

FPGAs
Fundamentals, Advanced Features,

and Applications in Industrial
Electronics

http://taylorandfrancis.com

FPGAs
Fundamentals, Advanced Features,

and Applications in Industrial
Electronics

Juan José Rodríguez Andina,
Eduardo de la Torre Arnanz, and

María Dolores Valdés Peña

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion
of MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161025

International Standard Book Number-13: 978-1-4398-9699-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors
and publishers have attempted to trace the copyright holders of all material reproduced in this
publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we
may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known
or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com
www.copyright.com

v

Contents

Preface...ix
Acknowledgments... xiii
Authors..xv

	 1.	 FPGAs and Their Role in the Design of Electronic Systems.................1
1.1	 Introduction..1
1.2	 Embedded Control Systems: A Wide Concept..................................2
1.3	 Implementation Options for Embedded Systems.............................4

1.3.1	 Technological Improvements and Complexity Growth......4
1.3.2	 Toward Energy-Efficient Improved Computing

Performance...6
1.3.3	 A Battle for the Target Technology?.......................................7
1.3.4	 Design Techniques and Tools for the Different

Technologies..8
1.3.4.1	 General-Purpose Processors and

Microcontrollers..9
1.3.4.2	 DSP Processors.. 10
1.3.4.3	 Multicore Processors and GPGPUs...................... 11
1.3.4.4	 FPGAs... 12
1.3.4.5	 ASICs... 12

1.4	 How Does Configurable Logic Work?... 13
1.5	 Applications and Uses of FPGAs... 18
References.. 19

	 2.	 Main Architectures and Hardware Resources of FPGAs..................... 21
2.1	 Introduction.. 21
2.2	 Main FPGA Architectures..22
2.3	 Basic Hardware Resources...25

2.3.1	 Logic Blocks...25
2.3.2	 I/O Blocks.. 29

2.3.2.1	 SerDes Blocks... 31
2.3.2.2	 FIFO Memories.. 32

2.3.3	 Interconnection Resources.. 32
2.4	 Specialized Hardware Blocks..34

2.4.1	 Clock Management Blocks..34
2.4.2	 Memory Blocks.. 41

vi Contents

2.4.3	 Hard Memory Controllers...45
2.4.4	 Transceivers... 47

2.4.4.1	 PCIe Blocks... 51
2.4.5	 Serial Communication Interfaces...53

References..56

	 3.	 Embedded Processors in FPGA Architectures.. 59
3.1	 Introduction.. 59

3.1.1	 Multicore Processors.. 61
3.1.1.1	 Main Hardware Issues... 61
3.1.1.2	 Main Software Issues...64

3.1.2	 Many-Core Processors...66
3.1.3	 FPSoCs..66

3.2	 Soft Processors.. 67
3.2.1	 Proprietary Cores.. 69
3.2.2	 Open-Source Cores... 76

3.3	 Hard Processors... 78
3.4	 Other “Configurable” SoC Solutions..85

3.4.1	 Sensor Hubs...85
3.4.2	 Customizable Processors...90

3.5	 On-Chip Buses.. 91
3.5.1	 AMBA... 92

3.5.1.1	 AHB... 92
3.5.1.2	 Multilayer AHB... 94
3.5.1.3	 AXI.. 95

3.5.2	 Avalon... 100
3.5.3	 CoreConnect.. 108
3.5.4	 WishBone... 109

References.. 111

	 4.	 Advanced Signal Processing Resources in FPGAs.............................. 115
4.1	 Introduction.. 115
4.2	 Embedded Multipliers... 117
4.3	 DSP Blocks.. 118
4.4	 Floating-Point Hardware Operators.. 121
References.. 125

	 5.	 Mixed-Signal FPGAs.. 127
5.1	 Introduction.. 127
5.2	 ADC Blocks... 128
5.3	 Analog Sensors... 133
5.4	 Analog Data Acquisition and Processing Interfaces.................... 134
5.5	 Hybrid FPGA–FPAA Solutions.. 138
References.. 142

viiContents

	 6.	 Tools and Methodologies for FPGA-Based Design.............................. 143
6.1	 Introduction.. 143
6.2	 Basic Design Flow Based on RTL Synthesis and

Implementation Tools.. 145
6.2.1	 Design Entry.. 147
6.2.2	 Simulation Tools.. 149

6.2.2.1	 Interactive Simulation... 152
6.2.2.2	 Mixed-Mode Simulation...................................... 152
6.2.2.3	 HIL Verification... 152

6.2.3	 RTL Synthesis and Back-End Tools.................................... 153
6.2.3.1	 RTL Synthesis.. 153
6.2.3.2	 Translation.. 156
6.2.3.3	 Placement and Routing.. 156
6.2.3.4	 Bitstream Generation.. 158

6.3	 Design of SoPC Systems.. 160
6.3.1	 Hardware Design Tools for SoPCs..................................... 160
6.3.2	 Software Design Tools for SoPCs....................................... 164
6.3.3	 Core Libraries and Core Generation Tools........................ 167

6.4	 HLS Tools.. 169
6.5	 Design of HPC Multithread Accelerators....................................... 171
6.6	 Debugging and Other Auxiliary Tools... 173

6.6.1	 Hardware/Software Debugging for SoPC Systems........ 173
6.6.1.1	 Software Debugging... 174
6.6.1.2	 Hardware Debugging... 175
6.6.1.3	 Hardware/Software Co-Debugging.................. 177

6.6.2	 Auxiliary Tools.. 177
6.6.2.1	 Pin Planning Tools.. 177
6.6.2.2	 FPGA Selection Advisory Tools.......................... 178
6.6.2.3	 Power Estimation Tools.. 178

References.. 179

	 7.	 Off-Chip and In-Chip Communications for FPGA Systems............. 181
7.1	 Introduction.. 181
7.2	 Off-Chip Communications... 182

7.2.1	 Low-Speed Interfaces... 182
7.2.2	 High-Speed Interfaces.. 183

7.3	 In-Chip Communications... 185
7.3.1	 Point-to-Point Connections.. 185
7.3.2	 Bus-Based Connections.. 186
7.3.3	 Networks on Chip.. 192

References.. 195

	 8.	 Building Reconfigurable Systems Using Commercial FPGAs.......... 197
8.1	 Introduction.. 197
8.2	 Main Reconfiguration-Related Concepts.. 198

8.2.1	 Reconfigurable Architectures... 201

viii Contents

8.3	 FPGAs as Reconfigurable Elements.. 202
8.3.1	 Commercial FPGAs with Reconfiguration Support........ 203
8.3.2	 Setting Up an Architecture for Partial Reconfiguration.... 204
8.3.3	 Scalable Architectures.. 206
8.3.4	 Tool Support for Partial Reconfiguration.......................... 208
8.3.5	 On-Chip Communications for Reconfigurable

System Support... 210
8.4	 RTR Support.. 211

8.4.1	 Self-Managing Systems.. 213
8.4.2	 Adaptive Multithread Execution with

Reconfigurable Hardware Accelerators............................. 216
8.4.3	 Evolvable Hardware... 219

References..227

	 9.	 Industrial Electronics Applications of FPGAs......................................229
9.1	 Introduction..229
9.2	 FPGA Application Domains in Industrial Electronics................. 231

9.2.1	 Digital Real-Time Simulation of Power Systems.............. 231
9.2.2	 Advanced Control Techniques.. 232

9.2.2.1	 Power Systems... 232
9.2.2.2	 Robotics and Automotive Electronics................233
9.2.2.3	 Use of Floating-Point Operations........................233

9.2.3	 Electronic Instrumentation...234
9.3	 Conclusion...234
References..235

Index.. 241

ix

Preface

This book intends to contribute to a wider use of field-programmable gate
arrays (FPGAs) in industry by presenting the concepts associated with this
technology in a way accessible for nonspecialists in hardware design so that
they can analyze if and when these devices are the best (or at least a possible)
solution to efficiently address the needs of their target industrial applications.
This is not a trivial issue because of the many different (but related) factors
involved in the selection of the most suitable hardware platform to solve a
specific digital design problem. The possibilities enabled by current FPGA
devices are highlighted, with particular emphasis on the combination of tra-
ditional FPGA architectures and powerful embedded processors, resulting
in the so-called field-programmable systems-on-chip (FPSoCs) or systems-
on-programmable-chip (SoPCs). Discussions and analyses are focused on
the context of embedded systems, but they are also valid and can be easily
extrapolated to other areas.

The book is structured into nine chapters:

•	 Chapter 1 analyzes the different existing design approaches for
embedded systems, putting FPGA-based design in perspective with
its direct competitors in the field. In addition, the basic concept of
FPGA “programmability” or “configurability” is discussed, and the
main elements of FPGA architectures are introduced.

•	 From the brief presentation in Chapter 1, Chapter 2 describes in detail
the main characteristics, structure, and generic hardware resources
of modern FPGAs (logic blocks, I/O blocks, and interconnection
resources). Some specialized hardware blocks (clock management
blocks, memory blocks, hard memory controllers, transceivers, and
serial communication interfaces) are also analyzed in this chapter.

•	 Embedded soft and hard processors are analyzed in Chapter 3,
because of their special significance and the design paradigm shift
they caused as they transformed FPGAs from hardware accelerators
to FPSoC platforms. As shown in this chapter, devices have evolved
from simple ones, including one general-purpose microcontroller, to
the most recent ones, which integrate several (more than 10 in some
cases) complex processor cores operating concurrently, opening the
door for the implementation of homogeneous or heterogeneous mul-
ticore architectures. The efficient communication between processors
and their peripherals is a key factor to successfully develop embedded
systems. Because of this, the currently available on-chip buses and
their historical evolution are also analyzed in detail in this chapter.

x Preface

•	 Chapter 4 analyzes DSP blocks, which are very useful hardware
resources in many industrial applications, enabling the efficient
implementation of key functional elements, such as digital filters,
encoders, decoders, or mathematical transforms. The advantages
provided by the inherent parallelism of FPGAs and the ability of
most current devices to implement floating-point operations in
hardware are also highlighted in this chapter.

•	 Analog blocks, including embedded ADCs and DACs, are addressed
in Chapter 5. They allow the functionality of the (mostly digital)
FPGA devices to be extended to simplify interfacing with the ana-
log world, which is a fundamental requirement for many industrial
applications.

•	 The increasing complexity of FPGAs, which is clearly apparent
from the analyses in Chapters 2 through 5, can only be efficiently
handled with the help of suitable software tools, which allow com-
plex design projects to be completed within reasonably short time
frames. Tools and methodologies for FPGA design are presented in
Chapter 6, including tools based on the traditional RTL design flow,
tools for SoPC design, high-level synthesis tools, and tools targeting
multithread accelerators for high-performance computing, as well as
debugging and other auxiliary tools.

•	 There are many current applications where tremendous amounts of
data have to be processed. In these cases, communication resources
are key elements to obtain systems with the desired (increasingly
high) performance. Because of the many functionalities that can be
implemented in FPGAs, such efficient communications are required
to interact not only with external elements but also with internal
blocks to exchange data at the required rates. The issues related to
both off-chip and in-chip communications are analyzed in detail in
Chapter 7.

•	 The ability to be reconfigured is a very interesting asset of FPGAs,
which resulted in a new paradigm in digital design, allowing the
same device to be readily adapted during its operation to provide
different hardware functionalities. Chapter 8 focuses on the main
concepts related to FPGA reconfigurability, the advantages of using
reconfiguration concurrently with normal operation (i.e., at run
time), the different reconfiguration alternatives, and some existing
practical examples showing high levels of hardware adaptability by
means of run-time dynamic and partial reconfiguration.

•	 Today, FPGAs are used in many industrial applications because of
their high speed and flexibility, inherent parallelism, good cost–
performance trade-off (offered through wide portfolios of differ-
ent device families), and the huge variety of available specialized

xiPreface

logic resources. They are expected not only to consolidate their
application domains but also to enter new ones. To conclude the
book, Chapter 9 addresses industrial applications of FPGAs in
three main design areas (advanced control techniques, electronic
instrumentation, and digital real-time simulation) and three very
significant application domains (mechatronics, robotics, and power
systems design).

http://taylorandfrancis.com

xiii

Acknowledgments

The authors have greatly benefited during their more than 25 years of experi-
ence in FPGA design from advice and comments from, and discussions with,
many colleagues, from both academia and the industry. Citing all of them
individually here is not possible and might result in some unintentional
omission. We hope all of them know they are represented here through our
grateful acknowledgments to our present and past colleagues and students
at the Department of Electronic Technology, University of Vigo, and the
Center of Industrial Electronics, Technical University of Madrid; the people
at the many companies for which we have consulted and developed projects
in the area; our colleagues in the IEEE Industrial Electronics Society; and
those we have met over the years in many scientific forums, such as IECON,
ISIE, ICIT, FPL, Reconfig, and ReCoSoc.

Last, but of course not the least, our final word of gratitude goes to our
families for their unconditional support.

http://taylorandfrancis.com

xv

Authors

Juan José Rodríguez Andina received
his MSc from the Technical University of
Madrid, Spain, in 1990, and his PhD from
the University of Vigo, Spain, in 1996, both in
electrical engineering. He has also received
the Extraordinary Doctoral Award from
the University of Vigo. He is an associate
professor in the Department of Electronic
Technology, University of Vigo. In 2010–2011,
he was on sabbatical as a visiting professor
at the Advanced Diagnosis, Automation, and

Control Laboratory, Electrical and Computer Engineering Department,
North Carolina State University, Raleigh. He has been working for more than
25 years in digital systems design, with emphasis on FPGA-based design for
industrial applications. He has authored more than 140 journal and confer-
ence articles and holds several Spanish, European, and U.S. patents. He cur-
rently serves as vice president for conference activities of the IEEE Industrial
Electronics Society and has been general chair, technical program chair, and
member of other various committees in a number of IEEE conferences (such
as IECON, ISIE, ICIT, and INDIN), where he regularly organizes special ses-
sions related to industrial applications of FPGAs and embedded systems.
He is the former editor-in-chief of the IEEE Industrial Electronics Magazine
and an associate editor for IEEE Transactions on Industrial Electronics and IEEE
Transactions on Industrial Informatics.

Eduardo de la Torre Arnanz is an associate
professor of electronics since 2002 and obtained
his MSc and PhD in electrical engineering from
the Technical University of Madrid in 1989 and
2000, respectively. His main expertise is in
FPGA-based design and, in particular, in par-
tial and dynamic reconfiguration of digital sys-
tems and reconfigurable hardware acceleration.
He has been working for more than 25 years
on digital systems design, among which more
than 20 have been around FPGAs, mostly in

industrial applications. He has authored more than 40 papers on reconfigu-
rable systems in the last five years and has been program cochair of ReCoSoC
(2015), Reconfig (2012 and 2013), DASIP (2013), and SPIE VLSI Circuits &
Systems (2009 and 2011) conferences as well as a program committee member

xvi Authors

of conferences such as FPL, ReCoSoC, RAW, WRC, ISVLSI, and SIES. He is also
a reviewer of numerous conferences and journals such as the IEEE Transactions
on Computers, IEEE Transactions on Industrial Informatics, IEEE Transactions on
Industrial Electronics, and Sensor magazine.

María Dolores Valdés Peña is an associate
professor in the Department of Electronic
Technology, University of Vigo, Spain. She
received her MSc from Universidad Central de
Las Villas, Santa Clara, Cuba, in 1990, and her
PhD from the University of Vigo, Vigo, Spain,
in 1997, both in electrical engineering. She
received the Extraordinary Doctoral Award
from the University of Vigo. In 1998, the
Society of Instrument and Control Engineers
(SICE) of Japan gave her the award for the
best research work at the 37th Annual SICE

Conference. Over the years, she has authored more than 120 journal and
conference articles. Her research interests include the design of reconfigu-
rable systems based on FPGAs applied to data acquisition and conditioning
systems, digital signal processing and control, wireless sensor networks, and
field-programmable systems-on-chip for industrial applications.

1

1
FPGAs and Their Role in the
Design of Electronic Systems

1.1 � Introduction

This book is mainly intended for those users who have had certain experience
in digital control systems design, but for some reason have not had the
opportunity or the need to design with modern field-programmable gate
arrays (FPGAs). The book aims at providing a description of the possibilities
of this technology, the methods and procedures that need to be followed in
order to design and implement FPGA-based systems, and selection criteria
on what are the best suitable and cost-effective solutions for a given problem
or application. The focus of this book is on the context of embedded sys-
tems for industrial use, although many concepts and explanations could be
also valid for other fields such as high-performance computing (HPC). Even
so, the field is so vast that the whole spectrum of specific applications and
application domains is still tremendously large: transportation (including
automotive, avionics, railways systems, naval industry, and any other trans-
portation systems), manufacturing (control of production plants, automated
manufacturing systems, etc.), consumer electronics (from small devices such
as an air-conditioning remote controller to more sophisticated smart appli-
ances), some areas within the telecom market, data management (including
big data), military industry, and so forth.

In this chapter, the concept of embedded systems is presented from a wide
perspective, to later show the ways of approaching the design of embed-
ded systems with different complexities. After introducing all possibilities,
the focus is put on FPGA-related applications. Then, the basic concept of
FPGA “programmability” or “configurability” is discussed, going into some
description of the architectures, methods, and supported tools required to
successfully carry out FPGA designs with different complexities (not only in
terms of size but also in terms of internal features and design approaches).

2 FPGAs: Fundamentals, Advanced Features, and Applications

1.2 � Embedded Control Systems: A Wide Concept

Embedded control systems are, from a very general perspective, control
elements that, in a somewhat autonomous manner, interact with a physical
system in order to have an automated control over it. The term “embedded”
refers to the fact that they are placed in or nearby the physical system under
control. Generally speaking, the interfaces between the physical and con-
trol systems consist of a set of sensors, which provide information from the
physical system to the embedded system, and a set of actuators capable, in
general, of modifying the behavior of the physical system.

Since most embedded systems are based on digital components, signals
obtained from analog sensors must be transformed into equivalent digital mag-
nitudes by means of the corresponding analog-to-digital converters (ADCs).
Equivalently, analog actuators are managed from digital-to-analog convert-
ers (DACs). In contrast, digital signals do not require such modifications. The
success of smart sensor and actuator technologies allows such interfaces to
be simplified, providing standardized communication buses as the interface
between sensors/actuators and the core of the embedded control system.

Without loss of generality regarding the earlier paragraphs, two partic-
ular cases are worth mentioning: communication and human interfaces.
Although both would probably fit in the previously listed categories, their
purposes and nature are quite specific.

On one hand, communication interfaces allow an embedded system to be
connected to other embedded systems or to computing elements, building
up larger and more complex systems or infrastructures consisting of smaller
interdependent physical subsystems, each one locally controlled by their
own embedded subsystem (think, for instance, of a car or a manufacturing
plant with lots of separate, but interconnected, subsystems).

Communication interfaces are “natural” interfaces for embedded control
systems since, in addition to their standardization, they take advantage from
the distributed control system philosophy, providing scalability, modularity,
and enhanced dependability—in terms of maintainability, fault tolerance,
and availability as defined by Laprie (1985).

On the other hand, human interfaces can be considered either like con-
ventional sensors/actuators (in case they are simple elements such as but-
tons, switches, or LEDs) or like simplified communication interfaces (in case
they are elements such as serial links for connecting portable maintenance
terminals or integrated in the global communication infrastructure in order
to provide remote access). For instance, remote operation from users can be
provided by a TCP/IP socket using either specific or standard protocols (like
http for web access), which easily allows remote control to be performed from
a web browser or a custom client application, the server being embedded in
the control system. Nowadays, nobody gets surprised by the possibility of

3FPGAs and Their Role in the Design of Electronic Systems

using a web browser to access the control of a printer, a photocopy machine,
a home router, or a webcam in a ski resort.

Figure 1.1 presents a general diagram of an embedded control system and
its interaction with the physical system under control and other subsystems.

Systems based on analog sensors and actuators require signal conditioning
operations, such as low-noise amplification, anti-aliasing filtering, or filter-
ing for noise removal, to be applied to analog signals. Digital signal process-
ing and computationally demanding operations are also usually required in
this case. On the other hand, discrete sensors and actuators tend to make the
embedded system more control dependent. Since they have to reflect states of
the system, complexity in this case comes from the management of all state
changes for all external events. As a matter of fact, medium- or large-size
embedded systems usually require both types of sensors and actuators to be
used. On top of that, in complex systems, different control subtasks have to
be performed concurrently since the key to achieve successful designs is
to apply the “divide and conquer” approach to the global system, in order
to break down its functionality into smaller, simpler subsystems.

As one might think, the previous paragraphs may serve as introductory
section for a book on any type of embedded systems, these being based on
microcontrollers, computers, application-specific integrated circuits (ASICs),
or (of course) FPGAs. Therefore, since implementation platforms do not
actually modify the earlier definitions and discussion significantly, one of
the main objectives of this book is to show when and how FPGAs could
(or should) be used for the efficient implementation of embedded control
systems targeting industrial applications. Since each technology has its
own advantages and limitations, decision criteria must be defined to select

Comm.
interface

User
interface

Embedded
control
system

Dig. (SPI, I2C)

Dig. (SPI, I2C)

DAC

ADC

Dig.

Dig.

Dig.

Dig.

Ana.

Ana.
Sensors

Smart
sensor

Physical
system

Actuat.
Smart

actuator

FIGURE 1.1
Generic block diagram of an embedded system.

4 FPGAs: Fundamentals, Advanced Features, and Applications

the technology or technologies best suited to solve a given problem. Fairly
speaking, the authors do not claim FPGAs to be used for any industrial con-
trol system, but their intention is to help designers identify the cases where
FPGA technology provides advantages (or is the only possibility) for the
implementation of embedded systems in a particular application or applica-
tion domain.

1.3 � Implementation Options for Embedded Systems

Selecting the most suitable technique to implement an embedded system
that fulfills all the requirements of a given application may not be a trivial
issue since designers need to consider many different interrelated factors.
Among the most important ones are cost, performance, energy consump-
tion, available resources (i.e., computing resources, sizes of different types of
memories, or the number and type of inputs and outputs available), reliabil-
ity and fault tolerance, or availability. Even if these are most likely the factors
with higher impact on design decision, many others may also be significant
in certain applications: I/O signal compatibility, noise immunity (which is
strongly application dependent), harsh environmental operating conditions
(such as extreme temperature or humidity), tolerance to radiations, physical
size restrictions, special packaging needs, availability of the main comput-
ing device and/or of companion devices (specific power supplies, external
crystal oscillators, specific interfaces, etc.), existence of second sources of
manufacturing, time to product deprecation, intellectual property (IP) pro-
tection, and so forth.

For simple embedded systems, small microcontrollers and small FPGAs
are the main market players. As the complexity of the applications to be
supported by the embedded system grows, larger FPGAs have different
opponents, such as digital signal processing (DSP) processors, multicore
processors, general-purpose graphic processing units (GPGPUs), and ASICs.
In order to place the benefits and drawbacks of FPGAs within this contest,
qualitative and quantitative comparisons between all these technologies are
presented in the next sections for readers to have sound decision criteria to
help determine what are the most appropriate technologies and solutions for
a given application.

1.3.1 � Technological Improvements and Complexity Growth

The continuous improvements in silicon semiconductor fabrication tech-
nologies (mainly resulting in reductions of both transistor size and power
supply voltage) implicitly allow lower energy consumption and higher per-
formance to be achieved. Transistor size reduction also opens the door for

5FPGAs and Their Role in the Design of Electronic Systems

higher integration levels, which although undoubtedly being a big advan-
tage for designers, give rise to some serious threats regarding, for instance,
circuit reliability, manufacturing yield (i.e., the percentage of fabricated parts
that work correctly), or noise immunity.

Power consumption is also becoming one of the main problems faced by
designers, not only because of consumption itself but also because of the need
for dissipating the resulting heat produced in silicon (especially with mod-
ern 3D stacking technologies, where different silicon dies are decked, reduc-
ing the dissipation area while increasing the number of transistors—and,
therefore, the power consumption—per volume unit). Circuits at the edge
of the technology are rapidly approaching the limits in this regard, which
are estimated to be around 90 W/cm2, according to the challenges reported
for reconfigurable computing by the High Performance and Embedded
Architectures and Computation Network of Excellence (www.hipeac.net).

The integration capacity is at the risk of Moore’s law starting to suffer from
some fatigue. As a consequence, the continuous growth of resource integra-
tion over the years is slowing down compared to what has been happen-
ing over the last few decades. Transistor sizes are not being reduced at the
same pace as higher computing performance is being demanded, so larger
circuits are required. Larger circuits negatively affect manufacturing yield
and are negatively affected by process variation (e.g., causing more differ-
ences to exist between the fastest and slowest circuits coming out from the
same manufacturing run, or even having different parts of the same circuit
achieving different maximum operating frequencies). This fact, combined
with the use of lower power supply voltages, also decreases fault tolerance,
which therefore needs to be mitigated by using complex design techniques
and contributes to a reduction in system lifetime.

Maximum operating frequency seems to be saturated in practice. A limit
of a few GHz for clock frequencies has been reached in regular CMOS tech-
nologies with the smallest transistor sizes, no matter the efforts of circuit
designers to produce faster circuits, for instance, by heavily pipelining their
designs to reduce propagation delay times of logic signals between flip-flops
(the design factor that, apart from the technology itself, limits operating
frequency).

Is the coming situation that critical? Probably not. These problems
have been anticipated by experts in industry and academia, and dif-
ferent approaches are emerging to handle most of the issues of concern.
For instance, low-power design techniques are reaching limits that were
not imaginable 10–15 years ago, using dynamic voltage scaling or power
gating and taking advantage of enhancements in transistor threshold volt-
ages (e.g., thanks to multithreshold transistors). Anyway, the demand for
higher computing power with less energy consumption is still there. Mobile
devices have a tremendous, ever-increasing penetration in all aspects of our
daily lives, and the push of all these systems is much higher than what tech-
nology, alone, can handle.

www.hipeac.net

6 FPGAs: Fundamentals, Advanced Features, and Applications

Is there any possibility to face these challenges? Yes, using parallelism.
Computer architectures based on single-core processors are no longer pro-
viding better performance. Different smart uses of parallel processing are
leading the main trends in HPC, as can be seen in the discussion by Kaeli
and Akodes (2011). Actually, strictly speaking, taking the most advantage of
parallelism does not just mean achieving the highest possible performance
using almost unlimited computing resources but also achieving the best
possible performance–resources and performance–energy trade-offs. This is
the goal in the area of embedded systems, where resources and the energy
budget are limited.

In this context, hardware-based systems and, in particular, configurable
devices are opening new ways for designing efficient embedded systems.
Efficiency may be roughly measured by the ratio of the number of operations
per unit of energy consumed, for example, in MFlops/mW (millions of floating-
point operations per second per milliwatt). Many experiments have shown
that improvements of two orders of magnitude may be achieved by replac-
ing single processors with hardware computing.

1.3.2 � Toward Energy-Efficient Improved Computing Performance

FPGAs have an increasingly significant role when dealing with energy con-
sumption. Sometime ago, the discussion regarding consumption would
have been centered on power consumption, but the shift toward considering
also energy as a major key element comes from the fact that the concern on
energy availability is becoming a global issue. Initially, it just affected porta-
ble devices or, in a more general sense, battery-operated devices with limited
usability because of the need of recharging or replacing batteries.

However, the issue of energy usage in any computing system is much more
widespread. The most opposite case to restricted-energy, restricted-resource
tiny computing devices might be that of huge supercomputing centers (such
as for cloud-computing service providers). The concern on the “electricity
bill” of these companies is higher than ever. To this respect, although FPGAs
cannot be considered the key players in this area, they are presently having
a growing penetration. As a proof of that, it can be noticed that there are ser-
vices (including some any of us could be using daily, such as web searchers
or social network applications) currently being served by systems including
thousands of FPGAs instead of thousands of microprocessors.

Why is this happening? Things have changed in recent years, as tech-
nologies and classical computing architectures are considered to be mature
enough. There are some facts (slowly) triggering a shift from software-based
to hardware-based computing. As discussed in Section 1.3.1, fabrication
technologies are limited in the maximum achievable clock speed, so no
more computing performance can be obtained from this side. Also, single-
core microprocessor architectures have limited room for enhancement. Even
considering complex cache or deep pipelined structures, longer data size

7FPGAs and Their Role in the Design of Electronic Systems

operators, or other advanced features one might think of, there are not much
chances for significant improvements.

There is no way of significantly improving performance in a computing
system other than achieving higher levels of parallelism. To this respect, the
trend in software-based computing is to move from single-core architectures
to multi- or many-core approaches. By just taking into account that hardware-
based computing structures (and, more specifically, FPGAs) are intrinsically
parallel, it means that FPGAs have better chances than software-based comput-
ing solutions to provide improved computing performance (Jones et al. 2010).

In addition, if the energy issue is included in the equation, it is clear that
reducing the time required to perform a given computation helps in reduc-
ing the total energy consumption associated with it (moreover, considering
that, in most applications, dynamic power consumption is dominant over
static power consumption*). Thus, a certain device with higher power con-
sumption than an opponent device may require less energy to complete a
computing task if the acceleration it provides with respect to the opponent
is sufficiently high. This is the case with FPGAs, where the computing fab-
ric can be tailored to exploit the best achievable parallelism for a given task
(or set of tasks), having in mind both acceleration and energy consumption
features.

1.3.3 � A Battle for the Target Technology?

The graph in Figure 1.2 qualitatively shows the performance and flexibility
offered by the different software- and hardware-based architectures suit-
able for embedded system design. Flexibility is somewhat related to the
ease of use of a system and its possibilities to be adapted to changes in
specifications.

*	 Even though, since technologies with higher integration levels and higher resource avail-
ability suffer more from static power consumption, this factor needs to be taken into
consideration.

GPGPUs

FPGAs

ASICs
Multicore

DSPs
μCs

Flexibility

Pe
rfo

rm
an

ce

FIGURE 1.2 
Performance versus flexibility of different technologies for embedded system design.

8 FPGAs: Fundamentals, Advanced Features, and Applications

As can be seen from Figure 1.2, the highest performance is achieved by
ASICs and GPGPUs. The lack of flexibility of ASICs is compensated by their
very high energy efficiency. In contrast, although GPGPUs are excellent
(if not the best) performant software-based computing devices, they are highly
power consuming. Multicore technologies are close to GPGPUs in perfor-
mance, and, in some cases, their inherent parallelism matches better the one
required by the target application. While GPGPUs exploit data parallelism
more efficiently, multicore systems are best suited to multitask parallelism.
Known drawbacks of GPGPUs and many multicore systems include the need
for relying on a host system and limited flexibility with respect to I/O avail-
ability. At the high end of flexibility, DSP processors offer better performance
than single general-purpose microprocessors or microcontrollers because of
their specialization in signal processing. This, of course, is closely related to
the amount of signal processing required by the target application.

FPGAs are represented as less flexible than specialized and general-
purpose processors. This comes from the fact that software-based solu-
tions are in principle more flexible than hardware-based ones. However,
there exist FPGAs that can be reconfigured during operation, which may
ideally be regarded to be as flexible as software-based platforms since
reconfiguring an FPGA essentially means writing new values in its config-
uration memory. This is very similar to modifying a program in software
approaches, which essentially means writing the new code in program
memory. Therefore, FPGAs can be considered in between ASICs and
software-based systems, in the sense that they have hardware-equivalent
speeds with software-equivalent flexibility. Shuai et al. (2008) provide a
good discussion on FPGAs and GPUs.

Figure 1.3 shows a comparative diagram of the aforementioned approaches.
The legend shows the axes for flexibility, power efficiency, performance, unit
cost, and design cost (complexity).

The cost associated with design complexity is important for embedded
devices because the number of systems to be produced may not be too large.
Since in the area of embedded systems, significant customization and design
effort are needed for every design, additional knowledge is demanded as com-
plexity grows. Hence, complex systems might require a lot of design exper-
tise, which is not always available in small- or medium-sized design offices
and labs. Design techniques and tools are therefore very important in embed-
ded system design. They are briefly analyzed in Section 1.3.4. Moreover, tools
related to FPGA-based design are analyzed in detail in Chapter 6.

1.3.4 � Design Techniques and Tools for the Different Technologies

Some design techniques and tools (e.g., those related to PCB design and
manufacturing) are of general applicability to all technologies mentioned
so far. According to the complexity of the design, these might include tech-
niques and tools for electromagnetic protection and emission mitigation,

9FPGAs and Their Role in the Design of Electronic Systems

thermal analysis, signal integrity tests, and simulation. Some other tech-
niques and tools are specific to the particular technology used (or to some
but not all of them), as discussed in the following sections.

1.3.4.1 � General-Purpose Processors and Microcontrollers

General-purpose processors and microcontrollers are the best (and some-
times the only practically viable) solution for simple embedded systems with
low computing power requirements. They just require designers’ knowledge
in programming and debugging simple programs, mostly (if not totally)
written in high-level languages. Emulators and debuggers help in validating
the developed programs, contributing to a fast design cycle.

In the simplest cases, no operating system (OS) is required; the processor
just runs the application program(s), resulting in the so-called bare-metal
system. As complexity grows, applications might require complex use of
interrupts or other processor features, therefore making it necessary to use
an OS as a supporting layer for running multiple tasks concurrently. In this
case, dead times of a task can be used to run other tasks, giving some impres-
sion of parallelism (although actually it is just concurrency). In very specific
cases, system requirements might demand the use of assembly code in order
to accelerate some critical functions.

In brief, off-the-shelf simple and cheap processors must be used whenever
they are powerful enough to comply with the requirements of simple target
applications. Other platforms should be considered only if they provide a

Flexibility
Design cost

Power
efficiency

Unitary costPerformance

GPGPUMulticoreμC

FPGA

ASIC

FIGURE 1.3 
Comparative features of ASICs, FPGAs, general-purpose processors and microcontrollers,
multicore processors, and GPGPUs. Notes: Outer (further away from the center) is better. ASIC
cost applies to large enough production.

10 FPGAs: Fundamentals, Advanced Features, and Applications

significant added value. For instance, it may be worth using FPGAs to solve
a simple application if, in addition, they implement glue logic and avoid the
need for populating PCBs with annoying discrete devices required just for
interconnection or interfacing purposes.

1.3.4.2 � DSP Processors

Because of their specific architectures, DSP processors are more suitable than
general-purpose processors or microcontrollers for many applications above
a certain complexity level, where they provide better overall characteristics
when jointly considering performance, cost, and power consumption. For
instance, DSP-based platforms can solve some problems by working at lower
clock frequencies than general-purpose processors would require (therefore
reducing energy consumption) or achieving higher throughput (if they work
at the same clock frequency).

Specific DSP features are intended to increase program execution efficiency.
These include hardware-controlled loops, specialized addressing modes
(e.g., bit reverse, which dramatically reduces execution times in fast Fourier
transforms), multiply–accumulate (MAC) units (widely used in many signal
processing algorithms), multiple memory banks for parallel access to data,
direct memory access (DMA) schemes for automated fast I/O, and the ability
to execute some instructions in a single clock cycle. There are complex issues
(both hardware and software) related to the efficient use of these features.
For instance, real parallel operation of functional units can be achieved by
using very long instruction word (VLIW) architectures. VLIW systems are
capable of determining (at compile time) whether several functional units can
be used simultaneously (i.e., if at a given point of program execution there are
instructions requiring different functional units to carry out operations with
different data that are already available). This implies the ability of the hard-
ware to simultaneously access several memories and fetch several operands
or coefficients, which are simultaneously sent to several functional units. In
this way, by using multiple MAC units, it may be possible, for instance, to
compute several stages of a filter in just one clock cycle.

Advantage can only be taken from DSP processors with VLIW architectures
with deep knowledge of the architecture and carefully developing assembly
code for critical tasks. Otherwise, they may be underused, and performance
could even be worse than when using more standard architectures.

For those embedded systems where the performance of off-the-shelf DSP
processors complies with the requirements of the application and that of
general-purpose processors or microcontrollers does not, the former are
in general the best implementation platform. However, like in the case of
general-purpose processors and microcontrollers, except for some devices
tailored for specific applications, it is not unusual that external acquisition
circuitry is required (e.g., for adaptation to specific I/O needs), which may
justify the use of FPGAs instead of DSP processors.

11FPGAs and Their Role in the Design of Electronic Systems

Although DSP processors exploit parallelism at functional module level, it
might be the case that the maximum performance they offer is not enough
for a given application. In this case, real parallel platforms need to be used.
Software-based parallel solutions (multicore processors and GPGPUs) are dis-
cussed in Section 1.3.4.3 and hardware-based ones (FPGAs) in Section 1.3.4.4.

1.3.4.3 � Multicore Processors and GPGPUs

The internal architectures of multicore processors and GPGPUs are designed
to match task parallelism and data parallelism, respectively. Multicore sys-
tems can very efficiently execute multiple, relatively independent tasks,
which are distributed among a network of processing cores, each of them
solving either a different task or some concurrent tasks. GPGPUs contain a
large number of computing elements executing threads that, in a simplistic
manner, may be considered as relatively (but not fully) independent execu-
tions of the same code over different pieces of data.

Multicore devices can be programmed using conventional high-level
languages (such as C or C++), just taking into consideration that differ-
ent portions of the code (i.e., different tasks) are to be assigned to different
processors. The main issues regarding the design with these platforms are
related to the need for synchronization and data transfer among tasks, which
are usually addressed by using techniques such as semaphores or barriers,
when the cores share the same memory, or with message passing through
interconnection networks, when each core has its own memory. These tech-
niques are quite complex to implement (in particular for shared memory
systems) and also require detailed, complex debugging. For systems with
hard real-time constraints, ensuring the execution of multiple tasks within
the target deadlines becomes very challenging, although some networking
topologies and resource management techniques can help in addressing, to
a certain extent, the predictability problem (not easily, though).

GPGPUs operate as accelerators of (multi)processor cores (hosts). The
host runs a sequential program that, at some point in the execution process,
launches a kernel consisting of multiple threads to be run in the companion
GPGPU. These threads are organized in groups, such that all threads within
the same group share data among them, whereas groups are considered to
be independent from each other. This allows groups to be executed in paral-
lel according to the execution units available within the GPGPU, resulting
in the so-called virtual scalability. Thread grouping is not trivial, and the
success of a heavily accelerated algorithm depends on groups efficiently per-
forming memory accesses. Otherwise, kernels may execute correctly but with
low performance gains (or even performance degradation) because of the
time spent in data transfers to/from GPGPUs from/to hosts. Programming
kernels requires the use of languages with explicit parallelism, such as
CUDA or OpenCL. Debugging is particularly critical (and nontrivial) since
a careful and detailed analysis is required to prevent malfunctions caused

12 FPGAs: Fundamentals, Advanced Features, and Applications

by desynchronization of threads, wrong memory coalescence policies, or
inefficient kernel mapping. Therefore, in order for GPGPUs to provide bet-
ter performance than the previously discussed implementation platforms,
designers must have deep expertise in kernel technology and its mapping in
GPGPU architectures.

1.3.4.4 � FPGAs

FPGAs offer the possibility of developing configurable, custom hardware
that might accelerate execution while providing energy savings. In addi-
tion, thanks to the increasing scale of integration provided by fabrication
technologies, they can include, as discussed in detail in Chapter 3, one
or more processing cores, resulting in the so-called field-programmable
systems-on-chip (FPSoCs) or systems-on-programmable chip (SoPCs).*
These systems may advantageously complement and extend the charac-
teristics of the aforementioned single- or multicore platforms with custom
hardware accelerators, which allow the execution of all or some critical tasks
to be optimized, both in terms of performance and energy consumption.

Powerful design tools are required to deal with the efficient integration of
these custom hardware peripherals and others from off-the-shelf libraries,
as well as other user-defined custom logic, with (multiple) processor cores
in an FPSoC architecture. These SoPC design tools, described in Chapter 6,
require designers to have good knowledge of the underlying technologies
and the relationship among the different functionalities needed for the
design of FPSoCs, in spite of the fact that vendors are making significant
efforts for the automation and integration of all their tools in single (but
very complex) environments. In this sense, in the last few years, FPGA
vendors are offering solutions for multithreaded acceleration that compete
with GPGPUs, thus providing tools to specify OpenCL kernels that can be
mapped into FPGAs. Also, long-awaited high-level synthesis (HLS) tools
now provide a method to migrate from high-level languages such as C, C++,
or SystemC into hardware description languages (HDLs), such as VHDL or
Verilog, which are the most widely used today by FPGA design tools.

1.3.4.5 � ASICs

ASICs are custom integrated circuits (mainly nonconfigurable, in the sense
explained in Section 1.4) fully tailored for a given application. A careful design
using the appropriate manufacturing technology may yield excellent perfor-
mance and energy efficiency, but the extremely high nonrecurrent engineering
costs and the very specific and complex skills required to design them make
this target technology unaffordable for low- and medium-sized productions.

*	 Since the two acronyms may be extensively found in the literature as well as in vendor-
provided information, both of them are interchangeably used throughout this book.

13FPGAs and Their Role in the Design of Electronic Systems

The lack of flexibility is also a problem, since, nowadays, many embedded
systems need to be capable of being adapted to very diverse applications and
working environments. For instance, the ability to adapt to changing commu-
nication protocols is an important requirement in many industrial applications.

1.4 � How Does Configurable Logic Work?

First of all, it is important to highlight the intrinsic difference between
programmable and (re)configurable systems. The “P” in FPGA can be mislead-
ing since, although FPGAs are the most popular and widely used configu-
rable circuits, it stands for programmable. Both kinds of systems are intended
to allow users to change their functionality. However, not only in the context
of this book but also according to most of the literature and the specialized
jargon, programmable systems (processors) are those based on the execu-
tion of software, whereas (re)configurable systems are those whose internal
hardware computing resources and interconnects are not totally configured
by default. Configuration consists in choosing, configuring, and intercon-
necting the resources to be used. Software-based solutions typically rely
on devices whose hardware processing structure is fixed, although, as dis-
cussed in Chapter 3, the configurable hardware resources of an FPGA can be
used to implement a processor, which can then obviously be programmed.

The fixed structure of programmable systems is built so as to allow them
to execute different sequences (software programs) of basic operations
(instructions). The programming process mainly consists in choosing the
right instructions and sequences for the target application. During execu-
tion, instructions are sequentially fetched from memory, then (if required)
data are fetched from memory or from registers, the processing operation
implied by the current instruction is computed, and the resulting data
(if any) are written back to memory or registers. As can be inferred, the hard-
ware of these systems does not provide functionality by itself, but through
the instructions that build up the program being executed.

On the other hand, in configurable circuits, the structure of the hardware
resources resulting from the configuration of the device determines the
functionality of the system. Using different configurations, the same device
may exhibit different internal functional structures and, therefore, different
user-defined functionalities. The main advantage of configurable systems
with regard to pure software-based solutions is that, instead of sequentially
executing instructions, hardware blocks can work in a collaborative concur-
rent way; that is, their execution of tasks is inherently parallel.

Arranging the internal hardware resources to implement a variety of digi-
tal functions is equivalent, from a functional point of view, to manufactur-
ing different devices for different functions, but with configurable circuits,

14 FPGAs: Fundamentals, Advanced Features, and Applications

no further fabrication steps are required to be applied to the premanufac-
tured off-the-shelf devices. In addition, configuration can be done at the user
premises, or even infield at the operating place of the system.

The beginning of reconfigurable devices started with programmable*
logic matrices (programmable logic array [PLA] and programmable
array logic [PAL]—whose basic structures are shown in Figure 1.4), where
the connectivity of signals was decided using arrays of programmable con-
nections. These were originally fuses (or antifuses†), which were selectively
either burnt or left intact during configuration.

*	 At that time, the need for differentiating programmability and configurability had not yet
been identified.

†	 The difference between fuses and antifuses resides in their state after being burnt, open or
short circuit, respectively.

1

1

(b)

& & & &
≥1

≥1

Programmable
connection

1

1

&

(a)

&

≥1

≥1

Programmable
connection

FIGURE 1.4 
Programmable matrices: (a) PLA; (b) PAL.

15FPGAs and Their Role in the Design of Electronic Systems

In programmable matrices, configuration makes the appropriate input
signals participate in the sums of products required to implement differ-
ent logic functions. When using fuses, this was accomplished by selectively
overheating those to be burnt, driving a high current through them. In this
case, the structural internal modifications are literally real and final, since
burnt fuses cannot be configured back to their initial state.

Although the scale of integration of fuses was in the range of several
micrometers (great for those old days), CMOS integration was advancing
at a much faster pace, and quite soon, new configuration infrastructures
were developed in the race for larger, faster, and more flexible reconfigu-
rable devices. Configuration is no longer based on changes in the physical
structure of the devices, but on the behavior regarding connectivity and
functionality, specified by the information stored in dedicated memory
elements (the so-called configuration memory). This not only resulted in
higher integration levels but also increased flexibility in the design process,
since configurable devices evolved from being one-time programmable to
being reconfigurable, which can be configured several times by using eras-
able and reprogrammable memories for configuration. Nowadays, a clear
technological division can be made between devices using nonvolatile con-
figuration memories (EEPROM and, more recently, flash) and those using
volatile configuration memories (SRAM, which is the most widely used
technology for FPGA configuration).

Currently, programmable matrices can be found in programmable logic
devices (PLDs), which found their application niche in glue logic and finite-
state machines. The basic structure of PLDs is shown in Figure 1.5. In addition
to configuring the connections between rows and columns of the program-
mable matrices, in PLDs, it is also possible to configure the behavior of the
macrocells.

The main drawback of PLDs comes from the scalability problems related to
the use of programmable matrices. This issue was first addressed by includ-
ing several PLDs in the same chip, giving rise to the complex PLD concept.
However, it soon became apparent that this approach does not solve the scal-
ability problem to the extent required by the ever-increasing complexity of digi-
tal systems, driven by the evolution of fabrication technologies. A change in
the way configurable devices were conceived was needed. The response to that
need were FPGAs, whose basic structure is briefly described in the following.*

Like all configurable devices, FPGAs are premanufactured, fixed pieces of
silicon. In addition to configuration memory, they contain a large number of
basic configurable elements, ideally allowing them to implement any digi-
tal system (within the limits of the available chip resources). There are two
main types of building blocks in FPGAs: (relatively small) configurable logic
circuits spread around the whole chip area (logic blocks [LBs]) and, between
them, configurable interconnection resources (interconnect logic [IL]).

*	 FPGA architectures are analyzed in detail in Chapter 2.

16 FPGAs: Fundamentals, Advanced Features, and Applications

The functionality of the target system is obtained by adequately configur-
ing the behavior of the required LBs and the IL that interconnects them, by
writing the corresponding information in the FPGA’s internal configuration
memory. The information is organized in the form of a stream of binary data
(called bitstream) coming out from the design process, which determines
the behavior of every LB and every interconnection inside the device. FPGA
configuration issues are analyzed in Chapter 6.

A most basic LB would consist of the following:

•	 A small SRAM memory (2n × 1, with a value of n typically
from 4 to 6) working as a lookup table (LUT), which allows any
combinational function of its n inputs to be implemented. A LUT
can be thought of as a way of storing the truth table of the combi-
national function in such a way that, when using the inputs of that
function as address bits of the LUT, the memory bit storing the
value of the function for each particular input combination can be
read at the output of the LUT.

(b)

1

MUX
MUX

Matrix
1

1

1 1/1
/1G1
G1 EN

1D
C1

(a)

Configurable
Macrocell

Configurable
Macrocell

PAL/PLA

1

1

1 1
Inputs

Outputs

FIGURE 1.5 
(a) Basic PLD structure; (b) sample basic macrocell.

17FPGAs and Their Role in the Design of Electronic Systems

•	 A flip-flop whose data input is connected to the output of the LUT.
•	 A multiplexer (MUX) that selects as output of the LB either the flip-

flop output or the LUT output (i.e., the flip-flop input). In this way,
depending on the configuration of the MUX, the LB can implement
either combinational or sequential functions.

•	 The inputs of the LB (i.e., of the LUT) and its output (i.e., of the MUX),
connected to nearby IL.

In practice, actual LBs consist of a combination of several (usually two) of
these basic LUT/flip-flop/MUX blocks (which are sometimes referred to
as slices). They also often include specific logic to generate and propagate
carry signals (both inside the LB itself and between neighbor LBs, using
local carry-in and carry-out connections), resulting in the structure shown
in Figure 1.6. Typically, in addition, the LUTs inside an LB can be com-
bined to form a larger one, allowing combinational functions with a higher
number of inputs to be implemented, thus providing designers with extra
flexibility.

In addition, current FPGAs also include different kinds of specialized
resources (described in detail in Chapters 2 through 5), such as memories
and memory controllers, DSP blocks (e.g., MAC units), and embedded pro-
cessors and commonly used peripherals (e.g., serial communication inter-
faces), among others. They are just mentioned here in order for readers to
understand the ever-increasing application scope of FPGAs in a large variety
of industrial control systems, some of which are highlighted in Section 1.5 to
conclude this chapter.

Carry out (local)

D

D

Q

Q

FF

FF

Carry
gen.

Carry
gen.

LUT

LB

IL

LUT

LB slice

Carry in (local)

LB slice

FIGURE 1.6 
Example of two-slice LB and its connection to IL.

18 FPGAs: Fundamentals, Advanced Features, and Applications

1.5 � Applications and Uses of FPGAs

The evolution from “traditional” FPGA architectures, mainly consisting of
basic standard reconfigurable building blocks (LBs and IL), to more feature-
rich, heterogeneous devices is widening the fields of applicability of FPGAs,
taking advantage of their current ability to implement entire complex sys-
tems in a single chip. FPGAs are not used anymore just for glue logic or
emulation purposes, but have also fairly gained their own position as suit-
able platforms to deal with increasingly complex control tasks and are also
getting, at a very fast pace, into the world of HPC.

This technological trend has also extended the applicability of FPGAs in
their original application domains. For instance, emulation techniques are
evolving into mixed solutions, where the behavior of (parts of) a system can
be evaluated by combining simulation models with hardware emulation,
in what is nowadays referred to as hardware-in-the-loop (HIL). Tools exist,
including some of general use in engineering, such as MATLAB®, which
allow this combined simulation/emulation approach to be used to accelerate
system validation.

FPGAs are also increasingly penetrating the area of embedded control
systems, because in many cases, they are the most suitable solution to deal
with the growing complexity problems to be addressed in that area. Some
important fields of application (not only in terms of technological challenges
but also in terms of digital systems’ market share) are in automated man-
ufacturing, robotics, control of power converters, motion and machinery
control, and embedded units in automotive (and all transportation areas in
general)—it is worth noting that a modern car has some 70–100 embedded
control units onboard. As the complexity of the systems to be controlled
grows, microcontroller and DSPs are becoming less and less suitable, and
FPGAs are taking the floor.

A clear proof of the excellent capabilities of current FPGAs is their recent
penetration in the area of HPC, where a few years ago, no one would have
thought they could compete with software approaches implemented in large
processor clusters. However, computing-intensive areas such as big data
applications, astronomical computations, weather forecast, financial risk
management, complex 3D imaging (e.g., in architecture, movies, virtual real-
ity, or video games), traffic prediction, earthquake detection, and automated
manufacturing may currently benefit from the acceleration and energy-
efficient characteristics of FPGAs.

One may argue these are not typical applications of industrial embed-
ded systems. There is, however, an increasing need for embedded high-
performance systems, for example, systems that must combine intensive
computation capabilities with the requirements of embedded devices, such
as portability, small size, and low-energy consumption. Examples of such
applications are complex wearable systems in the range of augmented or

19FPGAs and Their Role in the Design of Electronic Systems

virtual reality, automated driving vehicles, and complex vision systems for
robots or in industrial plants. The Internet of Things is one of the main forces
behind the trend to integrate increasing computing power into smaller and
energy-efficient devices, and FPGAs can play an important role in this
scenario.

Given the complexity of current devices, FPGA designers have to deal with
many different issues related to hardware (digital and analog circuits), soft-
ware (OSs and programming for single- and multicore platforms), tools and
languages (such as HDLs, C, C++, SystemC, as well as some with explicit
parallelism, such as CUDA or OpenCL), specific design techniques, and
knowledge in very diverse areas such as control theory, communications,
and signal processing. All these together seem to point to the need for super-
engineers (or even super-engineering teams), but do not panic. While it is not
possible to address all these issues in detail in a single book, this one intends
at least to point industrial electronics professionals who are not specialists
in FPGAs to the specific issues related to their working area so that they can
first identify them and then tailor and optimize the learning effort to fulfill
their actual needs.

References

Jones, D.H., Powell, A., Bouganis, Ch.-S., and Cheung, P.Y.K. 2010. GPU versus
FPGA for high productivity computing. In Proceedings of the 20th International
Conference on Field Programmable Logic and Applications, August 31 to September 2,
Milano, Italy.

Kaeli, D. and Akodes, D. 2011. The convergence of HPC and embedded systems in our
heterogeneous computing future. In Proceedings of the IEEE 29th International
Conference on Computer Design (ICCD), October 9–12, Amherst, MA.

Laprie, J.C. 1985. Dependable computing and fault tolerance: Concepts and terminol-
ogy. In Proceedings of the 15th Annual International Symposium on Fault-Tolerant
Computing (FTCS-15), June 19–21, Ann Arbor, MI.

Shuai, C., Jie, L., Sheaffer, J.W., Skadron, K., and Lach, J. 2008. Accelerating compute-
intensive applications with GPUs and FPGAs. In Proceedings of the Symposium on
Application Specific Processors (SASP 2008), June 8–9, Anaheim, CA.

http://taylorandfrancis.com

21

2
Main Architectures and Hardware
Resources of FPGAs

2.1 � Introduction

Since their advent, microprocessors were for many years the only efficient
way to provide electronic systems with programmable (user-defined) func-
tionality. As discussed in Chapter 1, although their hardware structure is
fixed, they are capable of executing different sequences of basic operations
(instructions). The programming process mainly consists of choosing the
right instructions and sequences for the target application.

Another way of achieving user-defined functionality is to use devices whose
internal hardware resources and interconnects are not totally configured by
default. In this case, the process to define functionality (configuration, as
also introduced in Chapter 1) consists of choosing, configuring, and inter-
connecting the resources to be used. This second approach gave rise to the
FPGA concept (depicted in Figure 2.1), based on the idea of using arrays of
custom logic blocks surrounded by a perimeter of I/O blocks (IOBs), all of
which could be assembled arbitrarily (Xilinx 2004).

From the brief presentation made in Section 1.4, this chapter describes the
main characteristics, structure, and hardware resources of modern FPGAs.
It is worth noting that it is not intended to provide a comprehensive list of
resources, for which readers can refer to specialized literature (Rodriguez-
Andina et al. 2007, 2015) or vendor-provided information. Embedded soft
and hard processors are separately analyzed in Chapter 3 because of their
special significance and the design paradigm shift they caused (as they
transformed FPGAs from hardware accelerators to FPSoC platforms, con-
tributing to an ever-growing applicability of FPGAs in many domains). DSP
and analog blocks are other important hardware resources that are sepa-
rately analyzed in Chapters 4 and 5, respectively, because of their usefulness
in many industrial electronics applications.

22 FPGAs: Fundamentals, Advanced Features, and Applications

2.2 � Main FPGA Architectures

The basic architecture of most FPGAs is the one shown in Figure 2.1, based
on a matrix of configurable hardware basic building blocks (LBs,* introduced
in Chapter 1) surrounded by IOBs that give FPGA access to/from external
devices. The set of all LBs in a given device is usually referred to as “dis-
tributed logic” or “logic fabric.” An LB can be connected to other LBs or to
IOBs by means of configurable interconnection lines and switching matrices
(IL, as also introduced in Chapter 1) (Kuon et al. 2007; Rodriguez-Andina
et al. 2007, 2015).

In addition to distributed logic, aimed at supporting the development of
custom functions, FPGAs include specialized hardware blocks aimed at
the efficient implementation of functions required in many practical appli-
cations. Examples of these specific resources are memory blocks, clock
management blocks, arithmetic circuits, serializers/deserializers (SerDes),
transceivers, and even microcontrollers. In some current devices, analog
functionality (e.g., ADCs) is also available. The combination of distributed
logic and specialized hardware results in structures like the ones shown in
Figure 2.2 (Xilinx 2010; Microsemi 2014; Achronix 2015; Altera 2015a).

*	 LBs receive different names from different FPGA vendors or different families from the same
vendor (e.g., Xilinx, configurable logic block [CLB]; Altera, adaptive logic module [ALM];
Microsemi, logic element [LE]; Achronix, logic cluster [LC]), but the basic concepts are the
same. This also happens in the case of IOBs.

IOB

IOB

IOB

IOB

IOB

IOB IOB IOB

Interconnect
matrix

Interconnect
matrix

Interconnect
matrix

Interconnect
matrix

Logic
block

Logic
block

Logic
block

Logic
block

FIGURE 2.1 
FPGA concept.

23Main Architectures and Hardware Resources of FPGAs

The main drawback of the matrix architecture, related to the number of IOBs
required in a given device, affects complex FPGAs. As more distributed and
specialized logic is included in a given device, more IOBs are also required,
increasing cost. Another limitation of this architecture comes from the fact
that power supply and ground pins are located in the periphery of the devices,
and then voltage drops inevitably happen as supply/ground currents flow
to/from the core from/to these pins. A third limitation is that the ability to
scale specialized hardware blocks depends on the amount of distributed logic
available in their vicinity.

To mitigate these limitations, vendors have developed column-based FPGA
architectures (Xilinx 2006; Altera 2015b) like the one depicted in Figure 2.3.

I/O blocks

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

PLL

M
em

or
y b

lo
ck

s

D
SP

 b
lo

ck
s

M
em

or
y b

lo
ck

s

D
SP

 b
lo

ck
s

M
em

or
y b

lo
ck

s

User flash

A
D

C

Configuration
�ash

Logic blocks
(logic elements)

PLL

I/O blocksPLL PLL

(a)

Logic blocks
(Versa Tile)

User flash ROMISP
AESb

I/O blocks

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

Charge
pumps

aClock conditioning circuit (CCC).
bIn-system programming advanced encryption standard (ISP AES).

Flash memory
block

Flash memory
blockADC

Analog quad

CCCa CCC

I/O blocksCCC CCC

SRAM blocks

SRAM blocks

(b)

I/O blocks

I/O blocks

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

Cl
oc

k
m

an
ag

em
en

t b
lo

ck
s

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

Tr
an

sc
ei

ve
rs

Tr
an

sc
ei

ve
rs

Lo
gi

c b
lo

ck
s

D
SP

 b
lo

ck
s

M
em

or
y b

lo
ck

s

M
em

or
y b

lo
ck

s
D

SP
 b

lo
ck

s
Lo

gi
c b

lo
ck

s

D
D

R
co

nt
ro

lle
r

D
D

R
co

nt
ro

lle
r

(c)

SerDes

SerDes

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

PLL

Transceivers

Transceivers

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

Lo
gi

c b
lo

ck
s

PLL

PLLPLL

D
D

R
co

nt
ro

lle
r

D
D

R
co

nt
ro

lle
rD

D
R

co
nt

ro
lle

r

D
D

R
co

nt
ro

lle
r

D
D

R
co

nt
ro

lle
r

D
D

R
co

nt
ro

lle
r

(d)

FIGURE 2.2 
(a) Altera MAX 10, (b) Microsemi’s Fusion, (c) Xilinx’s Spartan-6, and (d) Achronix’s Speedster22i
HD architectures. Note: In December 2015, Intel Corporation acquired Altera Corporation.
Altera now operates as a new Intel business unit called Programmable Solutions Group.

24 FPGAs: Fundamentals, Advanced Features, and Applications

First, in these architectures, there is no dependency of the number of IOBs
on the amount of distributed and specialized logic because different types
of resources are placed in dedicated, independent columns. This means that
IOBs are located in their corresponding columns, and not just in the periph-
ery, and the number of IOBs only depends on the number of I/O pins the
vendor decides the device to have. This actually applies to any resource: if
more resources of a given type are to be included in a device, the number of
columns of such type is just increased. Power supply and ground pins are
distributed throughout the whole chip area, thus minimizing signal integrity
problems.

Column architectures are application oriented, because FPGAs with very
different resources can be readily developed using chips with the same area
and pin count, allowing the cost–performance trade-off to be optimized for
each particular application.

A column architecture specifically targeting high-frequency/bandwidth
applications is shown in Figure 2.4. In it, flip-flops (“Hyper-Registers”) are
placed in all interconnection segments and in all inputs of dedicated func-
tional blocks, in addition to the usual locations in LBs and IOBs (as described
in Section 2.3).

The availability of these flip-flops throughout the entire device allows
design techniques such as retiming and pipelining to be more efficiently
implemented (Hutton 2015). The use of such techniques reduces signal delay
times, in turn allowing higher operation frequencies to be achieved. In more
“classical” architectures, the implementation of these techniques must be
done using the flip-flops of the distributed logic, which usually implies that

D
SP

 b
lo

ck
s

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

Tr
an

sc
ei

ve
rs

D
SP

 b
lo

ck
s

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

Tr
an

sc
ei

ve
rs

D
SP

 b
lo

ck
s

M
em

or
y b

lo
ck

s

Lo
gi

c b
lo

ck
s

Lo
gi

c b
lo

ck
s

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

G
lo

ba
l c

lo
ck

Cl
oc

k
m

an
ag

em
en

t b
lo

ck
s

G
lo

ba
l c

lo
ck

Cl
oc

k
m

an
ag

em
en

t b
lo

ck
s

FIGURE 2.3 
Column-based architecture.

25Main Architectures and Hardware Resources of FPGAs

an advantage cannot be taken from most of the resources of the LBs used and
that delays are also higher, resulting in less efficient solutions.

2.3 � Basic Hardware Resources

According to Figure 2.1, the basic hardware resources of FPGAs are LBs,
IOBs, and interconnection resources.

2.3.1 � Logic Blocks

LBs are intended to implement custom combinational and sequential func-
tions. As a consequence, they mainly consist of reconfigurable combinational
functions and memory elements (flip-flops/latches). The combinational part
can be implemented in different ways (e.g., with logic gates or MUXs), but
nowadays, lookup tables (LUTs, introduced in Chapter 1) are the most fre-
quently used combinational elements of LBs. The differences among LBs
from different vendors (or different FPGA families from the same vendor)
basically refer to the number of inputs of the LUTs (which define the maxi-
mum number of logic variables the combinational function implemented
in the LUT can depend on), the number of memory elements, and the con-
figuration capabilities of the LB. Two sample LBs are shown in Figure 2.5,
from Microsemi’s IGLOO2 (Microsemi 2015a) and Achronix’s Speedster22i
HD1000 devices (Achronix 2015), respectively.

The complexity of LBs depends on the kind of applications a given FPGA
family targets. The LB in Figure 2.5a corresponds to one of the simplest

LBs

Routing resources Hyper-Registers

FIGURE 2.4 
Altera’s HyperFlex architecture.

26 FPGAs: Fundamentals, Advanced Features, and Applications

RST

D

CE

CK

Q
LUT

A
B
C
D

CI

CE

CK

SYNC_SR

SR

RST

LUT_BYP

CO

LUT_OUT

RO

LUT
B3
B2
B1
B0

OUT0

LUT

b0
b1
d1
load ADD
a0
a1
d0

s1
s0

ci

co

0
1

RST

D
CE
CK

Q

RST

D
CE
CK

Q

OUT1

OUT0_L

OUT1_L
Shift_in

Shift_out

Carry_in

Carry_out
B4

A1
A2
A3
A4

A0

(a)

(b)

FIGURE 2.5 
(a) LE from Microsemi’s IGLOO2 and (b) heavy logic cluster from Achronix’s Speedster22i
HD1000 devices.

27Main Architectures and Hardware Resources of FPGAs

existing structures. It allows logic functions with up to four inputs to be
implemented and includes just one flip-flop, which can be used either
independently or to memorize the output of the LUT. In addition, specific
lines (CIN and CO) allow carry signals to be propagated from the LB to
a contiguous one. Carry propagation chains are a typical resource in any
LB, which simplifies the efficient implementation of widely used func-
tions such as counters or adders.

On the other hand, the LB in Figure 2.5b is more complex. It consists of
two four-input LUTs, one embedded adder, and two flip-flops. Using the
corresponding MUX, each LUT can implement a single five-input function.
In addition, LUTs and MUXs can be combined to implement certain six- to
nine-input functions (Achronix 2015). Embedded adders, supporting 2 bit
operands, allow addition-based computations to be accelerated. Finally, the
availability of two flip-flops per LB targets register-intensive solutions, such
as pipelining. The remaining elements, mainly MUXs, provide configu-
rability, enabling many different combinations of the other resources to be
configured as well as easing routability of input and output signals.

