. This language originated in the context of replacement analysis [Terborgh].

Economic Life. An asset's life can be defined in many ways. For our purpose, the most important life is an economic one. For the challenger, the economic life results in the minimum EAC for the piece of equipment. For the defender, the economic life extends until the marginal cost to extend service is less than the minimum EAC for the challenger. The calculations for this are detailed in Sections 10.4 and 10.5.

Other possible definitions of an asset's life include the following: The physical life is the time until the asset is dismantled or scrapped. The life for accounting purposes (accounting life) is how long until it is fully depreciated (see Chapter 12). The ownership life is the time from purchase to sale or disposal. The service period may include multiple economic lives. For example, an engineering computer lab might have a service period of 30 years, but the computers within it might be replaced every 5 years. Example 10.1 illustrates these lives.

EXAMPLE 10.1 The Lives of a Car

Why would the economic, physical, accounting, and ownership lives and the service period of a car or other vehicle differ?

SOLUTION

Cars in the United States, unless they are destroyed in an accident, usually have physical lives of 10 to 15 years. Most are owned by more than one person during that physical life, and these
ownership lives are different. If they are owned and operated for business purposes, they will be depreciated over 5 years, which is the accounting life.

The economic life may be short or long, depending on how the vehicles are used. For example, many car-rental firms, such as Hertz, Avis, or National, sell their vehicles after 6 months to 2 years, while taxis may be owned and operated much longer-even though they operate for more miles each year.

10.3 Sunk Costs, Risks, and Short-Term Cost Savings

Sunk costs are

 expenses that have been incurred or dollars that have been spent.Sunk Costs. Sunk costs were introduced in Chapter 1 because they occur in many engineering economy problems. Sunk costs are mentioned again here because every existing asset has sunk costs that are irrelevant.

As always, the key question is: "What costs are influenced by this decision?" What matters is the equipment's or asset's value now, not what you paid for it. The only time these sunk costs should be considered is in after-tax analysis (see Chapter 13). If there will be a loss due to sunk costs, then income taxes will be reduced. The larger the loss, the greater the income tax benefit-and the greater the tax incentive to replace the existing asset.

When considering an asset's value, there are several possibilities. There is the original first cost, but this is a sunk cost. The book value (see Chapter 12), which accounts for depreciation from this first cost, is only an entry in the firm's accounting records. The present cost to buy and install a similar new asset or a similar used asset would be relevant if the existing asset were not in place. The trade-in value of the existing asset on a new replacement is often distorted by the price of the new replacement. For example, a salesman might offer a high value on your used car trade-in rather than discounting the new car's list price.

The correct value of equipment is its market value after accounting for removal costs. This is what would be received if it were sold and the equipment were replaced. This is sometimes called the outsider's or consultant's viewpoint, because it emphasizes that the sunk costs are irrelevant. As noted in Example 10.2, the costs of change must be included.

A CNC (computerized, numerically controlled) machine tool cost $\$ 65,000$ to buy and $\$ 4000$ to install 10 years ago. It is fully depreciated, and its book value is $\$ 0$. New tools are easier to program, have larger memories for machining more parts, and now cost $\$ 50,000$. The installation costs are still $\$ 4000$, and the removal cost is $\$ 1000$. Ten-year-old used machines can be bought or sold for $\$ 7000$. Ignoring taxes, what are the relevant first costs for the new, used, and old machines?

SOLUTION

The first cost of $\$ 69,000$ to buy and install 10 years ago is a sunk cost. The book value is relevant only for accounting and tax purposes.

1. The $\$ 54,000$ to buy and install a new tool is the first cost for a potential new replacement.
2. The $\$ 7000$ purchase price and $\$ 4000$ installation cost (total: $\$ 11,000$) is the cost to buy and install a used tool.
3. The relevant cost of the existing old machine is $\$ 6000$, which is the market value minus the removal cost. This is the income that would be received if the asset is sold. It is the income that is forgone if the asset is kept.

Ignoring sunk costs is an extremely difficult economic principle for some to accept. This may be caused by psychological, personal, and organizational "sunk costs" (prestige, reputation, and the cost of admitting a mistake). A common example in many organizations focuses on upgrading computer systems.

Engineers and organizations need computers to compete. Usually, a new computer will offer new features, faster processing, more memory, more storage, etc.-all at a lower price than the previous generation. Even though an engineer's desktop computer is only 2 or 3 years old, it may be nearing the end of its economic life for use by that engineer. That engineer's productivity may be increased enough by more computer power that replacing the current computer may make sense. (Note: The existing computer may then be used to increase the productivity of someone else, such as a technician or secretary, who has an even older computer.)

The decision should be based on productivity increases, the value of the machine if sold or used by someone else, and the cost of the new computer. The decision should ignore the sunk cost of the old machine, even though someone argues, "Only 2 years ago, it was worth $\$ 2500$."

Risks of the New Often Far Exceed Those of Extending the Old. Sunk costs are often inappropriately included, an error that tends to favor keeping the existing old asset. On the other hand, there is a valid reason for tending to favor the existing old asset. Two different adages provide some guidance:

- "If it ain't broke, don't fix it."
- "Better the problem you know than the solution you don't."

To be worthwhile, any new asset must offer the expectation of better economic performance. However, because it has not been implemented in exactly this situation, more is unknown about the new asset. This often corresponds to more risk.

The new asset's performance, cost, and scheduled start-up are all sources of risk. A new larger forklift may lift more weight; but once purchased, it may have difficulty maneuvering in one "tight" corner of the warehouse. Replacing an aging underground power line may cost far more than expected because of difficulties in working around buried water, gas, phone, cable TV, and sewer lines. The repaving of a major highway may be prolonged by weather, and the schedule extension may greatly increase the cost of traffic delays.

Even when replacement is straightforward, there are risks. Little is easier than unplugging one computer and replacing it with a newer, faster one. Yet, sometimes the new

Experience has shown that the new machine's cost and performance are often worse than expected.

Future repair costs must be estimated to evaluate cost savings for repair vs. replacement.
computer has a bug, or some software must be reconfigured or rewritten for the new machine. Even if all goes well, training may take longer than expected.

Of course, the actual performance of the new challenger may be better than expected. However, sad experience has shown that more often, the new machine's technical and cost performance are worse than expected. Construction costs, allowances for lost or lower productivity during changeover, etc., are more likely to be over budget than under budget. In addition, when they are under budget, the savings are usually small. When they are over budget, the overruns can be very large.

There are exceptions when the risks of extending the life of old equipment are larger than the risks of buying new equipment. These are cases when the replacement is being done to avoid the costs of catastrophic failure (such as airplane engines) or unscheduled replacement (such as oil refineries). More often, the replacement is being considered because the old equipment has reduced performance, the requirements have changed, or the new challengers have made existing equipment obsolete. Except for catastrophic failure and unplanned replacement, the risks of the new tend to be greater.

Short-Term Cost Savings Are Not Enough to Compare Repair vs. Replace. When evaluating aging equipment, focusing on short-term cost savings can be misleading. Repairing broken equipment may avoid the cost of buying new equipment, but how soon will the equipment again need repair? As shown in Example 10.3, failure to estimate future repair costs may result in "saving" the same cost so often that it is not economical.

An engineering professor owns a 17-year-old pickup. During the last year, he has purchased new tires (\$480), had the brakes redone (\$450), replaced the muffler (\$195), and had the transmission fixed ($\$ 850$). The professor has just been told that the tie rods and other steering parts must be replaced (\$1200).

What should the professor do? In the past, the professor has compared each repair cost with the cost of buying a new car and concluded that the repair was economically justified. The cost of replacement has been saved four times already, and a fifth time is now being considered.

SOLUTION

First, the professor must recognize that the tires, brakes, muffler, and transmission represent sunk costs. They may increase the price the clunker could be sold for, or the tires might be sold separately if the clunker is bound for the junk yard. They do reduce the chances of further problems with the tires, brakes, muffler, and transmission.

The correct analysis in the past, however, would have estimated these potential expenses as a group rather than considering each individually. The correct analysis may not have been done in the past, but that is not an excuse for making another mistake by failing to do the correct analysis now.

In deciding whether to fix the steering mechanism, the professor must estimate other future costs. How soon will the engine need repair? Is any body part that must be replaced about to rust off? What will these or other costs be?

10.4 Optimal Challengers

There are usually several choices for replacement equipment, and each must be evaluated to find its economic life. These choices often include overhaul or rebuilding of the existing defender.

Challenger's Optimal or Economic Life. Each potential challenger's economic life must be calculated. If a physical life may be up to 20 years, then the possible economic life might be anywhere from 1 to 20 years. This economic life has the lowest EAC or the highest EAW. It is the optimal life in an economic sense.

Example 10.4 illustrates this calculation for potential new equipment. Perhaps this is best visualized as selecting the best challenger from five different alternatives. The choice of a 1-year, 2-year, or other life of the challenger is a choice between mutually exclusive alternatives. Which of these alternatives-or which life-has the lowest EAC?

The installation and removal costs in Example 10.4 can include the costs to define specifications, seek bids, and other purchase costs as well as costs in money or labor to advertise, transport, and sell the used equipment.

EXAMPLE 10.4 Economic Life of a Challenger

Assume that a machine has $\$ 1200$ in installation costs and $\$ 300$ in removal costs. It costs $\$ 10,000$ to buy, and the firm's interest rate is 8%. Its value (before removal costs) in each year is tabulated below, as are its maintenance costs. What is its economic life?

This data set is typical of problems in which the benefits of having the machine, the labor costs to operate it, and its required power costs do not depend on the machine's age.

Year	Salvage Value (\boldsymbol{S}) before Removal Costs	Maintenance Costs
1	$\$ 7000$	$\$ 0$
2	5000	950
3	3500	1900
4	2500	2850
5	2000	3800

SOLUTION

Like most real-world problems, the installed first cost of $\$ 11,200$ is more than the purchase price. Similarly, the net cash flow from the salvage value is reduced by its removal cost. The calculation of the EAC for lives of 1 to 5 years is simplest if the first cost, salvage value, and maintenance costs are calculated separately. For the first cost and the maintenance gradient, only the number of years changes. For the salvage value column, both the salvage value and the number of years change.

$$
\begin{aligned}
\mathrm{EAC}_{P_{t}} & =11,200(A / P, 8 \%, t) \\
\mathrm{EAC}_{\text {Maintenance }_{t}} & =950(A / G, 8 \%, t) \\
\mathrm{EAC}_{S_{1}} & =-6700(A / F, 8 \%, 1) \\
\mathrm{EAC}_{S_{2}} & =-4700(A / F, 8 \%, 2) \\
\mathrm{EAC}_{S_{3}} & =-3200(A / F, 8 \%, 3)
\end{aligned}
$$

and so on.

EXAMPLE 10.5 Economic Life of a Challenger (Example 10.4 Revisited)

Use the same data as Example 10.4, but solve using a spreadsheet

SOLUTION

In Exhibit 10.3 Column D has the NPV function for the maintenance costs. Notice that the NPV formula fixes the starting cell as $\mathrm{C} \$ 7$, but not the ending cell. This $\$$ sign must be typed in, because fixing the row for the start but not the end of a range is not one of the four basic options for fixed and relative addresses.

EXHIBIT 10.3 Spreadsheet for data of Example 10.4

	A	B	C	D	E
1	\$10,000	First cost			
2	1200	Installation costs			
3	300	Removal costs			
4	8\%	Interest rate			
5					
6	Year	Salvage Value (S) before Removal Costs	Maintenance Costs	$\begin{gathered} \text { PW } \\ \text { Maintenance to } \\ \operatorname{Yr} t \end{gathered}$	EAC for $\text { Life }=t$
7	1	\$7000	\$0	/ \$0	\$5396
8	2	5000	950	814	4478
9	3	3500	1900	2323	4262
10	4	2500	2850	4418	4227
11	5	2000	3800	7004	4269
12					
13		$=\mathrm{NPV}(\$ \mathrm{~A} 4, \mathrm{C} \$ 7 \mathrm{C} 7)$			
14				1	
15			$=\mathrm{NPV}(\$ \mathrm{~A} \$ 4, \mathrm{C} \$ 7: \mathrm{C} 11)$		
16					
17		$=-\mathrm{PMT}(\$ \mathrm{~A} 4, \mathrm{~A} 11, \$ \mathrm{~A} \$ 1+\$ \mathrm{~A} 2+\mathrm{D} 11,-\mathrm{B} 11+\$ \mathrm{~A} \$ 3)$			
18		$=-\mathrm{PMT}$ (rate, nperiod, $\mathrm{FC}+$ Installation $+\mathrm{PW}_{\text {maint }},-(\mathrm{S}-$ removal) $)$			

Spreadsheets for Challenger's Economic Life. Because there is a maintenance gradient, Example 10.4 cannot easily be solved using PMT functions. Another approach illustrated in Example 10.5, can deal with any pattern of salvage values and/or maintenance costs. This approach uses a PMT function for the one-time first cost, salvage value, and PW of the gradient series. It uses an NPV function for the series of maintenance costs. This allows the one column with irregular cash flows to be treated as a cash flow table.

Cost Curve for the Challenger's Economic Life. The data of Example 10.4 illustrates a standard pattern of (1) increasing operating and maintenance costs and (2) salvage values that decrease by a smaller amount each year. This is sufficient to imply a concave EAC curve, as illustrated in Exhibit 10.4 for the data of Example 10.4.

For economic lives that are in between the shortest and the longest possible, it is usually true that at least two and often three EACs are fairly close together. This implies that there is some flexibility as to the best timing for replacing equipment.

Irregular decreases and increases in O\&M costs, salvage values, major overhauls, or other costs imply that every year must be individually checked. If spreadsheets are used, this is very simple. The best life for a challenger is usually just before an overhaul. For example, consider a machine that has a physical life of 20 years, with overhauls every 5 years. The best life for this machine is likely to be $5,10,15$, or 20 years, with no overhaul in the last year. Rarely would it make sense to overhaul the machine in year 5 and then retire it in year 6 or 7 .

EXHIBIT 10.4 Concave EAC curve for challenger's economic life

10.5 Optimal Defenders

Typical Defender's Economic Life. In most replacement problems, the replacement of the defender (the existing equipment) is being considered because it is becoming more expensive each year-due to increasing maintenance, downtime, or obsolescence. In this case, it is incorrect to minimize the EAC. Instead calculating the economic life of the defender relies on the marginal cost to extend service for another year, MC_{t}, including residual values and $\mathrm{O} \& \mathrm{M}$ costs. These residual values equal the salvage value minus any costs to remove and sell. This is what would be received if the asset were replaced.

The residual value at the year's beginning is the "first cost." The maintenance term is considered on an annual basis. The MC_{t} is calculated as an end-of-year cost so that it can be compared with the EAC of the challengers.

The marginal cost to extend service to year t, MC_{t}, can be calculated in two equivalent ways. Equation 10.1 is based on the cash flow diagram. The initial residual value is at the beginning of period t and an equivalent value at the end of period t is calculated by multiplying by $(1+i)$. Then, the two cash flows at the end of period t are included with the correct sign for a marginal cost.

Equation 10.2 is equivalent, but it arranges the terms differently and has a different intuitive explanation. The MC_{t} equals the loss in market value $\mathrm{S}_{t-1}-\mathrm{S}_{t}$ over period t, the interest on the capital invested for that period $i \mathrm{~S}_{t}$, and the annual cash costs for that year $\left(0 \& M_{t}\right)$.

$$
\begin{equation*}
\mathrm{MC}_{t}=\mathrm{S}_{t-1}-\mathrm{S}_{t}+i \times \mathrm{S}_{t}+\mathrm{O} \& \mathrm{M}_{t} \tag{10.2}
\end{equation*}
$$

As shown in Exhibit 10.5, the decision rule is clear and simple-when does the cost to extend the defender's life for another year exceed the EAC for the best challenger's life? Keep the defender until its cost is higher than that of the challenger. This is also illustrated in Example 10.6. For clear comparisons, the same data are used as in Example 10.4 but are applied to 1 -year-old existing equipment. Thus, by assuming future challengers are the same, we can clearly present the methods for analysis.

EXHIBIT 10.5 Challenger vs. typical aging defender (with increasing marginal cost to extend life)

Assume that the machine analyzed in Example 10.4 has been purchased and is now 1 year old. Assume that the data have not changed. What is the economic life of the 1 -year-old machine? Is this 1 year less than the economic life when new?

SOLUTION

The methodology for finding the defender's economic life is different from that for finding the challenger's. The marginal cost to extend service for another year is calculated, rather than a series of EACs.

For each year, the machine's first cost is its residual value at the year's beginning, which is the value at the end of the previous year. Thus, the first cost for year $1, S_{0}, \$ 7000-\$ 300$. The $\$ 10,000$ purchase price is a sunk cost. The machine's salvage value in each year is tabulated below, as are its maintenance costs.

Year	Residual Value (\boldsymbol{S})	O\&M Costs
1	$\$ 4700$	$\$ 950$
2	3200	1900
3	2200	2850
4	1700	3800

Thus, the marginal cost to extend for the first year is:

$$
\begin{aligned}
\mathrm{MC}_{1} & =S_{0}(1+i)-S_{l}+\mathrm{O} \& \mathrm{M}_{1} \\
& =6700 \times 1.08-4700+950=\$ 3486
\end{aligned}
$$

The values for other years are included in the following summary table:

Nearly new used equipment is rarely available with exactly the right options-if it is available at all. A firm rarely buys a machine tool or other equipment and sells it a year or two later. If it does, the firm is likely closing down a line of business, going bankrupt, or disposing of unreliable equipment. Exceptions, such as 1 -year-old used cars, often come from leasing firms, where very heavy usage and wear are common.

When used equipment is available, it is better to consider it as an explicit challenger to replace the existing equipment. This calculation will automatically include the correct purchase price, installation cost, $O \& M$ costs, and salvage values.

EXAMPLE 10.7 Incorrectly Minimizing EAC to Find the Economic Life of a Defender

Assume that the machine analyzed in Example 10.4 has been purchased and is now 1 year old. Assume that the data have not changed and that the residual values represent the cost to buy or to sell the equipment. What is the minimum EAC? Why does the life for this example not match the economic life of the 1 -year-old machine calculated by the marginal cost to extend service shown in Example 10.6?

SOLUTION

The machine's first cost is its residual value at the end of year 1 , or $\$ 6700$. (The $\$ 10,000$ purchase price is a sunk cost.) The firm's interest rate is 8%. Its residual values and maintenance costs in each year were tabulated in Example 10.6.

The calculations of the EAC for the first cost and the salvage value are nearly identical to that of Example 10.4, and the maintenance term need only add an annual component. For the first cost and maintenance term, only the number of years changes. For the residual value column, both the residual value and the number of years change.

$$
\begin{aligned}
\mathrm{EAC}_{P_{t}} & =6700(A / P, 8 \%, t) \quad(\text { Note: } \$ 6700, \text { not } \$ 10,000, \text { not } \$ 7000) \\
\mathrm{EAC}_{\mathrm{O} \& M_{t}} & =950(A / G, 8 \%, t)+950 \\
\mathrm{EAC}_{S_{1}} & =-4700(A / F, 8 \%, 1) \\
\mathrm{EAC}_{S_{2}} & =-3200(A / F, 8 \%, 2) \\
\mathrm{EAC}_{S_{3}} & =-2200(A / F, 8 \%, 3)
\end{aligned}
$$

and so on.

	EAC			
Year	\boldsymbol{P}	O\&M	\boldsymbol{S}	Total
1	$\$ 7236$	$\$ 950$	$-\$ 4700$	$\$ 3486$
2	3757	1407	-1538	3625
3	2600	1851	-678	3773
4	2023	2284	-377	3929

According to this table, the minimum EAC corresponds to 1 additional year for a 1-yearold asset. This appears to avoid the higher costs for later years. However, an incorrect assumption is required for this to truly be the best policy. These data assume that a 1 -year-old asset can be purchased and installed for $\$ 6700$, which is the residual value of the 1 -year-old asset. However, the cost to purchase and install a 1 -year-old asset is really $\$ 8200$ ($=\$ 7000$ to purchase $+\$ 1200$ to install). Even this requires the assumption that a piece of 1 -year-old equipment can be found.

Remember that the optimal life of this asset (when new) was 4 years, with an EAC of $\$ 4227$. The correct marginal cost to extend (Example 10.6) showed a 1 -year-old asset should be kept for 3 more years. An incorrect approach (Example 10.7) indicated that the 1 -year-old asset should be kept for only 1 more year.

When to Calculate the Defender's Best EAC. In most cases, the defender is nearing the end of its economic life, and the marginal cost to extend service for another year increases over time. However, sometimes the existing asset is new enough that the marginal cost to extend service for another year declines (at least for the first few years). In this case, replacement may be considered because of: (1) altered requirements, (2) a new product that is a new challenger, or (3) a poor selection of the existing equipment.

If the marginal cost to extend the life of the defender is falling, then the defender's minimum EAC must be calculated. It may be better to pay a higher cost for this year if it allows paying less in future years. The EAC for year t is a time-value-of-money weighted average of the values for $\mathrm{MC}_{1}, \mathrm{MC}_{2}, \ldots, \mathrm{MC}_{t}$. The minimum EAC determines whether the defender's best life is 2 years, 3 years, or even longer.

Now the minimum EAC for the best challenger is compared with the defender's EAC. If the challenger's EAC is lower, then the challenger should replace the defender now. This is the left-hand comparison in Exhibit 10.6. If the defender's EAC is lower, then the defender should be kept for now. If we assume that the current and future challengers have

EXHIBIT 10.6 When to replace based on the defender's best EAC

the same EAC and that the data for the defender remain accurate, then we can look into the future at the right side of Exhibit 10.6. This shows that the defender should be replaced after its marginal cost to extend life exceeds its EAC and equals the challenger's EACthe same situation as Exhibit 10.5.

Of course, new challengers are likely to emerge, and the defender's performance and costs may differ from our expectations; these changes must be analyzed when they occur. This case is illustrated in Example 10.8. There are even more complicated cases not included here, such as equipment with a remaining economic life of 15 years with overhauls every 5 years, or situations in which replacement can be done only every 3 years, during a scheduled plant shutdown. These cases (like Example 10.8) require computing the marginal cost to extend service and the EACs over the potential life of the equipment.

EXAMPLE 10.8 How Soon Should the Communications System Be Replaced?

Four years ago, the communications system for Conglomerate Engineering cost $\$ 50,000$. Its current salvage value is $\$ 26,000$, which will decline as follows over the next 4 years: $\$ 20,000$, $\$ 16,250, \$ 14,000$, and $\$ 12,500$. The O\&M costs will be $\$ 6000$ this year, and these costs will increase by $\$ 2000$ per year. At Conglomerate's interest rate of 10%, the best challenger has an EAC of $\$ 14,200$. When should the communications system be replaced?

SOLUTION

$$
\begin{aligned}
\mathrm{MC}_{t} & =S_{t-1}(1+.1)-S_{t}+\mathrm{O} \& \mathrm{M}_{t} \\
\mathrm{EAC}_{t} & =26 \mathrm{~K}(A / P, 10 \%, t)-S_{t}(A / F, 10 \%, t)+6 \mathrm{~K}+2 \mathrm{~K}(A / G, 10 \%, t)
\end{aligned}
$$

First Cost \$26,000		$\begin{aligned} & \text { O \&M } \\ & -\$ 6000 \end{aligned}$	Gradient $-\$ 2000$	$\begin{gathered} i \\ 10 \% \end{gathered}$	10\%
Year	S_{t-1}	S_{t}	O\&M	MC ${ }_{\text {t }}$	EAC
0	\$26,000		\$0		
1	26,000	\$20,000	-6000	\$14,600	\$14,600
2	20,000	16,250	-8000	13,750	14,195
3	16,250	14,000	-10,000	13,875	14,098
4	14,000	12,500	-12,000	14,900	14,271

Since the defender's lowest EAC is $\$ 14,098$, which is less than $\$ 14,200$, which is the challenger's EAC, the communications system should not be replaced yet. With current data, the best life for the defender is 3 more years, since it is year 4 before the marginal cost to extend service $(\$ 14,900)$ goes from less than the challenger's EAC to more. This strategy saves $\$ 102$ per year over the strategy of immediate replacement.

Flowchart to Summarize the Decision Rules. Exhibit 10.7 is a flowchart that summarizes the decision rules described in Sections 10.4 and 10.5. This flowchart answers the question of what should be done now-keep the defender or replace with the best current challenger?

If the marginal cost to extend is increasing, then the defender's cost for this year is compared with that of the best current challenger. If we keep the defender, then we reexamine the situation next year. Have the defender's costs continued to climb as it ages? Have any better challengers emerged?

If the marginal cost to extend the defender's life is falling, then we need to see how long it can be kept before its costs begin to rise. This is the calculation of the defender's EAC. This EAC is compared with the challenger's to answer the question of what should happen this year. If the data do not change, it also answers the question for the future.

EXHIBIT 10.7 Flowchart for replacement decisions

10.6 Optimal Capacity Problems

The optimal or economic life of a challenger was chosen by calculating the EAC for each possible life. Exhibit 10.4 illustrated a common curve shape, where increasing O\&M costs and decreasing salvage values implied that the curve would be concave.

A similar combination of method and result often applies to the design problem of selecting the best capacity from among mutually exclusive alternatives. The height of a dam, the number of freeway lanes, the size of a building, and the thickness of insulation are examples in which increasing investment often has decreasing returns to scale. For example, each additional inch of added insulation saves less energy. As with the new challengers in a replacement analysis, minimizing the EAC is the correct approach.

Example 10.9 details this for selecting the insulation amount that minimizes first costs and heating and cooling expenses. More insulation costs more money, but it allows the downsizing of heating, ventilating, and air-conditioning (HVAC) equipment and reduces annual energy expenses. Often, filling structurally available space becomes almost automatic, but the question of whether $2 \times 4,2 \times 6$ or 2×8 framing should be used requires detailed analysis [Ruegg and Marshall].

EXAMPLE 10.9 Optimal Insulation Thickness

The roof and ceiling of a commercial building will be insulated by blown-in insulation, which can be specified in 1 -inch-depth increments. The minimum amount of insulation that will meet code is 6 inches, and the maximum amount that will fit is 12 inches. What is the optimal depth of this insulation?

The firm uses an interest rate of 8% and a 30 -year building life. The installed cost of the insulation for the 10,000 -square-foot ceiling is $\$ 1.75$ per cubic foot. Thicker insulation will reduce the capacity of the HVAC equipment and the annual heating and cooling costs. With 6 inches of insulation, the annual bill for heat gains and losses through the roof will be $\$ 1200$.

Insulation thickness	$6^{\prime \prime}$	$7^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$	$11^{\prime \prime}$	$12^{\prime \prime}$
HVAC first cost	$\$ 10,000$	9643	9375	9167	9000	8864	8750

SOLUTION

The easiest solution is to calculate the costs per inch of insulation for the 10,000 -square-foot ceiling/roof. In the following equation, the cost per cubic foot is stated as a cost per $12 \mathrm{in}-\mathrm{ft}^{2}$ so the units balance.

$$
\begin{aligned}
\mathrm{EAC}_{\text {Insulation }} & =\left(\$ 1.75 / 12 \mathrm{in}-\mathrm{ft}^{2}\right) \times(A / P, 8 \%, 30) \times 10,000^{2} \\
& =\$ 129.54 \text { per inch of thickness }
\end{aligned}
$$

The $\mathrm{EAC}_{\mathrm{HVAC}}$ are found by multiplying each first cost by $(A / P, 8 \%, 30)$.
The annual heating and cooling costs are inversely proportional to the insulation thickness. Doubling the insulation thickness doubles the resistance to heat gain and loss and halves the amount of energy lost due to conduction. Thus, for example, the annual heating and cooling cost for 7 inches of insulation is $6 / 7$ of the heating and cooling bill for 6 inches of insulation, and for 8 inches of insulation, it is $6 / 8$ of the bill for 6 inches.

10.7 Estimating Future Challengers

One advantage of keeping the current defender a little longer is the opportunity to obtain improved challengers. This is formalized in several replacement models, but the best example is perhaps the models of the Machinery and Allied Products Institute (MAPI). These models are outlined in this section.

Exhibit 10.8 contrasts the EAC of future challengers under two scenarios of technological progress: normal or incremental progress vs. rapid revolutionary progress. Rapid revolutionary progress implies rapid obsolescence and short life spans-as well as substantial uncertainty.

EXHIBIT 10.8 Incremental vs. revolutionary progress

A Simple Rule of Thumb. It is possible to arbitrarily shorten the challenger's assumed life to account for better future challengers. This recognizes that economic obsolescence shortens the economic life of otherwise functional equipment. For some types of equipment, shortening the challenger's life by one-third seems to be about right.

For instance, a computer might have an economic life of 6 years-ignoring obsolescence. That cost could be approximated by shortening the economic life by one-third, to 4 years.

This approach should be used with caution, because this rule of thumb will depend heavily on how significant obsolescence is and how rapidly it occurs.

The inferiority gradient is the annual improvement in annual costs of new challengers plus the annual increase in O\&M costs for the existing defender.

EXHIBIT 10.9 MAPI inferiority gradient for challenger and defender series

MAPI. The MAPI approach to replacement analysis was developed to serve many different practical situations [Terborgh]. It consists of sets of assumptions that are linked with recommendations summarized in formulas, tables, and graphs. The different sets of assumptions were developed to correspond with the different practical situations that occur.

Thus, the approach is to choose the set of assumptions that most closely corresponds to the replacement problem under analysis. Then, values for the key parameters or variables are identified. Finally, these values are substituted into the formulas, tables, and/or graphs.

The advantage of the MAPI approach is that a team of individuals has analyzed myriad situations and summarized the results. The disadvantage is that the detailed formulas can become a "black box" that inhibits true understanding of the problem. The details are too voluminous to include here.

At least one concept, however, is quite useful in describing the advantage of waiting for better challengers. That concept is the inferiority gradient, which equals the sum of the improvement in annual costs of next year's challenger over this year's challenger plus the amount by which the annual costs for the defender will increase.

As shown in Exhibit 10.9, the annual cost for any machine (defender or challenger) is assumed to increase over time. Similarly, the best challenger available each year is assumed to be better over time. When the inferiority gradient is large, then economic lives will tend to be shorter. When the inferiority gradient is small, then economic lives will tend to be longer.

One of the important MAPI assumptions was characterizing the inferiority gradient. Was it a constant amount (as in Exhibit 10.9), a constant rate, or some other pattern?

10.8 Replacement and Repair Models

Government agencies or private firms may operate hundreds or even thousands of vehicles. Utility firms own thousands of poles. Every large building has banks of fluorescent lighting, and every chemical processing plant has many pumps. These situations of fleets or pools of similar items emphasize replacement and, often, repair. Retirement (the equipment is not replaced) is not considered, since the need for the service has a much longer life than the equipment-cities need garbage, phone, and electrical service for much longer than trucks or poles last.

Fleet operators and building and plant owners have policies that guide item replacement and repair decisions. For example, some city transit systems replace a bus at the first of: (1) 500,000 miles, (2) 7 years, (3) when cumulative maintenance costs exceed the purchase price, or (4) when a major repair or overhaul is required on an older bus.

As another example, consider the machine in Example 10.4. As summarized in Exhibit 10.4, the optimal life was 4 years, but 3 and 5 years had nearly identical costs. A reasonable replacement policy would be repair during the first 2 years, replace if a major overhaul is required in years 3 or 4 , and replace after 5 years. For motor vehicles, the criterion might be miles, and for forklifts and other operating equipment, the criterion is often thousands of hours of operation.

There are nonquantitative factors as well. Some vehicles develop a maintenance history as "lemons," and they are replaced early. Vehicles driven by sales representatives and construction project engineers may be replaced after only 1 or 2 years to support the image of a prosperous firm. Sometimes, the morale of vehicle users can be improved by replacing the vehicles early, which may increase the EAC only slightly. Sometimes, a new vehicle will have a desirable safety feature.

Classifying Replacement Models. These models are so numerous that it is useful to classify them. [Luxhoj and Jones] suggest that structure, realism, simplifying assumptions, and descriptive characteristics be used. A model's structure would include whether standby systems are available. Realism might focus on budget constraints regarding replacements and on repair facility capacity constraints. A simplifying assumption would include ignoring taxes for a private-sector firm.

Key descriptive characteristics focus on problem details. For example, the MAPI model shown in Exhibit 10.9 focuses on including technological improvement. Other models have included the purchase of used items, preventive maintenance, and inflation. In some cases, the intangible costs of employee morale must be included-everyone prefers to use newer vehicles and equipment, and everyone is frustrated by the breakdown or poor performance of old machines. Similarly, there may be very large penalty costs for unplanned replacements. For example, the planned replacement of a motor on an assembly line might take 1 hour that could be scheduled when the line is not operating, but failure during operation will stop the line. It may still take only 1 hour to repair (but everyone is standing around for that hour), or it may take 48 hours until a part arrives.

EXHIBIT 10.10 The "bathtub" curve of reliability

Block replacement

 is a policy of replacing all units-failed and functioning-at the same time.Lightbulbs and fluorescent tubes in factories and buildings are often replaced on a block replacement schedule. In block replacement, all items are replaced whether or not they are still functioning. Items that fail before the scheduled block replacement are sometimes individually replaced and sometimes not. For example, lighting that can be replaced by an individual on a ladder might be replaced, while lighting that requires the erection of scaffolding might not be.

The increasing rate of failures for older items that is shown in Exhibit 10.10 is the reason for block replacement. The curve of failure rates shown in Exhibit 10.10 is so common for equipment that it is the norm, and the pattern of high initial rates and high final rates is called the "bathtub curve."

At some point, it is more economical to replace an item than it is to wait for it to fail. Example 10.10 illustrates this.

EXAMPLE 10.10 Block Replacement of Lightbulbs

Assume that a lightbulb has an average life of 22,000 hours; one-fifth of the bulbs fail at 20,000, $21,000,22,000,23,000$, and 24,000 hours. The facility operates every hour of the year, and the bulbs are always on. Each bulb costs $\$ 3.50$ to buy, $\$ 1.50$ to install individually, and $\$.25$ to install in block replacement. At least 60% of the bulbs must be operating for adequate light. The firm's interest rate is 10%. Compare block replacement at 21,000 hours with individual replacement.

SOLUTION

If bulbs are replaced individually, then their average life is 22,000 hours. There are 8760 hours in a year, so the average life is 2.51 years.

$$
\begin{aligned}
(A / P, 10 \%, 2.51) & =(A / P, 10 \%, 2)-.51[(A / P, 10 \%, 2)-(A / P, 10 \%, 3)] \\
& =.5762-.51(.5762-.4021)=.4874
\end{aligned}
$$

The first cost is $\$ 5$ for purchase and installation.

$$
\begin{aligned}
\mathrm{EAC}_{\text {individual }} & =5(A / P, 10 \%, 2.51) \\
& =5 \times .4874=\$ 2.44 \text { per bilb }
\end{aligned}
$$

For block replacement, the life is 21,000 hours after 40% of the bulbs have failed, or $21,000 / 8760=2.40$ years .

$$
\begin{aligned}
(A / P, 10 \%, 2.40) & =(A / P, 10 \%, 2)-.40[(A / P, 10 \%, 2)-(A / P, 10 \%, 3)] \\
& =.5762-.40(.5762-.4021)=.5066
\end{aligned}
$$

The first cost is $\$ 3.75$ for purchase and installation.

$$
\begin{aligned}
\mathrm{EAC}_{\text {block }} & =3.75(A / P, 10 \%, 2.40) \\
& =3.75 \times .5066=\$ 1.90 \text { per bulb }
\end{aligned}
$$

The (A / P) factor is higher for block replacement, since the life is shorter. Even so, the lower cost for installation ensures that it is much cheaper to replace all of the bulbs every 21,000 hours.

The initial years in Exhibit 10.8 illustrate failures that may or may not be observed by equipment owners. When there are significant initial failures, as with much electronic equipment, it is common for manufacturers to "burn in" the equipment by operating it for an appropriate time before it is shipped to the user. That way, the initial failures occur in the factory, and the defective equipment is repaired before shipment. Users may also face a slightly higher initial failure rate because the conditions of use may not match the design assumptions.

The phenomenon of block replacement is obvious for lightbulbs, but street repaving or utility distribution systems provide other examples. Potholes are patched continuously, but periodically, the entire street is repaved. Similarly, downed power lines are repaired immediately, but periodically, the entire group of poles and lines is replaced.

10.9 Summary and Conclusions

Replacement decisions are often the most common ones facing engineers in existing manufacturing plants, utilities, etc. The goal is to keep the facility operating as economically as possible. Problems with aging equipment "pull," and potential advantages of new equipment "push." Thus, that replacement is a steady pressure on engineering resources.

The existing equipment can usually be used for at least 1 more year, and it is the defender in the economic comparison. The possible new equipment is the set of challengers. The defender and the challengers are mutually exclusive alternatives. Moreover, the defender and the challengers are intrinsically different: the defender is nearing the end of its economic life, while each challenger is at the beginning of its economic life.

Occasionally, an approaching termination of need will mean that the lives of the defender and the challenger(s) match, but the norm is a substantial difference. One consequence is that EAC or EAW is the measure of choice.

For the challenger(s), the economic life is found by minimizing the EAC over the possible lives. For the defender, the economic life is found by calculating the marginal cost to extend service for each year. As long as this marginal cost is below the EAC for the best challenger, the defender should be kept.

The economic life for the defender is not found by minimizing the EAC over its possible remaining lives, because this would require that used equipment be readily available and that there be no cost for installation or removal. If used equipment is available, then it should be analyzed as another potential challenger.

The techniques for calculating the optimal life of a challenger can be applied to calculating the optimal insulation thickness and other design choices. The key is a first cost that increases but that ensures some level of annual savings in operating costs. What is the best trade-off between first costs and annual costs?

At times, it is more economical to do a block replacement of functioning equipment than it is to individually replace items as they fail. For example, it is faster to replace all fluorescent tubes at once than to simply replace each as it fails. Early in the life, the most costeffective pattern will be to replace individual failed items, but late in the life, all bulbs will be replaced.

The pattern of improvement in the challenger is the key part of the MAPI models (described briefly in Section 10.7). The inferiority gradient combines improvement in the challenger with annual increases in the cost of the defender.

REFERENCES

Foster, Richard N., Innovation: The Attacker's Advantage, 1986, Summit Books.
Luxhoj, James T., and Marilyn S. Jones, "A Framework for Replacement Modeling Assumptions," The Engineering Economist, Volume 32, Number 1, Fall 1986, pp. 39-49.
Ruegg, Rosalie T., and Harold E. Marshall, Building Economics: Theory and Practice, 1990, Van Nostrand Reinhold.
Terborgh, George, Business Investment Management, 1967, Machinery and Allied Products Institute.

Problems

10.1 Describe a problem in replacement analysis in which the replacement was being considered due to reduced performance of existing equipment.
10.2 Describe a problem in replacement analysis in which the replacement was being considered due to altered requirements.
10.3 Describe a problem in replacement analysis in which the replacement was being considered due to obsolescence of the existing equipment.
10.4 Describe a problem in replacement analysis in which the replacement was being considered due to the risk of catastrophic failure or unplanned replacement of the existing equipment.
10.5 For the situations you described in Problems 10.1 through 10.4, define the economic lives, physical lives, ownership lives, and service periods for the alternatives that you identified.
10.6 For the situations you described in Problems 10.1 through 10.4, describe any economic sunk costs that had to be ignored. How did any psychological, personal, or organizational sunk costs affect the decision-making process?
10.7 For the situations you described in Problems 10.1 through 10.4, describe the risks associated with the existing equipment and with the prospective new equipment.
10.8 Describe a replacement problem from your personal experience in which a key issue was cost saving vs. profit making.
10.9 A pulpwood-forming machine was purchased and installed 8 years ago for $\$ 45,000$. The declared salvage
value was $\$ 5000$, with a useful life of 10 years. The machine can be replaced with a more efficient model that costs $\$ 75,000$, including installation. The present machine can be sold on the open market for $\$ 14,000$. The cost to remove the old machine is $\$ 2000$. Which are the relevant costs for the old machine?
10.10 E\&J Fine Wines recently purchased a new grape press for $\$ 120,000$. The annual operating and maintenance costs for the press are estimated to be $\$ 5000$ the first year. These costs are expected to increase by $\$ 2000$ each year after the first. The salvage value is expected to decrease by $\$ 20,000$ each year to a value of zero. Using an interest rate of 8%, determine the economic life of the press.
(Answer: 1 year)
10.11 A particular chemical process deposits scale on the inside of pipes. The scale cannot be removed, but increasing the pumping pressure can maintain the flow through the narrower diameter. The pipe costs $\$ 20$ per foot to install, and it has no salvage value when it is removed. The pumping costs are $\$ 8$ per foot of pipe initially, and they increase annually by $\$ 5$ per year starting in year 2 . What is the economic life of the pipe if the interest rate is 12% ?
10.12 An electric oil pump's first cost is $\$ 45,000$, and the interest rate is 10%. The pump's end-of-year salvage values over the next 5 years are:

Year	1	2	3	4	5
S	$\$ 42 \mathrm{~K}$	40 K	38 K	32 K	26 K

Determine the pump's economic life.
(a) Use the tabulated factors.
(b) Use a spread sheet like Exbibit 10.3.
(Answer: 3 years)
10.13 A $\$ 20,000$ machine will be purchased by a com\square pany whose interest rate is 10%. It will cost $\$ 5000$ to install, but its removal costs are insignificant. What is its economic life if its salvage values and O\&M costs are as follows:

Year	1	2	3	4	5
\boldsymbol{S}	$\$ 16 \mathrm{~K}$	13 K	11 K	10 K	9.5 K
O\&M	$\$ 5 \mathrm{~K}$	8 K	11 K	14 K	17 K

(a) Use the tabulated factors.
(b) Use a spread sheet like Exbibit 10.3.
(Answer: 3 years)
10.14 A $\$ 40,000$ machine will be purchased by a company whose interest rate is 12%. The installation cost is $\$ 5 \mathrm{~K}$, and removal costs are insignificant. What is its economic life if its salvage values and O\&M costs are as follows:

Year	1	2	3	4	5
S	$\$ 35 \mathrm{~K}$	30 K	25 K	20 K	15 K
O\&M	$\$ 8 \mathrm{~K}$	14 K	20 K	26 K	32 K

(a) Use the tabulated factors.
(b) Use a spread sheet like Exbibit 10.3.
10.15 A machine that has been used for 1 year has a salvage value of $\$ 10,000$ now, which will drop by $\$ 2000$ per year. The maintenance costs for the next 4 years are $\$ 1250, \$ 1450, \$ 1750$, and $\$ 2250$. Determine the marginal cost to extend service for each of the next 4 years if the MARR is 8%.
(Answer: $\mathrm{MC}_{1}=\$ 4050$)
10.16 A drill press was purchased 2 years ago for $\$ 40,000$. The press can be sold for $\$ 15,000$ today or for $\$ 12,000, \$ 10,000, \$ 8000, \$ 6000, \$ 4000$, or $\$ 2000$ at the end of each of the next 6 years. The annual operating and maintenance cost for the next 6 years will be $\$ 2700$, $\$ 2900$, $\$ 3300$, $\$ 3700$, $\$ 4200$, and $\$ 4700$. Determine the marginal cost to extend service for each of the next 6 years if the MARR is 12%. If a new drill press has an EAC of $\$ 7000$, when should the drill press be replaced?
10.17 Eight years ago, the ABC Block Company installed an automated conveyor system for $\$ 38,000$. When the conveyor is replaced, the net cost of removal will be $\$ 2500$. The minimum EAC of a new conveyor is $\$ 5500$. When should the conveyor be replaced if ABC's MARR is 12% ? The O\&M costs for the next 5 years are $\$ 5 \mathrm{~K}, \$ 6 \mathrm{~K}, \$ 7 \mathrm{~K}, \$ 8 \mathrm{~K}$, and $\$ 9 \mathrm{~K}$.
10.18 The machine in Problem 10.13 has been purchased, and it is now 1 year old. Calculate the marginal cost to extend service for this year and for each of the next 3 years. The best challenger has an EAC that is 10% higher than that of the machine in Problem 10.13 (due to a change in the value of the yen). What is the economic life of the existing machine?
10.19 The machine in Problem 10.14 has been purchased, and it is now 1 year old. Calculate the marginal cost to extend service for this year and for each of the next 3 years. New challengers are not significant improvements over the machine in Problem 10.14, and they cost the same. What is the economic life of the existing machine?
10.20 For the machine in Problem 10.19, calculate the EACs for remaining lives of $1,2,3$, and 4 years. Calculate the EACs for a used machine that is purchased for $\$ 35 \mathrm{~K}$ and installed at a cost of $\$ 5 \mathrm{~K}$. Which of these is theoretically wrong? Is either theoretically correct? Why?
10.21 Green Cab Taxi Company owns several taxis that were purchased for $\$ 25,000$ each 4 years ago. The current market value is $\$ 20,000$ each, and if they are kept for another 6 years, they can be sold for $\$ 2000$ each. The annual maintenance costs for the cabs are $\$ 1000$ per year. Green Cab has been approached about a leasing plan that would replace the cabs. The leasing plan calls for payments of $\$ 4500$ per year. The annual maintenance costs for the leased cabs are $\$ 750$ per year. Should the cabs be replaced if the interest rate is 10% ?
10.22 Should NewTech's computer system be replaced this year? The system has a salvage value now of $\$ 5000$, which will fall to $\$ 4000$ by the end of the year. The cost of lower productivity linked to the older computer is $\$ 3000$ this year. NewTech uses an interest rate of 15%. What is the cost advantage of the best system? A potential new system costs $\$ 12,000$ and has the following salvage values and lost productivity for each year:

Year	\boldsymbol{S}	Lost Productivity
0	$\$ 12,000$	
1	9000	$\$ 0$
2	7000	1000
3	5000	2000
4	3000	3000

10.23 The computer system in Problem 10.22 will cost $\$ 500$ to move and transfer files, and the new system will cost $\$ 800$ to purchase and install. How does the answer change?
10.24 How much does the answer for Example 10.9 change if energy costs double?
(Answer: Optimal thickness is 11 inches)
10.25 What is the optimal height for a flood-control dam? The government agency uses an interest rate of 5\% and a horizon of 50 years. Assume that the dam has no salvage value after 50 years.

Height	30 m	35 m	40 m	45 m	50 m
First Cost	$\$ 10 \mathrm{M}$	12 M	14 M	16 M	18 M
Annual Benefit	$\$ 1 \mathrm{M}$	1.2 M	1.35 M	1.45 M	1.50 M

10.26 For Example 10.10, what is the EAC of block replacement if 60% of the bulbs can fail before the replacement? (Answer: $\$ 1.83$ per bulb)
10.27 The lights used at the local baseball stadium cost $\$ 125$ per bulb. Of the 120 bulbs at the stadium, 20 will fail after 2400 hours, 80 will fail after 2800 hours, and the remaining bulbs will fail after 3600 hours. The labor cost to replace individual bulbs is $\$ 150$ per bulb. If the bulbs are replaced in bulk, the labor cost is $\$ 85$ per bulb. The stadium hosts 120 games and events each year. The average time the lights are in use for each event is 5 hours. Compare the cost of individual replacement with block replacement at 2400 hours using $i=12 \%$.
(Answer: $\mathrm{EAC}_{\text {individual }}=\$ 79.39$ and
$\mathrm{EAC}_{\text {bulk }}=\$ 69.13$)
10.28 Anytown's Street Department repaves a street every 8 years. Potholes cost $\$ 10,000$ per mile beginning at the end of year 3 after construction or repaving. The cost to fix potholes generally increases by $\$ 10,000$ each year. Repaving costs are $\$ 120,000$ per mile. Anytown uses an interest rate of 6\%. What is the EAC for Anytown's policy? What is the EAC for the optimal policy? What is the optimal policy?

Minicases

10.29 Mary's parents read that the value of a car drops 30% the first year, then 20% per year for 3 years, and then 15% per year. Their experience is that repairs average $\$ 50$ per year during the 3-year warranty and then increase by $\$ 225$ each year after that. Their interest rate is 9%, and the car they want is $\$ 19,000$ new.
(a) If they want to minimize their annual costs, what is their optimal policy?
(b) If buying a car costs $\$ 500$ in time and fees and selling a car costs $\$ 250$, what is their optimal policy?
10.30 A 2000-pound, counter-balanced, propane forklift can be purchased for $\$ 30,000$. Due to the intended service use, the forklift's market value drops 20% of its prior year's value in year 1 and year 2 and then declines by 15% until year 10 , when it will have a scrap/market value of $\$ 3000$. Maintenance of the forklift is $\$ 400$ per year during years 1 and 2 while the warranty is in place. In year 3, it jumps to $\$ 750$ and increases $\$ 200$ per year thereafter. What is the optimal life of the forklift? ($i=10 \%$)
10.31 A 2000-pound, counter-balanced, electric forklift can be purchased for $\$ 25,000$ plus $\$ 3000$ for the charger and $\$ 3000$ for a battery. The forklift's market value drops by 10% less for each of its first 6 years of service. After this period, the market value declines at the rate of 7.5% for the next 6 years.

The battery has a life of 4 years and a salvage value of $\$ 300$. The charger has a 12 -year life and a $\$ 100$ salvage value. The charger's market value declines 20% per year of use. The battery's market value declines by 30% of its purchase price each year. Maintenance of the charger and battery are minimal. The battery will most likely not work with a replacement forklift.

Maintenance of the forklift is \$200 per year during years 1 and 2 while the warranty is in place. In year 3, it jumps to $\$ 600$ and increases $\$ 50$ per year thereafter. What is the optimal ownership policy? ($i=10 \%$)
10.32 A mining development needs a railroad branch line. The expected operational life is 25 years after which the site will be restored and the track removed. The line can be built with untreated wood ties that cost $\$ 25$ installed and have a 6-year life or with treated wood ties that have an installed cost of $\$ 40$ and a 10-year life.

When ties are removed from service, they can be sold for $\$ 3$ or if they have at least 4 years of life left, then they can be used elsewhere. The salvage value for that is estimated at $\$ 10$. If the firm's interest rate is 12%, should treated or untreated ties be purchased initially, and what is the best plan for a replacement pattern?

Cases

The following cases from Cases in Engineering Economy, $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 27 To Use or Not to Use?

Focus is treatment of sunk costs. More complicated than most. Some discoveries in the data gathering process. Solution uses equation rather than cash flow table.

Case 31 Freeflight Superdiscs

Inflation and sensitivity analysis for three alternatives. Includes taxes.

Case 32 Mr. Speedy

Includes two memos using different inappropriate financial comparisons. Choose optimal life for replacement of vehicles.

Case 33 Piping Plus

Data from case intro, three memos, income statement, and balance sheet. Computer improvement in a professional services firm. Assumptions will lead to an instructive variety of results.

Case 34 R\&D Device at EBP

Equipment replacement cost comparison with unequal lives. Continuing demand requires careful analysis statement by the student because of detailed cost data. Before-tax or after-tax situation.

Constrained Project Selection

- THE SITUATION AND THE SOLUTION

We usually have more good projects proposed than our funds allow. That is why projects must be compared and we must choose some and postpone or abandon others.

The solution is to rank the projects from the highest internal rate of return (best) to the lowest IRR (worst). Then, we do as many projects as we have funds to support. These limited funds form the capital budget, which is the limiting factor or constraint in constrained project selection.

The IRRs for the worst project that we select and the best project that we do not select define the opportunity cost of capital, our minimum attractive rate of return (MARR), and our reinvestment assumption.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 11.1 Define capital and operating budgets.
SECTION 11.2 Use IRR to rank projects from best to worst.
SECTION 11.3 Determine the MARR based on opportunity cost, and use the MARR as the interest rate for money's time value.
SECTION 11.4 Describe the power and limitations of the theoretically optimal model for the MARR.
SECTION 11.5 Impose a capital constraint on the theoretically optimal model, and link cost of capital and opportunity cost measures for the time value of money.
SECTION 11.6 Understand the assumptions that link the theory and application of capital budgeting.
SECTION 11.7 Recognize the limits of ranking on benefit/cost ratios or PW indexes.
SECTION 11.8 Sort a list of projects in order of decreasing IRR using a spreadsheet.
APPENDIX 11A Apply mathematical programming techniques to formulate simple capital budgeting problems and solve them using a spreadsheet.

- KEY WORDS AND CONCEPTS

Constrained project selection Choosing the best projects from a larger set within the limits of a capital budget.
Capital budget The maximum total spending permitted on the first costs of proposed projects.

Investment opportunity schedule The ranked list of available projects.
Opportunity cost The rate of return of the worst accepted project or the best one forgone. Minimum attractive rate of return (MARR) The minimum interest rate that a project must earn to be acceptable.
Theoretically optimal model A description of how firms could theoretically maximize their value.
Cost of capital The rate paid for the use of invested funds.

11.1 The Constrained Project Selection Problem

Mutually Exclusive Choices vs. Constrained Project Selection. Choosing the best projects within a limited budget is one of the most important problems solved by engineering economy. There is considerable research on various approaches, but there is not complete agreement among writers on engineering economy [Eschenbach and Allen; Eschenbach and Cohen]. This text describes the approach (ranking on IRR) that is most often practiced (see Exhibit 8.1)—including its theoretical justification. Other approaches are introduced, but their complete presentation is left to more advanced books [Bussey and Eschenbach; Park and Sharp-Bette]. This chapter develops the minimum attractive rate of return used in Chapters 9 and 10 to calculate PW, EAW, and EAC values to choose between mutually exclusive alternatives.

To maintain clarity and simplicity, this chapter discusses only investments. As shown in Chapter 7, most engineering projects are investments, in which cash is invested and then returns are generated. Engineering projects are rarely loans (the positive cash flows come first). Loans are omitted here to avoid the complication of wanting low interest rates for loans and high interest rates for investments.

Chapters 9 and 10 covered the comparison of mutually exclusive choices. In these comparisons, it is common for only cost data to be available, because the choices accomplish the same tasks. Selecting the one alternative to be implemented requires the evaluation of cash flows at the given interest rate and over a common horizon.

Constrained project selection is different. Many projects may be selected, but a budget limit prevents funding of all attractive projects. The interest rate is not known at the start of the problem. The projects are unlikely to all have the same life, and they usually cannot be repeated. Thus, estimates of costs, revenues, benefits, and disbenefits are required to decide how attractive the projects are and which ones should be funded. The attractive projects are typically compared by a ranking procedure, although Appendix 11A discusses a mathematical programming approach.

Evaluating mutually exclusive alternatives required using a single problem horizon. That assumption need not apply for the problem of constrained project selection. The different projects may have different lives, and the only assumption that applies is that all projects are subject to the same reinvestment assumption.

The reinvestment assumption reflects what the firm expects to earn on future projects. Thus, if all projects are evaluated at a minimum attractive rate of return (MARR) of 10%, this implies that the firm expects to receive a 10% rate of return on future projects. The firm's goal is to maximize its future worth by selecting the best projects now.

Projects competing for a limited budget will usually have different lives. A common reinvestment assumption ensures valid choices.

Constrained

 project selection is choosing the best projects from a larger set of acceptable projects within the limits of a capital budget.The capital budget is made up of those funds allocated for purchasing equipment, constructing buildings, etc. This capital budget is the maximum total spending permitted on first costs.

Budgets and Project Selection. Constrained project selection is choosing the best projects from the set of acceptable projects. These acceptable projects have a positive PW or EAW at the interest rate specified for evaluating projects. Virtually all firms and governments have limited funds, and they cannot implement every attractive proposal. (For brevity, the term firms is used here for all organizations facing this problem.)

Firms define two budgets each year. The first, an operating budget, covers expenses for current activities, such as wages, purchased materials, and energy costs. The second, a capital budget, supports major new initiatives and the cost of replacing expensive equipment. Both are created out of the firm's income and borrowing, so funds can be and are transferred between the two budgets. However, most projects evaluated with engineering economy are funded by the capital budget.

This capital budget is first set for the entire firm. It is then allocated to divisions, then to plants, then to departments, and then to groups (see Exhibit 11.1). The allocation process can often be described as a flow of information and proposals up the organization and a flow of decisions and allocations back down. Each managerial level receives information and proposals. These are evaluated, and either decisions are made or the information is passed up to the next level. At some level, the decision is made and communicated back down the hierarchy. Sometimes, a dollar amount is allocated, and the choices are made within that limit at a lower level.

Capital resources are limited at virtually every decision-making level of every firm. There are also limits on labor, managerial time, material, and equipment; even more limits may be imposed by political or social issues. However, engineering economy must first deal with a single limit-on capital.

Why is the capital budget limited? First, the capital budget may be externally limited. For example, the state legislature determines how much the state's highway department and its university have to spend. Similarly, the capital spending of a small high-tech start-up company is limited by the venture capital it acquires and by the cash flows it generates.

EXHIBIT 11.1 Allocating the capital budget

On the other hand, the spending limit may be determined by internal choices. Some divisions, plants, and products will have better growth prospects; some will be strategically crucial; and some may be in volatile, risky markets. A new pollution-control investment may be mandated, or the timing of a union renegotiation may influence plans for building a new plant or renovating an old one. Thus, each level in the hierarchy must consider noneconomic criteria (see Chapter 19) as it allocates the capital budget to the level below it.

Whether externally or internally based, this limitation on capital spending is the norm, not the exception. The next several sections show that this spending limit determines the opportunity cost basis for the minimum attractive rate of return (MARR or i^{*}). This MARR is the interest rate for calculating PW and EAC (see Section 9.3).

Problem Size and Solution Approach. Decisions on funding of capital projects typically include meetings where different managers advocate for funding of projects within each person's area of responsibility. A project ranking is the usual starting point for discussion. This discussion might, for example, split the projects into thirds. For the top third, funding is expected; for the bottom third, denial is expected; and the discussion focuses on the middle third.

Often there are strategic implications and risks that are not reflected in the PW, IRR, and other measures. Another consideration is that some groups typically deliver promised results and others may not. There may also be a desire to balance funding so that all groups, departments, or regions are treated "equitably." If the information and criteria cannot be stated explicitly in mathematical terms, then ranking and discussion are the best means to include it. Since many of these considerations are very difficult to state mathematically, when the tools of mathematical programming (Appendix 11 A) are applied, it is common to also include meetings and ranking approaches.

The constrained project selection problem is very large. For example, if a refinery's engineering group can recommend 15 of 25 projects, there are $3,268,760$ different project sets to evaluate. If each of 10 refineries forward 15 proposals to the division's vice president, who immediately accepts or rejects two-thirds, or 100 projects, then 50 proposals are still in consideration. If half of the 50 projects will be accepted, then there are over 126 trillion sets. Some sets would exceed the capital budget; others would leave money unspent. Only one set would include all of the best projects. The number of ways or combinations to choose r projects out of n is $n!/[(n-r)!\times r!]$.

Evaluating this many possible combinations is unrealistic, and the refinery managers and the division vice president need to use a ranking or a mathematical programming technique. Ranking on IRR constructs the best combination for each manager. Example 11.1 illustrates this for the first refinery's engineering group.

The engineering group has evaluated 25 projects with a positive PW at $i=12 \%$. Many projects serve multiple purposes, but they are categorized in Exhibit 11.2 by their main focus. Estimated lives range from 5 to 20 years. Since the refinery will not receive the $\$ 2 \mathrm{M}$ required to fund all 25 projects, identify the best ones.

Twenty-five engineering projects for a refinery

Focus	Project	First Cost	Life (years)	Annual Benefit
Capacity expansion	V	$\$ 100 \mathrm{~K}$	10	$\$ 20.0 \mathrm{~K}$
	S	100 K	10	22.2 K
	A	100 K	15	35.6 K
	Y	105 K	10	19.0 K
	D	120 K	15	36.7 K
	J	120 K	20	27.6 K
	L	130 K	15	29.5 K
Energy efficiency	O	175 K	10	41.6 K
	Q	50 K	20	10.0 K
	B	50 K	20	16.7 K
Lower costs on:	I	90 K	20	21.5 K
Product 3				
Product 1	H	40 K	5	15.0 K
Product 6	E	40 K	5	16.0 K
Product 2	R	50 K	5	16.2 K
Product 7	F	50 K	10	15.3 K
Product 4	U	50 K	10	10.3 K
Product 9	M	60 K	5	20.4 K
Product 8 8	X	75 K	5	21.6 K
Product 5 5	W	80 K	5	23.5 K
Pollution control	N	85 K	10	20.5 K
	K	40 K	10	10.3 K
	G	60 K	15	16.9 K
	P	65 K	15	13.7 K
	C	75 K	10	26.1 K
	T	90 K	15	16.4 K

SOLUTION

If IRRs are calculated, then the projects can be ranked on IRR. The ranking shown in Exhibit 11.3 clearly identifies which projects are better than others. The division's vice president could accept the top 10 , with $\$ 745 \mathrm{~K}$ in capital costs; reject the bottom 5 , with their associated $\$ 410 \mathrm{~K}$ in capital costs; and focus attention on projects K through T, with their total costs of $\$ 845 \mathrm{~K}$, in deciding how much of the capital budget should be allocated to this refinery. (Note: If projects A through O were funded at a cost of $\$ 1235 \mathrm{~K}$, another $\$ 65 \mathrm{~K}$ to $\$ 165 \mathrm{~K}$, or 5% to 15%, might be allocated to cover possible cost overruns.)

Exhibit 11.3 also includes the PW and EAW of each project, evaluated at $i=12 \%$, to illustrate that ranking using these measures would lead to different projects being selected.

EXHIBIT 11.3 Refinery projects ranked by IRR

Project	IRR	First Cost	PW	EAW	Focus
A	35.2%	$\$ 100 \mathrm{~K}$	$\$ 142.5 \mathrm{~K}$	$\$ 20.9 \mathrm{~K}$	Capacity expansion
B	33.3	50 K	74.7 K	10.0 K	Energy efficiency
C	32.8	75 K	72.5 K	12.8 K	Pollution control
D	30.0	120 K	130.0 K	19.1 K	Capacity expansion
E	28.6	40 K	17.7 K	4.9 K	Lower costs on product 1

Project	IRR	First Cost	PW	EAW	Focus
F	28.0	50 K	36.4 K	6.5 K	Lower costs on product 2
G	27.4	60 K	55.1 K	8.1 K	Pollution control
H	25.4	40 K	14.1 K	3.9 K	Lower costs on product 3
I	23.5	90 K	70.6 K	9.5 K	Energy efficiency
J	22.6	120 K	86.2 K	11.5 K	Capacity expansion
K	22.3	40 K	18.2 K	3.2 K	Pollution control
L	21.5	130 K	70.9 K	10.4 K	Capacity expansion
M	20.8	60 K	13.5 K	3.8 K	Lower costs on product 4
N	20.3	85 K	30.8 K	5.5 K	Lower costs on product 5
O	19.9	175 K	60.0 K	10.6 K	Capacity expansion
P	19.6	65 K	28.3 K	4.2 K	Pollution control
Q	19.4	50 K	24.7 K	3.3 K	Energy efficiency
R	18.6	50 K	8.4 K	2.3 K	Lower costs on product 6
S	17.9	100 K	25.4 K	4.5 K	Capacity expansion
T	16.3	90 K	21.7 K	3.2 K	Pollution control
U	15.9	50 K	8.2 K	1.5 K	Lower costs on product 7
V	15.1	100 K	13.0 K	2.3 K	Capacity expansion
W	14.4	80 K	4.7 K	1.3 K	Lower costs on product 8
X	13.5	75 K	2.9 K	.8 K	Lower costs on product 9
Y	12.5	105 K	2.4 K	.4 K	Capacity expansion

Budget Flexibility and Contingency Allowances. Example 11.1 also illustrates the flexibility in decision making that forces firms to use a ranking technique (such as ranking on IRR) rather than more theoretically sophisticated approaches (see Appendix 11A). The division's vice president must decide how much of the capital budget to allocate to this refinery. The top 10 projects might be accepted with little examination, while the bottom 5 might be rejected as being a "wish list." The remaining 10 would be compared with competing projects from other refineries to set the final capital budget for this refinery. The 10 select/10 examine/ 5 drop, or $5 / 15 / 5$, may be chosen using a convenient 5 basis or by using the dollars required for each group.

As noted in Example 11.1, some firms identify part of the capital budget as an allowance for cost overruns on the selected projects. The contingency allowance might be 30% for a high-risk construction project, 100% for a high-risk new product development, and 0% for a more routine project. Sometimes, the total contingency allowance is adjusted to match the available capital budget with the total first costs.

11.2 Ranking Projects

The set of acceptable projects is often ranked to support decision making. The most common and effective ranking approach is by IRR. The IRRs provide a consistent measure of the rate of return earned for each dollar of investment for each year the dollar is

The investment opportunity schedule ranks the organization's proposed investment projects from the highest IRR (best) to the lowest IRR (worst).
invested. Since the capital budget limits the total first costs, the goal is to maximize the return per dollar of first cost. More attractive projects will return more for each dollar invested.

Investment Opportunity Schedule. The ranking of projects from the highest IRR to the lowest can be shown graphically. If the x-axis is the cumulative first cost or investment, the step function that is generated is called the investment opportunity schedule. Since the projects are ranked from the highest IRR to the lowest, this forms the schedule or order of selection.

Exhibit 11.4 illustrates this for the refinery projects that were ranked in Exhibit 11.3 for Example 11.1.

The following discussion of IRR, PW, and equivalent annual measures as ranking techniques for potential projects concludes that:

1. The internal rate of return is the best ranking measure.
2. Other discounted cash flow measures may produce incorrect and different rankings.
3. These differences arise because IRR adjusts for project size and duration, and equivalent annual and PW measures do not.

EXHIBIT 11.4 Choosing the refinery's top projects

Ranking by PW or EAW Does Not Work. Good projects will look good on PW, EAW, and IRR criteria. However, PW and EAW rankings for a set of projects are often inconsistent with the IRR ranking. This inconsistency is easy to see in Exhibit 11.3, since the projects are listed in IRR order and the PW and EAW values are not in order.

The PW and EAW do not work as ranking criteria because they do not adjust for the size of the project. In general, large projects that have large first costs will often have large PWs and EAWs. Project O in Exhibits 11.2 and 11.3 illustrates this. Ranked 15th by IRR, this project has the 8th largest PW and the 5th largest EAW at an interest rate of 12%.

The IRR considers every cash flow of the project, and it provides a single number to validly rank projects in order of decreasing attractiveness. A project's size does not change the validity of the IRR ranking.

Strengths and Weaknesses of IRR. The internal rate of return has a weakness as well. As we saw in Chapter 7, some projects with multiple sign changes in their cash flows do not have an IRR. However, most projects are either investments or loans, and most have a unique IRR. For the moment, we will ignore loans and multiple sign changes, but we will revisit the issue at the end of the chapter.

The IRR's chief advantage over the present worth index or benefit/cost ratio is that the ranking can be made before the minimum attractive rate of return is chosen. In fact, ranking on IRR is used to select the interest rate, i. The PW indexes and benefit/cost ratios adjust for project size, but the wrong interest rate is often used (see Section 11.7). A second advantage is that the IRR is sensitive to the timing of the cash flows. Example 11.2 illustrates that projects with the same scale and duration may have similar EAWs and PWs and very similar PW indexes or benefit/cost ratios but still differ in their IRRs.

Rank the following six projects, each of which has a life of 5 years. The returns of all six projects can be split into a level annual benefit and an arithmetic gradient. For example:

$$
\mathrm{PW}_{1}(i)=-20,000+14,000(P / A, i, 5)-4000(P / G, i, 5)
$$

and

$$
\mathrm{PW}_{6}(i)=-20,000-6,000(P / A, \mathrm{i}, 5)-7100(P / G, i, 5)
$$

Project	First Cost	Annual Benefit	Gradient	PW at $\mathbf{1 0} \%$	EAW at $\mathbf{1 0} \%$	PWI or B/C at $\mathbf{1 0 \%}$	IRR
1	$\$ 20,000$	$\$ 14,000$	$-\$ 4000$	$\$ 5624$	$\$ 1484$	1.281	28.3%
2	20,000	9000	-1200	5883	1552	1.294	22.6
3	20,000	6800	0	5777	1524	1.289	20.8
4	20,000	4000	1550	5799	1530	1.290	19.2
5	20,000	0	3750	5732	1512	1.287	17.4
6	20,000	-6000	7100	5974	1576	1.299	16.0

SOLUTION

As summarized in Exhibit 11.5, these projects are correctly ranked on IRR, where the largest IRR is 75% greater than the smallest. Their EAWs (and PWs) vary by only 6%; the PW indexes vary by only 1.4%; and they are ranked differently ($6,2,4,3,5,1$). Project 1 's IRR is the largest, because it has large positive cash flows in years 1 and 2 , which is much earlier than the large cash flows for project 6 .

EXHIBIT 11.5 Example 11.2 projects with matching first costs and lives

11.3 Determining the Minimum Attractive Rate of Return

Solving the constrained project selection problem is one way to define the minimum attractive rate of return. The first step was detailed in the last section:

1. Ranking the projects in decreasing order of IRR to form the investment opportunity schedule. Recall that for investments, higher rates of return are better, and that investment (not loan) cash flow patterns were assumed.

In this section, the steps also include:
2. Computing the cumulative first cost as each project is added to the list.
3. Comparing the cumulative first cost with the budget constraint.
4. Finding the MARR.

Example 11.3 illustrates the process for seven projects with different first costs but with the same life. In Exhibit 11.6, the cumulative cost after five projects exactly matches the capital budget. (If the cumulative cost and the capital budget do not match, see Section 11.6.)

EXAMPLE 11.3 Microtech

Microtech is considering seven projects within a capital budget of $\$ 90 \mathrm{~K}$. All projects have a 5 -year life and are acceptable at a 10% interest rate. Determine which projects should be recommended for implementation.

Project	First Cost	Annual Benefit	PW at 10\%	IRR
1	$\$ 20,000$	$\$ 8000$	$\$ 10,326$	28.6%
2	30,000	11,000	11,699	24.3
3	10,000	3500	3268	22.1
4	5000	1650	1255	19.4
5	25,000	8100	5705	18.6
6	15,000	4650	2627	16.6
7	40,000	12,100	5869	15.6

SOLUTION

For convenience, the data ranked the projects from the most attractive IRR to the least. The top project has a cost of $\$ 20,000$, the top two a cumulative cost of $\$ 50,000$, the top three a cost of $\$ 60,000$, etc. Since the budget is $\$ 90,000$, the top five projects should be chosen.

Selecting the best projects for Microtech

Project	IRR	First Cost	Cumulative First Cost
1	28.6%	$\$ 20,000$	$\$ 20,000$
2	24.3	30,000	50,000
3	22.1	10,000	60,000
4	19.4	5000	65,000
5	18.6	25,000	90,000 budget
6	16.6	15,000	105,000
7	15.6	40,000	145,000

The opportunity cost of capital is the rate of return of the worst accepted project or the best forgone project.

To confirm that ranking on IRR is best, note that the top five projects in Exhibit 11.6 have a cumulative annual benefit of $\$ 32,250$. Projects 1,2 , and 7 have the largest PWs and the same total first costs of $\$ 90,000$, but their total benefit is $\$ 1150$ smaller per year, at $\$ 31,100$. This comparison is valid since all projects have the same 5 -year life and uniform annual benefits. Thus, choosing the projects with the largest PWs would lower the total return.

Comparing Exhibits 11.4 and 11.6 shows that the steps of this investment opportunity schedule become relatively smaller as the number of projects increases. For firms or agencies with more than 20 projects, this graph can be approximated by a smooth curve whose values are the marginal return of each additional dollar of investment.

Minimum Attractive Rate of Return (MARR). Exhibit 11.6 shows that Microtech's top five projects should be funded for a budget limit of $\$ 90,000$. Specifically, project 5 is funded, and project 6 is not. If the budget drops below $\$ 90,000$ the opportunity is lost to invest in project 5, which returns its first cost with interest at a rate of 18.6%. On the other hand, if the budget increases by $\$ 15,000$, project 6 can be added to gain returns at a 16.6% rate. This opportunity cost is the best basis for choosing the minimum attractive rate of return (MARR).

The minimum attractive rate of return (MARR) is the basis for calculating PW and EAW, and it is the minimum interest rate that an investment must earn. For convenience, it is defined as the rate of return of the worst accepted project.

Depending on whether projects are added or deleted, the opportunity cost for Microtech's investments is between 16.6% and 18.6%. Since most organizations consider more than seven projects, the IRRs of adjacent projects are closer together, and the MARR is usually known more exactly, as in Example 11.4.

For convenience, the MARR is defined as the higher of the opportunity costs for adding or for deleting projects, which is the IRR of the worst project accepted. For Example 11.3 , the IRR for project 5 and the MARR are both 18.6%.

This opportunity cost represents what the firm loses if it spends part of its capital budget on unlisted projects or on ones near the bottom of the list. To calculate present and annual worths, this opportunity cost defines the MARR, which is the interest rate that should be used. Then, the sign of the PW will give the proper signal for whether the project should be funded.

In equations, the MARR will be shown as i^{*}. This rate is also an upper limit for financing proposals, since it would certainly make no sense to borrow at 15% to invest at 10%.

This section has demonstrated how the MARR should be determined and how projects should be selected for funding. Once ranking on IRR has been used to find the MARR, PW measures can be used to check the acceptability of other alternatives. However, only ranking on IRR can be used to find the all-important MARR $\left(i^{*}\right)$. Examples 11.4 and 11.5 illustrate applications in the private and public sectors.

EXAMPLE 11.4 MARR for the Refinery Projects (Example 11.1 Revisited)

Assume that the division vice president has allocated $\$ 1.3 \mathrm{M}$ to the refinery. Since the 25 projects have total first costs of $\$ 2 \mathrm{M}$, some must be forgone. Which projects should be done, and what is the MARR?

SOLUTION

The first costs of projects A through P sum to $\$ 1.3 \mathrm{M}$, so those are the projects that should be done. Projects Q through Y should be forgone. Since the IRR of project P is 19.6%, that is the MARR. Note that project Q has an IRR of 19.4%, so the range of uncertainty in the MARR is only $.2 \%$.

EXAMPLE 11.5 Highway Road Projects

Consider eight projects (listed in the table) under consideration by a state highway department, which has a total budget of $\$ 1.3 \mathrm{M}$. Each road project is assumed to have a life of 20 years, with level annual benefits. Evaluate the projects at the department's mandated interest rate of 10%. How much higher is the department's opportunity cost of capital?

Project	First Cost	Annual Benefit
1	$\$ 300,000$	$\$ 42,000$
2	250,000	49,500
3	50,000	5625
4	500,000	67,500
5	250,000	43,500
6	150,000	23,250
7	400,000	36,000
8	350,000	57,000

SOLUTION

Because all of the projects have a life of 20 years and uniform annual benefits, all use the same PW equation to find the IRR:

$$
\begin{aligned}
& 0=- \text { First }^{\text {Cost }}+\mathrm{A}+\text { Annual Benefit }{ }_{j} \times\left(P / A, i_{j}, 20\right) \text { for project } \\
& \left(P / A, i_{j}, 20\right)=- \text { First }^{\text {Cost }_{j}}+\text { Annual Benefit }_{j}
\end{aligned}
$$

Now, the $(P / A, i, 20)$ factors and IRRs can be ranked, as shown in Exhibit 11.7. For hand solution, only that factor closest to the $\$ 1.3 \mathrm{M}$ cumulative budget must be solved to find the MARR of 12.7%. This is 2.7% higher than department's mandated interest rate.

Ranked highway projects for Example 11.5

Project	First Cost	Cumulative First Cost	$(\boldsymbol{P} / \mathbf{A , i , 2 0})$	IRR
2	$\$ 250,000$	$\$ 250,000$	5.051	19.2%
5	250,000	500,000	5.747	16.6
8	350,000	850,000	6.140	15.3
6	150,000	$1,000,000$	6.452	14.5
	300,000	$1,300,000$	7.143	12.7
	500,000	$1,800,000$	7.407	12.1
	50,000	$1,850,000$	8.889	9.4
7	400,000	$2,250,000$	11.111	6.4
7				

11.4 A Theoretically Optimal Approach for Determining the Capital Budget

In Section 11.3, the minimum attractive rate of return was found by applying a capital limit to the investment opportunity schedule. In this section, rather than imposing a capital limit, the cost of acquiring funds for investment is used. Acquiring these funds (the firm's capital) is done through the firm's finance group. This basis for development of the MARR is the following steps:

The theoretically optimal model describes how a firm can maximize its value by undertaking every project whose returns exceed the marginal financing cost for the entire set of projects.

1. Develop a financing opportunities curve.
2. Find the intersection of the financing opportunities curve and the investment opportunity schedule. Theoretically, this level of total investment maximizes the capital budget and returns of the firm.
Just as investments can be ranked, so can financing sources. However, unlike potential investments, the best financing has the lowest interest rate, and the worst has the highest rate. Thus, the financing curve increases as cumulative investment increases.

Possible sources for these funds include last year's profits; additional equity, such as new stock or partners; additional long-term debt or bonds; or additional short-term debt, such as unsecured loans or loans against accounts receivable. However, the range of likely interest rates for financing sources is much narrower than the range for investments. Thus, the financing curve slopes less steeply than the investment opportunity schedule. The financing curve is combined with the investment opportunity schedule in Exhibit 11.8.

There are two reasons for the financing curve's upward slope. First, the firm seeks out and secures the lower-cost funds first. Second, the providers of all funds charge somewhat higher rates as the firm increases its level of financing and debt. This compensates for an increased risk of default.

Exhibit 11.8 assumes that:

1. Investment opportunities and financing sources are available in small, divisible pieces. This assumption causes the two curves to be smooth, and it guarantees that they intersect.
2. The investment opportunities are independent of each other.
3. The firm has some profitable investments; that is, at least the best projects have IRRs that exceed the firm's financing rate.
4. The firm can both invest and borrow at the rate where the two curves intersect, with no transaction costs.

Economic and financial theory (and simple logic) imply that a firm optimizes its performance by operating at the intersection of the two curves. If a firm operates to the right of the intersection, then it is borrowing money at a higher rate than it is investing. On the other hand, any firm that operates to the left of the intersection could increase its total profit by borrowing more money and investing it.

EXHIBIT 11.8 Theoretically optimal model to maximize total returns

This optimization result is the justification for using the cost of acquiring funds to evaluate potential projects. Any project that will return more than the cost of additional financing should be undertaken, along with the borrowing required to do it. Because the financing curve is relatively flat, the firm can determine the rate at which funds are acquired and apply this to all potential investment opportunities. Theoretically, this separates the financing and investment decisions [Bussey and Eschenbach]. Practically, this argument is the basis for using PW at the cost of financing as the measure for evaluating individual projects.

Of the four numbered assumptions, the last is perhaps the most questionable in reality. A firm must typically borrow money at a higher rate than it could loan money at. Moreover, significant transaction costs are involved in terms of fees, employee time, and managerial time.

11.5 Capital Limits in the Real World

Why Capital Limits Are Imposed. The theoretically optimal model connects the cost of acquiring funds with the selection of an optimal investment level. While this is conceptually useful, the model must be modified to fit reality. This section discusses why capital budgets are imposed in the real world and the implications of the capital constraint.

It is well established that most firms do not operate at the intersection of the investment and financing curves. Instead, capital budgets allocate limited available funds, and then engineering economy must be used to select the projects that should be undertaken. In fact, firms do not-and should not-operate at this intersection for four good reasons:

1. To adjust for the firm's larger risk as compared to the bank's risk.
2. To allow a margin to protect against overly optimistic estimates.
3. To concentrate the firm's attention on the best projects.
4. To allow more flexibility to pursue new projects.

First, consider a firm that is issuing bonds or borrowing from banks. These lenders acquire rights to the firm's assets that come before the rights of common stockholders or other owners. Thus, the risk to the firm's owners is larger than the risk to the lender. If the firm goes bankrupt, the lenders will receive partial or full repayment, while the owners come last. Suppose a firm borrows funds at 12% to invest in a project that earns 13%. The lender then earns 12% for supplying the funds, and the firm earns about 1% (on someone else's money) for doing all the work and absorbing most of the risk. The firm will usually insist on a reasonable margin over the rate charged by the financing source.

Second, many decisions must be made at lower levels of the organization, and the information on corporate financing exists at the top. If the chief executive officer establishes a MARR, then subordinates are encouraged to be optimistic in their project evaluations. If their optimistic values show a positive PW at the MARR, then funding is warranted. Most people tend to be unconsciously optimistic about projects they want to undertake. Thus, a project that is predicted to barely meet the cost of financing is more likely to result in a loss. The firm will usually insist on a reasonable margin over the financing rate to compensate for the risk that the project will not meet expectations.

In some organizations, overly pessimistic estimates are required. Suppose projects that cost $\$ 500,000$ and require 10 people for 6 months are approved after cutting the budget to
$\$ 400,000$ and the resources to 7 people for 4 months. On the next project, inflated cost, people, and time estimates will likely be submitted; then, after the expected cuts, there will be enough left over to get the job done. If pessimistic estimates are used for the first costs, then overly optimistic estimates may be used for the future benefits of the project to compensate.

Third, projects whose IRR is close to the financing cost provide only minimal returns to the firm. If they are undertaken, then the firm's money and the attention, energy, and abilities of its management and workforce are to some extent diverted from the best projects, where a substantial payoff is possible.

Finally, a firm is poorly positioned to take advantage of new opportunities if it has borrowed all that it can or has stretched its capital plant or its people to the limit. It has little flexibility to respond to the inevitable changes of the future.

Consequently, firms set a capital limit rather than borrowing up to the point where the financing and investment curves intersect. The firm's capital budget may be allocated to each division or department, where each level can make the best investments available within the limits of its resources. A minimum MARR may be established for each division that considers the riskiness of projects within that division. For example, a petroleum company is likely to use a higher MARR for the evaluation of exploration projects than for distribution projects. However, after each level selects its projects within its capital limit, then the MARRs can be compared for levels with equivalent risks. If these rates differ substantially between divisions or departments with similar risks, then it might be desirable to reallocate funds.
Budget Limits and the Cost of Capital. Exhibit 11.9 shows what happens when the budget constraint is added to Exhibit 11.8. Three more interest rates-the opportunity cost of capital, the marginal cost of capital, and the weighted average cost of capital-are defined in addition to the theoretical MARR.

The highest interest rate is the opportunity cost of forgone investments. As shown in Section 11.3, this should be the firm's MARR. If the firm's capital constraint is even moderately severe, then the opportunity cost of forgone investments can greatly exceed the theoretical MARR (defined by the intersection of the two curves).

The lower two interest rates are based on the firm's cost of capital for the budget that is used. The higher of these two is the firm's marginal cost of capital at the budget limit. This is the cost or interest rate for the firm's most expensive source of capital. The lower of the two cost of capital measures is the firm's weighted-average cost of capital (WACC) for

EXHIBIT 11.9 Four possible MARRs
all of the capital used. This lower rate is a weighted average of the interest rates for bonds, loans, stock, and retained earnings.

The WACC, which is the lowest rate, is often erroneously used as the MARR. This WACC is closely linked to the marginal cost of capital, and it can be related to historical data about the cost of acquiring funds. At best, current estimates for stocks, bonds, and loans are used, but inexpensive and expensive sources are combined. At worst, debt financing that was secured at favorable rates in the past is included.

The cost of capital measures are useful because they provide a lower bound for the MARR. It certainly would not make sense to borrow money at 9% and then invest it at 6%. Managers can also subjectively increase this lower bound. For example, if a firm's cost of capital is 9%, then managers could require projects to earn at least 12%. The 3% margin compensates the firm for the risk of optimistic estimates for the projects and for the added risk it bears beyond that borne by the bank and other financing sources. The cost of capital measures also provides a measure of the firm's success in acquiring funds at reasonable interest rates.

If the investment opportunity schedule shown in Exhibit 11.9 accurately estimates the return of future projects, then the opportunity cost of capital is the correct basis for the MARR. If there is an optimistic bias in project estimates, this will need to be adjusted downward to match the return that can be expected for reinvestments. Similarly, while the WACC represents a lower limit for the MARR, that MARR will need to include an upward adjustment to match the return that can be expected for reinvestments. Using the correct reinvestment rate allows the correct choice of projects now. If the reinvestment rate is too high, then there is a bias toward picking shorter-term investments now; if it is too low, then there is a bias toward picking longer-term investments now.

Example 11.6 illustrates how the cost of capital can be calculated. The interest rates for debt financing (bonds or loans) were calculated in Chapter 7. For common and preferred stock, the interest rate is found using models that include dividends and changes in the stock's price. The highest of the bond, loan, and stock rates is used for retained earnings.

What are the marginal and weighted average cost of capital for a manufacturing firm whose capital structure [Kester] can be broken down as follows:

- $\$ 75 \mathrm{M}$ from bonds at 9% on average.
- $\$ 125 \mathrm{M}$ from loans at 11% on average.
- $\$ 200 \mathrm{M}$ from stock estimated at 14%.
- $\$ 150 \mathrm{M}$ from retained earnings estimated at 14%.

SOLUTION

For this firm, the marginal cost of capital is 14% (since the marginal rate must be the highest rate of any source). The WACC can be found by calculating the weighted average of the four sources:

$$
\begin{aligned}
\mathrm{WACC} & =\frac{75 \mathrm{M} \times .09+125 \mathrm{M} \times .11+200 \times .14+150 \mathrm{M} \times .14}{(75 \mathrm{M}+125 \mathrm{M}+200 \mathrm{M}+150 \mathrm{M})} \\
& =12.6 \%
\end{aligned}
$$

11.6 Matching Assumptions to the Real World

Solving the constrained project selection problem has required some assumptions that may not precisely match the real world. These assumptions are:

1. Projects and financing come in divisible or small pieces.
2. Projects are independent.
3. Projects can be simultaneously evaluated.
4. The MARR is stable over time.
5. The MARR is unaffected by omitting loans and multiple-sign-change projects from the initial calculation.

This last assumption is the easiest to justify. In defining the MARR, individual projects were assumed to have only one sign change in the cash flow diagram and to be investments for which a high IRR is attractive. Once the MARR has been selected, PW or equivalent annual measures can be used to evaluate loan projects and projects with multiple sign changes. If the total cost of good projects in these two categories is high, then a slightly higher MARR might be used.

In addition, the tools for evaluating multiple objectives (see Chapter 19) are often appropriate.

Assumption of Indivisible Projects and Increments of Financing. A less realistic assumption was that the budget matched the cumulative first cost for the best projects. Instead, as suggested by Exhibit 11.10, projects are usually indivisible, and financing may be available only in large increments. A new dam, robot, or assembly line is a "go or no-go" project: If the project is undertaken, the full cost is incurred-either the $\$ 1$ million or

EXHIBIT 11.10 Indivisible projects and increments of financing
Possible Sources

nothing is spent. The firm simply cannot do 38.3% of the project to make the total investment cost match the budget.

Recall that in Exhibit 11.6, a budget of $\$ 90,000$ implied that Microtech should do projects 1 through 5 . If the budget were $\$ 100,000$ instead, then there would not be enough funds to add project 6 , which costs $\$ 15,000$. However, leaving $\$ 10,000$ unspent may also be a problem, since it suggests that the firm (the agency, the department, etc.,) may not have enough good projects. This may even cause fewer funds to be allocated to this group next year.

The reality of indivisible projects and increments of financing can be faced in five different ways. Engineers in the real world can use all five approaches. Students can use only the first two approaches. They are:

1. "Juggle" the list.
2. Model the problem with a mathematical program, and solve with a computer.
3. Adjust the scope or cost of projects and/or the budget available.
4. Add an adjustable contingency amount to match the projects and the budget (see Example 11.1).
5. Shift some of the capital costs into the next fiscal year.

First, the list can be "juggled" by the analyst. Suppose a $\$ 100,000$ budget replaced the $\$ 90,000$ limit shown in Exhibit 11.6. Then, substituting project 6 for project 4 increases the first costs by $\$ 10,000$, which would fully use the budgeted funds. Since their IRRs, 19.4% and 16.6%, are relatively close, the new set of accepted projects is at least a good set. This set might be the best possible, but "juggling" cannot confirm that it is the best of all sets.

Second, mathematical models can produce an optimal selection. These models are computerized to deal with the enormous number of possible project combinations. These capital budgeting models, discussed in Appendix 11A, are a part of the field of operations research. However, these models are optimal only if all data are known and there is no uncertainty-which is rarely true.

Third, the budget or project costs and/or scope can be adjusted up or down. This option is common in reality but unavailable in textbooks. In textbooks, projects are treated as having clearly defined costs and budgets as being fixed. In reality, these values can beand are-adjusted through the decision-making process. Budgets may be increased or reallocated to fund an attractive project that is on the "bubble" or even below it. (Note: The "bubble" suggests that support may be there or that the bubble may pop-leaving the project unsupported.) The common plea is to add $\$ x$ to the budget so that this clearly desirable project can be accepted. On the other hand, projects are commonly approved with a stipulation that their costs be reduced, perhaps by 10%. Example 11.7 illustrates these and other possibilities.

Since data values are not exact in reality, IRRs and PWs are somewhat approximate. Thus, it is satisfactory for the MARR to be an approximate value. The MARR need not be precise to be useful. It is not fatal to omit a project from the list because its IRR is confounded by multiple sign changes. It is also not fatal to "juggle" the list so that the budget is fully utilized. Once the MARR has been found, all projects that have positive PWs at that value can be considered.

The casting division of Drew Metal Works is considering several projects, but the division has been allotted a capital budget of only $\$ 100,000$. The best project has a first cost of $\$ 95,000$, and the next best is expected to cost $\$ 10,000$. Describe some of the options that the divisional vice president has.

SOLUTION

If the organization rewards honesty, then the three options are:

1. Ask for an extra $\$ 5000$ and approval of both projects.
2. Ask for approval of the best project and a $\$ 5000$ contingency fund.
3. Find a way to cut $\$ 5000$ from the combined projects or to push $\$ 5000$ in expenses into next year.
If the organization encourages game playing in its budgeting and capital project approval process, then variations on options 1 and 2 are likely:
4. Submit both projects for approval at $\$ 100,000$, and "bootleg" $\$ 5000$ from another part of your budget.
5. Submit only the best project for approval, but inflate its cost to $\$ 100,000$. The extra $\$ 5000$ may be either a hidden contingency or a source of funds for bootlegging to other projects.

Assumption of Project Independence. Usually, proposed projects are assumed to be independent, but this is not always true. Investments in regional warehouses and in factory automation may work synergistically so that the benefits of doing both exceed the sum of the individual projects, or they may compete so that the total benefits are less than the sum of the parts. Similarly, a new hydroelectric dam and an electrical intertie to link different utility systems may have synergistic or competing effects. While synergism and competition complicate data gathering and model building, they can be included-and in some cases, they must be. Often, these interdependencies are subjectively considered; at other times, mathematical modeling techniques will be required.

Another type of interdependence is mutual exclusivity. For example, the list of possible projects might include two locations for a new plant, three sizes for a new refinery, or multiple heights for a new dam. Choosing none of the above is possible, but choosing two mutually exclusive choices is not.

One approach to interdependence is to use the mathematical programming approach described in Appendix 11A. The other approach is to create a list of "independent" projects that can be ranked. First, any interdependent projects with synergistic or competitive effects are converted into sets of mutually exclusive projects. For example, if two projects are interdependent, then they can be converted into four mutually exclusive possibilities (the first, the second, both, and neither). This is illustrated in Example 11.8. The same approach can be used for three interdependent projects, but in this case, the number of mutually exclusive possibilities doubles to eight.

The second step in including mutually exclusive alternatives (individual projects or sets of projects) in a ranking approach is to convert them into the lowest-cost project and a
series of incremental investments for each higher level of investment. Example 11.9 illustrates this for a flood control project that has lower levels of return for each higher level of investment.

Kelsey Manufacturing is considering two pairs of interdependent projects. The first pair consists of a plant modernization (PM) and a marketing campaign (MC). These are synergistic, since reducing manufacturing costs by 20% and increasing market share by 10% overlap positively. The second pair consists of a machine vision inspection station (MVIS) and a milling machine (MM), with tighter tolerances for MM performance. These are competitive, since having either one reduces the need for the other. However, both may still be justifiable. Create for each pair the four mutually exclusive possibilities.

SOLUTION

First pair's possibilities: only PM, only MC, both, and neither; second pair's: only MVIS, only MM, both, and neither. For each pair, the costs and benefits for the "both" case require special attention, since interdependence implies that the values for the individual projects cannot simply be added together.

For the first pair (plant modernization and marketing campaign) the net cash flows would be greater than the sum of the two individual projects. This pair is synergistic.

For the second pair (machine vision inspection station and milling machine), the net cash flows would be less than the sum of the two individual projects. This pair is competitive.

The second step in including mutually exclusive alternatives (individual projects or sets of projects) in a ranking approach is to convert them into the lowest-cost project and a series of incremental investments for each higher level of investment. Example 11.9 illustrates this for a flood control project that has lower levels of return for each higher level of investment.

An expensive flood control project must be evaluated against other potential projects. There is a long list of projects that have a positive PW at the mandated 10% interest rate. All of the alternatives for project J have no salvage value and a 20-year life. How can project J be combined with the other projects for ranking?

Project	J_{1}	$\mathrm{~J}_{2}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{4}$
First Cost $(\$ \mathrm{M})$	150	180	200	215
Annual Benefit $(\$ \mathrm{M})$	30	35	38	40

SOLUTION

The approach is to use the incremental approach for mutually exclusive alternatives. Since the alternatives are already ordered from least to most expensive, it is easy to calculate the incremental first costs and annual benefits. Now there are four projects: $\mathrm{J}_{1}, \mathrm{~J}_{2}-\mathrm{J}_{1}, \mathrm{~J}_{3}-\mathrm{J}_{2}$, and $\mathrm{J}_{4}-\mathrm{J}_{3}$, that can be entered into our list.

Project	J_{1}	$\mathrm{~J}_{2}-\mathrm{J}_{1}$	$\mathrm{~J}_{3}-\mathrm{J}_{2}$	$\mathrm{~J}_{4}-\mathrm{J}_{3}$
Incremental First Cost (\$M)	150	30	20	15
Incremental Annual Benefit (\$M)	30	5	3	2
Incremental IRR	19.4%	15.8%	13.9%	11.9%

Because this flood control project shows decreasing returns to scale (which is common), the alternatives will be ranked in the order in which they must be accepted.