In the vast majority of FPGAs, basic LBs are grouped in blocks of higher
hierarchy sharing specific interconnection resources, allowing more complex
functions to be implemented with short additional delays. Also, flip-flops
can be combined to create shift registers, delay lines, or distributed* memo-
ries (ROM, single- or dual-port RAM, or FIFOs).

A specific solution (Achronix picoPIPE) aimed at the implementation of
pipelined datapaths without the need for adding intermediate flip-flops/
registers (therefore avoiding modifications to be required in the original,
nonpipelined logic structure) is shown in Figure 2.6 (Achronix 2015). It is

*	 So called because they are built using distributed logic.

Boundary element

D

CK

Q

Ingress

D

CK

Q

Egress

RxTx
Handshaking

Data

Link

Combinational
logic (CL)Rx Tx

Functional element

Rx Tx

Connection
element

(a)

D

CK

Q D

CK

QRx CLTx Rx Rx TxCL TxTx Rx Tx Rx

(b)

FIGURE 2.6 
(a) Achronix picoPIPE building blocks and (b) pipeline stages.

28 FPGAs: Fundamentals, Advanced Features, and Applications

based on a handshake-controlled, asynchronous propagation of data, instead
of the usual clock-synchronized propagation of conventional FPGA logic.
There are four basic building blocks in Figure 2.6:

•	 Functional elements, which not only implement the target combina-
tional logic but also handshake data input and output, thus ensuring
only valid data are propagated.

•	 Connection elements, which provide resources for both connectivity
and storage (flip-flops). Therefore, they can act as simple data repeat-
ers or as registers, enabling either asynchronous or synchronous
computations to be implemented.

•	 Links to communicate functional elements.
•	 Boundary elements, used as interface between picoPIPE and con-

ventional FPGA logic. Data entering (exiting) the picoPIPE fabric
must pass through ingress (egress) boundary elements.

The use of pipeline stages like the ones shown in Figure 2.6 allows
any logic function to be implemented using the same logic structure it
would have in a nonpipelined conventional FPGA implementation and
implicitly add pipeline stages as required to shorten propagation delay
times, reaching operating frequencies up to 1.5 GHz (Achronix 2008).
A sample comparison between conventional and picoPIPE implementa-
tions is depicted in Figure 2.7 (interconnection resources are described
in Section 2.3.3).

LBs

IOBs

Routing resources

Long routing Pipeline stages (short routing)

FIGURE 2.7 
Comparison between conventional and picoPIPE implementations.

29Main Architectures and Hardware Resources of FPGAs

2.3.2 � I/O Blocks

IOBs serve as links between device pins and internal resources. Their main
elements are programmable bidirectional buffers and flip-flops to synchro-
nize I/O and configuration signals, as shown in Figure 2.8 (Altera 2012;
Xilinx 2014a; Microsemi 2015b).

Similar to the case of LBs, IOBs with different levels of complexity are
available in the different families of current FPGA devices. However, they
all share some common features:

•	 Input data can either be directly connected to the internal resources
or pass through a memory element. Similarly, output data can pass
through a memory element or bypass it.

•	 Memory elements can be configured as flip-flops or latches.
•	 Bidirectional buffers support different voltage levels (1.2, 1.5,

1.8, 2.5, 3.0, and 3.3 V) and different I/O standards (single-ended,
differential, or voltage-referenced). The most commonly available
ones are low-voltage TTL, low-voltage CMOS, stub series-terminated
logic (SSTL), differential SSTL, high-speed transceiver logic (HSTL),
differential HSTL, high-speed unterminated logic (HSUL), and low-
voltage differential signaling (LVDS).

CLR

D
CE
CK

Q

Delay

M
ul

tip
lex

in
g

an
d

co
nt

ro
l l

og
ic

Cl
oc

k
an

d
ro

ut
in

g
re

so
ur

ce
s D

CE
CK

SR

Q

D
CE
CK

SR

Q

Delay

VCCIO

Pull-up
resistor

Bus hold

FIGURE 2.8 
Bidirectional IOB.

30 FPGAs: Fundamentals, Advanced Features, and Applications

IOBs are grouped in banks sharing common resources and, usu-
ally, configuration details (Altera 2015b; Microsemi 2015b; Xilinx
2015a), as shown in the example in Figure 2.9. Each bank can be con-
figured to support a different I/O standard (in some advanced device
families, several standards can be combined in the same bank). Since
each standard has its own specifications for voltages, currents, types
of buffer, and types of termination, the ability to adapt the same
FPGA to simultaneously use several I/O standards allows it to be
connected to circuits operating under different electrical conditions
(e.g., different power supply voltages) without the need for external
conditioning circuitry. This simplifies PCB design and decreases
design time, in turn significantly reducing cost.

•	 Programmable control of the output current for some I/O standards.
This feature allows the output buffer of the IOB to comply with
the IOH and IOL specifications of the configured standard, reducing
simultaneous switching output effects and, in turn, noise.

•	 Programmable control of the output slew rate (rising and falling),
which can be independently configured for each pin at different lev-
els (available levels vary among devices), for example, slow or fast.
For outputs operating at high frequencies, fast configurations should
be used, but attention must be paid to possible signal reflection prob-
lems and noise transients during switching.

•	 Programmable pull-up and pull-down resistors.

CMB

CMB

I/O
bank

I/O
bank

I/O
bank

I/O
bank

I/O
bank

I/O
bank
I/O

bank
I/O

bank

CMB

CMB

CMB

CMBa

I/O
bank
I/O

bank
I/O

bank
I/O

bank

CMB

CMB

Clock lines

aClock management block (CMB).

I/O
block

Delay

Delay

SerDes

SerDes
FIFO

I/O
bank
I/O

bank
I/O

bank

I/O
bank

FIGURE 2.9 
I/O banks.

31Main Architectures and Hardware Resources of FPGAs

•	 Programmable delay lines to control setup and hold times in input
flip-flops/latches and clock-to-output propagation times in out-
put flip-flops/latches or to delay input clock signals.

•	 Support for double data rate (DDR) I/O. This implies IOBs include
at least two input and two output flip-flops and two clock signals
with a 180° phase shift between them. Flip-flops can be configured
to capture data in the same edge of both clocks or in opposite edges,
thus allowing different data alignment modes to be implemented.

•	 Programmable output differential voltage (VOD). This allows the
right trade-off between voltage margin of the external circuit
(which increases for higher VOD) and FPGA power consumption
(which decreases for lower VOD) to be achieved for each particular
application.

As may be noticed in Figure 2.9, IOBs can include specialized elements in
addition to the ones mentioned earlier. These functionalities may only be
available in the most complex (and expensive) devices. Two of the most use-
ful ones, SerDes blocks and FIFO memories, are described in Sections 2.3.2.1
and 2.3.2.2.

2.3.2.1 � SerDes Blocks

SerDes blocks are serial–parallel (input deserializer) and parallel–serial (out-
put serializer) conversion circuits to interface digital systems with serial
communication links. They significantly ease the implementation of systems
with high data transfer rate requirements, such as in video applications, high-
speed communications, high-speed data acquisition, and serial memory access.

In some FPGAs, SerDes blocks can only work with differential signals; that
is, they can only be used when the corresponding IOBs are configured to
work in a differential I/O standard. In other devices, they can work with
both single-ended and differential signals.

SerDes can support different operating modes and work at different data
transfer rates (e.g., single data rate or DDR modes). In some cases, they can be
connected in chain to achieve higher rates.

A SerDes block from Altera’s Arria 10 family (Altera 2015b) is shown in
Figure 2.10. The upper part corresponds to the output serializer, whereas the
input deserializer is depicted in the lower part. One of the most critical issues
in the design of this kind of circuits is related to the requirements imposed
on clock signals. Due to this, some FPGAs include dedicated clock circuits
(independent from global clock signals) in their SerDes blocks (e.g., I/O
phase-locked loop [PLL] in Figure 2.10).

The input deserializer usually includes a bit slip module to reorder the
sequence of input data bits. This feature can be used, for instance, to correct

32 FPGAs: Fundamentals, Advanced Features, and Applications

skew effects among different input channels (like in Altera’s Arria 10 devices)
or to detect the training patterns used in many communication standards
(like in Xilinx’ Series 7 devices).

In some FPGA families (e.g., Altera’s Arria 10), the input deserializer also
includes a dynamic phase alignment circuit (DPA in Figure 2.10) that allows
input bits to be captured with minimum skew with regard to the deserial-
izer’s clock signal. This is accomplished by choosing as clock signal, among
several of them with different phases, the one with minimum phase shift
with regard to input bits.

2.3.2.2 � FIFO Memories

I/O FIFO memories are available in some of the most advanced FPGAs (like
Xilinx’ Series 7 devices). They are mainly intended to ease access to exter-
nal circuits (such as memories) in combination with SerDes or DDR I/O
resources, but can also be used as fabric (general-purpose) FIFO resources.

2.3.3 � Interconnection Resources

Interconnection resources form a mesh of lines located all over the device,
aimed at connecting the inputs and outputs of all functional elements of
the FPGA (LBs, IOBs, and specialized hardware blocks—described in
Section 2.4). They are distributed in between the rows and columns of func-
tional elements, as shown in Figure 2.11.

Interconnect lines are divided into segments, trying to achieve the mini-
mum interconnect propagation delay times according to the location of
the elements to be connected. There are segments with different lengths,
depending on whether they are intended to connect elements located close
to each other (short segments) or in different (distant) areas of the device
(long segments).

FP
G

A
 fa

br
ic

Receiver

Transmitter

FP
G

A
 fa

br
ic

Serializer

DPASynchronizerBit slipDeserializer

Data

Clk

PLL

Bu
ffe

r

Serial Tx
data

Serial Rx
data

Bu
ffe

r

FIGURE 2.10 
Altera’s Arria 10 family SerDes block.

33Main Architectures and Hardware Resources of FPGAs

For specific signals expected to have high fan-out, for example, clock, set,
or reset (global) signals, special lines are used, covering the entire device
or large regions in it. For instance, clock signals have a dedicated inter-
connection infrastructure, consisting of global lines and groups of regional
lines, each group associated with a specific area of the device, as discussed
in Section 2.4.1. The stacked silicon interconnect technology used in some
Xilinx’ Virtex-7 devices allows performance to be improved, thanks to ultra-
fast clock lines and a fast type of interconnection resource called superlong
lines (Saban 2012).

In order for a particular interconnection to be built, several segments are
connected in series by means of crossbar matrices.* Since LBs are the most

*	 Like in the case of LBs and IOBs, the terminology for interconnection resources varies
depending on the FPGA vendor.

Cr
os

sb
ar

 m
at

rix LB

LB

LBCr
os

sb
ar

 m
at

rix LB

LB

LB

Cr
os

sb
ar

 m
at

rix LB

LB

LB

CM CM

CM CM

Crossbar matrix

Local interconnection
resources

CM

General FPGA interconnection resources:
short segments, long segments, and global lines

Cr
os

sb
ar

 m
at

rix LB

LB

LB

FIGURE 2.11 
General and local FPGA interconnection resources.

34 FPGAs: Fundamentals, Advanced Features, and Applications

abundant resources and have a significant number of input and output
signals (as can be noticed in Figure 2.5), they are usually first connected to
a dedicated crossbar matrix shared by several of them (local interconnec-
tion resources) and, from it, to the general FPGA interconnection resources
(Xilinx 2014b; Achronix 2015; Altera 2015a; Microsemi 2015c), as shown in
Figure 2.11.

Interconnection delays are a critical factor in the performance of FPGA
designs. They depend on the type of resources used, the number of matri-
ces to be crossed, and the distance to be traveled by signals. Because of
this, the assignment (placement) of the functional blocks of a given circuit
to the best possible actual hardware resources in the FPGA is a key factor
in achieving the best possible performance. Software design tools should
provide suitable placements, but in some cases (in particular for complex
designs requiring the use of most of the available hardware resources), the
best performance can only be obtained with some designer intervention at
the device floorplan level (or, if feasible, by using higher-end, more expen-
sive, devices).

2.4 � Specialized Hardware Blocks

Several types of specialized hardware blocks are available in most current
FPGAs, but not all of them are available in all devices and their number var-
ies from one device to another. Actually, the type and number of specialized
hardware resources included in a given device determine its target applica-
tion domain. Some of the most usual specialized hardware resources—clock
management blocks, memory blocks, and transceivers—are described in the
following sections. As stated in Section 2.1, because of their special signifi-
cance, embedded soft and hard processors, as well as DSP and analog blocks,
are separately analyzed in Chapters 3 through 5, respectively.

2.4.1 � Clock Management Blocks

The generation, control, and quality of clock signals are among the most
important problems to be faced in the design of complex digital systems,
particularly in the case of multirate systems or those requiring very fast data
transfer rates, where synchronization among the different parts of the sys-
tem is a critical issue.

Regarding clock management, FPGAs are divided into regions designed
to minimize clock propagation delays within them. A set of dedicated
clock input pins is assigned to each region, together with resources to man-
age and distribute clock signals (Actel 2010; Achronix 2015; Altera 2015c;
Microsemi 2015d; Xilinx 2015b), as shown in Figure 2.12. The number of

35Main Architectures and Hardware Resources of FPGAs

clock regions varies depending on the device size. Global clock lines also
exist, as well as other clock lines that connect adjacent clock regions. In
some FPGAs, it is possible to execute a clock power down, “disconnecting”
global or regional clock signals to reduce power consumption. When a
clock line is powered down, all logic associated with it is also switched off,
further reducing power consumption.

In order to reduce the problems associated with clock signals as well as the
number of external oscillators needed, FPGAs include clock management
blocks (CMBs),* based on either PLLs or delay-locked loops (DLLs). These
CMBs are mainly used for frequency synthesis (frequency multiplication or
division), skew reduction, and duty cycle/phase control of clock signals.

Each CMB is associated with one or several dedicated clock inputs, and
in most devices, it can also take as input an internal global clock signal or
the output of another CMB (chain connection). Chain connections allow
dynamic range to be increased for frequency synthesis (both for frequency
multiplication and division).

For optimized performance, CMBs are physically placed close to IOBs and
are connected to them with dedicated resources. Therefore, in matrix archi-
tectures, such as Microsemi’s IGLOO2 (Figure 2.13a), CMBs are placed in
(or close to) the periphery, where IOBs are located. In column-based archi-
tectures, such as Xilinx’ Series 7 (Figure 2.13b), CMBs are placed in specific
columns, regularly distributed all over the device, but always next to IOBs
columns. It should be noted that, in most FPGAs, CMBs are also used to gen-
erate the clock signals used by SerDes blocks and transceivers.

Although the functionality of CMBs is similar regardless of the vendor/
family of devices, their hardware structures are quite diverse. As mentioned

*	 Again, different vendors use different names. Xilinx, clock management tiles or digital
clock managers; Altera, PLLs or fractional PLLs; Microsemi, clock conditioning circuitry;
Achronix, global clock generator.

Q1 Q2

Q3Q4

GCLK

GCLK: Global clock networks

Q1 Q2

Q3Q4

RCLK

RCLK: Regional clock networks

Q1 Q2
Q3Q4

PCLK

PCLK: Peripheral clock networks
(a) (b) (c)

FIGURE 2.12 
(a) Global, (b) regional, and (c) peripheral clock networks in Altera’s Stratix V devices.

36 FPGAs: Fundamentals, Advanced Features, and Applications

before, some of them are based on DLLs (digital solution), but most current
devices use PLLs (analog solution). Basic PLLs work with integer factors for fre-
quency synthesis (integer PLLs), but in the most advanced devices, fractional
PLLs (capable of working with noninteger factors) are also available.

The structure of an integer PLL is depicted in Figure 2.14. Its main purpose
is to achieve perfect synchronization (frequency and phase matching)
between its output signal and a reference input signal (Barrett 1999). Its
operation is as follows: The phase detector generates a voltage proportional
to the phase difference between the feedback and reference signals. The low-
pass filter averages the output of the phase detector and applies the result-
ing signal to a voltage-controlled oscillator, whose resonant frequency (the
output frequency) varies accordingly. In this way, the output frequency is
dynamically adjusted until the phase detector indicates that the feedback

RAM blocks

Logic blocks
(Versa Tile)

RAM blocks

(a) (b)

Flash
ROM

ISP
AESa

I/O blocks

I/O blocks

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

Flash
freeze

Charge
pumps

aIn-system programming advanced
 encryption standard (ISP AES).

Clock management blocks
(clock conditioning circuits [CCCs])

aHorizontal clock row (HROW).

HROW

HROWa

HROW

Se
ria

l t
ra

ns
ce

iv
er

s (
G

T)

I/
O

 b
lo

ck
s

Cl
oc

k
m

an
ag

em
en

t b
lo

ck
s

Cl
oc

k
m

an
ag

em
en

t b
lo

ck
s

I/
O

 b
lo

ck
s

Cl
oc

k
ba

ck
bo

ne
FIGURE 2.13 
Location of CMBs in (a) matrix and (b) column-based architectures.

Prescale
counter

÷R

Phase
detector

Low-pass
filter

Voltage-
controlled
oscillator

Feedback
counter

÷M

Delay
D

Input signal
fIN

Reference signal

fREF =
R
fIN

Output signal

fOUT = R M
fIN

Feedback signal
fFDB

FIGURE 2.14 
Block diagram of an integer PLL.

37Main Architectures and Hardware Resources of FPGAs

and reference signals are in phase. At this point, the PLL is said to have
reached the phase-lock condition.

In case the feedback loop is a direct connection of the output signal to the
input of the phase detector (i.e., there is neither a delay block nor a feedback
counter), in steady state, the frequency and phase of the output signal follow
those of the reference input signal.

If the delay block is included in the feedback loop, in order for the phase-
lock condition to be achieved, the phase of the output signal must lead that
of the reference signal by an amount equal to the delay in the feedback loop
(Gentile 2008).

Similarly, if the counter is included in the feedback loop, the frequency of the
output signal will be M times the frequency of the reference signal. In this way,
the PLL acts as a frequency multiplier by an integer factor M. By simply varying
M, the output frequency can be adjusted to any integer multiple of the reference
frequency (within the operating limits of the circuit). If the reference frequency
is obtained by dividing the frequency of an input signal by an integer scal-
ing factor R (prescale counter in Figure 2.14), the output frequency will also be
divided by R; that is, the effective multiplying factor would be M/R.

Therefore, the relatively simple structure in Figure 2.14 allows CMBs to
synthesize multiple frequencies from an input clock signal, control the phase
of the output signal, and eliminate skew by synchronizing the output signal
with the input reference signal. As an example of an actual circuit (Actel
2010), the one in Figure 2.15 provides five programmable dividing coun-
ters (C1–C5) that can generate up to three signals with different frequencies.
There are two delay lines in the feedback loop (one fixed and one program-
mable) that can be used to advance the output clock relative to the input
clock. Another five lines are available to delay output signals.

In spite of their simplicity and usefulness, PLLs based on integer divisions
have two main drawbacks:

PLL

D1: fixed delay

90°
180°
270°

0°

D3C3

C4

C5

D2 – D7: programmable delay

fOUT1

fOUT2

fOUT3

fOUT4

fIN

fOUT5

D4
D2D1

C2

C1

D5

D6

D7

FIGURE 2.15 
Structure of Microsemi’s integer PLL.

38 FPGAs: Fundamentals, Advanced Features, and Applications

•	 When multiplying frequency by M, phase noise (jitter in time domain)
in the output signal increases 20 · log(M). This effect may be miti-
gated by using a higher reference frequency (which would imply the
use of a lower value of M to obtain the same output frequency), but
this is not always possible because the reference frequency defines
the frequency resolution of the PLL, and for some applications, it is a
design specification (Barrett 1999; Texas Instruments 2008).

•	 The cutoff frequency of the low-pass filter must be lower enough
than the reference frequency. For lower cutoff frequencies, the
acquisition (or lock) time of the PLL increases. This is the time
needed for the PLL to reach steady state (i.e., to synchronize) after
power on, reset, or the reconfiguration of its operating parameters
(Barrett 1999).

Fractional PLLs have a better behavior than integer ones in terms of phase
noise and acquisition time. Their (fractional) frequency resolution is a frac-
tion F of the reference frequency. This means that input frequency can be
F times the frequency resolution, resulting in lower phase noise and acquisi-
tion time.

Fractional PLLs are based on the use of a divider by M + K/F in the feed-
back loop, where K is the fractional multiply factor. As explained earlier, this
would be the frequency multiplying factor of the PLL unless a prescale fre-
quency divider by R is applied to the input signal.

There are two hardware approaches to obtain a fractional PLL, which are
used in different FPGA devices. The simplest one uses an accumulator to
dynamically modify the frequency division in the feedback loop, in such
a way that in K out of F cycles of the reference signal, the dividing factor is
M + 1, and in F − K cycles, the frequency is divided by M, resulting in an
average dividing factor equal to [(M + 1)K + M · (F ─ K)]/F = M + K/F.

This solution adds spurious signals (instantaneous phase errors in the
time domain) to the output frequency. Although they can be mitigated
by using analog methods, a better solution is achieved by using a differ-
ent hardware structure for the fractional PLL. In this second approach,
based on a delta-sigma modulator, digital techniques are used to more
efficiently reduce phase noise and spurious signals (Barrett 1999; Texas
Instruments 2008).

As an example, the CMB shown in Figure 2.16 (which combines integer
and fractional PLLs) uses a delta-sigma modulator associated with the
feedback frequency divider (Altera 2015b). It also includes several output
dividers (C0─Cn) to generate output clock signals of different frequen-
cies, as well as an input clock switch circuit to select the reference signal.
Reference signals may be the same (clock redundancy) or have differ-
ent frequency (for dual-clock-domain applications). The input and output

39Main Architectures and Hardware Resources of FPGAs

Pr
es

ca
le

co
un

te
r

÷N

Ph
as

e
fre

qu
en

cy
de

te
ct

or

Ch
ar

ge
pu

m
p

Lo
w

 p
as

s
fil

te
r

Vo
lta

ge
-

co
nt

ro
lle

d
os

ci
lla

to
r

Fe
ed

ba
ck

co
un

te
r

÷M
D

el
ta

 si
gm

a
m

od
ul

at
or

G
CL

Ks
, R

CL
Ks

,
ca

sc
ad

e o
ut

pu
t

to
 ad

ja
ce

nt
 P

LL
s ,

H
SS

I

C 0 C 1

G
CL

K:
 g

lo
ba

l c
lo

ck
 n

et
w

or
k

RC
LK

: r
eg

io
na

l c
lo

ck
 n

et
w

or
k

H
SS

I:
hi

gh
-s

pe
ed

 se
ria

l i
nt

er
fa

ce

G
CL

K/
RC

LK

Cl
oc

k
sw

itc
h

ci
rc

ui
t

G
CL

K/
RC

LK
D

ed
ic

at
ed

 cl
oc

k
Ca

sc
ad

e i
np

ut

C n

FI
G

U
R

E
2.

16
 

In
te

ge
r/

fr
ac

ti
on

al
 P

LL
 f

ro
m

 A
lt

er
a

A
rr

ia
 1

0
fa

m
ily

.

40 FPGAs: Fundamentals, Advanced Features, and Applications

signals of this CMB can be connected to global or regional clock lines, to
external clock pins, or to other CMBs.

In the CMBs of any current FPGA, the feedback signal can be obtained
from different sources and be routed through different paths. The way of
doing it depends on the target functionality, as described in the following
(it must be noted that not all devices provide all these possibilities):

•	 Minimize the length of the feedback path to reduce output jitter.*
•	 Compensate skew in the clock network used to generate the output

of the CMB, which can be generated using either internal or external
feedback. In the first case, feedback comes from a global or regional
clock line, compensating internal device delays; whereas in the sec-
ond case, feedback comes from a device pin, compensating delays at
the board level.

•	 Generate zero-delay buffer clocks (Gentile 2008). When the signal
generated by the CMB is connected to an external clock pin, it may
be important to compensate the propagation delays introduced by
this pin and the external connections, in order to ensure that the
clock signal reaching the external device is synchronized with the
CMB’s reference signal.

•	 Ensure the phase in the data and clock inputs of the memory ele-
ments in IOBs is the same as the phase of the same signals when
they reach the device pins; that is, the pin-to-register-input delays of
these signals are the same.

•	 Ensure this equality of delays from input pins also for the clock and
data input signals of SerDes blocks.

In spite of their similar functionalities, there are many differences among
CMBs from different FPGA families in terms of input and output frequency
ranges, frequency/phase synchronization ranges, access to interconnection
resources, types of signals they can generate (e.g., single-ended, differen-
tial), the number of outputs, possible values of frequency multiplying and
dividing factors, fixed/variable/programmable delay, and so on. There are
obviously also differences in the control signals, but at least two of them
are present in all devices: reset, to initialize the CMB, and locked, whose
activation validates the output signal (i.e., indicates frequency and/or phase
synchronization has been achieved). The combination of both signals allows
the correct behavior of the CMB to be checked and recovered if needed. If
synchronism is lost, the locked signal will be deactivated. As a response, a
reset can be launched for synchronism to be recovered. This process can be
automatically executed in some FPGAs.

*	 Some vendors refer to this as jitter filter.

41Main Architectures and Hardware Resources of FPGAs

Although from all the previously mentioned issues, it may seem that it is
difficult for the user to deal with the many different configuration param-
eters and operating modes of CMBs, actually this is not the case. Software
design tools usually offer IP blocks whose user interfaces require just a few
values to be entered and then configuration parameters are automatically
computed.

2.4.2 � Memory Blocks

Most digital systems require resources to store significant amounts
of data. Memories are the main elements in charge of this task. Since
memory access times are usually much longer than propagation delays
in logic circuits, memories (in particular external ones) are the bottleneck
of many systems in terms of performance. Because of this, FPGA vendors
have always paid special attention to optimizing logic resources so that
they can support, in the most efficient possible way, the implementation
of internal memories.

Since combinational logic, LUTs, and flip-flops are available in LBs, inter-
nal memories can be built by combining the resources of several LBs, result-
ing in the so-called distributed memory. However, in order for distributed
memory to be more efficient, LBs may be provided with resources additional
to those intended to support the implementation of general-purpose logic
functions, such as additional data inputs and outputs, enable signals, and
clock signals. Because this implies LBs to be more complex and, in addition,
it makes no sense to use all LBs in an FPGA to build distributed memories,
usually only around 25%–50% (depending on the family of devices) of the
LBs in a device are provided with extra resources to facilitate the implemen-
tation of different types of memories: RAM, ROM, FIFO, shift registers, or
delay lines (Xilinx 2014b; Altera 2015c). The structures of a “general-purpose”
LB and another one suitable for distributed memory implementation can be
compared in Figure 2.17.

As FPGA architectures evolved to support the implementation of more and
more complex digital systems, memory needs increased. As a consequence,
vendors decided to include in their devices dedicated memory blocks, which
in addition use specific interconnection lines to optimize access time. They
are particularly suitable for implementing “deep” memories (with a large
number of positions), whereas distributed memory is more suitable for
“wide” memories (with many bits per position) with few positions, shift reg-
isters, or delay lines.

In current FPGAs, both distributed memory and dedicated memory blocks
support similar configurations and operating modes. Dedicated memory
is structured in basic building blocks of fixed capacity, which can be com-
bined to obtain deeper (series connection) or wider (parallel connection)
memories. The possible combinations depend on the target type of memory
and on the operating mode. The capacity of the blocks largely varies even

42 FPGAs: Fundamentals, Advanced Features, and Applications

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

Multiplexing logic

Carry logic–multiplexing logic CE SRCK

LU
T

A
6:

A
1 O

6
O

5

LU
T

A
6:

A
1 O

6
O

5

LU
T

A
6:

A
1 O

6
O

5

LU
T

A
6:

A
1 O

6
O

5

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

D CE CK
SR

Q

Multiplexing logic

Shift logic–carry logic–multiplexing logic CE SRCK

LU
T O

6
O

5

A
6:

A
1

W
6:

W
1 D

I
M

C
CK W

EN LU
T O

6
O

5

A
6:

A
1

W
6:

W
1 D

I
M

C
CK W

EN LU
T O

6
O

5

A
6:

A
1

W
6:

W
1 D

I
M

C
CK W

EN LU
T O

6
O

5

A
6:

A
1

W
6:

W
1 D

I
M

C
CK W

EN

(a
)

(b
)

FI
G

U
R

E
2.

17
 

LB
s

fr
om

 X
il

in
x’

 S
er

ie
s

7
d

ev
ic

es
: (

a)
 g

en
er

al
 p

u
rp

os
e

an
d

 (
b)

 o
ri

en
te

d
 to

 d
is

tr
ib

ut
ed

 m
em

or
y

im
pl

em
en

ta
ti

on
.

43Main Architectures and Hardware Resources of FPGAs

among devices of the same family (Altera 2012; Xilinx 2014c; Achronix 2015;
Microsemi 2015c). The most common configurations (some of which can be
seen in the sample case in Figure 2.18) are

•	 Single-port RAM, where only one single read or write operation can
be performed at a time (each clock cycle)

•	 Simple dual-port RAM, where one read and one write operation can
be performed simultaneously

•	 True dual-port RAM, where it is possible to perform two write oper-
ations, two read operations, or one read and one write operation
simultaneously (and at different frequencies if required)

•	 ROM, where a read operation can be performed in each clock cycle
•	 Shift register
•	 FIFO, either synchronous (using one clock for both read and write

operations) or asynchronous (using two independent clocks for read
and write operations). They can generate status flags (“full,” “empty,”
“almost full,” “almost empty”; the last two are configurable).

In dual-port memories, usually word width can be independently configured
for each port. In some cases, input and output word widths can also be
independently configured for the same port, which eases the efficient imple-
mentation of content-addressable memories. Configurations cannot be
arbitrary, but have to be chosen from a predefined set.

data_in
wr_address

rd_address
rd_en

wr_en

byte_en

wr_clk

rd_clk

wr_clk_en

rd_clk_en
aclr

data_out

(a)

data_in

rd

wr
wr_clk

rd_clk

aclr

wr_full
wr_empty
wr_used_word

rd_full
rd_empty
rd_used_word

data_out

(b)

data_in_a
address_a

wr_en_a

clk_en_a
clk_a

byte_en_a

rd_en_a
aclr_a

data_out_a

data_in_b
address_b

wr_en_b

clk_en_b
clk_b

byte_en_b

rd_en_b
aclr_b

data_out_b

(c)

FIGURE 2.18 
Sample Altera’s Cyclone III memory modes: (a) simple dual-port block RAM, (b) FIFO, and
(c) true dual-port block RAM.

44 FPGAs: Fundamentals, Advanced Features, and Applications

Several clock modes can be used in FPGA memories (some of which are
mentioned earlier), but not all modes are supported in all configurations:

•	 Single clock: All memory resources are synchronized with the same
clock signal.

•	 Read/write: Two different clocks are used for read and write opera-
tions, respectively.

•	 Input/output: Uses separate clocks for each input and output port.
•	 Independent clocks: Used in dual-port memories to synchronize each

port with a different clock signal.

Some memory blocks support error detection or correction using parity bits
or dedicated error correction blocks (Xilinx 2014c; Altera 2015b), as shown in
Figure 2.19. These are complementary functionalities that can be configured
from the software design tools.

Regarding parity, depending on data width, one or more parity bits may
be added to the original binary combination. In some FPGAs, parity func-
tions are not implemented in dedicated hardware, but have to be built from
distributed logic. In Xilinx’ Series 7 devices, parity is one of the possibilities
offered by the error correction code (ECC) encoder. The circuit in Figure 2.19
cannot be used with distributed memory. It can exclusively be associated

/
64

64 bit
error

correction
code (ECC)

encoder

Sb_BIT_ERR

Dc_BIT_ERR

DI

/
1

/
1

Dedicated
RAM
block

wr_addr

DI_Pa

rd_addr

data_out

data_in

/
8

/
8

/
64

/
64

/
8

Decoder
and

correction
block

DO_P

DO

S_BIT_ERR_FLAG

D_BIT_ERR_FLAG /
1

/
1

/
64

aParity (P). bSingle-bit error (S). cDouble-bit error (D).

FIGURE 2.19 
Error correction resources in Xilinx’ Series 7.

45Main Architectures and Hardware Resources of FPGAs

with dedicated memory blocks, in particular with simple dual-port and
FIFO configurations. It allows single-bit errors to be detected and corrected
or double-bit errors to be detected. Output signals are available to flag the
occurrence of an error and indicate whether or not it could be corrected.

Dedicated memory blocks based on SRAM cells can be found in all cur-
rent FPGAs. In some devices, flash memories with read/write capabilities
are also available (Microsemi 2014). Their main advantage comes from the
fact of being nonvolatile, and their main drawback is that they require more
control signals than SRAM-based ones, therefore making their control from
the FPGA fabric more complex. ECC blocks are also available for this kind
of memories.

The addition of memories to FPGA designs is facilitated by software
design tools, which automatically partition the memory blocks defined by
the designer and assign them to the memory blocks available in the target
device, according to the operation modes specified and the design constraints
regarding area and speed. Memory contents can also be initialized with the
help of the design tools, which allow the contents of text files (where the
values to be initially stored in the memories are described with a predefined
syntax) to be included in the configuration bitstream.*

2.4.3 � Hard Memory Controllers

In many FPGA applications, a huge amount of data has to be handled, but
there is not enough embedded memory available for that. In such cases,
external memory has to be used, and the corresponding memory controller
needs to be implemented in the FPGA. Since there exist a wide variety of
memories, the required interfaces are also very diverse, from simple parallel
or serial interfaces (such as Serial Peripheral Interface [SPI], Inter-Integrated
Circuit [I2C], and Universal Serial Bus [USB]) to much more complex ones
(e.g., DDR).

To address this issue, FPGA vendors offer different soft† IP core-based
solutions. However, these do not provide good-enough performance when
dealing with very large memories (up to the GB range) or very fast opera-
tion requirements (hundreds of MHz or even GHz). This is the reason
why FPGA vendors are including hard memory controllers in their most
current devices. For instance, Arria V and 10 families from Altera include
dedicated hardware for access control to external DDR/DDR2/DDR3/
DDR4 SDRAM memories (Figure 2.20). Spartan-6 and Virtex-6 families
from Xilinx also include DDR3 hard memory controllers, enhanced in
Series 7 families of devices and extended in the UltraScale family to sup-
port DDR4 memories.

*	 FPGA configuration issues are analyzed in detail in Chapter 6.
†	 The functionality of soft cores is implemented using resources of the FPGA fabric.

46 FPGAs: Fundamentals, Advanced Features, and Applications

Two types of hard DDR/DDR2/DDR3 memory controllers are available
in Microsemi SmartFusion2 devices, one of them accessible from the FPGA
fabric and the other from an embedded ARM Cortex-M3 core* (so it cannot
then be considered an FPGA resource, but rather one of the core). MachXO2,
LatticeXP2, and LatticeECP2/M families from Lattice include circuitry allow-
ing DDR/DDR2 memory interfaces to be implemented, whereas LatticeECP3,
ECP5, and ECP5-5G families also support DDR3 memory interfaces.

Compared with soft IP core-based solutions, hard controllers achieve lower
latencies and higher access frequencies. They support different data widths,
reordering of commands and data for out-of-order execution, definition of
priorities for reduced latency, streaming read or write operations for massive
data transfer, burst modes, operation modes for continuous access to random
sequences of memory addresses, multiport interfaces, low power consump-
tion modes, user-controlled partial refresh cycles for reduced consumption,
and error-correcting algorithms.

Let us consider the sample controller in Figure 2.20 (Altera 2016), consist-
ing of three main building blocks (all of them physically located in the I/O
banks of the devices):

•	 The physical layer interface (UniPHY) directly interacts with the
I/O pins and is in charge of ensuring an adequate timing between
the controller and the external memory. One of the main problems
of external memory interfaces is the skew among data lines due to
PCB routing. This problem is particularly significant for wide, high-
speed buses. UniPHY mitigates this problem by means of configu-
rable delay chains, which allow the delay associated with each I/O
pin to be independently adjusted so as to align all data in the bus.

•	 The memory controller is in charge of maximizing bandwidth,
through efficient control of the commands for external memory. It uses
two main strategies for that, namely, reordering commands to take
advantage of idle/dead cycles and reordering data and commands to

*	 As stated in Section 2.1, embedded soft and hard processors are separately analyzed in
Chapter 3.

In
pu

t p
ro

ce
ss

es

MPFE

A
rb

ite
r

Co
m

m
an

d
qu

eu
es

Co
m

m
an

d
qu

eu
e

Controller

Co
m

m
an

d
or

de
rin

g
lo

gi
c

UniPHY

I/
O

 b
uf

fe
rs

Ca
lib

ra
tio

n
(N

IO
S

II
ba

se
d)

D
D

R
m

em
or

ie
s

A
dd

re
ss

co
m

m
an

d
da

ta
cl

oc
ki

ng

FIGURE 2.20 
Arria 10 hard memory controller.

47Main Architectures and Hardware Resources of FPGAs

group read or write commands so that they are executed together,
minimizing bus turnaround time.

•	 The multiport front end (MPFE) manages the access of multiple
processes (read or write transactions) implemented in the FPGA fab-
ric to the same hard external memory interface. In Arria 10 devices,
it is a soft IP core.

2.4.4 � Transceivers

A key factor for the success of FPGAs in the digital design market is their
ability to connect to external devices, modules, and services in the same
PCB, through backplane, or at long distance. In order to be able to sup-
port applications demanding high data transfer rates, the most recent
FPGA families include full-duplex transceivers, compatible with the most
advanced industrial serial communication protocols (Cortina Systems and
Cisco Systems 2008; PCI-SIG 2014). Data transfer rates up to 56 Gbps can be
achieved in some devices, and the number of transceivers per device can
be in excess of 100 (e.g., up to 144 in Altera’s Stratix 10 GX family and up to
128 in Xilinx’s Virtex UltraScale + FPGAs). Some of the supported protocols
are as follows:

•	 Gigabit Ethernet
•	 PCI express (PCIe)
•	 10GBASE-R
•	 10GBASE-KR
•	 Interlaken
•	 Open Base Station Architecture Initiative (OBSAI)
•	 Common Packet Radio Interface (CPRI)
•	 10 Gb Attachment Unit Interface (XAUI)
•	 10GH Small Form-factor Pluggable Plus (SFP+)
•	 Optical Transport Network OTU3
•	 DisplayPort

Transceivers are complex circuits, whose architectures vary among solutions
from different FPGA vendors (as can be seen in Figure 2.21), in particular
regarding generation and management of clock signals (Altera 2014, 2015d;
Xilinx 2014d, 2015c; Achronix 2015; Jiao 2015; Microsemi 2015b). Anyway,
they can be basically divided in two parts, namely, transmitter and receiver,
each one in turn consisting of two main blocks (depicted in Figure 2.22 for
the case of Altera’s Stratix V devices): physical medium attachment (PMA)
and physical coding sublayer (PCS).

48 FPGAs: Fundamentals, Advanced Features, and Applications

aClock data recovery (CDR).

Receiver

Transmitter

PCS PMA

Bu
ffe

r

CD
Ra

D
es

er
ia

liz
er

Se
ria

liz
er

Bu
ffe

r

Serial input
data

Serial output
data

Ph
as

e
co

m
pe

ns
at

io
n

By
te

de
se

ria
liz

er

D
ec

od
er

Ph
as

e
co

m
pe

ns
at

io
n

By
te

se
ria

liz
er

En
co

de
r

FP
G

A
 fa

br
ic

aOut-of-band (OOB) sequences of the serial ATA (SATA).

Receiver

Transmitter

PCS PMA

D
es

er
ia

liz
er

Eq
ua

liz
er

O
O

B
sig

na
lin

g

Serial input
data

Serial output
data

FP
G

A
 fa

br
ic

Se
ria

liz
er

PC
Ie

O
O

B

Phase
interpolator

Polarity
control

Phase
interpolator
controller

PCIe

OOBaPattern
generator

Encoder
Phase
adjust

Polarity
control

Comma
detect

and
align

DecoderBuffer

(a)

(b)

FIGURE 2.21 
Transceivers from (a) Xilinx’ Series 7 and (b) Altera’s Stratix V families.

49Main Architectures and Hardware Resources of FPGAs

PM
A Rx CD

Ra
Rx

de
se

ria
liz

er

D
at

a

cl
k

Se
ria

l
Rx D
at

a
Rx bu
ffe

r

Tx
se

ria
liz

er
D

at
a

Tx bu
ffe

r

PL
L

cl
kPC

S

PR
BS

 ve
rif

ie
r

A
lig

ne
r

8
B/

10
 B

de
co

de
r

D
es

ke
w

By
te

de
se

ria
liz

er

Ph
as

e
co

m
pe

ns
at

io
n

Ph
as

e
co

m
pe

ns
at

io
n

By
te

se
ria

liz
er

8
B/

10
 B

en
co

de
r

Bi
t s

lip

PR
BS

 g
en

er
at

or

FPGA logic a Cl
oc

k
da

ta
 re

co
ve

ry
 (C

D
R)

.

Se
ria

l
Tx

D
at

a

FI
G

U
R

E
2.

22
 

A
lt

er
a’

s
St

ra
ti

x
V

 t
ra

n
sc

ei
ve

r:
 P

M
A

 (r
ig

ht
) a

nd
 P

C
S

(l
ef

t).

50 FPGAs: Fundamentals, Advanced Features, and Applications

Data flows are as follows: In the receiver, serial input data enter the PMA
block, whose output is applied to the PCS block, and finally information
reaches the FPGA fabric. In the transmitter, output data follow a similar path,
but in the opposite direction, from the FPGA fabric to the output of the PMA.

Given the high complexity of these blocks and taking into account that
the detailed analysis of communication protocols is totally out of the scope
of this book, only the main functional characteristics shared by most FPGA
transceivers are described in the following text.

The receiver’s PMA consists at least of an input buffer, a clock data recov-
ery (CDR) unit, and a deserializer:

•	 The input buffer allows the voltage levels and the terminating resis-
tors to be configured in order for the input differential terminals to
be adapted to the requirements of the different protocols. It supports
different equalization modes (such as continuous time linear equal-
ization or decision feedback equalization) aimed at increasing the
high-frequency gain of the input signal to compensate transmission
channel losses.

•	 The CDR unit extracts (recovers) the clock signal and the data bits
from incoming bitstreams.

•	 The deserializer samples the serial input data using the recovered
clock signal and converts them into words, whose width (8, 10, 16, 20,
32, 40, 64, or 80 bits) depends on the protocol being used.

In the transmitter side, the PMA is in charge of serializing output data and
sending them through a transmission buffer. This buffer includes circuits
to improve signal integrity in the high-speed serial data being transmit-
ted. Features include pre- and post-emphasis circuits to compensate losses,
internal terminating circuits, or programmable output differential voltage,
among others.

PCSs (both in the transmitter and in the receiver) can be considered as
digital processing interfaces between the corresponding PMA and the FPGA
fabric. Their main tasks are as follows:

•	 Encode (decode) data to be transmitted (being received) to sup-
port a variety of standard or proprietary coding solutions (8 B/10 B,
64 B/66 B, 64 B/67 B).

•	 Align serial input data to symbol boundaries (receiver).
•	 Generate (transmitter) or detect (receiver) the standard patterns

(pseudo-random bit sequences [PRBS]) used to check signal integ-
rity in high-speed serial links.

In addition, since transceivers use several clock domains, PCSs usually
include deskew circuits (such as the ones described in Section 2.4.1) to align

51Main Architectures and Hardware Resources of FPGAs

the phase of the different clock signals, as well as circuits to compensate
small frequency variations between the external transmitter and the local
receiver.

Depending on the operating mode or the used protocol, the PCS block may
not be used. Actually, not all FPGA transceivers include this block. Some
devices, in contrast, include transceivers with different types of PCS blocks,
supporting different serial data transfer rates.

Finally, to ensure integrity of the transmitted data, transceivers must be
calibrated before they start to operate. Transceivers in some devices (e.g.,
Altera’s Stratix 10) include circuits that automatically perform the calibration
process at power on.

Like in the cases of clock management and memory blocks, although trans-
ceiver configuration is in principle a complex task, software design tools pro-
vide resources to automatically obtain wrappers that allow transceivers to be
configured from either predefined models of industrial standards or user-
defined custom protocols.

2.4.4.1 � PCIe Blocks

Among the many existing serial communication protocols, PCIe deserves
special attention because of its role as high-speed solution for point-to-point
processor communication. Due to this, FPGA vendors have been progres-
sively including resources to support the implementation of PCIe buses,
from the initial IP-based solutions to the currently available dedicated hard-
ware blocks (Curd 2012).

From its initial definition (PCI-SIG 2015) to date, three PCIe specifications
have been released (a fourth one is pending publication), whose characteris-
tics are listed in Table 2.1.

Many FPGAs (e.g., Microsemi’s SmartFusion2 and IGLOO2, Xilinx’s
from Series 5 on, Altera’s from Arria II on) include dedicated hardware
blocks to support Gen 1 and Gen 2 specifications, and the most advanced
ones (e.g., Xilinx’ Virtex-7 XT and HT, Altera’s Stratix 10) also support
Gen 3. The combination of these blocks with transceivers and, in some

TABLE 2.1

PCIe Base Specifications

PCI Spec
Revision

Link Speed
(GT/s)

Max Bandwidtha
(Gb/s)

Encoding
Scheme Overhead (%)

Gen 1 2.5 2.0 8 B/10 B 20
Gen 2 5.0 4.0 8 B/10 B 20
Gen 3 8.0 7.88 128 B/130 B 1.5
Gen 4b 16.0 15.76 128 B/130 B 1.5

a	 Theoretical value. The actual one is lower because of packet overhead, among other factors.
b	 Publication pending.

52 FPGAs: Fundamentals, Advanced Features, and Applications

cases, memory blocks allows the PCIe physical, data link, and transaction
layers functions to be implemented (Figure 2.23), providing full endpoint
and root-port functionality in ×1/×2/×4/×8/×16 lane configurations. The
application layer is implemented in distributed logic. Communication
with the transaction layer is achieved using interfaces usually based on
AMBA buses.* A separate transceiver is needed for each lane, so the num-
ber of supported lanes depends on the availability of transceivers with
PCIe capabilities.

In addition to basic specifications, some PCIe dedicated hardware blocks
also support advanced functionalities, such as multiple-function, single-root
I/O virtualization (SR-IOV), advanced error reporting (AER), and end-to-end
CRC (ECRC).

The multiple-function feature allows several PCIe configuration header
spaces to share the same PCIe link. From a software perspective, the situa-
tion is equivalent to having several PCIe devices, simplifying driver develop-
ment (can be the same for all functions) and its portability.

The SR-IOV interface is an extension to the PCIe specification. When a
single CPU (single root) runs different OSs (multiple guests) accessing an I/O
device, SR-IOV can be used to assign a virtual configuration space to each
OS, providing it with a direct link to the I/O device. In this way, data transfer
rates can be very close to those achieved in a nonvirtualized solution.

AER and ECRC are optional functions oriented to systems with high reli-
ability requirements. They allow detection, flagging, and correction of errors
associated with PCIe links to be improved.

One of the major challenges for the implementation of PCIe is that, accord-
ing to the Base Specification, links must be operational in less than 100 ms

*	 AMBA is a dominating de facto on-chip interconnect specification standard in industry for
IP-based design (ARM-proprietary), which was first introduced in 1999 to ease the efficient
interconnection of multiple processors and peripherals with different performances (low
and high bandwidth). It is currently one of the most popular on-chip busing solutions for
SoCs, and as such is analyzed in detail in Chapter 3.

bEnd-to-end cyclic redundancy check (ECRC).
cLink cyclic redundancy check (LCRC).

Fixed logic

Data link layer
(link management)

Packet integrity
Sequence

LCRCc

Error checking

Transaction layer
(flow control)

Transaction header
Data payload

ECRCb

Physical layer

Transceiver
or

SerDes

aSingle root I/O virtualization (SR-IOV).

FPGA fabric
Br

id
ge

s

SR
-I

O
Va

Usually optional
logic

Application layer

User-defined logic

FIGURE 2.23 
Block diagram of a typical PCIe implementation.

53Main Architectures and Hardware Resources of FPGAs

after power on. Current FPGAs apply different configuration techniques to
address this issue. One of them is partial reconfiguration (discussed in detail
in Chapter 8): The FPGA is initially configured with a bitstream just contain-
ing the PCIe circuitry, and once it is operational, the rest of the FPGA func-
tions required are configured on the fly using this link.

2.4.5 � Serial Communication Interfaces

Although serial communication interfaces (such as I2C, SPI, and USB) are
usually required in many FPGA applications, not many devices include
specialized hardware blocks with this kind of functionality, but it is imple-
mented either using resources of the FPGA fabric or as part of an embedded
hard or soft processor. At the moment, this book is being finalized, and to the
best of authors’ knowledge, only Lattice’s and QuickLogic’s devices include
such hardware blocks. Lattice’s MachXO2, MachXO3, iCE40LM, and iCE40
Ultra families as well as QuickLogic’s ArcticLink II VX2 family include SPI
and I2C interfaces. USB and SD/SDIO/MMC/CE-ATA* interfaces are avail-
able in ArcticLink devices. Implementing such serial interfaces in hardware
allows area, performance, and power consumption to be optimized.

The embedded function block (EFB) interface of the MachXO3 family
(Lattice 2016) is shown in Figure 2.24a. It consists of a set of specialized hard-
ware blocks, including one SPI and two I2C interfaces. These three blocks
are connected to the FPGA fabric through a Wishbone interface (analyzed in
Section 3.5.4). The two I2C interfaces can be configured as master (thus control-
ling other devices in the bus) or slave (thus acting as a resource available for a
bus master). Among other features, they support 7 and 10 bit addressing, multi-
master arbitration, interrupt request, and up to 400 kHz data transfer speed.
The SPI block can also be configured as master or slave. It supports full-duplex
data transfer, double-buffered data register, interrupt request, serial clock with
programmable polarity and phase, and LSB- or MSB-first data transfer.

The iCE40 Ultra family (Lattice 2015), whose block diagram is shown in
Figure 2.24b, includes up to two I2C and two SPI interfaces, similar to those
in the MachXO3 family. The distinct characteristic of iCE40 Ultra devices
is that they can be categorized as “specific-purpose FPGAs,” that is, con-
figurable devices equipped with specific resources targeting specific appli-
cations rather than wide applicability (what most FPGAs are intended for).
In this case, they are sensor managers targeting mobile platforms, such as
smartphones, tablets, and handheld devices. With this purpose, in addition
to the serial communication interfaces allowing them to connect to mobile
sensors and application processors, they include other specialized hardware
blocks, such as on-chip oscillators or DSP functional blocks.

*	 Secure Digital (SD), Secure Digital Input Output (SDIO), MultiMediaCard (MMC), and
Consumer Electronic-ATA (CE-ATA) are memory card protocol definitions and standards
used for solid-state storage.

54 FPGAs: Fundamentals, Advanced Features, and Applications

Similarly, QuickLogic’s ArcticLink and ArcticLink II VX2 families are also
oriented to mobile devices, so they include not only serial communication
interfaces but also other very specific and complex blocks (only available in
these devices and which are analyzed in Section 3.4.1). It is important to note
that these FPGAs are nonvolatile devices based on QuickLogic proprietary
ViaLink antifuse technology, and therefore one-time programmable (OTP),
in contrast with the vast majority of FPGAs currently in the market, which
are reconfigurable.

The block diagram of an ArcticLink II VX2 device (QuickLogic 2013) is
shown in Figure 2.25a. It includes two serial interfaces: one SPI and one I2C.
The I2C interface is mainly used as configuration bus for other embedded
hardware blocks, although it can also be used as general-purpose interface.
The SPI interface can only act as master, and it is intended for controlling

aNonvolatile configuration memory (NVCM).
bUser flash memory (UFM).

(a)
cEmbedded function block (EFB).

Logic blocks

PLL NVCMa NVCM/UFMb EFBc

Logic blocks

RAM blocks

I/O blocks

I/O blocks

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

Embedded function
block

Wishbone
interface

I2CI2C SPI

Ti
m

er
/c

ou
nt

er

FPGA fabric

(b)

aCurrent drive RGB LED outputs (RGB).
bCurrent drive IR LED output (IR).

LBs LBs LBs

LBs LBs LBsRA
M

RA
M

LBs LBs LBs

LBs LBs LBsRA
M

RA
M

I/O blocks

N
VC

M

SPI I/O blocks SPI

D
SP

D
SP

D
SP

D
SP

RGBaI2C I2CIRb

FIGURE 2.24 
(a) MachXO3 EFB interface and (b) block diagram of iCE40 Ultra devices.

55Main Architectures and Hardware Resources of FPGAs

external elements such as sensors or displays. It supports up to three slaves
and can operate in the frequency range from 1.5 to 27.2 MHz. These interfaces
are not physically located in IOBs, but instead, they are connected by the user
by means of resources of the FPGA fabric (see Figure 2.25a). This allows the
number of external peripherals that can be connected to the interfaces to be
extended by implementing a suitable multiplexing logic in the FPGA fabric.

Other resources included in ArcticLink devices (because they are widely
used in handheld devices) are Hi-Speed USB 2.0 On-the-Go (OTG), and SD/
SDIO/MMC/CE-ATA host controllers (Figure 2.25b) (QuickLogic 2010).

The Hi-Speed USB 2.0 OTG controller is a dual-role device supporting host
and device functions. Its main features are as follows:

•	 Supports high- (480 Mbps), full- (12 Mbps), and low-speed (1.5 Mbps)
transfers

•	 Integrated physical layer with dedicated internal PLL
•	 Supports both point-to-point and multipoint (root hub) applications
•	 Double-buffering scheme for improved throughput and data trans-

fer capabilities
•	 Supports OTG Host Negotiation Protocol and Session Request Protocol
•	 Configurable power management features
•	 Integrated 5.2 kB FIFO
•	 Sixteen endpoints: one fixed bidirectional control endpoint, one soft-

ware programmable IN or OUT endpoint, seven IN endpoints, and
seven OUT endpoints

The SD/SDIO/MMC/CE-ATA controller is compliant with the SD Host
Controller Standard Specification, Version 2.0. It supports clock rates up to
52 MHz; 1, 4, or 8 bit data modes; block size up to 512 bytes; and dynamic
buffer management to increase data throughput.

PLL

VEEaI2C SPI

Registers
bus controller
frame bu�er

RAM

DPOb

Fixed logic

FPGA fabric

(a) (b)

Incoming RGB

Logic blocks Peripherals

Mobile device

aVisual enhancement
 engine (VEE).

bDisplay power
 optimizer (DPO).

Main
processor

Mobile device

FPGA fabric

Fi
xe

d
lo

gi
c

USB 2.0

Rx Tx

OTG PHYSD/SDIO/
MMC/

CE-ATA
Rx Tx

I/O blocks I/O blocks

FIGURE 2.25 
Block diagram of (a) ArcticLink II VX2 and (b) ArcticLink devices.

56 FPGAs: Fundamentals, Advanced Features, and Applications

References

Achronix. 2008. Introduction to Achronix FPGAs. White paper WP001-1.6.
Achronix. 2015. Speedster22i HD1000 FPGA data sheet DS005-1.0.
Actel (currently Microsemi). 2010. ProASIC3 FPGA Fabric User’s Guide.
Altera. 2012. Cyclone III Device Handbook.
Altera. 2014. Stratix V Device Handbook. Vol. 2: Transceivers.
Altera. 2015a. MAX 10 FPGA device architecture.
Altera. 2015b. Arria 10 Core Fabric and General Purpose I/Os Handbook.
Altera. 2015c. Stratix V Device Handbook. Vol. 1: Device Interfaces and Integration.
Altera. 2015d. Arria 10 Transceiver PHY User Guide UG-01143.
Altera. 2016. External Memory Interface Handbook Volume 1: Altera Memory Solution

Overview, Design Flow, and General Information.
Barrett, C. 1999. Fractional/integer-N PLL basics. Texas Instruments technical brief

SWRA029. Texas Instruments, Dallas, TX.
Cortina Systems and Cisco Systems. 2008. Interlaken protocol definition. Revision 1.2.
Curd, D. 2012. PCI express for the 7 series FPGAs. Xilinx white paper WP384 (v1.1).
Gentile, K. 2008. Introduction to zero-delay clock timing techniques. Analog Devices

application note AN-0983. Analog Devices, Norwood, MA.
Hutton, M. 2015. Understanding how the new HyperFlex architecture enables next-

generation high-performance systems. Altera white paper WP-01231-1.0.
Jiao, B. 2015. Leveraging UltraScale FPGA transceivers for high-speed serial I/O con-

nectivity. Xilinx white paper WP458 (v1.1).
Kuon, I., Tessier, R., and Rose, J. 2007. FPGA architecture: Survey and challenges.

Foundations and Trends in Electronic Design Automation, 2:135–253.
Lattice. 2015. iCE40 Ultra family datasheet DS1048 (v1.8).
Lattice. 2016. MachXO3 family datasheet DS1047 (v1.6).
Microsemi. 2014. Fusion family of mixed signal FPGAs datasheet. Revision 6.
Microsemi. 2015a. IGLOO2 FPGA and SmartFusion2 SoC FPGA: Datasheet DS0451.
Microsemi. 2015b. SmartFusion2 SoC and IGLOO2 FPGA fabric: User guide UG0445.
Microsemi. 2015c. ProASIC3E flash family FPGAs: Datasheet DS0098.
Microsemi. 2015d. SmartFusion2 and IGLOO2 clocking resources: User guide

UG0449.
PCI-SIG. 2015. PCI Express® base specification revision 3.1a. Available at: https://

pcisig.com/specifications/pciexpress. Accessed November 20, 2016.
QuickLogic. 2010. ArcticLink solution platform datasheet (rev. M).
QuickLogic. 2013. ArcticLink II VX2 solution platform datasheet (rev. 1.0).
Rodriguez-Andina, J.J., Moure, M.J., and Valdes, M.D. 2007. Features, design tools,

and application domains of FPGAs. IEEE Transactions on Industrial Electronics,
54:1810–1823.

Rodriguez-Andina, J.J., Valdes, M.D., and Moure, M.J. 2015. Advanced features and
industrial applications of FPGAs—A review. IEEE Transactions on Industrial
Informatics, 11:853–864.

Saban, K. 2012. Xilinx Stacked Silicon Interconnect Technology delivers break-
through FPGA capacity, bandwidth, and power efficiency. Xilinx white paper
WP380 (v1.2).

Texas Instruments. 2008. Fractional N frequency synthesis. Application note AN-1879.

https://pcisig.com/specifications/pciexpress
https://pcisig.com/specifications/pciexpress

57Main Architectures and Hardware Resources of FPGAs

Xilinx. 2004. Celebrating 20 years of innovation. Xcell Journal, 48:14–16.
Xilinx. 2006. Virtex-5 platform FPGA family technical backgrounder.
Xilinx. 2010. Spartan-6 FPGA Configurable Logic Block: User Guide UG384 (v1.1).
Xilinx. 2014a. Spartan-6 FPGA SelectIO Resources: User Guide UG381 (v1.6).
Xilinx. 2014b. 7 Series FPGAs Configurable Logic Block: User Guide UG474 (v1.7).
Xilinx. 2014c. 7 Series FPGAs Memory Resources: User Guide UG473 (v1.11).
Xilinx. 2014d. 7 Series FPGAs GTP Transceivers: User Guide UG482 (v1.8).
Xilinx. 2015a. 7 Series FPGAs SelectIO Resources: User Guide UG471 (v1.5).
Xilinx. 2015b. 7 Series FPGAs Clocking Resources: User Guide UG472 (v1.11.2).
Xilinx. 2015c. 7 Series FPGAs GTX/GTH Transceivers: User Guide UG476 (v1.11).

http://taylorandfrancis.com

59

3
Embedded Processors in
FPGA Architectures

3.1 � Introduction

Only 10 years ago we would have thought about the idea of a smart watch
enabling us to communicate with a mobile phone, check our physical activ-
ity or heart rate, get weather forecast information, access a calendar, receive
notifications, or give orders by voice as the subject of a futuristic movie. But,
as we know now, smart watches are only one of the many affordable gadgets
readily available in today’s market.

The mass production of such consumer electronics devices providing
many complex functionalities comes from the continuous evolution of elec-
tronic fabrication technologies, which allows SoCs to integrate more and
more powerful processing and communication architectures in a single
device, as shown by the example in Figure 3.1.

FPGAs have obviously also taken advantage of this technological evolu-
tion. Actually, the development of FPSoC solutions is one of the areas (if not
THE area) FPGA vendors have concentrated most of their efforts on over
recent years, rapidly moving from devices including one general-purpose
microcontroller to the most recent ones, which integrate up to 10 complex
processor cores operating concurrently. That is, there has been an evolution
from FPGAs with single-core processors to homogeneous or heterogeneous mul-
ticore architectures (Kurisu 2015), with symmetric multiprocessing (SMP) or
asymmetric multiprocessing (AMP) (Moyer 2013).

This chapter introduces the possibilities FPGAs currently offer in terms
of FPSoC design, with different hardware/software alternatives. But, first
of all, we will discuss the broader concept of SoC and introduce the related
terminology, which is closely linked to processor architectures.

From Chapter 1, generically speaking, a SoC can be considered to consist
of one or more programmable elements (general-purpose processors, micro-
controllers, DSPs, FPGAs, or application-specific processors) connected to
and interacting with a set of specialized peripherals to perform a set of tasks.
From this concept, a single-core, single-thread processor (general-purpose,

60 FPGAs: Fundamentals, Advanced Features, and Applications

microcontroller, or DSP) connected to memory resources and specialized
peripherals would usually be the best choice for embedded systems aimed
at providing specific, non-time-critical functionalities. In these architectures,
the processor acts as system master controlling data flows, although, in some
cases, peripherals with memory access capabilities may take over data trans-
fers with memory during some time intervals. Using FPGAs in this context
provides higher flexibility than nonconfigurable solutions, because when-
ever a given software-implemented functionality does not provide good-
enough timing performance, it can be migrated to hardware. In this solution,
all hardware blocks are seen by the processor as peripherals connected to the
same communication bus.

In order for single-core architectures to cope with continuous market
demands for faster, more computationally powerful, and more energy-
efficient solutions, the only option would be to increase operating frequency
(taking advantage of nanometer-scale or 3D stacking technologies) and to
reduce power consumption (by reducing power supply voltage). However,
from the discussion in Chapter 1, it is clear that for the most demanding

FIGURE 3.1 
Processing and communication features in a smart watch SoC.

61Embedded Processors in FPGA Architectures

current applications, this is not a viable solution, and the only ones that may
work are those based on the use of parallelism, that is, the ability of a system
to execute several tasks concurrently.

The straightforward approach to parallelism is the use of multiple single-
core processors (with the corresponding multiple sources of power con-
sumption) and the distribution of tasks among them so that they can operate
concurrently. In these architectures, memory resources and peripherals
are usually shared among the processors and all elements are connected
through a common communication bus. Another possible solution is the
use of multithreading processors, which take advantage of dead times dur-
ing the sequential execution of programs (for instance, while waiting for
the response from a peripheral or during memory accesses) to launch a new
thread executing a new task. Although this gives the impression of parallel
execution, it is just in fact multithreading. Of course, these two relatively sim-
ple (at least conceptually) options are valid for a certain range of applications,
but they have limited applicability, for instance, because of interconnection
delays between processors or saturation of the multithreading capabilities.

3.1.1 � Multicore Processors

The limitations of the aforementioned approaches can be overcome by using
multicore processors, which integrate several processor cores (either mul-
tithreading or not) on a single chip. Since in most processing systems the
main factor limiting performance is memory access time, trying to achieve
improved performance by increasing operating frequency (and, hence,
power consumption) does not make sense above certain limits, defined by
the characteristics of the memories. Multicore systems are a much more
efficient solution than that because they allow tasks to be executed concur-
rently by cores operating at lower frequencies than those a single processor
would require, while reducing communication delays among processors, all
of them within the same chip. Therefore, these architectures provide a better
performance–power consumption trade-off.

3.1.1.1 � Main Hardware Issues

There are many concepts associated with multicore architectures, and the
commercial solutions to tackle them are very diverse. This section concen-
trates just on the main ideas allowing to understand and assess the ability
of FPGAs to support SoCs. Readers can easily find additional information in
the specialized literature about computer architecture (Stallings 2016).

The first multicore processors date back some 15 years ago, when IBM intro-
duced the POWER4 architecture (Tendler et al. 2002). The evolution since then
resulted in very powerful processing architectures, capable of supporting
different OSs on a single chip. One might think the ability to integrate mul-
tiple cores would have a serious limitation related to increased silicon area

62 FPGAs: Fundamentals, Advanced Features, and Applications

and, in turn, cost. However, nanometer-scale and, more recently, 3D stack-
ing technologies have enabled the fabrication of multicore chips at reasonably
affordable prices. Today, one may easily find 16-core chips in the market.

As shown in Figure 3.2, multicore processors may be homogeneous (all of
whose cores have the same architecture and instruction set) or heterogeneous
(consisting of cores with different architectures and instruction sets). Most
general-purpose multicore processors are homogeneous. In them, tasks (or
threads) are interchangeable among processors (even at run time) with no
effect on functionality, according to the availability of processing power in
the different cores. Therefore, homogeneous solutions make an efficient use
of parallelization capabilities and are easily scalable.

In spite of the good characteristics of homogeneous systems, there is a cur-
rent trend toward heterogeneous solutions. This is mainly due to the very
nature of the target applications, whose increasing complexity and growing
need for the execution of highly specialized tasks require the use of plat-
forms combining different architectures, as, for instance, microcontrollers,
DSPs, and GPUs. Therefore, heterogeneous architectures are particularly
suitable for applications where functionality can be clearly partitioned into
specific tasks requiring specialized processors and not needing intensive
communication among tasks.

Communications is actually a key aspect of any embedded system, but even
more for multicore processors, which require low-latency, high-bandwidth
communications not only between each processor and its memory/
peripherals but also among the processors themselves. Shared buses may be
used for this purpose, but the most current SoCs rely on crossbar intercon-
nections (Vadja 2011). Given the importance of this topic, the on-chip buses
most widely used in FPSoCs are analyzed in Section 3.5.

To reduce data traffic, multicore systems usually have one or two levels
of local cache memory associated with each processor (so it can access the
data it uses more often without affecting the other elements in the system),

μC μC

μCμC

(a)

μC1 μC1

GPU

DSP

(b)

μC2

FIGURE 3.2 
(a) Homogeneous and (b) heterogeneous multicore processor architectures. (a) Homogeneous
architecture: processor cores are identical; (b) heterogeneous architecture: combines different
processor cores.

63Embedded Processors in FPGA Architectures

plus one higher level of shared cache memory. A side benefit of using shared
memory is that in case the decision is made to migrate some sequential pro-
gramming to concurrent hardware or vice versa, the fact that all cores share
a common space reduces the need for modifications in data or control struc-
tures. Examples of usual cache memory architectures are shown in Figure 3.3.

The fact that some data (shared variables) can be modified by different
cores, together with the use of local cache memories, implicitly creates prob-
lems related to data coherence and consistency. In brief, coherence means
all cores see any shared variable as if there were no cache memories in the
system, whereas consistency means instructions to access shared variables
are programmed in the sharing cores in the right order. Therefore, coherence
is an architectural issue (discussed in the following) and consistency a pro-
gramming one (beyond the scope of this book).

A multicore system using cache memories is coherent if it ensures all pro-
cessors sharing a given memory space always “see” at any position within
it the last written value. In other words, a given memory space is coherent if
a core reading a position within it retrieves data according to the order the
cores sharing that variable have written values for it in their local caches.
Coherence is obviously a fundamental requirement to ensure all processors
access correct data at any time. This is the reason why all multicore proces-
sors include a cache-coherent memory system.

Although there are many different approaches to ensure coherence, all
of them are based on modification–invalidation–update mechanisms. In a
simplistic way, this means that when a core modifies the value of a shared
variable in its local cache, copies of this variable in all other caches are invali-
dated and must be updated before they can be used.

Core

Main
memory

Single core with private
cache

Main
memory

Core Core

Multicore with private cache

Main
memory

Core

Private
cachea

Private
cachea

Private
cachea

Core

Private
cachea

Private
cachea Shared cacheb

Multicore with private
 and shared cache

aUsually level 1 (L1) cache.
bUsually level 2 (L2) cache.

FIGURE 3.3 
Usual cache memory architectures.

64 FPGAs: Fundamentals, Advanced Features, and Applications

3.1.1.2 � Main Software Issues

As in the case of hardware, there are many software concepts to be con-
sidered in embedded systems, and multicore ones in particular, at different
levels (application, middleware, OS) including, but not limited to, the neces-
sary mechanisms for multithreading control, partitioning, resource sharing,
or communications.

Different scenarios are possible depending on the complexity of the soft-
ware to be executed by the processor and that of the processor itself,* as
shown in Figure 3.4. For simple programs to be executed in low-end proces-
sors, the usual approach is to use bare-metal solutions, which do not require
any software control layer (kernel or OS). Two intermediate cases are the
implementation of complex applications in low-end processors or simple
applications in high-end processors. In both cases, it is usual (and advisable)
to use at least a simple kernel. Although this may not be deemed necessary
for the latter case, it is highly recommended for the resulting system to be
easily scalable. Finally, in order to efficiently implement complex applica-
tions in high-end processors, a real-time or high-end OS is necessary (Walls
2014). Currently, this is the case for most embedded systems.

Other important issues to be considered are the organization of shared
resources, task partitioning and sequencing, as well as communications
between tasks and between processors. From the point of view of the soft-
ware architecture, these can be addressed by using either AMP or SMP
approaches, depicted in Figure 3.5.

SMP architectures apply to homogeneous systems with two or more cores
sharing memory space. They are based on using only one OS (if required) for

*	 Just to have a straightforward idea about complexity, we label as low-end processors those
whose data buses are up to 16-bit wide and as high-end processors those with 32-bit or wider
data buses.

Low HighSoftware complexity

CP
U

 co
m

pl
ex

ity
Lo

w
H

ig
h

Bare metal
solution

Simple kernel
solution

OS or RTOS
solution

Simple kernel
solution

FIGURE 3.4 
Software scenarios.

65Embedded Processors in FPGA Architectures

all cores. Since the OS has all the information about the whole system hard-
ware at any point, it can efficiently perform a dynamic distribution of the
workload among cores (which implies extract application parallelism, parti-
tion of tasks/threads, and dynamic assignment of tasks to cores), as well as
the control of the ordering of task completion and of resource sharing among
cores. Resource sharing control is one of the most important advantages of
SMP architectures. Another significant one is easy interprocess communica-
tion, because there is no need for implementing any specific communication
protocol, thus avoiding the overhead this would introduce. Finally, debug-
ging tasks are simpler when working with just one OS.

SMP architectures are clearly oriented to get the most possible advantage
of parallelism to maximize processing performance, but they have a main
limiting factor, related to the dynamic distribution of workload. This factor
affects the ability of the system to provide a predictable timing response,
which is a fundamental feature in many embedded applications. Another
past drawback, the need for an OS supporting multicore processing, is not
a significant problem anymore given the wide range of options currently
available (Linux, embedded Windows, and Android, to cite just some).

In contrast to SMP, AMP architectures can be implemented in either homo-
geneous or heterogeneous multicore processors. In this case, each core runs
its own OS (either separate copies of the same or totally different ones; some
cores may even implement a bare-metal system). Since none of the OSs is
specifically in charge of controlling shared resources, such control must be
very carefully performed at the application level. AMP solutions are oriented
to applications with a high level of intrinsic parallelism, where critical tasks

Multicore processor

Core 1 Core 2

OS

Application 1
Th

re
ad

 1

Th
re

ad
 N

Middleware

RTOS

Application 2

Th
re

ad
 1

Th
re

ad
 M

AMP architecture

Multicore processor

Core 1 Core 2

Application

�
re

ad
 1

�
re

ad
 N

Middleware

OS

SMP architecture

FIGURE 3.5 
AMP and SMP multiprocessing.

66 FPGAs: Fundamentals, Advanced Features, and Applications

are assigned to specific resources in order for a predictable behavior to be
achieved. Usually, in AMP systems, processes are locked (assigned) to a given
processor. This simplifies the individual control of each core by the designer.
In addition, it eases migration from single-core solutions.

3.1.2 � Many-Core Processors

Single- and multicore solutions are the ones most commonly found in SoCs,
but there is a third option, many-core processors, which find their main niche
in systems requiring a high scalability (mostly intensive computing applica-
tions), for instance, cloud computing datacenters. Many-core processors con-
sist of a very large number of cores (up to 400 in some existing commercially
available solutions [Nickolls and Dally 2010; NVIDIA 2010; Kalray 2014]), but
are simpler and have less computing power than those used in multicore sys-
tems. These architectures aim at providing massive concurrency with a com-
paratively low energy consumption. Although many researchers and vendors
(Shalf et al. 2009; Jeffers and Reinders 2015; Pavlo 2015) claim this will be the
dominant processing architecture in the future, its analysis is out of the scope
of this book, because until now, it has not been adopted in any FPGA.

3.1.3 � FPSoCs

At this point two pertinent questions arise: What is the role of FPGAs in
SoC design, and what can they offer in this context? Obviously, when speak-
ing of parallelism or versatility, no hardware platform compares to FPGAs.
Therefore, combining FPGAs with microcontrollers, DSPs, or GPUs clearly
seems to be an advantageous design alternative for a countless number
of applications demanded by the market. Some years ago, FPGA vendors
realized the tremendous potential of SoCs and started developing chips
that combined FPGA fabric with embedded microcontrollers, giving rise to
FPSoCs.

The evolution of FPSoCs can be summarized as shown in Figure 3.6.
Initially, FPSoCs were based on single-core soft processors, that is, configu-
rable microcontrollers implemented using the logic resources of the FPGA
fabric. The next step was the integration in the same chip as the FPGA fabric
of single-core hard processors, such as PowerPC. In the last few years, sev-
eral families of FPGA devices have been developed that integrate multicore
processors (initially homogeneous architectures and, more recently, hetero-
geneous ones). As a result, the FPSoC market now offers a wide portfolio
of low-cost, mid-range, and high-end devices for designers to choose from
depending on the performance level demanded by the target application.

FPGAs are among the few types of devices that can take advantage of the
latest nanometer-scale fabrication technologies. At the time of writing this
book, according to FPGA vendors (Xilinx 2015; Kenny 2016), high-end FPGAs
are fabricated in 14 nm process technologies, but new families have already

67Embedded Processors in FPGA Architectures

been announced based on 10 nm technologies, whereas the average for
ASICs is 65 nm. The reason for this is just economic viability. When migrat-
ing a chip design to a more advanced node (let us say from 28 to 14 nm), the
costs associated with hardware and software design and verification dra-
matically grow, to the extent that for the migration to be economically viable,
the return on investment must be in the order of hundreds of millions of
dollars. Only chips for high-volume applications or those that can be used in
many different applications (such as FPGAs) can get to those figures.

The different FPSoC options currently available in the market are ana-
lyzed in the following sections.

3.2 � Soft Processors

As stated in Section 3.1.3, soft processors are involved in the origin of FPSoC
architectures. They are processor IP cores (usually general-purpose ones)
implemented using the logic resources of the FPGA fabric (distributed logic,
specialized hardware blocks, and interconnect resources), with the advan-
tage of having a very flexible architecture.

2002 …… 2004 2006 …… 2009…… 2011 2012 2013 …… 2015

4

2

1

PicoBlaze
(Xilinx)

AT94K
(Atmel)

Nios
(Altera)

E5
(Triscend)

Excalibur
(Altera)

QuickMIPS
(QuickLogic)

A7
(Triscend)

Microblaze
(Xilinx)

Virtex II Pro
(Xilinx)

µPSD3200
(ST)

Nios-II
(Altera)

LM8
(Lattice)

LM32
(Lattice)

SmartFusion
(Microsemi)

Virtex-4
(Xilinx)

Virtex-5
(Xilinx)

Arria V
(Altera)

Arria 10
(Altera)

Stratix10
(Altera)

Zynq UltraScale+
(Xilinx)

Soft processors

FPGA families including
hard processors

Heterogeneous architectures

Year20051999 20012000

N
o.

 o
f p

ro
ce

ss
or

 co
re

s

Zynq-7000
(Xilinx)

Cyclone V
(Altera)

SmartFusion 2
(Microsemi)

Homogeneous architectures

FIGURE 3.6 
FPSoC evolution.

68 FPGAs: Fundamentals, Advanced Features, and Applications

As shown in Figure 3.7, a soft processor consists of a processor core, a set
of on-chip peripherals, on-chip memory, and interfaces to off-chip memory.
Like microcontroller families, each soft processor family uses a consistent
instruction set and programming model.

Although some of the characteristics of a given soft processor are pre-
defined and cannot be modified (e.g., the number of instruction and data
bits, instruction set architecture [ISA], or some functional blocks), others can
be defined by the designer (e.g., type and number of peripherals or memory
map). In this way, the soft processor can, to a certain extent, be tailored to the
target application. In addition, if a peripheral is required that is not available
as part of the standard configuration possibilities of the soft processor, or a
given available functionality needs to be optimized (for instance, because
of the need to increase processing speed in performance-critical systems), it
is always possible for the designer to implement a custom peripheral using
available FPGA resources and connect it to the CPU in the same way as any
“standard” peripheral.

The main alternative to soft processors are hard processors, which are
fixed hardware blocks implementing specific processors, such as the ARM’s
Cortex-A9 (ARM 2012) included by Altera and Xilinx in their latest fami-
lies of devices. Although hard processors (analyzed in detail in Section 3.3)
provide some advantages with regard to soft ones, their fixed architecture
causes not all their resources to be necessary in many applications, whereas
in other cases there may not be enough of them. Flexibility then becomes the
main advantage of soft processors, enabling the development of custom solu-
tions to meet performance, complexity, or cost requirements. Scalability and
reduced risk of obsolescence are other significant advantages of soft proces-
sors. Scalability refers to both the ability of adding resources to support new
features or update existing ones along the whole lifetime of the system and the

LBs

IOBs

H
ar

d
pr

oc
es

so
r

Processor core

Bus interface

Peripherals

Bus interface
Memory

controller

Bus interface
On-chip
 memory

Bus interface

FPGA fabricSoft processor

FIGURE 3.7 
Soft processor architecture.

69Embedded Processors in FPGA Architectures

possibility of replicating a system, implementing more than one processor in
the same FPGA chip. In terms of reduced risk of obsolescence, soft processors
can usually be migrated to new families of devices. Limiting factors in this
regard are that the soft processor may use logic resources specific to a given
family of devices, which may not be available in others, or that the designer is
not the actual owner of the HDL code describing the soft processor.

Soft processor cores can be divided into two groups:

	 1.	Proprietary cores, associated with an FPGA vendor, that is, sup-
ported only by devices from that vendor.

	 2.	Open-source cores, which are technology independent and can,
therefore, be implemented in devices from different vendors.

These two types of soft processors are analyzed in Sections 3.2.1 and 3.2.2,
respectively. Although there are many soft processors with many diverse
features available in the market, without loss of generality, we will focus on
the main features and the most widely used cores, which will give a fairly
comprehensive view of the different options available for designers.

3.2.1 � Proprietary Cores

Proprietary cores are optimized for a particular FPGA architecture, so they
usually provide a more reliable performance, in the sense that the informa-
tion about processing speed, resource utilization, and power consumption
can be accurately determined, because it is possible to simulate their behav-
ior from accurate hardware models. Their major drawback is that the porta-
bility of and the possibility of reusing the code are quite limited.

Open-source cores are portable and more affordable. They are relatively
easy to adapt to different FPGA architectures and to modify. On the other
hand, not being optimized for any particular architecture, usually, their per-
formance is worse and less predictable, and their implementation requires
more FPGA resources to be used.

Xilinx’s PicoBlaze (Xilinx 2011a) and MicroBlaze (Xilinx 2016a) and Altera’s
Nios-II* (Altera 2015c), whose block diagrams are shown in Figure 3.8a
through c, respectively, have consistently been the most popular propri-
etary processor cores over the years. More recently, Lattice Semiconductor
released the LatticeMico32 (LM32) (Lattice 2012) and LatticeMico8 (LM8)
(Lattice 2014) processors,† whose block diagrams are shown in Figure 3.8d
and e, respectively.

*	 Altera previously developed and commercialized the Nios soft processor, predecessor of
Nios-II.

†	 Although LM8 and LM32 are actually open-source, free IP cores, since they are optimized for
Lattice FPGAs, they are better analyzed together with proprietary cores.

70 FPGAs: Fundamentals, Advanced Features, and Applications

PicoBlaze and LM8 are 8-bit RISC microcontroller cores optimized for
Xilinx* and Lattice FPGAs, respectively. Both have a predictive behavior,
particularly PicoBlaze, all of whose instructions are executed in two clock
cycles. Both have also similar architectures, including:

*	 KCPSM3 is the PicoBlaze version for Spartan-3 FPGAs, and KCPSM6 for Spartan-6, Virtex-6,
and Virtex-7 Series.

PicoBlaze processor core

I/O ports
Interrupt
controller

ALU

Program
memory

4 kB

Program
controller

Decode and
control

Program
counter

Stack

Scratch pad
memory

256 B

General-purpose
registers
Bank A
16×8 bit

Bank B
16×8 bit

(a)

Program
controller

Exception
control logic

JTAG debug
logic

Interrupt
controller

MicroBlaze processor core

M
em

or
y a

nd
 p

er
ip

he
ra

ls

ALU

FPU

Multiplier
Divider

Barrel shift

General-
purpose
registers
32×32 bit

Special
purpose reg.

MMU

Instruction cache

Instruction bus interface
(AXI or LMBa)

Data bus interface
(AXI or LMBa)

Data cache

aLMB, local memory bus.

(b)

Register sets
General-
purpose

32×32 bit

Shadow
Control

Instruction
cache

Data
cache

MMU MPU

Custom logic

Program
controller

Exception
controller

JTAG debug
module

Interrupt
controller Avalon port

Nios-II processor core
Instruction

TCM

Data
TCM

Instruction bus

Data bus

Memory and peripherals

FPU

ALU

(c)

LatticeMico8 processor core

Wishbone bus

Interrupt
controller

ALU

PROM
memory

Program
controller

Decode and
control

Program
counter

Stack

Scratchpad
memory

Register file

Memory and peripherals
(e)

Program
controller

Exception
control logic

JTAG debug
logic

Interrupt
controller

LatticeMico32 processor core

ALU

Multiply and
divide

General-purpose
registers
32×32 bit

Control
registers

Instruction cache
Wishbone bus

Instruction
memory

Wishbone bus
Data cache

Data memory

M
em

or
y a

nd
 P

er
ip

he
ra

ls

(d)

FIGURE 3.8 
Block diagrams of proprietary processor cores: (a) Xilinx’s PicoBlaze, (b) Xilinx’s MicroBlaze,
(c) Altera’s Nios-II, (d) Lattice’s LM32, and (e) Lattice’s LM8.

71Embedded Processors in FPGA Architectures

•	 General-purpose registers (16 in PicoBlaze, 16 or 32 in LM8).
•	 Up to 4 K of 188-bit-wide instruction memory.
•	 Internal scratchpad RAM memory (64 bytes in PicoBlaze, up to 4 GB

in 256-byte pages in LM8).
•	 Arithmetic Logic Unit (ALU).
•	 Interrupt management (one interrupt source in PicoBlaze, up to

8 in LM8).

The main difference between PicoBlaze and LM8 is the communication
interface. None of it includes internal peripherals, so all required periph-
erals must be separately implemented in the FPGA fabric. PicoBlaze com-
municates with them through up to 256 input and up to 256 output ports,
whereas LM8 uses a Wishbone interface from OpenCores, described in
Section 3.5.4.

Similarly, although MicroBlaze, Nios-II, and LM32 are also associated with
the FPGAs of their respective vendors, they have many common character-
istics and features:

•	 32-bit general-purpose RISC processors.
•	 32-bit instruction set, data path, and address space.
•	 Harvard architecture.
•	 Thirty-two 32-bit general-purpose registers.
•	 Instruction and data cache memories.
•	 Memory management unit (MMU) to support OSs requiring virtual

memory management (only in MicroBlaze and Nios-II).
•	 Possibility of variable pipeline, to optimize area or performance.
•	 Wide range of standard peripherals such as timers, serial commu-

nication interfaces, general-purpose I/O, SDRAM controllers, and
other memory interfaces.

•	 Single-precision floating point computation capabilities (only in
MicroBlaze and Nios-II).

•	 Interfaces to off-chip memories and peripherals.
•	 Multiple interrupt sources.
•	 Exception handling capabilities.
•	 Possibility for creating and adding custom peripherals.
•	 Hardware debug logic.
•	 Standard and real-time OS support: Linux, μCLinux, MicroC/OS-II,

ThreadX, eCos, FreeRTOS, uC/OS-II, or embOS (only in MicroBlaze
and Nios-II).

72 FPGAs: Fundamentals, Advanced Features, and Applications

A soft processor is designed to support a certain ISA. This implies the need
for a set of functional blocks, in addition to instruction and data memories,
peripherals, and resources, to connect the core to external elements. The
functional blocks supporting the ISA are usually implemented in hardware,
but some of them can also be emulated in software to reduce FPGA resource
usage. On the other hand, not all blocks building up the core are required
for all applications. Some of them are optional, and it is up to the designer
whether to include them or not, according to system requirements for func-
tionality, performance, or complexity. In other words, a soft processor core
does not have a fixed structure, but it can be adapted to some extent to the
specific needs of the target application.

Most of the remainder of this section is focused on the architecture of the
Nios-II soft processor core as an example, but a vast majority of the analyses are
also applicable to any other similar soft processors. As shown in Figure 3.8c,
the Nios-II architecture consists of the following functional blocks:

•	 Register sets: They are organized in thirty-two 32-bit general-purpose
registers and up to thirty-two 32-bit control registers. Optionally, up
to 63 shadow register sets may be defined to reduce context switch
latency and, in turn, execution time.

•	 ALU: It operates with the contents of the general-purpose regis-
ters and supports arithmetic, logic, relational, and shift and rotate
instructions. When configuring the core, designers may choose to
have some instructions (e.g., division) implemented in hardware or
emulated in software, to save FPGA resources for other purposes at
the expense of performance.

•	 Custom instruction logic (optional): Nios-II supports the addition of not
only custom components but also of custom instructions, for example,
to accelerate algorithm execution. The idea is for the designer to be able
to substitute a sequence of native instructions by a single one executed
in hardware. Each new custom instruction created generates a logic
block that is integrated in the ALU, as shown in Figure 3.9. This is an
interesting feature of the Nios-II architecture not provided by others.

Up to 256 custom instructions of five different types (combina-
tional, multicycle, extended, internal register file, and external inter-
face) can be supported. A combinational instruction is implemented
through a logic block that performs its function within a single clock
cycle, whereas multicycle (sequential) instructions require more than
one clock cycle to be completed. Extended instructions allow several
(up to 256) combinational or multicycle instructions to be imple-
mented in a single logic block. Internal register file custom instruc-
tions are those that can operate with the internal registers of their
logic block instead of with Nios-II general-purpose registers (the
ones used by other custom instructions and by native instructions).

73Embedded Processors in FPGA Architectures

Finally, external interface custom instructions generate communica-
tion interfaces to access elements outside of the processor’s data path.

Whenever a new custom instruction is created, a macro is gener-
ated that can be directly instantiated in any C or C++ application code,
eliminating the need for programmers to use assembly code (they may
use it anyway if they wish) to take advantage of custom instructions.

In addition to user-defined instructions, Nios-II offers a set of
predefined instructions built from custom instruction logic. These
include single-precision floating-point instructions (according to
IEEE Std. 754-2008 or IEEE Std. 754-1985 specifications) to support
computation-intensive floating-point applications:

•	 Exception controller: It provides response to all possible exceptions,
including internal hardware interrupts, through an exception han-
dler that assesses the cause of the exception and calls the corre-
sponding exception response routine.

•	 Internal and external interrupt controller (EIC) (optional): Nios-II sup-
ports up to 32 internal hardware interrupt sources, whose priority is
determined by software. Designers may also create an EIC and con-
nect it to the core through an EIC interface. When using EIC, internal
interrupt sources are also connected to it and the internal interrupt
controller is not implemented.

•	 Instruction and data buses: Nios-II is based on a Harvard architecture. The
separate instruction and data buses are both implemented using 32-bit
Avalon-MM master ports, according to Altera’s proprietary Avalon
interface specification. The Avalon bus is analyzed in Section 3.5.2.

Custom instruction logic

Combinatorial

Multicycle

Internal
register file

Extended

A(31..0)
B(31..0)

clk
clk_en

reset
start

a(4..0)
rd_a

b(4..0)
rd_b

c(4..0)
wr_c

n(7..0)

result(31..0)

done

External interface

Nios-II ALU

Arithmetic

Relational

Logical

Shift and
rotate

Custom
instruction

Result

FIGURE 3.9 
Connection of custom instruction logic to the ALU.

74 FPGAs: Fundamentals, Advanced Features, and Applications

The data bus allows memory-mapped read/write access to both
data memory and peripherals, whereas the instruction bus just
fetches (reads) the instructions to be executed by the processor.
Nios-II architecture does not specify the number or type of memo-
ries and peripherals that can be used, nor the way to connect to them
either. These features are configured when defining the FPSoC.
However, most usually, a combination of (fast) on-chip embedded
memory, slower off-chip memory, and on-chip peripherals (imple-
mented in the FPGA fabric) is used.

•	 Instruction and data cache memories (optional): Cache memories are
supported in the instruction and data master ports. Both instruc-
tion and data caches are an intrinsic part of the core, but their use is
optional. Software methods are available to bypass one of them or
both. Cache management and coherence are managed in software.

•	 Tightly coupled memories (TCM) (optional): The Nios-II architecture
includes optional TCM ports aimed at ensuring low-latency memory
access in time-critical applications. These ports connect both instruc-
tion and data TCMs, which are on chip but external to the core.
Several TCMs may be used, each one associated with a TCM port.

•	 MMU (optional): This block handles virtual memory, and, therefore,
its use makes only sense in conjunction with an OS requiring virtual
memory. Its main tasks are memory allocation to processes, transla-
tion of virtual (software) memory addresses into physical addresses
(the ones the hardware sets in the address lines of the Avalon bus),
and memory protection to prevent any process to write to memory
sections without proper authorization, thus avoiding errant soft-
ware execution.

•	 Memory protection unit (MPU) (optional): This block is used when
memory protection features are required but virtual memory man-
agement is not. It allows access permissions to the different regions
in the memory map to be defined by software. In case a process
attempts to perform an unauthorized memory access, an exception
is generated.

•	 JTAG debug module (optional): As shown in Figure 3.10, this block
connects to the on-chip JTAG circuitry and to internal core signals.
This allows the soft processor to be remotely accessed for debugging
purposes. Some of the supported debugging tasks are downloading
programs to memory, starting and stopping program execution, set-
ting breakpoints and watchpoints, analyzing and editing registers
and memory contents, and collecting real-time execution trace data.
In this context, the advantage with regard to hard processors is that
the debugging module can be used during the design and verifica-
tion phase and removed for normal operation, thus releasing FPGA
resources.

75Embedded Processors in FPGA Architectures

To ease the task of configuring the Nios-II architecture to fit the requirements
of different applications, Altera provides three basic models from which
designers can build their own core, depending on whether performance
or complexity weighs more in their decisions. Nios-II/f (fast) is designed to
maximize performance at the expense of FPGA resource usage. Nios-II/s
(standard) offers a balanced trade-off between performance and resource
usage. Finally, Nios-II/e (economy) optimizes resource usage at the expense
of performance.

The similarities between the hardware architecture of Altera’s Nios-II and
Xilinx MicroBlaze can be clearly noticed in Figure 3.8. Both are 32-bit RISC
processors with Harvard architecture and include fixed and optional blocks,
most of which are present in the two architectures, even if there may be
some differences in the implementation details. Lattice’s LM32 is also a 32-bit
RISC processor, but much simpler than the two former ones. For instance,
it does not include an MMU block. It can be integrated with OSs such as
μCLinux, uC/OS-II, and TOPPERS/JSP kernel (Lattice 2008).

The core processor is not the only element a soft processor consists of, but
it is the most important one, since it has to ensure that any instruction in
the ISA can be executed no matter what the configuration of the core is. In
addition, the soft processor includes peripherals, memory resources, and
the required interconnections. A large number of peripherals are or may
be integrated in the soft processor architecture. They range from standard
resources (GPIO, timers, counters, or UARTs) to complex, specialized blocks
oriented to signal processing, networking, or biometrics, among other fields.
Not only FPGA vendors provide peripherals to support their soft processors,
but others are also available from third parties.

Communication of the core processor with peripherals and external cir-
cuits in the FPGA fabric is a key aspect in the architecture of soft proces-
sors. In this regard, there are significant differences among the three soft

FPGA fabric

JT
AG

 c
on

tr
ol

le
r

Nios-II
processor core

Avalon interface

Peripherals

Avalon interface
Memory

controller

Avalon interface
On-chip
memory

Avalon interface

Nios-II

PC or external
programmer

JTAG debug
module

FIGURE 3.10 
Connection of the JTAG debug module.

76 FPGAs: Fundamentals, Advanced Features, and Applications

processors being analyzed. Nios-II has always used, from its very first ver-
sions to date, Altera’s proprietary Avalon bus. On the other hand, Xilinx ini-
tially used IBM’s CoreConnect bus, together with proprietary ones (such as
local memory bus [LMB] and Xilinx CacheLink [XCL]), but the most current
devices use ARM’s AXI interface. Lattice LM32 processor uses WishBone
interfaces. A detailed analysis of the on-chip buses most widely used in
FPSoCs is made in Section 3.5.

At this point, readers may be afraid to realize the huge amount and diver-
sity of concepts, terms, hardware and software alternatives, or design deci-
sions one must face when dealing with soft processors. Fortunately, designers
have at their disposal robust design environments as well as an ecosystem of
design tools and IP cores that dramatically simplify the design process. The
tools supporting the design of SoPCs are described in Section 6.3.

3.2.2 � Open-Source Cores

In addition to proprietary cores, associated with certain FPGA architectures/
vendors, there are also open-source soft processor cores available from other
parties. Some examples are ARM’s Cortex-M1 and Cortex-M3, Freescale’s
ColdFire V1, MIPS Technologies’ MP32, OpenRISC 1200 from OpenCores
community, Aeroflex Gaisler’s LEON4, as well as implementations of many
different well-known processors, such as the 8051, 80186 (88), and 68000. The
main advantages of these solutions are that they are technology indepen-
dent, low cost, based on well-known, proven architectures, and they are sup-
ported by a full set of tools and OSs.

The Cortex-M1 processor (ARM 2008), whose block diagram is shown in
Figure 3.11a, was developed by ARM specifically targeting FPGAs. It has a
32-bit RISC architecture and, among other features, includes configurable
instruction and data TCMs, interrupt controller, or configurable debug logic.
The communication interface is ARM’s proprietary AMBA AHB-Lite 32-bit
bus (described in Section 3.5.1.1). The core supports Altera, Microsemi, and
Xilinx devices, and it can operate in a frequency range from 70 to 200 MHz,
depending on the FPGA family.

The OpenRISC 1200 processor (OpenCores 2011) is based on the OpenRISC
1000 architecture, developed by OpenCores targeting the implementation of
32- and 64-bit processors. OpenRISC 1200, whose block diagram is shown in
Figure 3.11b, is a 32-bit RISC processor with Harvard architecture. Among
other features, it includes general-purpose registers, instructions and data
caches, MMU, floating-point unit (FPU), MAC unit for the efficient implemen-
tation of signal processing functions, and exception/interrupt management
units. The communication interface is WishBone (described in Section 3.5.4).
It supports different OSs, such as Linux, RTEMS, FreeRTOS, and eCos.

LEON4 is a 32-bit processor based on the SPARC V8 architecture origi-
nated from European Space Agency’s project LEON. It is one of the most
complex and flexible (configurable) open-source cores. It includes an ALU

77Embedded Processors in FPGA Architectures

with hardware multiply, divide, and MAC units, IEEE-754 FPU, MMU,
and debug module with instruction and data trace buffer. It supports two
levels of instruction and data caches and uses the AMBA 2.0 AHB bus
(described in Section 3.5.1.1) as communication interface. From a software
point of view, it supports Linux, eCos, RTEMS, Nucleus, VxWorks, and
ThreadX.

Table 3.1 summarizes the performance of the different soft processors
analyzed in this chapter. It should be noted that data have been extracted

ARM Cortex -M1

CPU

AHB-lite
interface

Data
TCM interface

Instruction
TCM interface

Interrupt
controller

Debug logic
Data

watchpoint

Breakpoint

Debug
access port

(a)

LEON4

CPU

Data
RAM

Instruction
RAM

Instruction
cache

ALU
MAC | MUL |DIV

Data
cache MMU

Debug logic

Interrupt
controller

Power
controller AHB interface

FPU

Four-port
register file

Coprocessor

(c)

OpenRISC1200

CPU

Data cache

Data
MMU

Instruction
MMU

Instruction
cache

DSP
MAC | FPU

TimerDebug logic

Interrupt
controller

Power
controller

Wishbone interface

(b)

FIGURE 3.11 
Some open-source soft processors: (a) Cortex-M1, (b) OpenRISC1200, and (c) LEON4.

78 FPGAs: Fundamentals, Advanced Features, and Applications

from information provided by vendors and, in some cases, it is not clear how
this information has been obtained.

Since several soft processors can be instantiated in an FPGA design (to the
extent that there are enough resources available), many diverse FPSoC solu-
tions can be developed based on them, from single to multicore. These mul-
ticore systems may be based on the same or different soft processors, or their
combination with hard processors, and support different OSs. Therefore, it
is possible to design homogeneous or heterogeneous FPSoCs, with SMP or
AMP architectures.

3.3 � Hard Processors

Soft processors are a very suitable alternative for the development of FPSoCs,
but when the highest possible performance is required, hard processors may
be the only viable solution. Hard processors are commercial, usually propri-
etary, processors that are integrated with the FPGA fabric in the same chip,
so they can be somehow considered as another type of specialized hard-
ware blocks. The main difference with the stand-alone versions of the same
processors is that hard ones are adapted to the architectures of the FPGA
devices they are embedded in so that they can be connected to the FPGA
fabric with minimum delay. However, very interestingly, from the point of
view of software developers, there is no difference, for example, in terms of
architecture or ISA.

TABLE 3.1

Performance of Soft Processors

Soft Processor MIPS or DMIPS/MHz
Maximum Frequency

Reported (MHz)

PicoBlaze 100 MIPSa 240
LatticeMico8 No data 94.6 (LatticeECP2)
MicroBlaze 1.34 DMIPS/MHz 343
Nios-II

Nios-II/e 0.15 DMIPS/MHz 200
Nios-II/s 0.74 DMIPS/MHz 165
Nios-II/f 1.16 DMIPS/MHz 185

LatticeMico32 1.14 DMIPS/MHz 115
Cortex-M1 0.8 DMIPS/MHz 200
OpenRISC1200 1 DMIPS/MHz 300

LEON4 1.7 DMIPS/MHz 150

a	 Up to 200 MHz or 100 MIPS in a Virtex-II Pro FPGA (Xilinx 2011a).

79Embedded Processors in FPGA Architectures

There are obviously many advantages derived from the use of optimized,
state-of-the-art processors. Their performance is similar to the correspond-
ing ASIC implementations (and well known from these implementations);
they have a wide variety of peripherals and memory management resources,
are highly reliable, and have been carefully designed to provide a good
performance/functionality/power consumption trade-off. Documentation is
usually extensive and detailed, and they have whole development and sup-
port ecosystems provided by the vendors. There are also usually many ref-
erence designs available that designers can use as starting point to develop
their own applications.

Hard processors have also some drawbacks. First, they are not scalable,
because their fixed hardware structure cannot be modified. Second, since
they are fine-tuned for each specific FPGA family, design portability may be
limited. Finally, same as for stand-alone processors, obsolescence affects hard
processors. This is a market segment where new devices with ever-enhanced
features are continuously being released, and as a consequence, production
of (and support for) relatively recent devices may be discontinued.

The first commercial FPSoCs including hard processors were proposed
by Atmel and Triscend.* For instance, Atmel developed the AT94K Field
Programmable System Level Integrated Circuit series (Atmel 2002), which
combined a proprietary 8-bit RISC AVR processor (1 MIPS/MHz, up to
25 MHz) with reconfigurable logic based on its AT40K FPGA family. Triscend,
on its side, commercialized the E5 series (Triscend 2000), including an 8032
microcontroller (8051/52 compatible, 10 MIPS at 40 MHz). In both cases, the
reconfigurable part consisted of resources accounting for roughly 40,000
equivalent logic gates, and the peripherals of the microcontrollers consisted
of just a small set of timers/counters, serial communication interfaces (SPI,
UART), capture and compare units (capable of generating PWM signals), and
interrupt controllers (capable of handling both internal and external inter-
rupt sources). None of these devices is currently available in the market,
although Atmel still produces AT40K FPGAs.

After only a few months, 32-bit processors entered the FPSoC market
with the release of Altera’s Excalibur family (Altera 2002), followed by
QuickLogic’s QuickMIPS ESP (QuickLogic 2001), Triscend’s A7 (Triscend
2001), and Xilinx’s Virtex-II Pro (Xilinx 2011b), Virtex-4 FX (Xilinx 2008),
and Virtex-5 FXT (Xilinx 2010b). This was a big jump ahead in terms of
processor architectures, available peripherals, and operating frequencies/
performance.

Altera and Triscend already opted at this point to include ARM proces-
sors in their FPSoCs, whereas QuickLogic devices combined a MIPS32 4Kc
processor from MIPS Technologies† with approximately 550,000 equivalent
logic gates of Via-Link fabric (QuickLogic’s antifuse proprietary technology).

*	 Microchip Technology acquired Atmel in 2016, and Xilinx acquired Triscend in 2004.
†	 Imagination Technologies acquired MIPS Technologies in 2013.

80 FPGAs: Fundamentals, Advanced Features, and Applications

Xilinx Virtex-II Pro and Virtex-4 FX devices included up to two IBM PowerPC
405 cores and Virtex-5 FX up to two IBM PowerPC 440 cores. Only these
three latter families are still in the market, although Xilinx recommends not
to use them for new designs.

It took more than 5 years for a new FPSoC family (Microsemi’s
SmartFusion, Figure 3.12) to be released, but since then there has been a
tremendous evolution, with one common factor: All FPGA vendors opted
for ARM architectures as the main processors for their FPSoC platforms.
Microsemi’s SmartFusion and SmartFusion 2 (Microsemi 2013, 2016) fami-
lies include an ARM Cortex-M3 32-bit RISC processor (Harvard architecture,
up to 166 MHz, 1.25 DMIPS/MHz), with two 32 kB SRAM memory blocks,
512 kB of 64-bit nonvolatile memory, and 8 kB instruction cache. It provides
different interfaces (all based on ARM’s proprietary AMBA bus, described
in Section 3.5.1) for communication with specialized hardware blocks or
custom user logic in the FPGA fabric, as well as many peripherals to sup-
port different communication standards (USB controller; SPI, I2C, and CAN
blocks, multi-mode UARTs, or Triple-Speed Ethernet media access control).
In addition, it includes an embedded trace macrocell block intended to ease
system debug and setup.

Altera and Xilinx include ARM Cortex-A9 cores in some of their most
recent FPGA families, such as Altera’s Arria 10 (Figure 3.13), Arria V, and

SmartFusion2

Serial 0 I/O Serial 1 I/O

System
controller

Microcontroller
subsystem (MSS)

ARM Cortex-M3

MSS
DDR controller

FPGA fabric

Large SRAM
blocks (1024×18)

Math blocks
MACC (18×18)

Micro SRAM
blocks (1024×18)

Serial controller 0
(PCIe, XAUI/XGXS)

+ native SERDES

Serial controller 1
(PCIe, XAUI/XGXS)

+ native SERDESOSCs PLLs

Fabric
DDR controller

JTAG I/O SPI I/O Multistandard user I/O DDR user I/O

FIGURE 3.12 
SmartFusion architecture.

81Embedded Processors in FPGA Architectures

Cyclone V (Altera 2016a,b) and Xilinx’s Zynq-7000 AP SoC (Xilinx 2014).
The ARM Cortex-A9 is a 32-bit dual-core processor (2.5 DMIPS/MHz, up
to 1.5 GHz). Dual-core architectures are particularly suitable for real-time
operation, because one of the cores may run the OS and main application
programs, whereas the other core is in charge of time-critical (real-time)
functions. In both Altera and Xilinx devices, the processors and the FPGA
fabric are supplied from separate power sources. If only the processor is to
be used, it is possible to turn off power supply for the fabric, hence allowing
power consumption to be reduced. In addition, the logic can be fully or par-
tially configured from the processor at any time.*

The main features of the ARM Cortex-A9 dual-core processor are as
follows:

•	 Ability to operate in single-processor, SMP dual-processor, or AMP
dual-processor modes.

•	 Up to 256 kB of on-chip RAM and 64 kB of on-chip ROM.
•	 Each core has its own level 1 (L1) separate instruction and data

caches, 32 kB each, and share 512 kB of level 2 (L2) cache.

*	 FPGA configuration is analyzed in Chapter 6.

32 K L1 cache

ARM Cortex-A9

NEON FPU

32 K L1 cache

ARM Cortex-A9

NEON FPU

32 K L2 cache

EMAC

Timers

I2C

SPI

USB OTG

UART

NAND flashJTAG
debug/trace

256 kB
RAM

SD/SDIO/
MMC

QSPI flash
control

Dedicated
I/O

DMA

LW HPS to
core bridge

HPS to core
bridge

Core to HPS
bridge

Multiport
front end

FPGA
configuration

Hard processor system

AXI 32 AXI
32/64/128

AXI
32/64/128

Hard memory
controller

Configuration
subsystem

FIGURE 3.13 
Arria 10 hard processor system.

82 FPGAs: Fundamentals, Advanced Features, and Applications

•	 Dynamic length pipeline (8–11 stages).
•	 Eight-channel DMA controller supporting different data transfer

types: memory to memory, memory to peripheral, peripheral to
memory, and scatter–gather.

•	 MMU.
•	 Single- and double-precision FPU.
•	 NEON media processing engine, which enhances FPU features by

providing a quad-MAC and additional 64-bit and 128-bit register
sets supporting single-instruction, multiple-data (SIMD) and
vector floating-point instructions. NEON technology can accelerate
multimedia and signal processing algorithms such as video encode/
decode, 2D/3D graphics, gaming, audio and speech processing,
image processing, telephony, and sound synthesis.

•	 Available peripherals include interrupt controller, timers, GPIO,
or 10/100/1000 tri-mode Ethernet Media Access Control, as well as
USB 2.0, CAN, SPI, UART, and I2C interfaces.

•	 Hard memory interfaces for DDR4, DDR3, DDR3L, DDR2, LPDDR2,
flash (QSPI, NOR, and NAND), and SD/SDIO/MMC memories.

•	 Connections with the FPGA fabric (distributed logic and
specialized hardware blocks) through AXI interfaces (described in
Section 3.5.1.3).

•	 ARM CoreSight Program Trace Macrocell, which allows the
instruction flow being executed to be accessed for debugging pur-
poses (Sharma 2014).

At the time of writing of this book, the two most recently released FPSoC
platforms are Altera’s Stratix 10 (Altera 2015d) and Xilinx’s Zynq UltraScale+
(Xilinx 2016b), both including an ARM Cortex-A53 quad-core processor.
Most of the features of the ARM Cortex-A53 processor (Figure 3.14) are
already present in the ARM Cortex-A9, but the former is smaller and has less
power consumption. The cores in Stratix 10 and Zynq UltraScale+ families
can operate up to 1.5 GHz, providing 2.3 DMIPS/MHz performance.

In addition, Zynq UltraScale+ devices include an ARM Cortex-R5 dual-
core processor and an ARM Mali-400 MP2 GPU, as shown in Figure 3.14b,
resulting in a heterogeneous multiprocessor SoC (MPSoC) hardware archi-
tecture. The ARM Cortex-R5 is a 32-bit dual-core real-time processor,* capable
of operating at up to 600 MHz and providing 1.67 DMIPS/MHz perfor-
mance. Cores can work in split (independent) or lock-step (parallel) modes.

*	 Cortex-A series includes “Application” processors and Cortex-R series “real-time” ones.

83Embedded Processors in FPGA Architectures

FPGA fabric

Hard processor system

Hard memory
controller

SDM

LW HPS to
FPGA bridge

HPS to FPGA
bridge

FPGA to HPS
bridge

ARM CortexTM-A53 ARM CortexTM-A53

NEON FPU

32 kB L1
I-cache

32 kB L1
D-cache

NEON FPU

32 kB L1
I-cache

32 kB L1
D-cache

ARM CortexTM-A53

NEON FPU

32 kB L1
I-cache

32 kB L1
D-cache

ARM CortexTM-A53

NEON FPU

32 kB L1
I-cache

32 kB L1
D-cache

1 MB L2 cache

SDRAM
scheduler

HPS to SDM
SDM to HPS

EMAC

I2C

USB OTG

SD/SDIO/
MMC

DMA

HPS I/O

Timers

SPI

UART

NAND
flash

JTAG
debug

256 kB
RAM

(a)

FPGA fabric

MPSoC processing system

GigE

USB 3.0

SD/
eMMC

DMA

Timers

SPI UART

Debug

256 kB
RAM

DDR
controller

Display
port

SATA 3.1

PCIe

CAN

ARM CortexTM-A53
ARM CortexTM-A53

ARM CortexTM-A53

ARM CortexTM-A53

NEON FPU

GIC | SCU | CCI/MMU
1 MB L2 cache

U

M

ARM Cortex-R5

128 kB
TCM FPU

32 kB L1
I-cache

32 kB L1
I-cache

32 kB L1
D-cache

32 kB L1
D-cache

MMU

MMU

ETM

ETM ARM MaliTM-400 MP2

MMU

Geometry
processor

Two pixels
processors

64 kB L2 cache

SecurityPower

System management

PS-GTR

NAND

Quad SPI
NOR

ARM Cortex-R5

(b)

B L1
ache

1
e

1
e

1
e

FIGURE 3.14 
Processing systems of (a) Altera’s Stratix 10 FPGAs and (b) Xilinx’s Zynq UltraScale+ MPSoCs.

84 FPGAs: Fundamentals, Advanced Features, and Applications

Lock-step operation is intended for safety-critical applications requiring
redundant systems.

The main features of each core are as follows:

•	 32 kB L1 instruction and data caches and 128 kB TCM for highly
deterministic or low-latency applications (real-time single-cycle
access). All memories have ECC and/or parity protection.

•	 Interrupt controller.
•	 MPU.
•	 Single- and double-precision FPU.
•	 Embedded trace macrocell for connection to ARM CoreSight debug-

ging system.
•	 AXI interfaces (described in Section 3.5.1.3).

The ARM Mali-400 GPU is a low-power graphics acceleration processor,
capable of operating at up to 667 MHz. Its 2D vector graphics are based on
OpenVG 1.1,* whereas 3D graphics are based on OpenGL ES 2.0.† It supports
Full Scene Anti-Aliasing and Ericsson Texture Compression to reduce exter-
nal memory bandwidth and is fully autonomous to operate in parallel with
the ARM Cortes-A53 application processor. It consists of five main blocks:

	 1.	Geometry processor, in charge of the vertex processing stage of the graphics
pipeline: It generates lists of primitives and accelerates building of
data structures for pixel processors.

	 2.	Pixel processors (two), which handle the rasterization and fragment pro-
cessing stages of the graphics pipeline: They produce the framebuffer
results that screens display as final images.

	 3.	MMU: Both the geometry processor and the pixel processors use
MMUs for access checking and translation.

	 4.	L2 cache: Geometry and pixels processors share a 64 kB L2 read-only
cache.

	 5.	Power management unit, supporting power gating for all the other
blocks.

Some devices in the Zynq UltraScale+ family also include a video codec unit
in the form of specialized hardware block (i.e., as part of the FPGA resources),
supporting simultaneous encoding/decoding of video and audio streams.
Its combination with the Mali-400 GPU results in a very suitable platform for
multimedia applications.

*	 OpenVG 1.0 is a royalty-free, cross-platform API for hardware accelerated two-dimensional
vector and raster graphics.

†	 OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D graphics on
embedded systems.

85Embedded Processors in FPGA Architectures

All building blocks the processing system of Zynq UltraScale+ devices
consists of are interconnected among themselves and with the FPGA fabric
through AMBA AXI4 interfaces (described in Section 3.5.1.3).

Once hard and soft processors have been analyzed, it is important to
emphasize that their features and performance (although extremely impor-
tant*) are not the only ones to consider when addressing the design of
FPSoCs. The resources available in the FPGA fabric (analyzed in Chapter 2)
also play a fundamental role in this context.

Given the increasing complexity of FPSoC platforms, the availability of
efficient software tools for design and verification tasks is also of paramount
importance in the potential success of these platforms in the market. To real-
ize how true this is, one has to just think about what it may take to debug a
heterogeneous multicore FPSoC, where general-purpose and real-time OSs
may have to interact (maybe also with some proprietary kernels) and share
a whole bunch of hardware resources (memory and peripherals integrated
in the processing system, implemented in the FPGA fabric, available there
as specialized hardware blocks, or even implemented in external devices).
Tools and methodologies for FPGA-based design are analyzed in Chapter 6,
where special attention is paid to SoPC design tools (Section 6.3).

3.4 � Other “Configurable” SoC Solutions

In previous sections, the most typical FPSoC solutions commercially avail-
able have been analyzed. They all have at least two common characteristics:
the basic architecture, consisting of an FPGA and one or more embedded
processors, and the fact that they target a wide range of application domains,
that is, they are not focused on specific applications. This section analyzes
other solutions with specific characteristics because either they do not follow
the aforementioned basic architecture (some of them are not even based on
FPGA and might have been excluded from this book, but are included to give
readers a comprehensive view of configurable SoC architectures) or they tar-
get specific application domains.

3.4.1 � Sensor Hubs

The integration in mobile devices (tablets, smartphones, wearables, and IoT)
of multiple sensors enabling real-time context awareness (identification of
user’s context) has contributed to the success of these devices. This is due to

*	 A clear conclusion deriving from the analyses in Sections 3.2 and 3.3 is that the main reason
for the fast evolution of FPSoC platforms in recent years is related to the continuous develop-
ment of more and more sophisticated SMP and AMP platforms.

86 FPGAs: Fundamentals, Advanced Features, and Applications

the many services that can be offered based on the knowledge of data such
as user state (e.g., sitting, walking, sleeping, or running), location, environ-
mental conditions, or the ability to respond to voice commands. In order for
the corresponding apps to work properly, it is necessary to have in place an
always-on context aware monitoring and decision-making process involving
data acquisition, storage and analysis, as well as a high computational power,
because the necessary processing algorithms are usually very complex.

At first sight, one may think these are tasks that can be easily performed
by traditional microcontroller- or DSP-based systems. However, in the case
of mobile devices, power consumption from batteries becomes a fundamen-
tal concern, which requires specific solutions to tackle it. Real-time manage-
ment of sensors implies a high power consumption if traditional processing
platforms are used. This gave rise to a new paradigm, sensor hubs, which
is very rapidly developing. Sensor hubs are coprocessing systems aimed at
relieving a host processor from sensor management tasks, resulting in faster,
more efficient, and less power-consuming (in the range of tens of microwatts)
processing. They include the necessary hardware to detect changes in user’s
context in real time. Only when the change of context requires host attention,
it is notified and takes over the process.

QuickLogic specifically focuses on sensor hubs for mobile devices, offer-
ing two design platforms in this area, namely, EOS S3 Sensor Processing
SoC (QuickLogic 2015) and Customer-Specific Standard Product (CSSP)
(QuickLogic 2010).

EOS S3 is a sensor processing SoC platform intended to support a wide
range of sensors in mobile devices, such as high-performance microphones,
or environmental, inertial, or light sensors. Its basic architecture is shown in
Figure 3.15. It consists of a multicore processor including a set of specialized
hardware blocks and an FPGA fabric.

Control and processing tasks are executed in two processors, an ARM
Cortex-M4F, including an FPU and up to 512 kB of SRAM memory, and a
flexible fusion engine (FFE), which is a QuickLogic proprietary DSP-like
(single-cycle MAC) VLIW processor. The ARM core is in charge of general-
purpose processing tasks, and it hosts the OS, in case it is necessary to use
one. The FFE processor is in charge of sensor data processing algorithms
(such as voice triggering and recognition, motion-compensated heart rate
monitoring, indoor navigation, pedestrian dead reckoning, or gesture detec-
tion). It supports in-system reconfiguration and includes a change detector
targeting always-on context awareness applications.

A third processor, the Sensor Manager, is in charge of initializing, calibrat-
ing, and sampling front-end sensors (accelerometer, gyroscope, magnetom-
eter, and pressure, ambient light, proximity, gesture, temperature, humidity,
and heart rate sensors), as well as of data storage.

Data transfer among processors is carried out using multiple-packet FIFOS
and DMA, whereas they connect with the sensors and the host processor
mainly through SPI and I2C serial interfaces. Analog inputs connected to

87Embedded Processors in FPGA Architectures

12-bit sigma-delta ADCs are available for battery monitoring or for connect-
ing low-speed analog peripherals.

Given the importance of audio in mobile devices, EOS S3 includes resources
supporting always-listening voice applications. These include interfaces
for direct connection of integrated interchip sound (I2S) and pulse-density
modulation (PDM) microphones, a hardware PDM to pulse-code modulation
(PCM) converter (which converts the output of low-cost PDM microphones to
PCM for high-accuracy on-chip voice recognition without the need for using
CODECs), and a hardware accelerator based on Sensory’s low power sound
detector technology, in charge of detecting voice commands from low-level
sound inputs. This block is capable of identifying if the sound coming from
the microphone is actually voice, and only when this is the case, voice recog-
nition tasks are carried out, providing significant energy savings.

Finally, the FPGA fabric allows the features of the FFE processor to be
extended, the algorithms executed in either the ARM or the FFE processor to
be accelerated, and user-defined functionalities to be added.

The CSSP platform was the predecessor of EOS S3 for the implementation
of sensor hubs, but it can also support other applications related to connec-
tivity and visualization in mobile devices. CSSP is not actually a family of
devices, but a design approach, based on the use of configurable hardware
platforms and a large portfolio of (mostly parameterizable) IP blocks, allow-
ing the fast implementation of new products in the specific target application
domains. The supporting hardware platforms are QuickLogic’s PolarPro
and ArcticLink device families.

PolarPro is a family of simple devices with a few specialized hardware
blocks such as RAM, FIFO, and (in the most complex devices) SPI and

Mobile device

Application
processor

EOS S3

Flexible
fusion
engine

Sensor
manager

I2 C
I2 C/

SP
I

ARM
Cortex-M4

SRAM
DMA
FIFOs

SPI

UART

RTC

ADC

Osc.

I2S

PDM

PDM
to

PCM

Low power
sound

detector

FPGA fabric

Fixed
logic

Mobile device sensors

Accelerometer

Gas

Humidity

UV

Temperature

Gesture

Proximity

Pressure

Magnetometer

Gyroscope

Ambient light

Heart rate

Sound sensors

FIGURE 3.15 
EOS S3 block diagram.

88 FPGAs: Fundamentals, Advanced Features, and Applications

I2C interfaces. ArcticLink is a family of specific-purpose FPGAs that includes
(in addition to the serial communication interfaces mentioned in Section
2.4.5) FFE and sensor manager processors, similar to those available in EOS
S3 devices, and processing blocks to improve visualization or reduce con-
sumption in the displays. The types and number of functional blocks avail-
able in each device depend on the specific target application. Figure 3.16
shows possible solutions for the three main application domains of CSSP:
connectivity, visualization, and sensor hub:

•	 Connectivity applications are those intended to facilitate the con-
nection of the host processor with both internal resources and exter-
nal devices such as keyboards, headphone jacks, or even computers.
FPGAs with hard serial communication interfaces (e.g., PolarPro 3E
or ArcticLink) offer a suitable support to these applications.

•	 One of the most typical visualization problems in mobile devices
is the lack of compatibility between display and main CPU bus
interfaces. To ease interface interconnection, some devices from
the ArcticLink family include specialized hardware blocks serv-
ing as bridges between the most widely used display bus interfaces
(namely, MIPI, RGB, and LVDS). For instance, the ArcticLink III VX5
family includes devices with MIPI input and LVDS output, RGB
input and LVDS output, MIPI input and RGB output, or RGB input
and MIPI output.

•	 The hard blocks High Definition Visual Enhancement Engine (VEE
HD+) and High Definition Display Power Optimizer (DPO HD+)
in ArcticLink devices are oriented to improve image visualization
and reduce battery power consumption. VEE HD+ allows dynamic
range, contrast, and color saturation in images to be optimized,
improving image perception under different lighting conditions.
DPO HD+ uses statistical data provided by VEE HD+ to adjust
brightness, achieving significant energy savings (it should be noted
that in these systems, displays are responsible for 30%–60% of the
overall consumption).

•	 CSSP supports sensor hub applications through ArcticLink 3 S2
devices, which include FFE and Sensor Manager processors (similar
to those available in EOS S3 devices) and a SPI interface for connec-
tion to the host applications processor.

In addition to their specialized hardware blocks, there is a large portfolio of
soft IP blocks available for the devices supporting the CSSP platform, called
Proven System Blocks. These include data storage, network connection,
image processing, or security-related blocks, among others. Finally, both
EOS S3 and CSSP have drivers available to integrate the devices with differ-
ent OSs, such as Android, Linux, and Windows Mobile.

89Embedded Processors in FPGA Architectures

Mobile deviceMobile device

ArcticLink

FPGA fabric

Fixed logic

I/O blocks I/O blocks

USB 2.0

OTG PHYSD/SDIO/
MMC/

CE-ATA

USB
device

Storage and
high-speed
peripherals

Storage
interfaces

Network
interfaces

Video
interfaces

Processor
interface

System
processor

IDE, NAND
flash, ATAPI,

SD Card

PCI, UART,
USB hub,
SDIO/SPI

PCI, display,
SDIO/SPI

Mobile device

(a)

ArcticLink II

PLL

VEEI2C SPI

Registers
bus controller
frame buffer

RAM

DPO

Fixed logic

FPGA fabric

Incoming RGB

Logic blocks

Application
processor

Mobile device

Display

Mobile device

Application
processor

Bluetooth

Sensors

(b)

Mobile device
Application

processor

ArcticLink 3 S2

Flexible
fusion engineCommunication

manager

Sensor
managerFixed logic

FPGA fabric

I2 C

Mobile device sensors

Accelerometer

Gas

Humidity

UV

Temperature

Gesture

Proximity

Pressure

Magnetometer

Gyroscope

Ambient light

Heart rate

(c)

FIGURE 3.16 
(a) Connectivity solution. (b) Visualization solution. (c) Sensor hub solution.

90 FPGAs: Fundamentals, Advanced Features, and Applications

3.4.2 � Customizable Processors

There are also non-FPGA-based configurable solutions offering designers
a certain flexibility for the development of SoCs targeting specific applica-
tions. One such solution are customizable processors (Figure 3.17) (Cadence
2014; Synopsys 2015).

Customizable processors allow custom single- or multicore processors to
be created from a basic core configuration and a given instruction set. Users
can configure some of the resources of the processor to adapt its characteris-
tics to the target application, as well as extend the instruction set by creating
new instructions, for example, to accelerate critical functions.

Resource configuration includes the parameterization of some features of
the core (instruction and data memory controllers, number of bits of inter-
nal buses, register structure, external communications interface, etc.), the
possibility of adding or removing predefined components (such as multi-
pliers, dividers, FPUs, DMA, GPIO, MAC units, interrupt controller, tim-
ers, or MMUs), or the possibility of adding new registers or user-defined
components. This latter option is strongly linked to the ability to extend the
instruction set, because most likely a new instruction will require some new
hardware, and vice versa.

Ex
te

rn
al

 m
em

or
y a

nd
 p

er
ip

he
ra

ls

RAM
ROM
Cache

Instruction
memory

controller

RAM
ROM
Cache

Data
memory

controller

Ex
te

rn
al

 in
te

rfa
ce

Base ALU

Base register
file

Instruction
decoder

Base ISA
execution

pipeline

Processor
controls

Registers

Timers

Interrupt
controller

Exception
handling
registers

Predefined features User-defined features Configurable features

Functional
units

FIGURE 3.17 
Customizable processors.

91Embedded Processors in FPGA Architectures

3.5 � On-Chip Buses

One key factor to successfully develop embedded systems is to achieve
an efficient communication between processors and their peripherals.
Therefore, one of the major challenges of SoC technology is the design of
the on-chip communication infrastructure, that is, the communication buses
ensuring fast and secure exchange of information (either data or control sig-
nals), addressing issues such as speed, throughput, and latency. At the same
time, it is very important (particularly when dealing with FPSoC platforms)
that such functionality is available in the form of reusable IP cores, allowing
both design costs and time to market to be reduced. Unfortunately, some IP
core designers use different communication protocols and interfaces (even
proprietary ones), complicating their integration and reuse, because of com-
patibility problems. In such cases, it is necessary to add glue logic to the
designs. This creates problems related to degraded performance of the IP
core and, in turn, of the whole SoC. To address these issues, over the years,
some leading companies in the SoC market have proposed different on-chip
bus architecture standards. The most popular ones are listed here:

•	 Advanced Microcontroller Bus Architecture (AMBA) from ARM
(open standard)

•	 Avalon from Altera (open-source standard)
•	 CoreConnect from IBM (licensed, but available at no licensing or

royalty cost for chip designers and core IP and tool developers)
•	 CoreFrame from PalmChip (licensed)
•	 Silicon Backplane from Sonics (licensed)
•	 STBus from STMicroelectronics (licensed)
•	 WishBone from OpenCores (open-source standard)

Most of these buses originated in association with certain processor archi-
tectures, for instance, AMBA (ARM processors), CoreConnect (PowerPC), or
Avalon (Nios-II). Integration of a standard bus with its associated processor(s)
is quite straightforward, resulting in modular systems with optimized and
predictable behavior. Due to this, there is a trend, seen in the case of not
only for chip vendors but also third-party IP companies, toward the use of
technology-independent standard buses in library components, which ease
design integration and verification.

In the FPGA market, AMBA has become the de facto dominating connec-
tivity standard in industry for IP-based design because the leading vendors
(Xilinx, Altera, Microsemi, QuickLogic) are clearly opting for embedding
ARM processors (either Cortex-A or Cortex-M) within their chips. Other
buses widely used in FPSoCs are Avalon and CoreConnect because of their

92 FPGAs: Fundamentals, Advanced Features, and Applications

association with the Nios-II and MicroBlaze soft processors, respectively.
Wishbone is also used in some Lattice and OpenCores processors. These
four buses are analyzed in detail in Sections 3.5.1 through 3.5.4.

3.5.1 � AMBA

AMBA originated as the communication bus for ARM processor cores.
It consists of a set of protocols included in five different specifications. The
most widely used protocols in FPSoCs are Advanced eXtensible Interface
(AXI3, AXI4, AXI4-Lite, AXI4-Stream) and Advanced High-performance Bus
(AHB). Therefore, these are the ones analyzed in detail here, but at the end
of the section, a table is included to provide a more general view of AMBA.

3.5.1.1 � AHB

AMBA 2 specification, published in 1999, introduced AHB and Advanced
Peripheral Bus (APB) protocols (ARM 1999). AMBA 2 uses by default a hier-
archical bus architecture with at least one system (main, AHB) bus and
secondary (peripheral, APB) buses connected to it through bridges. The per-
formance and bandwidth of the system bus ensure the proper interconnec-
tion of high-performance, high clock frequency modules such as processors,
on-chip memories, and DMA devices. Secondary buses are optimized to
connect low-power or low-bandwidth peripherals, their complexity being,
as a consequence, also low. Usually these peripherals use memory-mapped
registers and are accessed under programmed control.

The structure of a SoC based on this specification is shown in Figure 3.18.
The processor and high-bandwidth peripherals are interconnected through
an AHB bus, whereas low-bandwidth peripherals are interconnected through
an APB bus. The connection between these two buses is made through a
bridge that translates AHB transfer commands into APB format and buf-
fers all address, data, and control signals between both buses to accommo-
date their (usually different) operating frequencies. This structure allows the
effect of slow modules in the communications of fast ones to be limited.

Timer

PWM

UART

GPIO

AHB to APB
bridge

Low-bandwidth peripherals

ARM
processor

On-chip
memory

USBDMAMemory
controller High-bandwidth system

modules

AHB APB

FIGURE 3.18 
SoC based on AHB and APB protocols.