Some projects have alternatives that have increasing returns to scale (such as the both alternative in Example 11.8 which was formed of the synergistic projects of plant modernization and a marketing campaign). In these cases, the increments will not be ordered correctly by ranking on IRR, and mathematical programming approaches may be required.
Assumption of Simultaneous Evaluation. To construct the investment opportunity curve, projects must be available for simultaneous evaluation to find the MARR. This is suitable for larger projects and larger firms or agencies that emphasize an annual budget review cycle. However, many smaller projects are evaluated on a real-time basis as the opportunities arise. In these cases, perhaps the best solution is to assemble historical data and to calculate the MARR for future use, as outlined in Example 11.10.

Using historical data to establish a MARR only works for ranking on IRR, and it cannot be done for the mathematical modeling approaches discussed in Appendix 11A. Mathematical modeling requires complete data on every project.

EXAMPLE 11.10 SpaceCom's Workstations

Exhibit 11.11 lists 15 proposals that were considered over the last year at SpaceCom. Each proposal is for the purchase of a standard engineering workstation computer, so each project has the same $\$ 10,000$ cost. Each proposal is linked to specific customer orders for space-based communications software, so its timing was determined by the specific customer orders rather than by SpaceCom's budget cycle. Also, the net annual returns of each project differ in amounts, pattern, and number of years. For example, project A has a return of $\$ 5000$ per year for 7 years, while project F has a return of $\$ 6000$ in year 1 , which decreases by $\$ 1500$ per year for years 2 through 4 . The other gradients are defined similarly.

There is no salvage value for the workstations, because the customer acquires title at the end of the project. These proposals were all evaluated at 10% (the interest rate suggested by corporate headquarters). All but two seemed attractive, but only five were funded. Use these data to estimate the MARR for future project evaluations.

SOLUTION

If five projects are to be funded, the budget is $\$ 50,000$. Since these are all of the relevant projects for the same time span, the data can be used to simulate what we should do in future years.

Exhibit 11.12 shows the investment opportunity curve for the 15 projects in Exhibit 11.11. If the budget limit is $\$ 50,000$, the MARR is 27.3%. This rate is substantially higher than the initial 10% value for the MARR. It is far more important to find that the correct MARR is over 25% than it is to find an exact value. Once this is established, then evaluating each project as it is proposed can be done by examining the PW at 25%. This would lead to the selection of a good set of projects.

Fifteen workstation projects

Projects	IRR	PW at 10\%	Year	Cash Flow	Year	Cash Flow
A	46.6%	$\$ 14,342$	$1-7$	$\$ 5000$		
B	36.3	4921	$1-3$	6000		
C	30.6	2397	1	10,000	2	$\$ 4000$
D	30.0	1818	1	13,000		
E	27.3	3180	$1-3$	5300		
F	23.8	2452	1	6000	$1-4$	Gradient $=-\$ 1500$
G	19.4	7027	$1-20$	2000		
H	15.1	2289	$1-10$	2000		
I	15.0	455	1	11,500		
J	13.9	2770	$1-20$	1500		Gradient $=\$ 1000$
K	12.0	653	1	1000	$1-5$	
L	10.5	268	$1-15$	1350		
M	10.3	139	$1-10$	1650		Gradient $=\$ 2000$
N	8.2	-368	1	2000	$1-3$	
O	6.6	-1398	$1-10$	1400		

Stability and Reinvestment Assumptions. Virtually every engineering economic analysis uses interest rates that are constant over time. This is appropriate because real rates of return and costs of capital over inflation are relatively constant-and even if they weren't, the data are too inaccurate for any other assumption.

This assumption is slightly more restrictive for constrained project selection. The reason is that a project's attractiveness may depend on whether the industry is on the peak or in the valley of cyclical demand. During booms, there are many high-potential projects,
and the investment opportunity schedule will be higher. During plateaus, there may be few or no projects, and the investment opportunity curve would be lower.

Finally, whatever interest rate is used to calculate the PW, that interest rate represents an assumption about future reinvestment opportunities. If stability can be assumed, then the future MARR will be the same as today's MARR. Thus, constrained project selection and the opportunity cost of forgone investments are the proper bases for defining the reinvestment scenario of a firm's future. If a cost of capital measure (marginal or weightedaverage) is used to generate an artificially low MARR, then the implicit assumption is that the future will be much worse than the present. The reinvestment assumption of PW was also discussed in Chapter 7.

11.7 Present Worth Indexes and Benefit/Cost Ratios

While it is the correct and most commonly used approach to constrained project selection, ranking on IRR is not the only technique that has been used. For example, until computers and calculators became widely available, ranking on payback period was the most commonly used technique. Since the deficiencies of payback were enumerated in Chapter 8, this section focuses on more valuable approaches.

First, two techniques are applied in the public and private sectors, respectively: benefit/cost ratios and present worth indexes (both defined in Chapter 8). These are typically calculated for each project by dividing the present worth of the benefits or revenues by the present worth of the costs. It is the dollars of benefits per dollar of cost (both in present worth or equivalent annual terms) that is calculated. For example, SpaceCom's project A in Exhibit 11.11 has a present cost of $\$ 10,000$, and the present worth of its $\$ 5000$ per year benefits for 7 years is $\$ 24,342$ at 10%. Thus, its present worth index is 2.43 .

While benefit/cost ratios and PW indexes are intuitively appealing and sometimes successfully used, they have a flaw: both are valid only after ranking on IRR has been used to find the MARR. Their chief advantage is that once the MARR has been found, they avoid any problems with multiple roots.

Exhibit 11.13 shows present worth indexes for Example 11.10, where those indexes are calculated at the a priori estimate of MARR, 10%, rather than at the true value of about 25%. Because the present worth index and the benefit/cost ratio normalize for the scale of the project, the correlation with the correct ranking is usually far better than if each project's net present worth were used.

If the PW index is calculated at the opportunity cost of capital, it is a valid way to compare the attractiveness of the projects. It will indicate the same projects for funding as does the investment opportunity schedule, but the order of the projects may change. For those students who have studied operations research, this is a "knapsack" problem to maximize the total PW of the selected projects evaluated at the opportunity cost of capital.

As can be seen from Exhibit 11.14, the PW index at the opportunity cost of capital and the IRR both indicate that projects A through E should be funded.

11.8 Using the SORT Spreadsheet Tool

Once the data on the projects have been entered into a spreadsheet, the spreadsheet is useful for constrained project selection. First, it can be used to calculate the IRR or PW index. Second, it can sort the projects and then calculate the cumulative first cost.

EXHIBIT 11.13 SpaceCom's projects (Example 11.10) IRR vs. PW index

EXHIBIT 11.14 PW index at $i=27.3 \%$ and IRR for SpaceCom

Using Spreadsheet Investment and Block Functions. If the projects have a first cost, uniform annual cash flows, and a salvage value or cost, then an annuity function can be used to calculate the IRR or PW index. The IRR or PW index for more complex cash flows, such as arithmetic or geometric gradients, can be calculated using the block functions IRR and NPV.

For example, project A in Example 11.10 has a 7-year life, a net annual benefit of $\$ 5 \mathrm{~K}$, a first cost of $\$ 10 \mathrm{~K}$, and no salvage value. The investment or annuity function is $=$ RATE $(7,5000,-10000, .4)$. Project F has an arithmetic gradient of $-\$ 1500$, so the cash
flows would be specified as $-\$ 10,000, \$ 6000, \$ 4500, \$ 3000, \$ 1500$. If these were in cells B1 to B5, then the IRR would be found $=\operatorname{IRR}(\mathrm{B} 1: B 5$, guess $)$.

Using the SORT Tool. Once the IRR, PW index, or benefit/cost ratio has been calculated for every project, the SORT tool of the spreadsheet should be used to rank the projects before calculating. This tool works by identifying the block of data to be sorted, a column to be used as the sort key, and a sort order (ascending or descending). In Excel, the tool is found under the menu for DATA or as an icon on the tool bar.

For Example 11.1, the data would be entered and a table similar to Exhibit 11.3 calculated. Select or highlight the block of data (include all columns), and then select the SORT tool. In selecting the data to be sorted, match the option for a header row with what you've selected.

Once the data block and the SORT tool have been selected, identify the column of IRRs as the first SORT key and specify a descending order for the sort. Then the SORT is started. Since Excel has the ability to sort by rows or columns, it is necessary to ensure that row sorting is selected.

Once the SORT has been completed, it is easy to add a column for the cumulative first cost. This column is compared with the capital limit to identify the MARR and which projects should be funded.

This chapter established ranking on IRR as the easiest method for solving the constrained project selection problem. Once ranking on IRR, the investment opportunity schedule, and the capital budget have been used to find the opportunity cost of capital, then projects can be selected based on PW indexes, benefit/cost ratios, or even PW values.

Often, the weighted-average cost of capital (WACC) and other cost-of-capital measures are much lower than the opportunity cost of capital. Then, rankings using the WACC may differ substantially from the correct ranking. This chapter used simple projects, with first costs only at time 0 . Ranking on IRR and other measures has been studied for more complex problems with simulation [White and Smith], and ranking by IRR has been validated as the best method.

This chapter has ignored fluctuating investment climates, multiple criteria, risk, multiple roots, and other factors. However, it is easier to consider an IRR than a PW in a multiple-criteria evaluation procedure. The IRR is easier to incorporate into calculations of risk/return trade-offs, and ranking approaches are superior to the absolute "go/no-go" standards of PW analysis for situations in which the projects and/or funding can be adjusted.

Some real-world managers will support another approach. For example, managers eager to use payback period will emphasize the period of time until the original investment is returned. Shorter time periods suggest a smaller risk of losing that investment. Nevertheless, research has shown that payback does not minimize risk. Both PW and IRR are better at minimizing risk. A better analogy is that the difference between the IRR and the return on safe investments is the margin that may compensate for the risk associated with the project.

It should not be surprising that ranking on IRRs is the most commonly used technique for deciding which projects should be undertaken when a constrained capital budget is a condition of operation.

This chapter has also shown that the marginal cost of capital and the WACC are less than the opportunity cost of forgone investments. The cost of capital (marginal or weighted-average) defines minimum condition that is rarely relied on. It is the opportunity cost of forgone investments that should determine the choice of the MARR.

This MARR, which is used for all engineering economic evaluations, should be found by ranking on IRR. Once the MARR has been found, it may be used in mathematical programming models (see Appendix 11A) to deal with interdependent projects.

REFERENCES

Bussey, Lynn E., and Ted G. Eschenbach, The Economic Analysis of Industrial Projects, 2nd ed., 1992, Prentice-Hall.
Eschenbach, Ted G., and Stephen L. Allen, "Selecting i-Engineering Economy Needs a Consensus," The Engineering Economist, Volume 47, Number 1, 2002, pp. 90-107.
Eschenbach, Ted, and Richard Cohen, "Which Interest Rate for Evaluating Projects?" Engineering Management Journal, Vol. 18, No. 3, September 2006, pp. 11-19.
Kester, W. Carl, "Capital and Ownership Structure: A Comparison of United States and Japanese Manufacturing Corporations," Financial Management, Volume 15, Number 1, Spring 1986, pp. 5-16.
Mukherjee, T.K., and G.V. Henderson, "The Capital Budgeting Process," Interfaces, Volume 17, Number 2, March-April 1987, pp. 78-90.
Park, Chan S., and Gunter P. Sharp-Bette, Advanced Engineering Economy, 1990, Wiley.
White, Bob E., and Gerald W. Smith, "Comparing the Effectiveness of Ten Capital Investment Ranking Criteria," The Engineering Economist, Volume 31, Number 2, Winter 1986, pp. 151-163.

Problems

11.1 The ABC Block Company expects to fund five project proposals in the next budget. Managers have submitted the top 20 proposals for consideration. Determine the number of possible combinations.
11.2 Rank the following projects using IRR for the Acme Tool Company's allocation of its annual capital budget. While many worthy projects are available, the money available is limited. All projects have a 5 -year life.

Project	First Cost	Net Annual Benefits
A	$\$ 10,000$	$\$ 3200$
B	68,000	22,000
C	20,000	6000
D	45,000	12,000
E	15,000	5000
F	5000	2000

11.3 Rank the projects of Acme Tool (see Problem 11.2) using PW at an interest rate of 10%. Does this change the ranking determined by IRR? If the ranking changes, explain why.
11.4 Develop the investment opportunity schedule for the proposed Acme Tool projects (see Problem 11.2).
11.5 If Acme Tool's capital budget is $\$ 98,000$ (see Problem 11.2), which projects should be undertaken? What is the MARR? (Answer: 18.03\%)
11.6 Chips USA is considering seven projects to improve its production process for customized microprocessors. Because of the rapid pace of development, a 3-year horizon is used in the evaluation. Chips USA can afford to do several projects, but not all. Rank the projects from best to worst.

Project	First Cost	Annual Benefit	PW at $\mathbf{1 5 \%}$
1	$\$ 20,000$	$\$ 11,000$	$\$ 5115$
2	30,000	14,000	1965
3	10,000	6000	3699
4	5000	2400	480
5	25,000	13,000	4682
6	15,000	7000	983
7	40,000	21,000	7948

11.7 For Problem 11.6, what is the MARR if the budget is $\$ 70,000$? Which projects should be done?
11.8 National Motors' Rock Creek plant is considering the following projects to improve its production process. Corporate headquarters requires a minimum 15% rate of return. Thus, all projects that come to the plant's capital screening committee meet that rate. The Rock Creek plant can afford to do several projects, but not all. Rank the seven projects from best to worst.

Project	First Cost	Annual Benefit	Life (years)	PW at $\mathbf{1 5} \%$
1	$\$ 200,000$	$\$ 50,000$	15	$\$ 92,369$
2	300,000	70,000	10	51,314
3	100,000	40,000	5	34,086
4	50,000	12,500	10	12,735
5	250,000	75,000	5	1412
6	150,000	32,000	20	50,299
7	400,000	125,000	5	19,019

11.9 For Problem 11.8, what is the MARR if the budget is $\$ 500,000$? Which projects should be done? (Answer: 20.85\%)
11.10 For Problem 11.8, what is the approximate MARR if the budget is $\$ 650,000$? Which projects should be done?
11.11 Estimate the IRR for each project shown below within 1%. Which ones should be done if the capital budget is limited to $\$ 60,000$? What is the minimum attractive rate of return? All projects have a life of 10 years.

Project	First Cost	Annual Benefit
A	$\$ 15,000$	$\$ 2800$
B	20,000	4200
C	10,000	2400
D	30,000	6200
E	40,000	7600

11.12 Estimate the IRR for each project shown below within 1%. Which ones should be done if the capital budget is limited to $\$ 70,000$? What is the minimum attractive rate of return? All projects have a life of 10 years.

Project	First Cost	Annual Benefit
A	$\$ 15,000$	$\$ 4350$
B	20,000	4770
C	10,000	2400
D	30,000	9200
E	40,000	8000
F	25,000	8100

(Answer: 26.16\%)
11.13 If the budget is $\$ 6000$, which of the projects shown below should be done? What is the minimum attractive rate of return?

Project	PWBenefits(12%)	IRR	B/C Ratio	First Cost	Benefits Each Year				
					1	2	3	4	5
A	\$2605	25.0\%	1.30	-\$2000	\$900	\$800	\$700	\$600	\$500
B	2803	25.8	1.40	-2000	600	700	800	900	1000
C	3405	24.6	1.70	-2000	0	0	0	0	6000
D	2704	25.4	1.35	-2000	750	750	750	750	750
E	3128	40.8	1.56	-2000	1400	1100	800	500	200

11.14 If the budget is $\$ 100,000$, which of the projects shown below should be done? What is the minimum attractive rate of return?

Project	Life (years)	First Cost	PW at $\mathbf{1 1 \%}$	EAW at $\mathbf{1 1 \%}$	IRR	Annual Benefit	Gradient
1	10	$\$ 25,000$	$\$ 5973$	$\$ 1014$	18.3%	$\$ 8000$	$-\$ 750$
2	20	25,000	6985	877	13.8	1200	450
3	30	25,000	10,402	1196	14.3	3300	100
4	15	25,000	5413	753	12.6	-5000	1800
5	6	25,000	2719	736	15.2	7500	0
6	10	25,000	7391	1255	17.7	5500	0

11.15 Which of the following projects should be done if the budget is $\$ 60,000$? What is the MARR? All projects have lives of 20 years.

Project	First Cost	Annual Benefit
A	$\$ 15,000$	$\$ 2500$
B	22,000	3200
C	19,000	2800
D	24,000	3300
E	29,000	4100

(Answer: about 13.36\%)
11.16 If all of the following projects have a life of 10 years and the budget is $\$ 100,000$, which should be done with the limited budget? What is the MARR? (Note: At most, one IRR must be calculated.)

Project	First Cost	Annual Benefit	PW at $\mathbf{1 0} \%$
A	$\$ 15,000$	$\$ 4350$	$\$ 11,729$
B	20,000	4770	9310
C	10,000	2400	4747
D	30,000	9200	26,530
E	40,000	8000	9157
F	25,000	8100	24,771
G	35,000	6200	3096
H	20,000	5250	12,259
I	30,000	6900	12,398
Total	$\$ 225,000$		

11.17 The WhatZit Company has decided to fund the top six project proposals for the coming budget year. The final nine proposals are presented below. Determine the next capital budget for WhatZit.
What is the MARR?

Project	First Cost	Annual Benefit	Life (years)
A	$\$ 15,000$	$\$ 4429$	4
B	20,000	6173	4
C	30,000	9878	4
D	25,000	6261	5
E	40,000	11,933	5
F	50,000	11,550	5
G	35,000	6794	8
H	60,000	12,692	8
I	75,000	14,058	8

11.18 The Eastern Division of HiTech, Inc., has a \$100,000 capital budget. Determine which project(s) should be funded.

Project	First Cost	Annual Benefit	Life (years)	Salvage Value
A	$\$ 50,000$	$\$ 13,500$	5	$\$ 5000$
B	50,000	9000	10	0
C	50,000	13,250	5	1000
D	50,000	9,575	8	6000

(Answer: A and B)
11.19 The Aluminum Division of Metal Stampings has a $\$ 200,000$ capital budget. Which project(s) should be selected if corporate headquarters has suggested
a MARR of 15% ? The following projects have been proposed. What is the MARR for the division?

Project	First Cost	Annual Benefit	Life (years)	Salvage Value
A	$\$ 100,000$	$\$ 24,000$	10	$\$ 20,000$
B	100,000	26,500	7	0
C	100,000	20,000	20	10,000

11.20 The National Bureau of Water Projects is considering the following projects. Congressional and executive policy mandates a discount rate of 10%. Thus, all projects have had their benefit/cost ratios computed at that rate. However, the available funding is likely to be a third of the $\$ 450 \mathrm{M}$ requested. Rank the following projects from best to worst. Choose about \$225M worth of projects to recommend for congressional consideration.

	First Cost Project	Annual Benefit $\mathbf{(\$ 1 0 0 0)}$	Life (years)	B/C at $\mathbf{1 0 \%}$	PW at $\mathbf{1 0 \%} \%$ $\mathbf{(\$ 1 0 0 0)}$
1	$\$ 75$	$\$ 20,000$	30	2.51	$\$ 113,538$
2	25	5000	25	1.82	20,385
3	50	10,000	20	1.70	35,136
4	25	4000	40	1.56	14,116
5	50	12,500	10	1.54	26,807
6	25	5000	15	1.52	13,030
7	75	12,500	20	1.42	31,420
8	50	10,000	10	1.23	11,446
9	75	9000	50	1.19	14,233

11.21 For Problem 11.20, what is the MARR if the budget is increased by $\$ 75 \mathrm{M}$ to $\$ 225 \mathrm{M}$? Which projects should be done? (Answer: 18.4%)
11.22 The cash flows and the measures are given for six projects.

Project	First Cost	Year 1	Year 2	Year 3	Year 4	Year 5
A	-\$2000	\$800	\$700	\$600	\$500	\$400
B	-4000	0	600	1200	1800	2900
C	-6000					10,500
D	-4000	1150	1150	1150	1150	1150
E	-2000	300	1100	800	500	200
F	-6000	4000	3100			300

Project	PW at $\mathbf{1 0 \%}$	EAW at $\mathbf{1 0 \%}$	PW Index at $\mathbf{1 0 \%}$	IRR
A	$\$ 346$	$\$ 91.4$	1.17	17.5%
B	428	112.8	1.11	12.9
C	520	137.1	1.09	11.8
L	359	94.8	1.09	13.5
E	249	65.6	1.12	15.1
F	385	101.5	1.06	14.6

(a) If the budget is $\$ 10,000$, which of the project(s) should be done? What is the minimum attractive rate of return?
(b) If the projects are mutually exclusive and the MARR is 10%, which one(s) should be done? Why?
11.23 (a) If the following projects are mutually exclusive and the MARR is 9%, which one(s) should be done? Why?

Project	First Cost	Net Annual Revenue	Life (years)	PW at $\mathbf{9} \%$ of Benefits	NPV at $\mathbf{9 \%}$	EAW at 9%	B/C ratio IRR	
A	$\$ 20,000$	$\$ 4000$	10	$\$ 25,671$	$\$ 5671$	$\$ 884$	15.1%	1.28
B	10,000	2500	8	13,837	3837	693	18.6	1.38
C	30,000	8800	5	34,229	4229	1087	14.3	1.14
D	20,000	4100	10	26,312	6312	984	15.8	1.32
E	10,000	2800	6	12,561	2561	571	17.2	1.26

(b) If the projects are not mutually exclusive, but the budget is $\$ 40 \mathrm{~K}$, which one(s) should be done? Why? What is the minimum attractive rate of return?
11.24 (a) If the following public projects are mutually exclusive and the MARR is 10%, which one(s) should be done? Why?
(b) If the public projects are not mutually exclusive, but the budget is $\$ 60 \mathrm{~K}$, which one(s) should be done? What is the minimum attractive rate of return?

Project	First Cost	PW at 10\% of Benefits	IRR	B/C Ratio
A	$-\$ 10 \mathrm{~K}$	$\$ 14,084$	23.0%	1.30
B	-20 K	28,508	22.0	1.40
C	-30 K	38,042	17.0	1.70
D	-20 K	27,665	19.0	1.35
E	-10 K	13,673	18.0	1.56

11.25 Northern Shelters manufactures homes, cabins, workshops, and garages. The prebuilt walls, floors, and roofs are assembled on-site. Each year, five new designs are added (and five with low profit margins are dropped). Rank the designs from best to worst. Note that home designs (H) have a life of 5 years; cabins (C), 10 years; workshops (W), 15 years; and garages (G), 20 years. Northern Shelters requires at least a 15% rate of return on all projects.

Design	First Cost	Annual Benefit	Predicted Life (years)	PW at $\mathbf{1 5 \%}$
W1	$\$ 100,000$	$\$ 25,000$	15	$\$ 46,184$
C2	100,000	30,000	10	50,563
H3	100,000	40,000	5	34,086
C4	100,000	24,000	10	20,450
H5	100,000	35,000	5	17,325
G6	100,000	22,500	20	40,835
W7	100,000	30,000	15	75,421
H8	100,000	50,000	5	67,608
G9	100,000	30,000	20	87,780

11.26 What is the MARR in Problem 11.25 if the budget is $\$ 500,000$? Which designs should be implemented?
11.27 Given the following information concerning the investment opportunity schedule, the financing curve, and the capital budget limit, determine the true MARR, the theoretically optimal MARR, and the marginal cost of capital. The available capital budget is $\$ 35,000$. The investment opportunity and financing curves pass through the following points (interpolate or extrapolate as necessary):

Cumulative Investment	$\$ 10 \mathrm{~K}$	20 K	30 K	40 K	50 K	60 K	70 K
Project IRR (\%)	22.0	19.5	17.5	16.0	15.0	14.5	14.0
Financing Rate (\%)	9.0		11.0				

11.28 Determine the weighted average cost of capital (WACC) for the following capital structure of $\$ 12 \mathrm{M}$. What is the minimum value of the marginal cost of capital?
$\$ 2,000,000$ in bonds issued at 9%
$\$ 4,000,000$ in bonds issued at 10%
$\$ 5,000,000$ in stock estimated at 12%
$\$ 1,000,000$ in retained earnings
11.29 The Ceramics Division of NewTech has a \$200,000 capital budget. Which project(s) should be selected if corporate headquarters has suggested a MARR of 20% ? The following projects have been proposed. What is the MARR for the division?

Project	First Cost	Annual Benefit	Life (years)	Salvage Value
A	$\$ 100,000$	$\$ 40,000$	5	$\$ 8000$
B	100,000	35,000	8	0
C	100,000	29,000	10	11,000

11.30 If the budget is $\$ 100,000$, which of the following projects should be done? What is the minimum attractive rate of return?

Project	Life (years)	First Cost	Annual Benefit	Salvage Value
1	20	$\$ 20,000$	$\$ 4000$	$\$ 0$
2	20	20,000	3200	20,000
3	30	20,000	3300	10,000
4	15	20,000	4500	0
5	25	20,000	4500	$-20,000$
6	10	20,000	5800	0
7	15	20,000	4000	10,000

(Answer: 19.26\%)
11.31 If the budget is $\$ 100,000$, which of the following
 projects should be done? What is the minimum attractive rate of return? The annual benefit is for year 1 , and the gradient is added on after that.

Project	Life (years)	First Cost	Annual Benefit	Gradient
1	10	$\$ 25,000$	$\$ 4000$	$\$ 0$
2	20	25,000	1200	400
3	30	25,000	3300	100
4	15	25,000	4500	2000
5	5	25,000	-7000	-750
6	10	25,000	5800	0
(Answer: $10.55 \%)$				

11.32 If the budget is about $\$ 100,000$, which of the following projects should be done? What is the minimum attractive rate of return?

Project	Life (years)	First Cost	Annual Benefit	Salvage Value
1	20	$\$ 10,000$	$\$ 2200$	$\$ 0$
2	20	20,000	3400	20,000
3	30	30,000	4300	10,000
4	15	20,000	4500	0
5	25	25,000	4000	$-20,000$
6	10	15,000	2800	0
7	15	20,000	4000	10,000
8	20	10,000	2500	-7500
9	20	20,000	3200	20,000
10	30	25,000	3800	10,000

11.33 If the budget is $\$ 100,000$, which of the following projects should be done? What is the MARR? The annual benefit is for year 1 , and the gradient is zero for that year. Arithmetic gradients are stated as dollar amounts and geometric gradients as percentages.

Project	Life (years)	First Cost	Annual Benefit	Gradient
1	10	$\$ 25,000$	$\$ 4000$	$+5 \%$
2	20	25,000	1200	$+10 \%$
3	30	25,000	3300	$+3 \%$
4	15	25,000	-7000	$+\$ 2000$
5	5	25,000	7500	-5%
6	10	25,000	5800	$-\$ 100$

Minicases

11.34 The manager of the refinery whose projects are summarized in Exhibit 11.2 has recently done an audit of completed projects. It seems that project lives have been underestimated by 5 years. Add 5 years to the life of each project in Exhibit 11.2. The capital budget is $\$ 1.2 \mathrm{M}$. What is the MARR? Which projects should be done?
11.35 For the data in Problem 11.32, which projects should be done and what is the MARR?
(a) Assume that projects 1 and 2 are mutually exclusive.
(b) Assume that projects 8 and 9 are mutually exclusive.
(c) Assume that both a and b are true.
11.36 For the refinery projects in Exhibit 11.2 assume that the following pairs of projects are mutually exclusive alternatives: A \& D, B \& I, and C \& K. Which projects should be done, and what is the MARR?

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 46 Aero Tech

Capital budgeting with memos for three different approaches to ranking.

Case 47 Bigstate Highway Department

Capital budgeting including mutually exclusive alternatives. Includes uncertain value of a life.

Case 48 Dot Puff Project Selection

Public sector capital budgeting with added constraint on man-years required.

Case 49 The Arbitrator

Includes two memos of suggested solutions for four projects with nine alternatives. Data
presented in text discussion rather than tabulated.

Case 50 Capital Planning Consultants

Capital budgeting including mutually exclusive alternatives. Includes uncertainties in first cost, annual benefit, and lives.

Case 51 Refrigerator Magnet Company

Capital budgeting including mutually exclusive alternatives.

APPENDIX 11A
 Mathematical Programming and Spreadsheets

Another approach to constrained project selection relies on mathematical programming. Mathematical models can deal with indivisible projects whose total cost does not equal the capital budget. The models can consider constraints on other resources, such as engineering man-years, or on capital budgets in later years or allowable borrowings to adjust the capital budget. Project dependencies can be modeled for either synergistic or partially competitive projects. Mutually exclusive projects can be easily modeled.

The only restriction is that these models typically must assume a MARR. If the assumed MARR equals the maximum of (opportunity cost of capital, WACC), then mathematical programming can support far more realistic capital budgeting models.

These mathematical models are typically made up of linear inequalities and equations. The models may be linear, integer, or mixed integer models, depending on whether the projects can be partially funded. If a potential investment is buying shares in another company, then fractional execution of the investment or project may make sense and the corresponding variable in the model is linear.

On the other hand, a potential project might be building a bridge across a river or developing a new product. Such projects must be executed in their entirety or not at all. Similarly, the design of a new highway will have two, three, four, or more complete lanes (no half-lanes). Steam turbines, vehicles, and other equipment are purchased as whole units. Thus, the corresponding variables in the model are restricted to integer values, such as zero, one, or two pumps. If the project can be done only once, then the variable is binary (0 or 1) in value. If the model contains both linear and integer variables (projects), then it is a mixed integer model.

Example 11A. 1 describes a simple mathematical program. In reality, these models are most useful when there are large numbers of variables (projects) and constraints and when computerized solutions are required. If such a model is used, then extensive sensitivity analysis is recommended, because the solution can vary considerably in terms of projects selected if the data change. This model assumes that PWs have been calculated, while more general models use the cash flows of each project over time to calculate net borrowings and capital budgets in later years.

Four projects are being considered (A, B, C, and D). Write an integer program to find the best set of projects if the total capital budget is limited to $\$ 100$ million. Besides the data in the following table, we must allow for the fact that project D can be undertaken only if project C is (D depends on C) and that A and B are synergistic projects. Each project can be done once at most.

Project	First Cost	Present Worth
A	$\$ 30 \mathrm{M}$	$\$ 2.5 \mathrm{M}$
B	40 M	3 M
A and B	70 M	6 M
C	30 M	3 M
D	40 M	3 M

SOLUTION

First, we define five zero-one variables (for convenience: $\mathrm{A}, \mathrm{B}, \mathrm{AB}$ [which is A and B$], \mathrm{C}$, and D). Then, we write the following objective function and inequalities:

$$
\operatorname{Max} 2.5 A+3 B+6 A B+3 C+3 D
$$

maximizes PW subject to:
the budget constraint of spending at most $\$ 100 \mathrm{M}$

$$
30 A+40 B+70 A B+30 C+40 D \leq 100
$$

can do at most one of A, B, or the combination

$$
A+B+A B \leq 1
$$

if $\mathrm{C}=0$ then $\mathrm{D}=0$

$$
\mathrm{C} \geq \mathrm{D}
$$

the integer constraint

$$
\mathrm{A}, \mathrm{~B}, \mathrm{AB}, \mathrm{C}, \mathrm{D}=0 \text { or } 1
$$

Using Spreadsheets to Solve Linear Programs. Exhibit 11A. 1 illustrates the use of Excel to solve Example 11A.1. Similar results can be obtained from add-in packages for other spreadsheet programs.

Columns B and F are labeled for each of the variables. Then, in rows 2 through 6 , the equations are entered. The cells (B2:F2) are the values of the variables. These are entered as 0s initially, but the values will be changed by the computer to the 1 s shown. In cells (B3:F3) the coefficients for the budget constraint are entered. Then, the coefficients for the limit on doing one of A, B, and AB are entered in row 5. Finally, the coefficients to ensure that C is larger than D are entered in row 6.

EXHIBIT 11A. 1 Excel solution of Example 11A. 1

	A	B	C	D	E	F	G	H	I
1	Variable	A	B	AB	C	D	Forn res		Value or limit
2	Value	0	0	1	1	2E-11			
3	Objective function coefficient	2.5	3	6	3	3	9	max	
4	Budget limit coefficient	30	40	70	30	40	10	<	100
5	At most 1 of $\mathrm{A}, \mathrm{B}, \& \mathrm{AB}$	1	1	1			1	<	1
6	If $\mathrm{C}=0$, then $\mathrm{D}=0$				1	-1	-1	>	0
7						-			
8					=S	PROD	CT(\$B	B6:	
9									
10				Solve	meters				
11		Set Target Cell: \qquad Equal To: © Max OMin Oyolue of: By Changing Cells:							
12							Close		
13									
14		Subject to the Constraints:- Guess					Dotions		
15						add			
16							Reset All		
17					Delete		Help		
18									

The equations are calculated using the SUMPRODUCT function of Excel. One by one, this function multiplies each cell of the first array by the corresponding cell of the second array. Then, it adds all the products together. Thus, for each equation, the value for the variables in cells (B2:F2) are multiplied by their coefficients. These equations are in column G.

Columns H and I are used to summarize the relationship and the limit for the constraints.

Now, in Excel, the optimal answers are found using SOLVER. This is part of the TOOLS menu. The SOLVER window asks for the cell to be optimized, G3, and max is selected from the choice of max, min, and value of. The cells (B2:F2) are specified as the ones to be changed.

The constraints are added one by one. Because the variables must be binary (0 or 1), one constraint selects the variables and chooses BIN from the menu choices of ($<===>$), int(eger), or bin(ary). Then, the three other constraints are added by selecting the cells in column G and their limiting values in column I, along with the relationship that matches column H .

Once the model is built, it is solved. The values shown in Exhibit 11.A1 are the result. Do the combination of A and B and project C. The total PW is $\$ 9 \mathrm{M}$, and the budget of $\$ 100 \mathrm{M}$ is spent.

Disadvantages of Mathematical Programming Models. While these mathematical programming models can deal with complexity that cannot be handled well in any other way, they do have some disadvantages. First, determination of the MARR must be
determined external to the model; it cannot be found internally using the opportunity cost concept. Second, complete data are required for every project to be considered. Third, relatively small changes in the data can produce significantly different sets of recommended projects. Finally, because the model is often a "black box" to the organization, the results often appear more exact than warranted (false accuracy), and it is difficult for decision makers to develop an intuitive feel for the trade-offs in the problem. However, computerized models can support more extensive sensitivity analysis.

Problems

11A. 1 Build a mathematical model for Problem 11.25 if the MARR is 15% and at least one design in each category must be developed.

11A. 2 Solve the model in Problem 11A.1.

11A.3 Build a mathematical model for Problem 11.13 if the MARR is 12% and annual benefits must be at least $\$ 2000$ for years 1 through 5.
11A. 4 Solve the model in Problem 11A.3.

11A. 5 Build and solve a mathematical model for Problem 11.30. The MARR is 12%. At least one of projects 2 and 3 must be done; at most, one of projects 5 and 6 can be done, and at most, two of projects 3,4 , and 5 can be done.

11A.6 Build and solve a mathematical model for Problem 11.31. The MARR is 5%. At most one of projects 2 and 4 can be done, and at least two of projects 1,5 , and 6 must be done. Project 3 depends on project 5 .

11A. 7 Build and solve a mathematical model for Problem 11.32. The MARR is 10%.

11A.8 Build and solve a mathematical model for Problem 11.33. The MARR is 6%. Project 6 depends on project 2 , and project 4 depends on project 5 . At most two projects of 1,4 , and 6 can be done.
11.A9 Five projects are under consideration by the ABC Block Company. Develop a linear program to model the capital budgeting decision if the budget is limited to $\$ 50,000$

Project	NPW	First Cost
A	$\$ 13,400$	$\$ 50,000$
B	8000	30,000
C	-1300	14,000
D	900	15,000
E	9000	10,000

Either project A or B can be accepted, but not both. Project B can be partially funded with its PW reduced proportionately. Project D depends on the acceptance of project E . Either project C or D can be accepted, but not both.

Minicase

11.A10 The manager of the refinery whose projects are summarized in Exhibit 11.2 wants to compare the projects selected by ranking on IRR with the set chosen by mathematical programming to maximize PW. The capital budget is $\$ 1.2 \mathrm{M}$, and $i=$ 12%. Which projects should be done to maximize PW? Compare the set of projects with the set selected if ranked on IRR.

PART FOUR

Real-world engineering economy problems must account for taxes in private-sector firms, for several complications in public-sector agencies, and for inflation in both the private and public sectors. Two steps are required to compute income taxes. First, the capital asset must be depreciated or "written off" (see Chapter 12), and second, the taxable income and taxes must be calculated (see Chapter 13).

Public-sector engineering economy problems are often more difficult to solve than private-sector problems. As shown in Chapter 14, many benefits are difficult to quantify in dollar terms, and costs or user fees may have to be allocated among competing stakeholders.

Geometric gradients were introduced in Chapter 3, but one important application-inflation-has been reserved for Chapter 15 . Virtually every engineering economy problem is theoretically affected by inflation. However, for many problems all cash flows are inflating at about the same rate, and inflation can be ignored.

Depreciation

- THE SITUATION AND THE SOLUTION

An asset's first cost or value does not disappear in the first year; rather, it is used up over the asset's life. This "using up" is a cost to the firm that is recognized through depreciation. There are many depreciation methods, but a project's cash flows depend on how depreciation reduces the firm's taxable income.

The solution is to apply the depreciation techniques that are permitted by the U.S. Internal Revenue Service (IRS).

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 12.1 Define the key variables in depreciation.
SECTION 12.2 Calculate straight-line, declining balance, sum-of-the-years'-digits, and units-of-production depreciation.
SECTION 12.3 Calculate depreciation under the current tax law, the Modified Accelerated Cost Recovery System (MACRS).
SECTION 12.4 Define and calculate loss on sale and recaptured depreciation.
SECTION 12.5 Choose an optimal depreciation strategy.
SECTION 12.6 Calculate the PW of a depreciation schedule.
SECTION 12.7 Calculate depletion deductions for natural resource deposits.
SECTION 12.8 Calculate the Section 179 deduction and "bonus" depreciation.
SECTION 12.9 Calculate depreciation using spreadsheet functions.

- KEY WORDS AND CONCEPTS

Depreciation Method to account for using up of a productive asset.
Depletion Method to account for using up of a natural resource.
Basis For depreciation, the first cost, which includes costs to purchase, ship, and install.
Recovery period $\left(N_{D}\right)$ The life for computing depreciation. It is the item's useful life for straight-line, declining balance, and sum-of-the-years'-digits depreciation. The IRS defines it for MACRS.
Salvage value (\boldsymbol{S}) Defined in earlier chapters, it is part of the formulas for straight-line and sum-of-the-years'-digits depreciation, and it is considered for declining balance depreciation. Salvage value is assumed to equal $\$ 0$ for depreciation with MACRS.

Book value ($\mathbf{B V}_{\boldsymbol{t}}$) An asset's value for accounting and tax purposes. The undepreciated book value at the end of year t equals the initial basis minus the accumulated depreciation.
Depreciation $\left(\boldsymbol{D}_{\boldsymbol{t}}\right) \quad$ The deduction or charge for year t. This reduces taxable income, but it is not a cash flow.
Straight-line depreciation Method that has equal annual depreciation.
Declining balance depreciation Method that computes depreciation as a fixed fraction of current book value.
Sum-of-the-years'-digits (SOYD) An accelerated depreciation technique that includes an arithmetic gradient.
Modified Accelerated Cost Recovery System (MACRS) Tax-code-specified combinations of declining balance and straight-line depreciation with recovery periods shorter than expected economic lives.
Recaptured depreciation An adjustment to income when an asset is disposed of for more than its current book value.
Loss on sale An adjustment to income when an asset is disposed of for less than its current book value.
Capital gain An adjustment to income when an asset is disposed of for more than its initial book value.

12.1 Introduction

Depreciation

 accounts for the using up of a productive asset, and depletion provides for using up a natural resource.Depreciation has many meanings that are linked to physical life, amortization, market value, value to owner, appraisals, impaired usefulness, and legal limits for taxes. These are usually related, but there are significant differences. This chapter emphasizes the last meaning, so that income taxes can be computed in Chapter 13. These depreciation values are also used to compute book values, which are the basis for property taxes.

This presentation focuses on the current U.S. tax code, but it also includes other methods since the tax codes of all nations are periodically revised. In addition to the depreciation of physical assets, the depletion of natural resource assets is also covered.

The basic depreciation methods that the Internal Revenue Code has permitted are straight-line, declining balance, and sum-of-the-years' digits (SOYD). Straight-line and declining balance are combined in the cost recovery systems of late twentieth-century code revisions. When given a choice, firms depreciate assets as rapidly as possible (the income tax deductions occur sooner). All methods allow the same total depreciation of first cost (FC) minus salvage value (S)-with different timings.

Because of income taxes, depreciation and depletion must be considered in engineering economy-even though they are not cash flows. The tax savings generated through depreciation in the United States exceeds twice the retained earnings for many U.S. firms [Bussey and Eschenbach].

It must be clearly understood that depreciation matters only for after-tax analyses. The accounting visualization of an asset's cost is a fictitious picture of reality. When equipment is purchased from a supplier, the supplier is paid. The depreciation charges do not correspond to when the supplier is paid; rather, they are useful only in computing income and property taxes.

Depreciation applies to what were defined as capital costs in Chapter 11. The distinctions between capital and operating costs are summarized in Exhibit 12.1. The large capital cost for a machine or a building is not an expense for income taxes. Instead, it is depreciated over its life, and those depreciation charges are deducted from taxable income over time. In contrast, the expenses to run the machine and to heat the building are operating costs, which are deducted from taxable income in the year they occur.

EXHIBIT 12.1 Comparing capital and operating costs

Capital Cost	Operating Costs and Income
First cost	Operations and maintenance Revenue Salvage
Advertising, labor, etc.	

Depreciation charge is the annual expense that links these.

Definitions. Depreciation is based on first costs and salvage value-that is, on the capital recovery for an asset. The detailed IRS definitions must account for many special cases, but the following simplified definitions are adequate here. Another simplification is to focus on annual depreciation rather than including the details for quarterly computations. Exhibit 12.2 depicts these quantities for straight-line depreciation. These definitions are clarified in the examples of Section 12.2.

EXHIBIT 12.2 Definitions for depreciation

Basis. The basis for depreciation equals first cost (FC), which is the purchase price plus shipping and installation expenses. (Note that casualty losses-due to fire, flood, theft, etc.-or capital improvements at a later date change the basis.)

Recovery Period ($\boldsymbol{N}_{\boldsymbol{D}}$). The life for computing depreciation is the recovery period. The recovery period (1) equals an item's useful life, N, for some depreciation methods and (2) is specified by the IRS for other methods.

Salvage Value (\boldsymbol{S}). Defined in earlier chapters, salvage value is part of the formulas for the straight-line and sum-of-the-years' digits (SOYD) methods, and it is considered for the declining balance method. Salvage value is assumed to equal $\$ 0$ for annual depreciation charges using MACRS.

Book Value $\left(\mathbf{B V}_{t}\right)$. The book value at the end of year t equals the initial basis minus the accumulated depreciation. This is an asset's value for accounting and tax purposes.

Depreciation $\left(\boldsymbol{D}_{t}\right)$. The depreciation deduction or charge for year t. This reduces taxable income, but it is not a cash flow.

12.2 Basic Depreciation Methods

The allowable depreciation methods change with each revision of the tax code. For example, until 1981, straight-line, declining balance, and sum-of-the-years' digits (SOYD) methods were used for calculating depreciation-by themselves and with switching between them. In 1981, the Accelerated Cost Recovery System (ACRS) was adopted. The Tax Reform Act of 1986 adopted the Modified Accelerated Cost Recovery System (MACRS). The MACRS schedules combine declining balance and straight-line methods. Unfortunately, knowing the current tax code is not enough, because:

1. Straight-line and declining balance methods must be understood to provide a solid foundation for the MACRS schedules.
2. Retirement or replacement of an aging asset has tax consequences, and this depreciation schedule is determined by the allowable depreciation strategy chosen at the time the asset was purchased.
3. The tax code will be revised again.
4. Many firms operate under other national jurisdictions, whose tax codes will not match that of the United States but whose allowable depreciation methods will be some variation of these [Fleischer and Leung; Remer and Song].
5. State and local jurisdictions may or may not rely on federal depreciation methods to compute income and property taxes.
6. The SOYD method is a useful approximation of other accelerated techniques, and its arithmetic gradient makes it easier to use engineering economy factors.
7. Firms must use MACRS or alternate MACRS for computing taxable income. However, firms can-and many do-use one of the other techniques for other accounting purposes, such as determining the value of the firm's assets that will be shown on the balance sheet or the profit that will be shown on the income statement.

Three depreciation techniques underlie most tax codes or are useful in conducting engineering economy studies. These are straight-line, SOYD, and declining balance. Since $N_{D}=N$ for all of these techniques, the subscript is dropped for these three methods.

Straight-line depreciation has annual depreciation amounts that are equal for each year.

Straight-Line Method. This is the simplest and least attractive (from a tax-minimizing perspective) depreciation strategy. Before 1986, it could be used on any depreciable property and was the only method that could be used on intangible property, such as patents. The rate of depreciation is constant at $1 / N$ per year. The amount of depreciation is constant as well.

As shown in Exhibit 12.3, the book value over time is a straight line. This straight line is the basis for defining accelerated depreciation, which has a book value that falls at a faster rate, at least initially. Straight-line depreciation has historically had the broadest applicability, and it is the standard against which the more attractive accelerated methods are measured.

The deduction amount for period t is also constant over the life, and it is shown in Equation 12.1:

$$
\begin{equation*}
D_{t}=(\mathrm{FC}-\mathrm{S}) / N \tag{12.1}
\end{equation*}
$$

Applying this formula to Example 12.1 leads to Exhibit 12.3.

EXAMPLE 12.1 Straight-Line Method for Computer Workstation Network

Smith, Jones, and Rodriguez is an engineering design firm considering the purchase and installation of a network of computer workstations for $\$ 90,000$. The expected life of the system is 8 years, when it will have a salvage value of $\$ 18,000$. Using straight-line depreciation, calculate the annual depreciation, and graph the book value over the 8 years.

SOLUTION

Applying Equation 12.1 leads to:

$$
D_{t}=(\mathrm{FC}-\mathrm{S}) / N=(90 \mathrm{~K}-18 \mathrm{~K}) / 8=\$ 9000 \text { per year }
$$

As shown in Exhibit 12.3, the book value begins at $\$ 90,000$ at time 0 . It then falls by $\$ 9000$ per year until the book value of the computer system is $\$ 18,000$ at the end of year 8 . This is graphed as a straight line, but the book values are measured only at time 0 and at the end of each year. They are $\$ 90 \mathrm{~K}, \$ 81 \mathrm{~K}, \$ 72 \mathrm{~K}, \ldots, \$ 18 \mathrm{~K}$.

EXHIBIT 12.3 Book value for straight-line depreciation

Declining balance depreciation

computes the annual depreciation amount as a constant fraction of the remaining book value. For example, double-declining balance uses $200 \% / \mathrm{N}$.

Declining Balance Method. Before 1981, declining balance was the most commonly used depreciation technique, and it is the foundation for the current MACRS. For the declining balance method, each year's depreciation is computed by multiplying the beginning-of-year book value by the depreciation rate. The maximum rate was $200 \% / \mathrm{N}$ for new property, with lower rates of $150 \% / \mathrm{N}$ or $175 \% / \mathrm{N}$ for used property or special cases.

Declining balance depreciation, D_{t}, and the corresponding book values, BV_{t}, are calculated using Equation 12.2, where α is the percentage used for finding the rate.

$$
\begin{array}{cc}
D_{1}=\mathrm{FC} \times \alpha / N & \mathrm{BV}_{1}=\mathrm{FC}-D_{1} \\
D_{2}=\mathrm{BV}_{1} \times \alpha / N & \mathrm{BV}_{2}=\mathrm{BV}_{1}-D_{2} \\
\vdots & \vdots \\
D_{t}=\mathrm{BV}_{t-1} \times \alpha / N & \mathrm{BV}_{t}=\mathrm{BV}_{t-1}-D_{t}
\end{array}
$$

or

$$
D_{t}=\mathrm{BV}_{t-1} \times \alpha / N \quad \mathrm{BV}_{t}=\mathrm{FC}(1-\alpha / N)^{t}
$$

In Example 12.2, Exhibit 12.4 shows the results of applying this formula to Example 12.1's data. In this case, the salvage value provides a minimum value below which the book value cannot drop. This is why the depreciation in year 6 is reduced and why it is $\$ 0$ for years 7 and 8 in Example 12.2.

In other cases, the salvage value is low enough that a pure declining balance approach would lead to a final book value greater than the salvage value. Double-declining balance over 8 years uses a rate of $200 \% / 8$, or 25% per year. Thus, $\mathrm{BV}_{8}=.75^{8} \times \mathrm{FC}$, or 10.0% of the initial basis. In Example 12.2, this means that any salvage value below $\$ 9000$ would be below the final book value. The solution is to shift to straight-line depreciation. This shift is detailed in Section 12.3 on MACRS.

Exhibit 12.5 graphs the book values for double-declining balance, SOYD, and straight-line depreciation applied to the data of Example 12.1. This exhibit shows why double-declining balance was usually the preferred technique-it depreciated assets the fastest and saved on taxes the soonest.

As stated in Example 12.1, a network of computer workstations has a first cost of $\$ 90,000$. The expected life of the system is 8 years, when it will have a salvage value of $\$ 18,000$. Calculate the annual depreciation and tabulate the book value over the 8 years, assuming double-declining balance depreciation.

SOLUTION

Since double-declining balance and a life of 8 years were specified, the depreciation rate is 200%,
8 or 25% per year. Applying Equation 12.2 leads to:

$$
\begin{aligned}
D_{1} & =\mathrm{FC} \times \alpha / N=90 \mathrm{~K} \times .25=\$ 22,500 \\
\mathrm{BV}_{1} & =\mathrm{FC}-D_{1}=90,000-22,500=\$ 67,500 \\
D_{2} & =\mathrm{BV}_{1} \times \alpha / N=67,500 \times .25=\$ 16,875 \\
\mathrm{BV}_{2} & =\mathrm{BV}_{1}-D_{2}=67,500-16,875=\$ 50,625
\end{aligned}
$$

and so on.
These calculations are summarized in Exhibit 12.4 for the 8 -year life of the network. In year 6, the depreciation is limited because the book value cannot drop below the salvage value. The depreciation in years 7 and 8 is $\$ 0$ for the same reason.

Calculations for declining balance depreciation

Year	Depreciation, $\boldsymbol{D}_{\boldsymbol{t}}$	Book Value, $\mathbf{B V}_{\boldsymbol{t}}$
0		$\$ 90,000$
1	$\$ 22,500$	67,500
2	16,875	50,625
3	12,656	37,969
4	9492	28,477
5	7119	21,358
6	3358	18,000
7	0	18,000
8	0	18,000

EXHIBIT 12.5 Book value-straight-line, declining balance, and SOYD

Sum-of-the-years'digits (SOYD) is an accelerated depreciation technique that includes an arithmetic gradient.

SOYD Method. This depreciation technique uses fractions whose denominator equals the sum of the digits from 1 to N, or the sum-of-the-years'-digits (SOYD). For $N=5$, then, the denominator equals $1+2+3+5=15$. The numerators for the fractions begin at N for the first year and decline by one each year. With $N=5$, the fractions become 5/15, $4 / 15,3 / 15,2 / 15$, and $1 / 15$. These fractions are multiplied by the total amount to be depreciated, which is the first cost or initial basis minus the salvage value ($\mathrm{FC}-S$).

Each year, the fraction and the depreciation charge drop by a constant amount. For the 5 -year example here, the fraction drops by $\frac{1}{15}$ each year. The resulting gradient is $\frac{1}{\text { sorD }}$ times the total to be depreciated. Thus, the SOYD method is the easiest accelerated depreciation technique to incorporate into formulas for economic analysis. An arithmetic gradient factor can be used rather than requiring the development of a spreadsheet-like table. The SOYD method can even be used to approximate MACRS or double-declining balance (when the salvage value is lower, the approximation tends to be better).

In general, with N years' useful life, the denominator equals $N \times(N+1) / 2$ or SOYD, and the numerator equals $N-t+1$. Equation 12.3 describes two forms of the formula for calculating depreciation.

$$
\begin{align*}
& D_{t}=(\mathrm{FC}-S) 2(N-t+1) /[N(N+1)] \\
& D_{t}=(\mathrm{FC}-S)(N-t+1) / \mathrm{SOYD} \tag{12.3}
\end{align*}
$$

The book value and depreciation at year t can easily be found by building a table for years 1 to t, or the book values can be calculated with Equation 12.4 (see Example 12.3). The book value can also be found by adding the salvage value and the remaining depreciation, which uses the numerators of the remaining fractions or $j=1$ to $N-t$, which is $(N-t)(N-t+1) / 2$. The result is Equation 12.4'.

$$
\begin{equation*}
\mathrm{BV}_{t}=\mathrm{BV}_{t-1}-(\mathrm{FC}-\mathrm{S}) 2(N-\mathrm{t}+1) /[N(N+1)] \tag{12.4}
\end{equation*}
$$

or

$$
\mathrm{BV}_{t}=S+(\mathrm{FC}-S)(N-t)(N-t+1) /[2 \times \mathrm{SOYD}]
$$

As stated in Example 12.1, the network of computer workstations has a first cost of $\$ 90,000$. The expected life of the system is 8 years, when it will have a salvage value of $\$ 18,000$. Calculate the annual SOYD depreciation and book value for the 8 years.

SOLUTION

Since SOYD depreciation and a life of 8 years were specified, the first step is to calculate the SOYD, which equals $N(N+1) / 2$, or $8 \times 9 / 2$, or 36 . Applying Equations 12.3 and 12.4 leads to:

$$
\begin{aligned}
D_{1} & =(\mathrm{FC}-S) \times 8 / 36=(90 \mathrm{~K}-18 \mathrm{~K}) \times 8 / 36=\$ 16,000 \\
\mathrm{BV}_{1} & =\mathrm{FC}-D_{1}=90,000-16,000=\$ 74,000 \\
D_{2} & =(\mathrm{FC}-S) \times 7 / 36=(90 \mathrm{~K}-18 \mathrm{~K}) \times 7 / 36=\$ 14,000 \\
\mathrm{BV}_{2} & =\mathrm{BV}-D_{2}=74,000-14,000=\$ 60,000
\end{aligned}
$$

and so on.

These calculations are summarized in Exhibit 12.6 for the network's 8 -year life. (The book values were graphed in Exhibit 12.5.)

EXHIBIT 12.6 Calculations for SOYD depreciation

Year	Fraction	Depreciation, $\boldsymbol{D}_{\boldsymbol{t}}$	Book Value, $\mathbf{B V}_{\boldsymbol{t}}$
0			$\$ 90,000$
1	$8 / 36$	$\$ 16,000$	74,000
2	$7 / 36$	14,000	60,000
3	$6 / 36$	12,000	48,000
4	$5 / 36$	10,000	38,000
5	$4 / 36$	8000	30,000
6	$3 / 36$	6000	24,000
7	$2 / 36$	4000	20,000
8	$1 / 36$	2000	18,000

Units-of-Production Method. The units-of-production technique is designed for equipment whose life may best be measured by cumulative volume or operating hours and whose use in a given year is unpredictable. The depreciation charge for each year is automatically adjusted for the actual level of use.

For example, this approach could be used for heavy construction equipment, whose life may best be measured by operating hours. Equipment with an expected life of 10,000 hours and usage of 1100 hours this year would generate an 11% depreciation charge on its depreciable cost of its first cost minus its salvage value ($\mathrm{FC}-S$). Once the book value equaled the salvage value, no more depreciation would be charged.

12.3 Modified Accelerated Cost Recovery System (MACRS)

This presentation is an overview of the current depreciation system in the U.S., but only tax accountants can keep up with the changes in the law and the large number of detailed exceptions and special cases. For example, there are many limits related to vehicles and the timing of purchases. The former are far too detailed for an introduction, and the latter would likely introduce small or no change into engineering economy calculations. For example, when an asset is sold during a year affects how much depreciation can be claimed; however, the required calculation of gain or recaptured depreciation means that the same taxable income is computed whether no, midquarter, or annual depreciation is used.

Based on Accelerated Cost Recovery System (ACRS). The Economic Recovery Act of 1981 reduced the earlier asset depreciation ranges (ADRs) used to define depreciable lives to only four classes for property other than buildings. For example, 5 -year property (ADR life between 5 and 18 years) was the default for personal, most production, and most public-utility property. Since ACRS was superseded by MACRS in 1986, the four ACRS classes and their depreciation percentages are not detailed here.

Modified Accelerated Cost Recovery System (MACRS) The default recovery period for assets not otherwise classified is 7 years.

One important change was that ACRS eliminated estimated salvage values from calculations of depreciation. Salvage values are assumed to be $\$ 0$, and any salvage value that is received is treated as a gain on sale or recaptured depreciation (see Section 12.4).

In examining the accelerated cost recovery systems, it is worth noting that they were established under the same restraints that govern all tax codes. That is, the percentages were political compromises between the desire for revenue generation and for increasing incentives for capital investment.

MACRS. The current depreciation system, MACRS (pronounced "makers"), was established by the 1986 Tax Reform Act. The derivation of the tables of percentages and the descriptions of the underlying depreciation assumptions may seem a little complicated. However, the system is very easy to use, since there are only three steps to finding D_{t}. In fact, Exhibits 12.7 and 12.9 are needed so often, they are also found inside the back cover.

1. Determine the recovery period from Exhibit 12.7.
2. Find the percentage for that recovery period for year t in Exhibit 12.9.
3. Multiply the first cost or basis by the percentage.

Exhibit 12.7, is based on IRS Publication 534: Depreciation, which provides more detail. If identified by name, the asset's life is clear. For example, computers and R\&D equipment have a 5 -year recovery period, while office furniture and most manufacturing equipment is in the 7-year category. If the name is not listed but the life is well established, the asset depreciation range (ADR) used before ACRS and MACRS can be used. Finally, the 7-year recovery period is the default for items not otherwise classified.

EXHIBIT 12.7 Recovery periods for MACRS

Recovery Period	Description of Assets Included
3-Year	Tractors for over-the-road tractor/trailer use and special tools such as dies and jigs; ADR < 4 years
5-Year	Cars, buses, trucks, computers, office machinery, construction equipment, and R\&D equipment; 4 years $\leq \mathrm{ADR}<10$ years
7-Year	Office furniture, most manufacturing equipment, mining equipment, and items not otherwise classified; 10 years \leq ADR <16 years
10-Year	Marine vessels, petroleum refining equipment, single-purpose agricultural structures, trees and vines that bear nuts or fruits; 16 years \leq ADR < 20 years
15-Year	Roads, shrubbery, wharves, steam and electric generation and distribution systems, and municipal wastewater treatment facilities; 20 years \leq ADR <25 years
20-Year	Farm buildings and municipal sewers; ADR ≥ 25 years
27.5-Year	Residential rental property
31.5-Year	Nonresidential real property purchased on or before 5/12/93
39-Year	Nonresidential real property purchased on or after 5/13/93

[^2]Modified
Accelerated Cost Recovery System (MACRS) assumes that $S=\$ 0$. It combines declining balance and straight-line depreciation with recovery periods that are shorter than expected economic lives.

Many detailed exceptions are listed in IRS Publication 534. For example, assets for drilling oil and gas wells are in the 5 -year class, assets for oil and gas exploration are in the 7 -year class, petroleum refineries are in the 10-year class, and chemical plants are in the 7 -year class. For the purpose of learning engineering economy, Exhibit 12.7 is detailed enough; however, the current IRS regulations and the rules for different assets are best established by the firm's accounting department.

MACRS assumes a salvage value of $\$ 0$, and it is based on declining balance combined with straight-line, which was the fastest technique permitted before ACRS. The major difference between MACRS and declining balance is that the switch to straight-line depreciation is built into the table and is not optional to the taxpayer. That previous flexibility was needed to deal with nonzero salvage values, which are now assumed to be $\$ 0$.

The MACRS values are tabulated and used as percentages of the initial basis. However, their calculation is more complex. Exhibit 12.8 derives the percentages (shown in the right-most column) for an asset in the 5 -year class. Since the 5 -year recovery period MACRS percentages are based on the double-declining balance method, the depreciation rate is $200 \%, 5$ or 40% of the book value. Since the purchase is assumed to happen halfway through the year (the half-year convention), this rate is halved to 20% for the first year. In year 2, the depreciation is 40% of the remaining book value, which is 80% of the initial basis. So, the depreciation is 32% of the initial basis.

EXHIBIT 12.8 Example derivation of MACRS percentages

Year	Initial Book Value	Declining Balance Rate 1	Straight-Line Computation	Straight-Line Rate	MACRS \% of Basis
1	100%	$\underline{20 \%}$	$100 \% / 5$ years $/ 2$ 10% 2 80$\underline{\underline{32}}$	$80 \% / 4.5$ years	17.8
3	48	$\underline{19.2}$	$48 \% / 3.5$ years	13.7	32%
4	28.8	$\underline{11.52}$	$28.8 \% / 2.5$ years	$\underline{11.52}$	19.2
5	17.28			$\underline{11.52}$	11.52
6	5.76			$\underline{5.76}$	5.76

${ }^{1}$ The double declining balance rate is 40% ($=200 \% / 5$ years) of the remaining book value.

As shown in Exhibits 12.8 and 12.9, there is an extra "half-year" beyond the 5-, 7-, $10-15$-, or 20-year recovery period, which is the "other half" of the year 1 deduction. The annual depreciation for the straight-line method is the remaining book value divided by the number of years remaining, as shown in the fourth column of Exhibit 12.8. In Exhibit 12.8, the underlined values are the ones tabulated in Exhibit 12.9. These values represent the most rapid depreciation possible, and they are based on whichever is larger-declining balance or straight-line.

Exhibit 12.9 summarizes the annual MACRS percentages for the six classes of property with accelerated depreciation. These percentages are based on declining balance depreciation with a shift to the straight-line method (see Exhibit 12.8), so that the final book value equals $\$ 0$. For 3, 5, 7, and 10 years, the declining balance rate is 200%; for 15 and 20 years, the rate is 150%. For real property, such as buildings (27.5 and 31.5 years), a straight-line method is used.

EXHIBIT 12.9 MACRS percentages

	Recovery Period					
Year	3-Year	5-Year	7-Year	10-Year	15-Year	20-Year
1	33.33%	20.00%	14.29%	10.00%	5.00%	3.750%
2	44.45	32.00	24.49	18.00	9.50	7.219
3	14.81	19.20	17.49	14.40	8.55	6.677
4	7.41	11.52	12.49	11.52	7.70	6.177
5		11.52	8.93	9.22	6.93	5.713
6		5.76	8.92	7.37	6.23	5.285
7			8.93	6.55	5.90	4.888
8			4.46	6.55	5.90	4.522
9			6.56	5.91	4.462	
10			6.55	5.90	4.461	
11			3.28	5.91	4.462	
12				5.90	4.461	
13				5.91	4.462	
14				5.90	4.461	
15				2.91	4.462	
16					4.461	
17				4.462		
18					4.461	
19					4.462	
20						
21						

EXHIBIT 12.10 Book value vs. time for network of workstations

Exhibits 12.7 and 12.9 are the basis for the calculations shown in Example 12.4, as they will be for most problems and examples in Chapter 13. Exhibit 12.10 compares the book value over time for Examples 12.1 to 12.4. Notice that MACRS has the lowest book value after the first year or, equivalently, that its accumulated depreciation is the highest. Not only
does MACRS use a shorter recovery period, it also assumes a salvage value of $\$ 0$. When the cash flow for the salvage value occurs in year 8 , there will be recaptured depreciation for MACRS, so that all depreciation systems depreciate a net total of $\$ 72,000$ for this example.

EXAMPLE 12.4 MACRS for Computer Workstation Network

As stated in Example 12.1, the network of computer workstations has a first cost of $\$ 90,000$. The expected life of the system is 8 years, when it will have a salvage value of $\$ 18,000$. Calculate the annual depreciation and book value over the 8 years, assuming MACRS depreciation.

SOLUTION

Since MACRS depreciation was specified, the first step is to identify the recovery period. From Exhibit 12.7, the recovery period for computers is 5 years. The percentages for years 1 to 6 can be found in either the example calculation (see Exhibit 12.8) or in the MACRS table (see Exhibit 12.9).

The calculations summarized in Exhibit 12.11 are all based on a percentage of the $\$ 90,000$ first cost, which is also the initial book value or basis. Because the book value is depreciated to $\$ 0$, when the computer network is sold in year 8 for $\$ 18,000$, there will be $\$ 18,000$ in recaptured depreciation counted as taxable income (see Section 12.4).

EXHIBIT 12.11 MACRS for workstation network

Year	MACRS \%	Depreciation, $\boldsymbol{D}_{\boldsymbol{t}}$	Book Value, $\mathbf{B V}_{\boldsymbol{t}}$
0			$\$ 90,000$
1	20%	$\$ 18,000$	72,000
2	32	28,800	43,200
3	19.2	17,280	25,920
4	11.52	10,368	15,552
5	11.52	10,368	5184
6	5.76	5184	0
7	0	0	0
8	0	0	0

Alternate MACRS. This approach is not detailed here and is rarely used, because it is economically less attractive than MACRS. A firm that is consistently not earning a profit can use this method to "postpone" some of the cost recovery until it is profitable. This can also be done by carrying losses forward or backward to other tax years.

This approach is essentially the straight-line method over the same period as with MACRS (see Exhibit 12.10). The exception is that items without an identified category have a recovery period of 12 years. In addition, the first and last years are subject to the same half-year convention used in MACRS.

12.4 Gains and Losses on Sales and Recaptured Depreciation

When an asset is sold for more than its book value, the difference is recaptured depreciation. A loss on sale results when the asset is disposed of for less than its book value.

When depreciable assets are sold, given away, or disposed of, the current book value is compared with the net amount received. If the receipts are less than the book value, then there is a loss on sale. On the other hand, if the book value is less than the amount received, then too much depreciation has been taken. The tax law requires that this excess prior depreciation be recaptured. To use the language of an earlier tax code, there is a gain on the sale. The resulting tax essentially equals the taxes saved in prior years by way of the excess depreciation.

The recapture of excess depreciation ensures that MACRS, like the historical depreciation techniques, has a total depreciation or deduction from taxable income equal to the initial basis minus the item's residual value.

This recaptured depreciation or loss on sale also allows an economic analysis to ignore any depreciation during the year of sale. In particular, there is a tax code provision that requires halving the depreciation during the period of disposal. This can be ignored, however, because the sum of the recaptured depreciation or loss on sale and any depreciation in the period of disposal is constant. The taxable income is the same, so it is easier to treat a sale during a year as a single transaction rather than as a sale and a partial depreciation deduction with a different book value for the computation of recaptured depreciation or loss on sale.

Exhibit 12.12 illustrates the four possibilities with the computer network used in Example 12.4. Three of the possibilities can be illustrated by assuming that the sales price equals the estimated $\$ 18,000$ salvage value.

EXHIIBIT 12.12 Recaptured depreciation and losses on sale

Residual Value Is
Result Is

Case 1	less than	current book value	loss on sale
Case 2	equals	current book value	no loss \& no recapture
Case 3	exceeds	current book value	recaptured depreciation
Case 4	exceeds	initial book value	recaptured depreciation \& capital gain

Case 1. Loss on sale. If the network is sold for $\$ 18,000$ at the beginning of year 3, when the book value is $\$ 43,200$, then there is a $\$ 25,200$ loss on the sale.
Case 2. No gain or loss. If the network is sold for $\$ 18,000$ during year 4 , when the book value at the beginning of the year is $\$ 25,920$, then there is $\$ 7920$ available in a depreciation deduction. Or, if $\$ 10,368$ is claimed as D_{4}, then $\$ 2448$ will be recaptured, for the same net of $\$ 7920$.

This case was more common with the historical depreciation methods, since the asset's residual value was used as its salvage value. With MACRS, no gain or loss is most likely to occur if a fully depreciated asset (book value $=\$ 0$) is donated to charity or disposed of.
Case 3. Recaptured depreciation. If the network is sold as originally estimated for $\$ 18,000$ any time after the end of year 6 , then there is $\$ 18,000$ in recaptured depreciation that must be added to the taxable income for the year of the sale.
The fourth possibility, a capital gain, requires a different assumed sales price.
Case 4. Capital gain. Suppose that the firm selling the computer network made a major pricing error or inflation skyrockets, so that the computer network could be sold during year 2 for $\$ 105,000$. The book value at the end of year 1 (or the beginning of year 2) is $\$ 72,000$. The $\$ 33,000$ gain on sale is divided for tax purposes. The recaptured depreciation is $\$ 18,000$, and the capital gain is $\$ 15,000$, which equals the sales price minus the original first cost.
Obviously, this last situation of a capital gain is relatively rare for manufactured or constructed items. It occurs principally with assets that are not depreciated, such as land, bonds, and stock. Capital gains may be taxed at a lower rate than the rate for regular income and recaptured depreciation.

Recaptured depreciation is very common with MACRS and alternate MACRS, since both systems assume salvage values of $\$ 0$ when depreciating. There is more recaptured depreciation than with the earlier straight-line, declining balance, and SOYD techniques.

If the asset being disposed of is replaced by a "like" asset, then the treatment of the loss on sale or recaptured depreciation is in reality more complex [Hartman and Hartman]. Rather than the loss on sale or recapture happening in the year of disposal, the basis for the replacement asset is adjusted, which will change the depreciation in each year of the recovery period of the replacement asset. While this provision must be followed to correctly calculate taxes, it is usually ignored to estimate the economic cost of different alternatives.

12.5 Optimal Depreciation Strategies

An optimal depreciation strategy maximizes the PW of the resulting tax savings. Since the tax rate is usually assumed to be constant and the firm to be profitable, this is equivalent to maximizing the PW of the depreciation deductions.

This strategy equates to choosing the shortest legal recovery period with the most accelerated depreciation method. Section 179 expensing, which is detailed in Section 12.8, should be used whenever possible; if it can be applied only to some assets, it should be applied to those assets with the longest lives. The strategy can be summarized as follows:

1. Take the Section 179 depreciation deduction and the investment tax credit (see Chapter 13) wherever possible.
2. Use MACRS rather than alternate MACRS.

If considering taxes in a jurisdiction where MACRS is not required, then:
3. Always use as small a value of N as possible.
4. When using the declining balance method, use as large a value of α as possible.

To a very large extent, the optimal depreciation strategy is achieved by using the required MACRS method. This system is legal, has relatively short recovery periods, depreciates to a book value of $\$ 0$, and combines the 200% or 150% declining balance method with an optimal switch to the straight-line method.

The advantages of MACRS are exemplified by Exhibit 12.10 and again in Example 12.5. While not as attractive as MACRS, both the declining balance and SOYD methods are far more attractive than the straight-line technique.

Some manufacturing equipment has an installed first cost of $\$ 90 \mathrm{~K}$ and a salvage value after 15 years of $\$ 10,520$. Midwest Manufacturing uses an interest rate of 10%. Find the PW of the depreciation deductions for straight-line, SOYD, double-declining balance, MACRS, and alternate MACRS methods. Rank the strategies in order of their attractiveness. Which is the best?

SOLUTION

The salvage value of $\$ 10,520$ matches that implied by double-declining balance depreciation, so no switch to the straight-line method is required. Because MACRS and alternate MACRS assume that the salvage value is $\$ 0$, there is $\$ 10,520$ of recaptured depreciation in year 15 for these methods.

Exhibit 12.13 summarizes the annual depreciation charges. The top portion of this table is the data block for the depreciation calculations. The next row is the basis for each depreciation technique. The values for the straight-line and SOYD methods differ from the others, since the salvage value, S, is subtracted before they are computed. The "helps" row contains intermediate values useful for computing the depreciation in that column.

Example 12.5, optimal depreciation strategy					
FC	S	N	i		
90,000	10,520	15	10%		
Basis	$\$ 79,480$	$\$ 79,480$	$\$ 90,000$	$\$ 90,000$	$\$ 90,000$
"helps"	5298.67	120	0.133333		7
			Double-Declining		Alternative
Year	Straight-Line	SOYD	Balance	MACRS	MACRS
1	$\$ 5299$	$\$ 9935$	$\$ 12,000$	$\$ 12,861$	$\$ 6429$
2	5299	9273	10,400	22,041	12,857
3	5299	8610	9013	15,741	12,857
4	5299	7948	7812	11,241	12,857

Year	Straight-Line	SOYD	Double-Declining Balance	MACRS	Alternative MACRS
5	5299	7286	6770	8037	12,857
6	5299	6623	5867	8028	12,857
7	5299	5961	5085	8037	12,857
8	5299	5299	4407	4014	6429
9	5299	4636	3819		
10	5299	3974	3310		
11	5299	3312	2869		
12	5299	2649	2486		
13	5299	1987	2155		
14	5299	1325	1867	1618	$-10,520$
15	5299	662		$-10,520$	
Total depreciation	$\$ 79,480$	$\$ 79,480$	$\$ 79,480$	$\$ 79,480$	$\$ 79,480$
PW at 10%	$\$ 40,302$	$\$ 48,972$	$\$ 49,989$	$\$ 62,412$	$\$ 57,230$

Notice that the next-to-last row shows that each technique claims the same total depreciation of $\$ 79,840$-but that the timing differs. Thus, the PW is highest for the most accelerated technique. MACRS is the most cost-effective, then alternate MACRS, double-declining balance, SOYD, and finally, straight-line depreciation. Since a higher PW means the tax deductions are more valuable, this is the order of attractiveness. The PWs for SOYD and double-declining balance methods are very similar.

Much of the large difference between the MACRS values and the other approaches is due to assuming a salvage value of $\$ 0$ and recapturing that excess depreciation 7 years later.

12.6 PW of a Depreciation Schedule

Rather than dealing with a depreciation schedule, it can be useful to have a formula or a single tabulated value to calculate the PW or EAW of the tax deductions from depreciation. Thus, to support the calculation of income taxes in Chapter 13, it is possible to generalize the calculations in Example 12.13. Since the tax rate is usually assumed to be a known constant, minimizing the PW of taxes is the same as maximizing the PW of the depreciation deductions. These calculations for the different depreciation methods also confirm the strategy of using MACRS if possible, then double-declining balance, then SOYD, and then straight-line method only if required.

Straight-Line Method. Since D_{t} equals $(\mathrm{FC}-\mathrm{S}) / N$ for N years, a simple (P / A) factor can be used to calculate a PW using Equation 12.5.

$$
\begin{equation*}
\mathrm{PW}_{\mathrm{SL}}=(P / A, i, N)(\mathrm{FC}-S) / N \tag{12.5}
\end{equation*}
$$

Declining Balance Method. An equation can be derived for declining balance with a switch to straight-line depreciation-once the rate ($200 \%, 175 \%$, or 150%), life (N), and salvage value (S) have been defined. Because MACRS is the current system and an example of a specific declining balance application, this derivation is not presented here.

SOYD Method. Equation 12.6 indicates that the annual D_{t} values can be expressed as a uniform periodic payment and a gradient. The annual periodic amount is:

$$
A=(\mathrm{FC}-S) \times N / \mathrm{SOYD}
$$

and the annual arithmetic gradient is:

$$
G=-(\mathrm{FC}-S) / \mathrm{SOYD}
$$

Assuming that the tax savings occur at the ends of periods $t=1,2, \ldots, N$, the present value is

$$
\begin{equation*}
\mathrm{PW}_{\mathrm{SOYD}}=(\mathrm{FC}-S)[N(P / A, i, N)-(P / G, i, N)] / \mathrm{SOYD} \tag{12.6}
\end{equation*}
$$

MACRS. Single-period (P / F) factors can be multiplied by the MACRS percentages in Exhibit 12.9 and then summed. The results are summarized in Exhibit 12.14.

As detailed in Section 12.4, the salvage value will be taxed as recaptured depreciation, since the book value is depreciated to $\$ 0$ under MACRS. Since the timing of that recapture

EXHIBIT 12.14 Table of PW factors for MACRS depreciation

\boldsymbol{i}	3-Year	5-Year	7-Year	10-Year	15-Year	20-Year
1%	.9807	.9726	.9648	.9533	.9259	.9054
2	.9620	.9465	.9316	.9101	.8596	.8234
3	.9439	.9215	.9002	.8698	.8001	.7520
4	.9264	.8975	.8704	.8324	.7466	.6896
5	.9095	.8746	.8422	.7975	.6985	.6349
6	.8931	.8526	.8155	.7649	.6549	.5867
7	.8772	.8315	.7902	.7344	.6155	.5441
8	.8617	.8113	.7661	.7059	.5797	.5062
9	.8468	.7919	.7432	.6792	.5471	.4725
10	.8322	.7733	.7214	.6541	.5173	.4424
11	.8181	.7553	.7007	.6306	.4902	.4154
12	.8044	.7381	.6810	.6084	.4652	.3911
13	.7912	.7215	.6621	.5875	.4424	.3691
14	.7782	.7055	.6441	.5678	.4213	.3492
15	.7657	.6902	.6270	.5492	.4019	.3311
16	.7535	.6753	.6106	.5317	.3839	.3146
17	.7416	.6611	.5949	.5150	.3673	.2995
18	.7300	.6473	.5798	.4993	.3519	.2856
19	.7188	.6340	.5654	.4844	.3376	.2729
20	.7079	.6211	.5517	.4702	.3243	.2612
21	.6972	.6087	.5384	.4567	.3118	.2503
22	.6868	.5968	.5257	.4439	.3002	.2403
23	.6767	.5852	.5136	.4317	.2893	.2310
24	.6669	.5740	.5019	.4201	.2791	.2223
25	.6573	.5631	.4906	.4090	.2696	.2142

depends on when the salvage value is received, the recapture is omitted from Exhibit 12.14. That salvage value in year $N_{\text {last }}$ should be added using a separate (P / F) factor, as in Equation 12.7. Exhibit 12.14 sums over t years the products of the MACRS depreciation percentage for year $t\left(\%_{t}\right)$ and the (P / F) factors, which is the summation in Equation 12.7.

$$
\begin{equation*}
\mathrm{PW}_{\mathrm{MACRS}}=\mathrm{FC} \times \sum_{t} \%_{t} \times(P / F, i, t)-S\left(P / F, i, N_{\mathrm{last}}\right) \tag{12.7}
\end{equation*}
$$

For Example 12.4:

$$
\begin{aligned}
\mathrm{PW}_{\text {MACRS }}= & 90,000[.2(P / F, .1,1)+.32(P / F, .1,2)+.192(P / F, .1,3)+.1152(P / F, .1,4) \\
& +.1152(P / F, .1,5)+.0576(P / F, .1,6)]-18,000(P / F, .1,8) \\
= & 90 \mathrm{~K}[.18182+.26446+.14425+.07868+.07153+.03251]-18 \mathrm{~K} \times .46651 \\
= & 90 \mathrm{~K} \times .77326-18 \mathrm{~K} \times .46651=\$ 61,196
\end{aligned}
$$

Notice that looking up $i=10 \%$ under the 5 -year column in Exhibit 12.14 shows a value of .7733 , which is the rounded value of the calculated value of .77326 . Thus, the tabulated values in Exhibit 12.14 can be used instead of the detailed (P / F) factors in Equation 12.7.

EXAMPLE 12.6 PW of Depreciation Deductions for Midwest Manufacturing (Example 12.5 Revisited)

Using equations, calculate the PW of straight-line, SOYD, and MACRS depreciation schedules for Example 12.5. The first cost is $\$ 90 \mathrm{~K}$, the salvage value after 15 years is $\$ 10,520$, and $i=10 \%$

SOLUTION

The values for straight-line, SOYD, and MACRS depreciation found using Equations 12.5 through 12.7 should check with those shown in Exhibit 12.13: $\$ 40,302, \$ 48,972$, and $\$ 62,412$, respectively.

Using Equation 12.5 for the PW of straight-line results in:

$$
\mathrm{PW}_{\mathrm{SL}}=(P / A, 10 \%, 15) \times 79,480 / 15=7.606 \times 79.48 \mathrm{~K} / 15=\$ 40.30 \mathrm{~K}
$$

which matches!
Using Equation 12.6 for the PW of SOYD results in:

$$
\begin{aligned}
\mathrm{PW}_{\text {SOYD }} & =79.48 \mathrm{~K}[15(P / A, .1,15)-(P / G, .1,15)] / \mathrm{SOYD} \\
& =79.48 \mathrm{~K}[157.606-40.152)] / 120=\$ 48.97 \mathrm{~K}
\end{aligned}
$$

which matches!
Finally, using Exhibit 12.14 ($i=10 \%$ and 7 -year recovery period) for the summation portion of Equation 12.7 leads to:

$\mathrm{PW}_{\mathrm{MACRS}}=90 \mathrm{~K} \times .7214-10,520(P / F, .1,15)$
 $=90 \mathrm{~K} \times .7214-10.52 \mathrm{~K} \times .2394=\$ 62.40 \mathrm{~K}$

which matches!

12.7 Depletion of Resources

Depletion is analogous to depreciation. It reduces taxable income by accounting for the using up of natural resources, such as mines, wells, and timberlands. There are two methods for calculating depletion: cost and percentage. Cost depletion applies to all depletable assets. Percentage depletion applies to mineral deposits and, in some cases, to domestic oil and gas wells. In many cases, both depletion bases are calculated, and the larger one is used for each year.

Cost Depletion. Cost depletion divides a natural resource deposit's acquisition or first cost (FC) by estimated recoverable reserves (RR) and then multiplies that by the number of units sold during the taxable year (see Equation 12.8).

$$
\begin{equation*}
\text { Cost depletion }_{t}=\text { volume }_{t}(\mathrm{FC} / \mathrm{RR}) \tag{12.8}
\end{equation*}
$$

In other words, the number of recoverable tons, barrels, board-feet, etc., is estimated. This recoverable number is divided into the property's cost to find a cost depletion per unit. This unit cost and the year's volume of production determine the year's depletion on a cost basis. Sometimes, the property's cost must be allocated to the resource (depletable) and to land (not depletable)-for example, with timber, where only the trees' value is depleted.

Percentage Depletion. Exhibit 12.15 summarizes some of the categories in which percentage depletion is applied. The tabulated percentages are multiplied by the deposit's

EXHIBIT 12.15 Percentage depletion rates

Rate	Assets Included
22%	Asbestos, bauxite, cobalt, lead, manganese, mercury, molybdenum, nickel, platinum, sulfur, tin, and uranium
22	Regulated natural gas
15	Small producers' oil and natural gas deposits 15
14	Ropper, gold, iron ore, oil shale, and silver
14	Nonmetallic vermiculite, bentonite, and refractory clay building stone
10	Coal, lignite, sodium chloride
$7 \frac{1}{2}$	Clay for sewer pipe and tile
5	Gravel, sand, peat, clay for roofing tile and flower pots

gross income (GI). In any year, percentage depletion cannot exceed half of the property's net income (NI) calculated without depletion (see Equation 12.9).

$$
\begin{equation*}
\% \text { depletion }_{t}=\text { minimum }\left(\text { rate } \times \mathrm{GI}_{t}, .5 \times \mathrm{NI} \text { w/o depletion }{ }_{t}\right) \tag{12.9}
\end{equation*}
$$

Cost depletion stops when the deposit's book value reaches $\$ 0$-in other words, when the accumulated depletion equals the acquisition cost. However, percentage depletion is still allowed, which may result in negative book values; these are typically credited to retained earnings.

EXAMPLE 12.7 Northern Gold Mining

Northern Gold Mining bought a mine site with 500,000 tons of recoverable ore for $\$ 800,000$. Of this total, $\$ 50,000$ is the land's estimated value. If 40,000 tons are processed this year, what is the cost depletion?

The revenue from 5500 ounces of gold is $\$ 1.8 \mathrm{M}$, and the expenses (other than depletion) are $\$ 1.6 \mathrm{M}$. What is the percentage depletion, and should cost or percentage depletion be claimed?

SOLUTION

The cost of the deposit is $\$ 750,000$, and the recoverable reserves are 500,000 tons. So, the cost per unit is $\$ 1.50$. At a volume of 40,000 tons, the depletion on a cost basis is $\$ 60,000$ this year. Using Equation 12.8:

$$
\text { Cost depletion }_{t}=(40,000 \text { tons })(\$ 750,000 / 500,000 \text { tons })=\$ 60,000
$$

The 15% depletion rate that applies to gold is multiplied by the gross income of $\$ 1.8 \mathrm{M}$, for a maximum percentage depletion of $\$ 270 \mathrm{~K}$. The 50% net income limit leads to a limit of $(\$ 1.8 \mathrm{M}$ $-\$ 1.6 \mathrm{M}) \times .5=\$ 100 \mathrm{~K}$. Thus, the percentage depletion is limited to $\$ 100 \mathrm{~K}$. Because that amount exceeds the cost depletion of $\$ 60 \mathrm{~K}$, percentage depletion should be claimed.

$$
\text { Percentage depletion }_{t}=\text { minimum }\{.15(\$ 1.8 \mathrm{M}), .5(\$ 1.8 \mathrm{M}-\$ 1.6 \mathrm{M})\}=\$ 100 \mathrm{~K}
$$

12.8 Section 179 Deduction and Bonus Depreciation

Section 179. The Section 179 deduction was included in the tax code to benefit small businesses. It permits firms to expense capital equipment in the first year rather than depreciating that amount over time with MACRS. When this deduction was established in 1981, it was limited to $\$ 5000$. As detailed below, it has increased over time, with a scheduled return to $\$ 125,000$ for 2010:

Year	1981	1986	1993	2000	2003	2007	2009
Limit	$\$ 5000$	10,000	17,500	20,000	100,000	125,000	250,000
Phaseout			200,000	400,000	500,000	800,000	
begins							

While Section 179 may be important to a firm, it may not be appropriate to include it in the analysis for any particular project, except for the smallest firm. If the firm has only one project, there is no problem. However, if a firm has 10 projects and each costs $\$ 100,000$, which one receives credit for the Section 179 deduction? The choice would be arbitrary, so it is better to analyze all potential projects without considering Section 179 (unless total expenditures are less than the limit for the year or only one project will be undertaken). However, the firm, if eligible, should claim the Section 179 deduction.

Items qualifying for Section 179 have MACRS recovery periods of 15 years or less, lives of 3 years or more, and are tangible (not patents or copyrights). The dollar amount for each new or used item is its acquisition cost after subtracting any trade-in allowance. The amount for all qualified items is then totaled so that the Section 179 deduction can be calculated.

The maximum Section 179 deduction must be less than:

1. Total spent on qualifying property that is placed in service in this year.
2. Section 179 dollar limit for the year.
3. Taxable income.
4. For firms whose expenses exceed the "phase out limit":

Section 179 limit for year - (qualifying expenses - phaseout limit).
The fourth limit is a dollar-for-dollar reduction in the deduction, and it applies to larger firms that spend over the phase out limit per year on qualifying property. Thus, any firm placing more than the phase out limit plus the Section 179 dollar limit for the year's worth of qualifying property in service cannot use Section 179.

The taxable income limit works as follows. A small business places $\$ 29,000$ of qualifying property in service in 2011, but its taxable income is only $\$ 6000$. The business could deduct $\$ 6000$ this year and carry forward a $\$ 19,000(=\$ 25,000-\$ 6000)$ deduction for next year. Only that amount disallowed by the taxable income limit may be carried forward, not amounts over the 179 limit.

The Section 179 deduction reduces the basis for computing depreciation, and taxable income is reduced by any depreciation. Thus, if the small business depreciated either $\$ 23,000$ that it could not expense or something else, its taxable income would be reduced, and the Section 179 limit would drop from $\$ 6000$. Recapture provisions also apply for equipment, such as a computer, which is purchased for business use, expensed using Section 179, and later shifted partially or totally from business to personal use.

This deduction is very attractive when it is available. First, it provides the maximum immediate reduction in income taxes. Second, for small businesses with limited annual expenditures on equipment, the Section 179 deduction can eliminate (after the first year) some-or all-of the recordkeeping and forms associated with depreciation.

Recapture for Section 179 Assets. When an item for which Section 179 has been claimed is sold or disposed, then recaptured depreciation, if any, must be reported as income. As shown in Example 12.8, the computation is made as though MACRS depreciation has been used.

Smith, Jones, and Rodriguez purchased a sophisticated copier for $\$ 9000$ and expensed it under Section 179. During the fourth year of ownership, the copier is sold for $\$ 3000$. What is the recaptured depreciation?

SOLUTION

Copiers have 5-year recovery periods under MACRS, so the total depreciation that could have been claimed through year 3 is $71.2 \%=20 \%+32 \%+19.2 \%$. Therefore, the implied book value is 28.8% of the $\$ 9000$ initial cost, or $\$ 2592$. Since the sales price exceeds this by $\$ 408$, that amount is taxed as recaptured depreciation.

Bonus Depreciation. To stimulate business investments, the U.S. has periodically allowed extra depreciation in the first year. For example, the Economic Stimulus Act of 2008 (extended by the American Recovery and Reinvestment Act of 2009) permitted "bonus" first-year depreciation of 50%. This is first computed, and then normal depreciation on the remaining book value is also allowed. Example 12.9 illustrates how this could be combined with Section 179.

EXAMPLE 12.9 Bonus Depreciation Combined with Section 179

A firm purchased $\$ 400,000$ of qualified property in 2009. Compute the total depreciation claimed as an expense against its taxable income of $\$ 300,000$. Assume that all property is in the 7 -year class.

SOLUTION

The first step is to claim the maximum Section 179 write-off of $\$ 250,000$. This is less than the firm's taxable income and the phase out limit does not apply.

Then the 50% bonus first-year depreciation is claimed on the remaining $\$ 150,000$ $(=\$ 400,000-250,000)$ in book value. Thus this write-off is $\$ 75,000$, and the remaining book value is $\$ 75,000$.

Finally, the normal MACRS depreciation rate for the first year in a 7 -year class is 14.29%. Thus, that depreciation amount is $\$ 10,717.50$.

$$
\text { Total depreciation }=250,000+75,000+10,717.5=\$ 335,717.50
$$

This nearly equals the $\$ 400,000$ of qualified expenditures.

12.9 Spreadsheet Functions for Depreciation

Most spreadsheet packages include functions for straight-line, declining balance, and SOYD depreciation. Exhibit 12.16 lists these functions for Excel. Because these techniques are simple and were replaced by MACRS in 1986, they are not covered in detail here. Excel's variable declining balance function was designed to cover declining balance

EXHIBIT 12.16 Spreadsheet functions for depreciation

Depreciation Technique	Excel
Declining balance	DDB(cost, S, N, year,factor)
Straight-line	SLN(cost, $S, N)$
Sum-of-the-years' digits	SYD(cost, S, N, year)
Variable declining balance	VDB(cost, S, N, start_period,
	end_period,factor,no_switch)

with a switch to straight-line depreciation. However, it can be used to compute depreciation under MACRS.

Using VDB for MACRS. The Excel function VDB is a flexible or variable declining balance method. It includes the ability to specify the starting and ending periods rather than simply a year. It also includes an optional no-switch for problems where a switch from declining balance to straight-line depreciation is not desired.

To use VDB to calculate MACRS depreciation [Eschenbach and Lavelle]:

- $S=0$, since MACRS assumes no salvage value.
- $N=N_{d}=$ recovery period of $3,5,7,10,15$, or 20 years.
- First year runs from 0 to 0.5 , second year from 0.5 to 1.5 , third year from 1.5 to 2.5 , year t from $t-1.5$ to $t-0.5$, and year $N_{D}+1$ from $N_{D}-.5$ to N_{D}.
- Factor $=2$ for recovery periods of $3,5,7$, or 10 years and 1.5 for recovery periods of 15 or 20 years.
- No_switch can be omitted, since MACRS includes a switch to straight line.

The start_period and end_period arguments are from $t-1.5$ to $t-0.5$, because MACRS uses a half-year convention for the first year or depreciation from 0 to .5 year. The second year starts where the first year stops. When writing the Excel function, the start_period must be defined so its minimum is 0 and end_period so its maximum is life. The use of Equation 12.10 is illustrated in Example 12.10.

$$
\begin{equation*}
D_{t}=\mathrm{VDB}\left(\operatorname{cost}, 0, N_{D}, \max (0, t-1.5), \min \left(N_{D}, t-.5\right)\right) \tag{12.10}
\end{equation*}
$$

The workstations have a first cost of $\$ 90 \mathrm{~K}$ and a salvage value after 8 years of $\$ 18 \mathrm{~K}$. What are the depreciation charges for the next 8 years under MACRS?

SOLUTION

Because these are computers, the recovery period is the 5 -year class. Notice that the variable values for the workstations' life and salvage value are not used in the VDB to find the MACRS
values. Instead, the 5-year recovery period and a salvage value of $\$ 0$ are used. The depreciation amounts for each year shown in Exhibit 12.17 match Example 12.4.

EXHIBIT 12.17 Spreadsheet for depreciation using MACRS

	A	B	C	D	E	F
1	\$90,000	First cost				
2	\$18,000	Salvage				
3	8	Life				
4	5	Recovery period,	not asset'			
5	200\%	Factor				
6						
7	Year	Depreciation				
8	1	\$18,000.00	$=\mathrm{VDB}(\$ \mathrm{~A} \$ 1,0, \$ \mathrm{~A} \$ 4, \mathrm{MAX}(0, \mathrm{~A} 8-1.5), \mathrm{MIN}(\$ \mathrm{~A} \$ 4, \mathrm{~A} 8-0.5), \$ \mathrm{~A} \$ 5)$			
9	2	\$28,800.00	or (cost, 0 , life, MAX($0, t-1.5$), MIN(life, $t-.5$), factor)			
10	3	\$17,280.00				
11	4	\$10,368.00				
12	5	\$10,368.00				
13	6	\$5,184.00				
14	7		deleted since out of range "\#NUM!"			
15	8		deleted since out of range "\#NUM! "			
16		\$90,000	= Sum			

This chapter has defined the terms for depreciation-basis, recovery period, salvage value, book value, and depreciation. It has emphasized that depreciation is not a cash flow and should be included only in after-tax analyses in which the taxes depend on the depreciation deducted.

The chapter included several basic depreciation methods. These methods are summarized in Exhibit 12.18. To compute straight-line depreciation, the first cost minus the salvage value is divided by the asset's life. Declining balance depreciation in year t equals the book value at the year's beginning multiplied by α / N. Sum-of-the-years'-digits (SOYD) depreciation has a schedule that is very similar to double-declining balance, and its PW can be calculated using tabulated (P / G) factors.