93Embedded Processors in FPGA Architectures

In order to fulfill the requirements of high-bandwidth modules, AHB
supports pipelined operation, burst transfers, and split transactions, with a
configurable data bus width up to 128 bits. As shown in Figure 3.19, it has
a master–slave structure with arbiter, based on multiplexed interconnections
and four basic blocks: AHB master, AHB slave, AHB arbiter, and AHB decoder.

AHB masters are the only blocks that can launch a read or write operation,
by generating the address to be accessed, the data to be transferred (in the
case of write operations), and the required control signals. In an AHB bus,
there may be more than one master (multimaster architecture), but only one
of them can take over the bus at a time.

AHB slaves react to read or write requests and notify the master if the trans-
fer was successfully completed, if there was an error in it, or if it could not be
completed so that the master has to retry (e.g., in the case of split transactions).

The AHB arbiter is responsible to ensure only one AHB master takes over
the bus (i.e., starts a data transfer) at a time. Therefore, it defines the bus
access hierarchy, by means of a fixed arbitration protocol.

Finally, the AHB decoder is used for address decoding, generating the
right slave selection signals. In an AHB bus, there is only one arbiter and one
decoder.

Operation is as follows: All masters willing to start a transfer generate
the corresponding address and control signals. The arbiter then decides
which master signals are to be sent to all slaves through the correspond-
ing MUXs, while the decoder selects the slave actually involved in the
transfer through another MUX. In case there is an APB bus, it acts as

RD_DATA

WR_DATA

RD_DATA

WR_DATA
Slave

1

ADDR

SEL_1

WR_DATA

RD_DATA Slave
2

ADDR

SEL_2

Slave
3

ADDR

SEL_3

ADDR

WR_DATA

RD_DATA

Master
2

Arbiter

Decoder

SEL_1

SEL_2

SEL_3

ADDR

WR_DATA

RD_DATA
Master

1

FIGURE 3.19 
AHB bus structure according to AMBA 2 specification.

94 FPGAs: Fundamentals, Advanced Features, and Applications

a slave of the corresponding bridge, which provides a second level of
decoding for the APB slaves.

In FPSoCs using AHB, the processor is a master; the DMA controller is
usually a master too. On-chip memories, external memory controllers, and
APB bridges are usually AHB slaves. Although any peripheral can be con-
nected as an AHB slave, if there is an APB bus, slow peripherals would be
connected to it.

3.5.1.2 � Multilayer AHB

AMBA 3 specification (ARM 2004a), published in 2003, introduces the
multilayer AHB interconnection scheme, based on an interconnection matrix
that allows multiple parallel connections between masters and slaves to be
established. This provides increased flexibility, higher bandwidth, the possi-
bility of associating the same slave to several masters, and reduced complex-
ity, because arbitration tasks are limited to the cases when several masters
want to access the same slave at the same time.

The simplest multilayer AHB structure is shown in Figure 3.20, where
each master has its own AHB layer (i.e., there is only one master per layer).
The decoder associated with each layer determines the slave involved in the
transfer. If two masters request access to the same slave at the same time, the
arbiter associated with the slave decides which master has the higher prior-
ity. The input stages of the interconnection matrix (one per layer) store the
addresses and control signals corresponding to the pending transfers so that
can be carried out later.

The number of input and output ports of the interconnection matrix can be
adapted to the requirements of different applications. In this way, it is possible
to build structures more complex than the one in Figure 3.20. For instance,

Master
1

Master
2

Interconnect
matrix Slave

1

Slave
3

Parallel access paths
between multiple
masters and slaves

Slave
2

Layer 1

Layer 2

Arbiter

Input
stage1

Decoder

Arbiter

Arbiter
Decoder

Input
stage2

Multilayer
interconnect matrix

FIGURE 3.20 
Multilayer interconnect topology.

95Embedded Processors in FPGA Architectures

it is possible to have several masters in the same layer, define local slaves
(connected to just one layer), or group a set of slaves so that the intercon-
nection matrix treats them as a single one. This is useful, for instance, to
combine low-bandwidth slaves.

An example of FPSoC that uses AHB/APB buses is the Microsemi
SmartFusion2 SoC family (Microsemi 2013). As shown in Figure 3.21, it
includes an ARM Cortex-M3 core and a set of peripherals organized in
10 masters (MM), 7 direct slaves (MS), and a large number of secondary
slaves, connected through an AHB to AHB bridge and two APB bridges
(APB_0 and APB_1). The AHB bus matrix is multilayer.

3.5.1.3 � AXI

ARM introduced in AMBA 3 specification a new architecture, namely, AXI
or, more precisely, AXI3 (ARM 2004b). The architecture was provided with
additional functionalities in AMBA 4, resulting in AXI4 (ARM 2011). AXI
provides a very efficient solution for communicating with high-frequency
peripherals, as well as for multifrequency systems (i.e., systems with mul-
tiple clock domains).

AXI is currently a de facto standard for on-chip busing. A proof of its
success is that some 35 leading companies (including OEM, EDA, and chip
designers—FPGA vendors among them) cooperate in its development. As a
result, AXI provides a communication interface and architecture suitable for
SoC implementation in either ASICs or FPGAs.

AMBA 3 and AMBA 4 define four different versions of the protocol,
namely, AXI3, AXI4, AXI4-Lite, and AXI4-Stream. Both AXI3 and AXI4 are

Microcontroller
subsystem (MSS)

ARM Cortex-M3
SRAM NVM MSS DDR

Bridge
Cache

controller

MM0 to MM2 MS0 to MS3

System
controller

MM9 MS6

FIC_0
MM4
MS4

FIC_1
MM5

HPDMA

MM3

FIC_2

EMAC

MM6

AHB bus
matrix

AHB to AHB Bridge

USB OTG

MM8

PDMA

MM7

MS5

APB_0 APB_1

Peripherals

FIGURE 3.21 
ARM Cortex-M3 core and peripherals in SmartFusion2 devices.

96 FPGAs: Fundamentals, Advanced Features, and Applications

very robust, high-performance, memory-mapped solutions.* AXI4-Lite is a
very reduced version of AXI4, intended to support access to control registers
and low-performance peripherals. AXI4-Stream is intended to support high-
speed streaming applications, where data access does not require addressing.

As shown in Figure 3.22, AXI architecture is conceptually similar to that
of AHB in that both use master–slave configurations, where data transfers
are launched by masters and there are interconnect components to connect
masters to slaves.

The main difference is that AXI uses a point-to-point channel architec-
ture, where address and control signals, read data, and write data use inde-
pendent channels. This allows simultaneous, bidirectional data transfers
between a master and a slave to be carried out, using handshake signals. A
direct implication of this feature is that it eases the implementation of low-
cost DMA systems.

AXI defines a single connection interface either to connect a master or
a slave to the interconnect component or to directly connect a master to a
slave. This interface has five different channels: read address channel, read
data channel, write address channel, write data channel, and write response
channel. Figure 3.23 shows read and write transactions in AXI.

Address and control information is sent through either the read or the
write address channels. In read operations, the slave sends the master both
data and a read response through the read data channel. The read response
notifies the master that the read operation has been completed. The protocol
includes an overlapping read burst feature, so the master may send a new
read address before the slave has completed the current transaction. In this
way, the slave can start preparing data for the new transaction while com-
pleting the current one, thus speeding up the read process. In write opera-
tions, the master sends data through the write data channel, and the slave

*	 Memory-mapped protocols refer to those where each data transfer accesses a certain address
within a memory space (map).

Master
1

Master
2 Slave

3

Slave
2

Slave
1

Interconnect
component

Interface Interface

FIGURE 3.22 
Architecture of the AXI protocol.

97Embedded Processors in FPGA Architectures

replies with a completion signal through the write response channel. Write
data are buffered, so the master can start a new transfer before the slave noti-
fies the completion of the current one. Read and write data bus widths are
configurable from 8 to 1024 bits. All data transfers in AXI (except AXI4-Lite)
are based on variable-length bursts, up to 16 transfers in AXI3 and up to 256
in AXI4. Only the starting address of the burst needs to be provided to start
the transfer.

The interconnect component in Figure 3.22 is more versatile than the inter-
connection matrix in AHB. It is a component with more than one AMBA
interface, in charge of connecting one or more masters to one or more slaves.
In addition, it allows a set of masters or slaves to be grouped together, so they
are seen as a single master or slave.

In order to adapt the balance between performance and complexity to dif-
ferent application requirements, the interconnect component can be config-
ured in several modes. The most usual ones are shared address and data
buses, shared address buses and multiple data buses, and multilayer, with
multiple address and data buses. For instance, in systems requiring much
higher bandwidth for data than for addresses, it is possible to share the
address bus among different interfaces while having an independent data
bus for each interface. In this way, data can be transferred in parallel at the
same time as address channels are simplified.

Address
and control

Read
data

Read
data

Read
data

Read
data

Address channel

Data channel

Slave
interface

Master
interface

(a)

Address
and control

Write
data

Write
data

Write
data

Write
data

Address channel

Data channel
Slave

interface
Master

interface

Write
response

Response channel

(b)

FIGURE 3.23 
Read (a) and write (b) transactions in AXI protocol.

98 FPGAs: Fundamentals, Advanced Features, and Applications

Other interesting features of AXI are as follows:

•	 It supports pipeline stages (register slices in ARM’s terminology)
in all channels, so different throughput/latency trade-offs can be
achieved depending on the number of stages. This is feasible because
all channels are independent of each other and send information in
only one direction.

•	 Each master–slave pair can operate at a different frequency, thus
simplifying the implementation of multifrequency systems.

•	 It supports out-of-order transaction completion. For instance, if a
master starts a transaction with a slow peripheral and later another
one with a fast peripheral, it does not need to wait for the former
to be completed before attending the latter (unless completing the
transactions in a given order is a requirement of the application).
In this way, the negative influence of dead times caused by slow
peripherals is reduced. Complex peripherals can also take advan-
tage of this feature to send their data out of order (some complex
peripherals may generate different data with different latencies).
Out-of-order transactions are supported in AXI by ID tags. The mas-
ter assigns the same ID tag to all transactions that need to be com-
pleted on order and different ID tags to those not requiring a given
order of completion.

We are just intending here to highlight some of the most significant features
of AXI, but it is really a complex protocol because of its versatility and high
degree of configurability. It includes many other features, such as unaligned
data transfers, data upsizing and downsizing, different burst types, system
cache, privileged and secure accesses, semaphore-type operations to enable
exclusive accesses, and error support.

Today, the vast majority of FPSoCs use this type of interface, and vendors
include a large variety of IP blocks based on it, which can be easily con-
nected to create highly modular systems. In most cases, when including
AXI-based IPs in a design, the interconnect logic is automatically gener-
ated and the designer usually just needs to define some configuration
parameters.

The most important conclusion that can be extracted from the use of this
solution is that it enables software developers to implement SoCs without the
need for deep knowledge of FPGA technology, but mainly concentrating on
programming tasks.

As an example, Xilinx adopted AXI as a communication interface
for the IP cores in its FPGA families Spartan-6, Virtex-6, UltraScale,
7 series, and Zynq-7000 All Programmable SoC (Sundaramoorthy et al.
2010; Singh and Dao 2013; Xilinx 2015a). The portfolio of AXI-compliant
IP cores includes a large number of peripherals widely used in SoC

99Embedded Processors in FPGA Architectures

design, such as processors, timers, UARTs, memory controllers, Ethernet
controllers, video controllers, and PCIe. In addition, a set of resources
known as Infrastructure IP are also available to help in assembling the
whole FPSoC. They provide features such as routing, transforming, and
data checking.

Examples of such blocks are as follows:

•	 AXI Interconnect IP, to connect memory-mapped masters and slaves.
It performs the tasks associated with the interconnect component by
combining a set of IP cores (Figure 3.24):

As commented earlier, AXI does not define the structure of the
interconnect component, but it can be configured in multiple ways.
The AXI Interconnect IP core supports the use models shown in
Figure 3.25, which highlights the versatility and power of AXI for
the implementation of FPSoCs.

•	 AXI Crossbar, to connect AXI memory-mapped peripherals.
•	 AXI Data Width Converter, to resize the datapath when master and

slave use different data widths.
•	 AXI Clock Converter, to connect masters and slaves operating in

different clock domains.
•	 AXI Protocol Converter, to connect an AXI3, AXI4, or AXI4-Lite

master to a slave that uses a different protocol (e.g., AXI4 to AXI4-
Lite or AXI4 to AXI3).

•	 AXI Data FIFO, to connect a master to a slave through FIFO buffers
(it affects read and write channels).

•	 AXI Register Slice, to connect a master to a slave through a set of
pipeline stages. In most cases, this is intended to reduce critical path
delay.

•	 AXI Performance Monitors and Protocol Checkers, to test and debug
AXI transactions.

Slave
1

Slave
2

Slave
3

Master
1

Master
2

Crossbar
matrix

Cl
oc

k
co

nv
er

te
r

D
at

a w
id

th
 co

nv
er

te
r

D
at

a F
IF

O

Re
gi

st
er

 sl
ic

es

Slave interface

Pr
ot

oc
ol

 co
nv

er
te

r

Cl
oc

k
co

nv
er

te
r

D
at

a w
id

th
 co

nv
er

te
r

D
at

a F
IF

O

Re
gi

st
er

 sl
ic

es

Master interface

FIGURE 3.24 
Block diagram of the Xilinx’s AXI Interconnect IP core.

100 FPGAs: Fundamentals, Advanced Features, and Applications

In order for readers to have easy access to the most significant information
regarding the different variations of AMBA, their main features are sum-
marized in Table 3.2.

3.5.2 � Avalon

Avalon is the solution provided by Altera to support FPSoC design based on
the Nios-II soft processor. The original specification dates back to 2002, and
a slightly modified version can be found in Altera (2003).

Avalon basically defines a master–slave structure with arbiter, which supports
simultaneous data transfers among multiple master–slave pairs. When multiple

N-to-M interconnect:

Write
arbiter

Read
arbiter

Router

Router

Slave 1
WR_A
RD_A

Slave 2
WR_A
RD_A

Master 1
WR_A
RD_A

Master 2
WR_A
RD_A

Slave 1
WR_D
RD_D

Slave 2
WR_D
RD_D

N-to-M interconnect:
Write data

crossbar
Arbiter

Arbiter

Read data
crossbar
Arbiter

Arbiter

Master 2
WR_D
RD_D

Master 1
WR_D
RD_D

Shared-Address, Multiple-Data (SAMD) topology:
 Single-threaded write and read address arbitration (left)
 Spare data crossbar connectivity (right)
 Data transfers can occur independently and concurrently

Slave
1

Master
1

1-to-1 conversion

Conversion

 Data width conversion
 AXI4-Lite slave adaptation
 AXI3 slave adaptation

Slave
1

Master
1

1-to-1 conversion

Pipelining

 Clock rate conversion
 Pipelining (register slices or data
 channel FIFO)

Slave
1

Master
1

N-to-1 interconnect

Arbiter
Master

2

 Multiple master devices arbitrate
 for access to a single slave device.

Slave
2

Master
1

1-to-N interconnect

Decoder/
router

Slave
1

 Single master device accesses
 multiple slave device.

FIGURE 3.25 
Xilinx’s AXI Interconnect IP core use models.

101Embedded Processors in FPGA Architectures
TA

B
LE

 3
.2

Sp
ec

ifi
ca

ti
on

s
an

d
 P

ro
to

co
ls

 o
f t

he
 A

M
BA

 C
om

m
u

n
ic

at
io

n
Bu

s

Y
ea

r
S

p
ec

.
P

ro
to

co
l

A
im

 a
n

d
 F

ea
tu

re
s

19
99

A
M

B
A

 2
A

H
B

Su
pp

or
ts

 h
ig

h-
ba

nd
w

id
th

 s
ys

te
m

 m
od

ul
es

M
ai

n
sy

st
em

 b
us

 in
 m

ic
ro

co
nt

ro
lle

r
us

ag
e

So
m

e
fe

at
ur

es
 a

re

•
	3

2-
bi

t a
d

d
re

ss
 w

id
th

 a
nd

 8
- t

o
12

8-
bi

t d
at

a
w

id
th

•
	S

in
gl

e
sh

ar
ed

 a
d

d
re

ss
 b

us
 a

nd
 s

ep
ar

at
e

re
ad

 a
nd

 w
ri

te
 d

at
a

bu
se

s
•

	D
ef

au
lt

 h
ie

ra
rc

hi
ca

l b
us

 to
po

lo
gy

 s
up

po
rt

•
	S

up
po

rt
s

m
ul

ti
pl

e
bu

s
m

as
te

rs
•

	B
ur

st
 tr

an
sf

er
s

•
	S

pl
it

 tr
an

sa
ct

io
ns

•
	P

ip
el

in
ed

 o
pe

ra
ti

on
 (fi

xe
d

 p
ip

el
in

e
be

tw
ee

n
ad

d
re

ss
/

co
nt

ro
l a

nd
 d

at
a

ph
as

es
)

•
	S

in
gl

e-
cy

cl
e

bu
s

m
as

te
r

ha
nd

ov
er

•
	S

in
gl

e-
cl

oc
k

ed
ge

 o
pe

ra
ti

on
•

	N
on

-t
ri

-s
ta

te
 im

pl
em

en
ta

ti
on

•
	S

in
gl

e
fr

eq
ue

nc
y

sy
st

em
A

PB
Si

m
pl

e,
 lo

w
-p

ow
er

 in
te

rf
ac

e
to

 s
up

po
rt

 lo
w

-b
an

d
w

id
th

 p
er

ip
he

ra
ls

So
m

e
fe

at
ur

es
 a

re

•
	L

oc
al

 s
ec

on
d

ar
y

bu
s

en
ca

ps
ul

at
ed

 a
s

a
si

ng
le

 A
H

B
 s

la
ve

 d
ev

ic
e

•
	3

2-
bi

t a
d

d
re

ss
 w

id
th

 a
nd

 3
2-

bi
t d

at
a

w
id

th
•

	S
im

pl
e

in
te

rf
ac

e
•

	L
at

ch
ed

 a
d

d
re

ss
 a

nd
 c

on
tr

ol
•

	M
in

im
al

 g
at

e
co

un
t f

or
 p

er
ip

he
ra

ls
•

	B
ur

st
 tr

an
sf

er
s

no
t s

up
po

rt
ed

•
	U

np
ip

el
in

ed
•

	A
ll

si
gn

al
 tr

an
si

ti
on

s
ar

e
on

ly
 r

el
at

ed
 to

 th
e

ri
si

ng
 e

d
ge

 o
f t

he
 c

lo
ck

A
SB

O
bs

ol
et

e
(C

on
ti

nu
ed

)

102 FPGAs: Fundamentals, Advanced Features, and Applications

TA
B

LE
 3

.2
 (

C
on

ti
nu

ed
 )

Sp
ec

ifi
ca

ti
on

s
an

d
 P

ro
to

co
ls

 o
f t

he
 A

M
BA

 C
om

m
u

n
ic

at
io

n
Bu

s

Y
ea

r
S

p
ec

.
P

ro
to

co
l

A
im

 a
n

d
 F

ea
tu

re
s

20
03

A
M

B
A

 3
A

X
I

(A
X

I3
)

In
te

nd
ed

 fo
r

hi
gh

-p
er

fo
rm

an
ce

 m
em

or
y-

m
ap

pe
d

 r
eq

ui
re

m
en

ts
K

ey
 fe

at
ur

es
:

•
	3

2-
bi

t a
d

d
re

ss
 w

id
th

 a
nd

 8
- t

o
10

24
-b

it
 d

at
a

w
id

th
•

	F
iv

e
se

pa
ra

te
 c

ha
nn

el
s:

 r
ea

d
 a

d
d

re
ss

, w
ri

te
 a

d
d

re
ss

, r
ea

d
 d

at
a,

 w
ri

te
 d

at
a,

 a
nd

 w
ri

te
 r

es
po

ns
e

•
	D

ef
au

lt
 b

us
 m

at
ri

x
to

po
lo

gy
 s

up
po

rt
•

	S
im

ul
ta

ne
ou

s
re

ad
 a

nd
 w

ri
te

 tr
an

sa
ct

io
ns

•
	S

up
po

rt
 fo

r
un

al
ig

ne
d

 d
at

a
tr

an
sf

er
s

us
in

g
by

te
 s

tr
ob

es
•

	B
ur

st
-b

as
ed

 tr
an

sa
ct

io
ns

 w
it

h
on

ly
 s

ta
rt

 a
d

d
re

ss
 is

su
ed

•
	F

ix
ed

-b
ur

st
 m

od
e

fo
r

m
em

or
y-

m
ap

pe
d

 I/
O

 p
er

ip
he

ra
ls

•
	A

bi
lit

y
to

 is
su

e
m

ul
ti

pl
e

ou
ts

ta
nd

in
g

ad
d

re
ss

es
•

	O
ut

-o
f-

or
d

er
 tr

an
sa

ct
io

n
co

m
pl

et
io

n
•

	P
ip

el
in

ed
 in

te
rc

on
ne

ct
 fo

r
hi

gh
-s

pe
ed

 o
pe

ra
ti

on
•

	R
eg

is
te

r
sl

ic
es

 c
an

 b
e

ap
pl

ie
d

 a
cr

os
s

an
y

ch
an

ne
l

A
H

B
-

L
it

e
T

he
 m

ai
n

d
if

fe
re

nc
es

 w
it

h
re

ga
rd

 to
 A

H
B

 a
re

 th
at

 it
 d

oe
s

no
t s

u
p

p
or

t m
u

lt
ip

le
 b

u
s

m
as

te
rs

 a
nd

 e
xt

en
d

s
d

at
a

w
id

th

up
 to

 1
02

4
bi

ts
A

PB
In

cl
ud

es
 tw

o
ne

w
 fe

at
ur

es
 w

it
h

re
ga

rd
 to

 A
M

B
A

 2
 s

pe
ci

fic
at

io
n,

 n
am

el
y,

 w
ai

t s
ta

te
s

an
d

 e
rr

or
 r

ep
or

ti
ng

A
T

B
A

dv
an

ce
d

Tr
ac

e
B

us
: a

d
d

s
a

d
at

a
d

ia
gn

os
ti

c
in

te
rf

ac
e

to
 th

e
A

M
B

A
 s

pe
ci

fic
at

io
n

fo
r

d
eb

ug
gi

ng
 p

ur
po

se
s

(C
on

ti
nu

ed
)

103Embedded Processors in FPGA Architectures

Y
ea

r
S

p
ec

.
P

ro
to

co
l

A
im

 a
n

d
 F

ea
tu

re
s

20
11

A
M

B
A

 4
A

C
E

A
X

I C
oh

er
en

cy
 E

xt
en

si
on

s:
 e

xt
en

d
s

th
e

A
X

I4
 p

ro
to

co
l a

nd
 p

ro
vi

d
es

 s
up

po
rt

 fo
r

ha
rd

w
ar

e-
co

he
re

nt
 c

ac
he

s.
 E

na
bl

es

co
rr

ec
tn

es
s

to
 b

e
m

ai
nt

ai
ne

d
 w

he
n

sh
ar

in
g

d
at

a
ac

ro
ss

 c
ac

he
s

A
C

E
-

L
it

e
Sm

al
l s

ub
se

t o
f A

C
E

 s
ig

na
ls

A
X

I4
T

he
 m

ai
n

d
if

fe
re

nc
e

w
it

h
re

ga
rd

 to
 A

X
I3

 is
 th

at
 it

 a
llo

w
s

up
 to

 2
56

 b
ea

ts
 o

f d
at

a
pe

r
bu

rs
t i

ns
te

ad
 o

f j
us

t 1
6

It
 s

up
po

rt
s

Q
ua

lit
y

of
 S

er
vi

ce
 s

ig
na

lin
g

A
X

I4
-

L
it

e
A

 s
ub

se
t o

f A
X

I4
 in

te
nd

ed
 fo

r
si

m
pl

e,
 lo

w
-t

hr
ou

gh
pu

t m
em

or
y-

m
ap

pe
d

 c
om

m
un

ic
at

io
ns

K
ey

 fe
at

ur
es

:

•
	B

ur
st

 le
ng

th
 o

f o
ne

 fo
r

al
l t

ra
ns

ac
ti

on
s

•
	3

2-
 o

r
64

-b
it

 d
at

a
bu

s
•

	E
xc

lu
si

ve
 a

cc
es

se
s

no
t s

up
po

rt
ed

A
X

I4
-

St
re

am
In

te
nd

ed
 fo

r
hi

gh
-s

pe
ed

 d
at

a
st

re
am

in
g

D
es

ig
ne

d
 fo

r
un

id
ir

ec
ti

on
al

 d
at

a
tr

an
sf

er
s

fr
om

 m
as

te
r

to
 s

la
ve

, g
re

at
ly

 r
ed

uc
in

g
ro

ut
in

g
K

ey
 fe

at
ur

es
:

•
	S

up
po

rt
s

si
ng

le
- a

nd
 m

ul
ti

pl
e

d
at

a
st

re
am

s
us

in
g

th
e

sa
m

e
se

t o
f s

ha
re

d
 w

ir
es

•
	S

up
po

rt
s

m
ul

ti
pl

e
d

at
a

w
id

th
s

w
it

hi
n

th
e

sa
m

e
in

te
rc

on
ne

ct

A
PB

In
cl

ud
es

 tw
o

ne
w

 fu
nc

ti
on

al
it

ie
s

w
it

h
re

ga
rd

 to
 A

M
B

A
 3

 s
pe

ci
fic

at
io

n,
 n

am
el

y,
 tr

an
sa

ct
io

n
pr

ot
ec

ti
on

 a
nd

 s
pa

rs
e

d
at

a
tr

an
sf

er
20

13
A

M
B

A
 5

C
H

I
C

oh
er

en
t H

ub
 In

te
rf

ac
e:

 it
 d

efi
ne

s
th

e
in

te
rc

on
ne

ct
io

n
in

te
rf

ac
e

fo
r

fu
lly

 c
oh

er
en

t p
ro

ce
ss

or
s

an
d

 d
yn

am
ic

 m
em

or
y

co
nt

ro
lle

rs
.

U
se

d
 in

 n
et

w
or

ks
 a

nd
 s

er
ve

s

TA
B

LE
 3

.2
 (

C
on

ti
nu

ed
 )

Sp
ec

ifi
ca

ti
on

s
an

d
 P

ro
to

co
ls

 o
f t

he
 A

M
BA

 C
om

m
u

n
ic

at
io

n
Bu

s

104 FPGAs: Fundamentals, Advanced Features, and Applications

masters want to access the same slave, the arbitration logic defines the access
priority and generates the control signals required to ensure all requested
transactions are eventually completed. Figure 3.26 shows the block diagram of
a sample FPSoC including a set of peripherals connected through an Avalon
Bus Module.

The Avalon Bus Module includes all address, data, and control signals, as
well as arbitration logic, required to connect the peripherals and build up
the FPSoC. Its functionality includes address decoding for peripheral selec-
tion, wait-state generation to accommodate slow peripherals that cannot pro-
vide responses within a single clock cycle, identification and prioritization
of interrupts generated by slave peripherals, or dynamic bus sizing to allow
peripherals with different data widths to be connected. The original Avalon
specification supports 8-, 16-, and 32-bit data.

Avalon uses separate ports for address, data, and control signals. In this way,
the design of the peripherals is simplified, because there is no need for decod-
ing each bus cycle to distinguish addresses from data or to disable outputs.

Although it is mainly oriented to memory-mapped connections, where
each master–slave pair exchanges a single datum per bus transfer, the origi-
nal Avalon specification also includes streaming peripherals and latency-
aware peripherals modes (included in the Avalon Bus Module), oriented
to support high-bandwidth peripherals. The first one eases transactions
between streaming master and streaming slave to perform successive data
transfers, which is particularly interesting for DMA transfers. The second
one allows bandwidth usage to be optimized when accessing synchronous
peripherals that require an initial latency to generate the first datum, but
after that are capable of generating a new one each clock cycle (such as in the

Nios processor

Instruction
master

Data
master

Instruction
memory

Slave
Data

memory

Slave

Peripheral 1

Slave

Peripheral 2

Slave

Avalon
bus

Read data signals
Write data and control signals

FIGURE 3.26 
Sample FPSoC based on Altera’s Avalon bus.

105Embedded Processors in FPGA Architectures

case of digital filters). In this mode, the master can execute a read request to
the peripheral, then move to other tasks, and resume the read operation later.

As the demand for higher bandwidth and throughput was growing in many
application domains, Avalon and the Nios-II architecture evolved to cope with it.
The current Avalon specification (Altera 2015a) defines seven different interfaces:

	 1.	Avalon Memory Mapped Interface (Avalon-MM), oriented to the
connection of memory-mapped master–slave peripherals. It pro-
vides different operation modes supporting both simple peripher-
als requiring a fixed number of bus cycles to perform read or write
transfers and much more complex ones, for example, with pipelin-
ing or burst capabilities. With regard to the original specification,
maximum data width increases from 32 to 1024 bits.

Like AMBA and many other memory-mapped buses, Avalon pro-
vides generic control and handshake signals to indicate the direction
(read or write), start, end, successful completion, or error of each data
transfer. Examples of such signals are “read,” “write,” or “response”
in Figure 3.27. There are also specific signals required in advanced
modes, such as arbitration signals in multimaster systems, wait
signals to notify the master the slave cannot provide an immediate
response to the request (“wait_request” in Figure 3.27), data valid sig-
nals (typical in pipelined peripherals to notify the master that there
are valid data in the data bus, “read_data_valid” in Figure 3.27), or
control signals for burst transfers.

	 2.	Avalon Streaming Interface (Avalon-ST, Figure 3.28), oriented to
peripherals performing high-bandwidth, low-latency, unidirectional
point-to-point transfers. The simplest version supports single stream

clk

Address Addressaddress

read

read_data_valid
Dataread_data

Responseresponse

write

wait_request

Datawrite_data

FIGURE 3.27 
Typical read and write transfers of the Avalon-MM interface.

106 FPGAs: Fundamentals, Advanced Features, and Applications

of data, which only requires the signals “data” and “valid” to be used
and, optionally, “channel” and “error.” The sink interface samples
data only if “valid” is active (i.e., there are valid data in “data”). The
signal “channel” indicates the number of the channel, and “error” is
a bit mask stating the error conditions considered in the data transfer
(e.g., bit 0 and bit 1 may flag CRC and overflow errors, respectively).

Avalon-ST also allows interfaces supporting backpressure to be
implemented. In this case, the source interface can only send data
to the sink when this is ready to accept them (the signal “ready” is
active). This is a usual technique to prevent data loss, for example,
when the FIFO at the sink is full.

Finally, Avalon-ST supports burst and packet transfers. In packet-
based transfers, “startofpacket” and “endofpacket” identify the first
and last valid bus cycles of the packet. The signal “empty” identifies
empty symbols in the packet, in the case of variable-length packets.

	 3.	Avalon Conduit Interface, which allows data transfer signals (input,
output, or bidirectional) to be created when they do not fit in any
other types of Avalon interface. These are mainly used to design
interfaces with external (off-chip) devices. Several conduits can be
connected if they use the same type of signals, of the same width,
and within the same clock domain.

	 4.	Avalon Tri-State Conduit Interface (Avalon-TC), oriented to the design
of controllers for external devices sharing resources such as address or
data buses, or control signals in the terminals of the FPGA chip. Signal
multiplexing is widely used to access multiple external devices mini-
mizing the number of terminals required. In this case, the access to
the shared terminals is based on tri-state signals. Avalon-TC includes
all control and arbitration logic to identify multiplexed signals and
give bus control to the right peripheral at any moment.

	 5.	Avalon Interrupt Interface, which is in charge of managing inter-
rupts generated by interrupt senders (slave peripherals) and notify
them to the corresponding interrupt receivers (masters).

Avalon-STSource

valid
data

error
channel

startofpacket
endofpacket

empty

Sink
ready

FIGURE 3.28 
Avalon-ST interface signals.

107Embedded Processors in FPGA Architectures

	 6.	Avalon Reset Interface, which resets the internal logic of an interface
or peripheral, forcing it to a user-defined safe state.

	 7.	Avalon Clock Interface, which defines the clock signal(s) used by a
peripheral. A peripheral may have clock input (clock sink), clock out-
put (clock source), or both (for instance, in the case of PLLs). All other
synchronous interfaces a peripheral may use (MM, ST, Conduit, TC,
Interrupt, or Reset) are associated with a clock source acting as syn-
chronization reference.

An FPSoC based on the Nios-II processor and Avalon may include multiple
different interfaces or multiple instances of the same interface. Actually, a
single component within the FPSoC may use any number and type of inter-
faces, as shown in Figure 3.29.

To ease the design and verification of Avalon-based FPSoCs, Altera pro-
vides the system integration tool Qsys (Altera 2015b), which automatically
generates the suitable interconnect fabric (address/data bus connections,
bus width matching logic, address decoder logic, arbitration logic) to con-
nect a large number of IP cores available in its design libraries. Actually,

User logic
M

User logic
S

Nios-II
M

Avalon-MM

SRAM
Cn

Flash
Cn

Bridge
TCM

Cn

DMA
M

PCIe
M

SPI
S

SRAM
ctrl.

S

TCS

Flash
ctrl.

S

TCS

PLLCs
nk

Cs
rc

Clock

FPGA

M, master Cn, Avalon Conduit Interface
S, slave Csnk, clock sink (Avalon Clock Interface)

Csrc, clock source (Avalon Clock Interface)

Avalon-TC

FIGURE 3.29 
Sample FPSoC using different Altera’s Avalon interfaces.

108 FPGAs: Fundamentals, Advanced Features, and Applications

Qsys also eases the design of systems using both Avalon and AXI and
automatically generates bridges to connect components using different
buses (Altera 2013).

3.5.3 � CoreConnect

CoreConnect is an on-chip interconnection architecture proposed by IBM
in the 1990s. Although the current strong trend to use ARM cores in the
most current FPGA devices points to the supremacy of AMBA-based solu-
tions, CoreConnect is briefly analyzed here because Xilinx uses it for the
MicroBlaze (soft) and PowerPC (hard) embedded processors.

CoreConnect consists of three different buses, intended to accommodate
memory-mapped or DMA peripherals of different performance levels
(IBM 1999; Bergamaschi and Lee 2000):

	 1.	Processor Local Bus (PLB), a system bus to serve the processor and
connect high-bandwidth peripherals (such as on-chip memories or
DMA controllers).

	 2.	On-Chip Peripheral Bus (OPB), a secondary bus to connect low-
bandwidth peripherals and reduce traffic in PLB.

	 3.	Device Control Register (DCR), oriented to provide a channel to con-
figure the control registers of the different peripherals from the pro-
cessor and mainly used to initialize them.

The block diagram of the CoreConnect bus architecture is shown in Figure
3.30, where structural similarities with AMBA 2 (Figure 3.18) may be noticed.
Same as AMBA 2, CoreConnect uses two buses, PLB and OPB, with different
performance levels, interconnected through bridges.

Arbiter ArbiterPLB to OPB
bridge

Peripheral
1

Peripheral
2

Low-bandwidth peripherals

Peripheral
3

Peripheral
4

OPB

Main
processor Memory

Processors and high-bandwidth
peripherals

Co-processor Peripheral

PLB

DCR

FIGURE 3.30 
Sample FPSoC using CoreConnect bus architecture.

109Embedded Processors in FPGA Architectures

Both PLB and OPB use independent channels for addresses, read data, and
write data. This enables simultaneous bidirectional transfers. They also sup-
port a multimaster structure with arbiter, where bus control is taken over by
one master at a time.

PLB includes functionalities to improve transfer speed and safety, such as
fixed- or variable-length burst transfers, line transfers, address pipelining
(allowing a new read or write request to be overlapped with the one current
being serviced), master-driven atomic operation, split transactions, or slave
error reporting, among others.

PLB-to-OPB bridges allow PLB masters to access OPB peripherals, there-
fore acting as OPB masters and PLB slaves. Bridges support dynamic bus siz-
ing (same as the buses themselves), line transfers, burst transfers, and DMA
transfers to/from OPB masters.

Former Xilinx Virtex-II Pro and Virtex-4 families include embedded
PowerPC 405 hard processors (Xilinx 2010a), whereas PowerPC 440 proces-
sors are included in Virtex-5 devices (Xilinx 2010b). In all cases, CoreConnect
is used as communication interface. Specifically, PLB buses are used for data
transfers and DCR for initializing the peripherals as well as for system veri-
fication purposes.

Although the most recent versions of the MicroBlaze soft processor (from
2013.1 on) use as main interconnection interfaces AMBA 4 (AXI4 and ACE)
and Xilinx proprietary bus LMB, optionally, they can implement OPB.

3.5.4 � WishBone

Wishbone Interconnection for Portable IP Cores (usually referred to just as
Wishbone) is a communication interface developed by Silicore in 1999 and
maintained since 2002 by OpenCores. Like the other interfaces described so
far, Wishbone is based on a master–slave architecture, but, unlike them, it
defines just one bus type, a high-speed bus. Systems requiring connections to
both high-performance (i.e., high-speed, low-latency) and low-performance
(i.e., low-speed, high-latency) peripherals may use two separate Wishbone
interfaces without the need for using bridges.

The general Wishbone architecture is shown in Figure 3.31. It includes two
basic blocks, namely, SYSCON (in charge of generating clock and reset sig-
nals) and INTERCON (the one containing the interconnections). It supports
four different interconnection topologies, some of them with multimaster
capabilities:

•	 Point to point, which connects a single master to a single slave.
•	 Data flow, used to implement pipelined systems. In this topology,

each pipeline stage has a master interface and a slave interface.
•	 Shared bus, which connects two or more masters with one or more

slaves, but only allows one single transaction to take place at a time.

110 FPGAs: Fundamentals, Advanced Features, and Applications

•	 Crossbar switch, which allows two or more masters to be simultane-
ously connected to two or more slaves; that is, it has several connec-
tion channels.

Shared bus and crossbar switch topologies require arbitration to define how
and when each master accesses the slaves. However, arbiters are not defined
in the Wishbone specification, so they have to be user defined.

According to Figure 3.31, Wishbone interfaces have independent address
(ADR, 64-bit) and data (DAT, 8-/16-/32- or 64-bit) buses, as well as a set of
handshake signals (selection [SEL], strobe [STB], acknowledge [ACK], error
[ERR], retry [RTY], and cycle [CYC]) ensuring correct transmission of infor-
mation and allowing data transfer rate to be adjusted for every bus cycle (all
Wishbone bus cycles run at the speed of the slowest interface).

In addition to the signals defined in its specification, Wishbone supports
user-defined ones in the form of “tags” (TAGN in Figure 3.31). These may be
used for appending information to an address bus, a data bus, or a bus cycle.
They are especially helpful to identify information such as data transfers,
parity or error correction bits, interrupt vectors, or cache control operations.

Slave 1

Slave 2

Master
1

Master
2

Crossbar
switch

Slave 3

Shared
bus

Slave1

Slave 2

Slave 3

Master
1

Master
2

Slave 1Master
1

Point to point

Master
RST
CLK

ADDR
DAT
DAT
WE
SEL
STB

ACK
CYC

TAGN
TAGN

Slave
RST

User
defined

SYSCON

INTERCON

CLK
ADDR
DAT
DAT
WE
SEL
STB
ACK
CYC
TAGN
TAGN

FIGURE 3.31 
General architecture and connection topologies of Wishbone interfaces.

111Embedded Processors in FPGA Architectures

Wishbone supports three basic data transfer modes:

	 1.	Single read/write, used in single-data transfers.
	 2.	Block read/write, used in burst transfers.
	 3.	Read–modify–write, which allows data to be both read and written

in a given memory location in the same bus cycle. During the first
half of the cycle, a single read data transfer is performed, whereas a
write data transfer is performed during the second half. The CYC_O
signal (Figure 3.31) remains asserted during both halves of the cycle.
This transfer mode is used in multiprocessor or multitask systems
where different software processes share resources using sema-
phores to indicate whether a given resource is available or not at a
given moment.

Wishbone is used in Lattice’s LM8 and LM32, as well as in OpenCores’
OpenRISC1200 soft processors, described in Sections 3.2.1 and 3.2.2,
respectively.

References

Altera. 2002. Excalibur device overview data sheet. DS-EXCARM-2.0.
Altera. 2003. Avalon bus specification reference manual. MNL-AVABUSREF-1.2.
Altera. 2013. AMBA AXI and Altera Avalon Interoperation using Qsys. Available at:

https://www.youtube.com/watch?v=LdD2B1x-5vo. Accessed November 20, 2016.
Altera. 2015a. Avalon interface specifications. MNLAVABUSREF 2015.03.04.
Altera. 2015b. Quartus prime standard edition handbook. QPS5V1 2015.05.04.
Altera. 2015c. Nios II classic processor reference guide. NII5V1 2015.04.02.
Altera. 2015d. Stratix 10 device overview data sheet. S10-OVERVIEW.
Altera. 2016a. Arria 10 hard processor system technical reference manual. Available

at: https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_5v4.pdf.
Accessed November 20, 2016.

Altera. 2016b. Arria 10 device data sheet. A10-DATASHEET.
ARM. 1999. AMBA specification (rev 2.0) datasheet. IHI 0011A.
ARM. 2004a. Multilayer AHB overview datasheet. DVI 0045B.
ARM. 2004b. AMBA AXI protocol specification (v1.0) datasheet. IHI 0022B.
ARM. 2008. Cortex-M1 technical reference manual. DDI 0413D.
ARM. 2011. AMBA AXI and ACE protocol specification datasheet. IHI 0022D.
ARM. 2012. Cortex-A9 MPCore technical reference manual (rev. r4p1). ID091612.
Atmel. 2002. AT94K series field programmable system level integrated circuit data

sheet. 1138F-FPSLI-06/02.
Bergamaschi, R.A. and Lee, W.R. 2000. Designing systems-on-chip using cores. In

Proceedings of the 37th Design Automation Conference (DAC 2000). June 5–9, Los
Angeles, CA.

Cadence. 2014. Tensilica Xtensa 11 customizable processor datasheet.

https://www.youtube.com/watch?v=LdD2B1x-5vo
https://www.altera.com/en_US/pdfs/literature/hb/arria-10/a10_5v4.pdf

112 FPGAs: Fundamentals, Advanced Features, and Applications

IBM. 1999. The CoreConnect™ bus architecture.
Jeffers, J. and Reinders, J. 2015. High Performance Parallelism Pearls. Multicore and Many-

Core Programming Approaches. Elsevier.
Kalray. 2014. MPPA ManyCore. Available at: http://www.kalrayinc.com/IMG/pdf/

FLYER_MPPA_MANYCORE.pdf. Accessed November 20, 2016.
Kenny, R. and Watt, J. 2016. The breakthrough advantage for FPGAs with tri-gate

technology. White Paper WP-01201-1.4. Available at: https://www.altera.com/
content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01201-fpga-
tri-gate-technology.pdf. Accessed November 23, 2016.

Kurisu, W. 2015. Addressing design challenges in heterogeneous multicore embed-
ded systems. Mentor Graphics white paper TECH12350-w.

Lattice. 2008. Linux port to LatticeMico32 system reference guide.
Lattice. 2012. LatticeMico32 processor reference manual.
Lattice. 2014. LatticeMico8 processor reference manual.
Microsemi. 2013. SmartFusion2 microcontroller subsystem user guide.
Microsemi. 2016. SmartFusion2 system-on-chip FPGAs product brief. Available at:

http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#
documentation. Accessed November 20, 2016.

Moyer, B. 2013. Real World Multicore Embedded Systems: A Practical Approach.
Elsevier–Newnes.

Nickolls, J. and Dally, W.J. 2010. The GPU computing era. IEEE Micro, 30:56–69.
NVIDIA. 2010. NVIDIA Tegra multi-processor architecture. Available at: http://www.

nvidia.com/docs/io/90715/tegra_multiprocessor_architecture_white_paper_final_
v1.1.pdf. Accessed November 20, 2016.

OpenCores. 2011. OpenRISC 1200 IP core specification (v0.11).
Pavlo, A. 2015. Emerging hardware trends in large-scale transaction processing. IEEE

Internet Computing, 19:68–71.
QuickLogic. 2001. QL901M QuickMIPS data sheet.
QuickLogic. 2010. Customer specific standard product approach enables platform-

based design. White paper (rev. F).
QuickLogic. 2015. QuickLogic EOS S3 sensor processing SoC platform brief.

Datasheet.
Shalf, J., Bashor, J., Patterson, D., Asanovic, K., Yelick, K., Keutzer, K., and

Mattson, T. 2009. The MANYCORE revolution: Will HPC LEAD or
FOLLOW? Available at:​ http://cs.lbl.gov/news-media/news/2009/the-​manycore-​
revolution-will-hpc-lead-or-follow/.

Sharma M. 2014. CoreSight SoC enabling efficient design of custom debug and trace
subsystems for complex SoCs. Key steps to create a debug and trace solution for
an ARM SoC. ARM White Paper. Available at: https://www.arm.com/files/pdf/
building_debug_and_trace_multicore_soc.pdf. Accessed November 20, 2016.

Singh, V. and Dao, K. 2013. Maximize system performance using Xilinx based AXI4
interconnects. Xilinx white paper WP417.

Stallings, W. 2016. Computer Organization and Architecture. Designing for Performance,
10th edn. Pearson Education, UK.

Sundaramoorthy, N., Rao, N., and Hill, T. 2010. AXI4 interconnect paves the way to
plug-and-play IP. Xilinx white paper WP379.

Synopsys. 2015. DesignWare ARC HS34 processor datasheet.
Tendler, J.M., Dodson, J.S., Fields Jr., J.S., Le, H., and Sinharoy, B. 2002. POWER4 sys-

tem microarchitecture. IBM Journal of Research and Development, 46(1):5–25.

http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_MANYCORE.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01201-fpgatri-gate-technology.pdf
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#�documentation
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#�documentation
http://www.nvidia.com/docs/io/90715/tegra_multiprocessor_architecture_white_paper_final_v1.1.pdf
http://cs.lbl.gov/news-media/news/2009/the- manycorerevolution-will-hpc-lead-or-follow
https://www.arm.com/files/pdf/building_debug_and_trace_multicore_soc.pdf
http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_MANYCORE.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01201-fpgatri-gate-technology.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01201-fpgatri-gate-technology.pdf
http://www.nvidia.com/docs/io/90715/tegra_multiprocessor_architecture_white_paper_final_v1.1.pdf
http://www.nvidia.com/docs/io/90715/tegra_multiprocessor_architecture_white_paper_final_v1.1.pdf
http://cs.lbl.gov/news-media/news/2009/the- manycorerevolution-will-hpc-lead-or-follow
https://www.arm.com/files/pdf/building_debug_and_trace_multicore_soc.pdf

113Embedded Processors in FPGA Architectures

Triscend. 2000. Triscend E5 configurable system-on-chip family data sheet.
Triscend. 2001. Triscend A7 configurable system-on-chip platform data sheet.
Vadja, A. 2011. Programming Many-Core Chips. Springer Science + Business Media.
Walls, C. 2014. Selecting an operating system for embedded applications. Mentor

Graphics white paper TECH112110-w.
Xilinx. 2008. Virtex-4 FPGA user guide UG070 (v2.6).
Xilinx. 2010a. PowerPC 405 processor block reference guide UG018 (v2.4).
Xilinx. 2010b. Embedded processor block in Virtex-5 FPGAs reference guide UG200

(v1.8).
Xilinx. 2011a. PicoBlaze 8-bit embedded microcontroller user guide UG129.
Xilinx. 2011b. Virtex-II Pro and Virtex-II Pro X platform FPGAs: Complete data sheet

DS083 (v5.0).
Xilinx. 2014. Zynq-7000 all programmable SoC technical reference manual UG585

(v1.7).
Xilinx. 2015a. Vivado design suite—AXI reference guide UG1037.
Xilinx. 2015b. Xilinx collaborates with TSMC on 7nm for fourth consecutive generation

of all programmable technology leadership and multi-node scaling advantage.
Available at http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMC-
on-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-
Leadership-and-Multi-node-Scaling-Advantage. Accessed November 23, 2016.

Xilinx. 2016a. MicroBlaze processor reference guide UG984.
Xilinx. 2016b. Zynq UltraScale+ MPSoC overview data sheet DS891 (v1.1).

http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMCon-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-Advantage
http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMCon
http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMCon-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-Advantage
http://press.xilinx.com/2015-05-28-Xilinx-Collaborates-with-TSMCon-7nm-for-Fourth-Consecutive-Generation-of-All-Programmable-Technology-Leadership-and-Multi-node-Scaling-Advantage

http://taylorandfrancis.com

115

4
Advanced Signal Processing
Resources in FPGAs

4.1 � Introduction

Digital signal processing (DSP) is an area witnessing continuous significant
advancements both in terms of software approaches and hardware plat-
forms. Some of the most usual functionalities in this domain are digital fil-
ters, encoders, decoders, correlators, and mathematic transforms such as the
fast Fourier transform (FFT). Most DSP functions and algorithms are quite
complex and involve a large number of variables, coefficients, and stages.
The key basic operation is usually provided by MAC units. Since high oper-
ating frequency and/or throughput are usually required, it is often neces-
sary to use DSPs, whose hardware and instruction set are optimized for the
execution of MAC operations or other features such as bit-reverse addressing
(as discussed in Section 1.3.4.2). CPUs in DSPs are also designed to execute
instructions in less clock cycles than in general-purpose processors. For
many years, DSPs have been the only platforms capable of efficiently imple-
menting DSP algorithms. However, in recent years, FPGAs have emerged
as serious natural contenders in this area because of their intrinsic parallel-
ism, their ability to very efficiently implement arithmetic operations, and the
huge amount of logic resources available.

Since the advent of the first FPGAs in the 1980s, one of the main goals of
vendors has been to ensure their devices are capable of efficiently implement-
ing binary arithmetic operations (mainly addition, subtraction, and multipli-
cation). This implies the need not only for specific logic resources but also
for specialized interconnection resources, for example, for propagating carry
signals or for chain connection of LBs, in order for propagation delays to be
minimized and the number of bits of the operands to be parameterizable.

As FPGAs became increasingly popular, new application niches appeared
requiring new specialized hardware resources. The availability of embed-
ded memory blocks was particularly useful for the implementation of data

116 FPGAs: Fundamentals, Advanced Features, and Applications

acquisition and control circuits, avoiding (or at least mitigating) the need for
external memories and reducing memory access times. After them, many
other specialized hardware blocks were progressively included in each new
family of devices, as described in detail in Chapter 2.

ALUs in conventional DSPs usually include from one to four MAC units
operating in parallel. Their rigid architectures do not allow, for instance,
the number of bits of the operands in a multiplication to be parameterized.
Therefore, parallelism and bandwidth are inherently limited in these plat-
forms, and increasing operating frequency is, in most cases, the only way of
improving performance.

Let us consider as an example the implementation of an N-stage finite
impulse response (FIR) filter in a DSP with four MAC units. From Figure 4.1a,
it can be concluded that the algorithm has to be executed N/4 times for valid
output data to be produced.

How can the same problem be solved using FPGAs? Thanks to the avail-
ability of abundant logic resources and the possibility of configuring them to
operate in parallel, several approaches are feasible, from a fully series archi-
tecture (requiring N clock cycles to generate new output data) to a fully par-
allel one, like the one shown in Figure 4.1b, capable of generating new output
data every clock cycle, or intermediate series-parallel solutions. This provides
the designer with the flexibility to define different performance–complexity
trade-offs by choosing a particular degree of parallelism. In addition, by
using design techniques such as pipelining or retiming, extremely high-
performance signal processing systems can be obtained.

0

Data
memory

Coefficient
memory

0 0

Coefficient
memory

Coefficient
memory

0
Z–1Z–1Z–1Z–1

x(k)

y(k)(a)

Data
memory

Data
memory

Data
memory

Coefficient
memory

FIGURE 4.1 
(a) FIR filter implemented with four MAC units and (b) fully parallel FIR filter.

cNc5c4c3c2c1c0

(b)

x(k)

y(k)

Z–1Z–1Z–1Z–1Z–1Z–1 x(k–N)x(k– 5)x(k– 4)x(k– 3)x(k– 2)x(k– 1)

117Advanced Signal Processing Resources in FPGAs

Other advantages of the FPGA approach are the possibility to parameter-
ize the size (number of bits per operand) of the arithmetic operators and the
availability of different hardware structures to implement the MAC units.

The basic FPGA implementation of MAC units consists in building adders
and multipliers using distributed logic, and combining them with embedded
memory blocks, which act as accumulators and where coefficients are stored.
However, in many cases, this solution implies the need for using many LBs,
resulting not only in high resource consumption but also in long propaga-
tion delays, which limit operating frequency. Because of these issues, current
FPGAs include specialized hardware blocks oriented to DSP applications,
which are analyzed in the following sections. The simplest among these
are hardware multipliers, but more complex ones (often referred to as DSP
blocks) are also available.

4.2 � Embedded Multipliers

The structure of a basic sample hardware 18-bit multiplier capable of
performing both signed and unsigned operations is shown in Figure 4.2. In
it, input and output registers allow (optionally) the operands and the result
(36-bit, full-precision) to be memorized. In this way, for instance, the data
and coefficients of a filter could be stored. Another advantage of these regis-
ters is for the straightforward implementation of efficient pipelining struc-
tures, taking advantage of the short delays associated with the dedicated
connections inside the multiplier.

clk
CLR

D
CE

Q

CLR

D
CE

Q

CLR

D
CE

Q

ce_a

ce_b

clr

b(17:0)

a(17:0)

r(35:0)
ce_r

FIGURE 4.2 
Embedded multiplier from Xilinx Spartan-3 devices. (From Xilinx, Spartan-3 Generation FPGA
User Guide: Extended Spartan-3A, Spartan-3E, and Spartan-3 FPGA Families: UG331 (v1.8), 2011.)

118 FPGAs: Fundamentals, Advanced Features, and Applications

MAC units can be obtained by combining embedded multipliers, LBs (where
additions may be implemented), and embedded memory (where input data
and results are stored). This is the reason why embedded multipliers are usu-
ally placed adjacent to memory blocks, so routing among them is simplified,
resulting in more efficient designs. Although 18 bits is not a usual data width
in digital systems (it is not a power of 2), 18-bit multipliers are present in many
FPGAs because they match a typical data width of memory blocks. Embedded
memory data widths in FPGAs are usually multiples of 9, so information can
be stored as sets of eight data bits plus one parity bit. However, if no data integ-
rity checks are required, data can be stored in all nine bits. Therefore, it makes
sense that arithmetic operators work with data widths that are multiples of 9.

Multipliers have associated resources for chain interconnection between
adjacent blocks. In this way, it is possible to extend the number of bits of the
operands or to build shift registers (which are usually required in DSP appli-
cations), by connecting input registers in a chain.

4.3 � DSP Blocks

Considering signal processing over the years has been the most significant
application of embedded multipliers, it is just natural that they evolved into
more complex blocks, called DSP blocks, like the one in Figure 4.3, which
includes all resources required to implement a MAC unit, eliminating the
need for using distributed logic.

Different architectures exist for DSP blocks, but most of them share
three main stages, namely pre-adder, multiplier, and ALU. Depending
on the device, the ALU can just consist of an adder/subtractor or include

In
pu

t r
eg

ist
er

 b
an

k

Result

D

A

B

C

Pi
pe

lin
e

re
gi

st
erPi

pe
lin

e
re

gi
st

er

ALU

Chain_in

Chain_out

Pattern
detect

=

+/–

O
ut

pu
t

re
gi

st
er

 b
an

k

Carry_in

Carry_out

FIGURE 4.3 
DSP block from Xilinx 7 Series.

119Advanced Signal Processing Resources in FPGAs

additional resources (like in the case of Figure 4.3) aimed at giving the DSP
block increased computation power (Altera 2011; Xilinx 2014; Lattice 2016;
Microsemi 2016).

As in the case of multipliers, registers are placed at both the input and
the output of the circuit in Figure 4.3, where interstage registers can also be
identified. In this way, pipeline structures achieving very high operating
frequencies can be implemented. In some DSP blocks from different FPGA
families, double-registered inputs (consisting of two registers connected
in a chain) are available, whereas other blocks include additional pipeline
registers oriented to the implementation of systolic FIR filters. In this case,
registers are placed at the input of the multiplier and at the output of the
adder (which would be the input and output, respectively, of each stage of
an FIR filter), to reduce interconnection delays. These registers are optional,
so they can be bypassed if operation at the maximum achievable frequency
is not required.

The significant amount of MUXes available provides the structure with
many configuration possibilities. Thanks to them, it is possible to define
different data paths and, in turn, different operating modes. In the case of
Figure 4.3, the DSP block supports several independent functions, such as
addition/subtraction, multiplication, MAC, multiplication and addition/
subtraction, shifting, magnitude comparation, pattern detection, and
counting. The selection inputs of the MUXes are usually accessible from
distributed logic, allowing operating modes to be configured dynamically
(normally in a synchronous way).

The pre-adder/subtractor may be used as an independent computing
resource or to generate one of the input operands of the multiplier. This sec-
ond alternative is useful for the implementation of some functionalities, for
instance, the symmetric filter shown in Figure 4.4.

c3c2c1c0

y(k)

x(k) x(k– 3)

x(k– 4)x(k– 5)x(k– 6)x(k– 7)

Z–1Z–1Z–1 x(k– 2)x(k– 1)

Z–1Z–1 Z–1 Z–1

FIGURE 4.4 
Eight-stage symmetric FIR filter.

120 FPGAs: Fundamentals, Advanced Features, and Applications

The multiplier in Figure 4.3 operates with different input values (direct or
registered inputs, data from the pre-adder or from the chain-connected adja-
cent block) and either stores the result in an intermediate register or sends it
directly to the ALU, the “Result” output, or the “chainout” output.

Some DSP blocks in Altera FPGAs include a small “coefficient memory”* con-
nected to one of the inputs of the multiplier, aimed at the optimized implemen-
tation of digital filters. Addressing is controlled from distributed logic, allowing
filter reconfiguration to be dynamically performed during system operation.
Thanks to this memory, there is no need for using embedded or distributed
FPGA memory to store coefficients, therefore optimizing resource usage and
reducing the time required to access coefficient values.

Regarding the ALU, it can perform arithmetic operations (addition, sub-
traction, and accumulation), logic functions, and pattern detection. When the
accumulator is not used in conjunction with the multiplier, it can operate
as an up/down synchronous counter. In some DSP blocks, the ALU can be
divided into smaller units connected in chain and operating in parallel. For
instance, a 48-bit ALU might operate as two 24-bit units, four 12-bit units,
and so on. This feature is useful for the implementation of SIMD algorithms,
so it is usually referred to as SIMD mode, an example of which is shown
in Figure 4.5.

The pattern detection circuitry checks whether or not there is coincidence
between one specific input of the DSP block (C in Figure 4.3) and the output
of the ALU. Depending on the configuration, it is possible to implement other
functions, such as convergent rounding, masked bit-wise operations, termi-
nal count detection or autoreset of the counter, and detection of overflow/
underflow conditions in the accumulator.

It is also possible to perform some combined multiplication–addition/
subtraction operations with input data, for example, (A · B) ± C or (A + D) · B ± C.

Carry_out(0)

Carry_out(1)

Carry_out(2)

In
pu

t r
eg

ist
er

 b
an

k

O
ut

pu
t r

eg
ist

er
 b

an
k

D

A

B

C

Pi
pe

lin
e

re
gi

st
erPi
pe

lin
e

re
gi

st
er

Carry_inChain_in

ALU

ALU

ALU

ALU
(11:0)

(23:12)

(35:24)

(47:36)
(47:0) Carry_out(3)

Result(47:36)

Result(35:24)

Result(23:12)

Result(11:0)

+/–

FIGURE 4.5 
SIMD operating mode.

*	 “Internal Coefficient” in Arria 10 devices, which can store up to eight coefficients.

121Advanced Signal Processing Resources in FPGAs

This allows, for instance, the result of the multiplication to be symmetrically
rounded off to zero or to infinity.

As it may be expected, DSP blocks have dedicated lines for chain connec-
tion between adjacent blocks. In this way, the number of bits of the operands
in arithmetic operations can be extended, and complex arithmetic functions
or processing algorithms requiring multiple stages operating in parallel
(e.g., digital filters) can be implemented. Same as embedded multipliers, DSP
blocks are usually placed adjacent to embedded memory blocks.

The amount of DSP blocks available in a given FPGA depends on the target
application profile. In devices oriented to signal processing, there may be
some thousands of them,* achieving performances in the order of hundreds
of GMAC/s. These very high computing speeds allow time multiplexing
methods to be applied, in order for multiple operations of lower frequency
to be carried out in a single DSP block. This results in semiparallel struc-
tures achieving very efficient trade-offs between resource usage and power
consumption.

4.4 � Floating-Point Hardware Operators

The embedded multipliers and DSP blocks described so far lack the ability to
perform floating-point operations. Actually, most of these kinds of resources
available in FPGAs are designed to operate in fixed point. This is a signifi-
cant limitation in many cases because it implies the need for many signal
processing designs to be adapted to work in fixed point, not only adding
design burden but also creating potential accuracy problems. These issues
are being overcome by the availability of new DSP blocks supporting the
IEEE 754 floating-point standard.

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is the most
widely used standard in floating-point computation circuits (IEEE 2008). It
defines data formats, operations, and exceptions (such as division by zero,
asymptotic functions, overflow, or inputs/outputs producing undefined or
unrepresentable numbers, called NaN—Not a Number). The two basic data
formats in IEEE 754 are simple (32-bit) and double (64-bit) precision. Any
IEEE 754–compliant computing system must at least support simple preci-
sion operations.

The simple precision format consists of a sign bit (the most significant one
in any data word), followed by 8 bits for the exponent (represented in excess
to 2n−1 − 1 format) and 23 bits for the mantissa, which is normalized so that
it always starts with a nonzero bit. Therefore, in order for some operations
(e.g., addition and subtraction) to be performed, it is first necessary to align

*	 Up to 3600 in Xilinx 7 Series devices.

122 FPGAs: Fundamentals, Advanced Features, and Applications

the mantissas of the operands (so that the decimal separator is in the same
position in all of them), then operate, and finally round off and normalize
again the result. Actually, IEEE 754 specifies that alignment and normaliza-
tion operations be done for each operation.

If fixed-point multipliers or DSP blocks are to be used for IEEE 754–compliant
floating-point operations, alignment and normalization should be necessar-
ily done using distributed logic in the FPGA fabric. This usually implies the
need for barrel shifters of up to 48 bits (when working in single precision),
which requires a large amount of logic and interconnection resources to be
used, in turn negatively affecting operating frequency, to the extent that it
may become the limiting factor in the performance of the whole processing
system. Performance degradation is more significant as the complexity of
the target algorithm grows, because of the need for executing alignment and
normalization steps in all operations.

Currently, DSP blocks supporting IEEE 754–compliant single-precision
operations are available in some FPGAs (Parker 2014; Sinha 2014; Altera
2016). As the sample block in Figure 4.6 shows, they include an adder and
a multiplier, both IEEE 754 compliant, and some registers and MUXes that,
like in the blocks described in Sections 4.2 and 4.3, are intended to allow
high operating frequencies to be achieved and to provide configurability.
Supported operating modes are addition/subtraction, multiplication, MAC,
multiplication and addition/subtraction, vector one/two, and complex mul-
tiplication mode, among others.

In this case, alignment and normalization operations are carried out inside
the DSP block itself, avoiding the need for using distributed logic resources
with these purposes and, therefore, eliminating the aforementioned nega-
tive impact of these operations in performance. These blocks also include
the logic resources required to detect and flag the exceptions defined by the
IEEE 754 standard.

Figures 4.7 through 4.10 show some of the operating modes for floating-
point arithmetic supported by the DSP block in Figure 4.6.

O
pe

ra
nd

s

In
pu

t r
eg

ist
er

 b
an

k

Pi
pe

lin
e

re
gi

st
er

s

IEEE 754
single-precision
�oating point

multiplier

IEEE 754
single-precision

�oating point adder

Pi
pe

lin
e

re
gi

st
er

 b
an

k

Re
su

lt

Chain_in

Chain_out

O
ut

pu
t

re
gi

st
er

 b
an

k

FIGURE 4.6 
Variable Precision DSP Block from Altera Arria 10 FPGAs.

123Advanced Signal Processing Resources in FPGAs

In
pu

t r
eg

ist
er

 b
an

k

IEEE 754
single-precision
	oating point

multiplier

z(31:0)

y(31:0)
x(31:0)

IEEE 754
single-precision

	oating point adder

Re
su

lt

Chain_in

Chain_out

O
ut

pu
t

re
gi

st
er

 b
an

k

Pi
pe

lin
e

re
gi

st
er

 b
an

k

Pi
pe

lin
e

re
gi

st
er

s

FIGURE 4.7 
Multiplication mode: floating-point multiplication of input operands y and z.

In
pu

t r
eg

ist
er

 b
an

k

Re
su

lt

IEEE 754
single-precision

�oating point adder

Chain_out

Chain_in

IEEE 754
single-precision
�oating point

multiplier

z(31:0)

y(31:0)
x(31:0)

Pi
pe

lin
e

re
gi

st
er

s

Pi
pe

lin
e

re
gi

st
er

 b
an

k

O
ut

pu
t

re
gi

st
er

 b
an

k

FIGURE 4.8 
MAC mode: floating-point multiplication of input operands y and z, followed by floating-point
addition/subtraction of the result and the previously accumulated value (y · z + acc or y · z − acc).

In
pu

t r
eg

ist
er

 b
an

k

Chain_in

Chain_out

Re
su

lt

O
ut

pu
t

re
gi

st
er

 b
an

k

Pi
pe

lin
e

re
gi

st
er

 b
an

k

Pi
pe

lin
e

re
gi

st
er

s IEEE 754
single-precision

�oating point adder

IEEE 754
single-precision
�oating point

multiplier

z(31:0)

y(31:0)
x(31:0)

FIGURE 4.9 
Vector two mode: simultaneous floating-point multiplication (whose result is sent to the fol-
lowing DSP block through the chainout output) and addition of the value received through the
chainin input (from the previous DSP block) to the x input operand (Resultn = xn + chaininn =
xn + chainoutn−1 = xn + yn−1 · zn−1).

124 FPGAs: Fundamentals, Advanced Features, and Applications

Re
al

In
pu

t r
eg

ist
er

 b
an

k
In

pu
t r

eg
ist

er
 b

an
k

Multiplication mode

Multiply–subtract mode

Chain_in

Pi
pe

lin
e

re
gi

st
er

s
IEEE 754

single-precision
floating point

multiplier

IEEE 754
single-precision
floating point

multiplier

b(31:0)

d(31:0)

a(31:0)

c(31:0)

x(31:0)

x(31:0)

Pi
pe

lin
e

re
gi

st
er

 b
an

k
Pi

pe
lin

e
re

gi
st

er
 b

an
k

IEEE 754
single-precision

floating point adder

IEEE 754
single-precision

floating point adder

O
ut

pu
t

re
gi

st
er

 b
an

k

Re
su

lt

Chain_out

Chain_out

Chain_in

Pi
pe

lin
e

re
gi

st
er

s

O
ut

pu
t

re
gi

st
er

 b
an

k

FIGURE 4.10 
Complex multiplication mode: floating-point complex multiplication using four DSP blocks,
according to the expression (a + j · b) · (c + j · d) = (a · c – b · d) + j · (a · d + b · c).

In
pu

t r
eg

ist
er

 b
an

k

Im
ag

in
ar

y

In
pu

t r
eg

ist
er

 b
an

k

Re
su

lt

Multiplication mode

Multiply–add mode

Chain_in

Chain_in

Pi
pe

lin
e

re
gi

st
er

s

Pi
pe

lin
e

re
gi

st
er

 b
an

k

O
ut

pu
t

re
gi

st
er

 b
an

k

IEEE 754
single-precision

floating point adder

IEEE 754
single-precision

floating point adder

IEEE 754
single-precision
floating point

multiplier

IEEE 754
single-precision
floating point

multiplier

Chain_out

Chain_out

Pi
pe

lin
e

re
gi

st
er

s

Pi
pe

lin
e

re
gi

st
er

 b
an

k

O
ut

pu
t

re
gi

st
er

 b
an

k

c(31:0)

b(31:0)
x(31:0)

d(31:0)

a(31:0)
x(31:0)

125Advanced Signal Processing Resources in FPGAs

Vendors provide sets of floating-point mathematic functions (many of
which comply with specifications such as OpenCL 1.2) optimized for their
implementation in these blocks.

In general, the design tools from the different vendors significantly auto-
mate the optimization and use of DSP resources available in their FPGAs.
In this way, for applications without extremely demanding timing require-
ments, designers can easily develop fully functional systems without taking
care of complex hardware issues, such as the internal topology of the blocks,
pipeline acceleration, or time-division multiplexing techniques.

References

Altera. 2011. Stratix IV Device Handbook (Vol. 1). DSP Blocks in Stratix IV Devices.
San Jose, CA.

Altera. 2016. Arria 10 Core Fabric and General Purpose I/Os Handbook A10. San Jose, CA.
IEEE. 2008. 754-2008—IEEE standard for floating-point arithmetic. Revision of

ANSI/IEEE Std 754-1985.
Lattice. 2016. ECP5 and ECP5-5G family. Data Sheet DS1044 Version 1.6. Portland, OR.
Microsemi. 2016. SmartFusion2 SoC and IGLOO2 FPGA Fabric: UG0445 User Guide.

Aliso Viejo, CA.
Parker, M. 2014. Understanding peak floating-point performance claims, Altera

white paper WP-01222-1.0.
Sinha, U. 2014. Enabling impactful DSP designs on FPGAs with hardened floating-

point implementation, Altera white paper WP-01227-1.0.
Xilinx. 2011. Spartan-3 Generation FPGA User Guide: Extended Spartan-3A, Spartan-3E,

and Spartan-3 FPGA Families: UG331 (v1.8). San Jose, CA.
Xilinx. 2014. 7 Series DSP48E1 Slice. User Guide: UG479 (v1.8). San Jose, CA.

http://taylorandfrancis.com

127

5
Mixed-Signal FPGAs

5.1 � Introduction

FPGAs were originally conceived as pure digital devices, not including any
analog circuitry, such as input or output analog interfaces, which had to be
built outside the FPGA whenever required. In contrast, analog circuitry is
necessary for many FPGA applications (in general, but particularly in the
case of industrial embedded systems) where, therefore, the need for ADCs
and DACs is unavoidable. Even if control logic for external ADCs and DACs
can be usually implemented using distributed logic inside the FPGA, elim-
inating the need for additional chips implementing glue logic and delays
associated with external interconnections limit sampling or reconstruction
frequency and may cause synchronization problems, thus having a negative
impact on performance.

The solution to this drawback is obvious: to include ADCs and DACs inside
FPGAs as hardware specialized blocks, like the ones discussed in Section 2.4.
This not only mitigates bandwidth and synchronization problems, but also
allows chip count to be reduced. As a consequence, some FPGA vendors
decided to include analog front ends in some of their device families, giving
rise to the so-called mixed-signal FPGAs (Xilinx 2011, 2014, 2015; Microsemi
2014a,b; Altera 2015). Also, some existing devices combine configurable ana-
log and digital resources in the so-called field-programmable analog arrays
(FPAAs) (Anadigm 2006).

The quite specific analog resources available in mixed-signal FPGAs
are described throughout this chapter. Section 5.2 deals with ADC blocks,
whereas analog sensors, and analog data acquisition and processing inter-
faces are described in Sections 5.3 and 5.4, respectively. Although FPAAs
themselves are out of the scope of this book, hybrid FPGA–FPAA solutions
are analyzed in Section 5.5.

128 FPGAs: Fundamentals, Advanced Features, and Applications

5.2 � ADC Blocks

Figure 5.1 shows the mixed-signal FPGA architectures of Altera MAX
10 and Xilinx 7 Series devices. They include up to two* 12-bit Successive
Approximation Register (SAR) ADCs and share the following features:

•	 Maximum sampling rate: 1 Msps (minimum conversion time 1 μs).
•	 Single clock cycle conversion.
•	 Several multiplexed input channels (up to 18 in Altera devices with

2 ADCs and up to 17 in Xilinx ones). Channel 0 is a dedicated analog
input, whereas all others are dual function (i.e., they can be config-
ured as either analog inputs or general-purpose digital I/O pins).

*	 All Xilinx 7 Series devices include two ADCs, whereas Altera’s MAX devices may contain
one or two, depending on the particular device.

S&H

Temperature
sensor

Dedicated
analog input

Dual-function
inputs …

VREF

ADC hard block

°C

FPGA PLL

FPGA fabric

Sequencer

Acquisition
memory

Control systemSAR ADC
12 bits

TDS
Temperature

sensor

Dedicated
analog input

Dual-function
inputs (VAUX)

Analog hardware block
(XADC)

FPGA

Supply sensors SAR ADC A
12 bitsS&H

SAR ADC B
12 bitsS&H Status

register

D
RP

…
..

Control
register

JTAG

FPGA
fabric

Control
system

VREF

VREF

VREF

(a)

(b)

FIGURE 5.1 
(a) ADC hard block from Altera’s MAX 10 family and (b) XADC block from Xilinx 7 Series.

129Mixed-Signal FPGAs

•	 Support both single-ended and differential input signals.
•	 Support different operation modes, such as continuous sampling,

conversion triggered by a specific event, and independent or simul-
taneous sampling (in devices with two ADCs).

•	 Support internal or external voltage references. Since ADC accuracy
strongly depends on reference voltage, any ripple or noise affecting
it negatively impacts conversion quality (e.g., conversion gain or sig-
nal-to-noise ratio). Since the internal voltage reference is usually the
very supply voltage of the ADC (producing ratiometric conversion
results), vendors recommend the use of external voltage references,
for which it is easier to ensure better accuracy and lower tempera-
ture drift.

•	 Each ADC has an associated sample-and-hold (S&H) circuit or track-
and-hold amplifier to ensure proper conversion. Some devices sup-
port configurable settling time.

On the other hand, there are differences in input voltage ranges and output
configurations between the two families. In Altera MAX 10 devices, input
voltages can be in the 0–2.5 or 0–3.3 V ranges, depending on the supply
voltage, and the transfer function is unipolar (Figure 5.2). Input voltages are
in the 0–1 V range in Xilinx 7 Series devices, whose transfer function can be
unipolar or bipolar, in 2’s complement (Figure 5.3).

000

001

010

011

100

101

110

FFF

FFE

0.610 2499.382.441

Input voltage (mV)

D
ig

ita
l o

ut
pu

t c
od

e (
H

EX
)

VREF= 2.5 V
Bits resolution = 12

1 LSB = 2.5 V/212 = 610.35 μV

FIGURE 5.2 
Unipolar ADC transfer function in Altera devices.

130 FPGAs: Fundamentals, Advanced Features, and Applications

As can be clearly noticed in Figure 5.1, both hardware architectures are
very similar. They consist of a set of input channels (coming from either
external pins or internal signals), connected to the ADCs through multiplex-
ing logic and S&H circuits, as well as of additional logic resources, aimed at
configuring and controlling the ADCs and storing the results. For instance,
control registers at the bottom of Figure 5.1 are used for storing the con-
figuration parameters of the analog block, whereas status registers store con-
verted data.

Control logic for hardware specialized analog blocks is implemented in
the FPGA fabric. Specific communication resources are available for this pur-
pose. For instance, the DRP (Dynamic Reconfiguration Port) in Figure 5.1b is
a 16-bit synchronous read/write port, which enables access to control and
status registers from the FPGA fabric. These registers are also accessible
from the JTAG interface of the FPGA.

Specific IP cores are available for both MAX 10 and 7 Series devices to inter-
act with the respective analog blocks. They are parameterizable soft control-
lers implementing several different predefined configurations and operating
modes. They allow on-chip ADCs to be instantiated in a design, as well as
clock signals and reference voltages to be configured, the input channel to
be dynamically selected, maximum and minimum data values to be defined
(and violation notifications to be generated if these are exceeded), and the
whole data acquisition process to be managed in a way totally transparent to
the designer, who does not need to care about low-level details.

800

801

FFF

000

001

7FF

7FE

–500 499.75–0.244
Input voltage (mV)

D
ig

ita
l o

ut
pu

t c
od

e (
H

EX
)

0.2440

VREF= 1 V
Bits resolution = 12

1 LSB = 1 V/212 = 244.14 μV

FIGURE 5.3 
Bipolar ADC transfer functions in Xilinx 7 Series devices.

131Mixed-Signal FPGAs

Figure 5.4 shows the minimum set of resources required by the control logic:

•	 A control circuit (finite state machine), in charge of generating
configuration and sampling signals (address, data, and transfer
signals for configuration registers, start and end of conversion signals,
handshake signals, etc.) so that they follow the required sequences
and comply with the timing requirements specified by the vendor

•	 A sequencer to define the sampling sequence of input channels
•	 Memory resources to store data
•	 Clock and synchronization circuits

The control circuit and the sequencer are implemented in FPGA distrib-
uted logic, whereas acquisition memory may be implemented using either
embedded or external memory blocks. Clock signals are generated using
dedicated blocks (such as PLLs or DLLs) to ensure their stability and
reduced skew.

These analog blocks support very diverse operating modes. In MAX 10
devices:

•	 It is possible to configure the order in which a set of input channels
are sampled (i.e., an acquisition sequence). Acquisition sequences
can be configured in single-trigger or continuous mode.

•	 In devices with two ADCs, each of them may be independently con-
figured to have a different acquisition sequence, and acquisitions
may be synchronous (using the same clock for both ADCs) or asyn-
chronous (using different clock signals). In addition, simultaneous
acquisition is supported in cases where the relative phase of input

A
na

lo
g

in
pu

ts

FPGA

Analog hardware block

ADC

FPGA fabric

Control
system

Sequencer

Hard IP

Memory
block

Hard IP

Clock
generator

FIGURE 5.4 
Common architecture of the control logic for analog resources in mixed-signal FPGAs.

132 FPGAs: Fundamentals, Advanced Features, and Applications

signals must be kept unchanged. Simultaneous acquisition can
only be implemented using the dedicated analog inputs (channel 0
of each ADC, as mentioned earlier), whose package routings are
matched.

Both single-channel acquisition and acquisition sequences (automatic chan-
nel sequencer) are also possible in 7 Series devices, which also support
single-trigger (single-pass mode) and continuous mode. Acquisitions in each
ADC may be independent (one ADC acquires internal signals and the other
external ones) or simultaneous. Differently from MAX 10 devices, in simul-
taneous acquisition mode, all external analog channels can be used. Since
there are up to 16 dual-function pins (channels) available, up to eight simul-
taneous acquisition channels may be defined.

More specifically, in single-pass, automatic channel sequencer and
continuous sequence modes, one ADC (“A”) samples input signals (from
temperature and voltage sensors) and the dedicated analog input, whereas
the second ADC (“B”) handles all other external channels. In simultane-
ous sampling mode, each ADC is connected to eight external signals, which
are sampled in pairs (both ADCs operate in parallel), but it is also possible
to include internal signals in the sampling sequence, associated with ADC
“A” (in this mode, when sampling internal signals, ADC “B” is inactive).
Finally, in independent ADC mode, ADC “A” samples internal signals,
whereas ADC “B” samples the dedicated analog input and all other exter-
nal channels.

Analog blocks in 7 Series devices also support external MUX mode
(Figure 5.5), where (as the name indicates) an external input MUX (connected
to the dedicated analog inputs) is used for channel multiplexing (channel
selection logic is still generated by the embedded analog block). This is a use-
ful option for designs where not enough I/O pins remain available once the
digital logic has been defined. It has to be noted that the 17 input channels
(differential inputs) supported by the analog block would actually consume
34 I/O pins.

Following the general philosophy behind configurable devices, ana-
log resources in mixed-signal FPGAs are usually highly configurable. In
addition to the aforementioned operating modes, other functionalities and
parameters may be configured, even at run time. For instance, in 7 Series
devices, each analog input can be independently configured to operate in
unipolar or bipolar mode (to reduce common-mode noise), the output digital
value may be obtained as the direct result of a single conversion or as the
average of a set of samples (16, 64, or 256), and each ADC may be digitally
calibrated to reduce gain and offset errors. Calibration is performed by con-
necting the ADC input to a known voltage, computing gain and offset errors,
and generating the corresponding correction coefficients. Users can choose
whether or not correction coefficients are applied by enabling or disabling
the calibration option, respectively.

133Mixed-Signal FPGAs

5.3 � Analog Sensors

In addition to ADCs, mixed-signal FPGAs usually include sensors that allow
some of their operating parameters to be monitored. For instance, a sensor
to measure die temperature is available in both Altera MAX 10 and Xilinx 7
Series devices. Monitoring die temperature allows to check if the device is

Analog hardware block

FPGA

TDS SAR ADC A
12 bitsS&H

Dedicated analog input
or dual-function inputs

External
inputs

…
..

Control
system

Memory
block

Clock
generator

VREF

VREF

Analog hardware block

FPGA

SAR ADC B
12 bitsS&H

VREF

VREF

External
inputs
8 to 15

External
inputs
0 to 7

…
..

Control
system

Memory
block

Clock
generator

SAR ADC A
12 bitsS&H

…
..

VAUXP

VAUXN

VAUXP

VAUXN

Dedicated analog input
or dual-function inputs

(a)

(b)

FIGURE 5.5 
External (a) MUX and (b) simultaneous sampling modes.

134 FPGAs: Fundamentals, Advanced Features, and Applications

working within an acceptable temperature range, hence helping to prevent
damages due to excessive heating.

These sensors generate a voltage proportional to on-chip temperature,
which, for instance, in the case of 7 Series devices is

	
V () ln()T

kT

q
= ´10 10

	

where
k is the Boltzmann’s constant (1.38 · 10−23 J/K)
T is the temperature (K)
q is the charge of the electron (1.6 · 10−19 C)

Voltage sensors are also available in 7 Series devices to measure on-chip
power supply voltages (as shown in Figure 5.1). Both temperature and volt-
age sensors are connected to the input of the ADC through the input MUXes,
and they are sampled in the same way as all other analog inputs. Usually,
sampling of these signals is carried out by default, and alarms are generated
even if the analog resources are not being used.

It is possible to define thresholds for these signals and generate alarms if
these values are exceeded. For instance, some devices go to an inactive state
when temperature or supply voltage go outside the acceptable ranges. Also,
the speed of the fan cooling a device can be adjusted as a response to a tem-
perature alarm.

In addition to the MAX 10 and 7 Series devices, FPGAs from other fami-
lies also include less-performant analog resources. Altera Stratix V, Stratix
IV, Arria V, and Arria V GZ FPGAs include a temperature sensor diode
(TSD) with a built-in 8-bit (10-bit in Arria 10 devices) ADC circuitry to
monitor die temperature. Xilinx Virtex-5, Virtex-6, UltraScale, UltraScale+,
and Zynq UltraScale+ MPSoC families include an analog block, called
System Monitor (SYSMON, with several versions available depending on
the device), with embedded temperature and voltage sensors and the same
number of external analog channels as in 7 Series devices, but with just a
10-bit, 20 ksps ADC.

5.4 � Analog Data Acquisition and Processing Interfaces

Analog resources in Microsemi SmartFusion FPGAs (Microsemi 2014a) are
more complex than those described so far. They build a subsystem for ana-
log signal acquisition and processing, called Analog Compute Engine (ACE),
which consists of three blocks (Figure 5.6): analog front-end interface, Sample
Sequencing Engine (SSE), and Post-Processing Engine (PPE).

135Mixed-Signal FPGAs

The analog front end includes signal conditioning circuits with S&H, ana-
log MUXes, ADCs, and DACs. ADCs are SAR ones, with configurable reso-
lution up to 12 bits (8, 10, or 12 bits). It supports simultaneous sampling of
several ADCs. Reference voltage can be internal or external, in the 0–2.56 V
range. To extend input voltage range, a prescaler is available with up to four
different ranges.

Additional resources making a significant difference from other solu-
tions are 24-bit delta–sigma DACs (as many as ADCs), current monitors
based on differential-input, fixed-gain (50) amplifiers, temperature sen-
sors, and high-speed analog comparators with configurable hysteresis
thresholds. Single-ended analog inputs and outputs are multiplexed and
demultiplexed, respectively. A very useful feature of these devices is that
the embedded microcontrollers they include are equipped with dedi-
cated interfaces to the analog circuitry, which in this regard acts as a slave
peripheral of the microcontroller. Moreover, access and control of the ana-
log resources can also be made from distributed logic without the need for
using the microcontroller.

Given the complexity of the analog front end, a simple microcontroller
(SSE) is available for configuring the parameters and operating modes of the
different analog modules as well as for defining the sampling and conversion
sequences of the input and output analog channels. Sampling sequences,

ACE–APB interface

APB slaveaAdvanced peripheral bus (APB).
bSignal conditioning block (SCB).
cSigma-delta DAC (SDD).

APBa master
(Cortex M3 or FPGA fabric)

Analog interface

Sample
Sequencing

Engine
(SSE)

Post-
Processing

Engine
(PPE)

FPGA fabric

An
al

og
 in

pu
ts

ADC Unit 0

SDDc

SDDc

SAR ADC

SAR ADC

A
na

lo
g

M
U

X
A

na
lo

g
M

U
X

SCBb

SCBb

SCBb

SCBb

An
al

og
 in

pu
ts

ADC Unit n

FIGURE 5.6 
ACE analog subsystem from Microsemi SmartFusion family.

136 FPGAs: Fundamentals, Advanced Features, and Applications

resolution, and sampling times can be independently configured for each
ADC. Simultaneous analog-to-digital conversion is supported as well as
simultaneous updating of DAC outputs.

The PPE block is in charge of processing the signals from the ADCs. It uses
FIFO memories to store data coming from each ADC and an ALU capable
of performing calibration, threshold comparison, or other linear transforms.
It can also be configured as a MAC unit, allowing low-pass filters to be
implemented.

Thanks to the availability of SSE and PPE, there is no need to use embed-
ded processors or distributed logic to perform the complex control and pro-
cessing tasks associated with the analog part of the devices. Anyway, to
facilitate high-level tasks, both SSE and PPE can generate interrupt requests
to flag events related to calibration, the operation of the ADCs or the com-
parators, as well as general-purpose SSE events, or threshold comparison–
related PPE events.

Another example of relatively complex mixed-signal FPGAs is the
Microsemi Fusion family (Microsemi 2014b), whose architecture is shown
in Figure 5.7. It includes up to 30 multiplexed analog inputs, a SAR ADC
with configurable resolution (8, 10, or 12 bits) and sampling frequency up
to 600 ksps, as well as temperature, voltage, and current sensors, and (as a

Logic blocks
(VersaTile)

User flashROMISP
AESb

I/O blocks

I/
O

 b
lo

ck
s

I/
O

 b
lo

ck
s

Charge
pumps

Flash memory
blocks

Flash memory
blocksADC

AQc

CCCa CCC

I/O blocksCCC CCC

SRAM blocks

SRAM blocks

AQ AQ AQ AQ AQ AQ AQ AQ AQ

a Clock conditioning circuit (CCC).
b In-system programming advanced
 encryption standard (ISP AES).
c Analog quad.

FIGURE 5.7 
Architecture of Microsemi Fusion family.

137Mixed-Signal FPGAs

significantly distinctive feature) up to 10 MOSFET gate driver outputs to
control high-voltage external FETs. Same as other solutions, the reference
voltage can be internal (2.56 V) or external (up to 3.3 V).

As shown in Figure 5.7, analog I/O resources are grouped in the so-
called analog quad blocks, whose internal structure is shown in Figure 5.8.
Each block includes three analog inputs (AV, AC, and AT) and a gate driver
output pad (AG). They can be configured to operate in different modes, such
as digital inputs, temperature or current monitor, or analog inputs with pres-
caler. Prescalers support different scaling factors to adapt to different ranges
of positive (0–12 V) or negative (−12 to 0 V) input voltage.

Fusion devices include a TSD connected to channel 31 of the analog
MUX, aimed at measuring internal chip temperature. In addition, the
AT input of each analog quad can be connected to an external tempera-
ture sensor.

Current monitoring is carried out by connecting an external resistor of
known value (typically less than 1 Ω) between two adjacent analog inputs

VCC

FPGA fabric

Analog blocks

Cu
rr

en
t m

on
ito

r P

DI

IA

AC

Vo
lta

ge
 m

on
ito

r

P

DI

AV

G
at

e d
riv

er

Power
MOSFET

AG

Te
m

pe
ra

tu
re

 m
on

ito
r

P

DI

TM

ATAnalog quad

Temperature
sensor

FPGA

Prescaler
Digital input
Instrumentation amplifier

TM
IA
DI
P

Temperature measurement

FIGURE 5.8 
Block diagram of the analog quad blocks.

138 FPGAs: Fundamentals, Advanced Features, and Applications

(AV and AC) and measuring the voltage drop between them. Operational
amplifiers are available to amplify this voltage for improved current mea-
surement accuracy.

5.5 � Hybrid FPGA–FPAA Solutions

From previous sections, it is clear that, compared with logic resources, ana-
log resources available in FPGAs are still quite limited. However, there is a
trend for FPGA vendors to include in their most current devices an increas-
ing number of analog blocks of increasing complexity.

For more than 20 years now, researchers and vendors have explored
the feasibility of developing analog reconfigurable devices. Currently,
commercial solutions already exist that combine configurable ana-
log and digital resources. These are the so-called FPAAs, conceptually
equivalent to FPGAs but oriented to analog applications. They consist
of a set of analog blocks supporting a certain degree of configurability
through the use of configurable analog blocks and digitally configurable
interconnections to connect analog blocks among themselves and to I/O
pins. Examples of such devices are Anadigm AN13x and AN23x families
(Anadigm 2006).

Taking into account that the digital part of “pure” FPAAs is limited to inter-
connect and configuration resources, as well as to resources for the imple-
mentation of simple transfer functions, the detailed analysis of these devices
is beyond the scope of this book. However, intermediate solutions between
FPGAs and FPAAs exist. Such hybrid devices are available in Cypress PSoC
1, PSoC 3, PSoC 4, and PSoC 5LP family series (Cypress 2015). As the term
PSoC suggests, these devices include embedded hardware processors, so
they might have been analyzed in Chapter 3. However, considering that their
most distinctive features are related to their analog part, we have decided to
describe them here.

Figure 5.9 shows the architecture of the CY8C58LP family (PSoC 5LP
series). It consists of three main blocks: Processor System, Digital System,
and Analog System.

The Processor System includes, among other modules,

•	 A 32-bit ARM Cortex-M3 processor, capable of operating at up to
80 MHz (1.25 DMIPS/MHz)

•	 A Nested Vectored Interrupt Controller (NVIC) for fast interrupt
handling, supporting up to 16 system exceptions and 32 interrupts

•	 Debug and trace modules accessible through JTAG or Serial Wire
Debug interfaces

139Mixed-Signal FPGAs

•	 Up to 256 kB of flash memory, 2 kB of EEPROM, and 64 kB of SRAM
•	 An external memory interface
•	 DMA and cache controllers

Connection of the Processor System with other parts of the device is made
through a peripheral hub based on AMBA multilayer AHB interconnection
scheme (described in Section 3.5.1.2).

The digital system consists of three main blocks:

	 1.	An array of configurable logic blocks, called Universal Digital Blocks
(UDBs)

	 2.	Hard peripherals, including serial communication interfaces (CAN,
USB, and I2C), timers, counters, and PWMs

	 3.	A communication interface (digital system interface [DSI]) to inter-
connect reconfigurable logic, I/O pins, hard peripherals, interrupts,
and DMA circuitry

Pr
oc

es
so

r
sy

st
em

ARM Cortex -M3

DMA MPU

Cache
controller NVIC

FLASH

Program and debug

Analog system

E2PROM

SRAM

Digital system

Universal digital
blocks
(UDB)

CAN

USB

Counter

Timer

PWM
DFB

I2C
Cl

oc
ki

ng
 sy

st
em

Po
w

er
 sy

st
em

AMBA interface

AMBA interface

DSI

FIGURE 5.9 
Architecture of the CY8C58LP family.

140 FPGAs: Fundamentals, Advanced Features, and Applications

Each UDB includes two PLDs (configurable structures much simpler than
those in most current FPGAs, as introduced in Section 1.4), a datapath, and
interconnection resources.

The datapath inside each UDB consists of an 8-bit single-cycle ALU and
logic resources for comparison, shifting, and condition generation. It sup-
ports condition and signal propagation chains (e.g., carries) for the efficient
implementation of arithmetic and shift operations. The datapath and the
PLDs combine to build a UDB, and UDBs combine to build a UDB array.

Some devices in the CY8C58LP family also include a digital filter hardware
block (DFB) as part of the digital system. The DFB includes a multiplier and
an accumulator supporting 24-bit single-cycle MAC operations. To the best
of authors’ knowledge, no similar blocks exist in other devices to relieve the
ARM Cortex-M3 core of this kind of highly bandwidth-consuming tasks.

Finally, the configurable analog system, which clearly separates these
devices from any other current ones and whose structure is shown in
Figure 5.10, consists of the following elements:

•	 A delta–sigma ADC whose default configuration is 16-bit resolu-
tion and 48 ksps, but is capable of also operating in other modes:
20, 12, or 8 bits and 187 sps, 192 ksps, or 384 ksps. It has a differen-
tial input, supports single and continuous sampling, and conversion
start can be controlled either by software (by writing in a register) or
hardware (through an external signal).

•	 Two 12-bit, 1 Msps SAR ADCs with single-ended or differential input.
•	 Four 8-bit DAC with voltage or current output. They support conver-

sion rates up to 8 Msps for current output and 1 Msps for voltage
output.

•	 Four analog comparators, whose outputs can be connected to four
2-input LUTs (allowing simple functions to be implemented) and,
from them, to the digital system.

•	 Four programmable switched capacitor/continuous time (SC/CT)
blocks, including one operational amplifier and a resistor network.
With these elements, functionalities such as programmable gain
amplifiers, transimpedance amplifiers, up/down mixers, S&H, and
first-order analog to digital modulators, among others, may be built.

•	 Four general-purpose operational amplifiers supporting any voltage
amplifier or follower configuration using either internal or external
signals.

•	 A configurable interface for LCD displays, compatible with a wide
variety of LCD displays.

•	 A capacitive touch sensing interface (CapSense subsystem in
Figure 5.10) enabling capacitive measurements from devices such as
proximity sensors, touch-sense buttons, and sliders.

141Mixed-Signal FPGAs

•	 A temperature sensor to monitor internal device temperature.
•	 Internal high-precision reference voltages.
•	 Configurable resources to interconnect the different analog blocks

as well as connect them with GPIOs. Interconnection resources are
structured in global and local buses, MUXes, and switches.

For generation, synthesis, and distribution of clock signals, CY8C58LP
devices include internal oscillators; specific (separate) clock frequency divid-
ers for the digital, analog, and processor parts; and a fractional PLL with a
working range from 24 to 80 MHz.

Cypress provides the PSoC Creator tool to support design of these
devices. It eases configuration of both analog and digital interconnects,
includes a library of predefined functions, and generates API interface
libraries to set up communications between the process system and all
other blocks in the device.

Processor system

Digital systemClocking
system

Power
system

LCD drive Temp sensor

SC/CT

CMP

CapSense

Analog interface

DSI

G
PI

O

A
na

lo
g

ro
ut

in
g

G
PI

O

A
na

lo
g

ro
ut

in
g

ΔΣ
ADC

SAR
ADC

DAC

OAs
OAs

SAR
ADC

DAC

OAs
OAs

Analog
system

FIGURE 5.10 
Analog system of CY8C58LP family.

142 FPGAs: Fundamentals, Advanced Features, and Applications

References

Altera. 2015. MAX 10 Analog to Digital Converter User Guide: UG-M10ADC.
Anadigm. 2006. AN13x series. AN23x series. AnadigmApex dpASP Family User Manual.
Cypress. 2015. PSoC 5LP: CY8C58LP family datasheet.
Microsemi. 2014a. SmartFusion Programmable Analog User Guide.
Microsemi. 2014b. Fusion Family of Mixed Signal FPGAs (revision 6).
Xilinx. 2011. Virtex-5 FPGA System Monitor User Guide: UG192 (v1.7.1).
Xilinx. 2014. Virtex-6 FPGA System Monitor User Guide: UG370 (v1.2).
Xilinx. 2015. 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1

MSPS Analog-to-Digital Converter User Guide: UG480 (v1.7).

143

6
Tools and Methodologies for
FPGA-Based Design

6.1 � Introduction

Tools and methodologies for FPGA-based design have been continuously
improving over the years in order for them to accommodate the new and
extended functionality requirements imposed by increasingly demanding
applications. Today’s designs would take unacceptable extremely long times
to be completed if tools coming from more than 20 years ago were used.
The first important incremental step in accelerating design processes was the
replacement of schematic-based design specifications by HDL descriptions
(Riesgo et al. 1999).* On one hand, this allows complex circuits (described at
different levels of abstraction) to be more efficiently simulated, and on the
other hand, designs to be quite efficiently translated (by means of synthesis,
mapping, placement, and routing tools) from HDLs into netlists, as a step
previous to its translation into the bitstream with which the FPGA is config-
ured (as described in Section 6.2.3.4).

Conventional synthesis tools were quite rapidly adopted by designers
due to the productivity jump they enabled. At that point, it soon became
apparent that FPGAs were very well suited to rapid prototyping and emu-
lation flows because very little HDL code rework (or even none at all) was
required in order to migrate designs initially implemented in FPGAs to
other technologies. Either for prototyping or for final deployment, FPGAs
rapidly increased their market share. As a consequence, and thanks to the
improvement in manufacturing technologies, their complexity was continu-
ously increased to cope with the ever-growing demand for more and more
complex and integrated systems. This, in turn, contributed to higher market
penetration, which pushed for additional complexity and expanded func-
tionality, and so on.

*	 Most former techniques, particularly those based on schematic entry, are deprecated because
of their low productivity. Therefore, they are not considered in this book.

144 FPGAs: Fundamentals, Advanced Features, and Applications

The fast adoption of conventional synthesis tools as part of the natural
design process for all types of digital hardware devices was not as fast,
however, in the case of HLS tools (Cong et al. 2011). The difference between
both types of tools resides in clock cycle explicitness. A conventional synthe-
sizable HDL file mostly consists of descriptions where the transfers between
memory elements can be directly and explicitly inferred from the code, clock
cycle by clock cycle. In contrast, HLS tools start from descriptions that do
not explicitly specify clock activity, but work at algorithmic level instead.
The contribution or refinement HLS tools provide is their ability to allocate
logic resources or operators and assign functions to such operators within
the required time slots so that the algorithm may be mapped to a circuit
with efficient resource sharing. Additionally, logic functions can be extended
into optimized pipelined structures (so that the translation of such slots into
clock cycles makes timing explicit), and clock speed can be optimized by ade-
quately balancing critical paths within the pipelined structures. Regarding
memories, different accessing schemes enable variable bandwidth adjust-
ment so that it may adequately fit the functions being carried out by the
logic reading/writing data from/to such memories. Finally, HLS tools also
support two I/O types: memory mapped and stream based. These issues are
analyzed in detail in Section 6.4.

Traditional or HLS tools alone cannot support the design of many of
today’s complex FPGA embedded systems. They need to be combined with
platform-based tools that, in essence, automate different processes within
a SoPC design flow (Sangiovanni-Vincentelli and Martin 2001). These tools
combine standard components from integrated IP libraries with custom-
made blocks designed using either conventional or HLS flows. Most current
embedded systems are not fully customized designs, but rely on the combi-
nation of some standardized functions and interfaces with custom-made IP
blocks. Therefore, module reuse and automated tools are mandatory in order
to speed up the design process. Complex systems may be built with relatively
little designer intervention if the design is based on library modules con-
nected with standardized on-chip interfaces (described in Section 3.5). These
tools provide, among many other features, module customization, automatic
connection, automated memory map generation, as well as easy access to
software code programmers by means of hardware abstraction layers for easy
hardware/software interfacing. Users not familiar with this design method-
ology may be astonished to see how it allows highly complex designs to be
readily obtained. For instance, a dual-core processor system with complex
DMA schemes providing efficient access to a gigabit Ethernet media access
control layer, plus some other I/O interfaces (such as SPI, I2C, USARTS, or
GPIO), can be built in only a few hours.

Other tools are currently available whose design languages allow explicit
parallelism to be described, aimed at achieving the maximum possible algo-
rithm acceleration in HPC applications. They are based on OpenCL, which
allows multithread parallelism to be mapped to heterogeneous computing

145Tools and Methodologies for FPGA-Based Design

platforms, such as FPGAs (Altera 2013; Xilinx 2014). In the last years, the main
FPGA vendors are continuously releasing new specialized tools to ease the
translation from OpenCL code into FPGA designs. These tools also provide
ways for designs running in a host, usually a computer, to be accelerated by
attaching one or more FPGA boards to it, often by means of PCIe connections
(described in Section 2.4.4.1).

Increasingly, complex tools and design flows must necessarily be comple-
mented with suitable validation and debugging methods. Verification can
(and should) be done at early design stages, prior to circuit configuration,
by means of simulation techniques. These techniques may be performed at
functional level, to validate logic functionality, or after placement and rout-
ing, where accurate timing data are available to be annotated into the simula-
tion. Very interestingly, as highlighted in Section 6.6.1.2, it is also possible to
use integrated logic analyzers (embedded into the FPGA) for debugging pur-
poses. These elements allow for combined hardware/software evaluation,
which is very useful, especially for SoPC designs. Although some structured
design validation techniques do exist, such as those derived from formal
verification methods, they are not addressed in this book for two reasons:
They are not specific to FPGA design and, to the best of authors’ knowledge,
there are no such commercial tools available for industrial use.

In the following sections, the different tools and design flows currently
available are described in order of increasing complexity, which also cor-
responds with their evolution over time. Therefore, the conventional flow
to transform netlists into bitstreams, based on the combination of register-
transfer level (RTL) synthesis with back-end tools, is described in Section 6.2.
Section 6.3 deals with the design flows and associated frameworks for SoPC
systems, available for medium- and high-end FPGAs. HLS tools are dis-
cussed in Section 6.4. Contrary to what one might think, they appeared
after SoPC platform-based designs, in part due to the slow adoption of these
tools also in other areas, such as ASICs. In Section 6.5, tools for multithread
acceleration in HPC applications are described. Finally, debugging tools and
some second-order (or optional) tools available in many FPGA design frame-
works are addressed in Section 6.6.

6.2 � Basic Design Flow Based on RTL Synthesis
and Implementation Tools

The combination of RTL synthesis and back-end tools is the core of the tra-
ditional synthesis-based FPGA design flow. These tools are essential in all
other FPGA design flows since all of them eventually converge into this one.
In essence, an RTL synthesizer takes as input HDL files with synthesizable
code, which define the system to be designed. The output generated by the

146 FPGAs: Fundamentals, Advanced Features, and Applications

synthesizer is an intermediate representation of the circuit, where its basic
structure can be identified but there is no link to any target technology. Back-
end tools translate this generic structural representation into components
available in the selected technology, map them into suitable locations within
the FPGA fabric, and create the required interconnections by means of rout-
ing resources. If they succeed (which may not be the case, for instance, due
to the lack of enough logic or interconnect resources in the target device),
the configuration bitstream is generated. Finally, this may be used either to
directly configure the FPGA or to program an external nonvolatile memory
whose contents are loaded into the FPGA at power-up.

The main elements this flow consists of, as well as the main information
coming in and out of the different tools, are depicted in Figure 6.1. Grayed
elements represent the information to be provided by the user. Elements
marked with an asterisk are optional.

The natural order to follow in this design flow starts with the creation of an
HDL description of the system. This description is simulated in order to verify
functional correctness. After functional simulation, RTL synthesis and back-
end tools transform the HDL description into a placed and routed design. At
this point, accurate timing information is available, enabling detailed timing
simulations to be carried out. Finally, by creating the bitstream and configur-
ing the FPGA with it, it is possible to verify the correct operation of the actual
implementation. All these steps are discussed in detail in the following sec-
tions, which follow the aforementioned natural order.

HDL code
Additional info

Synthesis report

Netlist/
schematic*

Detailed report

Bitstream

Flash prog-file*

Testbench code Functional
simulation

Floor/pin
planner*

Placement
restrictions

Timing extraction Timing simulation

In-site
validation

Timing report

RTL synthesis

Translation

Placement

Routing

Bitstream
generation

FPGA
configuration

Entry point *Optional tool.

FIGURE 6.1 
RTL synthesis and implementation tools’ design flow.

147Tools and Methodologies for FPGA-Based Design

6.2.1 � Design Entry

The first stage of this flow corresponds to the entry of the required informa-
tion into the design framework in order to specify the circuit to be designed.
As shown in Figure 6.1, there are three entry points where external data have
to be provided by the user, because they are design specific:

•	 The file(s) containing the HDL description(s) of the circuit to be
designed for implementation in an FPGA.

•	 The file(s) describing the testbenches* for the device, under a some-
what realistic context. In many cases, device subsystems, if complex
enough, should have their own testbenches, too. They are used for
simulation purposes and are discussed in Section 6.2.2.

•	 The file defining the placement restrictions for I/O connections, which
map signals in the design to I/O pins of the FPGA. Optionally, other
placement restrictions and configuration attributes of internal compo-
nents and signals within the design can be included. This file is used
to guide placement and is therefore discussed in Section 6.2.3.3.

For medium- and high-complexity designs, HDL descriptions (entity/archi-
tecture pairs in the case of VHDL, modules in the case of Verilog) are bet-
ter organized in a hierarchical way. Typically, the top-level descriptions just
show the decomposition of the system into independent elements (mod-
ules), whose internal functionality is not described at this level, connected
by signals. These descriptions simply place (instantiate) components and
interconnect them, so they represent structure, not behavior. Ports within
components are linked to signals by mappings associated with the instantia-
tion. This approach is followed down the module hierarchy until functional
descriptions are obtained for all circuit components, where their behavior
can be identified. It is neither possible to simulate nor to synthesize a circuit
until the behavior of all its components is described.

The RTL statements and description styles used to represent behavior are
relatively simple but quite different from those of other languages, mainly
because HDLs are not programming but description languages. They easily
express concurrency (all hardware elements at architecture level are concur-
rent among them, so the order they are listed in the code is not significant) as
well as data transfers in every active clock edge.

Concurrent statements, either conditional (e.g., when…else) or selective
(e.g., with…select), represent combinational logic. They may define from sim-
ple Boolean expressions to more complex functional blocks, such as decoders,
encoders, MUXs, and code translators. Data merging and splitting can be,
respectively, described through data aggregations, for example, “MacHeader

*	 In VHDL notation. They are called textfixtures in Verilog. VHDL and Verilog are the two
main existing HDLs.

148 FPGAs: Fundamentals, Advanced Features, and Applications

<= DestMAC & SourceMAC & TypeLength;”, and vector subranges, for exam-
ple, “MSByte (7 downto 0) <= Word16 (15 downto 0);”.

On the other side, synchronous sequential logic is typically described by
means of processes where all synchronous signal assignments are condition-
ally executed within the clause “if clk’event and clk=’1’ ” or similar. In this way,
any such signal being assigned is equivalent to one flip-flop (single signal) or
one register (vector signal). Processes run concurrently to other processes or
other concurrent constructs, but they are “triggered” only when any of the
signals in the so-called sensitivity list change. Once a process is triggered,
statements within it are executed sequentially at “zero time,” meaning that
signal assignments do not take place in the sentence where they are defined,
but all them occur together at the end of the process, with a minimum time
delay (“delta”), which expresses causality (a process is triggered when sig-
nals on its sensitivity list change; signals assigned within the process change
slightly after that). This behavior matches nicely with actual register updates
taking place in the hardware at active clock edges.

Since signal assignments are not executed until the process is finished, all
sentences within such clauses represent how the new values of the memory
elements may be assigned according to the present values of signals and/
or memory elements. This follows strictly the register-transfer level (from
where RTL stands) rules these description types may have. Not all HDL
clauses are acceptable for synthesis, but the RTL subset is.

If the conditions to assign new values to registers within a process are too
complex to define, variables can be used. Opposite to signals, they change
immediately as they are assigned in the sequential structure of a process or
function. Variables are used, therefore, to approach algorithms, in the sense
that register values are dependent on the combinations of variables and signals
that are related algorithmically. As discussed in Section 6.4, HLS has a similar
purpose. However, the difference is that the use of variables within a process
does not modify the concept of register transfer, and all operations involving
variables within a process that represents sequential synchronous logic take
place within a clock cycle. Actually, complex algorithmic expressions may
involve large critical paths by accumulating operators between register outputs
and inputs. Contrary to this, HLS allows pipelining and other optimization
techniques to be used since it does not start from a time-explicit description.

Design entry is, nowadays, automated and/or facilitated in many
aspects to simplify designer’s tasks. FPGA design frameworks are more
integrated than ever, all options being available within the same environ-
ment. Editors for design entry may have features such as templates for
basic constructs, syntax highlighting, automatic or aided indentation, on-
the-fly syntax checking, code beautifiers, context search, and automatic
block comment/uncomment. Also, some frameworks offer the possibil-
ity to have schematics automatically generated from structural descrip-
tions, and navigation throughout the hierarchy of modules is enabled. For
instance, module name-matching within working libraries allows automatic

149Tools and Methodologies for FPGA-Based Design

hierarchy identification to be achieved: All modules are sorted as a hierar-
chy tree with no need for configuration (i.e., no need to define methods for
associating one component’s module name with its description).

After design entry, a fearless designer might proceed straight into the syn-
thesis and back-end process. However, it is normal that complete simulations
of the important blocks, as well as for the whole design, are performed as an
intermediate step. Simulation tools are described in Section 6.2.2.

6.2.2 � Simulation Tools

Simulation is the preferred method to ensure that the description of a circuit
matches its expected functionality. In simulations, a circuit must be set to
work under the required conditions or, in other words, to receive a suitable
and realistic set of input stimuli, allowing correct operation to be verified.
The required stimuli sets are obtained through the generation of testbench
descriptions. A testbench is an HDL file that contains an instantiation of
the unit under test (UUT) and the elements that provide the stimuli to it.
Optionally, testbench descriptions may include assertions to automatically
check the fulfillment of some operating conditions.

Multivalued logic is available, and its use is strongly recommended. In this
way, the ability to describe digital signals’ behavior is extended from simply
taking “0” or “1” strong logic values to many other situations that may occur
in an actual circuit: “U” (unassigned), “X” (conflict), “Z” (high impedance), “H”
(weak high), “L” (weak low), and “-” (don’t care). This allows some problems in
either the UUT or the testbench itself to be more easily identified. For instance, a
not-initialized flip-flop in the design (because it does not have a reset signal) or
in the testbench (because the reset signal is not asserted at the beginning) would
produce unassigned values that would rapidly propagate through the design.
This is due to the fact that simulators are conservative (or even pessimistic)
in the sense that they intend to highlight any possible hazardous condition in
the circuit, pointing designer’s attention to them. Simulators can also highlight
other common mistakes such as multiple assignments to signals coming from
different sentences/processes, by setting the affected signals to “X.”

For relatively simple circuits, stimuli are generated from processes that
define the evolution of input signals over time. As simulation time elapses,
these processes describe changes in input signals by using wait for (or similar)
constructs, until all conditions are evaluated. Clocks are modeled in dedicated
separate processes that take advantage of the possibility of reevaluating a pro-
cess as soon as it finishes in order to achieve continuous operation. Testbench
template file generation tools are capable of modeling this feature automati-
cally. Other signals are typically grouped into different processes according
to the origin of the incoming stimuli in order to mimic realistic operation. For
instance, all signals involved in a communication channel are grouped into
one process in order to produce input signal variations resembling the com-
munication standard used in that channel (regarding issues such as timing,

150 FPGAs: Fundamentals, Advanced Features, and Applications

signal polarity, and coding). To this respect, the use of functions or procedures
that carry out repetitive operations with different data is very helpful.

Processes, however, may not be the best approach for generating stimuli
when UUTs are connected to (many) other elements, or there are intensive
I/O operations, maybe requiring fine timing relationships among signals. In
this case, the need arises for modeling the UUT and the other elements con-
nected to it in such a way that stimuli for the different modules are provided
at the right times. For instance, if an external memory is used, a model is
needed for it, defining a more or less precise timing behavior (depending
on the target timing precision for the particular simulation), in order for the
interaction between both modules to be accurately described. Otherwise, the
designer should have to precisely foresee when the UUT would issue a read
transaction for the memory and generate the right data value at the right
time according to the address the UUT is supposed to point to.

In general, this type of testbench modeling is required when there is strong
module interaction or closed loops are present in the system. The need for
such testbenches must be foreseen when accounting for design and valida-
tion efforts. Sometimes, it may be more difficult to model the environment
of a circuit than the circuit itself. Simulation and verification times can never
be neglected within the whole design process, but they are of particular
significance for these heavily interacting systems.

Figure 6.2 shows sample block diagrams of the two aforementioned
testbench types. Case (a) corresponds to a basic, process-based oriented
testbench, where input stimuli come from a stand-alone process. Case (b) cor-
responds to a simulation with model components set together. The memory
model interacts with the UUT by means of the corresponding bus signals.
The communication module produces the necessary data sequences in its
connections to the UUT, according to a process that generates data packets at
the required moments.

As shown in Figure 6.1 and discussed in the following, simulations can
be performed at two different stages of the design process, namely, at func-
tional validation level and at timing verification level. In the first case,

(a) (b)

Unit
under

test

Clk

Asserts
Stimuli
process

VHDL testbench

Unit
under

test

Clk

Memory
Comm.
model

VHDL testbench

Addr

Data

R/W

Physical
system
model

Packet
gen.

FIGURE 6.2 
Testbench examples: (a) Stimuli process based; (b) side module based.

151Tools and Methodologies for FPGA-Based Design

no timing information derived from the characteristics of the implemen-
tation is included, so it is often referred to as “ideal model” simulation.
The second case corresponds to a stage where accurate timing information
(at subclock cycle timing level) is available for analysis. Timing-accurate
simulations can be performed, thanks to the data coming out from the
timing analysis, which can be conducted after the place and route process
(described in Section 6.2.3.3). The simulation model of the UUT is then fed
back with data regarding delays in the internal logic and their associated
connections inside the FPGA (including wires and switching blocks). Since
this model contains a lot of information derived from the structure of the
FPGA, simulation execution is much slower than in the case of the ideal
model. This is the main reason why it is strongly advisable to perform an
initial functional simulation of the circuit, to validate its functions at high
level, as well as the overall activity and interactions, before proceeding to
the place and route process and then timing simulation. Anyway, it is also
possible to consider a “golden” reference testbench that can be applied to
both models, equipped with asserts to automatically verify clauses ensur-
ing that no deviations with respect to the target model occur during the
synthesis and back-end design phases.

Not only very sophisticated simulation environments but also conventional
ones within a classic design flow are nowadays equipped with feature-rich
visualization and analysis tools, which significantly contribute to simplify-
ing design validation. Data can be visualized as individual signal lines or
grouped into buses, using different digital representations (such as binary,
hexadecimal, or ASCII), or even as analog signals displayed in an oscillo-
scope-like format. Signals exhibiting nontypical or unexpected behaviors
(e.g., taking an “X” value) are represented using different attention-calling
colors. Signal navigation for long simulation runs can be accelerated by all
kinds of zooming and panning. Navigation may be also done by selecting a
signal and checking its evolution transition by transition; in this way, there
is no need to look for specific values in a signal across long periods of time;
the visualization tool can be asked to move forward (or backward) and find
that small “cycle” almost hidden among all other signals. It is also possible
to select the signals to be traced by navigating through the hierarchies of
components and processes.

The simulation process can be enhanced with features that allow more
realistic results to be achieved, execution to be accelerated, or interacting
discrete- and continuous-time systems to be analyzed together. The result-
ing simulation approaches can be summarized in the following categories,
addressed in subsequent sections:

•	 Interactive simulation
•	 Mixed-mode simulation
•	 HIL verification

152 FPGAs: Fundamentals, Advanced Features, and Applications

6.2.2.1 � Interactive Simulation

Simulations can be made interactive (and with customized graphical inter-
faces) for the sake of building virtual models that resemble as much as
possible the appearance and the interactivity among elements, in particu-
lar when interaction with humans is to be verified/validated. Some simu-
lators offer these possibilities by means of specific script languages (such
as C or other standard programming languages), native tools embedded
into other frameworks, or even communication sockets enabling distrib-
uted virtual or remote simulations. If fast-enough simulation platforms are
available (e.g., combining powerful processors with simple and fast system
models), interactivity can be made somehow similar to “real-life” behav-
ior, for instance, allowing user interfaces to be validated and “mock-ups”
of products to be made well before they are actually produced or built.
However, the use of this technique is not advisable from the design valida-
tion viewpoint since unpredictable human interaction makes experiments
lose repeatability.

6.2.2.2 � Mixed-Mode Simulation

Mixed-mode simulation is a technique to be considered when the embed-
ded system to be designed is part of a control loop, where the system
to be controlled is to be modeled in continuous time rather than as a
discrete-event system. In this case, it is possible to combine discrete-event
simulators (such as HDL simulators for the required digital designs) with
continuous-time simulators, which are effective for either analog cir-
cuits or any other physical systems modeled with continuous signals. For
instance, when designing a motor controller, its behavior can be more real-
istically analyzed if the discrete events coming out of it are converted to
analog signals and applied to a motor model so that both elements can be
jointly simulated at the same time. There are also some specific HDLs tar-
geting mixed-mode simulation, such as VHDL-AMS, that could be useful
for such type of simulation.

6.2.2.3 � HIL Verification

The evolution of the features and performance of simulation platforms
currently enables the combination of emulation and simulation tasks
through the use of HIL techniques. This approach is similar to mixed-
mode simulation, but instead of a model of the physical system, the real
system itself is used. A necessary condition for HIL platforms to provide
realistic results is that the execution of the model being simulated has to
be as fast as the real system it interacts with. This is not the case, of course,

153Tools and Methodologies for FPGA-Based Design

for systems with hard real-time requirements, but it is still feasible in a
wide range of applications, and its use is being adopted in many design
and verification flows.

Some companies include in their simulators features intended to support
HIL operation, providing suitable interfaces between the simulation and
emulation domains in a similar way as required in mixed-mode simula-
tion for the interaction between the digital and the analog/physical models.
However, since there is no standardization so far in this respect, the mixed
emulated-simulated scenarios have to be customized on a case-by-case
basis, usually implying a considerable amount of work. Although, as a con-
sequence, the decision on whether to use this technique or not is strongly
application dependent, it is becoming a very interesting possibility for many
embedded systems in industrial applications, as discussed in Chapter 9.

6.2.3 � RTL Synthesis and Back-End Tools

The validation of the functional description of a system in synthesizable
HDL code is the green flag to proceed to the synthesis and implementation
of the design. As discussed in Section 6.2 (and highlighted in Figure 6.1),
the transformation from the HDL description of a circuit to the correspond-
ing FPGA programming bitstream consists of several steps, namely, RTL
synthesis (analyzed in detail in Section 6.2.3.1), translation into the target
technology (Section 6.2.3.2), placement and routing (Section 6.2.3.3), and
bitstream generation (Section 6.2.3.4). In addition to HDL descriptions, the
specification of constraints for guided placement and some other parameters
may be required to configure and guide the synthesis and implementation
processes.

6.2.3.1 � RTL Synthesis

This step is the most important of the basic design flow, where the logic ele-
ments that will actually perform the functions described in the HDL input
file(s) are obtained. All elements described in the file(s) are translated into an
intermediate representation, where operators that process signals are placed
in between registers that memorize signal values from one clock cycle to the
next. This characteristic is the one from which the name RTL (from register-
transfer level) given to this type of synthesis is derived.

The operation of an RTL synthesizer can be explained from the state and
output equations that define the evolution of any sequential system, which
may be expressed as

	 Q f Q Xt t t+ = () ()1 , state equations 	

154 FPGAs: Fundamentals, Advanced Features, and Applications

and

	 Y g Q Xt t t= () (), output equations 	

where
Q are state variables
X are inputs
Y are outputs
Subindex “t” denotes current time
“t+1” denotes next time step (according to the discrete nature of time in

synchronous sequential systems)

On the one side, an RTL synthesizer translates the expressions inside the
clauses conditioned to work only at active clock edges (e.g., within clk’event
clauses inside the processes that model sequential logic in VHDL) into state
equations. On the other side, concurrent sentences are translated into out-
put equations, that is, combinational functions that determine the value
of the outputs at any time, given the state and the input values at the very
same time.

Figure 6.3 illustrates with an example how a design (a simple binary
counter) is gradually transformed from its description in the HDL input
file to the final circuit implementation into the FPGA fabric. The VHDL
process describing the behavior of the counter is shown in Figure 6.3a.

fdiv: process(clk, reset)

begin

if reset=‘1’ then counter<=0;

elsif clk’event and clk=‘1’ then

if counter=MaxVal then

counter<=0;

else

counter<=counter+1;

end if;

end if;

end process;

Reg

Adder

1

= ?

Max val

(a) (b)

(d) (e) (f)

(c)

clk

1
Tclk Tclk

LUT
0

FF
0

LUT
1

FF
1

clk

LB
0,0

LB
0,1

LB
1,0

LB
1,1

LB
0,0

Switch

LB
0,1

LB
1,0

LB
1,1

Switch

FIGURE 6.3 
Stages during synthesis and implementation: (a) HDL code; (b) abstract model; (c) after Boolean
optimization; (d) mapped into target technology; (e) placed design; (f) placed and routed design.

155Tools and Methodologies for FPGA-Based Design

The assignments representing changes in the state of the counter that may
take place at each active edge of the clock signal “clk” (i.e., conditioned to the
occurrence of “clk’event and clk = ‘1’ ”) are

•	 “counter <= ‘0’;”, which makes the counter roll over when the MaxVal
value has been reached

•	 “counter <= counter + 1;”, which increases the counter value otherwise

Since the state of the counter is assigned with a synchronous operation, a
register is required. Therefore, the translation of these sentences into the
intermediate representation of the circuit shown in Figure 6.3b produces
a register and a binary adder, which adds 1 to the current value of the
register and transfers it into its next value if the counter is not at MaxVal
value (a comparator is used to check this condition). Otherwise, the reg-
ister synchronously rolls over to zero. This “synchronous clear” function
must have higher priority than the “increment” function. This priority is
explicitly expressed in the code, where the roll-over condition is evalu-
ated in the if clause and the increment condition is evaluated in the cor-
responding else part.

At this point, a significant question arises. According to the specification,
the HDL code has been transformed into a register, an adder, and a compara-
tor. Does this mean that the hardware structure of a counter implemented
from an HDL description is different from the well-known one in Figure 6.3c,
typically taught in basic digital electronics courses? Apparently yes, but the
real answer is no. After the translation into the intermediate representation,
it is time for Boolean optimization. In this step, logic is as much simplified
as possible, unnecessary logic is removed, redundant logic is reduced when
identified as such (which is only possible to a certain extent in complex cir-
cuits), and, if specified, logic is arranged to fulfill timing constraints. These
constraints are specified by the designer, and, in their simplest form, they
just consist of a minimum operating frequency, which determines the maxi-
mum critical path delay of the design.

How is the structure in Figure 6.3c inferred from Figure 6.3b? As can be
clearly seen, the adder has a constant integer value of 1 in one of its inputs,
that is, a binary combination “00…0001.” The 0s in this input greatly simplify
the adder, the series AND gates that appear in the reduced circuit being a
resemblance of the carry propagation chain. The transformation from D flip-
flops (the usual ones for registers) to T flip-flops comes from the fact that the
basic addition of two bits is equivalent to an XOR gate (0 + 0 = 0, 0 + 1 = 1,
1 + 0 = 1, 1 + 1 = 0; “+” being, in this case, the arithmetic operator, not the
logic one), and a T flip-flop is obtained from a D flip-flop by feeding back the
output of the register by means of an XOR gate. Finally, if the counter’s count
cycle is a power of 2, the comparator disappears; otherwise, it would appear
as an AND gate that will trigger register rollover.

156 FPGAs: Fundamentals, Advanced Features, and Applications

6.2.3.2 � Translation

The result of the synthesis is an intermediate generic representation with
reduced logic expressions. However, this is not necessarily equivalent to
having a minimized circuit built with conventional logic gates, nor are
these gates size optimized for this target. Actually, the target technology
might use building blocks that are far from being these logic gates, such
as in the case of FPGAs, where LUTs and flip-flops are the basic constitu-
ents of the logic (as analyzed in Section 2.3.1). Therefore, in FPGA design,
logic expressions must be, in principle, implemented with LUTs (specialized
hardware blocks may also be used), in such a way that the same functional-
ity is obtained, but using the elements that allow the circuit to be mapped
into the target FPGA device.

With the advent of proprietary synthesizers for some FPGA families, the
synthesis and translation steps are more tightly linked, since the way some
structures are mapped into specialized resources, such as memories or DSP
blocks, requires some knowledge of the underlying technology in order not
to miss the possibility of using them. In some cases, the inference of some
elements needs to follow a specific syntax for the synthesizer to recognize
them. In other cases, the possibility exists to use attributes in the code (or
synthesis and optimization options) to guide the tools to infer some specific
elements and choose among different implementation possibilities. This is
the case, for instance, for memories. The designer may, for instance, decide
whether a memory in his/her design is to be mapped into embedded mem-
ory blocks or distributed along the logic (among other possibilities). Tools, in
principle, should be able to choose a right solution (if it exists) so that the cir-
cuit fits into the target FPGA, but in case the system needs to be “fine-tuned,”
as for speed optimization or detailed positioning and mapping, the designer
may decide to instantiate primitive technology–specific blocks, such as an
LUT, to have full control on the mapping. This may be combined with place-
ment restriction specifications, which are analyzed in Section 6.2.3.3.

After technology translation, a circuit like the one in Figure 6.3d is
obtained. At this point, the specific location of the elements and the spe-
cific connecting paths (wires and switching logic) to be used have not been
determined yet. These issues are addressed in the placement and routing
processes, described next.

6.2.3.3 � Placement and Routing

The placement and routing processes are in charge of providing fully
mapped logic and fully specified interconnects, respectively. In the place-
ment process, the already device-specific circuit must be mapped into spe-
cific locations within the configurable fabric such that it meets two basic, but
opposite, criteria: Connected elements must be as close as possible in order
to minimize signal propagation delays, whereas logic density (or occupation)

157Tools and Methodologies for FPGA-Based Design

should be not too high in order to make routing of all required connections
possible with the available routing resources. Typically, placement and rout-
ing follow an iterative scheme, such that (preliminary) placements are fol-
lowed by (nondetailed) routings. In each iteration, delay optimization steps
are executed in order for critical delays to be minimized, and routing is
progressively defined (in terms of percentage of routed signals). If there is
no routing solution for some resources within an area, some elements are
swapped, displaced, or separated in order to facilitate routing. Routes that
were not feasible in the previous iteration are normally routed first, assum-
ing that the easier ones will still be routable afterward.

Placement and routing are among the most time-consuming tasks in the
design flow. In spite of the simplified explanation given earlier, the actual
procedures are very complex indeed. For instance, the possibility of stagna-
tion of the iteration loop is addressed not only at design tool level but also
at architecture level. As discussed in Section 2.3.3, FPGAs include local con-
nections and midlength connections of different lengths, allowing signals to
reach other areas of the device using different wire lengths, letting signals
avoid wire congestions while covering large distances in the FPGA without
crossing too many interconnection switches (which are responsible for the
most part of signal propagation delays). Design tools must also make a con-
sistent use of global lines (also discussed in Section 2.3.3). These are mostly
dedicated to clock or reset signals, but they may also be used for other tasks,
such as to globally enable or disable large portions of a circuit by means of
an enable signal with high fan-out. Because of the importance and complex-
ity of this process, routing tools have become one of the key elements of the
implementation tool flow.

In principle, placement is arbitrarily defined for most of the logic elements,
with some exceptions. First, designers have to specify the mapping of signals
to pins in the FPGA. This is done by a collection of the so-called placement
restrictions (stored in a “restrictions file”), which specify the I/O type and
I/O pin for each signal in the design. In addition to these mandatory place-
ment restrictions, further ones may optionally be used to “guide” the tool
in placing design components or elements in specific regions of the device.
This facilitates not only more optimized designs to be obtained but also
incremental or difference-oriented design to be performed. Since complex
designs require a lot of computation time for placement and routing, parts of
a design that have been previously validated may be consistently kept placed
in the same regions with the same routing so that placement and routing
efforts are mainly concentrated on the parts of the design still being built
and debugged, thus reducing the overall design effort.