The U.S. tax code uses the Modified Accelerated Cost Recovery System (MACRS). This is a combination of double-declining balance for recovery periods of $3,5,7$, or 10 years (150% for 15 or 20 years) and straight-line methods. A salvage value of $\$ 0$ is assumed, and the recovery periods are shorter than the estimated lives that were used for straight-line, SOYD, and declining balance depreciation.

Because the MACRS salvage value is assumed to be $\$ 0$, recaptured depreciation is common when assets are disposed of. On the other hand, capital gains are rare for engineered
projects. Capital gains are important for land, stocks, fine art, etc.-not for machinery that is used for 10 years and then disposed of.

The optimal depreciation strategy maximizes the PW of the available income tax deductions. This is achieved by using the shortest legal recovery period and by using MACRS wherever possible. The PW of available income tax deductions can be calculated using the annual depreciation deductions, or Equations 12.5 through 12.7 can be used instead. For MACRS, Exhibit 12.14 can be used.

Resource depletion is used for mineral deposits. The computations are analogous to those for depreciation. However, they are somewhat more complicated, since both a cost depletion basis and a percentage depletion basis may be available (the larger may be chosen).

Finally, Section 179 is an attractive depreciation method for small businesses. However, since it is applied to the firm, not to the item, it is usually inappropriate to consider Section 179 during the project selection phase. Which capital asset should receive the credit? These depreciation methods will be applied in Chapter 13 to income taxes. At that point, cash flows will again be the focus.

EXHIBIT 12.18 Summary of depreciation methods

	MACRS	Straight Line	$\alpha \%$ Declining Balance	Sum-of-the-Years'- Digits (SOYD)
Recovery period	$N_{D}(<N)$	N	N	N
Basis	FC	FC	FC	FC
Assumed salvage value	$\$ 0$	S	S	S
Depreciation in year t	$\%_{N D_{t}} \times \mathrm{FC}$	$\frac{(\mathrm{FC}-S)}{N}$	$\mathrm{BV}_{t-1} \times \alpha / N$	$\frac{(\mathrm{FC}-S)(N+1-t)}{\mathrm{SOYD}}$

REFERENCES

Bussey, Lynn E., and Ted G. Eschenbach, The Economic Analysis of Industrial Projects, 2nd ed., 1992, Prentice-Hall.
Eschenbach, Ted G., and Jerome P. Lavelle, "MACRS Depreciation with a Spreadsheet Function: A Teaching and Practice Note," The Engineering Economist, Volume 46, Number 2, 2001, pp. 153-161.
Fleischer, Gerald A., and Lawrence C. Leung, "Depreciation and Tax Policies in China and the Four Little Dragons," IIE Integrated Systems Conference Proceedings, 1988, pp. 314-320.
Fleischer, Gerald A., A.K. Mason, and L.C. Leung, "Optimal Depreciation Policy under the Tax Reform Act of 1986," IIE Transactions, Volume 22, Number 4, December 1990, pp. 330-339.
Hartman, Joseph C., and Raymond V. Hartman, "After-Tax Economic Replacement Analysis," The Engineering Economist, Volume 46, Number 3, 2001, pp. 181-204.
Remer, Donald S., and Yong Ho Song, "Depreciation and Tax Policies in the Seven Countries with the Highest Direct Investment from the U.S.," The Engineering Economist, Volume 38, Number 3, Spring 1993, pp. 193-208.
Smith, Gerald W., Engineering Economy: Analysis of Capital Expenditures, 4th ed., 1987, Iowa State University Press, pp. 161-163.

Problems

12.1 Metal Stampings, Inc., can purchase a new forging machine for $\$ 400,000$. After 20 years of use, the forge should have a salvage value of $\$ 25,000$.
(a) Under MACRS, what depreciation is claimed in year 3?
(b) Under the straight-line (pre-1981) method, what depreciation is claimed in year 3?
(Answer: a. \$69,960; b. \$18,750)
12.2 Muddy Fields Earthmoving can purchase a bulldozer for $\$ 30,000$. After 7 years of use, the bulldozer should have a salvage value of $\$ 5000$.
(a) Under MACRS, what depreciation is claimed in year 3?
(b) Under the straight-line (pre-1981) method, what depreciation is claimed in year 3 ?
(c) Under the SOYD (pre-1981) method, what depreciation is claimed in year 3 ?
12.3 An asset costs $\$ 15,000$ and has a salvage value of $\$ 500$ after 10 years. What is the depreciation charge for the fifth year, and what is the book value at the end of the fifth year?
(a) Using the 150% declining balance method.
(b) Using the 200% declining balance method.
(Answer: a. $D_{5}=\$ 1175, \mathrm{BV}_{5}=\$ 6656 ; \mathrm{b}$.
$\left.D_{5}=\$ 1229, \mathrm{BV}_{5}=\$ 4915\right)$
12.4 A milling machine costs $\$ 8000$, and it will be scrapped after 10 years. Compute the book value and depreciation for the first two years using:
(a) MACRS.
(b) Straight-line depreciation.
(c) Double declining balance depreciation.
(d) SOYD depreciation.
12.5 The Jafar Jewel Mining Company has just purchased a new crystal extraction machine that cost $\$ 5000$ and has an estimated salvage value of \$1000 at the end of its 8 -year useful life. Compute the depreciation schedule using the following methods:
(a) Straight-line.
(b) Double-declining balance.
(c) SOYD.
(d) MACRS (ADR $=8$ years).
12.6 To meet increased delivery demands, the Moo-Cow Dairy has just purchased 10 new delivery trucks. Each truck cost $\$ 18,000$ and has an expected life of 4 years. The trucks can be sold for $\$ 2000$ each after 4 years. Using MACRS:
(a) Determine the depreciation schedule for each truck.
(b) Determine the book value at the end of each year.
(Answer: $D_{2}=\$ 5760, \mathrm{BV}_{2}=\$ 8640$)
12.7 A small microprocessor costing \$12,000 is to be depreciated using 150% declining balance depreciation over the next 4 years. The microprocessor will have no value after 4 years. Determine the depreciation schedule. What is the book value at the end of the 4 years?
(Answer: \$1831)
12.8 The Delta Cruise Company purchased a new tender (a small motorboat) for $\$ 15,000$. Its salvage value is $\$ 500$ after its useful life of 5 years. Calculate the depreciation schedule using:
(a) Double-declining balance.
(b) SOYD methods.
12.9 Blank Mind, Inc., just purchased a new psychograph machine for $\$ 10,000$. The expected resale value after 4 years is $\$ 500$. Determine the book value after 2 years using the following depreciation methods:
(a) Straight-line.
(b) SOYD.
(c) Double-declining balance.
12.10 A used drill press costs $\$ 12,000$, and delivery and installation charges add $\$ 1500$. The salvage value after 8 years is $\$ 1000$. Compute the accumulated depreciation through year 4 using:
(a) 7-year MACRS.
(b) Straight-line.
(c) 150% declining balance.
(d) SOYD.
12.11 A machine purchased by the Bee Buzzsaw Company originally cost $\$ 245,000$. Delivery and installation charges amounted to $\$ 5000$. The declared salvage value was $\$ 25,000$. Early in year 4 , the company changed its product mix and found that it no longer needed the machine. One of its competitors agreed to buy the machine for $\$ 90,000$. Determine the loss, gain, or recapture of MACRS depreciation on the sale. The ADR is 12 years for this machine. (Answer: \$19,325 loss on sale)
12.12 A numerically controlled milling machine was purchased for $\$ 95,000$ four years ago. The estimated salvage value was $\$ 10,000$ after 15 years. What is
the machine's book value now after 4 years of depreciation? If the machine is sold for $\$ 20,000$ early in year 5, how much of a gain on sale or recaptured depreciation is there? Assume:
(a) 7-year MACRS.
(b) Straight-line.
(c) Double-declining balance.
(d) SOYD.
12.13 A computer costs $\$ 9500$, and its salvage value in 8 years is negligible. What is the book value after 4 years? If the machine is sold for $\$ 3500$ in year 5, how much of a gain or recaptured depreciation is there? Assume:
(a) MACRS.
(b) Straight-line.
(c) Double-declining balance.
(d) SOYD.
12.14 A conveyor was purchased for $\$ 40,000$. Shipping and installation costs were $\$ 15,000$. It was expected to last 6 years, when it would be sold for $\$ 5000$ after paying $\$ 3000$ for dismantling. Instead, it lasted 9 years, and several workers were permitted to take it apart on their own time for reassembly at a private technical school. How much of a gain, loss, or recaptured depreciation is there? Assume:
(a) 7-year MACRS.
(b) Straight-line.
(c) Double-declining balance with switch to straight-line.
(d) SOYD.
12.15 An automated assembly line is purchased for $\$ 250,000$. The company has decided to use units-of-production depreciation. At the end of 8 years, the line will be scrapped for an estimated $\$ 20,000$. Using the following information, determine the depreciation schedule for the assembly line.

Year	Production Level
1	5000 units
2	10,000 units
3	15,000 units
4	15,000 units
5	20,000 units
6	20,000 units
7	10,000 units
8	5000 units

(Answer: $\left.D_{1}=\$ 11,500\right)$
12.16 During the construction of a highway bypass, earthmoving equipment costing $\$ 40,000$ was purchased for use in transporting fill from the borrow pit. At the end of the 4-year project, the equipment will be sold for $\$ 20,000$. The schedule for moving fill calls for a total of 100,000 cubic feet during the project. In the first year, 40% of the total fill is required; in the second year, 30%; in the third year, 25%; and in the final year, the remaining 5\%. Determine the units-of-production depreciation schedule for the equipment.
12.17 A small delivery van can be purchased for $\$ 14,000$. At the end of its useful life (8 years), the van can be sold for $\$ 2000$. Using the methods listed below, determine the PW of the depreciation schedule based on 12% interest.
(a) Straight-line.
(b) SOYD.
(c) MACRS.
(Answer: a. \$7451; b. \$8424; c. \$9526)
12.18 The ABC Block Company purchased a new office computer costing $\$ 4500$. During the third year, the computer is declared obsolete and is donated to the local tech training school. Using an interest rate of 10%, calculate the PW of the depreciation and donation deductions. Assume that no salvage value was initially declared and that the machine was expected to last 5 years.
(a) Straight-line.
(b) SOYD.
(c) MACRS.
12.19 A pump in an ethylene plant costs $\$ 15,000$. After 9 years, the salvage value is nil.
(a) Determine D_{t} and BV_{t} using straight-line, SOYD, and 7-year MACRS.
(b) Find the PW of each depreciation schedule if the interest rate is 8%.
12.20 Some R\&D equipment costs $\$ 250,000$. The interest rate is 10%, and the salvage value is $\$ 25,000$. The expected life is 10 years (with periodic upgrades). Compute the PW of the depreciation deductions assuming:
(a) MACRS.
(b) Straight-line depreciation.
(c) SOYD depreciation.
12.21 Western Coal expects to produce 75,000 tons of coal annually for 15 years. The deposit cost $\$ 2 \mathrm{M}$ to acquire. The annual gross revenues are expected to be $\$ 8$ per ton, and the net revenues are expected to be $\$ 3$ per ton.
(a) Compute the annual depletion on a cost basis.
(b) Compute the annual depletion on a percentage basis. (Answer: cost $=\$ 133.3 \mathrm{~K}$, percentage $=\$ 60 \mathrm{~K})$
12.22 Eastern Gravel expects to produce 50,000 tons of gravel annually for 5 years. The deposit cost $\$ 120 \mathrm{~K}$ to acquire. The annual gross revenues are expected to be $\$ 8$ per ton, and the net revenues are expected to be $\$ 3$ per ton.
(a) Compute the annual depletion on a cost basis.
(b) Compute the annual depletion on a percentage basis.
12.23 A 2000-acre tract of timber is purchased by the Newhouser Paper Company for $\$ 800,000$. The acquisitions department at Newhouser estimates the land will be worth $\$ 225$ per acre once the timber is cleared. The materials department estimates that a total of 5 million board-feet of timber is available from the tract. It is expected to take 5 years for all the timber to be harvested. The harvest schedule calls for equal amounts of the timber to be harvested each year. Determine the depletion allowance for each of the 5 years. (Answer: $\$ 70,000$)
12.24 The Piney Copper Company purchased an orebearing tract of land for $\$ 7,500,000$. The geologist for Piney estimated the recoverable copper reserves to be 450,000 tons. During the first year, 50,000 tons were mined and 40,000 tons were sold for $\$ 4 \mathrm{M}$. Expenses (not including depletion allowances) were $\$ 2.5 \mathrm{M}$. What are the percentage depletion and the cost depletion allowances?
12.25 The Red Dog oil field will become less productive each year. Martinson Brothers is a small company that owns Red Dog, which is eligible for percentage depletion. Red Dog cost $\$ 2 \mathrm{M}$ to acquire, and it will be produced over 15 years. Initial production costs are $\$ 4$ per barrel, and the wellhead value is $\$ 9$ per barrel. The first year's production is 80,000 barrels, which will decrease by 5000 barrels per year.
(a) Compute the annual depletion (each year may be cost-based or percentage-based).
(b) What is the PW at $i=12 \%$ of the depletion schedule?
12.26 A design firm's capital purchases in 2009 totaled $\$ 280,000$. The firm's taxable income currently averages $\$ 160,000$ per year. What is the MACRS recovery period? Contrast the depreciation schedules with and without Section 179—use the 2009 dollar limit and assume 7-year property.
12.27 Redo Problem 12.26 with taxable income before depreciation for 2009 of only $\$ 70,000$. Assume the Section 179 deductions for later years will be used for later equipment purchases.
12.28 A small but very profitable research firm purchased $\$ 375,000$ worth of research equipment in 2009. Using MACRS and Section 179 expensing, determine the depreciation schedule for the equipment.
12.29 A small, profitable construction contractor purchasesd equipment costing \$405,000 in 2009. Using MACRS (5-year class) and Section 179 expensing, determine the depreciation schedule for the equipment.
12.30 Using the spreadsheet functions construct the depreciation schedules for Problem 12.5 using the following methods:
(a) Straight-line.
(b) Double-declining balance.
(c) SOYD.
(d) MACRS (ADR $=8$ years).
12.31 Using the spreadsheet functions construct the depreciation schedules for Problem 12.10 using the following methods:
(a) 7-year MACRS.
(b) Straight-line.
(c) 150% declining balance.
(d) SOYD.

Minicases

12.32 Study the depreciation rules as published by the IRS or the appropriate agency of another country's government. Describe some aspect not covered in this chapter. Provide an example.
12.33 For Problem 12.26 assume that 50% bonus deprecia-
\square tion is also available. What is the difference in the present worth of the depreciation schedules if $i=10 \%$?
12.34 For Problem 12.28 assume that 50% bonus depreciation is also available. What is the difference in the present worth of the depreciation schedules if $i=15 \%$?
12.35 For Problem 12.29 assume that 50% bonus depreciation is also available. What is the difference in the present worth of the depreciation schedules if $i=12 \%$?

Cases

The following case from Cases in Engineering Economy $2^{\text {nd }}$ is suggested as matched with this chapter.

Case 26 Molehill \& Mountain Movers

Compare depreciation methods with option for inflation.

Income Taxes

- THE SITUATION AND THE SOLUTION

Income taxes are cash flows that depend on the profits generated by projects and alternatives. The computation of taxes depends on ever-changing tax codes.

The solution is to understand the principles underlying the tax code. In particular, this includes depreciation (see Chapter 12), marginal income tax rates, tax credits, and deductible interest. After-tax cash flows can be used to compute PWs, EACs, and IRRs.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 13.1 Select a point of view, and describe the steps of calculating income taxes.
SECTION 13.2 Compute income taxes using a progressive marginal tax rate schedule.
SECTION 13.3 Find taxable income, including depreciation.
SECTION 13.4 Select an after-tax minimum attractive rate of return and calculate aftertax cash flows using year-by-year cash flows.
SECTION 13.5 Calculate after-tax cash flows using formulas for straight-line, MACRS, and sum-of-the-years'-digits depreciation.
SECTION 13.6 Include investment tax credits and capital gains as necessary.
SECTION 13.7 Use spreadsheets to compute after-tax IRRs, including tax-deductible interest on financing.
APPENDIX 13A Calculate personal income taxes.

- KEY WORDS AND CONCEPTS

Differing perspectives on taxes Government's: to raise revenue and promote general welfare; firm's: to pay as little as is legal, and that as late as possible; analyst's: taxes always matter to the firm but may have little impact on the choice between alternatives.
Marginal tax rate One that applies to a block of taxable income, not to all income.
Capital asset When bought, it is not an expense, and it is not tax deductible.
Investment tax credit A 3\% to 10\% portion of an investment's first cost that is credited against income taxes owed.
Capital gain The amount by which an asset's selling price exceeds its first cost.

Leverage The increase in an attractive project's PW or IRR by financing part or all of it at an interest rate below the MARR. The variability and financial risk of the PW and IRR also increase if revenues go down or costs go up.

13.1 Principles of Income Taxes

Income, Property, Sales, and Value-Added Taxes. Most firms pay several kinds of taxes. Most revenue for the U.S. federal government is raised through income taxes. In many states, this is also true. In the United States, much of the funding for municipal government is often based on property taxes-on buildings, factories, vehicles, etc. In some jurisdictions, a sales tax is levied on all purchases.

Outside of the U.S. a common tax is the value-added tax (VAT). This is analogous to a sales tax, because it is a percentage of the value. However, it is levied on transactions throughout the chain, not just at the end. For example, the manufacturer's supplier, manufacturer, wholesale distributor, and retail outlet would all pay VAT rather than simply having a sales tax collected at the retail outlet. At each level, the VAT that is paid by the firm is subtracted from the VAT that the firm charges its customers. The difference is paid to the goverment. Thus each firm pays tax only on the value that it adds.

While property, sales, and VAT are important taxes and should be considered for project evaluation, they are typically a percentage of the value and, thus, somewhat simpler than income taxes. More importantly, there is a large variety of rates and rules, so detailed local knowledge of where the project will be built or implemented is required.

There are even significant variations for different firms in the same city. To encourage the location of new manufacturing plants or new corporate headquarters, many states and cities have negotiated partial or complete tax moratoriums with firms.

Thus, this chapter focuses on the national tax that is consistently applied within the United States-the income tax. For most firms, this is also the largest tax burden, so it is the one with the largest impact on the evaluation of proposed projects.

Differing

perspectives on
taxes include the government's, which is to raise revenue and promote general welfare; the firm's, which is to pay as little as is legal, and that as late as possible; and the analyst's, which is that taxes always matter to the firm but may have little impact on the choice between alternatives.

Point of View. Before discussing the detailed principles behind income tax calculation, three differing perspectives on taxes may be helpful: the government's, the firm's, and the analyst's.

The government's perspective on income taxes focuses on generating revenue for government operations and promoting the general welfare through tax policy. For example, governments have used investment tax credits to encourage capital investment, limited the deductibility of corporate "perks" to discourage wasteful practices, and eliminated deductions for interest paid on consumer debt to encourage savings.

For both firms and individuals, the private view of taxes is the same. From an economic perspective, the goal is to pay as little as legally permissible, and that as late as possible. This underlies the selection of MACRS as the optimal depreciation strategy in Section 12.5. Because of this perspective, firms that operate in multiple states or countries may set transfer or internal prices so that subsidiaries in low-tax-rate jurisdictions "earn" the profits for the corporation. From an ethical perspective, the firm or individual should be willing to pay their fair share.

If only costs are analyzed, assume business is profitable so that depreciation and expenses are tax deductible.

The analyst's perspective on income taxes is that taxes always matter to the firm, but sometimes taxes can be ignored when making a decision. For example, the choice between a stainless steel pump that lasts 8 years and a brass pump that lasts 6 years is unlikely to be changed by including income taxes. To save time and to focus attention on more important items, the analyst may ignore income taxes when they will not have a significant impact. Taxes can rarely be ignored (1) when doing something is being compared with doing nothing, (2) when capital- and labor-intensive alternatives are compared, or (3) when a budget is being set.

This chapter will focus on the firm's perspective, not on the government's. After mastering the computation of income taxes, you should be able to identify cases in which the omission of taxes will not affect the recommendations.

Principles of Calculation. Income taxes depend on profits, not on an item's value. Thus, accounting for an item's impact on taxes requires considering depreciation's impact on profits. Income taxes are assessed by the U.S. government, most states, and many municipalities.

The basic steps of calculating income taxes from a corporate perspective are:

1. Find the firm's taxable income, considering revenues, expenses, and depreciation deductions.
2. Compute the tax owed using the appropriate schedule of marginal tax rates.
3. Reduce the tax owed by any credits, such as the investment tax credit.

In some cases, only the costs of alternatives are analyzed. For example, an engineer might evaluate automating a production line with robots without analyzing the assembly line's benefits or revenues. The costs reduce taxable income and taxes-generating tax savings. In this case, an after-tax analysis requires the following assumption:

Firms subject to income tax may lose money periodically, but in the long run, they are profitable. Thus, it is safe to assume that these firms have adequate revenues so that an alternative's expenses and depreciation are completely deductible from taxable income, even if that income is unknown.

One justification for this assumption is the existence of carryforward and carryback provisions that permit the losses of one year to be considered when computing future taxes or recomputing prior taxes.

Firms pay income taxes on their total operations, not on individual projects. As the next section details, the income tax rate is linked to the firm's income level, not to an alternative's level of income generation.

13.2 Progressive Marginal Tax Rates

A marginal tax rate

 applies to a block of taxable income, not to all income.Income taxes for firms and individuals are calculated similarly. Each uses a progressive schedule of income tax rates (higher incomes pay higher rates). Corporate taxes are included here; personal income taxes for individuals and for small businesses that are taxed as individuals are included in Appendix 13A.

Exhibit 13.1 summarizes the 2009 federal corporate tax rate structure that was established in 1986. The last three brackets were added by the Revenue Reconciliation Act of 1993. Each rate is a marginal tax rate. That is, each marginal tax rate applies to a block of taxable income. For example, a firm whose profit is $\$ 60,000$ is taxed at 15% on the first $\$ 50,000$ and at 25% on the next $\$ 10,000$. See Example 13.1 as well.

EXHIBIT 13.1 U.S. corporate income tax schedule

Tax Rate	Income Block
15%	$x \leq \$ 50,000$
25%	$\$ 50,000<x \leq \$ 75,000$
34%	$\$ 75,000<x \leq \$ 100,000$
39%	$\$ 100,000<x \leq \$ 335,000$
34%	$\$ 335,000<x \leq \$ 10,000,000$
35%	$\$ 10,000,000<x \leq \$ 15,000,000$
38%	$\$ 15,000,000<x \leq \$ 18,000,000$
35%	$\$ 18,000,000<x$

ElectroSwitch manufactures electric switches for industrial applications. Last year, its taxable income was $\$ 450$ K. Calculate the income tax owed by ElectroSwitch.

SOLUTION

This tax can be calculated using the marginal tax schedule as follows:

$$
\begin{aligned}
\$ 7.50 \mathrm{~K} & =.15 \times 50 \mathrm{~K} \\
6.25 \mathrm{~K} & =.25 \times 25 \mathrm{~K} \\
8.50 \mathrm{~K} & =.34 \times 25 \mathrm{~K} \\
91.65 \mathrm{~K} & =.39 \times 235 \mathrm{~K} \\
\frac{39.10 \mathrm{~K}}{} & =.34 \times 115 \mathrm{~K} \\
\$ 153.00 \mathrm{~K} & \text { total tax }
\end{aligned}
$$

Since $\$ 450 \mathrm{~K}$ is between $\$ 335 \mathrm{~K}$ and $\$ 10 \mathrm{M}$, a flat rate of 34% can be used. See discussion following example. Tax $=.34 \times \$ 450 \mathrm{~K}=\$ 153 \mathrm{~K}$

The surtax brackets convert progressive tax rate schedule to a flat tax rate for \$335K to \$10M and \$18.33M and up.

The corporate tax rate schedule includes a 5% surtax applied to the $\$ 235 \mathrm{~K}$ worth of income between $\$ 100 \mathrm{~K}$ and $\$ 335 \mathrm{~K}$ and a 3% surtax applied to $\$ 3.33 \mathrm{M}$ of income. The first surtax erases the tax "cut" from 34% to lower tax rates for the first $\$ 75 \mathrm{~K}$ of taxable income. Mathematically, lowering the rate from 34% to 15% for the first $\$ 50 \mathrm{~K}$ and to 25% for the next $\$ 25 \mathrm{~K}$ saves firms $\$ 50 \mathrm{~K} \times 19 \%+\$ 25 \mathrm{~K} \times 9 \%=\$ 11,750$ in taxes. The surtax is $\$ 235 \mathrm{~K} \times 5 \%$, or $\$ 11,750$. Thus, for taxable incomes between $\$ 335 \mathrm{~K}$ and $\$ 10 \mathrm{M}$, the tax rate is essentially a flat 34% (or tax $=.34 \times$ taxable income ${ }_{\$ 335 \mathrm{~K}-\$ 10 \mathrm{M}}$). The second surtax erases the tax "cut" from 35% to lower tax rates for the first \$10M of taxable income. Thus, for taxable incomes above $\$ 18.33 \mathrm{M}$, the tax rate is a flat 35% (or tax $=.35 \times$ taxable incomes ${ }_{\$ 18.33 \mathrm{M}+}$).

Effective Tax Rate for State, Local, and Federal Taxes. Most states and many cities and local governments levy income taxes. These state (s) and city (c) income tax rates can be combined with the federal rates (f) using Equation 13.1. The after-tax income fraction is $(l-f)$ for the federal and $(l-s-c)$ for the state and city. The fractions are multiplied, because state income taxes can be deducted from federal taxable income. Equation 13.1 assumes that city and state taxes can be deducted from federal taxable income, but that city taxes do not reduce state taxable income and the state taxes do not reduce city taxable income.

$$
\begin{equation*}
\text { After-tax income }=\text { Before-tax income } \times(1-s-c) \times(1-f) \tag{13.1}
\end{equation*}
$$

This can be restated as an effective income tax rate $\left(t_{e}\right)$ using Equation 13.2.

$$
\begin{equation*}
t_{e}=f+s+c-f(s+c) \tag{13.2}
\end{equation*}
$$

As noted in [Federation of Tax Administrators], the top state income tax rate exceeds 5.5% in three-fourths of the states. It exceeds 7.3% in half of the states and 8.7% in onefourth of the states. The highest rate was 12%, and five states did not have conventional taxes on corporate income.

As shown in Example 13.2, if a 9.1% state income tax rate is assumed, then an effective income tax rate of 40% results. This text sometimes uses this rate rather than requiring a lookup of the federal rate.

Suppose that ElectroSwitch operates in a state with a 9.1% income tax rate. At an income level of $\$ 450 \mathrm{~K}$, compute the effective tax rate if state income taxes are deductible from federal taxable income.

SOLUTION

Compute state income taxes first. They equal $.91 \times \$ 450 \mathrm{~K}$, or $\$ 40,950$. Subtracting this from the income of $\$ 450 \mathrm{~K}$, taxable federal income is now $\$ 409,050$, which at the 34% rate is taxed at $\$ 139,080$. The total tax of $\$ 180 \mathrm{~K}$ is 40% of $\$ 450 \mathrm{~K}$. Thus, the effective tax rate, t_{e}, is 40%.

Using Equation 13.2, where $c=0$:

$$
t_{e}=f+s-f \times s=.34+.091-.34 \times .091=.431-.031=.4
$$

13.3 Finding Taxable Income When Depreciation Is Included

Taxable income begins with the revenue earned each year by the firm. Yearly expenses are subtracted from the annual revenue to find the taxable income. These expenses include hourly labor, salaries, fringe benefits, energy and other utilities, purchased materials and parts, freight, and interest on borrowed money.

Buying a capital
asset is not an expense, and it is not tax deductible. The tax deduction is spread out over time as depreciation.

All of these expenses are included in computing the firm's taxable income, but only some of them can be identified with individual projects or alternatives. For example, the salaries and fringe benefits of many individuals cannot be linked to individual projects. These include salaries for top management and those of the personnel, accounting, and marketing departments. Interest costs on bonds and loans taken out by the firm are another example of costs that cannot normally be linked to individual projects.

Then, there are the capital expenditures that exchange cash assets for machinery assets. These capital expenditures do not change taxable income directly, but the annual depreciation of the capital costs is tax deductible.

Categorizing Before-Tax Cash Flows. Before-tax cash flows can be divided into those that are revenues or expenses and those that represent capital purchases-which are depreciated or expensed over a recovery period.

As shown in Examples 13.3 and 13.4, the first cost is not included in the calculation of taxable income. Examples 13.11 and 13.12 will show that the principal payments on a loan are not included in taxable income. Buying a capital asset, whether with a lump-sum payment or with loan payments over time, is not an expense; it is the exchange of a cash asset for a physical asset. Because buying a capital asset is not an expense, it is not tax deductible.

Salvage values are somewhat more complicated. As shown in Example 13.3, if the salvage value matches the book value (using straight-line, declining balance, or SOYD methods), then sale of the asset generates no income. Instead, it is the exchange of a physical asset for a cash asset. As shown in Example 13.4, if the salvage value does not match the book value (MACRS assumes the salvage value is $\$ 0$), then the recaptured depreciation is taxable income.

Whenever an asset is sold, the book value is compared with the net receipts-cash received minus removal expenses. If the difference is nonzero, then the loss or the recaptured depreciation is taxable income, as discussed in Section 12.4. If the asset being disposed of is replaced by a "like" asset, then the treatment of the loss on sale or recaptured depreciation is in reality more complex [Hartman and Hartman]. Rather than the loss on sale or recapture happening in the year of disposal, the basis for the replacement asset is adjusted, which will change the depreciation in each year of the recovery period of the replacement asset. While this provision must be followed to correctly calculate taxes, it is usually ignored to estimate the economic cost of different alternatives.

In Examples 13.3 and 13.4, the same sign convention of previous chapters applies. Thus, the asset's cost and the annual $O \& M$ costs are negative in sign. A negative taxable income will result in a negative tax, which is a savings in taxes. Remember, the assumption of Section 13.1 that the firm has profits and taxable income to offset any negative taxable income from a particular project.

Taxable income equals the taxable portion of any before-tax cash flows (BTCFs) minus the depreciation for that year. Notice that if the taxable incomes for Examples 13.3 and 13.4 are totaled, they are both $-\$ 152 \mathrm{~K}$. The depreciation method does not change the total taxable income, just its timing.

Example 12.1 described a computer workstation network with a first cost of $\$ 90 \mathrm{~K}$, a life of 8 years, and a salvage value of $\$ 18 \mathrm{~K}$. Here, let us add an annual expense of $\$ 10 \mathrm{~K}$ for $\mathrm{O} \& \mathrm{M}$, training, software updates, etc. Assuming straight-line depreciation, calculate the annual taxable income for the workstation network.

SOLUTION

From Example 12.1, $D_{t}=\$ 9000$. for straight-line depreciation. That is, $(\mathrm{FC}-S) / N$, or $(90 \mathrm{~K}-18 \mathrm{~K}) / 8$ years. The $\$ 90 \mathrm{~K}$ in first cost does not reduce taxable income. It is an exchange of a money asset for a physical asset. Nor does the $\$ 18 \mathrm{~K}$ in salvage value increase the taxable income. It is an exchange of a physical asset for a money asset. Exhibit 13.2 summarizes this.

Straight-line depreciation and taxable income

Years	BTCF	$\boldsymbol{D}_{\boldsymbol{t}}$	Taxable Income
0	$-\$ 90 \mathrm{~K}$	$\$ 0$	$\$ 0$
$1-7$	-10 K	9 K	-19 K
8	$-10 \mathrm{~K}+18 \mathrm{~K}$	9 K	-19 K

Example 13.3 described a computer workstation network with a first cost of $\$ 90 \mathrm{~K}$, a life of 8 years, a salvage value of $\$ 18 \mathrm{~K}$, and an annual expense of $\$ 10 \mathrm{~K}$. Calculate the annual taxable income assuming MACRS depreciation.

SOLUTION

The D_{t} values in Exhibit 13.3 are from Example 12.4. The $\$ 90 \mathrm{~K}$ in first cost does not reduce taxable income. However, the $\$ 18 \mathrm{~K}$ in salvage value is taxed, because MACRS reduces the book value to $\$ 0$ over the first 6 years and the $\$ 18 \mathrm{~K}$ is recaptured depreciation.

MACRS and taxable income

Year	BTCF	$\boldsymbol{D}_{\boldsymbol{t}}$	Taxable Income
0	$-\$ 90 \mathrm{~K}$	$\$ 0$	$\$ 0$
1	-10 K	18,000	$-28,000$
2	-10 K	28,800	$-38,800$
3	-10 K	17,280	$-27,280$
4	-10 K	10,368	$-20,368$
5	-10 K	10,368	$-20,368$
6	-10 K	5184	$-15,184$
7	-10 K	0	$-10,000$
8	$-10 \mathrm{~K}+18 \mathrm{~K}$	0	8000

13.4 Calculating After-Tax Cash Flows and EACs Using

Calculating an after-tax cash flow (ATCF) requires that the calculated tax be subtracted from the before-tax cash flow (BTCF) for that year. Then, the principles of engineering economy can be applied to the resulting cash flows. Usually, i, the discount rate, is significantly lower after taxes than before taxes. The after-tax i often equals the beforetax i multiplied by $\left(1-t_{e}\right)$.

Unless loan payments or first costs are involved, the starting point for taxable income is the BTCFs. Subtracting the depreciation then leads to the taxable income, as was shown in Examples 13.3 (straight-line) and 13.4 (MACRS). As shown in those examples, the first costs do not affect the taxable income. Similarly, the principal portion of any loan payment also is not part of taxable income calculations.

The next step is to multiply the firm's marginal tax rate by the taxable income and to subtract the resulting tax from the BTCF. This is shown in Examples 13.5 (straight-line) and 13.6 (MACRS). If the taxable income is negative, then the negative tax stands for a tax savings. Whatever entry is in the tax column, it is subtracted from the BTCF column.

Once the ATCFs have been calculated, it is a standard problem in engineering economy to calculate a PW or an EAC. In Example 13.6, this is done using the NPV(i,values) function for the ATCF block.

EXAMPLE 13.5 ATCF for Straight-Line Depreciation for Workstation Network

Example 13.3 calculated the taxable income for a computer workstation network with a first cost of $\$ 90 \mathrm{~K}$, a life of 8 years, a salvage value of $\$ 18 \mathrm{~K}$, and an annual expense of $\$ 10 \mathrm{~K}$. Assume that the 40% effective tax rate calculated in Example 13.2 for ElectroSwitch can also be used for the Smith, Jones, and Rodriguez engineering firm. Calculate the ATCFs and the EAC for the workstation network if $i=8 \%$.

SOLUTION

From Example 13.3, the first four columns are repeated below. The fifth column in Exhibit 13.4, taxes, simply multiplies the taxable income by the 40% effective income tax rate. The sixth column, ATCF, is simply BTCF minus taxes.

EXHIBIT 13.4 ATCFs with straight-line depreciation

Years	BTCF	$\boldsymbol{D}_{\boldsymbol{t}}$	Taxable Income	Taxes	ATCF
0	$-\$ 90 \mathrm{~K}$	$\$ 0$	$\$ 0$	$\$ 0$	$-\$ 90 \mathrm{~K}$
$1-7$	-10 K	9 K	-19 K	-7.6 K	-2.4 K
8	$-10 \mathrm{~K}+18 \mathrm{~K}$	9 K	-19 K	-7.6 K	15.6 K

At $i=8 \%$:

$$
\mathrm{PW}=-90 \mathrm{~K}-2.4 \mathrm{~K}(P / A, 8 \%, 7)+15.6 \mathrm{~K}(P / F, 8 \%, 8)
$$

$$
\begin{aligned}
& =-90 \mathrm{~K}-2.4 \mathrm{~K}(P / A, 8 \%, 8)+18 \mathrm{~K}(P / F, 8 \%, 8) \\
& =-90 \mathrm{~K}-2.4 \mathrm{~K} \times 5.747+18 \mathrm{~K} \times .5403=-\$ 94.07 \mathrm{~K} \\
\mathrm{EAC} & =90 \mathrm{~K}(A / P, 8 \%, 8)+2.4-18 \mathrm{~K}(A / F, 8 \%, 8) \\
& =-90 \mathrm{~K} \times .1740+2.4 \mathrm{~K}-18 \mathrm{~K} \times .0940=-\$ 16.37 \mathrm{~K}
\end{aligned}
$$

Using the data of Example 13.5 (a first cost of $\$ 90 \mathrm{~K}$, a life of 8 years, a salvage value of $\$ 18 \mathrm{~K}$, and an annual expense of $\$ 10 \mathrm{~K}$) and MACRS depreciation, calculate the ATCF and the EAC assuming $i=8$.

SOLUTION

The first four columns of Exhibit 13.5 are from Example 13.4. As in Example 13.5, the fifth column for taxes is calculated by simply multiplying the fourth column by 40%, the effective income tax rate. The sixth column for ATCFs is the BTCF minus the tax.

ATCFs with MACRS

Year	BTCF	D_{t}	Taxable Income	Tax	ATCF
0	-\$90,000	\$0	\$0	\$0	-\$90,000
1	-10,000	18,000	-28,000	-11,200	-1200
2	-10,000	28,800	-38,800	-15,520	-5520
3	-10,000	17,280	-27,280	-10,912	-912
4	-10,000	10,368	-20,368	-8147	-1853
5	-10,000	10,368	-20,368	-8147	-1853
6	-10,000	5184	-15,184	-6074	-3926
7	-10,000	0	-10,000	-4000	-6000
8	$-10,000+18,000$	0	8000	3200	4800
$\mathrm{PW}=\mathrm{CF}_{0}+\mathrm{NPV}(8 \%$, ATCF black $)=-\$ 89,437$					
$\mathrm{EAC}=89,437(A / P, 8 \%, 8)=89,437 \times .1740=\$ 15,562$					

The PW could also be calculated using the PW factors for MACRS (see Exhibit 12.14). Since $i=8 \%$ and the recovery period is 5 years, the factor is .8113 . However, this will be detailed in Example 13.8.

Note that using MACRS rather than straight-line depreciation decreases the EAC of the computer workstation network to $\$ 15,562$ from $\$ 16,370$. This 5% decrease in equivalent annual after-tax cost is due solely to the faster write-off that is allowed under MACRS. It is also worth noting that a 5\% decrease in costs may double profits, since profits are often between 1% and 10% of costs.

Selecting an After-Tax IRR. Just as with BTCFs, there are two after-tax situations. Constrained project selection can be solved using the opportunity cost of capital—if each project's ATCFs, are used. Similarly, mutually exclusive alternatives can be compared after taxes.

To compare mutually exclusive alternatives after taxes, i must be specified as an aftertax rate. That rate can be derived from constrained project selection for that firm, or it may be assigned a value by upper management.

The relationship between before- and after-tax discount rates can be intuitively explained. If a 10% rate of return is earned and the effective tax rate is 34%, then the firm will earn 6.6% and pay 3.4% to the government in taxes.

The relationship between the before- and after-tax IRRs and the effective tax rate may not apply to individual projects. Depreciation and interest on loan payments are not evenly distributed over a project's duration, so the after-tax IRR must be computed from the project's cash flows.

13.5 Calculating ATCFs and EACs Using Formulas

Straight-line and SOYD depreciation have regular patterns that match standard engineering economy factors for A and G. For problems that do not include loans, it is possible to replace the tables used in Section 13.4 with fairly simple formulas-for straight-line and SOYD depreciation. Using Exhibit 12.14 for the PW of the MACRS depreciation schedule, a formula can be developed for MACRS depreciation as well.

In these formulas, the ATCF will still be calculated by subtracting the calculated tax from the BTCF for each year. As shown in Examples 13.5 and 13.6, each year's tax equals the firm's marginal tax rate multiplied by its annual taxable income.

The following formulas can be simplified by partitioning each BTCF into a taxed (T subscript) and an untaxed (U subscript) portion. If there are loans with annual payments, then this separation is too complicated to be useful.

For straight-line and SOYD depreciation, the untaxed portions are simply the first cost (FC) and salvage value (S). For MACRS, only the first cost is untaxed. Thus, the taxed portion equals the annual revenues minus expenses for the straight-line and SOYD methods, while the salvage value is also included for MACRS.

Before deriving the formulas for each depreciation technique, Equation 13.3 describes the results in a general way for the cash flows in year t :

$$
\begin{align*}
\mathrm{ATCF}_{t} & =\mathrm{BTCF}_{t}-\operatorname{Tax}_{t} \\
& =\mathrm{BTCF}_{t}-\text { Taxable income }_{\mathrm{t}} \times \text { Tax rate } \\
& =\left(\mathrm{BTCF}_{\mathrm{tT}}+\mathrm{BTCF}_{t U}\right)-\left(\mathrm{BTCF}_{t T}-D_{t}\right) \times \text { Tax rate } \\
& =\mathrm{BTCF}_{t U}+\mathrm{BTCF}_{t T}\left(1-t_{\mathrm{e}}\right)+D_{t} \times t_{\mathrm{e}} \tag{13.3}
\end{align*}
$$

Equation 13.3 is expressed in terms of cash flows, but this can easily be converted for PWs or EACs. For PWs, the PW factors are added on each cash flow term and on the depreciation term. Likewise, for EACs.

Straight-Line Depreciation. This depreciation technique is the simplest, and so is its corresponding formula for calculating an after-tax EAC. Assuming that the annual O\&M expenses and revenues are uniform, then Equation 13.4 can be used to calculate the PW or Equation 13.5 the EAC.

$$
\begin{align*}
\mathrm{PW}_{\mathrm{ATCF}}= & -\mathrm{FC}+S(P / F, i, N) \\
& +\left[(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right)+D_{t} \times t_{e}\right](P / A, i, N) \tag{13.4}\\
\mathrm{EAC}_{\mathrm{ATCF}}= & \mathrm{FC}(A / P, i, N)-S(A / F, i, N) \\
& -\left[(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right)-D_{t} \times t_{e}\right. \tag{13.5}
\end{align*}
$$

Example 13.7 applies Equation 13.5 to Example 13.5. Examples 13.5 and 13.7 calculate the same answer.

Example 13.5 calculated the ATCFs, PW, and EAC for a computer workstation network with a first cost of $\$ 90 \mathrm{~K}$, a life of 8 years, a salvage value of $\$ 18 \mathrm{~K}$, an annual expense of $\$ 10 \mathrm{~K}$, and an effective 40% tax rate. Calculate the EAC for the workstation network if $i=8 \%$.

SOLUTION

$$
\begin{aligned}
\mathrm{EAC}_{\mathrm{ATCF}} & =\mathrm{FC}(A / P, i, N)-S(A / F, i, N)-(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right)-D_{t} \times t_{e} \\
& =90 \mathrm{~K} \times .1740-18 \mathrm{~K} \times .0940-(0-10 \mathrm{~K})(1-.4)-9 \mathrm{~K} \times .4 \\
& =90 \mathrm{~K} \times .1740-18 \mathrm{~K} \times .0940+10 \mathrm{~K} \times .6-9 \mathrm{~K} \times .4=\$ 16.37 \mathrm{~K}
\end{aligned}
$$

This is the same answer as in Example 13.5, without constructing the full table.

MACRS Depreciation. Equation 13.5 for the after-tax PW with straight-line depreciation can easily be adapted for MACRS, which is Equation 13.6. First, the depreciation term, $D_{t} \times \mathrm{t}_{e} \times(P / A, i, N)$, is replaced by the first cost times a PW factor for MACRS (from Exhibit 12.14), or $\mathrm{FC} \times \mathrm{MACRS}_{\text {PWF. }}$. Second, since MACRS assumes the salvage value is $\$ 0$, the salvage value in year N is taxed as recaptured depreciation, so the salvage value is multiplied by ($1-t_{e}$).

$$
\begin{align*}
\mathrm{PW}_{\mathrm{ATCF}}= & -\mathrm{FC}+S(P / F, i, N)\left(1-t_{e}\right)+\mathrm{MACRS}_{\mathrm{PWF}} \times t_{e} \times \mathrm{FC} \\
& +\left[(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right)\right](P / A, i, N) \tag{13.6}
\end{align*}
$$

In the EAC formula, Equation 13.7, the depreciation term, $D_{t} \times t_{e}$, is replaced with MACRS $_{\text {PWF }} \times t_{e} \times \mathrm{FC}(A / P, i, N)$. Also, the salvage term is again taxed, so that a $\left(1-t_{e}\right)$ term is added.

$$
\begin{align*}
\mathrm{EAC}_{\mathrm{ATCF}} & =\mathrm{FC}(A / P, i, N)-S(A / F, i, N)\left(1-t_{e}\right)-\mathrm{MACRS}_{\mathrm{PWF}} \times t_{e} \times \mathrm{FC}(A / P, i, N) \\
& -(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right) \tag{13.7}
\end{align*}
$$

Example 13.8 applies these formulas to the data in Example 13.6.

EXAMPLE 13.8 EAC with MACRS for Workstation Network

Example 13.6 calculated the ATCFs, PW, and EAC for a workstation network with a first cost of $\$ 90 \mathrm{~K}$, a life of 8 years, a salvage value of $\$ 18 \mathrm{~K}$, an annual expense of $\$ 10 \mathrm{~K}$, and MACRS depreciation. (The PW was $-\$ 89,437$, and the EAC was $\$ 15,562$.) Calculate the EAC using the MACRS formulas assuming $i=8 \%$.

SOLUTION

In Exhibit 12.14, the column for the MACRS ${ }_{\text {PWF }}$ is chosen to match the class life, and the row is chosen to match the interest rate, i.

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{ATCF}}= & -\mathrm{FC}+S(P / F, i, N)\left(1-t_{e}\right)+\mathrm{MACRS} \\
& +\left[(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right)\right](P / A, i, N) \\
= & -90 \mathrm{~K}+80 \mathrm{~K} \times .5430(1-.4)+.8113 \times .4 \times 90 \mathrm{~K}+[0-10 \mathrm{~K}] \times .6 \times 5.747 \\
= & -\$ 89,440 \\
\mathrm{EAC}_{\mathrm{ATCF}}= & \mathrm{FC}(A / P, i, N)-S(A / F, i, N)\left(1-t_{e}\right)-\mathrm{MACRS}_{\mathrm{PWF}} \times t_{e} \times \mathrm{FC}(A / P, i, N) \\
& -(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right) \\
= & 90 \mathrm{~K} \times .1740-18 \mathrm{~K} \times .0940 \times .6-.8113 \times .4 \times 90 \mathrm{~K} \times .1740-(0-10 \mathrm{~K})(1-.4) \\
= & \$ 15,563
\end{aligned}
$$

Sum-of-the-Years'-Digits (SOYD) Depreciation. The only difference between these equations and the ones for straight-line depreciation is that the depreciation term is no longer a uniform annual series. Rather, there is an annual series that matches the depreciation in year 1, and then there is a gradient series for later years. The first year's depreciation, D_{1}, equals ($\mathrm{FC}-S$) N/SOYD. Each year, the numerator of the fraction decreases by one, so the gradient term is of $1 / N$ of D_{1}.

$$
\begin{align*}
\mathrm{PW}_{\mathrm{ATCF}}= & -\mathrm{FC}+S(P / F, i, N)+(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right) \times(P / A, i, N) \\
& +D_{1} \times t_{e} \times(P / A, i, N)-\left(D_{1} / N\right) \times t_{e} \times(P / G, i, N) \tag{13.8}
\end{align*}
$$

$$
\begin{align*}
\mathrm{EAC}_{\mathrm{ATCF}}= & \mathrm{FC}(A / P, i, N)-S(A / F, i, N)-(\text { Revenues }-\mathrm{O} \& \mathrm{M}) \times\left(1-t_{e}\right) \times D_{1} \times t_{e} \\
& +\left(D_{1} / N\right) \times t_{e} \times(A / G, \mathrm{i}, N) \tag{13.9}
\end{align*}
$$

Example 13.9 applies Equation 13.9 to the computer workstation example. The first three terms of this equation are the same as for straight-line depreciation; it is only the last two terms for the SOYD depreciation that are different.

Using the same data as in Example 13.7, solve the problem again using SOYD. The computer workstation network has a first cost of $\$ 90 \mathrm{~K}$, a life of 8 years, a salvage value of $\$ 18 \mathrm{~K}$, an annual expense of $\$ 10 \mathrm{~K}$, and an effective 40% tax rate. Calculate the EAC for the workstation network if $i=8 \%$.

SOLUTION

For these data, D_{1} is $\$ 16,000$, and the arithmetic gradient is $-\$ 2000$. As shown in Example 12.3, $D_{1}=(P-S) N / S O Y D$, or $(90 \mathrm{~K}-18 \mathrm{~K}) \times 8 / 120$. Equation 13.9 states the gradient in terms of D_{1} / N, or $\$ 16 \mathrm{~K} / 8$, since it has already accounted for the minus sign.

```
EAC ATCF }=\textrm{FC}(A/P,i,N)-S(A/F,i,N)-(\mathrm{ Revenues - O&M)}\times(1-\mp@subsup{t}{\textrm{e}}{})-\mp@subsup{D}{1}{}\times\mp@subsup{t}{\textrm{e}}{
            +(D/N)\times\mp@subsup{t}{e}{}\times(A/G,i,N)
    =90K}\times.1740-18\textrm{K}\times.0940-(0-10\textrm{K})(1-.4)-16\textrm{K}\times.4+2\textrm{K}\times.4\times3.09
    =$16.047K
```


13.6 Investment Tax Credits and Capital Gains

History of ITC. The Tax Reform Act of 1986 repealed the investment tax credit (ITC) except for special categories (like reforestation and solar power). However, as summarized in Exhibit 13.6, this tax credit has often been repealed and reinstated. ITCs are supported because they stimulate investment (rather than the consumption that is stimulated by most tax reductions). On the other hand, ITCs are sometimes accused of stimulating inflation instead.

EXHIBIT 13.6 History of the ITC

1962	Instituted at 7\%	1975	Increased to 10%
1966	Suspended for 15 months	1976	Reduced to 7\%
1967	Restored after 5 months	1981	Increased to 10\%
1969	Repealed	1986	Repealed
1971	Restored	$201 ?$????

Exhibit 13.6 may be an extreme example of instability in a single provision of the tax code, but it is only a small part of the continuous changes in the tax code. It is not enough for an engineer to know the past and current tax code; sometimes, the future tax code must also be estimated. Most changes in the tax code are motivated by ideals of fairness or economic efficiency; however, some cynics claim that another motivation is to generate campaign contributions from lobbyists.

An investment tax credit is 3% to 10% of an investment's first cost that is credited against income taxes owed.

Investment tax credits are instituted by governments to encourage investment in new plants and equipment. A certain fraction (usually $7-10 \%$) of the asset's first cost is credited against or reduces the income taxes owed. Credits are subtracted from taxes rather than deducted from taxable income, so tax credits are far more valuable to taxpayers than deductions. The lower the tax rate, the more valuable the credits become relative to a deduction.

Tax credits for investments in pollution control, energy conservation, and new facilities in economically depressed areas have also been part of federal, state, and municipal tax codes. Even if the ITC is never reinstituted, it is still useful as an example of the type of tax credit available and of how credits should be analyzed.
Computing and Using an ITC. The ITC has at times supplemented the allowable depreciation and at other has reduced the asset's depreciable basis. Example 13.10 assumes that the ITC reduces the asset's basis.

Other common restrictions on the ITC include:

1. A $\$ 100,000$ limit on the amount of used property.
2. A limit of $\$ 25,000+5 \times$ (Tax Liability $-\$ 25,000$).
3. A reduced ITC rate for shorter lives.

For example, from 1981 to 1986, the rate was 0% for assets with lives less than 3 years, one-third of the maximum 10% for those with lives of 3 or 4 years, two-thirds of the maximum 10% for those with lives of 5 to 7 years, and 10% for those with lives of 8 or more years.

EXAMPLE 13.10 Computing an ITC

Assume that at some point the ITC is reinstituted with the same provisions that existed from 1981 to 1986 , including the restrictions listed earlier. Compute the PW of the workstation network in Examples 13.3 to 13.9. Assume that it is used in conjunction with MACRS depreciation.

SOLUTION

The workstation network has a life of 8 years, even though its recovery period is 5 years. Assume that the life and not the recovery period determines the percentage rate, so that a 10% rate is used. The equipment is new and the ITC less than $\$ 25,000$, so the other two restrictions do not apply.

The ITC cash flow is at year 1's end. (Note: If quarterly tax payments are assumed, then the ITC is at time 0 , and the timing of depreciation is also affected.) Thus, there is a $\$ 9000$ decrease in the taxes owed on the first tax return. This $\$ 9000$ also reduces the basis for computing depreciation from $\$ 90 \mathrm{~K}$ to $\$ 81 \mathrm{~K}$.

The first two columns in Exhibit 13.7 are from Example 13.4. However, column 3 is changed to match the $\$ 81 \mathrm{~K}$ basis, and the other columns change correspondingly. As in Example 13.5, the fifth column, taxes, is calculated by simply multiplying the fourth column by 40%, the effective income tax rate. The taxes in year 1 have two terms: one for 40% of the taxable income and the other for the 10% ITC.

$$
\begin{aligned}
\mathrm{PW} & =\mathrm{ATCF}_{0}+\mathrm{NPV}\left(8 \%, \mathrm{ATCF}_{1}: \mathrm{ATCF}_{8}\right)=\$ 84,024 \\
\mathrm{EAC} & =84,024(\mathrm{~A} / \mathrm{P}, 8 \%, 8)=84,024 \times .1740=\$ 14,621
\end{aligned}
$$

A capital gain is

 the amount by which an asset's selling price exceeds its first cost or adjusted basis.Capital Gains. Another often-changed provision of the tax code covers the taxation of capital gains. From Section 12.4 and Exhibit 12.12, a capital gain occurs when an asset is sold for more than its purchase and installation cost. The capital gain is the amount over the first cost.

When a capital gains provision is in force, assets with a holding period of more than 1 year are taxed at a lower rate. Sometimes, the rate is specified. At one time, only one-third of the gain was taxed (at whatever rate applied to the firm or individual).

This provision is important to investors in stocks or real estate, but it is generally unimportant for engineering projects. Machines go down in value as they are used and as technical advances make them obsolete. They do not go up in value. Thus, capital gains are not detailed in this text. In addition, since 1986, capital gains have been taxed at or close to the firm's tax rate for income or recaptured depreciation. A 5\% change in the tax rate may increase profits, but it will not change the comparison between two alternatives significantly.

13.7 Interest Deductions and an After-Tax IRR

Interest paid by firms on loans and on bonds is tax deductible. Usually, this interest is not linked to specific projects, so its tax deductibility is not part of the project analysis. In most cases, obtaining financing and investing in projects are analyzed separately. In some cases, a project is linked to specific financing, and the interest deductions can be included in calculating an after-tax IRR.

When financing is included, three changes are made in the cash flows:

1. The first cost is split into a "down payment" and later cash flows.
2. The payments are included as cash flows, but the principal portion of the payments is not included in computing taxable income.
3. The interest portion of the payments is tax deductible, so taxes are reduced.

Example 13.11 includes tax deductible financing but not depreciation. Example 13.12 includes both. Notice that the calculation of an after-tax IRR is very simple with the spreadsheet function IRR. Without that function, separate (P / F) factors would be needed, since the interest portion of the loan payment is different for every period.

EXAMPLE 13.11 Financing of a Wetlands Purchase

Metal Stampings uses a coal-fired cogeneration facility for steam heating and electric power. A scrubber has been installed to meet new standards on sulfur emissions, but it has created a waterpollution problem. The regional treatment district will treat the waste stream if Metal Stampings reclaims a large area of cooling ponds and fields as wetlands for a corporate nature refuge.

The wetlands reclamation would cost $\$ 6 \mathrm{M}, 80 \%$ of which would be financed by a 10 -year loan at 9% (with uniform annual payments). Using the corporate guidelines of a 10 -year horizon and an after-tax i of 8%, what are the EAC and PW of the project? The effective tax rate is 40%.

SOLUTION

First, the annual loan payment is calculated for the 80% of the $\$ 6 \mathrm{M}$ that will be borrowed.

$$
\text { Payment }=-.8 \times 6 \mathrm{M}(A / P, 9 \%, 10)=-\$ 747,936
$$

The year 0 cash flow is the down payment (20% of the $\$ 6 \mathrm{M}$, or $-\$ 1200 \mathrm{~K}$). The taxable income is just the interest to be deducted, which is 9% of the balance due after the previous year. The principal portion of each $\$ 747,936$ payment simply reduces the previous balance due. The taxes are the effective tax rate of 40% times the taxable income. Finally, as shown in Exhibit 13.8, the ATCF is the BTCF minus the tax (or plus the tax savings).

EXHIBIT 13.8 ATCFs with payments on a loan

Year	BTCF	Tax. Income $=$ -Interest	Balance Due	Taxes	ATCF
0	$-\$ 1,200,000$		$\$ 4,800,000$	$\$ 0$	$-\$ 1,200,000$
1	$-747,936$	$-\$ 432,000$	$4,484,064$	$-172,800$	$-575,136$
2	$-747,936$	$-403,566$	$4,139,694$	$-161,426$	$-586,510$
3	$-747,936$	$-372,572$	$3,764,330$	$-149,029$	$-598,907$
4	$-747,936$	$-338,790$	$3,355,184$	$-135,516$	$-612,420$
5	$-747,936$	$-301,967$	$2,909,215$	$-120,787$	$-627,149$
6	$-747,936$	$-261,829$	$2,423,108$	$-104,732$	$-643,204$
7	$-747,936$	$-218,080$	$1,893,252$	$-87,232$	$-660,704$
8	$-747,936$	$-170,393$	$1,315,709$	$-68,157$	$-679,779$
9	$-747,936$	$-118,414$	686,187	$-47,366$	$-700,570$
10	$-747,936$	$-61,757$	8	$-24,703$	$-723,233$

Notice that the ATCFs approach the before-tax values in later years, when the amount of income taxes is small. Using a spreadsheet or a financial calculator, the PW is $-\$ 5.431 \mathrm{M}$, or an EAC of $\$ 809.4 \mathrm{~K}$. The present cost is less than $\$ 6 \mathrm{M}$, because the loan's after-tax cost is less than the 8% time value of money (even though its before-tax cost is 9%).

A manufacturing project has a first cost of $\$ 900 \mathrm{~K}$. After 10 years, the equipment will have a salvage value of $\$ 100 \mathrm{~K}$. Annual revenues will be $\$ 300 \mathrm{~K}$, and annual O\&M costs will be $\$ 125 \mathrm{~K}$. The firm uses an after-tax i of 9%. The effective tax rate is 40%.

Financing is available through a 5 -year loan at 10%. The uniform payments are made annually. Assume that 60% of the project will be financed through a loan and 40% internally. Find the PW and EAW for the project after taxes, and find the project's IRR.

SOLUTION

Exhibit 13.9 is the spreadsheet that is used to solve this problem (stating all cash flows in $\$ 1000$ s). It has been simplified by finding the interest paid each year with the IPMT function, so no computation of balance due is required. Since this problem includes both depreciation and loan payments, it is easier to treat the columns for BTCFs and for taxable income (TaxInc) as two separate computations.

Including loan payments and depreciation

	A	B	C	D	E	F	G	H
1	\$900	FC	7	N MACRS	10\%	loan rate		
2	\$100	S	9\%	I	5	loan N		
3	\$300	Revenue	40\%	tax rate	60\%	loan frac		
4	\$125	O\&M			540	loan amt		
5					142.45	loan payme		
6	year	BTCF	MACRS Deprec	Interest	TaxInc	Tax	ATCF	
7	0	-\$360.0				\$0.0	-\$360.0	
8	1	32.5	\$128.6	\$54.00	-\$7.6	-3.0	35.6	
9	2	32.5	\$220.4	45.15	-90.6	-36.2	68.8	= B9-F9
10	3	32.5	\$157.4	35.43	-17.9	-7.1	39.7	
11	4	32.5	\$112.5	24.72	37.8	15.1	17.4	
12	5	32.5	\$80.3	12.95	81.7	32.7	-0.1	
13	6	175.0	\$80.3		94.7	37.9	137.1	
14	7	175.0	\$80.3		94.7	37.9	137.1	
15	8	175.0	\$40.2		134.8	53.9	121.1	
16	9	175.0			175.0	70.0	105.0	
17	10	/275.0			275.0	110.0	165.0	
18						PW at 9\%	109.0	
19	=\$A\$3-\$A\$4+A2					IRR	13.87\%	
20	/ $=$ \$	A\$3-\$A\$4						
21	$=\$ \mathrm{~A} \$ 3-\$ \mathrm{~A}$ \$ $4-\$ \mathrm{E}$ \$5				=\$A\$3-\$A\$4-C17-D17+A2			
22				$=-\mathrm{IPMT}$	\$E\$1,A12,	SE\$2,\$E\$4)		
23	$\mathrm{B} 7=-\mathrm{A} 1 *(1-\mathrm{E} 3)$		$=\mathrm{VDB}(\$ \mathrm{~A} 1,0, \$ \mathrm{C} \$ 1, \mathrm{MAX}(0, \mathrm{Al5}-1.5), \mathrm{MIN}(\$ \mathrm{C} \$ 1, \mathrm{Al5}-0.5))$					
24								
25	loan frac		0\%	20\%	40\%	60\%	80\%	90\%
26	IRR	13.87\%	10.77\%	11.47\%	12.43\%	13.87\%	16.35\%	18.53\%

The BTCFs equal revenue minus O\&M expense minus loan payments, except for years 0 and 10 , which include the first cost paid by the firm $(-\$ 360 \mathrm{~K})$ and the salvage value $(\$ 100 \mathrm{~K})$. The taxable income equals revenue minus O\&M expense minus interest on the loan. This formula does not subtract from taxable income the $\$ 540 \mathrm{~K}$ of principal payments that are spread out over the 10 years; only the interest payments reduce taxable income.

Again, the taxable income and the BTCF columns differ in that taxable income considers depreciation and the interest portions of the payments while the BTCF column includes both the principal and interest portions of the payments.

It does not matter that the before-tax interest rate for the loan exceeds the firm's discount rate. The after-tax interest rate for the loan is about, or 6%. It is not this value exactly, because the aftertax cash flows for the loan are not a uniform series. The rate is clearly less than the firm's 9% discount rate, so the loan is economically attractive. Since an after-tax interest rate of 9% is used, the final column of after-tax cash flows must include the deductibility of interest and depreciation.

Note that the final two rows of Exhibit 13.9 will be explained in Example 13.13.

Leverage is the increase in an attractive project's PW or IRR by financing part or all of it at an interest rate below the MARR. The variability of the PW and IRR also increases if revenues go down or costs go up.

Leverage. A common financial tactic is to borrow money to undertake projects so that the firm can do more projects. The expected rate of return from the projects exceed the interest rates that are paid on the loans, so the firm has higher PWs and IRRs.

As shown in Examples 13.13 and 13.14 and Exhibit 13.10, this financial leverage increases the rate of return that is earned on the portion of the investment supplied by the firm. Although not detailed here, this leverage also increases the sensitivity of the PW or IRR to the costs and revenues. If the revenues go down or the costs go up for a highly leveraged project, then the PWs or IRRs go down disproportionately.

At 0\% financed, the IRR is the return from the project's cash flows without considering loan payments or tax-deductible interest. Unless the financing is inextricably linked to the project, it is suggested that this rate be used for decision making. If financing and leverage are included, then the same fraction financed should be used for all projects.

EXAMPLE 13.13 One-Period Financial Leverage

A project has only a 1 -year life, but it earns a 30% rate of return. The first cost is $\$ 50 \mathrm{~K}$. How much higher is the firm's rate of return if it uses bank financing at 10% for a 1 -year loan? Calculate for financing fractions of 40% and 80%. Do this before income taxes, to keep the calculations as simple as possible.

SOLUTION

First, what is the cash flow at the end of the year?

$$
\mathrm{CF}_{1}=50 \mathrm{~K} \times(1+i)=50 \mathrm{~K} \times 1.3=\$ 65 \mathrm{~K}
$$

With no bank financing the $\$ 50 \mathrm{~K}$ earns 30% for the year.
If the project is 40% financed with a loan, then the loan must be for $\$ 20 \mathrm{~K}(=.4 \times \$ 50 \mathrm{~K})$. If the interest rate is 10%, then the loan will be repaid for $\$ 22 \mathrm{~K}$ at the end of the year. Thus the firm will invest $\$ 30 \mathrm{~K}$. To find the return on that $\$ 30 \mathrm{~K}$, we calculate the final cash flow for the firm and then the IRR for investing $\$ 30 \mathrm{~K}$.

$$
\mathrm{CF}_{1}=65 \mathrm{~K}-22 \mathrm{~K}(\text { to repay loan })=43 \mathrm{~K}
$$

$$
\mathrm{IRR}_{30 \mathrm{~K}}=43 \mathrm{~K} / 30 \mathrm{~K}-1=43.33 \%
$$

Thus with 40% financing the $\$ 30 \mathrm{~K}$ earns 43.33% for the year.
If the project is 80% financed with a loan, then the loan must be for $\$ 40 \mathrm{~K}(=.8 \times \$ 50 \mathrm{~K})$. If the interest rate is 10%, then the loan will be repaid for $\$ 44 \mathrm{~K}$ at the end of the year. Thus the firm will invest $\$ 10 \mathrm{~K}$. To find the return on that $\$ 10 \mathrm{~K}$, we calculate the final cash flow for the firm and then the IRR for investing $\$ 10 \mathrm{~K}$.

$$
\begin{aligned}
\mathrm{CF}_{1} & =65 \mathrm{~K}-44 \mathrm{~K}(\text { to repay loan })=21 \mathrm{~K} \\
\mathrm{IRR}_{10 \mathrm{~K}} & =21 \mathrm{~K} / 10 \mathrm{~K}-1=110 \%
\end{aligned}
$$

Thus with 80% financing the \$10K earns 110% for the year.

For the project in Example 13.12, calculate the IRR for financing percentages ranging from 0\% to 90%. At 0% financed, the IRR of 10.77% is the return from this project's cash flows. Again, unless the financing is inextricably linked to the project, it is suggested that this rate be used for decision making.

SOLUTION

The last two rows of Exhibit 13.9 are a DATA table that can be used to construct Exhibit 13.10. The values for the range of fraction financed $(0-90 \%)$ are entered into the block $(\mathrm{C} 25: \mathrm{H} 25)$. Cell B26 contains the simple formula $=\mathrm{G} 19$, so that it references the result cell for the IRR. Then, the DATA table of cells (B25:H26) is selected. Then, click on the DATA item in the top toolbar, and select the menu item TABLE. Since the loan fraction is in a row, select the cell E3 as the row input cell.

When OK is clicked, Excel completes the DATA table. Each value in row 25 is entered into the row input cell, E3. Then, the corresponding value for cell G19, the IRR, is entered by Excel into the DATA table. The graph is completed using this data.

> Leverage's
> impact on a project's IRR

13.8 SUMMARY

This chapter has explained the calculation of federal corporate income taxes. The viewpoint taken is that of the firm, whose goal is to pay the legal minimum amount of income tax as late as possible. The government's goal of promoting the public good has been used to explain why the tax code includes accelerated cost recovery (MACRS) and investment tax credits (ITCs). The chapter has emphasized that taxes always matter to the firm, although comparisons of some alternatives can be made either before or after taxes-without changing the recommendations.

Federal corporate income taxes are computed using tax rates in the progressive marginal tax rate schedule (the rates range from 15% to 35%). Within certain income ranges, a 5% or a 3% surtax is applied so that corporations with taxable incomes between $\$ 335,000$ and $\$ 10 \mathrm{M}$ pay tax at a flat rate of 34% and corporations with taxable income above $\$ 18.33 \mathrm{M}$ pay tax at a flat rate of 35%.

Taxable income and before-tax cash flows (BTCFs) are related but different. Depreciation reduces taxable income, but it is not a cash flow. Similarly, purchasing capital assets outright or through loans is a cash flow, but it does not change the taxable income. Salvage values are not taxed for straight-line, declining balance, and SOYD depreciation, but they are taxed as recaptured depreciation for MACRS.

Taxes and PW, EAC, and IRR measures are often most easily calculated using tables of before-tax cash flows, depreciation, taxable income, taxes, and after-tax cash flows (ATCFs). For straight-line, SOYD, and MACRS depreciation, shortcut formulas can be used if revenues and costs are uniform series.

Investment tax credits are important incentives that make engineering projects more attractive by reducing the taxes that will be paid. On the other hand, capital gains tax breaks are much less important for engineering projects, since physical equipment usually declines in value over time.

Finally, spreadsheets have been used to calculate after-tax cash flows, PWs, and IRRs in the presence of loans and tax-deductible interest. Tax-deductible interest must be considered for projects in which the investment and the financing are inextricably linked together. The norm for engineering economic decisions (especially between mutually exclusive alternatives) is to consider projects without considering the financing. One reason is to avoid the bias of allowing different projects or alternatives to be evaluated with different amounts of leverage.

This chapter has only touched on the intricacies of our tax code. Many corporate experts, tax accountants, and lawyers work full time keeping up with the ever-changing tax code and using it to the corporation's advantage. Our focus is much more limited. This chapter has presented basic material suitable for project analysis, but it cannot match the complexity of the tax code.

REFERENCES

Federation of Tax Administrators (www.taxadmin.org/fta/rate/corp_inc.html). Hartman, Joseph C., and Raymond V. Hartman, "After-Tax Economic Replacement Analysis," The Engineering Economist, Volume 46, Number 3, 2001, pp. 181-204.

Smith, Gerald W., Engineering Economy: Analysis of Capital Expenditures, 4th ed., 1987, Iowa State University Press.

Problems

Note on Computer Use: Many or most of these problems would be solved more easily using your spreadsheet. Computer support is highly recommended for the problems with icons.
13.1 Find an article in the financial press (Wall Street Journal, Fortune, BusinessWeek, etc.) on a proposed change in the federal tax code. Summarize the government's, firm's, and analyst's perspectives on the proposed change.
13.2 SmallTech Manufacturing had overhead expenses of $\$ 80,000$, depreciation of $\$ 55,000$, and interest expenses of $\$ 25,000$. The manufacturing and distribution costs were $\$ 50,000$. What is the taxable income, tax, and ATCF if sales were:
(a) $\$ 235,000$?
(b) $\$ 635,000$?
(Answer: $\mathrm{a} . \operatorname{tax}=\$ 3750 ; \mathrm{b} . \operatorname{tax}=\$ 144,500$)
13.3 TinyTech's taxable income is $\$ 72,000$. A new product would increase this by $\$ 15,000$ (to $\$ 87,000$) per year for 10 years.
(a) What tax is paid without the new product?
(b) What tax is paid with the new product?
(c) What are the product's marginal and average income tax rates?
13.4 LowTech, Inc., had revenues of $\$ 400,000$ in the year just completed. The company incurred $\$ 133,000$ in cash expenses and $\$ 24,575$ in depreciation expenses. Determine the federal taxes owed by LowTech and the after-tax cash revenues.
(Answer: ATCF $=\$ 189,200$)
13.5 ABC Block's taxable income was $\$ 85,000$ in the year just completed. The state where $A B C$ was incorporated taxes corporate profits at a rate of 8% on the first $\$ 50,000$ and 10% on any remaining income above $\$ 50,000$. Calculate the state and federal taxes owed by ABC. Also, calculate the effective marginal tax rate on ABC's income.
(Answer: $t_{e}=26 \%$)
13.6 The Red Ranger Company recorded revenues of $\$ 45,000$ and recaptured depreciation of $\$ 1200$ for the year just ended. During the year, it incurred cash expenses of $\$ 23,500$ and depreciation expenses of $\$ 11,575$. It also sold real estate for a profit (income, not capital gain) of $\$ 40,000$. Determine the federal taxes owed by Red Ranger.
13.7 LargeTech Manufacturing has the following estimates for a new semiconductor product. The machinery costs $\$ 800 \mathrm{~K}$, and it will have no salvage value after 8 years. LargeTech is in the highest tax bracket. Income starts at $\$ 200 \mathrm{~K}$ per year and increases by $\$ 100 \mathrm{~K}$ per year, except that it falls by $\$ 300 \mathrm{~K}$ per year in years 7 and 8 . Expenses start at $\$ 225 \mathrm{~K}$ per year and increase by $\$ 50 \mathrm{~K}$ per year. What are the BTCFs and taxable income under:
(a) Straight-line depreciation?
(b) SOYD depreciation?
(c) Double-declining balance depreciation?
(d) MACRS?
(e) Each method, if the machine's salvage value is $\$ 40,000$?
13.8 A milling machine costing $\$ 18,000$ will be depreciated using straight-line depreciation over 10 years. The firm is in the top tax bracket. What are the ATCFs if the salvage value is estimated to be:
(a) $\$ 4000$?
(b) $\$ 0$?
(Answer: a. $\mathrm{ATCF}_{3}=\$ 490 ; \mathrm{b} . \mathrm{ATCF}_{3}=\$ 630$)
13.9 An engineering and construction management firm with a $\$ 1 \mathrm{M}$ taxable income is opening a branch office. Nearly $\$ 250,000$ worth of furniture will be depreciated under MACRS.
(a) What are the ATCFs for the furniture for the first 5 years?
(b) If the office is closed early in year 6 and the furniture is sold to a secondhand office furniture store for 10% of its initial cost, what tax is paid?
(Answer: - $\$ 10,463.5$)
13.10 Gillespie Gold Products, Inc., is considering the purchase of new smelting equipment. The new equipment is expected to increase production and decrease costs, with a resulting increase in profits. Determine the ATCF using a tax rate of 42% and (a) straight-line and (b) SOYD depreciation.

Cost	$\$ 40,000$
Savings per year	$\$ 10,000$
Actual useful life	6 years
Salvage value	$\$ 4000$

13.11 Goldrush Mining has a taxable income of about $\$ 5 \mathrm{M}$. Evaluate some mining equipment with the following costs:

First cost	$\$ 280 \mathrm{~K}$
O\&M	$\$ 75 \mathrm{~K} /$ year
Salvage	$\$ 50 \mathrm{~K}$
Life	15 years

(a) Find the after-tax cash flow in year 4 assuming MACRS and the current tax law.
(b) Find the EAC after taxes for the mining equipment assuming a MARR of 9% and MACRS depreciation.
(Answer: $\mathrm{a} . \mathrm{ATCF}_{4}=-\$ 37.6 \mathrm{~K} ; \mathrm{b} . \mathrm{EAC}=\$ 74,335$)
13.12 A road between the warehouse and the factory has the following costs:

First cost	$\$ 1,800,000$
Maintenance cost per year	$\$ 14,000$
Salvage	0
Life	24 years

(a) Find the after-tax cash flow for year 3 using MACRS and the current tax law. The corporation's taxable income is about $\$ 50$ million.
(b) Find the EAC after taxes assuming MACRS depreciation and an i of 8%.
13.13 Matuk Construction has a taxable income of about \$20M. Some construction equipment has the following costs:

First cost	$\$ 120 \mathrm{~K}$
O\&M	$\$ 20 \mathrm{~K} /$ year
Salvage	$\$ 15 \mathrm{~K}$
Life	10 years

(a) Find the after-tax cash flow in year 3 assuming MACRS and the current tax law.
(b) Find the EAC after taxes for the construction equipment assuming a MARR of 11% and MACRS depreciation.
13.14 The purchase of a minicomputer is being considered. The corporation's taxable income exceeds $\$ 25$ million. The first cost is $\$ 19,000$, maintenance is $\$ 4500$ per year, and the salvage value in year 10 is $\$ 2000$.
(a) Find the after-tax cash flow for year 3 for the computer using MACRS and the current tax law.
(b) Find the EAC after taxes for the minicomputer assuming a MARR of 8% and MACRS depreciation.
13.15 Five years ago, the XYZ Company purchased a $\$ 30,000$ automated production line. The line has just been sold for $\$ 5000$. The machinery was depreciated using the straight-line method to a salvage value of $\$ 0$. The actual savings due to the purchase of this line are presented below. Was the purchase justified if XYZ's MARR is 8% ? Taxes are paid at the 34% marginal rate.

Year	1	2	3	4	5
Savings	$\$ 5 \mathrm{~K}$	6 K	7 K	7 K	4 K

(Answer: no: $\mathrm{PW}_{-5}=-\$ 4298$)
13.16 The R\&D lab of BigTech Manufacturing will purchase a $\$ 1.8 \mathrm{M}$ process simulator. It will be replaced at the end of year 5 by a newer model. Use MACRS and a tax rate of 40%. The simulator's salvage value is $\$.5 \mathrm{M}$.
(a) What is the ATCF due to the simulator in year 5?
(b) What is the equipment's after-tax EAC over the 5 years if the interest rate is 10% ?
13.17 Find the EAC after taxes for a computer that costs $\$ 15,000$ to purchase and $\$ 3500$ per year to run and that has a salvage value of $\$ 1000$ at the end of year 7. The company's profit exceeds $\$ 20$ million per year, and it is purchasing $\$ 850,000$ worth of capital assets this year. The company uses an interest rate of 12%. (Answer: \$4648)
13.18 A computer costing $\$ 32,000$ will be written off, using MACRS, by a small firm whose tax rate is 15%. Annual operating costs are $\$ 8000$ for 9 years, after which there will be no salvage value.
(a) What are the after-tax cash flows without Section 179?
(b) What are the after-tax cash flows with Section 179 ?
13.19 A machine was purchased for $\$ 60,000$ and depreciated, using SOYD depreciation, over 15 years with
a $\$ 5000$ salvage value. If the machine is sold for $\$ 2000$ in year 10 , what is the after-tax cash flow due to depreciation and sale in year 10 ? Assume that the firm is in the top tax bracket.
13.20 NewTech has decided to redesign its open office areas. It has decided to install workstation cubicles for each engineer. These cubicles are classed as builtin furniture and cost $\$ 2000$ each. The 11 cubicles will last 15 years, with maintenance costs of $\$ 75$ per year. Assume that the cubicles have $\$ 0$ salvage values. Assume MACRS and the current tax law. The corporation's taxable income places it in the top federal income tax bracket. NewTech's interest rate is 9%.
(a) Find the EAC for each cubicle.
(b) Find the after-tax cash flows for years 0 through 15 .
13.21 The purchase of a large-volume copier is being considered.

First Cost	Maintenance Cost per Year	Salvage	Life
$\$ 18,000$	$\$ 1400$	$\$ 5000$	10 years

(a) Find the after-tax cash flow for year 3 for the copier using MACRS and the current tax law. The corporation's taxable income is about $\$ 5$ million.
(b) Find the EAC after taxes for the copier assuming a MARR of 8% and traditional straight-line depreciation over 10 years.
(c) Find the EAC after taxes assuming MACRS depreciation and an i of 8%.
13.22 Which pump should be installed, and how much cheaper is it after taxes? Assume straight-line depreciation and a tax rate of 40%. The after-tax MARR is 10%.

Pump Type	First Cost	Annual O\&M Costs	Life (years)	Salvage Value
Brass	$\$ 9500$	$\$ 150$	10	$\$ 875$
Stainless steel	12,000	90	20	3000

(Answer: EACs virtually identical)

13.23 Assume that the pump in Problem 13.22 is used as manufacturing equipment. Using MACRS, which pump should be installed, and how much cheaper is it? (Answer: Stainless steel saves $\$ 132$ per year)
13.24 If the pump in Problem 13.22 were evaluated before taxes, would the conclusion be any different? What interest rate did you assume, and why?
13.25 If the pump in Problem 13.23 were evaluated before taxes, would the conclusion be any different? What interest rate did you assume, and why? Is there any reason why MACRS may matter more or less than straight-line depreciation for problems similar to this?
13.26 Which water treatment system should be installed, and how much cheaper is it after taxes? Assume SOYD depreciation and a tax rate of 40%. The interest rate is 8%.

System Type	First Cost	Annual O\&M Costs	Life (years)	Salvage Value
Brass	$\$ 20,000$	$\$ 1500$	10	$\$ 2000$
Stainless steel	40,000	1200	30	3000

13.27 Assume that the treatment system in Problem 13.26 is used as manufacturing equipment. Using MACRS, which treatment system should be installed, and how much cheaper is it?
13.28 If the treatment system in Problem 13.26 were evaluated before taxes, would the conclusion be any different? What interest rate did you assume, and why?
13.29 If the treatment system in Problem 13.27 were evaluated before taxes, would the conclusion be any different? What interest rate did you assume, and why? Is there any reason why MACRS may matter more or less than straight-line or SOYD depreciation for problems similar to this?
13.30 Jaradet Jewel, Inc., is considering the purchase of new drilling equipment. The new equipment (two choices) is expected to increase production, with a resulting increase in profits. If Jaradet pays taxes at the 34% marginal tax rate and has a MARR of 8%, which alternative should it choose?

	A	B
Cost	$\$ 15,000$	$\$ 40,000$
Savings per year	$\$ 13,000$	$\$ 10,000$
Depreciation method	Straight-line	Straight-line
Useful life (years)	5	5
Declared salvage value	$\$ 5000$	$\$ 4000$
Expected sale price	$\$ 6000$	$\$ 6000$

(Answer: PW_{A} is $\$ 583$ higher)
13.31 Old McDonald Farm, Inc., a large profitable crop farm, must replace its planting equipment. The farm expects all investments to return at least 8%. Which has the lower EAC? By how much?

	Quik Plant	Robo Plant
Cost	$\$ 160,000$	$\$ 95,000$
Operating cost per year	$\$ 12,000$	$\$ 9000$
Depreciable salvage value	$\$ 20,000$	$\$ 10,000$
Depreciation method	SOYD	SOYD
Actual salvage value	$\$ 24,000$	$\$ 10,000$
Life (years)	8	4

13.32 An investment opportunity in securities has been presented by MT Pockets Brokerage to the investment firm of Johnson, Todd, and Xanders, Inc. (JTX). The first cost of the securities will be $\$ 150,000$. Each year, it is expected that the securities will yield $\$ 15,000$ in income. At the end of 5 years, the securities will be sold for $\$ 250,000$. If JTX pays taxes at the 20% marginal rate and requires a 15% return on all investments, should the securities be purchased? Assume capital gains taxed at 20% rate.
13.33 The Anhouser-Shrub Brewing Company (AB), makers of Budsmarter Beer, must purchase a new bottle-labeling machine. The machine is expected to save production costs and to increase efficiency. Which of the three best alternatives presented below should be chosen? AB pays taxes at the 34% marginal rate and has an interest rate of 12%. MACRS depreciation is used for all capital purchases.

	Kwik-Stik	Rite-Stik	Straight-Stik
Cost	$\$ 100,000$	$\$ 75,000$	$\$ 110,000$
Annual savings	$\$ 25,000$	$\$ 15,000$	$\$ 30,000$
Life (years)	12	12	12
Salvage value	$\$ 10,000$	$\$ 6000$	$\$ 17,500$

13.34 We-Clean-U, Inc., expects to receive $\$ 42,000$ each year for 15 years from the sale of its newest soap, OnGuard. There will be an initial investment in new equipment of $\$ 150,000$. The expenses of manufacturing and selling the soap will be \$17,500 per year. Using MACRS depreciation, a marginal tax rate of 42%, and an interest rate of 12%, determine the EAW of the product.
(Answer: - \$1512)
13.35 LoTech Welding can purchase a machine for $\$ 175,000$ and depreciate it as 5-years MACRS property. Annual maintenance would be $\$ 9800$, and the salvage value after 8 years is $\$ 15,000$. The machine can also be leased for $\$ 35,000$ per year on an "all costs" inclusive lease (maintenance costs included). Lease payments are due at the beginning of each year, and they are tax deductible. The firm's combined tax rate for state and federal income taxes is 40%. If the firm's after-tax interest rate is 9%, which alternative has the lower EAC and by how much?
13.36 For Problem 13.35, assume that 50\% bonus depreciation is also available. How much lower is the annual cost of purchasing the machine?
13.37 For Problem 13.35, assume that Section 179 depreciation must be considered, as this is LoTech's only major equipment investment this year. Also assume that the firm is profitable. How much lower is the annual cost of purchasing the machine?
13.38 The Sandwich Co., whose earnings put it in the 46% combined state and federal tax bracket, is considering purchasing a piece of food-handling equipment for $\$ 25,000$. The equipment has a useful life of 4 years and a salvage value of $\$ 5000$. The resale value of the equipment will be $\$ 6550$. The new equipment is expected to increase the company's earnings by $\$ 8000$ in each of the 4 years. The MARR for Sandwich is 10%. Determine the EAW using (a) straightline depreciation and (b) MACRS depreciation.
13.39 A large company must build a bridge to have access to land for expansion of its manufacturing plant. The bridge can be fabricated of normal steel for an initial cost of $\$ 30,000$ and should last 15 years. Maintenance (cleaning and painting) will cost $\$ 1000$ per year. If a more corrosion-resistant steel were used, the annual maintenance cost would be only $\$ 100$ per year, although the life would be the same. In 15 years, there will be no salvage value for either version of the bridge. The company pays taxes at the 48% marginal rate and uses straightline depreciation. If the minimum acceptable aftertax rate of return is 12%, what is the maximum amount that should be spent on the corrosionresistant bridge?
13.40 If the simulator in Problem 13.16 is purchased on a 3-year loan, what is the EAC? The loan is for 80% of the cost; the interest rate is 12%; and the payments are uniform. (Answer: $\$ 259.4 \mathrm{~K}$)
13.41 The simulator in Problem 13.16 will save $\$ 600,000$ per year in experimental costs.
(a) What is the after-tax IRR?
(b) What is the after-tax IRR if the loan in Problem 13.37 is used to buy the equipment?
(c) Graph the IRR for financing percentages ranging from 0% to 90%.
13.42 A small research firm purchases new equipment \square valued at $\$ 80,000$. The equipment is expected to produce a net income of $\$ 15,000$ for each year of its 6-year useful life. Using MACRS, determine the IRR for the project if the company is taxed at the 25% marginal rate. Do not use Section 179.
(Answer: 2.75\%)
13.43 A heat exchanger purchased by Hot Spot Manufacturing cost $\$ 24,000$. The exchanger will produce savings of $\$ 6500$ in each of the 10 years it is in service. Using a tax rate of 34% and straight-line depreciation over the 10 -year life, determine the IRR. The exchanger will have a salvage value of $\$ 500$ at the end of its life.
13.44 The Boomer Golfclub Corporation is considering the installation of automated club-assembly equipment. Boomer pays federal taxes at the 34% marginal rate. Determine, using EAW, whether alternative A or B, or neither, should be chosen, based on an interest rate of 6%.

	A	B
Cost	$\$ 30,000$	$\$ 40,000$
Savings per year	$\$ 6000$	$\$ 7375$
Salvage value	$\$ 2000$	$\$ 3000$
Life (years)	6	8
Depreciation method	Straight line	Straight line

(Answer: $\mathrm{EAW}_{\mathrm{B}}$ is $\$ 392$ and EAW
13.45 NewTech is in need of new jigs for some assembly equipment. The jigs favored by the manufacturing engineer cost $\$ 30,000$ and are expected to provide service for 6 years. The annual operating costs are estimated to be $\$ 2000$. The industrial engineer favors a choice that costs $\$ 35,000$ and that will also provide service for 6 years at an estimated annual cost of $\$ 1500$. Using MACRS depreciation, a tax rate of 34%, and a MARR of 10%, which jigs should be chosen?
13.46 LargeTech is choosing between countries A and B for a new manufacturing plant. To analyze tax
policies, LargeTech will briefly assume matching costs of $\$ 120 \mathrm{M}$ for construction, $\$ 25 \mathrm{M}$ for annual operations, and $\$ 0$ for salvage. The plant's life will be 20 years. The interest rate is 15%, and both countries have tax rates of 40%. Country A requires straight-line depreciation over 5 years. Country B permits SOYD but requires a 20 -year depreciation period. Where is the plant's PW higher? By how much?
13.47 Smith [pp. 161-163] showed that after taxes, a low salvage value can be better than a high one. To confirm this, calculate the EAC after taxes for a machine costing $\$ 500 \mathrm{~K}$. Compare salvage values of $\$ 400 \mathrm{~K}$ and $\$ 0$ after a life of 30 years. Use straight-line depreciation, an interest rate of 10%, and a tax rate of 40%.
13.48 Senator Paula Stevens wants to revise the investment tax credit. If most firms use an interest rate of 15% and are taxed at 34%, which plan is more attractive to them? Plan A allows a 10% credit with a 10-year MACRS schedule. Plan B allows a 7% credit with a 5-year MACRS schedule. For both plans, the credit is subtracted from the basis for depreciation.

Minicases

13.49 Research a federal, state, or municipal tax credit relevant to engineering projects. When was it enacted? What are its major provisions, and how is it calculated? Include a brief example. Tax credits have been enacted to support investment, research, energy conservation, economic development in depressed areas, and environmental conservation.
13.50 For Problem 13.35 assume the machine will be financed with a 4-year loan whose interest rate is 12%.
(a) Graph the EAC for the purchase for financing fractions ranging from 0% to 100%.
(b) Assume that 50% bonus depreciation is also available. Graph the EAC for the purchase for financing fractions ranging from 0% to 100%.
(c) Assume that Section 179 depreciation must be considered, as this is LoTech's only major equipment investment this year. Also assume that the firm is profitable. Graph the EAC for the purchase for financing fractions ranging from 0% to 100%.
13.51 For Problem 13.42 assume that Section 179 is available and that the machine will be 100% financed with a 3-year loan at 8%. What is the project's IRR?
13.52 For Problem 13.44 assume that both alternatives have a 5-year MACRS recovery period. Assume that the machines will be 80% financed with a 4 -year loan at 5%. What is the after-tax EAC for each alternative?

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 26 Molehill \& Mountain Movers

Compare depreciation methods with option for inflation.

Case 28 Olives in Your Backyard

Emphasizes taxes and sensitivity analysis.

Case 29 New-Fangled Manufacturing

Emphasizes taxes and sensitivity analysis.

Case 36 Brown's Nursery (Part A)

After-tax analysis of expansion opportunity.

Case 38 West Muskegon Machining and Manufacturing

More complex inflation and tax problem with sunk cost and leverage.

Case 53 Problems in Pasta Land

Long case statement. Includes taxes and limited uncertainty.

APPENDIX 13A Individual Income Taxes

This appendix briefly introduces individual income taxes. It includes schedules and examples for single and married taxpayers-but it does not cover all cases. For example, there is no coverage of married taxpayers filing separately, only coverage for joint returns.

Exhibit 13A. 1 details the progressive marginal tax rate schedules that apply to single persons and to married couples filing joint returns.

EXHIBIT 13A. 1 U.S. individual income tax schedule

Tax Rate	Single	Married (Joint)
10%	$\$ 0-\$ 8,350$	$\$ 0-\$ 16,700$
15%	$\$ 8,350-\$ 33,950$	$\$ 16,700-\$ 67,900$
25%	$\$ 33,950-\$ 82,250$	$\$ 67,900-\$ 137,050$
28%	$\$ 82,250-\$ 171,550$	$\$ 137,050-\$ 208,850$
33%	$\$ 171,550-\$ 372,950$	$\$ 208,850-\$ 372,950$
35%	Over $\$ 372,950$	Over $\$ 372,950$

Note 1: These figures are for taxes due in April 2010. The dollar amounts that define the tax brackets are indexed to inflation, so they change yearly. Note 2: For incomes above $\$ 166,800$ per single filer and $\$ 250,200$ for joint filers, personal exemptions of $\$ 3650$ each are reduced.

Unlike businesses, most expenses of individuals are not tax deductible. Instead, the tax code incorporates a personal exemption, which protects $\$ 3650$ of income from taxation for each family member. Some expenses, such as medical expenses, charitable contributions, moving expenses, and home mortgage interest, are deductible within some limits. Unless these expenses are high, however, it is often more attractive to claim the standard deduction ($\$ 5700$ for single taxpayers and $\$ 11,400$ for joint returns).

The first step in computing taxable income is to find the adjusted gross income. This is computed by adding together wages, interest received or credited to accounts, alimony, etc., for one or both taxpayers. Then, either the standard deduction or the sum of an itemized list is subtracted. A typical limit on deductible expenses is that only those medical expenses in excess of 7.5% of adjusted gross income are deductible. Finally, the $\$ 3650$ exemption per family member is subtracted to determine the taxable income (unless the total income received exceeds $\$ 166,800$ for single filers or $\$ 250,200$ for joint filers).

The resulting taxable income is taxed at the rates shown in Exhibit 13A.1. Example 13A. 1 illustrates this for a young, single engineer. Example 13A. 2 illustrates this for two older engineers, married with two kids.

This appendix is too brief to provide details, but young engineering students often need to analyze the following situations:

1. Is it better to get married in December and file a joint return or to get married in January and each file a separate returns?
2. Is it better to claim a standard deduction or to itemize so that moving expenses can be claimed in connection with starting a job after graduation?
3. Is it economically more attractive to lease or to buy? Home mortgage interest is tax deductible, but there are large costs in buying or selling a house.

Marco earns $\$ 58,000$ and is single. He does not itemize. What is his taxable income and tax?

SOLUTION

Taxable income $=58,000-$ Standard deduction -1 Exemption
$=58,000-5700-3650=48,650$
$\mathrm{Tax}=.1 \times 8350+.15(33,950-8350)+.25(48,650-33,950)=\$ 8350$

Marco's marginal tax rate is 25%. His average tax rate is $8350 / 58,000=14.4 \%$.

The Knight-Smiths are both chemical engineers. Their salaries total $\$ 135,000$ per year. Interest on their savings totals another $\$ 3000$ per year. They have two school-age kids. Their itemized deductible expenses total $\$ 15,000$ this year (mostly mortgage interest, property tax, and state income taxes). What is their taxable income and how much tax do they pay?

SOLUTION

First, there is no reduction on their exemptions because their joint income of $\$ 138,000$ is less than $\$ 250,200$ per year. Second, they are better off itemizing than claiming the standard deduction.

Taxable income $=138,000-$ Itemized deductions -4 Exemptions

$$
\begin{aligned}
& =138,000-15,000-4 \times 3650=\$ 108,400 \\
\operatorname{Tax} & =.1 \times 16,700+.15(67,900-16,700)+.25(108,400-67,900)=\$ 19,475
\end{aligned}
$$

Their marginal tax rate is 25%, and their average tax rate is $19,475 / 138,000=14.1 \%$. Note that the child care credit would reduce their tax by 20% of the $\$ 6000$ limit for 2 children, or $\$ 1200$. Their actual expenses were nearly double the limit.

Problems

13A.1 Ringo is in his third year with a rapidly growing high-tech company. He earns $\$ 55,000$ per year, is single, and rents an apartment. What is his taxable income, tax, marginal tax rate, and average tax rate?
13A. 2 Laura is in her tenth year with a rapidly growing high-tech company. She earns $\$ 76,000$ per year, is single, and rents an apartment. Find her taxable income, tax, marginal tax rate, and average tax rate.
13A. 3 If Laura and Ringo were married and continued to rent, what would be their taxable income, tax, marginal tax rate, and average tax rate?

13A. 4 If Laura and Ringo had three kids and $\$ 26,000$ of itemized expenses, what would be their taxable income, tax, marginal tax rate, and average tax rate?

13A. 5 If Laura and Ringo are planning to marry, should they do it in December or January? Assume that a December marriage implies a joint return for this year, while waiting until January allows them to file separately. How much of their honeymoon expenses can they fund with the difference?

CHAPTER

Public-Sector Engineering Economy

- THE SITUATION AND THE SOLUTION

Government agencies must decide which projects should be supported with available funds-in spite of politics, competing objectives, and benefits that are difficult to quantify.

The solution is to accept that the answers may be less accurate than those in the private sector and to use benefit/cost methodology correctly.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 14.1 Define benefits, disbenefits, and costs.
SECTION 14.2 Explain why evaluating and choosing projects in the public sector is more difficult than in the private sector.
SECTION 14.3 Select the correct method and interest rate for (1) mutually exclusive projects and (2) sets of public projects constrained by a budget, and apply the correct method to problems of deferred maintenance.
SECTION 14.4 Select the correct point of view, with corresponding internal and external costs.
SECTION 14.5 Allocate costs among different project purposes and different benefit recipients.
SECTION 14.6 Use the value of a human life for project evaluation.
SECTION 14.7 Apply cost-effectiveness techniques for benefits that can be quantified, but not in terms of money.

- KEY WORDS AND CONCEPTS

Benefits Positive consequences that accrue to the public.
Disbenefits Negative consequences that accrue to the public.
Costs Positive and negative consequences that accrue to the government.
Spillovers Consequences that are not accounted for in the economic analysis.
Benefit/cost ratio A common measure that equals net benefits divided by costs (both in present worth or equivalent annual terms).

Consumer's surplus The total benefit received by the users of a public facility minus the total user fees or costs.
Cost-effectiveness A methodology applied when the benefits cannot be equated to money, but they can be quantitatively measured.

14.1 Defining Benefits, Disbenefits, and Costs

Benefits are

 positive public outcomes, disbenefits are negative public outcomes, and costs are outcomes to the government.
Spillovers are

 consequences that are not accounted for in the economic analysis.In common usage, benefits are positive outcomes, and costs are negative ones. However, in public-sector applications of engineering economy, a more specialized definition is useful. Benefits and disbenefits are consequences to the public at large (see Exhibit 14.1), while costs are consequences to the government (see Example 14.1). Some government projects also involve revenues from user fees, such as tolls.

Reading newspaper and magazine articles about public projects requires insight about spillovers [Sassone and Schaffer]. These are not specifically accounted for in the economic analysis, and in fact, they may not even be identified. Often, these are disbenefits. For example, nearby residents may be inconvenienced by trucks traveling to and from a new landfill site. Spillovers can also be positive. For example, R\&D projects that supported the space program have led to unanticipated new products in the consumer market.

EXHIBIT 14.1 Benefits and Disbenefits for Public Projects

Project	Benefits	Disbenefits
Bridge across river in middle of city	Long-term increase in traffic capacity \& reduced congestion	Businesses \& homes displaced, short-term congestion due to construction
Prison in Alaska (instead instead of sending prisoners out of state)	Lower transportation costs, easier family visits (reduced recidivism), more Alaskan jobs	Higher operating costs, reduced property values close to prison
Nuclear power plant	Less reliance on coal so less air pollution \& less CO_{2}	 long-term environmental risks
City museum or performing arts center	Increased quality of life, increased tourism	Businesses and homes displaced, loss of business for competing entertainment options

EXAMPLE 14.1 A New Dam

A new hydroelectric dam has been proposed. What are some of the benefits, disbenefits, and costs likely to be?

SOLUTION

The dam's benefits are likely to include electric power, lake-based recreation, flood control, water storage for irrigation, and allocation to different water users. Potential disbenefits include the loss of river-based recreation; businesses, homes, and farms inundated by the reservoir; and possible flooding due to catastrophic dam failure. Costs will include construction costs, compensation to any owners of land that will be inundated, and operation costs for the dam.

Each dollar, however, should be counted only once. For example, suppose a fifth-generation family farm and home is valued by the family at $\$ 350 \mathrm{~K}$. If the government compensation for inundating it with the reservoir is $\$ 200 \mathrm{~K}$, based on the market value, then the cost is $\$ 200 \mathrm{~K}$, and the uncompensated disbenefit is $\$ 150 \mathrm{~K}$.

Agencies that Do Not Serve the Public Directly. The definitions of benefits and costs are designed for projects done by the government for the public. These definitions work well for the National Park Service, the Public Health Service, and the Bureau of Reclamation. But not all government units serve the public directly. For example, the Defense Logistics Agency and the General Services Administration approve or complete projects that serve other agencies.

Such units usually define benefits as accruing to other agencies and costs as accruing internally to the unit. For example, a computer services unit might consider the hardware and software consequences as costs and the time savings to clerks in other governmental agencies as benefits. That way, computer projects would be evaluated by the same mechanisms that were used for other government projects.

Some of the most difficult problems in public-sector economic evaluations occur in the defense industries. How do you place a value on a faster jet, a more capable tank, or a nuclear submarine? Since we do not have a market value for national defense, it is sometimes necessary to rely on cost-effectiveness measures (see Section 14.7).
"Benefits to Whomsoever They Accrue." The benefit and cost terms used in public-sector engineering economy can be traced to J. Dupuit's "On the Measurement of Utility of Public Works" (published in 1844), but one of the clearest statements is in the U.S. Flood Control Act of 1936: "if the benefits to whomsoever they may accrue are in excess of the estimated costs, and if the lives and social security of people are otherwise adversely affected."

One theoretical difficulty with the language "to whomsoever they may accrue" is that each outcome causes another layer of outcomes. For example, in Exhibit 14.2, the primary benefits, disbenefits, and costs cause a secondary set that, in turn, cause another set.

EXHIBIT 14.2 A new traffic light at a dangerous intersection

	Primary Level Work for Manufacturer Contractor City employee \Downarrow	Less property damage
		Fewer lost lives

Another difficulty is correctly accounting for transactions between the government and the people. For example, if a property owner is compensated by the government after

Each dollar should be included once, and only once, in our calculations. There is no double- counting of benefits and user fees.
it takes the land by eminent domain for a dam or a road, is the payment a valuation of the disbenefit to the landowner or a cost to the government? Similarly, if I pay $\$.08 / \mathrm{kWh}$ for electricity, does that measure the value of the electricity to me, or should it be classified as revenue (a negative cost) to the government?

While the answer in these two examples may be arbitrary, there is a clear principle: each dollar should be included once, and only once, in our calculations. In other words, there is no double-counting of benefits and user fees.

14.2 Why Are Public-Sector Problems Difficult?

There are several reasons why public-sector engineering economy problems are often more difficult than private-sector problems. These include:

- Benefits that are difficult to quantify and to value in money terms.
- Projects with very long horizons.
- Uncertain probabilities for rare events.
- Projects with multiple objectives.
- Interest groups with conflicting perspectives.
- Difficulties in selecting the interest rate.

These differences are introduced here, detailed in later sections, and summarized in Exhibit 14.3.

Quantifying and Valuing Benefits. The chief difficulty in public-sector engineering economy is poor, uncertain data. Many benefits are difficult to quantify at all, let alone in terms of money. For example, what is the value of improving access to education with a new library, reducing the probability of a fatal accident, reducing the level of carbon dioxide, reducing visual clutter through a new sign ordinance, adding a fishing day on a new lake, or avoiding a war through deterrence?

In some cases, engineering economy in the public sector is used to calculate the impact of regulations. The question is: "Do the benefits of an Environmental Protection Agency (EPA) or a Consumer Products Safety Commission regulation exceed its costs?" Most benefits and compliance costs will be incurred by firms and individuals (the public). In these cases, data may be available only from regulated industries, whose self-interest may inflate the estimated costs of compliance.

For example, the Occupational Safety and Health Administration (OSHA) was considering reducing the standard for industrial workers' exposure to polyvinyl chloride (PVC) from 14 parts per million (ppm) to 1 ppm . The industry predicted economic losses of $\$ 69$ to $\$ 90$ billion and 2 million lost jobs. The standard was imposed anyway, and the actual consequences have been estimated as $\$ 325$ million in economic losses and 290 lost jobs [Tafler]. The health benefits required to justify the regulatory change under the predicted data are 250 to 7000 times larger than those required under the actual costs.

Long Problem Horizons. Many public works projects have much longer horizons than are typical within the private sector. While some governmental agencies specify an upper limit of 50 years for analysis, many bridges, tunnels, and dams are still heavily used well past that limit. Some public rights-of-way have been used as roads for centuries.

These long horizons exacerbate the problems in quantifying and valuing benefits and costs. It is harder to estimate values 25,50 , or more years into the future. Over long horizons, population and demographic trends change, new technologies emerge, and new issues become important.

The difficulties with long horizons are mitigated by the discounting effect of the time value of money. However, it is still necessary to estimate energy demand, student populations, commuter traffic, and defense needs well into the future.

Probabilities of Rare Events. Some difficulties in estimating benefit values occur because the project protects the public from rare events, such as earthquakes, traffic accidents, major floods, or occupational cancers. The benefit must be valued and its probability estimated. Estimating probabilities is easier-and far more accurate-if the event is common rather than rare. It is easier to estimate the size and consequences of a 10-year flood than of a 100-year flood.

Some projects create hazards. For a nuclear power plant, there is a very small possibility of an uncontrolled release of radioactivity, but a stream of radioactive waste is predictable. The alternatives have their own hazards. Coal-fired power plants contribute to acid rain and global warming, and the reservoirs behind dams can cause immediate, catastrophic floods if the dam fails (see Example 14.2).

Not only are some events rare, the acceptability of the mortality risk to the public is 1000 times higher if the risk is voluntary or assumed [Starr]. For example, the risks of
skydiving, smoking, or driving a car are voluntary and somewhat controllable. These may be acceptable even though they are much larger than the risk from meltdown of a nuclear power facility or secondhand smoke.

EXAMPLE 14.2 Flooding and Dam Failures

One common justification for dams is providing flood control. By collecting surges from rainstorms or snowmelt and releasing them in a controlled manner, dams can reduce or eliminate flooding downstream.

The dam's reservoir, however, creates a new hazard-the chance of a catastrophic flood due to dam failure. In the United States, this chance is about .0001 per year for each dam [Mark and Stuart-Alexander]. In fact, there is some evidence that as our understanding and technology improves, we are building larger dams with about the same failure rate. Larger dams and deeper reservoirs increase the stress on the earth's crust and the probabilities of earthquakes-which can cause dam failure. A catastrophic flood also can occur without dam failure, as was demonstrated at the Vaiont Dam in Italy in 1963, when a landslide into the reservoir overtopped the dam and 2000 people were killed.

How significant is the new hazard compared to the basic flood-control benefit?

SOLUTION

Consider the 1976 failure of the Teton Dam in Idaho, which caused 11 deaths and between $\$ 400 \mathrm{M}$ and $\$ 1 \mathrm{~B}$ in property damage when it released 288,000 acre-feet of water. This project's economic analysis (which omitted the catastrophic-flood hazard) calculated PWs at an interest rate of 3%, and the benefits exceeded the costs by 59%.

The impact of the catastrophic hazard to property can be estimated as follows. Using the average estimate for property damage $(\$ 700 \mathrm{M})$ and the Bureau of Reclamation's failure probability for earth-filled dams with reservoirs larger than 1000 acre-feet (. 00015 per year), then the benefits exceed the costs by only 51%.

If the site is labeled "high risk" and the probability is increased by a factor of 10 , then there are no flood-control benefits, and total benefits exceed costs by only 15% [Mark and StuartAlexander].

Multiple Objectives that May Conflict. Many public projects have multiple purposes. The dam in Example 14.1 was intended to generate power, control flooding, provide recreational opportunities, and support irrigation. If a public project has multiple purposes, allocating costs to each purpose is needed to charge the correct budgets and to establish equitable user fees.

The multiple purposes may conflict. To continue with the dam example, maintaining low water levels provides the maximum capacity for flood control, while higher levels are better for recreation and power generation. Similarly, water releases for power and for irrigation may be needed at different rates over the year.

Interest Groups with Differing Perspectives. In addition, the benefits and risks of public projects are received by different groups [Lang]. For example, should your home be torn down so that $m y$ commuting trip will be faster? Which one of us is closer to the new elementary school, or farther from the city dump or the regional hazardous waste site? Should an upstream community improve its sewage treatment for the benefit of a downstream community's water supply? Because different groups of people are affected differently, equity or distributional effects [OMB] are a key concern.

These differences in viewpoint also occur between governmental units, such as between the civilian Secretary of Defense, the army, and the navy; the federal government and the state highway and city transit departments; and state departments of education and local school districts. The local agency is charged with filling the needs at a local level, while the state agency strives to do the best projects on a statewide basis and to maintain some regional equity. The federal government takes the broadest view of all.

Selecting an Interest Rate. Finally, selecting an interest rate is harder for public agencies than for private firms. Public taxation and borrowing both remove money from the private sector for public purposes-consequently, the cost of public borrowing and taxation is difficult to calculate. Also, the opportunity cost for forgone projects is difficult to calculate, because the projects are proposed by many different agencies and the benefits are often difficult to calculate in dollar terms.

Thus, guidance for federal agencies is somewhat complex, as detailed in Circular A-94 [OMB]. This applies for most federal projects, except that water resource projects and federal energy management programs are specifically exempted. The starting point is easy enough:

Constant-dollar benefit-cost analyses of proposed investments and regulations should report net present value and other outcomes determined using a real discount rate of 7 percent.

A lower rate, which is based on "the real Treasury borrowing rate on marketable securities of comparable maturity to the period of analysis," can be used in several cases. Through January 2003, these rates ranged from 2.1% for 3-year horizons to 3.9% for 30 -year horizons [OMB, Appendix C]. In 2009 these rates were distorted from historical levels due to the economic challenges and stimulus responses. These cases are: (1) cost-effectiveness analysis (benefits not valued in dollars but equal for mutually exclusive alternatives), (2) lease-purchase analysis, and (3) internal government investments. While rates that vary with time as well as with the horizon might be theoretically better, "the economic logic behind OMB Circular A-94 is essentially sound" [Goldberg].

Chapter 15 will discuss inflation in detail, but language from Circular A-94 [OMB\} can explain what the real discount rate is. The guidelines focus on analysis in "constantdollar or real benefits and costs. A real discount rate can be approximated by subtracting expected inflation from a nominal interest rate." That this is the preferred approach is emphasized by other language: "Future inflation is highly uncertain. Analysts should avoid having to make an assumption about the general rate of inflation whenever possible." However, there are also provisions for problems without an adjustment for inflation: "A nominal discount rate that reflects expected inflation should be used to discount nominal benefits and costs. Market interest rates are nominal interest rates in this sense."

A supplementary analysis is required for public investments that are not justified on cost-savings grounds. "Thus, in such analyses, costs in the form of public expenditures should be multiplied by a factor of 1.25 and net present value recomputed." This recognizes that " $[b]$ ecause taxes generally distort relative prices, they impose a burden in excess of the revenues they raise." It is not clear whether the costs of the taxing process for government and the private sector have been considered.

However, even with this guidance, there is the problem of what to do if there are more projects than there is available funding. In this case, if benefits can be quantified in monetary terms, the investment opportunity schedule can be used to determine the opportunity cost of capital.

Summary. The differences between private- and public-sector engineering economy are summarized in Exhibit 14.3.

EXHIBIT 14.3 Engineering economy in the public vs. the private sector

Factor	Public Sector	Private Sector
Data	Benefits must be 1. Quantified and 2. Equated to money	Most benefits are monetary
Probability	Rare events often crucial $(1$ chance in 100 to 1 in a billion $)$	1 chance in 10 often the limit
Objectives	Multiple	Maximize PW or IRR
Stakeholders’ perspectives Interest rate	Often conflicting Complicated by nonmonetary benefits	All want firm to be successful

14.3 Correct Methods and Interest Rates

The benefit/cost
ratio equals net benefits divided by costs (both stated in PW or equivalent annual terms). The B / C ratio must be greater than or equal to 1 for acceptable projects.

Evaluating a Single Project. For a single project, deciding whether the benefits of a project will exceed its estimated costs is a go/no-go decision. The interest rate must be supplied, since this is a mutually exclusive decision between yes and no.

The decision is whether the benefits (B) are at least as large as the costs (C), or $\mathrm{B} \geq \mathrm{C}$. As long as C is positive, this can be converted to Equation 14.1.

$$
\begin{equation*}
B / C \geq 1 \tag{14.1}
\end{equation*}
$$

Both the benefits and the costs must be stated either as present values or in equivalent annual terms. The benefit/cost (B/C) ratio value is unaffected by the decision between present values and equivalent annual terms, as shown in Example 14.3.

The following discussion of evaluation methods focuses on the benefit/cost ratio. This measure is traditionally linked with public-sector engineering economy, and it is certainly used in many applications. However, as shown in Chapter 9 and again here, incremental
analysis is required for the correct decision between mutually exclusive alternatives. Ranking on the ratio is not the correct approach for the constrained project selection problem when budgets are tight. Thus, some jurisdictions, including much of the U.S. federal government, no longer use the benefit/cost ratio. Instead, they simply use a PW measure that equals $\mathrm{B}-\mathrm{C}$ [OMB].

Calculate the benefit/cost ratio for a highway project with the following benefits and costs. The project life is 40 years, the interest rate is 10%, and the project's right-of-way is worth $\$ 5 \mathrm{M}$ in 40 years.

$\$ 20 \mathrm{M}$	Construction cost (includes acquiring right-of-way)
350 K	Annual maintenance
3 M	Repaving every 8 years
1 M	Annual value of lives saved (1 per year)
1.25 M	Time savings for commercial traffic
1 M	Time savings for commuter and recreational traffic

SOLUTION

Most of the costs are stated in annual terms; thus, it will be slightly easier to compute the ratio in annual terms. The benefits include lives saved and time savings for two groups. The cost equation shown below includes the construction cost, the annual maintenance, the periodic repaving, and in the final term, the "correction" for the repaving that does not occur in year 40 and the right-of-way value.

$$
\begin{aligned}
\mathrm{B} & =1 \mathrm{M}+1.25 \mathrm{M}+1 \mathrm{M}=\$ 3.25 \mathrm{M} \\
\mathrm{C} & =20 \mathrm{M}(A / P, 10 \%, 40)+.35 \mathrm{M}+3 \mathrm{M}(A / \mathrm{F}, 10 \%, 8)-(3 \mathrm{M}+5 \mathrm{M})(A / F, 10 \%, 40) \\
& =2.046 \mathrm{M}+.35 \mathrm{M}+.262 \mathrm{M}+.018 \mathrm{M}=\$ 2.64 \mathrm{M} \\
\mathrm{~B} / \mathrm{C} & =3.25 \mathrm{M} / 2.64 \mathrm{M}=1.23
\end{aligned}
$$

Since 1.23 is greater than 1 , build it!
To convert the benefits and costs to present values, it is easiest to simply multiply B and C by $(P / A, 10 \%, 40)$. Since both the numerator and the denominator are multiplied by the same number, the ratio is unchanged.

Criteria for Mutually Exclusive Alternatives. If there is more than one mutually exclusive alternative, then, as discussed in Chapter 9, it is necessary to calculate benefit/ cost ratios for the incremental investments. As shown in Example 14.4, it is wrong to choose an alternative because it has the largest ratio or is the largest project with a ratio greater than or equal to 1 .

Instead, each incremental investment is evaluated by asking if its benefit/cost ratio is greater than or equal to 1 . As shown in Chapter 9, calculating each alternative's present or equivalent annual worth is an easier way to find the best mutually exclusive alternative. The difference between an alternative's benefits and costs, $B-C$, is not changed if another alternative is added or if the data for any other alternative are modified.

EXAMPLE 14.4 Incremental Comparisons with B/C Ratios

Show that if benefit/cost ratios are used, only incremental analysis chooses the best mutually exclusive alternative for the following data.

	PW		
Project	B $(\$ \mathbf{M})$	C $(\$ M)$	B $-\mathbf{C}(\$ \mathbf{M})$
A	$\$ 3$	$\$ 1$	$\$ 2$
B	10	5	5
C	13	9	4
D	18	14	4
E	25	19	6^{1}
F	30	27	3

${ }^{1}$ Best, since maximum PW.

SOLUTION

Two wrong criteria are sometimes suggested for analyzing benefit/cost ratios for mutually exclusive alternatives. These use the ratios for each project (which are implicitly compared to doing nothing). The two criteria are: (1) choosing the project with the largest ratio and (2) choosing the largest project whose benefit/cost ratio is greater than or equal to 1 . Both lead to wrong answers in this example, as shown below.

	PW			
Project	B (\$M)	C $\mathbf{(\$ M)}$	B/C ratio	
A	$\$ 3$	$\$ 1$	3.0	(highest B/C ratio)
B	10	5	2.0	
C	13	9	1.44	
D	18	14	1.29	
E	25	19	1.32	(best, from maximum PW)
F	30	27	$1.11 \quad$ (largest project with B/C	
				ratio ≥ 1)

Project A, with a benefit/cost ratio of 3.0, has the largest ratio. However, project A's PW is only $\$ 2 \mathrm{M}$, which is the smallest of all the alternatives.

Project F is the largest one with an acceptable benefit/cost ratio that is greater than or equal to 1 (project F's ratio is 1.11). However, project F's PW is only $\$ 3 \mathrm{M}$, which is the second-smallest of all the alternatives.

The correct criteria-maximizing the PW and evaluating the incremental B / C ratios-select project E. Its PW, at $\$ 6 \mathrm{M}$, is the highest, and as shown in the next table, an incremental benefit/cost analysis makes the same recommendation. In this table, the incremental benefits and costs are calculated one line at a time; in each case, the increment is between the current challenger and the best defender found so far. For example, the incremental benefit to doing project B rather than project A is $\$ 10 \mathrm{M}-\$ 3 \mathrm{M}$, or $\$ 7 \mathrm{M}$.

Since project A's incremental ratio exceeds $1, \mathrm{~A}$ is better than doing nothing. Since project B's incremental ratio exceeds 1, B is better than A. However, neither C nor D is better than B. Project E is better than B , and finally, project F is not better than E . So, do project E ! (Note: If IRRs were used for this mutually exclusive problem, then incremental IRRs would have to be calculated.)

	Incremental PW		
Project	$\$ \mathbf{M})$	$\mathbf{C}(\$ \mathbf{N})$	Incremental B/C
A vs. nothing	$\$ 3$	$\$ 1$	3.0
B vs. A	7	4	$7 / 4=1.75$
C vs. B	3	4	$3 / 4=.75$
D vs. B	8	9	$8 / 9=.89$
E vs. B	15	14	$15 / 14=1.07$
F vs. E	5	8	$5 / 8=.63$

Criteria for Constrained Project Selection. Government agencies, like privatesector firms, have budgets that prevent them from doing all of the acceptable projects. Thus, the principle of using opportunity costs to establish an interest rate applies. If benefits can be quantified in monetary terms, then ranking on IRR is needed to find the opportunity cost of forgone investments.

Once the opportunity cost value for the interest rate has been found, then the projects' present worths can be evaluated at that rate. Or, ranking on IRR can be used to select the set of projects within a budget limit. Ranking on benefit/cost ratios is wrong, just as ranking on PW indexes was shown to be wrong in Chapter 11. The difference in recommended sets of accepted alternatives for ranking on IRR vs. ranking on B/C ratios is illustrated by Example 14.5.

Ranking on B / C ratios is incorrect because it assumes that the opportunity cost of forgone investments is the externally defined interest rate rather than the higher value implied by the budget limit.

The Department of Transportation, Public Utilities, and Facilities (DOTPUF, commonly called "dot puff") is responsible for a wide variety of public projects. Historically, the minimum acceptable interest rate for computing life-cycle costs has been 15%. However, in many years, only one-third or one-half of the projects that meet this standard have been funded.

This year, the state legislature has asked that projects be prioritized by ranking on the B / C ratio computed at 15%. If DOTPUF expects funding for about $\$ 1 \mathrm{M}$ in projects, is there a difference between the top projects ranked on IRR and those ranked on B/C ratios?

To simplify calculations, the data below includes the IRR for each project and also the B/C ratio computed at 15%.

Project	First Cost (\$K)	Annual Benefit (\$K)	Gradient (\$K)	Life (years)	IRR	B/C at $\mathbf{1 5 \%}$
A	$\$ 400$	$-\$ 100$	$\$ 70$	10	22.7%	1.72
B	300	100	-5	25	27.3	1.52
C	250	80	-5	15	23.9	1.34
D	500	70	10	40	22.8	1.80
E	350	0	30	10	21.9	1.46
F	200	50	0	20	24.7	1.56
G	125	-90	20	30	17.1	1.79
H	250	100	-7	50	31.0	1.43

SOLUTION

When ranked by the benefit/cost ratio, the projects are ranked as follows:

$$
\mathrm{D}, \mathrm{G}, \mathrm{~A}, \mathrm{~F}, \mathrm{~B}, \mathrm{E}, \mathrm{H} \text {, and C }
$$

The first three of these projects have a combined first cost of $\$ 1.025 \mathrm{M}$.
As detailed in Chapter 11, when organizations are solving the constrained project selection problem, ranking on IRR is the correct approach to find the opportunity cost of capital. In this case, when ranked on IRR, the projects are ranked as follows:

$$
\mathrm{H}, \mathrm{~B}, \mathrm{~F}, \mathrm{C}, \mathrm{D}, \mathrm{~A}, \mathrm{E}, \text { and } \mathrm{G}
$$

The first four of these projects have a combined first cost of $\$ 1 \mathrm{M}$. Since this matches the available budget, the recommended set of projects is H, B, F, and C.

When the capital budget is limited to about $\$ 1 \mathrm{M}$, the MARR is 23.9%-not 15%. Thus, if the benefit/cost ratios were computed at 24%, the benefit/cost ranking could be used. However, ranking on IRR must be used first to find the interest rate. The ratios computed at 15% are misleading.

Deferred Maintenance. Many government agencies find their capital and operating budgets to be limited in comparison to the tasks they are asked to perform. Government revenue comes from taxes, which are set politically, rather than through an economic analysis.

As a result, engineers who work in public agencies may not be able to do what is obviously best. Capital projects are often divided into two capital budgets-one for major new projects and one for smaller projects, such as maintenance of existing facilities. New buildings, new roads, and new bridges have clear benefits that can earn political support from users, taxpayers, and political figures.

Maintenance is much less visible, even though it may be very important economically. Because it is less visible, it often receives less political support. It is common for agencies to postpone or defer maintenance when budgets are tight. As shown in Example 14.6, this can be a very costly strategy. Effective maintenance is very important in minimizing the life-cycle cost of the public infrastructure.

This example illustrates a poor choice between mutually exclusive alternatives (repair now or replace later) that is caused by a poor solution to the constrained project selection problem. The maintenance project, at a cost of $\$ 200 \mathrm{~K}$, should receive very high priority for capital funding-even though it is not a high-visibility project with high political appeal.

Many bridges are built of steel-reinforced concrete. As long as the steel is protected from corrosion, the bridge lives are very long. The cost difference between proper maintenance and early replacement is also very large. For example, a particular bridge would cost $\$ 200,000$ now to repair or $\$ 1.8 \mathrm{M}$ in 10 years to replace. The state highway department claims it uses an interest rate of 8%, but it has decided to replace the bridge later due to a current shortage of funds. The stage agency also anticipates some federal funding for the replacement bridge. What is the implied interest rate for choosing to replace later rather than to repair now?

SOLUTION

The PW equation for saving $\$ 200,000$ now and spending $\$ 1.8 \mathrm{M}$ after 10 years is:

$$
0=.2 \mathrm{M}-1.8 \mathrm{M} /(1+i)^{10}
$$

Solving this equation leads to the interest rate at which the agency is borrowing money from the future. This rate, $i=24.6 \%$, is very high.

14.4 Whose Point of View?

What Is Internal? What Is External? Deciding which consequences are internal to the problem and which are external depends on your perspective. This is the principal difference in engineering economy between the public and private sectors. A private-sector firm can define as internal the short- or long-run financial consequences to its bottom line. A government agency must usually take a broader view.

The difference can be illustrated by a firm that chooses to meet air-pollution standards with a taller smokestack that disperses pollutants over a broader area so that concentrations
are lower. The firm is concerned with the question of the most cost-effective way to meet the regulatory standard. The local air-pollution district must balance the needs of local industry with the needs of local residents for jobs and clean air. It must consider all pollution sources, not just one. Moreover, the health and safety consequences may be the district's principal focus. A federal agency may be concerned with the cumulative effect on acid rain or global warming over a large region of many such smokestacks.

Federal Subsidies. Transportation problems, as in Example 14.7, illustrate the difficulty of selecting the proper perspective. The federal government may pay most of the construction costs for highways or transit systems that will be operated by states or cities. Similarly, state governments often subsidize the construction of schools that will be operated by local governments. There are many examples in which local users pay only the unsubsidized portion of the cost. The most cost-effective solution to the users may not be the best solution from a broader perspective.

This problem is exacerbated by the political nature of public-sector decision making. There are many competing interests with parochial viewpoints. Since the data are poor, there is a lot of room to interpret the situation in conflicting ways.

EXAMPLE 14.7 Subsidized Transportation Improvements

MidCity has severe rush-hour traffic jams in a congested valley that connects to its main industrial area. The transportation planning department's engineers have identified two plans. The first involves a light-rail system (LR), and the second is a new freeway (NF).

Both alternatives have expected lives of 50 years, when their rights-of-way will have comparable values. MidCity uses an interest rate of 10%.

The federal government subsidizes freeway construction by paying 90% of the costs. It also provides 70% of the costs for light-rail construction. It provides no funds for the operation of either system. The benefits of each system are being debated, but the air-pollution benefits of the rail system about equal the extra user benefits for the larger number of freeway users. The total benefits for each system are about $\$ 15$ million.

Which alternative is preferred by MidCity's taxpayers? Which is better from a systems or overall perspective?

Factor	Light Rail	New Freeway
First cost	$\$ 40 \mathrm{M}$	$\$ 70 \mathrm{M}$
Annual operating cost	8 M	6 M

SOLUTION

From a systems viewpoint or overall perspective, either system can be justified, since the $\$ 15 \mathrm{M}$ in annual benefits exceeds the annual cost for both (see equations below). Since the benefits of both alternatives are the same, only the costs need be compared. As shown below, the light rail's

EAC is $\$ 1.1 \mathrm{M}$ per year less than the new freeway's. The light-rail option is better from an overall perspective.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{LR}}=40 \mathrm{M}(A / P, .1,50)+8 \mathrm{M}=40 \mathrm{M} \times .10086+8 \mathrm{M}=\$ 12.0 \mathrm{M} \\
& \mathrm{C}_{\mathrm{NF}}=70 \mathrm{M}(A / P, .1,50)+6 \mathrm{M}=70 \mathrm{M} \times .10086+6 \mathrm{M}=\$ 13.1 \mathrm{M}
\end{aligned}
$$

However, the viewpoints of MidCity's taxpayers and "average" U.S. citizens differ. To MidCity's taxpayers, the relevant capital cost is the fraction they pay that is not subsidized by the federal government. This is the 30% of the $\$ 40 \mathrm{M}$ in light-rail costs or the 10% of the $\$ 70 \mathrm{M}$ in new freeway costs. Thus, the higher subsidy for freeways implies that MidCity taxpayers would prefer the lower costs to them of the new freeway alternative.

To MidCity:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{LR}}=.3 \times 40 \mathrm{M}(A / P, .1,50)+8 \mathrm{M}=12 \mathrm{M} \times .10086+8 \mathrm{M}=\$ 9.2 \mathrm{M} \\
& \mathrm{C}_{\mathrm{NF}}=.1 \times 70 \mathrm{M}(A / P, .1,50)+6 \mathrm{M}=7 \mathrm{M} \times .10086+6 \mathrm{M}=\$ 6.7 \mathrm{M}
\end{aligned}
$$

The excess in value received over the user fee is the individual's consumer surplus. When summed over all individuals, the excess in value received is the consumers' surplus.

Consumers' Surplus. Because governments must consider "benefits to whomsoever they may accrue," they must consider the value to the users of government services. Consider a motorist paying a bridge toll. The opportunity to cross the bridge must be worth more than the toll, or the driver will take another route or stay home.

If the toll authority were private, it would consider only total tolls. Assume instead that the transportation authority is public and is deciding whether to build the toll bridge. Then, all benefits received by the motorist, including those in excess of the toll, must be considered.

Intuitively, the consumers' surplus is the total extra benefit received by everyone over and above the user fees paid for the service. Mathematically, this equals total benefits received by all users minus the costs that are paid to use the government service.

Setting user fees has social and political consequences. Thus, the user fee for a government service may be set much lower than the cost to provide the service. For example, many municipal libraries charge a nominal $\$ 5$ fee for a library card and no other charges as long as books, DVDs, etc., are returned on time.

For public projects, all benefits must be considered. This total equals the consumers' surplus plus user fees. However, different users place different values on government services. For example, I might be willing to pay $\$ 5$ to cross a bridge, while you might be willing to pay only $\$ 3$. If the toll is $\$ 1$, then my surplus is $\$ 4$ and yours is $\$ 2$. For the two of us, the total toll is $\$ 2$, the total surplus is $\$ 6$, and the total benefit is $\$ 8$.

Estimating the number of motorists willing to pay $\$ 10, \$ 9, \$ 8, \ldots, \$ 2, \$ 1$, etc., leads to a curve similar to the one shown in Exhibit 14.4. Economists call this a demand curve, because it identifies how many individuals would pay for (or demand) a service at different prices. In this case, no one is willing to pay more than $\$ 10,10 \%$ of the current traffic level would pay $\$ 8,30 \%$ would pay $\$ 6,60 \%$ would pay $\$ 4$, and the current traffic level occurs at a toll of $\$ 2$.

Now, two public perspectives are possible.

EXHIBIT 14.4 Consumers' surplus for a toll bridge

First, a bridge authority that must recover the cost of the bridge and pay for its maintenance would simply consider the total revenue from tolls. This revenue equals the toll times the number of motorists.

Second, a regional transportation authority would consider the total benefits (including the consumers' surplus) in deciding on the relative priority for building this bridge vs. other potential projects. This second problem is much more difficult, because it implies that the entire demand curve must be estimated-not just a point or a segment.

14.5 Allocating Costs to Benefit Recipients

Public projects often involve multiple objectives with different classes of benefit recipients. If user fees are collected from some users, then the costs of the project must be allocated to the different users.

For example, a dam might provide power, irrigation, recreation, and flood control. User fees could be established for the first three uses. Property taxes for land in the floodplain might be possible for the fourth use. However, questions like the following must be answered: Do recreational users pay for the extra costs of boat ramps, picnic areas, and public facilities? Or do they pay a pro rata share of the project's total costs?

There are also questions of how user fees should be collected. For example, gas taxes and vehicle registration fees collect from all users, while tolls collect from users of a specific road. Charging specific users is usually perceived as fair, and tolls can be managed to reduce congestion. However, there is a cost to build and operate collection points, and the collection points can increase traffic delays and accidents.

Example 14.8 illustrates the allocation of costs to benefit recipients.

EXAMPLE 14.8 Paying for the Speed-Skating Oval

Northern Heights wants to sponsor the Winter Olympics. A speed-skating oval must be added to its existing facilities. Which alternative, the Ice Palace or the temporary inflatable, is better?

Since political support is crucial, allocate the costs to the various uses. The two alternatives are a permanent and a temporary facility.

1. Construct a permanent Ice Palace for later use by residents, tourists, and local colleges. A permanent ice rink in the oval's middle will be a practice rink for the figure skaters. Use of the practice rink will save $\$ 4 \mathrm{M}$ in operating and security costs for alternate practice facilities. Moveable bleachers can be placed on the rink during the speed-skating competition or, after the Olympics, on the oval during rink events.
2. Construct a temporary speed-skating oval in an inflatable building. After the Olympics, convert the oval to a cinder track for spring, summer, and fall use by the local schools and colleges. No practice rink is included.

Northern Heights's interest rate is 10%. The temporary facility would be up for 1 year (there is also an intercollegiate competition scheduled then). The Ice Palace and the cinder track have no salvage value after the 40-year study period (assume 39 years of use and 1 year of competition). (Note: Both alternatives have the same $\$ 3 \mathrm{M}$ cost of operations for the year of competition, so it can be ignored.)

	Ice Palace	 Cinder Track
Facility cost	$\$ 20 \mathrm{M}$	$\$ 5 \mathrm{M}$
Salvage value after competition	0	1 M
Extra practice rink costs	0	4 M
Annual operating cost	1 M	50,000

SOLUTION

Supporters of the Ice Palace will provide at least two justifications. First, the fancier facility will be more attractive to the International Olympic Committee. Nothern Heights will then have a higher probability of being selected as the host city. Second, the Ice Palace as a unique facility will add more to the community than would the cinder track. Detractors will emphasize that the Ice Palace costs far more. The ability of boosters to "sell" the Ice Palace may hinge on the allocation of Ice Palace costs between the Olympics (Oly.) and Northern Heights (NH).

The costs of the temporary facility and the cinder track are easy to allocate respectively to the Olympics and Northern Heights. The Olympics are charged the cost of the facility and the extra practice rink costs, and credited the salvage value for the inflatable building. Northern Heights incurs a cost of $\$ 50,000$ per year for 39 years.

$$
\begin{aligned}
\mathrm{PW}_{\mathrm{Oly} .} & =-5 \mathrm{M}+(-4 \mathrm{M}+1 \mathrm{M}) / 1.1=-\$ 7.73 \mathrm{M} \\
\mathrm{PW}_{\mathrm{NH}} & =-50 \mathrm{~K}(P / A, .1,39)(P / F, .1,1)=-\$.44 \mathrm{M}
\end{aligned}
$$

The Ice Palace's first cost must be allocated between the Olympics and Northern Heights. At one extreme, Northern Heights might claim that the Olympics should account for all capital costs. The resulting allocation is:

$$
\begin{aligned}
\mathrm{PW}_{\text {Oly. }} & =-\$ 20 \mathrm{M} \\
\mathrm{PW}_{\mathrm{NH}} & =1 \mathrm{M}(P / A, .1,39) / 1.1=-\$ 8.87 \mathrm{M}
\end{aligned}
$$

This implies that the Olympics budget should pay for 100% of the capital costs for the Ice Palace.
At the other extreme, the Olympics might claim that Northern Heights should pay all costs over and above those of the temporary facility and the practice rink savings, since the permanence is for Northern Heights's 39 years of future use. The resulting allocation is:

$$
\begin{aligned}
\mathrm{PW}_{\text {Oly. }} & =-\$ 7.73 \mathrm{M} \\
\mathrm{PW}_{\mathrm{NH}} & =-20 \mathrm{M}+7.73 \mathrm{M}-8.87 \mathrm{M}=-\$ 21.14 \mathrm{M}
\end{aligned}
$$

This would allocate 38.65% of the Ice Palace's capital costs to the Olympics and $\$ 12.27 \mathrm{M}$, or 61.35%, to Northern Heights. In both cases, the total PW for the costs is $-\$ 28.87 \mathrm{M}$.

The cinder track's PW is $\$ 20.70 \mathrm{M}$ larger. However, if the Ice Palace increases the probability of becoming the Olympics host city or its benefits are large enough, then the Ice Palace may be better. From the local perspective, the two allocations are over $\$ 12 \mathrm{M}$ different. This difference represents benefits that would have to be generated for the Ice Palace to be worthwhile.

14.6 Valuing the Benefits of Public Projects

A Life's Present Value. Many public benefits are difficult to quantify, such as reducing pollution, adding airbags to cars, and preserving pristine areas as wilderness. Often, the chief difficulty is in valuing a human life. The approaches to this depend on the context [Viscusi].

In an individual wrongful-death case, such as the one in Example 14.9, the value of a particular human life may be based on the present worth of that individual's expected earnings. This approach is intended to compensate the survivors for their economic losses, and it may be linked to punitive damages to punish the parties at fault.

Example 14.10 is typical of many safety-related engineering projects. For this type of application, the concept of the value of a statistical life (VSL) has been developed. A large class of individuals are exposed to the risk, and each has a small probability of dying as a result of the risk. Studies have shown that individuals are willing to pay at the rate of up to \$16M (1990 dollars) per statistical life [Viscusi]. For a risk of .0001, this would be a payment of $\$ 1600$. However, for large risks, very few could afford to spend even $\$ 1.6 \mathrm{M}$ to save their life.

In some applications, the approach of a statistical life has been modified to find the value of a statistical life-year (VSLY). This may more fairly describe situations where the ages of those at risk range from children to the elderly.

EXAMPLE 14.9 Early Death of an Engineer

A married civil engineer with two young children was killed on a job site when a crane's load shifted and fell. Punitive damages will be assessed if and when negligence by a contractor's employee is established. Compensation to the family for loss of income will be made using an interest rate of 6%, even if negligence is not proven. The engineer was 35 , and retirement at
age 65 is to be assumed. The engineer's salary at death was $\$ 45,000$. If the salary was expected to increase $\$ 1000$ per year in constant-value dollars, what is the present worth of the family's lost income? Is this a realistic estimate of the value of a human life?

SOLUTION

$$
\begin{aligned}
\mathrm{P} & =45,000(P / A, 6 \%, 30)+1000(P / G, 6 \%, 30) \\
& =45,000 \times 13.765+1000 \times 142.36=\$ 761,800
\end{aligned}
$$

This approach does not compensate for noneconomic losses, and it implies that children, other nonemployed individuals, and a happy retirement have little value. However, there are no living expenses for the deceased individual.

EXAMPLE 14.10 Reducing Highway Accidents

Data over the last 5 years indicate that for each fatality, there are 40 nonfatal injury accidents ($\$ 15,000$ present cost each) and 300 property damage accidents ($\$ 2000$ present cost each). What is the breakeven value of a statistical life (VSL) needed to justify a highway project if i is 8% ?

The death rate on a particular three-lane road is 8 per 100 million vehicle-miles. Adding a lane would reduce this to 5 per 100 million, and other accidents would be reduced proportionately. The lane would cost $\$ 1.5 \mathrm{M}$ per mile to build, and annual maintenance would be 3% of the first cost. Assume that the lane would last 40 years. The road carries 10,000 vehicles per day.

SOLUTION

The annual cost per mile for construction and maintenance equals:

$$
\begin{aligned}
\mathrm{EAC}_{\text {mile }} & =1.5 \mathrm{M}(A / P, 8 \%, 40)+.03 \times 1.5 \mathrm{M}=125.8 \mathrm{~K}+45 \mathrm{~K} \\
& =\$ 170.8 \mathrm{~K}
\end{aligned}
$$

Since 3.65 million vehicles travel each mile each year, the fatality rate is originally $3.65 \mathrm{M} \times$ $8 / 100 \mathrm{M}$, or .292 fatality per mile each year. This is the basis for all three types of accidents, since there are 40 injury and 300 property damage accidents per fatality. The reduction factor is $3 / 8$ for all accidents.

Setting the annual cost per mile equal to the annual benefit per mile will lead to the breakeven VSL:

$$
\begin{aligned}
170.8 \mathrm{~K} & =(3 / 8) \times .292(\mathrm{VSL}+40 \times 15 \mathrm{~K}+300 \times 2 \mathrm{~K}) \\
\mathrm{VSL} & =\$ 359.8 \mathrm{~K}
\end{aligned}
$$

Standards of Federal Agencies. Exhibit 14.5 shows explicit standards for the value of a statistical life for National Highway and Transportation Safety Administration (NHTSA) and the Air Force [Greer, U.S. Congress]. Note that the Air Force valued civilian lives more highly than military lives and officers more highly than enlisted personnel. The value for the Nuclear Regulatory Commission (NRC) can be converted through risk analysis to a value of a statistical life.

Exhibit 14.6 lists the cost per statistical life saved for the regulations of several agencies. At an average performance of $\$ 64 \mathrm{~K}$ per statistical life, NHTSA clearly has projects and regulations that are much more cost-effective than the minimum level represented by the $\$ 359 \mathrm{~K}$-per-statistical-life standard.

The high cost per statistical life for the Occupational Safety and Health Administration (OSHA) is misleading, because many of its standards are intended to prevent injury rather than death. Similarly, the effective performance of the Consumer Product Safety Commission may be due to a low funding level that ensured a focus on high-priority targets.

EXHIBIT 14.5 Standards for value of a statistical life

Agency	Standards	Value per Statistical Life
National Highway and Transportation Safety Administration		$\$ 359 \mathrm{~K}$
Nuclear Regulatory Commission	$\$ 1000 /$ body-rem 1 within 50 miles	$\$ 5-10 \mathrm{M}$
U.S. Air Force 2		$\$ 47-330 \mathrm{~K}$

[^3]EXHIBIT 14.6 Effectiveness of regulation for several agencies

Cost per Statistical Life Saved	
$\$ 12.1 \mathrm{M}$	Occupational Safety \& Health Administration
2.6 M	Environmental Protection Agency
102 K	Health \& Human Services
64 K	National Highway Transportation and
	Safety Administration
50 K	Consumer Product Safety Commission
96 M	Asbestos
300 K	Airline cabin fire protection
300 K	Underground construction
130 K	Airbags
30 K	Passive auto restraints
500	Mandatory seatbelts

[^4]Exhibit 14.6 also illustrates the cost-effectiveness of several approaches to reducing deaths. Mandatory seat belts cost far less per statistical life saved than airbags. However, they also save fewer lives because they are less effective.

Risk and Valuing Public Benefits. Dealing explicitly with risk requires the tools presented in Chapter 18. However, Exhibit 14.7 can introduce some of the risks that engineering economy must value to solve public-sector problems.

Note that the engineering economic analysis of regulations must consider trade-offs among these risks. For example, a safety change for aircraft travel might increase air fares. This would increase the number of families that travel by automobile-which is about seven times more dangerous per mile. To help put these risks in perspective, Exhibit 14.7 includes several examples that are personally controllable, while others are regulated by government.

EXHIBIT 14.7 Risks estimated to increase annual chance of death by 1 in a million
Activity Cause of Death

Smoking 1.4 cigarettes
Drinking . 5 liter of wine
Spending 1 hour in a coal mine
Spending 3 hours in a coal mine
Living 2 days in New York or Boston
Traveling 6 minutes by canoe
Traveling 10 miles by bike
Traveling 150 miles by car
Flying 1000 miles by jet
Flying 6000 miles by jet
Living 2 months with a cigarette smoker
Eating 40 tablespoons of peanut butter
Eating 100 charcoal-broiled steaks
One chest x-ray taken in a good hospital
Living 20 years near a PVC plant
Living 150 years within 20 miles of a nuclear power plant

Source: R. Wilson, "Analyzing the Daily Risks of Life," Technology Review, Volume 81, Number 4, 1979, pp. 40-46; in Acceptable Risk by Baruch Fischhoff, Sarah Lichtenstein, Paul Slovic, Stephen L. Derby, and Ralph L. Keeney, 1981, Cambridge University Press, p. 81.

14.7 Cost-Effectiveness

In some cases, a ranking method for public projects is used instead of stating quantifiable benefits, such as the number of lives saved, in dollars. Example cost-effectiveness measures include the cost per statistical life saved, the cost per fishing day, the cost per additional high school graduate, and the average time savings per road-improvement dollar.

A cost-effectiveness measure is a numerical evaluation measure, such as cost per statistical life saved or students served per dollar.

If cost is in the measure's numerator, then smaller ratios are better. This is the case in the cost per statistical life saved measure in Exhibit 14.6 and the cost per resident measure used in Example 14.11. If cost is in the denominator, such as statistical lives saved per $\$ 1 \mathrm{M}$, then larger ratios are better.

Comparing mutually exclusive choices with a cost-effectiveness measure requires incremental analysis. For constrained project selection, the measure of cost effectiveness used to rank projects implies a dollar value for the unit of effectiveness (at the agency's interest rate). In Example 14.11, project A is the worst one funded, and it is the basis for calculating the marginal value for each resident served. This can be a capital cost per statistical life saved or an EAC over a specified horizon and at a given interest rate.

This approach is similar to the risk/return relationships discussed in Chapter 18 and to more complex multiple-objective techniques discussed in Chapter 19.

EXAMPLE 14.11 Alaskan Village Airports

Many Alaskan communities are accessible only by air or water. The state is considering a program to build airports for year-round air access to communities with only several months a year of river or ocean access. The costs to build each airport vary due to differences in soils, local terrain, locally available construction equipment, and distance from the state's urban centers. Each airport serves a different number of residents.

Construct a cost-effectiveness measure to rank the following projects for funding. Assume that the state's interest rate is 10% and that no additional state funds will be provided over an assumed life of 20 years. If a budget of about $\$ 12$ million is established, what is the implicit annual value of each citizen served by these projects? Which communities should be served?

Community	Airport Cost (\$M)	Number of Residents
A	$\$ 3.4$	300
B	2.3	250
C	4.5	275
D	1.9	400
E	3.2	175
F	3.1	190
G	2.7	150
H	3.9	575

SOLUTION

Cost per resident, which should be minimized, is a good measure. In the following table, (1) the cost per resident is calculated, (2) the projects are listed in order of decreasing effectiveness, and (3) the cumulative first cost is calculated. If the budget is about $\$ 12 \mathrm{M}$, then $\$ 11.5 \mathrm{M}$ for communities D, H, B, and A should be spent. (Save $\$.5 \mathrm{M}$ for use as a contingency fund.) The marginal cost per resident is $\$ 11,333$, the value for project A .

Community	Airport Cost (\$M)	Number of Residents	Cost per Resident	Cumulative Cost (\$M)
D	$\$ 1.9$	400	$\$ 4750$	$\$ 1.9$
H	3.9	575	6783	5.8
B	2.3	250	9200	8.1
A	3.4	300	11,333	11.5
F	3.1	190	16,316	14.6
C	4.5	275	16,364	19.1
G	2.7	150	18,000	21.8
E	3.2	175	18,286	25.0

Based on the last project funded (for community A), the implied value can be calculated by setting the costs and the benefits equal.

$$
0=-3.4 \mathrm{M}(A / P, .1,20)+\text { Benefit }_{\mathrm{A}} \times 300
$$

or

$$
\text { Benefit }_{\mathrm{A}}=3.4 \mathrm{M} \times .1175 / 300=\$ 1331 \text { per year per resident }
$$

14.8 Summary

This chapter discussed how to apply the material of other chapters to public-sector problems. The principles are the same, but the applications are more difficult, primarily because of the difficulties in quantifying benefits and equating them to money.

Within this application area, the benefit/cost ratio is often applied. The numerator of this ratio is the sum of the benefits and disbenefits (positive and negative consequences) that accrue to the public. The denominator of this ratio is the costs and revenues that accrue to the government. The ratio can be calculated using present values or using equivalent annual amounts. However, the key question is: "Do the benefits exceed the costs?"

Engineering economy in the public sector is difficult for several reasons:

- Benefits that are difficult to quantify and to equate to money.
- Projects that have very long horizons.
- Rare-event probabilities that must be estimated.
- Multiple objectives that often conflict.
- Multiple stakeholders whose interests often conflict and whose viewpoints are often parochial.
- Interest rates whose selection is complicated by the other reasons.

Two different approaches to the selection of an interest rate and of recommended alternatives apply.

First, for problems with one go/no-go option or several mutually exclusive alternatives, the easiest approach is to maximize the PW or EAW. If benefit/cost ratios are used, then incremental analysis is necessary.

Second, for problems in which several alternatives must be selected within a budget constraint and all benefits can be quantified in dollars, then ranking on IRR is used
to calculate the opportunity cost of forgone projects. Then, projects can be evaluated using IRR or PW techniques based on mathematical programming.

Public projects must take a broad systems view, which includes the effects of subsidies and of consumers' surplus. Finally, because of the multiple objectives of public projects, it is often necessary to allocate costs to objectives and to benefit recipients.

The wide variety of values for a human life is simply one of the many examples of the futility of precisely defining the benefits of many public projects. Fortunately, decision making can often be improved by a quantitative analysis that recognizes some values are not precisely known. When the benefits can be quantified and only one nonmonetary benefit exists, then a cost-effectiveness measure can be used to select the best project(s) from a set of projects.

REFERENCES

Fischoff, Baruch, Sarah Lichtenstein, Paul Slovic, Stephen L. Derby, and Ralph L. Keeney, Acceptable Risk, 1981, Cambridge University Press.
Goldberg, Matthew S., "Discount Rates for Government Investment Projects: The Economic Logic Behind OMB Circular A-94," The Engineering Economist, Volume 43, Number 4, Summer 1998, pp. 290-307.
Greer, William R., "Value of One Life? From \$8.37 to \$10 Million," New York Times, June 26, 1985.
Lang, Hans J., Cost Analysis for Capital Investment Decisions, 1989, Marcel Dekker, (Chapter 16 on Objectivity).
Mark, R.K., and D.E. Stuart-Alexander, "Disasters as a Necessary Part of Benefit-Cost Analyses," Science, Volume 197, September 16, 1977, pp. 1160-1162.
OMB, "Circular No. A-94 Revised: Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs," Office of Management and Budget, October 29, 1992. Annual update of Appendix C on discount rates for benefits and costs internal to the government is available at www.whitehouse.gov/omb/circulars.
Sassone, Peter G., and William A. Schaffer, Cost-Benefit Analysis: A Handbook, 1978, Academic Press.
Starr, C., "Social Benefits vs. Technological Risk," Science, Volume 165, 1969, pp. 1232-1238.
Tafler, Susan, "Cost-Benefit Analysis Proves a Tough Task," High Technology, Volume 2, Number 4, July/August 1982, pp. 76-77.
U.S. Congress, Joint Hearings of Subcommittees of U.S. House of Representatives, Use of CostBenefit Analysis by Regulatory Agencies, Serial 96-157, 1980.
Viscusi, W. Kip, Fatal Trade-offs: Public \& Private Responsibilities for Risk, Oxford University Press, 1992.

Problems

14.1 A toll road between Kansas City and Chicago is being considered. Assume that it will be government financed. Name at least three benefits, three disbenefits, and three costs. How could each value be estimated?
14.2 A domed municipal stadium is being touted to attract professional sports franchises. Name at least four each of benefits, disbenefits, and costs. How could these values be estimated? What are some likely spillovers?
14.3 Name at least five benefits of the national initiative for Space Station Freedom. Name three disbenefits. How could these values be estimated?
14.4 A new university parking structure is being considered. Name at least four each of benefits, disbenefits, and costs. How could these values be estimated? What are some likely spillovers?
14.5 A municipal landfill and incineration facility is planned. Name at least three benefits, three disbenefits, and three costs. How could each value be estimated?
14.6 An interstate bypass will completely circle the city. Name at least three benefits, three disbenefits, and three costs. How could each value be estimated?
14.7 A light-rail system will connect the airport, the city center, and a cluster of high-density housing on the other side of the river. Name at least three benefits, three disbenefits, and three costs. How could each value be estimated?
14.8 The right-of-way for a new highway will cost $\$ 1.5$ million. The roadbed and earthworks will cost $\$ 3$ million. The pavement will cost $\$ 2.5$ million, and its life is 20 years. The discount rate is 9%, and the project has an assumed life of 20 years. The new highway will save travelers $\$ 750 \mathrm{~K}$ worth of travel time each year. What is the benefit/cost ratio if the right-of-way cost is the disbenefit to property owners? What is the benefit/cost ratio if the right-of-way cost is the price paid by government in eminent domain proceedings? (Answer: .973, .978)
14.9 In Problem 14.8, assume that the right-of-way and roadbed have perpetual lives. What are the benefit/ cost ratios?
14.10 A busy intersection in MetroCenter needs renovation. Plans call for adding a turn lane, a new computer-controlled signal, and new sidewalks. The estimated cost is $\$ 1 \mathrm{M}$. The intersection's annual maintenance cost will be $\$ 5 \mathrm{~K}$. Users will save $\$ 45 \mathrm{~K}$ in time each year. Fewer accidents are expected to save $\$ 55 \mathrm{~K}$ in property losses annually and $\$ 90 \mathrm{~K}$ for a reduced loss of life for motorists and pedestrians. The renovation is expected to handle traffic for the next 8 years. Using an interest rate of 5%, calculate the project's benefit/cost ratio. (Answer: 1.19)
14.11 Lorra, Missouri, must either contract out its landfill operations or build a new municipal landfill. The city uses a discount rate of 5%, and the city engineer is required to use benefit/cost ratios. Which plan should she choose, and on which ratio(s) should she base the decision? Both sites have lives of 20 years.

	Contract	New Landfill Site
First cost	$\$ 250,000$	$\$ 5,500,000$
Annual:		
\quad Operating cost	750,000	350,000
Citizens' travel	80,000	65,000
Citizens' time	110,000	85,000

14.12 A new airport expansion will cost $\$ 85$ million. The largest amount, $\$ 55$ million, is for land acquisition and major earthworks, which will last as long as the airport is used. The next $\$ 20$ million is for terminal buildings, which will last 50 years; these buildings will cost $\$ 2.5$ million per year in O\&M. The last $\$ 10$ million will be spent on runways. These will also last forever, with a major repaving every 20 years at a cost of $\$ 4$ million. What annual benefit is required for $\mathrm{BC} \geq 1$? Assume an interest rate of 8% and a perpetual life. (Answer: $\$ 9.42 \mathrm{M}$)
14.13 Assume a study period of 100 years with $\$ 0$ salvage values for Problem 14.12. If the initial annual benefit is $\$ 6$ million, what must the annual gradient be for $\mathrm{BC} \geq 1$?
14.14 This comparison is being made for a state government that mandates the use of benefit/cost criteria at an interest rate of 8%. Which ratio(s) should be calculated, and why? Based on your calculations, which mutually exclusive alternative should be chosen? Project B can be repeated in 5 years.

Alternative	A	B
First cost	$\$ 200,000$	$\$ 225,000$
Annual O\&M	$\$ 25,000$	$\$ 15,000$
Salvage value	$\$ 0$	$\$ 50,000$
Life	10 years	5 years
Annual user benefits	$\$ 75,000$	$\$ 85,000$

14.15 The state is evaluating the following alternatives for a court-mandated upgrade of the corrections facilities. The state's interest rate is 10%, and the life of a prison is 60 years. Calculate appropriate benefit/cost ratios and recommend an alternative. Travel time is a disbenefit. The alternatives are far (F), middle (M), and near (N).

Prison	F	M	N
First cost $(\$ M)$	12	15	17
Operating cost $(\$ \mathrm{~K} / \mathrm{yr})$	600	700	750
Law enforcement travel $(\$ \mathrm{~K} / \mathrm{yr})$	500	200	50
Visitor travel time $(\$ \mathrm{~K} / \mathrm{yr})$	200	75	20

14.16 A road costs $\$ 450,000$ to build and $\$ 12,000$ per year for street cleaning. The road is re-striped every 2 years for $\$ 28,000$ and repaved every 10 years for $\$ 290,000$. Assume that the road will last 60 years and that the interest rate is 8%. How many users per year are needed to justify the road if each trip is valued at \$2? (Answer: 40,790)
14.17 To improve a congested intersection, the government must buy the four corner properties: two gas stations, a church, and a bank. Construction will take a year, and the costs will be shared by the federal (30%), state (50%), and the city (20%) governments. Traffic through the intersection is mainly commuters, local residents, and deliveries to and by local businesses. There is some through traffic from other parts of the metropolitan area.
Identify the benefits, disbenefits, and costs that must be considered in evaluating this project. From the city's viewpoint which must be included? From the state's viewpoint? From the federal viewpoint? What viewpoint should be used to evaluate this project?
14.18 Which of the following mutually exclusive alternatives should be selected using benefit/cost analysis?

Alternative	PW of Cost	PW of Benefits
1	$\$ 100 \mathrm{~K}$	$\$ 120 \mathrm{~K}$
2	200 K	225 K
3	250 K	270 K
4	325 K	345 K
5	400 K	420 K

14.19 The city's transit department has a capital budget of $\$ 600,000$. What is the department's opportunity cost of capital and which projects should be done? All projects were evaluated at the city's 6% interest rate.

Project	First Cost	Rate of Return	B/C Ratio at $\mathbf{6 \%}$
A	$\$ 300,000$	23%	1.45
B	100,000	22%	1.50
C	100,000	17%	1.40
D	200,000	19%	1.23
E	100,000	18%	1.26

14.20 The local military base has a capital budget of $\$ 8 \mathrm{M}$. What is the base's opportunity cost of capital, and which projects should be done? All
projects were evaluated at the OMB A-94 rate of 7% interest rate.

Project	First Cost	Rate of Return	B/C Ratio at 7\%
A	$\$ 2 \mathrm{M}$	10%	1.33
B	2 M	18%	1.51
C	1 M	11%	1.28
D	3 M	17%	1.53
E	2 M	14%	1.62
F	3 M	15%	1.44
G	3 M	13%	1.46
H	1 M	12%	1.35

14.21 The state Department of Interior (DOI) must ensure the continued quality of the environment. The state Budget Department has informed the DOI that its budget for the next fiscal year will be between $\$ 2.0 \mathrm{M}$ and $\$ 2.25 \mathrm{M}$ for environmental proposals. Which of the proposals listed below should be funded?
(a) Rank using IRR.
(b) Rank using benefit/cost ratios calculated at an interest rate of 10%.

Proposal	First Cost	Annual Benefits	Life (years)
A	$\$ 125,000$	$\$ 72,500$	2
B	400,000	90,000	6
C	600,000	112,750	8
D	200,000	32,000	12
E	800,000	110,000	15
F	775,000	125,000	10
G	225,000	90,500	4
H	$1,000,000$	123,000	18

14.22 Because of pressure to "complete" a road project, the bike path that goes with it is being postponed. Doing the bike path now would cost $\$ 35,800$. Instead, this feature will be included in the transportation improvement program package that is now being assembled. Because of the state and federal budget cycles, the bike path will be built 3 years from now. The expected cost of doing it then is $\$ 68,000$. What is the implied interest rate for postponing the bike path? (Answer: 23.84%)
14.23 The engineering building at State University needs $\$ 500 \mathrm{~K}$ worth of repair and renovation. The state cannot afford these repairs in the near future. If the repairs are not performed, the building will require
replacement in 8 years. The building will cost $\$ 2.8 \mathrm{M}$ to replace. Determine the implied interest rate for forgoing the repairs.
14.24 Runway construction at the local airport is expected to cost $\$ 35 \mathrm{M}$. The runway will require maintenance costing $\$ 200 \mathrm{~K}$ per year. At the end of each 6-year period, the runway will require resurfacing at a cost of $\$ 1750 \mathrm{~K}$. Assume an interest rate of 6% and a life of 30 years. How many landings and takeoffs per day are needed to justify the runway if each landing or takeoff is worth $\$ 85$ to the airport authority? (Answer: 96)
14.25 A proposed steel bridge has a life of 50 years. The initial cost is $\$ 350,000$, and the annual maintenance costs $\$ 12,000$. The bridge deck will be resurfaced every 10 years (in years $10,20,30$, and 40) for $\$ 90,000$, and anticorrosion paint will be applied every 5 years (in years $5,10,15, \ldots, 45$) for $\$ 22,000$. The state highway department uses an interest rate of 6%, and 800 vehicles per day will go over the bridge. What is the required benefit per vehicle to justify the bridge?
14.26 A new transit system and a new freeway are proposed to relieve congestion. Both have lives of 40 years and no salvage values. Their benefits are comparable at the specified interest rate of 10%. The local taxpayers are responsible for operating costs and the unsubsidized portion of first costs. What is the local EAC of each alternative? What is the overall EAC for each? Is the preferred alternative different for local and national interests?

Factor	Transit System	New Freeway
First cost	$\$ 240 \mathrm{M}$	$\$ 400 \mathrm{M}$
Federal construction subsidy	80%	90%
Annual operating cost	$\$ 80 \mathrm{M}$	$\$ 70 \mathrm{M}$

14.27 A state program is subsidizing first costs for alternative energy usage. Carla and Charlie are the owners of a small architectural and engineering (A\&E) firm. They have found the following data for renovating the heating system of a client's home. Each system should last 20 years. Their client's interest rate is 10%. Which system is preferred by their client? Is this economically efficient from a broader perspective?

Factor	Solar	Gas Furnace
First cost	$\$ 6000$	$\$ 2000$
State subsidy	40%	0%
Annual fuel cost	$\$ 40$	$\$ 400$

14.28 Exhibit 14.8's demand curve describes how users value picnics, fishing, boating, and camping at small state parks. If admission fees are $\$ 1$, estimate the annual receipts for admission to a proposed park. Estimate the consumers' surplus and the total annual benefit for having another park.
(Answer: Consumers' surplus $=\$ 175 \mathrm{~K})$
EXHIBIT 14.8 Consumers' surplus and benefits for small public parks

14.29 Solve Problem 14.28 with an admission fee of $\$ 2$.
14.30 A new toll bridge is to be constructed over the Green River at a cost of $\$ 120 \mathrm{M}$. The bridge requires maintenance costing $\$ 4000$ annually over its 50 -year life. Every 10 years, the bridge will require repainting at a cost of $\$ 1 \mathrm{M}$. The value to motorists using this bridge is estimated to be $\$ 1.60$ per trip. If the interest rate is 10% and 25,000 vehicles per day travel over the bridge, how much toll should be charged for each crossing? Rounding that toll up to the nearest nickel, what is the consumers' surplus?
14.31 A dam may be built at a cost of $\$ 10 \mathrm{M}$ to eliminate the periodic flooding that Lowville experiences. That flooding averages a cost of $\$ 300 \mathrm{~K}$ per year. Additional expenses can be incurred to divert water to another area for irrigation, to add electric power generation, and to permit recreation. Which alternative is best? Since political support is crucial, allocate the costs to the uses. The interest rate is 5%, and the horizon is 50 years.

Calculate a benefit/cost ratio for your recommended alternative.

	Irrigation	Recreation	Electricity
First cost	$\$ 4 \mathrm{M}$	$\$ 200 \mathrm{~K}$	$\$ 3 \mathrm{M}$
Annual cost	100 K	30 K	500 K
Annual benefit	450 K	50 K	850 K

(Answer: $\mathrm{B} / \mathrm{C}=1.05$)
14.32 An engineer failed to allow for a windstorm during construction of a building. Collapse occurred while a crew was trying to add bracing to the structural frame. No one was injured, but one worker was killed. Compensation to the worker's family for lost income will be made using a 7% interest rate. The worker was 25 and had a salary of $\$ 22,000$. Assume retirement at age 65 and an annual \$1000 salary increase. What is the present value of the family's lost income? Is this a realistic estimate of the value of a human life?
14.33 A young man, 30 years of age, was killed while working as a lineman for the local electric authority. His annual salary was $\$ 27,500$. The electric authority also contributed to health insurance coverage and retirement at a cost of 12% of the annual salary. His salary was projected to increase annually by $\$ 1500$, and the lineman was expected to retire at age 55 . What amount should the estate receive for lost income and benefits using an interest rate of 8% ?
14.34 A proposal for dividing a four-lane highway is being considered. The cost is $\$ 6 \mathrm{M}$ for the roadbed, $\$ 3 \mathrm{M}$ every 15 years for pavement, and $\$ 125 \mathrm{~K}$ every year for maintenance. The time savings to travelers are worth $\$ 300 \mathrm{~K}$ per year. Using the NHTSA standard, how many statistical lives must be saved each year to justify the highway? Assume that i is 5% and N is 60 years. (Answer: . 76 life per year)
14.35 How many statistical lives per year must be saved to justify a new bypass around a large city that will cost $\$ 12.5 \mathrm{M}$ to construct and $\$ 135 \mathrm{~K}$ per year to maintain? Time savings for motorists using the bypass are valued at $\$ 100 \mathrm{~K}$ annually. The city uses 7% to evaluate capital projects, and the bypass is expected to handle traffic for 40 years.
14.36 The state Department of Transportation (DOT) is considering a proposal for an additional turn lane at a busy intersection. The added maintenance costs will be $\$ 3000$ annually for the next 10 years, and the time savings to motorists are valued at $\$ 4000$ per year. The improved traffic flow is projected to save .8 statistical life per year. Using an interest rate of 12% and the NHTSA standard, how much should DOT be willing to pay for the improvement?
14.37 Construct a cost-effectiveness measure to rank the following park-acquisition alternatives. Assume that the state's interest rate is 8% and that the horizon is 30 years. If a budget of about $\$ 20 \mathrm{M}$ is established, what is the implicit annual value of each citizen served? Which parks should be created?

Park Site	First Cost $(\$ \mathbf{)})$	Cost/Year $(\$ \mathbf{M})$	Users/Year
A	$\$ 4.4$	$\$.12$	30,000
B	5.3	.22	50,000
C	3.5	.32	25,000
D	5.9	.31	40,000
E	4.2	.24	15,000
F	3.1	.18	20,000
G	4.7	.20	25,000
H	3.9	.16	35,000

(Answer: $\$ 20.85$ per year)
14.38 The federal government is considering investing $\$ 400 \mathrm{M}$ in an East Coast light-rail system. The construction of the stations will receive 58% of the budget. The stations range in size from small to very large. To keep "pork-barrel" decisions to a minimum, each possible station site has been assigned a number. Using the following data, determine which stations should be constructed.

Station	Construction Cost $(\$ \mathbf{M})$	Passengers Served
1	$\$ 35$	230,000
2	25	120,000
3	68	544,000
4	72	390,000
5	47	302,500
6	52	354,000
7	19	140,750
8	8	55,250

14.39 Calculate incremental B / C ratios and IRRs to compare the alternatives presented in Problem 14.11.
14.40 Calculate incremental B/C ratios and IRRs to compare the alternatives in Problem 14.10.
14.41 Calculate incremental B/C ratios and IRRs to compare the alternatives in Problem 14.27.

Minicases

14.42 Prepare a short report on a public project that summarizes the costs, benefits, disbenefits, alternatives, and economic measures used to choose between them. What assumption seems most critical to the validity of the results? (Note: Public projects are much easier to study because many projects have publicly available justifications and environmental impact studies.)
14.43 Report on a list of projects from a public agency, such as a state highway or municipal street department, the EPA, or the Bureau of Reclamation (dams). Often, these are part of a budget request or funding authorization. These projects were (or could be) ranked how?
14.44 Research and report on how an agency of your state evaluates public project proposals. What interest rate and what economic measures are used?
14.45 Research and report on how an agency of your municipality evaluates public project proposals. What interest rate and what economic measures are used?

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 16 Great White Hall

Proposal comparison using B/C analysis for RFP with unclear specifications.

Case 40 Olympic Bid Perspectives

Public sector with data and questions from three perspectives.

Case 41 Metropolitan Highway

Realistic variety of benefits and costs. Requires that assumptions be made.

Case 42 Protecting the Public

P (injury) and fraction of contact wearers must be "guesstimated." Considers opportunity losses to other venues in visitor-days.

Case 43 Bridging the Gap

Difficulty ranges from comparing three alternative bridges with different lives to considering growth in traffic and uncertain construction costs.

Case 44 Sunnyside-Up or Not?

Uncertain growth rates over 30 years and setting utility rates.

Case 45 Transmission Intertie

Electric power project with primary and secondary benefits.

Case 47 Bigstate Highway Department

Capital budgeting including mutually exclusive alternatives. Includes uncertain value of a life.

Case 48 Dot Puff Project Selection

Public-sector capital budgeting with added constraint on man-years required.

Inflation

- THE SITUATION AND THE SOLUTION

Over time, many cash flows increase due to inflation. At the same time, the value that can be purchased by a dollar, a yen, or a euro is changing. These changes in value complicate engineering economic decision making.

The solution is to apply the tool of geometric gradients, since inflation and deflation are often modeled as constant rates rather than as constant amounts.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 15.1 Define inflation and deflation, and estimate inflation rates using indexes.
SECTION 15.2 Identify common terminology and assumptions for inflation.
SECTION 15.3 Solve for PW or EAC when including inflation.
SECTION 15.4 Solve for PW or EAC with different inflation rates for different items.
SECTION 15.5 Include leases, insurance payments, and other prepaid expenses under inflation.
SECTION 15.6 Include loan payments, depreciation, and income taxes under inflation.
SECTION 15.7 Combine four common sources of geometric gradients.

- KEY WORDS AND CONCEPTS

Inflation A decrease in the buying power of the dollar (or euro, yen, etc.); equivalently, increases in the general level of prices.
Deflation An increase in the value of the dollar (or other monetary unit); equivalently, the decrease in the general level of prices.
Geometric gradient A cash flow that increases or decreases at a constant percentage rate (see also Chapter 3).
Consumer price index (CPI) The best-known government measure of inflation, which is the relative composite price of a "market basket" of goods and services.
Producer price indexes (PPIs) Government measures of inflation for different industries. Constant-value dollar Adjusted for inflation so that the dollar has the same purchasing power in different years.

Abstract

Nominal-value dollar Amount on a check or invoice not adjusted for inflation. Real interest rate Interest rate for time value of money over inflation (or adjusted for inflation). Market interest rate A rate for time value of money including an allowance for expected inflation. Differential inflation For an item, how much faster or slower its price is changing compared to prices in general.

15.1 Defining and Measuring Inflation and Deflation

Inflation is a decrease in the buying power of the dollar (or euro, yen, etc.); equivalently, increases in the general level of prices. Deflation is the much rarer opposite condition.

A geometric

gradient is a cash flow that increases or decreases at a constant rate.

Costs that are uniform over the next N years are usually in constant-value dollars.

The consumer

price index (CPI)

measures the yearly cost of a market basket of purchases as compared with the cost in a base year.

Inflation applies to prices in general, which is the economy as a whole. Different inflation rates can also be linked to specific items. If the price of an item is inflating, then more dollars (pesos, yen, etc.) are needed to buy it now than in the past. If an economy is inflationary, then the prices of most or all items are increasing. Deflation is rarer, but it does occur. This term applies when prices are falling rather than increasing, as in inflation. The ANSI standard symbol is f for the rate of inflation (or deflation) in the general level of prices.

Inflation rates are usually estimated as having a constant rate of change. This type of cash flow is a geometric gradient (also known as an escalating series). With inflation, the price increase in year 8 is linked to both the price in year 7 and the inflation rate.

An engineer's annual raise provides an example. When this year's raise is given, it will be based on many factors (the engineer's performance, the firm's profitability, the rate of inflation, and the current market for that engineering specialty). However, it will almost certainly be thought of by the firm and the engineer as a percentage increase over the current salary. This is a geometric gradient, and it is compound growth (see Chapter 2).

Since inflation is so common, why do many economic analyses of engineering projects and most of this text choose not to explicitly address inflation? Consider the many examples and problems with statements like "O\&M costs are expected to be $\$ 9000$ annually for 20 years." Will accounting records for the next 20 years show constant costs? No. It means that in constant-dollar terms the O\&M costs are uniform. In nominal or inflated dollars, we will pay more each year, but each of those dollars is worth less.

Most costs and benefits in the real world and in this text have prices that increase at about the same rate of inflation as the economy as a whole. In most analyses these inflation increases are addressed by simply stating everything in constant-dollar terms and using a real interest rate. There are specific items, such as computers and depreciation deductions, whose inflation rate is clearly expected to differ from the dollar's rate of inflation. This chapter is important for these cases.

The Consumer Price Index (CPI). The best-known measure of inflation (f), in the general level of prices, is the consumer price index (CPI). This index measures the current cost of a "market basket" of family purchases for food, transportation, housing, etc. and divides it by the cost in a specified base year. The year 2008 index of 210.2 shown in Exhibit 15.1 means that 2008 prices are 210.2% of the prices in 1983 , which is the base year. In other words, 110.2% more dollars were paid in 2008 than in the base year to buy
the same market basket of goods and services. Periodically, the government shifts to a new base year.

One of the difficulties in constructing the CPI is that products in the market basket improve due to technological progress. Some, such as computers, do so at a rapid rate. How much of a price increase is for new features, and how much is for the dollar's decreased buying power? Economists analyze the extent that higher prices are for new features to avoid overstating inflation. In addition, the basket changes when new products and services emerge, such as iPods and cloud computing.

Examples 15.1 and 15.2 illustrate the use of Exhibit 15.1. To find a price in year j, the price in year k is multiplied by the index for year j and then divided by the index for year k.

EXHIBIT 15.1 Inflation and the CPI

Year	CPI	Year	CPI	Year	CPI	Year	CPI	Year	CPI
1955	26.8	1966	32.9	1977	62.1	1988	120.5	1999	168.3
1956	27.6	1967	33.9	1978	67.7	1989	126.1	2000	174.0
1957	28.4	1968	35.5	1979	76.7	1990	133.8	2001	176.7
1958	28.9	1969	37.7	1980	86.3	1991	137.9	2002	180.9
1959	29.4	1970	39.8	1981	94.0	1992	141.9	2003	184.3
1960	29.8	1971	41.1	1982	97.6	1993	145.8	2004	190.3
1961	30.0	1972	42.5	1983	101.3	1994	149.7	2005	196.8
1962	30.4	1973	46.2	1984	105.3	1995	153.5	2006	201.8
1963	30.9	1974	51.9	1985	109.3	1996	158.6	2007	210.0
1964	31.2	1975	55.5	1986	110.5	1997	161.3	2008	210.2
1965	31.8	1976	58.2	1987	115.4	1998	163.9		

These CPI indexes are for December of each year (available at http://www.bls.gov). The base index of 100 is in early 1983.

Carol and George are both engineers. In 2001, their combined income was $\$ 105,000$. How much did their income need to be in 2008 to have the same purchasing power?

SOLUTION

From Exhibit 15.1, the indexes for 2001 and 2008 are, respectively, 176.7 and 210.2. Dividing $\$ 105,000$ by the 2001 index states their income in base-year dollars. Multiplying this value by the 2008 index states the required income in 2008 dollars.

$$
\begin{aligned}
\text { Income }_{2008} & =\left(\text { Income }_{2001} / \text { Index }_{2001}\right) \text { Index }_{2008} \\
& =(105,000 / 176.7) \times 210.2=\$ 124,907
\end{aligned}
$$

The federal minimum wage was $\$ 1$ per hour in $1960, \$ 6.55$ in 2008, and $\$ 7.25$ in 2009. Did the pay of a minimum-wage worker really increase?

SOLUTION

This is the same as asking if the costs per hour increased faster than inflation. From Exhibit 15.1, the indexes for 1960 and 2008 are 29.8 and 210.2, respectively. If wages had increased at the CPI, the cost in 2008 would be calculated as follows:

$$
\text { Hourly Wage } 2008=(1 / 29.8) 210.2=\$ 7.05
$$

Since the minimum wage was $50 \notin$ less expensive than this in 2008, the minimum wage had increased more slowly than inflation. It does appear that the minimum wage will catch up to its 1960 buying power in 2009.

Annual Inflation Rate. Exhibit 15.1 can be used to calculate the annual inflation rate. That rate is simply the change in the index for the year divided by the index at the year's beginning. For example, the inflation rate in 2001 is calculated as (176.7-174.0)/174.0, or 1.6%. Exhibit 15.2 shows the annual inflation rates for 36 years.

These inflation rates can change significantly from year to year. In 1964 the rate was 1%. Three years later in 1967, it had tripled to 3%, and then it doubled again by 1969 to 6.2%. From 1978 to 1979 , it increased from 9% to 13.3%. Since World War II, the annual inflation rate has been negative (deflation) only in $1949(-2.1 \%)$ and 1954 ($-.7 \%$). (Note: Other countries have experienced inflation rates in excess of 1000% per year.)

To calculate the inflation rate over more than 1 year requires use of Equation 15.1. Example 15.5 applies Equation 15.1 to the CPI and to the minimum wage. (Note: When Equation 15.1 is applied to a specific item's level of price changes, a subscript is added to f.)

$$
\begin{equation*}
F_{T+t}=F_{T}(1+f)^{t} \tag{15.1}
\end{equation*}
$$

EXHIBIT 15.2 Annual inflation rates

Year	CPI	Inflation Rate	Year	CPI	Inflation Rate
1972	42.5	13.4%	1991	137.9	3.1%
1973	46.2	8.7	1992	141.9	2.9
1974	51.9	12.3	1993	145.8	2.7
1975	55.5	6.9	1994	149.7	2.7
1976	58.2	4.9	1995	153.5	2.5
1977	62.1	6.7	1996	158.6	3.3
1978	67.7	9.0	1997	161.3	1.7
1979	76.7	13.3	1998	163.9	1.6
1980	86.3	12.5	1999	168.3	2.7
1981	94.0	8.9	2000	174.0	3.4
1982	97.6	3.8	2001	176.7	1.6
1983	101.3	3.8	2002	180.9	2.4
1984	105.3	3.9	2003	184.3	1.9
1985	109.3	3.8	2004	190.3	3.3
1986	110.5	1.1	2005	196.8	3.4
1987	115.4	4.4	2006	201.8	2.5
1988	120.5	4.4	2007	210.0	4.1
1989	126.1	4.6	2008	210.2	.1
1990	133.8	6.1			

EXAMPLE 15.3 Average Inflation Rates for Minimum Wage and the CPI

The minimum hourly wage was $\$ 1$ in 1960 and $\$ 7.25$ in 2009. What is the average annual inflation rate in the minimum wage? Compare this with the inflation rate, f, measured by the CPI. Since 2009 data is available only for the minimum wage, the periods will not match exactly. However, the annual rates can be compared.

SOLUTION

The inflation rate for the economy, f, is calculated first, using the CPI values. From Exhibit 15.1 and Example 15.2, the indexes for 1960 and 2008 are 29.8 and 210.2, respectively. In this case, the period is 48 years. The inflation rate for the economy is calculated using Equation 15.1.

$$
210.2=29.8(1+f)^{48}
$$

or

$$
f=(210.2 / 29.8)^{.0208}-1=4.15 \% \text { for the economy, or CPI }
$$

The same calculation for the minimum wage leads to a similar result, since we know the minimum wage has just caught up with inflation (see Example 15.2).

$7.25=1\left(1+f_{\mathrm{MW}}\right)^{49}$

or

$$
f_{\mathrm{MW}}=(7.25 / 1)^{.0204}-1
$$

$=4.13 \%$ for the minimum wage

Producer price

 indexes (PPIs) are a set of measures of the yearly cost of purchases by firms as compared with costs in a base year.Producer Price Indexes. Industries, like consumers, are subject to inflation. However, they purchase different goods and services than do consumers, so the CPI is not the firm's best measure of inflation. The producer price indexes (PPIs) are developed for specific industries, for specific commodities, and for stages of production. Some of the last group are included in Exhibit 15.3. These indexes are correlated with the CPI, but they are more specific and, thus, more accurate-for the industry they apply to. Similar indexes are published by state and private organizations (see Chapter 16 on cost estimating). For example, if you need to estimate the productivity and labor rates of carpenters for a specific metropolitan area, there is likely to be a published index.

EXHIBIT 15.3 Producer price indexes

15.2 Consistent Assumptions for Interest Rates and Cash Flow Estimates

The terms constant-value, year-0, and 2009 dollars adjust for inflation and state prices in constant value terms.

Then or nominal dollars are written on a check or invoice in the year 20XX. These numeric values include inflation in an item's cost.

Inflation Terminology. When a problem says maintenance costs will be $\$ 1500$ per year for 10 years, have those costs been adjusted for inflation? In most cases, a constant amount is a clue that the answer is yes, the costs have been adjusted.

Suppose those same maintenance costs are described as $\$ 1500$ the first year, with yearly increases of 3%. Then, we need to know more to decide. The 3% may be an estimate of: (1) the inflation rate, (2) how much faster than general prices the maintenance costs are inflating, (3) the rate at which the physical amount of maintenance is increasing as equipment gets older, or (4) a combination of items 1 through 3.

Certain words tell us whether the values have been adjusted for inflation. The terms constant-value, year-0, and 2009 dollars adjust for inflation in the item's price and the dollar's purchasing power, so that prices are stated in constant value terms.

Then or nominal dollars are written on a check or invoice in the year 20XX. These numeric values include inflation in an item's cost with no adjustment for changes in the dollar's purchasing power.
(I recommend that the language current dollars be avoided, because it is not clear whether current now or current then or current at that time is intended.)

To summarize, we can divide the terminology into two columns, depending on whether cash flow values have been adjusted for changes in the purchasing power of the dollar:

Adjusted	Not Adjusted
Constant-value	Then
Real	Nominal
Year-0	Tomorrow's
Year-1	Inflated
2002 or 2012	
Today's	
Curren (n)	Eurrent(then)

The constant-value dollar used most frequently in this chapter is the year- 1 dollar. This is the first year's cost for energy, labor, and raw materials and the first year's revenue received from selling products and services. Unless stated otherwise, salvage values and other cash flows are also assumed to be stated in year-1 dollars. First costs are often stated as year-0 dollars.

Matching Interest Rates to Inflation Assumptions. In this book, the interest rate for the time value of money is stated in terms of constant-value dollars. The assumption is that the interest rate is a real interest rate. Thus, if an item's cost is stated in constant-value terms, then inflation can be ignored.

This text's approach matches a common practice of estimating costs in constant-value terms. For example, maintenance costs will be $\$ 1500$ per year, and the salvage value will be 15% of the first cost. In each case, the assumption is that the inflation rates for the maintenance costs and for the used object match the economy's inflation rate. To be consistent, a real interest rate is used.

Differential

 inflation is how much faster or slower an item's price is changing compared to prices in the economy.An item's differential inflation rate equals the item's inflation rate minus the economy's inflation rate.

Another approach is to use a market interest rate. When a bank charges 9\% interest on a loan and the inflation rate is 5%, then the bank is earning a real interest rate of about 4%. The market interest rate of 9% includes both the time value of money and an estimate of current and predicted inflation.

For exact calculation of real and market interest rates, Equation 15.2 is used.

$$
\begin{equation*}
(1+\text { Market rate })=(1+i)(1+f) \tag{15.2}
\end{equation*}
$$

Thus, with a market rate of 9% and an inflation rate of 5%, the real interest rate is 3.81% \{equals $[(1+$ market rate $) /(1+f)]-1$, or $1.09 / 1.05-1\}$. While it is possible to correctly evaluate projects using market interest rates, it usually is easier with the real interest rate, i. Many cash flows are estimated as constant in real terms. If a market interest rate is used with these estimates, then inflation has been adjusted for twice, which is once too often, so the results are wrong. Examples 15.7 through 15.11 in Sections 15.3 and 15.4 illustrate the use of these inflation assumptions.

Differential Inflation. When the inflation rate, f, is 5%, most goods cost 5% more each year. Some items, such as labor or energy costs, might be inflating at a higher or lower rate. If labor's inflation rate is 6%, then it would have a differential inflation rate, $f_{\Delta 1}$, of 1% over the economy's 5% inflation rate. If energy's inflation rate, $f_{\Delta e}$, is 4%, then it would have a differential inflation rate, $f_{\Delta e}$, of -1% over the economy's 5% inflation rate. (Note: A more exact approach for calculating differential inflation rates, described in Equation 15.3 , yields very similar answers.)

An item's differential inflation rate equals the item's inflation rate minus the economy's inflation rate, f. The differential inflation rate is positive if an item's rate of price increases exceeds the economy's rate of price increases.

The differential inflation rate is often estimated directly rather than estimating the two component rates separately. It may be easier and more accurate to estimate that labor costs will go up 1% faster than inflation due to a union contract, for instance, than to estimate the economy's inflation rate. The differential inflation rate is usually more stable or less volatile than the two inflation rates on which it is based. For most items, the differential inflation rate is 0%.

Example 15.4 shows how to calculate a cash flow's inflation-adjusted value given a differential inflation rate. Example 15.5 illustrates a negative differential inflation rate. It also shows that if the differential inflation rate is 0%, then a cash flow's inflationadjusted value matches its value before adjusting for inflation. This implies that inflation can be ignored if the differential inflation rate is 0%. For many (and often most) items, there is no reliable basis for forecasting inflation rates that are different from the general rate.

SOLUTION

The first step is to calculate the differential rate of inflation for accounting services, $f_{\Delta a}$. That equals the item's inflation rate minus the economy's rate, or $6 \%-4 \%=2 \%$. The cash flow for year 1 is $\$ 20,000$; Equation 15.1 is applied to calculate the inflation-adjusted cash flows for years 2 to 5 .

$$
\begin{aligned}
& \mathrm{CF}_{2}=20,000 \times 1.02=\$ 20,400 \\
& \mathrm{CF}_{3}=20,400 \times 1.02=\$ 20,808 \\
& \mathrm{CF}_{4}=20,808 \times 1.02=\$ 21,224 \\
& \mathrm{CF}_{5}=21,224 \times 1.02=\$ 21,649
\end{aligned}
$$

These values represent the true cost of the accounting services. They are becoming slightly more expensive each year, since they are inflating 2% faster than the economy is. These cash flows are stated in the same dollars as CF_{1}-that is, in year- 1 dollars.

EXAMPLE 15.5 Differential Inflation Rate Negative

As in Example 15.4, the accounting services purchased by the engineering consulting firm cost $\$ 20,000$ per year, and the economy's inflation rate, f, is 4% per year. What are the inflationadjusted costs if productivity improvements hold the fee constant at $\$ 20,000$ per year?

SOLUTION

When improved productivity holds the fee constant, the item inflation, f_{a}, is 0%, since the fees are not changing. The differential inflation rate, $f_{\Delta \mathrm{a}}$, is -4%, which is found by subtracting the economy's rate of 4% from the item's rate of 0%. The cash flow for year 1 is $\$ 20,000$; Equation 15.1 is applied to calculate the inflation-adjusted cash flows for years 2 to 5 . Again, these cash flows are stated in the same year-1 dollars as CF_{1}.

$$
\begin{aligned}
& \mathrm{CF}_{2}=20,000 \times .96=\$ 19,200 \\
& \mathrm{CF}_{3}=19,200 \times .96=\$ 18,432 \\
& \mathrm{CF}_{4}=18,432 \times .96=\$ 17,695 \\
& \mathrm{CF}_{5}=17,695 \times .96=\$ 16,987
\end{aligned}
$$

Estimating Differential Inflation. Usually, an item's differential inflation rate is 0\% (within the limits of our ability to forecast the future), and inflation can be ignored for that item. There may be larger dollar amounts shown on invoices and checks, but each dollar is worth less.

For example, when estimating future costs of leased space, labor, and raw materials, most firms will assume a differential inflation rate of 0%. There is inflation in prices, and the rate may be uneven. However, on average, it is about the same as the average rate of inflation in the economy.

Some items-such as energy prices, health care, and land values-may have differential inflation rates. In fact, some items, such as electronics and computers, may actually be declining in nominal dollars and declining more rapidly in constant-value dollars. As shown in Exhibits 15.1 and 15.2 , it is unlikely that the inflation rate will equal 0%.

Inflation rates for the economy and individual items are hard to estimate accurately. However, there is one class of items with a known inflation rate of 0%. Most loans and fixed financial obligations have fixed terms. Even if inflation changes the value of the payments, the payment amounts do not change, and there is a 0% inflation rate for those items. Depreciation and its associated income tax deductions (see Chapters 12 and 13) also have a 0% inflation rate. With fixed payments and deductions, the differential inflation rate is the negative of the economy's inflation rate (equals $0 \%-f$).

Accuracy of Inflation Estimates. Inflation rates can be calculated for historical periods with reasonable accuracy-to two or even three significant digits. In Example 15.3, the inflation rate was calculated to be 4.15%. However, predictions into the future are far less accurate. It is more realistic to estimate inflation rates to one or perhaps two significant digits.

Often, the approach for estimating inflation rates is first to estimate f, the economy's rate. Then, the differential inflation rates for other items is identified as being a percent or two or more higher or lower. When estimates are constructed in this fashion, then a differential inflation rate of 2% or -3% is the natural result.

It is also possible to use Equation 15.3 and the exact theoretical relationship between the different inflation rates to calculate a differential inflation rate. When there is a market rate, 9%, that must be adjusted for inflation, 5%, applying Equation 15.3 results in the real interest rate, $3.81 \%\left(\frac{1.09}{1.05}=1.0381\right)$. Example 15.6 illustrates the calculation of an exact historical differential inflation rate.

$$
\begin{equation*}
1+f_{\text {aitem }}=\frac{1+f_{\text {item }}}{1+f} \tag{15.3}
\end{equation*}
$$

The cost to mail a 1 -ounce letter was $15 ¢$ in 1980 and $42 ¢$ in 2008 . What was the differential rate of inflation in first-class postage?

SOLUTION

The inflation rate for the economy over the 28 years can be calculated with Equation 15.1
$f=\left(\mathrm{CPI}_{2008} / \mathrm{CPI}_{1980}\right)^{1 / 28}-1=(210.2 / 86.3)^{1 / 28}-1=3.23 \%$

The inflation rate for the same period for first-class stamps can be calculated with the same equation.

$$
f_{\text {stamp }}=\left(\text { stamp }_{2008} / \operatorname{stamp}_{1980}\right)^{1 / 28}-1=(42 / 15)^{1 / 28}-1=3.75 \%
$$

As first defined, the differential inflation rate, $f_{\Delta s t a m p}$, equals the arithmetic difference between these, or $.52 \%$. For projection into the future, this would be rounded to the more realistic accuracy of .5\%.

Theoretically, the exact differential inflation rate is calculated by using Equation 15.3.

$$
\begin{aligned}
1+f_{\Delta \text { stamp }} & =\left(1+f_{\text {stamp }}\right) /(1+f) \\
& =1.0375 / 1.0323=1.0050
\end{aligned}
$$

Thus, the exact differential inflation rate is $.50 \%$. This rounds to the same accuracy of $.5 \%$ for a projected differential inflation rate.

The exact differential inflation rate of $.50 \%$ is given in Example 15.6. In estimating future cash flows, that formula's extra precision is misleading. Realistically, there is little difference between a $.50 \%$ and a $.52 \%$ differential inflation rate. In this case, the highestquality inflation estimate would be that first-class postage will inflate at a rate $.5 \%$ above the economy's inflation rate-whatever f turns out to be.