Once the routing process is completed, the full circuit is known, so
detailed reports may be produced, as shown in Figure 6.1. On one side, uti-
lization of logic resources is summarized, both in general terms and for
every particular component (LUTs, flip-flops, slices, LBs, I/O blocks, DSP
blocks, RAM blocks, etc.). The timing report is of particular interest because

158 FPGAs: Fundamentals, Advanced Features, and Applications

it includes an analysis of the critical paths and the subsequent maximum
operating frequency that may be achieved. If a minimum operating fre-
quency is specified at synthesis time, the fulfillment of this requirement is
checked, and, as a result, either the slack time that is left is specified (allow-
ing to determine how much faster than required the circuit would be able
to operate) or a list of paths whose propagation delays exceed the maximum
allowed time is provided. In some cases, these delays do not correspond to
the most realistic situations since they may represent conditions unlikely
to happen during normal operation. In all other cases, the circuit must be
redesigned using time reduction techniques, such as pipelining or segmen-
tation of large combinational areas in the design. For complex circuits with
critical timing issues, this iterative design flow may be tedious and it may
be the case that no solution can be found for a given design to be imple-
mented in a given FPGA. When this happens, the first solution would be
to look for equivalent devices with higher speed grades (i.e., faster), which
unfortunately will most likely be more expensive. In the worst cases, the
FPGA device or family must be changed, which may have significant nega-
tive implications, such as the need for PCB redesign. Therefore, it is highly
advisable, in particular for time-critical designs or those where FPGA uti-
lization is high, not to proceed to any subsequent system design step until
placement and routing has been completed, and extensive timing simula-
tions have been carried out, so that the circuit is known to exhibit correct
behavior and to fit in the target device.

Figure 6.3e shows an illustrative example of a circuit after placement,
where elements are placed in specific positions of the device, typically
represented by their Cartesian coordinates. Figure 6.3f presents the final
result after routing; that is, the circuit resulting from its description has
been synthesized from a set of design specification files, then mapped and
translated into the corresponding FPGA technology, and eventually placed
and routed.

6.2.3.4 � Bitstream Generation

Once the circuit is fully implemented after the placement and routing steps
have been successfully completed, the bitstream that will be downloaded into
the FPGA to configure it can be generated. This bitstream contains the data
to be written to the FPGA configuration memory for the required elements
inside the device to be adequately arranged for it to operate as specified.

Although the way the mapping between the configuration memory ele-
ments and the corresponding logic elements in the reconfigurable fabric is
done is kept confidential by many FPGA vendors, some information is usu-
ally disclosed about the relationship between placement (in the fabric) and
addressing (in the memory), allowing block relocation in a reconfigurable
platform (as described in Section 8.2), or to apply memory fault diagnosis

159Tools and Methodologies for FPGA-Based Design

and correction schemes to critical areas. Fault diagnosis is of paramount
importance for FPGAs working in environments prone to cause mem-
ory bit flips (known in the specific jargon as “single-event upsets,” SEUs).
For SRAM-based FPGAs configured at boot time from an external nonvola-
tile memory, the occurrence of a bit flip in the configuration memory can
be periodically checked during operation by comparing the contents of the
nonvolatile memory and the internal configuration memory. This may be
combined as well with error verification and correction methods available
in some FPGAs. Placement with area restrictions and the aforementioned
knowledge of the bitstream structure enable this verification to be concen-
trated on critical areas of the design.

Bitstreams are clearly a potential source for IP vulnerability, because a
design might be reproduced in principle by any third party having access
to the bitstream. With the increasing complexity of FPGAs and the variety
of programming and read-back possibilities available, this problem requires
special attention. In order to mitigate it, vendors provide bitstream cypher-
ing capabilities, the option of avoiding configuration memory read-back after
programming, and other sophisticated techniques. The provision of remote
configurations in networked systems is also a possibility to consider, since in
this case there is no physical device (i.e., a flash memory) whose content may
be copied, but instead an encrypted bitstream is transmitted every time a
device is to be configured. This has the advantage of increased system main-
tainability (also enabling upgrades), but also the risk of malfunction in case
of network failure. As an alternative approach, some FPGAs have unique
identifiers (one identifier per device), allowing designs to be only used in the
device with the right identifier. That is, the same bitstream downloaded to an
identical FPGA device with identical PCB design will not work. Regarding
security, however, as in any other technologies, there is no infallible solution
in the FPGA domain either. If IP protection and design privacy are important
issues, designers should contact FPGA vendors for the assessment of the spe-
cific capabilities of their devices in this context.

Bitstreams may be compressed in order to minimize memory utilization
for bitstream storage, as well as to reduce reconfiguration time, which is
mostly due to the process of receiving the bitstreams through the configura-
tion port rather than due to the internal reconfiguration process itself (ana-
lyzed in Chapter 8). Simple encodings, such as run-length encoding, can be
used for bitstream compression. In this type of encoding, bytes (or words)
with the same value located consecutively in the bitstream are compressed
by specifying the value and the number of times it is repeated. As a clear
example of the usefulness of this technique, one may think on the great sav-
ings (in terms of bitstream storage and configuration time) associated with
unused areas of the FPGA. While tools encode information at bitstream
generation time, FPGAs are required to have the corresponding decoding
resources that, fortunately, are really simple and silicon-inexpensive.

160 FPGAs: Fundamentals, Advanced Features, and Applications

6.3 � Design of SoPC Systems

The implementation of SoPC systems involves tasks related to both software
and hardware development. At pure hardware design level, the main chal-
lenge for the design tools is their ability to efficiently integrate IP blocks,
providing consistent platform-based design techniques and compatible
IP libraries for reuse and rapid integration. Consistent methods are also
needed for all other aspects of the whole system design flow, so synthesis-,
simulation-, and verification-related aspects must also be considered for an
efficient integration. From the software point of view, the main problems
are associated with debugging the whole software system (possibly made
up of a -real time- OS, drivers, and custom software) when implemented in
real hardware.

There are tools that support the design based on embedded soft or hard
processor cores (described in Sections 3.2 and 3.3, respectively). In general,
they include peripheral IPs, soft processor customization tools, software
development tools, hardware/software debuggers, hardware verification
tools, libraries, and software and hardware code download methods to devel-
opment boards.

Additionally, SoPC systems can be complemented with standard modules
that are generated from core generator tools, embedded in the design envi-
ronments, capable of generating instances of components such as memories,
interfaces, encoders and decoders to/from multiple standards, or arithmetic
operators, among others.

In the simplest cases, the SoPC can be directly created without the need for
any additional HDL description. Designers just have to choose the processor
core, configure its features in some kind of graphical user interface, define
the types and sizes of memories, and select the peripherals to be included (or
import custom peripherals described in HDL). Once the hardware structure
has been defined, programming can be carried out, usually in high-level lan-
guages. After programming is complete, the SoPC system can be generated
and the FPGA configured.

Hardware and software design tools for SoPCs are analyzed in Sections
6.3.1 and 6.3.2, respectively, whereas core libraries and core generator tools
are addressed in Section 6.3.3.

6.3.1 � Hardware Design Tools for SoPCs

As described in Chapter 3, there are many diverse hardware elements
a SoPC system may consist of. However, without loss of generality, they
may be divided into two categories, namely, interconnect masters (usually
microcontrollers or DMA blocks) and slaves (such as specialized peripher-
als, hardware accelerators, or memories), arranged in single- or multimaster
architectures, and either memory mapped or streamed (i.e., containing

161Tools and Methodologies for FPGA-Based Design

addresses and data connections or just passing data between data producers
and data consumers—usually through FIFOs, respectively).

In order to better understand how tools help in the development of SoPC
systems, it is also worth recalling that some of these constituent elements
are hard cores (prefabricated in the silicon), whereas others are soft cores
(built from the resources of the reconfigurable fabric). Regarding hard cores,
two possible configurations exist in SoPC systems:

	 1.	Coarse-grain configuration, where the components taking part in
the design are activated and all others remain inactive.

	 2.	Conventional FPGA configuration, where elements attached to the
interconnections between the hardware part (processing system)
and the configurable part (the configurable logic section) are set.

The structure in Figure 6.4 (that may be found in devices such as Xilinx Zynq
or Altera Cyclone V) contains both types of configuration mechanisms. On
the one side, the processing subsystem, which may include just one or sev-
eral coupled processing cores, is equipped with a huge variety of “standard”
peripherals, such as serial (e.g., I2C, SPI, or UART) or network interfaces (e.g.,
Ethernet or CAN interfaces), or GPIO. Each one of these may come with a
variable number of elements, which may or may not be needed for a par-
ticular application and, therefore, may be selected to operate or be left inac-
tive. For instance, the external inputs and outputs of the interfaces can be
directed to virtually any pin in the FPGA by means of an I/O MUX. This
corresponds to coarse-grain reconfiguration since the user decides whether
to use a whole block, not to use it, or use another one instead.

Custom
I/O

DMA

Flash
controller

DDR RAM
controller

SPI
I2C

UART

ETH

CAN
GPIO

µp
system

Processor
subsystem

I/O
MUX

MMUCache....

Custom
I/O

DSP
module

Custom
accel.

Custom
controller

Programmable
logic

.....

FIGURE 6.4 
Simplified example of an SoPC implementation on a dual-core hard processor platform.

162 FPGAs: Fundamentals, Advanced Features, and Applications

When commercial development boards are used, the connectors or exter-
nal circuits to which the FPGA chip is attached to are predefined, so the con-
nectivity that the I/O MUX must provide is “suggested” for each particular
board once the customization definition files for that board are installed in
the design environment. This relieves designers of the need for customiz-
ing external connectivity, so their only task is to “click and select” every
required individual module.

On the other side, the customization enabled by the configurable logic
subsystem (the FPGA part of the SoPC) provides much wider adaptation
possibilities. The variety of elements available to make up a complete, applica-
tion-tailored system allows designers to include, among others, the following:

•	 Custom I/O peripherals.
•	 Standard I/O peripherals not available in the processing subsystem.

This includes the fact that additional ones may be required when
the number of peripherals of a given type available in the processing
subsystem is not enough for the target application.

•	 Custom controllers, which operate almost independently of the pro-
grams running in the processing part, but which can be configured
to some extent by means of registers accessible by the processors.

•	 Hardware accelerators (either custom or standard), which can be
used as replacement for repetitive software tasks to increase pro-
cessing speed. In this case, there is no FPGA I/O connectivity asso-
ciated since connections are directly made between the processing
and configurable parts of the device.

•	 I/O peripherals with strong processing requirements (e.g., filters),
built from DSP modules.

•	 Bridges to standard connection interfaces different from the ones
used natively in the SoPC, in order to reuse existing modules from
other IP libraries.

•	 Bridges to support hierarchical communication structures, in order
to separate traffic at different levels of interaction, for instance, as
discussed in Section 3.5.

•	 DMA controllers, which produce specific transactions to/from other
elements, in order to achieve high data bandwidth between two ele-
ments (e.g., a memory and a high-speed I/O) without intervention of
the processor core(s).

•	 Of course, soft processors. The use of several processors allows soft-
ware tasks to be more efficiently distributed, or task execution to be
isolated.

All these elements may be important for the design of different embedded
systems. Examples of the use of FPGAs in industrial embedded systems and

163Tools and Methodologies for FPGA-Based Design

the resources that make these devices suitable for different applications in
the area are described in Chapter 9.

One of the main challenges of SoPC design tools is the need to deal with
such a huge variety of elements and use generic ways to connect them, avoid-
ing complex, time-consuming, and error-prone designer tasks. The gener-
alization of connectivity options is achieved to some extent by classifying
connections according to several different concepts (most of them analyzed
in Section 3.5) as follows:

•	 Memory-mapped or streamed connections.
•	 In the case of memory-mapped connections, interfaces can be either

master or slave, and there may be a single master or multiple masters.
•	 Low- or high-speed connections, supporting single or burst

transactions.
•	 External or internal connectivity. SoPC tools allow internal modules to

be easily interconnected through compatible interfaces (either memory
mapped or streamed). It is also possible to connect internal modules
with others elsewhere out of the SoPC so that they have access to other
parts of the design implemented in the FPGA or to external devices. In
the first case, the SoPC design tools provide specific ports in the SoPC
subsystem entity, which allow it to be connected to other elements in
the device, designed using other approaches. In the case of external
signals, the tools also provide the ports required to communicate out-
side the SoPC, but taking into account that they have to be connected
to FPGA I/O pins, placement restrictions for I/O connections must be
provided, as discussed in Section 6.2.1.

It is advisable to make efforts for designing IP modules that guarantee com-
patibility with standardized connections. Although at first it may seem that
designing them “by hand” provides more control to the designer and simpli-
fies the design process, actually there are many clear advantages of making
them compatible with SoPC standardized interfaces and designing modules
as library components that can be integrated in not just a given one but many
SoPC designs. In other words, companies or design teams should consider as
a fundamental strategy the development of libraries of proprietary compat-
ible IP modules, which can later be seamlessly integrated in multiple SoPC
designs. By having access to such libraries, SoPC designers may simply select
IP modules from the library, attach them to the SoPC under construction,
and connect them to other elements using standardized interfaces. Moreover,
interface standardization allows the design tools to verify whether connec-
tions are defined in such a way that they will operate correctly.

This approach is also compatible with design parameterization, for
instance, using “generics,” a VHDL feature that enables hardware customiza-
tion according to generic parameters specified at design time (i.e., statically

164 FPGAs: Fundamentals, Advanced Features, and Applications

assigned case by case). Using this approach, whenever a module from an
IP library is selected to be attached to an SoPC system under construction,
the specification of the corresponding design parameters is required from
the designer by an automatically generated tool interface.

As can be seen, connectivity standardization and classification allow SoPC
designs to be arranged such that all interconnections among internal ele-
ments can be made in a controlled way. This ensures, on the one side, correct
system behavior and, on the other side, the possibility of building a layered
structure of software elements on top of the hardware, which facilitates soft-
ware integration. For instance, memory-mapped interfaces with multiple
slave elements sharing the same memory map are automatically assigned
memory positions and memory ranges, and the corresponding memory
decoding logic is automatically attached to the design. Additionally, all mem-
ory addresses are supplied as constants with automatically assigned names,
which allows software programmers to more easily handle the associated
elements (registers and memory-mapped areas), providing an abstraction
layer that “isolates” hardware and software designs, so that their respective
developments can be overlapped. Software designers do not need to know
the actual memory addresses in the final hardware design but can use the
automatically generated names instead. This separation also grants code
portability; that is, software controllers and drivers may be reused regard-
less of the memory assignments done in the automated hardware design.
These issues are further explained in Section 6.3.2.

6.3.2 � Software Design Tools for SoPCs

SoPCs require software to run on the processor (or processors) so that
the combined action of these programs and the tasks performed by the
various hardware elements included in the SoPC system produce the
expected results. Hardware and software designs should be carried out
from a partition of tasks that, considering available resources as a restric-
tion, allocates most computing-intensive tasks to hardware elements and
least frequently used tasks, control-based tasks, or (likely) high-level tasks
to the software part.

Considering the many different configuration possibilities, the complex-
ity of the underlying architecture can be excessive for the software designer
to handle. So, for tools to ease rapid deployment of hardware/software
solutions, they must provide sufficient levels of abstraction as well as auto-
mation processes that enable designers to easily do two things: verify the
integration of software and hardware, and develop and test the necessary
control software.

For complex stand-alone processors, a programmer’s model is provided
where registers and main addressable components (i.e., the elements to be
handled from the software designer’s perspective) are contained. Similarly,
tools for software development in SoPCs must provide such levels of

165Tools and Methodologies for FPGA-Based Design

abstraction. Figure 6.5 shows a simplified layered structure to connect hard-
ware and software, upon which these tools rely.

Moving bottom-up the hardware representation, including all elements
that are actually placed in the FPGA, is made abstract by a layer usually
known as hardware abstraction layer (HAL). This simplifies the representa-
tion and hides pure hardware details, just keeping the elements that may
directly or indirectly be used by upper layers.

Although design tools are more and more integrated, for instance, through
the use of standardized programming environments (such as Eclipse) for
programming and verification, there is still a frontier between hardware and
software design tools. The HAL layer provides the information to be passed
from the hardware design tools to the software design environment.

From the HAL, memory and register maps are obtained, allowing software
designer to easily address any element in the hardware that can be accessed
from the processor(s). Every such element is given a constant definition that
matches the actual address in the hardware. The name of the constant is nor-
mally obtained by the concatenation of at least the bus name and its associ-
ated memory map name (automatically or user provided), the device name
(normally user provided), and the register generic name (provided by the
tools). Although using these names for developing programs might result
in being tedious, and even in some cases error prone, it ensures portability
(in turn improving productivity): Modifications in the hardware forcing a
small redesign of a block within the underlying structure will not affect other
blocks’ related software code. For addressed memory areas, constant names
are also used to specify upper and lower limits, or ranges. In addition to these
“canonical” names, user-defined aliases can be used for easier identification
of specific registers (e.g., the most commonly used) in the design.

Many of the aforementioned registers are required to be used during the
initialization phase of the system for adequate configuration setting. To facil-
itate this, tools also include APIs with functions automating the initializa-
tion, control, and access processes. In some cases, functions for component

HAL: hardware abstraction layer

Hardware

Registers
map APIMemory

map

Stand-alone apps OS (Linux) support

Integrated development environment

FIGURE 6.5 
Layered structure for software development support.

166 FPGAs: Fundamentals, Advanced Features, and Applications

verification, benchmarking, and validation are also available. Hardware ver-
ification and rapid application deployment are enabled by these high-level
functions.

At higher abstraction levels, a distinction must be made between bare-metal
applications and those handled by an OS (as also discussed in Section 3.1.1.2).
Bare-metal applications rely on functions to access hardware resources and
on the abstraction levels provided by the HAL and upper layers. For applica-
tions managed by an OS, there is another abstraction provided by the drivers
supporting the underlying hardware. The use of drivers improves portabil-
ity, but on the other hand, the development of the ported embedded system
is more complex because of the need for also porting the OS. However, tool
and FPGA vendors are aware of this complexity, so they provide custom-
izable porting, either directly or through agreements with the companies
supporting the OS. There is also a need for porting or integrating other com-
ponents, such as filesystems on top of flash memory controllers so that the
OS can easily handle all information. These flash memories need to be par-
titioned in order to allocate bootloaders and root filesystems. This process is
sometimes cumbersome because we are dealing with embedded systems, so
there may be a lack of terminals to interface with the system.

Once these steps are completed, the advantages of using an OS will become
apparent. For instance, some standard peripherals can be configured auto-
matically or by specifying the required configuration in the initialization
files of the OS. For a very usual feature such as Ethernet communication,
module detection, initialization (including link detection), or speed negotia-
tion are automatically carried out and network and transport protocols are
provided by the OS. Therefore, software designers just need to develop an
application that relies on OS sockets, using libraries similar to those avail-
able in conventional platforms such as personal computers. In the case of
bare-metal applications, the TCP/IP or UDP/IP support provided by the OS
is replaced by somehow equivalent high-level functions. Lightweight imple-
mentations of this part of the communications stack may be provided to
relieve users of the need for configuring the access to the physical device
outside of the FPGA and the media access control layer inside the FPGA.
The latter can be available either in the configurable fabric or, in many SoPC
devices, as a hardware block.

The top software development support layer in Figure 6.5 is the inte-
grated environment itself. As mentioned before, these are standard envi-
ronments (with some customization), such as Eclipse, separated from the
hardware development environments. They integrate tasks such as the
consistent management of all data related to software development, con-
figuration management, software project management, interfaces with
integrated compilers, deployment tools (interfaces with bitstream down-
loaders and executable code downloaders), execution control, access for
debugging and profiling control, and its associated windows for visual-
ization of results.

167Tools and Methodologies for FPGA-Based Design

Software applications are packed into projects with support for more than
one platform. Projects also integrate source code, compiled libraries (static
and dynamic), intermediate representations (i.e., assembly code), and con-
figuration data. Intermediate files are checked for consistency with respect
to other elements in the project, providing automatic recompilation of the
code when some portions they depend on are changed. For user-defined
information, such as source code, version control may be activated, allowing
programmers to keep control of the changes, backtrack to former versions, or
issue versions and releases of the code.

Compiler options may be selected either manually (by expert users) or
from a list of options in wizards or graphic windows. Compilation may be
launched as an individual operation by the user, or automatically in response
to changes in the code they depend on. After successful compilation and
library linking, the executable code is ready to be downloaded to the FPGA,
either together with the bitstream or separately.

During development and verification, execution may be controlled from
the integrated environment, once the executable files have been downloaded
to the FPGA. For bare-metal applications, this may be done in two ways:

	 1.	By installing a bootloader that provides a communication path
between the FPGA and the computer hosting the integrated
environment

	 2.	By using dedicated logic, usually associated with the JTAG program-
ming interface, with some possible extensions for debugging, which
enable memory and register content download and execution control

When using an OS, execution control is achieved by remote debugging,
debugger accesses being carried out through either a serial communication
link or a communication port set on top of the TCP/IP stack, if available.
Debugging tools for software validation, profiling, and mixed hardware/
software verification will be specifically analyzed in Section 6.6.

After the validation of the hardware and software parts, and of the correct
interoperability among them and the environment of the embedded system,
final deployment involves permanently setting all required information, that
is, bitstream, executable file(s), and, if it exists, OS image. All this information
can be included in a single file, stored in a nonvolatile memory, from which
the FPGA will be configured at power-up, as described in Section 6.2.

6.3.3 � Core Libraries and Core Generation Tools

Apart from the tools mentioned in Sections 6.3.1 and 6.3.2, there exist tools
intended to generate standardized, but to some extent customizable, cores
(e.g., memories) that may be integrated in a design in the same way a custom-
designed block may be. These tools produce HDL or netlist-level models of

168 FPGAs: Fundamentals, Advanced Features, and Applications

the core. Some core generators are based on highly configurable and param-
eterizable models that, by means of using VHDL “generics” or constants
included in customizable packages, give designers the possibility of rapidly
obtaining a core that fits their needs.

Many of these cores are for free use, whereas others are only usable
at some cost. The latter are usually from third parties whose business is
based on selling IP libraries. The ways they are licensed differ, but in some
cases, designers are allowed to use them during a given time (they would
stop operating after some hours of use, just giving the chance to test their
usefulness before purchasing them) or to use them while there is a JTAG
cable connected between the development board and the integrated tool
environment.

Some cores are technology independent, in the sense that they may be
used in more than one FPGA technology, whereas in other cases, they are
family or even device specific.

In the case of standardized communication interfaces, memory inter-
faces, and other I/O-related standards, especially when they are associated
with specific devices, the cores include specifications about location, I/O
type, and timing constraints in order to ensure that they will work prop-
erly on the target device. Also, when standard internal connectivity (such
as a slave interface for a given task) is included, the cores are conveniently
integrated into the SoPC tools so that connections can be automatically
made in a consistent way. For standard interfaces and functions, certified
modules are provided in many cases, ensuring full compatibility with the
related standards.

Vendors and associated third-party partners offer huge libraries of com-
ponents, which include far too many cores to be listed here. Therefore, just
some significant examples are given here:

•	 Different types of memories, such as single- or dual-port RAM mem-
ories, or FIFO memories, among others. They can be parameterized
in size (data width, number of addresses) and have either synchro-
nous or asynchronous access. FIFO memories may be equipped with
different access and control interfaces (e.g., configurable half-full or
half-empty flags). According to their requirements and the resources
available in the target device, memory cores can be adapted to be
implemented using embedded memory blocks or distributed logic,
as discussed in Section 2.4.2.

•	 Memory controllers and interfaces to external memories, such as all
kinds of compatible DRAM (DDR, LP-DDR, etc.), flash controllers, or
DMA controllers.

•	 DSP-related blocks, such as digital filters, modulators, and demodula-
tors for signals under various standards, compressors and decompres-
sors, cyphering blocks, FFT, DCT (and their inverse operators), tools for

169Tools and Methodologies for FPGA-Based Design

designing linear algebra blocks and related blocks, CORDIC blocks for
trigonometric math, and signal synthesizers (e.g., sinusoidal generators).

•	 A wide variety of communication interfaces, certified in many cases,
targeting different applications. These may also come as a set of
modules allowing custom (application-dependent) communication
interfaces to be built by combining blocks such as demodulators,
data scramblers, interleavers, or error-correction encoders/decoders.

•	 Modules whose application domains are very specific (and so are
their architectures and features) but widely used. For instance,
there is a large variety of video signal compression and decompres-
sion blocks for specific standards, such as H.264 families. There are
blocks targeting applications in the aerospace sector (compatible
with ARINC or NIST standards, for instance) as well as in indus-
trial or medical domains. On many occasions, these specific cores
are available subject to some kind of licensing scheme.

6.4 � HLS Tools

As introduced in Section 6.1, HLS tools offer the possibility of mapping algo-
rithms into hardware from descriptions that are not time explicit or, in other
words, do not contain information about transactions between registers in
every clock cycle. These tools make the appropriate scheduling of operations in
a given set of operators, which may be reused over time for different purposes.

The algorithm specification defines relationships between variables con-
taining data and operations, so data are transformed along the algorithm
execution. The tools identify involved operators and data dependencies, in
order for the modules in charge of these operations to be reused at differ-
ent times of the algorithm execution. They also generate the multiplexing
schemes and the associated control required to select the appropriate data
path(s) at every time point during execution. As a result, they provide

•	 A data flow graph, which contains the registers required to hold
data, the multiplexing schemes required to feed operators with these
data, and the operators themselves

•	 A control state machine, which controls the data flow graph in order
for the required operations to be performed in the required sequences

Reuse of operators can be maximized to reduce logic resource utilization,
usually at the expense of longer latency. Alternatively, if execution speed
has higher priority than size, the circuit may be “widened” by multiple
instantiations of operators so that parallelism may be exploited. In this case,

170 FPGAs: Fundamentals, Advanced Features, and Applications

pipelining, loop unrolling, parallel memory access (memory reshaping), and
I/O adaptation are the main techniques used to speed up algorithm execu-
tion. These techniques are briefly described here:

•	 Pipelined structures achieve high execution speeds at the expense of
high number of registers and long latencies. A well-designed pipe-
lined circuit should have all stages performing operations and hold-
ing data, cycle by cycle, with data coming from various execution
cycles, as long as the signals are being propagated by the pipeline.
Thus, pipelined structures are incompatible with resource reuse
since structural hazards would be produced.

•	 Loop unrolling is a technique that uses several functional instances
for the inner loops of the code so that all iterations within the loop
are executed in parallel. In order for this to be feasible, the loop must
contain a fixed, predefined number of iterations (i.e., it does not
depend on a variable but on a constant). If loops are nested, more
than one loop may be set to be unrolled, but the chances for huge
resource utilization increase. In general, this technique requires
high resource utilization but few additional registers, and it should
be complemented with memory reshaping and I/O adaptation,
because all resources must be fed with the appropriate data at high
speeds and simultaneously, otherwise, no performance improve-
ment would be achieved.

•	 Fast access to memories by the functional resources is crucial to
achieve high computing bandwidth. With this purpose, memories
(in particular those storing vectors or arrays) may be set to use wide
parallel buses, capable of providing data to the possibly replicated
computing resources at the required speeds. Since memory con-
tents are the same, memory utilization inside the FPGA remains
unchanged and the only overhead is that caused by parallel wiring.
For this reason, this technique is called memory reshaping.

•	 Data from the external elements have to be fed to the blocks designed
through HLS techniques fast enough for all required data to be
available at the right times. Similarly, these blocks must be capable of
delivering output values to their destinations at the right times. High
data throughput may be achieved by using DMA engines on dedi-
cated ports. They may be embedded into the system under design
for the control flow part to produce the proper transactions at the
right times.Apart from traditional HLS tools, which are being inte-
grated into design suites, there are also tools aimed at embedding
(in a somewhat automated way) hardware accelerators within SoPC
systems. They are targeted to a restricted set of devices or families
and are conceived to support software designers with little expertise
in hardware development.

171Tools and Methodologies for FPGA-Based Design

A special case of this approach is the development of hardware accelerators
from programming languages that allow explicit parallelism to be described.
OpenCL is becoming a widely used standard for such specifications because
of its adequacy to cater to a variety of devices, such as GPGPUs, multicore
systems, or SoPCs. It also supports heterogeneous computing, in the sense
that different portions of the code may run on different computing platforms,
as discussed in Section 3.1.1.1. This is very convenient for the newest FPGA
families, which integrate several different hard processing fabrics in the same
device. Because of its expected increased significance, the issues related to the
design of these particular accelerators are discussed in Section 6.5.

6.5 � Design of HPC Multithread Accelerators

As analyzed in Section 6.4, HLS synthesis tools can be a good performance
booster for accelerating certain critical tasks within a control system with
limited extra design effort. An alternative and, in many cases, advantageous
solution is to define parallelism in an explicit manner in the source code of
the algorithm to be accelerated. Languages with explicit parallelism, such as
CUDA or OpenCL, share the same model of computation, that is, the way
efficient code is to be produced to achieve significant acceleration. While
CUDA is specific to NVDIA GPUs, OpenCL is becoming a de facto standard
due to its portability to different platforms, such as multiprocessors, GPUs
(and GPU clusters), FPGAs, or even heterogeneous systems formed by com-
binations of these platforms.

OpenCL ensures code portability between different computing devices,
although performance is not guaranteed. It is clear that the computation
model underneath the code and the hardware architecture on which it is
executed play a crucial role in the resulting performance. As a matter of fact,
if the code is not written carefully enough, performance can be degraded to
the extent that it can be worse than that achieved using a single processor.

The computation model provided by this type of languages relies on a
multithread approach, based on the parallel execution of multiple basic ele-
ments (called work items in OpenCL and threads in CUDA), with different
levels of interaction between them. Each work item/thread has its own pri-
vate memory for independent computing, ensuring that the maximum pos-
sible bandwidth is achieved.

Work items/threads can be bundled into work-groups/thread blocks. All
bundled elements share a second memory level, called local memory, which
can be accessed by any of them, but with some restrictions. Local memory
is multibank, so it has multiple ports for parallel access from all elements at
the same time. However, each memory bank can only be accessed by one of
them at a time, except if access is gained from the same memory position

172 FPGAs: Fundamentals, Advanced Features, and Applications

within the bank. Special care must be taken with this type of accesses since
good parallelism exploitation comes from parallel coalesced accesses to this
memory, with no congestion due to chaotic access.

Each work-group/thread block is expected to be fully executed in the
same computing unit (CU), but since the computing models dictate the
execution of different work-groups/thread blocks to be independent, each
of them may run in a different CU. All work-groups to be executed are
bundled into a kernel. A kernel is invoked whenever there is a need to
perform multiple work items/threads in parallel. If the number of work-
groups to be executed is higher than the number of CUs available, execu-
tion is sequenced until that of all work-groups/thread blocks in the kernel
is finished.

All work-groups/thread blocks in a kernel also share a third memory
level, called global memory, which is accessed by them through burst trans-
actions, in order for data throughput at this level to be maximized. Every
work-group/thread block and work item/thread has a numeric identifier
that enables each of them to access their own sets of data in this memory.
These identifiers can be one, two, or three dimensional in order for differ-
ent data organization to be possible, allowing algorithm memory needs and
work-group/thread block and work item/thread organizations to match. For
instance, one-dimensional partitioning is adequate for dealing with single
signals, whereas two-dimensional (2D) access is more efficient for 2D image
processing, and three-level identifiers are the best solution for finite-element
analysis (e.g., mechanical) of a 3D structure.

Kernels are invoked from a host, which executes serial code containing
kernel invocations. Kernels are then executed on the so-called device, which
contains the CUs required to accelerate kernel execution. Host and device
have their respective own memories, so memory transactions are required
between them for data provision and result collection. If kernels are not too
computing intensive, the time saved in parallel computing may be counter-
acted by the time used in memory transactions. Another possible cause of
performance degradation is the need for synchronization between parallel
work items/threads, equivalent to a barrier in multiprocessing terminology,
which might cause some CUs to be underutilized.

A host program may, of course, invoke more than one kernel along its serial
execution. It is also possible to specify how many accelerators (CUs) are to be
allocated in the FPGA for each kernel. Additionally, it is possible to modify
the logic inside the FPGA by partially reconfiguring the area devoted to the
accelerators so that different combinations of CUs can be used along host
program execution. An example of the use of partial reconfiguration for this
purpose is described in Section 8.3.3.

The main FPGA vendors offer tools for accelerating OpenCL kernels
implemented in FPGAs. They are suited to be used with powerful high-end
FPGA boards (the devices) hosted in personal computers (the hosts) and con-
nected through PCIe interfaces. It is also possible to run the same OpenCL

173Tools and Methodologies for FPGA-Based Design

programs in the host processor to verify functionality, verify them with
hardware simulators, test them in real hardware using just one CU in the
FPGA, or fully verify them.

Although multithread acceleration tools are intended to support software
designers, some knowledge of hardware acceleration and, more importantly,
the characteristics of the computing model and their impact on accelera-
tion are required. CUs capable of executing one work-group/thread block
at a time are obtained by means of an HLS synthesis process, but specific
directives (or pragma declarations) are required to customize the number
of work items/threads per work-group/thread block, which in turn deter-
mines the size of every CU, as well as the number of CUs to be allocated in
the FPGA fabric.

Same as for stand-alone HLS tools, OpenCL acceleration environments
offer estimation tools in order to explore the design space (basically area and
performance) before going into the detailed design process, which is quite
time-consuming. Estimations may be obtained about latency in every CU,
throughput, and resource utilization of each CU, among others.

6.6 � Debugging and Other Auxiliary Tools

Most tools and methodologies described in previous sections are related
more with the design of FPGA-based systems than with their validation,
with the exception of simulation tools. Simulation is an essential part of
the whole development process of FPGA-based systems (actually of any
electronic system). There are other features that, not being strictly required
such as simulations, are very useful to identify design problems, particu-
larly in the case of complex systems. These optional tools for hardware and
software debugging are described in Section 6.6.1. Other auxiliary tools that
facilitate the design of FPGA systems, such as pin planners or power estima-
tors, are addressed in Section 6.6.2.

6.6.1 � Hardware/Software Debugging for SoPC Systems

The complexity of SoPCs makes it necessary to have tools available not only
for software debugging (like in any other microprocessor system) but also for
verifying the interaction between the software and hardware parts. Actions
taken by the programs running in the processor cores have an impact on the
hardware, which is not always easy to follow and verify just with the aid of
external signals. Interfaces between elements may not be exercised properly,
making it difficult to check whether or not the operation of the system will
be correct in all scenarios.

174 FPGAs: Fundamentals, Advanced Features, and Applications

When problems arise, it may be extremely difficult to tell if they come from
an inconsistent software design, an incorrect interfacing, or any other reasons.
For “small” designs, where there are enough pins left in the FPGA, debugging
actions may be performed by taking outside of the chip critical signals that pro-
vide indications of correct or incorrect behavior of the system. However, this
method is usually difficult to implement and is error prone since it requires
navigating through the system hierarchy of modules so that the target signals
can be identified and taken out from (possibly deeply) embedded blocks.

On the other hand, it may be not possible to correctly transfer fast-
switching internal signals outside of the device, for instance, because of sig-
nal integrity problems or because available pins cannot achieve the same
switching speed.

Finally, tracing and fixing potential problems in a conventional manner
might require the design to be modified a high number of times, which
implies the need to repeatedly run the time-consuming synthesis process;
whereas trying to identify potential problems beforehand and having
embedded instruments selecting and analyzing the signals of interest at
runtime would help in reducing the number of synthesis processes required
for a successful design to be completed.

Therefore, it is very interesting to have specific debugging tools targeting
SoPC systems, allowing instrumentation to be embedded inside the devices,
so that internal signals can be directly monitored in place. Fortunately, it is
currently possible to have very powerful embedded instrumentation imple-
mented inside FPGAs, whose features are in some cases comparable to those
of conventional instruments, such as logic analyzers, and which are capable
of combining software and hardware debugging.

It is important to clarify that, since many SoPC systems may have real-
time constraints, the addition of debugging resources should neither have
any impact on execution time nor use resources that would be required for
normal system operation. The main debug mechanism to access resources
inside the FPGA in a nonintrusive way is the use of the JTAG interface, which
is not typically used during normal operation of the device. Remote debug-
ging may also be possible by means of a TCP/IP connection to the system, for
instance, when an OS is used.

6.6.1.1 � Software Debugging

The main tasks involved in software debugging are the inspection of the con-
tents of memories and register banks, and execution control, which relies on
step-by-step execution, breakpoints, and watchpoints. For embedded hard
processors, the logic resources required to provide such features are embed-
ded into the logic, so there is no need to specify them as part of the design.
In soft processors, where it may be necessary to specify their inclusion, inte-
grated design tools provide mechanisms to attach the required embedded
logic to the processor core.

175Tools and Methodologies for FPGA-Based Design

Software debugging is performed from the software development envi-
ronment, where it is seamlessly integrated. For instance, breakpoints and
watchpoints can be directly inserted in the source code (or, rarely, in the
assembly code). There are no significant differences with respect to conven-
tional software debuggers, one of them being the potential need for con-
trolling more than one processor execution at a time, given the fact that the
system may include several processor cores. In this case, a breakpoint or
watchpoint may be used to stop execution in just the processor where they
are inserted or in all of them. More advanced synchronization techniques
are also available, but they require the insertion of additional logic, as dis-
cussed in Section 6.6.1.2.

The way breakpoints operate on the underlying hardware is by continu-
ously comparing the contents of the program counter with the address in the
instruction memory where the breakpoint is placed. This can also be done by
checking the address bus in the instruction memory. Access must be gained
in the bus between the processor and the cache memories. Otherwise, if
comparisons are done close to the program memory itself, instruction cache
must be stopped to avoid hit accesses not observable in the outer bus.

Watchpoints are similar to breakpoints, except that they check for data
memory instead of instruction memory addresses. Thus, the same consid-
erations apply to data caches and watchpoints as to instruction caches and
breakpoints. In some cases, the condition to stop execution is based on a
specific value being read from or written to a data memory position. In such
cases, a second comparator is required in the data bus of the data memory, in
addition to the one checking addresses.

Performance monitors are also commonly available, providing a method
to measure execution time, bus utilization, and so on. They allow profiling
execution of software in the real system, with the aim of optimizing resource
utilization.

6.6.1.2 � Hardware Debugging

Hardware debugging is not as specific as software debugging. Its features
are related to the ability to observe internal signal activity in the hard-
ware by means of generic, but configurable, embedded instrumentation.
These instruments internal FPGA resources, so their use can be a problem
in systems with high resource utilization. In particular, in order to be able
to acquire the activity of signals at their nominal speeds, internal memory
resources (usually relatively scarce) may be necessary to store the corre-
sponding traces, so special care must be taken when specifying the amount
of memory reserved for such task.

Before synthesis, the tools allow users to specify the signals to be moni-
tored after the system is designed and implemented in the FPGA. These sig-
nals are kept in the design-along stages, preventing them from disappearing
due to circuit optimizations during the design process. This is automatically

176 FPGAs: Fundamentals, Advanced Features, and Applications

accomplished by the tools, either by making simple modifications at netlist
level or by including an MUX to select signals at runtime, so that they are
connected to the embedded instrumentation for analysis and/or storage. The
second option is more flexible, but could incur higher resource utilization
overhead as well as some speed degradation, which could be neglected if
operating frequency is not a critical design constraint.

Different FPGA vendors offer similar embedded debugging instrumenta-
tion, which in essence is also similar to the functionality provided by conven-
tional logic analyzers, mainly based on the acquisition of a group of signals,
synchronized by events in a sampling signal, and triggered by the occur-
rence of some events or combination of events in a signal or set of signals.

The sampling signal determines at which moments of the execution the
observed signals are to be acquired. It may be any clock signal in the design,
but it is not the only solution. For instance, if transactions in a communica-
tions link are to be analyzed, once it is known that their timing behavior
is correct, any data validation signal (data strobe, an acknowledgment sig-
nal, an enable signal in an input data register, or similar) may be used as
sampling signal. In this way, only actual transactions are registered, sav-
ing a lot of acquisition memory or, in other words, allowing for longer data
acquisitions. In these cases, time stamps can be registered together with the
acquired data in order to determine the instants when data transactions
actually occurred.

Since in most cases acquisition has to be carried out under nonrepetitive
conditions, specific events in trigger signals cause acquisition to start. These
may be:

•	 Simple trigger events: value of a given signal (or combination of values
of a group of them), edges in certain signals, or similar.

•	 Advanced trigger events: for instance, a trigger may be controlled by a
counter, which activates it after a given number of occurrences of a
simple trigger event.

•	 Cascaded or interconnected trigger events: sophisticated trigger conditions
can be specified by different combinations of simple trigger events.

The effective moment to react to the trigger event (whatever its complexity
is) can be configured to be the exact one at which the event is produced or
a given number of sampling periods before or after its occurrence. For data
acquisition to effectively occur before a trigger event is produced, data sam-
pling needs to be active at all times. Acquired data are stored in a memory
that operates as a circular buffer. When the memory is completely full after
the trigger, acquisition is stopped.

Virtually any signal or group of signals (buses, internal control signals,
or elements that are not accessible through read-back operations from any
memory map) can be monitored and the corresponding data stored in

177Tools and Methodologies for FPGA-Based Design

memory for debugging purposes under the occurrence of any trigger event.
Since the sampling signal can be specifically generated for that purpose,
sampling speed is in principle only bounded by the limits of the technology.

Debugging tools allow results to be visualized in several different ways:

•	 The most usual one is equivalent to the visualization of simulated
waveforms, with similar interfaces and analysis tools.

•	 Signals can be shown as monitoring windows, virtual LEDs, or the
like. Virtual LEDs can also be used to virtually represent outputs,
which is useful when the FPGA board being used has not enough
visualization capabilities for the target application.

•	 Similarly, inputs can also be made virtual, using virtual switches to
set the values of internal signals or registers, without having them
physically available in the FPGA board.

6.6.1.3 � Hardware/Software Co-Debugging

Both hardware and software debugging can be combined, mainly to verify
interaction between both parts of the SoPC. For instance, a breakpoint may be
used to trigger the acquisition of an embedded logic analyzer, or a trigger con-
dition may be used to stop the execution of a program running in a processor
core. With this feature, it is relatively simple, for instance, to set interrupt condi-
tions as triggers or to verify whether interrupts are occurring when required.

6.6.2 � Auxiliary Tools

6.6.2.1 � Pin Planning Tools

Modern FPGAs have a huge amount of pins, and the selection of the most
suitable ones to ensure the proper operation of the whole circuit the FPGA
takes part in may not be a simple task. Some pin locations are preassigned
for specific signals (e.g., clock signals) or specific types of signals (e.g., DRAM
memory interfaces, PCIe connections, other communication transceivers, or,
in general, any signal with specific timing or speed restrictions, requiring a
preassigned position close to the embedded hard blocks that use or gener-
ate them). In addition, some I/O configuration possibilities require specific
supply voltages in auxiliary supply pins, which may be incompatible with
other I/O standards. Finally, there are also restrictions associated with noise
immunity, especially for low-voltage signals, as well as some requirements
that limit the number of simultaneously changing signals in order to avoid
voltage drops due to excessive switching activity.

I/O pins are organized into different banks, each one with its own power
and auxiliary voltage supplies (which allow, for instance, unused banks to
be turned off to reduce overall power consumption). Some of the aforemen-
tioned restrictions affect each bank separately.

178 FPGAs: Fundamentals, Advanced Features, and Applications

Since handling all these restrictions may be not a trivial task, design envi-
ronments include pin planning tools. They allow signals to be assigned to
pins either “manually” or from the placement restrictions file discussed in
Sections 6.2.1 and 6.2.3.3 and, later, the fulfillment of the restrictions to be
verified, flagging warnings, incompatibilities, or errors* that might force the
pinout of the design to be changed. For instance, pin planning tools advise
on the need for having differential signals close to each other to avoid noise,
or even for using prespecified pin pairs for them. As another example, LVDS
signals cannot have nearby signals with high switching activity, and it is
recommended that they are placed near to or even surrounded by pins set to
ground for noise protection. All signals in a bus are preferably (if possible)
spread out through the same FPGA bank, or even split into two banks, for
signal integrity reasons.

Once the pinout of the FPGA design is decided, pin planning tools should
be run in order to allow the PCB design to be performed in parallel with the
FPGA design.

6.6.2.2 � FPGA Selection Advisory Tools

In many cases, there is no specific requirement guiding the decision about
which FPGA to use in a particular application, apart from the needs for
enough resources and achievable speed. Since most FPGAs are available in
different speed grades, the speed issue can be addressed once the maximum
operating frequency posed by the design is known.

FPGA selection advisory tools provide a means of choosing the adequate
FPGA that fits the design needs. They may operate from area estimations
after synthesis or through specific analyses. If there is uncertainty about the
final contents and functionality of the design, it is advisable to select a range
of devices from a family of pin-compatible FPGAs so that, after detailed
design, the right device may be selected among a set of them, in order for the
cost to be reduced.

6.6.2.3 � Power Estimation Tools

Power estimation is useful during design space exploration in order for the
most appropriate design among several implementation possibilities to be
selected and for the maximum currents to be supplied by the power convert-
ers to be determined, in order to advance PCB design. In the first case, abso-
lute power consumption values are not so important since relative power
consumption among different approaches is the factor that may influence
the selection. In the second case, only rough estimates are required since

*	 Warnings must be analyzed, incompatibilities or errors must be solved.

179Tools and Methodologies for FPGA-Based Design

some security coefficient will be applied resulting in an increase in the cur-
rent the power converters would be able to supply, or the use of heat dissipa-
tion techniques, and so on.

These are the reasons why power estimators are just aimed at supporting
decisions during the early stages of the development of the circuit, rather
than at providing a mechanism to accurately estimate the actual power that
will be consumed by a circuit once it is implemented. As a consequence,
some early power estimations just rely on the expected amount of I/Os and
resources to be used, affected by an activity factor, which is the expected
switching frequency of every signal (referring not to clock frequency but to
the expected activity of each particular signal). At later stages, some more
sophisticated power estimators may use simulation results to estimate activ-
ity, but it is worth noting that they are prone to offer values higher than real
ones since simulations try to “compress” the whole behavior of the system
into the minimum possible number of clock cycles in order for simulation
time to be reduced.

References

Altera. 2013. Implementing FPGA design with the OpenCL standard. White paper
WP-01173-3.0.

Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., and Zhang, Z. 2011. High-
level synthesis for FPGAs: From prototyping to deployment. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 30:473–491.

Riesgo, T., Torroja, Y., and de la Torre, E. 1999. Design methodologies based on hard-
ware description languages. IEEE Transactions on Industrial Electronics, 46:3–12.

Sangiovanni-Vincentelli, A. and Martin, G. 2001. Platform-based design and software
design methodology for embedded systems. IEEE Design & Test of Computers,
18:23–33.

Xilinx. 2014. The Xilinx SDAccel development environment.

http://taylorandfrancis.com

181

7
Off-Chip and In-Chip Communications
for FPGA Systems

7.1 � Introduction

While computing is the essence of integrated systems in general, and
FPGAs in particular, it is evident that data need to be transported in order
to be efficiently computed. For non-data-intensive applications, communica-
tions may be neglected, and only computing-related issues are taken into
account (computing performance, computing power, computing efficiency).
However, for those application that work with large amounts of data (big
data applications are the most representative ones), it is clear that communi-
cations can be a key factor in the overall performance metrics. It is therefore
required, for many applications, to be able to plan both computing and com-
munication resources jointly. Moreover, it might be the case where perfor-
mance is degraded because of communication overhead.

As was mentioned in Chapter 1, most systems require communicating with
other external elements. The requirements of such off-chip communication
are dependent on many factors: speed (both in data throughput and latency),
reliability (sometimes packets of data may be lost, in other cases not), distance,
environmental conditions, compatibility with networks, and so on. Therefore,
there is no one solution that fits all. Although there are several classification
possibilities, we have made a distinction between low-speed (Section 7.2.1)
and high-speed ones (Section 7.2.2) due to their different implications in both
internal and external FPGA designs. However, some distinctions between
different technologies are also made, as well as between data-oriented and
control-oriented communication interfaces (for the low-speed ones).

Since FPGAs integrate multiple computing resources, it is also necessary
to establish some basics on how to efficiently implement communications
between modules inside the chip. Although it would seem that internal
communication resources are extremely versatile and there should be no
problems in connecting as many elements as required, with direct connec-
tions from the places where data are produced to the places where data are

182 FPGAs: Fundamentals, Advanced Features, and Applications

required, the architectural complexity of large designs impedes this straight-
forward method. For instance, resource sharing forces to concentrate or dis-
tribute data through communication structures from/to different elements,
and therefore some arbitration is required. Fortunately, this is alleviated by
the use of standardized interfaces that, for the purpose of module reuse, and
with the help of automated tools to build complex SoPCs (see Chapter 6), let
complex connection schemes to be built. This way, developing multiple buses,
hierarchical buses, and bridged structures is somewhat easier. Examples of
such arrangements have been addressed in Section 3.5 to describe the con-
nectivity of embedded microprocessor cores. However, the scalability of such
structures is a problem for large designs. Their performance worsens with an
increase in the number of connected modules for two reasons: data access sat-
uration, produced by an increasing number of modules willing to access the
same communication resource, and maximum speed (i.e., data throughput
degradation), because of the increased distances to be covered between dis-
tant modules. Although heavily pipelined structures might partially resolve
this last issue, the growing complexity of large SoPC designs might lead to the
need of settingup networks-on-chip (NoCs) as a shared mechanism to link a
larger number of interconnected modules, providing a structure that enables
simultaneous connections at the same time, with no such speed (frequency)
degradation when the system scales up in size. In-chip communications are
addressed in Section 7.3, covering point-to-point communications, bus-based
connections, and NoCs in its three different subsections.

7.2 � Off-Chip Communications

7.2.1 � Low-Speed Interfaces

These communication schemes are intended for control purposes or for low-
data-intensive applications, where only small amounts of data are exchanged.
They mostly rely on serial interfaces with explicit low-speed clocks for easy
data transfer and with cost-effective hardware, both on the transmitter and
receiver sides. The amount of bits to transfer is limited, normally in the case
of fixed-length transactions, and in some cases, addressing of external devices
allows connecting more than one device on the same interface. These inter-
faces are best suited to controlling external devices, such as smart sensors
or similar, where the amount of data is less. For this reason, they are also
intended for controlling external devices, providing a mechanism to access
internal registers to set operation modes, and collecting either small amounts
of data or status flags.

I2C and SPI are the most commonly used interfaces in today’s world of
standardized devices, controllers, smart sensors, ADCs, DACs, etc. They

183Off-Chip and In-Chip Communications for FPGA Systems

offer standard wiring for many off-the-shelf devices, providing a common
method to interface with many of them.

There are, in some cases, specific needs, such as very low latency, which
produce yet standardized interfaces with particular requirements. It is the
case of the CAN bus, extended in automotive and similar sectors, where
access to the bus is granted based on the priorities of the messages to be sent.

FPGAs and FPGA design tools are ready to use such communication
interfaces. SoPC devices contain—normally more than one—hardwired
interfaces attached to their internal processors. Also, tools for SoPC design,
even for pure FPGAs with just configurable logic, contain libraries with the
required modules, accessible from embedded processors by means of stan-
dard interfaces to very rapidly customize the design and add a variety of
such standardized communication modules. The design of these types of
systems is quite simple since, for instance, there are numerous tutorials pro-
vided as examples to build systems with I2C or SPI interfaces.

7.2.2 � High-Speed Interfaces

Contrary to what one might think, there is a tendency to solve point to point
fast I/O with optimized serial interfaces more than with parallel ones. For
maximum throughput, several of these serial I/O interfaces may be con-
nected in parallel to achieve really high throughput. An example of this is
the PCIe interface described in Section 2.4.4, which may use, according to the
specification, different number of serial lines. Details of PCIe as well as other
standards that are normally used in FPGAs are discussed in Section 2.4.4.
In this section, however, the criteria on how to use them and conditions of
operation and precautions when such structures are used are given.

High-speed interfaces are packet-based synchronous communication
interfaces with clock recovery at the receiver end since it is not possible
to transmit the clock as an additional line (as opposed to low-speed inter-
faces). The clock is recovered with the aid of DPLL logic or similar struc-
tures. Transceivers with the required specialized interfaces are equipped in
many FPGAs, and there are families or specific devices that are equipped
with many of such interfaces in order to achieve a very high aggregated data
bandwidth. These specialized FPGAs are intended to be used in commu-
nication devices, such as high-speed switches and routers, where process-
ing lots of serial I/O efficiently and at high speed can only be done through
hardware, not with software.

These high-speed serial I/O interfaces are also useful in the domain of HPC,
where high data throughput between several FPGAs, forming an FPGA cluster,
is required. Except for specific applications with a precise connectivity, such
as for pipeline-streamed applications, these clusters very often serve a general
purpose, so connectivity between all FPGAs in the cluster is required. Figure
7.1 shows an example of a backplane that connects five circuits, for example,
FPGAs, on a fully connected topology (all to all).

184 FPGAs: Fundamentals, Advanced Features, and Applications

Each of these links in the figure can be built using high-speed serial I/O
interfaces. These rely on differential separate pairs for transmission and recep-
tion, so, in essence, each of these connections represents four signals. Therefore,
the densest part of the backplane, with six connections, would represent
just 24 signals. If every pair of transmitting lines is designed to offer around
6 Gbps each, or even 50 Gbps each, which is possible in some technologies, the
aggregated throughputs of the cluster would be 120 Gbps to 1000 Gbps.

The design of these serial differential I/O lines at PCB level is, however,
very critical. Pins in the FPGA need to be as close as possible, and the paths
along the PCB must be almost identical, with sufficient grounding around
them to avoid susceptibility to noise, since they operate at low voltages, to
allow for such high switching activity at pin level.

While these point-to-point connections are intended for PCB use, or for very
short distance interconnections, there are cases where longer distances are
required. This is the case of high-speed Ethernet connections, where internal
resources in the FPGA are not sufficient to achieve the required physical layer
communication requirements. In these cases, the transceivers to correctly
modulate and adapt the signals to transmit through longer distances must be
held outside the FPGA. For Ethernet, these transceivers are normally called
the PHY chips since they provide the functionality of the physical layer. They
are placed in between the FPGA and the Ethernet connector.

The way these types of communication protocols are used with FPGAs is
always based on the same hardware structure:

•	 The medium access control layer is placed inside the FPGA by using
either a specific hardwired block for most SoPC devices or a module
placed in the reconfigurable fabric for all other cases.

•	 The physical layer is performed in the PHY chip, which requires
some additional resources such as clock oscillators (dependent on
the chip and Ethernet standard to be used) or passive components.

•	 The Ethernet connector to provide the attachment to the transmis-
sion media and galvanic isolation is placed close to the PHY device.

IC 4 IC 5IC 3IC 2IC 1

FIGURE 7.1 
All-to-all backplane connection, suitable for serial high-speed I/O interfaces.

185Off-Chip and In-Chip Communications for FPGA Systems

The connection between the FPGA and the PHY is well standardized, but
there are several options depending on the chip and the transmission stan-
dard to follow—mostly dependent on the maximum transmission speed.
Some of these standards are media-independent interface (MII); reduced
MII (RMII), with smaller connectivity and reduced performance (up to
100 Mbps); GMII (for gigabit standards); or variations of them. Care must be
taken to choose the right standard since not all media access blocks in the
FPGA and all PHY chips support all of them. PHY devices also contain some
low-speed control interface (such as SPI) for accessing configuration and sta-
tus registers in the device from the FPGA.

Support of software-based communication layers in the FPGA is also main-
tained by manufacturers, providing versions of TCP/IP or UDP/IP stacks adapted
for the internal soft or hard processors and OSs or bare-metal applications.

It is advised to follow some of the numerous tutorials provided as examples
that accompany the SoPC tools in order to fully understand and properly design
all elements in the communication stack. There are many example tools that pro-
vide simple web servers, or similar applications, in FPGA-based SoPC designs,
so the time used to implement the final customized solutions is reduced. For a
discussion and a practical and more detailed explanation on how fast serial I/O
works on Xilinx devices, see the book by Athavale and Christensen (2005).

7.3 � In-Chip Communications

This section deals with structured ways of communicating internal modules
within an FPGA. Three types of connections are considered: point to point, bus
based, and NoC. In this order, they are sorted from less to more complex, but
also from the least to the most scalable. Lee et al. (2007) provide a quantitative
analysis on the use of these three alternatives, when and how to use them, show-
ing a theoretical basis as well as a use case example of a multimedia system.

7.3.1 � Point-to-Point Connections

For a relatively small number of blocks and connections among them, point-
to-point solutions are possibly the best choice. There is no connection shar-
ing, so every pair of modules is always ready to communicate. This not only
gives high communication throughput but also ensures predictable behavior
from the system. Even though this is the simplest solution for internal com-
munications, there are, however, some problems associated with it. One of
them is the lack of standardization. There are less communication standards
than with the other solutions presented later. However, it may run the sim-
plest transaction protocols, as simple as “one piece of data after another,” the
basis for streaming, being able to very efficiently run either synchronous or

186 FPGAs: Fundamentals, Advanced Features, and Applications

asynchronous transactions. In many cases, especially for asynchronous trans-
actions, FIFO memories must be placed in between both communicating sides.
This FIFO memory can be made with a double-clock, double-port scheme to
provide true asynchronous access between two regions with different clocks.
Sufficient FIFO dimensioning ensures work independence between modules.

An important computing scheme that is feasible to be implemented with
such P2P communications is the dataflow model of computation. In this model,
all computing elements in the design, also called actors, follow an autonomous
trigger rule such that the model starts computing whenever all incoming data
from one or more connections between actors are available. Results are pro-
duced when finished and sent through output P2P connections. This scheme
is self-organized since there is no need of central control. Connections do not
require addresses, and in some cases, data “tagging” is possible in case one
actor receives different types of data elements from the same connection.

There are promising solutions based on dataflow models of computation
since the lack of centralized control and predictability offer good characteris-
tics for some applications. However, the main disadvantage of this solution is
the increase in the communication area, so this solution does not scale well. So,
for solutions that require higher and more varied connectivity, bus solutions,
discussed next, or NoC solutions, described in Section 7.3.3, are better choices.

Due to the increase in the use of P2P connections with streamed data in
FPGA-based SoCs, standardized efforts from FPGA manufacturers are being
made. So, Avalon Stream, in the case of Altera, or AXI Stream, in the case of
Xilinx, are available as connectivity solution between cores in SoPC designs.
See Sections 3.5.1 and 3.5.2 for details on streaming protocols from AXI and
Avalon, respectively.

7.3.2 � Bus-Based Connections

In Section 3.5, specific interconnect buses for embedded soft or hard proces-
sors were described in order to complement the characteristics of the proces-
sors or multiprocessors themselves, embedded or embeddable, into many
FPGA devices. Thus, it described in some detail different alternatives such
as AMBA, AXI, Avalon, CoreConnect, and Wishbone. In this section, we are
offering a different and more general view, with the purpose of showing
buses together with other design alternatives that would let designers com-
plement the decision criteria to choose the right solutions for their specific
needs, as well as understanding in greater detail how these solutions operate
and when they are required.

A bus is, in general, a bundle of wires that interconnect, in a standardized
way, at least two (but normally more) elements using a shared communica-
tion infrastructure. If there were just two elements connected, a point-to-
point connection would normally be preferred.

Resource sharing has the obvious advantage of reducing resource usage
with respect to a dense point-to-point-based complex interconnect, but has the

187Off-Chip and In-Chip Communications for FPGA Systems

disadvantage of reducing overall throughput and not allowing to customize and
adapt bus width and performance to interconnect elements with different speed
requirements (we will see later that this can be alleviated by bus bridging).

A bus interconnection involves two things: hardware aspects and a logic
protocol. Hardware aspects determine the physical interconnect layer,
electrical aspects, and topology of the interconnection. The logic protocol
deals with timing issues, type of transactions supported, and arbitration
policy, including priority schemes for multimaster-based buses. A bus may
contain one or more master elements and one or more slave elements. Master
elements start transactions, issue the access type (read or write), make the
transaction request, and provide the address. Slave elements respond to
incoming requests from a master and receive data (in the case of a write
transaction) or provide data (in the case of a read) the address specified by
the active master. If more than one master produces a request, an arbitration
scheme must be provided in order to decide which master gets the right to
make its transaction.

At the physical level, the hardware elements that access the shared
medium are defined. Two basic schemes are possible, either using tristate
buffers (see Figure 7.2a) or by means of multiplexed access schemes (see
Figure 7.2b, which shows a partially connected multiple access scheme).

Master

Master interface

Buffer

Slave 1

Slave interface

Buffer

Slave interface

BufferControl Control

(a)

Slave 2

Master
interface

MUX MUX

Slave
interface

Master
interface

Slave
interface

(b)

Slave 2Slave 1 Master 2Master 1

FIGURE 7.2 
Physical interfaces for a bus connection: (a) tristate buffers; (b) multiplexed.

188 FPGAs: Fundamentals, Advanced Features, and Applications

Tristate schemes are not advised because of the danger of producing con-
tention on the bus (two elements driving the bus at the same time), which
might either jeopardize the circuit or produce—for transient contentions—
high current peaks. On the other side, multiplexed accesses do not have
such problems, but they scale worse, requiring modifications in the struc-
ture when new elements are added or removed. Modern FPGAs, in many
cases, do not include internal tristate logic (only in the chip I/Os), so multi-
plexed access is mandated.

The physical specification of the bus also includes the bus topology. The
simplest one is the single-shared bus. They are inspired on rack-based sys-
tems, and only one transaction is possible at the same time. They may be
multimaster and allow complex transactions (they will be described later),
but their main drawback is the loss of performance with the increased length
of the connection and the presence of multiple elements. As a rule of thumb,
more than 10 different elements on the same bus will probably show some
saturation and force one to use other solutions. Figure 7.3a shows an example
of a shared single bus.

Other possible solutions at the physical level include crossbar switch or
ring-based topologies, shown, respectively, in Figure 7.3b and c. They over-
come the problem of added loss of performance, but the first one significantly
increases resource utilization by the provision of multiple paths between
masters and slaves, and the second one, while reduced in resource usage,
produces added high latencies.

When the number of interconnected elements is high, or they can be sorted
into different speed requirements and degrees of utilization, bridged and
hierarchical structures offer better results. Figure 7.4 shows a bridge-based
topology formed by two buses.

Bridges, like in Figure 7.4, have the advantage of providing parallel access
in every segment bus, increasing overall bandwidth. However, bridging may
also be used to group components that operate at different speeds into several
buses, such that the design in every bus is tailored to the speed required. For
instance, complex access schemes on wide buses may be used for high-speed
components, while lightweight buses can be used for low-speed peripherals,
which only access registers and do not provide DMA features for complex
transactions. Figure 7.5 shows a three-level hierarchical bus scheme, linked
by two bridges, with highest access rates at the upper level and lowest rates
at the bottom. Bridges work as slaves on the upper side and as masters on the
bottom side, according to the figure.

Apart from the physical level, buses also standardize the logic protocol
to perform the required transactions. Timing and arbitration are the main
elements to be defined. Regardless of what timing is to be used in the
bus—relationships between signals to ensure correct operation—all buses
fall into two different categories: synchronous or asynchronous. In syn-
chronous buses, all timings are referred to a master clock signal, which is
required to reach all elements in the bus. This issue is, at the same time,

189Off-Chip and In-Chip Communications for FPGA Systems

Master 1

Master interface

Master 2

Master interface

Master 3

Master interface

Slave 1

Slave interface

Slave 2

Slave interface

Slave 3

Slave interface

(b)

Master 1

Master interface

Slave 1

Slave interface Slave interface

Master interface Slave interface Slave interface

(a)

Slave 2

Slave 4Slave 3Master 2

Master interface Master interface Master interface

Slave interface Slave interface Slave interface

(c)

Master 3Master 2Master 1

Slave 3Slave 2Slave 1

FIGURE 7.3 
Bus topologies: (a) single-shared bus; (b) crossbar switch; (c) ring-based bus.

Slave 1

Slave interface

Slave 2

Slave interface

Slave 3

Slave interface

Slave 4

Slave interface

Bridge 1

Slave 1

Slave interface

Slave 2

Slave interface

Slave 3

Slave interface

Slave 4

Slave interface

FIGURE 7.4 
Bridged bus topology.

190 FPGAs: Fundamentals, Advanced Features, and Applications

its main drawback since synchronization mismatches and skew problems
may appear in long high-speed buses. They are, however, much simpler and
provide faster access times than asynchronous buses. On the other hand,
asynchronous buses do not have a clock, and control is effected by events in
specific control signals. This ensures greater compatibility with a wider set
of peripherals and modules in general, providing better timing adaptation.
As a drawback, the control is more complex since it needs to set handshaking
protocols between masters and slaves.