15.3 Solving for PW or EAC When Inflation Is Included

Finding the economic value of cash flows affected by inflation is like any other problem in this text-once the cash flows have been stated in constant-value terms. However, the answer can vary slightly, depending on how that constant value calculation considers differential inflation, as shown in Examples 15.7 through 15.9, which revisit Example 15.4.

Example 15.7 uses the 2% differential inflation rate calculated by subtracting f, the 4% CPI, from the item's inflation rate of 6%. Example 15.8 uses a 1.92% differential inflation rate calculated using the division approach of Equation 15.3. Finally, Example 15.9 shows that using the two rates explicitly is equivalent to the 1.92% rate used in Example 15.8. Example 15.10 shows that equivalent calculations can be done in inflated dollars and discounted with a market interest rate.

EXAMPLE 15.7 PW with a Differential Inflation Rate of 2\%

In Example 15.4, the inflation-adjusted cost of accounting services was calculated for 5 years. These costs begin at $\$ 20,000$ per year. They inflate at 6% per year $\left(f_{a}\right)$, and the economy's inflation rate (f) is 4%. Thus, the differential inflation rate ($\mathrm{f}_{\Delta a}$) was 2% per year. If the engineering firm's interest rate is a real 8%, calculate the PW of these services over the next 5 years.

SOLUTION

First, the year-1 dollars of CF_{1} are chosen as the constant-value unit. In Example 15.4, the 2\% differential inflation rate and Equation 15.1 were used to calculate the inflation-adjusted (or constant-value dollar) cash flows. Each year's cash flow is simply ($1+f_{\mathrm{a}}$) times the previous year's cash flow. Those values, shown in column B of Exhibit 15.4, are simply multiplied by the ($P / F, 8 \%, t$) values of column C. The results, shown in column D , are then summed to calculate the PW. If an EAW were needed, then the PW would be multiplied by ($A / P, 8 \%, 5$).

The PW could be calculated with NPV(A5, B8:B12). The cash flows and the PW are stated in the same year-1 dollars as CF_{1}.

PW of accounting services with 2% differential inflation

	A	B	C	D
1	-\$20,000	CF year 1		
2	4\%	$\mathrm{f}=\mathrm{CPI}$		
3	6\%	$\mathrm{f}(\mathrm{a})=$ inflation rate for accounting		
4	2\%	$\mathrm{f}($ delta-a $)=$ differential rate for accounting		
5	8\%	real interest rate		
6				
7	Year	Constant \$ Cash Flow	PW factor	$\begin{aligned} & \text { PW of } \\ & \text { CF(t) } \end{aligned}$
8	1	-20,000	. 9259	-18,519
9	2	-20,400	. 8573	-17,490
10	3	-20,808	. 7938	-16,518
11	4	-21,224	. 7350	-15,600
12	5	-21,649	. 6806	-14,734
13			Total	-\$82,860

Using the data from Example 15.7 (and Example 15.4) and Equation 15.3, calculate the exact differential inflation rate and the PW of the accounting services over the next 5 years.

SOLUTION

First, the year-1 dollars of CF_{1} are chosen as the constant-value unit. Equation 15.3 divides the factor for inflation in accounting services $\left(1+f_{\mathrm{a}}\right)$ by $(1+f)$ rather than using the 2% difference between the inflation rates.

$$
f_{\Delta \mathrm{a}}=(1.06 / 1.04)-1=1.92 \%
$$

As in Example 15.4, the differential inflation rate, now 1.92\%, and Equation 15.1 are used to calculate the inflation-adjusted cash flows that are shown in column B of Exhibit 15.5.

With the different value for the differential inflation rate, a different PW is calculated. However, the new PW of $-\$ 82,738$ differs from the one calculated in Example 15.7 of $-\$ 82,861$ by only $.15 \%$. The cash flows and the PW are stated in the same year-1 dollars as CF_{1}.

EXHIBIT 15.5 PW of accounting services with 1.92% differential inflation

	A	B	C	D	E
1	-\$20,000	CF year 1			
2	4\%	$\mathrm{f}=$ CPI			
3	6\%	$\mathrm{f}(\mathrm{a})=$ inflation rate for accounting			
4	1.92\%	$\mathrm{f}($ delta-a) $=$ exact differential rate for accounting			
5	8\%	real interest rate			
6					
7	Year	Constant \$ Cash Flow	$\begin{gathered} \text { PW } \\ \text { factor } \end{gathered}$	PW of CF(t)	
8	1	-20,000	. 9259	-18,519	
9	2	-20,385	. 8573	-17,477	
10	3	-20,777	. 7938	-16,493	
11	4	-21,176	. 7350	-15,565	
12	5	-21,583	. 6806	-14,689	
13			Total	-\$82,743	

Rather than using the differential inflation rate, it is possible to use the two inflation rates, such as for the accounting services $\left(f_{\mathrm{a}}\right)$ and the economy (f). Equation 15.1 is used to calculate the nominal-dollar cash flows.

Then, to compute the inflation-adjusted, constant-value dollars or real cash flows, Equation 15.4 is used. This equation recognizes that the higher the inflation rate for the economy (f), the less each of the nominal dollars is really worth. This equation is used in Example 15.9. This equation assumes that the real and nominal values for CF_{1} are equal, so year-1 dollars are the assumed base.

$$
\begin{equation*}
\text { Real } \mathrm{CF}_{t}=\text { Nominal } \mathrm{CF}_{t} /(1+f)^{t-1} \tag{15.4}
\end{equation*}
$$

EXAMPLE 15.9 PW with Two Inflation Rates

In Examples 15.7 and 15.8, the PW of the cost of accounting services was calculated using differential inflation rates. Calculate the PW using the 6% inflation rate for the services $\left(f_{\mathrm{a}}\right)$ and the 4% inflation rate for the economy (f).

SOLUTION

First, the year-1 dollars of CF_{1} are chosen as the constant-value unit. The next step is to apply Equation 15.1 to calculate the nominal-dollar cash flows shown in column B of Exhibit 15.6. These are calculated at the 6% inflation rate $\left(f_{\mathrm{a}}\right)$ for accounting services. Then, Equation 15.4 and f, the economy's inflation rate of 4%, are used to calculate the real, or constant-value, cash flows shown in column C. Column B can be calculated recursively; that is:

$$
\text { Nominal } \mathrm{CF}_{t}=\text { Nominal } \mathrm{CF}_{t-1}\left(1+f_{a}\right)
$$

However, column C cannot be computed recursively; it must use Equation 15.4.
Those column C values are simply multiplied by the ($P / F, 8 \%, t$) values in column D. The result is shown and then summed in column E. If an EAW were needed, then the PW would be multiplied by $(A / P, 8 \%, 5)$. As in the previous examples, columns D and E could be replaced by NPV (A5, C9:C13) function.

This approach is identical mathematically to that used in Example 15.8. As before, the constant-value dollar cash flows and the PW are measured in year- 1 dollars. A market interest rate computed using Equation 15.2 can be used to compute the PW from the nominal cash flows. The NPV function computes the PW in year-0 dollars. Thus, the formula in B14 includes ($1+\mathrm{A} 2$) or $(1+f)$ to convert to year- 1 dollars.

PW of accounting services with separate inflation rates

	A	B	C	D	E
1	-\$20,000	CF year 1			
2	4\%	$\mathrm{f}=\mathrm{CPI}$			
3	6\%	$\mathrm{f}(\mathrm{a})=$ inflation	ate for accol		
4	1.92\%	$\mathrm{f}($ delta-a) $=$ ex	differential	for ac	
5	8\%	real interest rat			
6	12.32\%	market interest			
7					
8	Year	Nominal \$ Cash Flow	Constant \$ Cash Flow	$\begin{aligned} & \text { PW } \\ & \text { factor } \end{aligned}$	PW of CF(t)
9	1	-20,000	-20,000	. 9259	-18,519
10	2	-21,200	-20,385	. 8573	-17,477
11	3	-22,472	-20,777	. 7938	-16,493
12	4	-23,820	-21,176	7350	-15,565
13	5	-25,250	$-21,583$. 6806	-14,689
14		-\$82,743		Total	-\$82,743
15		$=\mathrm{NPV}(\mathrm{A} 6, \mathrm{~B} 9: \mathrm{B} 13) *(1+\mathrm{A} 2)$			

15.4 Inflation Examples with Multiple Inflation Rates

Examples 15.10 and 15.11 are more complex problems. They have multiple cash flows, and only some of the cash flows are affected by differential inflation. Later sections explicitly deal with inflation and leases or prepaid expenses (Section 15.5) and taxes or loans (Section 15.6).

Process Engineering Design is evaluating whether to upgrade to a more highly computerized design approach. The change will increase the annual cost of upgrading software, training, and replacing computers by $\$ 25 \mathrm{~K}$. The change also requires a time-0 expense of $\$ 50 \mathrm{~K}$ for new software licenses and training.

The continuing computer costs are expected to fall by 5% per year, while f is 4% per year. The new design approach is expected to save $\$ 35 \mathrm{~K}$ per year in engineering labor costs. Those costs have a differential inflation rate of 2% per year.

If the firm uses a real interest rate of 10%, what is the EAW of the change? Use a time horizon of 5 years.

SOLUTION

First, the year-1 dollars of CF_{1} are chosen as the constant-value unit. The next step is to calculate the differential inflation rates. The rate for engineering labor is given as 2%. The differential inflation rate for computer costs $\left(f_{\Delta c}\right)$ is found by subtracting $f(4 \%)$ from the inflation rate for computers (-5%) to get -9%. The year-1 cash flows of $\$ 25 \mathrm{~K}$ and $\$ 35 \mathrm{~K}$ are assumed to be stated in year- 1 dollars. The time -0 cost of $\$ 50 \mathrm{~K}$ is more likely to be stated as year- 0 dollars; thus, it is multiplied by $(1+f)$ to find the value for D11 (time-0 cash flow in year-1 dollars.)

In column B of Exhibit 15.7, the constant-value dollar cash flows for computing are found by multiplying the previous year's value by $\left(1+f_{\Delta c}\right)$, or .91 . Similarly, in column C, the constant-value dollar cash flows for engineering-labor savings are found by multiplying the previous year's value by $\left(1+f_{\Delta e 1}\right)$, or 1.02 .

Column D includes the time-0 expense as well as the total from the two annual costs. The PW is found using $\{$ D11 + NPV(A8,D12:D16) $\}$. Multiplying the total PW, $\$ 4978$, by $(A / P, 1.5)$ (equals .2638) or using -PMT (A8,A16,D17) gives the EAW of $\$ 1313$ in year-1 dollars.

EXHIBIT 15.7 Multiple inflation rates for Process Engineering Design

	A	B	C	D	E
1	-\$50,000	first cost for software \& training			
2	-\$25,000	increased computing cost yr 1			
3	\$35,000	decreased engineering labor yr 1			
4	4\%	$\mathrm{f}=$ CPI			
5	-5\%	$\mathrm{f}(\mathrm{c})=$ inflation rate for computing			
6	2\%	f (delta-el) $=$ differential rate for engineering labor			
7	-9.00\%	$\mathrm{f}($ delta-c) $=$ differential rate for computing			
8	10\%	real interest rate			
9					
10	Year	Computing Constant \$ Cash Flow	Engineering Labor Constant \$ Cash Flow	$\begin{aligned} & \text { Total CF(t) } \\ & \text { in yr-1 \$s } \end{aligned}$	
11	0			-52,000	
12	1	-25,000	35,000	10,000	
13	2	-22,750	35,700	12,950	
14	3	-20,703	36,414	15,712	
15	4	-18,839	37,142	18,303	
16	5	-17,144	37,885	20,741	
17			PW=	\$4,978	
18				EAW	

EXAMPLE 15.11 PW for a Dam

The dam will supply annual recreation benefits of $\$ 500 \mathrm{~K}$ for 250 users per day and 200 days per year at $\$ 10$ per user-day. However, its main purpose is to generate electricity. It will save $\$ 3$ million in fuel costs for Arctic Power \& Light. The dam will cost $\$ 400 \mathrm{~K}$ annually for labor to run and maintain and $\$ 40$ million to build.

Calculate the PW using a real interest rate of 4% and a 25 -year life. The differential interest rates are 0% for recreation, 2% for fuel cost, and 1% for labor. There is a 5% inflation rate for the economy (f).

PW of a dam

	A	B	C	D	E	
1	All costs are in \$1000s					
2	-\$40,000	first cost for the dam				
3	\$500	recreation benefits				
4	\$3,000	savings in fuel costs				
5	-\$400	labor to operate				
6	5\%	$f=\mathrm{CPI}$				
7	0\%	f (delta-rec)				
8	2\%	f (delta-fuel) $=$ differential rate for fuel				
9	1\%	$\mathrm{f}($ delta-labor $)=$ differential rate for labor				
10	4\%	real interest rate				
11						
12		Year	Recreation Constant \$ Cash Flow	Fuel Savings Constant \$ Cash Flow	Labor Constant \$ Cash Flow	Total CF(t) in year-1 \$
13	0				-42,000	
14	1	500	3000	-400	3,100	
15	2	500	3060	-404	3,156	
16	3	500	3121	-408	3,213	
17	4	500	3184	-412	3,272	
18	5	500	3247	-416	3,331	
19	6	500	3312	-420	3,392	
20	7	500	3378	-425	3,454	
21	8	500	3446	-429	3,517	
22	9	500	3515	-433	3,582	
23	10	500	3585	-437	3,648	
24	11	500	3657	-442	3,715	
25	12	500	3730	-446	3,784	
26	13	500	3805	-451	3,854	
27	14	500	3881	-455	3,926	
28	15	500	3958	-460	3,999	
29	16	500	4038	-464	4,073	
30	17	500	4118	-469	4,149	
31	18	500	4201	-474	4,227	
32	19	500	4285	-478	4,306	
33	20	500	4370	-483	4,387	
34	21	500	4458	-488	4,470	
35	22	500	4547	-493	4,554	
36	23	500	4638	-498	4,640	
37	24	500	4731	-503	4,728	
38	25	500	4825	-508	4,817	
39				PW	\$16,579	

SOLUTION

First, the year- 1 dollars of CF_{1} are chosen as the constant-value unit. In this case, f is used only to state the first cost in year-1 dollars, since the real interest rate and each of the differential inflation rates are given. Each annual benefit, savings, and expense is shown as a column in Exhibit 15.8, with the differential rate for each applied. Note that all cash flows in the table are stated in $\$ 1000$'s, and the initial data for annual cash flows are assumed to be year- 1 dollars. The first cost is assumed to be in year- 0 dollars. Thus, cell E13 multiplies the first cost by to state it in year- 1 dollars.

Column D includes the time-0 expense and totals the annual cash flows in constant-dollar terms. The PW of column D at an interest rate of 4% is found using \{E13 + NPV(A10, E14: E38) \}.

These examples have assumed that annual cash flows are stated in year- 1 dollars and that PWs and EAWs should be stated in year-1 dollars. Other assumptions are possible. For example, all cash flows can be estimated in year- 0 dollars. Thus, when considering inflation for real problems, study the data to learn what assumptions have been made. Then, state the assumptions clearly.

15.5 Leases and Other Prepaid Expenses

Lease, insurance, and subscription payments are typically made at the beginning of the period rather than at the end. These costs inflate in exactly the same fashion as do other costs; however, because of their difference in timing, extra care is needed to clarify which assumption of year-0 or year- 1 dollars is being used. For these prepaid expenses, the first cash flow is typically at time 0 and stated in year- 0 dollars.

Example 15.12 illustrates the application of inflation with lease payments, and its answer is in year-0 dollars. Example 15.13 includes both insurance payments and end-ofperiod energy costs, and its answer is in year- 1 dollars.

EXAMPLE 15.12 Valuing Lease Payments

TomKat Engineering has grown to the size that its two principals, Katherine and Tom, want to maintain. They are considering a long-term lease for their office space. To maintain flexibility during the firm's growth period, all leases have been for a year, and the company has moved or expanded its space four times. Now, the firm may be able to save money by leasing for a longer period.

The firm's lease will cost $\$ 120,000$ to extend for another year. Each year, this cost has been increasing by f, the inflation rate, 5%. The firm's landlord is also willing to write a lease for $\$ 120,000$ per year for a 3-year term. In present value terms, how much do they save by making the longer-term commitment if the firm's discount rate is 15% ? (Assume that this is a real interest rate.)

SOLUTION

As shown in Exhibit 15.9, lease payments are prepaid expenses. These payments would normally be made monthly, but annual payments have been assumed to simplify the calculations. The

TomKat lease payments in constant and then dollars

exhibit includes both constant-value, year-0 dollars and then-dollar values. The calculations use the constant-value numbers, which match the assumption that the interest rate is a real rate and not a market rate.

If an annual lease is used for each year, then there is no differential inflation, and f, the 5% inflation rate, can be ignored.

$$
\begin{aligned}
\mathrm{P}_{\text {annual lease }} & =-120,000[1+(P / A, .15,2)] \\
& =(-120,000)(1+1.626)=-\$ 315,120
\end{aligned}
$$

(Note: The $-\$ 315,120$ is stated in year-0 dollars.)
If the 3-year lease is used, then differential inflation exists. The lease payments are fixed at $\$ 120,000$ per year, but the payments for years 2 and 3 are made in "cheaper" or less valuable dollars. First, we convert these to year-0 dollars at the ends of years 1 and 2, which adjust for 5\% inflation.

$$
\begin{aligned}
& \text { Lease }_{2}=-120,000(P / F, .05,1)=-120,000 / 1.05=-\$ 114,286 \\
& \text { Lease }_{3}=-120,000(P / F, .05,2)=-114,286 / 1.05=-\$ 108,844
\end{aligned}
$$

Then, we find the present worth of all three cash flows.

$$
\begin{gathered}
\mathrm{PW}\left(\text { Lease }_{1}\right)=-120,000(P / F, .15,0)=-120,000 / 1=-\$ 120,000 \\
\mathrm{PW}\left(\text { Lease }_{2}\right)=-114,286(P / F, .15,1)=-114,286 / 1.15=-\$ 99,379 \\
\mathrm{PW}\left(\text { Lease }_{3}\right)=-108,844(P / F, .15,2)=-108,844 / 1.15^{2}=-\$ 82,302 \\
\mathrm{P}_{3 \text {-year lease }}=-\$ 301,681, \text { which is } \$ 13,440 \text { cheaper in year-0 dollors. }
\end{gathered}
$$

EXAMPLE 15.13 Insurance for Copper River Valves

Copper River Valves is evaluating whether to add a new line of valves designed for more demanding and hazardous applications. Most of the annual costs are for labor, purchased parts, and materials. These begin at $\$ 25 \mathrm{~K}$ in year 1 , and they have no differential inflation rate. The liability insurance premiums are expected to increase at a differential inflation rate of 6% from an initial cost of $\$ 5 \mathrm{~K}$. The energy costs will decrease at a differential inflation rate of -2% from an initial cost of $\$ 7 \mathrm{~K}$. The inflation rate, f, is 3%.

For planning purposes, the demand is assumed to be constant in volume. The annual income is $\$ 90 \mathrm{~K}$ in year 1 , and there is no differential inflation rate for revenue. Capital equipment costing $\$ 200 \mathrm{~K}$ is required. The equipment will have no salvage value after 10 years. What is the EAW of this line of valves if i equals 10% ?

SOLUTION

Assume the initial insurance cost $(\$ 5000)$ and the first cost $(\$ 200 \mathrm{~K})$ are stated in year-0 dollars. Convert these to year- 1 dollars by multiplying by $(1+f)$, or 1.03 . The time- 0 cash flow stated in

EXHIBIT 15.10 Insurance for Copper River Valves

	A	B	C	D	E	F
1	-\$200,000	first cost for capital equipment				
2	-\$5,000	insurance				
3	-\$7,000	energy				
4	-\$25,000	labor \& materials				
5	\$90,000	revenue				
6	3\%	$\mathrm{f}=\mathrm{CPI}$				
7	6\%	f(delta-insurance)				
8	-2\%	$\mathrm{f}($ delta-energy $)=$ differential rate for energy				
9	0\%	f (delta-labor) $=$ differential rate for labor				
10	0\%	$\mathrm{f}($ delta-revenue $)=$ differential rate for revenue				
11	10\%	real interest rate				
12						
13	Year	Insurance Constant \$ Cash Flow	Energy Constant \$ Cash Flow	Labor \& Materials Constant \$ Cash Flow	Revenue Constant \$ Cash Flow	Total CF(t) in year-1 \$
14	0	-5,150				-211,150
15	1	-5,459	-7000	-25,000	90,000	52,541
16	2	-5,787	-6860	-25,000	90,000	52,353
17	3	-6,134	-6723	-25,000	90,000	52,143
18	4	-6,502	-6588	-25,000	90,000	51,910
19	5	-6,892	-6457	-25,000	90,000	51,652
20	6	-7,305	-6327	-25,000	90,000	51,367
21	7	-7,744	-6201	-25,000	90,000	51,055
22	8	-8,208	-6077	-25,000	90,000	50,715
23	9	-8,701	-5955	-25,000	90,000	50,344
24	10		-5836	-25,000	90,000	59,164
25					PW	\$109,599

year-1 dollars equals $-5150-200 \mathrm{~K}(1.03)$, or $-\$ 211,150$. The constant-value dollar cost for the liability insurance is computed in column B of Exhibit 15.10, using the 6% differential inflation rate. Each year's constant-value cash flow is 1.06 times the previous year's.

Column C computes the constant-value dollar cost for energy, using the -2% differential inflation rate. Column D is the total constant-value dollar cash flow for labor and materials. Column E details the annual revenue. Finally, year 0 of column F includes the first cost and initial insurance. Years 1 through 10 in column F total the cash flows.

The PW is $\$ 109,599$, and the EAW is found by multiplying this value by $(A / P, 10 \%, 10)$ (equals .1627) to get $\$ 17,832$. These values are stated in year- 1 dollars like the $\$ 25 \mathrm{~K}$ in annual costs and $\$ 90 \mathrm{~K}$ in annual income.

15.6 Depreciation and Loan Payments

Inflation reduces the value of depreciation deductions for tax computations and it reduces the cost of interest payments on loans.

Two categories of costs have cash flows that do not change with inflation: (1) tax reductions due to depreciation and (2) payments on loans or bonds with fixed interest rates.

Depreciation is computed on the initial cost of the capital equipment. Thus, higher rates of inflation decrease the value of the fixed depreciation deduction. Since the depreciation deduction is fixed by the cost of the purchase, its inflation rate is 0%; that is, it does not change as prices change. Thus, its differential inflation rate is approximately $-f$, the negative of the inflation rate for the economy. The exact value is found using Equation 15.3:

$$
1+f_{\text {دitem }}=\frac{1+f_{\text {item }}}{1+f}
$$

This rate is larger than most differential inflation rates, but its effect is limited by tax "sharing" between the firm and the government. Example 15.14 illustrates this effect.

High rates of inflation reduce the importance of depreciation. This makes it less likely that an after-tax analysis will recommend different choices than a before-tax analysis.

Loans or bonds with fixed interest rates have payments that do not change with inflation. Making payments on a fixed-rate mortgage, for example, is much easier if annual raises keep up with inflation, since the house payment becomes a smaller fraction of the nominal and real monthly income (see Example 15.15). Of course, the expected inflation rate is part of the process by which the interest rate for the loan is determined.

Firms also borrow money for which the interest payments are tax deductible. Example 15.16 illustrates tax effects for depreciation and interest payments. The effect of inflation reduces the real cost of making payments, which is the opposite of inflation's effect on the real value of the depreciation deduction. Thus, inflation tends to matter more if only one of fixed-loan payments or depreciation occurs on a project.

Copper River Valves is evaluating some manufacturing equipment whose first cost is $\$ 250 \mathrm{~K}$. The operating costs are $\$ 45 \mathrm{~K}$ per year in year- 0 dollars, and the salvage value is $\$ 0$ after 10 years. The firm's real after-tax interest rate is 9%, and the firm's profits average $\$ 40$ million per year. Inflation is expected to average 7% over the next 10 years. What is the EAC of this equipment? How much higher or lower is this than the value that ignores inflation?

SOLUTION

Since the operating costs are stated in year- 0 dollars, the first cost will be as well. Then, which values are affected by f, the inflation rate? The first cost is at time 0 , so it is not affected. However, the depreciation deduction is affected, and it has a differential inflation rate found using Equation 15.3 of $f_{\Delta \text { depr. }}=-6.54 \%$. The annual $\$ 45 \mathrm{~K}$ in operating cost is best assumed to have no differential inflation. Thus, the easiest way to include inflation is to convert the depreciation deduction from nominal to year-0 dollars.

EXHIBIT 15.11 Depreciation and inflation at Copper River Valves

	A	B	C	D	E	F
1	\$250,000	first cost for cap	equipment			
2	7	MACRS class				
3	10	N				
4	\$45,000	operations cost				
5	7\%	$\mathrm{f}=\mathrm{CPI}$				
6	-6.54\%	f(delta-depreciat				
7	35\%	tax rate				
8	9\%	real interest rate				
9						
10	Year	MACRS Deduction Nominal \$	MACRS Deduction Constant \$	Taxable Income w/ Operations Cost	Tax	$\operatorname{ATCF}(\mathrm{t})$ in year-0 \$
11	0					-250,000
12	1	35,714	33,378	-78,378	-27,432	-17,568
13	2	61,224	53,476	-98,476	-34,467	-10,533
14	3	43,732	35,698	-80,698	-28,244	-16,756
15	4	31,237	23,831	-68,831	-24,091	-20,909
16	5	22,312	15,908	-60,908	-21,318	-23,682
17	6	22,312	14,868	-59,868	-20,954	-24,046
18	7	22,312	13,895	-58,895	-20,613	-24,387
19	8	11,156	6,493	-51,493	-18,023	-26,977
20	9			-45,000	-15,750	-29,250
21	10			-45,000	-15,750	-29,250
22					PW =	-\$385,166
23					PMT $=$	-\$60,017

From Exhibit 12.7, manufacturing equipment has a 7 -year recovery period for MACRS. The VDB function (see Section 12.9) is used to compute the MACRS deduction in column B of Exhibit 15.11. Column C uses the differential inflation rate to state this tax deduction in year-0 dollars. (Since the first cost is at time 0 and the tax deduction is at the end of the first year, Equation 15.1 is used.)

Column D shows the taxable income in year- 0 dollars. This is computed by subtracting the column C values from the operations cost of $-\$ 45,000(\$ A \$ 4)$. Column E computes the tax savings, or negative tax, from the costs of this equipment by multiplying each year's value in column D times the tax rate shown in cell \$A\$6. From Chapter 13, that tax rate is 35% with $\$ 40 \mathrm{M}$ in pretax profits.

Column F computes the ATCF by subtracting the negative tax in column E from the operations cost of $-\$ 45,000$ in $\$ A \$ 4$. The function NPV(A7,F11:F20) + F10 is used to find in year-0 dollars the PW of $-\$ 385,166$. The EAC is found by multiplying this value by ($A / P, 9 \%, 10$) or .1558 , to get $\$ 60,017$.

Ignoring inflation's impact on depreciation at Copper River Valves

	A	B	C	D	E	F
1	\$250,000	first cost for capital equipment				
2	7	MACRS class				
3	10	N				
4	\$45,000	operations cost				
5	0\%	$f=$ CPI				
6	0.00\%	f(delta-depreciation)				
7	35\%	tax rate				
8	9\%	real interest rate				
9						
10	Year	MACRS Deduction Nominal \$	MACRS Deduction Constant \$	Taxable Income w/ Operations Cost	Tax	$\begin{gathered} \operatorname{ATCF}(\mathrm{t}) \text { in } \\ \text { year-0 \$ } \end{gathered}$
11	0					-250,000
12	1	35,714	35,714	-80,714	-28,250	-16,750
13	2	61,224	61,224	-106,224	-37,179	-7,821
14	3	43,732	43,732	-88,732	-31,056	-13,944
15	4	31,237	31,237	-76,237	-26,683	-18,317
16	5	22,312	22,312	-67,312	-23,559	-21,441
17	6	22,312	22,312	-67,312	-23,559	-21,441
18	7	22,312	22,312	-67,312	-23,559	-21,441
19	8	11,156	11,156	-56,156	-19,655	-25,345
20	9			-45,000	-15,750	-29,250
21	10			-45,000	-15,750	-29,250
22					PW	-\$372,685
23						- \$58,072

To calculate the value ignoring inflation's impact on depreciation, the easiest approach is to change the differential inflation rate for the MACRS deduction to 0%, as shown in Exhibit 15.12 . At $-\$ 372,685$, the PW is better (less negative) when ignoring inflation, since the MACRS deduction is larger in year-0 dollars. The EAC is $\$ 58,072$, which is $\$ 1945$ or 3.2% lower. While this difference is small, in some industries profits are less than 10% of costs, so this difference could amount to half of the potential profits linked to this machinery.

EXAMPLE 15.15 Mortgage Interest and Inflation

What is the constant-dollar, after-tax cost (the IRR) of a mortgage loan? The loan is for $\$ 100 \mathrm{~K}$ at 9%, with 30 equal annual payments. Assume inflation is 4% and that the taxpayer itemizes and is in the 27.5% tax bracket.

SOLUTION

This is a simplification of a typical mortgage, which has 360 monthly rather than 30 annual payments. The most intuitive way to solve this problem is to calculate interest payments and tax savings in nominal dollars. Then, nominal ATCFs are converted to year-0 dollars. Equation 15.3 is used to compute $f_{\Delta \text { loan }}(=-3.85 \%)$.

In Exhibit 15.13, columns B and C summarize the amortization schedule over the 30 years. In column B, each year's interest payment is computed using IPMT, or each equals 9% of the previous year's loan balance. The annual payment of $\$ 9734$, shown in the data block for column B, is computed using PMT(loan rate, $N,-$ amount borrowed) or PMT(A3,A2,-A1). Each year's principal payment is $\$ 9734$ minus the year's interest payment. This is the yearly change in the loan balances shown in column C.

In column D, each year's tax savings is computed as 27.5% of the year's interest payment. This is subtracted from the annual payment of $\$ 9734$ to calculate column E, the after-tax cash flows in nominal dollars.

In column F, each of these values is converted to year- 0 dollars using the -3.85% value of $f_{\Delta l o a n}$. This is the first point in this example where inflation is considered. An answer in year- 0 dollars is desired (this is when the $\$ 100,000$ is received), and the first payment is made a full year later, at the end of the year. Thus, the conversion formula in column F is:

$$
\mathrm{ATCF}_{\text {year-0\$ }}=\operatorname{Nominal} \mathrm{ATCF} /(1+f)^{t}
$$

Finally, the IRR is computed using $\operatorname{IRR}(\mathrm{F} 10: \mathrm{F} 39)$. Note that this interest rate is only 2.43% ! The dramatic drop from 9% before tax deductions and inflation is because the tax deduction is based on the full interest payment, so the home owner really only pays about ($1-27.5 \%$) times 9%, or 6.52%, interest after taxes. Then, the 4% inflation rate reduces the true cost of this to about 2.52%.

To calculate this rate more exactly and to match the results of Exhibit 15.13, Equation 15.2 is used to divide 1.06525 by 1.04 to get 1.0243 or 2.43%.

After-tax mortgage loan rate considering inflation

Assume that the Copper River Valves' manufacturing equipment evaluated in Example 15.14 will be financed with a 5 -year, 11% loan that has equal annual payments. What is the EAC of this equipment? Check this answer by computing the PW of the loan separately and then combining that PW with the PW from Example 15.14. That equipment had a first cost of $\$ 250 \mathrm{~K}$ and annual operating costs of $\$ 45 \mathrm{~K}$-both in year-0 dollars.

SOLUTION

The first step is to calculate the annual payment.

$$
\text { Loan payment }=250 \mathrm{~K}(A / P, 11 \%, 5)=250 \mathrm{~K} \times .2706=\$ 67.65 \mathrm{~K}
$$

This value is subject to a differential inflation rate of -7%, like the MACRS tax deduction. Note that if inflation and the tax deduction on the interest were not decreasing the true cost of the payments, a firm that uses an interest rate of 9% would not borrow money at 11%.

EXHIBIT 15.14 Interest, depreciation, and inflation at Copper River Valves

	A	B	C	D	E	F	G	H	I
1	\$250,000	first cost for	ital equipme						
2	7	MACRS clas							
3	10	N							
4	11\%	loan rate							
5	5	loan term							
6	\$67,643	loan payment							
7	-\$45,000	operations ca	flow						
8	7\%	$\mathrm{f}=\mathrm{CPI}$							
9	35\%	tax rate							
10	9\%	real interest r							
11									
12	Year	MACRS Deduction Nominal \$	Interest Portion of Loan	Principal Portion of Loan	Operations Cost in Nominal \$s	Taxable Income in Nominal \$s	Tax	ATCF in Nominal \$	ATCF in Year-0 \$
13	0								
14	1	35,714	27,500	40,143	-48,150	-111,364	-38,978	-76,815	-71,790
15	2	61,224	23,084	44,558	-51,521	-135,829	-47,540	-71,623	-62,558
16	3	43,732	18,183	49,460	-55,127	-117,042	-40,965	-81,805	-66,777
17	4	31,237	12,742	54,900	-58,986	-102,965	-36,038	-90,591	-69,111
18	5	22,312	6,703	60,939	-63,115	-92,130	-32,246	-98,512	-70,238
19	6	22,312			-67,533	-89,845	-31,446	-36,087	-24,046
20	7	22,312			-72,260	-94,572	-33,100	-39,160	-24,387
21	8	11,156			-77,318	-88,474	-30,966	-46,352	-26,977
22	9				-82,731	-82,731	-28,956	-53,775	-29,250
23	10				-88,522	-88,522	-30,983	-57,539	-29,250
24								PW=	-\$331,731

Exhibit 15.14 calculates columns B through H in nominal dollars, then converts them to constant-value dollars in column I. Columns C and D are calculated as they were in Exhibit 15.13. For each year in column F, the taxable income equals the cash flow for operating costs minus the MACRS deduction and minus the interest portion of the loan payment. For each year in column G, the after-tax cash flow (ATCF) equals the cash flows for operating costs minus the loan payment (principal and interest) minus taxes.

From Exhibit 15.14, the PW has changed to $-\$ 331,731$ with the loan from $-\$ 385,166$ in Example 15.14. This $\$ 53,435$ difference occurs because the cost of the loan is less than the firm's interest rate, which is 9% after taxes. In fact, as detailed in Exhibit 15.15, the loan's true cost at $.14 \%$ is about 0%. As stated in Example 15.15, the loan's cost can be approximated as (pretax rate) ($1-$ the tax rate) minus f, the inflation rate. This equals:

$$
\text { After-tax interest rate } \approx .09(1-.35)-7 \%=.15 \% \approx 0 \%
$$

Exhibit 15.15 computes the PW of the loan using nominal dollars for the interest portion of the loan payment and for the resulting tax savings. These are converted in column F to year- 0 dollars by dividing the nominal values by $(1+f)^{t}$. The loan's PW equals $\$ 53,436$ (the same value as above).

After-tax PW of loan for Copper River Valves

	A	B	C	D	E	F
1	\$250,000	amount borrowed				
2	5	N				
3	11\%	loan rate				
4	35.0\%	tax rate				
5	7\%	$\mathrm{f}=\mathrm{CPI}$				
6	-6.54\%	f(delta-loan)				
7	9\%	i				
8	\$67,643	loan payment				
9	Year	Interest Portion of Payment	Loan Balance at End of Year	Tax Savings	ATCF in Nominal \$	ATCF in year- $0 \$$
10	0		250,000			250,000
11	1	27,500	209,857	9,625	-58,018	-54,222
12	2	23,084	165,299	8,080	-59,563	-52,025
13	3	18,183	115,839	6,364	-61,279	-50,022
14	4	12,742	60,939	4,460	-63,183	-48,202
15	5	6,703	10	2,346	-65,296	-46,555
16					IRR =	0.14\%
17			$=\mathrm{C} 14-\$ \mathrm{~A}$	315	PW=	\$53,436
18		$=\mathrm{IPMT}(\$ \mathrm{~A} \$ 3, \mathrm{Al5}, \mathrm{\$ 4} \$ 2,-\$ \mathrm{~A} \$ 1)$				

15.7 Inflation and Other Geometric Gradients

Chapter 3 included a formal mathematical model for geometric gradients. This section incorporates into that model either the differential inflation rate or the two inflation ratesone for the item and f for the economy. This adds on to the basic formulas for geometric gradient cash flows (see Section 3.7).

The formula for the value in year t is Equation 15.5 (also 3.22), where g is the rate for the geometric gradient. This formula is easy to use, but restating it recursively makes the constant rate of change even clearer (see Equation 15.6, also 3.23). This recursive format is easier to use in spreadsheets.

$$
\begin{align*}
A_{t} & =A_{1}(1+g)^{(t-1)} \tag{15.5}\\
A_{t} & =A_{t-1}(1+g) \tag{15.6}
\end{align*}
$$

The Four Geometric Gradients. Future costs and revenues are often estimated as changing at the same rate as in the past. Common examples include the cost of supplying more power to a growing city, the cost of labor to run an assembly line, and the cost to
repay a loan during an inflationary period. Respectively, these are geometric gradients for the amount of power, the labor's unit cost, and the dollar's value. To compare two cash flows, we have to find present or annual worths using compound interest, which is a fourth geometric gradient.

This book defines four geometric gradients:

$$
\begin{aligned}
g \equiv & \equiv \text { rate of changes in the volume of the item } \\
f_{\text {item }} \equiv & \text { rate of inflation or deflation in the item's price } \\
f \equiv & \text { rate of inflation or deflation in the economy, as measured by the value of } \\
& \text { a dollar (ANSI standard symbol). } \\
i \equiv & \equiv \text { interest rate for money's time value (ANSI standard) }
\end{aligned}
$$

Obviously, a single problem could involve all of these. However, the effect of each gradient is more easily seen if they are considered individually. Positive rates for some gradients increase the PW, while positive rates for other gradients decrease the PW.

Consider an electric power problem in which:

- Increases in the number of kilowatt-hours (kWhs) used increase future costs.
- Increases in the cost/kWh increase future costs.
- Inflation in the economy decreases the value of those costs.
- The interest rate discounts these costs to their present values.

This can be expressed mathematically, as shown in Exhibit 15.16. Exhibit 15.16 is somewhat intimidating, but it is really only describing the spreadsheets that have already been done in this chapter.

EXHIBIT 15.16 Mathematical factors for the four geometric gradients

Per.	Base Amount	\boldsymbol{g} Volume Change	$\boldsymbol{f}_{\text {item }}$ Price Change	\boldsymbol{f} Inflation	Constant-Value Cash Flow	\boldsymbol{i} PW Factor	PW
1	100	1.0	1.0	1.0	100	$1 /(1+i)^{1}$	$100 /(1+i)$
2	100	$1+g$	$1+f_{\text {item }}$	$\frac{1}{(1+f)}$	$\frac{100(1+g)\left(1+f_{\text {item }}\right)}{1+f}$	$\frac{1}{(1+i)^{2}}$	$\frac{100(1+g)\left(1+f_{\text {item }}\right)}{(1+f)(1+i)^{2}}$
\vdots							
t	100	$(1+g)^{(t-1)}$	$\left(1+f_{\text {item }}\right)^{(t-1)}$	$\frac{1}{(1+f)^{(t-1)}}$	$\frac{100\left[(1+g)\left(1+f_{\text {titm }}\right)\right]^{(t-1)}}{(1+f)^{(t-1)}}$	$\frac{1}{(1+i)^{t}}$	$\frac{100\left[(1+g)\left(1+f_{\text {titem }}\right)\right)^{(t-1)}}{(1+f)^{(t-1)}(1+i)^{t}}$

EXAMPLE 15.17 Evaluating the Cost of Pumping Sewage

Greenacres is a rapidly growing suburb of Brownsky, a major Sunbelt city. Greenacres pays Brownsky to treat and dispose of its sewage. Greenacres must pump the sewage up 200 feet, from near the river level to the top of the bluff where Brownsky sits. The electrical cost this year
(year 1) will be $\$ 1.25$ million. Greenacres is expected to grow at 7%. The estimated inflation rate in the cost per kWh is 5%. The economy is inflating at 3%. Greenacre's interest rate is 8%. What is the PW of the pumping cost for year 10 ?

SOLUTION

The cost in year 10 occurs 9 years later than the $\$ 1.25 \mathrm{M}$ cost in year 1 . Each year, a kilowatt-hour of electricity costs 5% more and each year 7% more kWhs are used. Thus, the nominal-dollar cost of the pumping is $\left.\left(1.25 \times 10^{6}\right) \times\left(1.05^{9}\right) \times 1.07^{9}\right)$, which equals 3.57 M nominal dollars. On the other hand, since f is 3%, the real value of that $\$ 3.57 \mathrm{M}$ is only $\$ 2.73 \mathrm{M}$ year-1 dollars (equals $3.57 / 1.03^{9}$). Finally, the present worth of the year 10 pumping cost equals $\$ 1.27 \mathrm{M}$ year1 dollars (equals $2.73 / 1.08^{10}$).

Formulas Based on the Equivalent Discount Rate. The mathematical model developed in Exhibit 15.16 can be simplified into a single, equivalent discount rate. The underlying basis for this approach is that the factors for geometric gradients for volume, changing prices, inflation, and the time value of money have the same form. Each factor relies on $(1+\text { rate })^{\text {year. }}$. This transformation is most useful (1) when financial calculators rather than computerized spreadsheets are used or (2) for "what-if" analyses in which manipulating equations is often easier than manipulating tables. For example, consider the question of showing the dependence of Example 15.17's PW on the assumed rate of volume change.

The present worth of the cash flow t can be written using the notation of Exhibit 15.16 as:

$$
\frac{(1+g)^{t-1}\left(1+f_{\text {iem }}\right)^{t-1}}{(1+f)^{t-1}(1+i)^{t}} \times \text { BaseAmount }
$$

This can be rewritten by defining a rate, r, which accounts for all but the time value of money factor, i. This rate is the geometric gradient for the cash flow values stated in year-1 dollars. Equation 15.7 is used to calculate r.

$$
\begin{equation*}
(1+r)=(1+g)\left(1+f_{\text {item }}\right) /(1+f) \tag{15.7}
\end{equation*}
$$

Once r has been defined, the equations for PW can be developed as they were in Section 3.7. The Equations 3.26, 3.27, and 3.28 are repeated here, with g replaced by r, as Equations $15.8,15.9$, and 15.10 , respectively. As before, A_{1} is the cash flow in year 1 .

If $r<i$:

$$
\begin{equation*}
\mathrm{PW}=\left[A_{1} /(1+r)\right](P / A, x, N) \tag{15.8}
\end{equation*}
$$

where $(1+x)=(1+i) /(1+r)$
If $r=i$:

$$
\begin{equation*}
\mathrm{PW}=\left[A_{1} /(1+r)\right] N \tag{15.9}
\end{equation*}
$$

If $r>i$, then the x as calculated above would be negative. This might occur when the volume is increasing at a high rate or when the item has a high rate of differential inflation. Instead, a future worth factor can be used to calculate a PW.

$$
\begin{equation*}
\mathrm{PW}=\left[A_{1} /(1+i)\right](F / A, x, N) \tag{15.10}
\end{equation*}
$$

where $(1+x)=(1+r) /(1+i)$
It may be less obvious than looking at the first few rows of a spreadsheet, but these equations make the same assumptions as the tables that were developed in this chapter. The cash flow in year 1 is the base value, and all later cash flows are derived by multiplying that base value by a series of geometric gradients.

EXAMPLE 15.18 Greenacres' Sewage Pumping (revisited)

Calculate the PW for Example 15.17 using an equivalent discount rate.

SOLUTION

Now:

$$
(1+r)=1.07 \times 1.05 / 1.03=1.090777
$$

and $r=9.0777 \%$. Since this exceeds $\mathrm{i}=8 \%$, we let:

$$
(1+x)=(1+r) /(1+i)=1.090777 / 1.08
$$

and $x=0.9978 \%$. Now:

$$
\mathrm{PW}=[1.25 \mathrm{M} / 1.08](F / A, .9978 \%, 10)=1.1574 \times 10.4612=\$ 12.11 \mathrm{M}
$$

If we wanted to analyze the dependence of the PW on any of the four geometric rates, this equation is much easier to use than a full spreadsheet table.

EXAMPLE 15.19 Heavy Metal Casting

Assume that Heavy Metal Manufacturing is producing a lead casting for shielding of nuclear reactors. This casting is replaced on a 5 -year schedule. Very few reactors are being built or retired; thus, there is essentially no change expected in the annual volume. However, the price Heavy Metal can charge is expected to increase at 3% per year, while inflation is expected to be 7% per year. What is the difference between the PW of sales calculated with the exact inflation rates and the PW calculated using the approximate rate of differential inflation? Heavy Metal's sales in the first year will be $\$ 850,000$. Its interest rate for the time value of money is 10%, and it believes a 20-year horizon is appropriate.

SOLUTION

The exact calculation lets $(1+r)=1.03 / 1.07$; thus, $r=3.74 \%$, which is less than 10%. Therefore, Equation 15.8 is used.

$$
\begin{aligned}
(1+x) & =(1+r) /(1+i) \text { and } x=14.27 \%, \text { and } \\
\text { PW } & =\$ 850,000(P / A, 14.27 \%, 20)=\$ 5.542 \mathrm{M}
\end{aligned}
$$

The approximate calculation uses -4%, which equals $3 \%-7 \%$, as the rate of differential inflation. This is still less than i (all negative values for r are less than i), so Equation 15.8 is still used:

$$
(1+x)=(1+r) /(1+i) \text { and } x=14.58 \% \text { and }
$$

$$
\mathrm{PW}=\$ 850,000(P / A, 14.58 \%, 20)=\$ 5.446 \mathrm{M}
$$

The difference is $\$ 96,000$, or less than 2% of the true value. Given the probable accuracy of the inflation estimates, the approximation is most likely accurate enough.

15.8 Summary

This chapter has focused on inflation, which is often measured by the consumer price index (CPI). The CPI can be used to convert inflated nominal-value cash flows to constant-value cash flows. If constant-value cash flows are used, then a real interest rate should be used for the time value of money. If nominal cash flows are used, then a market interest rate can be used.

Inflation in the price of an item and in the economy are often combined into the item's differential inflation rate. Because of the difficulty in predicting the inflation rate for the economy, this differential inflation rate may be estimated more accurately than the other two inflation rates.

The chapter has concluded with a mathematical model of four geometric gradients: (1) changes in the number of items sold or the amount of electricity generated each year; (2) changes in the item's price, such as labor costs, oil prices, or computer prices; (3) inflation (f), which changes the buying power of the dollars that are received and spent; and (4) the interest rate for the time value of money.

Whether a particular problem has one or four kinds of geometric gradients, and whether they influence one or several sources of cash flows (energy costs, labor costs, loan repayments, etc.), geometric gradients are arithmetically cumbersome. Thus, this chapter has relied heavily on spreadsheets.

This chapter has focused on inflation, while simpler geometric gradients were covered in Chapter 3, for several reasons. First, inflation occurs often, and it must be considered for many economic problems. Second, a proper understanding of differential inflation often limits the consideration of inflation to recognizing that the differential inflation rate is 0% and that inflation can be ignored. Third, since one to three inflation rates can be stated for each set of cash flows-with different rates for computers, labor costs, energy costs, etc.it is easy to get them confused unless inflation is well understood.

REFERENCES

Buck, James R., and Chan S. Park, Inflation and Its Impact on Investment Decisions, 1984, Industrial Engineering and Management Press (IIE).
Jones, Byron W., Inflation in Engineering Economic Analysis, 1982, Wiley. U.S. Department of Labor, Burean of Labor Statistics, www.bls.gov.

Problems

15.1 Samantha receives a starting salary offer of $\$ 30,000$ for year 1. If inflation is 4% each year, what must her salary be to have the same purchasing power in year 10? Year 20? Year 30? Year 40? (Answer: Salary $\left.{ }_{10}=\$ 42,699\right)$
15.2 Assume that Samantha (see Problem 15.1) receives an annual 5\% raise. How much more, in year-1 dollars, is her salary in year 10? Year 20? Year 30? Year 40? (Answer: $\$ 2698$ in year 10)
15.3 Due to competition from a new plastic, revenues for the mainstay product of Toys-R-Plastic are declining at 5% per year. Revenues will be $\$ 2 \mathrm{M}$ for this year. The product will be discontinued at the end of year 6. If the firm's interest rate is 10%, calculate the PW of the revenue stream.
15.4 The cost of machinery used to assemble widgets has kept pace with inflation. Using Exhibit 15.1, calculate the cost, in 2008 dollars, for a machine that cost $\$ 48 \mathrm{~K}$ in 1996. (Answer: $\$ 63.6 \mathrm{~K}$)
15.5 The price of widgets ($\$ 3800$ in 2008) has kept pace with inflation. Using Exhibit 15.1, calculate the cost in 1955.
15.6 Using Exhibit 15.1 calculate the average annual inflation rates for the following decades:
(a) 1964-1974.
(b) 1974-1984. (Answer: 7.33\%)
(c) 1984-1994.
(d) 1994-2004.
15.7 Using Exhibit 15.1, calculate the average annual inflation rates for the following decades:
(a) 1970-1980.
(b) 1980-1990.
(c) 1990-2000.
15.8 Inflation is 4%. If $\$ 1000$ is invested in an account paying 6% compounded semiannually, what is the
year-0 dollar value of the account at the end of the 5 years?
15.9 Assume your salary is \$35,000 in 1995 and \$60,000 in 2035. If inflation has averaged 2% per year, what is the real or differential inflation rate of salary increases? (Answer: -. 6\%)
15.10 In the 1920 Sears Roebuck catalog, an oak chest of drawers costs $\$ 8$ plus freight. In 1990, this same chest of drawers, in good condition, was $\$ 1200$. If the average rate of inflation over the 70-year period has been 3%, what has been the average yearly rate of appreciation, adjusted for inflation?
15.11 The ABC Block Company anticipates receiving $\$ 4000$ per year from its investments (differential inflation rate of 0%) over the next 5 years. If ABC's interest rate is 8% and the inflation rate is 3%, determine the present value of the cash flows.
15.12 Assume inflation is 5\% per year. What is the price tag in 6 years for an item that has a differential inflation rate of 4% that costs $\$ 400$ today? (Answer: $\$ 671$)
15.13 The expected rise in prices due to inflation over the next 6 years is expected to be 30%. Determine the average annual inflation rate over the 6-year period.
15.14 Explain how high inflation in a booming real estate market can benefit an engineer who sells a home 5 years after he buys it.
15.15 Felix Jones, a recent engineering graduate, expects a starting salary of $\$ 35,000$ per year. His future employer has averaged 5% per year in salary increases for the last several years. If inflation is estimated to be 4% per year for the next 3 years, how much, in year-1 dollars, will Felix be earning each year? What is the differential inflation rate in Felix's salary?
15.16 The price of a National Computer 686VX computer is presently $\$ 2200$. If deflation of 2% per quarter is
expected on this computer, what will its price be in nominal dollars at the end of 1 year? If inflation is 4.5\% per year, what will the price be in year-0 dollars? (Answer: $\$ 1942$ year-0 dollars)
15.17 You place $\$ 4000$ into an account paying 8% compounded annually. Inflation is 5% during each of the next 3 years. What is the account's value at the end of the 3 years in year- 0 dollars?
15.18 Using Exhibit 15.1, how much money in 2008 would be equivalent to $\$ 2000$ in 1967 ?
15.19 Two series in the Historical Statistics of the United States (shown below) must be combined with Exhibit 15.1 to construct a long-term measure of inflation. From 1779 to 2001, what has the inflation rate averaged?
$1910=100$ (base)
$\begin{array}{lllllllll}\text { Year } & 1779 & 1785 & 1800 & 1803 & 1830 & 1850 & 1864 & 1880\end{array}$

Index	226	92	129	118	91	84	193	100

$1927=100$ (base)
$\begin{array}{lrrrrrrrr}\text { Year } & 1890 & 1910 & 1920 & 1921 & 1932 & 1940 & 1950 & 1955 \\ \text { Index } & 56 & 90 & 154 & 98 & 65 & 79 & 162 & 182\end{array}$
15.20 The Widget Company will need a certain type of milling machine for its new assembly line. The machine presently costs $\$ 85,000$. It has had a differential inflation rate of 2%. Widget will not need to purchase the machine for 2 years. If inflation is expected to be 4% per year during those 2 years, determine the nominal price of the machine. What is the PW of the machinery if the market rate of interest for Widget is 9%.
15.21 If $\$ 10,000$ is deposited in a 5% savings account and inflation is 3%, what is the value of the account at the end of year 20 in year- 0 dollars? If the time value of money is 4%, what is the present worth?
15.22 The cost of garbage pickup in Green Valley is $\$ 4.5 \mathrm{M}$ for year 1 . Estimate the cost in year 3 in year-1 dollars and in nominal dollars. The population is increasing at 6%, the nominal cost per ton is increasing at 5\%, and the inflation rate is estimated at 4\%. (Answer: $\$ 5.57 \mathrm{M}$ in nominal \$)
15.23 If residents of Green Valley (see Problem 15.22) reduce their individual trash generation by 2% per year, by how much will the cost in year 3 have decreased (in year-1 dollars)?
15.24 If the interest rate is 7%, what is the present worth in year- 1 dollars of the following:
(a) The cost for Problem 15.22 (Answer: $\$ 4.21 \mathrm{M}$)
(b) The savings of Problem 15.23 (Answer: \$166.6K)
15.25 Redo Problem 15.22 for $N=10$ and $N=25$.
15.26 Redo Problem 15.23 for $N=10$ and $N=25$.
15.27 Redo Problem 15.24 for $N=10$ and $N=25$.
15.28 Redo Example 15.12 assuming that the 15% interest rate is a market interest rate.
15.29 Generate a different solution for Example 15.17 by assuming that inflation starts at time 0 .
15.30 Your beginning salary is $\$ 30,000$. You deposit 10% each year in a savings account that earns 6% interest. Your salary increases by 5% per year, and inflation is 3% per year. What value does your savings account show after 40 years? What is the value in year-1 dollars? (Answer: $\$ 973,719$ and $\$ 307,455$)
15.31 The market for widgets is increasing by 15% per year from current profits of $\$ 200,000$. Investing in a design change will allow the profit per widget to stay steady; otherwise, it will drop by 3% per year. If inflation in the economy is 2%, what is the present worth in year- 1 dollars of the savings over the next 5 years? 10 years? The interest rate is 10%.
15.32 Bob lost his job and had to move back in with his mother. She agreed to let Bob have his old room back on the condition that he pay her \$1000 rent per year and an additional $\$ 1000$ every other year to pay for her biannual jaunt to Florida. Since he is down on his luck, she will allow him to pay his rent at the end of the year. If inflation is 6% and Bob's interest rate is 15%, how much is the present cost (in year-1 dollars) for a 5-year contract? (Trips are in years 2 and 4.)
15.33 Enrollment at City University is increasing 3\% per year, its cost per credit hour is increasing 8% per year, and state funds are decreasing by 4% per year. State funds currently pay half of the costs for City U., while tuition pays the rest. What annual increase in tuition is required? Assume inflation is 5% and other rates are nominal.
15.34 A 30-year mortgage for $\$ 100,000$ has been issued. The interest rate is 10%, and payments are made annually. If your time value of money is 12%, what
is the PW of the payments in year-1 dollars if inflation is 0% ? 3% ? 6% ? 9% ?
(Answer: $\mathrm{PW}_{3 \%}=-\$ 70,156$)
15.35 A homeowner is considering an upgrade of a fuel-oil-based furnace to a natural gas unit. The investment in the fixed equipment, such as a new boiler, will be $\$ 2500$ installed. The cost of the natural gas will average $\$ 60$ per month over the year instead of the $\$ 145$ per month that the fuel oil costs. If funds cost 9% per year and differential inflation in fossil fuels will be 3% per year, how long will it take to recover the initial investment? (Solve on a monthly basis.)
15.36 Joan earns a salary of $\$ 40,000$ per year, and she expects to receive increases at a rate of 4% per year for the next 30 years. She is purchasing a home for $\$ 80,000$ at 10.5% for 30 years (under a special veterans preference loan with 0% down). She expects the home to appreciate at a rate of 6% per year. She will also save 10% of her gross salary in savings certificates that earn 5\% per year. Assume that her payments and deposits are made annually. If inflation is assumed to have a constant 5% rate, what is the value (in year- 1 dollars) of each of Joan's two investments at the end of the 30-year period?
15.37 In Problem 15.36, how much does the value of each investment change if the inflation and appreciation rates are halved? Doubled?
15.38 In Problem 15.34, assume the house is owned by an engineer whose effective tax rate for state and federal income taxes is 30%. What is the after-tax IRR for the mortgage if inflation is 0% ? 3\%? 6\%? 9\%?
15.39 (Refer to Problem 13.7.) LargeTech Manufacturing has obtained estimates for a new semiconductor product. The machinery costs $\$ 800 \mathrm{~K}$, and it will have no salvage value after 8 years. LargeTech is in the highest tax bracket. Income starts at $\$ 200 \mathrm{~K}$ per year and increases by $\$ 100 \mathrm{~K}$ per year, except that it falls $\$ 300 \mathrm{~K}$ per year in years 7 and 8 . Expenses start at $\$ 225 \mathrm{~K}$ per year and increase by $\$ 50 \mathrm{~K}$ per year. Revenues and expenses have no differential inflation. If inflation is 5\%, what are the before-tax cash flows and taxable income in year-0 dollars under:
(a) Straight-line depreciation?
(b) SOYD depreciation?
(c) Double-declining balance depreciation?
(d) MACRS?
(e) Each method if the machine's salvage value is $\$ 40,000$?
15.40 (Refer to Problem 13.9.) An engineering and construction management firm with a taxable income of $\$ 1 \mathrm{M}$ is opening a branch office. Nearly $\$ 250,000$ worth of furniture will be depreciated under MACRS. Inflation is expected to be 6%.
(a) What are the after-tax cash flows for the first 5 years in year-0 dollars?
(b) If the office is closed early in year 6 and the furniture is sold to a secondhand office furniture store for 10% of its initial cost, what tax is paid in year-0 dollars?
15.41 (Refer to Problem 13.16.) The R\&D lab of BigTech Manufacturing will purchase a $\$ 1.8 \mathrm{M}$ process simulator. It will be replaced at the end of year 5 by a newer model. Inflation will be 4% over the 5 years. Use MACRS and a tax rate of 40%. The simulator's salvage value is $\$.5 \mathrm{M}$.
(a) What is the after-tax cash flow in year 5 in year-0 dollars due to the simulator?
(b) What is the equipment's after-tax EAC in year- 0 dollars over the 5 years if the interest rate is 10% ?
15.42 (Refer to Problem 13.17.) Find the EAC in year-0 dollars after taxes for a computer that costs $\$ 15,000$ to purchase and $\$ 3500$ per year to run with a 0% differential inflation rate and has a salvage value of $\$ 1000$ in year-0 dollars at the end of year 7. Inflation is expected to be 5% per year. Profits exceed $\$ 20$ million per year, and the company is purchasing $\$ 850,000$ worth of capital assets this year. The company uses an interest rate of 12%.
15.43 Assume that the computer in Problem 15.42 is financed with a 4-year loan that has constant total payments calculated at 11%. Find the EAC in year-0 dollars after taxes.
15.44 (Refer to Problem 13.34.) We-Clean-U, Inc., expects to receive $\$ 42,000$ each year for 15 years from the sale of its newest soap, OnGuard. There will be an initial investment in new equipment of $\$ 150,000$. The expenses of manufacturing and selling the soap will be $\$ 17,500$ per year. Expenses and receipts have no differential inflation beyond the CPI of 7\%. Using MACRS depreciation, a marginal tax rate of 42%, and an interest rate of 12%, determine the EAW in year-0 dollars of the product.

How different is this from the $-\$ 1512$ that was calculated by ignoring inflation?
15.45 Assume the equipment in Problem 15.44 is financed with a 13% loan that will be repaid with five equal annual payments. Determine the EAW in year-0 dollars of the product. How different is this from the value in Problem 15.44?
15.46 (Refer to Problem 13.40.) If the simulator in Problem 15.41 is purchased on a 3-year loan, what is the EAC? The loan is for 80% of the cost, the loan's interest rate is 12%, and the payments are uniform.
15.47 (Refer to Problem 13.41.) The simulator in Problem 15.41 will save $\$ 600,000$ per year in year-0 dollars in experimental costs.
(a) What is the after-tax IRR?
(b) What is the after-tax IRR if the loan of Problem 15.46 is used to buy the equipment?
(c) Graph the IRR for percentages financed from 0% to 90%.
15.48 The purchase of a large-volume copier is being considered. Use MACRS and the current tax law. The corporation's taxable income exceeds \$20M. The first cost is $\$ 18,000$. Maintenance cost per year is $\$ 1300$ in year-1 dollars. The salvage value after 10 years is $\$ 2000$ in year-10 dollars. Assume the real MARR is 8% and the inflation rate is 5%. Find the EAC after taxes. Does inflation increase or decrease the EAC? By how much?
15.49 Smallville is suffering a 1% annual loss of population and property values. Even so, Smallville must maintain its tax collections at a constant value of $\$ 3.2 \mathrm{M}$. If the inflation rate is 4.5%, what inflation rate in taxes for the remaining taxpayers is required for Smallville to attain its goal? (While Smallville uses a rate of 6% for the time value of money, that rate is irrelevant to this problem.)
15.50 Redo Problem 15.22 using an equivalent discount rate.
15.51 Redo Problem 15.27 using an equivalent discount rate.
15.52 Redo Problem 15.31 using an equivalent discount rate.
15.53 Redo Problem 15.34 using an equivalent discount rate.
15.54 Redo Example 15.15 using an equivalent discount rate.

Minicases

15.55 (Refer to Problem 13.35) LoTech Welding can purchase a machine for $\$ 175,000$ and depreciate it as 5-years MACRS property. Annual maintenance would be $\$ 9800$, and its salvage value after 8 years is $\$ 15,000$. The machine can also be leased for $\$ 35,000$ per year on an "all costs" inclusive lease (maintenance costs included). Lease payments are due at the beginning of each year, and they are taxdeductible. The firm's combined tax rate for state and federal income taxes is 40%. If the firm's aftertax interest rate is 9%, which alternative has the lower EAC and by how much?

Assume that inflation of 4\% applies to the annual maintenance cost and the salvage value, while the lease payments are $\$ 35,000$ each year not adjusted for inflation.
15.56 For Problem 15.55, assume that 50% bonus depreciation is also available. How much lower is the annual cost of purchasing the machine? Does this increase or decrease the importance of considering inflation?
15.57 For Problem 15.55, assume that Section 179 depreciation must be considered because this is LoTech's only major equipment investment this year. Also assume that the firm is profitable. How much lower is the annual cost of purchasing the machine? Does this increase or decrease the importance of considering inflation?
15.58 For Problem 15.55, assume the machine will be financed with a 4-year loan whose interest rate is 12%. Graph the EAC for the purchase for financing fractions ranging from 0% to 100%. Does the loan increase or decrease the importance of considering inflation?
15.59 Assume that your children will attend a university whose tuition is now $\$ 28,000$. Contributed by D. P. Loucks, Cornell University
(a) If the inflation rate for tuition is 5\% per year, calculate what the tuition will cost 20 years from now.
(b) If the general inflation rate for the economy is 3% per year, express that future tuition in today's dollars.
(c) Calculate the amount you would have to invest today to pay for tuition costs $20,21,22$, and 23 years from now. Assume you can invest at 7% per year, your income tax rate is 40% per year,
and the tuition has to be paid at the beginning of the year.
(d) Redo using the current tuition rate for your university with what its inflation rate has been over the last 5 years.

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 31 Freeflight Superdiscs

Inflation and sensitivity analysis for 3 alternatives. Includes taxes.

Case 35 Northern Windows

Tax affected energy conservation project for a home with simplifying assumptions made clear. Includes inflation.

Case 37 Brown's Nursery (Part B)

Adds inflation to Case 36.

Case 38 West Muskegon Machining and Manufacturing

More complex inflation and tax problem with sunk cost and leverage.

Case 39 Uncertain Demand at WM3

Includes inflation, taxes, and uncertainty.

PART FIVE

DECISION-MAKING TOOLS

 ost estimating, sensitivity analysis, probability theory, and multiobjective techniques are needed for many real engineering economy problems. Each tool is the basis for more advanced courses. Substantial realism in modeling and depth in analysis can be added easily.

In a textbook, the cash flows in homework problems and examples are given; however, in the real world, cash flows must be estimated (Chapter 16). The benefits of an engineering project often span a decade or longer, and even the cost of construction must be estimated. Thus, it is necessary to use sensitivity analysis (Chapter 17) to show how recommended decisions depend on uncertainties in the assumed or estimated data.

Probability theory (Chapter 18) explicitly models uncertainty about cash flows with expected values to describe economic returns and with standard deviations to describe risks. Multiobjective techniques (Chapter 19) balance cash flow measures and objectives that cannot be directly linked to cash flows, such as flexibility or technological learning.

Estimating Cash Flows

- THE SITUATION AND THE SOLUTION

Cash flows for real-world problems must be estimated—they are not specified in a problem statement.

The solution is to use a method that best balances the cost of estimating and its accuracy-for the problem being analyzed. Possible methods include analogies, costestimating relationships such as learning curves and parametric costing, and detailed engineering data with bids and quotes.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 16.1 Distinguish between the cost of making a decision and the costs determined by that decision.
SECTION 16.2 Define the stages of a project's life cycle, and identify the costs occurring in each.
SECTION 16.3 Match the methods for estimating cash flows to the stages where each is used-based on the methods' cost and accuracy.
SECTION 16.4 Define the two common design criteria, and write functional or performance specifications.
SECTION 16.5 Correctly model the base case for evaluating alternatives that change current operations.
SECTION 16.6 Use indexes to adjust for inflation, productivity changes, project size, and location.
SECTION 16.7 Estimate costs of facilities using capacity functions.
SECTION 16.8 Estimate sales using growth or S-curves.
SECTION 16.9 Using learning curves, estimate the labor content of unit i from the first unit's labor content.
SECTION 16.10 Estimate costs using factor estimates.

- KEY WORDS AND CONCEPTS

Growth or S-curve Common pattern of low initial demand or performance with slow rate of increase, then a period of rapid increase, and then a tapering off as an upper limit is approached.

Type, size, and location indexes Indexes to adjust a cost per square foot for a proposed facility.
Capacity function Method to estimate a proposed facility based on the cost of an existing facility. Ratio of costs equals ratio of sizes with an exponent that is the scale factor.
Learning curve Model of declining cost per unit as operator experience, process improvements, and design changes reduce labor and machine hours.
Factor estimates Breaks a project down into smaller pieces that are estimated with indexes or bids for major components.
Design to cost A method that matches the first cost to a defined budget.
Minimizing life-cycle cost A method that emphasizes the time value of money.
Functional specifications Define both what is to be accomplished and how that functionality is to be achieved.
Performance specifications Define only the required level of performance, leaving the definition of how it is to be achieved to the bidders.

16.1 Introduction

Importance of Cost Estimating. Cost estimating is required for engineering economy. Future and current costs and benefits must be estimated to provide the basic data to be analyzed. Flawed data cannot reliably support decision making. Any engineering economic analysis is only as good as the estimates it is based on.

This chapter develops models for the following cash flow estimation problems:

- Estimating the future demand for a new product using growth curves or S-curves. Examples include the demand for telephones, radios, TVs, color TV, cable TV, and wireless networking.
- Estimating the cost of a new facility with type, size, and location indexes or by scaling the known cost of a similar facility using a capacity function. Examples include a petroleum refinery, an office building, and an athletic stadium.
- Estimating the cost of the 75th jet or 8th ship using the cost of the first one and learning curves, which reflect the predictable decrease in unit costs as experience accumulates.
- Estimating a job's cost using a factor estimate based on a materials list, labor hours (e.g., for electricians and laborers), and equipment hours (e.g., for cranes and cement mixers). This is used for new buildings, remodeling assembly lines, and new product prototypes.

Other methods for estimating the costs of products are presented in Appendix A sections on cost accounting. Databases developed by accounting and project engineering about past products and past projects are often the most important resources for estimating costs. All of the models presented in this chapter require reliable data to be useful.

Impact of Early Project Decisions. Early decisions have a large impact on later costs. Benjamin Franklin's words about "penny-wise and pound-foolish" are particularly applicable. Skimping on up-front planning and design saves "pennies" when compared with the costs of redesigns and modifications. Example 16.1 is only one of the many

Why is there never enough time to do it right, but always enough time to do it over? do it over?

Databases about past products and projects are often the most important resources for estimating costs.
projects that could be used to substantiate Franklin's maxim.

EXAMPLE 16.1 Anchorage Performing Arts Center

In the late 1970s and early 1980s, Alaska's construction industry boomed as the state funneled tax money from Prudhoe Bay oil revenues to many municipal projects. Anchorage (with slightly over half of the state's population) built a convention center, a sports arena, a new library, and a new performing arts center.

The performing arts center was plagued with problems in planning and budgeting. The arts communities identified ambitious goals for the three theatres, and few financial constraints were imposed on the architect early in the project.

Guess how severe the problems in construction and operation were?

SOLUTION

The problems were very severe. The original architect was fired during construction for designing a facility that met the goals of the arts communities-but that the city could not afford to build. The redesign of a facility that was under construction significantly increased the cost of what was finally built.

The project's final construction cost was $\$ 63$ million for a facility with 3295 seats. If money's time value is assumed to be 7% and each seat is used three times per week, then the investment cost is $\$ 8.58$ per seat per use plus the costs to operate and maintain it and to pay the performers. Decisions today have little impact on these costs; they were largely determined by the building's conceptual and preliminary design.

There are also substantial technical problems with the facility. These include avalanches of snow off the stainless steel roof onto pedestrians, leaks in a roofing system never before used in Alaska, and poor handicapped access that required redesign and modification. The high cost to operate and the extensive technical problems led to continuing arguments over whether the city should mothball the facility-arguments that began only 4 years after it opened.

Most costs are determined during the planning stage, but they occur later during construction and operation. Reducing budgets for planning can dramatically increase later costs.

Exhibit 16.1 summarizes data from the acquisition of military weapon systems. This graph and similar ones developed for civilian construction projects emphasize that most costs are determined during the planning stage.

Exhibit 16.1's first three milestones represent a detailed breakdown of a project's planning stage into conceptual design, preliminary systems design, and detailed systems

EXHIBIT 16.1 Determined-todate vs. spent-to-date funds over a project's life

Stage of Project
design. Even though the majority of the costs are incurred during system production and operation, the operating costs are largely determined during these three steps of the planning stage.

Most of the costs are defined by the specifications developed during conceptual design. How fast, how far, and how high must the jet fly? What ordnance must the tank fire, carry, and withstand? Is the factory structured around an assembly line or flexible, automated cells? Does the building give engineers offices, cubicles, or desks in an open room? Or, at the personal level, should your transportation between your home and your office be a bicycle, public transportation, a used "commuter" auto, or a sports car?

Since so much of the system's costs are defined at the conceptual and preliminary systems design stages, it is penny-wise and pound-foolish to skimp on the planning steps.

16.2 Cash Flow Estimating and Life-Cycle Stages

Often, 90% of the costs occur after acquisition or construction.

Hidden Costs. Many costs and consequences are hidden at the time of decision. The analogy to an iceberg shown in Exhibit 16.2 is useful; often, 90% of the costs occur after acquisition. For example, consider a public project funded by a bond, such as a school, library, or performing arts center. The debate is over the cost of construction, the incremental property tax paid to repay the bond, and the need for the facility. Often, the cost for schoolteachers, librarians, heat, light, etc., to provide the services far exceeds the cost of construction. Yet, these "hidden" costs receive far less attention.

Costs During the Project Life Cycle. The four stages of the project life cycle are: (1) planning, (2) development and construction, (3) operation or production, and (4) retirement or disposal. The later stages include many of the hidden costs shown in Exhibit 16.2.

EXHIBIT 16.2 Iceberg of hidden costs

To ensure that cash flows are not overlooked, they are categorized. Sometimes, categorizing costs as recurring or nonrecurring is useful, but more often, simple checklists like the ones shown in Example 16.2 and the following are used:

- Working capital
- Training
- Public relations
- Accounting and auditing
- General management and administration
- Contract services
- Software design, development, and maintenance
- Security
- Insurance and workers' compensation
- Taxes
- Fringe benefits
- Capital recovery and return requirements
- Design and engineering

These lists of costs are often supplemented with lists of tangible and intangible benefits. For example, reducing the time spent waiting for the doctor or improving patient morale might be part of an economic analysis within a hospital. Similarly, reducing the number of defective parts and the lead time before shipping an order would be intangible benefits within a manufacturing environment.

Exhibit 16.3 defines several groupings for manufacturing. Several are important standard categories in which accountants report data on historical performance. These historical data are often the basis for estimating future costs and performance. (See Appendix A for a more detailed discussion of indirect and overhead expenses.)

EXHIBIT 16.3 Price of a manufactured product

Profit
Overhead
Distribution Expense
Indirect Manufacturing Expense
Materials Cost
Labor Cost

EXAMPLE 16.2 Estimating Checklist for an Oil Company

A firm wants to ensure that engineers do not forget some important costs when analyzing oil exploration and development projects in Alaska. What's the best approach?

SOLUTION

One firm uses a more complete version of the checklist shown in Exhibit 16.4. Its version has about 15 more categories and short comment lines with each category.

Estimating checklist for an oil company

```
\square ~ P r o j e c t ~ E x e c u t i o n ~ P l a n ~
\square \text { Code Requirements}
\square \mp@code { C o m m u n i c a t i o n s ~ E q u i p m e n t }
\square ~ P r o c e s s ~ F l o w ~ D i a g r a m ~
\square \text { Permitting Requirements}
\square \text { Furniture and Fixtures}
\square ~ P l o t ~ P l a n ~
```

```
Construction Drawings
```

```
Schedule Constraints
\square \text { Gravel Requirements}
\square \text { Demolition } \square \text { Utility Tie-ins}
```

```
Equipment List
\square \text { Foundation Requirements}
\square ~ O p e r a t i n g ~ F l u i d s ~
\square \text { Transportation and Freight}
\square ~ P a i n t i n g ~ a n d ~ C o a t i n g ~
\square \text { Insulation}
\square ~ L a b o r ~ P r o d u c t i v i t y ~
```

```
Spare Parts
```

```
Vendor Representatives
```

```
Purchasing Plan
\square \mp@code { F i r e p r o o f i n g }
\square ~ P a y r o l l ~ B e n e f i t s ~ a n d ~ B u r d e n s ~
\square \text { Fire Protection}
\square \text { Cleanup}
```

```
Contracting Plan
\square Fire Protection
\square \mp@code { S c a f f o l d i n g }
\square \text { Material Handling}
```

```
Documentation and As-Builts
\square ~ F a b s i t e ~ L e a s e s ~ a n d ~ F e e s
Vendor Shop Visits
```



```
\square Temporary Facilities
```

```
\square \text { Fees}
\square ~ J o b s i t e ~ U t i l i t i e s
```

```
Expediting
\square \text { Taxes}
Quality Assurance
\square \text { Inflation and Escalation}
\square \text { Security}
```

```Quality Assurance
\square \mp@code { A l l o c a t e d ~ C o s t s }
```

```
Other Costs
\square \text { Risk Analysis}
\square \mp@code { C o n t i n g e n c y }
```


16.3 Cash Flow Estimating Standards

Stages of Cash Flow Estimating. Engineering economy is mostly concerned with decisions during steps of the planning stage-conceptual design, preliminary systems design, and detailed systems design. Once a project is operating, engineering economy's role is to evaluate possible modifications and to recommend the financially attractive point for project termination.

Estimating is essentially forecasting, and many techniques from statistics are used. There are also techniques that have been specifically developed for estimating cash flows.

Conceptual Design. Little data exist when a project is an idea or a concept, so the methods are simple. In a simple parametric model, a building's projected size is multiplied by a typical cost per square foot to derive an estimated construction cost. Other cost estimates may be derived by analogy from a project that is similar in type and in size.

Two common techniques are used to adjust for differences between the project being estimated and the project with known data. First, indexes are used to adjust for inflation, gains or losses in productivity, project location, and project size (see Section 16.6). Second, a capacity function model can be used to adjust for scale differences if the projects have different capacities.

For example, a 100,000-square-foot warehouse costs less than twice what a warehouse of 50,000 square feet would cost. The capacity function model uses a scale coefficient to adjust for the lower cost per square foot of the larger building (see Section 16.7).

Preliminary Systems Design. At this stage, more detail about the project is available. There may be computer simulations of the system, and there is some ability to break the project down into its individual parts. Parametric models are likely to be used, but at a finer level of detail. For example, a building might be divided into hallways, offices, meeting rooms, and mechanical/plumbing areas, and then the relevant cost per square foot for each kind of space would be applied.

Final Systems Design. At this stage, detailed data on the project will be available. There may be bids and quotes, and there will be accurate design data to match with standard cost factors or distributions.

An organization does not need to depend only on internal resources in constructing these estimates. Many external sources acquire and summarize cost data; examples include Walker's Building Estimator's Reference Book, Richardson's Standards, and Means Cost Data. However, specific in-house historical data that represent similar projects, in the same locality, with similar-quality labor and management, similar weather, etc., are usually better than generalized data.

Cost Estimate Definitions and Accuracy. The American Association of Cost Engineers (now AACE International) defines three kinds of estimates, which are done in order as a project progresses [Humphreys and Wellman]. The first is an order-of-magnitude estimate, the second a budget estimate, and the third a definitive estimate. Even when these estimates are done properly actual costs rarely match the estimates. The reasonable range for actual costs around the estimated value is:

Estimate Type	Actual vs. Estimate
Order-of-magnitude	-30% to $+50 \%$
Budget	-15% to $+30 \%$
Definitive	-5% to $+15 \%$

If a well-prepared budget estimate is $\$ 1$ million, then the actual costs should fall within a range of $\$ 850,000$ to $\$ 1.3$ million.

These estimates are typically produced sequentially. An order-of-magnitude estimate would be appropriate early in a feasibility study. A budget estimate would be produced after a firm definition of the project's scope, and the definitive estimate might require that the design be at least 65% complete.

The methods and detail for more accurate estimates take longer and cost more, as shown in Exhibit 16.5. At the same time, detailed planning with definitive estimates can allow contractors or bidders to bid lower due to smaller contingency factors. Remember that these planning and estimating costs, even when they are high, are still much smaller than the costs for construction and operation. Also, note that overruns are often larger than underruns. Murphy's Law ("What can go wrong, will go wrong") does play some role in this.

Revenues and benefits are usually harder to estimate accurately than are costs.

EXHIBIT 16.5 Accuracy vs. cost of doing estimate

Revenues and benefits are usually harder to estimate accurately than are costs, so the percentages cited above for costs [Humphreys and Wellman] are better than can be expected for revenues and benefits. It is also hard to decide if the benefits of more planning and estimating exceed the benefits and risks of getting started so the facility can operate as soon as possible.

16.4 Design Criteria and Specifications

Designing to cost
ensures that first costs match a budget, while minimizing life-cycle cost maximizes PW.

Design Criteria. There are two approaches to designing products and facilities. They are distinguished by the flexibility of the initial budget for the first costs.

- Design to cost emphasizes first-cost expenditures that must fit within a fixed budget. Features, square footage, etc., are increased or decreased to keep first costs within the limit.
- Minimizing life-cycle cost or maximizing PW allows for incurring extra first costs that are justified because they reduce future expenses. This is the approach that engineering economy emphasizes.
Many public projects are designed to cost. A congressional budget item or a local bond issue may identify the project and a budget for capital costs when the project is still at the conceptual design stage. From that point on, features may be added or subtracted to ensure that the first cost remains targeted on the identified value. Similarly, in a firm, if adjusting the budget for the first cost is difficult, then design to cost can be used to build the best possible project-within the budget. This approach increases the need for accurate estimates.

The shortcoming of this approach is obvious from an engineering economy standpoint. For example, reducing the insulation in a building reduces constructions costs but increases heating and cooling bills. The proper decision is made by comparing cash flows at different insulation thicknesses and choosing the thickness that minimizes the equivalent annual cost for construction and for operation, which is minimizing life-cycle costs.

Many federal projects (such as highways, transit systems, and weapon systems) have been designed to cost [Michaels and Wood]. First costs were minimized, but costs to operate, maintain, and replace early soared. So, the U.S. government developed policies that promoted minimizing life-cycle costs. Some of these are not stated in dollar terms. For example, electronic systems are supposed to be designed in a modular fashion. This simplifies repair and facilitates later upgrades.

Once a project has been approved and is under way, the focus often becomes design to cost. The project management team is focused on completing the project-on time, under budget, and within specifications.
Specifying Performance. The accuracy of cost estimates is also influenced by how project specifications are defined. Functional specifications define specifically how to

Functional

 specificationsfocus on how to do something, while
performance specifications focus on what something must do.
complete a project or manufacture a product, while performance specifications simply define what a project or product must do.

An engineering team that writes functional specifications is assumed to be able to specify the best possible way to complete the project or build the product. However, hiring another firm to build the product or complete the project is often done, because the hired firm has more expertise in that technology.

When performance specifications are being written, the engineering team must be sure that they are realistic. Otherwise, the project cannot be completed nor the product manufactured. However, the team assigned with meeting the specifications is responsible for devising the best way to achieve that level of performance while minimizing costs.

As the advantages of performance specifications have become clearer in recent years, earlier trends to functional specifications have been reversed. Exhibit 16.6 contrasts both types of military specifications to illustrate this difference. Another example of a preference for performance specifications is shown by engineers who work for owners or design firms that are careful not to specify how a contractor shall perform the work-that is the contractor's area of expertise.

EXHIBIT 16.6 Performance vs. functional specification
Performance Specification Example. Excerpts from the 1-page U.S. Army Signal Corps Specification \#486 for a Heavier-than-Air Flying Machine, December 23, 1907:

The flying machine will be accepted only after a successful trial flight . . . packed for transportation in army wagons. It should be capable of being assembled and put in operating condition in about one hour ... to carry two persons having a combined weight of about 350 pounds, also sufficient fuel for a flight of 125 miles .. . have a speed of at least forty miles per hour in still air . . . a trial endurance flight will be required of at least one hour . . . include the instruction of two men in the handling and operation of this flying machine.

Functional Specification Example. Examples from Jack Anderson's column of April 16, 1986 (hopefully since simplified):

GI cocoa: 20 pages (example: "When washed with petroleum ether, not less than 98% by weight shall pass through a U.S. Standard No. 200 sieve.")
GI chewing gum: 17 pages
Olives: 17 pages and 10 sizes
Doughnuts (example: when "cut vertically or horizontally with a sharp knife, shall not be greasy over oneeighth inch in depth at any place on the cut surface," and frosted doughnuts must retain their glaze when "subjected to ordinary shocks of transportation.")

16.5 Modeling the Base Case

Does continuing current operations mean future cash flows equal current cash flows?

The comparison is not before and after the project but, rather, with or without the project.

Many applications of engineering economy compare a new alternative with a current mode of operation. Often, this includes a bad assumption that continuing with the current mode of operations will mean that future cash flows equal current cash flows. The key questions are: "What happens if the current mode of operation continues?" and "does the current level of sales continue or does it fall?"

Often, firms incorrectly assume that continuing the current operating mode causes the future to look like the present. However, many manufacturing and service operations have found that they must improve what they provide their customers or the firms will die.

A worldwide competitive environment requires continuous improvement for competitive survival. For example, in many production situations the cost of robots exceeds the costs of having the jobs performed by people. The key difference may be in consistency and quality, which may have financial benefits that are difficult to quantify. These financial benefits may be translated into choosing the appropriate base case, as in Example 16.3.

HouseHold Appliances is considering replacing people with robots for the welding and painting operations on its washers and dryers. Many of its competitors have already done so, but HouseHold is a small firm with a low production volume.

The proposed revision of its plant will cost $\$ 900,000$. Since new technicians would have to be hired, annual savings in labor costs are limited and power costs for the plant will go up. The annual savings in $O \& M$ costs are expected to be only $\$ 50,000$. If the facility will last 10 years and have no salvage value, should it be built? Assume that sales of this line currently bring in revenue of $\$ 400,000$ per year. HouseHold uses an interest rate of 12%.

SOLUTION

If the sales revenue of $\$ 400,000$ per year can be maintained without the project, it is not justified. In other words, a constant demand for the product implies that the robot project is not justified.

$$
P W=-900,000+50,000(P / A, .12,10)=-\$ 617,490
$$

However, if we assume that revenue will decline as the gap between our quality and our competitor's quality increases, then a different answer may emerge. Basically, declining demand may require process improvement. For simplicity, assume that the volume of production does not decline but that the price HouseHold can charge does decline. If revenue declines by $\$ 35,000$ per year (less than 10\%), the answer is: Do it.

$$
\begin{aligned}
\mathrm{PW} & =-900,000+50,000(P / A, .12,10)+35,000(P / G, .12,10) \\
& =-617,490+35,000(20.254)=\$ 91,400
\end{aligned}
$$

16.6 Using Indexes for Order-Of-Magnitude Estimates

Indexes of inflation were developed in Chapter 15. They can be combined with indexes for productivity, geographical location, and facility size to create early rough or order-ofmagnitude estimates. Indexes are the essence of the historical analogy approach, and they are often included in other approaches as well. Index data can be purchased in text or database formats (in Dodge, Means, Richardson's, and Walker's), or an organization can develop its own.

An example productivity index would adjust for the lower productivity of labor under prolonged overtime conditions. For example, 2 hours of overtime per day for 5-day weeks is estimated to result in a lost efficiency of 2% to 8% and 4 overtime hours per day for 7 -day weeks is estimated to result in a lost efficiency of 28% [Walker's].

These index models are a simple example of a parametric costing, in which key cost drivers, such as square footage for buildings or weight for satellites [Wertz and Larson], are used to estimate project costs. These models can be nonlinear, and their coefficients are often derived statistically through regression.

Exhibits 16.7 through 16.9 summarize a few cost and productivity indexes used to estimate the cost of constructing facilities [U.S. Air Force, U.S. Army]. The cost growth

EXHIBIT 16.7 Cost growth factor

Year	January	April	July	October
1988	.938	.947	.955	.964
1989	.973	.982	.991	1.000
1990	1.009	1.018	1.026	1.034
1991	1.043	1.051	1.059	1.064
1992	1.073	1.081	1.087	1.091
1993	1.099	1.106	1.112	1.116
1994	1.125	1.131	1.138	1.142
1995	1.151	1.157	1.164	1.168
1996	1.177	1.184	1.191	1.195
1997	1.204	1.211	1.218	1.223
1998	1.230	1.236	1.243	1.250
1999	1.257	1.264	1.270	1.277
2000	1.284	1.291	1.298	1.306
2001	1.313	1.320	1.327	1.334
2002	1.342	1.349	1.356	1.364
2003	1.369	1.377	1.383	1.396
2004	1.420	1.476	1.508	1.551
2005	1.561	1.575	1.586	1.618
2006	1.643	1.663	1.681	1.705
2007	1.713	1.759	1.775	1.773
2008	1.793	1.846	1.925	1.905
2009	1.860	1.865	1.870	1.888
2010	1.895	1.887	1.892	1.897
2011	1.909	1.916	1.922	1.929
2012	1.939	1.947	1.956	1.964
2013	1.973	1.982	1.991	2.000

factor (Exhibit 16.7) accounts for inflation. Area cost factors (Exhibit 16.8) account for location-specific factors, which include weather, seismic codes, mobilization, climate, availability and productivity of labor, and overhead and profit for the contractor. The sizeadjustment factor (Exhibit 16.9) accounts for the difference in square footage between the database of historical costs and the project being estimated. For the graph in Exhibit 16.9, the ratio between the size of the estimated facility and the typical size (table in Exhibit 16.9) is the x-axis value. Then, the corresponding cost index is the y-axis value. Section 16.7 describes the capacity function approach for linking size and cost. Three of these cost and productivity indexes are applied in Example 16.4.

EXHIBIT 16.8 Area cost factors

Factor $^{\mathbf{1}}$	Location	Factor	Location
.88	Huntsville, AL	.97	Denver, CO
3.48	Aleutians, AK	.99	Delaware
1.79	Anchorage, AK	.91	Cape Kennedy, FL
.98	Phoenix, AZ	.78	Tampa, FL
.87	Little Rock, AR	.86	Atlanta, GA
1.19	Los Angeles, CA	.80	Macon, GA
1.22	Travis AFB, CA	1.33	Honolulu, HI

${ }^{1} 1.00$ equals a 144 -city average (three cities each in 48 states).

EXHIBIT 16.9 Size-adjustment factors and chart

Facility	Typical Size	$\$ / \mathbf{f t}^{\mathbf{2}}$ (FY90) $^{\mathbf{1}}$
Outpatient clinic	30,000	$\$ 114$
Dental clinic	15,000	155
Administrative	25,000	82
Barracks	40,000	72
Messhalls	16,000	157
Community fire station	3,500	98

${ }^{1}$ FY90 costs are at the $\$ 1.00$ point in October 1989.

EXAMPLE 16.4 Estimate Messhall Cost

Estimate the cost of a 12,000 -square-foot messhall to be constructed in Shemya, Alaska, during summer 2010.

SOLUTION

The midpoint of the construction season is July 2010, so the cost growth or inflation factor is 1.892 (from Exhibit 16.7). Since Shemya is part of the Aleutian Island chain, the location factor is 3.48 (from Exhibit 16.8). Finally, the base unit cost for a messhall is $\$ 157$ per square foot (from Exhibit 16.9). The messhall is 75% of the typical size, so the cost relationship factor (from the chart in Exhibit 16.9) is 1.03 . The estimated cost is determined by multiplying these factors together:

$$
\begin{aligned}
\text { Estimate } & =(157)(12,000) 1.03 \times 3.48 \times 1.892 \\
& =\$ 12,777,000
\end{aligned}
$$

16.7 Using Capacity Functions for Order-of-Magnitude Estimates

The capacity function model uses a capacity parameter to estimate a facility's cost. Larger facilities cost more, but usually, there are economies of scale in their construction. Equation 16.1 is sometimes called the 60% rule, because the capacity exponent is so often close to 60%.

$$
\begin{equation*}
C_{x}=C_{k}\left(S_{x} / S_{k}\right)^{n} \tag{16.1}
\end{equation*}
$$

where

$$
\begin{aligned}
C_{x} & \equiv \text { estimated cost of facility of size } S_{x} \\
C_{k} & \equiv \text { known cost of facility of size } S_{k} \\
n & \equiv \text { capacity exponent (normally < })
\end{aligned}
$$

To improve the model's accuracy, these exponents are identified for specific facilities, such as refineries or power generation, perhaps with a size parameter specified. Exhibit 16.10 is an abbreviated list of these exponents, which are applied in Examples 16.5 and 16.6.

There are limits to how different the sizes of the estimated and known facilities can be. Generally, the ratio should be less than 2, and it should never be greater than 5 [Humphreys and Wellman]. Similarly, due to changes in technology, the gap in timing should be no more than 5 years.

EXHIBIT 16.10 Capacity exponents

Exponent	Facility	Exponent	Facility
.70	LP gas recovery in refineries	.65	Oxygen plants
.73	Polymerization, small plants	.65	Styrene plant
.91	Polymerization, large plants	.98	Ammonia, and nitric acid or urea
.61	Steam generation, large, 200 psi	.75	Chlorine plants, electrolytic
.81	Steam generation, large, 1000 psi	.57	Refineries, small
.88	Power generation, 2,000-20,000 kW	.67	Refineries, large
.50	Power generation, oil field, 20-200 kW	.55	Hydrogen sulfide removal
.64	Sulfur from $\mathrm{H}_{2} \mathrm{~S}$		

Source: Humphreys and Wellman, Table 2.1.

Your engineering group has just finished the preliminary design of a small refinery. The estimated cost is $\$ 19 \mathrm{M}$ for a capacity of 2 M barrels per year. Your management has asked you for order- ofmagnitude estimates for facilities with capacities of 1 M and 3 M barrels per year. The managers also want a comparison of cost per barrel of capacity.

SOLUTION

From Exhibit 16.10, the coefficient is .57 for small refineries.

$$
\begin{aligned}
& C_{x}=C_{k}\left(S_{x} / S_{k}\right)^{n} \\
& C_{1}=C_{2}(1 / 2)^{.57}=19 \mathrm{M}(.6736)=\$ 12.8 \mathrm{M}, \text { or } \$ 13 \mathrm{M} \\
& C_{3}=C_{2}(3 / 2)^{.57}=19 \mathrm{M}(1.26)=\$ 23.9 \mathrm{M}, \text { or } \$ 24 \mathrm{M}
\end{aligned}
$$

In tabular form, this is:

Capacity (barrels)	1 M	2 M	3 M
Cost	$\$ 13 \mathrm{M}$	19 M	24 M
Cost/Bbl Capacity	$\$ 12.8$	9.50	8.0

The community of Upper Snowshoe has expanded its winter tourism very rapidly. Three years ago, they built a new, $10,000-\mathrm{kW}$ power plant for $\$ 4.5 \mathrm{M}$. The local construction cost index was 135 at that time, and it has risen to 157 now. In current dollars, what is the estimated cost of a $16,000-\mathrm{kW}$ power plant?

SOLUTION

The first step is to convert the $\$ 4.5 \mathrm{M}$ into current dollars by multiplying by $157 / 135$, which results in $\$ 5.23 \mathrm{M}$ as the estimated current cost of a $10,000-\mathrm{kW}$ power plant.

Then, the capacity function is used to scale this to the cost of a $16,000-\mathrm{kW}$ plant. From Exhibit 16.10 , the capacity coefficient is .88 .

$$
\begin{aligned}
C_{x} & =C_{k}\left(S_{x} / S_{k}\right)^{n} \\
\mathrm{C}_{16,000} & =\mathrm{C}_{10,000}(16,000 / 10,000)^{.88}=5.23 \mathrm{M}(1.512) \\
& =\$ 7.91 \mathrm{M}, \text { or } \$ 8 \mathrm{M}
\end{aligned}
$$

16.8 Using Growth Curves

Demands and sales and, thus, revenues are often estimated with growth or S-curves. These models, as shown in Exhibits 16.11 and 16.12, assume that demand is initially low. After product refinement and market awareness, sales grow rapidly until the volume approaches a limit and growth then tapers off.

There are several forms of these models, two of which are presented here. The first of these, the Pearl curve (Equation 16.2), is symmetrical about its point of inflection. The second, the Gompertz curve (Equation 16.3), does not have this property. The choice between these two equations should be based on fitting past sales in the industry being analyzed. Problem 16.23 illustrates that the curves differ when fit to the same first few points. Example curves are graphed in Exhibits 16.11 and 16.12. The solid lines are the base case values for each exhibit, then each dashed line changes 1 parameter.

These curves are defined here so that demand (D) is a function of time (t) and the upper limit (L). These curves can also be formulated for cumulative sales or even for technological performance, such as the speed performance for jet aircraft.

$$
\begin{array}{ll}
\text { Pearl curve: } & D=L /\left(l+\mathrm{a} e^{-\mathrm{b} t}\right) \\
\text { Gompertz curve: } & D=L e^{-c e^{-d t}} \tag{16.3}
\end{array}
$$

Example 16.7 illustrates use of a Pearl curve with a given a and b. These curves can be linearized, as shown in Equations 16.2^{\prime} and 16.3^{\prime}. Regression can be used to estimate the a, b, c, and d coefficients with three or more periods of data (beyond this text). Or, as shown in Example 16.8, two data points can be used to estimate the coefficients. However, unless enough time has elapsed so that the limit, L, is being approached, the limit L cannot reliably be estimated from the data used to estimate a, b, c, and d.

> Linearized Pearl curve: $\quad \ln [(L-D) / D]=\ln a-b t$
> Linearized Gompertz curve: $\quad \ln [\ln (L / D)]=\ln c-d t$

EXHIBIT 16.11 Example Pearl curves

EXHIBIT 16.12 Example Gompertz curves

ElectroChip is developing a chip that will convert old PCs into home-security monitors. It expects the chips to sell for $\$ 50$ each the first year and to drop in price by $\$ 5$ per year. It believes that the upper limit for annual demand is $1,000,000$ chips. Assume that a Pearl curve with $a=10,000$ and $b=3$ applies. What is the expected demand in each of the next 6 years? What are the expected revenues?

SOLUTION

$$
D=L /\left(1+\mathrm{a} e^{-\mathrm{b} t}\right)=1,000,000 /\left(1+10,000 e^{-3 t}\right)
$$

Year	1	2	3	4	5	6
Demand (\boldsymbol{D})	2005	38,778	447,608	942,114	996,950	999,848
Revenue (\boldsymbol{R})	$\$.1 \mathrm{M}$	1.7 M	17.9 M	33.0 M	29.9 M	25.0 M

By multiplying the estimated sales in each year by $\$ 50, \$ 45, \$ 40, \$ 35, \$ 30$, and $\$ 25$, respectively, the revenue data shown in the table can be generated and then graphed as shown in Exhibit 16.13.

EXAMPLE 16.8 BigState MediState Demand

BigState has instituted an incentive for hospitals to file their claims for reimbursement under the MediState system in a specific electronic format. Assume that the number of hospitals is steady at 1000 and that 5 and 70 hospitals switched in the first and second years, respectively. To plan for the upgrade of the state's computer network, you must estimate the number of hospitals that will switch in each of the next 4 years. Assume that a Gompertz curve applies.

SOLUTION

The limit for the number of hospitals, L, is 1000 , and 75 hospitals have switched through year 2 .

$$
D=L e^{-c e^{-d t}}
$$

Using the first 2 years of data ($t=1$ and 2), estimates of c and d must be derived using Equation 16.3' as follows:

$$
\begin{aligned}
\ln [\ln (1000 / 5)] & =1.66739=\ln c-d \times 1 \\
\ln [\ln (1000 / 75)] & =.95176=\ln c-d \times 2
\end{aligned}
$$

Subtracting the second equation from the first solves for d ; then, that value is substituted to find lnc and c .

$$
.71513=\mathrm{d} \text { and } 2.3830=\ln c \text { or } c=10.8376
$$

(More accurate estimates would be available from regression if there were more data.) The results are summarized in Exhibit 16.14.

EXHIBIT 16.14 Gompertz curve for BigState MediState demand

Year	1	2	3	4	5	6
\boldsymbol{D}	5	75	282	538	739	862

16.9 Using Learning Curves

Learning curves were developed to model the cost of producing complex systems in which operator experience, process improvements, and design changes reduce labor and machine hours in a predictable manner. In words, the model is usually expressed as follows: For each doubling of cumulative production, the labor hours per unit fall to a specified percentage of the previous value. The lower the percentage, the faster the number of hours falls. Thus more complex and newer activities have lower coefficients. This percentage is often 80% (see also Exhibit 16.15).

EXHIBIT 16.15 Example learning-curve coefficients

.65	Prototype assembly
.70	Final assembly-complex
.80	Final assembly—simple
.80	Packaging
.82	Shearing metal plates
.83	Printed circuit-board fabrication
.85	Welding shop
.95	Machine shop
.985	Grinding, chipping, blast cleaning

Source: Smith, p. 27, and Nanda and Alder, p. 30.
Once the number of labor hours has been found using Equation 16.4, then the appropriate cost per hour is applied. Let:

$$
\begin{align*}
& H_{i}=\text { hours for item } i \\
& \Theta=\text { rate } \\
& H_{i}=H_{1}{ }^{(\ln i / \ln 2)} \tag{16.4}
\end{align*}
$$

When this type of relationship is graphed on normal coordinates, the decline in cost is obvious, but the relationship is not (see Exhibit 16.16). On log-log paper (Exhibit 16.17),

EXHIBIT 16.16 Learning curve with 80% rate

EXHIBIT 16.17 Log-log learning curve with 80% rate

it appears as a straight line, since doubling the number of units on the x-axis reduces the labor hours by a constant percentage.

EXAMPLE 16.9 Learning Curve for AirTruck

AirTruck, a manufacturer of freighter aircraft, is evaluating the potential payoff of a process improvement program that should change its learning curve percentage from .85 to 8 . The jet on which this program would start requires an estimated 8000 person-days for its first unit. Contrast the curves for person-days for the two learning curve percentages.

SOLUTION

The calculation if person-days is easiest if the unit numbers are doubled each time ($1,2,4$, $8, \ldots$). Then, the learning curve coefficient is simply multiplied by the person-day term to calculate the next one.

Item	Existing $\Theta=.85$	Potential $\Theta=.8$
1	8000	8000
2	6800	6400
4	5780	5120
8	4913	4096
16	4176	3277
32	3550	2622
64	3018	2098
128	2565	1678
256	2180	1342
512	1853	1074

16.10 Using Factor Estimates

Factor estimates are more detailed parametric estimates. Rather than using only total square footage or total capacity, the project being estimated is broken down into smaller pieces.

If the level of detail is only moderate, then it corresponds to estimates made during the preliminary systems design or the budget estimate. Example 16.10 illustrates a factor estimate with a moderate level of detail.

If the project is broken down into exhaustive detail, then it corresponds to estimates made during the detailed systems design or the definitive estimate stage. Thus, person-days will be broken down by craft and experience level, with the associated costs. The capital items will be based on bids, catalogs, and perhaps, a few capacity functions applied to adjust the cost of a particular unit. Working capital will be linked to a cash flow budget.

Provide a more detailed estimate of the cost of the plant revision that was estimated at $\$ 900,000$ in Example 16.3. (Note: A similar, more detailed analysis of operating cost and revenue implications should also be done, although they are not included here.)

SOLUTION

Earlier estimate was based on:

$\$ 600 \mathrm{~K}$	Six robots at $\$ 100,000$ each
125 K	Material-handling system
10 K	Materials for rooms, etc.
200 K	Labor for construction and training
$\frac{-35 \mathrm{~K}}{\$ 900 \mathrm{~K}}$	Salvage value of old conveyor

A more detailed factor estimate might be:

$\$ 225 \mathrm{~K}$	3 Painting robots (Atlas 342s) at \$75,000 each
150 K	1 Long travel welding robot (Atlas 358)
250 K	2 Welding robots (Atlas 357)
75 K	Asynchronous conveyor (MagicRamp 2440)
55 K	Paint-handling system (Atlas 342-38/38/38)
10 K	Material for rooms, paint booths, etc.
120 K	600 Days at \$25/hour for mechanical technicians
96 K	600 Days at \$20/hour for training
12 K	100 Days at \$15/hour for disassembly
$\frac{-45 \mathrm{~K}}{\$ 948 \mathrm{~K}}$	Sale of old conveyor after disassembled

16.11 Summary

This chapter has detailed one of the steps in the engineering economy process originally described in Chapter 1. With these tools, you can estimate the consequences of alternatives and construct cash flow diagrams. The results of an engineering economy study are no better than the data that are estimated and used.

Therefore, when doing a study, one must identify the level of accuracy required for the estimate and the methodology that will achieve that accuracy. It also requires identifying a base case if the project is a modification of an existing system.

The tools available for estimating include statistics used for parametric forecasting, indexes of inflation and productivity, capacity functions, learning curves, and factored estimates.

REFERENCES

Barrie, Donald S., and Boyd C. Paulson, Professional Construction Management: Including C.M., Design-Construct, and General Contracting, 3rd ed., 1992, McGraw-Hill.
Dodge Manual for Construction Pricing and Scheduling, published annually, McGraw-Hill Information Systems.
Humphreys, Kenneth K., and Paul Wellman, Basic Cost Engineering, 2nd ed., 1987, Marcel Dekker. Means Cost Data, published annually (Building Construction, 67th, 2009; Repair and Remodeling, 30th, 2009; Electrical, 32nd, 2009; Plumbing, 32nd, 2009; Mechanical, 32nd, 2009; and Square Foot, 30th, 2009), Robert Snow Means Co.
Michaels, Jack V., and William P. Wood, Design to Cost, 1989, Wiley.
Nanda, Ravinder, and George L. Alder, eds., Learning Curves: Theory and Applications, 1982, Institute of Industrial Engineers.
Richardson's General Construction Estimating Standards and Process Plant Construction Estimate Standards, published annually, Richardson.
Smith, Jason, Learning Curve for Cost Control, 1989, Institute of Industrial Engineers.
U.S. Air Force, HQ USAF Annual Construction Pricing Guide for FY 90-94 Major Construction Program, January 1988.
U.S. Army, Programming Cost Estimate for Military Construction, TM 5-800-4, May 1994.
U.S. Army Corps of Engineers, Engineering and Design-Civil Works Construction Cost Index System (CWCCIS), EM 1110-2-1304, published March 2000; tables revised March 2009. Walker's Building Estimator's Reference Book, published periodically, Frank R. Walker Co.
Wertz, James R., and Wiley J. Larson, Space Mission Analysis and Design, 3rd ed., Microcosm, 1999.

Problems

16.1 Provide a checklist for ensuring the completeness of a cost estimate for an organization you are familiar with.
16.2 Provide an example of poor up-front planning and economic analysis that led to poor performance.
16.3 Provide an example of excellent up-front planning and economic analysis that supported excellent performance.
16.4 Analyze a budget estimate that can be compared to an executed cost. Categorize the estimate and compare its accuracy with the AACE International standards. How did you account for "change orders?"

Use the data from Exhibits 16.7 through 16.9 to answer Problems 16.5 through 16.10.
16.5 An estimate for a new runway needs to be updated for a new construction starting date. When the midpoint of construction was July 2008, the estimated cost was $\$ 4.8$ million. If the project is being delayed by 1 year, what is the new estimated cost?
16.6 A standard barracks plan of 40,000 square feet will be constructed in Huntsville, Alabama, and Anchorage, Alaska. What is the estimated cost for each site in July 2010?
16.7 A typical-sized administration building is 25,000 square feet, and it costs $\$ 82$ (FY90) per square foot. These figures were used to estimate the cost of a requested facility. However, only 75% of the funds were authorized, so the facility must be downsized. Estimate how much smaller the administration building must be.
16.8 Estimate the cost to build a 50,000-square-foot outpatient clinic in Blytheville, Arkansas, with construction midpoint of July 2011.
16.9 Estimate the cost of a 12,000 -square-foot dental clinic to be built in Los Angeles, California, with a midpoint construction period of October 2013.
16.10 Estimate the cost to build a 4000-square-foot community fire station to be built in Tampa, Florida, with a midpoint construction period of July 2012.
16.11 Estimate the cost of a 20,000-square-foot barracks to be built in Little Rock, Arkansas, in October 2012.
16.12 Estimate the cost of expanding a planned new school by 20,000 square feet. The appropriate capacity exponent is .66 , and the budget estimate for 200,000 square feet was $\$ 15 \mathrm{M}$. (Answer: $\$ 1 \mathrm{M}$)
16.13 The estimated cost to construct a small polymerization plant is required before your firm's management will fund any preliminary design work. Data shows that a plant twice the size of the proposed plant cost $\$ 22 \mathrm{M}$ to construct. Using order-of-magnitude estimating methods, determine the estimated cost of the proposed plant.
16.14 New EPA regulations have just been proposed. If they are enacted, the capacity of the hydrogen sulfide removal plant that is part of a coal facility will have to be doubled. The definitive estimate for the original removal plant is $\$ 12 \mathrm{M}$. What is an order-of-magnitude estimate for the expanded plant?
16.15 A $12,000-\mathrm{kW}$ power plant was completed near Anchorage in July 1999 for $\$ 2.5 \mathrm{M}$. An $8000-\mathrm{kW}$ plant using similar technology is estimated for completion in July 2011 on Adak. What is an order-of-magnitude estimate?
16.16 Five years ago, POW Chemical built a fertilizerproduction plant for $\$ 8 \mathrm{M}$. The inflation rates over the last 5 years have been $3 \%, 5 \%, 3 \%, 6 \%$, and 2%, respectively. In current dollars, what is the order-of-magnitude estimated cost of a plant with 50% more capacity?
16.17 A definitive estimate for the cost of a 20,000-ton/ year oxygen plant is $\$ 15 \mathrm{M}$.
(a) Provide an order-of-magnitude estimate for a 30,000-ton/year facility.
(b) Assume that the AACE error limits apply to both estimates. Provide upper and lower estimates for the cost of the 30,000-ton/year facility.
(c) Assume the 20,000-ton/year facility was designed for Los Angeles and the 30,000-ton/year facility is for Anchorage. Adjust your estimate accordingly.
16.18 Calculate and draw a Pearl curve over 10 years. Let $L=1000, a=50$, and $b=.7$.
(Answer: $D_{1}=39, D_{2}=75$)
16.19 The manufacturer of a new, improved widget must estimate sales for the first 6 years of production. The upper limit on annual demand for these widgets is believed to be $1,000,000$ units. The widget will be sold for $\$ 12$ the first year and will decrease in price $\$.50$ each year. Using a Pearl curve with $\mathrm{a}=$ 100,000 and $b=4$, determine the expected demand for the 6 -year period, and determine the revenue that can be expected each year.
16.20 Calculate and draw a Gompertz curve over 5 years. Let $L=500, c=12$, and $b=.7$ (Answer: $D_{1}=1, D_{2}=26$)
16.21 The Heritage Cable Network received commitments to carry the network's programming from 35 cable operators the first year of operation and 90 commitments the second year. The number of cable operators is expected to remain steady at 2000 for the next several years. Using a Gompertz curve, estimate the number of commitments Heritage should anticipate each year for the next 4 years. (Answer: $D_{3}=299$)
16.22 Mrs. Meadows Cookies provides many varieties of fresh-baked cookies and pastries for specialty shops across the country. Two years ago, a new cookie, the Choco-Mucho, was introduced and recorded sales of $\$ 1.2 \mathrm{M}$ the first year and $\$ 1.5 \mathrm{M}$ the second year. The company anticipates the sales of the cookies will reach a maximum of $\$ 5 \mathrm{M}$. Using a Pearl curve, estimate the revenues for the cookie for the next 4 years.
16.23 Calculate and draw growth curves over 10 years. Let $L=1000$ and the numbers for years 1 and 2 be 5 and 50, respectively.
(a) Calculate the coefficients, and draw a Pearl curve.
(b) Calculate the coefficients, and draw a Gompertz curve.
(c) Contrast the two curves. Is there any basis for preferring one of them?
16.24 Determine the time required to produce the 2000th item if the first item requires 180 minutes to produce and the learning-curve percentage is 92%. (Answer: 72.1 minutes)
16.25 For AirTruck in Example 16.9, calculate the curve
 with $\Theta=.82$ which someone has suggested as a more likely outcome. (Answer: $D_{2}=6560$)
16.26 Plot the curves for Example 16.9 on standard x, y-coordinates rather than on log-log coordinates.
16.27 Determine the labor costs required to produce the 100th item if the first item requires 45 days to produce and the learning curve percentage is 82%. The average cost of labor is $\$ 8.50$ per hour and two 9 -hour shifts work each day. The average number of people working on the item is eight.
16.28 For Example 16.9 (AirTruck learning curve), approximate the cumulative person-day savings of having $\Theta=.8$ rather than .85 . Assume that 10 planes per year will be built.
16.29 For Problem 16.28, calculate the PW of the savings if each person-day costs $\$ 250, i=10 \%$, and $N=10$ years.
16.30 Contrast the learning-curve coefficients for simple and complex assembly operations. In which case does learning occur faster? Why is this true?
16.31 The size-adjustment graph of Exhibit 16.9 is a type of capacity function curve. Estimate the capacity function coefficient for each of the following sizes $.5,1.5,2$, and 3.

Minicases

16.32 Prepare a short report and presentation on a project estimate for a project that was built. Compare costs with the estimate. What methodology was used to prepare the estimate.
16.33 Compare the inflation rates summarized in Exhibit 16.7 with the CPI data in Chapter 15 . Since the CPI data is for December of each year, assume that January 1988 in Exhibit 16.7 matches December 1987 and January 2009 matches December 2008 for your last period.
(a) Which inflation rate is higher? Why? Which is likely to more accurate?
(b) The values in Exhibit 16.7 after March 2009 are projected values. Use more recent CPI data
to evaluate how these projected values could be adjusted for more accurate estimates.
16.34 Large projects, such as a new tunnel under the Hudson, the Big Dig in Boston, the Denver airport, a new military jet, and a natural gas pipeline from Alaska to the Midwest, often take 5 to 15 years from concept to completion. Contributed by Morgan Henrie, University of Alaska Anchorage
(a) Should cost estimates be adjusted for the greater influences and impacts of inflation, government regulatory changes, and changing local economic environments? Why or why not?
(b) How does the public budget making process interact with the goal of accurate cost estimating for these large projects?
(c) Report on the cost estimates for a large infrastructure project.

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 3 Wildcat Oil in Kasakstan

Rough order-of-magnitude estimation of total facility cost and annual revenue. Option for NPV and different size facility.

Case 25 Raster Blaster

Questions to guide students. Includes breakeven analysis.

CHAPTER

Sensitivity Analysis

- THE SITUATION AND THE SOLUTION

Unlike most text problems in which the data are given, the real world contains uncertain data. For example, first costs, annual revenues, the project's life, and any salvage values are estimated.

The solution is to analyze the project under different assumptions that represent the range of reasonable estimates. Sensitivity analysis examines how the recommended decision depends on the estimated data.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 17.1 Describe the uses of sensitivity analysis, and recognize the techniques used.
SECTION 17.2 Set reasonable limits of uncertainty for estimated data.
SECTION 17.3 Describe the techniques of sensitivity analysis.
SECTION 17.4 Interpret sensitivity information from spiderplots.
SECTION 17.5 Construct a spiderplot with a spreadsheet.
SECTION 17.6 Construct a tornado diagram.
SECTION 17.7 Analyze problems with multiple alternatives.
SECTION 17.8 Conduct sensitivity analysis on the interaction of two cash flow elements.

- KEY WORDS AND CONCEPTS

Sensitivity analysis A method that examines how a recommended decision depends on estimated cash flows.
Cash flow element A cash flow (P or F), a set of cash flows (A or G), an interest rate (i), a horizon or life (N), a tax rate, etc.
Breakeven chart A chart that depicts economic desirability as a function of one cash flow element.
Base case The set of most likely values for the cash flow elements.
Scenario A representative, believable combination of cash flow elements.
Spiderplot A graphic that depicts economic performance as a function of each variable under analysis.
Tornado diagram A graphic that depicts the upper and lower limits of economic performance for each variable under analysis.

17.1 What Is Sensitivity Analysis?

Sensitivity analysis examines how a recommended decision depends on estimated input variable values.

Cash flow elements include P, A, F, G, i, N, and tax rates, etc.

Breakeven charts

depict economic loss and profit as a function of one problem variable.

Sensitivity analysis examines how uncertainty in estimated cash flows influences recommended decisions. This was introduced in Chapter 4 and 8 with the discussion of breakeven analysis, which can be used to answer many questions. For example: Does using another interest rate or a shorter time horizon cause a different alternative to have the best present worth? Would a 10% savings in construction costs make an unattractive project economically attractive? Would a 20% cost overrun make the present worth negative?

Sensitivity analysis can be used to examine uncertainty in all data items that affect the problem's cash flows. These include the cash flows themselves $(P, A, F$, and G), the interest rate (i), the horizon (N), depreciation rules, the tax rate, and sales volume. As a group, these are defined as cash flow elements.

By examining the uncertainty in all cash flow elements and comparing their relative impact, sensitivity analysis can identify which uncertainties are the most important. This is a more comprehensive approach that often starts with a simple what if question. Sensitivity analysis can guide further data gathering, support decision making, and focus attention during implementation.

Sources of Uncertainty. Cash flow elements may be uncertain for the following reasons:

1. Measurement error.
2. Unclear specifications.
3. A volatile future.

For example, measuring current labor output and monthly labor costs is affected by the number of holidays, amount of overtime, number of employees, and how many paydays occurred during the month. Errors in any of these will cause measurement errors in estimating labor output and labor costs.

Feasibility studies often have unclear specifications, but even well-defined building projects may not be completely specified. For example, specifying the size of the building, room sizes and uses, etc., largely determines the cost of the building. At early stages of design, specification of interior and exterior finishes is omitted, even though the choice of carpeting, tile, sheet vinyl, and other elements influence that cost.

Finally, estimates of such things as product demand, the corrosion rate in oil field piping, and the growing demand for electrical power are inherently uncertain. Each depends on a future that is only partly predictable.

Since engineering economy emphasizes the future, this uncertainty cannot be avoided. The uncertainty must be analyzed using sensitivity analysis. While this has always been true, sensitivity analysis is becoming more important (1) as technology and global competition force more rapid change and (2) as competitors increasingly rely on more complete analysis supported by databases and modeling.

Breakeven Charts. This basic tool for sensitivity analysis was introduced in Chapters 4 and 8. Exhibits 8.10 and 17.1 are examples of breakeven charts. Example 8.12 is an illustration of one of the most common applications-calculating a breakeven volume. Examples 17.1 and 17.2 introduce breakeven analysis for one key variable and then expand it to other variables.

As will be discussed in Section 17.2, these breakeven charts are only mathematical exercises-until there is an answer to the question: How likely is that change?

EXAMPLE 17.1 Buying vs. Renting

George recently graduated with a degree in aeronautical engineering from a midwest university. He has accepted a job in Seattle, and he is deciding between renting and buying a home. George's hobby is model railroading, and he will not move again unless he leaves Seattle for a job elsewhere in the country.

If George buys the house, it will cost him about $\$ 5000$ in transaction costs at time 0 and another $\$ 20,000$ when he sells it. His mortgage and lease payments would be about the same, but he has estimated that the lifestyle and tax advantages of ownership are worth about $\$ 3600$ per year. George's interest rate is 9%. How many years must George live in Seattle for buying to be more economically attractive?

SOLUTION

One approach is to simply try different years. Another is to graph the present worth of buying the home as a function of the number of years it is owned. Trying N equals 1,10 , and 20 years certainly spans the likely ownership periods. George believes 10 to 15 years is more likely.

$$
\begin{aligned}
\mathrm{PW}_{1} & =-5000-20,000(P / F, 9 \%, 1)+3600(P / A, 9 \%, 1) \\
& =-5000-20,000(.9174)+3600(.9174)=-\$ 20,045 \\
\mathrm{PW}_{10} & =-5000-20,000(P / F, 9 \%, 10)+3600(P / A, 9 \%, 10) \\
& =-5000-20,000(.4224)+3600(6.418)=\$ 9657 \\
\mathrm{PW}_{20} & =-5000-20,000(P / F, 9 \%, 20)+3600(P / A, 9 \%, 20) \\
& =-5000-20,000(.1784)+3600(9.129)=\$ 24,296
\end{aligned}
$$

As shown in Exhibit 17.1, a linear interpolation between 1 year and 10 years suggests that 7.1 years is the breakeven point. In fact, $\mathrm{PW}_{6}=-\$ 776$ and $\mathrm{PW}_{7}=\$ 2178$, so the breakeven point is closer to 6 than to 7 years. A dashed line is used for 1 to 10 and 15 to 20 years, since George believes those values are less likely.

Present worth of house buying vs. years of ownership

Why Do Sensitivity Analysis? The uncertainty that is present in estimated cash flows requires sensitivity analysis. How sensitivity analysis is used depends on the stage of the economic analysis. The reasons for doing sensitivity analysis include:

1. Making better decisions.
2. Deciding which data estimates merit refinement.
3. Focusing managerial attention on the key variables during implementation.

Example 17.1 illustrated using sensitivity analysis to make a decision. George can compare his best guess for how long he will be in Seattle with the breakeven value of just over 6 years. Similarly, the scenarios in Example 17.4 can be used to decide whether to purchase the parkland.

In Example 17.1, buying a home is very important to George's finances. If he wants to improve the reliability of his analysis, which cash flow elements should he estimate more accurately? Which uncertainty is more important: (1) the number of years, (2) the $\$ 5000$ cost at time 0 , (3) the $\$ 20 \mathrm{~K}$ cost at time N, or (4) the $\$ 3600$-per-year value of home ownership?

The first of these variables was analyzed with a breakeven chart in Exhibit 17.1; the next three are analyzed in Example 17.2 and Exhibit 17.2. However, the set of four breakeven charts is difficult to use.

1. Is each breakeven value likely to occur or nearly impossible?
2. How can the charts be compared when each has a different x-axis?

Section 17.2 introduces the need to define the limits of uncertainty for each variable. Section 17.3 shows how to compare the relative impact on the economic criteria of the variables using a table, a tornado diagram, and a spiderplot. This comparison can be used during a feasibility study or while developing a cost estimate to show where additional analysis and data gathering are needed-before a decision is made. Finally, after the decision is made, sensitivity analysis can show which cash flow elements merit the most attention during project implementation.

For example, a project's largest cost may be a fixed cost to purchase equipment. Some negotiation may be possible, but little change in the cost is likely. The number of dollars to construct the building to house the equipment may be smaller, but schedule delays in the building might be the source of variability in revenue projections, and the cost of construction might be the major source of cost uncertainty. Thus, sensitivity analysis can show where to focus managerial attention.

Analyze the breakeven points for George for the initial and final costs of buying and selling the home and for the annual value of owning the home in Example 17.1. Assume $N=10$ years for the calculations of other breakeven points.

SOLUTION

George's present worth is:
$\mathrm{PW}=-$ FirstCost - FinalCost $\times(P / F, i, N)+$ AnnBen $\times(P / A, i, N)$
where FirstCost $=\$ 5000$, FinalCost $=\$ 20,000$, AnnBen $=\$ 3600, i=9 \%$, and $N=10$.

These functions are graphed in Exhibit 17.2, but the breakeven values can also be calculated by setting the PW equation equal to 0 . For FirstCost, the equation is:

$$
\begin{aligned}
0 & =- \text { FirstCost }_{\mathrm{BE}}-20,000(P / F, 9 \%, 10)+3600(P / A, 9 \%, 10) \\
\text { FirstCost }_{\mathrm{BE}} & =-20,000 \times .4224+3600 \times 6.418=\$ 14,660(193 \% \text { increase })
\end{aligned}
$$

The equations and values for FinalCost and AnnBen are:

$$
\begin{aligned}
\text { FinalCost }_{\mathrm{BE}} & =(-5000+3600 \times 6.418) / .4224=\$ 42,860(114 \% \text { increase }) \\
\text { AnnBen }_{\mathrm{BE}} & =(5000+20,000 \times .4224) / 6.418=\$ 2095(42 \% \text { decrease })
\end{aligned}
$$

To evaluate these breakeven points, the question is: How likely is that much change? As starting points in answering that question, the base case assumption is shown on each graph and the percentage change is calculated with the equation.
EXHIBIT 17.2 Breakeven charts for the present worth of house buying

(b) PW vs. final cost

(c) PW vs. annual benefits

Defining the Limits of Uncertain Data. The breakeven analysis is not complete without what should be the first step in sensitivity analysis-identifying the limits for each cash flow element. Some cash flows may be certain, but others are not. Exhibit 17.3 summarizes why certain cash flow elements may have small or large uncertainties.

Often, these uncertainties are stated as percentages of the most likely values. For example, annual operating costs or the costs of purchased equipment might be known

The base case is the set of most likely values for the cash flows, interest rates, etc.

EXHIBIT 17.3 Possible reasons for large and small uncertainties

Cash Flow Element	Level of Uncertainty	Reason
First cost	Small	Off-the-shelf purchase
Revenues	Large	R\&D required
	Small	Existing product
Horizon	Large	New product
Salvage value	Large	Far in future

within or between 90% and 110%, of the most likely value. Similarly, the actual construction cost for a complex facility might be expected to be between 70% and 150% of the order-of-magnitude estimate. How important to the decision's reliability is it to reduce this uncertainty to the 85%-to- 130% range of the budget estimate or to the 95%-to- 115% range of the definitive estimate? (See Section 16.3 for more detail on levels of estimate accuracy.)

Often, the limits on the uncertain data are asymmetrical. For example, the ranges for the order-of-magnitude, budget, and definitive estimates given above are wider on the plus side than on the minus side of the cost estimate. Unfortunately, this is because there seem to be more ways for things to go wrong than for things to go right. Thus, costs are more likely to go up than to go down, revenues are more likely to go down than to go up, and delays until start-up are more likely to be longer than to be shorter. This is illustrated in Example 17.3.

The set of most likely values is the starting point for an analysis. It is the base case. However, the limits of uncertainty that have been described here are as important as the base case. To reduce the potential for bias, these limits should be estimated before the first present worth is calculated. If the PW is calculated first, then someone might be tempted to use limits that support the "desired" outcome.

Postulate and justify the limits of uncertainty for an electric power-generating facility with the following six parameters:

Building cost	$\$ 5 \mathrm{M}$
Equipment cost	$\$ 10 \mathrm{M}$
Annual net revenue	$\$ 2.5 \mathrm{M}$
Salvage value	$\$ 1 \mathrm{M}$
i	10%
N	20 years

SOLUTION

Northern Electric's experience is that major buildings cost between 80% and 150% of the estimates used to generate the request for proposals. The major equipment consists of natural-gas-fired turbines, which are "off-the-shelf" items with actual costs between 90% and 110% of
estimated costs. It is difficult to predict growth in demand and associated revenues, since this region has a boom/bust economy. Annual net revenues should be within 60% and 120% of the estimated quantity. The salvage value, S, has an estimated accuracy of 70% to 130%.

The appropriate interest rate for real economic returns over inflation should be between 6% and 15%. This is 60% to 150% of the base-case value. (This range has been made larger than it might be, so that nonlinearities would be more apparent.) The project horizon of $N=20$ years should be between 15 years and 30 years, which is 75% to 150% of the base-case value. These uncertainties and the base-case values are summarized in Exhibit 17.4.

Uncertainties in the data for Northern Electric

Element	Lower Limit	Base Case	Upper Limit
Building cost	80%	$\$ 5 \mathrm{M}$	150%
Equipment cost	90%	$\$ 10 \mathrm{M}$	110%
Annual net revenue	60%	$\$ 2.5 \mathrm{M}$	120%
Salvage value	70%	$\$ 1 \mathrm{M}$	130%
i	60%	10%	150%
N	75%	20 years	150%

Estimating Sensitivities. The time value of money ensures that some cash flow elements play a larger role in the calculation of PWs or EACs. The calculated economic worth depends more heavily on or is more sensitive to the values of the more important cash flow elements.

A cash flow in an early year is more important than a similar cash flow in year N, since the later cash flow is discounted more heavily. A cash flow that occurs every year, such as labor costs or revenues from sales, tends to be more important than a cash flow that occurs once, such as an overhaul or a salvage value.

Similarly, when the problem has a long time horizon, uncertainty in the interest rate is important. When the interest rate is low, the length of the study period is important.

17.3 Techniques for Sensitivity Analysis

Scenarios are representative, believable combinations of cash flow elements. Spiderplots depict economic performance as functions of several variables. Tornado diagrams summarize the limits of that economic performance.

Sensitivity analysis is a broad term that includes a variety of techniques. Four techniques will be detailed in this chapter. Examples 17.1 and 17.2 and Exhibits 17.1 and 17.2 illustrated breakeven charts or graphical breakeven analysis. The value of a variable that has a PW $=0$ is the breakeven quantity. Example 17.4 illustrates the use of scenarios or plausible combinations of values in sensitivity analysis. Tornado diagrams and spiderplots are shown in this section to combine, contrast, and compare the relative sensitivity analysis of the multiple breakeven charts shown in Exhibit 17.2.

Scenarios. Scenarios emphasize the impact of combinations of uncertainty on the total outcome. For example, the interest rate and horizon are combined in Example 17.4 to create three scenarios for the benefit/cost ratio. While many cash flows may be different
between the scenarios, there should only be two to five scenarios. More scenarios are likely to be confusing rather than helpful. Often, a most likely, a pessimistic, and an optimistic scenario are the best combination.

The state park system economically evaluates land purchases, but the state legislature sets the interest rate and the horizon that the park system is required to use. The interest rate for a benefit/cost analysis may be set for $3 \%, 6 \%$, or 9%; similarly, the horizon may be set at 10,20 , or 50 years.

The land for one park will cost $\$ 2$ million, and the annual benefit will be $\$ 180,000$. Assume that the salvage value equals $\$ 0$. Construct three scenarios using combinations of interest rates and horizons representing favorable, middle-of-the-road, and unfavorable situations. Under which scenarios should the land be acquired?

SOLUTION

Since the benefits occur later than the costs, the project will be more attractive when lower interest rates and longer time horizons are used. The favorable scenario is 3% and 50 years, the middle-of-the-road scenario is 6% and 20 years, and the unfavorable scenario is 9% and 10 years:

$$
\begin{aligned}
& \mathrm{B} / \mathrm{C}_{\text {fav }}=180,000(P / A, 3 \%, 50) / 2,000,000=2.32 \\
& B / C_{\text {midroad }}=180,000(P / A, 6 \%, 20) / 2,000,000=1.03 \\
& B / \mathrm{C}_{\text {unfav }}=180,000(\mathrm{P} / \mathrm{A}, 9 \%, 10) / 2,000,000=.58
\end{aligned}
$$

The favorable and middle-of-the-road scenarios favor the park; however, the 1.03 is a "just barely" recommendation.

Relative Sensitivity of the Economic Criteria to Different Variables. The next step after defining the limits of uncertainty for each variable is to examine how those uncertainties change the economic criteria-chosen from PW, EAW, IRR, etc.

In Examples 17.1 and 17.2, George's rent vs. buy problem was analyzed with four breakeven charts (for the horizon, first cost, final cost, and annual benefit) using PW as the economic criterion. The chart for each variable was drawn by changing that variable while the other variables were held constant at the base case values.

By defining the limits for each variable, it is possible to analyze the relative sensitivity of the PW to each variable. Which variables change the PW the most? It is also possible to analyze whether changes in the variables could imply a different decision. Does the PW change sign?

In the real world, answers to these questions are likely to call for additional data gathering and alternative generation. For example, rather than making a decision using very
uncertain data, more data will be gathered. Similarly, rather than relying on an alternative that risks large losses, new alternatives will be devised when possible.

The relative sensitivity information can be summarized in a table or in two different kinds of graphs. Spiderplots are the best way to emphasize the relationship between each cash flow element's uncertainty and the project's economic criteria. This technique emphasizes individual variables, as do the collective breakeven charts of Exhibit 17.2. However, spiderplots make comparisons easy. Tornado diagrams simplify this by focusing on the economic criteria-the low and high values for each variable [Eschenbach, Interfaces].

The data from Example 17.1 are used to illustrate the techniques. The problem statement identified a horizon of 1 to 20 years or 10% to 200% of the 10 -year base case. It seems reasonable to select limits of $\pm 10 \%$ for the first cost of buying and of \pm one-third for the final selling cost. Assume that George has said the annual benefit is between 80% and 150% of $\$ 3600$.

Tabulating Relative Sensitivity Analysis. For the rent vs. buy problem Exhibit 17.5 presents:

1. The base case for each variable.
2. The amount up and down that each variable may change.
3. The PW corresponding to each change.

In Example 17.2, breakeven values were calculated for the initial cost to buy the home $(\$ 14,660)$, the final cost to sell it $(\$ 42,860)$, and the annual benefit of owning the home (\$2095). All of these values are outside the limits identified in Exhibit 17.5.

The only negative PW is for decreasing the problem horizon. A detailed analysis of this table would reveal more, but people can more easily understand the results if they are shown graphically.

EXHIIBIT 17.5 Tabulated PW of buying a house vs. four variables

Cash Flow Element (base case)	Variable Change (\% of base case)	Present Worth of Buying (PW base case $=\mathbf{\$ 9 6 5 7})$
Horizon (10 years)	Down to 1 year (10%) Up to 20 years (200%)	Down to $-\$ 20,046$ Up to $\$ 24,294$
First cost (\$5000)	Down by 10% to $\$ 4500(90 \%)$ Up by 10% to $\$ 5500(110 \%)$	Up to $\$ 10,155$ Down to $\$ 9155$
Final cost $(\$ 20,000)$	Down by $\frac{1}{3}$ to $\$ 13,333(67 \%)$ Up by $\frac{1}{3}$ to $\$ 26,667(133 \%)$	Up to $\$ 12,471$
Annual benefit $(\$ 3600)$	Down by 20% to $\$ 2880(80 \%)$ Up by 50% to $\$ 5400(150 \%)$	Down to $\$ 5035$ Up to $\$ 21,207$

Tornado Diagram. Exhibit 17.6 is a tornado diagram that emphasizes the best and worst values of the PW for each of the four variables. It uses the right-hand column of Exhibit 17.5. The "funnel" for the tornado is created by ordering the variables from those with the most effect on the PW at the top to those with the least effect on the bottom. The tornado diagram can effectively summarize the relative sensitivity of 10 to 20 variables for a complex problem.

EXHIBIT 17.6 Tornado diagram for PW of buying a house vs. four variables

Spiderplot. While the tornado diagram very effectively summarizes the PW information, it ignores the information on the limits to the changes in the four variables. Those limits are defined as a percentage of the base case values in the middle column of Exhibit 17.5. That column defines a common x-axis variable (percentage of the base case) for years, $\$_{0}$, $\$_{N}$, and $\$ 1-N$.

A spiderplot results if the curve for each variable is plotted using the (x, y) coordinates of (percentage of base case, PW value). Exhibit 17.7 is the spiderplot based on Exhibit 17.5. Note that the curve for N is plotted using intermediate points to show its true shape.

A spiderplot with too many variables (>7) is too busy to be useful. However, for the four variables shown in Exhibit 17.7, the spiderplot effectively summarizes all of the information in Exhibit 17.5. It very effectively shows both how much (\%) each variable can change and how much each variable affects the PW.

Section 17.4 discusses spiderplots in more detail, and Section 17.5 explains how to construct them in a spreadsheet. Section 17.6 details how to construct tornado diagrams. Section 17.7 illustrates how these techniques can be applied to problems with multiple alternatives. Section 17.8 illustrates how graphs with two variables can illustrate the impacts of uncertainty more completely than two-variable scenarios can.

EXHIBIT 17.7 Spiderplot for PW of buying a house vs. four variables

More Advanced Techniques. As shown in Chapter 18, uncertainty can be characterized by probability distributions. When this is done, the tools of expected value and risk analysis are quite useful.

Specific tools for sensitivity analysis that depend on probability distributions include simulation (briefly described in Section 18.7) and stochastic sensitivity analysis. Simulation uses probability distributions for all of the cash flow elements, then solves the problem many times and analyzes the results. Stochastic sensitivity analysis uses the probability distributions for each cash flow element to draw a special spiderplot [Eschenbach and Gimpel]. This connects uncertainty in the data with uncertainty in the outcome.

17.4 SPIDERPLOTS

Defining Spiderplots. The x-axis of a spiderplot measures all variables in a common unit, the percentage of each base case value. For example, consider the lower and upper limits for each cash flow element in the Northern Electric problem (Example 17.3). The horizon's lower limit, 15 years, was stated as 75% of the base case value of 20 years and 30 years as 150% of the base case value. All variables were stated as a percentage of the base case value-building cost as a percentage of $\$ 5 \mathrm{M}$, equipment cost as a percentage of $\$ 10 \mathrm{M}$, etc.

Note that the dollar amounts of building cost, annual revenue, and salvage value are not comparable; thus, a common x-axis in dollars would not be meaningful. Building cost is measured in year- 0 dollars, annual revenues in years- 1 -to- N dollars, and salvage value in year- N dollars. These are different dollars, and they cannot be used as a common unit.

On a spiderplot, there are two directions to measure uncertainty. On the x-axis, the potential uncertainty in the cash flow element is measured. On the y-axis is measured the impact of that uncertainty on the present worth, internal rate of return, or benefit/cost ratio.

In the center of the "spider" in Exhibit 17.7 is the base case. This is the set of estimates that would have been used if no sensitivity analysis had been done. Each cash flow is represented by a curve between its lower and upper limits that passes through the base case.

Interpreting a Spiderplot. A properly drawn spiderplot depicts the following:

1. Limits of uncertainty for each cash flow element.
2. Impact of each cash flow element on the PW, EAC, or IRR.
3. Identification of which cash flow elements might change the recommendation.

Determining the limits of uncertainty for each cash flow was described in Section 17.2. These limits of uncertainty are stated as percentages of the base case, and they are measured along the x-axis. Note that extending the curve for a cash flow element beyond its proper x-axis limits is quite misleading. Such extensions can dramatically overstate the impact of variables on the PW, IRR, or benefit/cost ratio, which is shown as the y-axis coordinate. Less important variables can also be identified as crucial.

For example, if the curves in Exhibit 17.7 are extended from 0\% to 200\%, then the PW axis and values change. This creates a mathematical fiction. Yet, analysts do make the error of defining the x-axis as $\pm 50 \%$ or $\pm 100 \%$ and then extending the curve for each variable to the minimum and maximum percentages.

Deciding whether uncertainty in a cash flow element might suggest a different recommendation is graphically shown by including a standard of comparison. A PW of $\$ 0$, a

A common error is to define the x-axis
as $\pm 50 \%$ or $\pm 100 \%$ and to extend all curves to those limits.
benefit/cost ratio of 1.0, and a target IRR all provide cutoff values that are lines parallel to the x-axis. Points below the cutoff value indicate one decision, and points above the cutoff indicate another decision.

When you draw the curve of PW vs. a variable, only two points are needed for linear relationships. For example, cash flows are multiplied by the engineering economy factors to compute the PW, EAW, or EAC. So, those economic measures are linear functions of first costs, annual costs, arithmetic gradients for sales, etc. If a cash flow is in the numerator, then the benefit/cost ratio is a linear function of the cash flow; if the cash flow is in the denominator, then the benefit/cost ratio is a nonlinear function of the cash flow. All of these measures are nonlinear functions of interest rates, lives, and geometric gradients. This linearity or nonlinearity of the PW for various cash flow elements is illustrated in Examples 17.5 and 17.6. The IRR is a nonlinear function for all cash flow elements.

If a cash flow or a geometric gradient has a base case of zero, then an alternate x-axis must be used for that variable, since 80% or 150% of zero is still zero.

EXAMPLE 17.5 Interpreting a Spiderplot for Northern Electric

Use a spiderplot (see Exhibit 17.8) to analyze which data estimates in Example 17.3 should be refined before the final decision is made.

Spiderplot of PW for Northern Electric

SOLUTION

Only one cash flow element, net annual revenues, has a curve with any negative present worth values. The building's cost, the interest rate (i), and horizon (N) have curves that approach a negative present worth. The equipment cost has little uncertainty ($\pm 10 \%$), and the salvage value (S) does not occur until year N. Thus, those two cash flow elements have little impact on the uncertainty in the PW.

EXAMPLE 17.6 Interpret the Spiderplot for George's Home Purchase (Based on Exhibit 17.7)

Exhibit 17.9 repeats Exhibit 17.7 for reference. Interpret the curve to decide which data estimates George should refine before making a final decision.

Spiderplot for George's home purchase

SOLUTION

Only the curve for the ownership period (the number of years or the problem's horizon) has negative PW values. Applying the reasonable limits of $\pm 10 \%$ to the first cost, \pm one-third to the final cost, and -20% and $+50 \%$ to the annual benefit shows that a change in one of those cash flows is not likely to change the recommended decision. In making his decision, George should focus on how long he will live in the house.

17.5 Constructing a Spiderplot

By Hand. Constructing a spiderplot is the type of computational and graphical task at which computers excel, yet spiderplots can be created by hand. If done by hand and if the y-axis is PW, EAC, or EAW, then cash flows can be plotted using one end-point calculation and the base case. The other end point is determined by linearity and its x-axis coordinate, as shown in Example 17.7.

Both end points should be calculated for interest rates, lives, time periods, geometric gradients, and all curves if the y-axis is the IRR or benefit/cost ratio. These curves are nonlinear, although they sometimes approach linearity.

EXAMPLE 17.7 Hand Construction of a Spiderplot

Construct a spiderplot for a problem with the following first cost, annual revenue, interest rate, life, and uncertainties. Assume the salvage value is $\$ 0$. Use PW for the y-axis.

Base Case	Cash Flow Element	Lower Limit	Upper Limit
$-\$ 90$	First cost	95%	115%
$\$ 12$	Annual revenue	60%	120%
10%	i	80%	120%
20	N	75%	150%

SOLUTION

The equation for the base case is:

$$
\mathrm{PW}=-90+12(P / A, 10 \%, 20)=-90+12(8.514)=\$ 12.2
$$

All curves will pass through this point, since 0% change in the base case value is part of each curve.
For the first cost line, the upper limit is used. (For plotting by hand, a larger distance between the two points increases accuracy.)

$$
\mathrm{PW}_{\mathrm{FC}-\text { upper }}=-90 \times 1.15+12(P / A, 10 \%, 20)=-\$ 1.34
$$

For the annual revenue line, the lower limit is used:

$$
\mathrm{PW}_{\text {revenue-lower }}=-90+12 \times .6(P / A, 10 \%, 20)=-\$ 28.7
$$

Since i and N are nonlinear, both end points must be calculated:

$$
\begin{aligned}
& \mathrm{PW}_{i \text {-lower }}=-90+12(\mathrm{P} / A, 8 \%, 20)=-\$ 27.8 \\
& \mathrm{PW}_{i \text {-upper }}=-90+12(\mathrm{P} / A, 12 \%, 20)=-\$.37 \\
& \mathrm{PW}_{N-\text { lower }}=-90+12(P / A, 10 \%, 15)=\$ 1.27 \\
& \mathrm{PW}_{N \text {-upper }}=-90+12(P / A, 10 \%, 30)=\$ 23.1
\end{aligned}
$$

Exhibit 17.10 plots these points and illustrates that only the annual revenue has PWs significantly below $\$ 0$. All variables approach or slightly drop below a PW of $\$ 0$.

Hand-constructed spiderplot

Using a Spreadsheet. Spreadsheets are ideal for constructing spiderplots. The computer automates the hand calculations in Example 17.7 and adds powerful graphing functions.

The only major difference is that it is easier to use the same x-axis values for all variables. Some spreadsheet packages require that multiple curves on the same x-axis use the same x-axis coordinates. Thus, each of the cash flows in Example 17.8 will have a calculation for 95% and 115%, even though those are the limits only for the first cost.

EXAMPLE 17.8 Spreadsheet Construction of a Spiderplot

Use a spreadsheet to construct the spiderplot that was done by hand in Example 17.7.

SOLUTION

Exhibit 17.11 contains a spreadsheet showing the calculations needed to construct the spiderplot along with representative formulas. Listed below are the steps.

1. Create the data block of base case values and the lower and upper limits.
2. Write the formula for the base case PW using absolute addresses (when the formula is copied, the addresses must not change).
3. Create the column headings for the cash flow elements to be changed and the row headings for the percentage points on the x-axis. These row headings are the different values listed in the lower and upper limits-listed in increasing order. Add a row for 100%-the base case.
4. Copy the formula for the base case into each cell of the top row of the table. Then, edit the entry for each column, so that the cash flow element for that column is multiplied by the percentage value in column A.

For example, the formula for the revenue entry in cell C 10 is $\$ \mathrm{~A} \$ 2+\mathrm{PV}(\$ \mathrm{~A} \$ 4$, $\$ \mathrm{~A} \$ 5,-\$ \mathrm{~A} \$ 3 * \mathrm{~A} 10)$. The revenue value in $\$ \mathrm{~A} \$ 3$ is multiplied by cell A10, which has the 60% value.
5. Copy the top row into the rest of the table. The values in the 100% row should all match the calculation of the base case PW.
6. Delete all entries that are beyond the limits for that column. For example, in this case, the first cost column should have only values between 95% and 115%. Similarly, the interest rate column should have entries only between 80% and 120%.
7. Create a graph. The type should be XY. (If a line graph is selected, the x-axis values will be treated as labels and spaced evenly.) Each column of the table is a series. These series all have the same number of cells and include the deleted entries.

For this example, the series for first cost is cells B10 to B17, and the series for the x-axis is cells A10 to A17. Many spreadsheet packages have a group function that allows the y-axis values to be defined as a group.

If PW is the y-axis, add a variable that equals 0 for all x-axis values. If the y-axis is a benefit/cost ratio, set the extra variable equal to 1 . If the y-axis is the IRR, set the extra variable equal to the minimum attractive rate of return.

Label the graph appropriately.

Make a spiderplot with a spreadsheet

Choosing a y-Axis. Exhibit 17.12 redraws the spiderplot of Example 17.8 with four different y-axes. In each case, the x-axis coordinates are the same, but the shapes of some of the curves are different. For example, in converting from a PW to an EAW, an $(A / P, i, N)$ factor is used. If the cash flow element is i or N, then this factor is nonlinear and the curve's shape is changed.

The basic meaning of the spiderplot, however, is not affected by the change in axis. The choice of the y-axis should be matched to the decision maker's preference.

EXHIBIT 17.12 Comparing different y-axes for spiderplots

17.6 Constructing Tornado Diagrams

Tornado diagrams, as shown in Exhibit 17.6, can illustrate the best and worst outcome values as variables are considered over their individual ranges. If a spiderplot has been constructed, the tornado diagram values are the minimum and maximum values from each variable's column in the table of spiderplot data.

If all values are positive, then the tornado diagram is relatively easy to construct as a stacked bar chart. All positive values are common if the outcome is an EAC, benefit/cost ratio, or present worth index. However, PWs are often negative and IRRs are sometimes negative. Then, constructing a tornado diagram is more complicated. Both cases are covered.

Tornado Diagrams with Positive Values Only. A standard stacked bar chart can be used to create a tornado diagram if all the values are positive. The steps are:

1. Compute minimum, maximum, and range of outcomes for each variable.
2. Save spreadsheet.
3. Sort using the range. If sorting introduces errors into the formulas, then copy names, minimum, and range using paste special/values to another block and build graph with this.
4. Select names, minimum, maximum, and range; and then the Chart Wizard.
5. Select chart type equal to stacked bar.
6. If the series for the maximum values has been included, delete it.

Now for each variable, the minimum value defines the lower limit and adding or stacking the range equals the upper limit or maximum value.

To make the tornado clearer, the color for the fill and border of the minimum series should be changed to none. The range is the colored bar. If the tornado is upside down, then the order of the variables can be reversed for plotting. In Excel this is done with the scale menu for the y-axis variable. Finally, it is useful to add a vertical line that corresponds to the value of the base case. This is illustrated in Example 17.9
Tornado Diagrams with only Positive Values. A standard stacked bar chart can be used to create a tornado diagram if all the values are positive. The steps are:

1. Compute minimum, maximum, and range of outcomes for each variable.
2. Save spreadsheet.
3. Sort using the range. If sorting introduces errors into the formulas, then "paste special/values" to copy names, minimum, and range to another block and build graph with this.
4. Select names, minimum, maximum, and range; and then the chart wizard.
5. Select chart type equal to stacked bar.
6. If the series for the maximum values, if it has been included.

Now for each variable, the minimum value defines the lower limit and adding or stacking the range equals the upper limit or maximum value.

To make the tornado clearer, the color for the fill and border of the minimum series should be changed to none. The range is the colored bar. If the tornado is upside down, then the order of the variables can be reversed for plotting. In Excel this is done with the scale menu for the y-axis variable. Finally, it is useful to add a vertical line that corresponds to the value of the base case. This is illustrated in Example 17.9.

For the data given in Example 17.8 construct a tornado diagram for the present worth index.

SOLUTION

In this case sorting the data distorts the formulas, so that a copy of the results for building the graph was needed. See Exhibit 17.13 for the spreadsheet and tornado diagram. Also a variable for the base case was added so that the location of the vertical line would be plotted on the graph.

This tornado diagram summarizes the minimum and maximum PW indexes for each variable that are shown in Exhibit 17.12(d). Mathematically this could be visualized as projecting each curve of the spiderplot onto the y-axis.

Spreadsheet with tornado diagram with only positive values

	A	B	C	D	E	F	G	H	I	J
1	Base Case		Lower \&	Upper Limits	$\begin{aligned} & \hline \text { PWI } \\ & \text { (low) } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { PWI } \\ \text { (Upper) } \end{array}$	min	max	range	
2	90	First cost	0.95	1.15	1.19	0.99	0.99	1.19	0.21	
3	12	$A=$ revenue	0.6	1.2	0.68	1.36	0.68	1.36	0.68	
4	0.1	i	0.8	1.2	1.31	1.00	1.00	1.31	0.31	
5	20	N	0.75	1.5	1.01	1.26	1.01	1.26	0.24	
6	12.16	PW Base ca		0.60A=revenueiFirst costBase case		Present Worth Index				1.40
7	1.14	PWI base c								
8		min	range			0.80	1.00	1.20		
9	A=revenue	0.68	0.68			$\underline{+}$				
10	i	1.00	0.31							
11	N	1.01	0.24							
12	First cost	0.99	0.21							
13	Base case	1.14	0.21							
14								\square		
15										
16									,	

Tornado Diagrams with Positive and Negative Values. A stacked bar chart can be used to create a tornado diagram in general, but now the series definitions are somewhat more complicated. There are three sign combinations for the minimum and maximum values. Exhibit 17.14 summarizes these along with the series that are spacers and colored bars. Once the series are defined the steps for constructing the tornado diagram are the same as before. Exhibit 17.15 converts the definitions into Excel formulas.

EXHIBIT 17.14 Series definition for general stacked bar chart

Minimum	Maximum	Series 1 Space	Series 2 Color	Series 3 Color
≥ 0	>0	Min	range	0
<0	>0	0	Max	Min
<0	≤ 0	Max	-range	0

EXHIBIT 17.15 Series definition in Excel for general stacked bar chart

Series	Contents	
1	Space	$=\operatorname{IF}(\operatorname{Min} * \operatorname{Max} \geq 0, \operatorname{IF}(\operatorname{Min} \geq 0, \operatorname{Min}, \operatorname{Max}), 0)$
2	Color	$=\operatorname{IF}(\operatorname{Min} \geq 0$, Range, $\operatorname{IF}(\operatorname{Max} \leq 0,-$ Range, Range $))$
3	Color	$=\operatorname{IF}(\operatorname{Min} * \operatorname{Max}<0, \operatorname{Min}, 0)$

Add a vertical line that passes through the base case value.

To make the tornado clearer, the color for the fill and border of the series 1 can be changed to none. Series 2 and series 3 should be the same color bar. If the tornado is upside down, then the order of the variables can be reversed for plotting. In Excel this is done with the scale menu for the axis. Finally, it is useful to add a vertical line that corresponds to the value of the base case. This is illustrated in Example 17.10.

For the data given in Example 17.8 construct a tornado diagram for the present worth.

SOLUTION

This tornado diagram will summarize the minimum and maximum PWs for each variable that are shown in Exhibit 17.12(a). Mathematically this could be visualized as projecting each curve of the spiderplot onto the y-axis.

In this case sorting the data distorts the formulas for the barchart, so the chart is based on the data in rows 8 through 12. The names, minimum, and maximum values were pasted as VALUES from the data in rows 2 through 5 . Also a variable for the base case was added with max = value +.01 , to make it easy to plot the location of the vertical line could on the graph. The spreadsheet and tornado diagram are shown in Exhibit 17.16.

Spreadsheet with tornado diagram with positive and negative values

	A	B	C	D	E	F	G	H	I
1	Base Case		Lower \&	Upper Limits	$\begin{aligned} & \hline \text { PW } \\ & \text { (low) } \end{aligned}$	PW (upper)	min	max	range
2	90	First Cost	0.95	1.15	16.66	-1.34	-1.34	16.66	18.00
3	12	$A=$ revenue	0.6	12	-28.70	32.60	-28.70	32.60	61.30
4	0.1	i	0.8	1.2	27.82	-0.37	-0.37	27.82	28.18
5	20	N	0.75	1.5	1.27	23.12	1.27	23.12	21.85
6	12.16	PW Base case							
7		min	max	range	series 1	series 2	series 3		
8	A = revenue	-28.70	32.60	61.30	0	32.60	-28.70		
9		-0.37	27.82	28.18	0	27.82	-0.37		
10	N	1.27	23.12	21.85	1.27295	21.85	0.00		
11	First Cost	-1.34	16.66	18.00	0	16.66	-1.34		
12	Base case	12.16	12.26	0.10	12.1628	0.10	0.00		

Using the Tornado Diagram Template. The student website includes an Excel file TornadoTemplateEschenbach3rd.xls shown in Exhibit 17.17. The data (variable names, minimum and maximum values) are pasted as values into the template. The value for the base case is also pasted into its cell. The destination cells are green in the spreadsheet and grey in the text. It is suggested that a vertical line be added that passes through the base case value.

If your data is formatted with names, minimum, and maximum values in rows, then you can in your spreadsheet copy the block of data, and then use the TRANSPOSE option under PASTE SPECIAL.

EXHIBIT 17.17 Tornado Template Eschenbach 3rd.xls

For the data given in Example 17.8 use TornadoTemplateEschenbach3rd.xls (see Exhibit 17.17) to construct a tornado diagram for the present worth.

SOLUTION

The values in Example 17.8 were used to construct Exhibit 17.16 in Example 17.10. The names (B2:B5), the minimum and maximum values ($\mathrm{G} 2: \mathrm{H} 5$), and the base case value (A6) are needed in the tornado template. To create Exhibit 17.18, either paste these separately into the data block in the template or change the data block cells in the template to simple formulas that point to the values in the original spreadsheet.

Exhibit 17.18 shows the results after the four variables have been referenced by the template, and the four rows of real data sorted. The next step would be to delete the five rows for z to salvage value that do not apply. The last step is to draw a vertical line that passes through the base case.

EXHIBIT 17.18 Tornado diagram for PW using the template

If there are two mutually exclusive alternatives, then the difference between them can be graphed as shown in Sections 17.4 and 17.5. However, if the problem is one of constrained project selection or if there are three or more mutually exclusive alternatives, then a graph similar to those shown in this section is needed.

The number of "spiders" in a spiderplot equals the number of alternatives, so to avoid information overload, the maximum number of cash flow elements should be three. Example 17.12 applies this technique to mutually exclusive alternatives, and Example 17.13 applies it to constrained project selection.

EXAMPLE 17.12 Multiple Mutually Exclusive Alternatives

Conspicuous Consumption Toys has a short-term (≈ 1 year) need for a part that will be included in this year's fad toy. The part can be purchased, or it can be produced through either a capitalor a labor-intensive process.

The expected volume is 8000 units, with a lower limit of 70% and an upper limit of 120%. The purchase price for 8000 units is estimated to be $\$ 50$ per part $\pm 10 \%$. For each 10% increase or decrease in the quantity, the expected price will change by 2.5%. The price falls if the quantity increases.

The labor-intensive process will cost $\$ 40$ per part for labor ($\pm 20 \%$) and $\$ 50,000$ in capital improvements, with no salvage value. The capital-intensive process will cost $\$ 400,000$, with a lower limit of 95% and an upper limit of 115%. These capital expenditures also have no salvage value. The capital-intensive process also requires $\$ 5$ per part in labor.

Construct a spiderplot using cost per part as the y-axis.

SOLUTION

The base-case cost per part for each alternative is found as follows:

$$
\begin{aligned}
\text { LaborInt } & =40+50,000 / 8000=\$ 46.25 \\
\text { CapitalInt } & =5+400,000 / 8000=\$ 55 \\
\text { Purchased } & =\$ 50
\end{aligned}
$$

The cost of the labor-intensive process has a range of $\pm \$ 8$ for labor productivity, based on $\pm 20 \%$ of the $\$ 40$ labor cost. The range for volume is $-\$ 1.04$ to $+\$ 2.68$ per part (50,000/9600 $50,000 / 8000$ to $50,000 / 5600-50,000 / 8000$).

The capital-intensive process has limits of 95% to 115% of its $\$ 400 \mathrm{~K}$ capital cost, or $\$ 380 \mathrm{~K}$ to $\$ 460 \mathrm{~K}$. The cost per part is $\$ 52.5$ to $\$ 62.5=(5+380 \mathrm{~K} / 8 \mathrm{~K} ; 5+460 \mathrm{~K} / 8 \mathrm{~K})$. Since the capital cost is assumed to equal $\$ 400 \mathrm{~K}$ as the volume changes, the cost per part ranges from $\$ 76.4$ to $\$ 46.7=(5+400 \mathrm{~K} / 5600 ; 5+400 \mathrm{~K} / 9600)$.

The purchased part has a cost uncertainty of $\pm 10 \%$ or $\$ 45$ to $\$ 55$ at a volume of 8000 . If the volume decreases by 30%, then the price increases by 7.5%, to $\$ 53.75$. If the volume increases by 20%, then the price decreases by 5%, to $\$ 47.50$.

The four sources of uncertainty produce six curves, as shown in Exhibit 17.19. The three curves for each cost as the volume changes are not independent. In all cases, the cost falls as volume increases, but it falls fastest for the capital-intensive process.

The labor-intensive process seems to be superior for most assumptions within the limits described above. Even if the capital-intensive process were slightly cheaper, the labor-intensive process would likely be preferred on the basis of risk. If sales are high, the firm will do well, and it can probably afford a slightly higher cost per part. On the other hand, if sales are low, the firm will be doing poorly, and it will be additionally disadvantaged by the higher-than-anticipated costs of the capital-intensive option.

EXHIBIT 17.19 Conspicuous
Consumption Toys-cost per part

EXAMPLE 17.13 Oil Company Project Selection vs. Oil Price

Six possible drilling projects are being ranked to see which ones should be funded within the available budget of $\$ 5 \mathrm{M}$ to $\$ 6 \mathrm{M}$. The profitability of each well is determined by its first cost (in $\$ \mathrm{M})$, the number of years it will last, its annualized rate of production (in barrels, or bbl), the variable cost of production and transportation from that well (in dollars per barrel), and the average selling price of oil over the well's life (in dollars per barrel). Assume a base case average oil price of $\$ 20$ per barrel, with lower and upper limits of $\pm 25 \%$ Analyze the sensitivity diagram with respect to the price of oil to see which drilling projects are the most attractive for low, base case, and high oil prices.

Project	First Cost (in \$M)	Life (years)	Production Cost (\$/bbl)	Annualized Volume (bbl)
A	$\$ 2$	20	$\$ 9$	60,000
B	1	10	14	40,000
C	1.5	7	8	40,000
D	2.1	25	10	50,000
E	1.6	16	9	20,000
F	2	20	5	20,000

SOLUTION

Note that this is a spiderplot, in which each of the six projects has only one curve to its spider. The basic equation for each project is:

$$
0=\text { FirstCost }+ \text { Volume } \times(\text { OilPrice }- \text { ProdCost }) \times(P / A, i, \text { Life })
$$

Rewriting this as a spreadsheet function for each project's IRR, the result in Excel is:

> RATE(Life, Volume * (OilPrice - ProdCost), -FirstCost)

Then, a table of IRR values for each project at each of the three oil prices is constructed to support the graph. Exhibit 17.20 graphs the central part of the sensitivity plot (very low and very high internal rates of return are not graphed). In general, those projects with higher production costs are more sensitive to the price of oil.

Project A is the most attractive in all three cases, and it should be funded. Project C is ranked second in the base case and third with the upper limit of oil prices, and it is tied for third/fourth with the lower limit of oil prices. These together cost $\$ 3.5 \mathrm{M}$.

In the base case and with the lower limit, project D is ranked third and second, respectively. Project B is ranked fourth for the base case and second with oil prices at the upper limit. Since project B is ranked last and has a very negative IRR if average prices fall to the lower limit, project D appears to be a better choice. The total recommended budget is $\$ 5.6 \mathrm{M}$ for projects A, C, and D.

Unfortunately, the decision to fund these projects must be made with current information. It is not possible to be certain about average oil prices over the next 25 years.

Which oil projects

should be accepted?

Scenarios. Exhibits 17.21 a and 17.21 b illustrate an effective graphic for scenarios with multiple alternatives. Grouping the present worth by scenarios (as in Exhibit 17.21a) emphasizes which project is best for each scenario. Project A is clearly the best under the bad scenario, and it is slightly better than projects B and D under the most likely scenario. Project C is the best in the good scenario but the worst otherwise.

Grouping the present worths by project (as in Exhibit 17.15b) emphasizes that project A has the most stable performance under the different scenarios (and project C the least stable). This grouping also allows construction of a kind of "visual average."

EXHIBIT 17.21 Mutually exclusive projects and scenarios

17.8 Sensitivity Analysis with Multiple Variables

The spiderplots and tornado diagrams of Sections 17.3 through 17.7 changed only one cash flow element at a time; however, it is possible to analyze changes in two variables at a time. Example 17.14 analyzes the "scenario" in Example 17.4 to show under what circumstances the project seems to be worth doing.

As demonstrated in Example 17.14, two kinds of graphs are possible. The first, shown in Exhibit 17.22, uses one variable for the x-axis and draws curves for different values of the other variable.

The second, shown in Exhibit 17.23, solves a breakeven equation and creates go/no-go regions for all combinations of the two variables. Here, the approach is to write a cash flow equation and to set it equal to zero. Selecting the values for one cash flow element and solving for the other one defines a breakeven curve. On one side of the curve, the project is economically positive; on the other side, it is economically negative. Points close to the line are clearly within a zone of economic indifference.

When choosing which variables to pair in these graphs, several criteria are possible. The two cash flow elements may be:

1. The most important.
2. Logically linked (such as two inflation rates or price and quantity sold).
3. The ones with the most uncertainty.

The park acquisition problem assumed a land cost of $\$ 2 \mathrm{M}$, a salvage value of $\$ 0$, and an annual benefit of $\$ 180,000$. Possible values for the interest rate were $3 \%, 6 \%$, and 9%; for the project life, the possible values were 10,20 , and 50 years.

Construct two sensitivity charts to show how the recommended decision depends on the choice of the interest rate and time period.

SOLUTION

The easier graph to construct is to plot the present worth as a function of i or N. Either variable can be selected for the x-axis. Exhibit 17.22 places the horizon, N, on the x-axis and uses the values for i to define the curves. Clearly, at 3%, almost all study periods support a positive recommendation, while at 6%, the neutral point is about 20 years. At 9%, even longer than 50 years is required to justify the project.

```
vs. i and N
```


The second graph is probably most easily constructed by creating a table of assumed values for N and calculated values for i that create a present worth of zero-the breakeven point. When that table is graphed, the breakeven chart in Exhibit 17.23 is created.

The equation is $0=-2 \mathrm{M}+180 \mathrm{~K}(P / A, i, N)$ or, in Excel spreadsheet terms, RATE $(N, 180$, -2000). The values are as follows:

N	10	15	20	25	30	35	40	45	50
$i \%$	-1.9	4.0	6.4	7.5	8.1	8.5	8.7	8.8	8.9

The graph is Exhibit 17.23. Within the range of expected values for i and N, most combinations support acquisition of the parkland.

EXHIBIT 17.23 Park acquisition go/no-go with i vs. N

Sensitivity analysis requires a sense of proportion to properly judge the significance of the results. In some cases, the apparent economic difference between the alternatives is small. The graphical and numerical techniques of this chapter calculate or display the economic breakeven point. When likely conditions are close to economic breakeven, the irreducibles that were not included in the cash flow diagrams should dominate the decision making.

Sensitivity analysis is needed because of uncertainties in estimated data. This tool is used to make better decisions, to decide which data to refine, and to focus attention during implementation. The process begins by identifying the most likely values and the limits of uncertainty for each cash flow element.

Breakeven charts can be used to analyze one variable at a time, and scenarios are used to evaluate plausible combinations of variables. Tornado diagrams and spiderplots are used to compare the sensitivity of the economic measure (PW, EAC, or IRR) to different variables.

These spiderplots can be constructed by hand, but they are an ideal application of spreadsheets. Spiderplots can be applied to multiple alternatives. Two-variable graphical sensitivity analyses can be done either by plotting several curves of present worth or by defining a breakeven curve of one variable versus another variable.

REFERENCES

Eschenbach, "Chapter Sensitivity Analysis," Cases in Engineering Economy, 2", 2008, Oxford University Press (included on student CD).
Eschenbach, Ted, "Technical Note: Constructing Tornado Diagrams with Spreadsheets," The Engineering Economist, Vol. 51 No. 2, 2006, pp. 195-204.
Eschenbach, Ted G., "Spiderplots vs. Tornado Diagrams for Sensitivity Analysis," Interfaces, Volume 22, Number 6, Nov.-Dec. 1992, The Institute for Management Sciences, pp. 40-46.

Eschenbach, Ted, "Quick Sensitivity Analysis for Feasibility Studies and Small Projects," Proceedings of the Annual AACE Meeting, June 1992.
Eschenbach, Ted, and Robert J. Gimpel, "Stochastic Sensitivity Analysis," The Engineering Economist, Volume 35, Number 4, Summer 1990, pp. 305-321.
Eschenbach, Ted, and Lisa S. McKeague, "Exposition on Using Graphs for Sensitivity Analysis," The Engineering Economist, Volume 34, Number 4, Summer 1989, pp. 315-333.

Problems

Note: Each problem is based on or refers to items noted in parentheses.
17.1 (Problem 6.3) What is the breakeven annual savings for the heat exchanger? (Answer: \$13,920)
17.2 (Problem 6.9) What is the breakeven quarterly revenue for the machine? (Answer: \$2054)
17.3 (Problem 8.7) What is the breakeven annual benefit \square for ABC's new machine?
17.4 (Problem 8.1) What is the breakeven annual time savings for the highway project?
17.5 (Problem 7.22) How does the effective annual rate depend on the amount of the down payment? Vary the down payment from 0% to 25%.
17.6 (Problem 18.9) What is the breakeven probability for the most likely annual benefit? Assume that the probability of $\$ 70 \mathrm{~K}$ in annual benefits is three times the probability of $\$ 100 \mathrm{~K}$ in annual benefits.
17.7 (Problem 14.27) What is the breakeven fuel cost for the gas furnace from the client's perspective? From a broader perspective?
17.8 (Problem 6.16) Assume that the R\&D period is uncertain rather than a known 4 years. Find the breakeven $\mathrm{R} \& \mathrm{D}$ period.
17.9 (Problem 5.12) What is the minimum annual revenue for breakeven? Maximum first cost? Minimum salvage value or maximum salvage cost? Construct breakeven charts for each.
17.10 (Problem 5.33) What is the minimum net annual revenue for breakeven? Maximum development expenses? Maximum salvage cost? Construct breakeven charts for each.
17.11 (Problem 10.28) Assume that the \$10K-per-mile
the technology used. What is the breakeven cost and gradient for the 8 -year policy to be optimal? (Answer: $\$ 5300$ vs. 7-year)
17.12 (Problem 13.16) Graph the EAC as a function of the salvage value, which may vary from $\$ 0$ to $\$.6 \mathrm{M}$.
17.13 (Problem 9.4) Create scenarios of useful life and MARR that favor the Smoothie and the Blaster.
17.14 (Problem 9.24) Create scenarios of useful-life and
 interest-rate combinations that favor each of the three alternatives.
17.15 (Problem 18.12) Create and analyze good, most likely, and bad scenarios using the given first costs and net revenues. How does this differ from the states of nature in Problem 18.12?
17.16 (Problem 18.13) Create and analyze good, most likely, and bad scenarios using the given first costs, net revenues, and project life. How does this differ from the states of nature in Problem 18.13?
17.17 (Problem 7.12) Assume that cost to proceed, initial monthly sales, and the monthly gradient can vary 20% to the good and 30% to the bad. Create bad, most likely, and good scenarios, and find the IRR for each.
(Answer: $i_{\mathrm{m}}=8.2 \%, 15.23 \%, 21.45 \%$)
17.18 (Problem 14.37) How sensitive is the recommendation to the state's interest rate? Does changing the rate to 4% or to 12% alter the recommended set of projects?
17.19 (Problem 9.11) Construct reasonable limits of uncertainty for the first cost, annual savings, and salvage value. Construct a spiderplot for the difference in the EAC for the two security systems.
17.20 (Problem 3.41)

(a) Construct reasonable limits of uncertainty for the annual college cost, the interest rate, and the initial year of deposit.
(b) Construct a spiderplot for the amount of the initial deposit.
17.21 (Problems 3.41 and 17.20) Construct reasonable scenarios from the limits in Problem 17.20a, and then calculate the amount of the initial deposit for each scenario.
17.22 (Problem 2.32) A certificate of deposit compounds interest annually. What amount has accumulated for retirement at age 65 if $\$ 10,000$ is deposited at a certain age? Analyze the sensitivity of the final accumulation as a function of age and interest rate with a spiderplot. Assume that age 35 and an interest rate of 10% are the base case, with respective limits of 25 to 55 years and 5% to 15%.
(Answer: Age $=\$ 25.9 \mathrm{~K}-\$ 452.6 \mathrm{~K}, i=\$ 43.2 \mathrm{~K}$ - \$662.1K)
17.23 (Problem 19.5) How sensitive is the recommended decision to the weight placed on the EAC? Vary the weight from 0 to 10 , and identify the recommended site for each weight.
17.24 (Problem 13.34) Assuming that annual revenues may vary by -40% to $+20 \%$, annual expences by -20% to $+30 \%$, and initial investment by $\pm 10 \%$, do the following:
(a) Construct a spiderplot.
(b) Construct a tornado diagram.
17.25 (Problem 3.22) If HiTek Manufacturing's borrowed principal were to change by $\pm 10 \%$ the interest rate by $\pm 20 \%$ and the number of years between 10 and 30 , which changes would be most significant?
(a) Use a spiderplot.
(b) Use a tornado diagram.
17.26 (Problems 3.27 and Chapter 15) Different lottery winners have different interest rates for the time value of money.
(a) Analyze the PW of the payments for real interest rates ranging from 5% to 12%.
(b) Repeat part a with four curves for inflation rates of $0 \%, 3 \%, 6 \%$, and 9%.
17.27 (Problem 5.39) This problem originally asked for a breakeven salvage value (which is $\$ 238.7 \mathrm{~K}$). Assume the salvage value is actually $\$ 300 \mathrm{~K}$. Using the following limits:

Variable	Lower Limit	Upper Limit
First cost	80%	140%
Annual expense	80	150
Annual benefit	60	120
Interest rate	80	140
Horizon	50	150
Salvage value	0	200

17.28 (Problem 9.25) Create a spiderplot for the EAC difference between two bridges.

Variable	Lower Limit	Upper Limit
First cost (galvanized)	80%	140%
First cost (painted)	80	150
Annual operations (galvanized)	80	120
Annual operations (painted)	60	140
Interest rate	75	125

(Answer: First cost ${ }_{\text {galv. }}=-\$.3 \mathrm{M}$ to $\left.+3.9 \mathrm{M}\right)$
17.29 (Problem 15.30) Assume that your annual cash flow deposit, savings account rate, salary increase rate, and inflation rate could each become 10% better or 20% worse. Construct the sensitivity of the value after 40 years in year- 1 dollars.
17.30 (Problem 16.12) Construct a spiderplot for changes in the size of the addition $(\pm 10,000$ square-feet), in the capacity coefficient (ranging from 6 to .8), and in the size of the original facility ($\pm 10,000$ square feet).
17.31 (Problem 16.18) Consider the sensitivities of the level of demand in year 5 (halfway through the 10-year horizon). Assume that L, a, and b each vary by $\pm 20 \%$.
17.32 (Problem 16.23) Draw a spiderplot or a tornado diagram for the level of demand in year 5 (halfway through the 10 -year horizon) when year 1 's demand ranges from 4 to 10 , and year 2's demand ranges from 40 to 70 .
(a) Assume a Pearl curve.
(b) Assume a Gompertz curve.
17.33 (Problem 11.20) Analyze the sensitivity of the benefit/cost ratio rankings of the nine projects to the interest rate mandated by the U.S. Congress. Use 10% to 20% as a reasonable range for the interest rate on the x-axis. Use the benefit/cost ratio as the y-axis.
17.34 (Problem 11.8) For the seven projects at National Motors' Rock Creek plant, analyze the impact of the assumed life on the recommendations. Use a common range of 80% to 150% of estimated life and a y-axis of IRR.
(a) Construct the multiple alternative sensitivity graph.
(b) For a budget of $\$ 500,000$, how different are the sets of recommended projects at the two extremes and at the base case?
17.35 (Problem 11.29) Assume that the projects of NewTech's Ceramic Division will have common errors in the estimates. In other words, if one has annual benefits that increase by 20%, then the benefits of all three will increase by 20%.
(a) Construct a graph of the IRR of each project as first costs range between 85% and 130% of the estimate.
(b) Construct a graph of the IRR of each project as annual benefits range between 75% and 110% of the estimate.
(c) Construct a graph of the IRR of each project as each life is shortened by 20% or lengthened by 100%.
(d) Construct a spiderplot for the most important two variables in parts a, b, and c .
17.36 (Problem 11.29) Redo Problem 17.35(c) assuming that each project's life is shortened by 2 years or lengthened by 5 years instead of by percentages. Use the number of years less or more as the x-axis. Do the graphs of Problems 17.35 (c) and 17.36 have similar shapes? Do they lead to the same conclusion? Is one of them better? If so, why?
(Problems 4.7-4.10 and 15.22-15.24) The cost of garbage pickup in Green Valley will be $\$ 4.5 \mathrm{M}$ this year. Estimate the cost in 10 years in year-1 dollars. In base case estimates, the population is increasing by 6% annually, the cost per ton is increasing by 5% annually, the inflation rate is 4% annually, and residents will individually reduce their trash generation by 2% annually.
(a) Construct reasonable limits of uncertainty for each geometric gradient.
(b) Construct a spiderplot or a tornado diagram for the year-10 cost (measured in year-1 dollars).
(Problem 4.24) Construct a spiderplot for the increase in tuition next year at City University. The reasonable limits for enrollment increases are 1% to 4%. The cost per credit-hour taught is increasing
between 4% and 10%. State funds are decreasing between 0% and 6% per year.
17.39 (Problem 14.16) Construct reasonable limits for the following variables, then create a spiderplot: construction costs, repaving cost, road life, interest rate, and value per trip. Assume 45 K trips per year.
17.40 (Chapter 16) Construct a sensitivity graph for the cost of the 10th, the 100th, and the 1000th item on a learning curve when the first item requires 8000 person-days. Vary the learning-curve function coefficient from .8 to .85 .
17.41 (Problems 2.27-2.30) Construct a multiple alternative sensitivity chart for the four loan patterns in Chapter 2 when $\$ 100,000$ is borrowed, to be repaid over 5 years. Assume a base case interest rate of 11% and a range of 7% to 15%. Use the PW of the payments as the y-axis.
17.42 (Problems 7.19 and 9.48) Divide a two-variable sensitivity chart (for useful life and interest rate) into regions that favor each alternative.

Minicases

17.43 (Problem 6.52) Plot a breakeven equation for the cost of the upgrade vs. the annual cost of the laborintensive process that makes the two alternatives equivalent.
17.44 (Problem 5.60) Bayview's growth is constrained by mountains on one side and the bay on the other. A bridge across the bay is planned, but which plan is best? (1) Building with a single deck to meet the needs of the next 20 years. (2) Building with two decks to meet the needs of the next 50 years. (3) Building the piers can also be built to support two decks, but with only one deck being built now.

Building it all now will cost $\$ 160 \mathrm{M}$, and leaving the top deck for later will save $\$ 40 \mathrm{M}$. Building that top deck later will cost $\$ 70 \mathrm{M}$ including the cost of traffic disruption. A single deck bridge will cost $\$ 100 \mathrm{M}$ now and $\$ 115 \mathrm{M}$ in 20 years. Deck maintenance is $\$ 1.4 \mathrm{M}$ per year per deck. Pier maintenance is $\$ 1.2 \mathrm{M}$ per year per bridge. If the interest rate is 5%, which design should be built?
Estimate reasonable limits of uncertainty for the different costs and time periods. Using a tornado diagram and/or a spiderplot show which uncertainties are the most important in choosing between the alternatives.
17.45 (Problem 7.39) Some lenders charge an up-front fee on a loan, which the borrower pays, or the fee can be subtracted from what the borrower receives. This is typically described as x points (where one point equals 1% of the loan amount). The federal government requires that this be included in the APR that discloses the loan's cost. A 5-year auto loan for $\$ 18,000$ has monthly payments at a 9% nominal annual rate, and the borrower must pay a loan origination fee of 2%. As a base case, assume that the loan is paid off as originally planned.
(a) Construct reasonable limits of uncertainty for the loan's origination fee, nominal annual rate and term; and for the number of years early that the car is sold and the loan paid off.
(b) Use a spiderplot in an analysis to determine the true effective cost of the loan considering uncertainties in the data.
(c) Use a tornado diagram to display the true effective cost of the loan considering uncertainties in the data.
17.46 (Problem 15.59) Assume that your children will attend a university whose tuition is now $\$ 28,000$, that inflation in tuition has ranged from 1% to 3% above the CPI, and that your two children are spaced 4 years apart with college 12 years away for the oldest. Calculate the amount you would have to invest at the beginning of each year from now until the first child enters college today to pay for tuition. Assume you can invest at 7% per year, your income tax rate is 40% per year, and the tuition has to be
paid at the beginning of the year. Contributed by D.P. Loucks, Cornell University
(a) Construct reasonable limits of uncertainty for the CPI, the number of kids (all spaced 4 years apart), and the number of years until the oldest child enters college.
(b) Use a spiderplot to analyze your annual investment, considering uncertainties in the data.
(c) Use a tornado diagram to display your annual investment, considering uncertainties in the data.

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 15 Pave the Stockpile Area?

Sensitivity analysis for IRR.

Case 25 Raster Blaster

Questions to guide students. Includes breakeven analysis.

Case 28 Olives in Your Backyard

Emphasizes taxes and sensitivity analysis.

Case 29 New Fangled Manufacturing

Emphasizes taxes and sensitivity analysis.

Case 30 Supersonic Service?

Breakeven and sensitivity analysis.

Uncertainty and Probability

- the situation and the solution

It is unrealistic to assume that future cash flows are known exactly. For example, estimates of market demand 5 years from now or of energy costs in 20 years may vary broadly.

The solution is to explicitly consider probability distributions for cash flows, interest rates, time horizons, etc. Then, measures of average or expected return and of risk can be used for economic decision making.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 18.1 Define probability, and develop a probability distribution.
SECTION 18.2 Calculate the expected value of a probability distribution.
SECTION 18.3 Use expected values to make economic decisions.
SECTION 18.4 Model more complex problems using economic decision trees.
SECTION 18.5 Measure risk using the probability of a loss and the probability distribution's standard deviation.
SECTION 18.6 Understand risk/return trade-offs in economic decision making.
SECTION 18.7 Understand the concept and possibilities of real options.
SECTION 18.8 Construct probability distributions to find P (loss), and measure risk with multiple independent variables.

- KEY WORDS AND CONCEPTS

Probabilities Measures of expected frequency or likelihood.
Probability distribution Set of possible individual outcomes with their probabilities.
Expected value The weighted average or $E(X)=\sum_{i} x_{i} \times P\left(x_{i}\right)$.
Economic decision trees Figures describing the timing, probabilities, and consequences of sequential decisions and chance events.
Risk Economic risk considers both the probability of exposure and the degree of undesirability for possible outcomes.
Standard deviation (σ, dispersion about the expected value) A common measure of risk. It, equals $\sqrt{E\left(X^{2}\right)-[E(X)]^{2}}$ which is the square root of the average of the square minus the square of the average.
Dominated A term that describes an alternative with a lower expected PW and a higher risk or standard deviation than a better alternative.

Dominant A term that describes an alternative with a higher expected PW and a lower risk or standard deviation than all other alternative.

This chapter assumes no previous study of probability, and it focuses on using probabilities to make economic decisions. Limited space precludes including topics such as the normal, beta, and lognormal distributions. While valuable, knowledge of these distributions is not essential in modeling the consequences of each alternative or in choosing the best alternative.

18.1 Probabilities

Probability is a measure of relative frequency or likelihood.

The probability distribution for mutually exclusive outcomes has individual possibilities (each between 0 and 1 inclusive) that collectively sum to 1 .

The basic measure of uncertainty is probability. Even without formal training in probability and statistics, most of us have developed an intuitive understanding. That understanding may be based on a 20% chance of rain or on a 1-in-2 chance of getting heads on a coin flip.

In fact, probabilities are derived from:

1. Historical data.
2. Mathematical models.
3. Subjective estimates.

Probabilities of rain or of a telephone pole's or a computer's life can be derived from historical data. A coin flip or a random event's probability can be derived mathematically from a model of a fair or unbiased chance. The probability of when a competing firm will introduce its product can be subjectively estimated by a senior executive or by a junior engineer.

In all cases, these probabilities must satisfy three axioms:

1. All probabilities are $\geq 0(0 \Longrightarrow$ never $)$.
2. All probabilities are ≤ 1 ($\quad \Longrightarrow$ always $)$.
3. The probabilities of the mutually exclusive and collectively exhaustive outcomes sum to 1 .

The set of possible individual outcomes with their probabilities is called a probability distribution.

Since probability is a long word, a shorter notation has been developed. The probability of event A is commonly written as $P(\mathrm{~A})$. Similarly, the probability that the PW is greater than $\$ 875$ is written as $P(\mathrm{PW}>875)$. Examples $18.1,18.2$, and 18.3 illustrate the historical , mathematical, and subjective bases for probability in more detail.

EXAMPLE 18.1 Cost of Construction

A building is scheduled for late fall construction. Based on historical records, the chance of sunny weather is 20%, and the chance of an early winter is 30%. With sunny weather, construction will cost $\$ 225,000$. With an early winter, the building will cost $\$ 295,000$. If the weather is between the two extremes, construction will cost $\$ 250,000$. What is the probability distribution for the construction cost?

SOLUTION

Three states of nature have been identified, along with the first cost of each. However, only two probabilities are given. The third axiom, that the probabilities of the mutually exclusive outcomes sum to 1 , is used to find the P for the intermediate weather. Specifically, this must equal $1-.2-.3$, which equals .5 , or 50%. Mathematically, the probabilities and first costs form the probability distribution, but the meaning is clearer if the states of nature are also given.

State of Nature	First Cost	Probability
Sunny	$\$ 225,000$.2
Intermediate	250,000	.5
Winter	295,000	.3

EXAMPLE 18.2 Life of a Crash Absorber

The Crooked Mountain Expressway has many bridge abutments with crash-absorbing barriers. Each year, one-third of these barriers are damaged in collisions and must be replaced or repaired. There is no apparent pattern to which bridge abutments are hit; rather, it appears to be random. If a crash absorber survives 5 years, it is replaced under regular maintenance. What is the probability distribution for the life of a crash absorber?

SOLUTION

This mathematical model assumes randomness of collisions over the years. Thus, if a crash absorber survives to the beginning of a year, there is a one-third chance of being hit during the year. For example, a crash absorber can be hit in year 2 only if it was not hit in year 1, and the one-third chance of a hit comes true in year 2 . Thus, two equations form the probability model:

$$
\begin{aligned}
P(\text { hit in year } t) & =P(\text { not hit by year } t-1) \times(1 / 3) \\
P(\text { not hit by year } t) & =P(\text { not hit by year } t-1)-P(\text { hit in year } \mathrm{t})
\end{aligned}
$$

So, for the first year, the $P($ hit $)=1 / 3$ and $P($ not hit yet $)=1-1 / 3=2 / 3$. For the second year, the $P($ hit $)=(2 / 3) \times(1 / 3)=2 / 9$, and the $P($ not hit yet $)=2 / 3-2 / 9=4 / 9$. This continues, as tabulated below, for 5 years. Finally, the probability that the crash absorber was not hit at all is found by subtracting the probabilities that it is hit from 1 (axiom 3). The distribution is shown graphically in Exhibit 18.1. The two 5 -year outcomes could be combined ($P=.1975$).

Year	\boldsymbol{P} (hit)	\boldsymbol{P} (not hit yet)
1	.333	.667
2	.222	.444
3	.148	.296
4	.0988	.1975
5	.0658	.1317
5	.1317	Replaced anyway

EXHIBIT 18.1 Probability density function for crash absorber life

EXAMPLE 18.3 Micro Pizza Heater: Market Demand

A factory renovation is needed to build a compact microwave with a new shape, which will be called the Micro Pizza Heater. The low sales-volume prediction (20,000 heaters per year) has a subjectively estimated probability of 30%. The most likely market prediction is 30,000 units sold per year. The optimistic market prediction $(30,000$ sold the first year, with annual increases of 5000) has a subjectively estimated probability of 10%. In all cases, the factory equipment and the market will last 5 years. The net revenue will be $\$ 10$ per microwave. What is the probability distribution for the net revenue?

SOLUTION

Three states of nature are identified and linked with annual cash flows. However, no most-likely probability is given. Because the probabilities sum to 1 , the P (selling $30,000 /$ year) must equal $1-.3-.1$, which equals .6 , or 60%. The probability distribution for net revenue is a 5 -year projection, as follows:

	State		
Year	Pessimistic $(\boldsymbol{P}=.3)$	Intermediate $(\boldsymbol{P}=.6)$	Optimistic $(\boldsymbol{P}=. \mathbf{1})$
1	$\$ 200,000$	$\$ 300,000$	$\$ 300,000$
2	200,000	300,000	350,000
3	200,000	300,000	400,000
4	200,000	300,000	450,000
5	200,000	300,000	500,000

18.2 Computing Expected Values

Expected value or mean is a weighted average. The weights are probabilities.

The expected value, E, is the most often used measure of a probability distribution. Each possible value is weighted or multiplied by its probability; these products are then summed. Since the probabilities are weights that sum to 1 , the expected value is a weighted average. Thus, for Example 18.1, the average first cost is found by multiplying each first
cost by its probability:

$$
\begin{aligned}
E_{\text {first cost }} & =.2(225,000)+.5(250,000)+.3(295,000) \\
& =\$ 258,500
\end{aligned}
$$

As shown by this example, the expected value may not even be a listed possibility. The expected value is "close" to the intermediate value. Here the expected value exceeds the intermediate value because the pessimistic value is both further away from the intermediate value and more likely than the optimistic value. The value of $\$ 258,500$ should be used to compute expected present worths and to evaluate the project.

EXAMPLE 18.4 Expected Life for Crash Absorber (Example 18.2 Continued)

Compute the expected life for the crash absorber in Example 18.2.

SOLUTION

Assume that crashes and replacements occur at the end of the year. The probability distribution in Example 18.2 can be used, with one minor change. For computing the average life, there is no difference between being hit in year 5 and being a scheduled replacement. Thus, those two probabilities are summed in the next-to-last line of the accompanying table.

To find the expected life, each year is multiplied by its probability. Then, these products are summed.

Year	$\boldsymbol{P}($ year $)$	Product
1	.333	.33
2	.222	.44
3	.148	.44
4	.0988	.40
5	.1975	.99
	Expected Life	$\underline{2.60}$ years

EXAMPLE 18.5. Micro Pizza Heater: Expected Market Demand (Example 18.3 Continued)

The company uses a MARR of 12%. What is the expected value for the equivalent annual revenue?

SOLUTION

We begin by computing the equivalent annual revenue for each state of nature. The pessimistic and most likely states have uniform flows of $\$ 200,000$ and $\$ 300,000$, respectively. The optimistic
state's equivalent annual revenue is found as follows:

$$
\begin{aligned}
\mathrm{EAW}_{\text {opt }} & =300,000+50,000(A / G, .12,5) \\
& =300,000+50,000(1.7746)=\$ 388,730
\end{aligned}
$$

The expected equivalent annual revenue is:

$$
\begin{aligned}
E_{\text {annual revenue }} & =.3(200,000)+.6(300,000)+.1(388,730) \\
& =\$ 278,873
\end{aligned}
$$

Equation 18.1 is the general formula for calculating expected values, to be used whenever a set of discrete possibilities has been identified. This weighted average simply takes each value of x and multiplies it by its probability. A similar formula relying on integration is used for continuous distributions.

$$
\begin{equation*}
E=\sum_{i} x_{i} \times P\left(x_{i}\right) \tag{18.1}
\end{equation*}
$$

This formula can also be directly applied to PWs and EACs to quantify the expected worth (cost) of an alternative. Note that the simpler formula built into most calculators assumes that each outcome is equally likely, so each probability equals 1 divided by the number of data points. This is often untrue for models of economic decisions.

18.3 Choosing Alternatives Using Expected Values

The best choice among alternatives has the maximum expected worth or the minimum expected cost. We calculate each alternative's expected PW and choose the largest. Or, we calculate the expected EAC for each alternative and choose the lowest.

The first step is calculating the expected value of each probabilistic cash flow element. For example, if there are probability distributions for the first cost, annual revenues, salvage value, and cost of an overhaul, then four expected values are calculated. The second step is to find the PW, EAC, or IRR.

As detailed in Section 18.8, this substitution of expected values in PW or EAC calculations can be approximate or inappropriate. For example, if there is a probability distribution on N or i, then this answer is only approximate (see Example 18.17). Or, a more complete analysis that includes risk (see Sections 18.5 and 18.6) may be planned. In this case, the PW's complete distribution is needed-not just its expected value.