Transaction protocols also define the sequence of functional operations that
need to be followed in the transaction, no matter whether it is a simple or a
complex (burst) one. This is of particular importance when dealing with mul-
timaster buses. In essence, if one or more master modules want to start a trans-
action, they do an “arbitration request” (AR in Figure 7.6). The arbiter solves
the contention in the ARB cycle, deciding which is the master that will be
given the access next, according to the priority or arbitration policy. The mas-
ter that is granted the access makes a request—RQ in the figure—and the

Local bus

System bus

Peripheral bus

Bridge

BridgeIP blockPeripheral

DSPDMA

CacheProcessor

FIGURE 7.5 
Hierarchical three-level bus example.

191Off-Chip and In-Chip Communications for FPGA Systems

slave may be busy during some cycles until data are ready, which is notified
by asserting an acknowledgment signal, which ends the transaction.

These stages can be overlapped between different transactions in order
to maximize bus utilization. In this case, pipelined bus structures—more
complex but efficient—are required. Figure 7.7 shows an example of a multi-
ple access in a pipelined bus structure. As can be observed, bus utilization is
increased significantly, although the arbitration and grant process becomes
more complex.

The number of cycles of a granted transaction may be fixed or variable.
Arbitration may be centralized or distributed, and different arbitration
policies may be set. These policies may be random, with static priorities,
or based on periodic priority assignment, such as round robin. While this
technique is suitable for distributed arbitration, which provides better
scalability, it has the disadvantage of producing potentially large laten-
cies, which makes it unsuitable for critical systems, where static priorities
are preferred.

Clock Cycle Operation Bus
1 AR
2 ARB
3 AG
4 RQ
5 Busy
6 Busy
7 ACK

Free
Free
Free
Busy
Free
Free
Busy

FIGURE 7.6 
Single-bus transaction protocol.

Clock Cycle Transaction 1 Transaction 2 Transaction 3 Bus
1 AR
2 ARB AR
3 AG ARB AR
4 RQ STALL ARB
5 Busy AG AG
6 Busy RQ STALL
7 ACK Busy AG
8 Busy RQ
9 ACK Busy

10 Busy
11 ACK

Free
Free
Free
Transaction 1
Free
Transaction 2
Transaction 1
Transaction 3
Transaction 2
Free
Transaction 3

FIGURE 7.7 
Single pipelined bus transaction protocol, with three overlapped accesses.

192 FPGAs: Fundamentals, Advanced Features, and Applications

7.3.3 � Networks on Chip

The huge overhead produced in P2P communication for a sufficiently large
number of interconnected devices and the performance degradation of bus-
based structures forced a new paradigm for large systems with multiple
interconnection needs: NoC. The main advantage with respect to their pre-
decessors is that there is no speed degradation with size since all connec-
tions can be made for local and short distance, while being able to achieve
parallelism, given the fact that several nodes can communicate in parallel by
using multiple paths. It is clear that not all nodes will be able to communi-
cate at the same time due to resource sharing, but communication policies
under some circumstances may be used to ensure, in a predictable manner,
sufficient bandwidth for all possible communications between nodes within
the NoC.

An NoC consists of a series of links, connected by routers that intercon-
nect multiple cores. Links are normally pairs of bidirectional channels con-
necting a pair of routers. The access of cores to the NoC is done on the
routers, so, whenever an NoC topology drawing is observed, it must be
considered that that router has an extra input/output pair of channels for
the core. For instance, Figure 7.8 depicts the two most commonly used NoC
topologies—a mesh and a torus, which, in essence, is a mesh connected
with the same scheme of adjacency as in a Karnaugh’s map. In the figure,
routers in the middle of the mesh have five links (or ports), four for the vis-
ible cores, plus one for the core attached to it. All routers in the torus topol-
ogy have five link connections.

Apart from these topologies, there are other topologies such as tree, fat tree,
ring, octagon, and spider. However, the design and features of an NoC are
not solely dependent on the topology. There are many other factors, related
to the way packets are formed, how link handshaking is achieved, and how

(a) (b)

FIGURE 7.8 
(a) Mesh NoC topology and (b) torus topology (a mesh variation).

193Off-Chip and In-Chip Communications for FPGA Systems

packets are routed—including how they are switched and buffered—as
well as regarding control flow and arbitration policies, which are even more
important than the topology itself. For each of these factors, many different
techniques have been proposed and verified, up to the point that a detailed
description of all possible individual techniques, as well as a description of
the collection of existing commercial and academic NoCs, is out of the scope
of the contents of this book. However, some descriptions about these tech-
niques and the problems they try to solve are mentioned later on.

Packets are injected into the NoC or withdrawn from it by means of
the network interface of every core, as shown in Figure 7.9. The network
interface of every core is in charge of producing—or retrieving—data
according to the rules defined for the NoC. In the most general sense, data
exchanged between two cores at a given time, as a result of a computation
done in the transmitting node, are called messages. Messages are split into
packets that, at the same time, are split into one or more flits, composed of
several phits. A flit is the minimum amount of data that may be exchanged
between two network elements (two routers or an NI and its router). A phit
is the amount of bits that can be exchanged at a time, and it is dependent
on the characteristics of the link. In contrast to conventional networks,
links may be composed of a set of parallel wires transmitting more than
one bit at a time.

These characteristics of the NoC are architecture dependent, except for the
router internal organization, which mostly determines the main NoC com-
munication mechanisms from a protocol perspective, not from an architec-
tural perspective. These mechanisms are basically as follows:

•	 Flow control: It determines the node-to-node control rules and is in charge
of allocating channels and buffers inside the routers to store packets.

•	 Routing and switching: Routing refers to the determination of the path
between source and destination in the NoC, while switching decides
how and when to connect an input and an output port within a router.

Router/
switch

NI
Logic

FIGURE 7.9 
Access to/from logic to node router/switch.

194 FPGAs: Fundamentals, Advanced Features, and Applications

•	 Buffering and arbitration: It is related to the policies that decide which
message is to be stored inside the router, either in input buffers or in
output buffers, and wait for a future chance to go through an output
port. Arbitration deals with the way the routers select which message
has the right to go to an output port.

There are three basic types of flow control. The simplest is a handshake
between two neighboring elements so that, whenever there is room in the
receiver, it accepts the transmission of a packet. A more sophisticated tech-
nique, based on the earlier one, is a credit-based flow control, which relies on
counting the number of packets that are sent, up to a maximum number, and
reduces this number as soon as packets leave the receiving router. The third
method, and possibly one of the most used ones nowadays, is the setting of
virtual channels (VCs). With regard to VCs, every physical channel is shared
by several logical channels, and either equal-time multiplexing or priority-
based multiplexing is used as an arbitration policy to resolve which is the
next packet to leave every router.

Routing protocols determine the path of messages along the NoC. Livelocks
(messages returning without reaching their destination) and deadlocks (a cyclic
dependency that keeps messages permanently blocked) must be avoided, yet
providing some adaptability and fault tolerance—reacting to traffic conditions
and permanent faults. In mesh-based or similar NoCs, routing policies are sim-
ple since traversing the network from one point to any other involves moving
in any direction that gets the X–Y coordinates of the routers by which messages
are passing closer to the final X–Y destination value. Dynamic routing tech-
niques, such as “west-first, if possible,” are preferred over static ones, such as
“first all X, then all Y,” because they offer the required adaptability.

As opposed to conventional networks, circuit switching is preferred over
packet switching because it ensures predictability. The combination of arbi-
tration policies and control flow techniques to implement VCs with priority
buffering and preemption buffering is, though complex, a way to ensure pre-
dictability, and so, it is preferred in many cases over further simplified tech-
niques. The problem with this solution is router complexity, and so, it is more
suited to NoCs for integrated circuits than for FPGA-based ones, where router
implementation on the fabric may consume huge amounts of resources.

Nevertheless, the complexity of the NoC design not only relies on how
to select the most appropriate combination of techniques for a given prob-
lem, taking into account size, power, QoS, performance (throughput and
latency), or predictability. In addition to this, NoCs must be customized in
order to obtain optimal implementation for every given application. In gen-
eral, if an application involves several tasks, NoCs can be adapted in shape
and in resource utilization—link width adaptation and/or buffering size
determination—to best fit the aforementioned requirements. Figure 7.10
shows an example of an adapted network, with four tasks that involve two
or three cores each, with different link sizing and connectivity.

195Off-Chip and In-Chip Communications for FPGA Systems

Unfortunately, tools from FPGA vendors do not offer NoC design in their inte-
grated environments, and among third-party tools, there are, nowadays, not so
many that are purposely tailored for the FPGA design. There are some academic
approaches that work with FPGA reconfigurability in order to custom design
and even real-time adapt the structure and behavior of NoCs, but they are far
from being a mature technology. The future might perhaps bring some NoCs
designed and embedded into reconfigurable fabrics, flattening the path for the
use of NoC techniques in a wider range of applications. We encourage readers
whose designs have reached the point of requiring advanced communication
techniques, such as NoCs, to monitor the state of development of these tech-
niques since this will probably be one of the fields discussed in this book that
has the risk of being outdated soon. Benini and De Micheli (2006) provide an
excellent reference for all practical and advanced features of NoCs.

References

Athavale, A. and Christensen, C. 2015. High-speed serial I/O made simple. A designer’s
guide with FPGA applications. In Xilinx Connectivity Solutions, Product Solutions
Marketing/Xilinx Worldwide Marketing Department, San Jose, CA.

Benini, L. and De Micheli, G. 2006. Networks on chip. In The Morgan Kauffman Series
in Systems on Silicon, Elsevier.

Lee, H.G., Chang, N.C.K., Ogras, U.Y., and Marculescu, R. 2007. On-chip commu-
nication architecture exploration: A quantitative evaluation of point-to-point,
bus, and network-on-chip approaches. ACM Transactions on Design Automation
of Electronic Systems, 12:3, article 23.

FIGURE 7.10 
Customized NoC with adapted structure and connectivity.

http://taylorandfrancis.com

197

8
Building Reconfigurable Systems
Using Commercial FPGAs

8.1 � Introduction

The configuration possibilities offered by FPGAs created a new paradigm
in digital circuit design, since the same device (i.e., the same hardware) can
be adapted to provide different functions by just reconfiguring it. In other
words, a device may implement different functions in the course of its opera-
tion, allowing it to be adapted to different operating conditions in response
to modifications in the required functionality, changes in the environment,
or even faults that might take place, therefore allowing its usability to be
extended.

When hardware reconfiguration capabilities are required for a given
application, the use of FPGAs offers many advantages and opportunities.
Although reconfigurable systems are not limited to just FPGA-based ones,
these are the most significant at commercial level. Other possibilities exist,
based on custom devices with specific reconfiguration features, mainly ori-
ented toward reconfigurable computing systems. However, these devices are
intended to overcome some limitations of FPGAs in very specific areas, for
instance, ultrafast reconfiguration time (i.e., reconfiguring a complete device
in just one clock cycle). Coarse-grained reconfigurable architectures are an
example of this, where different functions are implemented in the same sili-
con die so that the resulting system may be adapted to changing conditions.
These solutions have limited flexibility because the functions are decided
at design time and can neither be changed nor modified once the device
is manufactured. On the other hand, the configurability of most FPGAs*—
of truly reconfigurable devices in general—allows the functions to be per-
formed by the system to be adapted at any moment during its lifetime, even
during infield operation.

*	 Of course, we are talking about reconfigurable FPGAs. The OTP devices described in
Chapter 2 also have limited flexibility.

198 FPGAs: Fundamentals, Advanced Features, and Applications

Therefore, this chapter focuses on the use of reconfigurable FPGAs, the
advantages of using their reconfiguration capabilities concurrently with
normal operation (i.e., at run time), the different reconfiguration alterna-
tives, and the existing commercial and industrial approaches, as well as the
authors’ view about what the future role of FPGAs in reconfigurable systems
may be, through two examples, one on reconfigurable hardware acceleration
and another on evolvable hardware.

8.2 � Main Reconfiguration-Related Concepts

The concept of FPGA reconfiguration is, in essence, very simple: By just
rewriting the contents of the configuration memory, the functionality of the
device may be modified. This would provide the same flexibility as software
does, but the reality is far from being that simple. Currently, there is not
enough support—in terms of tools and standardization—to easily design
reconfigurable systems. There is no sufficient support from the vendors to
seamlessly integrate reconfiguration into the design flows either. Support is
slowly being provided by academic efforts in applying reconfiguration for
specific purposes, but not in a generic way.

The first FPGA devices could only be (re)configured by downloading
into them a full bitstream, which would overwrite all configuration bits in
the device. The configuration had to be static and performed immediately
after system power-up. However, an increasing number of FPGAs, in par-
ticular those based on SRAM technology, are now allowing the so-called
partial bitstreams to be downloaded, so reconfiguration can be applied just
to some portions of the device (what is referred to as partial reconfigura-
tion), even while the rest of it keeps working normally (a feature called
run-time-reconfiguration, RTR). Systems having this last feature are said
to be run-time reconfigurable systems (RTRSs), and those having both are
called partial run-time-reconfigurable systems (PRTRSs).

Partial reconfiguration is a valuable feature for systems operating in envi-
ronments where applications cannot be interrupted while the system is
being reconfigured. It is also suitable for highly parallel systems that can
time-share the same FPGA resources. Without this capability, it would be
necessary to stop system operation during device reconfiguration and to
reconfigure the entire FPGA to support a different application.

A special subset within RTRSs is composed of systems that can reconfigure
themselves, which are referred to as self-reconfigurable systems (SRSs). The
availability of internal configuration ports, embedded in the logic fabric,
such as the Internal Configuration Access Port (ICAP) or the Processor
Configuration Access Port (PCAP; managed from an embedded hard pro-
cessor as in the case of Zynq devices, discussed in Section 3.3), allows

199Building Reconfigurable Systems Using Commercial FPGAs

self-reconfiguration to be easily carried out. Being a specialized hardware
block within the silicon, PCAP has two main advantages over ICAP: It is
available and ready to be used at any time (even at boot time, because it
does not need to be configured in the FPGA fabric), and there is no risk of
overwriting the logic that interfaces with the configuration logic.

Flash memory-based FPGAs are also capable of achieving both full and
partial reconfigurations. However, care must be taken with the number of
reconfigurations since flash memory contents cannot be rewritten too many
times. For instance, while flash memories may usually support 10,000–100,000
programming cycles; this figure is reduced to around 1,000 times for space-
qualified devices.

Applications requiring extensive reconfiguration should only be imple-
mented in SRAM-based FPGAs. Consider a low Earth orbit satellite for
marine observation, with several orbits per day, which is reconfigured for
image acquisition, processing, and identification while over the sea and
reconfigured again when over a reception station for data compression,
encryption, and transmission. A flash-based device could not be used for
more than a few months. With ASIC or nonreconfigurable technologies, both
groups of functionalities would be required to be permanently implemented
in the silicon. These problems can be overcome by using reconfigurable
technology.

SRAM-based technologies are, however, susceptible to suffer SEUs (i.e.,
bit-flips) not only in the application logic but also in the configuration logic.
Therefore, in some applications, ECCs, modular redundancy, and other tech-
niques must be used in order to minimize this problem. Some of these can
take advantage of reconfiguration capabilities, as discussed in Sections 8.4.1
and 8.4.3.

Granularity is another important aspect in partial reconfiguration, related
to the size of the functional elements that are reconfigured, both regarding
the reconfiguration needs of the application and the reconfiguration capa-
bilities of the devices:

•	 Large granularity corresponds to systems where complex IP cores
are replaced in the logic and, therefore, partial reconfiguration
affects large portions of the FPGA. There are devices where partial
reconfiguration can only be applied to a significant part of the FPGA
(e.g., one half), or others that use an approach based on slots, where
the FPGA is divided into several, normally identical, slots, each of
which can be reconfigured separately.

•	 Medium granularity corresponds to reconfiguration at register level,
which is typically used to modify functionality in a portion of an IP core.

•	 Small granularity refers to the reconfiguration of a small number of
configuration bits, typically affecting the values stored in an LUT,
the content of a flip-flop, or resources of similar complexity.

200 FPGAs: Fundamentals, Advanced Features, and Applications

For large and medium grain, reconfigurable regions (RRs) must be defined
such that different reconfigurable modules (RMs) may be allocated into them.
If a given RM is compatible with—may be allocated into—more than one RR,
then the RM is said to be relocatable. Relocation procedures are available in
the reconfiguration engines to address the corresponding RM configuration
information into the part of the configuration memory corresponding to the
target RR in each case.

Module relocation is a clear advantage in systems based on regular slots
since the same function may be allocated into different regions, providing
additional flexibility, a certain degree of fault tolerance (a function may be
moved from a faulty to a fault-free region), and memory footprint savings,
since just one bitstream is required to support all destinations, instead of one
for each possible destination.

One of the major problems associated to partial reconfiguration is how
to match the required reconfiguration granularity with that actually sup-
ported by the FPGA technology being used. The smallest reconfigurable
area in FPGAs depends on the manufacturer (manufacturing technology
and family of devices). Some FPGA families support column reconfigura-
tion; that is, the minimum reconfigurable unit is a column of LBs (defined
in Section 2.2). The problem with this solution is that when something has
to be changed even in just a single element, the entire column has to be
reconfigured. More recent families support rectangular reconfiguration,
where the portion being reconfigured does not necessarily have to span a
whole column.

The main benefits of disruptive—non-real-time—partial reconfiguration
are reduced configuration times and the possibility of silicon reuse, since the
same device can be used for different tasks. In addition to these, the added
benefits of using PRTRSs can be briefly summarized as follows:

•	 Enhanced performance and system updates because, while por-
tions of the system are being reconfigured, the rest can remain
operative. Hence, there is no loss of performance in the areas not
being reconfigured, at least in principle (it may be in those interact-
ing with parts being reconfigured). Also, system updates would in
principle only affect the areas where the updated functionality is
being configured.

•	 Hardware sharing, because in addition to the possibility offered by
full reconfiguration for several applications to share the same FPGA
(reducing size and cost), in this case, these applications can be exe-
cuted in parallel. This characteristic is gaining importance with the
increasing integration level of FPGA devices.

•	 Shorter reconfiguration time and lower reconfiguration energy
consumption, because partial reconfiguration requires smaller
(partial) configuration bitstreams than full-device reconfiguration.

201Building Reconfigurable Systems Using Commercial FPGAs

In this regard, it has to be noted that techniques that accelerate the
reconfiguration process at the expense of increasing instantaneous
power consumption usually result in overall energy savings.

•	 Reduced requirements for bitstream storage resources.

RTR has also some associated problems. Even though some FPGA vendors
claim they use suitable techniques so that run-time reconfiguring in their
devices in an area with the same configuration it had before is a glitch-less
operation, there are many restrictions derived from the atomic reconfigura-
tion unit that can be handled. For instance, if the content of a flip-flop has to be
modified, all flip-flop contents in the same column for a column-based recon-
figurable FPGA have to be modified. In order to do this, system execution has
to be stopped, a read-back operation has to be carried out to retrieve the con-
tents of all flip-flops in the same column, then the desired flip-flop value has
to be modified, and all flip-flops in the column have to be configured back.
This does not allow real RTR to be achieved, whereas if the atomic reconfigu-
ration unit were a single flip-flop, it would have been possible.

8.2.1 � Reconfigurable Architectures

There are many reconfigurable system models, most of them relying on the
use of microprocessors and reconfigurable fabric. According to Al-Hashimi
(2006) and Compton and Hauck (2002), there are several possible types of
coupling between both parts, as shown in Figure 8.1:

•	 External stand-alone, where the reconfigurable hardware is a fully
independent device connected to the inputs and outputs of the
microprocessor.

•	 Coprocessor unit or attached processor unit, where the reconfigurable
hardware is closer to the microprocessor than in the previous case.

Coprocessor Attached processing unit

CPU

FU
Cache

memories

Stand-alone processing unit
Workstation

I/O
interface

FIGURE 8.1 
Different integration levels of reconfigurable logic within a processor system.

202 FPGAs: Fundamentals, Advanced Features, and Applications

In the coprocessor approach, the reconfigurable hardware can
operate as a functional resource of the microprocessor itself. In the
attached processor solution, the reconfigurable hardware is accessed
after the cache memories, that is, in the secondary bus.

•	 Reconfigurable functional unit (FU), where the reconfigurable hard-
ware is embedded into the microprocessor. This structure is the
one that most easily allows custom instructions to be added to the
processor.

•	 Processor embedded in the reconfigurable hardware. In this case,
the processor may be either soft (analyzed in Section 3.2) or hard
(analyzed in Section 3.3).

8.3 � FPGAs as Reconfigurable Elements

The design of an FPGA-based PRTRS involves several issues that need to be
analyzed:

•	 Selection of a device supporting the target reconfiguration techniques.
Related to this, the partial reconfiguration possibilities offered by
some commercial FPGAs are described in Section 8.3.1.

•	 Logic partition of the device into fixed and reconfigurable areas so
that reconfigurable cores, stored as partial bitstreams, can safely be
allocated into suitable areas. The definition of this reconfiguration
architecture is important because (as stated in Section 8.2) the pro-
cess of matching the size of the reconfigurable areas with the target
reconfiguration granularity requires good knowledge of the inter-
nal FPGA architecture. Hardware partitioning issues are analyzed
in Section 8.3.2.

•	 Scalable architectures are a particular case where the resources may
grow or shrink in order to adapt functionality and/or performance
to changing requirements. They are addressed in Section 8.3.3.

•	 Partial reconfiguration requires, especially at run time, tool sup-
port for reconfiguring, adding, removing, or relocating pieces of
hardware into different areas of the fabric. In some cases, tools
have to run in embedded devices that autonomously handle their
own reconfiguration. Tools supporting partial reconfiguration are
described in Section 8.3.4.

•	 Communications between the microprocessor and the recon-
figurable element, or among several reconfigurable elements if
there are more than one, could be a bottleneck. In addition, the
coupling between all software and hardware tasks must fulfill

203Building Reconfigurable Systems Using Commercial FPGAs

specific communication requirements. Choosing a suitable com-
munication scheme is a challenge for an ASIC approach, but it
is even harder in reconfigurable environments, since communi-
cation requirements may be unknown until the communication
infrastructure is defined. Reconfigurable communications may be
a solution to solve the problem analyzed in Section 8.3.5, where
special attention is paid to NoCs and, more specifically, to recon-
figurable NoC approaches (described in Section 7.3.3).

8.3.1 � Commercial FPGAs with Reconfiguration Support

Altera’s Excalibur were the company’s first devices that allowed the whole
FPGA fabric to be dynamically configured from the on-chip hard processor
at any moment, by retrieving the corresponding bitstream from an external
nonvolatile memory. Later, some Altera devices started to provide limited
partial reconfiguration capabilities by allowing specific elements, such as
serializers/deserializers or PLLs, to be reconfigured. More recently, Altera V
devices (Stratix V, Arria V, and Cyclone V families) extended the support for
partial reconfiguration.

A different approach is used by Atmel’s FPGAs, which implement
PRTR through cache logic designs, where part of the FPGA fabric can be
reconfigured without loss of register data, while the remainder of the fabric
continues to operate without disruption. The main drawback of these—in
addition, small—FPGAs in this context is that the reconfiguration access
method is bit based, which requires very low-level reconfiguration control,
although it has the advantage of providing very high flexibility.

Most Xilinx SRAM-based FPGAs can be partially reconfigured. This is the
reason why they are used in the majority of applications where this feature is
required. Their configuration bitstream format allows a designer to modify
one or more configuration packets and perform partial reconfiguration by
accessing specific portions of the FPGA configuration memory. Each Xilinx
device family has different reconfiguration features:

•	 The low-cost Spartan 3 series supports the reconfiguration of entire
columns, including top and bottom I/O blocks. The first Spartan
3 family does not include an ICAP, and thus it is not well suited to
designing SRSs.

•	 All Xilinx high-performance FPGA families provide glitch-less
reconfiguration and include an ICAP. Virtex-II and Virtex-II Pro
families implement column-based reconfiguration, whereas in the
more recent families (Virtex-4, Virtex-5, and all Series 7 families:
Artix, Kintex, Virtex, Zynq, and UltraScale), reconfiguration frames
do not span entire columns, but several rows are associated with
clock domains that are horizontally laid across the FPGA layout.

204 FPGAs: Fundamentals, Advanced Features, and Applications

As for clock domains, frames for different families are of different
sizes (16 rows for Spartan-6, 20 for Virtex-5, 40 for Virtex-6, 50 for
Zynq and former series 7 devices, and up to 60 for UltraScale).

•	 Some devices have double ICAP support, which may be useful for
increased fault tolerance. Zynq devices have also a PCAP, controlled
from the processing system, in addition to the conventional ICAP.

Device improvements in this area are slow, mostly pushed by the research
community’s efforts in terms of architectures, tools, and applications.

8.3.2 � Setting Up an Architecture for Partial Reconfiguration

The selection of a suitable reconfigurable device is conditioned not only
by the aforementioned reconfiguration features and restrictions but also by
the internal architecture of the FPGA, which has to be analyzed from its
partition into three parts, namely, fixed and reconfigurable areas, described
in the following, and communication infrastructure, separately analyzed in
Section 8.3.5 because of its particular importance:

•	 The fixed area of the FPGA is the portion of the logic that does not
change in any configuration. It is normally devoted to external off-
chip communications, internal communication management, and
self-reconfiguration. It is typically placed in FPGA regions whose
irregularities prevent them from being mapped as reconfigurable
areas. For column-based FPGAs, these blocks are placed in the left-
most or rightmost sides of the FPGAs, and only I/O blocks close to
them are used for off-chip interconnects.

•	 The reconfigurable area must have a fixed position because of its
connections to the fixed area, but the logic inside it can be freely
reconfigured. Several architectures have been proposed with dif-
ferent numbers of reconfigurable areas with different sizes, but for
most column-based reconfigurable FPGAs, column-based reconfig-
urable areas are defined.

Some approaches define just one fixed area and one reconfigurable area, with
different sizes and geometries. There are also some slot-based approaches,
where the reconfigurable area is divided into equally sized portions of logic,
with the possibility for individual IP cores to be configured in each slot. In
many of these approaches, slots are column based, most of them follow-
ing a 1D organization, although others with a 2D organization also exist.
Figure 8.2 shows two examples of 1D and 2D partitions. A more generalized
approach, based on slotless reconfigurable areas of different shapes, is also
possible, at the expense of the possibility for relocating RMs in different RRs
being lost. However, since RRs may have dedicated interfaces for mutually

205Building Reconfigurable Systems Using Commercial FPGAs

exclusive functions, this approach can be considered as a replacement of
coarse-grained reconfigurable architectures.

An effective slot-based partition should take into account the possibility of
relocating an IP core into any slot position, being capable of handling cores
spanning through more than one slot, while still achieving RTR, if required.

It is common that FPGAs have some nonregular regions dedicated to
memory blocks, DSP blocks, embedded hard microprocessor cores, etc. In
this case, the slot partition is not trivial, and the compromise between recon-
figuration granularity and number of slots has to be solved.

Some examples of proposals from the research community in this area are
listed as follows:

•	 A platform for PRTRSs oriented to rapid prototyping of telecom-
munication routers and firewalls, called field-programmable port
eXtender (FPX), was proposed by Horta et al. (2002). It uses a two-
slot partition, which is connected through a ring network.

•	 The term slot for general 1D partitions was first used by Ullmann
et al. (2004). A 1D multislot architecture was proposed, which uses a
1-bit serial bus for communications in the first versions (Palma et al.
2002) and a NoC in the most recent ones (Moller et al. 2006).

•	 Another 1D approach is described by Walder and Platzner (2004),
where partial reconfiguration is performed in a fully transparent
way by using a so-called hardware OS.

•	 The influence on hardware reconfiguration as an OS task has also
been addressed by Becker et al. (2007), where hardware–software
multitasking needs are analyzed.

(b)(a)

External switch matrix

PLL PLLI/Os

PLL

FPGA

Interconnection logic

Slot
1,0

Slot
1,1

Slot
1,2

Slot
1,3

Slot
0,0

Slot
0,1

Slot
0,2

Slot
0,3

FPGA

Intracore
comm.

External
connections

PLLUnused I/Os

U
nu

se
d

I/
O

s

Interconnection logic

Fixed
area

Slot
1

Slot
2

Slot
3I/

O
s

FIGURE 8.2 
(a) 1D and (b) 2D architecture examples.

206 FPGAs: Fundamentals, Advanced Features, and Applications

•	 In the Erlangen slot machine (Bobda et al. 2005), local and shared
memory accesses and off-chip interconnections are solved by using
top and bottom I/O blocks of a 1D column-based partition approach.

•	 More recent developments follow 2D partition approaches, such
as the DRNoC approach (Krasteva et al. 2008), where a method to
implement partial reconfigurable partitions is presented and the
communication infrastructure is a reconfigurable NoC.

In addition to these architectures, which set up the basis for reconfiguration,
more versatile ones have more recently been developed. Among them, scal-
able architectures, described in the next section, the adaptive multithread
execution platform presented in Section 8.4.2, and the evolvable hardware
platform described in Section 8.4.3 are examples that deal with different con-
nectivity or reconfiguration grain.

8.3.3 � Scalable Architectures

Scalable systems are a particular case of architecture where resources can
be literally added or removed from the FPGA fabric in order to adapt it to
changing requirements, such as changes in execution performance, changes
in the functional complexity of the problem to be solved, or adaptation to
different energy budgets.

Scalability, in general, has always been pursued in digital electronic
designs. Designs that can be parameterized to be adapted to changing
requirements have existed for many years. For instance, any basic digital
electronics course addresses issues such as how larger decoders or MUXs
can be obtained from smaller ones. With “conventional” logic, these solu-
tions can only be applied at design time since logic cannot be later modified.
With reconfigurable systems, this parameterization becomes possible infield,
and some applications may benefit from it.

In the context of reconfigurable computing, the construction of 1D or 2D
scalable structures has the advantage of exploiting the following properties:
modularity, regularity, spatial locality, and parallelism:

•	 Modularity, that is, the partition of a design into smaller pieces,
simplifies the design process of the individual components of the
architecture. It also reduces reconfiguration times, since only the
blocks being replaced need to be reconfigured, so the overall recon-
figuration times for scaling up or down a design are shorter.

•	 Regularity is the property that enables real scalability. If the archi-
tecture allows for module relocation, regularity results in a decrease
in the amount of memory needed to store partial bitstreams, since
just a reduced set of them is required to build a more complex design
layout. Module relocation is of special importance for such property,

207Building Reconfigurable Systems Using Commercial FPGAs

and so, regular structures in the reconfigurable fabric are desired
whenever possible to increase regularity.

•	 Spatial locality must be enforced in order to obtain true scalability.
Variable-sized structures should not require variable connectiv-
ity and connections between nonneighboring modules should be
avoided. Only global signals such as clock and initialization signals
can be an exception. More importantly, the connection between the
“static” part and the scalable architecture should be implemented
in fixed positions and with fixed, predefined interfaces. An advan-
tage of spatial locality is that the system has more chances to achieve
high operating speed since short local distances are likely to result
in shorter propagation delays compared with nonregular structures
with no specific locality.

•	 Planning execution in the scalable architecture to exploit parallel-
ism in regular structures is also a very desirable feature. Pipelined,
systolic, or similar structures are computational schemes that may
allow the performance of the architecture to be maintained when
scaling up the design.

Consider, for instance, an FIR filter with a direct mapping architecture for
achieving high throughput. A pipelined variation of such structure, where the
design is split into slices, may be obtained by inserting additional registers into
the direct paths that propagate the signals. Every slice, consisting of a MAC
unit and an internal register, fulfills all of the earlier-mentioned requirements
for modularity, regularity, spatial locality, and parallelism, and thus, it becomes
a suitable solution for a scalable reconfigurable architecture. As a consequence,
it can provide excellent results in terms of throughput and performance.

While this example may be considered low- to medium-grain reconfigu-
ration, the layout in Figure 8.3 shows a larger-grain reconfigurable scalable
implementation of the deblocking filter stage of an H.264/AVC/SVC decoder,
proposed by Cervero et al. (2016). This stage corresponds to one of the most
computational-intensive tasks in the overall video decoding process, and as
such, it is worth being implemented in hardware. When doing so, it has to
be taken into account that the target video coding standard includes many
types of scalability—such as temporal or spatial—and it may be designed for
different resolutions, image sizes, and frame rates.

The architecture in the figure follows a 2D structure, where each process-
ing element (PE) is in charge of filtering the edges of a minimum coded unit
(MCU; each of the pixel squares all transformations—such as decompres-
sion or deblocking itself—are applied to). Deblocking effects affect the edges
of every MCU. They are minimized by filtering every edge-surrounding
border with different strengths, which may affect one, two, or three rows
and columns of pixels around every MCU. The process requires bidirec-
tional filtering—vertical and horizontal filters—to be performed, with data

208 FPGAs: Fundamentals, Advanced Features, and Applications

dependencies among the different directions. The architecture follows a
systolic approach, where MCUs are computed in diagonal wavefronts and
the computations are applied to horizontal image strips related to the size of
the scalable architecture. The resulting performance depends on the number
of PEs involved, with good linearity between the two factors until the I/O
element that links the module with the static part is saturated. Experimental
results showed that a variable number of PEs may satisfy the requirements
from simple images, such as QCIF resolution, to 4K (ultra-HD) ones at up to
60 fps (subject to the availability of enough PEs in all cases).

Another example of a scalable architecture featuring an evolvable hard-
ware system based on a variable-sized systolic array for image processing
applications is described in Section 8.4.3.

8.3.4 � Tool Support for Partial Reconfiguration

The complexity of partially reconfigurable systems requires the support
from tools to automate several designs and infield operation tasks. They can
be classified into the following categories:

•	 Tools to support design flows for generating partial reconfigura-
tion bitstreams. There are several commercially available solu-
tions integrated in the vendors’ proprietary tools. However, these

FIGURE 8.3 
Architecture of a scalable H.264/AVC/SVC deblocking filter.

209Building Reconfigurable Systems Using Commercial FPGAs

approaches are not flexible enough, in the sense that they do not
handle repetitive tasks in a friendly manner, they do not perform
any kind of bitstream manipulation, and deep partial reconfigura-
tion knowledge is required of users. Also, these tools do not help in
reconfigurable system simulation and debug.

•	 Tools to manipulate partial bitstreams so that a core can be placed
into any slot in the FPGA. Partial bitstream manipulation for core
relocation is a need for multislot-based architecture partitions. These
tools read a bitstream that corresponds to a core placed in a specific
slot position and produce another bitstream for another slot position.
There are many tools of this kind derived from the JBits application
(Guccione and Levi 1998), but since the application is Java based, it
is difficult to have these tools running on feature-restricted devices
such as embedded reconfigurable systems. However, the possibil-
ity of fine-grain reconfiguration by using low-level reconfiguration
functions—mainly for LUT modification and wire rerouting—
produces very complete and good results. Other tools that can run
without underlying JBits support may be executed with low CPU
cost on restricted embedded processors.

•	 Toolsets, which may also be embedded and packed as hardware-
aware OSs, to support RTR. Available commercial solutions seldom
cover the most basic tasks of programming and reading back con-
figuration files. Therefore, several academic solutions have been
adopted, from simple control systems implemented either in hard-
ware or in software running in the embedded processor to complete
hardware OS-based solutions. Furthermore, some solutions extend
already existing OSs, such as Linux.

Some recent approaches combine specific architectures and methods to
support partial reconfiguration in an efficient way:

•	 ReCoBus-Builder (Koch et al. 2008) is a tool chain that automates
the design of systems supporting dynamic partial reconfiguration
(DPR), focused on the implementation of communication infrastruc-
tures compatible with the run-time integration of partially recon-
figurable modules. The supported architectures follow 1D or 2D
models, allowing modules of different sizes to be stacked by attach-
ing RMs in contiguous reconfigurable elements that communicate
through either buses or point-to-point connections.

•	 OpenPR flow (Sohanghpurwala et al. 2011) is an alternative to the
partial reconfiguration flow from Xilinx, offering a similar func-
tionality. It is based on Torc (Steiner et al. 2011), which offers an
API to manage logic netlists in standard EDIF format and physical
details of these netlists in XDL or NCD formats (both from Xilinx)

210 FPGAs: Fundamentals, Advanced Features, and Applications

and allows bitstreams to be manipulated. By using Torc, OpenPR
automates the design of DPR systems by means of a set of scripts
that process user-provided XML input files. The tool implements
constrained placement and then uses a technique called “blocker
macros” to guide routing (placement and routing are described
in Section 6.2.3.3). After routing and full bitstream generation, a
partial bitstream for the reconfigurable module instantiated in a
reconfigurable area is obtained. Researchers from the same group
proposed an alternative to OpenPR, known as “Wires on Demand”
(Athanas et al. 2007), which supports reconfigurable run-time
intercommunications.

•	 GoAhead (Beckhoff et al. 2012) is an evolution of ReCoBus-Builder,
with a graphic interface and area estimation tools that facilitate floor-
planning. Routing is solved by using the aforementioned blocker
macros and relies on XDL for design support at physical level. Apart
from bus macros, direct wiring is supported, which allows fine-
grain reconfiguration to be exploited with no increased area over-
head. Wires crossing a border between two regions (reconfigurable
or static) are set to use specific wires in such a way that different
RMs exactly match the desired connectivity, with no additional
resource utilization. The design of the static system and the RMs
are independent processes in GoAhead. Module relocation is also
compatible with this flow.

8.3.5 � On-Chip Communications for Reconfigurable System Support

On-chip communications are an important challenge for all SoC designs,
but this problem is even more important for reconfigurable systems since the
communication needs may change, and may even be unknown, for future
hardware configurations. Therefore, scalable and flexible communication
structures are needed in this context.

Hardware tasks need to exchange data between them, as well as with off-
chip components. Usually, the fixed area of the internal FPGA architecture
partition is used for this last purpose. The communication infrastructure is
in charge of linking slots between them, as well as slots with the fixed area.
As for the ASIC intracommunication problem, buses and NoCs are the most
frequently implemented solutions.

Hardware tasks, wherever they are placed, have to be designed with
fixed-position connections. Many alternatives have been proposed in order
to increase the connectivity of modules. They allow either bus or point-to-
point connections to be used, providing access to a NoC infrastructure or
real point-to-point links.

The move from bus to NoC approaches has been followed also in the
reconfigurable system area. The number of slots for past FPGA technologies
was not high enough to justify, in most cases, the need for a NoC because

211Building Reconfigurable Systems Using Commercial FPGAs

buses are a simple and flexible solution for connecting a low number of cores.
However, as FPGA capacity increases, so does the number of cores that can
be implemented in a single device, and NoCs are a promising solution for
these larger systems.

NoCs in reconfigurable systems are typically associated with 2D FPGA
partitions (described in Section 8.3.2), with both regular meshes and hetero-
geneous networks being considered. Work is being conducted to verify the
possibility of reconfiguring not only the cores themselves but also the com-
munication infrastructure so that the available communication resources
can be made to fit the variable communication needs for just one given con-
figuration or for a different set of them.

The solution by Ullmann et al. (2004) has switch matrices that can be recon-
figured. The latest works on the Erlangen machine (Bobda et al. 2005) show
the use of a reconfigurable NoC, called DyNoC, which allows core grouping
and the network reconfiguration to bypass the portions of the NoC that are
used by the merging of two adjacent cores. The CoNoChi (Pionteck et al.
2006) and DRNoC (Krasteva et al. 2008) NoCs are more flexible solutions
since network interfaces and some parts of the routers can be modified.
DRNoC may reconfigure switch matrices, network interfaces, and routers’
parameters, enabling not only NoC communications but also a combination
of these with point-to-point connections and bus-based solutions.

8.4 � RTR Support

Reconfiguration at run time requires some elements to decide what, when,
and where reconfiguration is to be applied in order to add, remove, or replace
a given module with a different one. Run-time support has to make decisions
based on optimization criteria, such as performance maximization or reduc-
tion in energy consumption, while considering restrictions such as limited
resource availability or reconfiguration overhead. Since the problem is not
trivial, reconfiguration is managed by a program running on a processor,
either embedded (if self-adaptation is pursued) or external (using off-chip
communication channels).

It can be easily observed that there are similarities between handling soft-
ware tasks and hardware tasks in an OS. Both types of tasks can be loaded
or offloaded according to priorities in the execution, scheduling of tasks, or
resource-sharing restrictions. Therefore, research efforts have been devoted
to providing reconfiguration support for hardware task management at OS
level in a similar way as is provided by conventional OSs for software tasks.
The added complexity of reconfiguration-aware OSs is depicted in Figure 8.4.

All OS features related to software task execution are inherited by the
execution of hardware tasks, so the additional issues are related to solving

212 FPGAs: Fundamentals, Advanced Features, and Applications

the allocation of hardware tasks to deliver proper acceleration of multiple
tasks, coming either from a multicore system or from the concurrent execu-
tion of multiple tasks in a single core. Usually, accesses to reconfigurable
hardware accelerators rely on buses or similar structures, which need
to be shared among all hardware tasks, with associated bottlenecks to be
solved. Hardware task scheduling must also be determined since the pen-
alty incurred when reconfiguring hardware tasks must be accounted for to
determine execution efficiency and potential energy savings. Also, hardware
reconfiguration has an impact on bandwidth utilization within the structure.
Since partial bitstreams are prefetched from nonvolatile memory to a faster
one (such as an external DDRAM) to minimize reconfiguration time, it must
be taken into account that data required for task execution and bitstreams for
hardware reconfiguration might share internal paths.

All these problems might be solved with custom solutions. However,
it is possible to envisage layered structured approaches capable of address-
ing them in an efficient way. The structure in Figure 8.5 shows a six-layer
approach for applying reconfigurable computing in hardware-aware OSs:

	 1.	The application layer is in charge of communication and synchroni-
zation between tasks.

	 2.	The module layer manages partial bitstreams, including their
possible prefetching into faster intermediate memories.

	 3.	The scheduling layer determines the best candidate(s) to be set into
hardware, according to the available resources.

Conventional OS OS for
reconfigurable computing (OS4RC)

Necessary support for hardware
tasks

Hardware and software tasks
communicate with each other at a
peer level
Placement algorithms: where to
configure the hardware tasks in the
reconfigurable devices

Scheduling problem: which task has
to be configured and executed at a
certain scheduling point

Hardware designs need to be
configured into reconfigurable logic
before they can be executed

Manage software tasks

Hardware is normally hidden by the
HAL and software drivers

Placement problem appears only in
multicore systems, since software
tasks can run in parallel

Scheduling: which tasks are ready to
be selected for execution at different
scheduling points

Load software programs in the RAM
memory

FIGURE 8.4 
OS requirements for reconfiguration support.

213Building Reconfigurable Systems Using Commercial FPGAs

	 4.	The placement layer determines the best possible position for
a hardware task, according to intrahardware task connectivity
(if available), to the presence of faults in some RRs, or just to mini-
mize reconfiguration overhead.

	 5.	The configuration layer includes a reconfiguration engine that reads
the bitstream for a given task to be implemented in a given position
or relocates a task to the desired new placement and performs the
reconfiguration process.

	 6.	The hardware layer is the element supporting reconfiguration at
physical level. In the case of FPGAs, such support is provided by
their reconfiguration capabilities.

How much advantage can be taken from reconfiguration capabilities is
directly linked to how efficient the reconfiguration management is. External
managers providing remote reconfiguration mechanisms are usually asso-
ciated to low reconfiguration rates, whereas the most interesting and chal-
lenging situations appear when the reconfiguration capabilities of a system
are self-managed. Self-managing systems are described in Section 8.4.1,
highlighting the possibilities and added value a system may get from the
addition of reconfiguration technology at different levels. In Section 8.4.2, an
example is presented on how dynamic reconfiguration may impact a mul-
tithread execution-capable architecture by adapting it to different levels of
execution performance, fault tolerance, or energy consumption.

8.4.1 � Self-Managing Systems

Self-management refers to the ability of systems to manage themselves
according to high-level objectives, reducing external intervention. This term

Layered structure

Application layer

Module layer

Scheduling layer

Placement layer

Configuration layer

Hardware layer FPGA and a GPP

Configuration of tasks in the reconfigurable logic.
Hardware tasks relocation

Where to configure the hardware tasks in the device?

To decide which task has to be configured and
executed at a certain scheduling point?

Efficient management of modules in the system:
reuse hardware tasks and prefetch

Tasks communication mechanisms and
synchronization primitives

OS for
reconfigurable computing (OS4RC)

FIGURE 8.5 
Layered structure for RTR.

214 FPGAs: Fundamentals, Advanced Features, and Applications

is equivalent to self-adaptable or autonomic computing, according to the terminol-
ogy coined by Paul Horn (Kephart and Chess 2003). According to the Oxford
Dictionary, adaptation in biology is the process of change by which an organism
or species becomes better suited to its environment. In the same way, generalizing
the definition for self-adaptive software by Salehie and Tahvildari (2009), a
self-managing system can be defined as one that adjusts various artifacts or
attributes in response to changes in itself or in its context.

In the end, the goal of self-managing systems is to reduce human intervention
in the management of the system, which is a very important burden (some-
times even higher than the initial cost) in current, increasingly complex and
ubiquitous computing infrastructures. Self-managing systems would allow
complexity to no longer be considered as the main system limitation, as it is
today. The ideal situation would reduce human intervention to the definition
of high-level goals and policies. In fact, the self-managing concept includes sys-
tem integration, installation, configuration, tuning, and maintenance, among
other tasks. To succeed in these, a self-managing system should be capable of
not only dealing with changing components, workloads, and demands but
also adapting to changing external conditions, including malicious attacks
against hardware or software. Following the aforementioned Horn’s termi-
nology, responses to these events are required to be not only automatic but
also autonomic. Again from Oxford Dictionary, autonomy is the right or con-
dition of self-government, which is shown by those systems that are freed from
external control or influence. In fact, this term was selected as a reference to the
autonomic nervous system. In the case of humans, this system controls some
vital body parameters, such as temperature or heart rate, without expending
conscious brain capabilities, which remain available to carry out emotional
processes, either rational or irrational, such as decision-making.

Features required from autonomic computing systems are also called the
self-* properties. Kephart and Chess (2003) discern four main properties:

	 1.	Self-configuration, which is the seamless configuration of compo-
nents and systems according to predefined rules and goals, triggered
by changes in the environment. Since those changes are dynamic, so
has to be the configuration. Moreover, in most cases, system services
cannot be disrupted during reconfiguration. Therefore, the impor-
tance of reconfigurable hardware for autonomic systems can be
clearly noticed.

	 2.	Self-optimization, through continuous exploration of ways for per-
formance and resource utilization to be optimized, in order to iden-
tify the best possible combination of system parameters. This feature
mainly moves the onus from design time on to operating time, not
only to evolve from static to dynamic behavior but also from reactive
to proactive systems, which are capable of anticipating and foresee-
ing changes.

215Building Reconfigurable Systems Using Commercial FPGAs

	 3.	Self-healing, which consists in detecting, diagnosing, and repairing
system disruptions and failures, in order to maximize dependabil-
ity. Fault prediction and prevention tasks are included here.

	 4.	Self-protection, understood as a set of countermeasures for the
system to defend against malicious attacks, as well as against bugs
not fixable by self-healing mechanisms. To the extent possible, self-
protection should also work in a predictive way.

Around these fundamental ones, many other “self-*” properties have been
identified, such as self-governing, self-organizing, self-diagnosis, or self-
recovery. A clear requirement is therefore for systems to be capable of con-
tinuously acquiring information about themselves and their environment
through self-monitoring. In other words, self-awareness and context aware-
ness mechanisms are required.

The combination of self-management techniques with the flexibility offered
by dynamic and partial reconfiguration opens up new research opportuni-
ties (Santambrogio 2009). On one hand, adding reconfigurable hardware to
a self-managed system introduces an extra degree of freedom. Hence, hard-
ware becomes a dynamic component that can be tuned to contribute to the
fulfillment of the overall system specifications. On the other hand, adding
self-management capabilities to a reconfigurable system allows the inherent
complexity associated with the design and run-time management of these
types of systems to be reduced.

Autonomic systems offering all the features described earlier are still a
chimera. There is a long way ahead to achieve such a degree of autonomy.
Meanwhile, Steiner and Athanas (2009) proposed a classification of systems
according to their level of autonomy. Although oriented to aerospace sys-
tems, it also serves as a general roadmap to guide the evolution of this tech-
nology. Their classification is organized into the following levels:

•	 Level 0: No autonomy at all. The designer is the only person
responsible for updating the system, whereas this is completely
passive, without any knowledge about reconfiguration issues.

•	 Level 1: Systems have some (limited) reconfiguration-related infor-
mation, including resource utilization and free area. They are even
capable of creating simple connections between RMs. The 1D slot-
based approach is the typical model at this level.

•	 Level 2: Systems are capable of placing and routing their own netlists
that, once processed, can be configured according to an internal
model. In this case, architectures are more efficient and sophisti-
cated than slots.

•	 Level 3: Synthesis is also an autonomic system feature, and therefore,
component descriptions can be behavioral, which implies a huge
reduction in the associated engineering costs.

216 FPGAs: Fundamentals, Advanced Features, and Applications

•	 Level 4: Self-awareness features are included in the system, which at
this level is capable of detecting and monitoring conditions of inter-
est, but not of responding to them.

•	 Level 5: A response library is available within the system, gathering
possible responses to observed events. The library may be shared
with and augmented by other systems.

•	 Level 6: Systems are capable of applying responses, by synthesizing
and implementing the behavior corresponding to expected results.
Hence, responses are increasingly complex.

•	 Level 7: Systems are capable of extending and adapting response
libraries, by inferring required behavior from detected conditions.
In other words, systems can apply some computational intelligence
techniques to reconfiguration-related tasks.

•	 Level 8: Systems are capable of learning and, in this way, deciding if
applied changes are satisfactory. If yes, they are introduced in the
response library.

The state of the art is far from providing systems efficiently covering all
these levels, and in addition, not all applications fit in one or another of them.
There is a lot of room for new developments in this area, but, undoubtedly,
reconfigurable devices are well suited to addressing different levels of adap-
tation in autonomic system design.

8.4.2 � Adaptive Multithread Execution with
Reconfigurable Hardware Accelerators

As discussed in Section 6.5, the need for higher performance in embedded sys-
tems is demanding the use of languages, such as CUDA or OpenCL, allowing
designers to take advantage of all possible parallelism that can be identified
in algorithms. Traditionally, these algorithms have been implemented in mul-
ticore systems or GPGPUs, but FPGAs are also suitable platforms for them.

The parallelism between the programming model, the memory model,
and the architecture model allows the design to be implemented in a fixed
number of CUs, each one consisting of a fixed number of PEs such that every
single work-item/thread is executed in a dedicated PE, so a set of PEs may
share local memory in the CU bundling them. CUs exchange data with
external memory for memory-intensive tasks. The scalability provided by
the independent execution of work-groups/thread blocks in CUs allows the
kernel execution to be mapped into any arbitrary number of CUs.

Let us elaborate more on the terms “fixed number of CUs” and “fixed
number of PEs per CU.” A reconfigurable architecture may accommodate
an arbitrary number of CUs, so it may ideally support an arbitrary number
of hardware accelerators. In such a system, the execution platform of a given
kernel can be chosen or modified at run time.

217Building Reconfigurable Systems Using Commercial FPGAs

There are two main advantages to this approach: First, the program
running in the host does not depend on the way the execution of the kernels
is distributed among a variable number of CUs. Second, performance and
energy consumption are a direct function of how many resources are avail-
able in the system and the execution requirements set for the different tasks
at run time.

As one might guess, the higher the number of accelerators, the higher
the power consumption. However, acceleration reduces computing time, so
eventually energy savings may be obtained. This advantageous trend may
persist up to the point memory access bandwidth is saturated. For a cer-
tain number of hardware accelerators, memory transfers will use memory
interfaces at their full capacity. From that point, no further improvement will
result from the use of additional accelerators, but overall consumption and
execution time will increase instead.

From the reconfigurable system viewpoint, module replication is a selec-
tive way to set different operation modes in a system. For instance, if, instead
of assigning different tasks to different CUs, the same tasks are assigned to
two or three CUs, advantage can be taken from module replication to build
dual modular redundancy (DMR) or triple modular redundancy (TMR) con-
figurations targeting increased fault tolerance. Little modifications would be
required on the way data are delivered to the CUs, with the exception of the
need for a comparator or a voter, which may be included at memory transac-
tion level (when writing results from the CUs into memory).

In summary, in a reconfigurable architecture, the combination of vari-
able operation points, energy consumption tuning, and performance-fault
tolerance trade-offs is enabled by appropriate reconfiguration manage-
ment. One such architecture, called ArtiCo3, is proposed by Valverde et al.
(2014). Figure 8.6 shows the main components of this architecture, which are
described in the following:

•	 Host processor: Contrary to the general approach followed by CUDA
or OpenCL in the context of HPC systems, which considers host
and device as separate entities, in the context of embedded hard-
ware acceleration, they may be placed together in the same device.
The host is the embedded processor (single or multicore) running
the application code(s) that requires kernels to be accelerated in
hardware.

•	 Resource manager: It is the module in charge of finding the opera-
tion point depending on both internal and external conditions.
It schedules the use of resources to work within the different opera-
tion modes supported by the architecture.

•	 Data shuffler: It is the module in charge of data transactions with
the reconfigurable kernels. The way data are delivered to and taken
from them depends on the operation mode defined by the resource

218 FPGAs: Fundamentals, Advanced Features, and Applications

manager. Data collection is complemented by a voter that checks for
discrepancies among blocks operating in either DMR or TMR con-
figurations, generates a congruent output, and reports errors to an
optional fault management module.

•	 CUs: Each work-group/thread block is mapped into a CU, which
contains a wrapper module to interface with the static distributed
logic, memory, and register interfaces to exchange data between the
static region and/or global memory (on the static side) and a multi-
bank memory (serving as local memory for the work-group/thread
block) and configuration and control registers (on the CU side).

•	 Reconfiguration engine: It includes the controller of the ICAP, man-
aged from the resource manager.

•	 Interfaces with external components and memory controllers: Memory
transactions are optimized by the use of full versions of the AXI4
bus (described in Section 3.5.1.3) such that utilization of the external
RAM bus as close to maximum as possible is achieved.

The resource manager is the brain of the architecture, which can be analyzed
at two different levels. At the first level, operating points are determined
according to three parameters: consumption, computation, and dependabil-
ity needs. The actual value of each one of these parameters depends on both
external and internal conditions. For instance, in a platform whose archi-
tecture is customized for wireless high-performance distributed networks,

Mem Mem Mem Mem Mem

Thread block Thread block Thread block Thread block Thread block

Static region
Dynamic region

External
memory

controllers

D
at

a b
us

Control bus

I/OReconfiguration
engine

Data shuffler
Voter

Reducer

DMA
engine

Resource
manager

Host
µP

Local
memory

Communications

FIGURE 8.6 
Dynamically reconfigurable architecture for multithread acceleration. Each CU (bottom of the
figure) executes several threads within each dynamically reconfigurable hardware accelerator.

219Building Reconfigurable Systems Using Commercial FPGAs

the main conditions to be evaluated are battery level, current consumption
per power rail, radio messages, or number of faults detected. With three
parameters being considered, the solution space is a surface within a cube
whose axes represent pure solutions for fault tolerance, security, and accel-
eration, respectively.

At the second level, the resource manager works as a task scheduler orga-
nizing the tasks demanded by the host. To achieve an intelligent use of
available resources, it has to make decisions about what kernels to invoke,
the number of blocks per kernel working in parallel, the number of work-
items/threads per work-group/thread block, and the amount of information
to be delivered.

Figure 8.7 shows two graphs that illustrate the dynamic adaptation pos-
sibilities of this architecture (Rodriguez et al. 2015). They show energy
versus execution performance and energy savings versus number of accel-
erators, respectively, for an AES-256 encryption algorithm with variable
fault tolerance (simplex, DMR, or TMR) and different work-items/threads
per work-group/thread block. Both the number of accelerators and the
fault tolerance structure can be dynamically configured, whereas the
number of PEs per CU has to be decided at design time, since an HLS syn-
thesis process is required to obtain the relocatable partial bitstream with
the hardware elements of a CU.

Many embedded control systems are very demanding in terms of depend-
ability, performance, and power budget requirements. In addition, these
requirements may vary over time, as implied in the satellite example in
Section 8.2. Therefore, dynamic adaptation is crucial. The application code
can be configuration agnostic, whereas the resource manager can coordinate
with context-aware functions to determine the best configuration at each
moment.

The ARTICo3 architecture may allow a parallel kernel invocation method
to be implemented, which would launch parallel work-groups/thread blocks
in a variable number of accelerators as they are progressively being recon-
figured, measure execution time for a work-group/thread block in just one
accelerator, feed this measurement back for more precise time prediction, or
decide the optimal number of blocks in order to satisfy a deadline.

8.4.3 � Evolvable Hardware

Evolvable systems, as its name correctly evokes, may autonomously decide
to generate new designs, in response to changes in the functional specifica-
tions, external conditions, or the system itself (for instance, the presence of
faults). They reach high levels of autonomy in the classification from Steiner
and Athanas (2009) included in Section 8.4.1. Evolvable systems are a type
of bioinspired systems, in the sense that they imitate the evolution of spe-
cies, capable of adapting generation by generation to changing conditions,
increasing their survivability.

220 FPGAs: Fundamentals, Advanced Features, and Applications

(a)

(b)

X: 13
Y: 6.069

X: 26
Y: 4.815

Simplex 1 work-item per work-group
DMR 1 work-item per work-group
TMR 1 work-item per work-group
Simplex 2 work-items per work-group
DMR 2 work-items per work-group
TMR 2 work-items per work-group

Simplex 1 work-item per work-group
DMR 1 work-item per work-group
TMR 1 work-item per work-group
Simplex 2 work-items per work-group
DMR 2 work-items per work-group
TMR 2 work-items per work-group

5 10

0

40

Bus occupancy: 95.86%

30

20

En
er

gy
 (m

J)

10

5

0

35

25

15

10 20 30 40 50
Execution time (ms)

60 70 80 90

15 20 25 30 35 40
#Accelerators

8

7

6

5

4

3

2

1

0

En
er

gy
 sa

vi
ng

s

Memory-bounded execution

2.5 MB in 6.554 ms (381.45 MB/s)
400 MB/s at 100 MHz (32-bit words)

FIGURE 8.7 
Space exploration graphs: (a) performance vs. energy for variable number of accelerators and
redundancy mode and (b) maximum energy savings vs. number of accelerators.

221Building Reconfigurable Systems Using Commercial FPGAs

The inspiration in biology is taken up to the point that circuit modifications
are originated by changes in an associated “chromosome” that describes
the structure and/or functionality of the circuit. Chromosome changes
are produced by genetic operators, such as mutations from the parents’
chromosomes or crossover of two (or more) chromosomes. Species evolve
because their fittest individuals survive better. Their offspring are supposed
to inherit the “good and bad” characteristics of parents, and, again, those who
are better suited to survive or who perform better according to some required
characteristics (for instance, running faster, being stronger, or flying longer)
will iteratively produce generations better suited to their environments.

If this concept is generalized and applied to hardware, we may think in
terms of an evolutionary loop that results in circuits mapped according to a
“modifiable” chromosome, improved by selecting those that, after an evaluation
process, are identified to be better suited to perform a given task. The evaluation
process is carried out by putting the proposed circuit to work and use a “qual-
ity” function—called fitness function—to determine, in a quantifiable manner,
some specific characteristics of the circuit such as performance or proximity to a
“golden” solution. A “soft” metric* is required so that the evolutionary loop may
gradually converge and come up with an individual (a circuit) with the target
behavior. For instance, for a marathon runner, it could be the time needed to
complete the race, whereas for a weightlifter, it could be the lifted weight.

The determination of a suitable fitness function is not always evident. For
the former examples, the target would be to minimize time or maximize
weight, respectively. But how to extrapolate this to circuits? Miller (2011)
designed combinational circuits by evolutionary techniques using a fitness
function that measures the number of correct outputs generated by each cir-
cuit. If we consider, for instance, a four-input combinational circuit, which
has 16 different input combinations, the goal is to select circuits reaching a
fitness value of 16, that is, those among all generated circuits that fully com-
ply with the expected functionality.

This technique, however, cannot be generalized for much larger circuits
because the complexity of the design and the huge space of possibilities
would render the evolutionary process very slow. For large circuits, however,
some custom functions have shown to be appropriate for specific designs. In
these cases, the fitness functions evaluate the similarity of the output com-
ing out from the proposed circuits with respect to the expected output. For
instance, in image denoising applications, an evolved circuit might be eval-
uated by feeding it with a noisy image (resulting from adding predefined
amounts of certain noise types to a known noise-free image) and comparing
the image generated at the output with the noise-free one. Fitness functions
could then be based on metrics such as peak signal-to-noise ratio or struc-
tural similarity index.

*	 Here “soft” means the metric cannot be a “yes or no” function, but one whose result indicates
how far or close the circuit is from the golden behavior.

222 FPGAs: Fundamentals, Advanced Features, and Applications

Evolution must be generalizable. This means that, after the training pro-
cess, the resulting circuit must achieve its expected function for any other
input different from the one used for training. Figure 8.8 illustrates different
evolutions of an image filtering and processing circuit (Salvador et al. 2013).
Each row shows the image the circuit was trained with, the resulting image
after an evolutionary run, and the reference image for the training, as well
as a different input image and the result of applying to it the functionality
provided by the evolved circuit. Results show that the circuit is generalizable
in that it can be adapted to different functions and its behavior is preserved
for different input images:

•	 The first row highlights the good behavior of the circuit for salt-and-
pepper (S&P) noise.

•	 The second row shows it also performs well for burst noise affecting
several consecutive pixels.

•	 The third row demonstrates its adaptability to a different problem.
If the reference image is set to be the edge of the input image, the
circuit evolves to perform edge detection.

•	 Finally, the fourth row shows that the circuit can evolve to combine
noise elimination and edge detection features.

S&P
noise

Burst
noise

Edge
detect

S&P +
edge

Training Result Reference Input Output

FIGURE 8.8 
Adaptation and generalization of an evolvable systolic array for image processing.

223Building Reconfigurable Systems Using Commercial FPGAs

The case in the third row deserves special attention. The reference image
may have been obtained with any software-based edge detection algorithm
(for instance, a Sobel filter). The evolution process came up with a circuit
performing the same function, so it can be stated that a hardware circuit
has been created, with no external intervention, from a software specifica-
tion. It can be then concluded that evolution is useful not only for generating
circuits but also for accelerating some parts of a system by moving them
from software to hardware.

Figure 8.9 shows the architecture of the system achieving these results,
which relies on the use of dynamic and partial reconfiguration. The recon-
figurable portion of the architecture is a systolic array, consisting of a 4 × 4
matrix of tiny PEs, each of them capable of performing simple functions based
on basic operators, such as adders or subtractors, with or without saturation,
shift operations, or maximum/minimum functions. Each PE takes values
from the upper or left sides (or both) and provides its results to the lower
and right sides. The arbitrary composition of several PEs in the array allows
the system to be adapted to different functionalities. Inputs to the systolic
array are taken from a 3 × 3 pixels sliding window that moves all along the
image. The pixel coming out of the array is placed in the central position of
the window. The inputs of the array are taken from the moving window in
an arbitrary way, decided by evolution, using a set of MUXs whose control
signals are driven as specified in the circuit’s chromosome. The output of
the array is selected by another MUX whose control signal is also generated
by evolution.

External DDR2
memory

Memory
controller

Fast link
HWICAP

PLB bus

FPGA

Reconfiguration
engine

MicroBlaze

Evolutionary
algorithm

Memory

Reference
memory

Input
memory

Training
memory

Fitness

Reconfigurable
core Evaluation

FIGURE 8.9 
Components of an evolvable architecture.

224 FPGAs: Fundamentals, Advanced Features, and Applications

The chromosome of the circuit is proposed by an evolutionary algorithm
executed in a MicroBlaze soft processor. From this chromosome, a reconfigu-
ration engine allocates the required PEs into the corresponding array posi-
tions. In order to achieve higher reconfiguration speed, PEs are available in
RAM after having been copied from an external library stored in nonvolatile
memory. Since PEs are relocatable, the reconfiguration engine can allocate
into any array position. In this way, only one copy of each PE needs to be
stored in the library.