Examples 18.6 (typical for feasibility studies) and 18.7 (typical for insurance or risk avoidance) illustrate the principle of maximizing expected value. Maximizing expected value is not the only criteria used; however, it is clearly the most commonly used and most important criterion.

Section 18.6 discusses risk and return in more detail, but it is worth noting here some situations in which expected value is not the dominant criteria. Businesses and individuals insure against catastrophic loss from fire, liability, and theft. The costs to operate the
insurance firms ensure that less is paid out than is collected in premiums. Often, for an insured firm, the expected payout is half of the firm's premiums. Nevertheless, insurance is often a good choice.

There are many good sources to examine decision rules, such as maximizing expected value [Clemen and Reilly; Hammond, Keeney, and Raiffa]. However, only one focuses on decision making within an engineering economy context [Buck].

EXAMPLE 18.6 New Product Development

ElectroToys has a new product idea. However, the first cost of developing the product and its annual net revenue are uncertain. Assume that the first cost occurs at time 0 and that the net annual revenues begin at the end of year 1 . ElectroToys uses an interest rate of 12%, and new toys have a life of 5 years. Should the product be developed if the probabilities are as shown?

First Cost	\boldsymbol{P}	Net Revenue	\boldsymbol{P}
$\$ 20,000$.2	$-\$ 5,000$.3
30,000	.5	10,000	.5
50,000	.3	30,000	.2

SOLUTION

The first step is to identify the alternatives, which in this case are go and no-go. The second step is to calculate the expected values for the first cost and the net revenue.

$$
\begin{aligned}
E_{\text {first cost }} & =.2(20,000)+.5(30,000)+.3(50,000) \\
& =4000+15,000+15,000=\$ 34,000 \\
E_{\text {annual net revenue }} & =.3(-5000)+.5(10,000)+.2(30,000) \\
& =-1500+5000+6000=\$ 9500
\end{aligned}
$$

The third step is to calculate the expected PW of the new product.

$$
E_{\mathrm{PW}}=-34,000+9500(P / A, 12 \%, 5)=\$ 245
$$

Since this slightly exceeds a PW of zero, this product can be expected to earn just over the 12% minimum requirement. The expected PW of rejecting the new product is $\$ 0$.

EXAMPLE 18.7 Flood Damage Protection

The community of Lowville has a problem with flooding from a nearby river. Building a levee will reduce both the probability of a flood and its consequences. Higher levees cost more. However, they are less likely to be overtopped, and less water floods the town if they are overtopped.

Which of the following levees minimizes the expected total annual cost to Lowville? Lowville uses an interest rate of 6% for flood protection projects, and all of the levees should last 50 years.

Levee Height	First Cost	$\boldsymbol{P (\text { flood) for }}$ Each Year	Damages If Flood Occurs
None	$\$ 0$.1	$\$ 500,000$
2 meters	600,000	.05	125,000
4 meters	650,000	.01	50,000
6 meters	750,000	.001	5000

SOLUTION

Calculating the EAC of the first cost merely requires multiplying the first cost by ($A P, .06,50$). Calculating the annual expected flood damage for each alternative is done by multiplying the P (flood) times the damages if a flood happens. For example, the expected annual flood damage with no levee is $.1 \times \$ 50,000$ or $\$ 50,000$, Then, the EAC of the first cost and the expected annual flood damage are summed. The 4-meter levee is somewhat cheaper than the 2-meter levee.

Levee Height	EAC of First Cost	Expected Annual Flood Damages	Total Expected EAC
None	$\$ 0$	$\$ 50,000$	$\$ 50,000$
2 meters	38,067	6250	44,317
4 meters	41,239	500	41,739 Best choice
6 meters	47,583	5	47,588

18.4 Economic Decision Trees

Economic decision
trees describe the timing, probabilities, and consequences of sequential decisions and chance events.

Engineering economy problems often involve sequences of decisions that may be intermixed with chance occurrences. Rather than using tables, we use economic decision trees to describe the problem's structure. Each node of the tree represents a decision point or a chance occurrence. The branches that radiate from a decision node are the alternatives, and the branches that radiate from a chance node are the states of nature.

A simple example is shown in Exhibit 18.2 for insuring a car against collision damage. The first node is a decision node with two alternatives for the next year-spending $\$ 300$ to buy collision insurance with a $\$ 500$ deductible and self-insuring for property damage. After the decision has been made, then there are chance nodes for the different severities of an accident (if any). Each branch from a chance node has a probability between 0 and 1 . The probabilities for the branches from a chance node sum to 1 , since some outcome must occur (one chance branch must be selected).

Decision trees are used in a two-stage process. In the first stage, their construction graphically organizes and structures the problem, as shown in Exhibit 18.2. Starting with the chance occurrence or the decision that occurs first, nodes and branches are added until the problem is completely described. At the same time, probabilities are entered on the chance branches, and any cash flows are entered on both the chance and alternative branches.

EXHIBIT 18.2 Example decision tree-auto insurance

If a decision must be made before the outcome of any chance event is known, then the first node is a decision node. For example, in Exhibit 18.2, the first event is a decision between two alternatives-buying insurance and self-insuring. There is no cost at the decision stage for self-insuring, but buying insurance costs $\$ 300$.

Since our driving habits are likely to be the same with and without insurance, the accident probabilities are the same with and without insurance. The 100% chance of something happening this year is assumed to be divided into a 90% chance of no accident, an 8% chance of a small accident (at $\$ 300$, which is less than the deductible), and a 2% chance of totaling the $\$ 9000$ vehicle.

When drawing a decision tree, it is useful to use boxes or diamonds for decision nodes and circles or ovals for chance nodes. It is essential that the probabilities of the branches from a chance node satisfy all three probability axioms (including summing to 1).

When the tree is complete, the second stage begins. Expected value analysis is used to roll back the values and to choose the best alternatives. Here, the principle of maximizing present or equivalent annual worth is applied.

For Exhibit 18.2, the expected values of the costs of an accident with and without insurance equal:

$$
\begin{aligned}
\mathrm{EV}_{\text {accident w/ins. }} & =.9 \times 0+.08 \times 300+.02 \times 500=\$ 34 \\
\mathrm{EV}_{\text {accident w/o ins. }} & =.9 \times 0+.08 \times 300+.02 \times 9000=\$ 204
\end{aligned}
$$

As shown in Exhibit 18.3, these expected costs can be entered into the chance nodes. Then, these expected costs are combined with the cost for each decision to see that selfinsuring costs $\$ 204$ per year, or $\$ 130$ less than the $\$ 334$ cost for buying insurance and paying the deductible.

This is not surprising, since the premiums collected must cover both the costs of operating the insurance company and the expected value of the payouts. This is also an example of expected values alone not determining the decision. Buying insurance has an expected cost that is $\$ 130$ per year higher, but that insurance limits the maximum loss to $\$ 500$ rather

Some alternatives have more flexibility to expand, contract, and modify operations, and those alternatives will often be far more valuable than a simple expected value analysis might suggest.

EXHIBIT 18.3 Rolling back a decision tree-auto insurance

than $\$ 9000$. The $\$ 130$ may be worth spending to avoid that risk. (If there is a loan on the car, the lender is likely to require the insurance.)

Sequential Decisions. ElectroToys' new product development (Example 18.6) illustrates that new and better alternatives can be evaluated by decision trees. If the net revenue is negative, then ElectroToy is likely to discontinue production after the first year. There is still a loss, but this new alternative will save $\$ 5000$ per year for 4 years. This alternative represents adding another decision node after demand for the product is known. Example 18.8 details this.

More generally, in later years it is possible to expand, contract, or modify operations to increase revenues and decrease costs. Some alternatives have more flexibility for these changes, and those alternatives will often be far more valuable than a simple expected value analysis might suggest. A detailed decision tree that shows how the alternatives' performance can be improved will also allow the calculation of more accurate expected values.

EXAMPLE 18.8 ElectroToys May Discontinue Production

ElectroToys' potential new product has an expected first cost for development of $\$ 34,000$. If net revenues are negative, the product will be discontinued after the first year. Calculate the expected PW of the revenues and of the product. How much does the optional early termination improve the product's PW?

SOLUTION

The decision tree for the revenues is shown in Exhibit 18.4. In finding the expected net revenue, it is not possible to apply an average life, since the number of years is different for the early

EXHIBIT 18.4 A partial decision tree-auto insurance

termination option. The early termination has a probability of .3 and a loss of $\$ 5 \mathrm{~K}$ for 1 year, and the other two outcomes require a (P / A) factor for 5 years.

$$
\begin{aligned}
E_{\text {net revenue }} & =.3(-5 \mathrm{~K}) / 1.12+[.5(10 \mathrm{~K})+.2(30 \mathrm{~K})](\mathrm{P} / \mathrm{A}, .12,5) \\
& =-1339+11 \mathrm{~K} \times 3.605=\$ 38,316
\end{aligned}
$$

Subtracting the expected first cost of $\$ 34 \mathrm{~K}$ leaves an expected profit of $\$ 4316$, which has a PW that is $\$ 4071$ higher than the $\$ 245$ for accepting the toy without the early termination option.

Cash Flows that Occur over Time. For engineering economy problems, it is also useful to line up events and actions by time periods so that a labeling of the cash flow timings can be aligned with the tree. Example 18.10 does the rollback for the decision tree that is developed in Example 18.9.

EXAMPLE 18.9 MedEQuipt New Product Development Tree

MedEQuipt has identified a need for a new blood analysis test unit. However, it will be used only in some infertility clinics, so the potential market is relatively small. The first decision between alternatives is whether to (1) forgo the project, (2) begin normal development, or (3) accelerate development. If MedEQuipt forgoes the project, no costs or profits result. Normal development will take a year, cost $\$ 450,000$, and almost certainly lead to a successful project. Thus, there is a 95% chance of meeting a market need that should produce profits of $\$ 100,000$ per year for 10 years. These revenues begin in the second year, and they are assumed to occur at the end of each year.

The accelerated program skips some steps, so it only costs $\$ 250,000$. Since it is done earlier, there are operating profits of $\$ 50,000$ for the first year. Since a larger market share is established, the profits for the 10 years beginning in year 2 are larger, $\$ 125,000$ per year. Unfortunately, the accelerated program has a 40% chance of failure. Assume the costs occur at time 0 and that the actions of MedEQuipt's competitors will close the market niche if the development alternative is unsuccessful. Describe this problem using a decision tree.

SOLUTION

The decision has three alternatives. Forgoing development has a sure outcome of $\$ 0$; each of the other two has costs and leads to a single chance node. While the chance branches represent success or failure, the probabilities and consequences following normal and accelerated development differ. The decision tree in Exhibit 18.5 has three branches from the first decision node 1 (one no-go and two go), and each of the two go branches have chance nodes (nodes 2 and 3) with two branches apiece.

Notice that years are included for each cash flow, since the value of the cash flows depends on when they occur (if they occur at all). Notice also that the probabilities from a chance node must sum to 1 (see the axioms in Section 18.1).

EXHIBIT 18.5 MedEQuipt decision tree

EXAMPLE 18.10 Calculating Expected Values for MedEQuipt Decision Tree

If MedEQuipt (in Example 18.9) uses a 12% MARR and maximizes PW, which alternative should be adopted?

SOLUTION

Expected value analysis, or rolling back, begins at the nodes furthest out in Exhibit 18.5. In this case, these are the nodes for the expected return from normal development (node 2) and from accelerated development (node 3). The results are summarized in Exhibit 18.6 and explained in the following text.

The expected value for normal development is calculated as a present value as follows:

$$
\begin{aligned}
E_{\text {normal returns }} & =.05(0)+.95(100,000)(P / A, .12,10)(P / F, .12,1) \\
& =0+.95(504,484)=\$ 479,260
\end{aligned}
$$

EXHIBIT 18.6 Completed MedEQuipt decision tree

If MedEQuipt were to select the branch for normal development, costs of $\$ 450,000$ at time 0 are incurred and the annual returns have an expected present worth of $\$ 479,260$. The expected net present worth for normal development is $\$ 479,260$ minus $\$ 450,000$, or $\$ 29,260$.

If MedEQuipt were to select accelerated development, the probabilities differ and the potential $\$ 50,000$ in revenue for year 1 must be included, but the principles are identical. To simplify the formulas, the present worth of the returns are first calculated.

$$
\begin{aligned}
\mathrm{PW}_{\text {accelerated returns }} & =(P / F, .12,1)[50,000+125,000(P / A, .12,10)] \\
& =(50,000+706,278) / 1.12=\$ 675,248
\end{aligned}
$$

Now, it is easy to calculate the expected value for node 3:

$$
E_{\text {accelerated returns }}=.4(0)+.6(675,248)=\$ 405,149
$$

If MedEQuipt selects accelerated development, costs of $\$ 250,000$ at time 0 are incurred and returns have an expected present worth of $\$ 405,149$. The expected net present worth for accelerated development is $\$ 405,149$ minus $\$ 250,000$, or $\$ 155,149$.

Since accelerating is the best alternative, this last value is entered into node 1 . Notice that the branch for the accelerated branch is bold, since that is the best decision. Chance branches are not bold, since it is not possible to control the states of nature.

18.5 Risk

Firms balance maximizing return (PW) with minimizing risk, which considers the probability and undesirability of negative outcomes.

In an intuitive sense, risk is the chance of getting an outcome other than the expected value-with an emphasis on something worse than expected. Risk and return are considered together so that firms can balance the goals of maximizing PW and minimizing risk.

When more rigorously defined, economic risk considers both the probability of exposure and the degree of undesirability for possible outcomes. The ideal measure of risk would be "economically sound, statistically sufficient, computationally easy, and intuitively meaningful to decision makers" [Buck, p. 190].

Probability (loss) and standard deviation are common measures of risk.

The standard deviation (σ) is the square root of the average of the squares minus the square of the average, or $\sqrt{E\left(X^{2}\right)-[E(X)]^{2}}$

Two common measures, probability (loss) and standard deviation, can jointly begin to satisfy the above requirements-but neither does alone. For example, in Exhibit 18.2, for collision insurance on an auto, self-insurance risks a $\$ 9000$ loss that has a 2% probability.

The $\$ 9000$ loss defines its undesirability, and the .02 is the probability of a loss. However, this is the probability of a single negative outcome. There are statistical measures (like semivariance [Buck]) that measure dispersion for negative outcomes, but the commonly used measure is of dispersion about the expected value, the standard deviation (σ). The standard deviation begins by calculating the dispersion-the difference between the possible outcomes (X) and the average $(\mu), X-\mu$. This is squared for each outcome so that both positive and negative deviations receive positive weights. The expected value, or weighted average, of these deviations is then calculated. Finally, the square root is found. Thus, the result is the square root of the weighted average of the squared deviations from the mean, or $\sqrt{E\left[(X-\mu)^{2}\right]}$.

Now, this is not the formula for the standard deviation built into most calculators. That formula is for equally likely data points from a randomly drawn sample, so each probability is 1 divided by the number of data points. Here, we will use a weighted average for the squared deviations, since the outcomes are not equally likely.

The second difference is that for calculations (by hand or the calculator), it is easier to use the following equivalent formula:

$$
\begin{align*}
\text { Standard deviation }(\sigma)= & \sqrt{E\left(X^{2}\right)-[E(X)]^{2}} \tag{18.2}\\
& =\sqrt{\sum_{i} x_{i}^{2} \times P\left(x_{i}\right)-\left[\sum_{i} x_{i} \times P\left(x_{i}\right)\right]^{2}} \tag{18.2'}
\end{align*}
$$

In words, this is the square root of the difference between the average of the squares and the square of the average. The mathematics that prove these two formulas are equivalent to $\sqrt{E\left[(X-\mu)^{2}\right]}$ can be found in virtually any probability and statistics text. Omitting the square root or squaring the standard deviation calculates the variance. The standard deviation is preferred, however, since it is measured in the same units as the expected value. The variance is measured in "squared dollars"-whatever they are.

The variance and standard deviation are both based on an averaging of squared deviations from the mean. Consequently, negative values are impossible, and they are clear indicators of arithmetic mistakes. The variance and the standard deviation equal zero only when there is a single certain value, which becomes the expected value. Otherwise, the variance and standard deviation are positive.

The calculation of a standard deviation by itself is only a descriptive statistic of questionable value. However, as shown in the next section on risk/return trade-offs, when the standard deviation of each alternative is calculated and these are compared, then it is useful. First, however, some examples of calculating the standard deviation will be examined.

Tables are used for calculating $E(X)$ and $E\left(X^{2}\right)$ in Examples 18.12 and 18.13. These are easily constructed as spreadsheets.

EXAMPLE 18.11 Standard Deviation for Cost of Construction (Example 18.1 Continued)

The potential costs of construction (first costs) under the three states of nature were $\$ 225,000$, $\$ 250,000$, and $\$ 295,000$, with probabilities of .2 , .5 , and .3 , respectively. At the beginning of Section 18.2 , the expected value or mean of this distribution was calculated to be $\$ 258,500$. What is the standard deviation of the construction cost?

SOLUTION

First, each first cost is squared to calculate the average of the squared first costs, $E\left(\right.$ first $\left.\operatorname{cost}^{2}\right)$. Each squared value is weighted by its probability, so the calculation is as follows:

$$
\begin{aligned}
E_{\text {firstcost }}{ }^{2} & =.2\left(225,000^{2}\right)+.5\left(250,000^{2}\right)+.3\left(295,000^{2}\right) \\
& =6.74825 \times 10^{10}
\end{aligned}
$$

Then, the standard deviation can be found as follows:

$$
\begin{gathered}
\sigma_{\text {first cost }}=\sqrt{6.74825 \times 10^{10}-258,500^{2}}=\sqrt{660,250,000} \\
=\$ 25,695
\end{gathered}
$$

EXAMPLE 18.12 Standard Deviation for Crash Absorber Life (Examples 18.2 and 18.4 Continued)

In Example 18.4, the expected value was calculated to be 2.60 years. What is the standard deviation?

SOLUTION

Once the weighted average of the squared years has been calculated to be 9.07 (see accompanying table), then the calculation of the standard deviation is straightforward.

Year ${ }^{2}$	P (year)	Product
1	. 333	. 33
4	. 222	. 89
9	. 148	1.33
16	. 0988	1.58
25	. 1975	4.94
	$E_{\text {year }}{ }^{2}$	9.07
$\sigma_{\text {year }}=\sqrt{E_{\text {year }^{2}-\mu_{\text {year }}^{2}}^{2}}=$		

EXAMPLE 18.13 Standard Deviation for Micro Pizza Heater's Market Demand (Examples 18.3 and 18.5 Continued)

In Example 18.5, the $E_{\text {annual revenue }}$ was calculated to be $\$ 278,873$. What is the standard deviation of that annual revenue?

SOLUTION

Once the expected value of the squared equivalent annual revenue has been calculated to be $81,111,101,290$ (see accompanying table), the standard deviation is calculated as follows:

$$
\sigma=\sqrt{81,111,101,290-278,873^{2}}=\$ 57,801
$$

Equivalent Annual Revenue	(Equivalent Annual Revenue)	Probability	Product
$\$ 200,000$	$\$ 40,000,000,000$.3	$\$ 12,000,000,000$
300,000	$90,000,000,000$.6	$54,000,000,000$
388,730	$151,111,012,900$.1	$\underline{15,111,101,290}$
	Expected value [equivalent annual revenue] ${ }^{2}$	$\mathbf{8 1 , 1 1 1 , 1 0 1 , 2 9 0}$	

18.6 RISK/Return Trade-offs

A dominated
alternative is worse than another alternative, because it has a lower expected PW and a higher risk or standard deviation.

A dominant

alternative has a higher expected PW and a lower risk or standard deviation than all other alternatives.

Alternatives with higher risk are generally accepted only when higher returns are also expected. These risks may be that a project or an investment will lose money, or it may involve bankruptcy, a firing, or death. It is clear that most people and most businesses are risk averse.
Buying Insurance. One example of a risk/return trade-off can be found in the insurance business. An individual or a firm buys insurance to minimize or eliminate the risk of certain kinds of disaster. Owners of homes and vehicles buy liability, fire, theft, and/or collision insurance. Businesses buy liability, fire, and key person insurance. In every case, the costs of operation for the insurance companies and their stockholder dividends ensure that what is paid out is less than what is taken in. Often, less than half of the premiums received are paid out in claims. Thus, for you or the insured firm, the expected value of what is received may be only half of what is paid in.

Nevertheless, buying insurance can be an intelligent decision. The death of a key individual at a critical time can cause a firm to go bankrupt. Similarly, a fire can bankrupt a firm or a family. The small certain cost of insurance is often better than a possible catastrophic uninsured loss.
Balancing Risks and Returns. Sometimes, the potential loss is not catastrophic, and increases in risk must be balanced with increases in expected return. Are the increases commensurate? Basically, firms want to accept projects that have (1) a large expected value for the PW or EAW and (2) a small standard deviation.

The starting point is to calculate the expected values and standard deviations for each alternative. Occasionally, an alternative will be dominant, because it will have both a higher expected value and a lower risk than any other alternatives. More often, one of the alternatives will be dominated; that is, at least one other alternative will have a better
expected value and a lower risk. However, as shown in Example 18.14, sometimes each alternative is best-for some level of risk.

EXAMPLE 18.14 Calculating Risk/Return Trade-offs for MedEQuipt (Examples 18.9 and 18.10 Continued)

If MedEQuipt (in Examples 18.9 and 18.10) maximizes PW and minimizes risk, which alternative should be adopted?

SOLUTION

The decision tree with expected values can be used here as well (Exhibit 18.7 repeats Exhibit 18.6, but with standard deviations also shown).

Stop alternative. Both this alternative's expected value and its standard deviation are $\$ 0$. The P (loss) is also $\$ 0$.

Normal development. The expected value of the PW for normal development was calculated as follows:

$$
\begin{aligned}
E_{\text {normal returns }} & =.05(0)+.95(100,000)(P / A, .12,10)(P / F, .12,1) \\
& =0+.95(504,484)=\$ 479,260 \\
E_{\text {PW normal }} & =\$ 479,260-\$ 450,000=\$ 29,260
\end{aligned}
$$

To calculate the standard deviation, the first step is to identify the possible outcomes and their probabilities. That is the probability distribution for the PW under normal development. These values are found by subtracting the $\$ 450 \mathrm{~K}$ for normal development from the PW of each possible outcome. This also defines the 5% probability of losing $\$ 450 \mathrm{~K}$.

Probabilities	Normal PW
.05	$-\$ 450,000$
.95	54,484

EXHIBIT 18.7 MedEQuipt decision tree with standard deviations

This probability distribution still has an expected value of $\$ 29,260$. The second step is to calculate the expected value of the squares and the standard deviation.

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{PW}^{2}\right) & =.05 \times(-450,000)^{2}+.95 \times 54,484^{2}=1.2945 \times 10^{10} \\
\sigma_{\mathrm{PW} \text { normal }} & =\sqrt{1.2945 \times 10^{10}-29,260^{2}}=\$ 109,949
\end{aligned}
$$

Accelerated Development. The expected PW under accelerated development was calculated as follows:

$$
\begin{aligned}
\mathrm{PW}_{\text {accelerated returns }} & =(P / F, .12,1)[50,000+125,000(P / A, .12,10)] \\
& =(50,000+706,278) / 1.12=\$ 675,248 \\
E_{\text {accelerated returns }} & =.4(0)+.6(675,248)=\$ 405,149 \\
E_{\mathrm{PW} \text { accelerated }} & =\$ 405,149-\$ 250,000, \text { or } \$ 155,149
\end{aligned}
$$

To calculate the standard deviation, the first step is to identify the possible outcomes and their probabilities. That is the probability distribution for the PW under accelerated development. This has a much larger probability (.4) of a loss, but the loss is smaller.

Probabilities	Accelerated PW
.4	$-\$ 250,000$
.6	425,248

This probability distribution still has an expected value of $\$ 155,149$. The second step is to calculate the expected value of the squares and the standard deviation.

$$
\begin{aligned}
E\left(\mathrm{PW}^{2}\right) & =.4 \times(-250,000)^{2}+.6 \times 425,248^{2}=1.3350 \times 10^{11} \\
\sigma_{\mathrm{PW} \text { accelerated }} & =\sqrt{1.3350 \times 10^{11}-155,149^{2}}=\$ 330,803
\end{aligned}
$$

Comparing the Alternatives. As we can see in the following table, none of the three alternatives is dominant. When the three are compared, an increasing level of return is associated with more risk.

Alternative	$\mathbf{E V}_{\text {PW }}$	$\boldsymbol{\sigma}_{\text {PW }}$	$\boldsymbol{P}($ loss $)$	Loss
Stop	$\$ 0$	$\$ 0$	0	$\$ 0$
Normal development	29,260	109,949	.05	450 K
Accelerated development	155,149	330,803	.4	250 K

In this case, tripling the risk (measured by standard deviation) increases the return more than fivefold, so accelerated development likely is still the best alternative. The P (loss) is harder to evaluate because accelerating development dramatically increases failure probabilities while about halving the consequences. A rigorous treatment of the trade-off question is beyond the scope of this text.

Efficient Frontier for Risk/Return Trade-offs. Dealing with trade-offs in which no alternative is dominant has been the focus of much research in engineering economy and finance. Before we very briefly discuss some of the possibilities, let us consider Exhibit 18.8, which shows a conceptual model of the trade-offs between risk (measured by standard deviation) and average return. Since expected return is on the y-axis and the standard deviation is on the x-axis, a dominant alternative is one that is plotted above and to the left of another alternative. Thus, alternative B dominates alternative D , because alternative B has both a higher expected return and a lower standard deviation.

Point F in Exhibit 18.8 represents the risk-free rate of return on government securities, where the standard deviation is $\$ 0$. This risk-free rate is available for investment of any temporarily excess funds the firm has.

Alternatives F, C, E, and A are not dominated. Moreover, if linear combinations of these alternatives could be formed, such as in a stock portfolio, then the line that connects alternative F, C, E, and A would form an efficient frontier for the feasible region of (risk, return) combinations. Alternative B and combinations such as F and A or D and E are within the linear envelope of these points.

EXHIBIT 18.8 Risk/return trade-off and the efficient frontier

Approaches to Risk/Return Trade-offs. Choosing among alternatives A, C, E, and F in a rigorous way is beyond us at this point. However, there are at least three useful approaches. The first treats risk and return as multiple criteria, and it requires the tools of Chapter 19. The second approach is that of capital asset pricing theory [Eschenbach, Lewis, Hartman, and Bussey].

The third approach is utility theory. This can be illustrated by asking whether you would rather receive a sure $\$ 10 \mathrm{M}$ in a lottery or have a 50% chance of receiving $\$ 50 \mathrm{M}$. Even though a 50% chance of having $\$ 50 \mathrm{M}$ has an expected value of $\$ 25 \mathrm{M}$, most of us would choose the sure $\$ 10 \mathrm{M}$. This can be explained by noting that the utility of the first $\$ 10 \mathrm{M}$ to us is larger than the utility of the next $\$ 40 \mathrm{M}$.

Most engineering decisions are "small" relative to the scale of the firm or agency. Even though most engineers would prefer the sure $\$ 10 \mathrm{M}$ to a 50% chance of $\$ 50 \mathrm{M}$, that is not true for most large organizations. Enough multimillion dollar engineering projects will be undertaken that decisions can and should be made to maximize expected PW.

While the second and third approaches are theoretically preferable, there are substantial problems in applying them to the typical engineering economy problem. Consequently,

A project whose expected PW is $\geq 2 \times \sigma_{\mathrm{PW}}$ is relatively safe.
many decisions are made using unquantified trade-offs between risk and return. The expected value of each alternative is calculated along with a measure of risk, such as the standard deviation. Then, a decision maker chooses the maximum expected value within the level of risk considered acceptable for that return. Alternatively, the expected value and standard deviation are considered using the tools of Chapter 19.

There is a simple rule of thumb for comparing a project's risk and return for which I would like to thank Joe Hartman. If the expected present worth is at least double the standard deviation of the present worth, then the project is relatively safe. For comparison, remember that a normal distribution has about 2.5% of its values less than standard deviations below the mean.

18.7 Real Options

Real options analysis is another approach for evaluating projects with significant future uncertainties. Determining the value of a real option is based on models developed to value stock market options. Those options give you the right to buy or sell the stock at a given price for a given period. Since the option costs much less than the stock, a $\$ 1000$ investment in options has more potential gain than the same investment in the stock. It also has more risk.

For an intuitive understanding of why real options make sense, consider the example of a lease for gas and oil development rights. Many such projects are never developed because they are not "economic." Nevertheless, it may make sense to renew the lease for a noneconomic project because of the possibility that the project will become profitable if prices rise or pipelines and facilities are built to support a nearby tract.

The models and assumptions of real options, which may include delaying, abandoning, expanding, shrinking, changing, and replicating a project-with different models for different actions-are beyond the scope of this text. Interested readers are referred to an advanced text [Eschenbach, Lewis, Hartman, and Bussey]. For the purposes of this chapter however, the following may help decide when your project analysis might benefit from the application of real options. Suggested guidelines:

- The value of exercising an option cannot be negative, since you can choose not to exercise it.
- An option to delay a project is valuable when the project is not currently economic but may become economic. Thus, if a project's present worth is positive or very negative, then a delay option is unlikely to be worthwhile.
- Options, unlike projects, become more valuable as risk (described as volatility) increases. For projects, we want more return but less risk. However, options are more likely to be worthwhile as the risk increases.
- The key parameter in real option valuation is volatility, but it is difficult to calculate. In addition much of the risk associated with a project may not be actionable volatility and only actionable volatility can create value for a real option [Lewis, Eschenbach, and Hartman].
- Many published examples of real options analysis ignore the cost of waiting, but this is rarely appropriate for engineering projects [Eschenbach, Lewis, and Hartman].

For example, if an R\&D project, a new product, or a new building is delayed, then it will later face more competition.

- In many cases decision trees and simulation are required to properly develop and describe the real option, and by then the real option analysis may add little value to the decision-making process.

18.8 Probability Distributions for Economic Outcomes

So far, this chapter has considered probability distributions, expected values, and standard deviations for one variable at a time. The approach can be extended to find the expected PW or expected EAC for several independent variables. If many variables or possible values must be considered, then simulation (described at the end of this section) is a more appropriate approach. If risk- $P($ loss $)$ or standard deviation-will be considered, then the probability distribution and not just its expected value must be constructed.

Probability Distributions with Multiple Independent Variables. Under the assumption of independent probability distributions with a few values for a few variables, the different combinations can be evaluated. Each combination has a probability, a value for each variable, and a total economic worth. Not only does this approach support expected value decision making, but as shown in Example 18.15, it also provides a probability distribution function for present worth. This probability distribution can be used to calculate the risk associated with an alternative.

In Section 18.3, expected values for each cash flow element were calculated. In Examples 18.6 and 18.7, the alternative with the best expected present worth or equivalent annual cost was selected. Those expected values were exact, since the probabilistic cash flows did not occur within an engineering economy factor. However, the probability distributions were not derived, so it was not possible to calculate a measure of risk.

EXAMPLE 18.15 Probability Distribution for PW for ElectroToys's New Product Development (Example 18.6 Continued)

ElectroToys' new product idea has an uncertain first cost for development and uncertain annual net revenue, as shown in the accompanying table. Assume that the first cost occurs at time 0 and that the net annual revenues begin at the end of year 1. ElectroToys uses an interest rate of 12%, and new toys have a life of 5 years. What is the probability distribution for the present worth if the product is developed and maintained for the full 5 years?

First Cost	\boldsymbol{P}	Net Revenue	\boldsymbol{P}
$\$ 20,000$.2	$-\$ 5,000$.3
30,000	.5	10,000	.5
50,000	.3	30,000	.2

SOLUTION

The first step is to identify the nine combinations of first cost and net revenue. Each first cost is paired with each net revenue. Exhibit 18.9 summarizes this, along with the probability of each

Probability distribution of PW with two independent variables (ElectroToys's product development)

combination. Based on the assumption of statistical independence, the probability of the first cost is multiplied by the probability of the net revenue to find the probability of the combination. For example, the probability of the high first cost and the low revenue is $.3 \times .3=.09$.

The last column of the table in Exhibit 18.9 is included to show that the original expected value of $\$ 245$ that was calculated in Example 18.6 is, indeed, exact. These calculations are valid only if the probability distributions for the first cost and the net revenue are independent. The graph in Exhibit 18.9 lists the PWs in increasing order to make the probability distribution clearer.

Exhibit 18.9 shows the advantage of the greater detail in the probability distribution. The decision tree of Exhibit 18.4 correctly increased this example's PW by canceling the project after 1 year if net annual returns were negative, which had a probability of .3. Exhibit 18.9 shows that the $P($ loss $)$ or $P(\mathrm{PW})$ is much higher at .45 -or nearly 1 chance in 2 . The .15 probability that a high first cost and an intermediate annual return will lead to a PW of $-\$ 13,952$ cannot be avoided. Once the high first cost has occurred, it is a sunk cost. On the other hand, once the negative annual returns have been observed for year 1, they can be avoided for years 2 through 5 (See Example 18.8).

EXAMPLE 18.16 Risk/Return for ElectroToys's New Product Development (Examples 18.6 and 18.15 Continued)

In Example 18.6, the conclusion was that ElectroToys should develop the product, since the expected present worth was $\$ 245$ at its MARR of 12%. This value was confirmed by the more complete analysis shown in Example 18.15.

However, if risk is considered, is this still a clear choice?

SOLUTION

The answer is no. Four of the combinations tabulated in Example 18.15 have negative present worths, and their combined probability is:

$$
.06+.15+.09+.15=.45
$$

To calculate the standard deviation, we change the last column of the table in Exhibit 18.9. In Exhibit 18.10, that column is the joint probability times the square of the present worth. The result is that the average of the squares, $E\left(\mathrm{PW}^{2}\right)$, equals $2,037,483,015$.

EXHIBIT 18.10 Standard deviation of PW for ElectroToys (Example 18.6)

First Cost (P)	Annual Net Return (\boldsymbol{P})	Joint \boldsymbol{P}	PW	$\boldsymbol{P} \times \mathbf{P W}^{\mathbf{2}}$
$\$ 20,000(.2)$	$-\$ 5000(.3)$.06	$-\$ 38,024$	$\$ 86,749,475$
$20,000(.2)$	$10,000(.5)$.10	16,048	$25,753,830$
$20,000(.2)$	$30,000(.2)$.04	88,143	$310,767,538$
$30,000(.5)$	$-5000(.3)$.15	$-48,024$	$345,945,686$
$30,000(.5)$	$10,000(.5)$.25	6048	$9,144,576$
$30,000(.5)$	$30,000(.2)$.10	78,143	$610,632,845$
$50,000(.3)$	$-5000(.3)$.09	$-68,024$	$416,453,812$
$50,000(.3)$	$10,000(.5)$.15	$-13,952$	$29,198,746$
$50,000(.3)$	$30,000(.2)$.06	58,143	$202,836,507$
			Expected value	$2,037,483,015$

Then, the standard deviation of the present worth is calculated as:

$$
\sigma_{\mathrm{PW}}=\sqrt{2,037,483,015-245^{2}}=\$ 45,138
$$

The value of this project is unclear. Does this level of risk exceed the risk of most projects that ElectroToys undertakes? We cannot know without more data. Example 18.8 showed that this project is much more attractive if production is discontinued after 1 year when annual net returns are negative. Problem 18.32 shows the project is also less risky.
N and i Need Complete Distributions for Exact Answers. In Section 18.3, expected values were calculated for each cash flow element, and then those values were used to calculate the expected PW or expected EAC.

Example 18.17 shows that this answer is not exact if N is the probabilistic cash flow element. A similar example could be constructed for i. The expected value operation is
exact for those cash flow elements falling outside the engineering economy factors. For example, PW is a linear function of first cost or salvage value. However, it is not linear in i, N, or geometric gradients.

In Example 18.17, the uncertainty in N is even symmetric. However, the chance of a shorter life has more impact on the PW than the chance of a longer life. This is because of discounting by the interest rate to find the time value of money.

EXAMPLE 18.17 Uncertain N Requires Probability Distribution for PW for Exact Answer

A project has a first cost of $\$ 22,000$, no salvage value, and a net annual benefit of $\$ 4000$. The firm uses an interest rate of 12%. The benefits may last 5,10 , or 15 years, with respective probabilities of $20 \%, 60 \%$, and 20%. What is the expected value of the PW?

SOLUTION

An approximate answer can be obtained by using the expected value for the number of years, 10 years. This is the best single estimate of the project's life. Since 5 and 15 years are equidistant from 10 years and have the same probability, the probability distribution is symmetric, and the mean (average) is the point of symmetry. Mathematically, the average life of 10 years equals $.2 \times 5+.6 \times 10+.2 \times 15$. The PW for this life is:

$$
\mathrm{PW}=-22,000+4000(P / A, 12 \%, 10)=\$ 601
$$

The exact answer is obtained by finding the PW for each possible life, then finding the expected value, as shown in Exhibit 18.11.

EXHIBIT 18.11 Exact expected value computations with uncertain N

\boldsymbol{N}	\boldsymbol{P}	$\mathbf{P W}$	$\boldsymbol{P} \times \mathbf{P W}$	$\boldsymbol{P} \times \mathbf{P W}^{\mathbf{2}}$
5	.2	$-\$ 7581$	$-\$ 1516$	$\$ 11,494,312$
10	.6	601	361	216,721
15	.2	5243	1049	$5,497,810$
		Expected values	$-\$ 106$	$17,208,843$

$$
\sigma_{\mathrm{PW}}=\sqrt{17,208,843-\left(-106^{2}\right)}=\$ 4147
$$

The exact value of the expected PW is negative, and it indicates a different recommendation than the approximate value does: that is, that the project should not be undertaken. Notice also that the standard deviation of the PW is relatively large.

It should be noted, however, that the approximation is not that far off. The $\$ 707$ difference in calculated PWs is small relative to the uncertainty in the original values.

Continuous and Discrete Probability Distributions. If distinct possibilities, such as optimistic, most likely, and pessimistic, have been identified and discrete probabilities assigned, the concepts in this chapter can be directly applied. However, some situations are better modeled with continuous probability distributions. Examples include time to complete a project, demand for a product, and cost of a construction project. Loosely put, the distinction is measuring rather than counting. There are families of probability distributions, such as the normal, the beta, and the lognormal, that can be applied (through integration rather than summation). However, this requires a deeper understanding of probability than this chapter assumes.

Another possibility is simply using a discrete approximation as a substitute for a continuous distribution. Then, the question becomes how many categories or points to use. This chapter has typically used three estimated probabilities to describe uncertainty. While estimates that are derived from historical data may merit finer detail, that is certainly not true for subjectively estimated data. Much of the data in engineering economy, at least when generating minimum and maximum likely values, is highly subjective. Thus, you should not estimate probabilities for seven points, which implicitly suggest an unrealistically high state of knowledge and precision.

Use of three- or five-point estimates (see Example 18.18), however, rather than a single point, is highly recommended. The use of a single number suggests that the number is known with certainty, such as a count of 150,000 vehicles per year. The economic analysis that results, in turn, suggests that the project's PW is far more certain than it really is. The use of multiple-point estimates also allows explicit calculations of a project's risk or uncertainty to accurately reflect significant probabilities that traffic counts may be as low as 114,600 or as high as 185,400 .

In some cases, the project's technical feasibility may not work for some possible values. For example, if the maximum traffic load were 175,000 vehicles per year in Example 18.18, the economic analysis must consider the impact of this limit.

EXAMPLE 18.18 Approximating a Continuous Probability Distribution with a Discrete Distribution

The annual traffic on a proposed new highway is uncertain. It is predicted to follow a normal distribution, with a mean of 150,000 vehicles per year and a standard deviation of 20,000 vehicles per year. How can this be approximated using three discrete values?

SOLUTION

As shown in Exhibit 18.12, this normal distribution is continuous, with the values between 100,000 and 200,000 having the largest probabilities. Note that normal distributions are symmetric about their mean. They have 68% of their probability within ± 1 standard deviation of the mean, 95% within ± 1.96 standard deviations, and 99.7% within ± 3 standard deviations.

EXHIBIT 18.12 Normal distribution for predicted traffic volumes

Assuming that the mean has a probability of 68% and that the remaining 32% is split evenly between the mean ± 1.77 standard deviations leads to a discrete approximation with the same mean and standard deviation as that normal distribution. In this case, the result is:

$$
\begin{aligned}
\text { mean } & =150,000 \text { has a } P=.68 \\
\text { mean }-1.77 \times \sigma & =150,000-35,400 \\
& =114,600 \text { has a } P=.16 \\
\text { mean }+1.77 \times \sigma & =150,000+35,400 \\
& =185,400 \text { has a } P=.16
\end{aligned}
$$

Simulation. If many cash flow elements are uncertain, then computerized simulation is likely to be the best approach. Once a probability distribution has been identified for each variable in our economic model, numerous trials can be run to generate a distribution of the possible outcomes. This activity is usually computerized, and it is called simulation. Exhibit 18.13 illustrates simulation for a simple problem, in which the first cost, annual return, and life all have their own probability density functions defined. In this case, 1000 iterations were run. For each iteration, three values were randomly selected based on each probability distribution, one each for first cost, annual return, and life. Then, these were combined with the known discount rate of 8% to calculate the PW. The 1000 values of PW were then combined to produce Exhibit 18.13.

Exhibit 18.13 was produced with the simulation package @Risk ${ }^{\circledR}$ which is an "add-in" to Excel. This and other simulation packages have two components. The first is a set of probability distribution functions. These functions are used to specify which cash flows are uncertain and which probability distributions should be used. For example, a machine's life might be specified to follow a normal distribution, while the cost to build it might follow a lognormal distribution. The second component in simulation packages is the commands to specify which output values should be summarized, how many iterations should be run, etc.

If only a few variables and potential values must be considered, then the enumerative approach of this chapter can be used to produce the same results (any differences are the result of random sampling within simulation).

EXHIBIT 18.13 Simulation of PW

More complex calculations are possible. See, for example, discussion of stochastic dominance based on means and variances [Park and Sharp-Bette] and approaches for analyzing risk [Cooper and Chapman].

18.9 Summary

This chapter has briefly reviewed the application of probability to engineering economy problems. It has not attempted to rigorously develop the probabilistic concepts-leaving that for a course in probability and statistics. Rather, this chapter has described how to use the twin concepts of expected return and of risk as measured by the P (loss) and the standard deviation.

This chapter has used the goals of maximizing expected return and minimizing risk. However, they both tend to increase together. Consequently, there is a trade-off between low returns with low risk and high returns with high risks.

This development has been applied both to simple problems with only three states of nature and to more complex problems with sequences of chance and decision nodes. These more complex problems are best developed using economic decision trees.

Uncertainty and risk characterize the real world. Only in a textbook are the values known with certainty. Thus, the tools presented here are absolutely essential for the effective application of engineering economy in the real world.

REFERENCES

Buck, James R., Economic Risk Decisions in Engineering and Management, 1989, Iowa State University Press.
Clemen, Robert T., and Terence Reilly, Making Hard Decisions: An Introduction to Decision Analysis Update 2004, South-Western.
Cooper, Dale, and Chris Chapman, Risk Analysis for Large Projects, 1987, Wiley.
Hammond, John S., Ralph L. Keeney, and Howard Raiffa, Smart Choices: A Practical Guide to Making Better Decisions, 2002, Broadway.
Eschenbach, Ted G., Neal A. Lewis, Joseph C. Hartman, and Lynn E. Bussey (with chapter author Heather Nachtmann), The Economic Analysis of Industrial Projects, $3^{\text {rd }}$ Oxford University Press, 2011.
Eschenbach, Ted G., Neal A. Lewis, and Joseph C. Hartman, "Technical Note: Waiting Cost Models for Real Options," The Engineering Economist, Vol. 54, No. 1 2009, pp. 1-21.
Lewis, Neal A., Ted G. Eschenbach, and Joseph C. Hartman, "Can We Capture the Value of Option Volatility?" The Engineering Economist, Vol. 53, No. 3 July-September 2008, pp. 230-258, winner of Grant Award for best article in Volume 53.
Park, Chan S., and Gunter P. Sharp-Bette, Advanced Engineering Economics, 1990, Wiley.

Problems

18.1 Annual savings in labor costs due to an automation project have a most likely value of $\$ 35,000$. The high estimate of $\$ 45,000$ has a probability of .1 , and the low estimate of $\$ 30,000$ has a probability of .2. What is the probability distribution and the expected value for the annual savings?
(Answer: \$35K)
18.2 Over the last 10 years, the hurdle or discount rate for projects from the Advanced Materials Division of SuperTech has been 15% three times, 25% twice, and 20% the rest of the time. There is no recognizable pattern. What is the probability distribution and the expected value for next year's discount rate?
18.3 A railroad between Fairbanks and the Brooks Range in Alaska will have a most likely construction cost $\$ 900,000$ per kilometer. If there is more permafrost than estimated (probability of .3), then the cost will increase by 40%. If there is less permafrost than estimated (probability of .2), then the cost will decrease by 25%. What is the probability distribution and the expected value for the first cost per kilometer? (Answer: $\$ 963 \mathrm{~K} / \mathrm{km}$)
18.4 Determine the average or expected grade if the instructor assigns $15 \% \mathrm{As}, 35 \% \mathrm{Bs}, 25 \% \mathrm{Cs}$, and 15% Ds. (Base your answer on four-point scale, where A 4.)
18.5 The financial vice president for the Memphis Mudcats Baseball Club is determining the expected revenues for this year. History indicates that the revenues depend on how the team finishes in the sixteam Southeastern League. Determine the expected revenues for the ball club.

League Standing	Probability	Total Revenues ${ }^{1}$
1st	.30	$\$ 1,000,000$
2nd	.20	850,000
3rd	.18	600,000
4th	.15	
5th	.10	

${ }^{1}$ Total revenues are $\$ 450 \mathrm{~K}$ for 4 th or lower.
18.6 The construction time for a highway project depends on weather conditions. It is expected to take 240 days if the weather is dry and the temperature is hot. If the weather is damp and cool, the project is expected to take 320 days. Otherwise, it is expected to take 275 days. The historical data suggest that the probability of cool, damp weather is 35% and that of dry, hot weather is 40%. What is the project's probability distribution and expected completion time?
18.7 You recently received a traffic ticket for a serious moving violation. If you have an accident or receive another moving violation within the next 3 years, you will become part of the "assigned risk" pool and will pay an extra $\$ 500$ per year for insurance. If the probability of an accident or moving violation is 20% per year, what is the probability distribution of your "extra" insurance payments over the next 4 years? Assume that insurance is purchased annually and that violations register at the end of the year-just in time to affect next year's insurance premium.
18.8 If your interest rate is 8%, what is the expected value of the PW of the "extra" insurance payments in Problem 18.7? (Answer: \$440.6)
18.9 A new engineer is evaluating whether to use a larger diameter pipe for a water line. The pipe will cost $\$ 350,000$ more initially but will reduce pumping costs. The optimistic, most likely, and pessimistic projections for annual savings are $\$ 30,000$, $\$ 20,000$, and $\$ 5000$, with respective probabilities of $20 \%, 50 \%$, and 30%. The interest rate is equally likely to be 6% or 8%, and the water line should have a life of 40 years.
(a) What is the PW for each estimated value? What is the expected PW?
(b) Compute the expected annual savings and expected PW .
(c) Do the answers for the expected PW match? Why or why not?
18.10 An energy efficiency project has a first cost of $\$ 300,000$, a life of 10 years, and no salvage value. Assume that the interest rate is 9%. The most likely value for annual savings is $\$ 60,000$. The optimistic value for annual savings is $\$ 80,000$ with a probability of .2 . The pessimistic value is $\$ 40,000$ with a probability of .3.
(a) What is the expected annual savings and the expected PW?
(b) Compute the PW for the pessimistic, most likely, and optimistic estimates of the annual savings. What is the expected PW?
(c) Do the answers for the expected PW match? Why or why not?
18.11 MoreTech uses a discount rate of 15% to evaluate engineering projects. Should the following project be undertaken if its life is 10 years and it has no salvage value?

First Cost	\boldsymbol{P}	Net Revenue	\boldsymbol{P}
$\$ 200,000$.1	$\$ 70,000$.3
300,000	.6	80,000	.6
500,000	.3	100,000	.1

(Answer: $\$ 46.5 \mathrm{~K}$, yes)
18.12 DOTPUFF (Department of Transportation, Public Utilities, and Fly Fishing) uses a discount rate of 10% to evaluate engineering projects. Should the following project be undertaken if its life is 10 years and it has no salvage value?

First Cost	\boldsymbol{P}	Annual Benefit	\boldsymbol{P}
$\$ 1,200,000$.1	$\$ 300,000$.3
$1,800,000$.6	400,000	.6
$2,700,000$.3	500,000	.1

18.13 Joe Doe, project engineer, has estimated the benefits and costs of a new product line, along with the possible states of nature and their probabilities. Using Joe's information, determine the expected values for each cash flow element. Find the expected PW at 8% if the product line's life is 10 years.

Element	$\boldsymbol{P}=. \mathbf{2 5}$	$\boldsymbol{P}=. \mathbf{5 0}$	$\boldsymbol{P}=. \mathbf{1 0}$	$\boldsymbol{P}=. \mathbf{1 5}$
First cost	$\$ 100,000$	$\$ 125,000$	$\$ 130,000$	$\$ 150,000$
Annual benefits	15,000	20,000	30,000	45,000
Annual costs	5000	4000	6000	3500
Salvage value	10,000	10,000	15,000	20,000

(Answer: \$10.89K)
18.14 Determine the net present value of the following alternative. Use an interest rate of 8% and a life of 6 years.

Element	$\boldsymbol{P}=. \mathbf{1 0}$	$\boldsymbol{P}=. \mathbf{2 0}$	$\boldsymbol{P}=. \mathbf{3 0}$	$\boldsymbol{P}=. \mathbf{4 0}$
First cost	$\$ 10,000$	$\$ 12,000$	$\$ 15,000$	$\$ 16,000$
Annual benefits	4000	6000	8000	9500
Annual costs	2000	2000	3500	4500
Salvage value	500	750	1000	1200

18.15 The ABC Company has just installed a heat exchanger at a cost of $\$ 80,000$. Given the following estimates and probabilities for the yearly savings and useful life and assuming that the heat exchanger has no salvage value at the end of its useful life, determine the expected rate of return.

Savings per Year	Probability	Useful Life (Years)	Probability
$\$ 18,000$.15	12	$1 / 6$
20,000	.75	5	$2 / 3$
22,000	.10	4	$1 / 6$

18.16 The XYZ Company has just installed a new automated production line for $\$ 100,000$. Estimates and probabilities for savings per year, useful life, and salvage value are given below. XYZ pays taxes at an effective 27% marginal rate. Determine the expected EAW of this purchase if the after-tax MARR is 7%.

Element	$\boldsymbol{P}=. \mathbf{3 0}$	$\boldsymbol{P}=. \mathbf{6 5}$	$\boldsymbol{P}=. \mathbf{0 5}$
Savings per year	$\$ 18,000$	$\$ 22,000$	$\$ 24,000$
Useful life (years)	9	10	16
Salvage value	$\$ 10,000$	$\$ 15,000$	$\$ 17,000$

(a) XYZ uses straight-line depreciation with a depreciable life of 10 years, and a depreciable salvage value of $\$ 10,000$.
(b) XYZ uses MACRS depreciation.
18.17 The city water authority must choose among three options for a levee used to control local flooding. Regardless of which option is chosen, the levee will be replaced in 10 years. The first option is to completely rebuild the levee at a cost of $\$ 150,000$. If completely rebuilt, the levee's chance of failure is 10% over the next 10 years. The second option is to repair the levee at a cost of $\$ 35,000$. If this option is chosen, the levee will require another repair job in 5 years at a present cost of $\$ 27,750$. If the levee is repaired, the chance of failure is estimated to be 28%. The third option is to do nothing to the levee. If nothing is done to the levee, the chance of failure is estimated to be 60%. Weighted by flood size and timing over the 10 years, the expected present cost of a levee failure is $\$ 400,000$. Which option should be chosen?
18.18 In Problem 18.11, what if the project's life may be 5,10 , or 15 years with equal probabilities? What is the approximate expected value of the project's present worth? What is the exact value?
$($ Answer: exact $=\$ 24.4 \mathrm{~K})$
18.19 Firerock Tire Company, a large, profitable company, may install automated production equipment that will cost $\$ 110,000$ and offer substantial savings in labor costs and increase productivity. The exact
savings are not known, but the plant engineer has made the estimates tabulated below. If Firerock's after-tax MARR is 8%, determine the proposal's PW.
(a) The equipment has a declared salvage value of $\$ 9200$ and a depreciable life of 8 years. Firerock uses the SOYD method for all depreciation.
(b) Firerock uses MACRS depreciation.

Element	$\boldsymbol{P}=. \mathbf{0 9}$	$\boldsymbol{P}=. \mathbf{1 6}$	$\boldsymbol{P}=. \mathbf{5 0}$	$\boldsymbol{P}=. \mathbf{1 6}$	$\boldsymbol{P}=. \mathbf{0 9}$
Annual savings	$\$ 38,000$	$\$ 45,000$	$\$ 60,000$	$\$ 68,000$	$\$ 72,000$
Annual cost	$\$ 20,000$	$\$ 22,000$	$\$ 26,000$	$\$ 28,000$	$\$ 32,000$
Salvage value	$\$ 10,000$	$\$ 12,000$	$\$ 15,000$	$\$ 18,000$	$\$ 20,000$
Useful life (years)	8	10	12	14	16

18.20 A new wood-forming machine will cost WoodChuckers $\$ 35,000$. The machine is expected to last 4 years and to have no salvage value. WoodChuckers' MARR is 12%. Using the information shown below, determine the risk associated with the purchase.

\boldsymbol{P}	.25	.30	.45
Annual savings	$\$ 10,000$	$\$ 11,000$	$\$ 13,000$

18.21 Bellville Electric Company may invest in new power-switching equipment. The net PW of the three possible outcomes are $\$ 3430$, $\$ 5870$, and $\$ 6210$. The probabilities of each outcome are . 50 , .30 , and .20 , respectively. Calculate the expected return and risk associated with this proposal.
$\left(\right.$ Answer: $\left.E_{\mathrm{PW}}=\$ 4718, \sigma_{\mathrm{PW}}=\$ 1293\right)$
18.22 Flextire Manufacturing is considering two mutually exclusive proposals. Each will cost $\$ 80,000$ and will last 6 years. Cash flows and estimated probabilities are presented below. Based on a MARR of 10%, determine the expected return and risk associated with each proposal. If Flextire is riskaverse, which proposal might it choose?

Proposal A

Benefits per Year	Probability		Benefits per Year	Probability
$\$ 18,000$.25		$\$ 17,500$.40
20,000	.60		20,500	.35
23,000	.15		23,000	.25

18.23 What is your risk associated with Problem 18.8?
18.24 What is your risk associated with Problem 18.9?
18.25 What is your risk associated with Problem 18.10?
18.26 What is MoreTech's risk associated with Problem 18.11? (Answer: $\sigma_{\mathrm{PW}}=\$ 110.6 \mathrm{~K}$)
18.27 What is DOTPUFF's risk associated with Problem 18.12?
18.28 The values given below are PWs. What decision(s) should be made, and what is the expected value?

(Answer: $E_{\mathrm{A}}=\$ 10.3$ is best)
18.29 What are the risks of actions $\mathrm{A}, \mathrm{B} / \mathrm{B} 1, \mathrm{~B} / \mathrm{B} 2$, and C in Problem 18.28? Graph the four actions on a risk/return plot. Are any dominated?
(Answer: $\sigma_{\mathrm{A}}=\$ 6.26$, A dominates $\mathrm{C}, \mathrm{B} / \mathrm{B} 1$ has best risk/return trade-off)
18.30 Use an economic decision tree to describe a problem that you are familiar with.
18.31 NewTech wants to consider risk and return in evaluating the following alternatives:
(a) What is the expected value of each alternative's PW?
(b) What is the standard deviation of each alternative's PW?
(c) Sketch the risk/return envelope.

Probability Demand	.3 Low	.5 Med.	.2 High
PW of A $(\$ M)$	6	8	9
PW of B $(\$ M)$	2	7	20

18.32 For Example 18.16 compute the standard deviation of the PW if termination after year 1 is allowed when net returns are negative. Compare the expected values and the standard deviations of the

PW with and without the early termination option. Is one option dominated?
18.33 A new product's chief uncertainty is its annual net revenue. So far, $\$ 23 \mathrm{~K}$ has been spent on development, but an additional $\$ 30 \mathrm{~K}$ is required to license a patent. The firm's interest rate is 10%. What is the expected PW for deciding whether to proceed? Use an economic decision tree.

	State		
	Bad	OK	Great
Probability	.4	.5	.1
Net revenue	$-\$ 3 \mathrm{~K}$	$\$ 10 \mathrm{~K}$	$\$ 25 \mathrm{~K}$
Life (years)	5	5	10

18.34 In Problem 18.33, how much is it worth to the firm to terminate the product after 1 year if the net revenues are negative? Use an economic decision tree.
18.35 In Problem 18.33, describe the risk to the firm in proceeding with the product.
(a) Find both the probability of a negative PW and the standard deviation of the present worth.
(b) How much do the answers change if the early termination in Problem 18.34 is allowed?
18.36 Use an economic decision tree to find the probability distribution and the expected PW for an assembly line modification. The first cost is $\$ 80 \mathrm{~K}$, and its salvage value is $\$ 0$. The firm's interest rate is 9%. The savings shown below depend on whether the assembly line runs one, two, or three shifts and on whether the product is made for 3 or 5 years.

Savings per Year	Probability	Useful Life (years)	Probability
$\$ 15,000$.2	3	.6
30,000	.5	5	.4
45,000	.3		

18.37 In Problem 18.35, how much is it worth to the firm to be able to extend the product's life by 3 years, at a cost of $\$ 50 \mathrm{~K}$, at the end of the product's initial useful life? Use an economic decision tree.
18.38 In Problem 18.36, describe the risk to the firm in proceeding.
(a) Find both the probability of a negative PW and the standard deviation of the PW.
(b) How much do the answers change if the possible life extension in Problem 18.37 is allowed?

Minicases

18.39 A project's first cost is $\$ 250,000$ with no salvage value. The interest rate is 8%. The project's life is from a discrete uniform distribution that takes on the values $7,8,9,10$, and 11 . The annual benefit is normally distributed with a mean of $\$ 45,000$ and a standard deviation of $\$ 11,000$. Using Excel's RAND function, simulate 25 iterations. What are the expected value and standard deviation of the PW? Compare this with the PW calculated using the expected life and expected annual benefit. Which value is more accurate or useful?
18.40 A small power plant using process waste heat has a first cost that is normally distributed with a mean of $\$ 350,000$ and a standard deviation of $\$ 50,000$. The annual net savings are normally distributed with a mean of $\$ 65,000$ and a standard deviation of $\$ 8000$ per year. The power plant has no salvage value after a life that of $4,5,6,7$, or 8 years (uniformly distributed) The interest rate is 12%. Using Excel's RAND function, simulate 25 iterations. What are the expected value and standard deviation of the PW? Do the answers change much if you do 100 iterations? Compare this with the PW calculated using the expected first cost, annual benefit, and life. Which value is more accurate or useful?

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 13 Guaranteed Return

Risk vs. expected return and choice of interest rate.

Case 18 Gravity-Free High

New product with development stages and probability of failure.

Case 19 Crummy Castings

Decision tree problem with modest ambiguity. Options create more challenging problems.

Case 21 Glowing in the Dark

Expected return and variance for facility of minimal size, of minimal plus preparation for later expansion, and of the full size now.

Case 22 City Car

Decision tree analysis. Includes discussion of strategy and risk. Some assumptions must be made.

Case 23 Washing Away

Levee height and probability of flood damage.

Case 24 Sinkemfast

Decision tree with assumptions required for realistic comparisons. Info supports creation of new, better alternatives.
Case 39 Uncertain Demand at WM3
Includes inflation, taxes, and uncertainty.

Case 44 Sunnyside-Up or Not?

Uncertain growth rates over 30 years and setting utility rates.

Case 50 Capital Planning Consultants

Capital budgeting including mutually exclusive alternatives. Includes uncertainties in first cost, annual benefit, and lives.

CHAPTER

Multiple Objectives

- THE SITUATION AND THE SOLUTION

Some consequences are difficult to state in terms of cash flows. Saving a life, improving product quality, being the market leader, reducing variability, and maintaining flexibility for an uncertain future are all difficult to value and linked to future cash flows. These are objectives on which alternatives must be evaluated.

Rarely does a single alternative achieve the best outcome for all objectives; thus, tools for balancing multiple objectives are required. Graphical techniques can be used to summarize evaluations, additive models can be used to weight objectives, and hierarchical trees can be used to structure more complex problems.

- CHAPTER OBJECTIVES

After you have read and studied the sections of this chapter, you should be able to:
SECTION 19.1 Define and identify objectives and attributes.
SECTION 19.2 Describe the process of multiattribute evaluation.
SECTION 19.3 Describe the rules for selecting attributes.
SECTION 19.4 Provide examples of evaluating alternatives on the attributes.
SECTION 19.5 Summarize graphical techniques.
SECTION 19.6 Construct numerical scales for performance evaluations.
SECTION 19.7 Create a single value for each alternative through the use of additive weighting.
SECTION 19.8* Create a hierarchy of attributes, and weight the attributes and the outcomes.
CREDITS
*The example in Section 19.8 of this chapter is based on material that was developed by Drs. Nancy Mills and Paul McCright.

- KEY WORDS AND CONCEPTS

Objective A goal or desired outcome, such as maximizing present worth, minimizing risk, or maximizing quality.
Attribute A measure of achievement of an objective, such as present worth, the IRR's standard deviation, or the number of defects per million units.
Dominant A term that describes an alternative as good as or better than all others on all attributes and better on at least one attribute.

Tangible Outcome or consequence that can be measured, but not in dollars. Intangible Outcome or consequence that is a yes/no or is subjectively estimated. Mutually exclusive attributes Attributes measure different or independent aspects of a problem.
Collectively exhaustive attributes Attributes that together include all important aspects of a problem.
Dominated A term that describes an alternative no better than another alternative on all attributes and inferior on at least one attribute.
Decision rule A standard for selecting an alternative, such as dominance, satisficing, or maximizing a weighted sum.
Satisficing A decision rule that emphasizes meeting the minimal requirements on all attributes-that is, being satisfactory.

19.1 Multiple Attributes

An objective is a desired outcome. An attribute is a measure of an objective's achievement. A dominant alternative is as good or better on all attributes and better on at least one.

Definitions and Trade-offs. Real projects have multiple objectives. Each alternative is assessed by an attribute for each objective. If an alternative is as good or better on all attributes and better on at least one, then it is the best choice; it is a dominant alternative. This almost never happens. Usually, each alternative is highly rated on some, but not all, attributes. Choosing an alternative requires trade-offs.

Some example trade-offs include reliability improvement vs. cost reduction, automation vs. employment, risk vs. average return, fast but uneven growth vs. steady growth, and pollution control vs. economic efficiency.

Example 19.1 details a set of objectives, attributes, and trade-offs. This example will be developed further in later sections.

EXAMPLE 19.1 Harold's First Engineering Job-Objectives and Attributes

Harold will be graduating soon with a B.S. in metallurgical engineering. Describe what his objectives and their attributes might be as he considers possible job offers.

SOLUTION

His objectives might be: (1) to maximize his salary, (2) to maximize his professional growth, and (3) to maximize his "fun out of life."

Attributes that could be used to measure or describe his achievement of each objective could be: (1) salary, (2) promotion outlook or quality of intern/training programs, and (3) his city's lifestyle rating.

Trade-offs are likely. He may have to accept a lower initial salary if he accepts the job with the most potential, and the job with the best location for enjoying life may not be best on the other two attributes.

Tangibles are attributes that are numerically quantified, but not in dollars.

Intangibles or irreducibles are attributes that cannot be measured; they must be subjectively estimated or answered yes/no.

Attribute Categories. An alternative's consequences often include three categories of attributes:

1. Cash flows that are measured in dollars.
2. Tangibles that are quantified, but not in dollars.
3. Intangibles that are subjectively estimated.

Attributes that are measured in dollars are evaluated using the time value of money (see Chapters 1-17). Possible measures include PW, EAC, IRR, and benefit/cost ratios. If probability distributions are given, then expected values can be used (see Chapter 18).

The second category includes decibels of noise, lives saved, days from order to shipment, probability of failure, or number of defects per million-all of which can be numerically quantified, but not in time-value-of-money dollars. These measurable attributes are called tangibles. Risk, when measured by the P (loss) or standard deviation (see Chapter 18), is a tangible.

The third category includes those attributes that cannot be quantitatively measured, such as fit with the organization's strategic mission or capabilities, potential for follow-on projects, unquantified risk of major problems, consequences of failure, and even the analyst's or decision maker's "gut feel" about the project. These attributes must be subjectively estimated or even reduced to a simple yes or no answer, and they are defined as intangibles or irreducibles.

Example 19.2 illustrates these three categories. The objectives of the solution to this example are important so often that they are illustrated in diagrams like Exhibit 19.1 [Park and Thuesen].

EXHIBIT 19.1 Three common objectives

Maximize Flexibility

EXAMPLE 19.2 Flexible Automation vs. Hard Automation vs. People

Manufacturing Micro Pizza Heaters (a microwave oven with a new shape) requires a new assembly line. Three alternatives have been identified. One emphasizes robots, which can be reprogrammed for other tasks; the second emphasizes specially designed machines that operate very efficiently; and the third emphasizes people. Identify an objective for each category of attributes.

SOLUTION

Profitability is an objective that would be measured in dollars using PW or EACs.
The alternative's risks would be measured in the standard deviation of the PW or EAC and by the probability of failure.

The flexibility of each alternative would be subjectively estimated, since it is impossible to measure. The flexibility of people to learn new tasks exceeds that of robots, and both have far more flexibility than machines designed to perform one task efficiently.

Mutually exclusive attributes measure different or independent problem aspects, and collectively exhaustive attributes include all important problem aspects.

Selecting Multiple Objectives. As soon as objectives are expanded beyond maximizing economic value, the following questions arise: How are attributes chosen? Whose subjective judgements are used for intangible attributes? How are alternatives to be judged (acceptable/not acceptable, rank from best to worst, or numerically rated on a scale from 1 to 10)?

Objectives or attributes should be selected to be as independent (mutually exclusive) as possible and should include as many of the important problem aspects as possible (collectively exhaustive). It is critical that dollars, tangibles, and intangibles all be appropriately considered. The intangibles should include positive answers to two ethical questions: What is fair to all concerned? What is the right thing to do?

While most engineers consider subjective data less desirable than numerical data, most accept that subjective data are better than no data at all. If subjective judgements are made hastily, then the dangers of low validity are acute. However, subjective estimates made after careful analysis merit full credibility.

Example 19.3 illustrates why it is financially important to include tangible and intangible attributes that are difficult to quantify in dollar terms. Ignoring substantial benefits like these and failing to invest in better technology can ensure that your customers move to competing firms. On the other hand, poorly selected, poorly executed, and/or poorly timed projects have bankrupted firms. This chapter [see also Canada and Sullivan; Clemen and Reilly] provides the tools to evaluate projects so that the best ones are implemented.

EXAMPLE 19.3 Multiple Objectives in Manufacturing

Often, the justification for using robots and computer-aided design, drafting, and manufacturing (CAD/CAM) systems relies on objectives that include those listed in Exhibit 19.2.

What other objectives might be important? Which of the potential payoffs are measured in dollars, tangibles, or intangibles? How are these objectives linked to improved cash flows for the firm?

EXHIBIT 19.2 Potential payoffs from implementing computer-integrated manufacturing

Reductions	
$5-50 \%$	Personnel costs
$15-30 \%$	Engineering design costs
$30-60 \%$	Work-in-process inventory
$75-95 \%$	Transaction volume for control
$30-95 \%$	Lead times
Gains	
$40-70 \%$	
$200-300 \%$	Production rate
$200-300 \%$	Capital equipment up-time
$300-3500 \%$	Product quality
Engineering productivity	

SOLUTION

Unlisted objectives include using less floor space, improving product or firm reputation, developing knowledge about new technology, raising morale among engineers (for CAD), and increasing flexibility.

Only two categories in Exhibit 19.2, personnel and engineering design costs, are measured in dollars. The other payoffs in Exhibit 19.2 and the unlisted objective of using less floor space are tangibles that can be measured. The objectives of improving product or firm reputation, developing knowledge about new technology, raising morale among engineers, and increasing flexibility are usually treated as intangibles.

These tangible and intangible objectives are linked to the firm's bottom line, even though they are not measured in dollars. Using less floor space means faster movement of parts and people and better communications. Reducing work-in-process inventory reduces the need for working capital, the amount of space required, the risk of obsolescence, and the amount of rework. Reducing the transaction volume reduces the time spent on and the number of personnel required for processing paper, computer messages, etc.

Reducing lead times allows faster response and increases delivery-estimate reliability, both of which increase sales. If lead time can be reduced enough, then a make-to-order manufacturing policy, with possible customization for each customer, can replace a policy of make-to-stock and delivery from stock to customer.

Increasing the production rate increases revenues and material costs without increasing labor or capital costs. A 1% production rate increase may increase profits by 5%. Increasing the time that capital equipment is up or available for use increases production and may remove the need for additional machines.

Increasing product quality reduces rework or scrap costs for defective products, improves customer satisfaction, and may be necessary to remain in business. In a CAM system, for example, automated quality inspection may be 97% accurate, whereas human inspection under optimal conditions may be only 78% accurate.

Increasing engineering productivity reduces the number of engineers required and supports the design of better products that can be produced more cost-effectively. Knowledge about new technology can be used to define and evaluate future projects. Higher morale will increase efforts and creativity. An improved product or firm reputation increases sales. Larger profits will result as new manufacturing systems are designed to increase flexibility to achieve economies of scope and to respond to an uncertain future.

New manufacturing technologies can be evaluated with multiattribute techniques, but creative alternatives are sometimes better. For example, an "expensive" robot was being economically analyzed for the task of drilling a series of holes. There was a frame to guide the human operator, but too many holes were skipped during an 8 -hour shift. A new alternative involving little expense solved the problem, and the expensive robot project was shelved. Painting squares in bright colors around the guide holes on the frame proved to be much cheaper.

Multiple objectives exist for all large-scale projects. As illustrated in Exhibit 19.3 for manufacturing projects, larger projects have more impact on the firm, they depend more

EXHIIBIT 19.3 Need for multiattribute evaluation for computer integrated manufacturing (CIM)

heavily on intangibles, and judgement plays a larger role. The larger the project, the more important the tools of this chapter. Similarly, deciding whether to proceed with a new dam that has flood control, electrical power generation, and recreational benefits requires a multiple-objective approach, whereas selecting the roofing material for the new city hall may need only an EAC analysis.
Summary. This section has defined the basic terms; identified the attribute categories dollar, tangible, and intangible; and established the importance of considering multiple objectives. The next section details the process of multiattribute decision making, including the example of a graduating engineer who must accept a job offer. Later sections will detail each of these steps.

19.2 Process of Evaluating Multiple Objectives

The steps for evaluating multiple objectives are:

1. Identify the objectives, attributes, and alternatives.
2. Evaluate the alternatives on each attribute.
3. Summarize the results, and eliminate any dominated or unsatisfactory alternatives.
4. Construct numerical scales for the evaluations.
5. Rate the importance of the attributes.
6. Use an additive weighted model to select the best alternative.

These steps are sequential, but they are repeated when new information or alternatives must be considered. Steps 5 and 6 can also be accomplished by constructing a hierarchy of attributes, as described in Section 19.8.

Eliminating Dominated and Unsatisfactory Alternatives. Some problems, such as selecting a building site or a new car, have too many alternatives. Even though most projects do not have that many alternatives, decision makers or analysts eliminate alternatives before the final set is evaluated. When many alternatives exist, it is often possible to

A dominated

alternative can be eliminated because another alternative is at least as good on all attributes and better on at least one.
simplify the problem in step 3 by eliminating dominated or unsatisfactory alternatives. An alternative that is inferior to another alternative on at least one attribute and no better than the other alternative on all attributes cannot be the best choice; neither can an alternative that fails to meet a constraint be the best choice.

Example 19.4 revisits Example 19.1—Harold's first engineering job—to illustrate the process and definitions for a simple problem. Note that his best choice is not the best on any attribute. Rather, it achieves the best balance among all objectives. Also, note that he eliminated a fourth alternative as dominated, since its salary, promotion outlook, and "city" attributes were all less attractive than San Francisco's. A fifth alternative was eliminated as unsatisfactory because it failed to meet a minimum salary constraint he had set.

EXAMPLE 19.4 Harold's First Engineering Job-Choosing the Attributes (Based on Example 19.1)

Harold will be graduating soon with a B.S. in metallurgical engineering. He has been job hunting, and he has five job offers. Evaluate the five alternatives using multiattribute decision making.

SOLUTION

1. The attributes he is considering are salary, promotion outlook, and city (see Example 19.1). The alternatives are National Motors in Detroit, American Containerships in San Francisco, National Aerospace in Seattle, Southern Oil in Galveston, and Midwest Forgings in Chicago.
2. On a scale of 1 to 10 (1 is bad; 10 is excellent), he has evaluated the alternatives on all three attributes. (Note: Salaries have been adjusted for the local cost of living, since San Francisco is much more expensive and Seattle is somewhat more expensive than the national average.)
3. The Galveston job was dominated by the San Francisco job, since its salary, promotion outlook, and city ratings were respectively, 7,8 , and 7 , respectively. Note that a dominated alternative can match, but not beat, the alternative it is dominated by on some attributes. The offered salary in Chicago was too low to meet Harold's minimal standard or constraint. The ratings for the remaining three alternatives are summarized below.

Attribute	Detroit	San Francisco	Seattle
Salary	10	7	9
Promotion outlook	5	10	9
City	3	8	6

4. Harold constructed his scales by judgment and assigned them numerical values in step 2. (This step has already been done.)
5. Harold rates the importance of the attributes by placing 60% of the weight on the salary and splitting the other 40% between the other two criteria.

Attribute	Weight
Salary	.60
Promotion outlook	.20
City	.20

6. For an additive model, Harold simply multiplies each performance evaluation by the attribute weight. In other words, each salary evaluation receives a weight of 60%, each evaluation of the promotion outlook receives a weight of 20%, and each evaluation of the city also receives a weight of 20%. These are added together to calculate a total value. Since the Seattle job has the highest additive weighting, it is the best fit for Harold's requirements.

$$
\begin{aligned}
\text { Detroit } & =.6(10)+.2(5)+.2(3)=7.6 \\
\text { San Francisco } & =.6(7)+.2(10)+.2(8)=7.8 \\
\text { Seattle } & =.6(9)+.2(9)+.2(6)=8.4
\end{aligned}
$$

Decision rules for choosing among alternatives represent ways to balance objectives. One approach is satisficing, which is meeting the minimal requirements on all attributes.

Decision Rules for Choosing the Best Alternative. Example 19.4 can also be used to illustrate three possible decision rules: dominance, satisficing, and maximizing a weighted sum. Dominance is rarely useful in choosing the best alternative, because rarely is one alternative the best on all attributes. The term satisficing was developed to describe the behavior of managers and firms. It was found that firms often did not search for the best possible solution, but rather, the first satisfactory solution was implemented.

These criteria consider the needs, wants, and "ignorables" that make up a problem. The needs define the satisfactory alternatives (those that "satisfice"). Performance of the alternatives on the wants attributes determines if any alternative dominates (the alternative is better on all wants). After prioritizing the importance of the wants and evaluating each alternative, a weighted-sum model combines all of the data into one number for each alternative. The ignorables are less important wants that are unlikely to influence the final choice.

None of the three alternatives listed in Example 19.4 is dominant. Detroit is better than San Francisco and Seattle on salary. San Francisco is better than Detroit and Seattle on promotion outlook and city. Seattle is better than San Francisco on salary and better than Detroit on promotion outlook and city. The fourth alternative, Galveston, was dominated by San Francisco.

In Example 19.4, the three listed alternatives are all satisfactory, since each would be acceptable if considered alone. There was a fifth alternative, which Harold eliminated as unsatisfactory due to a low salary. This alternative did not satisfice.

Given the variety of attributes and their unequal importance, the additive model is most useful. Choosing the largest value of 8.4 (Seattle), 7.8 (San Francisco), and 7.6 (Detroit) works. Keep in mind that some of the data may be soft, or approximate; that small differences are not significant; and that sensitivity analysis is warranted. An organized, step-by-step evaluation procedure forces Harold to clarify what is important to him and to communicate that to others, such as his family.

19.3 Identifying the Attributes

The first step in multiple-objective problems is to identify the attributes that will be considered. This step should consider the following guidelines:

1. Attributes with the same value for every alternative can be ignored.
2. The attributes should be as independent as possible. Should any attributes that are not mutually exclusive be deleted?
3. The set of attributes should be complete. Should any be added or subdivided so that the set is collectively exhaustive?
4. The performance evaluations of the alternatives on each attribute should be meaningful.
5. The number of attributes to be compared should not be too large, or the problem becomes unwieldy. A common guideline is to have fewer than seven.

These guidelines will, in themselves, involve trade-offs. For example, subdividing or adding attributes makes each attribute more specific and easier to evaluate while also decreasing the independence of the attributes. An attribute may be included in the early stages simply to spark the creative process for an alternative that truly excels for that attribute. Example 19.5 applies these guidelines to Harold's first engineering job.

EXAMPLE 19.5 Harold's First Engineering Job-Choosing the Attributes (Based on Example 19.4)

Apply the guidelines for attribute selection to Example 19.4.

SOLUTION

The guidelines can be applied as follows:

1. The potential attribute "job uses and builds on B.S. degree" should not be added, since all of the existing alternatives require a B.S. in metallurgical engineering-unless another job possibility that does not require this degree must be considered.
2. The second attribute, promotion outlook, should be adjusted, since it is at least partly a salary attribute.
3. Perhaps a better attribute than promotion outlook would be how interesting the work is. This would also seem to make the set of attributes more exhaustive. The prospect for future promotion-based salary increases could be included in the salary attribute.

The city attribute could be subdivided into the categories of climate, job prospects for significant other, distance to family, atmosphere, etc., or one of the published ratings of livability could be used. The salary attribute could be decomposed into basic salary, benefits, bonuses, and cost of living (and, perhaps, expected increases). These subdivisions ensure that we consider each attribute more completely, but without the tools found in Section 19.8, subdividing the salary attribute is more confusing than helpful.
4. Harold was able to rate each attribute originally. Subdividing the city attribute could permit more accurate evaluations of the three alternatives on each new attribute. At the same time, the task of assigning priorities to the larger number of attributes would become more difficult.
5. Three attributes are certainly not too many, and they seem to include the most important aspects of the problem.

These guidelines do not lead to single correct answers. Whether an attribute should be subdivided, added, or eliminated calls for the exercise of judgment. In particular, when selecting your first engineering job, the attributes may be (or may have been) vastly or slightly different.

Example 19.6 applies the guidelines of attribute selection to the objectives of Exhibit 19.1.

EXAMPLE 19.6 Examining Profitability, Risk, and Flexibility as Attributes (Based on Exhibit 19.1)

Exhibit 19.1 presented the three objectives of profitability, risk, and flexibility. These are examples of attributes that are, respectively, cash flows, tangibles, and intangibles. Discuss why these are often three of the most important attributes.

SOLUTION

Maximizing profitability using PW, EAC, and IRR measures has been the focus of Chapters 1 through 17, so it will not be discussed further here.

Minimizing risk or variability was discussed extensively in Chapter 18. The common measure was the standard deviation of the PW, EAC, or IRR value used to measure profitability. This quantitative measure evaluates the outcomes of an alternative under an assumed set of probability distributions and states of nature.

Maximizing flexibility must be defined with care, or it will overlap with the attribute of minimizing risk. The focus of this attribute must be an alternative's ability to accommodate unforeseen circumstances that were not part of the probability distributions used in evaluating risk.

For example, consider a building that could be built with a foundation and first three floors now but would accommodate another two floors later. Building all five floors at once provides economies of scale, but unused space is very expensive. Building in two stages allows flexibility in timing and in the exact design of the upper two floors. A probability distribution for when the space will be needed and profitability estimates for the cost of building in stages are required to calculate the risk for each alternative. The flexibility measure would cover the ability to do it later or earlier or in a different way than originally anticipated.

19.4 Evaluating the Alternatives

Evaluating alternatives requires the acquisition of data and the exercise of judgment. For Harold's first job, the results have already been presented in Examples 19.1, 19.4, and 19.5. This section simply further develops (in Example 19.7) the staged building construction concept introduced in Example 19.6.

Summary tables, such as in Exhibit 19.4, are a significant decision-making aid in comparison to paragraphs of discussion. This tabular "score card" simply reports the rating for each alternative on a variety of attributes-using either numbers and/or words. The score card succinctly summarizes any prior discussion and analysis. The evaluations are easy to interpret and to see all at once, and the score card visually supports the trade-offs required in multiattribute decision making.

EXAMPLE 19.7 LowTech Manufacturing's Staged Construction

LowTech Manufacturing is building a new office complex next to its manufacturing plant. There are two plans. The first is a five-floor complex, where only three floors are needed for the first 3 to 10 years. The top two floors would remain empty until needed by LowTech. The second is a three-story building whose foundation and first three floors would accommodate adding another two floors later.

Building in two stages reduces the costs now, but total costs will increase substantially. Building in two stages allows flexibility in timing and in the exact design of the upper two floors. A probability distribution for when the space will be needed and data for the profitability estimates are summarized in the table below.

To simplify the calculations, your boss has said to assume that the benefits of having the new space are $\$ 1 \mathrm{M}$ per floor for each year the floor is needed. LowTech management has identified an interest rate of 10% and an analysis period of 20 years.

	Cash Flows	
	One Stage	Two Stages
First cost	$\$ 20 \mathrm{M}$	Year 0: $\$ 15 \mathrm{M}$
Salvage value	$\$ 5 \mathrm{M}$	Year 3, 5, or $10: \$ 12 \mathrm{M}$
$\$ 6 \mathrm{M}$		

Top 2 Floors Needed (year)	\boldsymbol{P} (year)
3	.2
5	.5
10	.3

SOLUTION

First, find the PW for both alternatives with each timing of the second stage. With three floors in use, the benefits are $\$ 3 \mathrm{M}$ per year for the first 3 , 5 , or 10 years. With five floors in use, the benefits are $\$ 5 \mathrm{M}$ per year for the last 17,15 , or 10 years. The $E(\mathrm{PW})$ for each alternative is the weighted average (using probabilities of $.2, .5$, and .3) for using five floors in 3,5 , or 10 years.

$$
\begin{aligned}
\mathrm{PW}_{\text {one stage, yr. } 3=-} & 20 \mathrm{M}+5 \mathrm{M}(P / F, 10 \%, 20)+3 \mathrm{M}(P / A, 10 \%, 3) \\
& +5 \mathrm{M}(P / A, 10 \%, 17)(P / F, 10 \%, 3)=\$ 18.34 \mathrm{M} \\
\mathrm{PW}_{\text {one stage, yr. } 5=-} & 20 \mathrm{M}+5 \mathrm{M}(P / F, 10 \%, 20)+3 \mathrm{M}(P / A, 10 \%, 5) \\
& +5 \mathrm{M}(P / A, 10 \%, 15)(P / F, 10 \%, 5)=\$ 15.73 \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{PW}_{\text {one stage, yr. } 10}=- & 20 \mathrm{M}+5 \mathrm{M}(P / F, 10 \%, 20)+3 \mathrm{M}(P / A, 10 \%, 10) \\
& +5 \mathrm{M}(P / A, 10 \%, 10)(P / F, 10 \%, 10)=\$ 11.02 \mathrm{M} \\
E\left(\mathrm{PW}_{\text {one stage }}\right)= & 2(18.34 \mathrm{M})+.5(15.73 \mathrm{M})+.3(11.02 \mathrm{M})=\$ 14.84 \mathrm{M} \\
\mathrm{PW}_{\text {two stage, yr. } 3}=- & 15 \mathrm{M}+6 \mathrm{M}(P / F, 10 \%, 20)+3 \mathrm{M}(P / A, 10 \%, 3) \\
& +5 \mathrm{M}(P / A, 10 \%, 17)(P / F, 10 \%, 3)-12 \mathrm{M}(P / F, 10 \%, 3)=\$ 14.47 \mathrm{M} \\
\mathrm{PW}_{\text {two stage, yr. } 5=-} & 15 \mathrm{M}+6 \mathrm{M}(P / F, 10 \%, 20)+3 \mathrm{M}(P / A, 10 \%, 3) \\
& +5 \mathrm{M}(P / A, 10 \%, 15)(P / F, 10 \%, 5)-12 \mathrm{M}(P / F, 10 \%, 5)=\$ 13.43 \mathrm{M} \\
\mathrm{PW}_{\text {two stage, yr. } 10}=- & 15 \mathrm{M}+6 \mathrm{M}(P / F, 10 \%, 20)+3 \mathrm{M}(P / A, 10 \%, 10) \\
& +5 \mathrm{M}(P / A, 10 \%, 10)(P / F, 10 \%, 10)-12 \mathrm{M}(P / F, 10 \%, 10)=\$ 11.54 \mathrm{M} \\
E\left(\mathrm{PW}_{\text {two stage }}\right)=. & 2(14.47 \mathrm{M})+.5(13.43 \mathrm{M})+.3(11.54 \mathrm{M})=\$ 13.07 \mathrm{M}
\end{aligned}
$$

The standard deviation of the PW for each alternative is found using the following table.

N	P	$\mathrm{PW}_{\text {one stage }}$	PW ${ }_{\text {one tage }}^{2}$	$\mathbf{P} \times \mathbf{P W}_{\text {one stage }}^{2}$	PW ${ }_{\text {two stages }}$	PW ${ }_{\text {two stage }}^{2}$	$\mathbf{P} \times \mathbf{P W}_{\text {two stage }}^{2}$
3	. 2	\$18.34M	\$336.36	\$67.27	\$14.47M	\$209.38	\$41.88
5	. 5	15.73M	247.43	123.72	13.43M	180.36	90.18
10	. 3	11.02M	121.44	36.43	11.54 M	133.17	39.95
$E(\mathrm{PW})=\$ 14.84 \mathrm{M}$			$E(\mathrm{PW})=\$ 13.07 \mathrm{M}$				
			$E\left(\mathrm{PW}^{2}\right)=\$ 227.42$			$E\left(\mathrm{PW}^{2}\right)=\$ 172.01$	

$$
\begin{aligned}
\sigma_{\text {one stage }} & =\sqrt{E\left(\mathrm{PW}_{\text {one }}^{2}\right)-E^{2}\left(\mathrm{PW}_{\text {one }}\right)} \\
& =\sqrt{227.4-14.84^{2}}=\$ 2.7 \mathrm{M} \\
\sigma_{\mathrm{two} \mathrm{stage}} & =\sqrt{E\left(\mathrm{PW}_{\mathrm{two}}^{2}\right)-E^{2}\left(\mathrm{PW}_{\mathrm{two}}\right)} \\
& =\sqrt{172-13.07^{2}}=\$ 1.07 \mathrm{M}
\end{aligned}
$$

EXHIBIT 19.4 Summary table for LowTech Manufacturing office complex

Attributes	One Stage	Two Stages
Profitability- $E(\mathrm{PW})$	$\$ 14.84 \mathrm{M}$	$\$ 13.07 \mathrm{M}$
Risk- σ_{PW}	$\$ 2.69 \mathrm{M}$	$\$ 1.07 \mathrm{M}$
Flexibility	Below average	Above average

19.5 Graphical Techniques

Even if more sophisticated techniques will be used, simple graphical techniques illustrate the potential trade-offs and provide a framework for checking the data and thoroughly understanding it before more mathematical and less intuitive calculations are made.

Shaded Circles and Squares. Exhibit 19.4 can be converted into the shaded-square table of Exhibit 19.5. The squares for numerical attributes, such as PW and the standard deviation, cannot have the numerical accuracy of tables like Exhibit 19.4. Nevertheless, the squares ease the task of "combining" attributes.

EXHIBIT 19.5 Shaded square diagram for Example 19.7: LowTech Manufacturing office complex

Each attribute must be translated into a scale-from poor to excellent or 0 to 10—and the scale values must be defined in terms of shaded squares. For the expected PW , the onestage alternative is rated as excellent (better of the two), but the two-stage is nearly as good. For the standard deviation in Exhibit 19.4, higher values are worse, the one-stage is rated as the worst, and risk for the two-stage is rated as above average-in quality. [Note: If multicolor printing is available to you, then red for good and black for bad can be used, as in Consumer Reports. Any alternative that is dominant will be red, and dominated alternatives will tend to be black. Consumer Reports provides a fine example of one advantage of shaded-circle diagrams. Suppose the analyst is providing data on 10 to 50 attributes to tens or thousands of decision makers. Any decision maker can individually select attributes (<7) to emphasize by highlighting columns.]

Polar graphs are also called radar plots.

Polar Graph. Exhibit 19.6 is a polar graph, in which each arrow drawn from the center corresponds to an attribute. The scale can be poor to excellent or 0 to 10 , but worst should be at the center and best at the arrow's end. Any attribute that can be measured or subjectively rated can be included, and different attributes may have different scales.

After the values are plotted on each arrow, those points are connected to form polyhedrons for each alternative. The larger the polyhedron, the better the alternative. Strengths and weaknesses of all alternatives on all attributes are shown on a single graph.

The overall desirability of each alternative may be only in rough proportion to the areas of their respective polyhedrons, since axes-ordering does influence the areas. When constructing polar graphs, at least three attributes must be used (a practical upper limit is probably 8-10), and the spacing of the axes is usually symmetrical. However, 45° and 30° spacing may be used.

EXHIBIT 19.6 Polar graph for Example 19.7: LowTech Manufacturing office complex

Another constraint on polar graphs is the number of alternatives that can be shown. Even three alternatives begins to be somewhat crowded, and five or more are almost impossible to read. Polar graphs have been drawn in which the attribute's importance is proportional to the length of the arrows or the angles around each arrow. These refinements do not seem to work well. Polar graphs are best used as summaries of the unweighted performance of two or three alternatives on less than seven attributes.

19.6 Numerical Scales for Evaluation

The conversion of verbal ratings, such as excellent or more than average, or numerical values to or from a standardized scale is assisted by simple graphs such as those Exhibits 19.7 to 19.10 . These graphs are commonly called scoring functions. While other scales are possible, a common choice is 0 to 10 , with $0=$ worst and $10=$ best. This chapter uses a

All attributes should be evaluated on scales with the same range. 0 - to 10 -point scale for all variables.

To properly weight attributes for relative importance, each attribute should be evaluated on the same scale. An attribute that ranges from 0 to 100 will have a "hidden" importance multiplier of 10 when compared with an attribute that ranges from 0 to 10 .

Numerical Variables. Exhibit 19.7 is the scoring function for the $E(\mathrm{PW})$ in Example 19.7. In this case, the worst case is assumed to be a PW of zero, and the best case

EXHIBIT 19.7 Conversion of $E(\mathrm{PW})$ to a numerical scale

EXHIBIT 19.8 Conversion of standard deviations to numerical scale

is assumed to be the maximum of the two alternatives. Intermediate values are found by linear interpolation. In Exhibit 19.7, the two-stage score is $10 \times 13.07 \mathrm{M} / 14.84 \mathrm{M}$, or 8.81 . Exhibit 19.7 is an example of an increasing scoring function, in which larger values are better. For increasing scoring functions, the scaled values are found using Equation 19.1.

$$
\begin{equation*}
\operatorname{Score}(x)=10(x-\text { Worst value }) /(\text { Best value }- \text { Worst value }) \tag{19.1}
\end{equation*}
$$

Costs and standard deviations require decreasing scoring functions, such as shown in Exhibit 19.8, since smaller values are better. Equation 19.1 could be used, but to avoid negative values for the numerator and denominator, the interpolating scoring equation (Equation 19.2) can be used instead.

$$
\begin{equation*}
\operatorname{Score}(x)=10(\text { Worst value }-x) /(\text { Worst value }- \text { Best value }) \tag{19.2}
\end{equation*}
$$

For Example 19.7, the standard deviations for the PW were, respectively, $\$ 2.69 \mathrm{M}$ and $\$ 1.07 \mathrm{M}$ for one-stage and two-stage construction. Zero is the best possible standard deviation, and $\$ 2.69 \mathrm{M}$ is the worst for this case. The scaled value for is found as follows:

$$
\operatorname{Score}(1.07)=10(2.69-1.07) /(2.69-0)=6.02
$$

In some problems, it is better to use the standard deviation divided by the expected value as the measure of risk. The reason is that PWs that range between $\$ 100 \mathrm{M}$ and $\$ 104 \mathrm{M}$ and between $\$ 11 \mathrm{M}$ and $\$ 15 \mathrm{M}$ each have standard deviations of about $\$ 1 \mathrm{M}$, but the relative risk is far larger when the standard deviation is 10% of the expected value than when the standard deviation is 1% of the expected value.

Choosing the Best and Worst Case. Usually, it is better to use reasonable limits or zero as the best and worst cases. In Exhibit 19.7, an $E(\mathrm{PW})$ equal to $\$ 0$ was the worst case. In Exhibit 19.8, a standard deviation equal to $\$ 0$ was the best case.

Judgment, however, may suggest that $\$ 0$ is not a good best or worst case. Consider the simple problem of defining a scale for an initial salary offer, as shown in Exhibit 19.9. In both cases, the best salary is $\$ 35,000$, but the worst salary could be assumed to be $\$ 0$ or $\$ 22,000$. Since a starting salary of less than $\$ 22,000$ is (hopefully) unrealistic, $\$ 22,000$ is a

EXHIBIT 19.9 Conversion of salaries to numerical scale

better choice to define the worst case. If zero is the worst case, then $\$ 22,000$ is a "better than average" value of $6.29=10(22,000 / 35,000)$.

The importance of the assumed worst salary can also be illustrated by considering the scores for a $\$ 31,000$ salary. If $\$ 0$ is the worst case, then the score for $\$ 31,000=$ $10(31,000 / 35,000)=8.86$. If $\$ 22,000$ is the worst case, then the score or scaled value for $\$ 31,000=10(31,000-22,000) /(35,000-22,000)$, or 6.92 .

If five alternatives are considered on an attribute, then the worst of the five might be the 0 and the best of the five the 10 (see Example 19.8). However, if only two alternatives are considered, then using the better outcome of the two as a 10 and the other as a 0 on each attribute probably overstates the differences between the alternatives.

It is better if all attributes are rated over the same ranges. In Example 19.8, the choice of $\$ 0$ or $\$ 800$ for best may depend on whether other attributes have ratings of 0 to 10 or if ratings more typically have a range of 5 , such as ratings between 5 and 10. It is important that about the same range of values be used for each attribute. This is why numerical attributes are converted to a numerical 10-point scale. Otherwise, the weights or priorities that will be assigned in Section 19.7 will be misleading.

EXAMPLE 19.8 Rating a Computer's Cost

Susan is choosing a computer, and she has narrowed the possibilities to five choices. She will be considering cost, a variety of performance measures, and dealer and manufacturer reliability, but first, she wants to rate the cost performance on a scale of 0 to 10 . If $\$ 0$ is the best cost, what are the scaled values for the five computers? If the $\$ 800$ cost of Mr. Value is the best, what are the scaled values for the five computers?

Cost	Computer
$\$ 800$	Mr. Value
1100	Samsonic
1200	Graphic Power
1800	BBC (Big Blue Computers)
2400	Pear Computing

SOLUTION

For example, substitute the $\$ 1100$ cost of Samsonic in Equation 19.2.

$$
\operatorname{Score}(1100)=10(2400-1100) /(2400-\text { best })
$$

If $\$ 0$ is the best, then:

$$
\operatorname{Score}(1100)=10(2400-1100) /(2400-0)=5.42
$$

If $\$ 800$ is the best, then:

$$
\operatorname{Score}(1100)=10(2400-1100) /(2400-800)=8.125
$$

The other results are summarized below.

Computer	Cost	\$0 best	$\mathbf{\$ 8 0 0}$ best
Mr. Value	$\$ 800$	6.67	10
Samsonic	1100	5.42	8.125
Graphic Power	1200	5	7.5
BBC (Big Blue Computers)	1800	2.5	3.75
Pear Computing	2400	0	0

Verbal Variables. Many variables, such as flexibility (see Example 19.7), are subjectively estimated or rated. In most cases, a simple linear scale to convert from words to ratings is appropriate. For example, Exhibit 19.10 converts the five verbal ratings ranging from poor to excellent to the values $0,2.5,5,7.5$, and 10 . This linear conversion is the norm; however, nonlinear relationships can be used [Keeney], especially when aboveaverage and below-average have significantly different consequences.

Missing Values. A common problem is incomplete data-especially for feasibility studies. Assigning an "average" rating or making a "blue sky" or "pulled out of the air" guess are the two recommended solutions. Assigning a zero or worst rating is the wrong

EXHIBIT 19.10 Numerical scale from verbal evaluation (Example 19.7)

approach. Assuming the worst case, rather than making a "blue sky" guess, distorts the final evaluation by the maximum amount. The value that is used should be as close as possible to the final value that would be assigned after gathering more data.

19.7 Additive Models

Alternatives that fail to meet any minimum requirements are eliminated. Failure cannot be compensated for.

Examples 19.1, 19.4, and 19.5 (Harold's job choice) introduced a simple additive model. The overall scores for Detroit, Seattle, and San Francisco were calculated by adding together, for the three attributes, the product of that job's performance evaluation and the attribute's weighted importance. This additive model is simple, easy to understand, and powerful.

The additive model has two major advantages over graphical techniques. First, the additive model includes weighted importance ratings that can recognize the higher priority or importance of some attributes. These importance weights rely on evaluating the attributes over the same scales. Second, by adding together the results for different attributes, a strength on one attribute can compensate for weakness on another. Because a strength can compensate for a weakness, the additive model is sometimes called a compensatory model.

Alternatives that do not meet minimum requirements for any of the attributes have been eliminated before this step. Failure to meet a requirement is not something that can be compensated for.

This section presents:

1. Direct assignment of weights that add to 100%.
2. Subjective assignment of importance ratings.
3. Tabular additive models.
4. Graphical additive models.

Whether direct assignment of weights or subjective assignment of importance ratings is used, the resulting weights for the attributes apply to all alternatives, and the resulting weights sum to 100%.

Direct Assignment of Weights. In Example 19.5, weights of 60% for salary, 20% for promotion outlook, and 20% for the city were directly assigned by Harold.

This approach is easy if the number of attributes to be prioritized is not too large. Even more important, the approach is natural and intuitive. If there are many attributes, then the next approach of subjectively assigning importance ratings is better. Changing the weight on one attribute implies that others must be changed as well, since the weights must sum to 100%.

Directly assigning weights is sometimes described as allocating 100 points. For problems with more than four attributes, ensuring that the total points sum to 100 may interfere with the more subjective judgement process. Extra thought on substance is helpful, but time spent on arithmetic is wasted.

Subjective Assignment of Importance Ratings. An additive model can be created by assigning subjective importance ratings to each attribute. These importance ratings are then totaled, and each is divided by the sum to create the additive weight.

For convenience, these importance ratings are defined on the same 10-point scale that is used to evaluate an alternative on an attribute. Thus, an attribute that is rated a 10 is one of the most important, and an attribute that is rated a 2 has little importance.

EXHIBIT 19.11 Subjective importance ratings
Importance

Attributes	Rating	Additive Weight (I)
$E(\mathrm{PW})$	10	$10 / 22=.4545$
σ_{PW}	7	$7 / 22=.3182$
Flexibility	$\frac{5}{22}$	$5 / 22=\frac{.2273}{1.00}$
Total		

In Example 19.7, three attributes were identified to evaluate the choice between onestage and two-stage construction of LowTech Manufacturing's office complex. Suppose that the expected value of the PW is rated as a 10 . Suppose that risk as measured by the standard deviation is rated as a 7 . Finally, suppose that flexibility is rated as a 5 . Then, Exhibit 19.11 summarizes the calculation of the weights, I (for importance).

More than one attribute can receive the same rating. For example, if two attributes were tied as most important, then each would be rated as a 10 . The key is that the difference between two ratings represents the decision maker's or the analyst's best judgment of their relative importance.

These additive weights are the decimal fractions or percentage weights that are placed on each attribute. Furthermore, the sum of all the weights equals 1 (or 100%). If using more than one rater or judge is desirable, then their individual ratings could simply be averaged for each attribute.

It seems best to allow the analyst and the decision maker to determine the importance rating and let a computer or a calculator do the arithmetic. In any case, these additive weights become multipliers for the ratings on each attribute.

The subjective assignment of importance ratings has at least two advantages. First, it allows for at least a rough measure of the relative difference between the importance of any two attributes. A 10 is five times more important than a 2 . Second, if reconsideration shows that a rating is wrong, only that rating needs to be changed, and then the computer will automatically recalculate all weights.

Tabular Additive Models. Exhibit 19.12 combines the weights from Exhibit 19.11 with the evaluations of each attribute on the 10-point numerical scale. This is an example of a tabular additive model. It succinctly summarizes which attributes are most important, the performance of each alternative on each attribute, and the totals to be used to compare the alternatives.

EXHIBIT 19.12 Tabular additive model

Attributes	Importance (I) (weight)	One-Stage Construction		Two-Stage Construction	
		Rating (\mathbf{R})	$\mathbf{I} \times \mathbf{R}$	Rating (R)	$\mathbf{I} \times \mathbf{R}$
$E(\mathrm{PW})$. 4545	10	4.55	8.8	4.00
$\sigma_{\text {PW }}$. 3182	0	0.00	6.0	1.91
Flexibility	. 2273	2.5	0.57	7.5	1.70
Total	1.000		5.12		$\overline{7.61}$

Since the additive weights sum to 1 (or 100%) and the best equals 10 for all attributes, the weighted sum implies how close this alternative comes to the ideal. In fact, the total divided by 10 equals the fraction of the ideal [Baird]. Thus, two-stage construction in Exhibit 19.12 achieves 76.1% of the ideal.

Graphical Additive Models. Exhibit 19.13 is a stacked bar chart, which is the graphical analog of the data shown in Exhibit 19.12. The total heights of the stacked bars correspond to the 5.12 and 7.62 total scores for one- and two-stage construction for Example 19.7. The value for profitability is the expected value of the PW; for risk, it's the standard deviation. These and the values for flexibility are shown for each alternative. The height of each subbox is a value in the y-axis series, which is the importance of the attribute (I) times the rating for that attribute (R). For one-stage construction, the expected value contributes 4.55 to the total, the standard deviation contributes zero to the total, and flexibility contributes .57 to the total.

Using a spreadsheet simplifies construction of this stacked bar chart. The attributes of expected value, standard deviation, and flexibility are defined as the x-axis series. Then, the $\mathrm{I} \times \mathrm{R}$ values for one-stage construction are defined as the first y-axis series. Two-stage construction is defined as the second series, and other alternatives would be added as needed.

EXHIBIT 19.13 Stacked bar chart for weighted evaluation

Closing Comment on Additive Models. These tables and graphs are simple and effective ways to select the best alternative. They also support sensitivity analysis and reconsidering assigned values, so they are useful for planning as well as for decision making.

There are numerous techniques for deriving weights for the criteria. Several of these depend on pairwise comparisons. Rather than directly assigning an importance rating, each pair of attributes is compared using a graphical, verbal, or numerical scale. The triangular matrix of comparisons is then processed by some technique to derive the weights, and one of the most common, the analytic hierarchy process (AHP), uses left eigenvalues and eigenvectors. As shown in [Saaty], AHP supports measures of consistency that can be used to judge the quality of the subjective judgements.

Multiple-objective models deal with human judgment, and there is disagreement about how to most accurately elicit, combine, and weight those judgments. This chapter has focused on additive models, because they are the simplest, the easiest to use, and the most common. Many (including this text's author) believe that directly assigning the importance
rating is the best and most intuitive way to accurately reflect human judgment. There are many published examples of this and other approaches to solving problems that require multiobjective or multiattribute utility theory [Walls].

19.8 Hierarchical Attributes and Objectives

Exhibit 19.14 shows a more complex and more complete breakdown for the decision of which job to select. There are six criteria (job characteristics, work environment, ability to have impacts on, contributions to, personal growth and development through, and overall satisfaction). All but the overall satisfaction criterion are subdivided further. Finally, two

EXHIBIT 19.14 Decision hierarchy for engineering in industry vs. academia

Criteria	Alte	atives
-Subcriteria E	Engineer in Industry	Engineering Professor
- 10 Job Characteristics -8 Financial rewards -10 Opportunities (demand) 4 Security -6 Status/prestige -8 Variety of work 6 Freedom/flexibility 5 Practical applications		6 10 10 10 7 7
- 5 Environment \qquad	-5	$\begin{aligned} & 7 \\ & 9 \end{aligned}$
4 Impacts on $\left[\begin{array}{l}10 \text { Directions of discipline } \\ 8 \text { Lives of others }\end{array}\right.$	$\begin{array}{r} 0 \\ -\quad 4 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ -10 \end{array}$
4 Contributions to \qquad	-4	$\begin{aligned} & 6 \\ & 8 \end{aligned}$
- 7 Growth and Development \qquad 5 Overall satisfaction	\square \square \square \square	$\begin{array}{r} -8 \\ -8 \\ -10 \\ -8 \end{array}$

career paths are the two alternatives-working as an engineer in industry or as an engineering professor.

This particular example from [Mills and McCright] has been simplified slightly in that subjective assignments of evaluations have been made to each criterion and subcriterion. These ratings use the 0 to 10 scale, and they have been written on the branches and to the

EXHIBIT 19.15 Decision hierarchy with weights and additive totals for engineering in industry vs. academia

right of the alternatives in Exhibit 19.14. In this case, there are no ratings below 4, because less important criteria or subcriteria are simply omitted.

These ratings are converted into weights by summing the weights for each node and then dividing by the total, as was done for the additive model in Exhibit 19.11.

The weights shown on the criteria and subcriteria branches in Exhibit 19.15 are found by summing the importance ratings out of each node and then dividing each rating by that sum. The ratings of the criteria sum to 35 , so the weight on job characteristics is 1035 (or .286).

At the subcriterion level, consider the node for growth and development. There are three branches (lifelong learning, professional societies, and rewards of research), with ratings of 10,5 , and 8 , respectively. Since the sum is 23 , the weights are, respectively, 10/23, $5 / 23$, and $8 / 23$.

The columns for industry and professor in Exhibit 19.15 include the evaluation of each alternative on each subcriterion and the contribution of that to the total for the alternative. For example, the 6 rating for financial rewards for a professor is multiplied by the weight for the job characteristic criterion (.286) and the financial reward subcriteria (.170) to get .292 (which equals $6 \times .286 \times .170$).

This type of hierarchy greatly increases the flexibility of the additive model. Exhibits 19.14 and 19.15 have 16 subcriteria and 1 nonsubdivided criterion for a total of 17 identified objectives. This is far in excess of the 7 that has been suggested as an upper limit for the number of attributes. However, by subdividing the problem, a more complete and more accurate analysis is possible.

The final result of the professor's job being better (at 7.960, versus 5.155 for industry) depends on the relative importance that is placed on the various criteria. In this case, growth and development is the second most important criterion, and the professor's job is far better on this measure.

19.9 Summary

This chapter has focused on incorporating the calculations of discounted cash flows into a broader perspective that includes objectives that cannot be expressed in dollars. This framework can include minimizing risk, maximizing flexibility, or maximizing quality, as well as maximizing present worth.

The attributes that are selected to measure the achievement of the multiple objectives should be distinct from each other, and as a set, they should completely cover relevant objectives. Once the attributes have been selected and each alternative has been evaluated on each attribute, then the information must be appropriately summarized to support decision making.

The summary can be a table, which allows for the inclusion of exact numerical values, but the summary is often more effective if it is graphical instead. Shaded-square diagrams and polar graphs were presented as possible graphical techniques.

Weighted additive models allow for a prioritization of the multiple objectives so that more important objectives carry more weight in the analysis. These compensatory models produce a single number for each alternative so that the alternative with the best or highest total can be selected.

For more complex problems, a decision hierarchy can be used to extend the techniques of a simple additive table. This hierarchy allows the definition of objectives or criteria and subobjectives or subcriteria.

REFERENCES

Baird, Bruce F., Managerial Decisions under Uncertainty: An Introduction to the Analysis of Decision Making, 1989, Wiley, Chapter 13.
Canada, John R., and William G. Sullivan, Economic and Multiattribute Evaluation of Advanced Manufacturing Systems, 1989, Prentice-Hall.
Clemen, Robert P., and Terence Reilly, Making Hard Decisions: An Introduction to Decision Analysis, update ed., 2004, South-Western.
Harmon, Roy L., and Leroy D. Peterson, Reinventing the Factory: Productivity Breakthroughs in Manufacturing Today, 1990, Free Press (Arthur Andersen cases in appendix).
Keeney, Ralph L., "A Decision Analysis with Multiple Objectives: The Mexico City Airport," Bell Journal of Economics and Management Science, Volume 4, Number 1, Spring 1973, pp. 101-117.
Mills, Nancy R., and Paul R. McCright, "Choosing the Ph.D. Path: A Multi-Criteria Model for Career Decisions," Journal of Engineering Education, Volume 82, Number 2, April 1993, pp. 109-117.
Noori, Hamid, Managing the Dynamics of New Technology: Issues in Manufacturing Management, 1990, Prentice-Hall.
Park, Chan S., and Gerald J. Thuesen, "Combining the Concepts of Uncertainty Resolution and Project Balance for Capital Allocation Decisions," The Engineering Economist, Volume 24, Number 2, Winter 1979, pp. 109-127.
Saaty, Thomas L., The Analytic Hierarchy Process, 1980, McGraw-Hill.
Walls, Michael R., "Integrating Business Strategy and Capital Allocation: An Application of MultiObjective Decision Making," The Engineering Economist, Volume 40, Number 3, Spring 1995, pp. 247-266.

Problems

Data for Problems 19.1-19.5: National Motors is planning to build a new manufacturing plant. Data on the five sites still under consideration is shown below. Note that the Detroit site reuses some existing National Motors property, while the Big City site entitles the corporation to several tax breaks for locating in a "depressed" locale. Thus, these two sites are appreciably cheaper than the others.

Site	EAC $(\$ M)$	$\boldsymbol{P}($ Strikes $)$	Ease of Expansion
Detroit	$\$ 12 \mathrm{M}$.05	Average
Green Field	22 M	.02	Very high
Happy Valley	20 M	.01	High
Big City	16 M	.03	Low
Coastal View	21 M	.04	Very low

19.1 Are any of National Motors' sites dominated? Is any site dominant? (Answer: Coastal View dominated)
19.2 Convert the National Motors summary table into a shaded-circle or shaded-square diagram.
19.3 Draw a polar graph for National Motors.
19.4 Using a $0=$ worst and $10=$ best scale and linear scoring functions, convert the tabulated values into scores. For the probability of a strike, assume that the best possible is $P($ strike $)=0$.
19.5 Assume that EAC has an importance of 10, P (strike) has an importance of 7 , and ease of expansion has an importance of 4 . What are the weights for each category? Which site appears to be the best? (Answer: Detroit, 5.71)

Data for Problem 19.6-19.10: A company called 2020's Labs is a commercial R\&D firm that specializes in developing new technology, which it then licenses to major corporations. Its Ceramics group is deciding which of four projects to attack next (identified by the major potential application). Only one project can be selected due to manpower considerations. Like other firms, 2020 Labs maximizes PW and minimizes risk. However, 2020 Labs also places a high value on projects that provide a large
intellectual challenge, since it stimulates both productivity and morale in its employees.
Project

Application	$\boldsymbol{E}(\mathrm{PW})$	σ_{PW}	Challenge
Auto	$\$ 20 \mathrm{M}$	$\$ 15 \mathrm{M}$	Low
Aircraft	15 M	$\$ 10 \mathrm{M}$	High
Refining	10 M	$\$ 4 \mathrm{M}$	Average
Spacecraft	5 M	$\$ 3 \mathrm{M}$	Very High

19.6 Are any of the Ceramics group's projects dominated? Are any dominant?
19.7 Convert the Ceramics group's summary table into a shaded-circle or shaded-square diagram.
19.8 Draw a polar graph for 2020 Lab's Ceramic group.
19.9 Develop scoring functions for 2020 Lab's Ceramic group for the $E(\mathrm{PW})$, for the standard deviation of the PW, and for technical challenge.
(Answer: $\mathrm{R}_{E(\mathrm{PW})=15}=7.5, \mathrm{R}_{\text {risk }}=10=3.3$)
19.10 Construct an additive model for the Ceramics group if maximizing the PW has an importance of 10 , minimizing risk has an importance of 5 , and maximizing technical challenge has an importance of 8 . What are the weights for each category? Which project is rated the highest?
19.11 Valley View is comparing possible sites for a new landfill. If EAC has a weight of $2 / 3$ and ease of access has a weight of $1 / 3$, which site should be chosen? Is any site dominant? Dominated?

Site	EAC	Ease of Access
A	$\$ 12 \mathrm{M}$	Average
B	10 M	Very low
C	20 M	High
D	18 M	Very high

19.12 BigState is comparing possible sites for a new port facility. If construction cost is weighted half as heavily as ease of access, which site should be chosen? Is any site dominant? Dominated?

Site
 Construction Cost
 Ease of Access

A	$\$ 20 \mathrm{M}$	Average
B	24 M	Very low
C	28 M	High
D	30 M	Very high

19.13 Jane Smith is considering the following five job offers as graduation nears:

Firm	Salary	Location	Recreation $^{\mathbf{1}}$	Stability $^{\mathbf{1}}$
A	$\$ 33 \mathrm{~K}$	NW	5	4
B	37 K	NE	8	4
C	28 K	SE	3	6
D	31 K	SW	3	9
E	35 K	SE	9	5

${ }^{1}$ Scaled $0=$ worst, $10=$ best.
Jane rates the Southeast above all other locations. She prefers the other regions in the following order: Southwest, Northwest, and Northeast. Construct numerical scoring functions for salary and location. Determine which offer best fits her requirements if she assigns the following weights for her objectives: 60% to salary, 20% to location, 10% to stability, and 10% to recreational opportunities.
19.14 Mrs. Meadows Cookies wishes to maximize profit, minimize risk, and increase market share. The firm assigns weights of 70% to profit, 18% to risk, and 12% to market potential. Construct numerical scoring functions and an additive model for this problem. Which one of the following four alternatives is the best choice as a new cookie?

Brand	PW (Profit)	σ (Profit)	Share Potential
Lotsa-Chips	$\$ 10 \mathrm{M}$	$\$ 6 \mathrm{M}$	High
Choca-Macho	14 M	7 M	Low
Coco-Macs	12 M	4 M	Medium
Lemon Dreams	13 M	5 M	Medium

19.15 Draw a decision hierarchy for a significant decision with economic consequences that you must make. Examples include choosing among job offers, between graduate school and immediate employment, between a summer job and traveling in Europe, etc.
19.16 Assign importance rankings, evaluate alternatives, and select the best alternative for the decision hierarchy of Problem 19.15.
19.17 NewTech wants to use an additive model for choosing its best approach to a particular marketing/R\&D problem. In particular, its management has decided that the PW's expected value should receive twice the weight as the PW's standard deviation. What
is the score of each alternative, and which should be chosen? The probabilities for low, medium, and high sales are, respectively $.3, .5$, and .2 .

	Present Worth (\$M)		
Choice	Low	Medium	High
A	$\$ 5$	$\$ 7$	$\$ 10$
B	3	7	18

Minicases

19.18 Find a published example of an additive model. Critique the model's objectives. Are they mutually exclusive and collectively exhaustive? Do the ratings seem to be biased? Is the conclusion reasonable?
19.19 Central Foundry wants to use an additive model for choosing its best approach to a particular casting problem. Management has decided that the expected value should receive 50% more weight than the standard deviation of the EACs. Assume $i=9 \%$.

Alternative A has a first cost of $\$ 100 \mathrm{~K}$ and no salvage value after 10 years. The probability of marginal results is .3 , and the annual operating costs will be $\$ 25 \mathrm{~K}$. The probability of good results is .5 , and the annual operating costs will be $\$ 10 \mathrm{~K}$. The annual operating costs for excellent results will be $\$ 5 \mathrm{~K}$.

Alternative B has an annual operating cost of $\$ 15 \mathrm{~K}$ and no salvage value after 10 years. With a probability of .4 , the first cost will be $\$ 80 \mathrm{~K}$. With a
probability of .5 , the first cost will be $\$ 105 \mathrm{~K}$. The highest possible first cost is $\$ 140 \mathrm{~K}$.
(a) What is the expected value and standard deviation of each alternative's EAC?
(b) What is the scoring function for each criteria, the score of each alternative, and which should be chosen?

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 21 Glowing in the Dark

Expected return and variance for facility of minimal size, of minimal plus preparation for later expansion, and of the full size now.

Case 22 City Car

Decision tree analysis. Includes discussion of strategy and risk. Some assumptions must be made.

Case 23 Washing Away

Levee height and probability of flood damage.

Case 44 Sunnyside-Up or Not?

Uncertain growth rates over 30 years and setting utility rates.

Case 50 Capital Planning Consultants

Capital budgeting including mutually exclusive alternatives. Includes uncertainties in first cost, annual benefit, and lives.
Index Terms
Links
A
A bsolute address 94
A bsorption costing 569
A ccelerated cost recovery system (A CRS)
See modified accelerated costrecovery system (M A CRS)
A ccelerated depreciation graph of book
values 327
A ccounting: fundamental equation 563
general 562
role of 561
timely and accurate data 576
A ctivity-based costing 570
definition 571
economic justification 575
provides more accurate costs 573
using 573
Additive models 551
direct assignment of weights 551
graphical 553
subjective assignment of importance
ratings 551
tabular 552
A fter-tax: cash flows 357364
IRR 364
leverage 367
A mortization schedule 97

This page has been reformatted by Knovel to provide easier navigation.
A nalysis: match the scale of the problem 21
versus action 16
A nalytic hierarchy process (A HP) 553
A nalyzing a project selection of a measure 117
A nnuity: defined 56
deferred 70
due 71
A PR annual percentage rate 46
A rithmetic gradient: defined 56
definition 74
formulas 78
perpetual life 157
using 75
A ssets 564
A tribute: defined 535
intangibles 536
tangibles 536
A ugmented: defined 258
why do 258
A verage cost 22
B
B alance sheet 563links with income statement and capital
transactions 568
B ase case: defined 474
estimating and modeling 454
B asis for depreciation 323
Beginning-of-period cash flows 36
Benefit/cost (B/C) ratio 206 385
constrained project selection 307
defined 205
evaluating a single project 385
frequency of use 205
incremental for mutually exclusive
alternative 387
mutually exclusive alternatives need
incremental analysis 240
ratios ranking on wrong for constrained
project selection 388
B enefits defined 206
consumers' surplus 392
eminent domain 381
quantifying and valuing 382
benefits to whomsoever they accrue 380
Block replacement: bathtub curve of
reliability278
cal culated 279
defined 279
Bond:IRR 188
present worth 121
Book value: for depreciation 324
graph comparing straight-line, decliningbalance, SOY D327
value graph including M A CRS 332
B reakeven: charts defined 470
volume 218
Budget estimate defined 451
Business transactions 562

C

Calculators TV M 58 585
Capacity function model order-of-magnitude
estimate 457
Capacity optimizing is analogous to
replacement problems 275
Capital 31
asset and incomes taxes 355
cost versus operating costs and depreciation 323
gain defined 335
gains and income taxes 364
Capital budget: allocated to divisions 287
cost of capital 299
defined 287
why is the capital budget limited 287
Capitalized cost: perpetual life 129
repeated renewals 161
Cash flow diagram 35
better not to simplify 37
constructing formulas from 72
Cell spreadsheet 93
Challenger: defined in replacement
analysis 261
cost curve for economic life 266
future 276
optimal or economic life 265
spreadsheets for economic life 266
Checklist estimating 449
Collectively exhaustive attributes
defined 537
Communication skills 15
Compensatory model 551
Constrained project selection 285
assumption of indivisible projects and increments of financing 301
assumption of project independence 303
assumption of simultaneous evaluation 305
assumptions and the real world 301
budget flexibility and contingency allowances 290
defined 286
determining the minimum attractive rate of return 293
investment opportunity schedule 291
IRR strengths and weaknesses 292
not complete agreement among writers
on engineering economy 286
present worth indexes and benefit/cost
ratios 307
problem size 288
public sector 388
ranking by PW or EA W does not work 291
stability and reinvestment assumptions 306
why is the capital budget limited 287
Consumer price index (CPI) 408
Consumers' surplus 392
COPY command spreadsheets 96
Cost accounting: activity-based; See
activity-based costing
problems with traditional 570
traditional 568
Cost depletion 340
Cost effectiveness 398
regulation 396
Cost groupings for manufacturing 449
Cost of capital: cal culated 300
defined 299
rarely is M A RR 300
Cost of goods: manufactured 449
sold 449
Costs defined 206
379
D
Decision-making: feedback loops 13
principles 6
process 9
rules multiple objectives 541
Decision trees 509
Declining balance depreciation 326
PW of depreciation 337
Defender: defined in replacement analysis 261
economic life 268
when EAC needed for replacement analysis 272
Deferred annuity 70
Definitive estimate defined 451
Deflation defined 408
Depletion: cost 340
of resources 341
percentage 340
Depreciation 321
ACRS; See MACRS
alternate MACRS 333
basis 323
bonus 343
book value 324
capital gain defined 334
declining balance 326
deduction 324
defined 322
gain on sale; See recaptured depreciation
graph of BVs including MACRS 332
inflation 426
linking the balance sheet, income state
ment, and capital transactions 568
loss on sale defined 334
M ACRS assumptions 331
MACRS percentages 332
and inside back cover
MACRS recovery period 330
and inside back cover
optimal strategies 335
PW of double-declining balance 337
PW of M ACRS tabulated 338
A nd inside back cover
PW of MACRS 337
PW of SOYD 337
PW of straight-line 337
recaptured depreciation defined 334

This page has been reformatted by Knovel to provide easier navigation.
Depreciation(Cont.)
recovery period 323
salvage value 324
section 179 deduction 341
spreadsheet functions 343
straight-line 324
summary of methods 346
and inside back cover
sum-of-the-years'-digits (SOY D) 327
terms 323
units-of-production 329
Design criteria: design to cost 452
minimize life cycle 452
Design to cost 452
Determined versus spent-to-date funds 447
Differential inflation 414
Direct cost 449
Disbenefits defined 206
Discounted payback: frequency of use 205
project balance 215
Doing nothing defined 229
Dominant alternative defined 517
379
Dominated alternative 517535
540

E

EAC and EAW 147
deferred annuities to regular annuities 153
defined 148
different-length lives implicit study period 234
examples 149
incorrect assumptions for minimizing
EAC and EAW (Cont.)
the defender's 270
irregular cash flows 151
overhaul 152
perpetual life 156
principle of repeated renewals 160
reinvestment assumption 246
repair costs after warranty 153
salvage values 154
single interior cash flow 151
summary for selecting a technique 250
when it is necessary to calculate the defender's 272
working capital 155
Economic measures summary 220
and inside front cover
Effective income tax rate (t_{e}) 354
Efficient frontier risk/return trade-offs 520
End-of-period cash flows 36
Engineering design mutually exclusive alternatives 228
Engineering economy factors: assumptions 55
combining 70
definitions 56
deriving one factor's formula from
another's 74
formulas versus 61
notation 57
Environmental restoration: multiple sign
changes 195
payback period 214
Equity 564
Equivalence: defined 38
limits 41
Equivalent annual measures 147
see also EAC and EAW
Equival ent discount rate: geometric
gradient 84
inflation 434
Escalating series 408
Escal ating series; see geometric gradients
Estimating 445
accuracy versus cost of doing 452
actual versus estimate 451
and inside front cover
checklist 449
factor estimate 464
functional specifications 452
learning curves 462
life-cycle stages 448
modeling the base case 454
performance specifications 452
quantifying the impact of early
decisions 446
standards 450
using growth curves 459
Ethics: code of 17
decision making 17
importance of 20
safety and cost 19
Expected values: choosing alternatives 507
computing 505
defined 503
External consequences 390
Factor estimates 464
F
Federal subsidies 391
Financial ratios derived from: balance
sheet data 565
income statement data 567
Financing opportunities defined 297
First cost 35
Flexibility multiple objectives 543
Functional specifications defined 452
Future cash flow defined 56
Future worth exaggeration effect 211

G

Geometric gradients 78
basic formula 79
changing volume 80
defined 78408
equivalent discount rate 84
examples 82
formula 432
inflation 432
mathematical model 81
perpetual 130
present worth formula 81
Gompertz curves 459
Growth curves estimated 459

H

Hierarchical objectives 554
Horizon 56
alternatives with different-length lives 231
choosing the best 234
EAC robustness due to estimated lives 240
mutually exclusive alternatives without a common one 234
long in public-sector 382
I
Income statement 566
links with balance sheet and capital
transactions 568
Income taxes 350
calculating ATCFs and EACs using
formulas 359
cal culating ATCFs and EACs with
spreadsheets 357
capital gains 364
effective tax rate 354
income, property, sales, and value added 351
individual 375
interest deductions and an after-tax IRR 364
investment tax credits (ITC) 362
leverage 367
marginal tax rate 352
point of view 351
principles of calculation 352
selecting an after-tax interest rate 359

This page has been reformatted by Knovel to provide easier navigation.
Incremental analysis: B/C ratios 387
cost effectiveness measure 399
defined 241
labeled as a challenger/defender
analysis 244
replacement 261
required to correctly apply IRR or B / Cratio to mutually exclusivealternatives $\quad 244$
analysis summary for selecting a
technique 250
Incremental cost 22
Incremental IRRs and GOAL SEEK
spreadsheet tool 249
Increments of financing 301
Index inflation 408
Indexes using for order-of-magnitude estimates 455
Indirect: allocations 569
costs 569
manufacturing expense 449
Indivisible projects 301
Inferiority gradient defined 277
Inflation 407
as a geometric gradient 80
assumptions for interest rates and cash
flow estimates 413
consumer price index 408
defined 408
depreciation 426
differential inflation 414
equival ent discount rate 434
estimate accuracy 416
Inflation(Cont.)
estimating differential 415
examples with multiple inflation rates 420
four geometric gradients 432
interest rate 414
leases and other prepaid expenses 423
Ioan payments 426
measuring with indexes 408
mortgage 429
producer price indexes (PPIs) 412
rate cal culating with indexes 410
solving for PW or EAC 417
terminology 413
Intangibles 536
Interdependent projects 303
Interest 31
calculating 40
simple versus compound 33
Interest rate: constant over time 306
continuous compounding 48
effective 43
format 59
industrial bonds 125
inflation assumptions 413
nominal versus effective 45
nominal 43
public sector 384
vary 31
Internal consequences 390
Interpolation 59
accuracy with (P/A) factors 69
Investment: defined for IRR 178
negative IRR 191
Investment opportunity schedule: defined 291
ranked on IRR 291
Investment tax credit 362
computing and using 362
defined 363
history 362
IRR (internal rate of return) 175
after-tax 364
annuity function 190
applying 179
assumptions 177
discounted bond 188
external or modified rates of return 198
finding 181
frequency of use 205
Internal rate of return (IRR) defined 176
investment 178
IRR block function 191
Ioan 178
multiple sign changes 177179
mutually exclusive alternatives need
incremental analysis 240
project balances 197
RATE investment function 190
reinvestment assumption 179246
spreadsheets 190
Irreducibles 6

L

Learning curves 462
Lease IRR 185
payments 71
inflation 423
Leverage 367
Liabilities 564
Life: accounting 261
defender 268
different-length in replacement analysis 261
economic 261
for economic challenger 265
ownership 261
physical 261
service period 261
present value 395
Listening skills 15
Loan: accelerated payments 166
balloon payment 190
cash discount 185
defined for IRR 178
finding the balance due 165
IRR 185
payments inflation 426
principal/interest split 168
shortening the time to payoff 165
subsidized student 183
Loss on sale defined 334
MM A CRS (M odified accelerated cost recovery system)329
alternate M ACRS 333
assumptions defined 331
A TCF example 341
ATCFs by formula 360
graph comparing BV s for depreciation methods 332
optimal depreciation strategy 335
percentages 332
and inside back cover PW of depreciation 337
recovery periods 330
and inside back cover
table of PW factors 338and inside back cover
taxable income example 356
M aintenance cost of deferring 389
M A PI replacement analysis 276
M arginal cost 22
MARR theoretically optimal model 296
M athematical programming 315
M aximizing a weighted sum multiple objectives 541
Mineral extraction multiple sign changes 195
M inimizing life-cycle costs 452
Minimum attractive rate of return
(MARR): constrained project
selection 293
opportunity cost 294
Missing values multiple objectives 550
M odified accelerated cost recovery system 329
see also M ACRS
M odified internal rate of return 198
M ortgage: accelerated payments 166
finding the balance due 165
interest inflation 429
principal/interest split 168
shortening the time to payoff 165
Multiple alternatives 492
scenarios 495
spiderplots 492
Multiple objectives 534
additive models 551
choosing the best case and the worst case 548
eliminating dominated and
unsatisfactory alternatives 539
evaluating the alternatives 543
graphical techniques 546
hierarchical attributes and objectives 554
identifying the attributes 541
may conflict for public projects 383
missing values 550
needs, wants, and ignorables 541
numerical scales 547
numerical variables 547
process of evaluating 539
profitability, risk, and flexibility 543
selecting 537
verbal variables 550
M ultiple sign changes: environmental
restoration 195
IRR disadvantage 177
IRR 193
mineral extraction 195
project balances 197
staged construction 196
summary of consequences 196
M utually exclusive alternatives 227
deferred maintenance 389
defined 228
different-length lives implicit study period and EA measures 234
doing nothing 229
engineering design 228
incremental B / C required 387
key assumption interest rate or M A RR 228
lives of the same length 229
PW s and explicitly comparing different
length lives 231
replacement analysis 261
requires incremental IR Rs or B / Cs 240
summary 249
using EAC is robust 238
M utually exclusive attributes defined 537
M utually exclusive criteria: maximum PW
or EAW 229
minimum EAC 229
0
Objective, defined 535
Operating budget, defined 287This page has been reformatted by Knovel to provide easier navigation.
Operational economics 22
Operations and maintenance (O\&M) 35
Opportunity cost: of capital defined 294
minimum attractive rate of return 294
public sector 388
Order-of-magnitude estimate: defined 451
capacity functions 457
using indexes 455
Overhaul: defined 35
payback period 214
Overhead allocations 569
P
Parametric estimates 464
Payback period 211
difficulties 214
discounted 215
frequency of use 205
introductory definition 205
summary for selecting a technique 250
when can payback be used 213
Pearl curves 459
Percentage depletion 340
Performance specifications defined 452
Perpetual life: arithmetic gradient 157
capitalized cost 129
capitalized cost 161
equival ent annual 156
geometric gradient 130
Point of view in the public sector 390
Polar graph multiple objectives 546
Politics private and public 16
Prepaid expenses 71
defined 35
inflation 423
Present worth 119
capitalized cost 129
cost of underutilized capacity 134
defined 119
desirable PW 120
examples 121
index introductory definition 205
indexes constrained project selection 307
indexes defined 208
indexes 208
mutually exclusive alternatives 231
reinvestment assumption 246
rolling back 125
salvage values 128
staged projects 133
standard assumptions 121
summary for selecting a technique 250
Private sector versus public sector
summary 385
Probability 502
cash flows over time 512
choosing using EV s 507
continuous and discrete distributions 526
defined 503
distribution 503
distributions N and i need complete distributions for exact answers 524
distributions with multiple independent variables 522

This page has been reformatted by Knovel to provide easier navigation.
Probability(Cont.)
distributions 522
economic decision trees 509
expected value 505
flooding and dam failures 383
rare events 382
risk 514
risk/return trade-off and the efficient
frontier 520
risk/return trade-offs 517
sequential decisions 511
simulation 527
Producer price indexes 412
Profitability multiple objectives 543
Project balances: defined 197
discounted payback period 215
Project life cycle 428
Projects' independence 303
Public-sector 378
allocating costs 393
benefits to whomsoever they accrue 380
cost effectiveness 398
engineering economy agencies that do not serve the public directly 380
engineering economy benefits to
whomsoever they accrue 380
engineering economy deferred
maintenance 389
risk 398
selecting an interest rate 384
valuing a life 395
versus private sector summary 385

This page has been reformatted by Knovel to provide easier navigation.
Public-sector(Cont.)
why difficult 381
PW and EAW frequency of use 205
PWI frequency of use 205
Q
Quantifiable measure 6
R
Ranking on IRR; see constrained project
selection
public sector 388
R ate of return 175
see also IRR
Real options 521
R ecaptured depreciation: defined 335
section 179 assets 342
Recovery period: for depreciation 323
MACRS 330
and inside back cover
Reinvestment assumption: constrained
project selection 306
mutually exclusive alternatives 229
same for PW, EAW, and IRR 246
Reinvestment rate IRR 179
Relative address 94
Repeated renewals 159
capitalized cost 161
neither an initial nor a final cash flow 161
perpetual life 161
principle 160
Repeated renewals(Cont.)
repetition for every subperiod 160
Replacement analysis 257
Replaced why do 258
altered requirements 258
bathtub curve of reliability 278
block replacement 279
classifying models 278
defender's EAC needed 272
defender's economic life 268
defined 258
flowchart 274
future challengers 276
lease or rental versus ownership 260
MAPI 276
mutually exclusive alternatives 261
obsolescence 259
optimal capacity problems 274
optimal challengers 265
optimal defenders 268
reduced performance 258
risk of catastrophic failure or unplanned replacement 260
risks 264
short-term cost savings are not enough 264
sunk cost 262
Residual value 232Residual values present worth; see sal vagevalues present worth
R esource depletion see depletion ofresources
Retired: defined 258
why do 258
Revenues defined 35
Risk 514
death 398
multiple objectives 543
of the new exceed of the old 263
standard deviation (σ) 514
Risk/return trade-offs 517
efficient frontier 520
Rollback values 125

S

Salvage values (S) defined 35
assumed for present worth 239
EAC 154
for depreciation 324
payback period 214
PW 128
Satisficing 16
multiple objectives 541
Scenarios defined 475
Section 179 deduction 341
Sensitivity A nalysis 469
base case 474
breakeven chart defined 470
constructing a spiderplot 481
defined 470
interpreting spiderplots 479
limits of uncertain data 473
multiple alternatives 492
multiple variables 495This page has been reformatted by Knovel to provide easier navigation.
Sensitivity A nalysis(Cont.)
scenarios defined 475
sources of uncertainty 470
spiderplot defined 475
stochastic 479
techniques 475
tornado diagrams defined 475
why do 472
Shaded circles and squares multiple objectives 546
Simulation 527
Single-payment factors: formula
development 61
function of i and N 63
tabulated 62
SORT 307
Sources of uncertainty for sensitivity analysis 470
Spiderplots: choosing a y-axis 485
constructing by hand 481
constructing with spreadsheet 482
defined 475
example 478
interpreting 479
Spillovers defined 379
Spreadsheets 92
absolute address 94
accuracy and shorter periods 135
after-tax IRR 364
annuity functions 99
block functions 102
calculating ATCFs and EACs 357
Spreadsheets(C ont.)
challenger's economic life 266
computerized 93
construction of a spiderplot 482
converting factors to functions 100 6
inside front cover
COPY command 96
creating graphs 110
DATA table 368
defining variables 95
documenting data sources 112
drawing cash flow diagrams 38
elements of 93
examples 105
explaining and labeling formulas 97
financial functions 99
formatting 99
functions depreciation 343
GOALSEEK tools 249
investment and block functions for constrained project selection 308
IRR 190
iterative modeling 14
Ioan repayment 164
mathematical programming 315
modeling 94
more exact models 137
reality and flexibility 93
relative address 94
SORT 307
use data block 91
using to get project funded 108
Staged construction multiple sign changes 196
Staged development payback period 214
Staged projects 132
Stakeholders 12
allocating costs 393
interest groups with differing perspectives 384
Standard deviation defined 515
see also risk
Straight-line depreciation 324
ATCF example 357
ATCFs by formula 360
PW of depreciation 337
taxable income example 356
Study period 56
Sum-of-the-years'-digits (SOY D) 327
ATCFs by formula 361
PW of depreciation 337
Sunk costs 7
in replacement 262
T
Tangibles 536
Taxable income finding when including depreciation 354
Taxes value-added 351
Theoretically optimal model: financing
opportunities curve 296
MARR 296
why capital limits are imposed 298
Time 0 or beginning of period 1 36
Time value of money 4
Tornado diagrams: constructing 485
defined 475
example 477
template 488
TV M calculators 58585
U
Uncertain data sensitivity analysis 473
U ncertainty; see probability
Underutilized capacity cost 134
Uniform series factors: calculating an interest rate 67
formula development 64
tabulated 65
versus i and N 68
Units of production depreciation 329
V
V alue-added taxes 351
V alue engineering 11
V olatility real options 521
W
W eighted importance ratings 551
W orking capital EAC 155

Accounting Effects in Engineering Economics

With Jerome P. Lavelle, Ph.D., North Carolina State University

- THE SITUATION AND THE SOLUTION

Many important accounting principles and concepts are used in the modern enterprise. Managers and engineers may not be accountants, but they need a basic understanding of these principles.

The solution is to understand these basic principles in the context of one's work situation. This appendix provides that for those who use engineering economy.

- APPENDIX OBJECTIVES

After you have read and studied the sections of this appendix, you should be able to:
SECTION A. 1 Describe the links between engineering economy and accounting.
SECTION A. 2 Describe the objectives of general accounting, what financial transactions are, and how they are important.
SECTION A. 3 Use the firm's balance sheet and associated financial ratios to evaluate the firm's performance.
SECTION A. 4 Use the firm's income statement and associated financial ratios to evaluate the firm's performance.
SECTION A. 5 Calculate product costs using traditional absorption costing.
SECTION A. 6 Calculate product costs using activity-based costing (ABC).

- KEY WORDS AND CONCEPTS

Balance sheet Lists the firm's assets, liabilities, and equity.
Fundamental accounting equation A firm's assets equal the sum of its liabilities and equity.
Assets A firm's properties and other items that have monetary or other economic value.
Quick assets include cash, receivables, and market securities.
Liabilities Short- or long-term dollar claims against the firm.
Equity Owner's value or net worth, which equals assets minus liabilities.
Working capital Money for project and firm operations, which equals current assets minus current liabilities.
Current ratio Ratio of current assets to current liabilities; used to indicate a firm's ability to meet its obligations. Most healthy firms have a current ratio ≥ 2.0.
Acid-test (or quick) ratio A firm's quick or liquid assets divided by total current liabilities.

Income statement Summarizes revenues and expenses over a fixed period (generally a year or a quarter).
Interest coverage Ratio of total income (total revenue minus expenses, excluding interest payments) to interest payments. Indicates ability to finance debt if revenue decreases.
Net profit ratio Calculated by dividing net profits by net sales revenue; indicates ability to convert sales into profits.
Traditional absorption-based costing Cost accounting method whereby indirect (overhead) costs are distributed to products based on volume-based parameters (such as directlabor hours).
Activity-based costing (ABC) Cost accounting method in which all costs (direct and indirect) are assigned to products based on the required activities.

A. 1 Role of Accounting

Accounting data are used for the valuation of capital equipment, make vs. buy decisions, product costing and pricing, the setting of indirect cost rates, and product mix decisions. While accounting is applied in the public sector as well, for clarity this appendix focuses on the private-sector firm. Accountants track the costs of projects and products and, as such, often provide the basic data on which engineering analyses are made. Tracking these costs (and revenues) is the basis for estimates of future events.

Engineering economy, accounting, and managerial functions are linked in many ways. In large firms, it is not uncommon to find these functions being performed by distinct divisions within the firm. However, in smaller (or entrepreneurial) enterprises, the functions outlined below are often performed by a single individual or by a team of integrated individuals.

- The engineering economic analysis function includes identifying and analyzing investment projects and alternatives and estimating their economic impact over their life cycles.
- The accounting function includes accounting for the dollar impact of past decisions, reporting on the economic viability of a unit or firm, and identifying and evaluating potential funding sources.
- The managerial function includes allocating available investment funds to projects to achieve business goals, evaluating the firm's performance with financial and other measures, and directing resources and personnel to meet business goals.

Exhibit A. 1 illustrates the relationship between the accounting, managerial, and engineering economy functions. It emphasizes the needed exchange of data and communication.

EXHIBIT A. 1 The accounting, managerial, and engineering economy functions

A. 2 General Accounting

The accounting function provides two basic types of data to the organization, general accounting data and cost accounting data. General accounting focuses on the firm's financial transactions and its financial health. These data enable managers and investors to evaluate the firm from short- and long-term perspectives. The following sections describe business transactions, accounting statements, financial ratios, and cost accounting for product costs.

It is worth noting that most accounting is done in nominal or stable dollars and that most assets are valued at their acquisition cost adjusted for depreciation and improvements. To be conservative, in those cases when market value is lower than this adjusted cost, the lower value is used. Higher market values due to inflation and appreciation are less objective than using cost data, and with a going concern, accountants have decided that objectivity should be maintained. This restrains the interests of management in maximizing a firm's apparent value. If a firm must be liquidated, then current market value must be estimated.

Business Transactions. A business transaction is an event that occurs between two parties in which dollars (or the promise of dollars) are exchanged for a product or service. Each day, millions of transactions occur between firms and their customers, suppliers, vendors, and employees. Transactions are the lifeblood of the business world and are most often stated in monetary terms. The accounting function records, analyzes, and reports these exchanges.

Transactions can be as simple as a payment for a water bill or as complex as the international transfer of millions of dollars of assets among firms in which buildings, land, equipment, inventory, and other assets are involved. Also, with transactions, one business event may lead to another-all of which need to be accounted for. Consider, for example, the process of selling a robot or bulldozer. This simple act involves several
related transactions: (1) equipment released from inventory, (2) equipment shipped to the purchaser, (3) invoicing the purchaser, and (4) collecting from the purchaser.

Transaction accounting often involves more than just reporting. Finding, synthesizing, summarizing, and analyzing the data are very important aspects of the general accounting function. For the engineering economist, historical data housed in the accounting function serve as a resource when projecting future economic parameters.

A. 3 Balance Sheet

The primary accounting statements are the balance sheet and income statement. The balance sheet describes the financial condition of the firm at a point in time, while the income statement describes the firm's performance over a period of time-usually a year.

The balance sheet lists the assets, liabilities, and equity of a business entity on a specified date. It gives a picture of the organization's financial health at a particular snapshot in time. Usually, balance sheet snapshots are taken at the end of the month (or fiscal year). The balance sheet is based on the fundamental accounting equation:

$$
\begin{equation*}
\text { Assets }=\text { Liabilities }+ \text { Equity } \tag{A.1}
\end{equation*}
$$

Exhibit A. 2 illustrates the basic format of the balance sheet. Notice in the balance sheet, as in Equation A.1, that assets are listed on the left-hand side and liabilities and equity are on the right-hand side. The fact that the firm's resources are balanced by the sources of the funding for them is the basis for the name of the balance sheet.

EXHIBIT A. 2 Balance sheet for Engineered Buildings, Inc., December 31, 20xx (all amounts in \$1000)

Assets		Liabilities	
Current assets		Current liabilities	
Cash (money market)	850	Accounts payable	765
Accounts receivable	2380	Notes payable	850
(minus) Bad debt provision	-95	Accrued expense	425
Inventories	1105	Total current liabilities	2040
Total current assets	4240		
		Long-term debt	2380
Fixed assets			
Land	340	Total Liabilities	4420
Plant and equipment	2805		
(minus) Accumulated depr.	-1700	Equity	
Total fixed assets	1445		
		Common stock	1200
Other assets		Capital surplus	420
Prepays/deferred charges	510	Retained earnings	410
Intangibles	$\underline{255}$	Total equity	2030
Total other assets	765		
Total Assets	6450	Total Liabilities and Equity	6450

Assets are the firm's current properties and other items that have monetary value. Liabilities are claims against the firm. Equity is what the company owns.

Assets. In Equation A. 1 and Exhibit A.2, assets are the firm's current properties and other items that have monetary or other economic value. Liabilities are the dollar claims against the firm. Equity is the dollar value of what the company owns. In Equation A.1, assets will always be balanced by the sum of the liabilities and the equity in the firm. Retained earnings are set so that equity equals assets minus liabilities.

On a balance sheet, assets are typically listed in order of decreasing liquidity. Liquidity refers to how quickly the asset can be converted to cash. Notice that in Exhibit A.2, current assets are listed first (they are the most liquid) and prepayments and intangibles last. Current assets include cash as well as receivables, securities, and inventories that can be readily converted to cash. Fixed assets (which are also sometimes called property, plant, and equipment) are used to produce and deliver goods and/or services to customers, and they are not intended for sale. Lastly, on the balance sheet, items such as prepayments and intangibles (e.g., patents) are listed. Items listed in this last category are not generally convertible to cash.

Liabilities. On the balance sheet, liabilities are divided into two major classifications-short-term and long-term. The short-term or current liabilities are listed first. These liabilities represent expenses, notes, and other payable accounts that are due within 1 year from the date of the balance sheet. Long-term liabilities are mortgages, bonds, and loans that are due beyond 1 year from the date of the balance sheet. In Exhibit A.2, total current and longterm liabilities are $\$ 4,240,000$ and $\$ 2,040,000$, respectively. Often in performing engineering economic analyses, the working capital required to purchase inventory and cover other project start-up expenses must be estimated. The total amount of working capital available for such projects within the firm may be calculated using Equation A. 2 as the difference between current assets and current liabilities.

$$
\begin{equation*}
\text { Working capital }=\text { Current assets }- \text { Current liabilities } \tag{A.2}
\end{equation*}
$$

For Engineered Buildings, there would be $\$ 4,240,000-\$ 2,040,000=\$ 2,200,000$ available in working capital for use in the capital budgeting process and in operating the firm in the coming period.

Equity. Equity is also called owner's equity or net worth. It includes the par value of the owners' stockholdings and the capital surplus, which are the excess dollars brought in over par value when the stock was issued. Retained earnings are those dollars that a firm chooses to retain rather than to pay out as dividends to stockholders. Retained earnings is also the dollar quantity that always brings the balance sheet and, the fundamental accounting equation into balance. For Engineered Building, Inc., total equity value is listed at $\$ 2,030,000$. In looking at Equation A. 1 and the assets, liabilities, and equity values in Exhibit A.2, we see the balance described above:

$$
\text { Assets }=\text { Liabilities }+ \text { Equity }
$$

Assets(current \& fixed \& other) $=$ Liabilities(current \& long-term) + Equity

$$
\begin{aligned}
(4,240,000+1,495,000+765,000) & =(2,040,000+2,380,000)+2,030,000 \\
\$ 6,450,000 & =\$ 6,450,000
\end{aligned}
$$

Current ratio $=$ Current assets divided by current liabilities.

The acid-test ratio is quick assets divided by total current liabilities.

An example of owner's equity is ownership of a home. Most homes are purchased using a mortgage loan that is paid off at a certain interest rate over 15 to 30 years. At any point in time, the difference between what is owed to the bank (the remaining balance on the mortgage) and what the house is worth (its appraised market value) is the owner's equity. In this case, the loan balance is the liability, and the home's value is the asset-with equity being the difference. Over time, as the house loan is paid off, the owner's equity increases.

The balance sheet is a very useful tool that illustrates the financial condition of a firm in terms of assets, liabilities, and equity as of a particular point in time. This view of the financial condition provides insight into the firm's health for investors, potential lenders, and other interested parties.

Financial Ratios Derived from Balance Sheet Data. Two common ratios are used to analyze the firm's current position that involve data from the balance sheet. These are the current ratio and the acid-test ratio.

A firm's current ratio is the ratio of current assets to current liabilities, as in Equation A.3.

$$
\begin{equation*}
\text { Current ratio }=\text { Current assets } / \text { Current liabilities } \tag{A.3}
\end{equation*}
$$

This ratio provides insight into the firm's solvency over the short term by indicating its ability to cover current liabilities. Historically, firms aim to be at or above a ratio of 2.0; however, this depends heavily on the firm's industry as well as on the firm's management practices and philosophies. The current ratio for Engineered Buidling in Exhibit A. 2 is calculated as;

$$
4,240,000 / 2,040,000=2.08
$$

Both working capital and the current ratio indicate the firm's ability to meet currently maturing obligations. However, neither describes the type of assets owned. The acid-test ratio or quick ratio becomes important when one wishes to consider the firm's ability to pay debt "instantly." It indicates the degree to which the firm can be responsive to debt reduction. The acid-test ratio is computed by dividing a firm's quick assets (cash, receivables, and market securities) by total current liabilities, as in Equation A.4.
Acid-test ratio = Quick assets/Total current liabilities

Current inventories are excluded from quick assets because of the time required to sell these inventories, collect the receivables, and subsequently have the cash on hand to reduce debt. For Engineered Buildings in Exhibit A.2, the acid-test ratio is calculated as:

$$
(4,240,000-1,105,000) / 2,040,000=1.54
$$

Working capital, current ratio, and acid-test ratio all provide an indication of the firm's financial health (status). A thorough financial evaluation would consider all three, including comparisons with values from previous periods or with broad-based industry standards.

A. 4 Income Statement

The income statement or profit and loss statement summarizes the firm's revenues and expenses over a month, quarter, or year.

Definition. The income statement or profit and loss statement summarizes the firm's revenues and expenses over a month, quarter, or year. Rather than the snapshot of the balance sheet, the income statement encompasses a period of business activity. With the income statement, it is possible to evaluate revenues, and expenses that occur in the interval between consecutive balance-sheet statements. The income statement reports the firm's net income (profit) or loss by subtracting expenses from revenues over the period covered. If revenues minus expenses is positive in Equation A.5, there has been a profit; if negative, a loss has occurred.

$$
\begin{equation*}
\text { Revenues }- \text { Expenses }=\text { Net profit (loss) } \tag{A.5}
\end{equation*}
$$

Revenue, as in Equation A.5, serves to increase ownership in a firm, while expenses serve to decrease ownership. Exhibit A. 3 is an example income statement.

Notice in Exhibit A. 3 that both revenues and expenses are related to operating and non-operating activities. Operating revenues are made up of sales revenues (minus returns and allowances), while nonoperating revenues come from rents and interest receipts.

EXHIBIT A. 3 Income statement for Engineered Buildings, Inc. December 31, 20xx (all amounts in \$1000)

Operating Revenues	
Sales	8075
(minus) Returns and allowances	-85
Total Operating Revenues	7990
Operating Expenses	
Cost of goods and services sold	4760
Gross profit	3230
Marketing, general, and addminstrative	2040
Depreciation	340
Total operating expense	7140
Total operating income	850
Nonoperating Revenues and Expenses	
Interest receipts	51
Interest payments	-258
Total nonoperating income	-207
Net Income Before Taxes	643
Income Taxes	-225
Net Profit (Loss) for Year 20xx	418

Operating expenses produce the products and services that generate the firm's revenue stream of cash flows. Typical operating expenses include cost of goods sold, selling and promotion costs, depreciation, general and administrative costs, and lease payments. Cost of goods sold includes the labor, materials, and indirect costs of production. Engineers design production systems, and they are involved in labor loading, specifying materials, and make/buy decisions. All of these items affect a firm's cost of goods sold. Good engineering design focuses not only on technical functionality but also on cost-effectiveness as the design integrates the entire production system. Also of interest to the engineering economist is depreciation (see Chapter 12), which is the systematic "writing off" of a capital expense over a period of years. This noncash expense is important, because it represents a decrease in value in the firm's capital assets.

The operating revenues and expenses are typically shown first so that the firm's operating income from its products and services can be calculated. Also shown on the income statement are nonoperating expenses such as interest payments on debt in the form of loans or bonds.

From the data in Exhibit A.3, Engineered Buildings has total expenses (operating = $\$ 7,140,000$ and nonoperating $=\$ 258,000$) of $\$ 7,398,000$. Total revenues equal $\$ 8,041,000$ $(=\$ 7,990,000+\$ 51,000)$. The net after-tax profit for year 20XX of $\$ 418,000$ is shown in Exhibit A.3, but it can also be calculated using Equation A. 5 as:

$$
\begin{aligned}
\text { Net profits (loss) }= & \text { Revenues }- \text { Expenses [before taxes] } \\
= & 8,041,000-7,398,000 \text { [before taxes] } \\
& \text { and with } \$ 225,000 \text { taxes paid, thus } \\
= & 643,000-225,000 \text { [after taxes] }=418,000
\end{aligned}
$$

Interest coverage is total revenues minus all expenses (except interest payments) divided by interest payments.

Net profit ratio is net profit divided by net sales revenue.

Financial Ratios Derived from Income Statement Data. Interest coverage is given in Equation A. 6

$$
\text { Interest coverage }=\frac{\text { Earnings before interest and taxes }}{\text { Interest payments }}
$$

The interest coverage ratio (which for industrial firms is usually above 3.0) i cates how much revenue must drop to affect the firm's ability to finance its debt. With an interest coverage ratio of 3.0 , a firm's revenue would have to decrease by $2 / 3$ (unlikely) before it could not pay the interest on its debt. The larger the interest coverage ratio, the better. Engineered Buildings in Exhibit A. 3 has an interest coverage ratio of:

$$
850,000 / 258,000=3.29
$$

Another important financial ratio based on the income statement is the net profit ratio. This ratio (Equation A.7) equals net profits divided by net sales revenue. Net sales revenue equals sales minus returns and allowances.

$$
\begin{equation*}
\text { Net profit ratio }=\text { Net profit/Net sales revenue } \tag{A.7}
\end{equation*}
$$

This ratio provides insight into the cost efficiency of operations as well as a firm's ability to convert sales into profits. For Engineered Buildings in Exhibit A.3, the net profit ratio is calculated as:

$$
418,000 / 7,990,000=.0523=5.23 \% .
$$

As with other financial measures, the net profit ratio is best evaluated by comparisons with other time periods and industry benchmarks.

Linking the Balance Sheet, Income Statement, and Capital Transactions. The balance sheet and the income statement are separate but linked documents. Understanding how they are linked together helps to clarify the distinctions between them. Accounting describes these links as the articulation between these reports.

The balance sheet shows a firm's assets, liabilities, and equity at a particular point in time-while the income statement summarizes revenues and expenses over an interval of time. The connection can be visualized as a snapshot at the period's beginning (a balance sheet), a video summary over the period (the income statement), and a snapshot at the period's end (another balance sheet). The income statement and changes in the balance sheets summarize the business transactions that have occurred during that period.

There are many links between these statements and the cash flows that make up business transactions, but for engineering economic analysis, the following are the most important:

1. Overall profit or loss (income statement) and the starting and ending equity (balance sheets).
2. Acquisition of capital assets.
3. Depreciation of capital assets.

The overall profit or loss during the year (shown on the income statement) is reflected in the change in retained earnings between the balance sheets at the beginning and end of the year. The change in retained earnings (RE) must also subtract any dividends distributed to the owners and add the value of any new capital stock sold. This can be stated as:

$$
\mathrm{RE}_{\text {beg }}+\text { net income or loss }+ \text { new stock }- \text { dividends }=\mathrm{RE}_{\text {end }}
$$

When capital equipment is purchased, the balance sheet changes, but the income statement does not. If cash is paid, then the cash asset account decrease equals the capital equipment account increase-no change in total assets. If a loan is used, then the capital equipment account increases, and so does the liability item for loans. In both cases, the equity accounts and the income statement are unchanged.

When capital equipment is depreciated, that is a line on the income statement. The depreciation for that year equals the change in accumulated depreciation between the beginning and the end of the year-after subtracting the accumulated depreciation for any asset that is sold or disposed of during that year.

A. 5 Traditional Cost Accounting

A firm's cost accounting system is primarily concerned with collecting, analyzing, and reporting operational performance data (costs, utilization rates, etc.). Cost accounting data

Traditional absorption costing
allocates indirect or overhead expenses using a burden vehicle, such as direct-labor hours.
is used to develop product costs; to determine the mix of labor, materials, and other costs in a production setting; and to evaluate outsourcing or subcontracting.

Direct and Indirect Costs. Costs incurred to produce a marketable product or service are traditionally classified as either direct or indirect (overhead). Direct costs come from activities directly associated with the final product or service produced. Examples include material costs and labor costs for engineering design, component insertion, painting, and drilling.

Some organizational activities are difficult to link to specific projects, products, or services. For example, the receiving and shipping areas of a manufacturing plant are used by all incoming materials and all outgoing products. These materials and products differ in their weight, size, fragility, value, number of units, packaging, etc., and the cost depends on all of these factors.

Other costs, such as the organization's management, sales, and administrative expenses, also are difficult to link directly to products or services. These indirect or overhead expenses include machine depreciation, engineering and technical support, and customer warranties.

Indirect Cost Allocation. To allocate indirect costs to different departments, products, and services, accountants have developed mechanisms using burden vehicles, such as direct-labor hours. The total of all indirect or overhead costs is divided by the total for the burden vehicle. For example, if direct-labor hours is the burden vehicle, then overhead will be allocated based on overhead dollar per direct-labor hour. Then, each product, project, or department will absorb (or be allocated) overhead costs based on the number of directlabor hours each has.

This is the basis for calling traditional costing systems absorption costing. For decision making, the problem is that the absorbed costs represent average, not incremental, performance.

Three common ways of allocating overhead are: (1) direct-labor hours, (2) direct-labor cost, and (3) direct-materials cost. The first two differ significantly only if the cost per hour of labor differs for different products. Example A. 1 illustrates the difference between the latter two burden vehicles for a simple case of two products.

EXAMPLE A. 1 HouseHold Appliance

HouseHold Appliance does not manufacture its own motors or electronic controls. The motors for washers must be sturdier than those for dryers, and the controls for washers are also more complex.

As a result, HouseHold Appliance manufactures a higher fraction of the dryer's value itself, and it purchases a higher fraction of the washer's value. Using the data shown below, allocate $\$ 750,000$ in overhead on the basis of (1) labor cost and (2) materials cost.

	Dryers	Washers
Number per year	4200	5000
Labor cost (each)	$\$ 40$	$\$ 20$

SOLUTION

First, the labor and material costs for the dryers, the washers, and in total are calculated.

	Dryers	Washers	Total
Number per year	4200	5000	
Labor cost each	$\$ 40$	$\$ 20$	
Materials cost each	$\$ 50$	$\$ 75$	
Labor cost	$\$ 168,000$	$\$ 100,000$	$\$ 268,000$
Materials cost	$\$ 210,000$	$\$ 375,000$	$\$ 585,000$

Then, the allocated cost per labor dollar, $\$ 2.80$, and the allocated cost per material dollar, $\$ 1.28$, are calculated by dividing the $\$ 750 \mathrm{~K}$ in overhead to be allocated by $\$ 268 \mathrm{~K}$ and $\$ 585 \mathrm{~K}$, respectively. Finally, the $\$ 750,000$ in allocated overhead is split between the two products using (1) labor costs and (2) material costs.

	Dryers	Washers	Total
Labor cost	$\$ 168,000$	$\$ 100,000$	$\$ 268,000$
\quad Overhead/labor \$	2.80	2.80	
\quad Allocation by labor \$	470,149	279,851	750,000
Material cost	$\$ 210,000$	$\$ 375,000$	$\$ 585,000$
Overhead $/$ material $\$$	1.28	1.28	
Allocation by material $\$$	269,231	480,769	750,000

If labor cost is the burden vehicle, then 63% of the $\$ 750 \mathrm{~K}$ in overhead is allocated to the dryers. If material cost is the burden vehicle, then 64% is allocated to the washers. In both cases, the $\$ 750,000$ has been split between the two products. However, neither value is relevant for our purposes, since neither is an incremental cost.

Problems with Traditional Cost Accounting. The principle is that the analyst must determine which indirect or overhead expenses will be changed because of an engineering project. What are the incremental cash flows? The changes in costs incurred must be estimated. Loadings, or allocations, of overhead expenses cannot be used.

This issue has become very important, because in some firms, automation has reduced direct-labor content to less than 5% of the product's cost. Yet, in some of these firms, the basis for allocating overhead is still direct-labor hours or cost.

A. 6 Activity-Based Costs*

Some firms are shifting to activity-based costing (ABC), in which each activity is linked to specific costs drivers and the number of dollars allocated as overhead is minimized. ABC provides the incremental cash flows required for engineering economic analysis. ABC also

[^5]EXIHIBIT A. 4 Activity-based costing vs. traditional overhead allocation ${ }^{1}$

${ }^{1}$ Based on an example by Kim LaScola Needy.
provides more accurate data for project evaluations. Exhibit A. 4 illustrates the difference between activity-based costing and traditional overhead allocation [Tippett and Hoekstra].

Definition. Activity-based costing (ABC) systems differ from absorption costing in three ways: (1) overhead costs are managed not allocated; (2) the focus is on process costs, which provide the basis for more accurate cost estimation; and (3) there is a more detailed cost structure. These differences allow for more accurate and timely management of both direct and indirect costs.

The underlying philosophy of ABC is stated [Liggett, Trevino, and Lavelle] as:
Certain activities are carried out in the manufacture of products. Those activities consume a firm's resources, thereby creating costs. The products, in turn, consume activities. By determining the amount of resource (and the resulting cost) consumed by an activity and the amount of an activity consumed in manufacturing a product, it is possible to directly trace manufacturing costs to products.
Activities are at the heart of an ABC system in which the focus is on capturing the "true cost" of designing, producing, delivering, and supporting a product or service to a customer over its life cycle. Example A. 2 shows the calculation of activity costs in a telephone customer-order-processing work cell. These activities should be tracked to determine how much of each task is used by the different products. Some products may be more complex and require more time for ordering. Another product may generate more complaints and require more time.

EXAMPLE A. 2 Activities at Industrial Gadgets

Five workers are in a telephone-order business cell for processing customer orders. The telephone tasks (fraction time) include taking product orders (75%); logging and followup for customer complaints, and feedback (10\%); and providing on-line product inquiry assistance (15\%). The nontelephone tasks include invoicing and billing orders (35\%), order shipping preparation (25%), and inventory updating and maintenance (40%). The five workers split their time as follows between telephone and nontelephone tasks: two ($100 \% / 0 \%$), one ($50 \% / 50 \%$), and two $(10 \% / 90 \%)$. Assume a 2000 -hour work-year and a rate of $\$ 15.00$ per hour for salary and benefits. Calculate the annual business cost per item. Each year, there are 12,000 product orders,

2000 customer complaints/feedback, 1500 on-line product inquiries, 10,000 orders, and 10,000 inventory updates.

SOLUTION

One full-time employee annual costs $=(2,000$ hours $/$ year $)(\$ 15 /$ hour $)=\$ 30,000 /$ year.
Employee time as full-time equivalents (FTE):

$$
\begin{aligned}
\mathrm{FTE}_{\text {tel. }} & =2 \times 1+1 \times .5+2 \times .1=2.7 \text { Employees } \\
\mathrm{FTE}_{\text {nontel. }} & =2 \times 0+1 \times .5+2 \times .9=2.3 \text { Employees }
\end{aligned}
$$

Telephone Tasks:

Taking product orders:

$$
30,000 \times 2.7 \times .75=\$ 60,750 \text { per year } / 12,000 \text { calls }=\$ 5.06 / \text { order }
$$

Logging and follow-up for customer complaints/feedback:

$$
30,000 \times 2.7 \times .1=\$ 8100 \text { per year } / 2000 \text { calls }=\$ 4.05 / \text { call }
$$

Providing on-line product inquiry assistance:

$$
30,000 \times 2.7 \times .15=\$ 12,150 \text { per year } / 1500 \text { calls }=\$ 8.10 / \text { call }
$$

Subtotal $=\$ 81,000$ per year

Nontelephone Tasks:

Invoicing/billing orders:

$$
30,000 \times 2.3 \times .35=\$ 24,150 \text { per year } / 10,000 \text { orders }=\$ 2.42 / \text { order }
$$

Order shipping preparation:

$$
30,000 \times 2.3 \times .25=\$ 17,250 \text { per year } / 10,000 \text { orders }=\$ 1.73 / \text { order }
$$

Inventory updating/maintenance:

$$
30,000 \times 2.3 \times .40=\$ 27,600 \text { per year } / 10,000 \text { orders }=\$ 2.76 / \text { order }
$$

Subtotal $=\$ 69,000$ per year

An ABC system identifies resources, such as employee time, production equipment, labor, tooling, computer time, and floor space. Use of these resources by activities has direct and indirect costs that ABC assigns.

Because ABC
traces costs back to the activities that consume resources, it provides a framework for accurately tracking costs.

ABC Provides More Accurate Costs. Because ABC traces costs back to the activities that consume resources, it provides a framework for accurately tracking costs. It puts the burden of cost justification on those activities that create the costs.

Consider allocating indirect costs to a high-volume, dedicated assembly line (some automation, manual operations, and few product changeovers) and a lower-volume, flexible production cell (heavy automation, little direct-labor content, and small lot sizes). The higher support costs of the flexible assembly cell (detailed in Exhibit A.5) are caused by small lot sizes and product variety.

For this example, if overhead were allocated based on direct labor, then the assembly line and its high-volume products would subsidize the lower-volume flexible cell and the higher overhead costs required to support it. Manufacturers recognize this type of effect and often set a premium price on the undercosted products. This can cause two things to happen. First, the reporting system will identify these products as having the highest market margins; thus, sales and marketing forces will target them to increase their commissions. Second, prices on the overcosted products tend to be higher than necessary, which leaves a manufacturer vulnerable to competitors with a more accurate costing system.

EXHIBIT A.5 Additional resources consumed by low-volume flexible assembly cell

- Material pick orders
- Manufacturing assembly aids
- Shipping invoices
- Scheduling, receiving, warehousing, testing, and maintenance resources
- Manufacturing engineering support
- Machine program downloads
- Material handling requests
- Setup time
- Routing sheets
- Work orders

Using ABC. Exhibit A. 6 illustrates possible allocation bases for ABC. Example A. 3 is a more complete example.

EXHIBIT A. 6 Indirect cost basis for ABC

Activity/Expense	ABC Cost Bases
Utility expenses	Metered utility expense
Maintenance activities	Maintenance hours billed
Order entry	Number of orders processed
Receiving activities	Number of receipts processed
Engineering support	Engineering hours billed
Design change orders	Number of orders processed
Inspection activities	Items inspected
Production setups	Setups required

JMJ Enterprises makes two models of networking equipment for the telecommunications industry. The Alpha and Omega products have annual sales volumes of 25,000 and 40,000 units, respectively. Historically, JMJ has used a traditional (absorption-based) cost accounting system based on direct-labor hours. The costs for the current year are:

	Model Alpha	Model Omega
Direct-material cost	$\$ 350,000$	$\$ 160,000$
Direct-labor cost	125,000	600,000
Direct-labor hours	12,500	60,000
Total manufacturing indirect costs: $\$ 698,250$		

The company is considering a switch to ABC . It has identified six main activities that drive most of the manufacturing indirect costs. The activities, their indirect costs, drivers, and usage rates are:

Activity	Costs	Cost Driver	Model Alpha	Model Omega	Total Units
Production	$\$ 280,000$	Machine hours	5000	9000	14,000
Engineering	18,000	Engr. change orders	100	50	150
Material handling	225,000	Material moves	50,000	40,000	90,000
Receiving	12,000	Batches	600	1000	1600
Quality assurance	49,500	Inspections	2500	2000	4500
Pack and ship	113,750	Products	25,000	40,000	65,000

Compare the total manufacturing costs for JMJ's two models using the traditional and ABC methods.

SOLUTION

Traditional Costing Method

$$
\begin{aligned}
\text { Indirect cost rate } & =(\text { Total indirect costs }) /(\text { Total direct }- \text { labor hours }) \\
& =\$ 698,250 / 72,500 \text { hours }=\$ 9.631 \text { per direct-labor hour }
\end{aligned}
$$

Activity	Model Alpha	Model Omega	
Direct material	$\$ 350,000$	$\$ 160,000$	
Direct labor	$\$ 125,000$	$\$ 600,000$	
Allocated indirect	$\underline{\$ 120,388}$	$(=\$ 12,500 \times 9.631)$	$\frac{\$ 577,862}{\$ 717,250}$
Total	$\$ 595,388$	$\$ 60,000 \times 9.631)$	
Manufacturing cost/unit	$\$ 23.82$	$\$ 33.45$	

ABC Method

Each applied activity rate equals the activity cost divided by the total activity level. For example, $\$ 280,000$ for 14,000 machine hours is a cost of $\$ 20$ per machine hour.

Companies making decisions based on distorted costs may unknowingly price some of their products out of the market while selling others at a loss. Likewise, firms may make key decisions, based on competitors' market prices, that do not reflect the true costs of manufacturing their own new or revised products.

Economic Justification Using ABC Data. ABC more accurately defines product and service costs; thus, it is a better foundation for the economic evaluation of engineering projects. Example A. 4 evaluates replacing a manual assembly line with an automated flexible assembly cell.

EXAMPLE A. 4 True Cost of Automation

The data to analyze the "apparent" incremental cash flows of a flexible automated assembly cell are shown below. Develop a list of often-ignored indirect expenses that ABC could potentially assign to the flexible assembly cell.

Investment cost	$\$ 250,000$
Annual savings from wages and benefits	$\$ 100,000$
Maintenance costs	$\$ 20,000$
Useful life	8 years
Market value at disposal	$\$ 50,000$
Discounting rate (before-tax)	20%
Measure of Merit	
\quad Payback period	2.5 years
Net present value	$\$ 68,590$
IRR	28.1%

SOLUTION

There are many often-ignored costs in the comparison of advanced manufacturing technology alternatives that when quantified might change the recommended choice. ABC can quantify the indirect costs that are summarized in Exhibit A.7.

EXHIBIT A. 7 Indirect costs of flexible automation that are often omitted

1. Process engineering and technician support costs to create and maintain manufacturing shop aids and program machine instructions.
2. Costs for new tools/fixtures required by automated machinery, storage of these items, and ongoing maintenance.
3. Training costs to prepare employees for safe operation of new machines.
4. Added utility costs for electric, hydraulic, and pneumatic power sources.
5. Added materials handling costs for specialized containerization.
6. Floor space opportunity costs for extra requirements of flexible automation equipment for operation and footprint clearances.
7. Indirect batch costs, because having many flexible cells leads to smaller lot sizes with increased costs for purchase orders, material movements, setups, routing sheets, material pick orders, and work orders.

Timely and Accurate Data. ABC does not satisfy all concerns about accurate accounting data. Centralized accounting systems often have been accused by project managers of being too slow or untimely. Because engineering economy is not dealing with the daily problem of project control, this is less of an issue. However, if an organization establishes multiple files and systems so that project managers (and others) may have the timely data that they need, then the level of accuracy in one or all systems may be low. In this case, cost estimates will have to consider other internal data sources.

There are several cases in which data on equipment or inventory values may be questionable. When inventory is valued on a "last-in, first-out" basis, the remaining inventory may be valued too low. Similarly, land may be valued at its acquisition cost and, thus, be significantly undervalued. Finally, capital equipment may be valued at either a low or a high value, depending on allowable depreciation techniques and company policy.

This appendix has highlighted several financial and accounting concepts that are important to engineering. First, a differentiation between the engineering economy, management, and accounting functions was given. Highlighted was the fact that although often separated professionally, these functions are very closely related and, in fact, need to be connected in successful firms. General accounting tools such as the balance sheet and income statement were given and explained, and several measures of financial health were demonstrated. Activity-based costing (ABC) and traditional accounting systems were explained and compared. ABC was shown to be an important tool for the engineering economist.

Having accurate and timely cost accounting data, especially as it affects economic analysis and decision making, is vitally important to the engineering economist. Less-than-accurate data cannot always be compensated for in a risk and sensitivity analysis. The engineering economist would always prefer to have data that can be trusted.

REFERENCES

Canada, John R., and William G. Sullivan, Economic and Multi-Attribute Evaluation of Advanced Manufacturing Systems, 1989, Prentice-Hall.
Liggett, Hampton R., Jaime Trevino, and Jerome P. Lavelle, "Activity-Based Cost Management Systems in an Advanced Manufacturing Environment," Economic and Financial Justification of Advanced Manufacturing Technologies, 1992, H.R. Parsaei (editor), Elsevier Science.
Tippet, Donald D., and Peter Hoekstra, "Activity-Based Costing: A Manufacturing Management Decision-Making Aid," Engineering Management Journal, Volume 5, Number 2, June 1993, American Society for Engineering Management, pp. 37-42.

Problems

A. 1 Why is it important for engineers and managers to understand accounting principles? Name a few ways that they can do so.
A. 2 Explain the accounting function within a firm. What does this function do, and why is it important? What types of data does it provide?
A. 3 Develop short definitions for the following terms: balance sheet, income statement, and fundamental accounting equation.
A. 4 Explain the difference between short-term and long-term liabilities.
A. 5 Calculate the equity of the Gravel Construction Company if it has $\$ 1$ million worth of assets. Gravel has $\$ 127,000$ in current liabilities and $\$ 210,000$ in long-term liabilities.
A. 6 Matbach Industries has $\$ 870,000$ in current assets and $\$ 430,000$ in fixed assets less $\$ 180,000$ in accumulated depreciation. The firm's current liabilities total $\$ 330,000$, and the long-term liabilities $\$ 115,000$.
(a) What is the firm's equity?
(b) If the firm's stock and capital surplus total $\$ 305,000$, what is the value for retained earnings?
A. 7 CalcTech has $\$ 930,000$ in current assets and $\$ 320,000$ in fixed assets less $\$ 108,000$ in accumulated depreciation. The firm's current liabilities total $\$ 350,000$, and the long-term liabilities $\$ 185,000$.
(a) What is the firm's equity?
(b) If the firm's stock and capital surplus total $\$ 402,000$. what is the value for retained earnings?
A. 8 Mama L's Baby Monitor Company has current assets of $\$ 5$ million and current liabilities of $\$ 2$ million. Give the company's working capital and current ratio. (Answers: \$3 million; 2.50)
A. 9 For Gee-Whiz Devices calculate the following: working capital, current ratio, and acid-test ratio.

Gee-Whiz Devices Balance Sheet Data

Cash	$\$ 100,000$
Market securities	45,000
Net accounts and notes receivable	150,000
Retailers inventories	200,000
Prepaid expenses	8000
Accounts and notes payable (short term)	315,000
Accured expenses	90,000

(Answer: \$90,000; 1.22; .73)
A. 10 From the following data, taken from the balance sheet of Petey's Widget Factory, determine the working capital, current ratio, and acid-test ratio.

Cash	$\$ 90,000$
Net accounts and notes receivable	175,000
Retailers inventories	210,000
Prepaid expenses	6000
Accounts and notes payable (short term)	322,000
Accured expenses	87,000

A. 11 (a) For Evergreen Environmental Engineering (EEE) determine the working capital, current ratio, and acid-test ratio. Evaluate the company's economic situation with respect to its ability to pay off debt.

EEE Balance Sheet Data (\$1000s)

Cash	$\$ 110,000$
Securities	40,000
Accounts receivable	160,000
Inventories	250,000
Prepaid expenses	3000
Accounts payable	351,000
Accured expenses	89,000

(b) The entries to complete EEE's balance sheet include:

More EEE Balance Sheet Data (\$1000s)

Long-term liabilities	$\$ 220,000$
Land	25,000
Plant and equipment	510,000
Accumulated depreciation	210,000
Stock	81,000
Capital surplus	15,000
Retained earning	Value not given

Construct EEE's balance sheet.
(c) What are EEE's values for total assets, total liabilities, and retained earnings?
A. 12 Turbo Start has current assets totaling $\$ 1.5$ million (this includes $\$ 500,000$ in current inventory) and current liabilities totaling $\$ 50,000$. Find the current ratio and acid-test ratio. Are the ratios at desirable levels? Explain.
A. 13 (a) For J\&W Graphics Supply, compute the current ratio. Is this a financially healthy company? Explain.

J\&W Graphics Supply Balance Sheet Data (\$1000s)

Assets	
Cash	$\$ 1740$
Accounts receivable	2500
Inventories	-700
Bad debt provision	
Liabilities	1050
Accounts payable	500
Notes payable	125

(b) The entries from J\&W's balance sheet include:

More J\&W Balance Sheet Data (\$1000s)
Long-term liabilities $\$ 950$

Land 475
Plant and equipment 3100
Accumulated depreciation 1060
Stock 680
Capital surplus 45
Retained earning
Value not given
Construct J\&W's balance sheet.
(c) What are J\&W's values for total assets, total liabilities, and total assets?
A. 14 For Sutton Manufacturing, determine the current ratio and the acid-test ratio. Are these values acceptable? Why or why not?
Sutton Manufacturing Balance Sheet Date (\$1000s)

Assets	Liabilities		
Current assets	Current liabilities		
Cash	\$870	Notes payable	\$500
Accounts receivable	450	Accounts payable 600	
Inventory	1200	Accruals	200
Prepaid expenses	60	Taxes payable $\quad 30$	
		Current portion 100	
Total Current Assets	$\overline{2670}$	long-term debt	
		Total Current	1430
		Liabilities	
		Long-term debt	2000
		Officer debt	200
Net fixed assets		(subordinated)	
Land	1200	Total Liabilities	3630
Plant and equipment	3800	Equity	
(less accumulated -	-1000	Common stock	1670
depreciation)		Capital surplus	400
Other assets		Retained earnings	1200
Notes receivable	200	Total equity	3270
Intangibles	120		
		Total liabilities	
Total Assets	6900	and equity	6900

A. 15 If a firm has a current ratio less than 2.0 and an acidtest ratio less than 1.0 , will the company eventually go bankrupt and out of business ? Explain your answer.
A. 16 What is the advantage of comparing financial statements across periods or against industry benchmarks over looking at statements associated with a single date or period?
A. 17 List the two primary general accounting statements. What is each used for, and how do the two differ? Which is most important?
A. 18 Scarmack's Paint Company has annual sales of $\$ 500,000$ per year. If there is a profit of $\$ 1000$ per day, 6 days per week operation, what is the total yearly business expense? All calculations are on a before-tax basis. (Answer: $\$ 188,000$)
A. 19 Find the net income of Turbo Start (Problem A-12) given the following data from the balance sheet and income statement.

Turbo Start Data (\$1000s)

Accounts payable	$\$ 1,000$
Selling expense	5,000
Sales revenue	50,000
Owner's equity	4,500
Income taxes	2,000
Cost of goods sold	30,000
Accounts receivable	15,000

(Answer: \$13,000,000)
A. 20 Laila's Surveying Inc. had revenues of \$100,000 in 2004. Expenses totaled $\$ 60,000$. What was her net profit (or loss)?
A. 21 The general ledger of the Fly-Buy-Nite (FBN) Engineering Company contained the following account balances. Construct an income statement. What is the net income before taxes and the net profit (or loss) after taxes? FBN has a tax rate of 27%.

	Amount $(\$ 1000 \mathbf{s})$
Administrative expenses	$\$ 2,750$
Subcontracted services	18,000
Development expenses	900
Interest expense	200
Sales revenue	30,000
Selling expenses	4,500

A. 22 For Magdalen Industries, compute the net income before taxes and net profit (or loss). Taxes for the year were $\$ 1$ million.
(a) Calculate net profit for the year.
(b) Construct the income statement.
(c) Calculate the interest coverage and net profit ratio. Is the interest coverage acceptable? Explain why or why not.

Magdalen Industries Income Statement Data (\$M))

Revenues
Total operating revenue
\$81
(including sales of $\$ 48$ Million)
Total nonoperating revenue
Expenses
Total operating expenses
Total nonoperating expenses
(interest payments)
A. 23 For Andrew's Electronic Instruments, calculate the interest coverage and net profit ratio. Is Andrew's business healthy?
Income Statement for Andrew's Electronics for End of Year 2008 (in \$1000's)

Revenues

Operating revenues
Sales
$\begin{array}{ll}\text { (minus) Returns } & -15\end{array}$
Total Operating Revenues 380
Nonoperating revenues
Interest receipts
Stock revenues 25
Total Nonoperating Revenues 75
Total Revenues (R) 455

Expenses

Operating expenses
Cost of goods and services sold
Labor
Materials
Indirect cost
Selling and promotion 20
Depreciation 30
General and administrative 10
Lease payments 10
Total Operating Expenses 372
Nonoperating expenses
Interest payments
Total nonoperating expenses 22
Total Expenses (E) 394
Net Income Before Taxes R - E 61
Incomes Taxes 30
Net Profit (Loss)
for the Year 2008
A. 24 Sutton Manufacturing (balance sheet at the end of last year in Problem A-14) had the following entries in this year's income statement.
$\begin{array}{ll}\text { Depreciation } & \$ 420,000 \\ \text { Profit } & 480,000\end{array}$
In addition, we also know the firm purchased $\$ 800,000$ of equipment with cash. The firm paid $\$ 200,000$ in dividends this year.

What are the entries in the balance sheet at the end of this year for:
(a) plant and equipment?
(b) accumulated depreciation?
(c) retained earnings?
A. 25 Magdalen Industries (Problem A-22) had the following entries in its balance sheet at the end of last year.
Plant and equipment
(less accumulated depreciation) 8 million
Retained earnings
60 million
In addition to the income statement data for this year in Problem A-22, we also know that the firm purchased $\$ 3$ million of equipment with cash and that depreciation expenses were $\$ 2$ million of the $\$ 70$ million in operating expenses listed in Problem A-22. The firm paid no dividends this year.

What are the entries in the balance sheet at the end of this year for:
(a) plant and equipment?
(b) accumulated depreciation?
(c) retained earnings?
A. 26 Categorize each of the following costs as direct or indirect. Assume that a traditional costing system is in place.
Machine run costs. Cost to market the product.
Machine depreciation. Cost of storage.
Material handling costs. Insurance costs.
Cost of materials. Cost of product sales force.
Overtime expenses. Engineering drawings.
Machine operator wages. Machine labor.
Utility costs. Cost of tooling and fixtures.
Support (administrative) staff salaries.
A. 27 LeGaroutte Industries makes industrial pipe manufacturing equipment. Use direct-labor hours as the burden vehicle, and compute the total cost per unit for each model given in the table. Total manufactur-
ing indirect costs are $\$ 15,892,000$, and there are 100,000 units manufactured per year for Model S, 50,000 for Model M, and 82,250 for Model G.

Item	Model \boldsymbol{S}	Model \boldsymbol{M}	Model \boldsymbol{G}
Direct-material costs	$\$ 3,800,000$	$\$ 1,530,000$	$\$ 2,105,000$
Direct-labor costs	600,000	380,000	420,000
Direct-labor hours	64,000	20,000	32,000

(Answer: \$132; \$93; \$84)
A. 28 RLW-II Enterprises estimated that indirect manufacturing costs for the year would be $\$ 60$ million and that 12,000 machine-hours would be used.
(a) Compute the predetermined indirect cost application rate using machine hours as the burden vehicle.
(b) Determine the total cost of production for a product with direct material costs of $\$ 1$ million, direct-labor costs of $\$ 600,000$, and 200 ma-chine-hours.
(Answers: \$5000; \$2.6 million)
A. 29 Par Golf Equipment Company produces two types of golf bag: the standard and deluxe models. The total indirect cost to be allocated to the two bags is $\$ 35,000$. Determine the net revenue that Par Golf can expect from the sale of each bag.
(a) Use direct-labor cost to allocate indirect costs.
(b) Use direct-materials cost of allocate indirect cost.

Data Item	Standard	Deluxe
Direct-labor cost	$\$ 50,000$	$\$ 65,000$
Direct-material cost	40,000	47,500
Selling price	60	95
Units produced	1800	1400

A. 30 If RLW-II Enterprises (Problem A.28) used an activ-ity-based approach to allocate manufacturing indirect cost, what are some potential categories of indirect costs that the company should track?
A. 31 Give three examples each of indirect and direct activities (not already given in this appendix).
A. 32 What are characteristics of the firm that you think has the most to gain from an ABC implementation?

In what environments will ABC have the most impact?
A. 33 Do you think that ABC can be a panacea, or do you see it as just another management fad that eventually will blow away and be forgotten?
A. 34 In a small group (or by yourself), brainstorm and make a list of all of the monetary and nonmonetary attributes that could (should) be included in an economic analysis justification of implementing an ABC system.
A. 35 Which of the following two companies would benefit more from the ABC accounting method: (a) a small company with few products or (b) a mediumsized company with dozens of products? Explain your answer.
A. 36 Develop two situations in which not knowing the true costs of producing a product or service can be critical for a company. Explain the situation and the potential impacts.
A. 37 Discuss why the traditional (absorption-based) costing method may result in a different manufacturing cost-per-unit value when compared to the ABC method. What are the trade-offs that companies should evaluate when considering a switch from a traditional to an ABC accounting system?
A. 38 The Rainsprout Irrigation Company has a rain gate that is currently being manufactured using a plastic extrusion process and an assembly line using manual labor to assemble the final gate. The engineering department must determine if this assembly process is a good candidate for automation. How might ABC accounting be helpful? Explain all potential advantages and disadvantages.
A. 39 Parents' Helpers manufactures the Smoothie and the LowRider for the upper end of the baby- stroller market. The Smoothie has annual sales of 50,000 units, and the LowRider realizes annual sales of 10,000 units. Each buggy requires 2.50 hours of direct labor. Costs for direct material are Smoothie at $\$ 30.00$ and LowRider at $\$ 45.00$. The total manufacturing indirect cost is $\$ 3$ million per year, and directlabor wages and benefits are $\$ 12.00$ per hour. The LowRider has a special design that requires more precision manufacturing processes, higher inspection tolerances, more engineering and drafting support,
and more complex setups, tooling, and fixturing. It is manufactured in small lots, which requires a larger number of production orders.
(a) Calculate the total unit manufacturing cost for each design using direct-labor hours as a burden vehicle.
(b) Mr. Squiggers, the CEO, just returned from an ABC seminar and directed you, his cost engineer, to calculate the unit manufacturing cost using ABC .
(c) Compare the results of (a) and (b). If selling price is set at 130% of total unit manufacturing cost, what are the consequences of relying on traditional absorption costing?

Minicase

A. 40 An engineering firm has historically allocated its overhead costs based on billable hours. The firm's di-rect-labor cost averages $\$ 35$ per employee hour, and it normally bills these hours to clients at $\$ 75$ per hour. The firm is considering a change to an allocation vehicle of direct cost. This month's overhead consists of $\$ 25,000$ for the managing partner and staff, $\$ 8000$ for training and other personnel costs, $\$ 32,000$ in proposal preparation costs, $\$ 12,000$ in subcontract administration, and $\$ 6000$ for other administrative expenses.
(a) What is the total cost for each project under each allocation method? Use the firm's cost of $\$ 35$ per employee hour and subcontract cost plus the allocated overhead to answer this.
(b) With the information fiven in this problem, devise and appaly a new system that represents a simplified version of activity based costing.

Project	Billable Hours	Subcontract	Total Bill
A	480	$\$ 0$	$\$ 36,000$
B	160	15,000	27,000
C	240	0	18,000
D	560	20,000	62,000
E	120	10,000	19,000
F	240	0	18,000
G	120	0	9000
Total	1920	45,000	189,000

Cases

The following cases from Cases in Engineering Economy $2^{\text {nd }}$ are suggested as matched with this chapter.

Case 5 Can Crusher

Basic time value of money, costs, and breakeven analysis.

Case 52 Aunt Allee's Jams and Jellies
Product costing needs activity-based costs.

[^0]: ## SOLUTION

 Yes! Since Joe repays each $\$ 5000$ four or five years after he borrowed it, the time value of money says the payments are worth less than what was borrowed. Essentially, the engineering firm has given him the free use of $\$ 20,000$ for 4 years to invest in his education. When he graduates, his skills and salary will be higher, and it will be easier for him to repay the loan.

[^1]: ${ }^{1}$ Amount owed at end of year before payment.

[^2]: Note: This table is used to find the recovery period for all items under MACRS.

[^3]: ${ }^{1}$ The rem (roentgen equivalent man) measures absorbed radiation.
 ${ }^{2}$ Permanent total disability higher.

[^4]: Sources: Tafler, Viscusi.

[^5]: *Portions of this section and related homework problems were taken with permission from "Chapter 17: Activity Based Costing," Capital Investment Analysis for Engineering and Management, 2nd ed., by Canada, Sullivan, and White, Prentice-Hall, 1996.