The array is fed with an input image for training. Then, output pixels
are compared with those of the reference image, and the sum of absolute
errors is used as fitness function. The evolutionary algorithm fetches this
value and identifies the best candidate among the offspring of the genera-
tion under evaluation (the one with the lowest fitness value), and a new
candidate solution is selected. A mutation of the selected candidate’s chro-
mosome is done by changing some genes and replacing them by a random
value. This is repeated for each new candidate. Mutation rates—percentage
of genes to be changed—and offspring size must be adjusted to achieve
good results. Diversity is key to achieving a good design space exploration,
so several evolutions can be performed in parallel, not to get stuck in local
minima.

There is, however, a very important issue to be considered when evolution
is carried out in the same reconfigurable fabric that will be used for normal
operation: If the fabric has a fault (even a permanent one), the system can
evolve to circumvent it and provide improved fitness results despite its pres-
ence. By re-evolving a circuit after a fault is produced, alternative candidate
solutions may be found that operate correctly in the presence of the fault.
This provides the system with self-healing capabilities, which can be very
important for fault-tolerant systems. Self-adaptation against faults is a natu-
ral property of such evolvable systems, referred to as intrinsically evolvable
systems.

Adaptation to faults may be combined with other fault tolerance tech-
niques in order to improve the survivability of the system. The combina-
tion of three evolvable systems in a TMR structure with a voting connected
to their outputs may completely override the effect of a fault in any of the
three elements, since the two nonfaulty ones will impose the result. In addi-
tion, evolution may allow the faulty module to achieve again a nonfaulty
behavior, thereby minimizing the probability of fault accumulation, which
could jeopardize correct functionality if faults are present in more than
one module. Figure 8.10 shows the evolution of a faulty module trained by
following the functionality of a fault-free one. The evolutionary algorithm
has the objective of minimizing the differences between the fault-free cir-
cuit and the circuit under evolution. If, after some runs, the fitness function
reaches a value of zero, it can be concluded that the formerly faulty module
fully recovered from the fault and full TMR operation has therefore also
been recovered.

225Building Reconfigurable Systems Using Commercial FPGAs

Gallego et al. (2013) analyzed the scalability of the systolic array discussed
earlier. It is possible to scale up and down the size of the array—in one or both
dimensions—in order for the system to be adapted to variable-complexity
problems. Also, scalability may be used to increase resource utilization
in order to overcome the effects of an increasing number of accumulated
faults. An example of additional fault tolerance by means of scaling up and
re-evolution is shown in Figure 8.11. After a first evolution up to a certain
fitness value, a threshold value is set to determine the conditions under
which scaling up the circuit is required. It can be seen that the system may,
in this case, support the occurrence of three random faults without going
over the threshold value. However, after the fourth fault is injected, it does
not recover anymore. By scaling up one dimension, the system still does
not recover, but after scaling up in the other dimension, the fitness value
gets into an acceptable range; actually, it even gets better results than at the
beginning since more resources are now available, allowing the occurrence
of two more faults to be supported without reaching the threshold value.
In brief, the figure shows that adding an extra row and column results in
the system being capable of supporting up to six accumulated faults. The
additional resource utilization is much better than in a conventional TMR
approach. Of course, the evolutionary algorithm and the processor that runs
it are a critical part of the recovery process, so they should be hardened if
the system has strict fault tolerance requirements.

5,
00

0

10
,1

00

15
,2

00

20
,3

00

25
,4

00

30
,5

00

35
,6

00

40
,7

00

45
,8

00

50
,9

00

56
,0

00

61
,1

00

66
,2

00

71
,3

00

76
,4

00

81
,5

00

86
,6

00

91
,7

00

96
,8

00

10,000

100,000

1,000,000

Generations

Fi
tn

es
s

Recovery from
fault

Re-evolution
by imitation

Fault
injected

TMR with recovery by imitation

FIGURE 8.10 
Self-healing of a TMR structure through “re-evolution by imitation” of the faulty module.

226 FPGAs: Fundamentals, Advanced Features, and Applications

In general, scalable reconfigurable systems aim at providing adaptability
to variable-complexity problems through modular architectures that, by iter-
atively adding the same module, may adapt to variable performance require-
ments. Modularity is achieved by providing local connectivity, and in many
cases (e.g., the system analyzed in Section 8.3.3), performance increases lin-
early with size. On top of that, local connectivity may also achieve higher
operating frequencies, since local interconnections are faster than long-
distance wiring.

To give some additional insight about the performance these solutions
may achieve, some more data regarding this particular systolic array can be
considered:

•	 It is capable of operating at frequencies over 450 MHz on Virtex-5
devices, a figure difficult to obtain even for regular nonreconfigu-
rable midsized designs. This is mainly due to the fact that the PEs
used are very simple, fitting in just 2 Virtex-5 LBs.

•	 Since systolic operation generates an output pixel in every clock
cycle, the circuit may operate at over 450 Mpixels/s, with additional
latency but no speed degradation if array size is increased.

•	 The combination of a fast reconfiguration engine with several arrays
operating in parallel allows more than 80,000 evaluations/s to be
achieved, as shown by Mora et al. (2015).

•	 All this results in systems that, after 3–5 s of evolution time, pro-
duce high-quality, high-speed, fault-tolerant image processing
circuits.

0 100,000
10,000

100,000

1,000,000

200,000 300,000 400,000 500,000

Generation

Fi
tn

es
s

Fault 1Fault 2 Fault 3 Fault 4 Fault 5 Fault 6
Evolution with accumulated faults and scaling strategy

Scale to 4 × 5 Scale to 5 × 5

FIGURE 8.11 
Increased self-healing properties by combining scalability and re-evolution.

227Building Reconfigurable Systems Using Commercial FPGAs

References

Al-Hashimi, B.M., ed. 2006. System-on-Chip: Next Generation Electronics. IET Press,
London, U.K.

Athanas, P., Bowen, J., Dunham, T., Patterson, C., Rice, J., Shelburne, M., Suris, J.,
Bucciero, M., and Graf, J. 2007. Wires on demand: Run-time communication
synthesis for reconfigurable computing. In Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL 2007), August 27–29,
Amsterdam, the Netherlands.

Becker, J., Donlin, A., and Hubner, M. 2007. New tool support and architectures
in adaptive reconfigurable computing. In Proceedings of the IFIP International
Conference on Very Large Scale Integration 2007, October 15–17, Atlanta, GA.

Beckhoff, C., Koch, D., and Torresen, J. 2012. Go ahead: A partial reconfigura-
tion framework. In Proceedings of the 2012 IEEE 20th Annual International
Symposium on Field-Programmable Custom Computing Machines, (FCCM 2012),
April 29–May 1, 2012, Toronto, Ontario, Canada, pp. 37–44.

Bobda, C., Majer, M., Ahmadinia, A., Haller, T., Linarth, A., and Teich, J. 2005. The
Erlangen slot machine: Increasing flexibility, in FPGA-based reconfigurable
platforms. In Proceedings of the 2005 IEEE International Conference on Field-
Programmable Technology, December 11–14, Singapore.

Cervero, T., Otero, A., López, S., de la Torre, E., Callicó, G.M., and Riesgo, T. 2016.
A scalable H.264/AVC deblocking filter architecture. Journal of Real-Time Image
Processing, 12(1):81–105.

Compton, K. and Hauck, S. 2002. Reconfigurable computing: A survey of systems
and software. ACM Computing Surveys, 34:171–210.

Gallego, A., Mora, J., Otero, J., de la Torre, E., and Riesgo, T. 2013. A scalable evolvable
hardware processing array. In Proceedings of the 2013 International Conference on
Reconfigurable Computing and FPGAs (ReConFig 2013), December 9–11, Cancún,
Mexico.

Guccione, S.A. and Levi, D. 1998. XBI: A Java-based interface to FPGA hardware.
In Proceedings of SPIE, Configurable Computing: Technology and Applications,
Vol. 3526, Boston, MA, pp. 97–102.

Horta, E.L., Lockwood, J.W., Taylor, D.E., and Parlour, D. 2002. Dynamic hardware
plugins in an FPGA with partial run-time reconfiguration. In Proceedings of the
39th Design Automation Conference, June 10–14, New Orleans, LA.

Kephart, J.O. and Chess, D.M. 2003. The vision of autonomic computing. Computer,
36:41–50.

Koch, D., Beckhoff, C., and Teich, J. 2008. ReCoBus-Builder—A novel tool and tech-
nique to build statically and dynamically reconfigurable systems for FPGAs.
In Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL 2008), September 8–10, Heidelberg, Germany.

Krasteva, Y.E., de la Torre, E., and Riesgo, T. 2008. Virtual architectures for partial
runtime reconfigurable systems. Application to Network on Chip based SoC
emulation. In Proceedings of the 34th Annual Conference of the IEEE Industrial
Electronics Society (IECON 2008), November 10–13, Orlando, FL.

Miller, J.F. 2011. Cartesian Genetic Programming, Natural Computing Series 2011.
Springer.

228 FPGAs: Fundamentals, Advanced Features, and Applications

Moller, L., Soares, R., Carvalho, E., Grehs, I., Calazans, N., and Moraes, F. 2006.
Infrastructure for dynamic reconfigurable systems: Choices and trade-offs.
In Proceedings of the 19th Annual Symposium on Integrated Circuits and Systems
Design, August 28 to September 1, Ouro Preto, Brazil.

Mora, J., Otero, A., de la Torre, E., and Riesgo, T. 2015. Fast and compact evolvable
systolic arrays on dynamically reconfigurable FPGAs. In Proceedings of the
10th International Symposium on Reconfigurable Communication-Centric Systems-
on-Chip (ReCoSoC), June 29 to July 1, Bremen, Germany.

Palma, J.C., de Mello, A.V., Moller, L., Moraes, F., and Calazans, N. 2002. Core com-
munication interface for FPGAs. In Proceedings of the 15th Annual Symposium
on Integrated Circuits and Systems Design, September 9–14, Porto Alegre, Brazil.

Pionteck, T., Koch, R., and Albrecht, C. 2006. Applying partial reconfiguration to
networks-on-chips. In Proceedings of the 16th International Conference on Field-
Programmable Logic and Applications, August 28–30, Madrid, Spain.

Rodriguez, A., Valverde, J., Castanares, C., Portilla, J., de la Torre, E., and Riesgo,
T. 2015. Execution modeling in self-aware FPGA-based architectures for effi-
cient resource management. In Proceedings of the 10th International Symposium
on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC), June 29 to
July 1, Bremen, Germany.

Salehie, M. and Tahvildari, L. 2009. Self-adaptive software: Landscape and research
challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(14):1–42.

Salvador, R., Otero, A., Mora, J., de la Torre, E., Riesgo, T., and Sekanina, L. 2013. Self-
reconfigurable evolvable hardware system for adaptive image processing. IEEE
Transactions on Computers, 62:1481–1493.

Santambrogio, M.D. 2009. From reconfigurable architectures to self-adaptive autonomic
systems. In Proceedings of the International Conference on Computational Science and
Engineering (CSE 2009), August 29–31, Vancouver, British Columbia, Canada.

Sohanghpurwala, A.A., Athanas, P., Frangieh, T., and Wood, A. 2011. OpenPR: An
open-source partial reconfiguration toolkit for Xilinx FPGAs. In Proceedings
of the 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW 2011), May 16–20, Anchorage, AK.

Steiner, N. and Athanas, P. 2009. Hardware autonomy and space systems. In
Proceedings of the 2009 IEEE Aerospace Conference, March 7–14, Big Sky, MT.

Steiner, N., Wood, A., Shojaei, H., Couch, J., Athanas, P., and French, M. 2011. Torc:
Towards an open-source tool flow. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ‘11), February
27 to March 1, Monterey, CA.

Ullmann, M., Hubner, M., Grimm, B., and Becker, J. 2004. An FPGA run-time system
for dynamical on demand reconfiguration. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium, April 26–30, Santa Fe, NM.

Valverde, J., Rodriguez, A., Mora, J., Castañares, C., Portilla, J., de la Torre, E., and
Riesgo, T. 2014. A dynamically adaptable image processing application trading
off between high performance, consumption and dependability in real time.
In Proceedings of the 2014 International Conference on Field Programmable Logic and
Applications (FPL 2010), August 31 to September 2, Munich, Germany.

Walder, H. and Platzner, M. 2004. A runtime environment for reconfigurable hard-
ware operating systems. In Proceedings of the 14th International Conference on
Field-Programmable Logic and Applications, August 30 to September 1, Leuven,
Belgium.

229

9
Industrial Electronics
Applications of FPGAs

9.1 � Introduction

From all that has been discussed in previous chapters, it is evident that
FPGA vendors are continuously devoting efforts to include in their
devices new features, or improvements to existing ones (as well as in their
design tools), aiming at an increasing penetration in the digital design
market. Today, FPGAs are used in many different industrial applications
because of their high speed and flexibility, inherent parallelism, good
cost–performance trade-off, and huge variety of available specialized
logic resources. As a consequence, they have been extensively analyzed
over the years from the perspective of industrial electronics (Monmasson
and Cirstea 2007, 2013; Naouar et al. 2007; Rodriguez-Andina et al. 2007,
2015; Monmasson et al. 2011a,b; Gomes et al. 2013; Gomes and Rodriguez-
Andina 2013).

Thanks mainly to the paradigm shift enabled by the availability of increas-
ingly powerful, feature-rich, heterogeneous FPSoCs (Figure 9.1), they are
expected to consolidate their application domains and enter new ones. In
the authors’ view, although microcontrollers will keep being the dominat-
ing solution in the market (because they are the best choice for many low- to
mid-complexity embedded systems), the role of FPGAs will be increasingly
significant both for the implementation of high-performance peripherals and
in high-complexity systems.

One of the main impediments for a wider use of FPGAs in the indus-
try has been the limited knowledge of the technology by nonspecialists in
hardware design. It is our hope that this book contributes to mitigate this
problem by showing the advantages that can be taken from the most cur-
rent FPGA devices in industrial applications in an accessible way for these
nonspecialists.

230 FPGAs: Fundamentals, Advanced Features, and Applications

Ex
te

rn
al

m
em

or
y

FP
So

C

M
em

or
y c

on
tr

ol
le

rs
(D

D
R,

 D
D

R2
,...

)

PC
I

in
te

rfa
ce

Vo
lta

ge
 le

ve
l

ad
ap

te
rs

M
em

or
ie

s

FP
U

s
I/

O
in

te
rfa

ce
s

Ti
m

er
s

PW
M

s

Fr
eq

ue
nc

y
sy

nt
he

siz
er

Se
qu

en
tia

l s
ys

te
m

Tr
ad

iti
on

al
 sy

ste
m

:
D

SP
 an

d/
or

 m
ic

ro
co

nt
ro

lle
r +

ex
te

rn
al

 an
al

og
 an

d
di

gi
ta

l c
irc

ui
ts

FP
G

A
Em

be
dd

ed
m

ic
ro

co
nt

ro
lle

r
Co

nc
ur

re
nt

 sy
st

em

M
em

or
y

co
nt

ro
lle

rs
PL

Ls

D
LL

s

PC
Ie

Co
nf

ig
ur

ab
le

lo
gi

c
M

ul
tis

ta
nd

ar
d

I/
O

 in
te

rfa
ce

s

Se
rD

es
D

AC
s

A
D

Cs
D

SP
 b

lo
ck

s
(F

PU
s)

M
em

or
y

bl
oc

ks

D
SP

 an
d/

or
 m

ic
ro

co
nt

ro
lle

r

O
SC

D
AC

s
A

D
Cs

FI
G

U
R

E
9.

1 
T

he
 F

P
So

C
 p

ar
ad

ig
m

 s
h

if
t i

n
d

ig
it

al
 s

ys
te

m
s

d
es

ig
n.

231Industrial Electronics Applications of FPGAs

A comprehensive analysis of all current and prospective industrial appli-
cations of FPGAs would be extremely lengthy. Therefore, to conclude this
book, three main design areas (advanced control techniques, electronic
instrumentation, and digital real-time simulation) and three very significant
industrial application domains (mechatronics, robotics, and power systems
design) are concisely addressed in this chapter. This choice is based on the
fact that, in these application domains, there is a current demand for systems
capable of providing fast digital implementations of complex algorithms, for
example, for switching purposes.

9.2 � FPGA Application Domains in Industrial Electronics

Although (relatively) simple, FPGAs are still being used for glue logic imple-
mentation or rapid prototyping purposes (which were their original usages),
the ever-increasing variety and amount of hardware resources, as well as the
ability of the most current devices to implement whole complex systems in a
single chip, has tremendously widened their application domains. The origi-
nal applications have also benefited from this evolution so that, for instance,
HIL approaches can be implemented instead of just basic system prototyp-
ing. Moreover, as highlighted throughout the previous chapters, current
FPGAs are particularly suitable for configurable computing applications and
for developing dynamically reconfigurable systems. In spite of all this, many
complex digital systems are still today built from the combination of sepa-
rate digital processing and configurable logic chips, such as in Hasanzadeh
et al. (2014) or Wen et al. (2014). Very interestingly, migration from these plat-
forms to FPSoC-based ones is relatively easy because, for instance, the exist-
ing software can be reused in embedded processors.

In the following sections, the aforementioned significant industrial appli-
cations of FPGAs are briefly discussed.

9.2.1 � Digital Real-Time Simulation of Power Systems

Hardware-in-the-loop simulation (HILS) is very useful, among other appli-
cations, for real-time simulation of power systems, where it allows develop-
ment time, cost, and time to market to be reduced (Buccella et al. 2012). In
addition, it allows these systems to be safely checked under faulty (Zhu et al.
2014) or extreme operating conditions. A fundamental requirement of HILS
in this context is to achieve very short time steps, which can be provided by
FPGAs. This, together with the availability of memory and complex arithme-
tic blocks, as well as their parallelism and reconfigurability, makes FPGAs
very suitable—and increasingly used—HILS platforms.

Many existing HILS solutions are based on the use of DSPs as main process-
ing elements and FPGAs as specialized coprocessors and/or communication

232 FPGAs: Fundamentals, Advanced Features, and Applications

links (Wang et al. 2013; Hasanzadeh et al. 2014; Schmitt et al. 2014). Interfaces
with analog inputs and outputs are implemented with separate ADC and
DAC chips. It is worth noting that faster and more compact solutions can be
achieved by migrating these structures to current FPSoC platforms, where
most of the required resources are embedded. For instance, an FPGA-only
platform is reported in Dagbagi et al. (2013), where a PWM rectifier is emu-
lated in real time in one device and the corresponding controller is imple-
mented in another one as an FPSoC, using an ARM Cortex-M3 core.

9.2.2 � Advanced Control Techniques

9.2.2.1 � Power Systems

Digital control of power systems has been gaining increasing interest over
the years. Current solutions, usually based on microcontrollers and DSPs,
suffer from relatively long execution times and limited flexibility to interface
with analog signals. These issues can be successfully addressed with mod-
ern FPGAs. Actually, the analysis in Monmasson et al. (2011b) concludes that
hardware solutions are the only viable options in practice for systems with
strong timing requirements. Very interestingly, some of the most challeng-
ing needs identified in that analysis—efficient floating-point computations
and analog/digital interfaces—can be addressed with the specialized hard-
ware resources available in current FPGAs.

Many designers have already realized that FPGAs are the best solution to gen-
erate control signals for switching devices in power converters (Hwang et al.
2013; Lu et al. 2013; Morales-Caporal et al. 2013; Miura et al. 2014; Wang et al.
2014), particularly when the number of switches, the switching frequency, or
both are high, which is the case in many modern converter topologies. However,
in most of these works, there remains an inertia to implement the main con-
trol loops (and other fundamental tasks, such as filtering) in separate micro-
controller or DSP chips and to use external ADCs, instead of taking advantage
of FPSoC architectures. For instance, in Senicar et al. (2014), an FPGA is used to
implement a fast current control loop in hardware, whereas higher-level con-
trol loops—speed and position—are implemented in a separate microcontroller
chip, and external ADCs are used. Similarly, in Prabhala et al. (2012), the current
controller for a voltage source converter is implemented in an FPGA, and the
grid synchronization PLL in a DSP. The problems identified in Wen et al. (2014),
related to the limited speed and processing power of DSPs, could be alleviated
by using FPGAs to concurrently run some part of the proposed computation
algorithm. Other reported systems that could have benefited from the use of
FPSoCs are those of Kobravi et al. (2013) and Smidl et al. (2013).

Also, in the area of power systems, fault tolerance is a fundamental require-
ment when continuous operation must be ensured. In this case, the faster
the fault detection, the safer the operation of the system. The usefulness of
FPGAs for this purpose is demonstrated in Shahbazi et al. (2013).

233Industrial Electronics Applications of FPGAs

In general, digital control of power systems is an area where the use of
FPSoCs should be expected to grow significantly in the near future.

9.2.2.2 � Robotics and Automotive Electronics

High operating frequency and low latency are fundamental requirements
for control loops in many robotic applications, where at the same time com-
plex algorithms are also needed for various purposes. Although DSPs—
sometimes combined with FPGAs—are extensively used in this domain,
their sequential nature in many cases may result in excessive latency when
executing those algorithms. In addition, DSPs provide limited flexibility to
include additional sensors or actuators, in turn limiting system scalability.
In contrast, current FPGA devices offer better performance and accuracy,
allowing real-time or fault-tolerant operation to be achieved (Hace and Franc
2013; May and Krougjicof 2013; Phuong et al. 2014).

Modular robotics (e.g., for humanoid robots) can take advantage of cur-
rent FPGA devices to achieve higher sampling frequencies—and, then, bet-
ter performance—than centralized systems. The flexibility of FPSoC-based
solutions adds to that of these modular systems, allowing robot structures to
be easily modified, extended, or repaired, even in the field. In this context, the
availability of FPGAs including powerful embedded processors contributes
to reduced size and weight, as well as lower processor intercommunication
latency. Examples of current use of FPGAs in this area can be found in Zhu
et al. (2013) and Pierce and Cheng (2014).

The application of FPGAs in automotive systems is an area of increasing
interest, among other factors, because of the need to perform very com-
plex operations with the low latency required by safety-related functions,
such as the antilock braking system or the electronic stability program
(Guo et al. 2013). Similar problems are addressed in Lu et al. (2015) for
controlling dual-clutch transmission gearshifts. The increasingly pow-
erful embedded processors and DSP blocks available in current FPGAs
should play a key role in a wider penetration of these devices into auto-
motive applications.

9.2.2.3 � Use of Floating-Point Operations

There is an increasing number of applications requiring the use of
floating-point operations to achieve the target performance (Guo et al. 2013;
Hwang et al. 2013; Sepulveda et al. 2013; Barranco et al. 2014). Although effi-
cient resources for floating-point operations were traditionally not available
in FPGAs, it is currently possible to implement them either in embedded
processors (Jimenez et al. 2014) or in dedicated specialized hardware blocks
(Juarez-Abad et al. 2014; Liu and Dinavahi 2014). Even better results could be
achieved by using the IEEE 754–compatible DSP blocks available in the most
current devices.

234 FPGAs: Fundamentals, Advanced Features, and Applications

9.2.3 � Electronic Instrumentation

Same as floating-point operators, the lack of embedded ADCs and DACs
was one of the main traditional limitations in FPGAs. The availability of
these resources in recent devices (as well as of others, such as complex PLLs)
opens the door for the improvement of many industrial systems that could
not benefit from them when they were developed, such as the power sys-
tems presented in Hwang et al. (2013) and Guzinski and Abu-Rub (2013) or
the ones related to sensors and microelectromechanical systems reported in
Cheng et al. (2013), Xia et al. (2013), and Xu (2014, 2015).

An area where FPGAs provide particularly good performance at a reason-
able complexity/cost is that of vision systems, in applications such as intel-
ligent spaces (Rodriguez-Araujo et al. 2014) or unmanned vehicles (May and
Krougjicof 2013). For instance, the configurable hardware system for traf-
fic sign recognition, presented in Aguirre-Dobernack et al. (2013), achieves
60 fps with 1280 × 720 pixel images.

In aerial unmanned vehicles, huge amounts of data must be processed with
low latency for purposes such as flight control, real-time mapping, or obstacle
avoidance. Reduced size and weight are also fundamental requirements of
these systems, which are more easily fulfilled with single-chip FPSoC imple-
mentations than with multichip heterogeneous solutions, such as the one
presented in Schmid and Hirschmuller (2013), consisting of two cameras, an
Intel Core2Duo processor board, a Spartan 6 FPGA board, an ARM processor
board, and an IMU. By using an FPGA including ARM Cortex-A9 processors,
the number of required boards—and thus the size and weight of the system—
could be greatly reduced. The system presented in Nikolic et al. (2014) for real-
time simultaneous localization and mapping consists of a Zynq-7000 FPSoC,
four cameras, and an IMU, where the Zynq-7000 device replaces the combina-
tion of an FPGA and an Intel ATOM processor used in previous prototypes.

Another application where an advantage can be taken from the FPGA
implementation of image processing algorithms is industrial laser cladding.
In the work by Rodriguez-Araujo et al. (2012), an adaptive fuzzy PI control-
ler for laser cladding systems is proposed, which works with data extracted
from a real-time image processing system (achieving 100 Hz sampling
rate for 800 × 600 pixel images). The whole monitoring and control system
is implemented in an FPGA, combining a Nios II soft processor with high-
performance custom hardware peripherals.

9.3 � Conclusion

Taking advantage of the latest advancements in microelectronics fabrica-
tion technologies, FPGA vendors are continuously looking for new features
to be included in their devices, aiming at making them suitable for wider

235Industrial Electronics Applications of FPGAs

application areas. In some cases, they are just extensions or improvements
to previously available resources, whereas in other cases, architectures are
extended with new resources aimed at mitigating traditional limitations
(e.g., for interfacing with analog signals or for efficient computation of
floating-point operations) or at improving performance (e.g., regarding
memory controllers or serial communication interfaces).

Thanks to all these advancements, FPGAs cannot be considered just
configurable hardware devices anymore, but they have to be approached
with the FPSoC design paradigm in mind. Although in the authors’ opin-
ion there is still much room for improvements, vendors and third parties
have also to be acknowledged for their continuous efforts in improving
design tools, particularly considering the high-level approach required by
FPSoCs, as well as the need for making the technology readily accessible
to application engineers, who, in their vast majority, are not hardware
designers.

The advantages of FPSoCs have hopefully been shown throughout this
book to be many and significant. This is particularly important to realize
for designers working in specific applications, who are (obviously) mainly
focused on the details of their target applications rather than on implemen-
tation details, so they tend to keep basing their designs on the same devices
they are used to working with. A similar situation occurred when digital
control of power converters became a—very advantageous—practical pos-
sibility, but most designers continued to use for years the analog solutions
they were familiar with and knew how to tune for their purposes. The cur-
rent challenge for designers in the FPSoC area is to have enough knowledge
in both the hardware and software domains, their integration, and the parti-
tioning of tasks between them.

References

Aguirre-Dobernack, N., Guzman-Miranda, H., and Aguirre, M.A. 2013. Implementation
of a machine vision system for real-time traffic sign recognition on FPGA. In
Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society
(IECON’2013), November 10–13, Vienna, Austria.

Barranco, F., Diaz, J., Pino, B., and Ros, E. 2014. Real-time visual saliency architecture
for FPGA with top-down attention modulation. IEEE Transactions on Industrial
Informatics, 10(3):1726–1735.

Buccella, C., Cecati, C., and Latafat, H. 2012. Digital control of power converters—A
survey. IEEE Transactions on Industrial Informatics, 8(3):437–447.

Cheng, Ch.-F., Li, R.-S., and Chen, J.-R. 2013. Design of the DC leakage current
sensor with magnetic modulation-based scheme. In Proceedings 2013 IEEE
International Symposium on Industrial Electronics (ISIE’2013), May 28–31,
Taipei, Taiwan.

236 FPGAs: Fundamentals, Advanced Features, and Applications

Dagbagi, M., Hemdani, A., Idkhajine, L., Naouar, M.W., Monmasson, E., and Slama-
Belkhodja, I. 2013. FPGA-based real-time hardware-in-the-loop validation of a
3-phase PWM rectifier controller. In Proceedings of the 39th Annual Conference of the
IEEE Industrial Electronics Society (IECON’2013), November 10–13, Vienna, Austria.

Gomes, L., Monmasson, E., Cirstea, M., and Rodriguez-Andina, J.J. 2013. Industrial
electronic control: FPGAs and embedded systems solutions. In Proceedings of
the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON’2013),
November 10–13, Vienna, Austria.

Gomes, L. and Rodríguez-Andina, J.J. 2013. Guest editorial special section on embed-
ded and reconfigurable systems. IEEE Transactions on Industrial Informatics,
9(3):1588–1590.

Guo, H., Chen, H., Xu, F., Wang, F., and Lu, G. 2013. Implementation of EKF for vehi-
cle velocities estimation on FPGA. IEEE Transactions on Industrial Electronics,
60(9):3823–3835.

Guzinski, J. and Abu-Rub, H. 2013. Speed sensorless induction motor drive with
predictive current controller. IEEE Transactions on Industrial Electronics,
60(2):699–709.

Hace, A. and Franc, M. 2013. FPGA implementation of sliding-mode-control
algorithm for scaled bilateral teleoperation. IEEE Transactions on Industrial
Informatics, 9(3):1291–1300.

Hasanzadeh, A., Edrington, C.S., Stroupe, N., and Bevis, T. 2014. Real-time emulation
of a high-speed microturbine permanent-magnet synchronous generator using
multiplatform hardware-in-the-loop realization. IEEE Transactions on Industrial
Electronics, 61(6):3109–3118.

Hwang, S.-H., Liu, X., Kim, J.-M., and Li, H. 2013. Distributed digital control of
modular-based solid-state transformer using DSP+FPGA. IEEE Transactions on
Industrial Electronics, 60(2):670–680.

Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., and Navarro, D. 2014. Analysis and
implementation of FPGA-based online parametric identification algorithms
for resonant power converters. IEEE Transactions on Industrial Informatics,
10(2):1144–1153.

Juarez-Abad, J.A., Linares-Flores, J., Guzmán-Ramirez, E., and Sira-Ramirez, H. 2014.
Generalized proportional integral tracking controller for a single-phase multi-
level cascade inverter: An FPGA implementation. IEEE Transactions on Industrial
Informatics, 10(1):256–266.

Kobravi, K., Iravani, R., and Kojori, H.A. 2013. Three-leg/four-leg matrix converter
generalized modulation strategy—Part II: Implementation and verification.
IEEE Transactions on Industrial Electronics, 60(3):860–872.

Liu, J. and Dinavahi, V. 2014. A real-time nonlinear hysteretic power transformer tran-
sient model on FPGA. IEEE Transactions on Industrial Electronics, 61(7):3587–3597.

Lu, X., Chen, H., Gao, B., Zhang, Z., and Jin, W. 2015. Data-driven predictive gear-
shift control for dual-clutch transmissions and FPGA implementation. IEEE
Transactions on Industrial Electronics, 62(1):599–610.

Lu, Z.-G., Zhao, L.-L., Zhu, W.-P., Wu, C.-J., and Qin, Y.-S. 2013. Research on cas-
caded three-phase-bridge multilevel converter based on CPS-PWM. IET Power
Electronics, 6(6):1088–1099.

May, K. and Krougjicof, N.K. 2013. Moving target detection for sense and avoid using
regional phase correlation. In Proceedings 2013 IEEE International Conference on
Robotics and Automation (ICRA’2013), May 6–10, Karlsruhe, Germany.

237Industrial Electronics Applications of FPGAs

Miura, Y., Inubushi, K., Ito, M., and Ise, T. 2014. Multilevel modular matrix
converter for high voltage applications. Control, design and experimen-
tal characteristics. In Proceedings of the 40th Annual Conference of the IEEE
Industrial Electronics Society (IECON’2014), October 30 to November 1,
Dallas, TX.

Monmasson, E. and Cirstea, M. 2013. Guest editorial special section on industrial
control applications of FPGAs. IEEE Transactions on Industrial Informatics,
9(3):1250–1252.

Monmasson, E. and Cirstea, M.N. 2007. FPGA design methodology for indus-
trial control systems—A review. IEEE Transactions on Industrial Electronics,
54(4):1824–1842.

Monmasson, E., Idkhajine, L., Cirstea, M.N., Bahri, I., Tisan, A., and Naouar, M.W.
2011a. FPGAs in industrial control applications. IEEE Transactions on Industrial
Informatics, 7(2):224–243.

Monmasson, E., Idkhajine, L., and Naouar, M.W. 2011b. FPGA-based controllers.
IEEE Industrial Electronics Magazine, 5(1):14–26.

Morales-Caporal, R., Bonilla-Huerta, E., Hernández, C., Arjona, M.A., and Pacas, M.
2013. Transducerless acquisition of the rotor position for predictive torque con-
trolled PM synchronous machines based on a DSP-FPGA digital system. IEEE
Transactions on Industrial Informatics, 9(2):799–807.

Naouar, M.-W., Monmasson, E., Naassani, A.A., Slama-Belkhodja, I., and Patin, N.
2007. FPGA-based current controllers for AC machine drives—A review. IEEE
Transactions on Industrial Electronics, 54(4):1907–1925.

Nikolic, J., Rehder, J., Burri, M., Gohl, P., Leutenegger, S., Furgale, P.T., and Siegwart,
R. 2014. A synchronized visual-inertial sensor system with FPGA pre-
processing for accurate real-time SLAM. In Proceedings 2014 IEEE International
Conference on Robotics and Automation (ICRA’2014), May 31 to June 7, Hong
Kong, China.

Phuong, T.T., Ohishi, K., Yokokura, Y., and Mitsantisuk, C. 2014. FPGA-
based high-performance force control system with friction-free and
noise-free force observation. IEEE Transactions on Industrial Electronics,
61(2):994–1008.

Pierce, B. and Cheng, G. 2014. Versatile modular electronics for rapid design and
development of humanoid robotic subsystems. In Proceedings 2014 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM’2014), July
8–11, Besancon, France.

Prabhala, V.A., Cespedes, M., and Sun, J. 2012. Implementation of DQ domain con-
trol in DSP and FPGA. In Proceedings of the 2012 Twenty-Seventh Annual IEEE
Applied Power Electronics Conference and Exposition (APEC’2012), February 5–9,
Orlando, FL.

Rodriguez-Andina, J.J., Moure, M.J., and Valdes, M.D. 2007. Features, design tools,
and application domains of FPGAs. IEEE Transactions on Industrial Electronics,
54(4):1810–1823.

Rodriguez-Andina, J.J., Valdes, M.D., and Moure, M.J. 2015. Advanced features and
industrial applications of FPGAs—A review. IEEE Transactions on Industrial
Informatics, 11(4):853–864.

Rodriguez-Araujo, J., Rodriguez-Andina, J.J., Farina, J., and Chow, M.-Y. 2014. Field-
programmable System-on-Chip for localization of UGVs in an indoor iSpace.
IEEE Transactions on Industrial Informatics, 10(2):1033–1043.

238 FPGAs: Fundamentals, Advanced Features, and Applications

Rodriguez-Araujo, J., Rodriguez-Andina, J.J., Farina, J., Vidal, F., Mato, J.L., and
Montealegre, M.A. 2012. Industrial laser cladding systems: FPGA-based adap-
tive control. IEEE Industrial Electronics Magazine, 6(4):35–46.

Schmid, K. and Hirschmuller, H. 2013. Stereo vision and IMU based real-time ego-
motion and depth image computation on a handheld device. In Proceedings
2013 IEEE International Conference on Robotics and Automation (ICRA’2013), May
6–10, Karlsruhe, Germany.

Schmitt, A., Richter, J., Jurkewitz, U., and Braun, M. 2014. FPGA-based real-time
simulation of nonlinear permanent magnet synchronous machines for power
hardware-in-the-loop emulation systems. In Proceedings of the 40th Annual
Conference of the IEEE Industrial Electronics Society (IECON’2014), October 30 to
November 1, Dallas, TX.

Senicar, F., Dopker, M., Bartsch, A., Kruger, B., and Soter, S. 2014. Inverter based
method for measurement of PMSM machine parameters based on the elimina-
tion of power stage characteristics. In Proceedings of the 40th Annual Conference of
the IEEE Industrial Electronics Society (IECON’2014), October 30 to November 1,
Dallas, TX.

Sepulveda, C.A., Munoz, J.A., Espinoza, J.R., Figueroa, M.E., and Baier, C.R. 2013.
FPGA v/s DSP performance comparison for a VSC-based STATCOM control
application. IEEE Transactions on Industrial Informatics, 9(3):1351–1360.

Shahbazi, M., Poure, P., Saadate, S., and Zolghadri, M.R. 2013. FPGA-based recon-
figurable control for fault-tolerant back-to-back converter without redundancy.
IEEE Transactions on Industrial Electronics, 60(8):3360–3371.

Smidl, V., Nevdev, R., Kosan, T., and Peroutka, Z. 2013. FPGA implementation of mar-
ginalized particle filter for sensorless control of PMSM drives. In Proceedings of
the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON’2013),
November 10–13, Vienna, Austria.

Wang, C., Li, W., and Belanger, J. 2013. Real-time and faster-than-real-time simu-
lation of modular multilevel converters using standard multi-core CPU and
FPGA chips. In Proceedings of the 39th Annual Conference of the IEEE Industrial
Electronics Society (IECON’2013), November 10–13, Vienna, Austria.

Wang, Y., Yang, K., He, C., and Chen, G. 2014. A harmonic elimination approach
based on moving average filter for cascaded DSTATCOM. In Proceedings of the
40th Annual Conference of the IEEE Industrial Electronics Society (IECON’2014),
October 30 to November 1, Dallas, TX.

Wen, H., Cheng, D., Teng, Z., Guo, S., and Li, F. 2014. Approximate algorithm for
fast calculating voltage unbalance factor of three-phase power system. IEEE
Transactions on Industrial Informatics, 10(3):1799–1805.

Xia, G.-M., Qiu, A.-P., Shi, Q., and Yan, S. 2013. Test and evaluation of a silicon reso-
nant accelerometer implemented in SOI technology. In Proceedings 2013 IEEE
Sensors, November 3–6, Baltimore, MD.

Xu, Q. 2014. Design and smooth position/force switching control of a miniature grip-
per for automated microhandling. IEEE Transactions on Industrial Informatics,
10(2):1023–1032.

Xu, Q. 2015. Robust impedance control of a compliant microgripper for high-
speed position/force regulation. IEEE Transactions on Industrial Electronics,
62(2):1201–1209.

239Industrial Electronics Applications of FPGAs

Zhu, W., Lamarche, T., Dupuis, E., Jameux, D., Barnard, P., and Liu, G. 2013. Precision
control of modular robot manipulators: The VDC approach with embedded
FPGA. IEEE Transactions on Robotics, 29(5):1162–1179.

Zhu, Z., Li, X., Rao, H., Wang, W., and Li, W. 2014. Testing a complete control and pro-
tection system for multi-terminal MMC HVDC links using hardware-in-the-
loop simulation. In Proceedings of the 40th Annual Conference of the IEEE Industrial
Electronics Society (IECON’2014), October 30 to November 1, Dallas, TX.

http://taylorandfrancis.com

241

Index

A

ADC blocks, see Analog-to-digital
converter blocks

Advanced extensible interface (AXI)
AMBA 3 and AMBA 4, 95
architecture, 96
AXI4-Lite, 96
features, 98
infrastructure IP core, 99–100
interconnect component, 96–97
read and write transactions, 96–97
specifications and protocols, 100–103

Advanced high-performance bus (AHB)
and APB protocols, 92
arbiter, 93
bus structure, 93
decoder, 93
masters, 93
multilayer, 94–95
operation, 93–94
slaves, 93
SoC, 92

Advanced microcontroller bus
architecture (AMBA), 91–92

Aerial unmanned vehicles, 234
AHB, see Advanced

high-performance bus
Analog compute engine (ACE) analog

subsystem, 134–135
Analog-to-digital converter

(ADC) blocks
Altera MAX 10 devices

block diagram, 128
clock signals, 131
features, 128–129
IP cores, 130
operating modes, 131–132
unipolar ADC transfer

function, 129
control logic, 130–131
features, 128–129
12-bit SAR, 128
Xilinx 7 Series devices

bipolar ADC transfer functions,
129–130

block diagram, 128
external MUX mode, 132–133
features, 128–129
IP cores, 130
simultaneous sampling

modes, 132–133
single-channel acquisition and

acquisition sequences, 132
Application-specific integrated circuits

(ASICs), 12–13
ArcticLink, 88
Avalon

Avalon Bus Module, 104
Avalon Clock Interface, 107
Avalon Conduit Interface, 106
Avalon Interrupt Interface, 106
Avalon-MM, 105
Avalon Reset Interface, 107
Avalon Streaming Interface, 105–106
Avalon Tri-State Conduit Interface, 106
block diagram, 104
FPSoCs, 107
high-bandwidth peripherals, 104
Nios-II soft processor, 100, 107
Qsys, 107–108

Avalon Memory Mapped Interface
(Avalon-MM), 105

AXI, see Advanced extensible interface

B

Bus-based connections
bridged bus topology, 188–189
crossbar switch bus, 188–189
hardware aspects, 187
logic protocol, 187
master elements, 187
multiplexed access schemes, 187–188
periodic priority assignment, 191
pipelined bus structure, 191
resource sharing, 186

242 Index

ring-based bus, 188–189
single-shared bus, 188–189
slave elements, 187
three-level hierarchical bus scheme,

188, 190
timing and arbitration, 188
transaction protocols, 190–191
tristate schemes, 187–188

C

Clock management blocks (CMBs)
in column-based architectures, 35–36
feedback loop, 37
feedback signal, 40
fractional PLLs, 38–39
frequency synthesis, 35
global, regional, and peripheral clock

networks, 34–35
integer PLL, 36–38
IP blocks, 41
in matrix architectures, 35–36

Configurable systems
FPGAs

applications, 18–19
bitstream, 16
IL, 15–16
LBs, 15–17

hardware resources, 13
programmable matrices

CMOS integration, 15
fuses, 15
PLA and PAL, 14
PLDs, 15–16

CoreConnect, 108–109
CY8C58LP family

analog system, 140–141
architecture, 138–139
digital system, 139–140
processor system, 138–139
PSoC Creator tool, 141

D

Design tools and methodologies
auxiliary tools

FPGA selection advisory tools, 178
pin planning tools, 177–178
power estimation tools, 178–179

conventional synthesis tools, 143–144
debugging, SoPC systems, 173–174

co-debugging, 177
hardware debugging, 175–177
software debugging, 174–175

HDL, 143
HLS tools, 144

control state machine, 169
data flow graph, 169
execution speed, 169–170
I/O adaptation, 170
loop unrolling, 170
mapping algorithms, 169
OpenCL, 171
parallelism, 170–171
parallel memory access, 170
pipelined structures, 170

HPC multithread accelerators,
171–173

OpenCL, 144–145
PCIe connections, 145
RTL synthesis

and back-end tools, 153–159
design entry, 147–149
implementation tools’ design

flow, 146
input and output, 145–146
simulation tools, 149–153

SoPC systems
core libraries and core generation

tools, 167–169
hardware design tools, 160–164
software design tools, 164–167

Digital signal processing (DSP)
ALUs, 116
blocks

ALU, 120
eight-stage symmetric FIR

filter, 119
multipliers, 118–119
pattern detection circuitry, 120
pre-adder/subtractor, 119–120
semiparallel structures, 121
SIMD operating mode, 120
Xilinx 7 Series, 118

CPUs, 115
embedded memory blocks, 115–116
embedded multipliers, 117–118
FIR filter, 116

243Index

floating-point hardware operators
alignment and normalization

operations, 122
complex multiplication mode,

122, 124
floating-point mathematic

functions, 125
IEEE 754 standard, 121–122
MAC mode, 122–123
multiplication mode, 122–123
performance degradation, 122
variable precision DSP

block, 122
vector two mode, 122–123

MAC units, 115–117
processors, 10–11

E

Embedded function block (EFB)
interface, 53–54

Embedded processors, SoC
customizable processors, 90
FPSoCs

advantages, 66–67
evolution, 66–67
hard processors, 78–85
soft processors, 67–78

many-core processors, 66
multicore processors

hardware issues, 61–63
software issues, 64–66

multithreading processors, 61
on-chip buses

AHB, 92–94
AMBA, 91–92
Avalon, 100, 104–108
AXI, 95–103
CoreConnect, 108–109
glue logic, 91
multilayer AHB, 94–95
Wishbone, 109–111

sensor hubs
CSSP platform, 87–89
EOS S3, 86–87
mobile devices, 85–86
QuickLogic, 86
real-time context

awareness, 85

single-core, single-thread
processor, 59–61

smart watch, 59–60
Embedded systems, 1

control systems
analog sensors and

actuators, 2–3
block diagram, 3
communication interfaces, 2
discrete sensors and actuators, 3
human interfaces, 2

design techniques and tools
ASICs, 12–13
DSP processors, 10–11
electromagnetic protection, 8
emission mitigation, 8
FPGAs, 8, 12
general-purpose processors and

microcontrollers, 9–10
multicore processors and

GPGPUs, 11–12
energy consumption, computing

system, 6–7
performance vs. flexibility, 7–8
technological improvements and

complexity growth, 4–6
Error correction code (ECC)

blocks, 44–45

F

Field-programmable gate arrays
(FPGAs)

architecture, 21–22
Achronix’s Speedster22i

HD, 22–23
Altera MAX 10, 22–23
Altera’s HyperFlex

architecture, 24–25
analog functionality, 22
column-based

architecture, 23–24
distributed logic, 22
matrix architecture,

disadvantage, 23
Microsemi’s Fusion, 22–23
specialized hardware

blocks, 22–23
Xilinx’s Spartan-6, 22–23

244 Index

configurable systems
applications, 18–19
bitstream, 16
IL, 15–16
LBs, 15–17

embedded systems, 8, 12
FPSoC design, 59
single-core processors, 60–61

Field-programmable systems-on-chip
(FPSoCs)

advantages, 66–67
design, 59
evolution, 66–67
hard processors

advantages and
disadvantages, 79

ARM Cortes-A53 application
processor, 84

ARM Cortex-A9 dual-core
processor, 81–82

ARM Cortex-R5, 82
ARM Mali-400 GPU, 84
Arria 10 hard processor

system, 80–81
AT40K FPGA, 79
documentation, 79
Excalibur family, 79
FPGA fabric, 80, 85
QuickLogic devices, 79
SmartFusion, 80
vs. stand-alone versions, 78
Stratix 10 FPGAs, 82–83
Zynq UltraScale+ devices, 82–85

soft processors
architecture, 68
flexibility, 68
vs. hard processors, 68
instruction set and programming

model, 68
IP cores, 67
open-source cores, 76–78
proprietary cores, 69–76
scalability, 68–69
types, 69

FIFO memory, 186
Finite impulse response (FIR)

filter, 116
FPSoCs, see Field-programmable

systems-on-chip

G

General-purpose graphic processing
units (GPGPUs), 8, 11–12

H

Hard processors, FPSoCs
advantages and disadvantages, 79
ARM Cortes-A53 application

processor, 84
ARM Cortex-A9 dual-core processor,

81–82
ARM Cortex-R5, 82
ARM Mali-400 GPU, 84
Arria 10 hard processor

system, 80–81
AT40K FPGA, 79
documentation, 79
Excalibur family, 79
FPGA fabric, 80, 85
QuickLogic devices, 79
SmartFusion, 80
vs. stand-alone versions, 78
Stratix 10 FPGAs, 82–83
Zynq UltraScale+ devices

AMBA AXI4 interfaces, 85
ARM Cortes-A53 application

processor, 84
ARM Mali-400 GPU, 84
core features, 84
MPSoC hardware

architecture, 82–83
video codec unit, 84

Hardware abstraction layer (HAL), 165
Hardware-in-the-loop simulation

(HILS), 231–232
Hardware resources

interconnection resources
general and local FPGA, 32–33
interconnection delays, 34
interconnect propagation delay

times, 32
stacked silicon interconnect

technology, 33
superlong lines, 33

IOBs
bidirectional, 29
features, 29–31

245Index

FIFO memories, 32
SerDes blocks, 31–32
specialized elements, 30–31

LBs
Achronix picoPIPE building

blocks, 27–28
conventional vs. picoPIPE

implementations, 28
custom combinational and

sequential functions, 25
heavy logic cluster, 25–26
LUTs, 25–27
Microsemi’s IGLOO2, 25–26
MUXs, 27
pipeline stages, 27–28

I

Ideal model simulation, 150–151
Image processing system, 234
In-chip communications

bus-based connections
bridged bus topology, 188–189
crossbar switch bus, 188–189
hardware aspects, 187
logic protocol, 187
master elements, 187
multiplexed access schemes,

187–188
periodic priority

assignment, 191
pipelined bus structure, 191
resource sharing, 186
ring-based bus, 188–189
single-shared bus, 188–189
slave elements, 187
three-level hierarchical bus

scheme, 188, 190
timing and arbitration, 188
transaction protocols, 190–191
tristate schemes, 187–188

networks on chip
with adapted structure and

connectivity, 194–195
advantage, 192
buffering and arbitration, 194
flow control, 193–194
links, 192
mesh topology, 192

network interface, 193
packets, 193
reconfigurability, 195
routing and switching,

193–194
torus topology, 192

point-to-point
connections, 185–186

Industrial electronics applications
advanced control techniques

floating-point operations, 233
power systems, 232–233
robotics and automotive

electronics, 233
digital real-time simulation, power

systems, 231–232
electronic instrumentation, 234
FPSoC paradigm shift, 229–230

Interconnection resources
general and local FPGA, 32–33
interconnection delays, 34
interconnect propagation delay

times, 32
stacked silicon interconnect

technology, 33
superlong lines, 33

Interconnect logic (IL), 15–16
Internal configuration access port

(ICAP), 198–199
I/O blocks (IOBs)

bidirectional, 29
features, 29–31
FIFO memories, 32
SerDes blocks, 31–32
specialized elements, 30–31

L

Logic blocks (LBs)
Achronix picoPIPE building

blocks, 27–28
configurable systems, 15–17
conventional vs. picoPIPE

implementations, 28
custom combinational and

sequential functions, 25
heavy logic cluster, 25–26
LUTs, 25–27
Microsemi’s IGLOO2, 25–26

246 Index

MUXs, 27
pipeline stages, 27–28

Logic fabric, 22
Lookup tables (LUTs), 25–27

M

Mixed-signal FPGAs
ADC blocks, 128–133
analog data acquisition and

processing interfaces
ACE analog subsystem, 134–135
analog front end, 135
analog quad blocks, 137
current measurement, 137–138
Microsemi Fusion family

architecture, 136–137
Microsemi SmartFusion

FPGAs, 134–135
operational amplifiers, 138
PPE block, 136
sampling and conversion

sequences, 135–136
SSE, 135–136

analog sensors, 133–134
hybrid FPGA–FPAA solutions,

138–141
Modular robotics, 233
Multicore processors

hardware issues, 61–63
software issues, 64–66

Multiport front end (MPFE), 47

N

Networks-on-chip (NoCs), 182
with adapted structure and

connectivity, 194–195
advantage, 192
buffering and arbitration, 194
flow control, 193–194
links, 192
mesh topology, 192
network interface, 193
packets, 193
reconfigurability, 195
reconfigurable system, 210–211
routing and switching, 193–194
torus topology, 192

O

Off-chip communications
high-speed interfaces

all-to-all backplane connection,
183–184

Ethernet connector, 184
medium access control

layer, 184
PCIe interface, 183
PHY chips, 184–185
physical layer, 184
serial I/O interfaces, 183–184
software-based communication

layers, 185
SoPC tools, 185
transceivers, 183

low-speed interfaces, 182–183

P

Partial reconfiguration, 198, 200
fixed and reconfigurable

areas, 204
1D and 2D architecture, 204–205
slot-based approaches, 204–206
tool support

design flows, 208–209
GoAhead, 210
OpenPR flow, 209–210
partial bitstream

manipulation, 209
ReCoBus-Builder, 209
toolsets, 209

Partial run-time-reconfigurable systems
(PRTRSs), 198

Physical layer interface (UniPHY), 46
PolarPro, 87–88
Post-processing engine (PPE), 134, 136
Power systems

digital control, 232–233
digital real-time simulation, 231–232

Processor configuration access port
(PCAP), 198–199

Programmable array logic (PAL), 14
Programmable logic array (PLA), 14
Programmable logic devices

(PLDs), 15–16
Proven system blocks, 88

247Index

R

Reconfigurable modules (RMs), 200
Reconfigurable regions (RRs), 200
Reconfigurable systems

architectures
coupling types, 201–202
scalable architectures, 206–208

coarse-grained reconfigurable
architectures, 197

commercial FPGAs, 203–204
design issues, 202–203
flash memory-based FPGAs, 199
flip-flops, 201
granularity, 199
ICAP, 198–199
module relocation, 200
on-chip communications, 210–211
partial reconfiguration, 198, 200

fixed and reconfigurable
areas, 204

1D and 2D architecture, 204–205
slot-based approaches, 204–206
tool support, 208–210

PCAP, 198–199
RMs, 200
RRs, 200
RTR, 198, 201
SRAM-based FPGAs, 199
SRSs, 198

Register-transfer level (RTL) synthesis
and back-end tools

bitstream generation, 158–159
placement and routing processes,

156–158
sequential system evolution,

153–154
synthesis and implementation

stages, 154–155
translation, 156

design entry, 147–149
implementation tools’ design

flow, 146
input and output, 145–146
simulation tools

clocks, 149
functional validation level,

150–151
HIL verification, 151–153

interactive simulation, 151–152
mixed-mode simulation, 151–152
multivalued logic, 149
signal navigation, 151
testbench, 149–150
timing verification level,

150– 151
UUT, 149–150

Run-time reconfigurable systems
(RTRSs), 198

Run-time-reconfiguration (RTR),
198, 201

adaptive multithread execution
advantages, 217
ArtiCo architecture, 217–219
embedded control systems, 219
module replication, 217
parallelism, 216
reconfigurable architecture,

217–218
resource manager, 218–219
scalability, 216
space exploration graphs,

219–220
evolvable hardware

architecture components, 223
bioinspired systems, 219
circuit modifications,

chromosome changes, 221
diversity, 224
fitness function, 221
image filtering and processing

circuit, 222–223
MicroBlaze soft processor, 224
modularity, 226
scalability, 225–226
self-adaptation, 224
self-healing, 224–226
systolic array, 223–226
TMR structure, 224–225

layered structure, 212–213
OS requirements, 211–212
remote reconfiguration

mechanisms, 213
self-management

aerospace system classification,
215–216

autonomic computing systems,
214–215

248 Index

definition, 213–214
dynamic and partial

reconfiguration, 215
self-properties, 214–215

software and hardware task
management, 211–212

S

Sample sequencing engine (SSE),
134–136

Scalable architectures
modularity, 206
parameterization, 206
planning execution, 207
processing element (PE),

207–208
regularity, 206–207
scalable H.264/AVC/SVC deblocking

filter, 207–208
spatial locality, 207
variable-sized systolic array, 208

Self-reconfigurable systems
(SRSs), 198

Soft processors, FPSoCs
architecture, 68
flexibility, 68
vs. hard processors, 68
instruction set and programming

model, 68
IP cores, 67
open-source cores

Cortex-M1 processor, 76–77
LEON4, 76–77
OpenRISC1200, 76–77

performance, 77–78
proprietary cores

Altera’s Nios-II, 69–75
communication, 75–76
disadvantage, 69
Lattice’s LM8, 69–71
Lattice’s LM32, 69–71
on-chip buses, 76
Xilinx’s MicroBlaze, 69–71, 75
Xilinx’s PicoBlaze, 69–71

scalability, 68–69
types, 69

SoPC systems, see Systems-on-
programmable chip systems

Specialized hardware blocks
CMBs

in column-based architectures,
35–36

feedback loop, 37
feedback signal, 40
fractional PLLs, 38–39
frequency synthesis, 35
global, regional, and peripheral

clock networks, 34–35
integer PLL, 36–38
IP blocks, 41
in matrix architectures, 35–36

hard memory controllers
Arria 10 hard memory

controller, 46–47
soft IP core-based solutions, 45

memory blocks
Altera’s Cyclone III memory

modes, 43
clock modes, 44
dedicated memory blocks, 45
distributed memory, 41–42
ECC blocks, 44–45
LBs, 41–42
parity functions, 44

serial communication interfaces
ArcticLink devices, 53–55
ArcticLink II VX2 device, 54–55
EFB interface, 53
hi-speed USB 2.0 OTG

controller, 55
iCE40 ultra devices, 53–54
Lattice’s and QuickLogic’s

devices, 53
MachXO3 EFB interface, 53–54
SD/SDIO/MMC/CE-ATA

controller, 55
transceivers

Altera’s Stratix V
families, 47–49

data transfer rates, 47
PCIe blocks, 51–53
PCS, 49–51
PMA, 49–50
protocols, 47
Xilinx’ Series 7, 47–48

Successive approximation register
(SAR), 128

249Index

Systems-on-programmable chip (SoPC)
systems

core libraries and core generation
tools, 167–169

debugging, 173–174
co-debugging, 177
hardware debugging, 175–177
software debugging, 174–175

hardware design tools
application-tailored system

elements, 162
connectivity generalization, 163
connectivity standardization and

classification, 164
dual-core hard processor

platform, 161
hard cores configurations, 161
interconnect masters, 160
IP modules, 163
memory-mapped interfaces, 164
slaves, 160

software design tools
automation process, 164
bare-metal applications, 166–167
compiler options, 167
debugging tools, 167
development and verification, 167
flash memories, 166
HAL layer, 165
intermediate files, 167
level of abstraction, 164–166
memory and register maps, 165
user-defined aliases, 165
user-defined information, 167

U

Unit under test (UUT), 149–150

W

Wishbone, 109–111

http://taylorandfrancis.com

	Cover

	Half Title

	Title

	Copyright

	Contents
	Preface��������������
	Acknowledgments����������������������
	Authors��������������
	Chapter
1. FPGAs and Their Role in the Design of Electronic Systems
	1.1 Introduction�����������������������
	1.2 Embedded Control Systems: A Wide Concept���
	1.3 Implementation Options for Embedded Systems��
	1.3.1 Technological Improvements and Complexity Growth���
	1.3.2 Toward Energy-Efficient Improved Computing
 Performance��
	1.3.3 A Battle for the Target Technology���
	1.3.4 Design Techniques and Tools for the Different
 Technologies��
	1.3.4.1 General-Purpose Processors and
 Microcontrollers���
	1.3.4.2 DSP Processors�����������������������������
	1.3.4.3 Multicore Processors and GPGPUs��
	1.3.4.4 FPGAs��������������������
	1.3.4.5 ASICs��������������������

	1.4 How Does Configurable Logic Work���
	1.5 Applications and Uses of FPGAs���
	References�����������������

	Chapter
2. Main Architectures and Hardware Resources of FPGAs
	2.1 Introduction�����������������������
	2.2 Main FPGA Architectures����������������������������������
	2.3 Basic Hardware Resources�����������������������������������
	2.3.1 Logic Blocks�������������������������
	2.3.2 I/O Blocks�����������������������
	2.3.2.1 SerDes Blocks����������������������������
	2.3.2.2 FIFO Memories����������������������������

	2.3.3 Interconnection Resources��������������������������������������

	2.4 Specialized Hardware Blocks��������������������������������������
	2.4.1 Clock Management Blocks������������������������������������
	2.4.2 Memory Blocks��������������������������
	2.4.3 Hard Memory Controllers������������������������������������
	2.4.4 Transceivers�������������������������
	2.4.4.1 PCIe Blocks��������������������������

	2.4.5 Serial Communication Interfaces��

	References�����������������

	Chapter
3. Embedded Processors in FPGA Architectures
	3.1 Introduction�����������������������
	3.1.1 Multicore Processors���������������������������������
	3.1.1.1 Main Hardware Issues�����������������������������������
	3.1.1.2 Main Software Issues�����������������������������������

	3.1.2 Many-Core Processors���������������������������������
	3.1.3 FPSoCs�������������������

	3.2 Soft Processors��������������������������
	3.2.1 Proprietary Cores������������������������������
	3.2.2 Open-Source Cores������������������������������

	3.3 Hard Processors��������������������������
	3.4 Other “Configurable” SoC Solutions���
	3.4.1 Sensor Hubs������������������������
	3.4.2 Customizable Processors������������������������������������

	3.5 On-Chip Buses������������������������
	3.5.1 AMBA�����������������
	3.5.1.1 AHB������������������
	3.5.1.2 Multilayer AHB�����������������������������
	3.5.1.3 AXI������������������

	3.5.2 Avalon�������������������
	3.5.3 CoreConnect������������������������
	3.5.4 WishBone���������������������

	References�����������������

	Chapter
4. Advanced Signal Processing Resources in FPGAs
	4.1 Introduction�����������������������
	4.2 Embedded Multipliers�������������������������������
	4.3 DSP Blocks���������������������
	4.4 Floating-Point Hardware Operators��
	References�����������������

	Chapter
5. Mixed-Signal FPGAs
	5.1 Introduction�����������������������
	5.2 ADC Blocks���������������������
	5.3 Analog Sensors�������������������������
	5.4 Analog Data Acquisition and Processing Interfaces��
	5.5 Hybrid FPGA–FPAA Solutions�������������������������������������
	References�����������������

	Chapter
6. Tools and Methodologies for FPGA-Based Design
	6.1 Introduction�����������������������
	6.2 Basic Design Flow Based on RTL Synthesis and
 Implementation Tools���
	6.2.1 Design Entry�������������������������
	6.2.2 Simulation Tools�����������������������������
	6.2.2.1 Interactive Simulation�������������������������������������
	6.2.2.2 Mixed-Mode Simulation������������������������������������
	6.2.2.3 HIL Verification�������������������������������

	6.2.3 RTL Synthesis and Back-End Tools���
	6.2.3.1 RTL Synthesis����������������������������
	6.2.3.2 Translation��������������������������
	6.2.3.3 Placement and Routing������������������������������������
	6.2.3.4 Bitstream Generation�����������������������������������

	6.3 Design of SoPC Systems���������������������������������
	6.3.1 Hardware Design Tools for SoPCs��
	6.3.2 Software Design Tools for SoPCs��
	6.3.3 Core Libraries and Core Generation Tools���

	6.4 HLS Tools��������������������
	6.5 Design of HPC Multithread Accelerators���
	6.6 Debugging and Other Auxiliary Tools��
	6.6.1 Hardware/Software Debugging for SoPC Systems���
	6.6.1.1 Software Debugging���������������������������������
	6.6.1.2 Hardware Debugging���������������������������������
	6.6.1.3 Hardware/Software Co-Debugging���

	6.6.2 Auxiliary Tools����������������������������
	6.6.2.1 Pin Planning Tools���������������������������������
	6.6.2.2 FPGA Selection Advisory Tools��
	6.6.2.3 Power Estimation Tools�������������������������������������

	References�����������������

	Chapter
7. Off-Chip and In-Chip Communications for FPGA Systems
	7.1 Introduction�����������������������
	7.2 Off-Chip Communications����������������������������������
	7.2.1 Low-Speed Interfaces���������������������������������
	7.2.2 High-Speed Interfaces����������������������������������

	7.3 In-Chip Communications���������������������������������
	7.3.1 Point-to-Point Connections���������������������������������������
	7.3.2 Bus-Based Connections����������������������������������
	7.3.3 Networks on Chip�����������������������������

	References�����������������

	Chapter
8. Building Reconfigurable Systems Using Commercial FPGAs
	8.1 Introduction�����������������������
	8.2 Main Reconfiguration-Related Concepts��
	8.2.1 Reconfigurable Architectures���

	8.3 FPGAs as Reconfigurable Elements���
	8.3.1 Commercial FPGAs with Reconfiguration Support��
	8.3.2 Setting Up an Architecture for Partial Reconfiguration���
	8.3.3 Scalable Architectures�����������������������������������
	8.3.4 Tool Support for Partial Reconfiguration���
	8.3.5 On-Chip Communications for Reconfigurable
 System Support��

	8.4 RTR Support����������������������
	8.4.1 Self-Managing Systems����������������������������������
	8.4.2 Adaptive Multithread Execution with
 Reconfigurable Hardware Accelerators��
	8.4.3 Evolvable Hardware�������������������������������

	References�����������������

	Chapter
9. Industrial Electronics Applications of FPGAs
	9.1 Introduction�����������������������
	9.2 FPGA Application Domains in Industrial Electronics���
	9.2.1 Digital Real-Time Simulation of Power Systems��
	9.2.2 Advanced Control Techniques��
	9.2.2.1 Power Systems����������������������������
	9.2.2.2 Robotics and Automotive Electronics��
	9.2.2.3 Use of Floating-Point Operations���

	9.2.3 Electronic Instrumentation���������������������������������������

	9.3 Conclusion���������������������
	References�����������������

	Index������������

